WorldWideScience

Sample records for ataxia-telangiectasia cells exposed

  1. Chromosome aberrations in ataxia telangiectasia cells exposed to heavy ions

    Science.gov (United States)

    Kawata, T.; Cucinotta, F.; George, K.; Wu, H.; Shigematsu, N.; Furusawa, Y.; Uno, T.; Isobe, K.; Ito, H.

    Understanding of biological effects of heavy ions is important to assess healt h risk in space. One of the most important issues may be to take into account individual susceptibility. Ataxia telangiectasia (A-T) cells are known to exhibit abnormal responses to radiations but the mechanism of hyper radiosensitivity of A-T still remains unknown. We report chromosome aberrations in normal human fibroblasts and AT fibroblasts exposed to low- and high-LET radiations. A chemical-induced premature chromosome condensation (PCC) technique combined with chromosome- painting technique was applied to score chromosome aberrations in G2/M-phase cells. Following gamma irradiation, GM02052 cells were approximately 5 times more sensitive to g-rays than AG1522 cells. GM02052 cells had a much higher frequency of deletions and misrejoining than AG1522 cells. When the frequency of complex type aberrations was compared, GM02052 cells showed more than 10 times higher frequency than AG1522 cells. The results will be compared with those obtained from high-LET irradiations.

  2. Chromosome Aberrations in Normal and Ataxia-Telangiectasia Cells Exposed to Heavy Ions

    Science.gov (United States)

    Kawata, T.; Ito, H.; Liu, C.; Shigematsu, N.; George, K.; Cucinotta, F. A.

    2007-01-01

    Although cells derived from Ataxia Telangiectasia (AT) patients are known to exhibit abnormal responses to ionizing radiations, its underlying mechanism still remains unclear. Previously, the authors reported that at the same gamma-irradiation dose AT cells show higher frequencies of misrepair and deletions compared to normal human fibroblast cells. In this study, we investigated the effects of heavy ions beams on chromosomal aberrations in normal and AT cells. Normal and AT fibroblast cells arrested at G0/G1 phase were irradiated with 2 Gy of X-rays, 490 MeV/u Silicon (LET 55 keV/m), 500 MeV/u Iron (LET 185 keV/m) and 200 MeV/u Iron (LET 440 keV/m) particles, and then cells were allowed to repair for 24 hours at 37 degrees before subculture. Calyculin-A induced PCC method was employed to collect G2/M chromosomes and whole DNA probes 1 and 3 were used to analyze chromosomal aberrations such as color-junctions, deletions, simple exchanges (incomplete and reciprocal exanges) and complex-type exchanges. The percentages of aberrant cells were higher when normal and AT cells were exposed to heavy ions compared to X-rays, and had a tendency to increase with increasing LET up to 185 keV/m and then decreased at 440 keV/m. When the frequency of color-junctions per cell was compared after X-ray exposure, AT cells had around three times higher frequency of color-junctions (mis-rejoining) than normal cells. However, at 185 keV/m there was no difference in the frequency of color-junctions between two cell lines. It was also found that the frequency of simple exchanges per cell was almost constant in AT cells regardless LET levels, but it was LET dependent for normal cells. Interestingly, the frequency of simple exchanges was higher for AT cells when it was compared at 185 keV/m but AT cells had more complex-type exchanges at the same LET levels. Heavy ions are more efficient in inducing chromosome aberrations in normal and AT cells compared to X-rays, and the aberration types

  3. Abnormal regulation of DNA replication and increased lethality in ataxia telangiectasia cells exposed to carcinogenic agents

    Energy Technology Data Exchange (ETDEWEB)

    Jaspers, N.G.; de Wit, J.; Regulski, M.R.; Bootsma, D.

    1982-01-01

    The effect of different carcinogenic agents on the rate of semiconservative DNA replication in normal and ataxia telangiectasis (AT) cells was investigated. The rate of DNA synthesis in all AT cell strains tested was depressed to a significantly lesser extent than in normal cells after exposure to X-rays under oxia or hypoxia or to bleomycin, agents to which AT cells are hypersensitive. In contrast, inhibition of DNA replication in normal human and AT cells was similar after treatment with some DNA-methylating agents or mitomycin C. Colony-forming ability of AT cells treated with these agents was not different from normal cells. Treatment with 4-nitroquinoline 1-oxide elicited a variable response in both AT and normal cell strains. In some strains, including those shown to be hypersensitive to the drug by other workers, the inhibition of DNA synthesis was more pronounced than in other cell strains, but no significant difference between AT and normal cells could be detected. The rejoining of DNA strand breaks induced by X-rays, measured by DNA elution techniques, occurred within l2 hr after treatment and could not be correlated with the difference in DNA synthesis inhibition in AT and normal cells. After low doses of X-rays, AT cells rejoined single-strand breaks slightly more slowly than did normal cells. The rate of DNA replication in X-irradiation AT and normal cells was not affected by nicotinamide, an inhibitor of poly(adenosine diphosphate ribose) synthesis. These data indicate that the diminished inhibition of DNA replication in carcinogen-treated AT cells (a) is a general characteristic of all AT cell strains, (b) correlates with AT cellular hypersensitivity, (c) is not directly caused by the bulk of the DNA strand breaks produced by carcinogenic agents, and (d) is not based on differences in the induction of poly(adenosine diphosphate ribose) synthesis between X-irradiated AT and normal cells.

  4. Ataxia Telangiectasia

    Science.gov (United States)

    Ataxia-telangiectasia (A-T) is a rare, inherited disease. It affects the nervous system, immune system, and ... young children, usually before age 5. They include Ataxia - trouble coordinating movements Poor balance Slurred speech Tiny, ...

  5. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    International Nuclear Information System (INIS)

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies

  6. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Choi, Seong-Jun [Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Shim, Hosup, E-mail: shim@dku.edu [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Department of Physiology, Dankook University School of Medicine, Cheonan (Korea, Republic of)

    2014-10-03

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.

  7. Analysis of Residual DSBs in Ataxia-Telangiectasia Lymphoblast Cells Initiating Apoptosis

    Directory of Open Access Journals (Sweden)

    Teresa Anglada

    2016-01-01

    Full Text Available In order to examine the relationship between accumulation of residual DNA double-strand breaks (DSBs and cell death, we have used a control and an ATM (Ataxia-Telangiectasia Mutated defective cell line, as Ataxia-Telangiectasia (AT cells tend to accumulate residual DSBs at long times after damage infliction. After irradiation, AT cells showed checkpoint impairment and a fraction of cells displayed an abnormal centrosome number and tetraploid DNA content, and this fraction increased along with apoptosis rates. At all times analyzed, AT cells displayed a significantly higher rate of radiation-induced apoptosis than normal cells. Besides apoptosis, 70–85% of the AT viable cells (TUNEL-negative carried ≥10 γH2AX foci/cell, while only 12–27% of normal cells did. The fraction of AT and normal cells undergoing early and late apoptosis were isolated by flow cytometry and residual DSBs were concretely scored in these populations. Half of the γH2AX-positive AT cells undergoing early apoptosis carried ≥10 γH2AX foci/cell and this fraction increased to 75% in late apoptosis. The results suggest that retention of DNA damage-induced γH2AX foci is an indicative of lethal DNA damage, as cells undergoing apoptosis are those accumulating more DSBs. Scoring of residual γH2AX foci might function as a predictive tool to assess radiation-induced apoptosis.

  8. Cell and Molecular Biology of Ataxia Telangiectasia Heterozygous Human Mammary Epithelial Cells Irradiated in Culture

    Science.gov (United States)

    Richmond, Robert C.

    2001-01-01

    Autologous isolates of cell types from obligate heterozygotes with the autosomal disorder ataxia-telangiectasia (A-T)were used to begin a tissue culture model for assessing pathways of radiation-induced cancer formation in this target tissue. This was done by establishing cultures of stromal fibroblasts and long-term growth human mammary epithelial cells (HMEC) in standard 2-dimensional tissue culture in order to establish expression of markers detailing early steps of carcinogenesis. The presumptive breast cancer susceptibility of A-T heterozygotes as a sequel to damage caused by ionizing radiation provided reason to study expression of markers in irradiated HMEC. Findings from our study with HMEC have included determination of differences in specific protein expression amongst growth phase (e.g., log vs stationary) and growth progression (e.g., pass 7 vs pass 9), as well as differences in morphologic markers within populations of irradiated HMEC (e.g., development of multinucleated cells).

  9. DNA-mediated gene transfer into ataxia-telangiectasia cells

    International Nuclear Information System (INIS)

    The complete description of the genetic lesion(s) underlying the AT mutation might, therefore, highlight not only a DNA-repair pathwa, but also an important aspect of the physiology of lymphocytes. DNA-mediated gene transfer into eukaryotic cells has proved a powerful tool for the molecular cloning of certain mammalian genes. The possibility to clone a given gene using this technology depends, basically, on the availability of a selectable marker associated with the expression of the transfected gene in the recipient cell. Recently, a human DNA repair gene has been cloned in CHO mutant cells by taking advantage of the increased resistance to ultraviolet radiation of the transformants. As a preliminary step toward the molecular cloning of the AT gene(s), the authors have attempted to confer radioresistance to AT cells by transfection with normal human DNA

  10. [From gene to disease; ataxia telangiectasia

    NARCIS (Netherlands)

    Broeks, A.; Veer, L.J. van 't; Ottenheim, C.; Hiel, J.A.P.; Kleijer, W.J.; Weemaes, C.M.R.

    2003-01-01

    Ataxia telangiectasia (AT) is an autosomal recessive disorder characterised by cerebellar ataxia, telangiectasia, immune defects, and a predisposition to malignancy. Chromosomal breakage is a feature. AT cells are abnormally sensitive to cell kill by ionising radiation and abnormally resistant to in

  11. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient.

    Directory of Open Access Journals (Sweden)

    Ninette Amariglio

    2009-02-01

    Full Text Available BACKGROUND: Neural stem cells are currently being investigated as potential therapies for neurodegenerative diseases, stroke, and trauma. However, concerns have been raised over the safety of this experimental therapeutic approach, including, for example, whether there is the potential for tumors to develop from transplanted stem cells. METHODS AND FINDINGS: A boy with ataxia telangiectasia (AT was treated with intracerebellar and intrathecal injection of human fetal neural stem cells. Four years after the first treatment he was diagnosed with a multifocal brain tumor. The biopsied tumor was diagnosed as a glioneuronal neoplasm. We compared the tumor cells and the patient's peripheral blood cells by fluorescent in situ hybridization using X and Y chromosome probes, by PCR for the amelogenin gene X- and Y-specific alleles, by MassArray for the ATM patient specific mutation and for several SNPs, by PCR for polymorphic microsatellites, and by human leukocyte antigen (HLA typing. Molecular and cytogenetic studies showed that the tumor was of nonhost origin suggesting it was derived from the transplanted neural stem cells. Microsatellite and HLA analysis demonstrated that the tumor is derived from at least two donors. CONCLUSIONS: This is the first report of a human brain tumor complicating neural stem cell therapy. The findings here suggest that neuronal stem/progenitor cells may be involved in gliomagenesis and provide the first example of a donor-derived brain tumor. Further work is urgently needed to assess the safety of these therapies.

  12. Impaired recovery and mutagenic SOS-like responses in ataxia telangiectasia cells

    Energy Technology Data Exchange (ETDEWEB)

    Hilgers, G. (Universite Libre de Bruxelles (Belgium) Rijksuniversiteit Leiden (Netherlands)); Abrahams, P.J. (Rijksuniversiteit Leiden (Netherlands)); Chen, Y.Q. (Universite Libre de Bruxelles (Belgium)); Schouten, R. (Rijksuniversiteit Leiden (Netherlands)); Cornelis, J.J. (Universite Libre de Bruxelles (Belgium) Institut Pasteur, 75 - Paris (France)); Lowe, J.E. (Sussex Univ., Brighton (UK)); Eb, A.J. van der (Rijksuniversiteit Leiden (Netherlands)); Rommelaere, J. (Universite Libre de Bruxelles (Belgium) Institut Pasteur, 75 - Paris (France))

    1989-01-01

    Radiosensitive fibroblasts from patients with ataxia telangiectasia (AT) were studied for their proficiency in two putative eukaryotic SOS-like responses, namely the enhanced reactivation (ER) and enhanced mutagenesis of damaged viruses infecting pre-irradiated versus mock-treated cells. A previous report indicated that, unlike normal human cells, a line of AT fibroblasts (AT5BIVA) could not be induced to express ER of damaged parvovirus H-1, a single-stranded DNA virus, by UV- or X-irradiation. In the present study, AT5BIVA fibroblasts were also distinguished from normal cells by the inability of the former to achieve enhanced mutagenesis of damaged H-1 virus upon cell UV-irradiation. In contrast, dose-response and time-course experiments revealed normal levels of ER of Herpes simplex virus 1, a double-stranded DNA virus, in X- or UV-irradiated AT5BIVA cells. Taken together, these data point to a possible deficiency of AT cells in a conditioned mutagenic process that contributes to a greater extent to the recovery of damaged single-stranded than double-stranded DNA. Such a defect may concern the replication of damaged DNA or the generation of signals promoting the latter process and may be related to the lack of radiation-induced delay that is typical of AT cell DNA synthesis. (author).

  13. Ataxia-telangiectasia mutated (ATM) deficiency decreases reprogramming efficiency and leads to genomic instability in iPS cells

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Taisuke [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Nagamatsu, Go, E-mail: gonag@sc.itc.keio.ac.jp [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Kosaka, Takeo [Department of Urology, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Takubo, Keiyo [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Hotta, Akitsu [Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Department of Reprogramming Science, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Ellis, James [Ontario Human iPS Cell Facility, Molecular Genetics, University of Toronto, Developmental and Stem Cell Biology, SickKids, Toronto, Canada MG1L7 (Canada); Suda, Toshio, E-mail: sudato@sc.itc.keio.ac.jp [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan)

    2011-04-08

    Highlights: {yields} iPS cells were induced with a fluorescence monitoring system. {yields} ATM-deficient tail-tip fibroblasts exhibited quite a low reprogramming efficiency. {yields} iPS cells obtained from ATM-deficient cells had pluripotent cell characteristics. {yields} ATM-deficient iPS cells had abnormal chromosomes, which were accumulated in culture. -- Abstract: During cell division, one of the major features of somatic cell reprogramming by defined factors, cells are potentially exposed to DNA damage. Inactivation of the tumor suppressor gene p53 raised reprogramming efficiency but resulted in an increased number of abnormal chromosomes in established iPS cells. Ataxia-telangiectasia mutated (ATM), which is critical in the cellular response to DNA double-strand breaks, may also play an important role during reprogramming. To clarify the function of ATM in somatic cell reprogramming, we investigated reprogramming in ATM-deficient (ATM-KO) tail-tip fibroblasts (TTFs). Although reprogramming efficiency was greatly reduced in ATM-KO TTFs, ATM-KO iPS cells were successfully generated and showed the same proliferation activity as WT iPS cells. ATM-KO iPS cells had a gene expression profile similar to ES cells and WT iPS cells, and had the capacity to differentiate into all three germ layers. On the other hand, ATM-KO iPS cells accumulated abnormal genome structures upon continuous passages. Even with the abnormal karyotype, ATM-KO iPS cells retained pluripotent cell characteristics for at least 20 passages. These data indicate that ATM does participate in the reprogramming process, although its role is not essential.

  14. Inverted duplication of JH associated with chromosome 14 translocation and T-cell leukemia in ataxia-telangiectasia.

    OpenAIRE

    Johnson, J P; Gatti, R A; Sears, T S; White, R. L.

    1986-01-01

    A specific 14q32 breakpoint is observed in a homologous chromosome 14 translocation [t(14;14)q12q32] occurring in the T-cells of about 10% of patients with ataxia-telangiectasia (AT). To investigate whether the 14q32 breakpoint in AT occurs within the immunoglobulin gene cluster as is frequently detected in B-cell lymphoma, immunoglobulin clones were hybridized to Southern blots of DNA isolated from the T-cells of two AT patients with this chromosome 14 translocation. The 14q32 translocation ...

  15. A gamma-ray-resistant derivative of an ataxia telangiectasia cell line obtained following DNA-mediated gene transfer

    International Nuclear Information System (INIS)

    Genomic DNA from normal human or mouse cells was transfected together with the selectable market gpt into the simian virus 40-transformed ataxia telangiectasia fibroblast line, AT5BIVA. From a series of experiments involving over 400 000 clones selected for the gpt marker, one unambiguously radiation-resistant clone (clone 67) was recovered following selection with repeated cyles of gamma irradiation. The normal level of radiation resistance of clone 67 has been maintained for at least 11 months in the absence of further selection by radiation. The resistant clone contains one copy of the gpt gene. Its DNA synthesis following gamma-radiation is inhibited to an extent intermediate between that of ataxia telangiectasia and normal cells. Three out of four thioguanine-resistant derivatives of clone 67 have either lost or do not express the gpt sequence and show almost the same sensitivity to gamma irradiation as the original AT5BIVA line. This suggests that the radiation resistance of clone 67 may be linked to the gpt sequence and may have arisen as a consequence of the transfection, rather than as the result of an independent mutation to radiation resistance. (author)

  16. Radiation Dose-effects on Cell Cycle, Apoptosis, and Marker Expression of Ataxia Telangiectasia-Heterozygous Human Breast Epithelial Cells

    Science.gov (United States)

    Cruz, A.; Bors, K.; Jansen, H.; Richmond, R.

    2003-01-01

    Ataxia-telangiectasia (A-T) is a radiation-sensitive genetic condition. AT-heterozygous human mammary epithelial cells (HMEC) were irradiated using a Cs137 source in order to compare cell cycle, apoptosis, and marker expression responses across 3 radiation doses. No differences in cell cycle and apoptosis were found with any of the radiation doses used (30, 60, and 90 rads) compared with the unirradiated control (0 rad). At the same doses, however, differences were found in marker expression, such as keratin 18 (kl8), keratin 14 (k14), insulin-like growth factor I receptor (IGF-IR), and connexin 43 (cx43). This may indicate that radiation sensitivity in the heterozygous state may be initiated through signal transduction responses.

  17. Caffeine Suppresses Apoptosis of Bladder Cancer RT4 Cells in Response to Ionizing Radiation by Inhibiting Ataxia Telangiectasia Mutated-Chk2-p53 Axis

    Institute of Scientific and Technical Information of China (English)

    Zhe-Wei Zhang; Jing Xiao; Wei Luo; Bo-Han Wang; Ji-Min Chen

    2015-01-01

    Background:Caffeine suppresses ataxia telangiectasia and Rad3 related and ataxia telangiectasia mutated (ATM) activities;ATM is the major kinase for DNA damage detection.This study aimed to investigate the effects of caffeine on DNA damage responses in cells from the bladder cancer cell line RT4 those were exposed to ionizing radiation (IR).Methods:Immunofluorescent staining was performed to investigate changes in the proteins involved in DNA damage responses with or without caffeine.A mouse xenograft model was used to study the effects of caffeine on the DNA damage responses.Western blotting was used to investigate the effects of caffeine pretreatment on the ATM-Chk2-p53-Puma axis,while real-time polymerase chain reaction (RT-PCR) assessed changes in messenger RNA levels of p53 and downstream targets responding to IR.Finally,terminal deoxynucleotidyl transferase-dUTP nick end labeling assay.Western blotting and colony formation assay were used to measure the effects of caffeine on radiation-related apoptosis.All of the data were analyzed with a two-tailed Student's t-test.Results:Immunofluorescent staining showed that caffeine pretreatment profoundly suppressed the formation ofγH2AXand p53-binding protein 1 foci in RT4 cells in response to irradiation.Cellular and animal experiments suggested that this suppression was mediated by suppression of the ATM-Chk2-p53-Puma DNA damage-signaling axis.RT-PCR indicated caffeine also attenuated transactivation of p53 and p53-inducible genes.The colony formation assay revealed that caffeine displayed radioprotective effects on RT4 cells in response to low-dose radiation compared to the radiosensitization effects on T24 cells.Conclusion:Caffeine may inhibit IR-related apoptosis of bladder cancer RT4 cells by suppressing activation of the ATM-Chk2-p53-Puma axis.

  18. Establishment of immortal normal and ataxia telangiectasia fibroblast cell lines by introduction of the hTERT gene

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hideaki; Fukami, Hiroko; Hayashi, Yuko; Kiyono, Tohru; Ishizaki, Kanji [Aichi Cancer Center, Nagoya (Japan). Research Inst.; Nakatsugawa, Shigekazu; Hamaguchi, Michinari [Nagoya Univ. (Japan). School of Medicine

    2002-06-01

    To establish immortal human cells, we introduced the human catalytic subunit of telomerase (hTERT) gene into skin fibroblast cells obtained from normal and ataxia telangiectasia (AT) individuals of Japanese origin. After hTERT introduction, these cells continue to grow beyond a population doubling number of 200 while maintaining their original radiosensitivity. Inductions of p53, phosphorylation of Serl5 in p53, and induction of p21 by X-ray irradiation in immortal cells derived from normal individual were not affected by the hTERT introduction. Both normal and AT immortal cells exhibited an apparent inhibition of growth as original primary cells when they reached confluence. Karyotype analysis has revealed that they are in a diploid range. These results suggest that cells immortalized by hTERT introduction retain their original characteristics except for immortalization, and that they may be useful for analyzing various effects of radiation on human cells. (author)

  19. Radiosensitivity in ataxia-telangiectasia

    International Nuclear Information System (INIS)

    Full text: Radiosensitivity is a major hallmark of the human genetic disorder ataxia-telangiectasia. This hypersensitivity to ionizing radiation has been demonstrated in vitro after exposure of patients to therapeutic thought to be the major factor contculture. Clearly an understanding of the nature of the molecular defect in ataxia-telangiectasia will be of considerable assistance in delineating additional pathways that determine cellular radiosensitivity/radioresistance. Furthermore, since patients with this syndrome are also predisposed to developing a number of leukaemias and lymphomas the possible connection between radiosensitivity and cancer predisposition is of interest. Now that the gene (ATM) responsible for this genetic disease has been cloned and identified, progress is being made in determining the role of the ATM protein in mediating the effects of cellular exposure to ionizing radiation and other forms of redox stress. Proteins such as the product of the tumour suppressor gene p53 and the proto-oncogene c-Abl (a protein tyrosine kinase) have been shown to interact with ATM. Since several intermediate steps in both the p53 and c-Abl pathways, activated by ionizing radiation, are known it will be possible to map the position of ATM in these pathways and describe its mechanism of action. What are the clinical implications of understanding the molecular basis of the defect in ataxia-telangiectasia? As outlined above since radiosensitivity is a universal characteristic of A-T understanding the mechanism of action of ATM will provide additional information or radiation signalling in human cells. With this information it may be possible to sensitize tumour cells to radiation and thus increase the therapeutic benefit of radiotherapy. This might involve the use of small molecules that would interfere with the normal ATM controlled pathways and thus sensitize cells to radiation or alternatively it might involve the efficient introduction of ATM anti-sense c

  20. Radiosensitivity in ataxia-telangiectasia

    Energy Technology Data Exchange (ETDEWEB)

    Lavin, M.F. [Royal Brisbane Hospital, QLD (Australia). Queensland Institute of Medical Research and The Department of Surgery; Khanna, K.K.; Watters, D. [Royal Brisbane Hospital, QLD (Australia). Queensland Institute of Medical Research

    1998-12-31

    Full text: Radiosensitivity is a major hallmark of the human genetic disorder ataxia-telangiectasia. This hypersensitivity to ionizing radiation has been demonstrated in vitro after exposure of patients to therapeutic thought to be the major factor contculture. Clearly an understanding of the nature of the molecular defect in ataxia-telangiectasia will be of considerable assistance in delineating additional pathways that determine cellular radiosensitivity/radioresistance. Furthermore, since patients with this syndrome are also predisposed to developing a number of leukaemias and lymphomas the possible connection between radiosensitivity and cancer predisposition is of interest. Now that the gene (ATM) responsible for this genetic disease has been cloned and identified, progress is being made in determining the role of the ATM protein in mediating the effects of cellular exposure to ionizing radiation and other forms of redox stress. Proteins such as the product of the tumour suppressor gene p53 and the proto-oncogene c-Abl (a protein tyrosine kinase) have been shown to interact with ATM. Since several intermediate steps in both the p53 and c-Abl pathways, activated by ionizing radiation, are known it will be possible to map the position of ATM in these pathways and describe its mechanism of action. What are the clinical implications of understanding the molecular basis of the defect in ataxia-telangiectasia? As outlined above since radiosensitivity is a universal characteristic of A-T understanding the mechanism of action of ATM will provide additional information or radiation signalling in human cells. With this information it may be possible to sensitize tumour cells to radiation and thus increase the therapeutic benefit of radiotherapy. This might involve the use of small molecules that would interfere with the normal ATM controlled pathways and thus sensitize cells to radiation or alternatively it might involve the efficient introduction of ATM anti-sense c

  1. Ataxia-telangiectasia

    OpenAIRE

    Nelson Pires Ferreira

    1983-01-01

    São apresentados os casos de dois irmãos com ataxia-telangiectasia, estudados sob os pontos de vista clínico, eletrencefalográfico, liquórico e encefalográfico. O autor resume os achados de diversos autores e chama a atenção para a regressão parcial da síndrome cerebelar em ambos os pacientes, fato ainda não referido na literatura.

  2. Genetics Home Reference: ataxia-telangiectasia

    Science.gov (United States)

    ... Me Understand Genetics Home Health Conditions ataxia-telangiectasia ataxia-telangiectasia Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Ataxia-telangiectasia is a rare inherited disorder that affects ...

  3. A derivative of an ataxia-telangiectasia (A-T) cell line with normal radiosensitivity but A-T-like inhibition of DNA synthesis

    International Nuclear Information System (INIS)

    Ataxia-telangiectasia (A-T) cells are hypersensitive to the lethal effects of ionizing radiation and fail to inhibit DNA synthesis following radiation exposure. A cell line derived from an A-T line following DNA-mediated gene transfer has normal radiation sensitivity, but the kinetics of DNA synthesis after γ-irradiation are similar to those of A-T cells. (author)

  4. Ataxia-telangiectasia

    Directory of Open Access Journals (Sweden)

    Nelson Pires Ferreira

    1966-09-01

    Full Text Available São apresentados os casos de dois irmãos com ataxia-telangiectasia, estudados sob os pontos de vista clínico, eletrencefalográfico, liquórico e encefalográfico. O autor resume os achados de diversos autores e chama a atenção para a regressão parcial da síndrome cerebelar em ambos os pacientes, fato ainda não referido na literatura.

  5. An enzyme activity in normal and ataxia telangiectasia cell lines which is involved in the repair of γ-irradiation-induced DNA damage

    International Nuclear Information System (INIS)

    An enzyme that enhances the activity of DNA polymerase I (EC 2.7.7.7) for γ-irradiated calf thymus DNA was demonstrated in cellular extracts of normal human fibroblasts and lymphoid-cell lines. This enzyme was found to be deficient in all cellular extracts of fibroblasts and lymphoid-cell lines examined from patients with the autosomal recessive disease ataxia telangiectasia. The activity in cellular extracts from normal fibroblasts was removed when heated to 1000C for 2 min or when the assay was performed at 40C. No significant deficiency in primer activating enzyme activity was observed in cell-free extracts of lymphoid lines from patients with xeroderma pigmentosum, Huntington's chorea or neurofibromatosis, or from an ataxia telangiectasia heterozygote. (author)

  6. Failure to detect a DNA repair-related defect in the transfection of ataxia-telangiectasia cells by enzymatically restricted plasmid

    International Nuclear Information System (INIS)

    Two SV40-transformed human fibroblast cell lines were transfected with plasmids in which double-strand breaks had been introduced by restriction enzymes, within or near the selected gene. Restriction of pSV2gpt with KpnI reduced the frequency of transfection more in the ionizing radiation-sensitive ataxia-telangiectasia line AT5BIVA than in the resistant line MRC5V1. When the related plasmid pSV2neo was restricted with SmaI, the reduction in transfection was less in the ataxia-telangiectasia than in the normal cells. The apparent defect in transfection of AT5BIVA by pSV2gpt appeared to be a result of the unusual sensitivity of the repair-deficient recipient to the selective agent. Loss of potential transfectants is exacerbated when transient gene expression is reduced by restriction of the plasmid. It is suggested that a reduction in yield of transfectants with restricted plasmid in ataxia-telangiectasia cells cannot readily be used as evidence of a defect in DNA repair. The results are also relevant to standard transfection experiments; they emphasize the importance of optimizing selection when transient expression may be reduced, to ensure that potential transfectants are not killed by the selection regime. (author)

  7. Abnormal levels of UV-induced unscheduled DNA synthesis in ataxia telangiectasia cells after exposure to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Jaspers, N.G.J. (Erasmus Universiteit, Rotterdam (Netherlands). Dept. of Cell Biology and Genetics; Nederlandse Centrale Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek, Rijswijk. Medical Biological Lab.); Bootsma, D. (Erasmus Universiteit, Rotterdam (Netherlands). Dept. of Cell Biology and Genetics)

    1982-01-01

    In cultured cells from normal individuals and from patients having ataxia telangiectasia (AT) the rate of unscheduled DNA synthesis (UDS) induced by UV light was investigated by autoradiography. The number of grains in 6 different AT cell strains was similar to that observed in normal cells. Exposure of normal cells to doses of X-rays up to 20 krad had no influence on the rate of UV-induced UDS. In contrast, the UV-induced UDS was significantly modified in AT cells by treatment with X-rays. In AT cell strains that were reported to have reduced levels of ..gamma..-ray-induced repair DNA synthesis ('excision-deficient' AT cells) the effect of X-rays on UV-induced UDS was inhibitory, whereas UV-induced UDS was stimulated by X-ray exposure in 'excision-proficient' AT cell strains. Different UV and X-ray dose-response relationships were seen in the two categories of AT cell strains.

  8. Cell death, chromosome damage and mitotic delay in normal human, ataxia telangiectasia and retinoblastoma fibroblasts after x-irradiation.

    Science.gov (United States)

    Zampetti-Bosseler, F; Scott, D

    1981-05-01

    We recently showed (Scott and Zampetti-Bosseler 1980) that X-ray sensitive mouse lymphoma cells sustain more chromosome damage, mitotic delay and spindle defects than X-ray resistant cells. We proposed that (a) chromosome aberrations contribute much more to lethality than spindle defects, and (b) that DNA lesions are less effectively repaired in the sensitive cells and give rise to more G2 mitotic delay and chromosome aberrations. Our present results on human fibroblasts with reported differential sensitivity to ionizing radiation (i.e. normal donors and patients with ataxia telangiectasia and retinoblastoma) support the first hypothesis since we observed a positive correlation between chromosome aberration frequencies and cell killing and no induced spindle defects. Our second hypothesis is however not substantiated since X-ray sensitive fibroblasts from the ataxia patient suffered less mitotic delay than cells from normal donors. A common lesion for mitotic delay and chromosome aberrations can still be assumed by adopting the hypothesis of Painter and Young (1981) that the defect in ataxia cells is not in repair but in a failure of DNA damage to initiate mitotic delay. In contrast to other reports, we found the retinoblastoma cells to be of normal radiation sensitivity (cell killing and aberration).

  9. Identification of 4 ataxia telangiectasia cell lines hypersensitive to γ-irradiation but not to hydrogen peroxide

    International Nuclear Information System (INIS)

    The effct of hydrogen peroxide on the rate of semi-conservative DNA synthesis in ataxia telangiectasia (AT) and normal human lymphoblastoid cells was investigated. The rate of DNA synthesis in AT cells was not depressed to a lesser extent than in normal cells, as might have been expected since H2O2 is a radiomimetic agent. On the contrary, 4 AT cell lines displayed a higher sensitivity to the inhibitory effect of H2O2 on DNA synthesis than 2 normal cell lines. Comparable levels of cytotoxicity were detected in cell vaibility studies. Furthermore, neither the level of DNA breakage produced by H2O2, nor the rate of repair of these lesions was signigicantly different in normal and AT cells. Together, these results indicate that the AT cell lines utilized in this study are not hypersensitive to the oxidant. It is suggested that H-2-O-2 may not induce lethality via the direct ation of the hydroxyl radical (OH). (Author). 20 refs.; 3 figs.; 1 tab

  10. Ataxia-telangiectasia: future prospects

    OpenAIRE

    Chaudhary MW; Al-Baradie RS

    2014-01-01

    Mohammed Wajid Chaudhary, Raidah Saleem Al-Baradie Pediatric Neurology, Neurosciences Centre, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia Abstract: Ataxia-telangiectasia (A-T) is an autosomal recessive multi-system disorder caused by mutation in the ataxia-telangiectasia mutated gene (ATM). ATM is a large serine/threonine protein kinase, a member of the phosphoinositide 3-kinase-related protein kinase (PIKK) family whose best-studied function is as master controller of si...

  11. Identification of ataxia telangiectasia heterozygotes, a cancer-prone population, using the single-cell gel electrophoresis (Comet) assay.

    Science.gov (United States)

    Djuzenova, C S; Schindler, D; Stopper, H; Hoehn, H; Flentje, M; Oppitz, U

    1999-06-01

    Heterozygotes of ataxia telangiectasia (AT) may comprise up to 1% of the general population. Because these individuals have no clinical expression of AT but may be highly radiosensitive and strongly predisposed for several forms of cancer, identification of AT carriers represents a considerable interest in cancer epidemiology and radiotherapy. We report a new approach for the in vitro identification of AT-heterozygotes based on the evaluation of the radiosensitivity and DNA damage repair ability of peripheral blood mononuclear cells using the single-cell gel electrophoresis (Comet) assay. The assay was performed on cells isolated from four different groups of individuals: (1) apparently healthy donors (n = 10); (2) patients with breast cancer showing a normal reaction to radiotherapy (n = 10); (3) a group of obligate AT carriers (parents of AT-homozygotes, n = 20); and (4) AT-homozygotes (n = 4). Cells irradiated with 3 Gy of x-rays were assayed for three parameters: (1) the initial and (2) residual DNA damage and (3) the kinetics of DNA damage repair. Both AT-heterozygotes' and AT-homozygotes' cells were found to be highly sensitive to x-irradiation. Quantitative evaluation of the single-cell electrophoregrams revealed that the average initial DNA damage in AT-heterozygous and AT-homozygous cells was almost three times higher than that in control non-AT cells. In addition, the DNA repair process in irradiated AT carrier cells was almost three times slower, and the extent of irreparable DNA damage in these cells was three times greater than in controls. Simultaneous assessment of the three parameters enabled correct identification of all tested AT carriers. This method seems to be a sensitive and useful tool for populational studies as a rapid prescreening test for a mutated AT status. The approach can also be extended for prediction of the in vivo radiosensitivity, which would enable optimization of individual radiotherapy schedules. PMID:10378512

  12. Identification of defective illegitimate recombinational repair of oxidatively-induced DNA double-strand breaks in ataxia-telangiectasia cells

    Science.gov (United States)

    Dar, M. E.; Winters, T. A.; Jorgensen, T. J.

    1997-01-01

    Ataxia-telangiectasia (A-T) is an autosomal-recessive lethal human disease. Homozygotes suffer from a number of neurological disorders, as well as very high cancer incidence. Heterozygotes may also have a higher than normal risk of cancer, particularly for the breast. The gene responsible for the disease (ATM) has been cloned, but its role in mechanisms of the disease remain unknown. Cellular A-T phenotypes, such as radiosensitivity and genomic instability, suggest that a deficiency in the repair of DNA double-strand breaks (DSBs) may be the primary defect; however, overall levels of DSB rejoining appear normal. We used the shuttle vector, pZ189, containing an oxidatively-induced DSB, to compare the integrity of DSB rejoining in one normal and two A-T fibroblast cells lines. Mutation frequencies were two-fold higher in A-T cells, and the mutational spectrum was different. The majority of the mutations found in all three cell lines were deletions (44-63%). The DNA sequence analysis indicated that 17 of the 17 plasmids with deletion mutations in normal cells occurred between short direct-repeat sequences (removing one of the repeats plus the intervening sequences), implicating illegitimate recombination in DSB rejoining. The combined data from both A-T cell lines showed that 21 of 24 deletions did not involve direct-repeats sequences, implicating a defect in the illegitimate recombination pathway. These findings suggest that the A-T gene product may either directly participate in illegitimate recombination or modulate the pathway. Regardless, this defect is likely to be important to a mechanistic understanding of this lethal disease.

  13. Uterine tumors in ataxia-telangiectasia.

    Science.gov (United States)

    Gatti, R A; Nieberg, R; Boder, E

    1989-02-01

    Roughly one-third of patients with ataxia-telangiectasia (AT) develop malignant tumors, usually of lymphoid origin. AT patients also exhibit progeric changes. We describe three patients, between the ages of 27 and 32 years, with uterine tumors: one with a frank leiomyosarcoma and chronic T-cell leukemia, one with a multilobulated leiomyoma of uncertain malignant potential, and one with an unremarkable leiomyoma. Thus, the spectrum of tumors in AT patients beyond adolescence includes nonlymphoid malignancies and precocious, benign leiomyomas.

  14. Ataxia-telangiectasia: future prospects

    Directory of Open Access Journals (Sweden)

    Chaudhary MW

    2014-09-01

    Full Text Available Mohammed Wajid Chaudhary, Raidah Saleem Al-Baradie Pediatric Neurology, Neurosciences Centre, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia Abstract: Ataxia-telangiectasia (A-T is an autosomal recessive multi-system disorder caused by mutation in the ataxia-telangiectasia mutated gene (ATM. ATM is a large serine/threonine protein kinase, a member of the phosphoinositide 3-kinase-related protein kinase (PIKK family whose best-studied function is as master controller of signal transduction for the DNA damage response (DDR in the event of double strand breaks (DSBs. The DDR rapidly recognizes DNA lesions and initiates the appropriate cellular programs to maintain genome integrity. This includes the coordination of cell-cycle checkpoints, transcription, translation, DNA repair, metabolism, and cell fate decisions, such as apoptosis or senescence. DSBs can be generated by exposure to ionizing radiation (IR or various chemical compounds, such as topoisomerase inhibitors, or can be part of programmed generation and repair of DSBs via cellular enzymes needed for the generation of the antibody repertoire as well as the maturation of germ cells. AT patients have immunodeficiency, and are sterile with gonadal dysgenesis as a result of defect in meiotic recombination. In the cells of nervous system ATM has additional role in vesicle dynamics as well as in the maintenance of the epigenetic code of histone modifications. Moderate levels of ATM are associated with prolonged lifespan through resistance to oxidative stress. ATM inhibitors are being viewed as potential radiosensitizers as part of cancer radiotherapy. Though there is no cure for the disease at present, glucocorticoids have been shown to induce alternate splicing site in the gene for ATM partly restoring its activity, but their most effective timing in the disease natural history is not yet known. Gene therapy is promising but large size of the gene makes it technically difficult

  15. Pilot study of modified LMB-based therapy for children with ataxia-telangiectasia and advanced stage high grade mature b-cell malignancies

    OpenAIRE

    Sandlund, J.T.; Hudson, M. M.; Kennedy, W; Onciu, M; Kastan, M B

    2013-01-01

    Children with ataxia-telangiectasia (A-T) and cancer have a poorer prognosis due in part to increased treatment-related toxicity. We piloted a curative intent approach in five children with A-T who presented with advanced stage (III, n=2; IV, n=3) B-NHL (diffuse large B-cell lymphoma, n=4; Burkitt leukemia, n=1) using a modified LMB-based protocol. Two achieved sustained CCR (one, CCR at 6 years; one, pulmonary death after 3 years in CCR). Two died from toxicity during induction and 1 failed ...

  16. High-LET Radiation Induced Chromosome Aberrations in Normal and Ataxia Telangiectasia Fibroblast Cells

    Science.gov (United States)

    Kawata, Tetsuya; George, Ms Kerry; Cucinotta, Francis A.; Shigematsu, Naoyuki; Ito, Hisao; Furusawa, Yoshiya; Uno, Takashi

    We investigated the effects of heavy ions beams on chromosomal aberrations in normal and AT cells. Normal and AT fibroblast cells arrested at G0/G1 phase were irradiated with 2 Gy of X-rays, 490 MeV/u Silicon (LET 55 keV/micron), 500 MeV/u Iron (LET 185 keV/micron) and 200 MeV/u Iron (LET 440 keV/micron) particles, and then cells were allowed to repair for 24 hours at 37 degrees before subculture. Calyculin-A induced PCC method was employed to collect G2/M chromosomes and whole DNA probes 1 and 3 were used to analyze chromosomal aberrations such as color-junctions, deletions, simple exchanges (incomplete and reciprocal exchanges) and complex-type exchanges. The percentages of aberrant cells were higher when normal and AT cells were exposed to heavy ions compared to X-rays, and had a tendency to increase with increasing LET up to 185 keV/micron and then decreased at 440 keV/micron. When the frequency of color-junctions per cell was compared after X-ray exposure, AT cells had around three times higher frequency of color-junctions (mis-rejoining) than normal cells. However, at 185 keV/micron there was no difference in the frequency of color-junctions between two cell lines. It was also found that the frequency of simple exchanges per cell was almost constant in AT cells regardless LET levels, but it was LET dependent for normal cells. Interestingly, the frequency of simple exchanges was higher for normal fibroblast cells when it was compared at 185 keV/micron, but AT cells had more complex-type exchanges at the same LET levels. Heavy ions are more efficient in inducing chromosome aberrations in normal and AT cells compared to X-rays, and the aberration types between normal and AT fibroblast appeared different probably due to difference in the ATM gene function.

  17. Cancer Risk-Assessment of Radiation Damage in Ataxia Telangiectasia Heterozygous Human Breast Epithelial Cell Cultures

    Science.gov (United States)

    Applewhite, Lisa C.

    2002-01-01

    This paper describes the study of the markers of cellular changes that are found during the onset of carcinogenesis. Several of the biological factors are markers of stress response, oncoprotein expression, and differentiation factors. Oxidative stress response agents such as heat shock proteins (HSPs) protect cells from oxidative stresses such as ionizing radiation. The onocoprotein HER-2/neu, a specific breast cancer marker, indicates early onset of cancer. Additional structural and morphogenetic markers of differentiation were considered in order to determine initial cellular changes at the initial onset of cancer. As an additional consideration, all-trans retinoic acid (RA), a differentiation agent, was considered because of its known role in regulating normal differentiation and inhibiting tumor proliferation via specific nuclear receptors. This paper discusses study and results of the preliminary analyses of gamma irradiation of AT heterozygous human breast epithelial cells (WH). Comparisons are also made of the effects various RA concentrations post-irradiation.

  18. Does Ataxia Telangiectasia Mutated (ATM) protect testicular and germ cell DNA integrity by regulating the redox status?

    Science.gov (United States)

    Godschalk, Roger W L; Vanhees, Kimberly; Maas, Lou; Drittij, Marie-Jose; Pachen, Daniëlle; van Doorn-Khosrovani, Sahar van Waalwijk; van Schooten, Frederik J; Haenen, Guido R M M

    2016-08-01

    A balanced redox homeostasis in the testis is essential for genetic integrity of sperm. Reactive oxygen species can disturb this balance by oxidation of glutathione, which is regenerated using NADPH, formed by glucose-6-phosphate dehydrogenase (G6PDH). G6PDH is regulated by the Ataxia Telangiectasia Mutated (Atm) protein. Therefore, we studied the redox status and DNA damage in testes and sperm of mice that carried a deletion in Atm. The redox status in heterozygote mice, reflected by glutathione levels and antioxidant capacity, was lower than in wild type mice, and in homozygotes the redox status was even lower. The redox status correlated with oxidative DNA damage that was highest in mice that carried Atm deletions. Surprisingly, G6PDH activity was highest in homozygotes carrying the deletion. These data indicate that defective Atm reduces the redox homeostasis of the testis and genetic integrity of sperm by regulating glutathione levels independently from G6PDH activity. PMID:27318254

  19. The production and repair of double strand breaks in cells from normal humans and patients with ataxia telangiectasia

    International Nuclear Information System (INIS)

    The production and repair of double strand breaks induced by γ-rays in the DNA of human fibroblasts have been measured by sedimentation in sucrose gradients under non-denaturing conditions. Unirradiated DNA formed a rapidly sedimenting gel. Low doses of radiation released freely sedimenting DNA molecules from this gel. Higher doses reduced the rate of sedimentation of the free DNA due to the introduction of double strand breaks. The breakage efficiency was 1 break/1.3x1010 daltons of DNA/krad. Postirradiation incubation after a high dose of radiation resulted in an increase in molecular weight of the free DNA molecules, and after a low dose the rapidly-sedimenting gel was reformed. These data suggest that double strand breaks are repaired in human fibroblasts. No significant differences were found between fibroblasts from two normal donors and four patients with the radiosensitive disorder, ataxia telangiectasia, in either the production or repair of double strand breaks

  20. Radiological imaging in ataxia telangiectasia: a review.

    Science.gov (United States)

    Sahama, Ishani; Sinclair, Kate; Pannek, Kerstin; Lavin, Martin; Rose, Stephen

    2014-08-01

    The human genetic disorder ataxia telangiectasia (A-T) is characterised by neurodegeneration, immunodeficiency, radiosensitivity, cell cycle checkpoint defects, genomic instability and cancer predisposition. Progressive cerebellar ataxia represents the most debilitating aspect of this disorder. At present, there is no therapy available to cure or prevent the progressive symptoms of A-T. While it is possible to alleviate some of the symptoms associated with immunodeficiency and deficient lung function, neither the predisposition to cancer nor the progressive neurodegeneration can be prevented. Significant effort has focused on improving our understanding of various clinical, genetic and immunological aspects of A-T; however, little attention has been directed towards identifying altered brain structure and function using MRI. To date, most imaging studies have reported radiological anomalies in A-T. This review outlines the clinical and biological features of A-T along with known radiological imaging anomalies. In addition, we briefly discuss the advent of high-resolution MRI in conjunction with diffusion-weighted imaging, which enables improved investigation of the microstructural tissue environment, giving insight into the loss in integrity of motor networks due to abnormal neurodevelopmental or progressive neurodegenerative processes. Such imaging approaches have yet to be applied in the study of A-T and could provide important new information regarding the relationship between mutation of the ataxia telangiectasia mutated (ATM) gene and the integrity of motor circuitry. PMID:24683014

  1. The response of normal and ataxia-telangiectasia cells to bleomycin: relationships between chromosome damage, cell cycle delay and cell killing.

    Science.gov (United States)

    Zampetti-Bosseler, F; Scott, D

    1985-08-01

    In agreement with our earlier observation (Scott and Zampetti-Bosseler, 1982) on X-irradiated normal and ataxia-telangiectasia (A-T) fibroblasts, we now report that after bleomycin or neocarzinostatin treatment also, A-T cells exhibit less G2 delay than normal cells. We confirm that A-T cells sustain more chromosome damage and lethality than normal cells after bleomycin. These observations support the hypothesis (Painter and Young, 1980) that A-T cells are defective in the recognition of certain lesions which normally lead to delays in progression through the cell cycle, during which they are repaired, and which, if unrepaired, lead to cell-lethal chromosome damage. However, we find that after bleomycin, as opposed to X-rays, the contribution of this type of lesion to cell death is minimal. The predominant lesions leading to cell death after bleomycin are not manifested at chromosome aberrations and do not lead to G2 delay or DNA-synthesis inhibition. A-T cells are defective in the recognition and/or repair of both types of lesion.

  2. Ataxia telangiectasia: learning from previous mistakes

    OpenAIRE

    Kumar, Naveen; Aggarwal, Puneet; Dev, Nishanth; Kumar, Gunjan

    2012-01-01

    Ataxia telangiectasia is an early onset neurodegenerative disorder. We report a case of childhood onset ataxia and ocular telangiectasia, presenting with pulmonary infection. The patient was diagnosed as ataxia telangiectasia. The patient succumbed to death owing to late diagnosis and sepsis.

  3. Complementation analysis of ataxia-telangiectasia

    Energy Technology Data Exchange (ETDEWEB)

    Jaspers, N.G.; Painter, R.B.; Paterson, M.C.; Kidson, C.; Inoue, T.

    1985-01-01

    In a number of laboratories genetic analysis of ataxia-telangiectasia (AT) has been performed by studying the expression of the AT phenotype in fused somatic cells or mixtures of cell-free extracts from different patients. Complementation of the defective response to ionizing radiation was observed frequently, considering four different parameters for radiosensitivity in AT. The combined results from studies on cultured fibroblasts or lymphoblastoid cells from 17 unrelated families revealed the presence of at least four and possibly nine complementation groups. These findings suggest that there is an extensive genetic heterogeneity in AT. More extensive studies are needed for an integration of these data and to provide a set of genetically characterized cell strains for future research of the AT genetic defect.

  4. Deficient expression of enhanced reactivation of parvovirus H-1 in ataxia telangiectasia cells irradiated with X-rays or u. v. light

    Energy Technology Data Exchange (ETDEWEB)

    Hilgers, G.; Chen, Y.Q.; Cornelis, J.J.; Rommelaere, J.

    1987-02-01

    Cells of patients with ataxia telangiectasia (AT), an inherited disease characterized by a high propensity to cancer, are hypersensitive to ionizing radiation. We investigated whether the hyper-radiosensitivity of AT cells correlated with a defect in their constitutive and/or conditional ability to rescue a damaged exogenous virus. For that purpose, parvovirus H-1, a single-stranded DNA virus whose intranuclear replication mostly relies on host cell functions, was used as a probe. The survival of u.v.- or gamma-irradiated H-1 was measured in X-, u.v.- or mock-irradiated human cells of normal (NB-E) or AT (AT5BIVA) origin. gamma-Irradiated H-1 survived to similar extents in untreated normal and AT cell lines. Both X- and u.v.-irradiation induced normal cells to achieve an enhanced reactivation (ER) of gamma- or u.v.-damaged H-1. In contrast, neither dose-effect curves nor time course revealed significant levels of ER expression after X- or u.v.-irradiation in AT5BIVA cells. Our results suggest that the impairment of ER of damaged parvoviruses may constitute a marker of the AT cell phenotype and be related to the radiosensitivity of AT cells.

  5. Ataxia telangiectasia mutated and Rad3 related (ATR protein kinase inhibition is synthetically lethal in XRCC1 deficient ovarian cancer cells.

    Directory of Open Access Journals (Sweden)

    Rebeka Sultana

    Full Text Available INTRODUCTION: Ataxia telangiectasia mutated and Rad3 Related (ATR protein kinase is a key sensor of single-stranded DNA associated with stalled replication forks and repair intermediates generated during DNA repair. XRCC1 is a critical enzyme in single strand break repair and base excision repair. XRCC1-LIG3 complex is also an important contributor to the ligation step of the nucleotide excision repair response. METHODS: In the current study, we investigated synthetic lethality in XRCC1 deficient and XRCC1 proficient Chinese Hamster ovary (CHO and human ovarian cancer cells using ATR inhibitors (NU6027. In addition, we also investigated the ability of ATR inhibitors to potentiate cisplatin cytotoxicity in XRCC1 deficient and XRCC1 proficient CHO and human cancer cells. Clonogenic assays, alkaline COMET assays, γH2AX immunocytochemistry, FACS for cell cycle as well as FITC-annexin V flow cytometric analysis were performed. RESULTS: ATR inhibition is synthetically lethal in XRCC1 deficient cells as evidenced by increased cytotoxicity, accumulation of double strand DNA breaks, G2/M cell cycle arrest and increased apoptosis. Compared to cisplatin alone, combination of cisplatin and ATR inhibitor results in enhanced cytotoxicity in XRCC1 deficient cells compared to XRCC1 proficient cells. CONCLUSIONS: Our data provides evidence that ATR inhibition is suitable for synthetic lethality application and cisplatin chemopotentiation in XRCC1 deficient ovarian cancer cells.

  6. Human T-lymphotropic virus type 1 p30 interacts with REGgamma and modulates ATM (ataxia telangiectasia mutated) to promote cell survival.

    Science.gov (United States)

    Anupam, Rajaneesh; Datta, Antara; Kesic, Matthew; Green-Church, Kari; Shkriabai, Nikolozi; Kvaratskhelia, Mamuka; Lairmore, Michael D

    2011-03-01

    Human T-lymphotropic virus type 1 (HTLV-1) is a causative agent of adult T cell leukemia/lymphoma and a variety of inflammatory disorders. HTLV-1 encodes a nuclear localizing protein, p30, that selectively alters viral and cellular gene expression, activates G(2)-M cell cycle checkpoints, and is essential for viral spread. Here, we used immunoprecipitation and affinity pulldown of ectopically expressed p30 coupled with mass spectrometry to identify cellular binding partners of p30. Our data indicate that p30 specifically binds to cellular ATM (ataxia telangiectasia mutated) and REGγ (a nuclear 20 S proteasome activator). Under conditions of genotoxic stress, p30 expression was associated with reduced levels of ATM and increased cell survival. Knockdown or overexpression of REGγ paralleled p30 expression, suggesting an unexpected enhancement of p30 expression in the presence of REGγ. Finally, size exclusion chromatography revealed the presence of p30 in a high molecular mass complex along with ATM and REGγ. On the basis of our findings, we propose that HTLV-1 p30 interacts with ATM and REGγ to increase viral spread by facilitating cell survival. PMID:21216954

  7. Dystonia as presenting manifestation of ataxia telangiectasia : a case report.

    OpenAIRE

    Goyal V; Behari M

    2002-01-01

    Ataxia telangiectasia is a genetically inherited multisystem disorder with predominant feature being telangiectasia and cerebellar ataxia. In this report, a family of three siblings suffering from ataxia telangiectasia is described. The proband presented with dystonia and dystonic myoclonus, both of which are rare presenting features of ataxia telangiectasia.

  8. MicroRNA-223 Enhances Radiation Sensitivity of U87MG Cells In Vitro and In Vivo by Targeting Ataxia Telangiectasia Mutated

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Liping; Zhu, Ji [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Zaorsky, Nicholas G. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Deng, Yun [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Wu, Xingzhong [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai (China); Liu, Yong [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Liu, Fangqi; Cai, Guoxiang; Gu, Weilie [Department of Colorectal Cancer, Fudan University, Shanghai Cancer Center, Shanghai (China); Shen, Lijun [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Zhang, Zhen, E-mail: zhenzhang6@hotmail.com [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China)

    2014-03-15

    Purpose: Ataxia telangiectasia mutated (ATM) protein is important in the DNA damage response because it repairs radiation-induced damage in cancers. We examined the effect of microRNA-223 (miR-223), a regulator of ATM expression, on radiation sensitivity of cancer cells. Methods and Materials: Human embryonic kidney 293 T (293T) cells were infected with pLL3.7-miR-223 plasmid to generate the pLL3.7-miR-223 and -empty virus (EV) lentivirus (miR-223 and EV). A dual luciferase assay in which the reporter contained wild-type 3′ untranslated region (UTR) of ATM was performed. U87MG cells were infected with miR-223 or EV to establish the overexpressed stable cell lines (U87-223 or U87-EV, respectively). Cells were irradiated in vitro, and dose enhancement ratios at 2 Gy (DER{sub 2}) were calculated. Hind legs of BALB/c athymic mice were injected with U87-223 or U87-EV cells; after 2 weeks, half of the tumors were irradiated. Tumor volumes were tracked for a total of 5 weeks. Results: The dual luciferase reporter assay showed a significant reduction in luciferase activity of 293T cells cotransfected with miR-223 and the ATM 3′UTR compared to that in EV control. Overexpression of miR-223 in U87MG cells showed that ATM expression was significantly downregulated in the U87-223 cells compared to that in U87-EV (ATM/β-actin mRNA 1.0 vs 1.5, P<.05). U87-223 cells were hypersensitive to radiation compared to U87-EV cells in vitro (DER{sub 2} = 1.32, P<.01). Mice injected with miR-223-expressing tumors had almost the same tumors after 3 weeks (1.5 cm{sup 3} vs 1.7 cm{sup 3}). However, irradiation significantly decreased tumor size in miR-223-expressing tumors compared to those in controls (0.033 cm{sup 3} vs 0.829 cm{sup 3}). Conclusions: miR-223 overexpression downregulates ATM expression and sensitizes U87 cells to radiation in vitro and in vivo. MicroRNA-223 may be a novel cancer-targeting therapy, although its cancer- and patient-specific roles are

  9. DNA repair enzyme deficiency and in vitro complementation of the enzyme activity in cell-free extracts from ataxia telangiectasia fibroblasts

    International Nuclear Information System (INIS)

    Three ataxia telangiectasia homozygotes, one heterozygote and normal fibroblast strains were compared as to the capacity of their cellular extracts to enhance the priming activity of gamma-irradiated colicin E1 DNA for purified DNA polymerase (EC 2.7.7.7) of Escherichia coli. It was found that homozygotes had substantially lower activity than normal strains, while no difference was detected between the heterozygote and normal strains. In vitro complementation of the activity occurred between extracts of certain strains of homozygotes, allocating them to two complementation groups. (Auth.)

  10. T-cell ALL in ataxia telangiectasia cured with only 7 weeks of anti-leukemic therapy

    DEFF Research Database (Denmark)

    Hersby, Ditte S; Sehested, Astrid; Kristensen, Kim;

    2015-01-01

    A 20-month-old girl diagnosed with T-cell acute lymphoblastic leukemia was treated according to the Nordic NOPHO ALL2000 protocol. The patient developed severe immunosuppression and experienced life-threatening adenovirus infection, which was treated with ribavirin and cidofovir. α-fetoprotein wa...

  11. Eye movements in ataxia-telangiectasia.

    Science.gov (United States)

    Baloh, R W; Yee, R D; Boder, E

    1978-11-01

    The spectrum of eye movement disorders in six patients with ataxia-telangiectasia at different stages of progression was assessed quantitatively by electrooculography. All patients demonstrated abnormalities of voluntary and involuntary saccades. The youngest and least involved patient had significantly increased reaction times of voluntary saccades, but normal accuracy and velocity. The other patients demonstrated increased reaction times and marked hypometria of horizontal and vertical voluntary saccades. Saccade velocity remained normal. Vestibular and optokinetic fast components (involuntary saccades) had normal amplitude and velocity but the eyes deviated tonically in the direction of the slow component. We conclude that patients with ataxia-telangiectasia have a defect in the initiation of voluntary and involuntary saccades in the earliest stages. These findings are distinctly different from those in other familial cerebellar atrophy syndromes.

  12. Cerebral Abnormalities in Adults with Ataxia-Telangiectasia

    OpenAIRE

    Lin, D.D.M.; Barker, P. B.; Lederman, H M; Crawford, T O

    2013-01-01

    Ataxia-telangiectasia, an autosomal recessive disorder caused by defect of the ataxia-telangiectasia mutated gene, is characterized by progressive neurologic impairment with cerebellar atrophy, ocular and cutaneous telangiectasia, immunodeficiency, heightened sensitivity to ionizing radiation and susceptibility to developing lymphoreticular malignancy. Supratentorial brain abnormalities have been reported only rarely. In this study, brain MRI was performed in 10 adults with ataxia-telangiecta...

  13. Leukoencephalopathy after prophylactic radiation for leukaemia in ataxia telangiectasia.

    OpenAIRE

    Eyre, J A; Gardner-Medwin, D; Summerfield, G P

    1988-01-01

    Children with ataxia telangiectasia have a high probability of developing acute lymphoblastic leukaemia, and have increased sensitivity to chemotherapy and irradiation. We report a 51/2 year old boy who had undiagnosed ataxia telangiectasia when he presented with acute lymphoblastic leukaemia. He subsequently developed a chemoradiation induced leukoencephalopathy after conventional central nervous system prophylaxis.

  14. DNA synthesis in ataxia telangiectasia

    OpenAIRE

    Jaspers, Nicolaas

    1985-01-01

    textabstractAfter the discovery that cultured cells from AT patients are hypersensitive to ionizing radiation the suggestion was made that AT-could be the 1 X-ray-analogue 1 of xeroderma pigmentosum. The latter syndrome (XP) is characterized by hypersensitivity to short-wave UV-radiation, caused by a reduced ability to properly remove UV-induced DNA damage. The evidence for a DNA repair defect in AT cells is not as strong as in the case of XP (see section 2.2.5 of this thesis). Different XP p...

  15. DNA synthesis in ataxia telangiectasia

    NARCIS (Netherlands)

    N.G.J. Jaspers (Nicolaas)

    1985-01-01

    textabstractAfter the discovery that cultured cells from AT patients are hypersensitive to ionizing radiation the suggestion was made that AT-could be the 1 X-ray-analogue 1 of xeroderma pigmentosum. The latter syndrome (XP) is characterized by hypersensitivity to short-wave UV-radiation, caused by

  16. Malignancies in pediatric patients with ataxia telangiectasia

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, R.C.; Berdon, W.E.; Ruzal-Shapiro, C. [Babies and Children`s Hospital of New York, Department of Radiology, NY (United States); Hall, E.J. [Center for Radiological Research, Columbia Univ., New York, NY (United States); Kornecki, A.; Daneman, A. [Hospital for Sick Children, Dept. of Diagnostic Imaging, Toronto, ON (Canada); Brunelle, F. [Groupe-Hospitalier, Necker-Enfants-Malades, Paris (France); Campbell, J.B. [Arnold Palmer Hospital for Children and Women, Dept. of Radiology, Orlando, FL (United States)

    1999-04-01

    Background. Patients with ataxia telangiectasia (AT), known to have an inherent increased susceptibility to the development of cancer, may present with malignancies that are unusual for the patient`s age, are often difficult to diagnose clinically and radiographically and respond poorly to conventional therapy. Materials and methods. We reviewed the clinical presentation and imaging studies of 12 AT patients who developed malignancies. Results. Eight of the twelve patients developed non-Hodgkin`s lymphoma (CNS, thorax, bone), two developed Hodgkin`s disease, and two were diagnosed with gastrointestinal mucinous adenocarcinoma. Conclusion. The lymphomas were commonly extra nodal, and infiltrative rather than mass-like. The recognition of the tumors was often delayed due to confusion with the known infectious complications in AT patients. (orig.) With 8 figs., 1 tab., 12 refs.

  17. Neuropathology in classical and variant ataxia-telangiectasia.

    NARCIS (Netherlands)

    Verhagen, M.M.M.; Martin, J.J.; Deuren, M. van; Ceuterick-de Groote, C.; Weemaes, C.M.R.; Kremer, B.; Taylor, M.A.; Willemsen, M.A.A.P.; Lammens, M.M.Y.

    2012-01-01

    Ataxia-telangiectasia (A-T) is classically characterized by progressive neurodegeneration, oculocutaneous telangiectasia, immunodeficiency and elevated alpha-fetoprotein levels. Some patients, classified as variant A-T, exhibit a milder clinical course. In the latter patients extrapyramidal symptoms

  18. Síndrome de Ataxia-Telangiectasia

    Directory of Open Access Journals (Sweden)

    Amauri Batista da Silva

    1971-06-01

    Full Text Available A ataxia-telangiectasia, doença de Mme. Louis-Bar, é caracterizada pela associação de ataxia cerebelar progressiva, em geral com início na primeira infância, telangiectasas óculo-cutâneas, movimentos coreoatetósicos, tendência a infecções repetidas do sistema respiratório, retardo estaturo-ponderal, demenciação. São mais ou menos freqüentes os tumores do sistema reticuloendotelial. A doença é geralmente familiar, transmitida por genes recessivos, autossômicos, não ligados ao sexo. A alteração bioquímica mais encontrada consiste na diminuição ou ausência completa da fração A das gamaglobulinas, bem como na perturbação das reações de hipersensibilidade retardada. Os AA. relatam o estudo clínico, biológico e pneumencefalográfico de uma criança de 3 anos de idade, apresentando essa enfermidade desde os 18 meses de vida, sem antecedentes familiares.

  19. Cranial MRI in ataxia-telangiectasia

    Energy Technology Data Exchange (ETDEWEB)

    Sardanelli, F. [Dept. of Radiology, Univ. of Genoa (Italy); Parodi, R.C. [Dept. of Radiology, Univ. of Genoa (Italy); Ottonello, C. [Dept. of Radiology, Univ. of Genoa (Italy); Renzetti, P. [Dept. of Radiology, Univ. of Genoa (Italy); Saitta, S. [Dept. of Radiology, Univ. of Genoa (Italy); Lignana, E. [G. Gaslini Inst., Genoa (Italy); Mancardi, G.L. [Dept. of Neurology, Univ. of Genoa (Italy)

    1995-01-01

    We examined five males with laboratory-confirmed ataxia-telangiectasia (AT), aged 9-28 years, several times by MRI (9 examinations: 5 at 0.15 T, 3 at 0.5 T, 1 at 1.5 T). Intermediate, T1-, T2- and T2{sup *}-weighted spin-echo and gradient-echo sequences were performed. All patients showed vermian atrophy, enlarged fourth ventricle and cisterna magna; four showed cerebellar hemisphere atrophy; two enlarged infracerebellar subarachnoid spaces and four patients had sinusitis. No focal areas of abnormal signal were seen in the brain, diffuse high signal was found in the central cerebral white matter of the oldest patient. AT is an important human model of inherited cancer susceptibility and multisystem ageing; as in xeroderma pigmentosum and other ``breakage syndromes``, ionising radiation should be avoided. When imaging is necessary, MRI should be preferred to CT in patients known or suspected to have AT and those with undefined paediatric ataxias of nontraumatic origin. If atrophy of only the cerebellum, especially the vermis, is noted, laboratory research should be performed to confirm the diagnosis of AT. (orig.)

  20. Radiation hypersensitivity and radioresistant DNA synthesis in ataxia-telangiectasia

    International Nuclear Information System (INIS)

    Patients with the autosomal recessive genetic disease, ataxia-telangiectasia (A-T), are cancer-prone and hypersensitive to the killing effects of ionizing radiation. In an attempt to isolate the gene(s) responsible for the hypersensitivity of A-T cells, they were transfected with normal human DNA in cosmid vectors containing a rescuable marker (G-418 resistance), and revertants to normal sensitivity were isolated and characterized. The failure of radioresistant revertants to demonstrate a reversion of the phenotype, radioresistant DNA synthesis, shows that this feature is dependent on a gene separate from the one conferring resistance to cell killing. Cells from every A-T patient thus far examined demonstrate both hypersensitivity, in terms of radiation-induced cell killing, and radioresistant DNA synthesis. The results reported here, however, show that the former is not a result of the latter, as previously proposed. Moreover, the fact that these two characteristics can be uncoupled obscures the role(s) that either of them plays in the etiology of the disease, or in the development in its other features, including cancer-proneness

  1. Chromosome instability and oxidative stress markers in patients with ataxia telangiectasia and their parents.

    Science.gov (United States)

    Ludwig, Luciane Bitelo; Valiati, Victor Hugo; Palazzo, Roberta Passos; Jardim, Laura Bannach; da Rosa, Darlan Pase; Bona, Silvia; Rodrigues, Graziela; Marroni, Norma Possa; Prá, Daniel; Maluf, Sharbel Weidner

    2013-01-01

    Ataxia telangiectasia (AT) is a rare neurodegenerative disorder, inherited in an autosomal recessive manner. Total blood samples were collected from 20 patients with AT, 13 parents of patients, and 17 healthy volunteers. This study aimed at evaluating the frequency of chromosomal breaks in spontaneous cultures, induced by bleomycin and ionizing radiation, and further evaluated the rates of oxidative stress in AT patients and in their parents, compared to a control group. Three cell cultures were performed to each individual: the first culture did not receive induction to chromosomal instability, the second was exposed to bleomycin, and the last culture was exposed to ionizing radiation. To evaluate the rates of oxidative stress, the markers superoxide dismutase (SOD), catalase (CAT), and thiobarbituric acid (TBARS) were utilized. Significant differences were observed between the three kinds of culture treatments (spontaneous, bleomycin, and radiation induced) and the breaks and chromosomal aberrations in the different groups. The oxidative stress showed no significant differences between the markers. This study showed that techniques of chromosomal instability after the induction of ionizing radiation and bleomycin are efficient in the identification of syndrome patients, with the ionizing radiation being the most effective.

  2. Radiation-induced chromosome aberrations in ataxia telangiectasia cells: high frequency of deletions and misrejoining detected by fluorescence in situ hybridization

    Science.gov (United States)

    Kawata, Tetsuya; Ito, Hisao; George, Kerry; Wu, Honglu; Uno, Takashi; Isobe, Kouichi; Cucinotta, Francis A.

    2003-01-01

    The mechanisms underlying the hyper-radiosensitivity of AT cells were investigated by analyzing chromosome aberrations in the G(2) and M phases of the cell cycle using a combination of chemically induced premature chromosome condensation (PCC) and fluorescence in situ hybridization (FISH) with chromosome painting probes. Confluent cultures of normal fibroblast cells (AG1522) and fibroblast cells derived from an individual with AT (GM02052) were exposed to gamma rays and allowed to repair at 37 degrees C for 24 h. At doses that resulted in 10% survival, GM02052 cells were approximately five times more sensitive to gamma rays than AG1522 cells. For a given dose, GM02052 cells contained a much higher frequency of deletions and misrejoining than AG1522 cells. For both cell types, a good correlation was found between the percentage of aberrant cells and cell survival. The average number of color junctions, which represent the frequency of chromosome misrejoining, was also found to correlate well with survival. However, in a similar surviving population of GM02052 and AG1522 cells, induced by 1 Gy and 6 Gy, respectively, AG1522 cells contained four times more color junctions and half as many deletions as GM02052 cells. These results indicate that both repair deficiency and misrepair may be involved in the hyper-radiosensitivity of AT cells.

  3. Neurodegeneration in ataxia-telangiectasia is caused by horror autotoxicus.

    Science.gov (United States)

    Kuljis, R O; Aguila, M C

    1999-05-01

    Ataxia-telangiectasia (A-T) is a pleiotropic, multi-system disorder with manifestations that include immune deficiency, sensitivity to ionizing radiation and neoplasms. Many of these manifestations are understood in principle since the identification in A-T patients of mutations in a gene encoding a protein kinase that plays a key role in signaling and repair of DNA damage. However, the cause of the neurodegeneration that afflicts patients with A-T for at least a decade before they succumb to overwhelming infections or malignancy remains mysterious. Based on our work in a mouse model of A-T and previous evidence of extra-neural autoimmune disorders in A-T, we postulate that the neurodegenerative process in A-T is not due to a function for A-T mutated (ATM) essential for the postnatal brain, but to an autoimmune process (hence 'horror autotoxicus', Paul Ehrlich's term for autoimmune disorder). This hypothetical mechanism may be analogous to that in the so-called 'paraneoplastic' neurodegenerative syndromes in patients with various malignancies. Thus, alterations in the balance between cellular and humoral immunity in A-T probably result in autoantibodies to cerebral epitopes shared with cells of the immune system. This hypothesis has important implications for the understanding and development of effective palliative and even preventative strategies for A-T, and probably for other so far relentlessly progressive neurodegenerative disorders.

  4. Molecular basis of ataxia telangiectasia and related diseases

    Institute of Scientific and Technical Information of China (English)

    Lindsay G BALL; Wei XIAO

    2005-01-01

    Ataxia telangiectasia (AT) is a rare human disease characterized by extreme cellular sensitivity to radiation and a predisposition to cancer, with a hallmark of onset in early childhood. Several human diseases also share similar symptoms with AT albeit with different degrees of severity and different associated disorders. While all AT patients contain mutations in the AT-mutated gene (ATM), most other ATlike disorders are defective in genes encoding an MRN protein complex consisting of Mre11, Rad50 and Nbs1. Both ATM and MRN function as cellular sensors to DNA double-strand breaks, which lead to the recruitment and phosphorylation of an array of substrate proteins involved in DNA repair, apoptosis and cell-cycle checkpoints, as well as gene regulation, translation initiation and telomere maintenance. ATM is a member of the family of phosphatidylinositol 3-kinase-like protein kinases (PIKK), and the discovery of many ATM substrates provides the underlying mechanisms of heterologous symptoms among AT patients. This review article focuses on recent findings related to the initial recognition of doublestrand breaks by ATM and MRN, as well as a DNA-dependent protein kinase complex consisting of the heterodimer Ku70/Ku80 and its catalytic subunit DNAPKcs, another member of PIKK. This possible interaction suggests that a much greater complex is involved in sensing, transducing and co-ordinating cellular events in response to genome instability.

  5. Neuropathology in classical and variant ataxia-telangiectasia

    NARCIS (Netherlands)

    Verhagen, Mijke M. M.; Martin, Jean-Jacques; van Deuren, Marcel; Groote, Chantal Ceuterick-de; Weemaes, Corry M. R.; Kremer, Berry H. P. H.; Taylor, Malcolm A. R.; Willemsen, Michel A. A. P.; Lammens, Martin

    2012-01-01

    Ataxia-telangiectasia (A-T) is classically characterized by progressive neurodegeneration, oculocutaneous telangiectasia, immunodeficiency and elevated a-fetoprotein levels. Some patients, classified as variant A-T, exhibit a milder clinical course. In the latter patients extrapyramidal symptoms, in

  6. ERS statement on the multidisciplinary respiratory management of ataxia telangiectasia

    NARCIS (Netherlands)

    Bhatt, J.M.; Bush, A.; Gerven, M.; Nissenkorn, A.; Renke, M.; Yarlett, L.; Taylor, M.; Tonia, T.; Warris, A.; Zielen, S.; Zinna, S.; Merkus, P.J.F.M.

    2015-01-01

    Ataxia telangiectasia (A-T) is a rare, progressive, multisystem disease that has a large number of complex and diverse manifestations which vary with age. Patients with A-T die prematurely with the leading causes of death being respiratory diseases and cancer. Respiratory manifestations include immu

  7. Clinical spectrum of ataxia-telangiectasia in adulthood

    NARCIS (Netherlands)

    Verhagen, M. M. M.; Abdo, W. F.; Willemsen, M. A. A. P.; Hogervorst, F. B. L.; Smeets, D. F. C. M.; Hiel, J. A. P.; Brunt, E. R.; van Rijn, M. A.; Krakauer, D. Majoor; Oldenburg, R. A.; Broeks, A.; Last, J. I.; van't Veer, L. J.; Tijssen, M. A. J.; Dubois, A. M. I.; Kremer, H. P. H.; Weemaes, C. M. R.; Taylor, A. M. R.; van Deuren, M.

    2009-01-01

    Objective: To describe the phenotype of adult patients with variant and classic ataxia-telangiectasia (A-T), to raise the degree of clinical suspicion for the diagnosis variant A-T, and to assess a genotype-phenotype relationship for mutations in the ATM gene. Methods: Retrospective analysis of the

  8. Clinical spectrum of ataxia-telangiectasia in adulthood.

    NARCIS (Netherlands)

    Verhagen, M.M.; Abdo, W.; Willemsen, M.A.A.P.; Hogervorst, F.B.L.; Smeets, D.F.C.M.; Hiel, J.A.P.; Brunt, E.R.; Rijn, M.A. van; Majoor Krakauer, D.; Oldenburg, R.A.; Broeks, A.; Last, J.I.; Veer, L.J. van 't; Tijssen, M.A.; Dubois, A.M.; Kremer, H.P.H.; Weemaes, C.M.R.; Taylor, A.M.; Deuren, M. van

    2009-01-01

    OBJECTIVE: To describe the phenotype of adult patients with variant and classic ataxia-telangiectasia (A-T), to raise the degree of clinical suspicion for the diagnosis variant A-T, and to assess a genotype-phenotype relationship for mutations in the ATM gene. METHODS: Retrospective analysis of the

  9. Disorders of Upper Limb Movements in Ataxia-Telangiectasia.

    Directory of Open Access Journals (Sweden)

    Aasef G Shaikh

    Full Text Available Ataxia-telangiectasia is known for cerebellar degeneration, but clinical descriptions of abnormal tone, posture, and movements suggest involvement of the network between cerebellum and basal ganglia. We quantitatively assessed the nature of upper-limb movement disorders in ataxia-telangiectasia. We used a three-axis accelerometer to assess the natural history and severity of abnormal upper-limb movements in 80 ataxia-telangiectasia and 19 healthy subjects. Recordings were made during goal-directed movements of upper limb (kinetic task, while arms were outstretched (postural task, and at rest. Almost all ataxia-telangiectasia subjects (79/80 had abnormal involuntary movements, such as rhythmic oscillations (tremor, slow drifts (dystonia or athetosis, and isolated rapid movements (dystonic jerks or myoclonus. All patients with involuntary movements had both kinetic and postural tremor, while 48 (61% also had resting tremor. The tremor was present in transient episodes lasting several seconds during two-minute recording sessions of all three conditions. Percent time during which episodic tremor was present was greater for postural and kinetic tasks compared to rest. Resting tremor had higher frequency but smaller amplitude than postural and kinetic tremor. Rapid non-rhythmic movements were minimal during rest, but were triggered during sustained arm postures and goal directed arm movements suggesting they are best considered a form of dystonic jerks or action myoclonus. Advancing age did not correlate with the severity of involuntary limb movements. Abnormal upper-limb movements in ataxia-telangiectasia feature classic cerebellar impairment, but also suggest involvement of the network between the cerebellum and basal ganglia.

  10. Complementation of radiation-sensitive Ataxia telangiectasia cells after transfection of cDNA expression libraries and cosmid clones from wildtype cells

    International Nuclear Information System (INIS)

    In this Ph.D.-thesis, phenotypic complementation of AT-cells (AT5BIVA) by transfection of cDNA-expression-libraries was adressed: After stable transfection of cDNA-expression-libraries G418 resistant clones were selected for enhanced radioresistance by a fractionated X-ray selection. One surviving transfectant clone (clone 514) exhibited enhanced radiation resistance in dose-response experiments and further X-ray selections. Cell cycle analysis revealed complementation of untreated and irradiated 514-cells in cell cycle progression. The rate of DNA synthesis, however, is not diminished after irradiation but shows the reverse effect. A transfected cDNA-fragment (AT500-cDNA) was isolated from the genomic DNA of 514-cells and proved to be an unknown DNA sequence. A homologous sequence could be detected in genomic DNA from human cell lines, but not in DNA from other species. The cDNA-sequence could be localized to human chromosome 11. In human cells the cDNA sequence is part of two large mRNAs. 4 different cosmid clones containing high molecular genomic DNA from normal human cells could be isolated from a library, each hybridizing to the AT500-cDNA. After stable transfection into AT-cells, one cosmid-clone was able to confer enhanced radiation resistance both in X-ray selections and dose-response experiments. The results indicate that the cloned cDNA-fragment is based on an unknown gene from human chromosome 11 which partially complements the radiosensitivity and the defective cell cycle progression in AT5BIVA cells. (orig.)

  11. Altered corticomotor-cerebellar integrity in young ataxia telangiectasia patients.

    Science.gov (United States)

    Sahama, Ishani; Sinclair, Kate; Fiori, Simona; Pannek, Kerstin; Lavin, Martin; Rose, Stephen

    2014-09-01

    Magnetic resonance imaging (MRI) research in identifying altered brain structure and function in ataxia-telangiectasia, an autosomal recessive neurodegenerative disorder, is limited. Diffusion-weighted MRI were obtained from 11 ataxia telangiectasia patients (age range, 7-22 years; mean, 12 years) and 11 typically developing age-matched participants (age range, 8-23 years; mean, 13 years). Gray matter volume alterations in patients were compared with those of healthy controls using voxel-based morphometry, whereas tract-based spatial statistics was employed to elucidate white matter microstructure differences between groups. White matter microstructure was probed using quantitative fractional anisotropy and mean diffusivity measures. Reduced gray matter volume in both cerebellar hemispheres and in the precentral-postcentral gyrus in the left cerebral hemisphere was observed in ataxia telangiectasia patients compared with controls (P < 0.05, corrected for multiple comparisons). A significant reduction in fractional anisotropy in the cerebellar hemispheres, anterior/posterior horns of the medulla, cerebral peduncles, and internal capsule white matter, particularly in the left posterior limb of the internal capsule and corona radiata in the left cerebral hemisphere, was observed in patients compared with controls (P < 0.05). Mean diffusivity differences were observed within the left cerebellar hemisphere and the white matter of the superior lobule of the right cerebellar hemisphere (P < 0.05). Cerebellum-localized gray matter changes are seen in young ataxia telangiectasia patients along with white matter tract degeneration projecting from the cerebellum into corticomotor regions. The lack of cortical involvement may reflect early-stage white matter motor pathway degeneration within young patients. PMID:25042086

  12. The effect of ataxia-telangiectasia mutated kinase-dependent hyperphosphorylation of checkpoint kinase-2 on oligodeoxynucleotide 7909 containing CpG motifs-enhanced sensitivity to X-rays in human lung adenocarcinoma A549 cells

    Directory of Open Access Journals (Sweden)

    Liu XQ

    2015-06-01

    Full Text Available Xiaoqun Liu,1,* Xiangdong Liu,2,* Tiankui Qiao,1 Wei Chen,1 Sujuan Yuan1 1Department of Oncology, 2Department of Ophthalmology, Affiliated Jinshan Hospital, Fudan University, Shanghai, People’s Republic of China *These authors contributed equally to this work Objective: The aim of the study reported here was to further investigate the potential effect of ataxia-telangiectasia mutated (ATM kinase-dependent hyperphosphorylation of checkpoint kinase-2 (Chk2 on radiosensitivity enhanced by oligodeoxynucleotide 7909 containing CpG motifs (CpG ODN7909 in human lung adenocarcinoma A549 cells. Methods: In vitro A549 cells were randomly separated into control, CpG, X-ray, CpG+X-ray, ATM kinase-small interfering RNA (siRNA+CpG+X-ray (ATM-siRNA, and Chk2-siRNA+CpG+X-ray (Chk2-siRNA groups. siRNAs were adopted to silence the ATM and Chk2 genes. Expression and phosphorylation of ATM kinase and Chk2 were detected by Western blot assay. Cell colonies were observed under inverted phase-contrast microscopy. Cellular survival curves were fitted using a multi-target single-hitting model. Cell cycle and apoptosis were analyzed by flow cytometry. Results: Expression of ATM kinase and Chk2 was similar among the control, CpG, X-ray, and CpG+X-ray groups. Phosphorylated ATM kinase and Chk2 were significantly increased in the CpG+X-ray group compared with in the X-ray group (t=6.00, P<0.01 and t=3.13, P<0.05, respectively, though these were hardly detected in the control and CpG groups. However, expression of ATM kinase and Chk2 was clearly downregulated in the ATM-siRNA and Chk2-siRNA groups, respectively. Similarly, their phosphorylation levels were also significantly decreased in the ATM-siRNA group (t=14.35, P<0.01 and t=8.46, P<0.01, respectively and a significant decrease in phosphorylated Chk2 was observed in the Chk2-siRNA group (t=7.28, P<0.01 when compared with the CpG+X-ray group. Further, the number of A549 cells at Gap 2/mitotic phase and the apoptosis

  13. Bilateral maculopathy in a patient with ataxia telangiectasia.

    Science.gov (United States)

    Gioia, Lauren V; Bonsall, Dean; Moffett, Kathryn; Leys, Monique

    2016-02-01

    We report a case of toxoplasmosis with bilateral maculopathy in a 7-year-old boy diagnosed with ataxia telangiectasia (AT) at age 6. AT manifests as ataxia, apraxia, telangiectasia, and dysarthria. Common ophthalmologic findings in AT include fine conjunctival telangiectasia. Patients also suffer from recurrent sinopulmonary infections; however, serious opportunistic infection is rarely diagnosed. At 8 years of age he developed disseminated Toxoplasma gondii (toxoplasmosis) infection and meningoencephalitis. This ophthalmologic finding and the subsequent toxoplasmosis meningoencephalitis have not been previously reported in AT. PMID:26917084

  14. Possible role of chromatin alteration in the radiosensitivity of ataxia-telangiectasia

    Energy Technology Data Exchange (ETDEWEB)

    Hittelman, W.N. [Anderson (M.D.) Cancer Center, Houston, TX (United States); Pandita, T.K. [Columbia Univ., New York, NY (United States). Dept. of Radiation Oncology

    1994-12-01

    Cells derived from individuals with ataxia-telangiectasia (A-T) are known to exhibit increased sensitivity to ionizing radiation and certain radiomimetic chemical agents. Here we summarize our findings regarding the role of chromosome damage and repair in this radiosensitivity. Lymphoblastoid cells derived from A-T homozygotes were characterized for initial chromosome (premature chromosome condensation) and DNA (neutral filter elution) damage and repair kinetics in cells from G1 and G2 cell cycle phases. Despite initial levels of DNA damage being similar to normal controls, A-T cells exhibited nearly a two-fold higher initial amount of chromosome damage. Different A-T cell lines exhibited differing chromosome repair capacities compared with control lymphoblastoid cell lines. These results suggest that A-T cells have an altered chromatin structure whereby DNA double-strand breaks are apparently more efficiently converted into chromosome breaks. (author).

  15. Possible role of chromatin alteration in the radiosensitivity of ataxia-telangiectasia

    International Nuclear Information System (INIS)

    Cells derived from individuals with ataxia-telangiectasia (A-T) are known to exhibit increased sensitivity to ionizing radiation and certain radiomimetic chemical agents. Here we summarize our findings regarding the role of chromosome damage and repair in this radiosensitivity. Lymphoblastoid cells derived from A-T homozygotes were characterized for initial chromosome (premature chromosome condensation) and DNA (neutral filter elution) damage and repair kinetics in cells from G1 and G2 cell cycle phases. Despite initial levels of DNA damage being similar to normal controls, A-T cells exhibited nearly a two-fold higher initial amount of chromosome damage. Different A-T cell lines exhibited differing chromosome repair capacities compared with control lymphoblastoid cell lines. These results suggest that A-T cells have an altered chromatin structure whereby DNA double-strand breaks are apparently more efficiently converted into chromosome breaks. (author)

  16. Ataxia-telangiectasia: some historic, clinical and pathologic observations.

    Science.gov (United States)

    Boder, E

    1975-01-01

    Although an isolated clinical case report was published in 1926 and another in 1941, ataxia-telangiectasia (A-T) was not established as a distinct entity until 1957, when it was first delineated clinicopathologically. Susceptibility to sinopulmonary infection was identified as the main cause of death and as the third major component of the syndrome; its heredofamilial nature was documented, and it was designated "ataxia-telangiectasia." In a later review of 101 published cases, lymphoreticular malignancy emerged as the second most frequent cause of death. Although the thymus was found to be absent in the first reported autopsy in 1957 and the serum IgA deficiency was first recorded in 1961, A-T was not established as an immunodeficiency disease until 1963. Thymic abnormality and dysgammaglobulinemia explain the 2 main causes of death, sinopulmonary and neoplastic, but the immunodeficiency is probably not the central defect. It does not appear to explain either of the 2 main clinical diagnostic keys, the ataxia and the telangiectasia, or any of the other seemingly unrealted multisystemic facets of this complex disorder. Some of our most provocative long-term clinical observations and recent pathologic findings in our series of 9 autopsies are discussed.

  17. Recently emerging signaling landscape of ataxia-telangiectasia mutated (ATM) kinase.

    Science.gov (United States)

    Farooqi, Ammad Ahmad; Attar, Rukset; Arslan, Belkis Atasever; Romero, Mirna Azalea; ul Haq, Muhammad Fahim; Qadir, Muhammad Imran

    2014-01-01

    Research over the years has progressively and sequentially provided near complete resolution of regulators of the DNA repair pathways which are so important for cancer prevention. Ataxia-telangiectasia mutated kinase (ATM), a high-molecular-weight PI3K-family kinase has emerged as a master regulator of DNA damage signaling and extensive cross-talk between ATM and downstream proteins forms an interlaced signaling network. There is rapidly growing scientific evidence emphasizing newly emerging paradigms in ATM biology. In this review, we provide latest information regarding how oxidative stress induced activation of ATM can be utilized as a therapeutic target in different cancer cell lines and in xenografted mice. Moreover, crosstalk between autophagy and ATM is also discussed with focus on how autophagy inhibition induces apoptosis in cancer cells. PMID:25169474

  18. ERS statement on the multidisciplinary respiratory management of ataxia telangiectasia.

    Science.gov (United States)

    Bhatt, Jayesh M; Bush, Andrew; van Gerven, Marjo; Nissenkorn, Andreea; Renke, Michael; Yarlett, Lian; Taylor, Malcolm; Tonia, Thomy; Warris, Adilia; Zielen, Stefan; Zinna, Shairbanu; Merkus, Peter J F M

    2015-12-01

    Ataxia telangiectasia (A-T) is a rare, progressive, multisystem disease that has a large number of complex and diverse manifestations which vary with age. Patients with A-T die prematurely with the leading causes of death being respiratory diseases and cancer. Respiratory manifestations include immune dysfunction leading to recurrent upper and lower respiratory infections; aspiration resulting from dysfunctional swallowing due to neurodegenerative deficits; inefficient cough; and interstitial lung disease/pulmonary fibrosis. Malnutrition is a significant comorbidity. The increased radiosensitivity and increased risk of cancer should be borne in mind when requesting radiological investigations. Aggressive proactive monitoring and treatment of these various aspects of lung disease under multidisciplinary expertise in the experience of national multidisciplinary clinics internationally forms the basis of this statement on the management of lung disease in A-T. Neurological management is outwith the scope of this document. PMID:26621971

  19. ERS statement on the multidisciplinary respiratory management of ataxia telangiectasia

    Directory of Open Access Journals (Sweden)

    Jayesh M. Bhatt

    2015-12-01

    Full Text Available Ataxia telangiectasia (A-T is a rare, progressive, multisystem disease that has a large number of complex and diverse manifestations which vary with age. Patients with A-T die prematurely with the leading causes of death being respiratory diseases and cancer. Respiratory manifestations include immune dysfunction leading to recurrent upper and lower respiratory infections; aspiration resulting from dysfunctional swallowing due to neurodegenerative deficits; inefficient cough; and interstitial lung disease/pulmonary fibrosis. Malnutrition is a significant comorbidity. The increased radiosensitivity and increased risk of cancer should be borne in mind when requesting radiological investigations. Aggressive proactive monitoring and treatment of these various aspects of lung disease under multidisciplinary expertise in the experience of national multidisciplinary clinics internationally forms the basis of this statement on the management of lung disease in A-T. Neurological management is outwith the scope of this document.

  20. Unusual and severe disease course in a child with ataxia-telangiectasia.

    NARCIS (Netherlands)

    Meyts, I.; Weemaes, C.M.R.; Wolf-Peeters, C. de; Proesmans, M.; Renard, M.; Uyttebroeck, A.; Boeck, K. de

    2003-01-01

    Ataxia-telangiectasia (AT) is an autosomal recessive syndrome of combined immunodeficiency. Hallmarks of the disease comprise progressive cerebellar ataxia, oculocutaneous telangiectasia, cancer susceptibility and variable humoral and cellular immunodeficiency. We describe a patient with AT presenti

  1. Cutaneous granulomas in ataxia telangiectasia and other primary immunodeficiencies: Reflection of inappropriate immune regulation?

    NARCIS (Netherlands)

    L.Y.T. Chiam (L. Y T); M.M.M. Verhagen (Mijke); A. Haraldsson (Ásgeir); N.M. Wulffraat (Nico); G.J.A. Driessen (Gertjan); M.G. Netea (Mihai); C.M.R. Weemaes (Corry); M.M.B. Seyger (Marieke); M. van Deuren (Marcel)

    2011-01-01

    textabstractBackground: Non-infective cutaneous granulomas with unknown pathogenesis occur in various primary immunodeficiencies (PIDs) including ataxia telangiectasia (A-T). Objective: To find a common immunological denominator in these cutaneous granulomas. Methods: The dermatological and immunolo

  2. Ataxia-telangiectasia: the pattern of cerebellar atrophy on MRI

    International Nuclear Information System (INIS)

    We describe MRI of the brain in 19 patients with ataxia-telangiectasia (AT) and correlate the appearances with the degree of neurologic deficit. We examined 10 male and nine female patients; 17 were aged between 2 and 12 years (mean 8 years) but a woman and her brother were 35 and 38 years old, and had a variant of AT. Ataxia was the first recognized sign of the disease in every patient. We detected the following patterns of cerebellar atrophy: in the youngest patient, aged 2 years, the study was normal; in the five next youngest patients 3-7 years of age, the lateral cerebellum and superior vermis showed the earliest changes of atrophy; and all but one of the other patients had moderate to marked diffuse atrophy of vermis and cerebellar hemispheres. There were 12 patients aged 9 years and above; one, who was normal, was 9 years old. The five patients who at the time of examination were unable to walk all had diffuse atrophy involving both vermis and cerebellar hemispheres. (orig.)

  3. Clinical and genetic features of ataxia-telangiectasia

    Energy Technology Data Exchange (ETDEWEB)

    Bundey, S. [Birmingham Maternity Hospital (United Kingdom). Clinical Genetics Unit

    1994-12-01

    There are several variants of ataxia-telangiectasia (A-T): classical A-T with marked radiation sensitivity; classical A-T with intermediate levels of radiation sensitivity; mild A-T with intermediate levels of radiation sensitivity; A-T without telangiectasia; A-T without oculomoto apraxia; and A-T with microcephaly. These disorders are probably caused by different allelic mutations, because affected sibs resemble the index patients, and because there is an association of certain haplo-types of 11q22-23 with specific phenotypes. The Nijmegen Breakage Syndrome, with its lack of ataxia, seems on clinical grounds to be a different disorder. Although A-T is almost always inherited as an autosomal recessive, there are some unusual features; an unexpectedly low parental consanguinity rate, an incidence in sibs that is < 0.25, and occurrence of disease in many different races and in the offspring of mixed race unions. Moreover, looking at haplotypes from 63 UK patients, there is a remarkably low incidence of homozygosity. An autosomal recessive condition that is deficient in parental consanguinity, and in homozygosity for the region around the gene, can be explained by J.H. Edwards` hypothesis that homozygosity for alleles at a neighbouring locus are lethal early in embryogenesis. Other possible mechanisms to explain the unusual genetic features are discussed. (author).

  4. Ataxia-telangiectasia: the pattern of cerebellar atrophy on MRI

    Energy Technology Data Exchange (ETDEWEB)

    Tavani, F. [Department of Radiology, University of Modena (Italy); Zimmerman, R.A.; Gatti, R.; Bingham, P. [Department of Radiology, Children' s Hospital of Philadelphia, 34th Street and Civic Center Boulevard, PA 19104, Philadelphia (United States); Berry, G.T. [Department of Endocrinology, Children' s Hospital of Philadelphia, 34th Street and Civic Center Boulevard, PA 19104, Philadelphia (United States); Sullivan, K. [Department of Immunology, Children' s Hospital of Philadelphia, 34th Street and Civic Center Boulevard, PA 19104, Philadelphia (United States)

    2003-05-01

    We describe MRI of the brain in 19 patients with ataxia-telangiectasia (AT) and correlate the appearances with the degree of neurologic deficit. We examined 10 male and nine female patients; 17 were aged between 2 and 12 years (mean 8 years) but a woman and her brother were 35 and 38 years old, and had a variant of AT. Ataxia was the first recognized sign of the disease in every patient. We detected the following patterns of cerebellar atrophy: in the youngest patient, aged 2 years, the study was normal; in the five next youngest patients 3-7 years of age, the lateral cerebellum and superior vermis showed the earliest changes of atrophy; and all but one of the other patients had moderate to marked diffuse atrophy of vermis and cerebellar hemispheres. There were 12 patients aged 9 years and above; one, who was normal, was 9 years old. The five patients who at the time of examination were unable to walk all had diffuse atrophy involving both vermis and cerebellar hemispheres. (orig.)

  5. The role of the neuro-astro-vascular unit in the etiology of Ataxia Telangiectasia

    Directory of Open Access Journals (Sweden)

    Leenoy eMeshulam

    2012-09-01

    Full Text Available The growing recognition that brain pathologies do not affect neurons only but rather are, to a large extent, pathologies of glial cells as well as of the vasculature opens to new perspectives in our understanding of genetic disorders of the CNS. To validate the role of the neuron-glial-vascular unit in the etiology of genome instability disorders, we report about cell death and morphological aspects of neuro-glia networks and the associated vasculature in a mouse model of Ataxia Telangiectasia (A-T, a human genetic disorder that induces severe motor impairment. We found that AT-mutated protein deficiency was consistent with aberrant astrocytic morphology and alterations of the vasculature, often accompanied by reactive gliosis. Interestingly similar findings could also be reported in the case of other genetic disorders. These observations bolster the notion that astrocyte-specific pathologies, hampered vascularization and astrocyte-endothelium interactions in the CNS could play a crucial role in the etiology of genome instability brain disorders and could underlie neurodegeneration.

  6. A single ataxia telangiectasia gene with a product similar to PI-3 kinase

    Energy Technology Data Exchange (ETDEWEB)

    Savitsky, K.; Bar-Shira, A.; Gilad, S.; Rotman, G.; Ziv, Y.; Vanagaite, L.; Smith, S.; Uziel, T.; Sfez, S.; Ashkenazi, M. [Tel Aviv Univ. (Israel)] [and others

    1995-06-23

    A gene, ATM, that is mutated in the autosomal recessive disorder ataxia telangiectasia (AT) was identified by positional cloning on chromosome 11q22-23. AT is characterized by cerebellar degeneration, immunodeficiency, chromosomal instability, cancer predisposition, radiation sensitivity, and cell cycle abnormalities. The disease is genetically heterogeneous, with four complementation groups that have been suspected to represent different genes. ATM, which has a transcript of 12 kilobases, was found to be mutated in AT patients from all complementation groups, indicating that it is probably the sole gene responsible for this disorder. A partial ATM complementary DNA clone of 5.9 kilobases encoded a putative protein that is similar to several yeast and mammalian phosphatidylinositol-3{prime} kinases that are involved in mitogenic signal transduction, meiotic recombination, and cell cycle control. The discovery of ATM should enhance understanding of AT and related syndromes and may allow the identification of AT heterozygotes, who are at increased risk of cancer. 54 refs., 5 figs., 1 tab.

  7. Role of chromatin structure modulation by the histone deacetylase inhibitor trichostatin A on the radio-sensitivity of ataxia telangiectasia

    Energy Technology Data Exchange (ETDEWEB)

    Meschini, Roberta, E-mail: meschini@unitus.it; Morucci, Elisa; Berni, Andrea; Lopez-Martinez, Wilner; Palitti, Fabrizio

    2015-07-15

    Highlights: • Role of chromatin compaction on chromosomal instability. • Reduced radiation-induced clastogenicity in Ataxia telangiectasia cell lines. • Histone tails hyperacetylation reduces heterochromatin content favouring DSBs repair. - Abstract: At present, a lot is known about biochemical aspects of double strand breaks (DBS) repair but how chromatin structure affects this process and the sensitivity of DNA to DSB induction is still an unresolved question. Ataxia telangiectasia (A-T) patients are characterised by very high sensitivity to DSB-inducing agents such as ionising radiation. This radiosensitivity is revealed with an enhancement of chromosomal instability as a consequence of defective DNA repair for a small fraction of breaks located in the heterochromatin, where they are less accessible. Besides, recently it has been reported that Ataxia Telangiectasia Mutated (ATM) mediated signalling modifies chromatin structure. In order to study the impact of chromatin compaction on the chromosomal instability of A-T cells, the response to trichostatin-A, an histone deacetylase inhibitor, in normal and A-T lymphoblastoid cell lines was investigated testing its effect on chromosomal aberrations, cell cycle progression, DNA damage and repair after exposure to X-rays. The results suggest that the response to both trichostatin-A pre- and continuous treatments is independent of the presence of either functional or mutated ATM protein, as the reduction of chromosomal damage was found also in the wild-type cell line. The presence of trichostatin-A before exposure to X-rays could give rise to prompt DNA repair functioning on chromatin structure already in an open conformation. Differently, trichostatin-A post-treatment causing hyperacetylation of histone tails and reducing the heterochromatic DNA content might diminish the requirement for ATM and favour DSBs repair reducing chromosomal damage only in A-T cells. This fact could suggest that trichostatin-A post

  8. Ataxia telangiectasia: A report of two cousins and review of literature

    Directory of Open Access Journals (Sweden)

    Anjali Sharma

    2011-01-01

    Full Text Available Ataxia telangiectasia (AT is a rare multisystem, neurodegenerative genetic disorder. Due to its wide clinical heterogeneity, it often leads physicians to an incorrect or missed diagnosis, and insight into this rare disease is important. Here is a case report of two cousins from the same family who showed salient characteristic features of AT along with the incidental finding of co-inheritance of hemoglobin E trait. Though both of them were from the same family, they showed differences in the type of humoral immune deficiencies, laboratory findings, and their susceptibility to develop different types of malignancies. One of them developed T cell acute lymphoblastic leukemia, isolated immunoglobulin A deficiency, and normal serum carcinoembryonic antigen (CEA and carbohydrate antigen 19.9 (CA 19.9 levels. He expired at the age of nine years. The other, though a year older, has still got normal blood counts, normal immunoglobulin levels, and elevated serum CEA and CA 19.9 levels. Thus, insight into this disease is very important as AT patients require protection from unnecessary exposure to ionizing radiation to prevent malignancies. Diagnosis of AT allows appropriate genetic counseling for the family.

  9. Common ataxia telangiectasia mutated haplotypes and risk of breast cancer: a nested case–control study

    International Nuclear Information System (INIS)

    The ataxia telangiectasia mutated (ATM) gene is a tumor suppressor gene with functions in cell cycle arrest, apoptosis, and repair of DNA double-strand breaks. Based on family studies, women heterozygous for mutations in the ATM gene are reported to have a fourfold to fivefold increased risk of breast cancer compared with noncarriers of the mutations, although not all studies have confirmed this association. Haplotype analysis has been suggested as an efficient method for investigating the role of common variation in the ATM gene and breast cancer. Five biallelic haplotype tagging single nucleotide polymorphisms are estimated to capture 99% of the haplotype diversity in Caucasian populations. We conducted a nested case–control study of breast cancer within the Nurses' Health Study cohort to address the role of common ATM haplotypes and breast cancer. Cases and controls were genotyped for five haplotype tagging single nucleotide polymorphisms. Haplotypes were predicted for 1309 cases and 1761 controls for which genotype information was available. Six unique haplotypes were predicted in this study, five of which occur at a frequency of 5% or greater. The overall distribution of haplotypes was not significantly different between cases and controls (χ2 = 3.43, five degrees of freedom, P = 0.63). There was no evidence that common haplotypes of ATM are associated with breast cancer risk. Extensive single nucleotide polymorphism detection using the entire genomic sequence of ATM will be necessary to rule out less common variation in ATM and sporadic breast cancer risk

  10. A high frequency of distinct ATM gene mutations in ataxia-telangiectasia

    Energy Technology Data Exchange (ETDEWEB)

    Wright, J.; Teraoka, S.; Concannon, P. [Univ. of Washington School of Medicine, Seattle, WA (United States)] [and others

    1996-10-01

    The clinical features of the autosomal recessive disorder ataxia-telangiectasia (AT) include a progressive cerebellar ataxia, hypersensitivity to ionizing radiation, and an increased susceptibility to malignancies. Epidemiological studies have suggested that AT heterozygotes may also be at increased risk for malignancy, possibly as a consequence of radiation exposure. A gene mutated in AT patients (ATM) has recently been isolated, making mutation screening in both patients and the general population possible. Because of the relatively large size of the ATM gene, the design of screening programs will depend on the types and distribution of mutations in the general population. In this report, we describe 30 mutations identified in a panel of unrelated AT patients and controls. Twenty-five of the 30 were distinct, and most patients were compound heterozygotes. The most frequently detected mutation was found in three different families and had previously been reported in five others. This corresponds to a frequency of 8% of all reported ATM mutations. Twenty-two of the alterations observed would be predicted to lead to protein truncation at sites scattered throughout the molecule. Two fibroblast cell lines, which displayed normal responses to ionizing radiation, also proved to be heterozygous for truncation mutations of ATM. These observations suggest that the carrier frequency of ATM mutations may be sufficiently high to make population screening practical. However, such screening may need to be done prospectively, that is, by searching for new mutations rather than by screening for just those already identified in AT families. 33 refs., 1 fig., 1 tab.

  11. Motor pathway degeneration in young ataxia telangiectasia patients: A diffusion tractography study

    Directory of Open Access Journals (Sweden)

    Ishani Sahama

    2015-01-01

    Conclusions: Whole tract analysis of the corticomotor, corticospinal and somatosensory pathways in ataxia telangiectasia showed significant white matter degeneration along the entire length of motor circuits, highlighting that ataxia–telangiectasia gene mutation impacts the cerebellum and multiple other motor circuits in young patients.

  12. Chemo- and radiosensitivity testing in a patient with ataxia telangiectasia and Hodgkin disease

    NARCIS (Netherlands)

    Tamminga, RYJ; Dolsma, WV; Leeuw, JA; Kampinga, HH

    2002-01-01

    Treatment of Hodgkin disease (HD) in ataxia telangiectasia (AT) patients is hampered by hypersensitivity to radiation and chemotherapy. Most patients die, due to toxicity or rarely, to progressive disease. The authors report on a 9-year-old girl with stage IIA HD and AT She was treated with a tailor

  13. Cognitive and speech-language performance in children with ataxia telangiectasia

    NARCIS (Netherlands)

    Vinck, Anja; Verhagen, Mijke M. M.; van Gerven, Marjo; de Groot, Imelda J. M.; Weemaes, Corry M. R.; Maassen, Ben A. M.; Willemsen, Michel A. A. P.

    2011-01-01

    Objective: To describe cognitive and speech-language functioning of patients with ataxia-telangiectasia (A-T) in relation to their deteriorating (oculo)motor function. Design: Observational case series. Methods: Cognitive functioning, language, speech and oral-motor functioning were examined in eigh

  14. Heterogeneity of chromosomal breakage levels in epithelial tissue of ataxia-telangiectasia homozygotes and heterozygotes.

    Science.gov (United States)

    Rosin, M P; Ochs, H D; Gatti, R A; Boder, E

    1989-09-01

    The objective of this study was to obtain an estimate of the frequency distribution of spontaneous chromosomal breakage occurring in vivo in oral epithelia of 20 ataxia-telangiectasia patients (A-T homozygotes) and 26 parents (A-T obligate heterozygotes). Samples of exfoliated cells were obtained from each individual by swabbing the oral cavity and preparing air-dried slides. The percentage of exfoliated cells with micronuclei (MEC frequency) was used as an in vivo indicator for the amount of chromosomal breakage occurring in the tissue. As a population group, MEC frequencies of the A-T patients differed significantly from controls (mean for A-T patients, 1.51; for controls, 0.29; P less than 0.01). However, the values observed in individual patients ranged from MEC frequencies 10- to 12-fold above control values, to frequencies overlapping the upper values observed in the controls. Similarly, MEC frequencies observed among the A-T heterozygotes differed significantly from controls (mean for A-T heterozygotes, 1.02, mean for controls, 0.29; P less than 0.01). However, only 16 of the 26 individuals sampled had MEC frequencies greater than 0.5%, the 90th percentile for controls (compared with 16 of the 20 A-T patients examined). Of the A-T patients 11 had been previously assigned to complementation groups on the basis of sensitivity to x-irradiation. Seven of the patients belonged to group A and had MEC frequencies ranging from 0.3% to 1.9% with the remaining patients belonging to group C with MEC frequencies of 0.2% to 0.9%. The data presented in this paper suggest that although levels of spontaneous breakage in epithelial tissues of A-T patients and A-T obligate heterozygotes are often significantly elevated, this is not the case in all individuals.

  15. Ataxia telangiectasia-mutated kinase deficiency exacerbates left ventricular dysfunction and remodeling late after myocardial infarction.

    Science.gov (United States)

    Daniel, Laura L; Scofield, Stephanie L C; Thrasher, Patsy; Dalal, Suman; Daniels, Christopher R; Foster, Cerrone R; Singh, Mahipal; Singh, Krishna

    2016-08-01

    Ataxia telangiectasia-mutated kinase (ATM), a cell cycle checkpoint protein, is activated in response to DNA damage and oxidative stress. We have previously shown that ATM deficiency is associated with increased apoptosis and fibrosis and attenuation of cardiac dysfunction early (1-7 days) following myocardial infarction (MI). Here, we tested the hypothesis that enhanced fibrosis and apoptosis, as observed early post-MI during ATM deficiency, exacerbate cardiac dysfunction and remodeling in ATM-deficient mice late post-MI. MIs were induced in wild-type (WT) and ATM heterozygous knockout (hKO) mice by ligation of the left anterior descending artery. Left ventricular (LV) structural and functional parameters were assessed by echocardiography 14 and 28 days post-MI, whereas biochemical parameters were measured 28 days post-MI. hKO-MI mice exhibited exacerbated LV dysfunction as observed by increased LV end-systolic volume and decreased percent fractional shortening and ejection fraction. Infarct size and thickness were not different between the two genotypes. Myocyte cross-sectional area was greater in hKO-MI group. The hKO-MI group exhibited increased fibrosis in the noninfarct and higher expression of α-smooth muscle actin (myofibroblast marker) in the infarct region. Apoptosis and activation of GSK-3β (proapoptotic kinase) were significantly lower in the infarct region of hKO-MI group. Matrix metalloproteinase 2 (MMP-2) expression was not different between the two genotypes. However, MMP-9 expression was significantly lower in the noninfarct region of hKO-MI group. Thus ATM deficiency exacerbates cardiac remodeling late post-MI with effects on cardiac function, fibrosis, apoptosis, and myocyte hypertrophy. PMID:27288435

  16. Congenital malformations and developmental disabilities in ataxia-telangiectasia, Fanconi anemia, and xeroderma pigmentosum families.

    OpenAIRE

    Welshimer, K; Swift, M

    1982-01-01

    Heterozygous carriers of an ataxia-telangiectasia (A-T), Fanconi anemia (FA), or xeroderma pigmentosum (XP) gene may be predisposed to some of the same congenital malformations or developmental disabilities that are common among homozygotes. To test this hypothesis, medical records, death certificates, and questionnaires from 27 A-T families, 25 FA families, and 31 XP families were reviewed. Eleven XP blood relatives (out of 1,100) were found with moderate or severe unexplained mental retarda...

  17. Conjunctival Telangiectasia in a Patient with Ataxia Telangiectasia: A Case Report

    Directory of Open Access Journals (Sweden)

    Özge Pınar Akarsu

    2012-01-01

    Full Text Available The purpose of this paper is to report a 7-year-old patient who developed bilateral conjunctival hyperemia while being under treatment of pneumonia in Pediatric Infectious Diseases Clinic at Sisli Etfal Training and Research Hospital. Ophthalmological examination revealed bilateral conjunctival telangiectasias which were thought to be the ophthalmologic sign of ataxia telangiectasia after considering the other clinical findings, laboratory and imaging results, and family history. (Turk J Oph thal mol 2012; 42: 75-7

  18. Ataxia telangiectasia mutated (Atm) is not required for telomerase-mediated elongation of short telomeres

    OpenAIRE

    Feldser, David; Strong, Margaret A.; Greider, Carol W

    2006-01-01

    Telomerase-mediated telomere addition counteracts telomere shortening due to incomplete DNA replication. Short telomeres are the preferred substrate for telomere addition by telomerase; however, the mechanism by which telomerase recognizes short telomeres is unclear. In yeast, the Ataxia telangiectasia mutated (Atm) homolog, Tel1, is necessary for normal telomere length regulation likely by altering telomere structure, allowing telomerase recruitment to short telomeres. To examine the role of...

  19. Bladder Wall Telangiectasia in a Patient with Ataxia-Telangiectasia and How to Manage?

    OpenAIRE

    Fatma Deniz Aygün; Serdar Nepesov; Haluk Çokuğraş; Yıldız Camcıoğlu

    2015-01-01

    Ataxia-telangiectasia (A-T) is a rare neurodegenerative, inherited disease causing severe morbidity. Oculocutaneous telangiectasias are almost constant findings among the affected cases as telangiectasia is considered the main clinical finding for diagnosis. Vascular abnormalities in organs have been reported infrequently but bladder wall telangiectasias are extremely rare. We aimed to report recurrent hemorrhage from bladder wall telangiectasia in a 9-year-old boy with A-T who had received i...

  20. Conjunctival Telangiectasia in a Patient with Ataxia Telangiectasia: A Case Report

    OpenAIRE

    Özge Pınar Akarsu; Cemile Üçgül Atılgan; Dilek Güven

    2012-01-01

    The purpose of this paper is to report a 7-year-old patient who developed bilateral conjunctival hyperemia while being under treatment of pneumonia in Pediatric Infectious Diseases Clinic at Sisli Etfal Training and Research Hospital. Ophthalmological examination revealed bilateral conjunctival telangiectasias which were thought to be the ophthalmologic sign of ataxia telangiectasia after considering the other clinical findings, laboratory and imaging results, and family history. (Tu...

  1. Prenatal diagnosis of ataxia-telangiectasia and Nijmegen Breakage Syndrome by the assay of radioresistant DNA synthesis

    International Nuclear Information System (INIS)

    Prenatal diagnosis was performed in 16 pregnancies at risk of ataxia-telangiectasia (A-T) or Nijmegen Breakage Syndrome (NBS). Radioresistant DNA synthesis (RDS) was investigated in cultured chorionic villus (CV) cells and/or amniotic fluid (AF) cells. In four pregnancies, an affected foetus was diagnosed with increased RDS in cultured CV cells. In three of the four cases confirmation of the diagnosis was obtained by analysis of AF cells and/or skin fibroblasts from the foetus cultured after termination of the pregnancy; in the fourth case a fibroblast culture from the aborted foetus failed. In one case, only AF cells could be analysed in a late stage of pregnancy; pregnancy was terminated due to intermediate/equivocal results but the foetus fibroblasts showed normal RDS. Normal RDS was demonstrated in the other 11 pregnancies at 25% risk either by analysis of CB cells (nine cases) or of AF cells (two cases). In some cases the (normal) results on the CV cells were corroborated by subsequent analysis of Af cells. The results suggest that RDS analysis of CV cells allows reliable prenatal diagnosis of A-T/NBS. However, amniocentesis may be necessary to confirm normal results on CV cells if the foetus is female (because of the risk of maternal cell contamination) or in the rare case of equivocal results. (author)

  2. Prenatal diagnosis of ataxia-telangiectasia and Nijmegen Breakage Syndrome by the assay of radioresistant DNA synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kleijer, W.J.; Kraan, M. van der; Los, F.J. [Erasmus Univ., Rotterdam (Netherlands). Dept. of Clinical Genetics; Jaspers, N.G.J. [Erasmus Univ., Rotterdam (Netherlands). Lab. of Cell Biology and Genetics

    1994-12-01

    Prenatal diagnosis was performed in 16 pregnancies at risk of ataxia-telangiectasia (A-T) or Nijmegen Breakage Syndrome (NBS). Radioresistant DNA synthesis (RDS) was investigated in cultured chorionic villus (CV) cells and/or amniotic fluid (AF) cells. In four pregnancies, an affected foetus was diagnosed with increased RDS in cultured CV cells. In three of the four cases confirmation of the diagnosis was obtained by analysis of AF cells and/or skin fibroblasts from the foetus cultured after termination of the pregnancy; in the fourth case a fibroblast culture from the aborted foetus failed. In one case, only AF cells could be analysed in a late stage of pregnancy; pregnancy was terminated due to intermediate/equivocal results but the foetus fibroblasts showed normal RDS. Normal RDS was demonstrated in the other 11 pregnancies at 25% risk either by analysis of CB cells (nine cases) or of AF cells (two cases). In some cases the (normal) results on the CV cells were corroborated by subsequent analysis of Af cells. The results suggest that RDS analysis of CV cells allows reliable prenatal diagnosis of A-T/NBS. However, amniocentesis may be necessary to confirm normal results on CV cells if the foetus is female (because of the risk of maternal cell contamination) or in the rare case of equivocal results. (author).

  3. Patients with an inherited syndrome characterized by immunodeficiency, microcephaly, and chromosomal instability: genetic relationship to ataxia telangiectasia

    Energy Technology Data Exchange (ETDEWEB)

    Jaspers, N.G.; Taalman, R.D.; Baan, C.

    1988-01-01

    Fibroblast cultures from six unrelated patients having a familial type of immunodeficiency combined with microcephaly, developmental delay, and chromosomal instability were studied with respect to their response to ionizing radiation. The cells from five of them resembled those from individuals with ataxia telangiectasia (AT) in that they were two to three times more radiosensitive on the basis of clonogenic cell survival. In addition, after exposure to either X-rays or bleomycin, they showed an inhibition of DNA replication that was less pronounced than that in normal cells and characteristic of AT fibroblasts. However, the patients are clinically very different from AT patients, not showing any signs of neurocutaneous symptoms. Genetic complementation studies in fused cells, with the radioresistant DNA synthesis used as a marker, showed that the patients' cells could complement representatives of all presently known AT complementation groups. Furthermore, they were shown to constitute a genetically heterogeneous group as well. It is concluded that these patients are similar to AT patients with respect to cytological parameters. The clinical differences between these patients and AT patients are a reflection of genetic heterogeneity. The data indicate that the patients suffer from a chromosome-instability syndrome that is distinct from AT.

  4. Gastric outlet obstruction due to adenocarcinoma in a patient with Ataxia-Telangiectasia syndrome: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Hammond Sue

    2009-03-01

    Full Text Available Abstract Background Ataxia-Telangiectasia syndrome is characterized by progressive cerebellar dysfunction, conjuctival and cutaneous telangiectasias, severe immune deficiencies, premature aging and predisposition to cancer. Clinical and radiographic evaluation for malignancy in ataxia-telangiectasia patients is usually atypical, leading to delays in diagnosis. Case presentation We report the case of a 20 year old ataxia-telangiectasia patient with gastric adenocarcinoma that presented as complete gastric outlet obstruction. Conclusion A literature search of adenocarcinoma associated with ataxia-telangiectasia revealed 6 cases. All patients presented with non-specific gastrointestinal complaints suggestive of ulcer disease. Although there was no correlation between immunoglobulin levels and development of gastric adenocarcinoma, the presence of chronic gastritis and intestinal metaplasia seem to lead to the development of gastric adenocarcinoma. One should consider adenocarcinoma in any patient with ataxia-telangiectasia who presents with non-specific gastrointestinal complaints, since this can lead to earlier diagnosis.

  5. Bladder Wall Telangiectasia in a Patient with Ataxia-Telangiectasia and How to Manage?

    Science.gov (United States)

    Aygün, Fatma Deniz; Nepesov, Serdar; Çokuğraş, Haluk; Camcıoğlu, Yıldız

    2015-01-01

    Ataxia-telangiectasia (A-T) is a rare neurodegenerative, inherited disease causing severe morbidity. Oculocutaneous telangiectasias are almost constant findings among the affected cases as telangiectasia is considered the main clinical finding for diagnosis. Vascular abnormalities in organs have been reported infrequently but bladder wall telangiectasias are extremely rare. We aimed to report recurrent hemorrhage from bladder wall telangiectasia in a 9-year-old boy with A-T who had received intravenous cyclophosphamide for non-Hodgkin's lymphoma. Since A-T patients are known to be more susceptible to chemical agents, we suggested that possibly cyclophosphamide was the drug which induced bladder wall injury in this patient. PMID:26693373

  6. A Precocious Cerebellar Ataxia and Frequent Fever Episodes in a 16-Month-Old Infant Revealing Ataxia-Telangiectasia Syndrome

    Directory of Open Access Journals (Sweden)

    Luigi Nespoli

    2013-01-01

    Full Text Available Ataxia-telangiectasia (AT is the most frequent progressive cerebellar ataxia in infancy and childhood. Immunodeficiency which includes both cellular and humoral arms has variable severity. Since the clinical presentation is extremely variable, a high clinical suspicion will allow an early diagnosis. Serum alpha-fetoprotein is elevated in 80–85% of patients and therefore could be used as a screening tool. Here, we present a case of a 5-year-old female infant who was admitted to our department at the age of 16 months because of gait disorders and febrile episodes that had begun at 5 months after the cessation of breastfeeding. Serum alfa-fetoprotein level was elevated. Other investigations showed leukocytopenia with lymphopenia, reduced IgG2 and IgA levels, and low titers of specific postimmunization antibodies against tetanus toxoid and Haemophilus B polysaccharide. Peripheral lymphocytes subsets showed reduction of T cells with a marked predominance of T cells with a memory phenotype and a corresponding reduction of naïve T cells; NK cells were very increased (41% with normal activity. The characterization of the ATM gene mutations revealed 2 specific mutations (c.5692C > T/c.7630-2A > C compatible with AT diagnosis. It was concluded that AT syndrome should be considered in children with precocious signs of cerebellar ataxia and recurrent fever episodes.

  7. Two-tier analysis of histone H2AX phosphorylation allows the identification of Ataxia Telangiectasia heterozygotes

    International Nuclear Information System (INIS)

    Background and purpose: Ataxia Telangiectasia (A-T) heterozygotes constitute 0.36-1% of the general population. They have a higher risk of developing several types of cancer and may be more likely to suffer side-effects following radiotherapy than the general population. Their identification is both labor- and time-consuming and the sensitivity and specificity of the methods employed has not been evaluated. This paper describes a new approach to the identification of A-T heterozygotes based on a two-tier analysis of histone H2AX phosphorylation. Materials and methods: We compared the T-cell phenotype after exposure to 2 Gy in nine obligate A-T heterozygotes and 17 normal donors. Examined end points were histone H2AX phosphorylation by flow cytometry 1 h after irradiation (kinase proficiency) and the residual γ-H2AX foci by confocal microscopy 72 h after irradiation (DSB repair proficiency). Results: The sequential use of these two methods results in 100% positive predictive value (PPV), 67% negative predictive value (NPV), 78% sensitivity, and 100% specificity. The overall hit rate, i.e. the ratio between the true positives plus the true negatives and the total number of observations was 85%. Conclusions: A-T heterozygotes can be identified by analysing irradiated T-cell H2AX phosphorylation level and residual γ-H2AX foci.

  8. Relationship between Ataxia Telangiectasia Mutant(ATM) Expression of HL-60 and SiHA Cell Lines and Their Cell Cycle Arrest after 60Co Radiation%HL-60和SiHA细胞株ATM表达量与60Co照射后细胞周期阻滞之间的关系

    Institute of Scientific and Technical Information of China (English)

    汤屹; 刘文励; 周剑锋; 高庆蕾; 吴剑宏

    2003-01-01

    背景与目的:毛细血管扩张性共济失调综合征( ataxia telangiectasia,AT)是由 ATM( ataxia telangiectasia mutant)基因所致,其突出特点是对放射线非常敏感,因此, ATM表达与放射敏感性应存在相关性.本研究旨在探讨两种肿瘤细胞株 ATM表达量与 60Co照射后细胞周期阻滞功能之间的关系.方法:使用半定量 RT-PCR和流式细胞仪技术检测 HL-60细胞和 SiHA细胞中 ATM mRNA和 ATM蛋白表达量,同时以 6、 10和 15 Gy 60Co照射 SiHA细胞, HL 60细胞仅以 6、 10 Gy照射,于照射后 6、 12、 24、 48及 60 h观察细胞周期阻滞现象和细胞凋亡率的变化.结果: HL 60细胞 ATM平均蛋白荧光强度为 14.11±2.38, SiHA细胞为 27.74± 1.16,约为 HL-60细胞的 2倍; HL-60细胞 ATM mRNA相对表达量为 0 .09, SiHA细胞为 0.80,约为 HL-60细胞的9倍.照射后 HL-60细胞和 SiHA细胞均表现 G2/M期阻滞.射线对 HL-60细胞周期阻滞功能明显较 SiHA细胞弱.结论:放射线对 HL-60细胞和 SiHA细胞的周期阻滞功能与 ATM表达量相符,即 ATM表达量低,细胞周期阻滞功能差.

  9. DNA-mediated gene transfer into human diploid fibroblasts derived from normal and ataxia-telangiectasia donors: parameters for DNA transfer and properties of DNA transformants

    International Nuclear Information System (INIS)

    An investigation was made of the feasibility of DNA-mediated gene transfer into human diploid fibroblasts derived from patients with the radiation sensitive syndrome ataxia-telangiectasia (A-T) and from a normal donor. Although they are markedly different in their growth characteristics, both normal and A-T strains give similar frequencies for DNA transfer in a model system using the recombinant plasmid pSV2-gpt. pSV2-gpt DNA transformants arise with a frequency between 10-5 and 10-4 per viable cell. Analysis of such transformants, although possible, is severely handicapped by the limited clonal life span of diploid human cells. Despite these problems it may be concluded that diploid human fibroblasts are competent recipients for DNA-mediated gene transfer and the putative repair deficiency of A-T does not markedly effect the efficiency of this process. (author)

  10. Ataxia Telangiectasia

    Science.gov (United States)

    ... the first decade of life. Telangiectasias (tiny, red "spider" veins), which appear in the corners of the ... States? An estimated 1 percent of the U.S. population, or about 2.5 million people, may be ...

  11. Ataxia - telangiectasia

    Science.gov (United States)

    Couples with a family history of this condition who are considering pregnancy may consider genetic counseling. Parents of a child with this disorder may have a slight increased risk for cancer. They ...

  12. Congenital malformations and developmental disabilities in ataxia-telangiectasia, Fanconi anemia, and xeroderma pigmentosum families.

    Science.gov (United States)

    Welshimer, K; Swift, M

    1982-09-01

    Heterozygous carriers of an ataxia-telangiectasia (A-T), Fanconi anemia (FA), or xeroderma pigmentosum (XP) gene may be predisposed to some of the same congenital malformations or developmental disabilities that are common among homozygotes. To test this hypothesis, medical records, death certificates, and questionnaires from 27 A-T families, 25 FA families, and 31 XP families were reviewed. Eleven XP blood relatives (out of 1,100) were found with moderate or severe unexplained mental retardation, a significant excess compared to the FA and A-T families (3/1,439). There were four microcephalic XP blood relatives and none in the FA or A-T families. In the A-T families, idiopathic scoliosis and vertebral anomalies were in excess, while genitourinary and distal limb malformations were found in the FA families. A-T, FA, or XP heterozygotes may constitute an important proportion of individuals at risk for specific malformations or developmental abnormalities. PMID:7124732

  13. Bladder Wall Telangiectasia in a Patient with Ataxia-Telangiectasia and How to Manage?

    Directory of Open Access Journals (Sweden)

    Fatma Deniz Aygün

    2015-01-01

    Full Text Available Ataxia-telangiectasia (A-T is a rare neurodegenerative, inherited disease causing severe morbidity. Oculocutaneous telangiectasias are almost constant findings among the affected cases as telangiectasia is considered the main clinical finding for diagnosis. Vascular abnormalities in organs have been reported infrequently but bladder wall telangiectasias are extremely rare. We aimed to report recurrent hemorrhage from bladder wall telangiectasia in a 9-year-old boy with A-T who had received intravenous cyclophosphamide for non-Hodgkin’s lymphoma. Since A-T patients are known to be more susceptible to chemical agents, we suggested that possibly cyclophosphamide was the drug which induced bladder wall injury in this patient.

  14. A haplotype common to intermediate radiosensitivity variants of ataxia-telangiectasia in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, A.M.R.; McConville, C.M.; Byrd, P.J. [Birmingham Univ. (United Kingdom). Medical School; Rotman, G.; Shiloh, Y. [Tel Aviv Univ. (Israel). Sackler School of Medicine

    1994-12-01

    In a study of ataxia-telangiectasia (A-T) in the UK, patients in10 out of 60 families were shown to have a much lower level of chromosomal radiosensitivity compared with the majority of patients. In some patients the level of radiosensitivity was hardly distinguishable from normal. Patients in this group, however, could be distinguished clinically from the majority either by the later onset of severe cerebellar features or the slower rate of progress of the disorder. By using highly polymorphic microsatellite repeat markers a chromosome 11q22-23 haplotype common to the majority of these patients, and not occurring in any non-A-T chromosome in 60 families, was identified on one chromosome. The haplotype probably defines the region of the A-T gene in these families and the mutation associated with this haplotype may be much less severe than the second mutation thereby producing the slightly milder phenotype. (author).

  15. Regulation of DNA repair in serum-stimulated xeroderma pigmentosum cells

    OpenAIRE

    1984-01-01

    The regulation of DNA repair during serum stimulation of quiescent cells was examined in normal human cells, in fibroblasts from three xeroderma pigmentosum complementation groups (A, C, and D), in xeroderma pigmentosum variant cells, and in ataxia telangiectasia cells. The regulation of nucleotide excision repair was examined by exposing cells to ultraviolet irradiation at discrete intervals after cell stimulation. Similarly, base excision repair was quantitated after exposure to methylmetha...

  16. Genetic, physical and functional analysis of the ataxia-telangiectasia locus on chromosome 11q22-23

    Energy Technology Data Exchange (ETDEWEB)

    Shiloh, Y.; Ziv, Y.; Savitski, K. [Tel Aviv Univ. (Israel)] [and others

    1994-09-01

    Ataxia-telangiectasia (A-T) is an autosomal recessive multisystem disorder featuring cerebellar degeneration, immunodeficiency, chromosomal instability, cancer susceptibility, and radiosensitivity. Four complementation groups have been observed in A-T. The two major groups, A and C, were localized to chromosome 11q22-23, and the other two, D and E, may map to the same chromosomal region. We developed an integrated system of positional and complementation cloning to identify the A-T gene(s). The A-T region was saturated with microsatellite markers by physically mapping markers generated at random by other labs and by identifying new polymorphic CA-repeats in YAC clones obtained from this region. According to recent linkage data based on these markers and linkage disequilibrium analysis in Moroccan Jewish A-T patients, the A-T(A) and A-T(C) mutations are contained within a 2 Mb interval between D11S1819 and D11S1960. This interval was cloned in YAC and cosmid contigs, and transcribed sequences were identified using the following methods: screening of cDNA libraries using cosmid clones; magnetic bead capture using YAC and cosmid clones; direct selection of cDNA clones using YAC clones immobilized on a solid matrix; and 3{prime} exon trapping. Preliminary results indicate that the A-T region is rich in transcribed sequences. Structural and functional analysis of these genes is being carried out by sequence analysis, by physical mapping using the cosmid contigs, and by testing their ability to complement the radiomimetic sensitivity of A-T cells.

  17. Effects of 4-aminopyridine on nystagmus and vestibulo-ocular reflex in ataxia-telangiectasia.

    Science.gov (United States)

    Shaikh, Aasef G; Marti, Sarah; Tarnutzer, Alexander A; Palla, Antonella; Crawford, Thomas O; Zee, David S; Straumann, Dominik

    2013-11-01

    Ataxia-telangiectasia (A-T) is a progressive neurodegenerative disorder with prominent eye movement deficits localizing to the cerebellum. We sought to determine if 4-aminopyridine (4-AP), which putatively enhances the precision of Purkinje neurons, could improve the disorders of eye movements and vestibular function in A-T. The influence of 4-AP on disorders of eye movements and vestibular function was studied in four A-T patients. The effects on the cerebellar control of vestibulo-ocular reflex (VOR) was quantitatively assessed by the decay time constant of per- and post-rotational nystagmus during constant velocity en bloc rotations. The length of the VOR time constant determines the fidelity of the vestibular velocity storage, a neural mechanism that increases the bandwidth of VOR under cerebellar control. The VOR time constant was not increased in A-T patients. The latter is explained by the extent of cerebellar lesion as previously described in A-T and other cerebellar disorders. Nevertheless, 4-AP shortened the VOR time constant during horizontal rotations. Severe disinhibition of velocity storage in subjects with putatively profound cerebellar degeneration manifest periodic alternating nystagmus (PAN). Among two A-T subjects who manifested PAN, 4-AP reduced the peak slow phase velocity of the more severely affected individual and abrogated the PAN in the other. Two A-T subjects manifested horizontal and vertical spontaneous nystagmus (SN) in primary gaze, 4-AP reduced its slow phase velocity. We conclude that in subjects with A-T 4-AP has a prominent effect on the ocular motor and vestibular deficits that are ascribed to the loss of cerebellar Purkinje neurons.

  18. Quantitative evaluation of brain involvement in ataxia telangiectasia by diffusion weighted MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Firat, Ahmet Kemal [Inonu University Medical Faculty, Turgut Ozal Medical Center, Department of Radiology, Malatya 44280 (Turkey); Karakas, Hakki Muammer [Inonu University Medical Faculty, Turgut Ozal Medical Center, Department of Radiology, Malatya 44280 (Turkey)]. E-mail: hkarakas@inonu.edu.tr; Firat, Yezdan [Inonu University Medical Faculty, Turgut Ozal Medical Center, Department of Otorhinolaryngology, Malatya (Turkey); Yakinci, Cengiz [Inonu University Medical Faculty, Turgut Ozal Medical Center, Department of Pediatrics, Malatya (Turkey)

    2005-11-01

    Objective: To evaluate the value of diffusion weighted imaging (DWI) in diagnosing ataxia telangiectasia (AT) and to investigate the spatial distribution of cerebral microstructural changes caused by the disease. Methods: Six AT patients (9-13 years) and nine healthy control subjects were examined on 1.5 T scanner. In addition to conventional MR images, DWI were performed with a fat suppressed, multishot spin echo EPI sequence using B values of 0, 500 and 1000 s/mm{sup 2}. Mean ADC values were measured from 16 different supra and infratentorial location. The difference between controls and AT patients regarding ADC values, and the accuracy, sensitivity and specificity of them in discrimination were analyzed with t-tests, logistic regression analysis, ANOVA and ROC curves. Results: Conventional images of the controls were normal. In AT patients, the only conventional MR abnormality was cerebellar atrophy. The difference between both groups regarding mean ADC values was not significant for any of the cerebral structures. In contrary to cerebrum, cerebellar mean ADC values of patients and controls were statistically different (p < 0.011-0.0001). Patients and controls were classified with 100% accuracy using ADC values of cerebellar white matter and cortex together (p < 0.016). The cut-off ADC value (0.699 mm{sup 2}/s) for middle cerebellar cortex had produced highest (100%) sensitivity and specificity. There was a difference between superior, middle and inferior cerebellar cortex regarding ADC values (p < 0.026). Superior cerebellar cortex (0.987 {+-} 0.1956 mm{sup 2}/s) had higher ADC values than the middle and inferior cerebellar cortex. Conclusion: DWI provides a supplementary and objective imaging finding in AT. This finding is highly accurate in the radiological discrimination of healthy subjects and AT. Our findings also implicate that AT causes a diffuse atrophy and mostly affects superior part of the cortex.

  19. Epstein-Barr serology in immunodeficiencies: an attempt to correlate with immune abnormalities in Wiskott-Aldrich and Chediak-Higashi syndromes and ataxia telangiectasia.

    Science.gov (United States)

    Vilmer, E; Lenoir, G M; Virelizier, J L; Griscelli, C

    1984-01-01

    Epstein-Barr (EB) virus serology was correlated with the results of immunological investigations of three inherited immunodeficiency diseases, in an attempt to understand the immune mechanisms controlling EB virus infection. In nine patients with Wiskott-Aldrich syndrome (WAS), the constant lack of anti-EB virus associated nuclear antigen (EBNA) was accompanied by a consistent impairment of allogeneic cytotoxicity. We confirmed a frequent absence of anti-EBNA antibody in ataxia telangiectasia (AT), and we showed a correlation between the level of anti-EBNA response and the mixed leucocyte response (MLR), i.e., an absence of anti-EBNA antibody correlated with a decreased MLR. In two of three untreated patients with Chediak-Higashi syndrome (CHS), high persistent titres of anti-EA antibodies were observed, which were possibly related to a defective natural killer (NK) cell activity. In spite of previous infection with EB virus, none of the 41 patients exhibited clinical signs attributable to the virus, suggesting that residual or compensatory mechanisms must have limited activation of the virus. In patients with AT and WAS these mechanisms may include NK cell activity, which is not depressed in these syndromes, whereas in patients with CHS, they may involve T cell cytotoxicity. PMID:6321070

  20. Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation

    DEFF Research Database (Denmark)

    Gatei, Magtouf; Sloper, Katie; Sørensen, Claus Storgaard;

    2003-01-01

    . In mammalian cells, evidence has been presented that Chk1 is devoted to the ATR signaling pathway and is modified by ATR in response to replication inhibition and UV-induced damage, whereas Chk2 functions primarily through ATM in response to ionizing radiation (IR), suggesting that Chk2 and Chk1 might have......In mammals, the ATM (ataxia-telangiectasia-mutated) and ATR (ATM and Rad3-related) protein kinases function as critical regulators of the cellular DNA damage response. The checkpoint functions of ATR and ATM are mediated, in part, by a pair of checkpoint effector kinases termed Chk1 and Chk2....... Phosphorylation of Chk1 on Ser-317 in response to IR is ATM-dependent. We also show that functional NBS1 is required for phosphorylation of Chk1, indicating that NBS1 might facilitate the access of Chk1 to ATM at the sites of DNA damage. Abrogation of Chk1 expression by RNA interference resulted in defects in IR-induced...

  1. Health risks for ataxia-telangiectasia mutated heterozygotes: a systematic review, meta-analysis and evidence-based guideline.

    Science.gov (United States)

    van Os, N J H; Roeleveld, N; Weemaes, C M R; Jongmans, M C J; Janssens, G O; Taylor, A M R; Hoogerbrugge, N; Willemsen, M A A P

    2016-08-01

    Ataxia-telangiectasia (AT) is an autosomal recessive neurodegenerative disorder with immunodeficiency and an increased risk of developing cancer, caused by mutations in the ataxia-telangiectasia mutated (ATM) gene. Logically, blood relatives may also carry a pathogenic ATM mutation. Female carriers of such a mutation have an increased risk of breast cancer. Other health risks for carriers are suspected but have never been studied systematically. Consequently, evidence-based guidelines for carriers are not available yet. We systematically analyzed all literature and found that ATM mutation carriers have a reduced life expectancy because of mortality from cancer and ischemic heart diseases (RR 1.7, 95% CI 1.2-2.4) and an increased risk of developing cancer (RR 1.5, 95% CI 0.9-2.4), in particular breast cancer (RRwomen 3.0, 95% CI 2.1-4.5), and cancers of the digestive tract. Associations between ATM heterozygosity and other health risks have been suggested, but clear evidence is lacking. Based on these results, we propose that all female carriers of 40-50 years of age and female ATM c.7271T>G mutation carriers from 25 years of age onwards be offered intensified surveillance programs for breast cancer. Furthermore, all carriers should be made aware of lifestyle factors that contribute to the development of cardiovascular diseases and diabetes. PMID:26662178

  2. Discovery of Novel 3-Quinoline Carboxamides as Potent, Selective, and Orally Bioavailable Inhibitors of Ataxia Telangiectasia Mutated (ATM) Kinase.

    Science.gov (United States)

    Degorce, Sébastien L; Barlaam, Bernard; Cadogan, Elaine; Dishington, Allan; Ducray, Richard; Glossop, Steven C; Hassall, Lorraine A; Lach, Franck; Lau, Alan; McGuire, Thomas M; Nowak, Thorsten; Ouvry, Gilles; Pike, Kurt G; Thomason, Andrew G

    2016-07-14

    A novel series of 3-quinoline carboxamides has been discovered and optimized as selective inhibitors of the ataxia telangiectasia mutated (ATM) kinase. From a modestly potent HTS hit (4), we identified molecules such as 6-[6-(methoxymethyl)-3-pyridinyl]-4-{[(1R)-1-(tetrahydro-2H-pyran-4-yl)ethyl]amino}-3-quinolinecarboxamide (72) and 7-fluoro-6-[6-(methoxymethyl)pyridin-3-yl]-4-{[(1S)-1-(1-methyl-1H-pyrazol-3-yl)ethyl]amino}quinoline-3-carboxamide (74) as potent and highly selective ATM inhibitors with overall ADME properties suitable for oral administration. 72 and 74 constitute excellent oral tools to probe ATM inhibition in vivo. Efficacy in combination with the DSB-inducing agent irinotecan was observed in a disease relevant model. PMID:27259031

  3. Effects of radiation therapy for Hodgkin's disease in a child with ataxia telangiectasia: a clinical, biological and pathologic study

    International Nuclear Information System (INIS)

    Stage I lymphocyte-predominant Hodgkin's disease was diagnosed in a 44-month-old girl. Although immune deficiency was suspected and IgA deficiency demonstrated, the diagnosis of an ataxia-telangiectasia (AT)-like syndrome was not confirmed until eight weeks later when results of studies on the radiosensitivity of cultured skin fibroblasts were available. The child had none of the usual physical stigmata of AT. Severe acute radiation damage followed the treatment of this child with standard doses of radiation therapy. Clinical, pathologic, and radiobiologic correlations are drawn. The diagnosis of a malignant lymphoma disorder in children under the age of five should alert clinicians to the possibility of immune deficiency and, even in the absence of classical physical signs, to AT in particular. Suggestions for the management of future similar cases are put forward

  4. A YAC contig spanning the ataxia-telangiectasia locus (groups A and C) at 11q22-q23

    Energy Technology Data Exchange (ETDEWEB)

    Rotman, G.; Savitsky, K.; Ziv, Y. [Tel Aviv Univ. Ramat Aviv (Israel)] [and others

    1994-11-15

    Ataxia-telangiectasia (A-T) is an autosomal recessive disease involving cerebellar degeneration, immunodeficiency, cancer predisposition, chromosomal instability and radiosensitivity. A-T is heterogeneous, and the majority of A-T cases are associated with two complementation groups, A and C. The ATA and ATC loci are closely linked at chromosome 11q22-q23. Recombination mapping and linkage disequilibrium analysis have confined both loci between the markers D11S1817 and D11S927. Construction of this contig was expedited by prior generation of a region-specific ICRF sublibrary using Alu-PCR products derived from a radiation hybrid. The contig was expanded further by screening the libraries with Alu-PCR products derived from YAC clones and with STSs from YAC ends. YAC clones were aligned by fingerprinting with moderately repetitive probes. 56 refs., 5 figs., 1 tab.

  5. Imaging study of lymphoreticular tumor development in ataxia-telangiectasia and Nijmegen breakage syndrome; Estudio por imagen del desarrollo de tumores linforreticulares en la ataxia telangiectasia y el sindrome de Nijmegen

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Leon, M. I.; Ceres-Ruiz, L.; Cuesta, M. A.; Garcia-Martin, F. J. [Hospital Materno-Infantil C.H.U. Carlos Haya. Malaga (Spain)

    2003-07-01

    Ataxia-telangiectasia (AT), or Louis-Bar syndrome, is an autosomal recessive illness characterized by progressive cerebellar ataxia, oculo-cutaneous telangiectasia, immunodeficiency combined with susceptibility to sinopulmonary infections and high incidence of neoplastic development. Nijmegen breakage syndrome (NBS) is a variant of AT, is also an autosomal recessive illness that presents cerebellar ataxia, as well as combined immunodeficiency and a tendency toward tumor development. Contrary to Louis-Bar syndrome, it doesn't present telangiectasia and exhibits a characteristics phenotype (short stature, bird-like face and microcephaly). Both entities are classified as syndrome of chromosomal instability or chromosomal fragility, a group which also includes Bloom syndrome and Fanconi anemia. All of these show an increase in the frequency of neoplastic pathologies, mainly lymphoid tumors. We present three patients,two with AT and one with NBS, who developed different lymphoma types in the course of the illness. We highlight the most outstanding aspects from a clinical-radiological point of view. (Author) 17 refs.

  6. Targeted Next-Generation Sequencing Revealed Novel Mutations in Chinese Ataxia Telangiectasia Patients: A Precision Medicine Perspective.

    Directory of Open Access Journals (Sweden)

    Zhao Chen

    Full Text Available Ataxia telangiectasia (AT is an autosomal recessive disease characterized by progressive cerebellar ataxia, oculocutaneous telangiectasia and immunodeficiency due to mutations in the ATM gene. We performed targeted next-generation sequencing (NGS on three unrelated patients and identified five disease-causing variants in three probands, including two pairs of heterozygous variants (FAT-1:c.4396C>T/p.R1466X, c.1608-2A>G; FAT-2:c.4412_4413insT/p.L1472Ffs*19, c.8824C>T/p.Q2942X and one pair of homozygous variants (FAT-3: c.8110T>G/p.C2704G, Hom. With regard to precision medicine for rare genetic diseases, targeted NGS currently enables the rapid and cost-effective identification of causative mutations and is an updated molecular diagnostic tool that merits further optimization. This high-throughput data-based strategy would propel the development of precision diagnostic methods and establish a foundation for precision medicine.

  7. Construction of a transcription map around the gene for ataxia telangiectasia: Identification of at least four novel genes

    Energy Technology Data Exchange (ETDEWEB)

    Stankovic, T.; Byrd, P.J.; Cooper, P.R. [Univ. of Birmingham (United Kingdom)] [and others

    1997-03-01

    We have constructed YAC, PAC, and cosmid contigs in the ataxia-telangiectasia gene region and used the assembled clones to isolate expressed sequences by exon trapping and hybridization selection. In the interval between D11S1819 and D11S2029, exons and cDNAs for potentially 13 different genes were identified. Three of these genes, F37, K28, and 6.82, are large novel genes expressed in a variety of different tissues. K28 shows sequence homology to the Rab GTP binding protein family and gene 6.82 homology to the rabbit vasopressin activated calcium mobilizing receptor, while gene F37 has no homology to any known sequence in the database. Three further clones, exon 6.41 and cDNAs K22 and E74, from the interval between D11S1819 and D11S2029, appear to be expressed endogenous retrovirus sequences. The fourth large novel gene, E14, together with two further possible novel genes, E13 and E3, was identified from exons and cDNAs in the more telomeric 300-kb interval between markers D11S2029 and D11S2179. These are in addition to the genes for mitochondrial acetoacetyl-CoA-acetyltransferase (ACAT) and the ATM gene in the same region. Genes E3, E13, and E14 do not show homology to any known genes. K28, 6.82, ACAT, and ATM all appear to have the same transcriptional orientation toward the telomere. 39 refs., 3 figs., 1 tab.

  8. Radio-induced apoptosis is impaired in individuals homozygous and heterozygous for the ataxia-telangiectasia gene(s); Alteration de la reponse apoptotique radio-induite chez des homozygotes et des heterozygotes pour l`ataxie-telangiectasie

    Energy Technology Data Exchange (ETDEWEB)

    Duchaud, E.; Ridet, A.; Delic, Y.; Moustacchi, E.; Rosselli, F. [Institut Curie, 75 - Paris (France); Cundari, E. [Consiglio Nazionale delle Ricerche, Rome (Italy)

    1994-11-01

    Ataxia-telangiectasia is a progressive recessive disease featuring neuro degeneration, immunodeficiency, chromosomal instability, radiation hypersensitivity and increased predisposition to cancer. Impaired induction of the tumor suppressor protein p53 after {gamma}-irradiation was recently reported. All together these characteristics may be compatible with an inability to correctly regulate the apoptotic pathway of cell death in this syndrome. We show here that lymphocyte cultures from AT patients are characterized by a 3 times more elevated spontaneous level of apoptotic cells compared to normal ones. In spite of this, 24 h after exposure to {gamma}-irradiation (5 to 10 Gy), AT lymphocytes show a dramatically reduced capacity to undergo apoptosis compared to normal cells. We obtained similar results on EBV-transformed lymphoblasts. Interestingly, lymphoblasts from obligate heterozygous for the AT mutation(s) show the same features as AT lymphoblasts, i.e. an elevated frequency of spontaneous and a reduced level of radio-induced apoptotic figures in comparison to normal cultured cells. In conclusion, we show here, for the first time, that mutation(s) in AT gene(s) results in an impaired ability to correctly regulate the apoptotic pathway of cell death. (author). 26 refs., 4 figs., 2 tabs.

  9. Medical Management of Pediatric Malignant Bowel Obstruction in a Patient with Burkitt's Lymphoma and Ataxia Telangiectasia Using Continuous Ambulatory Drug Delivery System.

    Science.gov (United States)

    Ghoshal, Arunangshu; Salins, Naveen; Damani, Anuja; Deodhar, Jayita; Muckaden, M A

    2016-01-01

    Malignant bowel obstruction (MBO) is commonly seen in patients with advanced abdominal cancers. The incidence of pediatric MBO in a patient with Burkitt's lymphoma and ataxia telangiectasia is rare, with no published case reports till now. Conservative management of inoperable MBO results in relief of symptoms and improves quality of life. An 11-year-old boy with Burkitt's lymphoma and ataxia telangiectasia was referred to pediatric palliative care with MBO. The objective of this report is to demonstrate conservative management of pediatric MBO using continuous ambulatory drug delivery system. The patient was initiated on continuous ambulatory drug delivery (CADD) system for symptom relief. MBO was reversed with conservative management and the child was discharged on self-collapsible portable elastomeric continuous infusion pump under the supervision of a local family physician. The child remained comfortable at home for 4 weeks until his death. His parents were satisfied with the child's symptom control, quality of life, and were able to care for the child at home. In a resource-limited setting, managing patients at home using elastomeric continuous infusion pumps instead of expensive automated CADD is a practical pharmacoeconomic approach. PMID:26862790

  10. Inhibition of Ataxia Telangiectasia Mutated (ATM) Kinase Suppresses Herpes Simplex Virus Type 1 (HSV-1) Keratitis

    OpenAIRE

    Alekseev, Oleg; Donovan, Kelly; Azizkhan-Clifford, Jane

    2014-01-01

    This study shows that inhibition of ATM, an apical kinase in the mammalian DNA damage response pathway, suppresses HSV-1 replication in corneal epithelial cells and explanted human and rabbit corneas. ATM inhibition also reduces stromal keratitis severity in mice without causing corneal toxicity.

  11. Activation of eNOS in endothelial cells exposed to ionizing radiation involves components of the DNA damage response pathway

    International Nuclear Information System (INIS)

    Highlights: • eNOS activity is increased in BAECs exposed to X-rays. • ATM is involved in this increased eNOS activity. • HSP90 modulates the radiation-induced activation of ATM and eNOS. - Abstract: In this study, the involvement of ataxia telangiectasia mutated (ATM) kinase and heat shock protein 90 (HSP90) in endothelial nitric oxide synthase (eNOS) activation was investigated in X-irradiated bovine aortic endothelial cells. The activity of nitric oxide synthase (NOS) and the phosphorylation of serine 1179 of eNOS (eNOS-Ser1179) were significantly increased in irradiated cells. The radiation-induced increases in NOS activity and eNOS-Ser1179 phosphorylation levels were significantly reduced by treatment with either an ATM inhibitor (Ku-60019) or an HSP90 inhibitor (geldanamycin). Geldanamycin was furthermore found to suppress the radiation-induced phosphorylation of ATM-Ser1181. Our results indicate that the radiation-induced eNOS activation in bovine aortic endothelial cells is regulated by ATM and HSP90

  12. Activation of eNOS in endothelial cells exposed to ionizing radiation involves components of the DNA damage response pathway

    Energy Technology Data Exchange (ETDEWEB)

    Nagane, Masaki; Yasui, Hironobu; Sakai, Yuri; Yamamori, Tohru [Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan); Niwa, Koichi [Laboratory of Biochemistry, Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri 099-2493 (Japan); Hattori, Yuichi [Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan); Kondo, Takashi [Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan); Inanami, Osamu, E-mail: inanami@vetmed.hokudai.ac.jp [Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan)

    2015-01-02

    Highlights: • eNOS activity is increased in BAECs exposed to X-rays. • ATM is involved in this increased eNOS activity. • HSP90 modulates the radiation-induced activation of ATM and eNOS. - Abstract: In this study, the involvement of ataxia telangiectasia mutated (ATM) kinase and heat shock protein 90 (HSP90) in endothelial nitric oxide synthase (eNOS) activation was investigated in X-irradiated bovine aortic endothelial cells. The activity of nitric oxide synthase (NOS) and the phosphorylation of serine 1179 of eNOS (eNOS-Ser1179) were significantly increased in irradiated cells. The radiation-induced increases in NOS activity and eNOS-Ser1179 phosphorylation levels were significantly reduced by treatment with either an ATM inhibitor (Ku-60019) or an HSP90 inhibitor (geldanamycin). Geldanamycin was furthermore found to suppress the radiation-induced phosphorylation of ATM-Ser1181. Our results indicate that the radiation-induced eNOS activation in bovine aortic endothelial cells is regulated by ATM and HSP90.

  13. No evidence for association of ataxia-telangiectasia mutated gene T2119C and C3161G amino acid substitution variants with risk of breast cancer

    International Nuclear Information System (INIS)

    There is evidence that certain mutations in the double-strand break repair pathway ataxia-telangiectasia mutated gene act in a dominant-negative manner to increase the risk of breast cancer. There are also some reports to suggest that the amino acid substitution variants T2119C Ser707Pro and C3161G Pro1054Arg may be associated with breast cancer risk. We investigate the breast cancer risk associated with these two nonconservative amino acid substitution variants using a large Australian population-based case–control study. The polymorphisms were genotyped in more than 1300 cases and 600 controls using 5' exonuclease assays. Case–control analyses and genotype distributions were compared by logistic regression. The 2119C variant was rare, occurring at frequencies of 1.4 and 1.3% in cases and controls, respectively (P = 0.8). There was no difference in genotype distribution between cases and controls (P = 0.8), and the TC genotype was not associated with increased risk of breast cancer (adjusted odds ratio = 1.08, 95% confidence interval = 0.59–1.97, P = 0.8). Similarly, the 3161G variant was no more common in cases than in controls (2.9% versus 2.2%, P = 0.2), there was no difference in genotype distribution between cases and controls (P = 0.1), and the CG genotype was not associated with an increased risk of breast cancer (adjusted odds ratio = 1.30, 95% confidence interval = 0.85–1.98, P = 0.2). This lack of evidence for an association persisted within groups defined by the family history of breast cancer or by age. The 2119C and 3161G amino acid substitution variants are not associated with moderate or high risks of breast cancer in Australian women

  14. Loss of ataxia-telangiectasia-mutated protein expression correlates with poor prognosis but benefits from anthracycline-containing adjuvant chemotherapy in breast cancer.

    Science.gov (United States)

    Suh, Koung Jin; Ryu, Han Suk; Lee, Kyung-Hun; Kim, Hyojin; Min, Ahrum; Kim, Tae-Yong; Yang, Yaewon; Moon, Hyeong-Gon; Han, Sae-Won; Oh, Do-Youn; Han, Wonshik; Park, In Ae; Noh, Dong-Young; Im, Seock-Ah

    2016-07-01

    We investigated the correlation of ataxia-telangiectasia-mutated (ATM) protein expression with clinicopathological features and prognosis in patients with breast cancer. ATM expression was determined by immunohistochemistry in 420 surgically resected breast tumors. ATM loss was observed in 126/407 evaluable cases (31.0 %), and was significantly associated with larger tumor size, lymph node metastasis, higher tumor grade, and ER- and/or PR-negative status. ATM loss was also associated with significantly lower disease-free survival rates than those in patients with intact ATM (5-year disease-free survival rate 81.2 vs. 90.7 %, p = 0.015). In multivariate analysis, ATM loss combined with abnormal p53 expression was an independent predictor of shorter disease-free survival [hazard ratio (HR) 3.48; 95 % confidence interval (CI), 1.48-8.17, p = 0.004]. A tendency towards a poorer prognosis was observed for tumoral ATM loss alone, although statistical significance was not reached (HR 1.74; 95 % CI 0.95-3.20; p = 0.075). In subgroup analysis, ATM loss was associated with shorter disease-free survival in patients who did not receive adjuvant anthracycline chemotherapy (5-year disease-free survival rate 92.7 % in intact ATM group vs. 68.1 % in ATM loss group, p = 0.002), but this poor prognosis was overcome in patients who did (5-year disease-free survival rate 89.8 vs. 84.4 %, p = 0.243), suggesting more benefit from anthracycline-based chemotherapy. Tumors with loss of ATM expression have a poor prognosis and their prognoses are dependent on the use of adjuvant anthracycline. ATM loss might be a practical tool for predicting benefits from anthracycline-based adjuvant therapy. PMID:27329169

  15. Chromosomal Aberrations in Normal and AT Cells Exposed to High Dose of Low Dose Rate Irradiation

    Science.gov (United States)

    Kawata, T.; Shigematsu, N.; Kawaguchi, O.; Liu, C.; Furusawa, Y.; Hirayama, R.; George, K.; Cucinotta, F.

    2011-01-01

    Ataxia telangiectasia (A-T) is a human autosomally recessive syndrome characterized by cerebellar ataxia, telangiectases, immune dysfunction, and genomic instability, and high rate of cancer incidence. A-T cell lines are abnormally sensitive to agents that induce DNA double strand breaks, including ionizing radiation. The diverse clinical features in individuals affected by A-T and the complex cellular phenotypes are all linked to the functional inactivation of a single gene (AT mutated). It is well known that cells deficient in ATM show increased yields of both simple and complex chromosomal aberrations after high-dose-rate irradiation, but, less is known on how cells respond to low-dose-rate irradiation. It has been shown that AT cells contain a large number of unrejoined breaks after both low-dose-rate irradiation and high-dose-rate irradiation, however sensitivity for chromosomal aberrations at low-dose-rate are less often studied. To study how AT cells respond to low-dose-rate irradiation, we exposed confluent normal and AT fibroblast cells to up to 3 Gy of gamma-irradiation at a dose rate of 0.5 Gy/day and analyzed chromosomal aberrations in G0 using fusion PCC (Premature Chromosomal Condensation) technique. Giemsa staining showed that 1 Gy induces around 0.36 unrejoined fragments per cell in normal cells and around 1.35 fragments in AT cells, whereas 3Gy induces around 0.65 fragments in normal cells and around 3.3 fragments in AT cells. This result indicates that AT cells can rejoin breaks less effectively in G0 phase of the cell cycle? compared to normal cells. We also analyzed chromosomal exchanges in normal and AT cells after exposure to 3 Gy of low-dose-rate rays using a combination of G0 PCC and FISH techniques. Misrejoining was detected in the AT cells only? When cells irradiated with 3 Gy were subcultured and G2 chromosomal aberrations were analyzed using calyculin-A induced PCC technique, the yield of unrejoined breaks decreased in both normal and AT

  16. Ataxia telangiectasia-mutated-Rad3-related DNA damage checkpoint signaling pathway triggered by hepatitis B virus infection

    Institute of Scientific and Technical Information of China (English)

    Fan Zhao; Qing-Jun Ma; Hui Zhong; Ning-Bo Hou; Xiao-Li Yang; Xiang He; Yu Liu; Yan-Hong Zhang; Cong-Wen Wei; Ting Song; Li Li

    2008-01-01

    AIM: To explore whether acute cellular DNA damage response is induced upon hepatitis B virus (HBV) infection and the effects of the HBV infection. METHODS: We incubated HL7702 hepatocytes with HBV-positive serum, mimicking a natural HBV infection process. We used immunoblotting to evaluate protein expression levels in HBV-infected cells or in non-infected cells; immunofluorescence to show ATR foci ands Chk1 phosphorylation loci formation; flow cytometry to analyze the cell cycle and apoptosis; ultraviolet (UV) radiation and ionizing radiation (IR)-treated cells to mimic DNA damage; and Trypan blue staining to count the viable cells.RESULTS: We found that HBV infection induced an increased steady state of ATR protein and increased phosphorylation of multiple downstream targets including Chkl, p53 and H2AX. In contrast to ATR and its target, the phosphorylated form of ATM at Ser-1981 and its downstream substrate Chk2 phosphorylation at Thr-68 did not visibly increase upon infection. However, the level of Mre11 and p21 were reduced beginning at 0.5 h after HBV-positive serum addition. Also, HBV infection led to transient cell cycle arrest in the S and the G2 phases without accompanying increased apoptosis. Research on cell survival changes upon radiation following HBV infection showed that survival of UV-treated host cells was greatly increased by HBV infection, owing to the reduced apoptosis. Meanwhile, survival of IR-treated host cells was reduced by HBV infection. CONCLUSION: HBV infection activates ATR DNA damage response to replication stress and abrogates the checkpoint signaling controlled by DNA damage response.

  17. What Is Ataxia-Telangiectasia?

    Science.gov (United States)

    ... hallmark of A-T: "telangiectasia," or tiny red "spider" veins which appear in the corners of the ... 1,000 times more frequently than the general population. Lymphoma and leukemia are particularly common types of ...

  18. Ataxia-telangiectasia: an overview.

    Science.gov (United States)

    Boder, E

    1985-01-01

    The more subtle clinical findings that facilitate early diagnosis and the most provocative long-term clinical observations in our series of patients are emphasized. The most striking pathological findings in our own series of 11 complete autopsies are reviewed in relation to new findings from 57 autopsy reports in the recent literature. Clinical and pathological findings in our oldest patient, who died at age 32, are systematically compared with those of her sister, who died 20 years earlier at age 10 1/2 and who was the subject of the first autopsy in AT, thus providing a rare comparison of the early and late stages of the disease. The clinical and pathological findings, including the gliovascular malformations in the CNS described recently in autopsies on older patients, reveal that AT is characterized throughout its course by multisystemic progeric changes. It is proposed, therefore, that AT can serve as a model for the study of premature aging. Clinical diagnosis, laboratory markers, and special diagnostic procedures, along with general management, immunotherapy, and rehabilitative measures, are reviewed in Part II.

  19. Regulation of ATM in DNA double strand break repair accounts for the radiosensitivity in human cells exposed to high linear energy transfer ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Xue Lian, E-mail: xuelian@suda.edu.cn [School of Radiation Medicine and Public Health, Medical College of Soochow University, No. 199, Ren' ai Road, Suzhou 215123 (China); Yu Dong, E-mail: ydong@ncc.go.jp [Tumor Endocrinology Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Furusawa, Yoshiya; Okayasu, Ryuichi [Heavy-Ion Radiobiology Research Group, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555 (Japan); Tong Jian; Cao Jianping; Fan Saijun [School of Radiation Medicine and Public Health, Medical College of Soochow University, No. 199, Ren' ai Road, Suzhou 215123 (China)

    2009-11-02

    High linear energy transfer (LET) radiation shows different biological effects from low-LET radiation. The complex nature of high LET radiation-induced damage, especially the clustered DNA damage, brings about slow repair of DNA double strand breaks (DSBs), which finally lead to higher lethality and chromosome aberration. Ionizing radiation (IR) induced DNA DSBs are repaired by both non-homologous end-joining (NHEJ) and homologous recombination repair (HRR) pathways in mammalian cells. The novel function of ataxia telangiectasia-mutated (ATM) protein is its involvement in the DSB repair of slow kinetics for 'dirty' breaks rejoining by NHEJ, this suggests that ATM may play a more important role in high LET radiation-induced DNA damage. We show here that KU55933, an ATM inhibitor could distinctly lower the clonogenic survival in normal human skin fibroblast cells exposed to carbon ion radiation and dramatically impair the normal process for DSB repair. We also implicated the involvement of ATM in the two pathways of DNA DSB repair, with DNA-PKcs and Rad51 as the representative proteins. The phosphorylation of DNA-PKcs at Thr-2609 with both immunoblotting and immunofluorescent staining indicated an ATM-dependent change, while for Rad51, KU55933 pretreatment could postpone the formation of nuclear Rad51 foci. Interestingly, we also found that pretreatment with chloroquine, an ATM stimulator could protect cells from carbon ion radiation only at lower doses. For doses over 1 Gy, protection was no longer observed. There was a dose-dependent increase for ATM kinase activity, with saturation at about 1 Gy. Chloroquine pretreatment prior to 1 Gy of carbon ion radiation did not enhance the autophosphorylation of ATM at serine 1981. The function of ATM in G2/M checkpoint arrest facilitated DSB repair in high-LET irradiation. Our results provide a possible mechanism for the direct involvement of ATM in DSB repair by high-LET irradiation.

  20. Adaptive Response to ionizing Radiation Induced by Low Doses of Gamma Rays in Human Lymphoblastoid Cell Lines

    International Nuclear Information System (INIS)

    When cells are exposed to low doses of a mutagenic or clastogenic agents, they often become less sensitive to the effects of a higher does administered subsequently. Such adaptive responses were first described in Escherichia coli and mammalian cells to low doses of an alkylating agent. Since most of the studies have been carried out with human lymphocytes, it is urgently necessary to study this effect in different cellular systems. Its relation with inherent cellular radiosensitivity and underlying mechanism also remain to be answered. In this study, adaptive response by 1 cGy of gamma rays was investigated in three human lymphoblastoid cell lines which were derived from ataxia telangiectasia homozygote, ataxia telangiectasia heterozygote, and normal individual. Experiments were carried out by delivering 1 cGy followed by 50 cGy of gamma radiation and chromatid breaks were scored as an endpoint. The results indicate that prior exposure to 1 cGy of gamma rays reduces the number of chromatid breaks induced by subsequent higher does (50 cGy). The expression of this adaptive response was similar among three cell lines despite of their different radiosensitivity. When 3-aminobenzamide, an inhibitor of poly (ADP-ribose) polymerase, was added after 50 cGy, adaptive responses were abolished in all the tested cell lines. Therefore it is suggested that the adaptive response can be observed in human lymphoblastoid cell lines. Which was first documented through this study. The expression of adaptive response was similar among the cell lines regardless of their radiosensitivity. The elimination of the adaptive response by 3-aminobenzamide is consistent with the proposal that this adaptive response is the result of the induction of a certain chromosomal repair mechanism

  1. Methods for detection of ataxia telangiectasia mutations

    Science.gov (United States)

    Gatti, Richard A.

    2005-10-04

    The present invention is directed to a method of screening large, complex, polyexonic eukaryotic genes such as the ATM gene for mutations and polymorphisms by an improved version of single strand conformation polymorphism (SSCP) electrophoresis that allows electrophoresis of two or three amplified segments in a single lane. The present invention also is directed to new mutations and polymorphisms in the ATM gene that are useful in performing more accurate screening of human DNA samples for mutations and in distinguishing mutations from polymorphisms, thereby improving the efficiency of automated screening methods.

  2. Ataxia-telangiectasia. (Clinical and immunological aspects).

    Science.gov (United States)

    Boder, E; Sedgwick, R P

    1970-01-01

    This syndrome was defined by the authors in 1947. Earlier publications of similar disease descriptions were by Syllaba and Henner (1926), Louis-Bar (1941). The authors at present have a stock of 253 cases. The cardinal symptoms of this phakomatosis are: Cerebellar ataxia which begin in infancy and take a slowly progressive course. In the late stages free walking and standing are no longer possible. Progressive atactic speech disorders, cerebellar atrophy in the pneumoencephalogram. Slowly progressing symmetrical skin and mucosal telangiectasia in the face and especially on the conjunctivae at the age of 3 to 6 years. Relapsing sinopulmonary infections with a tendency toward the development of bronchiectases. Apraxia of eye movements. Atrophy of facial skin and premature graying of hair. Recessively hereditary disorder with a high familial manifestation. This syndrome combines the spinocerebellar degeneration, phakomatoses, and infantile dementia processes. Such other conditions as abnormity or absence of thymus, reduction in gamma globulins, amino-aciduria, autosomal-recessive inheritance suggest a genetically determined "error of metabolism".

  3. Ataxia-Telangiectasia (A-T)

    Science.gov (United States)

    ... on a single mutated copy of the ATM gene, their child will be affected. Mutations are changes in the DNA from the normal, healthy copy. The most common types of ATM mutations are: splicing (35%), nonsense (25%), and frameshift (25%). Each of ...

  4. Multiple Defects of Cell Cycle Checkpoints in U937-ASPI3K, an U937 Cell Mutant Stably Expressing Anti-Sense ATM Gene cDNA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    (Ataxia-telangiectasia mutated gene (ATM) functions in control of cell cycle checkpoints in responding to DNA damage and protects cells from undergoing apoptosis. Knock-out within tumor cells of endogenous ATM will achieve therapeutic benefits and nable a better understanding of the decisive mechanisms of cell death or survival in response to DNA damaging agents. ) In present paper, we sought to characterize the cell cycle checkpoint profiles in U937-ASPI3K, a U937 cell mutant that was previously established with endogenous ATM knock-out phenotype. Synchronized U937-ASPI3K was exposed to 137Cs irradiation, G1, S, G2/M cell cycle checkpoint profiles were evaluated by determining cell cycle kinetics, p53/p21 protein, cyclin dependent kinase 2 (CDK2) and p34CDC2 kinase activity in response to irradiation. U937-ASPI3K exhibited multiple defects in cell cycle checkpoints as defined by failing to arrest cells upon irradiation. The accumulation of cellular p53/p21 protein and inhibition of CDK kinase was also abolished in U937-ASPI3K. It was concluded that the stable expression of anti-sense PI3K cDNA fragment completely abolished multiple cell cycle checkpoints in U937-ASPI3K, and hence U937-ASPI3K with an AT-like phenotype could serves as a valuable model system for investigating the signal transduction pathway in responding to DNA damaging-based cancer therapy.

  5. Methacryloxylethyl Cetyl Ammonium Chloride Induces DNA Damage and Apoptosis in Human Dental Pulp Cells via Generation of Oxidative Stress.

    Science.gov (United States)

    Jiao, Yang; Ma, Sai; Wang, Yirong; Li, Jing; Shan, Lequn; Sun, Jinlong; Chen, Jihua

    2016-01-01

    The polymerizable antibacterial monomer methacryloxylethyl cetyl ammonium chloride (DMAE-CB) has provided an effective strategy to combat dental caries. However, the application of such material raises the question about the biological safety and the question remains open. The mechanism of this toxic action, however, is not yet clearly understood. The present study aims at providing novel insight into the possible causal link between cellular oxidative stress and DNA damage, as well as apoptosis in human dental pulp cells exposed to DMAE-CB. The enhanced formation of reactive oxygen species and depletion of glutathione, as well as differential changes in activities of superoxide dismutase, glutathione peroxidase, and catalase in DMAE-CB-treated cells indicated oxidative stress. By using substances that can alter GSH synthesis, we found that GSH was the key component in the regulation of cell response towards oxidative stress induced by DMAE-CB. The increase in oxidative stress-sensitive 8-Oxo-2'-deoxyguanosine (8-OHdG) content, formation of γ-H2AX and cell cycle G1 phase arrest indicated that DNA damage occurred as a result of the interaction between DNA base and ROS beyond the capacities of antioxidant mechanisms in cells exposed to DMAE-CB. Such oxidative DNA damage thus triggers the activation of ataxia telangiectasia-mutated (ATM) signaling, the intrinsic apoptotic pathway, and destruction of mitochondrial morphology and function. PMID:27143955

  6. Distinctive features of single nucleotide alterations in induced pluripotent stem cells with different types of DNA repair deficiency disorders.

    Science.gov (United States)

    Okamura, Kohji; Sakaguchi, Hironari; Sakamoto-Abutani, Rie; Nakanishi, Mahito; Nishimura, Ken; Yamazaki-Inoue, Mayu; Ohtaka, Manami; Periasamy, Vaiyapuri Subbarayan; Alshatwi, Ali Abdullah; Higuchi, Akon; Hanaoka, Kazunori; Nakabayashi, Kazuhiko; Takada, Shuji; Hata, Kenichiro; Toyoda, Masashi; Umezawa, Akihiro

    2016-01-01

    Disease-specific induced pluripotent stem cells (iPSCs) have been used as a model to analyze pathogenesis of disease. In this study, we generated iPSCs derived from a fibroblastic cell line of xeroderma pigmentosum (XP) group A (XPA-iPSCs), a rare autosomal recessive hereditary disease in which patients develop skin cancer in the areas of skin exposed to sunlight. XPA-iPSCs exhibited hypersensitivity to ultraviolet exposure and accumulation of single-nucleotide substitutions when compared with ataxia telangiectasia-derived iPSCs that were established in a previous study. However, XPA-iPSCs did not show any chromosomal instability in vitro, i.e. intact chromosomes were maintained. The results were mutually compensating for examining two major sources of mutations, nucleotide excision repair deficiency and double-strand break repair deficiency. Like XP patients, XPA-iPSCs accumulated single-nucleotide substitutions that are associated with malignant melanoma, a manifestation of XP. These results indicate that XPA-iPSCs may serve a monitoring tool (analogous to the Ames test but using mammalian cells) to measure single-nucleotide alterations, and may be a good model to clarify pathogenesis of XP. In addition, XPA-iPSCs may allow us to facilitate development of drugs that delay genetic alteration and decrease hypersensitivity to ultraviolet for therapeutic applications. PMID:27197874

  7. Distinctive features of single nucleotide alterations in induced pluripotent stem cells with different types of DNA repair deficiency disorders

    Science.gov (United States)

    Okamura, Kohji; Sakaguchi, Hironari; Sakamoto-Abutani, Rie; Nakanishi, Mahito; Nishimura, Ken; Yamazaki-Inoue, Mayu; Ohtaka, Manami; Periasamy, Vaiyapuri Subbarayan; Alshatwi, Ali Abdullah; Higuchi, Akon; Hanaoka, Kazunori; Nakabayashi, Kazuhiko; Takada, Shuji; Hata, Kenichiro; Toyoda, Masashi; Umezawa, Akihiro

    2016-01-01

    Disease-specific induced pluripotent stem cells (iPSCs) have been used as a model to analyze pathogenesis of disease. In this study, we generated iPSCs derived from a fibroblastic cell line of xeroderma pigmentosum (XP) group A (XPA-iPSCs), a rare autosomal recessive hereditary disease in which patients develop skin cancer in the areas of skin exposed to sunlight. XPA-iPSCs exhibited hypersensitivity to ultraviolet exposure and accumulation of single-nucleotide substitutions when compared with ataxia telangiectasia-derived iPSCs that were established in a previous study. However, XPA-iPSCs did not show any chromosomal instability in vitro, i.e. intact chromosomes were maintained. The results were mutually compensating for examining two major sources of mutations, nucleotide excision repair deficiency and double-strand break repair deficiency. Like XP patients, XPA-iPSCs accumulated single-nucleotide substitutions that are associated with malignant melanoma, a manifestation of XP. These results indicate that XPA-iPSCs may serve a monitoring tool (analogous to the Ames test but using mammalian cells) to measure single-nucleotide alterations, and may be a good model to clarify pathogenesis of XP. In addition, XPA-iPSCs may allow us to facilitate development of drugs that delay genetic alteration and decrease hypersensitivity to ultraviolet for therapeutic applications. PMID:27197874

  8. Breast cancer stem cell-like cells are more sensitive to ionizing radiation than non-stem cells: role of ATM.

    Directory of Open Access Journals (Sweden)

    Seog-Young Kim

    Full Text Available There are contradictory observations about the different radiosensitivities of cancer stem cells and cancer non-stem cells. To resolve these contradictory observations, we studied radiosensitivities by employing breast cancer stem cell (CSC-like MDA-MB231 and MDA-MB453 cells as well as their corresponding non-stem cells. CSC-like cells proliferate without differentiating and have characteristics of tumor-initiating cells [1]. These cells were exposed to γ-rays (1.25-8.75 Gy and survival curves were determined by colony formation. A final slope, D(0, of the survival curve for each cell line was determined to measure radiosensitivity. The D(0 of CSC-like and non-stem MDA-MB-453 cells were 1.16 Gy and 1.55 Gy, respectively. Similar results were observed in MDA-MB-231 cells (0.94 Gy vs. 1.56 Gy. After determination of radiosensitivity, we investigated intrinsic cellular determinants which influence radiosensitivity including cell cycle distribution, free-radical scavengers and DNA repair. We observed that even though cell cycle status and antioxidant content may contribute to differential radiosensitivity, differential DNA repair capacity may be a greater determinant of radiosensitivity. Unlike non-stem cells, CSC-like cells have little/no sublethal damage repair, a low intracellular level of ataxia telangiectasia mutated (ATM and delay of γ-H2AX foci removal (DNA strand break repair. These results suggest that low DNA repair capacity is responsible for the high radiosensitivity of these CSC-like cells.

  9. Alterations in radioresistance of eucaryotic cells after the transfer of genomic wildtype DNA and metallothionein genes

    International Nuclear Information System (INIS)

    The presented paper describes experiments concerning the alteration of radiosensitivity of eucaryotic cells after gene transfer. Ionizing radiation (γ- or X-ray) induces DNA single- or double strand breaks, which are religated by an unknown repair system. Repair deficient cells are highly sensitive to ionizing radiation. In the experiments described, cells from a patient with the heritable disease Ataxia telangiectasia were used as well as two X-ray sensitive CHO mutant cell lines. After gene transfer of an intact human DNA repair gene or a metallothionein gene the cells should regain radioresistance. (orig.)

  10. MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Guangyun [Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN (United States); Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN (United States); Jilin Province Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun (China); Shi, Yuling [Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN (United States); Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN (United States); Wu, Zhao-Hui, E-mail: zwu6@uthsc.edu [Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN (United States); Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN (United States)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer miR-22 is induced in cells treated with UV radiation. Black-Right-Pointing-Pointer ATM is required for miR-22 induction in response to UV. Black-Right-Pointing-Pointer miR-22 targets 3 Prime -UTR of PTEN to repress its expression in UV-treated cells. Black-Right-Pointing-Pointer Upregulated miR-22 inhibits apoptosis in cells exposed to UV. -- Abstract: DNA damage response upon UV radiation involves a complex network of cellular events required for maintaining the homeostasis and restoring genomic stability of the cells. As a new class of players involved in DNA damage response, the regulation and function of microRNAs in response to UV remain poorly understood. Here we show that UV radiation induces a significant increase of miR-22 expression, which appears to be dependent on the activation of DNA damage responding kinase ATM (ataxia telangiectasia mutated). Increased miR-22 expression may result from enhanced miR-22 maturation in cells exposed to UV. We further found that tumor suppressor gene phosphatase and tensin homolog (PTEN) expression was inversely correlated with miR-22 induction and UV-induced PTEN repression was attenuated by overexpression of a miR-22 inhibitor. Moreover, increased miR-22 expression significantly inhibited the activation of caspase signaling cascade, leading to enhanced cell survival upon UV radiation. Collectively, these results indicate that miR-22 is an important player in the cellular stress response upon UV radiation, which may promote cell survival via the repression of PTEN expression.

  11. DNA damaging and cell cycle effects of the topoisomerase I poison camptothecin in irradiated human cells

    International Nuclear Information System (INIS)

    This study addressed the potential radiosensitizing and DNA-damaging actions of the DNA topoisomerase I poison camptothecin (CPT) on SV40 transformed normal (MRC5CVI) and ataxia-telangiectasia (AT5BIVA) fibroblast cell lines. In both cell lines CPT induced a dose-dependent delay of cells in S phase, followed by a dose-dependent trapping in G2/M phase. Acute X-irradiation produced patterns of G2/M arrest and S-phase delay similar to those observed for CPT in the MRC5CVI cell line, but no S phase delay was observed in the AT5BIVA cell line consistent with the ataxia-telangiectasia phenotype of this cell line. X-irradiation of CPT-treated cells resulted in additive prolongation of S phase delay in MRC5CVI cultures and additive effects for cell killing in both cell lines. The potential for topoisomerase I-DNA cross-linking by CPT was not altered by 24 h pretreatment with CPT, or by acute X-irradiation. Hypersensitivity of AT5BIVA to CPT was not attributable to elevated levels of complex trapping. (author)

  12. Selective cytotoxicity of benzyl isothiocyanate in the proliferating fibroblastoid cells.

    Science.gov (United States)

    Miyoshi, Noriyuki; Uchida, Koji; Osawa, Toshihiko; Nakamura, Yoshimasa

    2007-02-01

    In the present study, experiments using presynchronization culture cells demonstrated that benzyl ITC (BITC), previously isolated from a tropical papaya fruit extract, induced the cytotoxic effect preferentially in the proliferating human colon CCD-18Co cells to the quiescent ones. Quiescent CCD-18Co cells were virtually unaffected by BITC and marginal cytotoxicity was observed at 15 microM. We observed that BITC dramatically induced the p53 phosphorylation and stabilization only in the quiescent (G(0)/G(1) phase-arrested) cells, but not significantly in the proliferating human colon CCD-18Co cells when compared with quiescent ones. We also observed ataxia telangiectasia-mutated (ATM) phosphorylation in the quiescent cells. The BITC-induced p53 phosphorylation was counteracted by caffeine treatment, implying the involvement of an ATM/ataxia telangiectasia and Rad3-related kinase signaling pathway. Moreover, downregulation of p53 by a siRNA resulted in the enhancement of susceptibility to undergo apoptosis by BITC. We also showed here that depletion of p53 abrogated G(0)/G(1) arrest accompanied by the declined expression of p21(waf1/cip1) and p27(kip1) in CCD-18Co cells. In conclusion, we identified p53 as a potential negative regulator of the apoptosis induction by BITC in the normal colon CCD-18Co cells through the inhibition of cell-cycle progression at the G(0)/G(1) phase. PMID:17096346

  13. Gene for ataxia-telangiectasia complementation group D (ATDC)

    Science.gov (United States)

    Murnane, John P.; Painter, Robert B.; Kapp, Leon N.; Yu, Loh-Chung

    1995-03-07

    Disclosed herein is a new gene, an AT gene for complementation group D, the ATDC gene and fragments thereof. Nucleic acid probes for said gene are provided as well as proteins encoded by said gene, cDNA therefrom, preferably a 3 kilobase (kb) cDNA, and recombinant nucleic acid molecules for expression of said proteins. Further disclosed are methods to detect mutations in said gene, preferably methods employing the polymerase chain reaction (PCR). Also disclosed are methods to detect AT genes from other AT complementation groups.

  14. A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers.

    Science.gov (United States)

    Krifka, Stephanie; Spagnuolo, Gianrico; Schmalz, Gottfried; Schweikl, Helmut

    2013-06-01

    of glutathione (GSH), which is the major non-enzymatic antioxidant. The causal relationship between vital cell functions like the regulation of cell survival or cell death in monomer-treated cell cultures and the availability of GSH will be highlighted. We will also consider the influence of monomer-induced oxidative stress on central signal transduction pathways including mitogen-activated protein kinases (MAPK) ERK1/2, p38, and JNK as well as the stress-activated transcription factors downstream Elk-1, ATF-2, ATF-3, and cJun. Finally, we address signaling pathways originating from monomer-induced DNA damage including the activation of ATM (ataxia-telangiectasia mutated), Chk2, p53, p21, and H2AX. The understanding of the mechanisms underlying adaptive cell responses will stimulate a constructive debate on the development of smart dental restorative materials which come into contact with oral tissues and effective strategies in dental therapy.

  15. Cell death by the quinoxaline dioxide DCQ in human colon cancer cells is enhanced under hypoxia and is independent of p53 and p21

    Directory of Open Access Journals (Sweden)

    Haddadin Makhluf J

    2010-11-01

    Full Text Available Abstract Introduction We have shown that the radio sensitizer DCQ enhances sensitivity of HCT116 human colon cancer cells to hypoxia. However, it is not known whether the p53 or p21 genes influence cellular response to DCQ. In this study, we used HCT116 that are either wildtype for p53 and p21, null for p53 or null for p21 to understand the role of these genes in DCQ toxicity. Methods HCT116 cells were exposed to DCQ and incubated under normoxia or hypoxia and the viability, colony forming ability, DNA damage and apoptotic responses of these cells was determined, in addition to the modulation of HIF-1α and of p53, p21, caspase-2, and of the ataxia telangiectasia mutated (ATM target PIDD-C. Results DCQ decreased colony forming ability and viability of all HCT116 cells to a greater extent under hypoxia than normoxia and the p21-/-cell line was most sensitive. Cells had different HIF-1α responses to hypoxia and/or drug treatment. In p53+/+, DCQ significantly inhibited the hypoxia-induced increases in HIF-1α protein, in contrast to the absence of a significant HIF-1α increase or modulation by DCQ in p21-/- cells. In p53-/- cells, 10 μM DCQ significantly reduced HIF-1α expression, especially under hypoxia, despite the constitutive expression of this protein in control cells. Higher DCQ doses induced PreG1-phase increase and apoptosis, however, lower doses caused mitotic catastrophe. In p53+/+ cells, apoptosis correlated with the increased expression of the pro-apoptotic caspase-2 and inhibition of the pro-survival protein PIDD-C. Exposure of p53+/+ cells to DCQ induced single strand breaks and triggered the activation of the nuclear kinase ATM by phosphorylation at Ser-1981 in all cell cycle phases. On the other hand, no drug toxicity to normal FHs74 Int human intestinal cell line was observed. Conclusions Collectively, our findings indicate that DCQ reduces the colony survival of HCT116 and induces apoptosis even in cells that are null for p53

  16. Cell death by the quinoxaline dioxide DCQ in human colon cancer cells is enhanced under hypoxia and is independent of p53 and p21

    International Nuclear Information System (INIS)

    We have shown that the radio sensitizer DCQ enhances sensitivity of HCT116 human colon cancer cells to hypoxia. However, it is not known whether the p53 or p21 genes influence cellular response to DCQ. In this study, we used HCT116 that are either wildtype for p53 and p21, null for p53 or null for p21 to understand the role of these genes in DCQ toxicity. HCT116 cells were exposed to DCQ and incubated under normoxia or hypoxia and the viability, colony forming ability, DNA damage and apoptotic responses of these cells was determined, in addition to the modulation of HIF-1α and of p53, p21, caspase-2, and of the ataxia telangiectasia mutated (ATM) target PIDD-C. DCQ decreased colony forming ability and viability of all HCT116 cells to a greater extent under hypoxia than normoxia and the p21-/-cell line was most sensitive. Cells had different HIF-1α responses to hypoxia and/or drug treatment. In p53+/+, DCQ significantly inhibited the hypoxia-induced increases in HIF-1α protein, in contrast to the absence of a significant HIF-1α increase or modulation by DCQ in p21-/- cells. In p53-/- cells, 10 μM DCQ significantly reduced HIF-1α expression, especially under hypoxia, despite the constitutive expression of this protein in control cells. Higher DCQ doses induced PreG1-phase increase and apoptosis, however, lower doses caused mitotic catastrophe. In p53+/+ cells, apoptosis correlated with the increased expression of the pro-apoptotic caspase-2 and inhibition of the pro-survival protein PIDD-C. Exposure of p53+/+ cells to DCQ induced single strand breaks and triggered the activation of the nuclear kinase ATM by phosphorylation at Ser-1981 in all cell cycle phases. On the other hand, no drug toxicity to normal FHs74 Int human intestinal cell line was observed. Collectively, our findings indicate that DCQ reduces the colony survival of HCT116 and induces apoptosis even in cells that are null for p53 or p21, which makes it a molecule of clinical significance, since

  17. ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion.

    Science.gov (United States)

    Chen, Wei-Ta; Ebelt, Nancy D; Stracker, Travis H; Xhemalce, Blerta; Van Den Berg, Carla L; Miller, Kyle M

    2015-06-01

    Ataxia-telangiectasia mutated (ATM) protein kinase regulates the DNA damage response (DDR) and is associated with cancer suppression. Here we report a cancer-promoting role for ATM. ATM depletion in metastatic cancer cells reduced cell migration and invasion. Transcription analyses identified a gene network, including the chemokine IL-8, regulated by ATM. IL-8 expression required ATM and was regulated by oxidative stress. IL-8 was validated as an ATM target by its ability to rescue cell migration and invasion defects in ATM-depleted cells. Finally, ATM-depletion in human breast cancer cells reduced lung tumors in a mouse xenograft model and clinical data validated IL-8 in lung metastasis. These findings provide insights into how ATM activation by oxidative stress regulates IL-8 to sustain cell migration and invasion in cancer cells to promote metastatic potential. Thus, in addition to well-established roles in tumor suppression, these findings identify a role for ATM in tumor progression.

  18. miR-30a can inhibit DNA replication by targeting RPA1 thus slowing cancer cell proliferation.

    Science.gov (United States)

    Zou, Zhenyou; Ni, Mengjie; Zhang, Jing; Chen, Yongfeng; Ma, Hongyu; Qian, Shihan; Tang, Longhua; Tang, Jiamei; Yao, Hailun; Zhao, Chengbin; Lu, Xiongwen; Sun, Hongyang; Qian, Jue; Mao, Xiaoting; Lu, Xulin; Liu, Qun; Zen, Juping; Wu, Hanbing; Bao, Zhaosheng; Lin, Shudan; Sheng, Hongyu; Li, Yunlong; Liang, Yong; Chen, Zhiqiang; Zong, Dan

    2016-07-15

    Cell proliferation was inhibited following forced over-expression of miR-30a in the ovary cancer cell line A2780DX5 and the gastric cancer cell line SGC7901R. Interestingly, miR-30a targets the DNA replication protein RPA1, hinders the replication of DNA and induces DNA fragmentation. Furthermore, ataxia telangiectasia mutated (ATM) and checkpoint kinase 2 (CHK2) were phosphorylated after DNA damage, which induced p53 expression, thus triggering the S-phase checkpoint, arresting cell cycle progression and ultimately initiating cancer cell apoptosis. Therefore, forced miR-30a over-expression in cancer cells can be a potential way to inhibit tumour development. PMID:27208176

  19. Atmospheric-pressure plasma-jet from micronozzle array and its biological effects on living cells for cancer therapy

    Science.gov (United States)

    Kim, Kangil; Choi, Jae Duk; Hong, Yong Cheol; Kim, Geunyoung; Noh, Eun Joo; Lee, Jong-Soo; Yang, Sang Sik

    2011-02-01

    We propose a plasma-jet device with a micrometer-sized nozzle array for use in a cancer therapy. Also, we show the biological effects of atmospheric-pressure plasma on living cells. Nitrogen-plasma activated a surrogate DNA damage signal transduction pathway, called the ataxia telangiectasia mutated (ATM)-checkpoint kinase 2 pathway, suggesting that the nitrogen-plasma generates DNA double-strand breaks. Phosphorylation of H2AX and p53 was detected in the plasma-treated cells, leading to apoptotic cell death. Thus, an effect for the nitrogen plasma in the control of apoptotic cell death provides insight into the how biological effects of the nitrogen-plasma can be applied to the control of cell survival, a finding with potential therapeutic implications.

  20. Interferon-β-armed oncolytic adenovirus induces both apoptosis and necroptosis in cancer cells

    Institute of Scientific and Technical Information of China (English)

    Hongling Huang; Tian Xiao; Lingfeng He; Hongbin Ji; Xin-Yuan Liu

    2012-01-01

    Interferon-β (IFN-β) has been widely used in cancer therapy,but the clinical trial results are generally disappointing.Our previous studies have shown that an oncolytic adenovirus carrying IFN-β (ZD55-IFN-β) exhibits significant anti-tumor activities.However,the underlying mechanisms are not clear.Here we showed that ZD55-IFN-β infection-induced S-phase cell cycle arrest in a p53-dependent manner by activating the ataxia telangiectasia mutated-dependent DNA damage pathway.In addition, ZD55-IFN-β infection could initiate both caspase-dependent apoptosis and necroptosis in cancer cells.More importantly,ZD55-IFN-β showed a synergistic effect on cancer cells when combined with doxorubicin.These results suggest that the combination of ZD55-IFN-β with doxorubicin may represent a promising clinical strategy in cancer therapy.

  1. Normal inhibition of DNA synthesis following γ-irradiation of radiosensitive cell lines from patients with Down's syndrome and Alzheimer's disease

    International Nuclear Information System (INIS)

    Inhibition of DNA synthesis was studied in γ-iradiated lymphoblastoid cells from patients with Alzheimer's disease and Down's syndrome. A normal biphasic pattern of inhibition was observed over a dose range of 0-4 krad of γ-rays in all of the cell lines 3 out of 4 Down's and all the Alzheimer's cell lines were shown to be hypersensitive to ionizing radiation based on induced chromosomal aberrations. Increased G2 phase delay, comparable to that occurring in ataxia-telangiectasia cells, was observed for some of the cell lines, after exposure to γ-rays. Contrary to other data in the literature these results demonstrate that radioresistand DNA synthesis is not an intrinsic feature of all disorders characterized by radiosensitivitey. (author).; 25 refs.; 2 figs.; 1 tab

  2. Expression of p13MTCP1 is restricted to mature T-cell proliferations with t(X;14) translocations.

    Science.gov (United States)

    Madani, A; Choukroun, V; Soulier, J; Cacheux, V; Claisse, J F; Valensi, F; Daliphard, S; Cazin, B; Levy, V; Leblond, V; Daniel, M T; Sigaux, F; Stern, M H

    1996-03-01

    T-cell prolymphocytic leukemia (T-PLL), a rare form of mature T-cell leukemias, and ataxia telangiectasia clonal proliferation, a related condition occurring in patients suffering from ataxia telangiectasia, have been associated to translocations involving the 14q32.1 or Xq28 regions, where are located the TCL1 and MTCP1 putative oncogenes, respectively. The MTCP1 gene is involved in the t(X;14)(q28;q11) translocation associated with these T-cell proliferations. Alternative splicing generates type A and B transcripts that potentially encode two entirely distinct proteins; type A transcripts code for a small mitochondrial protein, p8MTCP1, and type B transcripts, containing an additional open reading frame, may code for 107 amino-acid protein, p13MTCP1. The recently cloned TCL1 gene, also involved in translocations and inversions associated with T-cell proliferations, codes for a 14-kD protein that displays significant homology with p13MTCP1. We have generated rabbit antisera against this putative p13MTCP1 protein and screened for expression of p13MTCP1 normal lymphoid tissues and 33 cases of immature and mature lymphoid T-cell proliferations using a sensitive Western blot assay. We also investigated the MTCP1 locus configuration by Southern blot analysis. The p13MTCP1 protein was detected in the three T-cell proliferations with MTCP1 rearrangements because of t(X;14) translocations, but neither in normal resting and activated lymphocytes nor in the other T-cell leukemias. Our data support the hypothesis that p13MTCP1 and p14TCL1 form a new protein family that plays a key role in the pathogenesis of T-PLL and related conditions.

  3. Administration of ON 01210.Na after exposure to ionizing radiation protects bone marrow cells by attenuating DNA damage response

    International Nuclear Information System (INIS)

    Ionizing radiation-induced hematopoietic injury could occur either due to accidental exposure or due to diagnostic and therapeutic interventions. Currently there is no approved drug to mitigate radiation toxicity in hematopoietic cells. This study investigates the potential of ON 01210.Na, a chlorobenzylsulfone derivative, in ameliorating radiation-induced hematopoietic toxicity when administered after exposure to radiation. We also investigate the molecular mechanisms underlying this activity. Male C3H/HeN mice (n = 5 mice per group; 6-8 weeks old) were exposed to a sub-lethal dose (5 Gy) of γ radiation using a 137Cs source at a dose rate of 0.77 Gy/min. Two doses of ON 01210.Na (500 mg/kg body weight) were administered subcutaneously at 24 h and 36 h after radiation exposure. Mitigation of hematopoietic toxicity by ON 01210.Na was investigated by peripheral white blood cell (WBC) and platelet counts at 3, 7, 21, and 28 d after radiation exposure. Granulocyte macrophage colony forming unit (GM-CFU) assay was done using isolated bone marrow cells, and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) was performed on bone marrow sections at 7 d post-exposure. The DNA damage response pathway involving ataxia telangiectasia mutated (ATM) and p53 was investigated by Western blot in bone marrow cells at 7 d post-exposure. Compared to the vehicle, ON 01210.Na treated mice showed accelerated recovery of peripheral WBC and platelet counts. Post-irradiation treatment of mice with ON 01210.Na also resulted in higher GM-CFU counts. The mitigation effects were accompanied by attenuation of ATM-p53-dependent DNA damage response in the bone marrow cells of ON 01210.Na treated mice. Both phospho-ATM and phospho-p53 were significantly lower in the bone marrow cells of ON 01210.Na treated than in vehicle treated mice. Furthermore, the Bcl2:Bax ratio was higher in the drug treated mice than the vehicle treated groups. ON 01210.Na treatment significantly

  4. DNA damage and repair in human cells exposed to sunlight

    International Nuclear Information System (INIS)

    Cultured human cells were treated with direct sunlight under conditions which minimised the hypertonic, hyperthermic and fixative effects of solar radiation. Sunlight produced similar levels of DNA strand breaks as equitoxic 254 nm UV in two fibroblast strains and a melanoma cell line, but DNA repair synthesis and inhibition of semiconservative DNA synthesis and of DNA chain elongation were significantly less for sunlight-exposed cells. DNA breaks induced by sunlight were removed more rapidly. Thus, the repair of solar damage differs considerably from 254 nm UV repair. Glass-filtered sunlight (>320 nm) was not toxic to cells and did not induce repair synthesis but gave a low level of short-lived DNA breaks and some inhibition of DNA chain elongation; thymidine uptake was enhanced. Filtered sunlight slightly enhanced UV-induced repair synthesis and UV toxicity; photoreactivation of UV damage was not found. Attempts to transform human fibroblasts using sunlight, with or without phorbol ester, were unsuccessful. (author)

  5. The efficiency of photovoltaic cells exposed to pulsed laser light

    Science.gov (United States)

    Lowe, R. A.; Landis, G. A.; Jenkins, P.

    1993-01-01

    Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.

  6. Cloning assay thresholds on cells exposed to ultrafast laser pulses

    Science.gov (United States)

    Koenig, Karsten; Riemann, Iris; Fischer, Peter; Becker, Thomas P.; Oehring, Hartmut; Halbhuber, Karl-Juergen

    1999-06-01

    The influence of the peak power, laser wavelength and the pulse duration of near infrared ultrashort laser pulses on the reproduction behavior of Chinese hamster ovary (CHO) cells has been studied. In particular, we determined the cloning efficiency of single cell pairs after exposure to ultrashort laser pulses with an intensity in the range of GW/cm2 and TW/cm2. A total of more than 3500 non- labeled cells were exposed to a highly focused scanning beam of a multiphoton laser microscope with 60 microsecond(s) pixel dwell time per scan. The beam was provided by a tunable argon ion laser pumped mode-locked 76 MHz Titanium:Sapphire laser as well as by a compact solid-state laser based system (Vitesse) at a fixed wavelength of 800 nm. Pulse duration (tau) was varied in the range of 100 fs to 4 ps by out-of- cavity pulse-stretching units consisting of SF14 prisms and blazed gratings. Within an optical (laser power) window CHO cells could be scanned for hours without severe impact on reproduction behavior, morphology and vitality. Ultrastructural studies reveal that mitochondria are the major targets of intense destructive laser pulses. Above certain laser power P thresholds, CHO cells started to delay or failed to undergo cell division and, in part, to develop uncontrolled cell growth (giant cell formation). The damage followed a P2/(tau) relation which is typical for a two- photon excitation process. Therefore, cell damage was found to be more pronounced at shorter pulses. Due to the same P2/(tau) relation for the efficiency of fluorescence excitation, two-photon microscopy of living cells does not require extremely short femtosecond laser pulses nor pulse compression units. Picosecond as well as femtosecond lasers can be used as efficient light sources in safe two photon fluorescence microscopy. Only in three photon fluorescence microscopy, femtosecond laser pulses are advantageous over picosecond pulses.

  7. Synthesis of protein in intestinal cells exposed to cholera toxin

    International Nuclear Information System (INIS)

    The mechanism by which cyclic adenosine monophosphate (AMP), formed by intestinal epithelial cells in response to cholera toxin, ultimately results in alterations in water and electrolyte transport is poorly understood. Several studies have indicated that inhibitors of transcription or translation block much of the transport of ions and water in the intestine and edema formation in tissue elicited by cholera toxin. Data presented in this study confirmed the inhibitory effects of cycloheximide on cholera toxin-induced fluid accumulation in the rabbit intestinal loop model. Neither cycloheximide nor actinomycin D altered the amount of cyclic AMP that accumulated in intestinal cells and Chinese hamster ovary cells exposed to cholera toxin. An increase in [3H] leucine incorporation was readily demonstrable in intestinal epithelial cells from rabbits challenged with Vibrio cholerae. Similarly, intestinal epithelial cells incubated with cholera toxin for 4 hr synthesized substantially more protein than controls as determined by relative incorporation of [35S] methionine. Most of the new protein synthesized in response to cholera toxin was membrane associated and of high molecular weight. The possible significance of the toxin-induced protein relative to cholera pathogenesis was discussed

  8. Mammalian cells exposed to ionizing radiation: structural and biochemical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Sabanero, M.; Flores V, L. L. [Universidad de Guanajuato, Departamento de Biologia, DCNE, Noria Alta s/n, 36250 Guanajuato, Gto. (Mexico); Azorin V, J. C.; Vallejo, M. A.; Cordova F, T.; Sosa A, M. [Universidad de Guanajuato, Departamento de Ingenieria Fisica, DCI, Loma del Bosque 103, Col. Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Castruita D, J. P. [Universidad de Guadalajara, Departamento de Ecologia, CUCBA, Las Agujas, 45100 Zapopan, Jalisco (Mexico); Barbosa S, G., E-mail: myrna.sabanero@gmail.com [Universidad de Guanajuato, Departamento de Ciencias Medicas, DCS, 20 de Enero No. 929, Col. Obregon, 37000 Leon, Guanajuato (Mexico)

    2015-10-15

    Acute or chronic exposure to ionizing radiation is a factor that may be hazardous to health. It has been reported that exposure to low doses of radiation (less than 50 mSv / year) and subsequently exposure to high doses have greater effects in people. However, it is unknown molecular and biochemical level alteration. This study, analyzes the susceptibility of a biological system (HeLa Atcc CCL-2 human cervix cancer cell line) to ionizing radiation (6 and 60 mSv/ 90). Our evaluate multiple variables such as: total protein profile, mitochondrial metabolic activity (XTT assay), cell viability (Trypan blue exclusion assay), cytoskeleton (actin micro filaments), nuclei (D API), genomic DNA. The results indicate, that cells exposed to ionizing radiation structurally show alterations in nuclear phenotype and aneuploidy, further disruption in the tight junctions and consequently on the distribution of actin micro filaments. Similar alterations were observed in cells treated with a genotoxic agent (200μM H{sub 2}O{sub 2}/1 h). In conclusion, this multi-criteria assessment enables precise comparisons of the effects of radiation between any biological systems. However, it is necessary to determine stress markers for integration of the effects of ionizing radiation. (Author)

  9. Survival and viability of cells from iron depositing bacterial strains in pretests for the EXPOSE-R2-Experiment

    OpenAIRE

    Feyh, N.; de Vera, J.P.; Szewzyk, U

    2014-01-01

    Five environmental isolates (Pseudomonas sp. BS1, Hyphomonas sp. BS2, Tetrasphaera sp. FL1, Pedomicrobium sp. FL6 and Leptothrix sp. OT_B_406) were chosen for EXPOSE-R2 including pretests (EVT1/2, SVT) due to their ability to form Fe(III)-oxyhydroxide-containing biofilms as observed for natural communities of iron depositing bacteria. Samples were produced by drying iron-containing cell aggregates on Mars regolith simulant mixtures (S-/P-MRS) (Böttger et al., 2012). Different Mars- and ...

  10. Modification of cell volume and proliferative capacity of Pseudokirchneriella subcapitata cells exposed to metal stress

    International Nuclear Information System (INIS)

    Highlights: •Metals induce morphological alterations on P. subcapitata. •Algal cell cycle consists: mother cell growth; cell division, with two nucleus divisions; release of four autospores. •Cu(II) and Cr(VI) arrest cell growth before the first nuclear division. •Cd(II) arrests cell growth after the second nuclear division but before the cytokinesis. •The approach used can be useful in the elucidation of different modes of action of pollutants. -- Abstract: The impact of metals (Cd, Cr, Cu and Zn) on growth, cell volume and cell division of the freshwater alga Pseudokirchneriella subcapitata exposed over a period of 72 h was investigated. The algal cells were exposed to three nominal concentrations of each metal: low (closed to 72 h-EC10 values), intermediate (closed to 72 h-EC50 values) and high (upper than 72 h-EC90 values). The exposure to low metal concentrations resulted in a decrease of cell volume. On the contrary, for the highest metal concentrations an increase of cell volume was observed; this effect was particularly notorious for Cd and less pronounced for Zn. Two behaviours were found when algal cells were exposed to intermediate concentrations of metals: Cu(II) and Cr(VI) induced a reduction of cell volume, while Cd(II) and Zn(II) provoked an opposite effect. The simultaneous nucleus staining and cell image analysis, allowed distinguishing three phases in P. subcapitata cell cycle: growth of mother cell; cell division, which includes two divisions of the nucleus; and, release of four autospores. The exposure of P. subcapitata cells to the highest metal concentrations resulted in the arrest of cell growth before the first nucleus division [for Cr(VI) and Cu(II)] or after the second nucleus division but before the cytokinesis (release of autospores) when exposed to Cd(II). The different impact of metals on algal cell volume and cell-cycle progression, suggests that different toxicity mechanisms underlie the action of different metals studied

  11. Modification of cell volume and proliferative capacity of Pseudokirchneriella subcapitata cells exposed to metal stress

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Manuela D. [Bioengineering Laboratory-CIETI, Chemical Engineering Department, ISEP-School of Engineering of Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4200-072 Porto (Portugal); IBB-Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Soares, Eduardo V., E-mail: evs@isep.ipp.pt [Bioengineering Laboratory-CIETI, Chemical Engineering Department, ISEP-School of Engineering of Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4200-072 Porto (Portugal); IBB-Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2014-02-15

    Highlights: •Metals induce morphological alterations on P. subcapitata. •Algal cell cycle consists: mother cell growth; cell division, with two nucleus divisions; release of four autospores. •Cu(II) and Cr(VI) arrest cell growth before the first nuclear division. •Cd(II) arrests cell growth after the second nuclear division but before the cytokinesis. •The approach used can be useful in the elucidation of different modes of action of pollutants. -- Abstract: The impact of metals (Cd, Cr, Cu and Zn) on growth, cell volume and cell division of the freshwater alga Pseudokirchneriella subcapitata exposed over a period of 72 h was investigated. The algal cells were exposed to three nominal concentrations of each metal: low (closed to 72 h-EC{sub 10} values), intermediate (closed to 72 h-EC{sub 50} values) and high (upper than 72 h-EC{sub 90} values). The exposure to low metal concentrations resulted in a decrease of cell volume. On the contrary, for the highest metal concentrations an increase of cell volume was observed; this effect was particularly notorious for Cd and less pronounced for Zn. Two behaviours were found when algal cells were exposed to intermediate concentrations of metals: Cu(II) and Cr(VI) induced a reduction of cell volume, while Cd(II) and Zn(II) provoked an opposite effect. The simultaneous nucleus staining and cell image analysis, allowed distinguishing three phases in P. subcapitata cell cycle: growth of mother cell; cell division, which includes two divisions of the nucleus; and, release of four autospores. The exposure of P. subcapitata cells to the highest metal concentrations resulted in the arrest of cell growth before the first nucleus division [for Cr(VI) and Cu(II)] or after the second nucleus division but before the cytokinesis (release of autospores) when exposed to Cd(II). The different impact of metals on algal cell volume and cell-cycle progression, suggests that different toxicity mechanisms underlie the action of

  12. Ataksi-Telenjiektazi: İki Kardeş Olgunun Sunumu

    OpenAIRE

    Çatal, Ferhat; Aslan, Mahmut; Topal, Erdem; Ermiştekin, Halime; Sinanoğlu, M. Selçuk

    2014-01-01

    Characterized by progressive cerebellar ataxia, cutaneous and conjuctival telangiectasia, ocular apraxy, immunodeficiency, and increased risk of malignancy, ataxia-telangiectasia is a rare neurodegenerative disorder that shows signs of autosomal recessive transmission. The ataxia-telangiectasia gene is located in chromosome 11q22-23. Various degrees of abnormalities in T and B cell immunities have also been described. It is known that the incidence of both T cell and B cell leukemia and lymph...

  13. Impaired NK Cell Activation and Chemotaxis toward Dendritic Cells Exposed to Complement-Opsonized HIV-1

    Science.gov (United States)

    Ellegård, Rada; Crisci, Elisa; Andersson, Jonas; Shankar, Esaki M.; Nyström, Sofia; Hinkula, Jorma

    2015-01-01

    Mucosa resident dendritic cells (DCs) may represent one of the first immune cells that HIV-1 encounters during sexual transmission. The virions in body fluids can be opsonized with complement factors because of HIV-mediated triggering of the complement cascade, and this appears to influence numerous aspects of the immune defense targeting the virus. One key attribute of host defense is the ability to attract immune cells to the site of infection. In this study, we investigated whether the opsonization of HIV with complement (C-HIV) or a mixture of complement and Abs (CI-HIV) affected the cytokine and chemokine responses generated by DCs, as well as their ability to attract other immune cells. We found that the expression levels of CXCL8, CXCL10, CCL3, and CCL17 were lowered after exposure to either C-HIV or CI-HIV relative to free HIV (F-HIV). DCs exposed to F-HIV induced higher cell migration, consisting mainly of NK cells, compared with opsonized virus, and the chemotaxis of NK cells was dependent on CCL3 and CXCL10. NK cell exposure to supernatants derived from HIV-exposed DCs showed that F-HIV induced phenotypic activation (e.g., increased levels of TIM3, CD69, and CD25) and effector function (e.g., production of IFNγ and killing of target cells) in NK cells, whereas C-HIV and CI-HIV did not. The impairment of NK cell recruitment by DCs exposed to complement-opsonized HIV and the lack of NK activation may contribute to the failure of innate immune responses to control HIV at the site of initial mucosa infection. PMID:26157174

  14. Alterations in Cellular Energy Metabolism Associated with the Antiproliferative Effects of the ATM Inhibitor KU-55933 and with Metformin

    OpenAIRE

    Zakikhani, Mahvash; Bazile, Miguel; Hashemi, Sina; Javeshghani, Shiva; Avizonis, Daina; Pierre, Julie St; Pollak, Michael N.

    2012-01-01

    KU-55933 is a specific inhibitor of the kinase activity of the protein encoded by Ataxia telangiectasia mutated (ATM), an important tumor suppressor gene with key roles in DNA repair. Unexpectedly for an inhibitor of a tumor suppressor gene, KU-55933 reduces proliferation. In view of prior preliminary evidence suggesting defective mitochondrial function in cells of patients with Ataxia Telangiectasia (AT), we examined energy metabolism of cells treated with KU-55933. The compound increased AM...

  15. Proteome analysis of proliferative response of bystander cells adjacent to cells exposed to ionizing radiation.

    Science.gov (United States)

    Gerashchenko, Bogdan I; Yamagata, Akira; Oofusa, Ken; Yoshizato, Katsutoshi; de Toledo, Sonia M; Howell, Roger W

    2007-06-01

    Recently (Cytometry 2003, 56A, 71-80), we reported that direct cell-to-cell contact is required for stimulating proliferation of bystander rat liver cells (WB-F344) cocultured with irradiated cells, and neither functional gap junction intercellular communication nor long-range extracellular factors appear to be involved in this proliferative bystander response (PBR). The molecular basis for this response is unknown. Confluent monolayers of WB-F344 cells were exposed to 5-Gray (Gy) of gamma-rays. Irradiated cells were mixed with unirradiated cells and co-cultured for 24 h. Cells were harvested and protein expression was examined using 2-DE. Protein expression was also determined in cultures of unirradiated and 5-Gy irradiated cells. Proteins were identified by MS. Nucleophosmin (NPM)-1, a multifunctional nucleolar protein, was more highly expressed in bystander cells than in either unirradiated or 5-Gy irradiated cells. Enolase-alpha, a glycolytic enzyme, was present in acidic and basic variants in unirradiated cells. In bystander and 5-Gy irradiated cells, the basic variant was weakly expressed, whereas the acidic variant was overwhelmingly present. These data indicate that the presence of irradiated cells can affect NPM-1 and enolase-alpha in adjacent bystander cells. These proteins appear to participate in molecular events related to the PBR and suggest that this response may involve cellular defense, proliferation, and metabolism.

  16. Repair-deficient xeroderma pigmentosum cells made UV light resistant by fusion with X-ray-inactivated Chinese hamster cells

    International Nuclear Information System (INIS)

    Xeroderma pigmentosum (XP) is an autosomal recessive human disease, characterized by an extreme sensitivity to sunlight, caused by the inability of cells to repair UV light-induced damage to DNA. Cell fusion was used to transfer fragments of Chinese hamster ovary (CHO) chromosomes into XP cells. The hybrid cells exhibited UV resistance and DNA repair characteristics comparable to those expressed by CHO cells, and their DNA had greater homology with CHO DNA than did the DNA from XP cells. Control experiments consisted of fusion of irradiated and unirradiated XP cells and repeated exposure of unfused XP cells to UV doses used for hybrid selection. These treatments did not result in an increase in UV resistance, repair capability, or homology with CHO DNA. The hybrid cell lines do not, therefore, appear to be XP revertants. The establishment of these stable hybrid cell lines is an initial step toward identifying and cloning CHO DNA repair genes that complement the XP defect in human cells. The method should also be applicable to cloning genes for other diseases, such as ataxia-telangiectasia and Fanconi's anemia

  17. Synergistic enhancement of NK cell-mediated cytotoxicity by combination of histone deacetylase inhibitor and ionizing radiation

    International Nuclear Information System (INIS)

    The overexpression of histone deacetylase (HDAC) and a subsequent decrease in the acetylation levels of nuclear histones are frequently observed in cancer cells. Generally it was accepted that the deacetylation of histones suppressed expression of the attached genes. Therefore, it has been suggested that HDAC might contribute to the survival of cancer cells by altering the NKG2D ligands transcripts. By the way, the translational regulation of NKG2D ligands remaines unclear in cancer cells. It appears the modulation of this unclear mechanism could enhance NKG2D ligand expressions and the susceptibility of cancer cells to NK cells. Previously, it was reported that irradiation can increase the surface expressions of NKG2D ligands on several cancer cell types without increasing the levels of NKG2D ligand transcripts via ataxia telangiectasia mutated and ataxia telangiectasia and Rad3 related (ATM-ATR) pathway, and suggested that radiation therapy might be used to increase the translation of NKG2D ligands. Two NSCLC cell lines, that is, A549 and NCI-H23 cells, were used to investigate the combined effects of ionizing radiation and HDAC inhibitors on the expressions of five NKG2D ligands. The mRNA expressions of the NKG2D ligands were quantitated by multiplex reverse transcription-PCR. Surface protein expressions were measured by flow cytometry, and the susceptibilities of cancer cells to NK cells were assayed by time-resolved fluorometry using the DELFIA® EuTDA cytotoxicity kit and by flow cytometry. The expressions of NKG2D ligands were found to be regulated at the transcription and translation levels. Ionizing radiation and HDAC inhibitors in combination synergistically increased the expressions of NKG2D ligands. Furthermore, treatment with ATM-ATR inhibitors efficiently blocked the increased translations of NKG2D ligands induced by ionizing radiation but did not block the increased ligand translations induced by HDAC inhibitors. The study confirms that increased NKG

  18. Ultrastructural changes in tracheal epithelial cells exposed to oxygen

    Science.gov (United States)

    Philpott, D. E.; Harrison, G. A.; Turnbill, C.; Black, S.

    1977-01-01

    White albino rats were sacrificed after 24, 36, 48, 72, and 96 h of exposure to 100% O2 at 1 atm. Tissue was prepared for the scanning electron microscope (SEM) by Critical Point Drying and for the transmission electron microscope (TEM) by plastic embedding. Scanning microscopy showed a loss of microvilli after 48 h of exposure. Cilia appeared relatively normal with SEM, but TEM revealed changes in the outer membrane. In TEM, nonciliated cells appeared swollen and often encroached on the ciliated cells. A heavy mucous blanket remained even after processing. All the changes observed that are induced by oxygen exposure contribute to mucostasis, reducing and/or halting mucociliary clearance.

  19. Genetic effect of low dose rate radiation on human cells immortalized with the hTERT gene

    International Nuclear Information System (INIS)

    We established immortal human cells by introducing the hTERT gene into skin fibroblast cells obtained from normal (SuSa) and ataxia telangiectasia (AT: AT1OS) individuals of Japanese origin. These immortalized cells showed the same characteristics as the original cells except expanded life span. We irradiated SuSa/T-n and AT1OS/T-n cells with low-dose-rate (LDR; 0.3 mGy/min) irradiation at confluent state in low-serum medium. Then, survival rate and micronucleus frequency of each cell line were analyzed. In SuSa/T-n cells, frequency of HPRT mutation induction was also determined by 6TG selection. In SuSa/T-n cells, survival rate and micronucleus frequency showed higher resistance after irradiation with LDR than high-dose-rate (HDR; 2 Gy/min) irradiation. In contrast, no significant difference was observed in survival and micronucleus induction in AT1OS/T-n cells between HDR and LDR irradiation, suggesting that AT1OS/T-n cells may have some defect in DNA repair activity. In SuSa/T-n cells, the frequency of HPRT mutation after LDR irradiation decreased to approximately one eighth that after HDR irradiation. (author)

  20. Correlation between dielectric property by dielectrophoretic levitation and growth activity of cells exposed to electric field.

    Science.gov (United States)

    Hakoda, Masaru; Hirota, Yusuke

    2013-09-01

    The purpose of this study is to develop a system analyzing cell activity by the dielectrophoresis method. Our previous studies revealed a correlation between the growth activity and dielectric property (Re[K(ω)]) of mouse hybridoma 3-2H3 cells using dielectrophoretic levitation. Furthermore, it was clarified that the differentiation activity of many stem cells could be evaluated by the Re[K(ω)] without differentiation induction. In this paper, 3-2H3 cells exposed to an alternating current (AC) electric field or a direct current (DC) electric field were cultivated, and the influence of damage by the electric field on the growth activity of the cells was examined. To evaluate the activity of the cells by measuring the Re[K(ω)], the correlation between the growth activity and the Re[K(ω)] of the cells exposed to the electric field was examined. The relations between the cell viability, growth activity, and Re[K(ω)] in the cells exposed to the AC electric field were obtained. The growth activity of the cells exposed to the AC electric field could be evaluated by the Re[K(ω)]. Furthermore, it was found that the adverse effects of the electric field on the cell viability and the growth activity were smaller in the AC electric field than the DC electric field.

  1. Spontaneous loss and alteration of antigen receptor expression in mature CD4+ T cells

    International Nuclear Information System (INIS)

    The T-cell receptor CD3 (TCR/CD3) complex plays a central role in antigen recognition and activation of mature T cells, and therefore abnormalities in the expression of the complex should induce unresponsiveness of T cells to antigen stimulus. Using flow cytometry, we detected and enumerated variant cells with loss or alteration of surface TCR/CD3 expression among human mature CD4+ T cells. The presence of variant CD4+ T cells was demonstrated by isolating and cloning them from peripheral blood, and their abnormalities can be accounted for by alterations in TCR expression such as defects of protein expression and partial protein deletion. The variant frequency in peripheral blood increased with aging in normal donors and was highly elevated in patients with ataxia telangiectasia, an autosomal recessive inherited disease with defective DNA repair and variable T-cell immunodeficiency. These findings suggest that such alterations in TCR expression are induced by somatic mutagenesis of TCR genes and can be important factors related to age-dependent and genetic disease-associated T-cell dysfunction. (author)

  2. Methylseleninic acid sensitizes Notch3-activated OVCA429 ovarian cancer cells to carboplatin.

    Directory of Open Access Journals (Sweden)

    Tiffany J Tzeng

    Full Text Available Ovarian cancer, the deadliest of gynecologic cancers, is usually not diagnosed until advanced stages. Although carboplatin has been popular for treating ovarian cancer for decades, patients eventually develop resistance to this platinum-containing drug. Expression of neurogenic locus notch homolog 3 (Notch3 is associated with chemoresistance and poor overall survival in ovarian cancer patients. Overexpression of NICD3 (the constitutively active form of Notch3 in OVCA429 ovarian cancer cells (OVCA429/NICD3 renders them resistance to carboplatin treatment compared to OVCA429/pCEG cells expressing an empty vector. We have previously shown that methylseleninic acid (MSeA induces oxidative stress and activates ataxia-telangiectasia mutated and DNA-dependent protein kinase in cancer cells. Here we tested the hypothesis that MSeA and carboplatin exerted a synthetic lethal effect on OVCA429/NICD3 cells. Co-treatment with MSeA synergistically sensitized OVCA429/NICD3 but not OVCA429/pCEG cells to the killing by carboplatin. This synergism was associated with a cell cycle exit at the G2/M phase and the induction of NICD3 target gene HES1. Treatment of N-acetyl cysteine or inhibitors of the above two kinases did not directly impact on the synergism in OVCA429/NICD3 cells. Taken together, these results suggest that the efficacy of carboplatin in the treatment of high grade ovarian carcinoma can be enhanced by a combinational therapy with MSeA.

  3. The role of DNA repair on cell killing by charged particles

    Science.gov (United States)

    Eguchi-Kasai, K.; Murakami, M.; Itsukaichi, H.; Fukutsu, K.; Kanai, T.; Furusawa, Y.; Sato, K.; Ohara, H.; Yatagai, F.

    It can be noted that it is not simple double strand breaks (dsb) but the non-reparable breaks that are associated with high biological effectiveness in the cell killing effect for high LET radiation. Here, we have examined the effectiveness of fast neutrons and low (initial energy = 12 MeV/u) or high (135 MeV/u) energy charged particles on cell death in 19 mammalian cell lines including radiosensitive mutants. Some of the radiosensitive lines were deficient in DNA dsb repair such as LX830, M10, V3, and L5178Y-S cells and showed lower values of relative biological effectiveness (RBE) for fast neutrons if compared with their parent cell lines. The other lines of human ataxia-telangiectasia fibroblasts, irs 1, irs 2, irs 3 and irs1SF cells, which were also radiosensitive but known as proficient in dsb repair, showed moderate RBEs. Dsb repair deficient mutants showed low RBE values for heavy ions. These experimental findings suggest that the DNA repair system does not play a major role against the attack of high linear energy transfer (LET) radiations. Therefore, we hypothesize that a main cause of cell death induced by high LET radiations is due to non-reparable dsb, which are produced at a higher rate compared to low LET radiations.

  4. Signalling pathways induced in cells exposed to medium from irradiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Lyng, F.M.; Maguire, P. (Radiation and Environmental Science Centre, Focas Institute, Dublin Institute of Technology, Dublin (Ireland)); McClean, B.; Seymour, C.; Mothersill, C. (St Luke' s Hospital, Dublin (Ireland))

    2008-12-15

    In recent years, radiation induced bystander effects have been reported in cells which were not themselves irradiated but were either in the vicinity of irradiated cells or exposed to medium from irradiated cells. The effects have been clearly shown to occur both in vivo and in vitro. This work has led to a paradigm shift in radiobiology over the last 5 - 10 years. The target theory of radiation induced effects is now being challenged because of an increasing number of studies which demonstrate non(DNA)-targeted effects. These effects appear to be particularly important at low doses. Considerable evidence now exists relating to radiation-induced bystander effects but the mechanisms involved in the transduction of the signal are still unclear. Cell - cell communication through gap junctions and / or secretion of a cytotoxic factor into the medium are thought to be involved in the transduction of the bystander signal. Oxidative metabolism has been shown to be important in both mechanisms. Signalling pathways leading to apoptosis, such as calcium, MAP kinase, mitochondrial and reactive oxygen species (ROS) signalling are discussed. The importance of oxidative metabolism and calcium signalling in bystander responses are demonstrated. Further investigations of these signalling pathways may aid in the identification of novel therapeutic targets. (orig.)

  5. Multiplication of human NHIK 3025 cells exposed to porphyrins in combination with light.

    OpenAIRE

    Christensen, T.

    1981-01-01

    Cells from the established line NHIK 3025 were exposed to haematoporphyrin derivative and light. After this photodynamic treatment the first interphase of surviving cells was prolonged. Furthermore, a pronounced effect on the progression through the first mitosis was observed. Mainly the duration of metaphase was increased. Some of the cells were irreversibly arrested in mitosis and the cells that were able to complete mitosis after treatment multiplied in the subsequent generations at the sa...

  6. The study of responses to 'model' DNA breaks induced by restriction endonucleases in cells and cell-free systems: achievements and difficulties

    International Nuclear Information System (INIS)

    The use of restriction endonucleases (RE) as a means of implicating DNA double-strand breaks (dsb) in cellular responses is reviewed. The introduction of RE into cells leads to many of the responses known to be characteristic of radiation damage -cell killing, chromosomal aberration, oncogenic transformation, gene mutation and amplification. Additionally, radiosensitive cell lines are hypersensitive to RE, including those from the human disorder ataxia-telangiectasia. However, quantitation of response and comparisons of the effectiveness of different RE are difficult, partly because of unknown activity and lifetime of RE in the cell. Re-induced dsb have also been used to reveal molecular mechanisms of repair and misrepair at specific sites in DNA. Dsb have been implicated in recombination processes including those leading to illegitimate rejoining (formation of deletions and rearrangements) at short sequence features in DNA. Also model dsb act as a signal to activate other cellular processes, which may influence or indirectly cause some responses, including cell death. In these signalling responses the detailed chemistry at the break site may not be very important, perhaps explaining why there is considerable overlap in responses to RE and to ionizing radiations. (author)

  7. Modeling the role of p53 pulses in DNA damage- induced cell death decision

    Directory of Open Access Journals (Sweden)

    Cui Jun

    2009-06-01

    Full Text Available Abstract Background The tumor suppressor p53 plays pivotal roles in tumorigenesis suppression. Although oscillations of p53 have been extensively studied, the mechanism of p53 pulses and their physiological roles in DNA damage response remain unclear. Results To address these questions we presented an integrated model in which Ataxia-Telangiectasia Mutated (ATM activation and p53 oscillation were incorporated with downstream apoptotic events, particularly the interplays between Bcl-2 family proteins. We first reproduced digital oscillation of p53 as the response of normal cells to DNA damage. Subsequent modeling in mutant cells showed that high basal DNA damage is a plausible cause for sustained p53 pulses observed in tumor cells. Further computational analyses indicated that p53-dependent PUMA accumulation and the PUMA-controlled Bax activation switch might play pivotal roles to count p53 pulses and thus decide the cell fate. Conclusion The high levels of basal DNA damage are responsible for generating sustained pulses of p53 in the tumor cells. Meanwhile, the Bax activation switch can count p53 pulses through PUMA accumulation and transfer it into death signal. Our modeling provides a plausible mechanism about how cells generate and orchestrate p53 pulses to tip the balance between survival and death.

  8. Luteolin Impacts on the DNA Damage Pathway in Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Tjioe, Kellen Cristine; Tostes Oliveira, Denise; Gavard, Julie

    2016-07-01

    Oral squamous cell carcinoma (OSCC) exhibited high chemoresistance to current treatments. Here we aimed at identifying and repositioning approved drugs that could be selectively toxic toward OSCC cells. Through a cell-based drug screening of 1,280 chemical molecules, we selected compounds lethal to oral cancer SCC-25 cells, while sparing normal keratinocyte HaCaT cells. Within the chemical library, the natural flavonoid luteolin was identified as a potent cytotoxic agent against oral cancer cells in vitro, along with metixene hydrochloride and nitazoxanide. Of note, they exhibit low toxicity and high efficiency compared to the standard-of-care, such as cisplatin and the epidermal growth factor receptor inhibitor tyrphostin. From a molecular standpoint, luteolin causes phosphorylation of ataxia telangiectasia mutated (ATM) and H2AX in a DNA repair pathway and can be efficiently combined with a checkpoint kinase (CHK) pharmacological inhibitor. Thus, luteolin emerges as a potent cytotoxic and/or adjuvant therapy in oral cancer, as it is a natural compound presenting better effects in vitro compared to conventional chemotherapeutic agents. Future in vivo exploration is next required to provide the proof-of-concept that luteolin could be an efficient anticancer molecule. PMID:27266882

  9. Correlativity study between expression of DNA double-strand break repair protein and radiosensitivity of tumor cells

    Institute of Scientific and Technical Information of China (English)

    Liang ZHUANG; Shiying YU; Xiaoyuan HUANG; Yang CAO; Huihua XIONG

    2009-01-01

    DNA double-strand break (DSB) is generally regarded as the most lethal of all DNA lesions after radiation. KuS0, DNA-PK catalytic subunit (DNA-PKcs) and ataxia telangiectasia mutated (ATM) proteins are major DSB repair proteins. In this study, survival fraction at 2Gy (SF2) values of eight human tumor cell lines (including four human cervical carcinoma cell lines HeLa, SiHa, C33A, Caski, three human breast carcinoma cell lines MCF-7, MDA-MB-231, MDA-MB-453, and one human lung carcinoma cell line A549) were acquired by clone formation assay, and western blot was applied to detect the expressions of Ku80, DNA-PKcs and ATM protein. The correlativity of protein expression with SF2 value was analyzed by Pearson linear correlation analysis. We found that the expression of the same protein in different cell lines and the expression of three proteins in the same cell line had a significant difference. The SF2 values were also different in eight tumor cell lines and there was a positive correlativity between the expression of DNA-PKcs and SF2 (r=0.723, P =0.043), but Ku80 and ATM expression had no correlation with SF2 (P>0.05). These findings suggest that the expression level of DNA-PKcs protein can be an indicator for predicting the radiosensitivity of tumor cells.

  10. Expression of x-irradiated prokaryotic genes after transfection in primate cells

    International Nuclear Information System (INIS)

    X-irradiated rhoSC2CAT plasmids were transfected into monkey CV-1 and COS-7 cells and human fibroblast cells. Transient expression assays for chloramphenicol acetyltransferase (CAT) showed that expression from irradiated plasmids decreased with the same D/sub o/ as the x-ray conversion of circular forms to linear molecules of unit length, i.e., 13 Gy after irradiation in water or 270 Gy after irradiation in 1 mM Tris buffer. Loss of supercoiled forms was complete at much lower radiation doses than were required to inhibit CAT expression. In rhoSV2CAT one radiation linearization event after x-irradiation in water was associated with 6.5 single strand breaks. A single linearization event by Bam H1 at a site outside the CAT gene reduced CAT expression to 5% of control values, suggesting that circular or supercoiled plasmids are favored for expression. Expression of irradiated plasmids in cell lines established from patients with ataxia telangiectasia (AT), xeroderma pigmentosum (XP), and from normal subjects were compared. Certain repair deficient cell lines exhibited markedly reduced capacity to express unirradiated or irradiated pSV2CAT. The results indicate a useful new way to judge the complete expression of genes after minimal x-ray damage to the DNA, by introducing the genes into unirradiated cells of differing DNA repair capacities

  11. Cultured diploid fibroblasts from patients with the nevoid basal cell carcinoma syndrome are hypersensitive to killing by ionizing radiation

    International Nuclear Information System (INIS)

    Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant disease. About 20% of the gene carriers studied developed medulloblastoma before the age of 5 years. Clinical follow-up of these patients, treated with radiotherapy, revealed a predisposition to radiogenic basal cell carcinomas with an unusually short latent period of 6 months to 3 years. The authors have therefore cultured skin fibroblasts from 5 NBCCS patients and measured their radiosensitivity in terms of clonogenic survival. Our results showed that, compared with 6 normal controls, the NBCCS cells were hypersensitive to X-rays. The average D0 (the inverse of the slope of the survival curve) for the NBCCS cells was 98 rads, compared with 142 rads for the normal controls and 44 rads for an ataxia telangiectasia (AT) strain. The average D10 values (the dose required to reduce survival to 10%) were 258, 351, and 123 rads for the NBCCS, normal, and AT strains, respectively. Unscheduled DNA synthesis measurements showed that NBCCS cells were not defective in excision repair of X-ray-damaged DNA. Pulse labeling index measurements showed that NBCCS cells were abnormally inhibited in the initiation of DNA synthesis following X-irradiation. The mechanisms underlying the radiosensitivity of NBCCS differ in several respects from those of AT. NBCCS appears to be potentially a useful model for studying the cellular processes that are important in radiation carcinogenesis

  12. Vanillin protects human keratinocyte stem cells against ultraviolet B irradiation.

    Science.gov (United States)

    Lee, Jienny; Cho, Jae Youl; Lee, Sang Yeol; Lee, Kyung-Woo; Lee, Jongsung; Song, Jae-Young

    2014-01-01

    Ultraviolet-B (UVB) irradiation is one of major factors which induce cellular damages in the epidermis. We investigated protective effects and mechanisms of vanillin, a main constituent of vanilla beans, against UVB-induced cellular damages in keratinocyte stem cells (KSC). Here, vanillin significantly attenuated UVB irradiation-induced cytotoxicity. The vanillin effects were also demonstrated by the results of the senescence-associated β-galactosidase and alkaline comet assays. In addition, vanillin induced production of pro-inflammatory cytokines. Attempts to elucidate a possible mechanism underlying the vanillin-mediated effects revealed that vanillin significantly reduced UVB-induced phosphorylation of ataxia telangiectasia mutated (ATM), serine threonine kinase checkpoint kinase 2 (Chk2), tumor suppressor protein 53 (p53), p38/mitogen-activated protein kinase (p38), c-Jun N-terminal kinase/stress-activated protein kinase (JNK), S6 ribosomal protein (S6RP), and histone 2A family member X (H2A.X). UVB-induced activation of p53 luciferase reporter was also significantly inhibited by vanillin. In addition, while ATM inhibitor had no effect on the vanillin effects, mouse double minute 2 homolog (MDM2) inhibitor significantly attenuated suppressive effects of vanillin on UVB-induced activation of p53 reporter in KSC. Taken together, these findings suggest that vanillin protects KSC from UVB irradiation and its effects may occur through the suppression of downstream step of MDM2 in UVB irradiation-induced p53 activation. PMID:24184596

  13. Vanillin protects human keratinocyte stem cells against ultraviolet B irradiation.

    Science.gov (United States)

    Lee, Jienny; Cho, Jae Youl; Lee, Sang Yeol; Lee, Kyung-Woo; Lee, Jongsung; Song, Jae-Young

    2014-01-01

    Ultraviolet-B (UVB) irradiation is one of major factors which induce cellular damages in the epidermis. We investigated protective effects and mechanisms of vanillin, a main constituent of vanilla beans, against UVB-induced cellular damages in keratinocyte stem cells (KSC). Here, vanillin significantly attenuated UVB irradiation-induced cytotoxicity. The vanillin effects were also demonstrated by the results of the senescence-associated β-galactosidase and alkaline comet assays. In addition, vanillin induced production of pro-inflammatory cytokines. Attempts to elucidate a possible mechanism underlying the vanillin-mediated effects revealed that vanillin significantly reduced UVB-induced phosphorylation of ataxia telangiectasia mutated (ATM), serine threonine kinase checkpoint kinase 2 (Chk2), tumor suppressor protein 53 (p53), p38/mitogen-activated protein kinase (p38), c-Jun N-terminal kinase/stress-activated protein kinase (JNK), S6 ribosomal protein (S6RP), and histone 2A family member X (H2A.X). UVB-induced activation of p53 luciferase reporter was also significantly inhibited by vanillin. In addition, while ATM inhibitor had no effect on the vanillin effects, mouse double minute 2 homolog (MDM2) inhibitor significantly attenuated suppressive effects of vanillin on UVB-induced activation of p53 reporter in KSC. Taken together, these findings suggest that vanillin protects KSC from UVB irradiation and its effects may occur through the suppression of downstream step of MDM2 in UVB irradiation-induced p53 activation.

  14. Effect of space flight on the frequency of micronuclei and expression of stress-responsive proteins in cultured mammalian cells

    International Nuclear Information System (INIS)

    Results of past space experiments suggest that the biological effect of space radiation could been hanced under microgravity in some cases, especially ininsects. To examine if such a synergistic effect of radiation and microgravity also exists in human cells, frequencies of chromosome instability and cellular levels of several stress-responsive proteins were analyzed incultured human and rodent cells afterspace flight. Human (MCF7 and ataxia telangiectasia(AT)2KY), mouse (m5S) and hamster (Syrian hamster embryo (SHE)) cell lines were loaded on the Space Shuttle Discovery (STS-95 mission) and grown during a 9-daymission. After landing, the micronuclei resulting from abnormal nuclear division and accumulationof stress-responsive proteins such as p53 and mitogen-activated protein kinases (MAPKs), which are involved in radiation-induced signal transduction cascades, were analyzed. The frequencies of micronucleiin all the four mammalian cell strains tested were not significantly different between flight and ground control samples. Also, the cellular amounts of p53, p21 (WAF1/SDI1/CIP1) and activated (phosphorylated) forms of three distinct MAPKs in MCF7 and m5S cells of flight samples were similar to those of ground control samples. These results indicated that anyeffect of space radiation, microgravity, or combination of both were not detectable, at least under thepresent experimental conditions. (author)

  15. Micronucleus frequency in exfoliated buccal cells from hairdresser who expose to hair products

    Directory of Open Access Journals (Sweden)

    Koh Hui Yee

    2015-06-01

    Full Text Available Background: Hairdresser is one of the fastest growing occupations in today’s society. Hairdresser help styling, cutting, colouring, perming, curling, straightening hair and various treatment to customer. Somehow, hairdresser are constantly exposed to chemical substances such as aromatic amines, hydrogen peroxide, thioglycolic acid, formaldehyde in hair products which can cause damage to human’s genome. Micronucleus is one of the effective biomarker for processes associated with the induction of DNA damage. Purpose: The aim of this study was to determine the micronucleus frequencies in buccal mucosa epithelial cells of hairdresser who were exposed to chemical of hair products. Method: This study was conducted on twenty female subjects, who were divided into 2 groups: exposed and non-exposed (control group. All subjects recruited were working in the same beauty salon. Buccal cells were obtained from each individual by using cytobrush. The cells were stained with modified Feulgen-Ronssenback method and counting of micronucleus per 1000 cell was done under light microscope. The data were analyzed using independent t-test and one-way Anova (p<0.05. Result: The result showed a significant difference in micronucleus frequency between 2 groups. There were a significantly increase of micronucleus frequency in hairdressers and increase of  micronucleus frequency with the longer duration of exposure. Conclusion: It concluded that the chemical substances of hair products had affected the micronucleus frequency ofthe epithelial cells in buccal mucosa of hairdressers.

  16. Gene expression profile in bone marrow and hematopoietic stem cells in mice exposed to inhaled benzene

    Energy Technology Data Exchange (ETDEWEB)

    Faiola, Brenda; Fuller, Elizabeth S.; Wong, Victoria A.; Recio, Leslie

    2004-05-18

    Acute myeloid leukemia and chronic lymphocytic leukemia are associated with benzene exposure. In mice, benzene induces chromosomal breaks as a primary mode of genotoxicity in the bone marrow (BM). Benzene-induced DNA lesions can lead to changes in hematopoietic stem cells (HSC) that give rise to leukemic clones. To gain insight into the mechanism of benzene-induced leukemia, we investigated the DNA damage repair and response pathways in total bone marrow and bone marrow fractions enriched for HSC from male 129/SvJ mice exposed to benzene by inhalation. Mice exposed to 100 ppm benzene for 6 h per day, 5 days per week for 2 week showed significant hematotoxicity and genotoxicity compared to air-exposed control mice. Benzene exposure did not alter the level of apoptosis in BM or the percentage of HSC in BM. RNA isolated from total BM cells and the enriched HSC fractions from benzene-exposed and air-exposed mice was used for microarray analysis and quantitative real-time RT-PCR. Interestingly, mRNA levels of DNA repair genes representing distinct repair pathways were largely unaffected by benzene exposure, whereas altered mRNA expression of various apoptosis, cell cycle, and growth control genes was observed in samples from benzene-exposed mice. Differences in gene expression profiles were observed between total BM and HSC. Notably, p21 mRNA was highly induced in BM but was not altered in HSC following benzene exposure. The gene expression pattern suggests that HSC isolated immediately following a 2 weeks exposure to 100 ppm benzene were not actively proliferating. Understanding the toxicogenomic profile of the specific target cell population involved in the development of benzene-associated diseases may lead to a better understanding of the mechanism of benzene-induced leukemia and may identify important interindividual and tissue susceptibility factors.

  17. The Vitamin A Derivative All-Trans Retinoic Acid Repairs Amyloid-β-Induced Double-Strand Breaks in Neural Cells and in the Murine Neocortex

    Directory of Open Access Journals (Sweden)

    Emmanuelle Gruz-Gibelli

    2016-01-01

    Full Text Available The amyloid-β peptide or Aβ is the key player in the amyloid-cascade hypothesis of Alzheimer’s disease. Aβ appears to trigger cell death but also production of double-strand breaks (DSBs in aging and Alzheimer’s disease. All-trans retinoic acid (RA, a derivative of vitamin A, was already known for its neuroprotective effects against the amyloid cascade. It diminishes, for instance, the production of Aβ peptides and their oligomerisation. In the present work we investigated the possible implication of RA receptor (RAR in repair of Aβ-induced DSBs. We demonstrated that RA, as well as RAR agonist Am80, but not AGN 193109 antagonist, repair Aβ-induced DSBs in SH-SY5Y cells and an astrocytic cell line as well as in the murine cortical tissue of young and aged mice. The nonhomologous end joining pathway and the Ataxia Telangiectasia Mutated kinase were shown to be involved in RA-mediated DSBs repair in the SH-SY5Y cells. Our data suggest that RA, besides increasing cell viability in the cortex of young and even of aged mice, might also result in targeted DNA repair of genes important for cell or synaptic maintenance. This phenomenon would remain functional up to a point when Aβ increase and RA decrease probably lead to a pathological state.

  18. Non-homologous end joining pathway is the major route of protection against 4β-hydroxywithanolide E-induced DNA damage in MCF-7 cells.

    Science.gov (United States)

    You, B-J; Wu, Y-C; Lee, C-L; Lee, H-Z

    2014-03-01

    4β-Hydroxywithanolide E is a bioactive withanolide extracted from Physalis peruviana. 4β-Hydroxywithanolide E caused reactive oxygen species production and cell apoptosis in human breast cancer MCF-7 cells. We further found that 4β-hydroxywithanolide E induced DNA damage and regulated the DNA damage signaling in MCF-7 cells. The DNA damage sensors and repair proteins act promptly to remove DNA lesions by 4β-hydroxywithanolide E. The ataxia-telangiectasia mutated protein (ATM)-dependent DNA damage signaling pathway is involved in 4β-hydroxywithanolide E-induced apoptosis of MCF-7 cells. Non-homologous end joining pathway, but not homologous recombination, is the major route of protection of MCF-7 cells against 4β-hydroxywithanolide E-induced DNA damage. 4β-Hydroxywithanolide E had no significant impact on the base excision repair pathway. In this study, we examined the 4β-hydroxywithanolide E-induced DNA damage as a research tool in project investigating the DNA repair signaling in breast cancer cells. We also suggest that 4β-hydroxywithanolide E assert its anti-tumor activity in carcinogenic progression and develop into a dietary chemopreventive agent. PMID:24373828

  19. Determining adaptive and adverse oxidative stress responses in human bronical epithelial cells exposed to zinc

    Science.gov (United States)

    Determining adaptive and adverse oxidative stress responses in human bronchial epithelial cells exposed to zincJenna M. Currier1,2, Wan-Yun Cheng1, Rory Conolly1, Brian N. Chorley1Zinc is a ubiquitous contaminant of ambient air that presents an oxidant challenge to the human lung...

  20. Similarities between human ataxia fibroblasts and murine SCID cells: high sensitivity to γ rays and high frequency of methotrexate-induced DHFR gene amplification, but normal radiosensitivity to densely ionizing α particles

    International Nuclear Information System (INIS)

    Two γ-ray hypersensitive cell lines, human ataxia telangiectasia (AT) and murine severe combined immune deficiency (SCID) cells, proved to be very competent in amplifying their dihydrofolate reductase (DHFR) gene under methotrexate selection stress. Over a period of months, methotrexate-resistant clones were obtained which were able to grow in progressively increasing methotrexate concentrations up to 1 mM. By then methotrexate-resistant AT and SCID cells had amplified their DHFR gene 6- and 30-fold, respectively, and showed very high DHFR mRNA expression. In contrast, related cells with normal radiosensitivity (human GM637 and mouse BALB/c fibroblasts) did not show DHFR gene amplification under comparable conditions. This correlation of the capacity of DHFR gene amplification and γ-ray hypersensitivity in AT and SCID cells suggests that gene amplification may have a mechanism(s) in common with those involved in repair of γ-radiation-induced damage. No difference in cell killing could be observed following exposure to densely ionizing α particles: AT and SCID cells exhibited comparable survival rates to GM637 and BALB/c cells, respectively. (orig.)

  1. Similarities between human ataxia fibroblasts and murine SCID cells: high sensitivity to [gamma] rays and high frequency of methotrexate-induced DHFR gene amplification, but normal radiosensitivity to densely ionizing [alpha] particles

    Energy Technology Data Exchange (ETDEWEB)

    Luecke-Huhle, C. (Kernforschungszentrum Karlsruhe, Inst. fuer Genetik (Germany))

    1994-07-01

    Two [gamma]-ray hypersensitive cell lines, human ataxia telangiectasia (AT) and murine severe combined immune deficiency (SCID) cells, proved to be very competent in amplifying their dihydrofolate reductase (DHFR) gene under methotrexate selection stress. Over a period of months, methotrexate-resistant clones were obtained which were able to grow in progressively increasing methotrexate concentrations up to 1 mM. By then methotrexate-resistant AT and SCID cells had amplified their DHFR gene 6- and 30-fold, respectively, and showed very high DHFR mRNA expression. In contrast, related cells with normal radiosensitivity (human GM637 and mouse BALB/c fibroblasts) did not show DHFR gene amplification under comparable conditions. This correlation of the capacity of DHFR gene amplification and [gamma]-ray hypersensitivity in AT and SCID cells suggests that gene amplification may have a mechanism(s) in common with those involved in repair of [gamma]-radiation-induced damage. No difference in cell killing could be observed following exposure to densely ionizing [alpha] particles: AT and SCID cells exhibited comparable survival rates to GM637 and BALB/c cells, respectively. (orig.)

  2. p53-Dependent Adaptive Responses in Human Cells Exposed to Space Radiations

    International Nuclear Information System (INIS)

    Purpose: It has been reported that priming irradiation or conditioning irradiation with a low dose of X-rays in the range of 0.02-0.1 Gy induces a p53-dependent adaptive response in mammalian cells. The aim of the present study was to clarify the effect of space radiations on the adaptive response. Methods and Materials: Two human lymphoblastoid cell lines were used; one cell line bears a wild-type p53 (wtp53) gene, and another cell line bears a mutated p53 (mp53) gene. The cells were frozen during transportation on the space shuttle and while in orbit in the International Space Station freezer for 133 days between November 15, 2008 and March 29, 2009. After the frozen samples were returned to Earth, the cells were cultured for 6 h and then exposed to a challenging X-ray-irradiation (2 Gy). Cellular sensitivity, apoptosis, and chromosome aberrations were scored using dye-exclusion assays, Hoechst33342 staining assays, and chromosomal banding techniques, respectively. Results: In cells exposed to space radiations, adaptive responses such as the induction of radioresistance and the depression of radiation-induced apoptosis and chromosome aberrations were observed in wtp53 cells but not in mp53 cells. Conclusion: These results have confirmed the hypothesis that p53-dependent adaptive responses are apparently induced by space radiations within a specific range of low doses. The cells exhibited this effect owing to space radiations exposure, even though the doses in space were very low.

  3. Photoreactivation of ICR 2A frog cells exposed to solar UV wavelengths

    International Nuclear Information System (INIS)

    Exposure of ICR 2A frog cells to photoreactivating light (PRL) following irradiation with a fluorescent sun lamp (FSL) results in an enhancement in survival compared with FSL-irradiated cells incubated in the dark. Hence, pyrimidine dimers played a role in the killing of cells exposed to the UV produced by this source. However, when the light was passed through a series of filters to remove increasing segments of the wavelength region shorter than 320 nm, the effect of the PRL progressively decreased, demonstrating that non-dimer photoproducts play an increasingly important role in the killing of cells exposed to wavelengths approaching 320 nm. Cells were also exposed to 313 nm UV produced by a monochromator and it was found, once again, that the effectiveness of the PRL treatment depended on the filter the beam was passed through. These results indicate that for both FSL-produced UV and 313 nm UV emitted by a monochromator, that the critical photoproducts within the cell depend on the filter used in conjuction with the UV source. (author)

  4. Protein C inhibitor (PCI binds to phosphatidylserine exposing cells with implications in the phagocytosis of apoptotic cells and activated platelets.

    Directory of Open Access Journals (Sweden)

    Daniela Rieger

    Full Text Available Protein C Inhibitor (PCI is a secreted serine protease inhibitor, belonging to the family of serpins. In addition to activated protein C PCI inactivates several other proteases of the coagulation and fibrinolytic systems, suggesting a regulatory role in hemostasis. Glycosaminoglycans and certain negatively charged phospholipids, like phosphatidylserine, bind to PCI and modulate its activity. Phosphatidylerine (PS is exposed on the surface of apoptotic cells and known as a phagocytosis marker. We hypothesized that PCI might bind to PS exposed on apoptotic cells and thereby influence their removal by phagocytosis. Using Jurkat T-lymphocytes and U937 myeloid cells, we show here that PCI binds to apoptotic cells to a similar extent at the same sites as Annexin V, but in a different manner as compared to live cells (defined spots on ∼10-30% of cells. PCI dose dependently decreased phagocytosis of apoptotic Jurkat cells by U937 macrophages. Moreover, the phagocytosis of PS exposing, activated platelets by human blood derived monocytes declined in the presence of PCI. In U937 cells the expression of PCI as well as the surface binding of PCI increased with time of phorbol ester treatment/macrophage differentiation. The results of this study suggest a role of PCI not only for the function and/or maturation of macrophages, but also as a negative regulator of apoptotic cell and activated platelets removal.

  5. 'Rogue' cells observed in children exposed to radiation from the Chernobyl accident

    Energy Technology Data Exchange (ETDEWEB)

    Sevan' kaev, A.V.; Tsyb, A.F.; Zhloba, A.A.; Moiseenko, V.V. (Russian Academy of Medical Science, Obninsk (Russian Federation). Medical Radiological Research Centre); Lloyd, D.C. (National Radiological Protection Board, Chilton (United Kingdom)); Skrjabin, A.M. (Scientific Research Inst. of Radiation Medicine, Gomel (Belarus)); Climov, V.M. (Special Regional Hospital, Gomel (Belarus). Public Health)

    1993-03-01

    Eight 'rogue' lymphocyte metaphases containing a large number of aberrant chromosomes were noted during a survey of chromosomal damage in 328 Belarussian children. The study population comprised children of families living in territory contaminated by radiation from the Chernobyl accident. The majority of the sample had been evacuated within 1 week from very heavily polluted territory to areas that had received much less fallout. Two hundred cells were scored per subject and one rogue cell was found in a child exposed in utero; one in a child conceived after the accident and six in the postnatally exposed group. The possibility that the damage was due to exposure to radio-iodine concentrated in the thyroid gland, or to radiation from incorporated hot particles' of an alpha or beta/gamma emitter is discussed. It is concluded that the damage to these cells is unlikely to have been caused by radiation. (Author).

  6. Cytotoxic mechanism related to dihydrolipoamide dehydrogenase in Leydig cells exposed to heavy metals

    International Nuclear Information System (INIS)

    Heavy metals are common environmental toxicants with adverse effects on steroid biosynthesis. The importance of mitochondria has been recognized in cytotoxic mechanism of heavy metals on Leydig cells these years. But it is still poorly known. Our previous study reported that dihydrolipoamide dehydrogenase (DLD) located on the mitochondria was significantly decreased in Leydig cells exposed to cadmium, which suggested that DLD might be involved in the cytotoxic effects. Therefore, the altered expression of DLD was validated in rats and R2C cells exposed to cadmium, manganese and lead, and the role of DLD in the steroid synthesis pathway cAMP/PKA-ERK1/2 was investigated in this study. With a low expression of DLD, heavy metals dramatically reduced the levels of steroid hormone by inhibiting the activation of cAMP/PKA, PKC signaling pathway and the steroidogenic enzymes StAR, CYP11A1 and 3β-HSD. After knockdown of DLD in R2C cells, progesterone synthesis was reduced by 40%, and the intracellular concentration of cAMP, protein expression of StAR, 3β-HSD, PKA, and the phosphorylation of ERK1/2 were also decreased. These results highlight that DLD is down-regulation and related to steroid biosynthesis in Leyig cells exposed to heavy metals; cAMP/PKA act as downstream effector molecules of DLD, which activate phosphorylation of ERK1/2 to initiate the steroidogenesis

  7. Diagnostic and pathogenetic role of café-au-lait macules in nevoid basal cell carcinoma syndrome

    Directory of Open Access Journals (Sweden)

    Ponti Giovanni

    2012-10-01

    Full Text Available Abstract Café au lait spots (CALS are common dermatologic findings that can at the same time arise in a variety of pathologic conditions such as Neurofibromatosis type 1 (NF1, together with numerous hereditary syndromes for which they represent either diagnostic criteria or associated elements (McCune Albright, Silver-Russell, LEOPARD, Ataxia-Telangiectasia. A review of the literature also revealed two cases of association with NBCCS. We report here the case of a female proband with CALS associated to Nevoid Basal Cell Carcinoma Syndrome (NBCCS with known PTCH1 germline mutation (C.1348-2A>G who had been misdiagnosed with NF1 in her childhood because of 5 CALS and cutaneous nodules. The patient presented a giant cell tumor of the skin, palmar and calcaneal epidermoidal cystic nodules, odontogenic keratocystic tumors and deformity of the jaw profile. Her family history brought both her brother and father to our attention because of the presence of KCOTs diagnosed at early age: after genetic testing, the same PTCH1 germline mutation was identified in the three family members. Clinical criteria are used for discerning NF1 diagnosis (size, number and onset age, while there are no definite guidelines concerning CALS except for their presence. In our experience, we have noted an association of CALS with NBCCS; this seems interesting because we already know clinical criteria are a dynamic entity and can be modified by epidemiologic evidences.

  8. Diagnostic and pathogenetic role of café-au-lait macules in nevoid basal cell carcinoma syndrome.

    Science.gov (United States)

    Ponti, Giovanni; Tomasi, Aldo; Pastorino, Lorenza; Ruini, Cristel; Guarneri, Carmelo; Mandel, Victor Desmond; Seidenari, Stefania; Pellacani, Giovanni

    2012-01-01

    Café au lait spots (CALS) are common dermatologic findings that can at the same time arise in a variety of pathologic conditions such as Neurofibromatosis type 1 (NF1), together with numerous hereditary syndromes for which they represent either diagnostic criteria or associated elements (McCune Albright, Silver-Russell, LEOPARD, Ataxia-Telangiectasia). A review of the literature also revealed two cases of association with NBCCS. We report here the case of a female proband with CALS associated to Nevoid Basal Cell Carcinoma Syndrome (NBCCS) with known PTCH1 germline mutation (C.1348-2A>G) who had been misdiagnosed with NF1 in her childhood because of 5 CALS and cutaneous nodules. The patient presented a giant cell tumor of the skin, palmar and calcaneal epidermoidal cystic nodules, odontogenic keratocystic tumors and deformity of the jaw profile. Her family history brought both her brother and father to our attention because of the presence of KCOTs diagnosed at early age: after genetic testing, the same PTCH1 germline mutation was identified in the three family members. Clinical criteria are used for discerning NF1 diagnosis (size, number and onset age), while there are no definite guidelines concerning CALS except for their presence. In our experience, we have noted an association of CALS with NBCCS; this seems interesting because we already know clinical criteria are a dynamic entity and can be modified by epidemiologic evidences. PMID:23107377

  9. Endometrial stem cell transplantation in MPTP- exposed primates: an alternative cell source for treatment of Parkinson's disease.

    Science.gov (United States)

    Wolff, Erin F; Mutlu, Levent; Massasa, Efi E; Elsworth, John D; Eugene Redmond, D; Taylor, Hugh S

    2015-01-01

    Parkinson's disease (PD) is a neurodegenerative disease caused by the loss of dopaminergic neurons in the substantia nigra. Cell-replacement therapies have emerged as a promising strategy to slow down or replace neuronal loss. Compared to other stem cell types, endometrium-derived stem cells (EDSCs) are an attractive source of stem cells for cellular therapies because of their ease of collection and vast differentiation potential. Here we demonstrate that endometrium-derived stem cells may be transplanted into an MPTP exposed monkey model of PD. After injection into the striatum, endometrium-derived stem cells engrafted, exhibited neuron-like morphology, expressed tyrosine hydroxylase (TH) and increased the numbers of TH positive cells on the transplanted side and dopamine metabolite concentrations in vivo. Our results suggest that endometrium-derived stem cells may provide a therapeutic benefit in the primate model of PD and may be used in stem cell based therapies.

  10. The Secretome of Human Bronchial Epithelial Cells Exposed to Fine Atmospheric Particles Induces Fibroblast Proliferation

    Directory of Open Access Journals (Sweden)

    Laurent Martinon

    2013-08-01

    Full Text Available Chronic exposure to particulate pollution is suspected to exacerbate inflammatory respiratory diseases such as asthma characterized by an airway remodelling involving fibrosis. Our study aims to investigate whether the secretome from human bronchial epithelial (HBE cells exposed to fine particulate matter (PM induces fibroblast proliferation. Primary HBE cells grown on air liquid interface were repeatedly exposed to fine PM at 5 and 10 µg/cm² (four treatments, 48 hours apart and maintained in culture for five weeks. Collected basolateral culture medium was used as a conditioned medium for the subsequent treatment of fibroblasts. We observed that the conditioned medium collected from HBE cells treated with fine PM increased the growth rate of fibroblasts compared to the conditioned medium collected from control HBE cells. Fibroblast phenotype assessed by the observation of the vimentin network was well preserved. The mitogenic effect of conditioned medium was reduced in the presence of anti-epidermal growth factor receptor (EGFR, anti-amphiregulin or anti-TGFa, underlining the role of EGFR ligands in fibroblast proliferation. When fibroblasts were co-cultured with HBE cells treated once with fine PM, they exhibited a higher growth rate than fibroblasts co-cultured with non-treated HBE cells. Altogether these data show that the exposure of HBE cells to fine PM induced the production of EGFR ligands in sufficient amount to stimulate fibroblast proliferation providing insight into the role of PM in airway remodelling.

  11. BOSS on EXPOSE-R2-Comparative Investigations on Biofilm and Planktonic cells of Deinococcus geothermalis as Mission Preparation Tests

    Science.gov (United States)

    Panitz, C.; Rettberg, P.; Frösler, J.; Flemming, H.-C.; Rabbow, E.; Reitz, G.

    2013-09-01

    Biofilms are of interest for Astrobiological investigations since they are one of the oldest clear signs of life on Earth. In the experiment BOSS the hypothesis will be tested if the biofilm form of life with microorganisms embedded and aggregated in their EPS matrix is suited to support long-term survival of microorganisms under the harsh environmental conditions as they exist in space and on Mars and is superior to the same bacteria in the form of planktonic cultures. An additional protective role may be provided by particles associated in biofilms which may shield the organisms against radiation. The experiment will be flown on EXPOSE-R2 attached outside of the ISS on the Russian module. BOSS has participated the Experiment verification tests and will attend the upcoming Science verification test carried out in the Planetary and Space Simulation Facilities at DLR. The launch is scheduled for April 2014.

  12. DNA DAMAGE IN BUCCAL EPITHELIAL CELLS FROM INDIVIDUALS CHRONICALLY EXPOSED TO ARSENIC VIA DRINKING WATER IN INNER MONGOLIA, CHINA

    Science.gov (United States)

    The purpose of this pilot study was to assess DNA damage in buccal cells from individuals chronically exposed to arsenic via drinking water in Ba Men, Inner Mongolia. Buccal cells were collected from 19 Ba Men residents exposed to arsenic at 527.5 ? 23.7 g/L (mean ? SEM) and ...

  13. Phospholipidomic Profile Variation on THP-1 Cells Exposed to Skin or Respiratory Sensitizers and Respiratory Irritant.

    Science.gov (United States)

    Martins, João D; Maciel, Elisabete A; Silva, Ana; Ferreira, Isabel; Ricardo, Fernando; Domingues, Pedro; Neves, Bruno M; Domingues, Maria Rosário M; Cruz, Maria Teresa

    2016-12-01

    Occupational exposure to low molecular weight reactive chemicals often leads to development of allergic reactions such as allergic contact dermatitis and respiratory allergies. Further insights into the interaction of these chemicals with physiopathological relevant cellular models might provide the foundations for novel non-animal approaches to safety assessment. In this work we used the human THP-1 cell line to determine phospholipidome changes induced by the skin sensitizer 1-fluoro-2,4-dinitrobenzene (DNFB), the respiratory allergen hexamethylene diisocyanate (HDI), and the irritant methyl salicylate (MESA). We detected that these chemicals differently induce lipid peroxidation and modulate THP-1 IL-1β, IL-12B, IL-8, CD86, and HMOX1 transcription. Decreased phosphatidylethanolamine content was detected in cells exposed to MESA, while profound alterations in the relative abundance of cardiolipin species were observed in cells exposed to DNFB. All chemicals tested induced a decrease in the relative abundance of plasmanyl phosphatidylcholine species PC (O-16:0e/18:1) and phosphatidylinositol species PI (34:1), while increasing PI (38:4). An increased abundance of oleic acid was observed in the phospholipids of cells exposed to DNFB while a decreased abundance of palmitic acid was detected in cells treated with MESA or DNFB. We conclude that both specific and common alterations at phospholipidome levels are triggered by the different chemicals, while not allowing a complete distinction between them using a Canonical Analysis of Principal Coordinates (CAP). The common effects observed at phospholipids level with all the chemicals tested might be related to unspecific cell cytotoxic mechanisms that nevertheless may contribute to the elicitation of specific immune responses. J. Cell. Physiol. 231: 2639-2651, 2016. © 2016 Wiley Periodicals, Inc. PMID:26946329

  14. Apoptosis and necroptosis are induced in rainbow trout cell lines exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Krumschnabel, Gerhard, E-mail: Gerhard.Krumschnabel@i-med.ac.at [Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Fritz-Preglstr. 3, Innsbruck (Austria); Ebner, Hannes L.; Hess, Michael W. [Division of Histology and Embryology, Medical University Innsbruck, Innsbruck (Austria); Villunger, Andreas [Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Fritz-Preglstr. 3, Innsbruck (Austria)

    2010-08-01

    Cadmium is an important environmental toxicant that can kill cells. A number of studies have implicated apoptosis as well as necrosis and, most recently, a form of programmed necrosis termed necroptosis in the process of cadmium-mediated toxicity, but the exact mechanism remains ill-defined and may depend on the affected cell type. This study investigated which mode of cell death may be responsible for cell death induction in cadmium-exposed trout cell lines from gill and liver and if this cell death was sensitive to inhibitors of necroptosis or apoptosis, respectively. It was observed that intermediate levels of cadmium that killed approximately 50% of the cells over 96-120 h of exposure caused cell death that morphologically resembled apoptosis and was associated with an increase of apoptotic markers such as the number of cells with diminished DNA content (sub-G1 cells), condensed or fragmented nuclei, and elevation of caspase-3 activity. At the same time, however, cells also lost plasma membrane integrity, as indicated by uptake of propidium iodide, showed a decrease of ATP levels and mitochondrial membrane potential, and displayed cell swelling, signs associated with secondary necrosis, or equally possible, necroptotic cell death. Importantly, many of these alterations were at least partly inhibited by the necroptosis inhibitor necrostatin-1 and were to a lesser extent also sensitive to the pan-caspase inhibitor zVAD-fmk, indicating that multiple modes of cell death are concurrently induced in cadmium-exposed trout cells, including necroptosis and apoptosis. Cell death appeared to lack concurrent radical formation, consistent with genetically regulated necroptotic cell death, but was characterized by the rapid induction of DNA damage markers, and the early onset of disintegration of the Golgi complex. Comparative experiments evaluating copper-toxicity indicated that in comparison to cadmium much higher concentrations of this metal were required to induce cell

  15. Natural killer cells in highly exposed hepatitis C-seronegative injecting drug users.

    Science.gov (United States)

    Mina, M M; Cameron, B; Luciani, F; Vollmer-Conna, U; Lloyd, A R

    2016-06-01

    Injecting drug use remains the major risk factor for hepatitis C (HCV) transmission. A minority of long-term injecting drug users remain seronegative and aviraemic, despite prolonged exposure to HCV - termed highly exposed seronegative subjects. Natural killer (NK) cells have been implicated in this apparent protection. A longitudinal nested, three group case-control series of subjects was selected from a prospective cohort of seronegative injecting drug users who became incident cases (n = 11), remained seronegative (n = 11) or reported transient high-risk behaviour and remained uninfected (n = 11). The groups were matched by age, sex and initial risk behaviour characteristics. Stored peripheral blood mononuclear cells were assayed in multicolour flow cytometry to enumerate natural killer cell subpopulations and to assess functional activity using Toll-like receptor ligands before measurement of activation, cytokine production and natural cytotoxicity receptor expression. Principal components were derived to describe the detailed phenotypic characteristics of the major NK subpopulations (based on CD56 and CD16 co-expression), before logistic regression analysis to identify associations with exposed, seronegative individuals. The CD56(dim) CD16(+) (P = 0.05, OR 6.92) and CD56(dim) CD16(-) (P = 0.05, OR 6.07) principal components differed between exposed, seronegative individuals and pre-infection samples of the other two groups. These included CD56(dim) CD16(+) and CD56(dim) CD16(-) subsets with CD56(dim) CD16(+) IFN-γ and TNF-α on unstimulated cells, and CD56(dim) CD16(-) CD69(+) , CD107a(+) , IFN-γ and TNF-α following TLR stimulation. The cytotoxic CD56(dim) NK subset thus distinguished highly exposed, seronegative subjects, suggesting NK cytotoxicity may contribute to protection from HCV acquisition. Further investigation of the determinants of this association and prospective assessment of protection against HCV infection are warranted.

  16. Comparison between half-cell potential of reinforced concrete exposed to carbon dioxide and chloride environment

    OpenAIRE

    Somnuk Tangtermsirikul; Waree Kongprawechnon; Kitipoom Chansuriyasak; Chalermchai Wanichlamlart

    2010-01-01

    The objective of this study is to investigate the effect of concrete mix proportion and fly ash on half-cell potential (HCP)and corrosion current density (icorr) of steel in concrete exposed to different environments. Reinforced concrete specimenswith different fly ash replacement percentages and water to binder ratios (w/b) were studied in this paper. The specimenswere subjected to two highly corrosive environments which are chloride and carbon dioxide. HCP and icorr were used tomonitor the ...

  17. Antioxidative capacity and enzyme activity in Haematococcus pluvialis cells exposed to superoxide free radicals

    Institute of Scientific and Technical Information of China (English)

    刘建国; 张晓丽; 孙延红; 林伟

    2010-01-01

    The antioxidative capacity of astaxanthin and enzyme activity of reactive oxygen eliminating enzymes such as superoxide dismutase (SOD),peroxidase (POD),catalase (CAT) and ascorbate peroxidase (APX) were studied in three cell types of Haematococcus pluvialis exposed to high concentrations of a superoxide anion radical (O2ˉ).The results show that defensive enzymes and astaxanthin-related mechanisms were both active in H.pluvialis during exposure to reactive oxygen species (ROS) such as Oˉ2.Astaxanthin reacte...

  18. Frequency patterns of T-cell exposed motifs in immunoglobulin heavy chain peptides presented by MHCs

    Directory of Open Access Journals (Sweden)

    Robert D. Bremel

    2014-10-01

    Full Text Available Immunoglobulins are highly diverse protein sequences that are processed and presented to T-cells by B-cells and other antigen presenting cells. We examined a large dataset of immunoglobulin heavy chain variable regions (IGHV to assess the diversity of T-cell exposed motifs (TCEM. TCEM comprise those amino acids in a MHC-bound peptide which face outwards, surrounded by the MHC histotope, and which engage the T-cell receptor. Within IGHV there is a distinct pattern of predicted MHC class II binding and a very high frequency of re-use of the TCEMs. The re-use frequency indicates that only a limited number of different cognate T-cells are required to engage many different clonal B-cells. The amino acids in each outward-facing TCEM are intercalated with the amino acids of inward-facing MHC groove-exposed motifs (GEM. Different GEM may have differing, allele-specific, MHC binding affinities. The intercalation of TCEM and GEM in a peptide allows for a vast combinatorial repertoire of epitopes, each eliciting a different response. Outcome of T-cell receptor binding is determined by overall signal strength, which is a function of the number of responding T-cells and the duration of engagement. Hence, the frequency of T-cell exposed motif re-use appears to be an important determinant of whether a T-cell response is stimulatory or suppressive. The frequency distribution of TCEMs implies that somatic hypermutation is followed by clonal expansion that develop along repeated pathways. The observations of TCEM and GEM derived from immunoglobulins suggest a relatively simple, yet powerful, mechanism to correlate T-cell polyspecificity, through re-use of TCEMs, with a very high degree of specificity achieved by combination with a diversity of GEMs. The frequency profile of TCEMs also points to an economical mechanism for maintaining T-cell memory, recall, and self-discrimination based on an endogenously generated profile of motifs.

  19. γ-ray hypersensitivity and faulty DNA repair in cultured cells from humans exhibiting familial cancer proneness

    International Nuclear Information System (INIS)

    The most significant danger to irradiated individuals is the induction of cancer. Ataxia telangiectasia (AT) is known as a disorder linking radiosensitivity with cancer proneness, and AT is a rare inherited disorder. This is the degenerative multisystem affliction that is transmitted as a simple autosomal recessive trait. Cell culture studies disclosed the relationship between the cellular hypersensitivity to γ-ray inactivation in vitro and the propensity to develop cancer in vivo. The molecular evidence for the defects in the repair of radiogenic DNA damage has as yet been obtained only for AT, and it seems likely that anomalous DNA repair may not be the key causal factor in the development of some of the clinical abnormalities associated with the disease, including the tendency to develop lymphoproliferative cancer. Nevertheless, AT, Rothmund-Thomson syndrome (RTS), and acute myelogenous leukemia (AML) family show promise as the models for elucidating the importance of cellular radiosensitivity and imperfect DNA repair in the induction of cancer by radiation and radiomimetic carcinogens in the biosphere. Expanded efforts are required to identify heterozygosity for the AT genes in general population and to assess the role of the interaction between this genetic make-up and environmental carcinogens in the occurrence of common cancers. (Yamashita, S.)

  20. Protective Effects of Hydroalcoholic Extract of Nasturtium officinale on Rat Blood Cells Exposed to Arsenic

    Directory of Open Access Journals (Sweden)

    Felor Zargari

    2015-06-01

    Full Text Available Background: Arsenic is one of the most toxic metalloids. Anemia and leukopenia are common results of poisoning with arsenic, which may happen due to a direct hemolytic or cytotoxic effect on blood cells. The aim of this study was to examine the effects of hydroalcoholic extract of Nasturtium officinale on blood cells and antioxidant enzymes in rats exposed to sodium (metaarsenite. Methods: 32 Male Sprague Dawley rats were randomly divided into four groups; Group I (normal healthy rats, Group II (treated with 5.5mg/kg of body weight of NaAsO2, Group III (treated with 500mg/kg of body weight of hydro-alcoholic extract of N. officinale, and Group IV (treated with group II and III supplementations. Blood samples were collected and red blood cell, white blood cell, hematocrit, hemoglobin, platelet, total protein and albumin levels and total antioxidant capacity were measured. Data was analyzed with Mann-Whitney U test. Results: WBC, RBC and Hct were decreased in the rats exposed to NaAsO2 (p<0.05. A significant increase was seen in RBC and Hct after treatment with the plant extract (p<0.05. There was no significant decrease in serum albumin and total protein in the groups exposed to NaAsO2 compared to the group I, but NaAsO2 decreased the total antioxidant capacity, significantly. Conclusion: The Nasturtium officinale extract have protective effect on arsenic-induced damage of blood cells.

  1. Cell surface differences of Naegleria fowleri and Naegleria lovaniensis exposed with surface markers.

    Science.gov (United States)

    González-Robles, Arturo; Castañón, Guadalupe; Cristóbal-Ramos, Ana Ruth; Hernández-Ramírez, Verónica Ivonne; Omaña-Molina, Maritza; Martínez-Palomo, Adolfo

    2007-12-01

    Differences in the distribution of diverse cell surface coat markers were found between Naegleria fowleri and Naegleria lovaniensis. The presence of carbohydrate-containing components in the cell coat of the two species was detected by selective staining with ruthenium red and alcian blue. Using both markers, N. fowleri presented a thicker deposit than N. lovaniensis. The existence of exposed mannose or glucose residues was revealed by discriminatory agglutination with the plant lectin Concanavalin A. These sugar residues were also visualized at the cell surface of these parasites either by transmission electron microscopy or by fluorescein-tagged Concanavalin A. Using this lectin cap formation was induced only in N. fowleri. The anionic sites on the cell surface detected by means of cationized ferritin were more apparent in N. fowleri. Biotinylation assays confirmed that even though the two amoebae species have some analogous plasma membrane proteins, there is a clear difference in their composition.

  2. Assessment of DNA integrity (COMET assay) in sperm cells of boron-exposed workers.

    Science.gov (United States)

    Duydu, Yalçin; Başaran, Nurşen; Ustündağ, Aylin; Aydin, Sevtap; Undeğer, Ulkü; Ataman, Osman Yavuz; Aydos, Kaan; Düker, Yalçin; Ickstadt, Katja; Waltrup, Britta Schulze; Golka, Klaus; Bolt, Hermann M

    2012-01-01

    An extension of a male reproductive study conducted in a boric acid/borate production zone at Bandırma, Turkey, is presented. The relation between DNA-strand breaks (COMET assay, neutral and alkaline version) in sperm cells and previously described sperm quality parameters was investigated in boron-exposed males. A correlation between blood boron levels and mean DNA-strand breaks in sperm was weak, and DNA-strand breaks in sperm were statistically not different between control and exposed groups. Therefore, increasing boron exposures had no additional contribution in addition to already pre-existing DNA-strand breaks in the sperm cells. Weak but statistically significant correlations between DNA-strand breaks and motility/morphology parameters of sperm samples were observed in the neutral version of the COMET assay, while correlations between the same variables were statistically not significant in the alkaline version. A likely reason for these negative results, even in highly exposed humans, is that experimental exposures that had led to reproductive toxicity in animals were significantly higher than any boron exposures, which may be reached under realistic human conditions.

  3. Radioprotection and Cell Cycle Arrest of Intestinal Epithelial Cells by Darinaparsin, a Tumor Radiosensitizer

    International Nuclear Information System (INIS)

    Purpose: It was recently reported that the organic arsenic compound darinaparsin (DPS) is a cytotoxin and radiosensitizer of tumor cells in vitro and in subcutaneous xenograft tumors. Surprisingly, it was also found that DPS protects normal intestinal crypt epithelial cells (CECs) from clonogenic death after ionizing radiation (IR). Here we tested the DPS radiosensitizing effect in a clinically relevant model of prostate cancer and explored the radioprotective effect and mechanism of DPS on CECs. Methods and Materials: The radiation modification effect of DPS was tested in a mouse model of orthotopic xenograft prostate cancer and of IR-induced acute gastrointestinal syndrome. The effect of DPS on CEC DNA damage and DNA damage responses was determined by immunohistochemistry. Results: In the mouse model of IR-induced gastrointestinal syndrome, DPS treatment before IR accelerated recovery from body weight loss and increased animal survival. DPS decreased post-IR DNA damage and cell death, suggesting that the radioprotective effect was mediated by enhanced DNA damage repair. Shortly after DPS injection, significant cell cycle arrest was observed in CECs at both G1/S and G2/M checkpoints, which was accompanied by the activation of cell cycle inhibitors p21 and growth arrest and DNA-damage-inducible protein 45 alpha (GADD45A). Further investigation revealed that DPS activated ataxia telangiectasia mutated (ATM), an important inducer of DNA damage repair and cell cycle arrest. Conclusions: DPS selectively radioprotected normal intestinal CECs and sensitized prostate cancer cells in a clinically relevant model. This effect may be, at least in part, mediated by DNA damage response activation and has the potential to significantly increase the therapeutic index of radiation therapy

  4. Radioprotection and Cell Cycle Arrest of Intestinal Epithelial Cells by Darinaparsin, a Tumor Radiosensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Junqiang; Doi, Hiroshi [Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California (United States); Saar, Matthias; Santos, Jennifer [Department of Urology, School of Medicine, Stanford University, Stanford, California (United States); Li, Xuejun; Peehl, Donna M. [Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California (United States); Knox, Susan J., E-mail: sknox@stanford.edu [Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California (United States)

    2013-12-01

    Purpose: It was recently reported that the organic arsenic compound darinaparsin (DPS) is a cytotoxin and radiosensitizer of tumor cells in vitro and in subcutaneous xenograft tumors. Surprisingly, it was also found that DPS protects normal intestinal crypt epithelial cells (CECs) from clonogenic death after ionizing radiation (IR). Here we tested the DPS radiosensitizing effect in a clinically relevant model of prostate cancer and explored the radioprotective effect and mechanism of DPS on CECs. Methods and Materials: The radiation modification effect of DPS was tested in a mouse model of orthotopic xenograft prostate cancer and of IR-induced acute gastrointestinal syndrome. The effect of DPS on CEC DNA damage and DNA damage responses was determined by immunohistochemistry. Results: In the mouse model of IR-induced gastrointestinal syndrome, DPS treatment before IR accelerated recovery from body weight loss and increased animal survival. DPS decreased post-IR DNA damage and cell death, suggesting that the radioprotective effect was mediated by enhanced DNA damage repair. Shortly after DPS injection, significant cell cycle arrest was observed in CECs at both G1/S and G2/M checkpoints, which was accompanied by the activation of cell cycle inhibitors p21 and growth arrest and DNA-damage-inducible protein 45 alpha (GADD45A). Further investigation revealed that DPS activated ataxia telangiectasia mutated (ATM), an important inducer of DNA damage repair and cell cycle arrest. Conclusions: DPS selectively radioprotected normal intestinal CECs and sensitized prostate cancer cells in a clinically relevant model. This effect may be, at least in part, mediated by DNA damage response activation and has the potential to significantly increase the therapeutic index of radiation therapy.

  5. Dynamic changes of [Ca2+]i in cerebellar granule cells exposed to pulsed electric fields

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Intracellular free Ca2+ concentration ([Ca2+]i) in embryonic chick cerebellar granule cells loaded with fluo-3/AM and exposed to a single pulsed electric field was investigated using a confocal laser scanning microscope and fluorescent microscope equipped with CCD video imaging system.The results showed that [Ca2+]i increased immediately and rose to the peak rapidly as the cells exposed to a single pulsed electric field.The amplitude and rate of the increases of [Ca2+]i depend on the intensity of external electric field.In the presence of Ca2+ chelant EGTA or Ca2+ channels blocker La3+ in the pulsation solutions,the increase of [Ca2+]i was still observable.It was also observed that [Ca2+]i of different intracellular areas in the cell elevated simultaneously while the peak of the increase of [Ca2+]i in the poles of the cell preceded to the peak in its somata and recovered to a plateau within a short time.

  6. Dynamic changes of [Ca2+]i in cerebellar granule cells exposed to pulsed electric fields

    Institute of Scientific and Technical Information of China (English)

    陈雅; 王彦; 孙彤; 张锦珠; 景向红; 李瑞午

    2000-01-01

    Intracellular free Ca2+ concentration ([Ca2+]i) in embryonic chick cerebellar granule cells loaded with fluo-3/AM and exposed to a single pulsed electric field was investigated using a confocal laser scanning microscope and fluorescent microscope equipped with CCD video imaging system. The results showed that [Ca2+]i increased immediately and rose to the peak rapidly as the cells exposed to a single pulsed electric field. The amplitude and rate of the increases of [Ca2+]i depend on the intensity of external electric field. In the presence of Ca2+ chelant EGTA or Ca2+ channels blocker La3+ in the pulsation solutions, the increase of [Ca2+]i was still observable. It was also observed that [Ca2+]i of different intracellular areas in the cell elevated simultaneously while the peak of the increase of [Ca2+]i in the poles of the cell preceded to the peak in its somata and recovered to a plateau within a short time.

  7. Single Walled Carbon Nanotubes Exhibit Dual-Phase Regulation to Exposed Arabidopsis Mesophyll Cells

    Science.gov (United States)

    Yuan, Hengguang; Hu, Shanglian; Huang, Peng; Song, Hua; Wang, Kan; Ruan, Jing; He, Rong; Cui, Daxiang

    2011-12-01

    Herein we are the first to report that single-walled carbon nanotubes (SWCNTs) exhibit dual-phase regulation to Arabidopsis mesophyll cells exposed to different concentration of SWCNTs. The mesophyll protoplasts were prepared by enzyme digestion, and incubated with 15, 25, 50, 100 μg/ml SWCNTs for 48 h, and then were observed by optical microscopy and transmission electron microscopy, the reactive oxygen species (ROS) generation was measured. Partial protoplasts were stained with propidium iodide and 4'-6- diamidino-2-phenylindole, partial protoplasts were incubated with fluorescein isothiocyanate-labeled SWCNTs, and observed by fluorescence microscopy. Results showed that SWCNTs could traverse both the plant cell wall and cell membrane, with less than or equal to 50 μg/ml in the culture medium, SWCNTs stimulated plant cells to grow out trichome clusters on their surface, with more than 50 μg/ml SWCNTs in the culture medium, SWCNTs exhibited obvious toxic effects to the protoplasts such as increasing generation of ROS, inducing changes of protoplast morphology, changing green leaves into yellow, and inducing protoplast cells' necrosis and apoptosis. In conclusion, single walled carbon nanotubes can get through Arabidopsis mesophyll cell wall and membrane, and exhibit dose-dependent dual-phase regulation to Arabidopsis mesophyll protoplasts such as low dose stimulating cell growth, and high dose inducing cells' ROS generation, necrosis or apoptosis.

  8. Single Walled Carbon Nanotubes Exhibit Dual-Phase Regulation to Exposed Arabidopsis Mesophyll Cells

    Directory of Open Access Journals (Sweden)

    Huang Peng

    2011-01-01

    Full Text Available Abstract Herein we are the first to report that single-walled carbon nanotubes (SWCNTs exhibit dual-phase regulation to Arabidopsis mesophyll cells exposed to different concentration of SWCNTs. The mesophyll protoplasts were prepared by enzyme digestion, and incubated with 15, 25, 50, 100 μg/ml SWCNTs for 48 h, and then were observed by optical microscopy and transmission electron microscopy, the reactive oxygen species (ROS generation was measured. Partial protoplasts were stained with propidium iodide and 4'-6- diamidino-2-phenylindole, partial protoplasts were incubated with fluorescein isothiocyanate-labeled SWCNTs, and observed by fluorescence microscopy. Results showed that SWCNTs could traverse both the plant cell wall and cell membrane, with less than or equal to 50 μg/ml in the culture medium, SWCNTs stimulated plant cells to grow out trichome clusters on their surface, with more than 50 μg/ml SWCNTs in the culture medium, SWCNTs exhibited obvious toxic effects to the protoplasts such as increasing generation of ROS, inducing changes of protoplast morphology, changing green leaves into yellow, and inducing protoplast cells' necrosis and apoptosis. In conclusion, single walled carbon nanotubes can get through Arabidopsis mesophyll cell wall and membrane, and exhibit dose-dependent dual-phase regulation to Arabidopsis mesophyll protoplasts such as low dose stimulating cell growth, and high dose inducing cells' ROS generation, necrosis or apoptosis.

  9. Insights on cryoprotectant toxicity from gene expression profiling of endothelial cells exposed to ethylene glycol.

    Science.gov (United States)

    Cordeiro, Rui Martins; Stirling, Soren; Fahy, Gregory M; de Magalhães, João Pedro

    2015-12-01

    Cryopreservation consists of preserving living cells or tissues generally at -80 °C or below and has many current applications in cell and tissue banking, and future potential for organ banking. Cryoprotective agents such as ethylene glycol (EG) are required for successful cryopreservation of most living systems, but have toxic side effects whose mechanisms remain largely unknown. In this work, we investigated the mechanisms of toxicity of ethylene glycol in human umbilical vein endothelial cells (HUVECs) as a model of the vascular endothelium in perfused organs. Exposing cells to 60% v/v EG for 2 h at 4 °C resulted in only a slight decrease in subsequent cell growth, suggesting only modest toxicity of EG for this cell type. Gene expression analysis with whole genome microarrays revealed signatures indicative of a generalized stress response at 24 h after EG exposure and a trend toward partial recovery at 72 h. The observed changes involved signalling pathways, glycoproteins, and genes involved in extracellular and transmembrane functions, the latter suggesting potential effects of ethylene glycol on membranes. These results continue to develop a new paradigm for understanding cryoprotectant toxicity and reveal molecular signatures helpful for future experiments in more completely elucidating the toxic effects of ethylene glycol in vascular endothelial cells and other cell types. PMID:26471925

  10. Reproductive integrity of mammalian cells exposed to power frequency electromagnetic fields.

    Science.gov (United States)

    Livingston, G K; Witt, K L; Gandhi, O P; Chatterjee, I; Roti Roti, J L

    1991-01-01

    Human lymphocytes and Chinese hamster ovary (CHO) fibroblasts were analyzed for cytogenetic and cytotoxic endpoints to determine whether exposure to power frequency (60 Hz) electromagnetic fields (EMF) interferes with normal cell growth and reproduction. An exposure chamber was built to apply variable electric current densities of 3, 30, 300, and 3,000 microA/cm2, simultaneously with a fixed magnetic field of 2.2 G to proliferating cells. The current densities were chosen to bracket those that may be induced in the human body by fields measured beneath high voltage (765 kV) power transmission lines. The electric current was applied through the media of a cell culture chamber positioned between two stainless steel electrodes but separated from direct contact with the culture media by a salt bridge composed of a 1% agarose gel. The magnetic field was generated using two pairs of Helmholtz coils driven 73 degrees out of phase producing an elliptically polarized magnetic field 36 degrees out of phase with the electric field. The EMFs were measured and mapped inside the cell culture chamber to insure their uniformity. CHO cells were exposed continuously for 24-96 hr (depending on experiment) and human lymphocytes were exposed continuously for 72 hr. The EMFs were monitored throughout the entire treatment period using a multichannel chart recorder to verify continuous application of the desired fields. Sister-chromatid exchange and micronuclei were monitored to evaluate the potential for genotoxicity. In addition, standard growth curves, clonogenicity, and cell cycle kinetics were analyzed to evaluate possible cytotoxic effects. The experimental data consistently showed that the growth rate and reproductive integrity of both cell types was unaffected by exposure to the electromagnetic fields. PMID:1991460

  11. Live-cell imaging study of mitochondrial morphology in mammalian cells exposed to X-rays

    International Nuclear Information System (INIS)

    Morphological changes in mitochondria induced by X-irradiation in normal murine mammary gland cells were studied with a live-cell microscopic imaging technique. Mitochondria were visualised by staining with a specific fluorescent probe in the cells, which express fluorescent ubiquitination-based cell-cycle indicator 2 (Fucci2) probes to visualise cell cycle. In unirradiated cells, the number of cells with fragmented mitochondria was about 20 % of the total cells through observation period (96 h). In irradiated cells, the population with fragmented mitochondria significantly increased depending on the absorbed dose. Particularly, for 8 Gy irradiation, the accumulation of fragmentation persists even in the cells whose cell cycle came to a stand (80 % in G1 (G0-like) phase). The fraction reached to a maximum at 96 h after irradiation. The kinetics of the fraction with fragmented mitochondria was similar to that for cells in S/G2/M phase (20 %) through the observation period (120 h). The evidences show that, in irradiated cells, some signals are continually released from a nucleus or cytoplasm even in the G0-like cells to operate some sort of protein machineries involved in mitochondrial fission. It is inferred that this delayed mitochondrial fragmentation is strongly related to their dysfunction, and hence might modulate radiobiological effects such as mutation or cell death. (authors)

  12. Live-cell imaging study of mitochondrial morphology in mammalian cells exposed to X-rays.

    Science.gov (United States)

    Noguchi, M; Kanari, Y; Yokoya, A; Narita, A; Fujii, K

    2015-09-01

    Morphological changes in mitochondria induced by X-irradiation in normal murine mammary gland cells were studied with a live-cell microscopic imaging technique. Mitochondria were visualised by staining with a specific fluorescent probe in the cells, which express fluorescent ubiquitination-based cell-cycle indicator 2 (Fucci2) probes to visualise cell cycle. In unirradiated cells, the number of cells with fragmented mitochondria was about 20 % of the total cells through observation period (96 h). In irradiated cells, the population with fragmented mitochondria significantly increased depending on the absorbed dose. Particularly, for 8 Gy irradiation, the accumulation of fragmentation persists even in the cells whose cell cycle came to a stand (80 % in G1 (G0-like) phase). The fraction reached to a maximum at 96 h after irradiation. The kinetics of the fraction with fragmented mitochondria was similar to that for cells in S/G2/M phase (20 %) through the observation period (120 h). The evidences show that, in irradiated cells, some signals are continually released from a nucleus or cytoplasm even in the G0-like cells to operate some sort of protein machineries involved in mitochondrial fission. It is inferred that this delayed mitochondrial fragmentation is strongly related to their dysfunction, and hence might modulate radiobiological effects such as mutation or cell death.

  13. Piperine causes G1 phase cell cycle arrest and apoptosis in melanoma cells through checkpoint kinase-1 activation.

    Directory of Open Access Journals (Sweden)

    Neel M Fofaria

    Full Text Available In this study, we determined the cytotoxic effects of piperine, a major constituent of black and long pepper in melanoma cells. Piperine treatment inhibited the growth of SK MEL 28 and B16 F0 cells in a dose and time-dependent manner. The growth inhibitory effects of piperine were mediated by cell cycle arrest of both the cell lines in G1 phase. The G1 arrest by piperine correlated with the down-regulation of cyclin D1 and induction of p21. Furthermore, this growth arrest by piperine treatment was associated with DNA damage as indicated by phosphorylation of H2AX at Ser139, activation of ataxia telangiectasia and rad3-related protein (ATR and checkpoint kinase 1 (Chk1. Pretreatment with AZD 7762, a Chk1 inhibitor not only abrogated the activation of Chk1 but also piperine mediated G1 arrest. Similarly, transfection of cells with Chk1 siRNA completely protected the cells from G1 arrest induced by piperine. Piperine treatment caused down-regulation of E2F1 and phosphorylation of retinoblastoma protein (Rb. Apoptosis induced by piperine was associated with down-regulation of XIAP, Bid (full length and cleavage of Caspase-3 and PARP. Furthermore, our results showed that piperine treatment generated ROS in melanoma cells. Blocking ROS by tiron protected the cells from piperine mediated cell cycle arrest and apoptosis. These results suggest that piperine mediated ROS played a critical role in inducing DNA damage and activation of Chk1 leading to G1 cell cycle arrest and apoptosis.

  14. Fate of D3 mouse embryonic stem cells exposed to X-rays or carbon ions.

    Science.gov (United States)

    Luft, S; Pignalosa, D; Nasonova, E; Arrizabalaga, O; Helm, A; Durante, M; Ritter, S

    2014-01-15

    The risk of radiation exposure during embryonic development is still a major problem in radiotoxicology. In this study we investigated the response of the murine embryonic stem cell (mESC) line D3 to two radiation qualities: sparsely ionizing X-rays and densely ionizing carbon ions. We analyzed clonogenic cell survival, proliferation, induction of chromosome aberrations as well as the capability of cells to differentiate to beating cardiomyocytes up to 3 days after exposure. Our results show that, for all endpoints investigated, carbon ions are more effective than X-rays at the same radiation dose. Additionally, in long term studies (≥8 days post-irradiation) chromosomal damage and the pluripotency state were investigated. These studies reveal that pluripotency markers are present in the progeny of cells surviving the exposure to both radiation types. However, only in the progeny of X-ray exposed cells the aberration frequency was comparable to that of the control population, while the progeny of carbon ion irradiated cells harbored significantly more aberrations than the control, generally translocations. We conclude that cells surviving the radiation exposure maintain pluripotency but may carry stable chromosomal rearrangements after densely ionizing radiation.

  15. Radiosensitizing Effect of TRPV1 Channel Inhibitors in Cancer Cells.

    Science.gov (United States)

    Nishino, Keisuke; Tanamachi, Keisuke; Nakanishi, Yuto; Ide, Shunta; Kojima, Shuji; Tanuma, Sei-Ichi; Tsukimoto, Mitsutoshi

    2016-07-01

    Radiosensitizers are used in cancer therapy to increase the γ-irradiation susceptibility of cancer cells, including radioresistant hypoxic cancer cells within solid tumors, so that radiotherapy can be applied at doses sufficiently low to minimize damage to adjacent normal tissues. Radiation-induced DNA damage is repaired by multiple repair systems, and therefore these systems are potential targets for radiosensitizers. We recently reported that the transient receptor potential vanilloid type 1 (TRPV1) channel is involved in early responses to DNA damage after γ-irradiation of human lung adenocarcinoma A549 cells. Therefore, we hypothesized that TRPV1 channel inhibitors would have a radiosensitizing effect by blocking repair of radiation-induced cell damage. Here, we show that pretreatment of A549 cells with the TRPV1 channel inhibitors capsazepine, AMG9810, SB366791 and BCTC suppressed the γ-ray-induced activation of early DNA damage responses, i.e., activation of the protein kinase ataxia-telangiectasia mutated (ATM) and accumulation of p53-binding protein 1 (53BP1). Further, the decrease of survival fraction at one week after γ-irradiation (2.0 Gy) was enhanced by pretreatment of cells with these inhibitors. On the other hand, inhibitor pretreatment did not affect cell viability, the number of apoptotic or necrotic cells, or DNA synthesis at 24 h after irradiation. These results suggest that inhibition of DNA repair by TRPV1 channel inhibitors in irradiated A549 cells caused gradual loss of proliferative ability, rather than acute facilitation of apoptosis or necrosis. TRPV1 channel inhibitors could be novel candidates for radiosensitizers to improve the efficacy of radiation therapy, either alone or in combination with other types of radiosensitizers. PMID:27150432

  16. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shi-Wei [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Wu, Chun-Ying [Division of Gastroenterology and Hepatology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Wang, Yen-Ting [Department of Medical Research and Education, Cheng Hsin General Hospital, Taipei, Taiwan (China); Kao, Jun-Kai [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Department of Pediatrics, Children' s Hospital, Changhua Christian Hospital, Changhua, Taiwan (China); Lin, Chi-Chen; Chang, Chia-Che; Mu, Szu-Wei; Chen, Yu-Yu [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Chiu, Husan-Wen [Institute of Biotechnology, National Cheng-Kung University, Tainan, Taiwan (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan (China); Chang, Chuan-Hsun [Department of Surgical Oncology, Cheng Hsin General Hospital, Taipei, Taiwan (China); Department of Nutrition Therapy, Cheng Hsin General Hospital, Taipei, Taiwan (China); School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan (China); Liang, Shu-Mei [Institute of Biotechnology, National Cheng-Kung University, Tainan, Taiwan (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan (China); Chen, Yi-Ju [Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Huang, Jau-Ling [Department of Bioscience Technology, Chang Jung Christian University, Tainan, Taiwan (China); Shieh, Jeng-Jer, E-mail: shiehjj@vghtc.gov.tw [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan (China)

    2013-02-15

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status.

  17. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells

    International Nuclear Information System (INIS)

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status

  18. Protein C Inhibitor (PCI) Binds to Phosphatidylserine Exposing Cells with Implications in the Phagocytosis of Apoptotic Cells and Activated Platelets

    OpenAIRE

    Daniela Rieger; Alice Assinger; Katrin Einfinger; Barbora Sokolikova; Margarethe Geiger

    2014-01-01

    Protein C Inhibitor (PCI) is a secreted serine protease inhibitor, belonging to the family of serpins. In addition to activated protein C PCI inactivates several other proteases of the coagulation and fibrinolytic systems, suggesting a regulatory role in hemostasis. Glycosaminoglycans and certain negatively charged phospholipids, like phosphatidylserine, bind to PCI and modulate its activity. Phosphatidylerine (PS) is exposed on the surface of apoptotic cells and known as a phagocytosis marke...

  19. Effects of Potassium Currents upon Action Potential of Cardiac Cells Exposed to External Electric fields

    Institute of Scientific and Technical Information of China (English)

    An-Ying Zhang; Xiao-Feng Pang

    2008-01-01

    Previous studies show that exposure to high-voltage electric fields would influence the electro cardiogram both in experimental animate and human beings. The effects of the external electric fields upon action potential of cardiac cells are studied in this paper based on the dynamical model, LR91. Fourth order Runger-Kuta is used to analyze the change of potassium ion channels exposed to external electric fields in detail. Results indicate that external electric fields could influence the current of potassium ion by adding an induced component voltage on membrane. This phenomenon might be one of the reasons of heart rate anomaly under the high-voltage electric fields.

  20. Proteomic signature of Arabidopsis cell cultures exposed to magnetically induced hyper- and microgravity environments.

    Science.gov (United States)

    Herranz, Raul; Manzano, Ana I; van Loon, Jack J W A; Christianen, Peter C M; Medina, F Javier

    2013-03-01

    Earth-based microgravity simulation techniques are required due to space research constraints. Using diamagnetic levitation, we exposed Arabidopsis thaliana in vitro callus cultures to environments with different levels of effective gravity and magnetic field strengths (B) simultaneously. The environments included simulated 0 g* at B=10.1 T, an internal 1 g* control (B=16.5 T), and hypergravity (2 g* at B=10.1 T). Furthermore, samples were also exposed to altered gravity environments that were created with mechanical devices, such as the Random Positioning Machine (simulated μg) and the Large Diameter Centrifuge (2 g). We have determined the proteomic signature of cell cultures exposed to these altered-gravity environments by means of the difference gel electrophoresis (DiGE) technique, and we have compared the results with microarray-based transcriptomes from the same samples. The magnetic field itself produced a low number of proteomic alterations, but the combination of gravitational alteration and magnetic field exposure produced synergistic effects on the proteome of plants (the number of significant changes is 3-7 times greater). Tandem mass spectrometry identification of 19 overlapping spots in the different conditions corroborates a major role of abiotic stress and secondary metabolism proteins in the molecular adaptation of plants to unusual environments, including microgravity.

  1. Colon stem cell and crypt dynamics exposed by cell lineage reconstruction.

    Directory of Open Access Journals (Sweden)

    Yitzhak Reizel

    2011-07-01

    Full Text Available Stem cell dynamics in vivo are often being studied by lineage tracing methods. Our laboratory has previously developed a retrospective method for reconstructing cell lineage trees from somatic mutations accumulated in microsatellites. This method was applied here to explore different aspects of stem cell dynamics in the mouse colon without the use of stem cell markers. We first demonstrated the reliability of our method for the study of stem cells by confirming previously established facts, and then we addressed open questions. Our findings confirmed that colon crypts are monoclonal and that, throughout adulthood, the process of monoclonal conversion plays a major role in the maintenance of crypts. The absence of immortal strand mechanism in crypts stem cells was validated by the age-dependent accumulation of microsatellite mutations. In addition, we confirmed the positive correlation between physical and lineage proximity of crypts, by showing that the colon is separated into small domains that share a common ancestor. We gained new data demonstrating that colon epithelium is clustered separately from hematopoietic and other cell types, indicating that the colon is constituted of few progenitors and ruling out significant renewal of colonic epithelium from hematopoietic cells during adulthood. Overall, our study demonstrates the reliability of cell lineage reconstruction for the study of stem cell dynamics, and it further addresses open questions in colon stem cells. In addition, this method can be applied to study stem cell dynamics in other systems.

  2. Radiation-Induced Bystander Effects in A549 Cells Exposed to 6 MV X-rays.

    Science.gov (United States)

    Yang, Shuning; Xu, Jing; Shao, Weixian; Geng, Chong; Li, Jia; Guo, Feng; Miao, Hui; Shen, Wenbin; Ye, Tao; Liu, Yazhou; Xu, Haiting; Zhang, Xuguang

    2015-07-01

    The aim of the study is to explore the bystander effects in A549 cells that have been exposed to 6MV X-ray. Control group, irradiated group, irradiated conditioned medium (ICM)-received group, and fresh medium group were designed in this study. A549 cells in the logarithmic growth phase were irradiated with 6MV X-ray at 0, 0.5, 1, 1.5, and 2. In ICM-received group, post-irradiation A549 cells were cultured for 3 h and were transferred into non-irradiated A549 cells for further cultivation. Clone forming test was applied to detect the survival fraction of cells. Annexin V-FITC/PI double-staining assay was used to detect the apoptosis of A549 cells 24, 48, 72, and 96 h after 2-Gy 6MV X-ray irradiation, and the curves of apoptosis were drawn. The changes in the cell cycles 4, 48, 72, and 96 h after 2-Gy 6MV X-ray irradiation were detected using PI staining flow cytometry. With the increase of irradiation dose, the survival fraction of A549 cells after the application of 0.5 Gy irradiation was decreasing continuously. In comparison to the control group, the apoptosis rate of the ICM-received group was increased in a time-dependent pattern, with the highest apoptosis rate observed at 72 h (p A549 cell damage, indicating that 6MV X-ray irradiation can induce bystander effect on A549 cells, which reaches a peak at 72 h. PMID:25686868

  3. Functional switching of ATM: sensor of DNA damage in proliferating cells and mediator of Akt survival signal in post-mitotic human neuron-like cells

    Institute of Scientific and Technical Information of China (English)

    Yan Li; Hua Xiong; Da-Qing Yang

    2012-01-01

    Ataxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by cerebellar ataxia and oculocutaneous telangiectasias.The gene mutated in this disease,ATM (A-T,mutated),encodes a 370-kDa Ser/Thr protein kinase.ATM not only mediates cellular response to DNA damage but also acts as an activator of Akt in response to insulin.However,despite intensive studies,the mechanism underlying the neuronal degeneration symptoms of human A-T is still poorly understood.We found that the topoisomerase inhibitors etoposide and camptothecin readily induced apoptosis in undifferentiated proliferating SH-SY5Y cells but could not induce apoptosis in neuronally differentiated SH-SY5Y cells.In addition,etoposide induced p53 phosphorylation and H2AX foci formation in proliferating SH-SY5Y cells but failed to do so in differentiated SH-SY5Y cells.Moreover,while inhibition of ATM in undifferentiated SH-SY5Y cells partially protected them from etoposide-induced apoptosis,the same treatment had no effect on cell viability in differentiated SH-SY5Y cells.These results suggest that DNA damage or defective response to DNA damage is not the cause of neuronal cell death in human A-T.In contrast,we discovered that Akt phosphorylation was inhibited when ATM activity was suppressed in differentiated SH-SY5Y cells.Furthermore,inhibition of ATM induced apoptosis following serum starvation in neuronally differentiated SH-SY5Y cells but could not trigger apoptosis under the same conditions in undifferentiated proliferating SH-SY5Y cells.These results demonstrate that ATM mediates the Akt signaling and promotes cell survival in neuron-like human SH-SY5Y cells,suggesting that impaired activation of Akt is the reason for neuronal degeneration in human A-T.

  4. Evaluation of cell types for assessment of cytogenetic damage in arsenic exposed population

    Directory of Open Access Journals (Sweden)

    Singh Keshav K

    2008-05-01

    Full Text Available Abstract Background Cytogenetic biomarkers are essential for assessing environmental exposure, and reflect adverse human health effects such as cellular damage. Arsenic is a potential clastogen and aneugen. In general, the majority of the studies on clastogenic effects of arsenic are based on frequency of micronuclei (MN study in peripheral lymphocytes, urothelial and oral epithelial cells. To find out the most suitable cell type, here, we compared cytogenetic damage through MN assay in (a various populations exposed to arsenic through drinking water retrieved from literature review, as also (b arsenic-induced Bowen's patients from our own survey. Results For literature review, we have searched the Pubmed database for English language journal articles using the following keywords: "arsenic", "micronuclei", "drinking water", and "human" in various combinations. We have selected 13 studies consistent with our inclusion criteria that measured micronuclei in either one or more of the above-mentioned three cell types, in human samples. Compared to urothelial and buccal mucosa cells, the median effect sizes measured by the difference between people with exposed and unexposed, lymphocyte based MN counts were found to be stronger. This general pattern pooled from 10 studies was consistent with our own set of three earlier studies. MN counts were also found to be stronger for lymphocytes even in arsenic-induced Bowen's patients (cases compared to control individuals having arsenic-induced non-cancerous skin lesions. Conclusion Overall, it can be concluded that MN in lymphocytes may be superior to other epithelial cells for studying arsenic-induced cytogenetic damage.

  5. The effect of K(+) on caspase activity of corneal epithelial cells exposed to UVB.

    Science.gov (United States)

    Leerar, John R; Glupker, Courtney D; Schotanus, Mark P; Ubels, John L

    2016-10-01

    Exposure of human corneal limbal epithelial (HCLE) cells to UVB triggers rapid loss of K(+) and apoptosis via activation of caspases -9, -8 and -3. It has been shown that preventing loss of intracellular K(+) can inhibit apoptosis. The goal of this study was to investigate the effect of K(+) on the UVB-induced caspase activity. HCLE cells were exposed to 150 mJ/cm(2) UVB, followed by measurement of caspase activity in cell lysates. Caspase activity was measured in the presence and absence of 100 mM K(+) in the reaction buffer. UVB-induced activity of caspases -9, -8 and -3 all decreased in the presence of 100 mM K(+). These results suggest that a role of high [K(+)] in the cell is to inhibit caspase activity. Therefore, when cells lose K(+) in response to UVB, caspases are activated and cells go into apoptosis. This supports our hypothesis that K(+) inhibits caspase activity.

  6. Cell wall chitosaccharides are essential components and exposed patterns of the phytopathogenic oomycete Aphanomyces euteiches.

    Science.gov (United States)

    Badreddine, Ilham; Lafitte, Claude; Heux, Laurent; Skandalis, Nicholas; Spanou, Zacharoula; Martinez, Yves; Esquerré-Tugayé, Marie-Thérèse; Bulone, Vincent; Dumas, Bernard; Bottin, Arnaud

    2008-11-01

    Chitin is an essential component of fungal cell walls, where it forms a crystalline scaffold, and chitooligosaccharides derived from it are signaling molecules recognized by the hosts of pathogenic fungi. Oomycetes are cellulosic fungus-like microorganisms which most often lack chitin in their cell walls. Here we present the first study of the cell wall of the oomycete Aphanomyces euteiches, a major parasite of legume plants. Biochemical analyses demonstrated the presence of ca. 10% N-acetyl-D-glucosamine (GlcNAc) in the cell wall. Further characterization of the GlcNAc-containing material revealed that it corresponds to noncrystalline chitosaccharides associated with glucans, rather than to chitin per se. Two putative chitin synthase (CHS) genes were identified by data mining of an A. euteiches expressed sequence tag collection and Southern blot analysis, and full-length cDNA sequences of both genes were obtained. Phylogeny analysis indicated that oomycete CHS diversification occurred before the divergence of the major oomycete lineages. Remarkably, lectin labeling showed that the Aphanomyces euteiches chitosaccharides are exposed at the cell wall surface, and study of the effect of the CHS inhibitor nikkomycin Z demonstrated that they are involved in cell wall function. These data open new perspectives for the development of antioomycete drugs and further studies of the molecular mechanisms involved in the recognition of pathogenic oomycetes by the host plants. PMID:18806214

  7. Disrupted Endothelial Cell Layer and Exposed Extracellular Matrix Proteins Promote Capture of Late Outgrowth Endothelial Progenitor Cells.

    Science.gov (United States)

    Zhao, Jing; Mitrofan, Claudia-Gabriela; Appleby, Sarah L; Morrell, Nicholas W; Lever, Andrew M L

    2016-01-01

    Late outgrowth endothelial progenitor cells (LO-EPC) possess a high proliferative potential, differentiate into vascular endothelial cells (EC), and form networks, suggesting they play a role in vascular repair. However, due to their scarcity in the circulation there is a requirement for ex vivo expansion before they could provide a practical cell therapy and it is currently unclear if they would home and engraft to an injury site. Using an in vitro flow system we studied LO-EPC under simulated injury conditions including EC activation, ischaemia, disrupted EC integrity, and exposed basement membrane. Perfused LO-EPC adhered to discontinuous EC paracellularly at junctional regions between adjacent cells under shear stress 0.7 dyn/cm(2). The interaction was not adhesion molecule-dependent and not enhanced by EC activation. LO-EPC expressed high levels of the VE-Cadherin which may explain these findings. Ischaemia reperfusion injury decreased the interaction with LO-EPC due to cell retraction. LO-EPC interacted with exposed extracellular matrix (ECM) proteins, fibronectin and vitronectin. The interaction was mediated by integrins α5β3, αvβ1, and αvβ3. This study has demonstrated that an injured local environment presents sufficient adhesive signals to capture flow perfused LO-EPC in vitro and that LO-EPC have properties consistent with their potential role in vascular repair. PMID:27413378

  8. 44. Study the level of DNA breakage in workers exposed to styrene by single cell gel electrophoresis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: Study the level of DNA breakage in workers exposed to styrene. Methods: 35 workers aging from 18 to 40 exposed to styrene half a year above were observed as exposed group, in the mean time, 57 workers in the same district who hadn't been exposed to known genotoxicant were selected as control. Bloods of them were sampled and DNA lesions were detected by single cell gel electrophoresis. Results: Compared with control, the ratio between the length of Comet tail and the total length of Comet in exposed group significantly increased, especially it raised following the styrene concentration exposed, but it was not different among different working age groups. Conclusions: DNA is damaged by styrene, and it appears as dose-response relationship.

  9. Cell size dynamics and viability of cells exposed to hypotonic treatment and electroporation for electrofusion optimization:

    OpenAIRE

    Hudej, Rosana; Kandušer, Maša; Miklavčič, Damijan; Trontelj, Katja; Ušaj, Marko

    2009-01-01

    Background. Various electrofusion parameters have to be adjusted to obtain theoptimal electrofusion efficiency. Based on published data, good electrofusion conditions can be achieved with the hypotonic treatment. However, the duration of the hypotonic treatment before electroporation and buffer hypoosmolarity have to be adjusted in order to cause cell swelling, to avoid regulatory volume decrease and to preserve cell viability. The aims of our study were to determine cell size dynamics and vi...

  10. Cell size dynamics and viability of cells exposed to hypotonic treatment and electroporation for electrofusion optimization

    OpenAIRE

    Trontelj, Katja; Kandušer, Maša; Miklavčič, Damijan; Hudej, Rosana; Ušaj, Marko

    2015-01-01

    Background. Various electrofusion parameters have to be adjusted to obtain theoptimal electrofusion efficiency. Based on published data, good electrofusion conditions can be achieved with the hypotonic treatment. However, the duration of the hypotonic treatment before electroporation and buffer hypoosmolarity have to be adjusted in order to cause cell swelling, to avoid regulatory volume decrease and to preserve cell viability. The aims of our study were to determine cell size dynamics and vi...

  11. DNA damage induction in human cells exposed to vanadium oxides in vitro.

    Science.gov (United States)

    Rodríguez-Mercado, Juan J; Mateos-Nava, Rodrigo A; Altamirano-Lozano, Mario A

    2011-12-01

    Vanadium and vanadium salts cause genotoxicity and elicit variable biological effects depending on several factors. In the present study, we analyzed and compared the DNA damage and repair processes induced by vanadium in three oxidation states. We used human blood leukocytes in vitro and in a single cell gel electrophoresis assay at two pH values. We observed that vanadium(III) trioxide and vanadium(V) pentoxide produced DNA single-strand breaks at all of the concentrations (1, 2, 4, or 8 μg/ml) and treatment times (2, 4, or 6 h) tested. Vanadium(IV) tetraoxide treatment significantly increased DNA damage at all concentrations for 4 or 6 h of treatment but not for 2 h of treatment. The DNA repair kinetics indicated that most of the cells exposed to vanadium III and V for 4 h recovered within the repair incubation time of 90 min; however, those exposed to vanadium(IV) repaired their DNA within 120 min. The data at pH 9 indicated that vanadium(IV) tetraoxide induced DNA double-strand breaks. Our results show that the genotoxic effect of vanadium can be produced by any of its three oxidation states. However, vanadium(IV) induces double-strand breaks, and it is known that these lesions are linked with forming structural chromosomal aberrations. PMID:21803147

  12. Capacity of ultraviolet-induced DNA repair in human glioma cells

    International Nuclear Information System (INIS)

    A DNA repair abnormality is likely related to an increased incidence of neoplasms in several autosomal recessive diseases such as xeroderma pigmentosum, Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. In human glioma cells, however, there are only a few reports on DNA repair. In this study, an ultraviolet (UV)-induced DNA repair was examined systematically in many human glioma cells. Two human malignant glioma cell lines (MMG-851, U-251-MG) and 7 human glioma cell strains (4, benign; 3, malignant) of short term culture, in which glial fibrillary acidic protein (GFAP) staining were positive, were used. To investigate the capacity of DNA repair, UV sensitivity was determined by colony formation; excision repair by autoradiography and Cytosine Arabinoside (Ara-C) assay; and post-replication repair by the joining rate of newly synthesized DNA. As a result, the colony-forming abilities of malignant glioma cell lines were lower than those of normal human fibroblasts, but no difference was found between two malignant glioma cell lines. The excision repair of the malignant group (2 cell lines and 3 cell strains) was apparently lower than that of the benign group (4 cell strains). In two malignant glioma cell lines, the excision repair of MMG-851 was lower than that of U-251-MG, and the post-replication repair of MMG-851 was higher than that of U-251-MG. These results were considered to correspond well with colony-forming ability. The results indicate that there are some differences in each human malignant glioma cell in its UV-induced DNA repair mechanism, and that the excision repair of the malignant glioma cells is apparently lower than that of the benign glioma cells. These findings may be useful for diagnosis and treatment. (author)

  13. Gene expression profile of Jurkat cells exposed to high power terahertz radiation

    Science.gov (United States)

    Grundt, Jessica E.; Roth, Caleb C.; Rivest, Benjamin D.; Doroski, Michael L.; Payne, Jason; Ibey, Bennett L.; Wilmink, Gerald J.

    2011-03-01

    Terahertz (THz) radiation sources are now being used in a host of military, defense, and medical applications. Widespread employment of these applications has prompted concerns regarding the health effects associated with THz radiation. In this study, we examined the gene expression profile of mammalian cells exposed to THz radiation. We hypothesized that if THz radiation couples directly to cellular constituents, then exposed cells may express a specific gene expression profile indicative of ensuing damage. To test this hypothesis, Jurkat cells were irradiated with a molecular gas THz laser (2.52 THz, 636 mWcm-2, durations: 5, 10, 20, 30, 40, or 50 minutes). Viability was assessed 24 h post-exposure using MTT assays, and gene expression profiles were evaluated 4 h post-exposure using mRNA microarrays. Comparable analyses were also performed for hyperthermic positive controls (44°C for 40 minutes). We found that cellular temperatures increased by ~6 °C during THz exposures. We also found that cell death increased with exposure duration, and the median lethal dose (LD50) was calculated to be ~44 minutes. The microarray data showed that THz radiation induced the transcriptional activation of genes associated with cellular proliferation, differentiation, transcriptional activation, chaperone protein stabilization, and apoptosis. For most genes, we found that the magnitude of differential expression was comparable for both the THz and thermal exposure groups; however, several genes were specifically activated by the THz exposure. These results suggest that THz radiation may elicit effects that are not exclusively due to the temperature rise created during THz exposures (i.e. thermal effects). In future work, we plan to verify the results of our microarray experiments using qPCR techniques.

  14. Genotoxic Changes to Rodent Cells Exposed in Vitro to Tungsten, Nickel, Cobalt and Iron

    Directory of Open Access Journals (Sweden)

    Stephanie Bardack

    2014-03-01

    Full Text Available Tungsten-based materials have been proposed as replacements for depleted uranium in armor-penetrating munitions and for lead in small-arms ammunition. A recent report demonstrated that a military-grade composition of tungsten, nickel, and cobalt induced a highly-aggressive, metastatic rhabdomyosarcoma when implanted into the leg muscle of laboratory rats to simulate a shrapnel wound. The early genetic changes occurring in response to embedded metal fragments are not known. In this study, we utilized two cultured rodent myoblast cell lines, exposed to soluble tungsten alloys and the individual metals comprising the alloys, to study the genotoxic effects. By profiling cell transcriptomes using microarray, we found slight, yet distinct and unique, gene expression changes in rat myoblast cells after 24 h metal exposure, and several genes were identified that correlate with impending adverse consequences of ongoing exposure to weapons-grade tungsten alloy. These changes were not as apparent in the mouse myoblast cell line. This indicates a potential species difference in the cellular response to tungsten alloy, a hypothesis supported by current findings with in vivo model systems. Studies examining genotoxic-associated gene expression changes in cells from longer exposure times are warranted.

  15. PD-L2 induction on dendritic cells exposed to Mycobacterium avium downregulates BCG-specific T cell response.

    Science.gov (United States)

    Mendoza-Coronel, Elizabeth; Camacho-Sandoval, Rosa; Bonifaz, Laura C; López-Vidal, Yolanda

    2011-01-01

    The exposure to certain species of Nontuberculous Mycobacteria (NTM) can modulate the immune response induced by Mycobacterium bovis BCG. Mycobacterium avium has been postulated as a weak inducer of dendritic cell (DC) maturation. However, how the DC exposure to M. avium could contribute to the modulation of a BCG-specific CD4+ T cell response and the molecules involved remain unknown. Here, we exposed bone marrow-derived DCs (BMDCs) to M. avium either prior to exposure to BCG or as a unique stimulus. We found that M. avium induces high expression of PD-L2 (B7-DC) in BMDCs. This was dependent on IL-10 production through the TLR2-p38 MAPK signaling pathway. Exposure to M. avium prior to BCG results in BMDCs that do not express co-stimulatory molecules and pro-inflammatory cytokines, while the expression of PD-L2 and IL-10 was maintained. BMDCs exposed to M. avium impaired the activation of BCG-specific T cells through the PD-1: PD-L interaction. This suggests that a M. avium-induced phenotype in DCs might be implicated in the induction of mechanisms of tolerance that could impact the T cell response induced by BCG vaccination.

  16. Human epithelial cells exposed to functionalized multiwalled carbon nanotubes: interactions and cell surface modifications.

    Science.gov (United States)

    Fanizza, C; Casciardi, S; Incoronato, F; Cavallo, D; Ursini, C L; Ciervo, A; Maiello, R; Fresegna, A M; Marcelloni, A M; Lega, D; Alvino, A; Baiguera, S

    2015-09-01

    With the expansion of the production and applications of multiwalled carbon nanotubes (MWCNTs) in several industrial and science branches, the potential adverse effects on human health have attracted attention. Numerous studies have been conducted to evaluate how chemical functionalization may affect MWCNT effects; however, controversial data have been reported, showing either increased or reduced toxicity. In particular, the impact of carboxylation on MWCNT cytotoxicity is far from being completely understood. The aim of this work was the evaluation of the modifications induced by carboxylated-MWCNTs (MWCNTs-COOH) on cell surface and the study of cell-MWCNT-COOH interactions by means of field emission scanning electron microscope (FESEM). Human pulmonary epithelial cells (A549) were incubated with MWCNTs-COOH for different exposure times and concentrations (10 μg/mL for 1, 2, 4 h; 5, 10, 20 μg/mL for 24 h). At short incubation time, MWCNTs-COOH were easily observed associated with plasma membrane and in contact with microvilli. After 24 h exposure, FESEM analysis revealed that MWCNTs-COOH induced evident changes in the cellular surface in comparison to control cells: treated cells showed blebs, holes and a depletion of the microvilli density in association with structure modifications, such as widening and/or lengthening. In particular, an increase of cells showing holes and microvilli structure alterations was observed at 20 μg/mL concentration. FESEM analysis showed nanotube agglomerates, of different sizes, entering into the cell with two different mechanisms: inward bending of the membrane followed by nanotube sinking, and nanotube internalization directly through holes. The observed morphological microvilli modifications, induced by MWCNTs-COOH, could affect epithelial functions, such as the control of surfactant production and secretion, leading to pathological conditions, such as alveolar proteinosis. More detailed studies will be, however, necessary to

  17. Non-thermal DNA damage of cancer cells using near-infrared irradiation.

    Science.gov (United States)

    Tanaka, Yohei; Tatewaki, Naoto; Nishida, Hiroshi; Eitsuka, Takahiro; Ikekawa, Nobuo; Nakayama, Jun

    2012-08-01

    Previously, we reported that near-infrared irradiation that simulates solar near-infrared irradiation with pre- and parallel-irradiational cooling can non-thermally induce cytocidal effects in cancer cells. To explore these effects, we assessed cell viability, DNA damage response pathways, and the percentage of mitotic cancer cells after near-infrared treatment. Further, we evaluated the anti-cancer effects of near-infrared irradiation compared with doxorubicin in xenografts in nude mice by measuring tumor volume and assessing protein phosphorylation by immunoblot analysis. The cell viability of A549 lung adenocarcinoma cells was significantly decreased after three rounds of near-infrared irradiation at 20 J/cm(2). Apoptotic cells were observed in near-infrared treated cells. Moreover, near-infrared treatment increased the phosphorylation of ataxia-telangiectasia mutated (ATM) at Ser(1981), H2AX at Ser(139), Chk1 at Ser(317), structural maintenance of chromosome (SMC) 1 at Ser(966), and p53 at Ser(15) in A549 cells compared with control. Notably, near-infrared treatment induced the formation of nucleic foci of γH2AX. The percentage of mitotic A549 cells, as measured by histone H3 phosphorylation, decreased significantly after three rounds of near-infrared irradiation at 20 J/cm(2). Both near-infrared and doxorubicin inhibited the tumor growth of MDA-MB435 melanoma cell xenografts in nude mice and increased the phosphorylation of p53 at Ser(15), Chk1 at Ser(317), SMC1 at Ser(966), and H2AX at Ser(139) compared with control mice. These results indicate that near-infrared irradiation can non-thermally induce cytocidal effects in cancer cells as a result of activation of the DNA damage response pathway. The near-infrared irradiation schedule used here reduces discomfort and side effects. Therefore, this strategy may have potential application in the treatment of cancer.

  18. AT cells are not radiosensitive for simple chromosomal exchanges at low dose

    Energy Technology Data Exchange (ETDEWEB)

    Hada, Megumi; Huff, Janice L.; Patel, Zarana S. [USRA Division of Life Sciences, Houston, TX 77058 (United States); Kawata, Tetsuya [Department of Radiology, School of Medicine, Keio University, Tokyo (Japan); Pluth, Janice M. [Lawrence Berkeley National Laboratory, Life Sciences Division, One Cyclotron Road, Building 74, Berkeley, CA 94720 (United States); George, Kerry A. [Wyle, 1290 Hercules Drive, Houston, TX 77058 (United States); Cucinotta, Francis A., E-mail: Francis.A.Cucinotta@nasa.gov [NASA, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058 (United States)

    2011-11-01

    Cells deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome) show increased yields of both simple and complex chromosomal aberrations after high doses (>0.5 Gy) of ionizing radiation (X-rays or {gamma}-rays), however less is known on how these cells respond at low dose. Previously we had shown that the increased chromosome aberrations in ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex exchanges. The linear dose-response term for simple exchanges was significantly higher in NBS cells compared to wild type cells, but not for AT cells. However, AT cells have a high background level of exchanges compared to wild type or NBS cells that confounds the understanding of low dose responses. To understand the sensitivity differences for high to low doses, chromosomal aberration analysis was first performed at low dose-rates (0.5 Gy/d), and results provided further evidence for the lack of sensitivity for exchanges in AT cells below doses of 1 Gy. Normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, showed increased numbers of exchanges at a dose of 1 Gy and higher, but were similar to wild type cells at 0.5 Gy or below. These results were confirmed using siRNA knockdown of ATM. The present study provides evidence that the increased radiation sensitivity of AT cells for chromosomal exchanges found at high dose does not occur at low dose.

  19. Dose and temporal effects on gene expression profiles of urothelial cells from rats exposed to diuron

    International Nuclear Information System (INIS)

    Diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) is a substituted urea herbicide that at high dietary levels (2500 ppm) induces rat urinary bladder hyperplasia after 20 weeks of exposure and neoplasia after 2 years. The effects on the urothelium after short-term exposure have not been described. The present 7-day study evaluated the dose-dependency of urothelial alterations in the urinary bladder using light microscopy, scanning electron microscopy, and genome-wide transcriptional profiling. Male Wistar rats were fed 0, 125, 500, 2500 ppm diuron for 7 days. The urinary bladder and isolated urothelial cells of these animals were processed for microscopic examination and gene expression profiling, respectively. No significant treatment-related morphologic effects were observed. The number of differentially expressed genes (DEGs) in the exposed groups increased with diuron levels. Diuron-altered genes involved in cell-to-cell interactions and tissue organization were identified in all treatment groups. After 7 days of diuron exposure, transcriptional responses were observed in the urothelium in the absence of clear morphologic changes. These morphological findings are different from those observed in a previous study in which 20 weeks of diuron exposure was associated with simple hyperplasia secondary to the persistent cytotoxicity and necrosis associated with continuous cellular regeneration. Comparison of the gene expression profiles of rats exposed to the 2500 ppm carcinogenic diuron dose for 7 days versus 20 weeks revealed few similarities between these two time points at the gene or pathway level. Taken together, these data provide insight into the dose- and temporal-dependent morphological and transcriptional changes associated with diuron exposure that may lead to the development of tumors in the rat urinary bladder

  20. Global gene expression profiling in human lung cells exposed to cobalt

    Directory of Open Access Journals (Sweden)

    Steinmetz Gerard

    2007-06-01

    Full Text Available Abstract Background It has been estimated that more than 1 million workers in the United States are exposed to cobalt. Occupational exposure to 59 Co occurs mainly via inhalation and leads to various lung diseases. Cobalt is classified by the IARC as a possible human carcinogen (group 2B. Although there is evidence for in vivo and in vitro toxicity, the mechanisms of cobalt-induced lung toxicity are not fully known. The purpose of this work was to identify potential signatures of acute cobalt exposure using a toxicogenomic approach. Data analysis focused on some cellular processes and protein targets that are thought to be relevant for carcinogenesis, transport and biomarker research. Results A time course transcriptome analysis was performed on A549 human pulmonary cells, leading to the identification of 85 genes which are repressed or induced in response to soluble 59 Co. A group of 29 of these genes, representing the main biological functions, was assessed by quantitative RT-PCR. The expression profiles of six of them were then tested by quantitative RT-PCR in a time-dependent manner and three modulations were confirmed by Western blotting. The 85 modulated genes include potential cobalt carriers (FBXL2, ZNT1, SLC12A5, tumor suppressors or transcription factors (MAZ, DLG1, MYC, AXL and genes linked to the stress response (UBC, HSPCB, BNIP3L. We also identified nine genes coding for secreted proteins as candidates for biomarker research. Of those, TIMP2 was found to be down-regulated and this modulation was confirmed, in a dose-dependent manner, at protein level in the supernatant of exposed cells. Conclusion Most of these genes have never been described as related to cobalt stress and provide original hypotheses for further study of the effects of this metal ion on human lung epithelial cells. A putative biomarker of cobalt toxicity was identified.

  1. Killing effect of Chinese hamster V79 cells exposed to accelerated carbon ions and RBE determination

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Survival curves of Chinese hamster V79 cells exposed to accclerated carbon ions with linear energy transfers of 125.5, 200 and 700 keV/μm were measured, respectively. Inactivation cross sections corresponding to the irradiation above were deduced from the V79 cell survival curves. They are 7.86±0.17, 10.44±1.11 and 32.32±3.58 μm2 in turn. With the surviving response of V79 cells to 60Co γ-rays as a reference value, relative biological effectiveness at 10%, 20%, 50% and 80% survival levels were given for the accelerated carbon ions. The results showed that carbon ions with LET of 125.5 keV/μm had a higher value of RBE at all the four survival levels than the carbon ions with other LETs. It was prompted that the maximum value of RBE for the V79 cell surviving as the biological endpoint emerged at the LET below 200 keV/μm for carbon ions.

  2. EVALUATION OF CELL CYCLE OF Aspergillus nidulans EXPOSED TO THE EXTRACT OF Copaifera officinalis L PLANT

    Directory of Open Access Journals (Sweden)

    Simone Jurema Ruggeri Chiuchetta, Uériton Dias de Oliveira e Josy Fraccaro de Marins

    2006-12-01

    Full Text Available The oil extracted from the Copaifera officinalis L plant has been used in popular medicine to the treatment of several diseases, like cancer. In eukaryotic cells, the process of cellular proliferation follows a standard cycle, named cellular cycle. The transformation of a normal cell in a malignant one requires several steps, in which genes that control normal cellular division or cellular death are modified. Aspergillus nidulans fungus is an excellent system for the study of the cellular differentiation. Its asexual cycle results in the formation of conidia, which are disposed like chains, constituting a structure named conidiophore. This structure consists in an aerial hifae, multinucleate vesicle and uninucleate cells. Current research evaluated the capacity of the C. officinalis L plant extract in promoting alterations in the cellular cycle of A. nidulans diploid strains, by observing macroscopic and microscopic alterations in cellular growth of this fungus. Results shown that no macroscopic alterations were observed in cellular growth of strains exposed to the extract, however, microscopic alterations of conidiophore have been observed in the different extract concentrations analyzed. In this way, the study of the action of C. officinalis L plant extract becomes important considering the fact that this substance is capable to promote alterations in cellular cycle of eukaryotic cells.

  3. Killing effect of Chinese hamster V79 cells exposed to accelerated carbon ions and RBE determination

    Institute of Scientific and Technical Information of China (English)

    LIQiang; ZHOUGuang-Ming; 等

    2002-01-01

    Survival curves of Chinese hamster V79 cells exposed to accelerated carbon ions with linear energy transfers of 125.5,200 and 700keV/um were measured,respectively,Inactivation cross sections corresponding to the irradiation above were deduced from the V79 cell survival curves.They are 7.86±0.17,10.44±1.11 and 32.32±3.59um2 in turn.With the surviving response of V79 cells to 60Co γ-rays as a reference value,relative biological effectiveness at 10%,20%,50%and 80% survival levels were given for the accelerated carbon ions,The results showed that carbon ions with LET of 125.5keV/um had a higher value of RBE at all the four survival levels than the carbon ions with other LETs.It was prompted that the maximum value of RBE for the V79 cell surviving as the biological endpoint emerged at the LET below 200keV/um for carbon ions.

  4. Ethanol Metabolism Activates Cell Cycle Checkpoint Kinase, Chk2

    Science.gov (United States)

    Clemens, Dahn L.; Mahan Schneider, Katrina J.; Nuss, Robert F.

    2011-01-01

    Chronic ethanol abuse results in hepatocyte injury and impairs hepatocyte replication. We have previously shown that ethanol metabolism results in cell cycle arrest at the G2/M transition, which is partially mediated by inhibitory phosphorylation of the cyclin-dependent kinase, Cdc2. To further delineate the mechanisms by which ethanol metabolism mediates this G2/M arrest, we investigated the involvement of upstream regulators of Cdc2 activity. Cdc2 is activated by the phosphatase Cdc25C. The activity of Cdc25C can, in turn, be regulated by the checkpoint kinase, Chk2, which is regulated by the kinase ataxia telangiectasia mutated (ATM). To investigate the involvement of these regulators of Cdc2 activity, VA-13 cells, which are Hep G2 cells modified to efficiently express alcohol dehydrogenase, were cultured in the presence or absence of 25 mM ethanol. Immunoblots were performed to determine the effects of ethanol metabolism on the activation of Cdc25C, Chk2, and ATM. Ethanol metabolism increased the active forms of ATM, and Chk2, as well as the phosphorylated form of Cdc25C. Additionally, inhibition of ATM resulted in approximately 50% of the cells being rescued from the G2/M cell cycle arrest, and ameliorated the inhibitory phosphorylation of Cdc2. Our findings demonstrate that ethanol metabolism activates ATM. ATM can activate the checkpoint kinase Chk2, resulting in phosphorylation of Cdc25C, and ultimately in the accumulation of inactive Cdc2. This may, in part, explain the ethanol metabolism-mediated impairment in hepatocyte replication, which may be important in the initiation and progression of alcoholic liver injury. PMID:21924579

  5. The Bioeffects Resulting from Prokaryotic Cells and Yeast Being Exposed to an 18 GHz Electromagnetic Field.

    Science.gov (United States)

    Nguyen, The Hong Phong; Pham, Vy T H; Nguyen, Song Ha; Baulin, Vladimir; Croft, Rodney J; Phillips, Brian; Crawford, Russell J; Ivanova, Elena P

    2016-01-01

    The mechanisms by which various biological effects are triggered by exposure to an electromagnetic field are not fully understood and have been the subject of debate. Here, the effects of exposing typical representatives of the major microbial taxa to an 18 GHz microwave electromagnetic field (EMF)were studied. It appeared that the EMF exposure induced cell permeabilisation in all of the bacteria and yeast studied, while the cells remained viable (94% throughout the exposure), independent of the differences in cell membrane fatty acid and phospholipid composition. The resulting cell permeabilisation was confirmed by detection of the uptake of propidium iodine and 23 nm fluorescent silica nanospheres using transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). Upon EMF exposure, the bacterial cell membranes are believed to become permeable through quasi-endocytosis processes. The dosimetry analysis revealed that the EMF threshold level required to induce the uptake of the large (46 nm) nanopsheres was between three and six EMF doses, with a specific absorption rate (SAR) of 3 kW/kg and 5 kW/kg per exposure, respectively, depending on the bacterial taxa being studied. It is suggested that the taxonomic affiliation and lipid composition (e.g. the presence of phosphatidyl-glycerol and/or pentadecanoic fatty acid) may affect the extent of uptake of the large nanospheres (46 nm). Multiple 18 GHz EMF exposures over a one-hour period induced periodic anomalous increases in the cell growth behavior of two Staphylococcus aureus strains, namely ATCC 25923 and CIP 65.8T. PMID:27391488

  6. The Bioeffects Resulting from Prokaryotic Cells and Yeast Being Exposed to an 18 GHz Electromagnetic Field

    Science.gov (United States)

    Pham, Vy T. H.; Nguyen, Song Ha; Baulin, Vladimir; Croft, Rodney J.; Phillips, Brian; Crawford, Russell J.

    2016-01-01

    The mechanisms by which various biological effects are triggered by exposure to an electromagnetic field are not fully understood and have been the subject of debate. Here, the effects of exposing typical representatives of the major microbial taxa to an 18 GHz microwave electromagnetic field (EMF)were studied. It appeared that the EMF exposure induced cell permeabilisation in all of the bacteria and yeast studied, while the cells remained viable (94% throughout the exposure), independent of the differences in cell membrane fatty acid and phospholipid composition. The resulting cell permeabilisation was confirmed by detection of the uptake of propidium iodine and 23 nm fluorescent silica nanospheres using transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). Upon EMF exposure, the bacterial cell membranes are believed to become permeable through quasi-endocytosis processes. The dosimetry analysis revealed that the EMF threshold level required to induce the uptake of the large (46 nm) nanopsheres was between three and six EMF doses, with a specific absorption rate (SAR) of 3 kW/kg and 5 kW/kg per exposure, respectively, depending on the bacterial taxa being studied. It is suggested that the taxonomic affiliation and lipid composition (e.g. the presence of phosphatidyl-glycerol and/or pentadecanoic fatty acid) may affect the extent of uptake of the large nanospheres (46 nm). Multiple 18 GHz EMF exposures over a one-hour period induced periodic anomalous increases in the cell growth behavior of two Staphylococcus aureus strains, namely ATCC 25923 and CIP 65.8T. PMID:27391488

  7. The Bioeffects Resulting from Prokaryotic Cells and Yeast Being Exposed to an 18 GHz Electromagnetic Field.

    Science.gov (United States)

    Nguyen, The Hong Phong; Pham, Vy T H; Nguyen, Song Ha; Baulin, Vladimir; Croft, Rodney J; Phillips, Brian; Crawford, Russell J; Ivanova, Elena P

    2016-01-01

    The mechanisms by which various biological effects are triggered by exposure to an electromagnetic field are not fully understood and have been the subject of debate. Here, the effects of exposing typical representatives of the major microbial taxa to an 18 GHz microwave electromagnetic field (EMF)were studied. It appeared that the EMF exposure induced cell permeabilisation in all of the bacteria and yeast studied, while the cells remained viable (94% throughout the exposure), independent of the differences in cell membrane fatty acid and phospholipid composition. The resulting cell permeabilisation was confirmed by detection of the uptake of propidium iodine and 23 nm fluorescent silica nanospheres using transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). Upon EMF exposure, the bacterial cell membranes are believed to become permeable through quasi-endocytosis processes. The dosimetry analysis revealed that the EMF threshold level required to induce the uptake of the large (46 nm) nanopsheres was between three and six EMF doses, with a specific absorption rate (SAR) of 3 kW/kg and 5 kW/kg per exposure, respectively, depending on the bacterial taxa being studied. It is suggested that the taxonomic affiliation and lipid composition (e.g. the presence of phosphatidyl-glycerol and/or pentadecanoic fatty acid) may affect the extent of uptake of the large nanospheres (46 nm). Multiple 18 GHz EMF exposures over a one-hour period induced periodic anomalous increases in the cell growth behavior of two Staphylococcus aureus strains, namely ATCC 25923 and CIP 65.8T.

  8. Large heterogeneity of mitochondrial DNA transcription and initiation of replication exposed by single-cell imaging.

    Science.gov (United States)

    Chatre, Laurent; Ricchetti, Miria

    2013-02-15

    Mitochondrial DNA (mtDNA) replication and transcription are crucial for cell function, but these processes are poorly understood at the single-cell level. We describe a novel fluorescence in situ hybridization protocol, called mTRIP (mitochondrial transcription and replication imaging protocol), that reveals simultaneously mtDNA and RNA, and that can also be coupled to immunofluorescence for in situ protein examination. mTRIP reveals mitochondrial structures engaged in initiation of DNA replication by identification of a specific sequence in the regulatory D-loop, as well as unique transcription profiles in single human cells. We observe and quantify at least three classes of mitochondrial structures: (i) replication initiation active and transcript-positive (Ia-Tp); (ii) replication initiation silent and transcript-positive (Is-Tp); and (iii) replication initiation silent and transcript-negative (Is-Tn). Thus, individual mitochondria are dramatically heterogeneous within the same cell. Moreover, mTRIP exposes a mosaic of distinct nucleic acid patterns in the D-loop, including H-strand versus L-strand transcripts, and uncoupled rRNA transcription and mtDNA initiation of replication, which might have functional consequences in the regulation of the mtDNA. Finally, mTRIP identifies altered mtDNA processing in cells with unbalanced mtDNA content and function, including in human mitochondrial disorders. Thus, mTRIP reveals qualitative and quantitative alterations that provide additional tools for elucidating the dynamics of mtDNA processing in single cells and mitochondrial dysfunction in diseases.

  9. The Roles of 4β-Hydroxywithanolide E from Physalis peruviana on the Nrf2-Anti-Oxidant System and the Cell Cycle in Breast Cancer Cells.

    Science.gov (United States)

    Peng, Chieh Yu; You, Bang Jau; Lee, Chia Lin; Wu, Yang Chang; Lin, Wen Hsin; Lu, Te Ling; Chang, Fei-Ching; Lee, Hong Zin

    2016-01-01

    4[Formula: see text]-Hydroxywithanolide E is an active component of the extract of Physalis peruviana that has been reported to exhibit antitumor effects. Although the involvement of reactive oxygen species (ROS) production and the ataxia-telangiectasia mutated protein (ATM)-dependent DNA damage signaling pathway in 4[Formula: see text]-hydroxywithanolide E-induced apoptosis of breast cancer MCF-7 cells was demonstrated in our previous study, the relationship between ROS production and the cellular defense system response in 4[Formula: see text]-hydroxywithanolide E-induced cell death requires further verification. The present study suggests that ROS play an important role in 4[Formula: see text]-hydroxywithanolide E-induced MCF-7 cell death in which anti-oxidants, such as glutathione or N-acetylcysteine, can resist the 4[Formula: see text]-hydroxywithanolide E-induced accumulation of ROS and cell death. Furthermore, N-acetylcysteine or glutathione can reverse the 4[Formula: see text]-hydroxywithanolide E-induced changes in the cell cycle distribution and the expression of cell cycle regulators. We found that the 4[Formula: see text]-hydroxywithanolide E-induced ROS accumulation was correlated with the upregulation of Nrf2 and Nrf2-downstream genes, such as antioxidative defense enzymes. In general, the activity of Nrf2 is regulated by the Ras signalling pathway. However, we demonstrated that Nrf2 was activated during 4[Formula: see text]-hydroxywithanolide E-induced MCF-7 cell death in spite of the 4[Formula: see text]-hydroxywithanolide E-induced inhibition of the Ras/Raf/ERK pathway. The activity and protein expression of superoxide dismutase and catalase were involved in the 4[Formula: see text]-hydroxywithanolide E-induced ROS production in MCF-7 cells. Furthermore, 4[Formula: see text]-hydroxywithanolide E was demonstrated to significantly reduce the sizes of the tumor nodules in the human breast cancer MDA-MB231 xenograft tumor model. PMID:27109152

  10. Natural Products Mediated Regulation of Oxidative Stress and DNA Damage in Ultraviolet Exposed Skin Cells.

    Science.gov (United States)

    Farooqi, Ammad A; Li, Ruei-Nian; Huang, Hurng-Wern; Ismail, Muhammad; Yuan, Shyng-Shiou F; Wang, Hui-Min D; Liu, Jing-Ru; Tang, Jen-Yang; Chang, Hsueh-Wei

    2015-01-01

    Data obtained through high-throughput technologies have gradually revealed that a unique stratified epithelial architecture of human skin along with the antioxidant-response pathways provided vital defensive mechanisms against UV radiation. However, it is noteworthy that skin is a major target for toxic insult by UV radiations that can alter its structure and function. Substantial fraction of information has been added into the existing pool of knowledge related to natural products mediated biological effects in UV exposed skin cells. Accumulating evidence has started to shed light on the potential of these bioactive ingredients as protective natural products in cosmetics against UV photodamage by exerting biological effects mainly through wide ranging intracellular signalling cascades of oxidative stress and modulation of miRNAs. In this review, we have summarized recently emerging scientific evidences addressing underlying mechanisms of UV induced oxidative stress and deregulation of signalling cascades and how natural products can be used tactfully to protect against UV induced harmful effects.

  11. Noise Removal with Maintained Spatial Resolution in Raman Images of Cells Exposed to Submicron Polystyrene Particles

    Directory of Open Access Journals (Sweden)

    Linnea Ahlinder

    2016-04-01

    Full Text Available The biodistribution of 300 nm polystyrene particles in A549 lung epithelial cells has been studied with confocal Raman spectroscopy. This is a label-free method in which particles and cells can be imaged without using dyes or fluorescent labels. The main drawback with Raman imaging is the comparatively low spatial resolution, which is aggravated in heterogeneous systems such as biological samples, which in addition often require long measurement times because of their weak Raman signal. Long measurement times may however induce laser-induced damage. In this study we use a super-resolution algorithm with Tikhonov regularization, intended to improve the image quality without demanding an increased number of collected pixels. Images of cells exposed to polystyrene particles have been acquired with two different step lengths, i.e., the distance between pixels, and compared to each other and to corresponding images treated with the super-resolution algorithm. It is shown that the resolution after application of super-resolution algorithms is not significantly improved compared to the theoretical limit for optical microscopy. However, to reduce noise and artefacts in the hyperspectral Raman images while maintaining the spatial resolution, we show that it is advantageous to use short mapping step lengths and super-resolution algorithms with appropriate regularization. The proposed methodology should be generally applicable for Raman imaging of biological samples and other photo-sensitive samples.

  12. Genome-wide gene expression analysis of mouse embryonic stem cells exposed to p-dichlorobenzene.

    Science.gov (United States)

    Tani, Hidenori; Takeshita, Jun-Ichi; Aoki, Hiroshi; Abe, Ryosuke; Toyoda, Akinobu; Endo, Yasunori; Miyamoto, Sadaaki; Gamo, Masashi; Torimura, Masaki

    2016-09-01

    Because of the limitations of whole animal testing approaches for toxicological assessment, new cell-based assay systems have been widely studied. In this study, we focused on two biological products for toxicological assessment: mouse embryonic stem cells (mESCs) and long noncoding RNAs (lncRNAs). mESCs possess the abilities of self-renewal and differentiation into multiple cell types. LlncRNAs are an important class of pervasive non-protein-coding transcripts involved in the molecular mechanisms associated with responses to chemicals. We exposed mESCs to p-dichlorobenzene (p-DCB) for 1 or 28 days (daily dose), extracted total RNA, and performed deep sequencing analyses. The genome-wide gene expression analysis indicated that mechanisms modulating proteins occurred following acute and chronic exposures, and mechanisms modulating genomic DNA occurred following chronic exposure. Moreover, our results indicate that three novel lncRNAs (Snora41, Gm19947, and Scarna3a) in mESCs respond to p-DCB exposure. We propose that these lncRNAs have the potential to be surrogate indicators of p-DCB responses in mESCs. PMID:26975756

  13. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Pongrac, Igor M; Pavičić, Ivan; Milić, Mirta; Brkić Ahmed, Lada; Babič, Michal; Horák, Daniel; Vinković Vrček, Ivana; Gajović, Srećko

    2016-01-01

    Biocompatibility, safety, and risk assessments of superparamagnetic iron oxide nanoparticles (SPIONs) are of the highest priority in researching their application in biomedicine. One improvement in the biological properties of SPIONs may be achieved by different functionalization and surface modifications. This study aims to investigate how a different surface functionalization of SPIONs - uncoated, coated with d-mannose, or coated with poly-l-lysine - affects biocompatibility. We sought to investigate murine neural stem cells (NSCs) as important model system for regenerative medicine. To reveal the possible mechanism of toxicity of SPIONs on NSCs, levels of reactive oxygen species, intracellular glutathione, mitochondrial membrane potential, cell-membrane potential, DNA damage, and activities of SOD and GPx were examined. Even in cases where reactive oxygen species levels were significantly lowered in NSCs exposed to SPIONs, we found depleted intracellular glutathione levels, altered activities of SOD and GPx, hyperpolarization of the mitochondrial membrane, dissipated cell-membrane potential, and increased DNA damage, irrespective of the surface coating applied for SPION stabilization. Although surface coating should prevent the toxic effects of SPIONs, our results showed that all of the tested SPION types affected the NSCs similarly, indicating that mitochondrial homeostasis is their major cellular target. Despite the claimed biomedical benefits of SPIONs, the refined determination of their effects on various cellular functions presented in this work highlights the need for further safety evaluations. This investigation helps to fill the knowledge gaps on the criteria that should be considered in evaluating the biocompatibility and safety of novel nanoparticles. PMID:27217748

  14. Anti-inflammatory activity of the basolateral fraction of Caco-2 cells exposed to a rosemary supercritical extract

    NARCIS (Netherlands)

    Arranz, E.; Mes, J.J.; Wichers, H.J.; Jaime, L.; Reglero, G.; Santoyo, S.

    2015-01-01

    The anti-inflammatory activity of the basolateral fraction of Caco-2 cells exposed to a rosemary supercritical extract was examined. Uptake of rosemary extract fractions was tested on Caco-2 cell monolayers (2–12 h incubation times) and the quantification of carnosic acid and carnosol was performed

  15. Aspartate Rescues S-phase Arrest Caused by Suppression of Glutamine Utilization in KRas-driven Cancer Cells.

    Science.gov (United States)

    Patel, Deven; Menon, Deepak; Bernfeld, Elyssa; Mroz, Victoria; Kalan, Sampada; Loayza, Diego; Foster, David A

    2016-04-22

    During G1-phase of the cell cycle, normal cells respond first to growth factors that indicate that it is appropriate to divide and then later in G1 to the presence of nutrients that indicate sufficient raw material to generate two daughter cells. Dividing cells rely on the "conditionally essential" amino acid glutamine (Q) as an anaplerotic carbon source for TCA cycle intermediates and as a nitrogen source for nucleotide biosynthesis. We previously reported that while non-transformed cells arrest in the latter portion of G1 upon Q deprivation, mutant KRas-driven cancer cells bypass the G1 checkpoint, and instead, arrest in S-phase. In this study, we report that the arrest of KRas-driven cancer cells in S-phase upon Q deprivation is due to the lack of deoxynucleotides needed for DNA synthesis. The lack of deoxynucleotides causes replicative stress leading to activation of the ataxia telangiectasia and Rad3-related protein (ATR)-mediated DNA damage pathway, which arrests cells in S-phase. The key metabolite generated from Q utilization was aspartate, which is generated from a transaminase reaction whereby Q-derived glutamate is converted to α-ketoglutarate with the concomitant conversion of oxaloacetate to aspartate. Aspartate is a critical metabolite for both purine and pyrimidine nucleotide biosynthesis. This study identifies the molecular basis for the S-phase arrest caused by Q deprivation in KRas-driven cancer cells that arrest in S-phase in response to Q deprivation. Given that arresting cells in S-phase sensitizes cells to apoptotic insult, this study suggests novel therapeutic approaches to KRas-driven cancers.

  16. Early and delayed reproductive death in human cells exposed to high energy iron-ion beams

    Science.gov (United States)

    Bettega, D.; Calzolari, P.; Doneda, L.; Durante, M.; Tallone, L.

    For radiation protection of the astronauts it is important to know both the acute and the late effects of charged particles. Iron is the most abundant high charge and energy (HZE) specie in galactic cosmic radiation. (HZE) ions are considered to be the major contributors to equivalent dose in space, but the Relative Biological Effectiveness of HZE particles has large uncertainties, expecially for late effects. We have determined early and delayed reproductive death in human fibroblast cells (AG1522) exposed to iron ion beams of energies between 0.2 and 1 GeV/n. The cells were irradiated at the HIMAC accelerator in Chiba (0.2 and 0.5 GeV/n) and at the AGS accelerator at the NASA Space Radiation Laboratory in Brookhaven (1 GeV/n). For each beam the dose--effect curves were measured at least twice in the dose range between 0.5 and 2 Gy. 60 Co gamma rays were used as reference radiation. The following results were obtained: 1) the 1 GeV/n beam effectiveness for inactivation of the AG1522 cells is higher than that of any other beam. 2) the progeny of the irradiated cells show the presence of delayed damage in the form of reproductive death for all the beams with the 1 GeV/n being the most effective. 3) the relative biological effectiveness of the iron beams is higher for delayed compared to early reproductive death. A comparison with preliminary results obtained with 970 MeV/n Ti and 490 MeV/n Si ions will be also reported .

  17. Cytogenomics of hexavalent chromium (Cr6+ exposed cells: A comprehensive review

    Directory of Open Access Journals (Sweden)

    Akanksha Nigam

    2014-01-01

    Full Text Available The altered cellular gene expression profile is being hypothesized as the possible molecular basis navigating the onset or progress of various morbidities. This hypothesis has been evaluated here in respect of Cr 6+ induced toxicity. Several studies using gene microarray show selective and strategic dysregulations of cellular genes and pathways induced by Cr 6+ . Relevant literature has been reviewed to unravel these changes in different test systems after exposure to Cr 6+ and also to elucidate association if any, of the altered cytogenomics with Cr 6+ induced toxicity or carcinogenicity. The aim was to verify the hypothesis for critical role of altered cytogenomics in onset of Cr 6+ induced biological / clinical effects by identifying genes modulated commonly by the toxicant irrespective of test system or test concentrations / doses, and by scrutinizing their importance in regulation of the flow of mechanistically linked events crucial for resultant morbidities. Their probability as biomarkers to monitor the toxicant induced biological changes is speculative. The modulated genes have been found to cluster under the pathways that manage onset of oxidative stress, DNA damage, apoptosis, cell-cycle regulation, cytoskeleton, morphological changes, energy metabolism, biosynthesis, oncogenes, bioenergetics, and immune system critical for toxicity. In these studies, the identity of genes has been found to differ remarkably; albeit the trend of pathways′ dysregulation has been found to remain similar. We conclude that the intensity of dysregulation of genes or pathways involved in mechanistic events forms a sub-threshold or threshold level depending upon the dose and type (including speciation of the toxicant, duration of exposure, type of target cells, and niche microenvironment of cells, and the intensity of sub-threshold or threshold level of the altered cytogenomics paves way in toxicant exposed cells eventually either to opt for reversal to

  18. Attenuation of the DNA Damage Response by Transforming Growth Factor-Beta Inhibitors Enhances Radiation Sensitivity of Non–Small-Cell Lung Cancer Cells In Vitro and In Vivo

    Energy Technology Data Exchange (ETDEWEB)

    Du, Shisuo; Bouquet, Sophie; Lo, Chen-Hao; Pellicciotta, Ilenia; Bolourchi, Shiva [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States); Parry, Renate [Varian Medical Systems, Palo Alto, California (United States); Barcellos-Hoff, Mary Helen, E-mail: mhbarcellos-hoff@nyumc.org [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States)

    2015-01-01

    Purpose: To determine whether transforming growth factor (TGF)-β inhibition increases the response to radiation therapy in human and mouse non–small-cell lung carcinoma (NSCLC) cells in vitro and in vivo. Methods and Materials: TGF-β–mediated growth response and pathway activation were examined in human NSCLC NCI-H1299, NCI-H292, and A549 cell lines and murine Lewis lung cancer (LLC) cells. Cells were treated in vitro with LY364947, a small-molecule inhibitor of the TGF-β type 1 receptor kinase, or with the pan-isoform TGF-β neutralizing monoclonal antibody 1D11 before radiation exposure. The DNA damage response was assessed by ataxia telangiectasia mutated (ATM) or Trp53 protein phosphorylation, γH2AX foci formation, or comet assay in irradiated cells. Radiation sensitivity was determined by clonogenic assay. Mice bearing syngeneic subcutaneous LLC tumors were treated with 5 fractions of 6 Gy and/or neutralizing or control antibody. Results: The NCI-H1299, A549, and LLC NSCLC cell lines pretreated with LY364947 before radiation exposure exhibited compromised DNA damage response, indicated by decreased ATM and p53 phosphorylation, reduced γH2AX foci, and increased radiosensitivity. The NCI-H292 cells were unresponsive. Transforming growth factor-β signaling inhibition in irradiated LLC cells resulted in unresolved DNA damage. Subcutaneous LLC tumors in mice treated with TGF-β neutralizing antibody exhibited fewer γH2AX foci after irradiation and significantly greater tumor growth delay in combination with fractionated radiation. Conclusions: Inhibition of TGF-β before radiation attenuated DNA damage recognition and increased radiosensitivity in most NSCLC cells in vitro and promoted radiation-induced tumor control in vivo. These data support the rationale for concurrent TGF-β inhibition and RT to provide therapeutic benefit in NSCLC.

  19. Enhanced inhibition of parvovirus B19 replication by cidofovir in extendedly exposed erythroid progenitor cells.

    Science.gov (United States)

    Bonvicini, Francesca; Bua, Gloria; Manaresi, Elisabetta; Gallinella, Giorgio

    2016-07-15

    Human parvovirus B19 (B19V) commonly induces self-limiting infections but can also cause severe clinical manifestations in patients with underlying haematological disorders or with immune system deficits. Currently, therapeutic options for B19V entirely rely on symptomatic and supportive treatments since a specific antiviral therapy is not yet available. Recently a first step in the research for active compounds inhibiting B19V replication has allowed identifying the acyclic nucleoside phosphonate cidofovir (CDV). Herein, the effect of CDV against B19V replication was characterized in human erythroid progenitor cells (EPCs) cultured and infected following different experimental approaches to replicate in vitro the infection of an expanding erythroid cell population in the bone marrow. B19V replication was selectively inhibited both in infected EPCs extendedly exposed to CDV 500μM (viral inhibition 82%) and in serially infected EPCs cultures with passage of the virus progeny, constantly under drug exposure (viral inhibition 99%). In addition, a potent inhibitory effect against B19V (viral inhibition 92%) was assessed in a short-term infection of EPCs treated with CDV 500μM 1day before viral infection. In the evaluated experimental conditions, the enhanced effect of CDV against B19V might be ascribed both to the increased intracellular drug concentration achieved by extended exposure, and to a progressive reduction in efficiency of the replicative process within treated EPCs population. PMID:27071853

  20. Early alterations on photosynthesis-related parameters in Chlamydomonas reinhardtii cells exposed to atrazine: A multiple approach study.

    Science.gov (United States)

    Esperanza, Marta; Seoane, Marta; Rioboo, Carmen; Herrero, Concepción; Cid, Ángeles

    2016-06-01

    Chlamydomonas reinhardtii cells were exposed to a sublethal concentration of the widespread herbicide atrazine for 3h. Physiological cellular parameters, such as chlorophyll a fluorescence and oxidative stress monitored by flow cytometry and pigments levels were altered in microalgal cells exposed to 0.25μM of atrazine. Furthermore, the effects of this herbicide on C. reinhardtii were explored using "omics" techniques. Transcriptomic analyses, carried out by RNA-Seq technique, displayed 9 differentially expressed genes, related to photosynthesis, between control cultures and atrazine exposed cultures. Proteomic profiles were obtained using iTRAQ tags and MALDI-MS/MS analysis, identifying important changes in the proteome during atrazine stress; 5 proteins related to photosynthesis were downexpressed. The results of these experiments advance the understanding of photosynthetic adjustments that occur during an early herbicide exposure. Inhibition of photosynthesis induced by atrazine toxicity will affect the entire physiological and biochemical states of microalgal cells. PMID:26950638

  1. Mutation spectrum in FE1-MUTA(TM) Mouse lung epithelial cells exposed to nanoparticulate carbon black

    DEFF Research Database (Denmark)

    Jacobsen, Nicklas Raun; White, Paul A; Gingerich, John;

    2011-01-01

    It has been shown previously that carbon black (CB), Printex 90 exposure induces cII and lacZ mutants in the FE1-Muta(TM) Mouse lung epithelial cell line and causes oxidatively damaged DNA and the production of reactive oxygen species (ROS). The purpose of this study was to determine the mutation...... spectrum in the cII gene of Printex 90 exposed cells. Cells exposed to CB have a substantially different mutation spectrum in the cII gene compared with vehicle exposed controls. The mutation spectra differ both in the positions (P ... observed in G:C¿T:A, G:C¿C:G, and A:T¿T:A transversion mutations; this is in keeping with a genetic finger print of ROS and is further substantiated by the observations that Printex 90 generates ROS and oxidatively damaged DNA....

  2. Effect of silencing of ATM expression by siRNA on radiosensitivity of human lung adenocarcinoma A549 cells

    International Nuclear Information System (INIS)

    Objective: To investigate the effect of silencing of ataxia-telangiectasia mutated (ATM) expression by plasmid-mediated RNA interference on the radiosensitivity of human lung adenocarcinoma A549 cells. Methods: Eukaryotic expression plasmid containing ATM small interfering RNA (siRNA) (pSilencer2.1-ATM), as well as pSilencer2.1-nonspecific, was constructed.Lung adenocarcinoma A549 cells were divided into positive group, negative group,and control group to be transfected with pSilencer2.1-ATM, pSilencer2.1-nonspecific, and no plasmid, respectively. The mRNA and protein expression of ATM was measured by RT-PCR and Western blot, respectively. The change in cell radiosensitivity was observed by colony-forming assay. Cell cycle and cell apoptosis were analyzed by flow cytometry. Results: The eukaryotic expression plasmid containing ATM siRNA was successfully constructed. The RT-PCR and Western blot demonstrated that the expression of ATM was down-regulated in the positive group. The sensitization enhancement ratios (D0 ratios) for the positive group and negative group were 1.50 and 1.01, respectively. The flow cytometry revealed that the proportions of A549 cells in G1 and G2/M phases were significantly lower in the positive group than in the control group (51.27% vs 61.85%, P = 0.012; 6.34% vs 10.91%, P = 0.008) and that the apoptosis rate was significantly higher in the positive group than in the control group and negative group (49.31% vs 13.58%, P = 0.000; 49.31% vs 13.17%, P = 0.000). Conclusions: Silencing of ATM expression may increase the radiosensitivity of human lung adenocarcinoma A549 cells, probably by affecting the cell cycle and promoting cell apoptosis. (authors)

  3. Simultaneous inhibition of ATR and PARP sensitizes colon cancer cell lines to irinotecan

    Directory of Open Access Journals (Sweden)

    Atlal eAbu-Sanad

    2015-07-01

    Full Text Available Enhanced DNA damage repair is one mechanism involved in colon cancer drug resistance. Thus, targeting molecular components of repair pathways with specific small molecule inhibitors may improve the efficacy of chemotherapy. ABT-888 and VE-821, inhibitors of poly-ADP-ribose-polymerase (PARP and the serine/threonine-kinase Ataxia telangiectasia related (ATR, respectively, were used to treat colon cancer cell lines in combination with the topoisomerase-I inhibitor irinotecan (SN38. Our findings show that each of these DNA repair inhibitors utilized alone at nontoxic single agent concentrations resulted in sensitization to SN38 producing a 1.4 to 3 fold reduction in the 50% inhibitory concentration (IC50 of SN38 in three colon cancer cell lines. When combined together, nontoxic concentrations of ABT-888 and VE-821 produced a 4.5 to 27 fold reduction in the IC50 of SN38 with the HCT-116 colon cancer cells demonstrating the highest sensitization as compared to LoVo and HT-29 colon cancer cells. Furthermore, the combination of all three agents was associated with maximal G2-M arrest and enhanced DNA-damage (γH2AX in all three colon cancer cell lines. The mechanism of this enhanced sensitization was associated with: (a maximal suppression of SN38 induced PARP activity in the presence of both inhibitors and (b ABT-888 producing partial abrogation of the VE-821 enhancement of SN38 induced DNA-PK phosphorylation, resulting in more unrepaired DNA damage; these alterations were only present in the HCT-116 cells which have reduced levels of ATM. This novel combination of DNA repair inhibitors may be useful to enhance the activity of DNA damaging chemotherapies such as irinotecan and help produce sensitization to this drug in colon cancer.

  4. Proliferation assay of mouse embryonic stem (ES) cells exposed to atmospheric-pressure plasmas at room temperature

    International Nuclear Information System (INIS)

    Proliferation assays of mouse embryonic stem (ES) cells have been performed with cell culture media exposed to atmospheric-pressure plasmas (APPs), which generate reactive species in the media at room temperature. It is found that serum in cell culture media functions as a scavenger of highly reactive species and tends to protect cells in the media against cellular damage. On the other hand, if serum is not present in a cell culture medium when it is exposed to APP, the medium becomes cytotoxic and cannot be detoxified by serum added afterwards. Plasma-induced cytotoxic media hinder proliferation of mouse ES cells and may even cause cell death. It is also shown by nuclear magnetic resonance spectroscopy that organic compounds in cell culture media are in general not significantly modified by plasma exposure. These results indicate that if there is no serum in media when they are exposed to APPs, highly reactive species (such as OH radicals) generated in the media by the APP exposure are immediately converted to less reactive species (such as H2O2), which can no longer readily react with serum that is added to the medium after plasma exposure. This study has clearly shown that it is these less reactive species, rather than highly reactive species, that make the medium cytotoxic to mouse ES cells. (paper)

  5. DNA methylation analysis using CpG microarrays is impaired in benzopyrene exposed cells

    International Nuclear Information System (INIS)

    Epigenetic alterations have emerged as a key mechanism involved in tumorigenesis. These disruptions are partly due to environmental factors that change normal DNA methylation patterns necessary for transcriptional regulation and chromatin compaction. Microarray technologies are allowing environmentally susceptible epigenetic patterns to be mapped and the precise targets of environmentally induced alterations to be identified. Previously, we observed BaP-induced epigenetic events and cell cycle disruptions in breast cancer cell lines that included time- and concentration-dependent loss of proliferation as well as sequence-specific hypo- and hypermethylation events. In this present report, we further characterized epigenetic changes in BaP-exposed MCF-7 cells. We analyzed DNA methylation on a CpG island microarray platform with over 5400 unique genomic regions. Depleted and enriched microarray targets, representative of putative DNA methylation changes, were identified across the genome; however, subsequent sodium bisulfite analyses revealed no changes in DNA methylation at a number of these loci. Instead, we found that the identification of DNA methylation changes using this restriction enzyme-based microarray approach corresponded with the regions of DNA bound by the BaP derived DNA adducts. This DNA adduct formation occurs at both methylated and unmethylated CpG dinucleotides and affects PCR amplification during sample preparation. Our data suggest that caution should be exercised when interpreting data from comparative microarray experiments that rely on enzymatic reactions. These results are relevant to genome screening approaches involving environmental exposures in which DNA adduct formation at specific nucleotide sites may bias target acquisition and compromise the correct identification of epigenetically responsive genes

  6. Distribution of Chromosome Breakpoints in Human Epithelial Cells Exposed to Low- and High-LET Radiations

    Science.gov (United States)

    Hada, Megumi; Cucinotta, Francis; Wu, Honglu

    2009-01-01

    The advantage of the multicolor banding in situ hybridization (mBAND) technique is not only its ability to identify simultaneously both inter- and intrachromosome exchanges, but also the ability to measure the breakpoint location along the length of the chromosome in a precision that is unmatched with other traditional banding techniques. Breakpoints on specific regions of a chromosome have been known to associate with specific cancers. The breakpoint distribution in cells after low- and high-LET radiation exposures will also provide the data for biophysical modeling of the chromatin structure, as well as the data for the modeling the formation of radiation-induced chromosome aberrations. In a series of experiments, we studied low- and high-LET radiation-induced chromosome aberrations using the mBAND technique with chromosome 3 painted in 23 different colored bands. Human epithelial cells (CH1 84B5F5/M10) were exposed in vitro to Cs- 137 rays at both low and high dose rates, secondary neutrons with a broad energy spectrum at a low dose rate and 600 MeV/u Fe ions at a high dose rate. The data of both inter- and intrachromosome aberrations involving the painted chromosome have been reported previously. Here we present data of the location of the chromosome breaks along the length of chromosome 3 in the cells after exposures to each of the four radiation scenarios. In comparison to the expected breakpoint distribution based on the length of the bands, the observed distribution appeared to be non-random for both the low- and high-LET radiations. In particular, hot spots towards both ends of the chromosome were found after low-LET irradiations of either low or high dose rates. For both high-LET radiation types (Fe ions and neutrons), the breakpoint distributions were similar, and were much smoother than that for low-LET radiation. The dependence of the breakpoint distribution on the radiation quality requires further investigations.

  7. Acute respiratory bronchiolitis: an ultrastructural and autoradiographic study of epithelial cell injury and renewal in Rhesus monkeys exposed to ozone

    International Nuclear Information System (INIS)

    The pathogenesis of acute respiratory bronchiolitis was examined in Rhesus monkeys exposed to 0.8 ppM ozone for 4 to 50 hours. Epithelial injury and renewal were qualitatively and quantitatively characterized by correlated techniques of scanning and transmission electron microscopy as well as by light-microscopic autoradiography following labeling with tritiated thymidine. Extensive degeneration and necrosis of Type 1 epithelial cells occurred on the respiratory bronchiolar wall during the initial 4 to 12 hours of exposure. Increased numbers of labeled epithelial cells were present in this region after 18 hours of exposure, and the highest labeling index (18%) was measured after 50 hours of exposure. Most (67 to 80%) of the labeled cells and all the mitotic epithelial cells (22) observed ultrastructurally were cuboidal bronchiolar epithelial cells. Of the labeled epithelial cells, 20 to 33% were Type 2 epithelial cells. After 50 hours of exposure the respiratory bronchiolar epithelium was hyperplastic. The predominant inflammatory cell in respiratory bronchiolar exudate was the alveolar macrophage. Monkeys that were exposed for 50 hours and allowed to recover in unozonized air for 7 days had incomplete resolution of respiratory bronchiolar epithelial hyperplasia. The results indicate that Type 1 epithelial cells lining respiratory bronchioles are the cell types most sensitive to injury and that both cuboidal bronchiolar epithelial cells and Type 2 epithelial cells function as stem cells in epithelial renewal

  8. Transcriptomic analysis of cultured whale skin cells exposed to hexavalent chromium [Cr(VI)].

    Science.gov (United States)

    Pabuwal, Vagmita; Boswell, Mikki; Pasquali, Amanda; Wise, Sandra S; Kumar, Suresh; Shen, Yingjia; Garcia, Tzintzuni; Lacerte, Carolyne; Wise, John Pierce; Wise, John Pierce; Warren, Wesley; Walter, Ronald B

    2013-06-15

    Hexavalent chromium Cr(VI) is known to produce cytotoxic effects in humans and is a highly toxic environmental contaminant. Interestingly, it has been shown that free ranging sperm whales (Phyester macrocephalus) may have exceedingly high levels of Cr in their skin. Also, it has been demonstrated that skin cells from whales appear more resistant to both cytotoxicity and clastogenicity upon Cr exposure compared to human cells. However, the molecular genetic mechanisms employed in whale skin cells that might lead to Cr tolerance are unknown. In an effort to understand the underlying mechanisms of Cr(VI) tolerance and to illuminate global gene expression patterns modulated by Cr, we exposed whale skin cells in culture to varying levels of Cr(VI) (i.e., 0.0, 0.5, 1.0 and 5.0 μg/cm²) followed by short read (100 bp) next generation RNA sequencing (RNA-seq). RNA-seq reads from all exposures (≈280 million reads) were pooled to generate a de novo reference transcriptome assembly. The resulting whale reference assembly had 11K contigs and an N50 of 2954 bp. Using the reads from each dose (0.0, 0.5, 1.0 and 5.0 μg/cm²) we performed RNA-seq based gene expression analysis that identified 35 up-regulated genes and 19 down-regulated genes. The experimental results suggest that low dose exposure to Cr (1.0 μg/cm²) serves to induce up-regulation of oxidative stress response genes, DNA repair genes and cell cycle regulator genes. However, at higher doses (5.0 μg/cm²) the DNA repair genes appeared down-regulated while other genes that were induced suggest the initiation of cytotoxicity. The set of genes identified that show regulatory modulation at different Cr doses provide specific candidates for further studies aimed at determination of how whales exhibit resistance to Cr toxicity and what role(s) reactive oxygen species (ROS) may play in this process. PMID:23584427

  9. ATM-deficient human fibroblast cells are resistant to low levels of DNA double-strand break induced apoptosis and subsequently undergo drug-induced premature senescence

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun; Jo, Yong Hwa; Cho, Chang Hoon; Choe, Wonchae; Kang, Insug; Baik, Hyung Hwan [Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Yoon, Kyung-Sik, E-mail: sky9999@khu.ac.kr [Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer A-T cells were not hypersensitive to low levels of DNA DSBs. Black-Right-Pointing-Pointer A-T cells have enhanced Akt but defect in activation of p53 and apoptotic proteins. Black-Right-Pointing-Pointer A-T cells underwent premature senescence after DNA damage accumulated. Black-Right-Pointing-Pointer Chemotherapeutic effect in cancer therapy may be associated with premature senescence. -- Abstract: DNA DSBs are induced by IR or radiomimetic drugs such as doxorubicin. It has been indicated that cells from ataxia-telangiectasia patients are highly sensitive to radiation due to defects in DNA repair, but whether they have impairment in apoptosis has not been fully elucidated. A-T cells showed increased sensitivity to high levels of DNA damage, however, they were more resistant to low doses. Normal cells treated with combination of KU55933, a specific ATM kinase inhibitor, and doxorubicin showed increased resistance as they do in a similar manner to A-T cells. A-T cells have higher viability but more DNA breaks, in addition, the activations of p53 and apoptotic proteins (Bax and caspase-3) were deficient, but Akt expression was enhanced. A-T cells subsequently underwent premature senescence after treatment with a low dose of doxorubicin, which was confirmed by G2 accumulation, senescent morphology, and SA-{beta}-gal positive until 15 days repair incubation. Finally, A-T cells are radio-resistant at low doses due to its defectiveness in detecting DNA damage and apoptosis, but the accumulation of DNA damage leads cells to premature senescence.

  10. Growth Inhibition Occurs Independently of Cell Mortality in Tomato (Solanum lycopersicum) Exposed to High Cadmium Concentrations

    Institute of Scientific and Technical Information of China (English)

    Christine Delpérée; Stanley Lutts

    2008-01-01

    In order to analyze the adaptation potential of tomato shoots to a sudden increase in Cd concentration, tomato plants (Solanum lycopersicum L. var. Ailsa Craig) were exposed under controlled environmental conditions to a high dose of this heavy metal (250 μM CdCl2>) in nutrient solution for 7 and 14 d. Both root and shoot growth was completely inhibited but all plants remained alive until the end of the treatment. Cell viability remained unaffected but the activity of the mitochondrial alternative pathway was stimulated by Cd stress at the expense of the cytochrome pathway. Cadmium concentration was higher in roots than in shoots and a decrease In the rate of net Cd translocation was noticed during the second week of stress. Cadmium decreased both leaf conductance (g1>) and chlorophyll concentration. However, the effect on net CO2 assimilation remained limited and soluble sugars accumulated in leaves. Photochemical efficiency of PSll (FvlFm) was not affected despite a decrease in the number of reaction centers and an inhibition of electron transfer to acceptors of PSII. It is concluded that tomato shoot may sustain short term exposure to high doses of cadmium despite growth inhibition. This property implies several physiological strategies linked to both avoidance and tolerance mechanisms.

  11. Disrupted NOS signaling in lymphatic endothelial cells exposed to chronically increased pulmonary lymph flow.

    Science.gov (United States)

    Datar, Sanjeev A; Gong, Wenhui; He, Youping; Johengen, Michael; Kameny, Rebecca J; Raff, Gary W; Maltepe, Emin; Oishi, Peter E; Fineman, Jeffrey R

    2016-07-01

    Associated abnormalities of the lymphatic circulation are well described in congenital heart disease. However, their mechanisms remain poorly elucidated. Using a clinically relevant ovine model of a congenital cardiac defect with chronically increased pulmonary blood flow (shunt), we previously demonstrated that exposure to chronically elevated pulmonary lymph flow is associated with: 1) decreased bioavailable nitric oxide (NO) in pulmonary lymph; and 2) attenuated endothelium-dependent relaxation of thoracic duct rings, suggesting disrupted lymphatic endothelial NO signaling in shunt lambs. To further elucidate the mechanisms responsible for this altered NO signaling, primary lymphatic endothelial cells (LECs) were isolated from the efferent lymphatic of the caudal mediastinal node in 4-wk-old control and shunt lambs. We found that shunt LECs (n = 3) had decreased bioavailable NO and decreased endothelial nitric oxide synthase (eNOS) mRNA and protein expression compared with control LECs (n = 3). eNOS activity was also low in shunt LECs, but, interestingly, inducible nitric oxide synthase (iNOS) expression and activity were increased in shunt LECs, as were total cellular nitration, including eNOS-specific nitration, and accumulation of reactive oxygen species (ROS). Pharmacological inhibition of iNOS reduced ROS in shunt LECs to levels measured in control LECs. These data support the conclusion that NOS signaling is disrupted in the lymphatic endothelium of lambs exposed to chronically increased pulmonary blood and lymph flow and may contribute to decreased pulmonary lymphatic bioavailable NO.

  12. Accumulation of apoptosis-insensitive human bone marrow-mesenchymal stromal cells after long-term expansion.

    Science.gov (United States)

    Jeong, Sin-Gu; Cho, Goang-Won

    2016-07-01

    Cells undergo replicative senescence during in vitro expansion, which is induced by the accumulation of cellular damage caused by excessive reactive oxygen species. In this study, we investigated whether long-term-cultured human bone marrow mesenchymal stromal cells (MSCs) are insensitive to apoptotic stimulation. To examine this, we established replicative senescent cells from long-term cultures of human bone marrow MSCs. Senescent cells were identified based on declining population doublings, increased expression of senescence markers p16 and p53 and increased senescence-associated β-gal activity. In cell viability assays, replicative senescent MSCs in late passages (i.e. 15-19 passages) resisted damage induced by oxidative stress more than those in early passages did (i.e. 7-10 passages). This resistance occurred via caspase-9 and caspase-3 rather than via caspase-8. The senescent cells are gradually accumulated during long-term expansion. The oxidative stress-sensitive proteins ataxia-telangiectasia mutated and p53 were phosphorylated, and the expression of apoptosis molecules Bax increased, and Bcl-2 decreased in early passage MSCs; however, the expression of the apoptotic molecules did less change in response to apoptotic stimulation in late-passage MSCs, suggesting that the intrinsic apoptotic signalling pathway was not induced by oxidative stress in long-term-cultured MSCs. Based on these results, we propose that some replicative senescent cells may avoid apoptosis signalling via impairment of signalling molecules and accumulation during long-term expansion. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27212655

  13. Persistent oxidative stress in human neural stem cells exposed to low fluences of charged particles

    Directory of Open Access Journals (Sweden)

    Janet E. Baulch

    2015-08-01

    Full Text Available Exposure to the space radiation environment poses risks for a range of deleterious health effects due to the unique types of radiation encountered. Galactic cosmic rays are comprised of a spectrum of highly energetic nuclei that deposit densely ionizing tracks of damage along the particle trajectory. These tracks are distinct from those generated by the more sparsely ionizing terrestrial radiations, and define the geometric distribution of the complex cellular damage that results when charged particles traverse the tissues of the body. The exquisite radiosensitivity of multipotent neural stem and progenitor cells found within the neurogenic regions of the brain predispose the central nervous system to elevated risks for radiation induced sequelae. Here we show that human neural stem cells (hNSC exposed to different charged particles at space relevant fluences exhibit significant and persistent oxidative stress. Radiation induced oxidative stress was found to be most dependent on total dose rather than on the linear energy transfer of the incident particle. The use of redox sensitive fluorogenic dyes possessing relative specificity for hydroxyl radicals, peroxynitrite, nitric oxide (NO and mitochondrial superoxide confirmed that most irradiation paradigms elevated reactive oxygen and nitrogen species (ROS and RNS, respectively in hNSC over a 1 week interval following exposure. Nitric oxide synthase (NOS was not the major source of elevated nitric oxides, as the use of NOS inhibitors had little effect on NO dependent fluorescence. Our data provide extensive evidence for the capability of low doses of charged particles to elicit marked changes in the metabolic profile of irradiated hNSC. Radiation induced changes in redox state may render the brain more susceptible to the development of neurocognitive deficits that could affect an astronaut’s ability to perform complex tasks during extended missions in deep space.

  14. Persistent oxidative stress in human neural stem cells exposed to low fluences of charged particles.

    Science.gov (United States)

    Baulch, Janet E; Craver, Brianna M; Tran, Katherine K; Yu, Liping; Chmielewski, Nicole; Allen, Barrett D; Limoli, Charles L

    2015-08-01

    Exposure to the space radiation environment poses risks for a range of deleterious health effects due to the unique types of radiation encountered. Galactic cosmic rays are comprised of a spectrum of highly energetic nuclei that deposit densely ionizing tracks of damage along the particle trajectory. These tracks are distinct from those generated by the more sparsely ionizing terrestrial radiations, and define the geometric distribution of the complex cellular damage that results when charged particles traverse the tissues of the body. The exquisite radiosensitivity of multipotent neural stem and progenitor cells found within the neurogenic regions of the brain predispose the central nervous system to elevated risks for radiation induced sequelae. Here we show that human neural stem cells (hNSC) exposed to different charged particles at space relevant fluences exhibit significant and persistent oxidative stress. Radiation induced oxidative stress was found to be most dependent on total dose rather than on the linear energy transfer of the incident particle. The use of redox sensitive fluorogenic dyes possessing relative specificity for hydroxyl radicals, peroxynitrite, nitric oxide (NO) and mitochondrial superoxide confirmed that most irradiation paradigms elevated reactive oxygen and nitrogen species (ROS and RNS, respectively) in hNSC over a 1 week interval following exposure. Nitric oxide synthase (NOS) was not the major source of elevated nitric oxides, as the use of NOS inhibitors had little effect on NO dependent fluorescence. Our data provide extensive evidence for the capability of low doses of charged particles to elicit marked changes in the metabolic profile of irradiated hNSC. Radiation induced changes in redox state may render the brain more susceptible to the development of neurocognitive deficits that could affect an astronaut's ability to perform complex tasks during extended missions in deep space. PMID:25800120

  15. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Pongrac IM

    2016-04-01

    Full Text Available Igor M Pongrac,1 Ivan Pavičić,2 Mirta Milić,2 Lada Brkič Ahmed,1 Michal Babič,3 Daniel Horák,3 Ivana Vinković Vrček,2 Srećko Gajović1 1School of Medicine, Croatian Institute for Brain Research, University of Zagreb, 2Institute for Medical Research and Occupational Health, Zagreb, Croatia; 3Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic Abstract: Biocompatibility, safety, and risk assessments of superparamagnetic iron oxide nanoparticles (SPIONs are of the highest priority in researching their application in biomedicine. One improvement in the biological properties of SPIONs may be achieved by different functionalization and surface modifications. This study aims to investigate how a different surface functionalization of SPIONs – uncoated, coated with D-mannose, or coated with poly-L-lysine – affects biocompatibility. We sought to investigate murine neural stem cells (NSCs as important model system for regenerative medicine. To reveal the possible mechanism of toxicity of SPIONs on NSCs, levels of reactive oxygen species, intracellular glutathione, mitochondrial membrane potential, cell-membrane potential, DNA damage, and activities of SOD and GPx were examined. Even in cases where reactive oxygen species levels were significantly lowered in NSCs exposed to SPIONs, we found depleted intracellular glutathione levels, altered activities of SOD and GPx, hyperpolarization of the mitochondrial membrane, dissipated cell-membrane potential, and increased DNA damage, irrespective of the surface coating applied for SPION stabilization. Although surface coating should prevent the toxic effects of SPIONs, our results showed that all of the tested SPION types affected the NSCs similarly, indicating that mitochondrial homeostasis is their major cellular target. Despite the claimed biomedical benefits of SPIONs, the refined determination of their effects on various cellular functions

  16. Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress

    Science.gov (United States)

    Bassi, C; Ho, J; Srikumar, T; Dowling, RJO; Gorrini, C; Miller, SJ; Mak, TW; Neel, BG; Raught, B; Stambolic, V

    2016-01-01

    Loss of function of the Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) tumor suppressor gene is associated with many human cancers. In the cytoplasm, PTEN antagonizes the Phosphatidylinositol 3′ kinase (PI3K) signaling pathway. PTEN also accumulates in the nucleus, where its function remains poorly understood. We demonstrate that SUMOylation (SUMO) of PTEN controls its nuclear localization. In cells exposed to genotoxic stress, SUMO-PTEN was rapidly excluded from the nucleus dependent on the protein kinase Ataxia telangiectasia mutated (ATM). Cells lacking nuclear PTEN were hypersensitive to DNA damage, while PTEN-deficient cells were susceptible to killing by a combination of genotoxic stress and a small molecule PI3K inhibitor both in vitro and in vivo. Our findings may have implications for individualized therapy for patients with PTEN-deficient tumors. PMID:23888040

  17. B cells play key roles in th2-type airway immune responses in mice exposed to natural airborne allergens.

    Directory of Open Access Journals (Sweden)

    Li Yin Drake

    Full Text Available Humans are frequently exposed to various airborne allergens. In addition to producing antibodies, B cells participate in immune responses via various mechanisms. The roles of B cells in allergic airway inflammation and asthma have been controversial. We examined the functional importance of B cells in a mouse model of asthma, in which mice were exposed repeatedly to common airborne allergens. Naïve wild-type BALB/c mice or B cell-deficient JH-/- mice were exposed intranasally to a cocktail of allergen extracts, including Alternaria, Aspergillus, and house dust mite, every other day for two weeks. Ovalbumin was included in the cocktail to monitor the T cell immune response. Airway inflammation, lung pathology, and airway reactivity were analyzed. The airway exposure of naïve wild type mice to airborne allergens induced robust eosinophilic airway inflammation, increased the levels of Th2 cytokines and chemokines in the lung, and increased the reactivity to inhaled methacholine. These pathological changes and immune responses were attenuated in B cell-deficient JH-/- mice. The allergen-induced expansion of CD4+ T cells was impaired in the lungs and draining lymph nodes of JH-/- mice. Furthermore, lymphocytes from JH-/- mice failed to produce Th2 cytokines in response to ovalbumin re-stimulation in vitro. Our results suggest that B cells are required for the optimal development of Th2-type immune responses and airway inflammation when exposed to common airborne allergens. The therapeutic targeting of B cells may be beneficial to treat asthma in certain patients.

  18. Induction of sister-chromatid exchanges in ICR 2A frog cells exposed to 254 nm UV wavelengths

    International Nuclear Information System (INIS)

    Exposure of ICR 2A frog cells to 254 nm UV induced the formation of sister-chromatid exchanges (SCEs) in a fluence-dependent manner. Cells were also exposed to the UV produced by a fluorescent sunlamp that was filtered through 8C Mylar in order to simulate the mid-UV (290-320 nm) portion of sunlight reaching the earth's surface. In this instance, SCEs were induced in a linear fashion at low fluences but reached a plateau at a low level of induced SCEs. In addition, pretreatment of cells with the solar UV followed by exposure to 254 nm UV resulted in a significantly lower level of SCEs than in cells exposed to 254 nm UV alone. (author)

  19. Analysis of Pseudomonas aeruginosa Cell Envelope Proteome by Capture of Surface-Exposed Proteins on Activated Magnetic Nanoparticles

    OpenAIRE

    Davide Vecchietti; Dario Di Silvestre; Matteo Miriani; Francesco Bonomi; Mauro Marengo; Alessandra Bragonzi; Lara Cova; Eleonora Franceschi; Pierluigi Mauri; Giovanni Bertoni

    2012-01-01

    We report on specific magneto-capturing followed by Multidimensional Protein Identification Technology (MudPIT) for the analysis of surface-exposed proteins of intact cells of the bacterial opportunistic pathogen Pseudomonas aeruginosa. The magneto-separation of cell envelope fragments from the soluble cytoplasmic fraction allowed the MudPIT identification of the captured and neighboring proteins. Remarkably, we identified 63 proteins captured directly by nanoparticles and 67 proteins embedde...

  20. PAXX and XLF DNA repair factors are functionally redundant in joining DNA breaks in a G1-arrested progenitor B-cell line.

    Science.gov (United States)

    Kumar, Vipul; Alt, Frederick W; Frock, Richard L

    2016-09-20

    Classical nonhomologous end joining (C-NHEJ) is a major mammalian DNA double-strand break (DSB) repair pathway. Core C-NHEJ factors, such as XRCC4, are required for joining DSB intermediates of the G1 phase-specific V(D)J recombination reaction in progenitor lymphocytes. Core factors also contribute to joining DSBs in cycling mature B-lineage cells, including DSBs generated during antibody class switch recombination (CSR) and DSBs generated by ionizing radiation. The XRCC4-like-factor (XLF) C-NHEJ protein is dispensable for V(D)J recombination in normal cells, but because of functional redundancy, it is absolutely required for this process in cells deficient for the ataxia telangiectasia-mutated (ATM) DSB response factor. The recently identified paralogue of XRCC4 and XLF (PAXX) factor has homology to these two proteins and variably contributes to ionizing radiation-induced DSB repair in human and chicken cells. We now report that PAXX is dispensable for joining V(D)J recombination DSBs in G1-arrested mouse pro-B-cell lines, dispensable for joining CSR-associated DSBs in a cycling mouse B-cell line, and dispensable for normal ionizing radiation resistance in both G1-arrested and cycling pro-B lines. However, we find that combined deficiency for PAXX and XLF in G1-arrested pro-B lines abrogates DSB joining during V(D)J recombination and sensitizes the cells to ionizing radiation exposure. Thus, PAXX provides core C-NHEJ factor-associated functions in the absence of XLF and vice versa in G1-arrested pro-B-cell lines. Finally, we also find that PAXX deficiency has no impact on V(D)J recombination DSB joining in ATM-deficient pro-B lines. We discuss implications of these findings with respect to potential PAXX and XLF functions in C-NHEJ. PMID:27601633

  1. Sophoridinol derivative 05D induces tumor cells apoptosis by topoisomerase1-mediated DNA breakage

    Directory of Open Access Journals (Sweden)

    Zhao W

    2016-05-01

    Full Text Available Wuli Zhao, Caixia Zhang, Chongwen Bi, Cheng Ye, Danqing Song, Xiujun Liu, Rongguang Shao Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China Abstract: Sophoridine is a quinolizidine natural product of Sophora alopecuroides and has been applied for treatment of malignant trophoblastic tumors. Although characterized by low toxicity, the limited-spectrum antitumor activity hinders its further applications. 05D, a derivative of sophoridine, exhibits a better anticancer activity on diverse cancer cells, including solid tumors, and hematologic malignancy. It could inhibit topoisomerase 1 (top1 activity by stabilizing DNA–top1 complex and induce mitochondria-mediated apoptosis by promoting DNA single- and double-strand breakage mediated by top1. Also, 05D induced HCT116 cells arrest at G1 phase by inactivating CDK2/CDK4–Rb–E2F and cyclinD1–CDK4–p21 checkpoint signal pathways. 05D suppressed the ataxia telangiectasia mutated (ATM and ATM and Rad3-related (ATR activation and decreased 53BP level, which contributed to DNA damage repair, suggesting that the novel compound 05D might be helpful to improve the antitumor activity of DNA damaging agent by repressing ATM and ATR activation and 53BP level. In addition, the priorities in molecular traits and druggability, such as a simple structure and formulation for oral administration, further prove 05D to be a promising targeting topoisomerase agent. Keywords: topoisomerase inhibitor, topoisomerase 1, DNA breakage, sophoridinol, anticancer, apoptosis, cell cycle

  2. ATM-Dependent Hyper-Radiosensitivity in Mammalian Cells Irradiated by Heavy Ions

    International Nuclear Information System (INIS)

    Purpose: Low-dose hyper-radiosensitivity (HRS) and the later appearing radioresistance (termed induced radioresistance [IRR]) was mainly studied in low linear energy transfer (LET) radiation with survival observation. The aim of this study was to find out whether equivalent hypersensitivity occurred in high LET radiation, and the roles of ataxia telangiectasia mutated (ATM) kinase. Methods and Materials: Survival and mutation were measured by clonogenic assay and HPRT mutation assay. ATM Ser1981 activation was detected by Western blotting and immunofluorescent staining. Pretreatment of specific ATM inhibitor (10 μM KU55933) and activator (20 μg/mL chloroquine) before carbon radiation were adopted to explore the involvement of ATM. The roles of ATM were also investigated in its G2/M checkpoint function with histone H3 phosphorylation analysis and flow cytometric assay, and DNA double strand break (DSB) repair function measured using γ-H2AX foci assay. Results: HRS/IRR was observed with survival and mutation in normal human skin fibroblast cells by carbon ions, while impaired in cells with intrinsic ATM deficiency or normal cells modified with specific ATM activator or inhibitor before irradiation. The dose-response pattern of ATM kinase activation was concordant with the transition from HRS to IRR. The ATM-dependent 'early' G2 checkpoint arrest and DNA DSB repair efficiency could explain the difference between HRS and IRR. Conclusions: These data demonstrate that the HRS/IRR by carbon ion radiation is an ATM-dependent phenomenon in the cellular response to DNA damage.

  3. Relationship of CD86 surface marker expression and cytotoxicity on dendritic cells exposed to chemical allergen

    International Nuclear Information System (INIS)

    Human peripheral blood-derived dendritic cells (DC) respond to a variety of chemical allergens by up-regulating expression of the co-stimulatory molecule CD86. It has been postulated that this measure might provide the basis for an in vitro alternative approach for the identification of skin sensitizing chemicals. We recently reported that DC, exposed in culture to the highest non-cytotoxic concentrations of various chemical allergens, displayed marginal up-regulation of membrane CD86 expression; the interpretation being that such changes were insufficiently sensitive for the purposes of hazard identification. For the work presented here, immature DC were derived from human monocytes and treated with the chemical allergens 2,4-dinitrobenzenesulfonic acid (DNBS), nickel sulfate (NiSO4), p-phenylenediamine (PPD), Bandrowski's base (BB), hydroquinone (HQ) and propyl gallate (PG) for 48 h at concentrations which induced both no to slight to moderate cytotoxicity. For comparison, DC were treated with the irritants sodium dodecyl sulfate (SDS), benzoic acid (BA), and benzalkonium chloride (BZC) at concentrations resulting in comparable levels of cytotoxicity. CD86 expression, as measured by flow cytometry, was consistently up-regulated (ranging from 162 to 386% control) on DC treated with concentrations of chemical allergens that induced approximately 10-15% cytotoxicity. The irritants BA and BZC did not induce up-regulation of CD86 expression when tested at concentrations that induced similar levels of cytotoxicity. SDS, however, up-regulated CD86 expression to 125-138% of control in 2/4 preparations when tested at concentrations which induced similar toxicity. Our results confirm that chemical allergens up-regulate CD86 expression on blood-derived DC and illustrate further that up-regulation of CD86 surface marker expression is more robust when DC are treated with concentrations of chemical allergen that induce slight to moderate cytotoxicity

  4. BIGEL analysis of gene expression in HL60 cells exposed to X rays or 60 Hz magnetic fields

    Science.gov (United States)

    Balcer-Kubiczek, E. K.; Zhang, X. F.; Han, L. H.; Harrison, G. H.; Davis, C. C.; Zhou, X. J.; Ioffe, V.; McCready, W. A.; Abraham, J. M.; Meltzer, S. J.

    1998-01-01

    We screened a panel of 1,920 randomly selected cDNAs to discover genes that are differentially expressed in HL60 cells exposed to 60 Hz magnetic fields (2 mT) or X rays (5 Gy) compared to unexposed cells. Identification of these clones was accomplished using our two-gel cDNA library screening method (BIGEL). Eighteen cDNAs differentially expressed in X-irradiated compared to control HL60 cells were recovered from a panel of 1,920 clones. Differential expression in experimental compared to control cells was confirmed independently by Northern blotting of paired total RNA samples hybridized to each of the 18 clone-specific cDNA probes. DNA sequencing revealed that 15 of the 18 cDNA clones produced matches with the database for genes related to cell growth, protein synthesis, energy metabolism, oxidative stress or apoptosis (including MYC, neuroleukin, copper zinc-dependent superoxide dismutase, TC4 RAS-like protein, peptide elongation factor 1alpha, BNIP3, GATA3, NF45, cytochrome c oxidase II and triosephosphate isomerase mRNAs). In contrast, BIGEL analysis of the same 1,920 cDNAs revealed no differences greater than 1.5-fold in expression levels in magnetic-field compared to sham-exposed cells. Magnetic-field-exposed and control samples were analyzed further for the presence of mRNA encoding X-ray-responsive genes by hybridization of the 18 specific cDNA probes to RNA from exposed and control HL60 cells. Our results suggest that differential gene expression is induced in approximately 1% of a random pool of cDNAs by ionizing radiation but not by 60 Hz magnetic fields under the present experimental conditions.

  5. Extracellular matrix metalloproteinase inducer (CD147/BSG/EMMPRIN)-induced radioresistance in cervical cancer by regulating the percentage of the cells in the G2/m phase of the cell cycle and the repair of DNA Double-strand Breaks (DSBs).

    Science.gov (United States)

    Ju, Xingzhu; Liang, Shanhui; Zhu, Jun; Ke, Guihao; Wen, Hao; Wu, Xiaohua

    2016-01-01

    Our preliminary study found that CD147 is related to radioresistance and maybe an adverse prognostic factor in cervical cancer. To date, the mechanisms underlying CD147-induced radioresistance in cervical cancer remain unclear. In the present study, we investigated the mechanisms by which CD147 affects radiosensitivity in cervical cancer both in vitro and in vivo. In this study, the clonogenic assay showed that radiosensitivity was significantly higher in the experimental group (the CD147-negative cell lines) than in the control group (the CD147-positive cell lines). After radiotherapy, the residual tumour volume was significantly lower in the experimental group. FCM analysis showed the cells percentage in the G2/M phase of the cell cycle were significantly higher in the CD147-negative group than in the control group. However, there was no significant difference in terms of apoptosis. The expression of gamma-H2A histone family, member X (γH2AX) was dramatically elevated in the CD147-negative cell lines after irradiation, but the expression of ataxia-telangiectasia mutated (ATM) was not different between the two groups. WB analysis did not show any other proteins relating to the expression of CD147. In conclusion, it is likely that CD147 regulates radioresistance by regulating the percentage of the cells in the G2/M phase of the cell cycle and the repair of DNA double-strand breaks (DSBs). Inhibition of CD147 expression enhances the radiosensitivity of cervical cancer cell lines and promotes post-radiotherapy xenograft tumour regression in nude mice. Therefore, CD147 may be used in individualized therapy against cervical cancer and is worth further exploration. PMID:27398135

  6. Exposed hydrophobic residues in human immunodeficiency virus type 1 Vpr helix-1 are important for cell cycle arrest and cell death.

    Directory of Open Access Journals (Sweden)

    R Anthony Barnitz

    Full Text Available The human immunodeficiency virus type 1 (HIV-1 accessory protein viral protein R (Vpr is a major determinant for virus-induced G2/M cell cycle arrest and cytopathicity. Vpr is thought to perform these functions through the interaction with partner proteins. The NMR structure of Vpr revealed solvent exposed hydrophobic amino acids along helices 1 and 3 of Vpr, which could be putative protein binding domains. We previously showed that the hydrophobic patch along helix-3 was important for G2/M blockade and cytopathicity. Mutations of the exposed hydrophobic residues along helix-1 were found to reduce Vpr-induced cell cycle arrest and cell death as well. The levels of toxicity during virion delivery of Vpr correlated with G2/M arrest. Thus, the exposed hydrophobic amino acids in the amino-terminal helix-1 are important for the cell cycle arrest and cytopathicity functions of Vpr.

  7. Proteomic signature of arabidopsis cell cultures exposed to magnetically induced hyper- and microgravity environments

    NARCIS (Netherlands)

    R. Herranz; A.I. Manzano; J.J.W.A. van Loon; P.C.M. Christianen; F.J. Medina

    2013-01-01

    Earth-based microgravity simulation techniques are required due to space research constraints. Using diamagnetic levitation, we exposed Arabidopsis thaliana in vitro callus cultures to environments with different levels of effective gravity and magnetic field strengths (B) simultaneously. The enviro

  8. Incorporation of tritiated thymidine by epithelial and interstitial cells in bronchiolar-alveolar regions of asbestos-exposed rats

    International Nuclear Information System (INIS)

    Inhaled asbestos causes progressive interstitial lung disease. The authors have performed a series of studies to elucidate early pathogenetic events at sites of fiber deposition in asbestos-exposed rats. This study reports that a single 5-hour exposure to chrysotile asbestos induces significant increases in incorporation of tritiated thymidine (3HTdR) into nuclei of epithelial and interstitial cells of bronchiolar-alveolar regions. No cell populations in air-exposed or carbonyl iron-exposed control animals exhibited more than 1% labeling at any point in time. Immediately after the 5-hour asbestos exposure, incorporation was normal. By 19 hours after exposure there was a significant increase in incorporation of 3HTdR, particularly by Type II epithelial cells of the first alveolar duct bifurcations. The greatest increase in degree of incorporation (up to 18-fold) was observed 24 hours after exposure, and increased percentages of 3HTdR-labeled cells were maintained through the 48 hours postexposure period. Normal labeling was present by 8 days after exposure, and this level remained through the 1-month period studied. This apparent mitogenic response correlates with increased numbers of bronchiolar-alveolar epithelial and interstitial cells demonstrated by ultrastructural morphometry in correlative studies. The authors speculate that the incorporation of 3HTdR could be induced by the direct effects of inhaled fibers or by mitogenic factors released from macrophages attracted to the inhaled asbestos

  9. CtIP-dependent DNA resection is required for DNA damage checkpoint maintenance but not initiation

    DEFF Research Database (Denmark)

    Kousholt, Arne Nedergaard; Fugger, Kasper; Hoffmann, Saskia;

    2012-01-01

    To prevent accumulation of mutations, cells respond to DNA lesions by blocking cell cycle progression and initiating DNA repair. Homology-directed repair of DNA breaks requires CtIP-dependent resection of the DNA ends, which is thought to play a key role in activation of ATR (ataxia telangiectasia...

  10. N-Hydroxycinnamide derivatives of osthole presenting genotoxicity and cytotoxicity against human colon adenocarcinoma cells in vitro and in vivo.

    Science.gov (United States)

    Liu, Ling-Yu; Huang, Wei-Jan; Lin, Ren-Jye; Lin, Shyr-Yi; Liang, Yu-Chih

    2013-11-18

    Osthole is extracted from the Chinese herbs Cnidium monnieri and Angelica pubescens, and it was found to have antitumor activity in vitro and in vivo. A series of osthole derivatives have been synthesized, and the N-hydroxycinnamide derivatives of osthole, WJ1376-1 and WJ1398-1 were found to have the greatest potential against human colon adenocarcinoma cells. In contrast to the parental osthole, both WJ1376-1 and WJ1398-1 were found to induce multinucleation and polyploidy by microscopic observation and flow cytometry. WJ1376-1 and WJ1398-1 significantly activated ataxia telangiectasia and rad3 related (ATR) kinase, which triggered activation of the checkpoint kinase 2 (Chk2) signaling pathway and then down regulated Cdc25 phosphatase and Cdc2/cyclin B kinase activities. WJ1376-1 and WJ1398-1 also inhibited the phosphorylation of Aurora A kinase, which is associated with important processes during mitosis. The presence of a "comet" DNA fragment and phosphorylation of p53 at Ser 15 clearly indicated that DNA damage occurred with WJ1376-1 and WJ1398-1 treatment. WJ1376-1 and WJ1398-1 ultimately induced apoptosis as evidenced by the upregulation of Bad and activation of caspases-3, -7, and -9. Furthermore, WJ1376-1 and WJ1398-1 also showed a great effect in attenuating tumor growth without affecting the body weight of xenograft nude mice. Taken together, these results suggest that the toxic activities of WJ1376-1 and WJ1398-1 were dissimilar to that of the parental osthole, which can induce cell polyploidy and G2/M cell cycle arrest in colon adenocarcinoma cells and may provide a potential therapeutic target for colon cancer treatment in the future. PMID:24127835

  11. The opportunistic pathogen Pseudomonas aeruginosa activates the DNA double-strand break signaling and repair pathway in infected cells

    International Nuclear Information System (INIS)

    Highly hazardous DNA double-strand breaks can be induced in eukaryotic cells by a number of agents including pathogenic bacterial strains. We have investigated the genotoxic potential of Pseudomonas aeruginosa, an opportunistic pathogen causing devastating nosocomial infections in cystic fibrosis or immunocompromised patients. Our data revealed that infection of immune or epithelial cells by P. aeruginosa triggered DNA strand breaks and phosphorylation of histone H2AX (γH2AX), a marker of DNA double-strand breaks. Moreover, it induced formation of discrete nuclear repair foci similar to gamma-irradiation-induced foci, and containing γH2AX and 53BP1, an adaptor protein mediating the DNA-damage response pathway. Gene deletion, mutagenesis, and complementation in P. aeruginosa identified ExoS bacterial toxin as the major factor involved in γH2AX induction. Chemical inhibition of several kinases known to phosphorylate H2AX demonstrated that Ataxia Telangiectasia Mutated (ATM) was the principal kinase in P. aeruginosa-induced H2AX phosphorylation. Finally, infection led to ATM kinase activation by an auto-phosphorylation mechanism. Together, these data show for the first time that infection by P. aeruginosa activates the DNA double-strand break repair machinery of the host cells. This novel information sheds new light on the consequences of P. aeruginosa infection in mammalian cells. As pathogenic Escherichia coli or carcinogenic Helicobacter pylori can alter genome integrity through DNA double-strand breaks, leading to chromosomal instability and eventually cancer, our findings highlight possible new routes for further investigations of P. aeruginosa in cancer biology and they identify ATM as a potential target molecule for drug design. (authors)

  12. Increase in DNA damage in lymphocytes and micronucleus frequency in buccal cells in silica-exposed workers

    Directory of Open Access Journals (Sweden)

    Ajanta Halder

    2012-01-01

    Full Text Available The alkaline single cell gel electrophoresis (comet assay was applied to study the genotoxic properties of silica in human peripheral blood lymphocytes (PBL. The study was designed to evaluate the DNA damage of lymphocytes and the end points like micronuclei from buccal smears in a group of 45 workers, occupationally exposed to silica, from small mines and stone quarries. The results were compared to 20 sex and age matched normal individuals. There was a statistically significant difference in the damage levels between the exposed group and the control groups. The types of damages (type I -type 1V were used to measure the DNA damage. The numbers of micronuclei were higher in the silica-exposed population. The present study suggests that the silica exposure can induce lymphocyte DNA damage and produces significant variation of micronuclei in buccal smear.

  13. Comparison of hematological alterations and markers of B-cell activation in workers exposed to benzene, formaldehyde and trichloroethylene.

    Science.gov (United States)

    Bassig, Bryan A; Zhang, Luoping; Vermeulen, Roel; Tang, Xiaojiang; Li, Guilan; Hu, Wei; Guo, Weihong; Purdue, Mark P; Yin, Songnian; Rappaport, Stephen M; Shen, Min; Ji, Zhiying; Qiu, Chuangyi; Ge, Yichen; Hosgood, H Dean; Reiss, Boris; Wu, Banghua; Xie, Yuxuan; Li, Laiyu; Yue, Fei; Freeman, Laura E Beane; Blair, Aaron; Hayes, Richard B; Huang, Hanlin; Smith, Martyn T; Rothman, Nathaniel; Lan, Qing

    2016-07-01

    Benzene, formaldehyde (FA) and trichloroethylene (TCE) are ubiquitous chemicals in workplaces and the general environment. Benzene is an established myeloid leukemogen and probable lymphomagen. FA is classified as a myeloid leukemogen but has not been associated with non-Hodgkin lymphoma (NHL), whereas TCE has been associated with NHL but not myeloid leukemia. Epidemiologic associations between FA and myeloid leukemia, and between benzene, TCE and NHL are, however, still debated. Previously, we showed that these chemicals are associated with hematotoxicity in cross-sectional studies of factory workers in China, which included extensive personal monitoring and biological sample collection. Here, we compare and contrast patterns of hematotoxicity, monosomy 7 in myeloid progenitor cells (MPCs), and B-cell activation biomarkers across these studies to further evaluate possible mechanisms of action and consistency of effects with observed hematologic cancer risks. Workers exposed to benzene or FA, but not TCE, showed declines in cell types derived from MPCs, including granulocytes and platelets. Alterations in lymphoid cell types, including B cells and CD4+ T cells, and B-cell activation markers were apparent in workers exposed to benzene or TCE. Given that alterations in myeloid and lymphoid cell types are associated with hematological malignancies, our data provide biologic insight into the epidemiological evidence linking benzene and FA exposure with myeloid leukemia risk, and TCE and benzene exposure with NHL risk. PMID:27207665

  14. B cells exposed to enterobacterial components suppress development of experimental colitis

    DEFF Research Database (Denmark)

    Schmidt, Esben Gjerløff Wedebye; Larsen, Hjalte List; Kristensen, Nanna Ny;

    2012-01-01

    BACKGROUND: B cells positively contribute to immunity by antigen presentation to CD4(+) T cells, cytokine production, and differentiation into antibody secreting plasma cells. Accumulating evidence implies that B cells also possess immunoregulatory functions closely linked to their capability of ...

  15. Workshop on The Epidemiology of the ATM Gene: Impact on Breast Cancer Risk and Treatment, Present Status and Future Focus, Lillehammer, Norway, 29 June 2002

    International Nuclear Information System (INIS)

    The role of ataxia-telangiectasia mutated (ATM) heterozygosity in cancer is uncertain. In vitro studies of cells from ATM heterozygotes provide strong evidence of radiation sensitivity. Some, but not all, clinical studies suggest an increased risk of breast cancer among ATM gene carriers, and this risk may be greater among those exposed to radiation. This possible excess risk of breast cancer associated with ATM heterozygosity constitutes the basis for several genetic epidemiological studies designed to clarify the role that the ATM gene plays in the etiology of breast and other cancers. The primary focus of this international, multidisciplinary, National Cancer Institute-sponsored workshop was to discuss ongoing and planned epidemiologic studies aimed at understanding the complexities of the ATM gene and its role in carcinogenesis. The invited participants were from diverse disciplines including molecular and clinical genetics, radiation biology and physics, epidemiology, biostatistics, pathology, and medicine. In the present meeting report, the aims of each project are described

  16. Nestin-expressing cells in the developing, mature and noise-exposed cochlear epithelium

    OpenAIRE

    Watanabe, Reiko; Morell, Maria H.; Miller, Josef M.; Kanicki, Ariane; O'Shea, K. Sue; Altschuler, Richard A.; Raphael, Yehoash

    2011-01-01

    The auditory sensory epithelium in non-mammalian vertebrates can replace lost hair cells by transdifferentiation of supporting cells, but this regenerative ability is lost in the mammalian cochlea. Future cell-based treatment of hearing loss may depend on stem cell transplantation or on transdifferentiation of endogenous cells in the cochlea. For both approaches, identification of cells with stem cell features within the mature cochlea may be useful. Here we use a Nestin-β-gal mouse to examin...

  17. Changes of cell factor in bronchoalveolar lavage fluid in rats exposed to silica

    Institute of Scientific and Technical Information of China (English)

    张玮

    2014-01-01

    Objective To investigate the changes in the levels of inflammatory cytokines in bronchoalveolar lavage fluid(BALF)in rats exposed to silica dust.Methods Experimental rats were randomly divided into control group and three experimental groups(doses of dust:15,30,and 60mg/ml),with 42 rats in each group.Each rat in the control group was treated with 1 ml of normal saline by intratracheal instillation,while each rat in the experimental groups was exposed to 1

  18. Phenotypic malignant changes and untargeted lipidomic analysis of long-term exposed prostate cancer cells to endocrine disruptors

    Energy Technology Data Exchange (ETDEWEB)

    Bedia, Carmen, E-mail: carmen.bedia@idaea.csic.es; Dalmau, Núria, E-mail: nuria.dalmau@idaea.csic.es; Jaumot, Joaquim, E-mail: joaquim.jaumot@idaea.csic.es; Tauler, Romà, E-mail: roma.tauler@idaea.csic.es

    2015-07-15

    Endocrine disruptors (EDs) are a class of environmental toxic molecules able to interfere with the normal hormone metabolism. Numerous studies involve EDs exposure to initiation and development of cancers, including prostate cancer. In this work, three different EDs (aldrin, aroclor 1254 and chlorpyrifos (CPF)) were investigated as potential inducers of a malignant phenotype in DU145 prostate cancer cells after a chronic exposure. Epithelial to mesenchymal transition (EMT) induction, proliferation, migration, colony formation and release of metalloproteinase 2 (MMP-2) were analyzed in 50-day exposed cells to the selected EDs. As a result, aldrin and CPF exposure led to an EMT induction (loss of 16% and 14% of E-cadherin levels, respectively, compared to the unexposed cells). Aroclor and CPF presented an increased migration (134% and 126%, respectively), colony formation (204% and 144%, respectively) and MMP-2 release (137% in both cases) compared to the unexposed cells. An untargeted lipidomic analysis was performed to decipher the lipids involved in the observed transformations. As general results, aldrin exposure showed a global decrease in phospholipids and sphingolipids, and aroclor and CPF showed an increase of certain phospholipids, glycosphingolipids as well as a remarkable increase of some cardiolipin species. Furthermore, the three exposures resulted in an increase of some triglyceride species. In conclusion, some significant changes in lipids were identified and thus we postulate that some lipid compounds and lipid metabolic pathways could be involved in the acquisition of the malignant phenotype in exposed prostate cancer cells to the selected EDs. - Highlights: • Aldrin, aroclor and chlorpyrifos induced an aggressive phenotype in DU145 cells. • An untargeted lipidomic analysis has been performed on chronic exposed cells. • Lipidomic results showed changes in specific lipid species under chronic exposure. • These lipids may have a role in the

  19. Strong HIV-1-Specific T Cell Responses in HIV-1-Exposed Uninfected Infants and Neonates Revealed after Regulatory T Cell Removal

    OpenAIRE

    Legrand, Fatema A.; Nixon, Douglas F.; Loo, Christopher P.; Erika Ono; Chapman, Joan M; Maristela Miyamoto; Diaz, Ricardo S.; Amélia M N Santos; Succi, Regina C. M.; Jacob Abadi; Rosenberg, Michael G.; Maria Isabel de Moraes-Pinto; Esper G Kallas

    2006-01-01

    BACKGROUND: In utero transmission of HIV-1 occurs on average in only 3%-15% of HIV-1-exposed neonates born to mothers not on antiretroviral drug therapy. Thus, despite potential exposure, the majority of infants remain uninfected. Weak HIV-1-specific T-cell responses have been detected in children exposed to HIV-1, and potentially contribute to protection against infection. We, and others, have recently shown that the removal of CD4(+) CD25(+) T-regulatory (Treg) cells can reveal strong HIV-1...

  20. Loss of ATM kinase activity leads to embryonic lethality in mice

    DEFF Research Database (Denmark)

    Daniel, J.A.; Pellegrini, M.; Filsuf, D.;

    2012-01-01

    Ataxia telangiectasia (A-T) mutated (ATM) is a key deoxyribonucleic acid (DNA) damage signaling kinase that regulates DNA repair, cell cycle checkpoints, and apoptosis. The majority of patients with A-T, a cancer-prone neurodegenerative disease, present with null mutations in Atm. To determine wh...

  1. Cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser.

    Science.gov (United States)

    Alexsandra da Silva Neto Trajano, Larissa; da Silva, Camila Luna; de Carvalho, Simone Nunes; Cortez, Erika; Mencalha, André Luiz; de Souza da Fonseca, Adenilson; Stumbo, Ana Carolina

    2016-07-01

    Low-level infrared laser is considered safe and effective for treatment of muscle injuries. However, the mechanism involved on beneficial effects of laser therapy are not understood. The aim was to evaluate cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser at therapeutic fluences. C2C12 myoblast cultures at different (2 and 10 %) fetal bovine serum (FBS) concentrations were exposed to low-level infrared laser (808 nm, 100 mW) at different fluences (10, 35, and 70 J/cm(2)) and evaluated after 24, 48, and 72 h. Cell viability was evaluated by WST-1 assay; reactive oxygen species (ROS), apoptosis, and necrosis were evaluated by flow cytometry. Cell viability was decreased atthe lowest FBS concentration. Laser exposure increased the cell viability in myoblast cultures at 2 % FBS after 48 and 72 h, but no significant increase in ROS was observed. Apoptosis was decreased at the higher fluence and necrosis was increased at lower fluence in myoblast cultures after 24 h of laser exposure at 2 % FBS. No laser-induced alterations were obtained at 10 % FBS. Results show that level of reactive oxygen species is not altered, at least to those evaluated in this study, but low-level infrared laser exposure affects cell viability, apoptosis, and necrosis in myoblast cultures depending on laser fluence and physiologic conditions of cells. PMID:26886589

  2. Alteration of Peripheral Blood T-Reg Cells and Cytokines Production in Angiography Personnel Exposed to Scattered X-Rays

    Directory of Open Access Journals (Sweden)

    Ebrahim Torkabadi

    2007-12-01

    Full Text Available Angiocardiography is an X-ray examination of the blood vessels or chambers of the heart. Cardiologists and staff members applying this procedure are exposed to high levels of scattered radiation. In our previous study the incidence of unstable chromosomal aberrations and cytokinesis-blocked micronuclei were found to be significantly higher in exposed individuals than the age and sex matched controls. In the present study we assessed cytokine production by peripheral blood mononuclear cells of the above cases and the percentage of Treg cells. According to film dosimeter analysis, personnels received 0.25-15 mSv during the previous year (average of 3 mSv/y. Isolated PBMCs from the test and control groups were stimulated with Phorbol Myristate Acetate/ Ionomycin (PMA/I. Cytokine production was measured in the supernatants of cultured lymphocytes. The percentage of Treg cells was studied by flow cytometry. The production of IL-10 and IL-5 was significantly down-regulated in the test group compared to the control group. In contrast, IL-12 was up-regulated. Yet, no statistically significant difference was found for IFN- γ between two groups. In addition, we found higher percentage of CD4+CD25+bright Treg cells in the study group compared to the controls. Taken together, it was shown that low doses of scattered X-rays could skew cytokine profile of peripheral blood mononuclear cells in favour of inflammatory response causing the increase of Treg cells.

  3. Detection of Sperm DNA Damage in Workers Exposed to Benzene by Modified Single Cell Gel Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    Bo SONG; Zhi-ming CAI; Xin LI; Li-xia DENG; Qiao ZHANG; Lu-kang ZHENG

    2005-01-01

    Objective To assess the effect of benzene on sperm DNA damageMethods Twenty-seven benzene-exposed workers were selected as exposed groupand 35 normal sperm donors as control group. Air concentration of benzene series inworkshop was determined by gas chromatography. As an internal exposure dose ofbenzene, the concentration of trans, trans-muconic acid (ttMA) was determined byhigh performance liquid chromatography. DNA was detected by modified single cellgel electrophoresis (SCGE).Results The air concentrations of benzene, toluene and xylene at the workplace were86.49 ± 2.83 mg/m3, 97.20 ±3.52 mg/m3 and 97.45 ±2.10 mg/m3, respectively.Urinary ttMA in exposed group (1.040 ± 0.617 mg/L) was significantly higher thanthat of control group (0.819 ± 0.157 mg/L). The percentage of head DNA, determinedby modified SCGE method, significantly decreased in the exposed group (n=13, 70.18%± 7.36%) compared with the control (n=16, 90.62% ± 2.94%)(P<0.001).Conclusion The modified SCGE method can be used to investigate the damage ofsperm DNA. As genotoxin and reprotoxins, benzene had direct effect on the germ cellsduring the spermatogenesiss.

  4. Effectiveness of compensation of lymphoid defficiency in lethally exposed animals through transplantation of cryopreserved lymphoid cells

    International Nuclear Information System (INIS)

    In experiments on lethally exposed (LDsub(100/15)) (CBAxC57B1)F1 mice treated with bone marrow, it was demonstrated that transplantation of syngeneic cryopreserved lymphocytes accelerates markedly the recovery of cellularity of bone marrow, spleen and thymus and rises the level of humoral and cellular immune response of the organism

  5. Associations of ATM Polymorphisms With Survival in Advanced Esophageal Squamous Cell Carcinoma Patients Receiving Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Du, Zhongli [State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Zhang, Wencheng [Department of Radiation Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Zhou, Yuling; Yu, Dianke; Chen, Xiabin; Chang, Jiang; Qiao, Yan; Zhang, Meng; Huang, Ying; Wu, Chen [State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Xiao, Zefen, E-mail: xiaozefen@sina.com [Department of Radiation Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Tan, Wen, E-mail: tanwen@cicams.ac.cn [State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); and others

    2015-09-01

    Purpose: To investigate whether single nucleotide polymorphisms (SNPs) in the ataxia telangiectasia mutated (ATM) gene are associated with survival in patients with esophageal squamous cell carcinoma (ESCC) receiving radiation therapy or chemoradiation therapy or surgery only. Methods and Materials: Four tagSNPs of ATM were genotyped in 412 individuals with clinical stage III or IV ESCC receiving radiation therapy or chemoradiation therapy, and in 388 individuals with stage I, II, or III ESCC treated with surgery only. Overall survival time of ESCC among different genotypes was estimated by Kaplan-Meier plot, and the significance was examined by log-rank test. The hazard ratios (HRs) and 95% confidence intervals (CIs) for death from ESCC among different genotypes were computed by a Cox proportional regression model. Results: We found 2 SNPs, rs664143 and rs664677, associated with survival time of ESCC patients receiving radiation therapy. Individuals with the rs664143A allele had poorer median survival time compared with the rs664143G allele (14.0 vs 20.0 months), with the HR for death being 1.45 (95% CI 1.12-1.89). Individuals with the rs664677C allele also had worse median survival time than those with the rs664677T allele (14.0 vs 23.5 months), with the HR of 1.57 (95% CI 1.18-2.08). Stratified analysis showed that these associations were present in both stage III and IV cancer and different radiation therapy techniques. Significant associations were also found between the SNPs and locosregional progression or progression-free survival. No association between these SNPs and survival time was detected in ESCC patients treated with surgery only. Conclusion: These results suggest that the ATM polymorphisms might serve as independent biomarkers for predicting prognosis in ESCC patients receiving radiation therapy.

  6. Proliferation and survival of L5178Y murine lymphoma cells exposed to tritiated water and tritiated thymidine

    International Nuclear Information System (INIS)

    Two strains of murine lymphoma cells L5178Y, inversely cross-sensitive to X-rays and UV light, were exposed to various concentrations of tritiated water and tritiated thymidine. The exposure was carried out at 370C to simulate conditions of in vivo chronic exposure. Tritiated water was used at 2, 4 and 100 μCi/ml (74 and 148 kBq/ml and 3.7 MBq/ml) and tritiated thymidine at 0.05 μCi/ml (1.85 kBq/ml). The exposure was carried out for 4, 25, 50, 100, 200 and 400 h. The strains exposed, L5178Y-R and L5178Y-S, which differ in sensitivity to acute irradiation, also differ in susceptibility to tritiated compounds. It was found that the development of the exposed cell populations proceeds according to a reproducible pattern: growth phases can be distinguished that differ both in their rate of proliferation and in their cell reproductive capacity determined after transfer into a non-radioactive medium. (author)

  7. Evaluation of DNA damage in agricultural workers exposed to pesticides using single cell gel electrophoresis (comet assay

    Directory of Open Access Journals (Sweden)

    Raminderjeet Kaur

    2011-01-01

    Full Text Available Background : Pesticides are used in agriculture to protect crops, but they pose a potential risk to farmers and environment. The aim of the present study is to investigate the relation between the occupational exposure to various pesticides and the presence of DNA damage. Materials and Methods : Blood samples of 210 exposed workers (after a day of intense spraying and 50 control subjects belonging to various districts of Punjab (India were evaluated using Comet assay. Sixty workers who showed DNA damage were selected for follow up at 5-6 months after the first sampling during a low or null spraying period. Results : Significant differences were found in DNA damage between freshly exposed workers and controls and freshly exposed and followed up cases. There was significant increase in the comet parameters viz. mean comet tail length and frequency of cells showing migration in exposed workers as compared to controls (72.22 ± 20.76 vs. 46.92 ± 8.17, P<0.001; 31.79 vs. 5.77, P<0.001. In the second samples, followed up cases showed significant decrease in frequency of damaged cells as compared to freshly exposed workers of first sampling (P<0.05. The confounding factors such as variable duration of pesticide exposure, age, smoking, drinking and dietary habits etc which were expected to modulate the damage, were instead found to have no significant effect on DNA fragmentation. Conclusion : The evidence of a genetic hazard related to exposure resulting from the intensive use of pesticides stresses the need for educational programs for agricultural workers to reduce the use of chemicals in agriculture.

  8. Signs of Müller cell gliotic response found in the retina of newts exposed to real and simulated microgravity

    Science.gov (United States)

    Grigoryan, E. N.; Anton, H. J.; Poplinskaya, V. A.; Aleinikova, K. S.; Domaratskaya, E. I.; Novikova, Y. P.; Almeida, E.

    2012-05-01

    The effects of real and simulated microgravity on the eye tissue regeneration of newts were investigated. For the first time changes in Müller glial cells in the retina of eyes regenerating after retinal detachment were detected in newts exposed to clinorotation. The cells divided, were hypertrophied, and their processes were thickened. Such changes suggested reactive gliosis and were more significant in animals exposed to rotation when compared with desk-top controls. Later experiments onboard the Russian biosatellite Bion-11 showed similar changes in the retinas that were regenerating in a two-week spaceflight. In the Bion-11 animals, GFAP, the major structural protein of retinal macroglial cells, was found to be upregulated. In a more recent experiment onboard Foton-M3 (2007), GFAP expression in retinas of space-flown, ground control (kept at 1 g), and basal control (sacrificed on launch day) newts was quantified, using microscopy, immunohistochemistry, and digital image analysis. A low level of immunoreactivity was observed in basal controls. In contrast, retinas of space-flown animals showed greater GFAP immunoreactivity associated with both an increased cell number and a higher thickness of intermediate filaments. This, in turn, was accompanied by up-regulation of stress protein (HSP90) and growth factor (FGF2) expressions. It can be postulated that such a response of Müller cells was to mitigate the retinal stress in newts exposed to microgravity. Taken together, the data suggest that the retinal population of macroglial cells could be sensitive to gravity changes and that in space it can react by enhancing its neuroprotective function.

  9. Naphthalimides Induce G2 Arrest Through the ATM-Activated Chk2-Executed Pathway in HCT116 Cells

    Directory of Open Access Journals (Sweden)

    Hong Zhu

    2009-11-01

    Full Text Available Naphthalimides, particularly amonafide and 2-(2-dimethylamino-6-thia-2-aza-benzo[def]chrysene-1,3-diones (R16, have been identified to possess anticancer activities and to induce G2-M arrest through inhibiting topoisomerase II accompanied by Chk1 degradation. The current study was designed to precisely dissect the signaling pathway(s responsible for the naphthalimide-induced cell cycle arrest in human colon carcinoma HCT116 cells. Using phosphorylated histone H3 and mitotic protein monoclonal 2 as mitosis markers, we first specified the G2 arrest elicited by the R16 and amonafide. Then, R16 and amonafide were revealed to induce phosphorylation of the DNA damage sensor ataxia telangiectasia-mutated (ATM responding to DNA double-strand breaks (DSBs. Inhibition of ATM by both the pharmacological inhibitor caffeine and the specific small interference RNA (siRNA rescued the G2 arrest elicited by R16, indicating its ATM-dependent characteristic. Furthermore, depletion of Chk2, but not Chk1 with their corresponding siRNA, statistically significantly reversed the R16- and amonafide-triggered G2 arrest. Moreover, the naphthalimides phosphorylated Chk2 in an ATM-dependent manner but induced Chk1 degradation. These data indicate that R16 and amonafide preferentially used Chk2 as evidenced by the differential ATM-executed phosphorylation of Chk1 and Chk2. Thus, a clear signaling pathway can be established, in which ATM relays the DNA DSBs signaling triggered by the naphthalimides to the checkpoint kinases, predominantly to Chk2,which finally elicits G2 arrest. The mechanistic elucidation not only favors the development of the naphthalimides as anticancer agents but also provides an alternative strategy of Chk2 inhibition to potentiate the anticancer activities of these agents.

  10. A new method specifically designed to expose cells isolated in vitro to radon and its decay products.

    Science.gov (United States)

    Petitot, F; Morlier, J P; Debroche, M; Pineau, J F; Chevillard, S

    2002-06-01

    A system was set up to provide direct exposure of cells cultured in vitro to radon and its decay products. Radon gas emanating from a uranium source was introduced at a measured concentration in a closed 10-m(3) exposure chamber. Cells were cultured on the microporous membrane of an insert that was floating over the culture medium in a six-well cluster plate. Plates with cells were placed in an open thermoregulated bath within the chamber. Under these conditions, cells were irradiated by direct deposition of radon and radon decay products. During exposure, all parameters, including radon gas concentrations, decay product activities, and potential alpha-particle energy concentrations, were determined by periodic air-grab samplings inside the chamber. The energy spectrum of deposited decay products was characterized. An estimation of alpha-particle flux density on the area containing cells was performed using CR-39 detector films that were exposed in cell-free wells during the cell exposure. The number of alpha-particle traversals per cell was deduced both from the mean number of CR-39 tracks per surface unit and from measurements of entire cells or nuclear surfaces. This paper describes the design of experiment, the dosimetry of radon and radon decay product, and the procedures for aerosol measurements. Our preliminary data show the usefulness of the in vitro cell culture approach to the study of the early cellular effects of radon and its decay products.

  11. rIL-10 enhances IL-10 signalling proteins in foetal alveolar type II cells exposed to hyperoxia.

    Science.gov (United States)

    Lee, Hyeon-Soo; Lee, Dong Gun

    2015-07-01

    Although the mechanisms by which hyperoxia promotes bronchopulmonary dysplasia are not fully defined, the inability to maintain optimal interleukin (IL)-10 levels in response to injury secondary to hyperoxia seems to play an important role. We previously defined that hyperoxia decreased IL-10 production and pre-treatment with recombinant IL-10 (rIL-10) protected these cells from injury. The objectives of these studies were to investigate the responses of IL-10 receptors (IL-10Rs) and IL-10 signalling proteins (IL-10SPs) in hyperoxic foetal alveolar type II cells (FATIICs) with and without rIL-10. FATIICs were isolated on embryonic day 19 and exposed to 65%-oxygen for 24 hrs. Cells in room air were used as controls. IL-10Rs protein and mRNA were analysed by ELISA and qRT-PCR, respectively. IL-10SPs were assessed by Western blot using phospho-specific antibodies. IL-10Rs protein and mRNA increased significantly in FATIICs during hyperoxia, but JAK1 and TYK2 phosphorylation showed the opposite pattern. To evaluate the impact of IL-8 (shown previously to be increased) and the role of IL-10Rs, IL-10SPs were reanalysed in IL-8-added normoxic cells and in the IL-10Rs' siRNA-treated hyperoxic cells. The IL-10Rs' siRNA-treated hyperoxic cells and IL-8-added normoxic cells showed the same pattern in IL10SPs with the hyproxic cells. And pre-treatment with rIL-10 prior to hyperoxia exposure increased phosphorylated IL-10SPs, compared to the rIL-10-untreated hyperoxic cells. These studies suggest that JAK1 and TYK2 were significantly suppressed during hyperoxia, where IL-8 may play a role, and rIL-10 may have an effect on reverting the suppressed JAK1 and TYK2 in FATIICs exposed to hyperoxia. PMID:26059905

  12. Increased frequency of spontaneous neoplastic transformation in progeny of bystander cells from cultures exposed to densely ionizing radiation.

    Directory of Open Access Journals (Sweden)

    Manuela Buonanno

    Full Text Available An increased risk of carcinogenesis caused by exposure to space radiation during prolonged space travel is a limiting factor for human space exploration. Typically, astronauts are exposed to low fluences of ionizing particles that target only a few cells in a tissue at any one time. The propagation of stressful effects from irradiated to neighboring bystander cells and their transmission to progeny cells would be of importance in estimates of the health risks of exposure to space radiation. With relevance to the risk of carcinogenesis, we investigated, in model C3H 10T½ mouse embryo fibroblasts (MEFs, modulation of the spontaneous frequency of neoplastic transformation in the progeny of bystander MEFs that had been in co-culture 10 population doublings earlier with MEFs exposed to moderate doses of densely ionizing iron ions (1 GeV/nucleon or sparsely ionizing protons (1 GeV. An increase (P<0.05 in neoplastic transformation frequency, likely mediated by intercellular communication through gap junctions, was observed in the progeny of bystander cells that had been in co-culture with cells irradiated with iron ions, but not with protons.

  13. MELK-T1, a small-molecule inhibitor of protein kinase MELK, decreases DNA-damage tolerance in proliferating cancer cells.

    Science.gov (United States)

    Beke, Lijs; Kig, Cenk; Linders, Joannes T M; Boens, Shannah; Boeckx, An; van Heerde, Erika; Parade, Marc; De Bondt, An; Van den Wyngaert, Ilse; Bashir, Tarig; Ogata, Souichi; Meerpoel, Lieven; Van Eynde, Aleyde; Johnson, Christopher N; Beullens, Monique; Brehmer, Dirk; Bollen, Mathieu

    2015-01-01

    Maternal embryonic leucine zipper kinase (MELK), a serine/threonine protein kinase, has oncogenic properties and is overexpressed in many cancer cells. The oncogenic function of MELK is attributed to its capacity to disable critical cell-cycle checkpoints and reduce replication stress. Most functional studies have relied on the use of siRNA/shRNA-mediated gene silencing. In the present study, we have explored the biological function of MELK using MELK-T1, a novel and selective small-molecule inhibitor. Strikingly, MELK-T1 triggered a rapid and proteasome-dependent degradation of the MELK protein. Treatment of MCF-7 (Michigan Cancer Foundation-7) breast adenocarcinoma cells with MELK-T1 induced the accumulation of stalled replication forks and double-strand breaks that culminated in a replicative senescence phenotype. This phenotype correlated with a rapid and long-lasting ataxia telangiectasia-mutated (ATM) activation and phosphorylation of checkpoint kinase 2 (CHK2). Furthermore, MELK-T1 induced a strong phosphorylation of p53 (cellular tumour antigen p53), a prolonged up-regulation of p21 (cyclin-dependent kinase inhibitor 1) and a down-regulation of FOXM1 (Forkhead Box M1) target genes. Our data indicate that MELK is a key stimulator of proliferation by its ability to increase the threshold for DNA-damage tolerance (DDT). Thus, targeting MELK by the inhibition of both its catalytic activity and its protein stability might sensitize tumours to DNA-damaging agents or radiation therapy by lowering the DNA-damage threshold. PMID:26431963

  14. The influence of ATM, ATR, DNA-PK inhibitors on the cytotoxic and genotoxic effects of dibenzo[def,p]chrysene on human hepatocellular cancer cell line HepG2.

    Science.gov (United States)

    Spryszyńska, Sylwia; Smok-Pieniążek, Anna; Ferlińska, Magdalena; Roszak, Joanna; Nocuń, Marek; Stępnik, Maciej

    2015-09-01

    The effect of inhibitors of phosphatidylinositol-3-kinase related kinases (PIKK): ataxia-telangiectasia mutated (ATM), ATM- and Rad3-related (ATR) and DNA-dependent protein kinase (DNA-PK) on the response of HepG2 human liver cancer cells to dibenzo[def,p]chrysene (DBC) was investigated. High cytotoxicity of DBC (IC50=0.1μM) was observed after 72h incubation. PIKK inhibitors: KU55933 (5μM), NU7026 (10μM) or caffeine (1 and 2mM) when used alone did not significantly influence the cytotoxicity. However, two combinations: KU55933/NU7026 and caffeine/NU7026 significantly increased HepG2 viability (by 25%) after treatment with DBC at 0.5μM. The cytoprotective effect was confirmed by cell cycle and apoptosis/necrosis analysis. DNA damage level after exposure to DBC assessed by comet assay (single strand breaks) showed a long persistence and significant decrease after incubation of the cells in the presence the inhibitors (the combination of KU55933+NU7026 showed the strongest effect). Weak induction of reactive oxygen species (ROS) by DBC (0.5μM) was observed. Although, KU55933 and NU7026 when used alone did not increase ROS levels in the cells, their combination induced the ROS increase and moderately enhanced ROS generation by DBC. We propose a mechanism how cells with damaged DNA after exposure to DBC and under the condition of PIKK inhibition, may be at higher risk of undergoing malignant transformation. PMID:26338538

  15. Lung Surfactant Gelation Induced by Epithelial Cells Exposed to Air Pollution or Oxidative Stress

    OpenAIRE

    Anseth, Jay W.; Goffin, An J.; Fuller, Gerald G.; Ghio, Andrew J; Kao, Peter N.; Upadhyay, Daya

    2005-01-01

    Lung surfactant lowers surface tension and adjusts interfacial rheology to facilitate breathing. A novel instrument, the interfacial stress rheometer (ISR), uses an oscillating magnetic needle to measure the shear viscosity and elasticity of a surfactant monolayer at the air–water interface. The ISR reveals that calf lung surfactant, Infasurf, exhibits remarkable fluidity, even when exposed to air pollution residual oil fly ash (ROFA), hydrogen peroxide (H2O2), or conditioned media from resti...

  16. DNA damage in gill cells of Corbicula japonica exposed to natural and anthropogenic stressors

    OpenAIRE

    Valentina Vladimirovna Slobodskova

    2015-01-01

    Bivalve mollusks are sensitive biomarkers of aquatic ecosystem pollution. The impact of human activities on the environmental is an ongoing and increasing problem. There are many potentially dangerous chemicals that dissolve in water. Aquatic organisms are exposed to these chemicals, which can lead to morphological alterations and change certain physiological processes in their organs. The monitoring of changes in various biochemical parameters at the individual species level of organisms may...

  17. Assessment of micronucleus frequency in exfoliated buccal epithelial cells among fisher folks exposed to mine tailings in Marinduque Island, Philippines

    Institute of Scientific and Technical Information of China (English)

    Elena M Ragragio; Celeste P Belleza; Mark C Narciso; Glenn L Sia Su

    2010-01-01

    Objective:To evaluate the potential toxic effects of mine tailings exposure among the fisher folks residing near and far from the Calancan Bay, Marinduque, using the micronucleus assay as an endpoint.Methods: The fisher folks residing near and far from the Calancan Bay were interviewed and the presence and frequency of cells with micronucleus in exfoliated buccal epithelial cells were examined.Results: Results showed that the prevalence of cells with micronucleus was higher among the fisher folks who were directly exposed to the mine tailings as compared with those fisher folks who reside in a community without exposure of mine tailings and history of mining (P<0.05).Conclusions: The presence and the significant difference in the cells with micronuclei observed near the Calancan Bay could possibly indicate a prolonged chemical stress caused by the toxic heavy metals in the mine tailings and the environment.

  18. Modulation by retinoic acid of cellular, surface-exposed, and secreted glycoconjugates in cultured human sarcoma cells.

    Science.gov (United States)

    Meromsky, L; Lotan, R

    1984-02-01

    The effect of beta-all-trans-retinoic acid (RA) on the synthesis of cellular, cell surface, and secreted glycoconjugates by human Hs705 chondrosarcoma and Hs791 osteosarcoma cells was investigated in vitro. Untreated and RA-treated cells were labeled either metabolically with radioactive precursors or by oxidation of externally exposed cell membrane glycoprotein(s) (GP) by treatment with NalO4 or neuraminidase and galactose oxidase followed by reduction with NaB[3H]4. The cells were solubilized and analyzed by polyacrylamide gel electrophoresis followed by fluorography. RA enhanced the labeling of sialic acid and galactose residues on the GP of relative molecular weight(s) (Mr) in the range 95,000-300,000 on the surfaces of both cell types. [3H]glycosamine incorporation into GP with Mr of 100,000, 150,000, and 190,000 in both cell lines was also stimulated. In the Hs705 cells there was also an increase in the labeling of a 290,000-Mr GP. In contrast, [3H]glucosamine incorporation into glycoconjugates greater than 400,000 Mr in both the cells and the conditioned medium of Hs705 cells decreased. The latter glycoconjugates were susceptible to hyaluronidase and chondroitinases. [3H]glucosamine incorporation into a secreted 230,000-Mr GP, identified as fibronectin, was also reduced. Analyses of conditioned media of cells labeled with [35S]methionine or [14C]proline demonstrated that RA decreased the secretion of procollagen chains and fibronectin. Immunofluorescence revealed that RA alters the distribution of cell-associated fibronectin. These results demonstrated that RA increases the glycosylation of specific cellular and cell surface GP and decreases the production of secreted GP and glycosaminoglycans by the sarcoma cells.

  19. Mast cells in the intestine and gills of the sea bream, Sparus aurata, exposed to a polychlorinated biphenyl, PCB 126.

    Science.gov (United States)

    Lauriano, Eugenia Rita; Calò, Margherita; Silvestri, Giuseppa; Zaccone, Daniele; Pergolizzi, Simona; Lo Cascio, Patrizia

    2012-02-01

    The presence of mast cells has been reported in all classes of vertebrates, including many teleost fish families. The mast cells of teleosts, both morphologically and functionally, show a close similarity to the mast cells of mammals. Mast cells of teleosts, localized in the vicinity of blood vessels of the intestine, gills and skin, may play an important role in the mechanisms of inflammatory response, because they express a number of functional proteins, including piscidins, which are antimicrobical peptides that act against a broad-spectrum of pathogens. An increase in the number of mast cells in various tissues and organs of teleosts seems to be linked to a wide range of stressful conditions, such as exposure to heavy metals (cadmium, copper, lead and mercury), exposure to herbicides and parasitic infections. This study analyzed the morphological localization and abundance of mast cells in the intestine and gills of sea bream, Sparus aurata, after a 12, 24 or 72 h exposure to PCB 126, a polychlorinated biphenyl, which is a potent immunotoxic agent. In the organs of fish exposed to PCB 126, it was observed that in addition to congestion of blood vessels, there was extravasation of red blood cells, infiltration of lymphocytes, and a progressive increase in numbers of mast cells. These data confirm the immunotoxic action of PCB, and the involvement of mast cells in the inflammatory response. PMID:21565388

  20. Low-level laser therapy: Effects on human face aged skin and cell viability of HeLa cells exposed to UV radiation

    OpenAIRE

    Mezghani Sana; Hammami Amira; Amri Mohamed

    2015-01-01

    Chronic and excessive exposure to UV radiation leads to photoaging and photocarcinogenesis. Adequate protection of the skin against the deleterious effects of UV irradiation is essential. Low-level laser therapy (LLLT) is a light source in the red to near-infrared range that has been accepted in a variety of medical applications. In this study, we explored the effect of LLLT in human face aged skin and the cell viability of HeLa cells exposed to UV radiatio...

  1. Phosphorylated histone H2AX in relation to cell survival in tumor cells and xenografts exposed to single and fractionated doses of X-rays

    International Nuclear Information System (INIS)

    Background and purpose: Human tumor cell lines grown as monolayers or xenograft tumors were exposed to single or multiple fractions of X-rays and the ability to use residual γH2AX to identify radiosensitive cells was assessed. Materials and methods: Twenty-four hour after exposure to single or daily fractions of X-rays, human tumor cells from monolayers or xenografts were analyzed for clonogenic surviving fraction. Cells were also fixed and labeled with anti-γH2AX antibodies for analysis by flow and image cytometry. The relative amount of residual γH2AX and the percentage of cells with <3 foci were compared with the clonogenic surviving fraction measured for the same population. Results: The fraction of γH2AX remaining 24 h after X-irradiation relative to peak levels 1 h after exposure was correlated with radiosensitivity (SF2) for 18 human tumor cell lines. The fraction of SiHa, C33A and WiDr cells with <3 γH2AX foci was predictive of clonogenic surviving fraction for both monolayer cells exposed to either single doses or up to 5 fractions. Similar results were obtained using cells from xenograft tumors of irradiated mice. Conclusion: The percentage of tumor cells that retain γH2AX foci 24 h after single or fractionated doses appears to be a useful measure of cellular radiosensitivity that is potentially applicable in the clinic

  2. A DP based scheme for real-time reconfiguration of solar cell arrays exposed to dynamic changing inhomogeneous illuminations

    DEFF Research Database (Denmark)

    Shi, Liping; Brehm, Robert

    2016-01-01

    The overall energy conversion efficiency of solar cell arrays is highly effected by partial shading effects. Especially for solar panel arrays installed in environments which are exposed to inhomogeneous dynamic changing illuminations such as on roof tops of electrical vehicles the overall system...... efficiency is drastically reduced. Dynamic real-time reconfiguration of the solar panel array can reduce effects on the output efficiency due to partial shading. This results in a maximized power output of the panel array when exposed to dynamic changing illuminations. The optimal array configuration...... with respect to shading patterns can be stated as a combinatorial optimization problem and this paper proposes a dynamic programming (DP) based algorithm which finds the optimal feasible solution to reconfigure the solar panel array for maximum efficiency in real-time with linear time complexity. It is shown...

  3. Effect of Amygdalin on the Proliferation of Hyperoxia-exposed Type Ⅱ Alveolar Epithelial Cells Isolated from Premature Rat

    Institute of Scientific and Technical Information of China (English)

    祝华平; 常立文; 李文斌; 刘汉楚

    2004-01-01

    Summary: The pathogenesis of hyperoxia lung injury and the mechanism of amygdalin on type 2 alveolar epithelial cells (AEC2) isolated from premature rat lungs in vitro were investigated. AEC2 were obtained by primary culture from 20-days fetal rat lung and hyperoxia-exposed cell model was established. Cell proliferating viability was examined by MTT assay after treatment of amygdalin at various concentrations. DNA content and the proliferating cell nuclear antigen (PCNA) protein expression of AEC2 were measured by using flow cytometry and immunocytochemistry respectively after 24 h of hyperoxia exposure or amygdalin treatment. The results showed that hyperoxia inhibited the proliferation and decreased PCNA protein expression in AEC2 of premature rat in vitro. Amygdalin at the concentration range of 50-200 μmol/L stimulated the proliferation of AEC2 in a dose-dependent manner, however, 400 μmol/L amygdalin inhibited the proliferation of AEC2. Amygdalin at the concentration of 200 μmol/L played its best role in facilitating proliferation of AEC2s in vitro and could partially ameliorated the changes of proliferation in hyperoxia exposed AEC2 of premature rat. It has been suggested that hyperoxia inhibited the proliferation of AEC2s of premature rat, which may contribute to hyperoxia lung injury. Amygdalin may play partial protective role in hyperoxia-induced lung injury.

  4. ATM Polymorphisms Predict Severe Radiation Pneumonitis in Patients With Non-Small Cell Lung Cancer Treated With Definitive Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Huihua [Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan (China); Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao, Zhongxing, E-mail: zliao@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liu, Zhensheng [Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Xu, Ting [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Wang, Qiming; Liu, Hongliang [Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Komaki, Ritsuko; Gomez, Daniel [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Wang, Li-E [Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Wei, Qingyi, E-mail: qwei@mdanderson.org [Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-03-15

    Purpose: The ataxia telangiectasia mutated (ATM) gene mediates detection and repair of DNA damage. We investigated associations between ATM polymorphisms and severe radiation-induced pneumonitis (RP). Methods and Materials: We genotyped 3 potentially functional single nucleotide polymorphisms (SNPs) of ATM (rs1801516 [D1853N/5557G>A], rs189037 [-111G>A] and rs228590) in 362 patients with non-small cell lung cancer (NSCLC), who received definitive (chemo)radiation therapy. The cumulative severe RP probabilities by genotypes were evaluated using the Kaplan-Meier analysis. The associations between severe RP risk and genotypes were assessed by both logistic regression analysis and Cox proportional hazard model with time to event considered. Results: Of 362 patients (72.4% of non-Hispanic whites), 56 (15.5%) experienced grade ≥3 RP. Patients carrying ATM rs189037 AG/GG or rs228590 TT/CT genotypes or rs189037G/rs228590T/rs1801516G (G-T-G) haplotype had a lower risk of severe RP (rs189037: GG/AG vs AA, adjusted hazard ratio [HR] = 0.49, 95% confidence interval [CI], 0.29-0.83, P=.009; rs228590: TT/CT vs CC, HR=0.57, 95% CI, 0.33-0.97, P=.036; haplotype: G-T-G vs A-C-G, HR=0.52, 95% CI, 0.35-0.79, P=.002). Such positive findings remained in non-Hispanic whites. Conclusions: ATM polymorphisms may serve as biomarkers for susceptibility to severe RP in non-Hispanic whites. Large prospective studies are required to confirm our findings.

  5. Friend leukemia virus transformed cells exposed to microgravity in the presence of DMSO (7-IML-1)

    Science.gov (United States)

    Cogoli, Augusto

    1992-01-01

    The purpose of this experiment is to study the adaptation of living cells to microgravity. The in vitro transformation of Friend cells by Dimethylsufoxide (DMSO) is a good model for the study of cell differentiation and protein biosynthesis. Cultures of cells will be prepared shortly before launch. Once in space, transformation will be induced by injection of DMSO. One set of cultures will be chemically fixed with glutaraldehyde for electron microscope investigations; another set will be preserved for determining the amount of hemogloben produced and the extent of cell proliferation.

  6. Comparison of photovoltaic cell temperatures in modules operating with exposed and enclosed back surfaces

    Science.gov (United States)

    Namkoong, D.; Simon, F. F.

    1981-01-01

    Four different photovoltaic module designs were tested to determine the cell temperature of each design. The cell temperatures were compared to those obtained on identical design, using the same nominal operating cell temperature (NOCT) concept. The results showed that the NOCT procedure does not apply to the enclosed configurations due to continuous transient conditions. The enclosed modules had higher cell temperatures than the open modules, and insulated modules higher than the uninsulated. The severest performance loss - when translated from cell temperatures - 17.5 % for one enclosed, insulated module as a compared to that module mounted openly.

  7. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hong [Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY (United States); Shamy, Magdy [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Kluz, Thomas; Muñoz, Alexandra B.; Zhong, Mianhua; Laulicht, Freda [Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY (United States); Alghamdi, Mansour A.; Khoder, Mamdouh I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Chen, Lung-Chi [Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY (United States); Costa, Max, E-mail: Max.Costa@nyumc.org [Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY (United States)

    2012-12-01

    Epidemiological studies have established a positive correlation between human mortality and increased concentration of airborne particulate matters (PM). However, the mechanisms underlying PM related human diseases, as well as the molecules and pathways mediating the cellular response to PM, are not fully understood. This study aims to investigate the global gene expression changes in human cells exposed to PM{sub 10} and to identify genes and pathways that may contribute to PM related adverse health effects. Human bronchial epithelial cells were exposed to PM{sub 10} collected from Saudi Arabia for 1 or 4 days, and whole transcript expression was profiled using the GeneChip human gene 1.0 ST array. A total of 140 and 230 genes were identified that significantly changed more than 1.5 fold after PM{sub 10} exposure for 1 or 4 days, respectively. Ingenuity Pathway Analysis revealed that different exposure durations triggered distinct pathways. Genes involved in NRF2-mediated response to oxidative stress were up-regulated after 1 day exposure. In contrast, cells exposed for 4 days exhibited significant changes in genes related to cholesterol and lipid synthesis pathways. These observed changes in cellular oxidative stress and lipid synthesis might contribute to PM related respiratory and cardiovascular disease. -- Highlights: ► PM exposure modulated gene expression and associated pathways in BEAS-2B cells. ► One-day exposure to PM induced genes involved in responding to oxidative stress. ► 4-day exposure to PM changed genes associated to cholesterol and lipid synthesis.

  8. Growth inhibition and gene induction in human hepatocellular carcinoma cell exposed to sodium 4-phenylbutanoate

    Institute of Scientific and Technical Information of China (English)

    WANG Chun-ting,; MENG Mei; ZHANG Ji-cheng; JIN Chang-jun; JIANG Jin-jiao; REN Hong-sheng; JIANG Jun-mei; QIN Cheng-yong; YU Dong-qing

    2008-01-01

    Background Sodium 4-phenylbutanoate (NaPB) can induce cellular differentiation and cell cycle arrest.However,its potential anticancer properties in hepatocellular carcinoma and influence on normal liver cell are still unclear.We observed the effects of NaPB on growth inhibition,including differentiation and phase growth arrest in normal liver cell line L-02 and hepatocellular carcinoma cell line Bel-7402.Furthermore,we investigated its mechanism in Bel-7402.Methods Hepatocellular carcinoma cells Bel-7402 and normal liver cell line L-02 were treated with NaPB at different concentrations.Light microscopy was used to find morphological change in cells.Cell cycle was detected by flow cytometry.Expression of acetylating histone H4 and of histones deacetylase 4 (HDAC4) were determined by Western blot.The expression of P21WAF1/CIP1 and E-cadherin were observed through immunocytochemistry.Results NaPB treatment led to time dependent growth inhibition in hepatocellular carcinoma cells Bel-7402.NaPB treatment caused a significant decline in the fraction of S phase cells and a significant increase in G0/G1 cells.NaPB increased the expression of P21WAF1/CIP1 and E-cadherin in Bel-7402 and significantly decreased the level of HDAC4 in Bel-7402.NaPB significantly improved the level of acetylating histone H4.The normal liver cell line L-02 showed no distinct changes under treatment with NaPB.Conclusions NaPB inhibited the growth of hepatocellular carcinoma cells Bel-7402 and induced partial differentiation through enhancing the acetylating histones.In Bel-7402,the expressions of P21WAF1/CIP1 and E-cadherin may be related to level of acetylating histones and inhibition of cellular growth.NaPB showed no significant effect on normal liver cells.

  9. Area Expansivity Moduli of Regenerating Plant Protoplast Cell Walls Exposed to Shear Flows

    Science.gov (United States)

    Fujimura, Yuu; Iino, Masaaki; Watanabe, Ugai

    2005-05-01

    To control the elasticity of the plant cell wall, protoplasts isolated from cultured Catharanthus roseus cells were regenerated in shear flows of 115 s-1 (high shear) and 19.2 s-1 (low shear, as a control). The surface area expansivity modulus and the surface breaking strength of these regenerating protoplasts were measured by a micropipette aspiration technique. Cell wall synthesis was also measured using a cell wall-specific fluorescent dye. High shear exposure for 3 h doubled both the surface area modulus and breaking strength observed under low shear, significantly decreased cell wall synthesis, and roughly quadrupled the moduli of the cell wall. Based on the cell wall synthesis data, we estimated the three-dimensional modulus of the cell wall to be 4.1± 1.2 GPa for the high shear, and 0.35± 0.2 GPa for the low shear condition, using the surface area expansivity modulus divided by the cell wall thickness, which is identical with the Young’s modulus divided by 2(1-σ), where σ is Poisson's ratio. We concluded that high shear exposure considerably strengthens the newly synthesized cell wall.

  10. Raman spectroscopy of single human tumour cells exposed to ionizing radiation in vitro

    International Nuclear Information System (INIS)

    This work investigates the capability of Raman spectroscopy (RS) to study the effects of ionizing radiation on single human tumour cells. Prostate tumour cells (cell line DU145) are cultured in vitro and irradiated to doses between 15 and 50 Gy with single fractions of 6 MV photons. Single-cell Raman spectra are acquired from irradiated and unirradiated cultures up to 5 days post-irradiation. Principal component analysis is used to distinguish the uniquely radiation-induced spectral changes from inherent sources of spectral variability arising from cell cycle differences and other known factors. We observe uniquely radiation-induced spectral changes which are correlated with both the irradiated dose and the incubation time post-irradiation. The spectral changes induced by radiation arise from biochemical differences in lipids, nucleic acids, amino acids and conformational protein structures between irradiated and unirradiated cells. To our knowledge, this study is the first use of RS to observe radiation-induced biochemical differences in single cells, and is the first use of vibrational spectroscopy to observe uniquely radiation-induced biochemical differences in single cells independent of concurrent cell-cycle- or cell-death-related processes.

  11. FGF2 mediates DNA repair in epidermoid carcinoma cells exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Fibroblast growth factor 2 (FGF2) is a well-known survival factor. However, its role in DNA repair is poorly documented. The present study was designed to investigate in epidermoid carcinoma cells the potential role of FGF2 in DNA repair. The side population (SP) with cancer stem cell-like properties and the main population (MP) were isolated from human A431 squamous carcinoma cells. Radiation-induced DNA damage and repair were assessed using the alkaline comet assay. FGF2 expression was quantified by enzyme linked immunosorbent assay (ELISA). SP cells exhibited rapid repair of radiation induced DNA damage and a high constitutive level of nuclear FGF2. Blocking FGF2 signaling abrogated the rapid DNA repair. In contrast, in MP cells, a slower repair of damage was associated with low basal expression of FGF2. Moreover, the addition of exogenous FGF2 accelerated DNA repair in MP cells. When irradiated, SP cells secreted FGF2, whereas MP cells did not. FGF2 was found to mediate DNA repair in epidermoid carcinoma cells. We postulate that carcinoma stem cells would be intrinsically primed to rapidly repair DNA damage by a high constitutive level of nuclear FGF2. In contrast, the main population with a low FGF2 content exhibits a lower repair rate which can be increased by exogenous FGF2. (authors)

  12. Metabolomics reveals metabolic changes in male reproductive cells exposed to thirdhand smoke

    Science.gov (United States)

    Xu, Bo; Chen, Minjian; Yao, Mengmeng; Ji, Xiaoli; Mao, Zhilei; Tang, Wei; Qiao, Shanlei; Schick, Suzaynn F.; Mao, Jian-Hua; Hang, Bo; Xia, Yankai

    2015-10-01

    Thirdhand smoke (THS) is a new term for the toxins in cigarette smoke that linger in the environment long after the cigarettes are extinguished. The effects of THS exposure on male reproduction have not yet been studied. In this study, metabolic changes in male germ cell lines (GC-2 and TM-4) were analyzed after THS treatment for 24 h. THS-loaded chromatography paper samples were generated in a laboratory chamber system and extracted in DMEM. At a paper: DMEM ratio of 50 μg/ml, cell viability in both cell lines was normal, as measured by the MTT assay and markers of cytotoxicity, cell cycle, apoptosis and ROS production were normal as measured by quantitative immunofluorescence. Metabolomic analysis was performed on methanol extracts of GC-2 and TM-4 cells. Glutathione metabolism in GC-2 cells, and nucleic acid and ammonia metabolism in TM-4 cells, was changed significantly by THS treatment. RT-PCR analyses of mRNA for enzyme genes Gss and Ggt in GC-2 cells, and TK, SMS and Glna in TM-4 cells reinforced these findings, showing changes in the levels of enzymes involved in the relevant pathways. In conclusion, exposure to THS at very low concentrations caused distinct metabolic changes in two different types of male reproductive cell lines.

  13. MRP1 expression in bronchoalveolar lavage cells in subjects with lung cancer who were chronically exposed to arsenic.

    Science.gov (United States)

    Recio-Vega, Rogelio; Dena-Cazares, Jose Angel; Ramirez-de la Peña, Jorge Luis; Jacobo-Ávila, Antonio; Portales-Castanedo, Arnulfo; Gallegos-Arreola, Martha Patricia; Ocampo-Gomez, Guadalupe; Michel-Ramirez, Gladis

    2015-12-01

    Alteration of multidrug resistance-associated protein-1 (MRP1) expression has been associated with certain lung diseases, and this protein may be pivotal in protecting the lungs against endogenous or exogenous toxic compounds. The aim of this study was to evaluate and compare the expression of MRP1 in bronchoalveolar cells from subjects with and without lung cancer who had been chronically exposed to arsenic through drinking water. MRP1 expression was assessed in bronchoalveolar cells in a total of 102 participants. MRP1 expression was significantly decreased in those with arsenic urinary levels >50 μg/L when compared with the controls. In conclusion, chronic arsenic exposure negatively correlates with the expression of MRP1 in BAL cells in patients with lung cancer.

  14. Analysis of Pseudomonas aeruginosa cell envelope proteome by capture of surface-exposed proteins on activated magnetic nanoparticles.

    Directory of Open Access Journals (Sweden)

    Davide Vecchietti

    Full Text Available We report on specific magneto-capturing followed by Multidimensional Protein Identification Technology (MudPIT for the analysis of surface-exposed proteins of intact cells of the bacterial opportunistic pathogen Pseudomonas aeruginosa. The magneto-separation of cell envelope fragments from the soluble cytoplasmic fraction allowed the MudPIT identification of the captured and neighboring proteins. Remarkably, we identified 63 proteins captured directly by nanoparticles and 67 proteins embedded in the cell envelope fragments. For a high number of proteins, our analysis strongly indicates either surface exposure or localization in an envelope district. The localization of most identified proteins was only predicted or totally unknown. This novel approach greatly improves the sensitivity and specificity of the previous methods, such as surface shaving with proteases that was also tested on P. aeruginosa. The magneto-capture procedure is simple, safe, and rapid, and appears to be well-suited for envelope studies in highly pathogenic bacteria.

  15. Induction of 8-azaguanine resistant mutants in human cultured cells exposed to 31 MeV protons

    Energy Technology Data Exchange (ETDEWEB)

    Fuhrman Conti, A.M.; Francone, G.; Volonte, M.; Gallini, R.E.

    1988-03-01

    The authors report results on the induction of 8-azaguanine (8-AG)-resistant mutants in cultured human cells (EUE) exposed to 31 MeV protons. The spontaneous frequency of mutants was 5.6 +- 0.7 x 10/sup -6/ per viable cell. Gamma rays were taken as reference radiation. Expression times giving the highest frequency of mutants after 31 MeV protons and gamma irradiation were found to be about 10 days for both radiations. The dose-response relationship for mutant induction by protons, as determined at the optimal expression time, was compared to that obtained after gamma rays. The relative biological effectiveness (RBE) is 2.4 +- 0.5, this value being higher than the RBE value determined for cell survival.

  16. Light-induced transpiration alters cell water relations in figleaf gourd (Cucurbita ficifolia) seedlings exposed to low root temperatures.

    Science.gov (United States)

    Lee, Seong Hee; Zwiazek, Janusz J; Chung, Gap Chae

    2008-06-01

    Water relation parameters including elastic modulus (epsilon), half-times of water exchange (T(w)(1/2)), hydraulic conductivity and turgor pressure (P) were measured in individual root cortical and cotyledon midrib cells in intact figleaf gourd (Cucurbita ficifolia) seedlings, using a cell pressure probe. Transpiration rates (E) of cotyledons were also measured using a steady-state porometer. The seedlings were exposed to low ambient (approximately 10 micromol m(-2) s(-1)) or high supplemental irradiance (approximately 300 micromol m(-2) s(-1) PPF density) at low (8 degrees C) or warm (22 degrees C) root temperatures. When exposed to low irradiance, all the water relation parameters of cortical cells remained similar at both root temperatures. The exposure of cotyledons to supplemental light at warm root temperatures, however, resulted in a two- to three-fold increase in T(w)(1/2) values accompanied with the reduced hydraulic conductivity in both root cortical (Lp) and cotyledon midrib cells (Lp(c)). Low root temperature (LRT) further reduced Lp(c) and E, whether it was measured under low or high irradiance levels. The reductions of Lp as the result of respective light and LRT treatments were prevented by the application of 1 microM ABA. Midrib cells required higher concentrations of ABA (2 microM) in order to prevent the reduction in Lp(c). When the exposure of cotyledons to light was accompanied by LRT, however, ABA proved ineffective in reversing the inhibition of Lp. LRT combined with high irradiance triggered a drastic 10-fold reduction in water permeability of cortical and midrib cells and increased epsilon and T(w)(1/2) values. Measurement of E indicated that the increased water demand by the transpiring plants was fulfilled by an increase in the apoplastic pathway as principal water flow route. The importance of water transport regulation by transpiration affecting the hydraulic conductivity of the roots is discussed. PMID:18346079

  17. Anti-Inflammatory Effects of Pomegranate Peel Extract in THP-1 Cells Exposed to Particulate Matter PM10

    Science.gov (United States)

    Park, Soojin; Seok, Jin Kyung; Kwak, Jun Yup; Suh, Hwa-Jin; Kim, Young Mi; Boo, Yong Chool

    2016-01-01

    Epidemiological and experimental evidence support health risks associated with the exposure to airborne particulate matter with a diameter of pomegranate peel extract (PPE) on THP-1 monocytic cells exposed to PM10. PM10 induced cytotoxicity and the production of ROS. It also increased the expression and secretion of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and monocyte chemoattractant protein-1 (MCP-1), and cell adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). PPE at 10–100 μg mL−1 attenuated the production of ROS and the expression of TNF-α, IL-1β, MCP-1, and ICAM-1, but not VCAM-1, in THP-1 cells stimulated by PM10 (100 μg mL−1). PPE also attenuated the adhesion of PM10-stimulated THP-1 cells to EA.hy926 endothelial cells. PPE constituents, punicalagin and ellagic acid, attenuated PM10-induced monocyte adhesion to endothelial cells, and punicalagin was less cytotoxic compared to ellagic acid. The present study suggests that PPE and punicalagin may be useful in alleviating inflammatory reactions due to particulate matter. PMID:27247608

  18. Anti-Inflammatory Effects of Pomegranate Peel Extract in THP-1 Cells Exposed to Particulate Matter PM10

    Directory of Open Access Journals (Sweden)

    Soojin Park

    2016-01-01

    Full Text Available Epidemiological and experimental evidence support health risks associated with the exposure to airborne particulate matter with a diameter of <10 μM (PM10. PM10 stimulates the production of reactive oxygen species (ROS and inflammatory mediators. Thus, we assumed that natural antioxidants might provide health benefits attenuating hazardous effects of PM10. In the present study, we examined the effects of pomegranate peel extract (PPE on THP-1 monocytic cells exposed to PM10. PM10 induced cytotoxicity and the production of ROS. It also increased the expression and secretion of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, and monocyte chemoattractant protein-1 (MCP-1, and cell adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1. PPE at 10–100 μg mL−1 attenuated the production of ROS and the expression of TNF-α, IL-1β, MCP-1, and ICAM-1, but not VCAM-1, in THP-1 cells stimulated by PM10 (100 μg mL−1. PPE also attenuated the adhesion of PM10-stimulated THP-1 cells to EA.hy926 endothelial cells. PPE constituents, punicalagin and ellagic acid, attenuated PM10-induced monocyte adhesion to endothelial cells, and punicalagin was less cytotoxic compared to ellagic acid. The present study suggests that PPE and punicalagin may be useful in alleviating inflammatory reactions due to particulate matter.

  19. ICAM-1-independent, CD18-dependent adhesion between neutrophils and human epithelial cells exposed in vitro to ozone

    Energy Technology Data Exchange (ETDEWEB)

    Tosi, M.F.; Hamedani, A.; Brosovich, J.; Alpert, S.E. (Case Western Reserve Univ. School of Medicine, Cleveland, OH (United States))

    1994-02-15

    Inhalant exposure to ozone can cause diffuse airway epithelial injury that is associated with an inflammatory response, including the influx of neutrophils into lung and airway tissue. The authors have previously documented enhanced adhesiveness by neutrophils for human airway epithelial cells in in vitro models of diseases associated with airway inflammation and have suggested that this enhanced adhesion may contribute to neutrophil-mediated airway injury. When primary human tracheal epithelial cell (TEC) monolayers were exposed to ozone at 2.0 ppm for 30 min or 0.5 ppm for 2 h, the percentage of PMN adhering to these cells increased from <5% to a maximum of approximately 75% by 18 to 24 h after the ozone exposure. No change was observed within the first 2 h after ozone exposure, but there was a statistically significant increase in PMN adhesion by 8 h after exposure. In contrast to previous studies with cytokine exposure or respiratory virus infection of TEC, the increased adhesion after ozone exposure was not associated with an increase in epithelial expression of ICAM-1. Consistent with the lack of induction of ICAM-1 by ozone exposure was the observation that anti-ICAM-1 mAbs previously shown to block PMN adhesion to TEC with increased ICAM-1 expression had no effect on PMN adhesion to ozone-exposed TEC. However, mAbs against CD11b or CD18 on PMN blocked PMN adhesion to ozone-exposed TEC by approximately 55 and 80%, respectively. Chemoattractant preactivation of PMN was necessary to achieve the highest levels of adhesion to ozone-treated TEC, in marked contrast to earlier studies with PMN adhesion to cytokine-treated or virus-infected TEC in which resting and prestimulated PMN exhibited the same high levels of adhesion.

  20. Reduced Neurite Density in Neuronal Cell Cultures Exposed to Serum of Patients with Bipolar Disorder

    Science.gov (United States)

    Wollenhaupt-Aguiar, Bianca; Pfaffenseller, Bianca; Chagas, Vinicius de Saraiva; Castro, Mauro A A; Passos, Ives Cavalcante; Kauer-Sant’Anna, Márcia; Kapczinski, Flavio

    2016-01-01

    Background: Increased inflammatory markers and oxidative stress have been reported in serum among patients with bipolar disorder (BD). The aim of this study is to assess whether biochemical changes in the serum of patients induces neurotoxicity in neuronal cell cultures. Methods: We challenged the retinoic acid-differentiated human neuroblastoma SH-SY5Y cells with the serum of BD patients at early and late stages of illness and assessed neurite density and cell viability as neurotoxic endpoints. Results: Decreased neurite density was found in neurons treated with the serum of patients, mostly patients at late stages of illness. Also, neurons challenged with the serum of late-stage patients showed a significant decrease in cell viability. Conclusions: Our findings showed that the serum of patients with bipolar disorder induced a decrease in neurite density and cell viability in neuronal cultures. PMID:27207915

  1. miRNA regulation of cytotoxic effects in mouse Sertoli cells exposed to nonylphenol

    Directory of Open Access Journals (Sweden)

    Kim Seung Jun

    2011-09-01

    Full Text Available Abstract Background It is known that some environmental chemicals affect the human endocrine system. The harmful effects of endocrine disrupting chemical (EDC nonylphenol (NP have been studied since the 1980s. It is known that NP adversely affects physiological functions by mimicking the natural hormone 17 beta-estradiol. In the present study, we analyzed the expression of miRNAs and their target genes in mouse Sertoli TM4 cells to better understand the regulatory roles of miRNAs on Sertoli cells after NP exposure. Methods Mouse TM4 Sertoli cells were treated with NP for 3 or 24 h, and global gene and miRNA expression were analyzed using Agilent mouse whole genome and mouse miRNA v13 arrays. Results We identified genes that were > 2-fold differentially expressed in NP-treated cells and control cells (P Ppara may regulate the expression of certain miRNAs, including miR-378, miR-125a-3p miR-20a, miR-203, and miR-101a, after exposure to NP. Additionally, comprehensive analysis of predicted target genes for miRNAs showed that the expression of genes with roles in cell proliferation, the cell cycle, and cell death were regulated by miRNA in NP-treated TM4 cells. Levels of expression of the miRNAs miR-135a* and miR-199a-5p were validated by qRT-PCR. Finally, miR-135a* target gene analysis suggests that the generation of reactive oxygen species (ROS following exposure to NP exposure may be mediated by miR-135a* through regulation of the Wnt/beta-catenin signaling pathway. Conclusions Collectively, these data help to determine NP's actions on mouse TM4 Sertoli cells and increase our understanding of the molecular mechanisms underlying the adverse effects of xenoestrogens on the reproductive system.

  2. Transcriptome analysis of the human T lymphocyte cell line Jurkat and human peripheral blood mononuclear cells exposed to deoxynivalenol (DON): New mechanistic insights

    Energy Technology Data Exchange (ETDEWEB)

    Katika, Madhumohan R. [RIKILT-Institute of Food Safety, Wageningen University and Research Centre, Wageningen (Netherlands); Department of Health Risk Analysis and Toxicology, Maastricht University (Netherlands); Netherlands Toxicogenomics Centre (Netherlands); Hendriksen, Peter J.M. [RIKILT-Institute of Food Safety, Wageningen University and Research Centre, Wageningen (Netherlands); Netherlands Toxicogenomics Centre (Netherlands); Shao, Jia [RIKILT-Institute of Food Safety, Wageningen University and Research Centre, Wageningen (Netherlands); Department of Health Risk Analysis and Toxicology, Maastricht University (Netherlands); Netherlands Toxicogenomics Centre (Netherlands); Loveren, Henk van [Department of Health Risk Analysis and Toxicology, Maastricht University (Netherlands); National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands); Netherlands Toxicogenomics Centre (Netherlands); Peijnenburg, Ad, E-mail: ad.peijnenburg@wur.nl [RIKILT-Institute of Food Safety, Wageningen University and Research Centre, Wageningen (Netherlands); Netherlands Toxicogenomics Centre (Netherlands)

    2012-10-01

    Deoxynivalenol (DON) or vomitoxin is a commonly encountered type-B trichothecene mycotoxin, produced by Fusarium species predominantly found in cereals and grains. DON is known to exert toxic effects on the gastrointestinal, reproductive and neuroendocrine systems, and particularly on the immune system. Depending on dose and exposure time, it can either stimulate or suppress immune function. The main objective of this study was to obtain a deeper insight into DON-induced effects on lymphoid cells. For this, we exposed the human T-lymphocyte cell line Jurkat and human peripheral blood mononuclear cells (PBMCs) to various concentrations of DON for various times and examined gene expression changes by DNA microarray analysis. Jurkat cells were exposed to 0.25 and 0.5 μM DON for 3, 6 and 24 h. Biological interpretation of the microarray data indicated that DON affects various processes in these cells: It upregulates genes involved in ribosome structure and function, RNA/protein synthesis and processing, endoplasmic reticulum (ER) stress, calcium-mediated signaling, mitochondrial function, oxidative stress, the NFAT and NF-κB/TNF-α pathways, T cell activation and apoptosis. The effects of DON on the expression of genes involved in ER stress, NFAT activation and apoptosis were confirmed by qRT-PCR. Other biochemical experiments confirmed that DON activates calcium-dependent proteins such as calcineurin and M-calpain that are known to be involved in T cell activation and apoptosis. Induction of T cell activation was also confirmed by demonstrating that DON activates NFATC1 and induces its translocation from the cytoplasm to the nucleus. For the gene expression profiling of PBMCs, cells were exposed to 2 and 4 μM DON for 6 and 24 h. Comparison of the Jurkat microarray data with those obtained with PBMCs showed that most of the processes affected by DON in the Jurkat cell line were also affected in the PBMCs. -- Highlights: ► The human T cell line Jurkat and human

  3. Characteristics of human CD34+ cells exposed to ionizing radiation under cytokine-free conditions

    International Nuclear Information System (INIS)

    To clarify the mechanisms underlying radiation-induced hematopoietic stem cell death, we investigated the effects of excessive ionizing radiation on the clonogenic potential of CD34+ cells obtained from human umbilical cord blood under cytokine-free conditions. The CD34+ cells were X-ray-irradiated (up to 2 Gy) and were cultured for 0-48 h under cytokine-free conditions. At various time-points, the CD34+ cells were investigated for survival, clonogenic potential and the generation of mitochondrial superoxide. At 12 h after X-ray irradiation, the number of viable cells had decreased to ∼70-80% compared with the 0-h non-irradiated control, whereas the clonogenic potential in the X-ray-irradiated cells had decreased to ∼50%-60% compared with the 0-h non-irradiated control. Furthermore, significant generation of mitochondrial superoxide was observed at 6 h, and reached a maximum value between 12 and 24 h after X-ray irradiation. However, no significant differences were observed between non-irradiated and X-ray-irradiated cells in terms of the generation of reactive oxygen species or in the intracellular mitochondrial contents. In addition, a cDNA microarray analysis showed that the majority of the altered genes in the CD34+ cells at 6 h after X-ray irradiation were apoptosis-related genes. These results suggest the possibility that the elimination of the clonogenic potentials of CD34+ cells involves the generation of mitochondrial superoxide induced by ionizing radiation. (author)

  4. Low-level laser therapy: Effects on human face aged skin and cell viability of HeLa cells exposed to UV radiation

    Directory of Open Access Journals (Sweden)

    Mezghani Sana

    2015-01-01

    Full Text Available Chronic and excessive exposure to UV radiation leads to photoaging and photocarcinogenesis. Adequate protection of the skin against the deleterious effects of UV irradiation is essential. Low-level laser therapy (LLLT is a light source in the red to near-infrared range that has been accepted in a variety of medical applications. In this study, we explored the effect of LLLT in human face aged skin and the cell viability of HeLa cells exposed to UV radiation. We found that LLLT significantly reduced visible wrinkles and the loss of firmness of facial skin in aging subjects. Additionally, treatment of cultured HeLa cells with LLLT prior to or post UVA or UVB exposure significantly protected cells from UV-mediated cell death. All results showed the beneficial effects of LLLT on relieving signs of skin aging and its prevention and protection of the cell viability against UV-induced damage.

  5. Chemoprotective effects of curcumin in esophageal epithelial cells exposed to bile acids

    Institute of Scientific and Technical Information of China (English)

    Matthew; R; Bower; Harini; S; Aiyer; Robert; CG; Martin

    2010-01-01

    AIM:To investigate the ability of curcumin to counteract the impact of bile acids on gene expression of esophageal epithelial cells.METHODS:An esophageal epithelial cell line(HET1A)was treated with curcumin in the presence of deoxycholic acid.Cell proliferation and viability assays were used to establish an appropriate dose range for curcumin.The combined and individual effects of curcumin and bile acid on cyclooxygenase-2(COX-2)and superoxide dismutase(SOD-1 and SOD-2)gene expression were also assessed.RES...

  6. Inter- and Intra-Chromosomal Aberrations in Human Cells Exposed in vitro to High and Low LET Radiations

    Science.gov (United States)

    Hada, M.; Wilkins, R.; Saganti, P. B.; Gersey, B.; Cucinotta, F. A.; Wu, H.

    2006-01-01

    Energetic heavy ions pose a health risk to astronauts in extended ISS and future Mars missions. High-LET heavy ions are particularly effective in causing various biological effects including cell inactivation, genetic mutations and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied chromosome aberrations in human lymphocytes and fibroblasts induced by both low- and high-LET radiation using FISH and multicolor fluorescence in situ hybridization (mFISH) techniques. In this study, we exposed human epithelial cells in vitro to gamma rays and energetic particles of varying types and energies and dose rates, and analyzed chromosomal damages using the multicolor banding in situ hybridization (mBAND) procedure. Confluent human epithelial cells (CH184B5F5/M10) were exposed to energetic heavy ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory, high energy neutron at the Los Alamos Nuclear Science Center (LANSCE) or Cs-137-gamma radiation source at the University of Texas, MD Anderson Cancer Center. After colcemid and Calyculin A treatment, cells were fixed and painted with XCyte3 mBAND kit (MetaSystems) and chromosome aberrations were analyzed with mBAND analysis system (MetaSystems). With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). The results of the mBAND study showed a higher ratio of inversion involved with interchromosomal exchange in heavy ions compared to -ray irradiation. Analysis of chromosome aberrations using mBAND has the potential to provide useful information on human cell response to space-like radiation.

  7. Rcan1-1L overexpression induces mitochondrial autophagy and improves cell survival in angiotensin II-exposed cardiomyocytes

    International Nuclear Information System (INIS)

    Mitochondrial autophagy is an important adaptive stress response and can be modulated by various key molecules. A previous study found that the regulator of calcineurin 1-1L (Rcan1-1L) may regulate mitochondrial autophagy and cause mitochondria degradation in neurocytes. However, the effect of Rcan1-1L on cardiomyocytes has not been determined. In the present study, we aimed to investigate the role of Rcan1-1L in angiotensin II (Ang II)-exposed human cardiomyocytes. Above all, Human adult cardiac myocytes (HACMs) were exposed to 200 nmol/L Ang II for 4 days. Enhanced H2O2 production, cytochrome C release and mitochondrial permeability were observed in these cells, which were blocked by valsartan. Consistently, Ang II exposure significantly reduced cardiomyocyte viability. However, transfection of Rcan1-1L vector promoted cell viability and ameliorated the apoptosis caused by Ang II. Rcan1-1L clearly promoted mitochondrial autophagy in HACMs, with elevated autophagy protein (ATG) 5 and light chain 3 (LC3) expression. Transient mitochondrial biogenesis and reduced cytochrome C release was also induced by Rcan1-1L. Additionally, Rcan1-1L significantly inhibited calcineurin/nuclear factor of activated T cells (NFAT) signaling. We thus conclude that Rcan1-1L may play a protective role in Ang II-treated cardiomyocytes through the induction of mitochondrial autophagy, and may be an alternative method of cardiac protection. - Highlights: • Transfection of Rcan1-1L into HACMs promoted cell viability and reduced apoptosis. • Transfection of Rcan1-1L promoted mitochondrial autophagy in HACMs. • Rcan1-1L inhibited the calcineurin/nuclear factor of activated T cells signaling

  8. Rcan1-1L overexpression induces mitochondrial autophagy and improves cell survival in angiotensin II-exposed cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hongyan; Li, Yongqiang; Yan, Lijie; Yang, Haitao; Wu, Jintao; Qian, Peng; Li, Bing; Wang, Shanling, E-mail: shanglingwang@126.com

    2015-07-01

    Mitochondrial autophagy is an important adaptive stress response and can be modulated by various key molecules. A previous study found that the regulator of calcineurin 1-1L (Rcan1-1L) may regulate mitochondrial autophagy and cause mitochondria degradation in neurocytes. However, the effect of Rcan1-1L on cardiomyocytes has not been determined. In the present study, we aimed to investigate the role of Rcan1-1L in angiotensin II (Ang II)-exposed human cardiomyocytes. Above all, Human adult cardiac myocytes (HACMs) were exposed to 200 nmol/L Ang II for 4 days. Enhanced H{sub 2}O{sub 2} production, cytochrome C release and mitochondrial permeability were observed in these cells, which were blocked by valsartan. Consistently, Ang II exposure significantly reduced cardiomyocyte viability. However, transfection of Rcan1-1L vector promoted cell viability and ameliorated the apoptosis caused by Ang II. Rcan1-1L clearly promoted mitochondrial autophagy in HACMs, with elevated autophagy protein (ATG) 5 and light chain 3 (LC3) expression. Transient mitochondrial biogenesis and reduced cytochrome C release was also induced by Rcan1-1L. Additionally, Rcan1-1L significantly inhibited calcineurin/nuclear factor of activated T cells (NFAT) signaling. We thus conclude that Rcan1-1L may play a protective role in Ang II-treated cardiomyocytes through the induction of mitochondrial autophagy, and may be an alternative method of cardiac protection. - Highlights: • Transfection of Rcan1-1L into HACMs promoted cell viability and reduced apoptosis. • Transfection of Rcan1-1L promoted mitochondrial autophagy in HACMs. • Rcan1-1L inhibited the calcineurin/nuclear factor of activated T cells signaling.

  9. DNA damage and apoptosis of endometrial cells cause loss of the early embryo in mice exposed to carbon disulfide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bingzhen [Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan (China); Shen, Chunzi [Centers for Disease Control and Prevention, Zibo (China); Yang, Liu; Li, Chunhui; Yi, Anji [Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan (China); Wang, Zhiping, E-mail: zhipingw@sdu.edu.cn [Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan (China)

    2013-12-01

    Carbon disulfide (CS{sub 2}) may lead to spontaneous abortion and very early pregnancy loss in women exposed in the workplace, but the mechanism remains unclear. We designed an animal model in which gestating Kunming strain mice were exposed to CS{sub 2} via i.p. on gestational day 4 (GD4). We found that the number of implanted blastocysts on GD8 was significantly reduced by each dose of 0.1 LD{sub 50} (157.85 mg/kg), 0.2 LD{sub 50} (315.7 mg/kg) and 0.4 LD{sub 50} (631.4 mg/kg). In addition, both the level of DNA damage and apoptosis rates of endometrial cells on GD4.5 were increased, showed definite dose–response relationships, and inversely related to the number of implanted blastocysts. The expressions of mRNA and protein for the Bax and caspase-3 genes in the uterine tissues on GD4.5 were up-regulated, while the expressions of mRNA and protein for the Bcl-2 gene were dose-dependently down-regulated. Our results indicated that DNA damage and apoptosis of endometrial cells were important reasons for the loss of implanted blastocysts induced by CS{sub 2}. - Highlights: • We built an animal model of CS2 exposure during blastocyst implantation. • Endometrial cells were used in the comet assay to detect DNA damage. • CS2 exposure caused DNA damage and endometrial cell apoptosis. • DNA damage and endometrial cell apoptosis were responsible for embryo loss.

  10. Glucagon-Like Peptide-1 Triggers Protective Pathways in Pancreatic Beta-Cells Exposed to Glycated Serum

    Directory of Open Access Journals (Sweden)

    Alessandra Puddu

    2013-01-01

    Full Text Available Advanced glycation end products (AGEs might play a pathophysiological role in the development of diabetes and its complications. AGEs negatively affect pancreatic beta-cell function and the expression of transcriptional factors regulating insulin gene. Glucagon-like peptide-1 (GLP-1, an incretin hormone that regulates glucose homeostasis, might counteract the harmful effects of AGEs on the beta cells in culture. The aim of this study was to identify the intracellular mechanisms underlying GLP-1-mediated protection from AGE-induced detrimental activities in pancreatic beta cells. HIT-T15 cells were cultured for 5 days with glycated serum (GS, consisting in a pool of AGEs, in the presence or absence of 10 nmol/L GLP-1. After evaluation of oxidative stress, we determined the expression and subcellular localization of proteins involved in maintaining redox balance and insulin gene expression, such as nuclear factor erythroid-derived 2 (Nrf2, glutathione reductase, PDX-1, and MafA. Then, we investigated proinsulin production. The results showed that GS increased oxidative stress, reduced protein expression of all investigated factors through proteasome activation, and decreased proinsulin content. Furthermore, GS reduced ability of PDX-1 and MafA to bind DNA. Coincubation with GLP-1 reversed these GS-mediated detrimental effects. In conclusion, GLP-1, protecting cells against oxidants, triggers protective intercellular pathways in HIT-T15 cells exposed to GS.

  11. Nitric oxide measurements in hTERT-RPE cells and subcellular fractions exposed to low levels of red light

    Science.gov (United States)

    Wigle, Jeffrey C.; Castellanos, Cherry C.; Denton, Michael L.; Holwitt, Eric A.

    2014-02-01

    Cells in a tissue culture model for laser eye injury exhibit increased resistance to a lethal pulse of 2.0-μm laser radiation if the cells are first exposed to 2.88 J/cm2 of red light 24 hr prior to the lethal laser exposure. Changes in expression of various genes associated with apoptosis have been observed, but the biochemical link between light absorption and gene expression remains unknown. Cytochome c oxidase (CCOX), in the electron transport chain, is the currentlyhypothesized absorber. Absorption of the red light by CCOX is thought to facilitate displacement of nitric oxide (NO) by O2 in the active site, increasing cellular respiration and intracellular ATP. However, NO is also an important regulator and mediator of numerous physiological processes in a variety of cell and tissue types that is synthesized from l-arginine by NO synthases. In an effort to determine the relative NO contributions from these competing pathways, we measured NO levels in whole cells and subcellular fractions, with and without exposure to red light, using DAF-FM, a fluorescent dye that stoichiometrically reacts with NO. Red light induced a small, but consistently reproducible, increase in fluorescence intensity in whole cells and some subcellular fractions. Whole cells exhibited the highest overall fluorescence intensity followed by (in order) cytosolic proteins, microsomes, then nuclei and mitochondria.

  12. Nuclear survivin and its relationship to DNA damage repair genes in non-small cell lung cancer investigated using tissue array.

    Directory of Open Access Journals (Sweden)

    Songliu Hu

    Full Text Available PURPOSE: To investigate the predictive role and association of nuclear survivin and the DNA double-strand breaks repair genes in non-small cell lung cancer (NSCLC: DNA-dependent protein kinase catalytic subunit (DNA-PKcs, Ku heterodimeric regulatory complex 70-KD subunit (Ku70 and ataxia-telangiectasia mutated (ATM. METHODS: The protein expression of nuclear survivin, DNA-PKcs, Ku70 and ATM were investigated using immunohistochemistry in tumors from 256 patients with surgically resected NSCLC. Furthermore, we analyzed the correlation between the expression of nuclear survivin, DNA-PKcs, Ku70 and ATM. Univariate and multivariate analyses were performed to determine the prognostic factors that inuenced the overall survival and disease-free survival of NSCLC. RESULTS: The expression of nuclear survivin, DNA-PKcs, Ku70 and ATM was significantly higher in tumor tissues than in normal tissues. By dichotomizing the specimens as expressing low or high levels of nuclear survivin, nuclear survivin correlated significantly with the pathologic stage (P = 0.009 and lymph node status (P = 0.004. The nuclear survivin levels were an independent prognostic factor for both the overall survival and the disease-free survival in univariate and multivariate analyses. Patients with low Ku70 and DNA-PKcs expression had a greater benefit from radiotherapy than patients with high expression of Ku70 (P = 0.012 and DNA-PKcs (P = 0.02. Nuclear survivin expression positively correlated with DNA-PKcs (P<0.001 and Ku70 expression (P<0.001. CONCLUSIONS: Nuclear survivin may be a prognostic factor for overall survival in patients with resected stage I-IIIA NSCLC. DNA-PKcs and Ku70 could predict the effect of radiotherapy in patients with NSCLC. Nuclear survivin may also stimulates DNA double-strand breaks repair by its interaction with DNA-PKcs and Ku70.

  13. p38 MAPK-Mediated Bmi-1 down-regulation and defective proliferation in ATM-deficient neural stem cells can be restored by Akt activation.

    Directory of Open Access Journals (Sweden)

    Jeesun Kim

    Full Text Available A-T (ataxia telangiectasia is a genetic disease caused by a mutation in the Atm (A-T mutated gene that leads to neurodegeneration. Despite an increase in the numbers of studies in this area in recent years, the mechanisms underlying neurodegeneration in human A-T are still poorly understood. Previous studies demonstrated that neural stem cells (NSCs isolated from the subventricular zone (SVZ of Atm(-/- mouse brains show defective self-renewal and proliferation, which is accompanied by activation of chronic p38 mitogen-activated protein kinase (MAPK and a lower level of the polycomb protein Bmi-1. However, the mechanism underlying Bmi-1 down-regulation and its relevance to defective proliferation in Atm(-/- NSCs remained unclear. Here, we show that over-expression of Bmi-1 increases self-renewal and proliferation of Atm(-/- NSCs to normal, indicating that defective proliferation in Atm(-/- NSCs is a consequence of down-regulation of Bmi-1. We also demonstrate that epidermal growth factor (EGF-induced Akt phosphorylation renders Bmi-1 resistant to the proteasomal degradation, leading to its stabilization and accumulation in the nucleus. However, inhibition of the Akt-dependent Bmi-1 stabilizing process by p38 MAPK signaling reduces the levels of Bmi-1. Treatment of the Atm(-/- NSCs with a specific p38 MAPK inhibitor SB203580 extended Bmi-1 posttranscriptional turnover and H2A ubiquitination in Atm(-/- NSCs. Our observations demonstrate the molecular basis underlying the impairment of self-renewal and proliferation in Atm(-/- NSCs through the p38 MAPK-Akt-Bmi-1-p21 signaling pathway.

  14. The telomeric protein TRF2 is critical for the protection of A549 cells from both telomere erosion and DNA double-strand breaks driven by salvicine.

    Science.gov (United States)

    Zhang, Yong-Wei; Zhang, Zhi-Xiang; Miao, Ze-Hong; Ding, Jian

    2008-03-01

    Telomere repeat binding factor 2 (TRF2) has been increasingly recognized to be involved in DNA damage response and telomere maintenance. Our previous report found that salvicine (SAL), a novel topoisomerase II poison, elicited DNA double-strand breaks and telomere erosion in separate experimental systems. However, it remains to be clarified whether they share a common response to these two events and in particular whether TRF2 is involved in this process. In this study, we found that SAL concurrently induced DNA double-strand breaks, telomeric DNA damage, and telomere erosion in lung carcinoma A549 cells. It was unexpected to find that SAL led to disruption of TRF2, independently of either its transcription or proteasome-mediated degradation. By overexpressing the full-length trf2 gene and transfecting TRF2 small interfering RNAs, we showed that TRF2 protein protected both telomeric and genomic DNA from the SAL-elicited events. It is noteworthy that although both the Ataxia-telangiectasia-mutated (ATM) and the ATM- and Rad3-related (ATR) kinases responded to the SAL-induced DNA damages, only ATR was essential for the telomere erosion. The study also showed that the activated ATR augmented the SAL-triggered TRF2 disruption, whereas TRF2 reduction in turn enhanced ATR function. All of these findings suggest the emerging significance of TRF2 protecting both telomeric DNA and genomic DNA on the one hand and reveal the mutual modulation between ATR and TRF2 in sensing DNA damage signaling during cancer development on the other hand.

  15. Analysis of lysosomal membrane proteins exposed to melanin in HeLa cells

    OpenAIRE

    Bang, Seung Hyuck; Park, Dong Jun; Kim, Yang-Hoon; Min, Jiho

    2016-01-01

    Objectives There have been developed to use targeting ability for antimicrobial, anticancerous, gene therapy and cosmetics through analysis of various membrane proteins isolated from cell organelles. Methods It was examined about the lysosomal membrane protein extracted from lysosome isolated from HeLa cell treated by 100 ppm melanin for 24 hours in order to find associated with targeting ability to melanin using by 2-dimensional electrophoresis. Results The result showed 14 up-regulated (1.5...

  16. Transcriptomic Analysis of Cultured Whale Skin Cells Exposed to Hexavalent Chromium [Cr(VI)

    OpenAIRE

    Pabuwal, Vagmita; Boswell, Mikki; Pasquali, Amanda; Wise, Sandra S.; Kumar, Suresh; Shen, Yingjia; Garcia, Tzintzuni; LaCerte, Carolyne; Wise, John Pierce; Warren, Wesley; Walter, Ronald B.

    2013-01-01

    Hexavalent chromium Cr(VI) is known to produce cytotoxic effects in humans and is a highly toxic environmental contaminant. Interestingly, it has been shown that free ranging sperm whales (Phyester macrocephalus) may have exceedingly high levels of Cr in their skin. Also, it has been demonstrated that skin cells from whales appear more resistant to both cytotoxicity and clastogenicity upon Cr exposure compared to human cells. However, the molecular genetic mechanisms employed in whale skin ce...

  17. Interleukin 1 beta initially sensitizes and subsequently protects murine intestinal stem cells exposed to photon radiation

    International Nuclear Information System (INIS)

    Interleukin 1 (IL-1) has been shown to prevent early bone marrow-related death following total-body irradiation, by protecting hematopoietic stem cells and speeding marrow repopulation. This study assesses the effect of IL-1 on the radiation response of the intestinal mucosal stem cell, a nonhematopoietic normal cell relevant to clinical radiation therapy. As observed with bone marrow, administration of human recombinant IL-1 beta (4 micrograms/kg) to C3H/Km mice 20 h prior to total-body irradiation modestly protected duodenal crypt cells. In contrast to bone marrow, IL-1 given 4 or 8 h before radiation sensitized intestinal crypt cells. IL-1 exposure did not substantially alter the slope of the crypt cell survival curve but did affect the shoulder: the X-ray survival curve was offset to the right by 1.01 +/- 0.06 Gy when IL-1 was given 20 h earlier and by 1.28 +/- 0.08 Gy to the left at the 4-h interval. Protection was greatest when IL-1 was administered 20 h before irradiation, but minimal effects persisted as long as 7 days after a single injection. The magnitude of radioprotection at 20 h or of radiosensitization at 4 h increased rapidly as IL-1 dose increased from 0 to 4 micrograms/kg. However, doses ranging from 10 to 100 micrograms/kg produced no further difference in radiation response. Animals treated with saline or IL-1 had similar core temperatures from 4 to 24 h after administration, suggesting that thermal changes were not responsible for either sensitization or protection. Mice irradiated 20 h after IL-1 had significantly greater crypt cell survival than saline-treated irradiated controls at all assay times, which ranged from 54 to 126 h following irradiation. The intervals to maximum crypt depopulation and initiation of repopulation were identical in both saline- and IL-1-treated groups

  18. Induction of anchorage-independent growth in primary human cells exposed to protons or HZE ions separately or in dual exposures.

    Science.gov (United States)

    Sutherland, B M; Cuomo, N C; Bennett, P V

    2005-10-01

    Travelers on space missions will be exposed to a complex radiation environment that includes protons and heavy charged particles. Since protons are present at much higher levels than are heavy ions, the most likely scenario for cellular radiation exposure will be proton exposure followed by a hit by a heavy ion. Although the effects of individual ion species on human cells are being investigated extensively, little is known about the effects of exposure to both radiation types. One useful measure of mammalian cell damage is induction of the ability to grow in a semi-solid agar medium highly inhibitory to the growth of normal human cells, termed neoplastic transformation. Using primary human cells, we evaluated induction of soft-agar growth and survival of cells exposed to protons only or to heavy charged particles (600 MeV/nucleon silicon) only as well as of cells exposed to protons followed after a 4-day interval by silicon ions. Both ions alone efficiently transformed the human cells to anchorage-independent growth. Initial experiments indicate that the dose responses for neoplastic transformation of cells exposed to protons and then after 4 days to silicon ions appear similar to that of cells exposed to silicon ions alone.

  19. Induction of anchorage-independent growth in primary human cells exposed to protons or HZE ions separately or in dual exposures.

    Science.gov (United States)

    Sutherland, B M; Cuomo, N C; Bennett, P V

    2005-10-01

    Travelers on space missions will be exposed to a complex radiation environment that includes protons and heavy charged particles. Since protons are present at much higher levels than are heavy ions, the most likely scenario for cellular radiation exposure will be proton exposure followed by a hit by a heavy ion. Although the effects of individual ion species on human cells are being investigated extensively, little is known about the effects of exposure to both radiation types. One useful measure of mammalian cell damage is induction of the ability to grow in a semi-solid agar medium highly inhibitory to the growth of normal human cells, termed neoplastic transformation. Using primary human cells, we evaluated induction of soft-agar growth and survival of cells exposed to protons only or to heavy charged particles (600 MeV/nucleon silicon) only as well as of cells exposed to protons followed after a 4-day interval by silicon ions. Both ions alone efficiently transformed the human cells to anchorage-independent growth. Initial experiments indicate that the dose responses for neoplastic transformation of cells exposed to protons and then after 4 days to silicon ions appear similar to that of cells exposed to silicon ions alone. PMID:16187755

  20. Sulindac enhances the killing of cancer cells exposed to oxidative stress.

    Directory of Open Access Journals (Sweden)

    Maria Marchetti

    Full Text Available BACKGROUND: Sulindac is an FDA-approved non-steroidal anti-inflammatory drug (NSAID that affects prostaglandin production by inhibiting cyclooxygenases (COX 1 and 2. Sulindac has also been of interest for more than decade as a chemopreventive for adenomatous colorectal polyps and colon cancer. PRINCIPAL FINDINGS: Pretreatment of human colon and lung cancer cells with sulindac enhances killing by an oxidizing agent such as tert-butyl hydroperoxide (TBHP or hydrogen peroxide. This effect does not involve cyclooxygenase (COX inhibition. However, under the conditions used, there is a significant increase in reactive oxygen species (ROS within the cancer cells and a loss of mitochondrial membrane potential, suggesting that cell death is due to apoptosis, which was confirmed by Tunel assay. In contrast, this enhanced killing was not observed with normal lung or colon cells. SIGNIFICANCE: These results indicate that normal and cancer cells handle oxidative stress in different ways and sulindac can enhance this difference. The combination of sulindac and an oxidizing agent could have therapeutic value.

  1. IFNγ/IL-10 co-producing cells dominate the CD4 response to malaria in highly exposed children.

    Directory of Open Access Journals (Sweden)

    Prasanna Jagannathan

    2014-01-01

    highly exposed children. These CD4(+ T cells may play important modulatory roles in the development of antimalarial immunity.

  2. Measurement of oxidative damage to DNA in nanomaterial exposed cells and animals

    DEFF Research Database (Denmark)

    Møller, Peter; Jensen, Ditte Marie; Christophersen, Daniel Vest;

    2015-01-01

    -reactivity with other molecules in cells. This review provides an overview of efforts to reliably detect oxidatively damaged DNA and a critical assessment of the published studies on DNA damage levels. Animal studies with high baseline levels of oxidatively damaged DNA are more likely to show positive associations...... of oxidatively damaged DNA in lung tissue. Oral exposure to nanosized carbon black, TiO2 , carbon nanotubes and ZnO is associated with elevated levels of oxidatively damaged DNA in tissues. These observations are supported by cell culture studies showing concentration-dependent associations between ENM exposure...... and oxidatively damaged DNA measured by the comet assay. Cell culture studies show relatively high variation in the ability of ENMs to oxidatively damage DNA; hence, it is currently impossible to group ENMs according to their DNA damaging potential. Environ. Mol. Mutagen., 2014. © 2014 Wiley Periodicals, Inc....

  3. DJ1 Expression Downregulates in Neuroblastoma Cells (SK-N-MC Chronically Exposed to HIV-1 and Cocaine.

    Directory of Open Access Journals (Sweden)

    Upal eRoy

    2015-07-01

    Full Text Available Background: HIV-associated neurological disorder (HAND has long been recognized as a consequence of Human Immunodeficiency Virus (HIV infection in the brain. The pathology of HAND gets more complicated with the recreational drug use such as cocaine. Recent studies have suggested multiple genetic influences involved in the pathology of addiction and HAND but only a fraction of the entire genetic risk has been investigated so far. In this regard, role of DJ1 protein (a gene linked to autosomal recessive early-onset Parkinson’s disease in regulating dopamine transmission and reactive oxygen species (ROS production in neuronal cells will be worth investigating in HIV-1 and cocaine exposed microenvironment. Being a very abundant protein in the brain, DJ1 could serve as a potential marker for early detection of HIV-1 and/or cocaine related neurological disorder.Methods: In vitro analysis was done to observe the effect of HIV-1 and/or cocaine on DJ1 protein expression in neuroblastoma cells (SK-N-MC. Gene expression and protein analysis of DJ1 was done on the HIV infected and/or cocaine treated SK-N-MC and compared to untreated cells using real time PCR, Western Blot and flow cytometry.Results: Gene expression and protein analysis indicated that there was a significant decrease in DJ1 expression in SK-N-MC chronically exposed to HIV-1 and/or cocaine.Conclusion: This is the first study to establish that DJ1 expression level in the neuronal cells significantly decreased in presence of HIV-1and/or cocaine indicating oxidative stress level of dopamine neurons.

  4. Morphological changes among hippocampal dentate granule cells exposed to early kindling-epileptogenesis.

    Science.gov (United States)

    Singh, Shatrunjai P; He, Xiaoping; McNamara, James O; Danzer, Steve C

    2013-12-01

    Temporal lobe epilepsy is associated with changes in the morphology of hippocampal dentate granule cells. These changes are evident in numerous models that are associated with substantial neuron loss and spontaneous recurrent seizures. By contrast, previous studies have shown that in the kindling model, it is possible to administer a limited number of stimulations sufficient to produce a lifelong enhanced sensitivity to stimulus evoked seizures without associated spontaneous seizures and minimal neuronal loss. Here we examined whether stimulation of the amygdala sufficient to evoke five convulsive seizures (class IV or greater on Racine's scale) produce morphological changes similar to those observed in models of epilepsy associated with substantial cell loss. The morphology of GFP-expressing granule cells from Thy-1 GFP mice was examined either 1 day or 1 month after the last evoked seizure. Interestingly, significant reductions in dendritic spine density were evident 1 day after the last seizure, the magnitude of which had diminished by 1 month. Further, there was an increase in the thickness of the granule cell layer 1 day after the last evoked seizure, which was absent a month later. We also observed an increase in the area of the proximal axon, which again returned to control levels a month later. No differences in the number of basal dendrites were detected at either time point. These findings demonstrate that the early stages of kindling epileptogenesis produce transient changes in the granule cell body layer thickness, molecular layer spine density, and axon proximal area, but do not produce striking rearrangements of granule cell structure.

  5. Ultrastructural changes of bone marrow cells exposed for xenogenous cerebrospinal fluid

    Directory of Open Access Journals (Sweden)

    Shaymardanova L.R.

    2010-01-01

    Full Text Available Due to the scientifical investigations xenogenous cerebrospinal fluid was considered as possible substance for theproduction of powerful adaptogen of biological origin. One of the representative research in these field demonstrates morphologicaland functional changes of bone marrow as the central hemopoetic and immune organ. The article shows the ultramicroscopicchanges of bone marrow cells after the xenogenous cerebrospinal fluid exposure in Vistar rats of differentage. It was revealed the activation of synthetic processes in bone marrow cells of the first three age groups and exhaustion ofactivating mechanisms in the fourth age group, that was manifested in swelling and destruction of mytochondria, vacuolisationof cytoplasm, invagination of caryolemma.

  6. Bone-Marrow Stem-Cell Survival in the Non-Uniformly Exposed Mammal

    International Nuclear Information System (INIS)

    For comparison of the effectiveness of non-uniform versus uniform irradiations in causing haematological death in mammals, a model of the irradiated haemopoietic system has been proposed. The essential features of this model are: (1) that different parts of the haemopoietic system have numbers of stem cells which are proportioned to the amounts of active marrow in those parts as measured by 59Fe uptake, (2) that stem cells in the different parts are subject to the, same dose-survival relationship, and (3) that survival of the animal depends on survival of a critical fraction of the total number of stem cells independent of their distribution among the parts of the total marrow mass. To apply this model one needs to know: (a) the relative 59Fe uptakes of the different parts of the haemopoietic system, (b) the doses delivered to those parts by each of the exposures to be compared, and (c) the dose-survival curve applicable to the stem cells. From these one can calculate the fraction of stem cells surviving each exposure. In a preliminary communication the applicability of the model was investigated using data obtained entirely from the literature. Additional data, particularly on bone-marrow distribution, have since been obtained and are included here. The primary object of the present paper is to test further the validity of the above 'stem-cell survival model'. Data on bilateral (essentially uniform) versus unilateral and non-uniform rotational exposures in mammals are examined with respect to the surviving fraction of stem cells at the LD50/30 day dose level. Although an adequate test is not possible at present for lack of a full set of data in any one species, a partial test indicates compatibility with data for dogs and rats. Other possible mortality determinants such as doses or exposures at entrance, midline or exit, or the gram-rads or average dose to the marrow, appear to be less useful than the critical stem-cell survival fraction

  7. Toxic cyanobacterial cells containing microcystins induce oxidative stress in exposed tilapia fish (Oreochromis sp.) under laboratory conditions.

    Science.gov (United States)

    Jos, Angeles; Pichardo, Silvia; Prieto, Ana I; Repetto, Guillermo; Vázquez, Carmen M; Moreno, Isabel; Cameán, Ana M

    2005-04-30

    The effects of microcystins from cyanobacterial cells on various oxidative stress biomarkers in liver, kidney and gill tissues in freshwater tilapia fish (Oreochromis sp.) were investigated under laboratory conditions. Microcystins are a family of cyclic peptide toxins produced by species of freshwater cyanobacteria (blue-green algae). Fish were exposed to the cyanobacterial cells in two ways: mixed with a commercial fish food or crushed into a commercial fish food so that the toxins were released. Two different exposure times were studied: 14 and 21 days. The oxidative status of fish was evaluated by analyzing the level of lipid peroxidation (LPO), as well as the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR). The findings of the present investigation show that microcystins induce oxidative stress in a time-dependent manner and that the type of administration of the cyanobacterial cells influences the extent of these effects. Thus, the crushed cyanobacterial cells (released toxins) induced the antioxidant defences studied and increased the LPO level to a greater extent than the non-crushed cells. The liver was the most affected organ followed by kidney and gills. These results together with reports that fish can accumulate microcystins mean that cyanobacterial blooms are an important health, environmental and economic problem. PMID:15820106

  8. Gypenosides Protected the Neural Stem Cells in the Subventricular Zone of Neonatal Rats that Were Prenatally Exposed to Ethanol

    Directory of Open Access Journals (Sweden)

    Lun Dong

    2014-11-01

    Full Text Available Fetal alcohol spectrum disorder (FASD can cause severe mental retardation in children who are prenatally exposed to ethanol. The effects of prenatal and early postnatal ethanol exposure on adult hippocampal neurogenesis have been investigated; however, the effects of prenatal ethanol exposure on the subventricular zone (SVZ have not. Gypenosides (GPs have been reported to have neuroprotective effects in addition to other bioactivities. The effects of GPs on neural stem cells (NSCs in the FASD model are unknown. Here, we test the effect of prenatal ethanol exposure on the neonatal SVZ, and the protection potential of GPs on NSCs in FASD rats. Our results show that prenatal ethanol exposure can suppress the cell proliferation and differentiation of neural stem cells in the neonatal SVZ and that GPs (400 mg/kg/day can significantly increase the cell proliferation and differentiation of neural stem cells inhibited by ethanol. Our data indicate that GPs have neuroprotective effects on the NSCs and can enhance the neurogenesis inhibited by ethanol within the SVZ of neonatal rats. These findings provide new evidence for a potential therapy involving GPs for the treatment of FASD.

  9. Mutant quantity and quality in mammalian cells (AL) exposed to cesium-137 gamma radiation: effect of caffeine

    Science.gov (United States)

    McGuinness, S. M.; Shibuya, M. L.; Ueno, A. M.; Vannais, D. B.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    1995-01-01

    We examined the effect of caffeine (1,3,7-trimethylxanthine) on the quantity and quality of mutations in cultured mammalian AL human-hamster hybrid cells exposed to 137Cs gamma radiation. At a dose (1.5 mg/ml for 16 h) that reduced the plating efficiency (PE) by 20%, caffeine was not itself a significant mutagen, but it increased by approximately twofold the slope of the dose-response curve for induction of S1- mutants by 137Cs gamma radiation. Molecular analysis of 235 S1- mutants using a series of DNA probes mapped to the human chromosome 11 in the AL hybrid cells revealed that 73 to 85% of the mutations in unexposed cells and in cells treated with caffeine alone, 137Cs gamma rays alone or 137Cs gamma rays plus caffeine were large deletions involving millions of base pairs of DNA. Most of these deletions were contiguous with the region of the MIC1 gene at 11p13 that encodes the S1 cell surface antigen. In other mutants that had suffered multiple marker loss, the deletions were intermittent along chromosome 11. These "complex" mutations were rare for 137Cs gamma irradiation (1/63 = 1.5%) but relatively prevalent (23-50%) for other exposure conditions. Thus caffeine appears to alter both the quantity and quality of mutations induced by 137Cs gamma irradiation.

  10. In vitro measurements of oxygen consumption rates in hTERT-RPE cells exposed to low levels of red light

    Science.gov (United States)

    Wigle, Jeffrey C.; Castellanos, Cherry C.

    2016-03-01

    Exposure to 2.88 J/cm2 of red light induces an adaptive response against a lethal pulse of 2.0 μm laser radiation in hTERT-RPE cells in vitro, but not in a knockdown mutant for vascular endothelial growth factor c (VEGF-C). The generally accepted initiation sequence for photobiomodulation is that absorption of red light by cytochome c oxidase (CCOX) of the electron transport chain increases the binding affinity of CCOX for O2 vs. nitric oxide (NO). This results in displacement of NO by O2 in the active site of CCOX, thereby increasing cellular respiration and intracellular ATP. We've previously reported that red-light exposure induces a small, but consistently reproducible, increase in NO levels in these cells. But the relative importance of NO and oxidative phosphorylation is unclear because little is known about the relative contributions of NO and ATP to the response. However, if NO dissociation from CCOX actually increases oxidative phosphorylation, one should see a corresponding increase in oxygen consumption. A Seahorse Extracellular Flux Analyzer was used to measure oxygen consumption rates (OCR) in normal and mutant cells as a proxy for oxidative phosphorylation. Both basal respiration and maximum respiration rates in normal cells are significantly higher than in the mutant. The normal cells have a significant amount of "excess capacity," whereas the VEGF-C(KD) have little or none. The OCR in exposed normal cells is lower than in unexposed cells when measured immediately after exposure. The exposures used for these experiments had no effect on the OCR in mutant cells.

  11. Heterogeneity in c-jun gene expression in normal and malignant cells exposed to either ionizing radiation or hydrogen peroxide

    International Nuclear Information System (INIS)

    We investigated the role of reactive oxygen intermediates and protein kinase C (PKC) in induction of c-jun gene expression in human ML-2 leukemic cells and normal DET-551 fibroblasts by comparing the effects of either ionizing radiation or H2O2 exposure in the presence or absence of appropriate inhibitors. In these cell types, the radiation and H2O2-mediated increase in c-jun mRNA levels could be prevented by pretreatment of the cells with N-acetylcysteine, an antioxidant, or H7, an inhibitor of PKC and cAMP-dependent protein kinase (PKA), but not by HA1004, an inhibitor of PKA. These results suggest a role for PKC and reactive oxygen intermediates in the induction of c-jun gene expression in both normal and tumor cells. We also investigated potential differences in radiation- or H2O2-induced c-jun gene expression in normal and tumor cells by examining steady-state c-jun mRNA levels in a number of human fibroblast, leukemia, melanoma, sarcoma, and carcinoma cell types. We observed heterogeneity in the steady-state level of c-jun mRNA in both the untreated normal and tumor cells and in such cells exposed to ionizing radiation or to H2O2. Exposure to radiation or to hydrogen peroxide produced a varied response which ranged from little or no induction to a more than two orders of magnitude increase in the steady-state level of the c-jun mRNA

  12. Nanomimics of host cell membranes block invasion and expose invasive malaria parasites.

    Science.gov (United States)

    Najer, Adrian; Wu, Dalin; Bieri, Andrej; Brand, Françoise; Palivan, Cornelia G; Beck, Hans-Peter; Meier, Wolfgang

    2014-12-23

    The fight against most infectious diseases, including malaria, is often hampered by the emergence of drug resistance and lack or limited efficacies of vaccines. Therefore, new drugs, vaccines, or other strategies to control these diseases are needed. Here, we present an innovative nanotechnological strategy in which the nanostructure itself represents the active substance with no necessity to release compounds to attain therapeutic effect and which might act in a drug- and vaccine-like dual function. Invasion of Plasmodium falciparum parasites into red blood cells was selected as a biological model for the initial validation of this approach. Stable nanomimics-polymersomes presenting receptors required for parasite attachment to host cells-were designed to efficiently interrupt the life cycle of the parasite by inhibiting invasion. A simple way to build nanomimics without postformation modifications was established. First, a block copolymer of the receptor with a hydrophobic polymer was synthesized and then mixed with a polymersome-forming block copolymer. The resulting nanomimics bound parasite-derived ligands involved in the initial attachment to host cells and they efficiently blocked reinvasion of malaria parasites after their egress from host cells in vitro. They exhibited efficacies of more than 2 orders of magnitude higher than the soluble form of the receptor, which can be explained by multivalent interactions of several receptors on one nanomimic with multiple ligands on the infective parasite. In the future, our strategy might offer interesting treatment options for severe malaria or a way to modulate the immune response. PMID:25435059

  13. Effect of recombinant IL-10 on cultured fetal rat alveolar type II cells exposed to 65%-hyperoxia

    Directory of Open Access Journals (Sweden)

    Lee Hyeon-Soo

    2011-05-01

    Full Text Available Abstract Background Hyperoxia plays an important role in the genesis of lung injury in preterm infants. Although alveolar type II cells are the main target of hyperoxic lung injury, the exact mechanisms whereby hyperoxia on fetal alveolar type II cells contributes to the genesis of lung injury are not fully defined, and there have been no specific measures for protection of fetal alveolar type II cells. Objective The aim of this study was to investigate (a cell death response and inflammatory response in fetal alveolar type II cells in the transitional period from canalicular to saccular stages during 65%-hyperoxia and (b whether the injurious stimulus is promoted by creating an imbalance between pro- and anti-inflammatory cytokines and (c whether treatment with an anti-inflammatory cytokine may be effective for protection of fetal alveolar type II cells from injury secondary to 65%-hyperoxia. Methods Fetal alveolar type II cells were isolated on embryonic day 19 and exposed to 65%-oxygen for 24 h and 36 h. Cells in room air were used as controls. Cellular necrosis was assessed by lactate dehydrogenase-release and flow cytometry, and apoptosis was analyzed by TUNEL assay and flow cytometry, and cell proliferation was studied by BrdU incorporation. Release of cytokines including VEGF was analyzed by ELISA, and their gene expressions were investigated by qRT-PCR. Results 65%-hyperoxia increased cellular necrosis, whereas it decreased cell proliferation in a time-dependent manner compared to controls. 65%-hyperoxia stimulated IL-8-release in a time-dependent fashion, whereas the anti-inflammatory cytokine, IL-10, showed an opposite response. 65%-hyperoxia induced a significant decrease of VEGF-release compared to controls, and similar findings were observed on IL-8/IL-10/VEGF genes expression. Preincubation of recombinant IL-10 prior to 65%-hyperoxia decreased cellular necrosis and IL-8-release, and increased VEGF-release and cell proliferation

  14. Photobiomodulation Protects and Promotes Differentiation of C2C12 Myoblast Cells Exposed to Snake Venom

    Science.gov (United States)

    da Silva, Aline; Vieira, Rodolfo Paula; Mesquita-Ferrari, Raquel Agnelli; Cogo, José Carlos; Zamuner, Stella Regina

    2016-01-01

    Background Snakebites is a neglected disease and in Brazil is considered a serious health problem, with the majority of the snakebites caused by the genus Bothrops. Antivenom therapy and other first-aid treatments do not reverse local myonecrose which is the main sequel caused by the envenomation. Several studies have shown the effectiveness of low level laser (LLL) therapy in reducing local myonecrosis induced by Bothropic venoms, however the mechanism involved in this effect is unknown. In this in vitro study, we aimed to analyze the effect of LLL irradiation against cytotoxicity induced by Bothrops jararacussu venom on myoblast C2C12 cells. Methodology C2C12 were utilized as a model target and were incubated with B. jararacussu venom (12.5 μg/mL) and immediately irradiated with LLL at wavelength of red 685 nm or infrared 830 nm with energy density of 2.0, 4.6 and 7.0 J/cm2. Effects of LLL on cellular responses of venom-induced cytotoxicity were examined, including cell viability, measurement of cell damage and intra and extracellular ATP levels, expression of myogenic regulatory factors, as well as cellular differentiation. Results In non-irradiated cells, the venom caused a decrease in cell viability and a massive release of LDH and CK levels indicating myonecrosis. Infrared and red laser at all energy densities were able to considerably decrease venom-induced cytotoxicity. Laser irradiation induced myoblasts to differentiate into myotubes and this effect was accompanied by up regulation of MyoD and specially myogenin. Moreover, LLL was able to reduce the extracellular while increased the intracellular ATP content after venom exposure. In addition, no difference in the intensity of cytotoxicity was shown by non-irradiated and irradiated venom. Conclusion LLL irradiation caused a protective effect on C2C12 cells against the cytotoxicity caused by B. jararacussu venom and promotes differentiation of these cells by up regulation of myogenic factors. A modulatory

  15. Gene expression profile of human lung epithelial cells chronically exposed to single-walled carbon nanotubes

    Science.gov (United States)

    Chen, Dongquan; Stueckle, Todd A.; Luanpitpong, Sudjit; Rojanasakul, Yon; Lu, Yongju; Wang, Liying

    2015-01-01

    A rapid increase in utility of engineered nanomaterials, including carbon nanotubes (CNTs), has raised a concern over their safety. Based on recent evidence from animal studies, pulmonary exposure of CNTs may lead to nanoparticle accumulation in the deep lung without effective clearance which could interact with local lung cells for a long period of time. Physicochemical similarities of CNTs to asbestos fibers may contribute to their asbestos-like carcinogenic potential after long-term exposure, which has not been well addressed. More studies are needed to identify and predict the carcinogenic potential and mechanisms for promoting their safe use. Our previous study reported a long-term in vitro exposure model for CNT carcinogenicity and showed that 6-month sub-chronic exposure of single-walled carbon nanotubes (SWCNT) causes malignant transformation of human lung epithelial cells. In addition, the transformed cells induced tumor formation in mice and exhibited an apoptosis resistant phenotype, a key characteristic of cancer cells. Although the potential role of p53 in the transformation process was identified, the underlying mechanisms of oncogenesis remain largely undefined. Here, we further examined the gene expression profile by using genome microarrays to profile molecular mechanisms of SWCNT oncogenesis. Based on differentially expressed genes, possible mechanisms of SWCNT-associated apoptosis resistance and oncogenesis were identified, which included activation of pAkt/p53/Bcl-2 signaling axis, increased gene expression of Ras family for cell cycle control, Dsh-mediated Notch 1, and downregulation of apoptotic genes BAX and Noxa. Activated immune responses were among the major changes of biological function. Our findings shed light on potential molecular mechanisms and signaling pathways involved in SWCNT oncogenic potential.

  16. Müller cell gliotic response in the retina of the newts exposed to real and simulated microgravity

    Science.gov (United States)

    Grigoryan, Eleonora N.; Poplinskaya, Valentina; Domaratskaya; Aleinikova, Karina; Novikova, Julia; Anton, Hermann J.; Almeida, Eduardo

    The effects of real and simulated microgravity on the eye tissue regeneration of newts (Pl. waltli) after lens and/or retina removal were investigated. Changes in Müller glial cells in the retina of eyes regenerating after lens extirpation were detected in newts exposed to clinostat-ing. The cells were hypertrophied, and their processes thickened. Such changes were viewed as specific of reactive gliosis [1]. Later experiments onboard the Russian biosatellite Bion-11 showed similar changes in the retinas of newts regenerating after a two-week spaceflight. In the Bion-11 animals, GFAP, the major structural protein of macroglial cells was found to be up-regulated [2]. In more recent experiments onboard Foton-2 (2005) and Foton-M3 (2007), GFAP expression in retinas of space-flown, ground control (kept at 1 g), and basal control (sacrificed on launch day) newts was quantified, using microscopy, immunohistochemistry, and digital image analysis. It was found that Müller cell processes of non-operated animals dis-u played low GFAP immunolabeling. A low level of immunoreactivity was also observed in basal controls. In contrast, retinas of space-flown animals showed greater GFAP immunoreactivity associated with both an increased cell number and a higher density of intermediate filaments [3]. This, in turn, was accompanied by up-regulation of stress protein (HSP90) and growth factor (FGF2) expressions. It can be postulated that such a response of Müller cells was to mitigate the retinal stress in newts exposed to microgravity. Although the exact mechanisms remain unknown, it can be hypothesized that GFAP up-regulation is mediated by HSPs and growth factors, particularly by FGF2. Taken together, these data suggest that the retinal population of macroglial cells is sensitive to gravity changes and that in space it can react by enhancing its neuroprotective function. [1] Grigoryan E.N., Anton H.J., Mitashov V.I. Adv. Space Res. 1998. V. 22. N.2. P. 293-301. [2] Grigoryan E

  17. Somatic cell chromosome changes in a population exposed to low levels of ionizing radiation

    International Nuclear Information System (INIS)

    The analysis of chromosomes from the cells of 897 plutonium workers is reported. Within three years, the number of controls alone analyzed for this study approximated the largest plutonium cytogenetic studies today including workers plus controls (81 compared to 84 in a 1979 French study and 94 in a 1982 British report). The number of subjects analyzed in the first three years were: new employees - 245; new employees assigned to plutonium work areas - 7; workers with less than 3% of maximum permissible systemic burden (MPSB) - 35; workers with less than 50% MPSB - 274; workers with greater than 50% of MPSB - 65; follow-up familial congenital cytogenetics at worker request (through Medical) - 6; polymorphic/variant chromosome constitutions - 242; re-sampling of workers with elevated aberration yields - 26; cell sample study - 28; sister-chromatid-exchange (SCE) study - 23; beryllium workers at Rocky Flats - 10; Hanford worker analyses - 5). 20 refs., 3 figs., 5 tabs

  18. Regulation of SUMO2 Target Proteins by the Proteasome in Human Cells Exposed to Replication Stress

    DEFF Research Database (Denmark)

    Bursomanno, Sara; McGouran, Joanna F; Kessler, Benedikt M;

    2015-01-01

    In human cells, SUMO2 is predominantly conjugated to target proteins in response to cellular stress. Previous studies suggested that proteins conjugated to SUMO2, but not to SUMO1, could be regulated by the ubiquitin-mediated proteasome system. Hence, we set out to understand the role of the prot......In human cells, SUMO2 is predominantly conjugated to target proteins in response to cellular stress. Previous studies suggested that proteins conjugated to SUMO2, but not to SUMO1, could be regulated by the ubiquitin-mediated proteasome system. Hence, we set out to understand the role...... of genome instability, which is suggested to drive tumorigenesis and possibly aging, our data will facilitate future functional studies in the fields of DNA metabolism and cancer biology....

  19. Distribution of Chromosome Breakpoints in Human Epithelial Cells Exposed to Low- and High-LET Radiation

    Science.gov (United States)

    Hada, Megumi; Zhang, Ye; Cucinotta, Francis A.; Feiveson, Alan; Wu, Honglu

    2010-01-01

    Low-and high-LET radiations produced distinct breakpoint distributions. The difference of the breakpoint distributions between low-and high-LET only appeared in break ends involved in interchromosome exchanges. The breakpoint distributions for break ends participating in intrachromosome exchanges were similar. Gene-rich regions do not necessarily have more chromosome breaks. High-LET appeared to produce long live (data not shown) or longer live breaks that can migrate a longer distance before rejoining with other breaks. Domains occupied by different segments of the chromosomes may be responsible for the breakpoint distribution. The dose responses for interchromosomal exchanges were linear in all four exposures. However, the dose response for intrachromosomal exchanges were none linear. Increasing dose of high dose rate exposure (Fe-ions or -rays) increase the fraction of cells with intrachromosome aberrations, whereas increasing dose of low dose rate exposure (neutrons or -rays) does not affect the fraction of cells with intrachromosome aberrations.

  20. Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity

    OpenAIRE

    Martínez-Ballesta, Mª Carmen; Zapata, Lavinia; Chalbi, Najla; Carvajal, Micaela

    2016-01-01

    Background Carbon nanotubes have been shown to improve the germination and growth of some plant species, extending the applicability of the emerging nano-biotechnology field to crop science. Results In this work, exploitation of commercial multiwalled carbon nanotubes (MWCNTs) in control and 100 mM NaCl-treated broccoli was performed. Transmission electron microscopy demonstrated that MWCNTs can enter the cells in adult plants with higher accumulation under salt stress. Positive effect of MWC...

  1. CYTOKINESIS-BLOCK MICRONUCLEUS ASSAY IN HUMAN GLIOMA CELLS EXPOSED TO RADIATION

    Directory of Open Access Journals (Sweden)

    Jerzy Slowinski

    2011-05-01

    Full Text Available Biological tests are efficient in reflecting the biological influences of several types of generally harmful exposures. The micronucleus assay is widely used in genotoxicity studies or studies on genomic damage in general. We present methodological aspects of cytokinesis-block micronucleus assay performed in human gliomas irradiated in vitro. Eight human glioblastoma cell lines obtained from DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Germany were gamma-irradiated (60Co over a dose range of 0-10 Gy. Cytokinesis-block micronucleus assay was performed to quantitate cytogenetic damage. The cells were fixed directly on dishes, stained with fluorochrome DAPI and evaluated under fluorescent and phase contrast microscope. The micronucleus frequency was expressed as a micronuclei (MN per binucleated cell (BNC ratio, calculated after scoring at least 100 BNC per dish. The frequency of spontaneous MN ranged from 0.17 to 0.613 (mean: 0.29 ± 0.14. After irradiation increase of MN frequency in the range of 0.312 - 2.241 (mean: 0.98 ± 0.68 was found at 10 Gy. Gliomas are extremely heterogenous in regard to cytogenetic effects of irradiation, as shown in this study by cytokinesis-block micronucleus assay. This test is easily performed on irradiated glioma cell lines and can assist in determining their radiosensitivity. However, in order to obtain reliable and reproducible results, precise criteria for MN scoring must be strictly followed. Simultaneous use of fluorescent and phase contrast equipment improves imaging of morphological details and can further optimize MN scoring.

  2. Extracellular signal-regulated kinases 1 and 2 activation in endothelial cells exposed to cyclic strain

    Science.gov (United States)

    Ikeda, M.; Takei, T.; Mills, I.; Kito, H.; Sumpio, B. E.

    1999-01-01

    The aim of this study was to determine whether extracellular signal-regulated kinases 1/2 (ERK1/ERK2) are activated and might play a role in enhanced proliferation and morphological change induced by strain. Bovine aortic endothelial cells (BAEC) were subjected to an average of 6 or 10% strain at a rate of 60 cycles/min for up to 4 h. Cyclic strain caused strain- and time-dependent phosphorylation and activation of ERK1/ERK2. Peak phosphorylation and activation of ERK1/ERK2 induced by 10% strain were at 10 min. A specific ERK1/ERK2 kinase inhibitor, PD-98059, inhibited phosphorylation and activation of ERK1/ERK2 but did not inhibit the increased cell proliferation and cell alignment induced by strain. Treatment of BAEC with 2,5-di-tert-butyl-1, 4-benzohydroquinone, to deplete inositol trisphosphate-sensitive calcium storage, and gadolinium chloride, a Ca2+ channel blocker, did not inhibit the activation of ERK1/ERK2. Strain-induced ERK1/ERK2 activation was partly inhibited by the protein kinase C inhibitor calphostin C and completely inhibited by the tyrosine kinase inhibitor genistein. These data suggest that 1) ERK1/ERK2 are not critically involved in the strain-induced cell proliferation and orientation, 2) strain-dependent activation of ERK1/ERK2 is independent of intracellular and extracellular calcium mobilization, and 3) protein kinase C activation and tyrosine kinase regulate strain-induced activation of ERK1/ERK2.

  3. Proteomic Analysis of MCF-7 Breast Cancer Cell Line Exposed To Leptin

    Directory of Open Access Journals (Sweden)

    A. Valle

    2011-01-01

    Full Text Available Background: Obesity is a well-known factor risk for breast cancer in postmenopausal women. Circulating leptin levels are increased in obese and it has been suggested to play an important role in mammary tumor formation and progression. To contribute to the understanding of the molecular mechanisms underlying leptin action in breast cancer, our aim was to identify proteins regulated by leptin in MCF-7 human breast cancer cells. Methods: We used two-dimensional gel electrophoresis (2-DE and matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS to identify proteins affected by leptin. Results: Thirty proteins were found differentially expressed in MCF-7 cells after 48 h leptin exposure. Proteins regulated by leptin included proteins previously implicated in breast cancer such as catechol-o-methyltransferase, cathepsin D, hsp27, serine/threonine-protein phosphatase and regulatory proteins of the Ras signaling pathway. Proteins involved in other cellular functions such as stress response, cytosqueleton remodeling and proteins belonging to ubiquitin-proteasome system, were also identified. Furthermore, leptin-treated cells showed a substantial uptake of the serum carrier proteins albumin and alpha-2-HS-glycoprotein. Conclusions: This screening reveals that leptin influences the levels of key proteins involved in breast cancer which opens new avenues for the study of the molecular mechanisms linking obesity to breast cancer.

  4. MicroRNA-1228(*) inhibit apoptosis in A549 cells exposed to fine particulate matter.

    Science.gov (United States)

    Li, Xiaobo; Ding, Zhen; Zhang, Chengcheng; Zhang, Xin; Meng, Qingtao; Wu, Shenshen; Wang, Shizhi; Yin, Lihong; Pu, Yuepu; Chen, Rui

    2016-05-01

    Studies have reported associations between fine particulate matter (PM2.5) and respiratory disorders; however, the underlying mechanism is not completely clear owing to the complex components of PM2.5. microRNAs (miRNAs) demonstrate tremendous regulation to target genes, which are sensitive to exogenous stimulation, and facilitate the integrative understood of biological responses. Here, significantly modulated miRNA were profiled by miRNA microarray, coupled with bioinformatic analysis; the potential biological function of modulated miRNA were predicted and subsequently validated by cell-based assays. Downregulation of miR-1228-5p (miR-1228(*)) expression in human A549 cells were associated with PM2.5-induced cellular apoptosis through a mitochondria-dependent pathway. Further, overexpression of miR-1228(*) rescued the cellular damages induced by PM2.5. Thus, our results demonstrate that PM2.5-induced A549 apoptosis is initiated by mitochondrial dysfunction and miR-1228(*) could protect A549 cells against apoptosis. The involved pathways and target genes might be used for future mechanistic studies.

  5. Photocatalytic Oxidation of Triiodide in UVA-Exposed Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Matthew Carnie

    2012-01-01

    Full Text Available UVA irradiation of glass mounted dye-sensitized solar cells without UV filtration causes failure within 400 hours of light exposure. The failure mode is shown to relate to consumption of I3−, which is directly related to TiO2 photo-catalysis. The onset of failure is easily determined from electrochemical impedance data where the recombination resistance of the TiO2/electrolyte back reaction drops markedly prior to the onset of degradation. At the point of complete cell failure this impedance value then dramatically increases as there is no longer an interfacial reaction possible between the TiO2 and the I3− depleted electrolyte. Device failure is most rapid for cells under electrical load indicating that the degradation of the electrolyte is related to photogenerated hole production by excitation of the TiO2. Once depleted by UV exposure, the I3− can be regenerated by simple application of a reverse bias which can restore severely UV degraded devices to near original working conditions.

  6. Reversible alterations in epithelial cell turnover in digestive gland of winkles (Littorina littorea) exposed to cadmium and their implications for biomarker measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zaldibar, B. [Cell Biology and Histology Laboratory, Zoology and Animal Cell Biology Department, School of Science and Technology, University of the Basque Country, PO Box 644, E-48080 Bilbo, Basque Country (Spain); Cancio, I. [Cell Biology and Histology Laboratory, Zoology and Animal Cell Biology Department, School of Science and Technology, University of the Basque Country, PO Box 644, E-48080 Bilbo, Basque Country (Spain); Marigomez, I. [Cell Biology and Histology Laboratory, Zoology and Animal Cell Biology Department, School of Science and Technology, University of the Basque Country, PO Box 644, E-48080 Bilbo, Basque Country (Spain)]. E-mail: ionan.marigomez@ehu.es

    2007-02-28

    In marine molluscs, the epithelium of the digestive gland is composed of two cell types, namely, digestive and basophilic cells. Under normal physiological conditions digestive cells outnumber basophilic cells, but under different stress situations the composition of the epithelium changes, basophilic cells apparently replace digestive cell. Winkles, Littorina littorea, were exposed to 1.25 mg/l Cd for 20 days to provoke cell type replacement. Then, animals were depurated in clean seawater for 10 days to determine whether cell type replacement was reversible. Digestive glands were fixed in Carnoy and paraffin embedded for histological analysis. The volume densities of basophilic cells (Vv{sub BAS}) and digestive cells (Vv{sub DIG}) were calculated by stereology on hematoxylin-eosin stained sections. Vv{sub BAS} increased and Vv{sub DIG} decreased in Cd-exposed animals. After estimation of cell size and absolute cell numbers, these changes were attributed to digestive cell loss and concomitant basophilic cell hypertrophy but not to increased numbers of basophilic cells. Cell type composition and cell size almost fully returned to normal values after 10-day depuration. Accordingly, PCNA immunohistochemistry demonstrated that proliferating digestive cells were more abundant in winkles exposed to Cd and after 10-day depuration than in control specimens, suggesting that net digestive cell loss was accompanied by increased digestive cell proliferation. Thus, Cd-exposure seems to provoke an enhanced digestive cell turnover in order to cope with Cd detoxification. Intralysosomal accumulation of metals (autometallographied black silver deposits; BSD) was used as a biomarker of exposure to Cd and lysosomal structural changes as an effect biomarker to see whether cell type composition might have any effect on these endpoints. BSD formed around Cd ions, in digestive cell lysosomes of Cd-exposed winkles whereas basophilic cells appeared devoid of them. After depuration, BSD

  7. Bioinformatic Analysis of Differential Protein Expression in Calu-3 Cells Exposed to Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Pin Li

    2013-10-01

    Full Text Available Carbon nanomaterials are widely produced and used in industry, medicine and scientific research. To examine the impact of exposure to nanoparticles on human health, the human airway epithelial cell line, Calu-3, was used to evaluate changes in the cellular proteome that could account for alterations in cellular function of airway epithelia after 24 hexposure to 10 μg/mL and 100 ng/mLof two common carbon nanoparticles, single- and multi-wall carbon nanotubes (SWCNT, MWCNT. After exposure to the nanoparticles, label-free quantitative mass spectrometry (LFQMS was used to study the differential protein expression. Ingenuity Pathway Analysis (IPA was used to conduct a bioinformaticanalysis of proteins identified in LFQMS. Interestingly, after exposure to ahigh concentration (10 mg/mL; 0.4 mg/cm2 of MWCNT or SWCNT, only 8 and 13 proteins, respectively, exhibited changes in abundance. In contrast, the abundance of hundreds of proteins was altered in response to a low concentration (100 ng/mL; 4 ng/cm2 of either CNT. Of the 281 and 282 proteins that were significantly altered in response to MWCNT or SWCNT respectively, 231 proteins were the same. Bioinformatic analyses found that the proteins in common to both nanotubes occurred within the cellular functions of cell death and survival, cell-to-cell signaling and interaction, cellular assembly and organization, cellular growth and proliferation, infectious disease, molecular transport and protein synthesis. The majority of the protein changes represent a decrease in amount suggesting a general stress response to protect cells. The STRING database was used to analyze the various functional protein networks. Interestingly, some proteins like cadherin 1 (CDH1, signal transducer and activator of transcription 1 (STAT1, junction plakoglobin (JUP, and apoptosis-associated speck-like protein containing a CARD (PYCARD, appear in several functional categories and tend to be in the center of the networks. This

  8. Induction of Cell Death through Alteration of Oxidants and Antioxidants in Epithelial Cells Exposed to High Energy Protons

    Science.gov (United States)

    Ramesh, Govindarajan; Wu, Honglu

    2012-01-01

    Radiation affects several cellular and molecular processes including double strand breakage, modifications of sugar moieties and bases. In outer space, protons are the primary radiation source which poses a range of potential health risks to astronauts. On the other hand, the use of proton radiation for tumor radiation therapy is increasing as it largely spares healthy tissues while killing tumor tissues. Although radiation related research has been conducted extensively, the molecular toxicology and cellular mechanisms affected by proton radiation remain poorly understood. Therefore, in the present study, we irradiated rat epithelial cells (LE) with different doses of protons and investigated their effects on cell proliferation and cell death. Our data showed an inhibition of cell proliferation in proton irradiated cells with a significant dose dependent activation and repression of reactive oxygen species (ROS) and antioxidants, glutathione and superoxide dismutase respectively as compared to control cells. In addition, apoptotic related genes such as caspase-3 and -8 activities were induced in a dose dependent manner with corresponding increased levels of DNA fragmentation in proton irradiated cells than control cells. Together, our results show that proton radiation alters oxidant and antioxidant levels in the cells to activate apoptotic pathway for cell death.

  9. The transcription factor NFAT5 is required for cyclin expression and cell cycle progression in cells exposed to hypertonic stress.

    Directory of Open Access Journals (Sweden)

    Katherine Drews-Elger

    Full Text Available BACKGROUND: Hypertonicity can perturb cellular functions, induce DNA damage-like responses and inhibit proliferation. The transcription factor NFAT5 induces osmoprotective gene products that allow cells to adapt to sustained hypertonic conditions. Although it is known that NFAT5-deficient lymphocytes and renal medullary cells have reduced proliferative capacity and viability under hypertonic stress, less is understood about the contribution of this factor to DNA damage responses and cell cycle regulation. METHODOLOGY/PRINCIPAL FINDINGS: We have generated conditional knockout mice to obtain NFAT5(-/- T lymphocytes, which we used as a model of proliferating cells to study NFAT5-dependent responses. We show that hypertonicity triggered an early, NFAT5-independent, genotoxic stress-like response with induction of p53, p21 and GADD45, downregulation of cyclins, and cell cycle arrest. This was followed by an NFAT5-dependent adaptive phase in wild-type cells, which induced an osmoprotective gene expression program, downregulated stress markers, resumed cyclin expression and proliferation, and displayed enhanced NFAT5 transcriptional activity in S and G2/M. In contrast, NFAT5(-/- cells failed to induce osmoprotective genes and exhibited poorer viability. Although surviving NFAT5(-/- cells downregulated genotoxic stress markers, they underwent cell cycle arrest in G1/S and G2/M, which was associated with reduced expression of cyclins E1, A2 and B1. We also show that pathologic hypertonicity levels, as occurring in plasma of patients and animal models of osmoregulatory disorders, inhibited the induction of cyclins and aurora B kinase in response to T cell receptor stimulation in fresh NFAT5(-/- lymphocytes. CONCLUSIONS/SIGNIFICANCE: We conclude that NFAT5 facilitates cell proliferation under hypertonic conditions by inducing an osmoadaptive response that enables cells to express fundamental regulators needed for cell cycle progression.

  10. Matrix-degrading and pro-inflammatory changes in human vascular endothelial cells exposed to cigarette smoke condensate.

    Science.gov (United States)

    Nordskog, Brian K; Blixt, Allison D; Morgan, Walter T; Fields, Wanda R; Hellmann, Gary M

    2003-01-01

    Cigarette smoking has been associated with an increase in the severity and prevalence of atherosclerosis in the abdominal aorta. To begin our investigation of this finding, we used an integrated approach combining gene expression profiling, protein analysis, cytokine measurements, and cytotoxicity determinations to examine molecular responses of cultured human aortic and coronary endothelial cells exposed to cigarette smoke condensate (CSC) and nicotine. Exposure of endothelial cells to CSC (30 and 60 microg/mL TPM) for 24 h resulted in minimal cytotoxicity, and the upregulation of genes involved in matrix degradation (MMP-1, MMP-8, and MMP-9), xenobiotic metabolism (HO-1 and CYP1A2), and downregulation of genes involved in cell cycle regulation (including TOP2A, CCNB1, CCNA, CDKN3). Exposure of cells to a high physiological concentration of nicotine resulted in few differentially expressed genes. Immunoblot analysis of proteins selected from genes shown to be differentially regulated by microarray analysis revealed similar responses. Finally, a number of inflammatory cytokines measured in culture media were elevated in response to CSC. Together, these results describe a complex proinflammatory response, possibly mediating the recruitment of leukocytes through cytokine signaling. Additionally, fibrous cap destabilization may be facilitated by matrix metalloproteinase upregulation. PMID:14501029

  11. Matrix-degrading and pro-inflammatory changes in human vascular endothelial cells exposed to cigarette smoke condensate.

    Science.gov (United States)

    Nordskog, Brian K; Blixt, Allison D; Morgan, Walter T; Fields, Wanda R; Hellmann, Gary M

    2003-01-01

    Cigarette smoking has been associated with an increase in the severity and prevalence of atherosclerosis in the abdominal aorta. To begin our investigation of this finding, we used an integrated approach combining gene expression profiling, protein analysis, cytokine measurements, and cytotoxicity determinations to examine molecular responses of cultured human aortic and coronary endothelial cells exposed to cigarette smoke condensate (CSC) and nicotine. Exposure of endothelial cells to CSC (30 and 60 microg/mL TPM) for 24 h resulted in minimal cytotoxicity, and the upregulation of genes involved in matrix degradation (MMP-1, MMP-8, and MMP-9), xenobiotic metabolism (HO-1 and CYP1A2), and downregulation of genes involved in cell cycle regulation (including TOP2A, CCNB1, CCNA, CDKN3). Exposure of cells to a high physiological concentration of nicotine resulted in few differentially expressed genes. Immunoblot analysis of proteins selected from genes shown to be differentially regulated by microarray analysis revealed similar responses. Finally, a number of inflammatory cytokines measured in culture media were elevated in response to CSC. Together, these results describe a complex proinflammatory response, possibly mediating the recruitment of leukocytes through cytokine signaling. Additionally, fibrous cap destabilization may be facilitated by matrix metalloproteinase upregulation.

  12. PACAP and VIP inhibit the invasiveness of glioblastoma cells exposed to hypoxia through the regulation of HIFs and EGFR expression

    Directory of Open Access Journals (Sweden)

    Grazia eMaugeri

    2016-05-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP and vasoactive intestinal peptide (VIP through the binding of vasoactive intestinal peptide receptors (VIPRs, perform a wide variety of effects in human cancers, including glioblastoma multiforme (GBM. This tumor is characterized by extensive areas of hypoxia, which triggers the expression of hypoxia-inducible factors (HIFs. HIFs not only mediate angiogenesis but also tumor cell migration and invasion. Furthermore, HIFs activation is linked to epidermal growth factor receptor (EGFR overexpression. Previous studies have shown that VIP interferes with the invasive nature of gliomas by regulating cell migration. However, the role of VIP family members in GBM infiltration under low oxygen tension has not been clarified yet. Therefore, in the present study we have investigated, for the first time, the molecular mechanisms involved in the anti-invasive effect of PACAP or VIP in U87MG glioblastoma cells exposed to hypoxia induced by treatment with desferrioxamine (DFX. The results suggest that either PACAP or VIP exert an anti-infiltrative effect under low oxygen tension by modulating HIFs and EGFR expression, key elements involved in cell migration and angiogenesis. These peptides act through the inhibition of PI3K/Akt and MAPK/ERK signaling pathways, which are known to have a crucial role in HIFs regulation. In conclusion, the modulation of hypoxic event and the anti-invasive effect exerted by some VIP family members might open new insights in the therapeutic approach to GBM.

  13. PACAP and VIP Inhibit the Invasiveness of Glioblastoma Cells Exposed to Hypoxia through the Regulation of HIFs and EGFR Expression.

    Science.gov (United States)

    Maugeri, Grazia; Grazia D'Amico, Agata; Reitano, Rita; Magro, Gaetano; Cavallaro, Sebastiano; Salomone, Salvatore; D'Agata, Velia

    2016-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) through the binding of vasoactive intestinal peptide receptors (VIPRs), perform a wide variety of effects in human cancers, including glioblastoma multiforme (GBM). This tumor is characterized by extensive areas of hypoxia, which triggers the expression of hypoxia-inducible factors (HIFs). HIFs not only mediate angiogenesis but also tumor cell migration and invasion. Furthermore, HIFs activation is linked to epidermal growth factor receptor (EGFR) overexpression. Previous studies have shown that VIP interferes with the invasive nature of gliomas by regulating cell migration. However, the role of VIP family members in GBM infiltration under low oxygen tension has not been clarified yet. Therefore, in the present study we have investigated, for the first time, the molecular mechanisms involved in the anti-invasive effect of PACAP or VIP in U87MG glioblastoma cells exposed to hypoxia induced by treatment with desferrioxamine (DFX). The results suggest that either PACAP or VIP exert an anti-infiltrative effect under low oxygen tension by modulating HIFs and EGFR expression, key elements involved in cell migration and angiogenesis. These peptides act through the inhibition of PI3K/Akt and MAPK/ERK signaling pathways, which are known to have a crucial role in HIFs regulation. PMID:27303300

  14. Anatase TiO(2) nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells.

    Science.gov (United States)

    Yu, Jiaguo; Fan, Jiajie; Lv, Kangle

    2010-10-01

    Dye-sensitized solar cells (DSSCs) are fabricated based on anatase TiO(2) nanosheets (TiO(2)-NSs) with exposed {001} facets, which were obtained by a simple one-pot hydrothermal route using HF as a morphology controlling agent and Ti(OC(4)H(9))(4) as precursor. The prepared samples were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis absorption spectroscopy and N(2) adsorption-desorption isotherms. The photoelectric conversion performances of TiO(2)-NSs solar cells are also compared with TiO(2) nanoparticles (TiO(2)-NPs) and commercial-grade Degussa P25 TiO(2) nanoparticle (P25) solar cells at the same film thickness, and their photoelectric conversion efficiencies (η) are 4.56, 4.24 and 3.64%, respectively. The enhanced performance of the TiO(2)-NS solar cell is due to their good crystallization, high pore volume, large particle size and enhanced light scattering. The prepared TiO(2) nanosheet film electrode should also find wide-ranging potential applications in various fields including photocatalysis, catalysis, electrochemistry, separation, purification and so on.

  15. Anatase TiO2 nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells

    Science.gov (United States)

    Yu, Jiaguo; Fan, Jiajie; Lv, Kangle

    2010-10-01

    Dye-sensitized solar cells (DSSCs) are fabricated based on anatase TiO2 nanosheets (TiO2-NSs) with exposed {001} facets, which were obtained by a simple one-pot hydrothermal route using HF as a morphology controlling agent and Ti(OC4H9)4 as precursor. The prepared samples were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis absorption spectroscopy and N2 adsorption-desorption isotherms. The photoelectric conversion performances of TiO2-NSs solar cells are also compared with TiO2 nanoparticles (TiO2-NPs) and commercial-grade Degussa P25 TiO2 nanoparticle (P25) solar cells at the same film thickness, and their photoelectric conversion efficiencies (η) are 4.56, 4.24 and 3.64%, respectively. The enhanced performance of the TiO2-NS solar cell is due to their good crystallization, high pore volume, large particle size and enhanced light scattering. The prepared TiO2 nanosheet film electrode should also find wide-ranging potential applications in various fields including photocatalysis, catalysis, electrochemistry, separation, purification and so on.

  16. Electrochemical monitoring of phytochelatin accumulation in Nicotiana tabacum cells exposed to sub-cytotoxic and cytotoxic levels of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Fojta, Miroslav [Laboratory of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno (Czech Republic)]. E-mail: fojta@ibp.cz; Fojtova, Miloslava [Laboratory of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno (Czech Republic); Havran, Ludek [Laboratory of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno (Czech Republic); Pivonkova, Hana [Laboratory of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno (Czech Republic); Dorcak, Vlastimil [Laboratory of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno (Czech Republic); Sestakova, Ivana [J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejskova 3, 182 23 Prague 8 (Czech Republic)

    2006-02-03

    Cadmium belongs to the most dangerous environmental pollutants among the toxic heavy metals seriously affecting vital functions in both animal and plant cells. It has been previously shown that cadmium ions at 50-100 {mu}M concentrations caused tobacco BY-2 (TBY-2) cells to enter apoptosis within several days of exposure. Phytochelatins (PCs), the 'plant metallothioneins', are cysteine-rich peptides involved in detoxification of heavy metals in plants. The PCs are synthesized in response to the heavy metal exposure. In this paper, we utilized electrochemical analysis to monitor accumulation of PCs in the TBY-2 cells exposed to cadmium ions. Measurements of a characteristic PC signal at mercury electrode in the presence of cobalt ions made it possible to detect changes in the cellular PC levels during the time of cultivation, starting from 30 min after exposure. Upon TBY-2 cultivation in the presence of cytotoxic cadmium concentrations, the PC levels remarkably increased during the pre-apoptotic phase and reached a limiting value at cultivation times coinciding with apoptosis trigger. The PC level observed for a sub-cytotoxic cadmium concentration (10 {mu}M) was about three-times lower than that observed for the 50 or 100 {mu}M cadmium ions after 5 days of exposure. We show that using a simple electrochemical analysis, synthesis of PCs in plant cells can be easily followed in parallel with other tests of the cellular response to the toxic heavy metal stress.

  17. Diagnostic and pathogenetic role of café-au-lait macules in nevoid basal cell carcinoma syndrome

    OpenAIRE

    Ponti Giovanni; Tomasi Aldo; Pastorino Lorenza; Ruini Cristel; Guarneri Carmelo; Mandel Victor; Seidenari Stefania; Pellacani Giovanni

    2012-01-01

    Abstract Café au lait spots (CALS) are common dermatologic findings that can at the same time arise in a variety of pathologic conditions such as Neurofibromatosis type 1 (NF1), together with numerous hereditary syndromes for which they represent either diagnostic criteria or associated elements (McCune Albright, Silver-Russell, LEOPARD, Ataxia-Telangiectasia). A review of the literature also revealed two cases of association with NBCCS. We report here the case of a female proband with CALS a...

  18. Lineage-related cytotoxicity and clonogenic profile of 1,4-benzoquinone-exposed hematopoietic stem and progenitor cells

    International Nuclear Information System (INIS)

    Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) are sensitive targets for benzene-induced hematotoxicity and leukemogenesis. The impact of benzene exposure on the complex microenvironment of HSCs and HPCs remains elusive. This study aims to investigate the mechanism linking benzene exposure to targeting HSCs and HPCs using phenotypic and clonogenic analyses. Mouse bone marrow (BM) cells were exposed ex vivo to the benzene metabolite, 1,4-benzoquinone (1,4-BQ), for 24 h. Expression of cellular surface antigens for HSC (Sca-1), myeloid (Gr-1, CD11b), and lymphoid (CD45, CD3e) populations were confirmed by flow cytometry. The clonogenicity of cells was studied using the colony-forming unit (CFU) assay for multilineage (CFU-GM and CFU-GEMM) and single-lineage (CFU-E, BFU-E, CFU-G, and CFU-M) progenitors. 1,4-BQ demonstrated concentration-dependent cytotoxicity in mouse BM cells. The percentage of apoptotic cells increased (p < 0.05) following 1,4-BQ exposure. Exposure to 1,4-BQ showed no significant effect on CD3e+ cells but reduced the total counts of Sca-1+, CD11b+, Gr-1+, and CD45+ cells at 7 and 12 μM (p < 0.05). Furthermore, the CFU assay showed reduced (p < 0.05) clonogenicity in 1,4-BQ-treated cells. 1,4-BQ induced CFU-dependent cytotoxicity by significantly inhibiting colony growth for CFU-E, BFU-E, CFU-G, and CFU-M starting at a low concentration of exposure (5 μM); whereas for the CFU-GM and CFU-GEMM, the inhibition of colony growth was remarkable only at 7 and 12 μM of 1,4-BQ, respectively. Taken together, 1,4-BQ caused lineage-related cytotoxicity in mouse HPCs, demonstrating greater toxicity in single-lineage progenitors than in those of multi-lineage. - Highlights: • We examine 1,4-BQ toxicity targeting mouse hematopoietic cell lineages. • 1,4-BQ induces concentration-dependent cytotoxicity in bone marrow (BM) cells. • 1,4-BQ shows lineage-related toxicity on hematopoietic stem and progenitors. • 1,4-BQ toxicity is

  19. Lineage-related cytotoxicity and clonogenic profile of 1,4-benzoquinone-exposed hematopoietic stem and progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Paik Wah [Biomedical Science Programme, School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Muda Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan (Malaysia); Toxicology Laboratory, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia); Abdul Hamid, Zariyantey, E-mail: zyantey@ukm.edu.my [Biomedical Science Programme, School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Muda Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan (Malaysia); Toxicology Laboratory, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia); Chan, Kok Meng [Environmental Health and Industrial Safety Programme, School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Muda Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan (Malaysia); Toxicology Laboratory, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia); Inayat-Hussain, Salmaan Hussain [Environmental Health and Industrial Safety Programme, School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Muda Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan (Malaysia); Rajab, Nor Fadilah [Biomedical Science Programme, School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Muda Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan (Malaysia); Toxicology Laboratory, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia)

    2015-04-01

    Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) are sensitive targets for benzene-induced hematotoxicity and leukemogenesis. The impact of benzene exposure on the complex microenvironment of HSCs and HPCs remains elusive. This study aims to investigate the mechanism linking benzene exposure to targeting HSCs and HPCs using phenotypic and clonogenic analyses. Mouse bone marrow (BM) cells were exposed ex vivo to the benzene metabolite, 1,4-benzoquinone (1,4-BQ), for 24 h. Expression of cellular surface antigens for HSC (Sca-1), myeloid (Gr-1, CD11b), and lymphoid (CD45, CD3e) populations were confirmed by flow cytometry. The clonogenicity of cells was studied using the colony-forming unit (CFU) assay for multilineage (CFU-GM and CFU-GEMM) and single-lineage (CFU-E, BFU-E, CFU-G, and CFU-M) progenitors. 1,4-BQ demonstrated concentration-dependent cytotoxicity in mouse BM cells. The percentage of apoptotic cells increased (p < 0.05) following 1,4-BQ exposure. Exposure to 1,4-BQ showed no significant effect on CD3e{sup +} cells but reduced the total counts of Sca-1{sup +}, CD11b{sup +}, Gr-1{sup +}, and CD45{sup +} cells at 7 and 12 μM (p < 0.05). Furthermore, the CFU assay showed reduced (p < 0.05) clonogenicity in 1,4-BQ-treated cells. 1,4-BQ induced CFU-dependent cytotoxicity by significantly inhibiting colony growth for CFU-E, BFU-E, CFU-G, and CFU-M starting at a low concentration of exposure (5 μM); whereas for the CFU-GM and CFU-GEMM, the inhibition of colony growth was remarkable only at 7 and 12 μM of 1,4-BQ, respectively. Taken together, 1,4-BQ caused lineage-related cytotoxicity in mouse HPCs, demonstrating greater toxicity in single-lineage progenitors than in those of multi-lineage. - Highlights: • We examine 1,4-BQ toxicity targeting mouse hematopoietic cell lineages. • 1,4-BQ induces concentration-dependent cytotoxicity in bone marrow (BM) cells. • 1,4-BQ shows lineage-related toxicity on hematopoietic stem and

  20. Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos

    International Nuclear Information System (INIS)

    Reactive oxidative species (ROS) generated by environmental toxicants including pesticides could be one of the factors underlying the neuronal cell damage in neurodegenerative diseases. In this study we found that chlorpyrifos (CPF) induced apoptosis in dopaminergic neuronal components of PC12 cells as demonstrated by the activation of caspases and nuclear condensation. Furthermore, CPF also reduced the tyrosine hydroxylase-positive immunoreactivity in substantia nigra of the rat. In addition, CPF induced inhibition of mitochondrial complex I activity. Importantly, N-acetyl cysteine (NAC) treatment effectively blocked apoptosis via the caspase-9 and caspase-3 pathways while NAC attenuated the inhibition of mitochondrial complex I activity as well as the oxidative metabolism of dopamine (DA). These results demonstrated that CPF-induced apoptosis was involved in mitochondrial dysfunction through the production of ROS. In the response of cellular antioxidant systems to CPF, we found that CPF treatment increased HO-1 expression while the expression of CuZnSOD and MnSOD was reduced. In addition, we found that CPF treatment activated MAPK pathways, including ERK 1/2, the JNK, and the p38 MAP kinase in a time-dependent manner. NAC treatment abolished MAPK phosphorylation caused by CPF, indicating that ROS are upstream signals of MAPK. Interestingly, MAPK inhibitors abolished cytotoxicity and reduced ROS generation by CPF treatment. Our results demonstrate that CPF induced neuronal cell death in part through MAPK activation via ROS generation, suggesting its potential to generate oxidative stress via mitochondrial damage and its involvement in oxidative stress-related neurodegenerative disease. -- Highlights: ► Chlorpyrifos induces apoptosis. ► Chlorpyrifos inhibits mitochondrial complex I activity. ► ROS is involved in chlorpyrifos-induced apoptosis. ► Chlorpyrifos affects cellular antioxidant systems. ► Chlorpyrifos-induced apoptosis mediates activation of MAPK.

  1. Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Eun [Department of Pharmacology, College of Medicine, Hanyang University, Seoul (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Park, Jae Hyeon [Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of); Shin, In Chul [Department of Pharmacology, College of Medicine, Hanyang University, Seoul (Korea, Republic of); Koh, Hyun Chul, E-mail: hckoh@hanyang.ac.kr [Department of Pharmacology, College of Medicine, Hanyang University, Seoul (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of)

    2012-09-01

    Reactive oxidative species (ROS) generated by environmental toxicants including pesticides could be one of the factors underlying the neuronal cell damage in neurodegenerative diseases. In this study we found that chlorpyrifos (CPF) induced apoptosis in dopaminergic neuronal components of PC12 cells as demonstrated by the activation of caspases and nuclear condensation. Furthermore, CPF also reduced the tyrosine hydroxylase-positive immunoreactivity in substantia nigra of the rat. In addition, CPF induced inhibition of mitochondrial complex I activity. Importantly, N-acetyl cysteine (NAC) treatment effectively blocked apoptosis via the caspase-9 and caspase-3 pathways while NAC attenuated the inhibition of mitochondrial complex I activity as well as the oxidative metabolism of dopamine (DA). These results demonstrated that CPF-induced apoptosis was involved in mitochondrial dysfunction through the production of ROS. In the response of cellular antioxidant systems to CPF, we found that CPF treatment increased HO-1 expression while the expression of CuZnSOD and MnSOD was reduced. In addition, we found that CPF treatment activated MAPK pathways, including ERK 1/2, the JNK, and the p38 MAP kinase in a time-dependent manner. NAC treatment abolished MAPK phosphorylation caused by CPF, indicating that ROS are upstream signals of MAPK. Interestingly, MAPK inhibitors abolished cytotoxicity and reduced ROS generation by CPF treatment. Our results demonstrate that CPF induced neuronal cell death in part through MAPK activation via ROS generation, suggesting its potential to generate oxidative stress via mitochondrial damage and its involvement in oxidative stress-related neurodegenerative disease. -- Highlights: ► Chlorpyrifos induces apoptosis. ► Chlorpyrifos inhibits mitochondrial complex I activity. ► ROS is involved in chlorpyrifos-induced apoptosis. ► Chlorpyrifos affects cellular antioxidant systems. ► Chlorpyrifos-induced apoptosis mediates activation of MAPK.

  2. Cigarette Smoke-Exposed Candida albicans Increased Chitin Production and Modulated Human Fibroblast Cell Responses

    Directory of Open Access Journals (Sweden)

    Humidah Alanazi

    2014-01-01

    Full Text Available The predisposition of cigarette smokers for development of respiratory and oral bacterial infections is well documented. Cigarette smoke can also contribute to yeast infection. The aim of this study was to investigate the effect of cigarette smoke condensate (CSC on C. albicans transition, chitin content, and response to environmental stress and to examine the interaction between CSC-pretreated C. albicans and normal human gingival fibroblasts. Following exposure to CSC, C. albicans transition from blastospore to hyphal form increased. CSC-pretreated yeast cells became significantly (P<0.01 sensitive to oxidation but significantly (P<0.01 resistant to both osmotic and heat stress. CSC-pretreated C. albicans expressed high levels of chitin, with 2- to 8-fold recorded under hyphal conditions. CSC-pretreated C. albicans adhered better to the gingival fibroblasts, proliferated almost three times more and adapted into hyphae, while the gingival fibroblasts recorded a significantly (P<0.01 slow growth rate but a significantly higher level of IL-1β when in contact with CSC-pretreated C. albicans. CSC was thus able to modulate both C. albicans transition through the cell wall chitin content and the interaction between C. albicans and normal human gingival fibroblasts. These findings may be relevant to fungal infections in the oral cavity in smokers.

  3. [Cytogenetic investigations of bone marrow cells from mice exposed onboard biosatellite "Bion-M1"].

    Science.gov (United States)

    Dorozhkina, O V; Ivanov, A A

    2015-01-01

    The results of studying the mitotic activities and chromosomal aberrations in bone marrow cells from C57/BL6N mice with the help of the anaphase technique in 12 hours after completion of the 30-day "Bion-M1" mission and ground-based experiment using flight equipment are presented. A statistically reliable decline of the mitotic activity (0.74%) was found in cells taken from the space flown animals. In the ground-based experiment, a statistically reliable downward trend in proliferative activity (1.37%) was revealed after the comparison with groups of vivarium control (1.46-1.53%). In both experiments mice increased the number of initial mitotic phases (prophase + metaphase) relative to the sum of anaphases and telophases. The number of aberrant mitoses grew reliably in the group of flight animals by 29.7%, whereas in the ground-based experiment an upward trend was insignificant as their number increased up to 2.3% only. In the vivarium controls aberrant mitoses constituted 1.75-1.8%. An increase in chromosomal aberrations was largely due to such abnormalities as fragments. These findings seem to have been a result of summation of the effects of radiation and other stressful factors in space flight.

  4. [Cytogenetic investigations of bone marrow cells from mice exposed onboard biosatellite "Bion-M1"].

    Science.gov (United States)

    Dorozhkina, O V; Ivanov, A A

    2015-01-01

    The results of studying the mitotic activities and chromosomal aberrations in bone marrow cells from C57/BL6N mice with the help of the anaphase technique in 12 hours after completion of the 30-day "Bion-M1" mission and ground-based experiment using flight equipment are presented. A statistically reliable decline of the mitotic activity (0.74%) was found in cells taken from the space flown animals. In the ground-based experiment, a statistically reliable downward trend in proliferative activity (1.37%) was revealed after the comparison with groups of vivarium control (1.46-1.53%). In both experiments mice increased the number of initial mitotic phases (prophase + metaphase) relative to the sum of anaphases and telophases. The number of aberrant mitoses grew reliably in the group of flight animals by 29.7%, whereas in the ground-based experiment an upward trend was insignificant as their number increased up to 2.3% only. In the vivarium controls aberrant mitoses constituted 1.75-1.8%. An increase in chromosomal aberrations was largely due to such abnormalities as fragments. These findings seem to have been a result of summation of the effects of radiation and other stressful factors in space flight. PMID:25958465

  5. Antioxidant status and selected biochemical parameters of porcine ovarian granulosa cells exposed to lead in vitro.

    Science.gov (United States)

    Capcarová, Marcela; Kolesárová, Adriana; Lukác, Norbert; Sirotkin, Alexander; Roychoudhury, Shubhadeep

    2009-12-01

    The objective of this study was to determine the activity of superoxide dismutase (SOD), total antioxidant status (TAS) and release of calcium, phosphorus, magnesium, sodium, potassium, total lipids, totals proteins, glucose, cholesterol and triglycerides by porcine ovarian granulosa cells cultured in vitro after lead acetate administration. The parameters were analyzed using semi-automated clinical chemistry analyzer Microlab 300, microprocessor-controlled analyzer EasyLite and spectrophotometer Genesys 10. Cells were cultured with lead acetate trihydrate [Pb(CH(3)COO)(2).3H(2)O] as follows: group Max (5 mg Pb(CH(3)COO)(2).3H(2)O/10 mL), group A (2.5 mg/10 mL), group B (0.83 mg/10 mL), group C (0.625 mg/10 mL), group D (0.455 mg/10 mL) and the control group without lead exposure for 18 hrs. The highest TAS was estimated in the control group without lead treatment in comparison with other groups (MAX, A, B, C, D). Statistical analyses showed significantly lower value (P 0.05) were detected in concentration of other studied parameters among observed groups, too.

  6. Cigarette smoke-exposed Candida albicans increased chitin production and modulated human fibroblast cell responses.

    Science.gov (United States)

    Alanazi, Humidah; Semlali, Abdelhabib; Perraud, Laura; Chmielewski, Witold; Zakrzewski, Andrew; Rouabhia, Mahmoud

    2014-01-01

    The predisposition of cigarette smokers for development of respiratory and oral bacterial infections is well documented. Cigarette smoke can also contribute to yeast infection. The aim of this study was to investigate the effect of cigarette smoke condensate (CSC) on C. albicans transition, chitin content, and response to environmental stress and to examine the interaction between CSC-pretreated C. albicans and normal human gingival fibroblasts. Following exposure to CSC, C. albicans transition from blastospore to hyphal form increased. CSC-pretreated yeast cells became significantly (P < 0.01) sensitive to oxidation but significantly (P < 0.01) resistant to both osmotic and heat stress. CSC-pretreated C. albicans expressed high levels of chitin, with 2- to 8-fold recorded under hyphal conditions. CSC-pretreated C. albicans adhered better to the gingival fibroblasts, proliferated almost three times more and adapted into hyphae, while the gingival fibroblasts recorded a significantly (P < 0.01) slow growth rate but a significantly higher level of IL-1β when in contact with CSC-pretreated C. albicans. CSC was thus able to modulate both C. albicans transition through the cell wall chitin content and the interaction between C. albicans and normal human gingival fibroblasts. These findings may be relevant to fungal infections in the oral cavity in smokers. PMID:25302312

  7. Decline of FoxP3+ Regulatory CD4 T Cells in Peripheral Blood of Children Heavily Exposed to Malaria.

    Directory of Open Access Journals (Sweden)

    Michelle J Boyle

    2015-07-01

    Full Text Available FoxP3+ regulatory CD4 T cells (Tregs help to maintain the delicate balance between pathogen-specific immunity and immune-mediated pathology. Prior studies suggest that Tregs are induced by P. falciparum both in vivo and in vitro; however, the factors influencing Treg homeostasis during acute and chronic infections, and their role in malaria immunopathogenesis, remain unclear. We assessed the frequency and phenotype of Tregs in well-characterized cohorts of children residing in a region of high malaria endemicity in Uganda. We found that both the frequency and absolute numbers of FoxP3+ Tregs in peripheral blood declined markedly with increasing prior malaria incidence. Longitudinal measurements confirmed that this decline occurred only among highly malaria-exposed children. The decline of Tregs from peripheral blood was accompanied by reduced in vitro induction of Tregs by parasite antigen and decreased expression of TNFR2 on Tregs among children who had intense prior exposure to malaria. While Treg frequencies were not associated with protection from malaria, there was a trend toward reduced risk of symptomatic malaria once infected with P. falciparum among children with lower Treg frequencies. These data demonstrate that chronic malaria exposure results in altered Treg homeostasis, which may impact the development of antimalarial immunity in naturally exposed populations.

  8. Quantification of epithelial cell differentiation in mammary glands and carcinomas from DMBA- and MNU-exposed rats.

    Directory of Open Access Journals (Sweden)

    Deepak Sharma

    Full Text Available Rat mammary carcinogenesis models have been used extensively to study breast cancer initiation, progression, prevention, and intervention. Nevertheless, quantitative molecular data on epithelial cell differentiation in mammary glands of untreated and carcinogen-exposed rats is limited. Here, we describe the characterization of rat mammary epithelial cells (RMECs by multicolor flow cytometry using antibodies against cell surface proteins CD24, CD29, CD31, CD45, CD49f, CD61, Peanut Lectin, and Thy-1, intracellular proteins CK14, CK19, and FAK, along with phalloidin and Hoechst staining. We identified the luminal and basal/myoepithelial populations and actively dividing RMECs. In inbred rats susceptible to mammary carcinoma development, we quantified the changes in differentiation of the RMEC populations at 1, 2, and 4 weeks after exposure to mammary carcinogens DMBA and MNU. DMBA exposure did not alter the percentage of basal or luminal cells, but upregulated CD49f (Integrin α6 expression and increased cell cycle activity. MNU exposure resulted in a temporary disruption of the luminal/basal ratio and no CD49f upregulation. When comparing DMBA- or MNU-induced mammary carcinomas, the RMEC differentiation profiles are indistinguishable. The carcinomas compared with mammary glands from untreated rats, showed upregulation of CD29 (Integrin β1 and CD49f expression, increased FAK (focal adhesion kinase activation especially in the CD29hi population, and decreased CD61 (Integrin β3 expression. This study provides quantitative insight into the protein expression phenotypes underlying RMEC differentiation. The results highlight distinct RMEC differentiation etiologies of DMBA and MNU exposure, while the resulting carcinomas have similar RMEC differentiation profiles. The methodology and data will enhance rat mammary carcinogenesis models in the study of the role of epithelial cell differentiation in breast cancer.

  9. Caffeic Acid Reduces the Viability and Migration Rate of Oral Carcinoma Cells (SCC-25 Exposed to Low Concentrations of Ethanol

    Directory of Open Access Journals (Sweden)

    Arkadiusz Dziedzic

    2014-10-01

    Full Text Available Alcohol increases the risk of carcinoma originated from oral epithelium, but the biological effects of ultra-low doses of ethanol on existing carcinoma cells in combination with natural substances are still unclear. A role for ethanol (EtOH, taken in small amounts as an ingredient of some beverages or mouthwashes to change the growth behavior of established squamous cell carcinoma, has still not been examined sufficiently. We designed an in vitro study to determine the effect of caffeic acid (CFA on viability and migration ability of malignant oral epithelial keratinocytes, exposed to ultra-low concentrations (maximum 100 mmol/L EtOH. MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-dimethyltetrazolium bromide and LDH (lactate dehydrogenase assays were used to assess the cytotoxic effect of EtOH/CFA and the viability of squamous carcinoma SCC-25 cells (ATCC CRL-1628, mobile part of the tongue. Tested EtOH concentrations were: 2.5, 5, 10, 25, 50, and 100 mmol/L, along with an equal CFA concentration of 50 μmol/L. Carcinoma cells’ migration was investigated by monolayer “wound” healing assay. We demonstrated that very low concentrations of EtOH ranging between 2.5 and 10 mmol/L may induce the viability of oral squamous cell carcinoma cells, while the results following addition of CFA reveal an antagonistic effect, attenuating pro-proliferative EtOH activity. The migration rate of oral squamous carcinoma cells can be significantly inhibited by the biological activity of caffeic acid.

  10. Autophagy counteracts apoptosis in human multiple myeloma cells exposed to oridonin in vitro via regulating intracellular ROS and SIRT1

    Institute of Scientific and Technical Information of China (English)

    Rong ZENG; Yan CHEN; Shuai ZHAO; Guo-hui CUI

    2012-01-01

    To explore the mechanisms underlying the oridonin-induced apoptosis and autophagy in human multiple myeloma cells in vitro.Methods:Human multiple myeloma RPMI8266 cells were used.The cell viability was assessed using MTT assay.Morphological changes of apoptosis and autophagy were observed under transmission electron microscope.TUNEL and annexin V-FITC/PI dual staining assays were used to measure apoptosis.Autophagy was analyzed using Western blot analysis and immunofluorescence staining with a QDs605 nm-Anti-LC3 fluorescent probe.Intracellular ROS was estimated with flow cytometry using DCFH-DA fluorescent probe.Protein levels of active caspase 3,Beclin 1 and SIRT1 were determined with Western blot analysis.Results:Exposure to oridonin (1-64 μmol/L) inhibited the proliferation of RPMI8266 cells in a concentration-dependent manner with an IC50 value of 6.74 μmol/L.Exposure to oridonin (7 μmol/L) simultaneously induced caspase 3-mediated apoptosis and Beclin 1-dependent autophagy of RPMI8266 cells.Both the apoptosis and autophagy were time-dependent,and apoptosis was the main effector pathway of cell death.Exposure to oridonin (7 μmol/L) increased intracellular ROS and reduced SIRT1 nuclear protein in a time-dependent manner.The blockade of intracellular generation of ROS by NAC (5 mmol/L) abrogated apoptosis,autophagy and the decrease of SIRT1 in the cells exposed to oridonin (7 μmol/L).The inhibition of autophagy by 3-MA (5 mmol/L) sensitized the cells to oridonin-induced apoptosis,which was accompanied by increased intracellular ROS and decreased SlRT1.Conclusion:Oridonin simultaneously induces apoptosis and autophagy of human multiple myeloma RPMI8266 cells via regulation of intracellular ROS generation and SIRT1 nuclear protein.The cytotoxicity of oridonin is mainly mediated through the apoptotic pathway,whereas the autophagy protects the cells from apoptosis.

  11. Chromosomal Aberrations in DNA Repair Defective Cell Lines: Comparisons of Dose Rate and Radiation Quality

    Science.gov (United States)

    George, K. A.; Hada, M.; Patel, Z.; Huff, J.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Chromosome aberration yields were assessed in DNA double-strand break repair (DSB) deficient cells after acute doses of gamma-rays or high-LET iron nuclei, or low dose-rate (0.018 Gy/hr) gamma-rays. We studied several cell lines including fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase, DNA-PK activity. Chromosomes were analyzed using the fluorescence in-situ hybridization (FISH) chromosome painting method in cells at the first division post-irradiation and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma radiation induced higher yields of both simple and complex exchanges in the DSB repair defective cells than in the normal cells. The quadratic dose-response terms for both chromosome exchange types were significantly higher for the ATM and NBS defective lines than for normal fibroblasts. However, the linear dose-response term was significantly higher only for simple exchanges in the NBS cells. Large increases in the quadratic dose response terms indicate the important roles of ATM and NBS in chromatin modifications that facilitate correct DSB repair and minimize aberration formation. Differences in the response of AT and NBS deficient cells at lower doses suggests important questions about the applicability of observations of radiation sensitivity at high dose to low dose exposures. For all iron nuclei irradiated cells, regression models preferred purely linear and quadratic dose responses for simple and complex exchanges, respectively. All the DNA repair defective cell lines had lower Relative biological effectiveness (RBE) values than normal cells, the lowest being for the DNA-PK-deficient cells, which was near unity. To further

  12. Genomic Profiling of a Human Leukemic Monocytic Cell-Line (THP-1 Exposed to Alpha Particle Radiation

    Directory of Open Access Journals (Sweden)

    Vinita Chauhan

    2012-01-01

    Full Text Available This study examined alpha (α- particle radiation effects on global changes in gene expression in human leukemic monocytic cells (THP-1 for the purposes of mining for candidate biomarkers that could be used for the development of a biological assessment tool. THP-1 cells were exposed to α-particle radiation at a dose range of 0 to 1.5 Gy. Twenty-four hours and three days after exposure gene expression was monitored using microarray technology. A total of 16 genes were dose responsive and classified as early onset due to their expression 24 h after exposure. Forty-eight transcripts were dose responsive and classified as late-onset as they were expressed 72 h after exposure. Among these genes, 6 genes were time and dose responsive and validated further using alternate technology. These transcripts were upregulated and associated with biological processes related to immune function, organelle stability and cell signalling/communication. This panel of genes merits further validation to determine if they are strong candidate biomarkers indicative of α-particle exposure.

  13. Stress proteins and oxidative damage in a renal derived cell line exposed to inorganic mercury and lead

    International Nuclear Information System (INIS)

    A close link between stress protein up-regulation and oxidative damage may provide a novel therapeutic tool to counteract nephrotoxicity induced by toxic metals in the human population, mainly in children, of industrialized countries. Here we analysed the time course of the expression of several heat shock proteins, glucose-regulated proteins and metallothioneins in a rat proximal tubular cell line (NRK-52E) exposed to subcytotoxic doses of inorganic mercury and lead. Concomitantly, we used morphological and biochemical methods to evaluate metal-induced cytotoxicity and oxidative damage. In particular, as biochemical indicators of oxidative stress we detected reactive oxygen species (ROS) and nitrogen species (RNS), total glutathione (GSH) and glutathione-S-transferase (GST) activity. Our results clearly demonstrated that mercury increases ROS and RNS levels and the expressions of Hsp25 and inducible Hsp72. These findings are corroborated by evident mitochondrial damage, apoptosis or necrosis. By contrast, lead is unable to up-regulate Hsp72 but enhances Grp78 and activates nuclear Hsp25 translocation. Furthermore, lead causes endoplasmic reticulum (ER) stress, vacuolation and nucleolar segregation. Lastly, both metals stimulate the over-expression of MTs, but with a different time course. In conclusion, in NRK-52E cell line the stress response is an early and metal-induced event that correlates well with the direct oxidative damage induced by mercury. Indeed, different chaperones are involved in the specific nephrotoxic mechanism of these environmental pollutants and work together for cell survival.

  14. Cytotoxicity, oxidative stress, and genotoxicity in human hepatocyte and embryonic kidney cells exposed to ZnO nanoparticles

    Science.gov (United States)

    Guan, Rongfa; Kang, Tianshu; Lu, Fei; Zhang, Zhiguo; Shen, Haitao; Liu, Mingqi

    2012-10-01

    Traces of zinc oxide nanoparticles (ZnO NPs) used may be found in the liver and kidney. The aim of this study is to determine the optimal viability assay for using with ZnO NPs and to assess their toxicity to human hepatocyte (L02) and human embryonic kidney (HEK293) cells. Cellular morphology, mitochondrial function (MTT assay), and oxidative stress markers (malondialdehyde, glutathione (GSH) and superoxide dismutase (SOD)) were assessed under control and exposed to ZnO NPs conditions for 24 h. The results demonstrated that ZnO NPs lead to cellular morphological modifications, mitochondrial dysfunction, and cause reduction of SOD, depletion of GSH, and oxidative DNA damage. The exact mechanism behind ZnO NPs toxicity suggested that oxidative stress and lipid peroxidation played an important role in ZnO NPs-elicited cell membrane disruption, DNA damage, and subsequent cell death. Our preliminary data suggested that oxidative stress might contribute to ZnO NPs cytotoxicity.

  15. Attenuation of oxidative stress and inflammation by gravinol in high glucose-exposed renal tubular epithelial cells

    International Nuclear Information System (INIS)

    Gravinol, a proanthocyanidin from grape seeds, has polyphenolic properties with powerful anti-oxidative effects. Although, increasing evidence strongly suggests that polyphenolic antioxidants suppress diabetic nephropathy that is causally associated with oxidative stress and inflammation, gravinol's protective action against diabetic nephropathy has not been fully explored to date. In the current study, we investigated the protective action of gravinol against oxidative stress and inflammation using the experimental diabetic nephropathy cell model, high glucose-exposed renal tubular epithelial cells. To elucidate the underlying actions of gravinol, several oxidative and inflammatory markers were estimated. Included are measurements of lipid peroxidation, total reactive species (RS), superoxide (·O2), nitric oxide (NO·), and peroxynitrite (ONOO-), as well as nuclear factor-kappa B (NF-κB) nuclear translocation. Results indicate that gravinol had a potent inhibitory action against lipid peroxidation, total RS, ·O2, NO·, ONOO-, the reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio and more importantly, against NF-κB nuclear translocation. We propose that gravinol's strong protective effect against high glucose-induced renal tubular epithelial cell damage attenuates diabetic nephropathy by suppressing oxidative stress and inflammation.

  16. The effect of citrus flavanones on the redox homeostasis in cells exposed to oxidative stress – studies in vitro

    Directory of Open Access Journals (Sweden)

    Ewa Kurzeja

    2016-06-01

    Full Text Available ioxidants in citrus fruits are beneficial for health, which is connected with their anti-inflammatory, anti-atherogenic and anti-carcinogenic properties. The present study was undertaken to investigate whether – and in what way – the presence of flavanones influences the redox homeostasis of fibroblasts and alleviates the effects of oxidative stress. Material and methods: The study was conducted on murine fibroblast cell cultures with the addition of flavanones (hesperidin, hesperetin, naringin, naringenin, exposed to oxidative stress (Fe/Asc. In cell homogenates, the activity of superoxide dismutase (SOD and glutathione peroxidase (GPx was measured; in the medium, the concentration of nitric oxide was measured. Results and conclusion: Our results demonstrate that the addition of naringenin, hesperetin, naringin and hesperidin has a protective effect on cells subjected to oxidative stress The changes observed are particularly visible in the case of aglycone forms of both compounds. Despite the protective properties against oxidative stress which flavanones display, we determined distrubances in redox homeostasis in comparison to the control culture.

  17. DNA damage in human germ cell exposed to the some food additives in vitro.

    Science.gov (United States)

    Pandir, Dilek

    2016-08-01

    The use of food additives has increased enormously in modern food technology but they have adverse effects in human healthy. The aim of this study was to investigate the DNA damage of some food additives such as citric acid (CA), benzoic acid (BA), brilliant blue (BB) and sunset yellow (SY) which were investigated in human male germ cells using comet assay. The sperm cells were incubated with different concentrations of these food additives (50, 100, 200 and 500 μg/mL) for 1 h at 32 °C. The results showed for CA, BA, BB and SY a dose dependent increase in tail DNA%, tail length and tail moment in human sperm when compared to control group. When control values were compared in the studied parameters in the treatment concentrations, SY was found to exhibit the highest level of DNA damage followed by BB > BA > CA. However, none of the food additives affected the tail DNA%, tail length and tail moment at 50 and 100 μg/mL. At 200 μg/mL of SY, the tail DNA% and tail length of sperm were 95.80 ± 0.28 and 42.56 ± 4.66, for BB the values were 95.06 ± 2.30 and 39.56 ± 3.78, whereas for BA the values were 89.05 ± 2.78 and 31.50 ± 0.71, for CA the values were 88.59 ± 6.45 and 13.59 ± 2.74, respectively. However, only the highest concentration of the used food additives significantly affected the studied parameters of sperm DNA. The present results indicate that SY and BB are more harmful than BA and CA to human sperm in vitro. PMID:25501537

  18. Global gene expression changes in human urothelial cells exposed to low-level monomethylarsonous acid

    International Nuclear Information System (INIS)

    Highlights: ► Chronic exposure to 50 nM monomethylarsonous acid in UROtsa was investigated. ► At 3 months of exposure substantial changes were observed in gene expression. ► Notable changes occurred in mitogenic signaling, stress, immune and inflammatory responses. ► Gene expression changes correlate with phenotypic changes from previous studies. -- Abstract: Bladder cancer has been associated with chronic arsenic exposure. Monomethylarsonous acid [MMA(III)] is a metabolite of inorganic arsenic and has been shown to transform an immortalized urothelial cell line (UROtsa) at concentrations 20-fold less than arsenite. MMA(III) was used as a model arsenical to examine the mechanisms of arsenical-induced transformation of urothelium. A microarray analysis was performed to assess the transcriptional changes in UROtsa during the critical window of chronic 50 nM MMA(III) exposure that leads to transformation at 3 months of exposure. The analysis revealed only minor changes in gene expression at 1 and 2 months of exposure, contrasting with substantial changes observed at 3 months of exposure. The gene expression changes at 3 months were analyzed showing distinct alterations in biological processes and pathways such as a response to oxidative stress, enhanced cell proliferation, anti-apoptosis, MAPK signaling, as well as inflammation. Twelve genes selected as markers of these particular biological processes were used to validate the microarray and these genes showed a time-dependent changes at 1 and 2 months of exposure, with the most substantial changes occurring at 3 months of exposure. These results indicate that there is a strong association between the acquired phenotypic changes that occur with chronic MMA(III) exposure and the observed gene expression patterns that are indicative of a malignant transformation. Although the substantial changes that occur at 3 months of exposure may be a consequence of transformation, there are common occurrences of altered

  19. Genetic features of B-cell chronic lymphocytic leukemia.

    Science.gov (United States)

    Stilgenbauer, S; Lichter, P; Döhner, H

    2000-03-01

    The genetic features of B-cell chronic lymphocytic leukemia (CLL) are currently being reassessed by molecular cytogenetic techniques such as fluorescence in situ hybridization (FISH). Conventional cytogenetic studies by chromosome banding are difficult in CLL mainly because of the low in vitro mitotic activity of the tumor cells, which leads to poor quantity and quality of metaphase spreads. Molecular genetic analyses are limited because candidate genes are known for only a few chromosomal aberrations that are observed in CLL. FISH was found to be a powerful tool for the genetic analysis of CLL as it overcomes both the low mitotic activity of the CLL cells and the lack of suitable candidate genes for analysis. Using FISH, the detection of chromosomal aberrations can be performed at the single cell level in both dividing and non-dividing cells, thus circumventing the need of metaphase preparations from tumor cells. Probes for the detection of trisomies, deletions and translocation breakpoints can be applied to the regions of interest with the growing number of clones available from genome-wide libraries. Using the interphase cytogenetic FISH approach with a disease specific set of probes, chromosome aberrations can be found in more than 80% of CLL cases. The most frequently observed abnormalities are losses of chromosomal material, with deletions in band 13q14 being the most common, followed by deletions in 11q22-q23, deletions in 17p13 and deletions in 6q21. The most common gains of chromosomal material are trisomies 12q, 8q and 3q. Translocation breakpoints, in particular involving the immunoglobulin heavy chain locus at 14q32, which are frequently observed in other types of non-Hodgkin's lymphoma, are rare events in CLL. Genes affected by common chromosome aberrations in CLL appear to be p53 in cases with 17p deletion and ataxia telangiectasia mutated (ATM), which is mutated in a subset of cases with 11q22-q23 aberrations. However, for the other frequently

  20. Differential transcriptional regulation of IL-8 expression by human airway epithelial cells exposed to diesel exhaust particles

    International Nuclear Information System (INIS)

    Exposure to diesel exhaust particles (DEP) induces inflammatory signaling characterized by MAP kinase-mediated activation of NFkB and AP-1 in vitro and in bronchial biopsies obtained from human subjects exposed to DEP. NFkB and AP-1 activation results in the upregulation of genes involved in promoting inflammation in airway epithelial cells, a principal target of inhaled DEP. IL-8 is a proinflammatory chemokine expressed by the airway epithelium in response to environmental pollutants. The mechanism by which DEP exposure induces IL-8 expression is not well understood. In the current study, we sought to determine whether DEP with varying organic content induces IL-8 expression in lung epithelial cells, as well as, to develop a method to rapidly evaluate the upstream mechanism(s) by which DEP induces IL-8 expression. Exposure to DEP with varying organic content differentially induced IL-8 expression and IL-8 promoter activity human airway epithelial cells. Mutational analysis of the IL-8 promoter was also performed using recombinant human cell lines expressing reporters linked to the mutated promoters. Treatment with a low organic-containing DEP stimulated IL-8 expression by a mechanism that is predominantly NFkB-dependent. In contrast, exposure to high organic-containing DEP induced IL-8 expression independently of NFkB through a mechanism that requires AP-1 activity. Our study reveals that exposure to DEP of varying organic content induces proinflammatory gene expression through multiple specific mechanisms in human airway epithelial cells. The approaches used in the present study demonstrate the utility of a promoter-reporter assay ensemble for identifying transcriptional pathways activated by pollutant exposure.

  1. Retrospective biodosimetry using translocation frequency in a stable cell of occupationally exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Two cases of hematological malignancies were reported in an industrial radiography company over a year, which were reasonably suspected of being consequences of prolonged exposure to ionizing radiation because of the higher incidence than expected in the general population. We analyzed chromosomal aberrations in the peripheral blood lymphocytes from the other workers who had been working under similar circumstances as the patients in the company. Among the subjects tested, 10 workers who belonged to the highest band were followed up periodically for 1.5 years since the first analysis. The aim of this study was to clarify pertinence of translocation analysis to an industrial set-up where chronic exposure was commonly expected. To be a useful tool for a retrospective biodosimetry, the aberrations need to be persistent for a decade or longer. Therefore we calculated the decline rates and half-lives of frequency for both a reciprocal translocation and a dicentric chromosome and compared them. In this study, while the frequency of reciprocal translocations was maintained at the initial level, dicentric chromosomes were decreased to 46.9% (31.0–76.5) of the initial frequency over the follow-up period. Our results support the long-term stability of reciprocal translocation through the cell cycle and validate the usefulness of translocation analysis as a retrospective biodosimetry for cases of occupational exposure. (author)

  2. Genomic instability in human lymphoid cells exposed to 1 GeV/amu Fe ions

    Science.gov (United States)

    Grosovsky, A.; Bethel, H.; Parks, K.; Ritter, L.; Giver, C.; Gauny, S.; Wiese, C.; Kronenberg, A.

    2001-01-01

    The goal of this study was to assess whether charged particle radiations of importance to spaceflight elicit genomic instability in human TK6 lymphoblasts. The incidence of genomic instability in TK6 cells was assessed 21 days after exposure to 2, 4, or 6 Fe ions (1 GeV/amu, LET= 146 keV/micrometers). Three indices of instability were used: intraclonal karyotypic heterogeneity, mutation rate analysis at the thymidine kinase (TK1) locus, and re-cloning efficiency. Fifteen of sixty clones demonstrated karyotypic heterogeneity. Five clones had multiple indicators of karyotypic change. One clone was markedly hypomutable and polyploid. Six clones were hypomutable, while 21 clones were mutators. Of these, seven were karyotypically unstable. Six clones had low re-cloning efficiencies, one of which was a mutator. All had normal karyotypes. In summary, many clones that survived exposure to a low fluence of Fe ions manifested one or more forms of genomic instability that may hasten the development of neoplasia through deletion or by recombination.

  3. Repair and cell cycle response in cells exposed to environmental biohazards. Final report, January 1, 1973-December 31, 1984

    International Nuclear Information System (INIS)

    These studies have focussed on agents which cause damage to DNA leading to inhibition of DNA synthesis or faulty DNA replication or repair. The overall goal of this project has been to understand how environmental agents interact with the DNA of cells and how cells cope with any resulting damage. In particular we have been concerned with the nature of the repair systems involved in restoration of damaged DNA and the cellular responses to radiation or chemical damage

  4. Nrf2-dependent repression of interleukin-12 expression in human dendritic cells exposed to inorganic arsenic.

    Science.gov (United States)

    Macoch, Mélinda; Morzadec, Claudie; Génard, Romain; Pallardy, Marc; Kerdine-Römer, Saadia; Fardel, Olivier; Vernhet, Laurent

    2015-11-01

    Inorganic arsenic, a well-known Nrf2 inducer, exerts immunosuppressive properties. In this context, we recently reported that the differentiation of human blood monocytes into immature dendritic cells (DCs), in the presence of low and noncytotoxic concentrations of arsenic, represses the ability of DCs to release key cytokines in response to different stimulating agents. Particularly, arsenic inhibits the expression of human interleukin-12 (IL-12, also named IL-12p70), a major proinflammatory cytokine that controls the differentiation of Th1 lymphocytes. In the present study, we determined if Nrf2 could contribute to these arsenic immunotoxic effects. To this goal, human monocyte-derived DCs were first differentiated in the absence of metalloid and then pretreated with arsenic just before DC stimulation with lipopolysaccharide (LPS). Under these experimental conditions, arsenic rapidly and stably activates Nrf2 and increases the expression of Nrf2 target genes. It also significantly inhibits IL-12 expression in activated DCs, at both mRNA and protein levels. Particularly, arsenic reduces mRNA levels of IL12A and IL12B genes which encodes the p35 and p40 subunits of IL-12p70, respectively. tert-Butylhydroquinone (tBHQ), a reference Nrf2 inducer, mimics arsenic effects and potently inhibits IL-12 expression. Genetic inhibition of Nrf2 expression markedly prevents the repression of both IL12 mRNA and IL-12 protein levels triggered by arsenic and tBHQ in human LPS-stimulated DCs. In addition, arsenic significantly reduces IL-12 mRNA levels in LPS-activated bone marrow-derived DCs from Nrf2+/+ mice but not in DCs from Nrf2-/- mice. Finally, we show that, besides IL-12, arsenic significantly reduces the expression of IL-23, another heterodimer containing the p40 subunit. In conclusion, our study demonstrated that arsenic represses IL-12 expression in human-activated DCs by specifically stimulating Nrf2 activity.

  5. Pulmonary surfactant preserves viability of alveolar type II cells exposed to polymyxin B in vitro.

    Directory of Open Access Journals (Sweden)

    Guido Stichtenoth

    Full Text Available BACKGROUND: Exogenous surfactant derived from animal lungs is applied for treatment of surfactant deficiency. By means of its rapid spreading properties, it could transport pharmaceutical agents to the terminal air spaces. The antimicrobial peptide Polymyxin B (PxB is used as a topical antibiotic for inhalation therapy. Whereas it has been shown that PxB mixed with surfactant is not inhibiting surface activity while antimicrobiotic activity is preserved, little is known concerning the effects on synthesis of endogenous surfactant in alveolar type II cells (ATIIC. OBJECTIVE: To investigate ATIIC viability and surfactant-exocytosis depending on PxB and/or surfactant exposure. METHODS: ATIIC were isolated from rat lungs as previously described and were cultivated for 48 h. After incubation for a period of 1-5 h with either PxB (0.05 or 0.1 mg/ml, modified porcine surfactant (5 or 10 mg/ml or mixtures of both, viability and exocytosis (spontanously and after stimulation were determined by fluorescence staining of intracellular surfactant. RESULTS: PxB 0.1 mg/ml, but not porcine surfactant or porcine surfactant plus PxB reduces ATIIC-viability. Only PxB alone, but not in combination with porcine surfactant, rapidly reduces fluorescence in ATIIC at maximum within 3 h, indicating stimulation of exocytosis. Subsequent ionomycin-stimulation does not further increase exocytosis of PxB incubated ATIIC. In presence of surfactant, stimulating effects of PxB and ionomycin on exocytosis are reduced. CONCLUSION: PxB alone shows negative effects on ATIIC, which are counterbalanced in mixtures with surfactant. So far, our studies found no results discouraging the concept of a combined treatment with PxB and surfactant mixtures.

  6. Reduced IL-10 production in fetal type II epithelial cells exposed to mechanical stretch is mediated via activation of IL-6-SOCS3 signaling pathway.

    Directory of Open Access Journals (Sweden)

    Michael A Hokenson

    Full Text Available An imbalance between pro-inflammatory and anti-inflammatory cytokines is a key factor in the lung injury of premature infants exposed to mechanical ventilation. Previous studies have shown that lung cells exposed to stretch produces reduced amounts of the anti-inflammatory cytokine IL-10. The objective of these studies was to analyze the signaling mechanisms responsible for the decreased IL-10 production in fetal type II cells exposed to mechanical stretch. Fetal mouse type II epithelial cells isolated at embryonic day 18 were exposed to 20% stretch to simulate lung injury. We show that IL-10 receptor gene expression increased with gestational age. Mechanical stretch decreased not only IL-10 receptor gene expression but also IL-10 secretion. In contrast, mechanical stretch increased release of IL-6. We then investigated IL-10 signaling pathway-associated proteins and found that in wild-type cells, mechanical stretch decreased activation of JAK1 and TYK2 and increased STAT3 and SOCS3 activation. However, opposite effects were found in cells isolated from IL-10 knockout mice. Reduction in IL-6 secretion by stretch was observed in cells isolated from IL-10 null mice. To support the idea that stretch-induced SOCS3 expression via IL-6 leads to reduced IL-10 expression, siRNA-mediated inhibition of SOCS3 restored IL-10 secretion in cells exposed to stretch and decreased IL-6 secretion. Taken together, these studies suggest that the inhibitory effect of mechanical stretch on IL-10 secretion is mediated via activation of IL-6-STAT3-SOCS3 signaling pathway. SOCS3 could be a therapeutic target to increase IL-10 production in lung cells exposed to mechanical injury.

  7. A homologue of the defender against the apoptotic death gene (dad1) in UV-exposed Chlamydomonas cells is downregulated with the onset of programmed cell death

    Indian Academy of Sciences (India)

    Swati Moharikar; Jacinta S D’souza; Basuthkar J Rao

    2007-03-01

    We report here the isolation of a homologue of the potential anti-apoptotic gene, defender against apoptotic death (dad1) from Chlamydomonas reinhardtii cells. Using polymerase chain reaction (PCR), we investigated its expression in the execution process of programmed cell death (PCD) in UV-C exposed dying C. reinhardtii cells. Reverse-transcriptase (RT)-PCR showed that C. reinhardtii dad1 amplification was drastically reduced in UV-C exposed dying C. reinhardtii cells. We connect the downregulation of dad1 with the upregulation of apoptosis protease activating factor-1 (APAF-1) and the physiological changes that occur in C. reinhardtii cells upon exposure to 12 J/m2 UV-C in order to show a reciprocal relationship between proapoptotic and inhibitor of apoptosis factors. The temporal changes indicate a correlation between the onset of cell death and dad1 downregulation. The sequence of the PCR product of the cDNA encoding the dad1 homologue was aligned with the annotated dad1 (C_20215) from the Chlamydomonas database (http://genome.jgi-psf.org:8080/annotator/servlet/jgi.annotation.Annotation?pDb=chlre2); Annotation?pDb=chlre2); this sequence was found to show 100% identity, both at the nucleotide and amino acid level. The 327 bp transcript showed an open reading frame of 87 amino acid residues. The deduced amino acid sequence of the putative C. reinhardtii DAD1 homologue showed 54% identity with Oryza sativa, 56% identity with Drosophila melanogaster, 66% identity with Xenopus laevis, and 64% identity with Homo sapiens, Sus scrofa, Gallus gallus, Rattus norvegicus and Mus musculus.

  8. Live-Cell Imaging Visualizes Frequent Mitotic Skipping During Senescence-Like Growth Arrest in Mammary Carcinoma Cells Exposed to Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masatoshi, E-mail: msuzuki@nagasaki-u.ac.jp [Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (Japan); Yamauchi, Motohiro; Oka, Yasuyoshi; Suzuki, Keiji; Yamashita, Shunichi [Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (Japan)

    2012-06-01

    Purpose: Senescence-like growth arrest in human solid carcinomas is now recognized as the major outcome of radiotherapy. This study was designed to analyze cell cycle during the process of senescence-like growth arrest in mammary carcinoma cells exposed to X-rays. Methods and Materials: Fluorescent ubiquitination-based cell cycle indicators were introduced into the human mammary carcinoma cell line MCF-7. Cell cycle was sequentially monitored by live-cell imaging for up to 5 days after exposure to 10 Gy of X-rays. Results: Live-cell imaging revealed that cell cycle transition from G2 to G1 phase without mitosis, so-called mitotic skipping, was observed in 17.1% and 69.8% of G1- and G2-irradiated cells, respectively. Entry to G1 phase was confirmed by the nuclear accumulation of mKO{sub 2}-hCdt1 as well as cyclin E, which was inversely correlated to the accumulation of G2-specific markers such as mAG-hGeminin and CENP-F. More than 90% of cells skipping mitosis were persistently arrested in G1 phase and showed positive staining for the senescent biochemical marker, which is senescence-associated ss-galactosidase, indicating induction of senescence-like growth arrest accompanied by mitotic skipping. While G2 irradiation with higher doses of X-rays induced mitotic skipping in approximately 80% of cells, transduction of short hairpin RNA (shRNA) for p53 significantly suppressed mitotic skipping, suggesting that ionizing radiation-induced mitotic skipping is associated with p53 function. Conclusions: The present study found the pathway of senescence-like growth arrest in G1 phase without mitotic entry following G2-irradiation.

  9. An early-onset recessive cerebellar disorder with distal amyotrophy and, in two patients, gross myoclonia: A probable ataxia telangiectasia variant

    OpenAIRE

    Graaf, A. de; De Jong, G; Kleijer, Wim

    1995-01-01

    textabstractWe report a family of 4 siblings from a non-consanguineous marriage, presenting with an early onset recessive cerebellar ataxia and progressive distal limb wasting. Ocular or other telangiectasias were absent. There were neither frequent infections nor immunodeficiencies. The two youngest patients exhibited an incapacitating myoclonus which abated markedly after 20 years. Late onset diabetes was demonstrated in 3 patients. Hypogonadism was not a feature and there was a prolonged s...

  10. An early-onset recessive cerebellar disorder with distal amyotrophy and, in two patients, gross myoclonia: A probable ataxia telangiectasia variant

    NARCIS (Netherlands)

    A.S. de Graaf (A.); G. de Jong (G.); W.J. Kleijer (Wim)

    1995-01-01

    textabstractWe report a family of 4 siblings from a non-consanguineous marriage, presenting with an early onset recessive cerebellar ataxia and progressive distal limb wasting. Ocular or other telangiectasias were absent. There were neither frequent infections nor immunodeficiencies. The two younges

  11. PI-103 and Quercetin Attenuate PI3K-AKT Signaling Pathway in T- Cell Lymphoma Exposed to Hydrogen Peroxide

    Science.gov (United States)

    Maurya, Akhilendra Kumar; Vinayak, Manjula

    2016-01-01

    Phosphatidylinositol 3 kinase—protein kinase B (PI3K-AKT) pathway has been considered as major drug target site due to its frequent activation in cancer. AKT regulates the activity of various targets to promote tumorigenesis and metastasis. Accumulation of reactive oxygen species (ROS) has been linked to oxidative stress and regulation of signaling pathways for metabolic adaptation of tumor microenvironment. Hydrogen peroxide (H2O2) in this context is used as ROS source for oxidative stress preconditioning. Antioxidants are commonly considered to be beneficial to reduce detrimental effects of ROS and are recommended as dietary supplements. Quercetin, a ubiquitous bioactive flavonoid is a dietary component which has attracted much of interest due to its potential health-promoting effects. Present study is aimed to analyze PI3K-AKT signaling pathway in H2O2 exposed Dalton’s lymphoma ascite (DLA) cells. Further, regulation of PI3K-AKT pathway by quercetin as well as PI-103, an inhibitor of PI3K was analyzed. Exposure of H2O2 (1mM H2O2 for 30min) to DLA cells caused ROS accumulation and resulted in increased phosphorylation of PI3K and downstream proteins PDK1 and AKT (Ser-473 and Thr-308), cell survival factors BAD and ERK1/2, as well as TNFR1. However, level of tumor suppressor PTEN was declined. Both PI-103 & quercetin suppressed the enhanced level of ROS and significantly down-regulated phosphorylation of AKT, PDK1, BAD and level of TNFR1 as well as increased the level of PTEN in H2O2 induced lymphoma cells. The overall result suggests that quercetin and PI3K inhibitor PI-103 attenuate PI3K-AKT pathway in a similar mechanism. PMID:27494022

  12. Effect of Green Tea Extract on T cell Mediated Hypersensitivity Reaction in BALB/c Mice Exposed to Gamma Irradiation

    International Nuclear Information System (INIS)

    Gamma radiation is widely used in the treatment of malignant neoplasms. However, it deprives the host immune function which may retard tumor rejection by the immune response. The main purpose of the present study is to test the ability of green tea dry extract to restore the T cell hypersensitivity reaction in gamma irradiated BALB/c mice. It aims also to elucidate the possible mechanism of action of ionizing radiation and green tea dry extract in the immune function. Four groups of BALB/c mice, each of ten, have been used in each experiment. The first group served as a control, the second group received green tea dry extract and the third group was exposed to 2 Gy gamma irradiation, while the fourth group received green tea dry extract before and after gamma irradiation. The following parameters were determined, the contact sensitivity reaction by the mouse ear swelling response, local dendritic cell migration, local lymph node weight, lymphocyte proliferation, spleen and thymus weight with their lymphocyte count. The effect of gamma irradiation and green tea dry extract on the elicitation phase of contact sensitivity was also determined. Data from the present study showed that gamma irradiation caused a significant decrease of the mouse ear swelling response and retarded dendritic cell migration. They also showed a significant decline in the lymphocytes proliferation in lymph node draining the contact sensitizer application. Total body exposure to 2 Gy gamma irradiation induced marked decline of thymus weight and thymocyte count, while it reduced spleen weight and spleenocyte count to a lesser extent. Exposure to gamma irradiation enhanced the elicitation phase of contact sensitivity. Administration of green tea dry extract partially preserved the contact sensitivity response to oxazolone in gamma irradiated BALB/c mice. It markedly minimized the enhancement of the elicitation phase of ear swelling. In conclusion, the present study heralds a beneficial role of

  13. Inhibition of semiconservative DNA synthesis in ICR 2A frog cells exposed to monochromatic uv wavelengths (252-313 nm) and photoreactivating light

    International Nuclear Information System (INIS)

    Exposure of ICR 2A frog cells to monochromatic uv wavelengths in the range 252-313 nm caused an inhibition of semiconservative DNA synthesis which was partially relieved in cells receiving a post irradiation treatment with photoreactivating light (>350 nm). Hence pyrimidine dimers acted as lesions blocking DNA synthesis in uv-irradiated cells based upon the specificity of photoreactivating enzyme for the light-dependent monomerization of dimers in DNA. Compared with the shorter wavelengths tested, however, this recovery of DNA synthesis was not as great in cells exposed to 302-nm radiation and was nearly absent in 313-nm-irradiated cells up to 12 hr after treatment. These results suggest that nondimer photoproducts also play an important role in causing DNA synthesis inhibition in cells exposed to wavelengths greater than 300 nm

  14. Comprehensive analysis of 5-aminolevulinic acid dehydrogenase (ALAD variants and renal cell carcinoma risk among individuals exposed to lead.

    Directory of Open Access Journals (Sweden)

    Dana M van Bemmel

    Full Text Available BACKGROUND: Epidemiologic studies are reporting associations between lead exposure and human cancers. A polymorphism in the 5-aminolevulinic acid dehydratase (ALAD gene affects lead toxicokinetics and may modify the adverse effects of lead. METHODS: The objective of this study was to evaluate single-nucleotide polymorphisms (SNPs tagging the ALAD region among renal cancer cases and controls to determine whether genetic variation alters the relationship between lead and renal cancer. Occupational exposure to lead and risk of cancer was examined in a case-control study of renal cell carcinoma (RCC. Comprehensive analysis of variation across the ALAD gene was assessed using a tagging SNP approach among 987 cases and 1298 controls. Occupational lead exposure was estimated using questionnaire-based exposure assessment and expert review. Odds ratios (OR and 95% confidence intervals (CI were calculated using logistic regression. RESULTS: The adjusted risk associated with the ALAD variant rs8177796(CT/TT was increased (OR = 1.35, 95%CI = 1.05-1.73, p-value = 0.02 when compared to the major allele, regardless of lead exposure. Joint effects of lead and ALAD rs2761016 suggest an increased RCC risk for the homozygous wild-type and heterozygous alleles ((GGOR = 2.68, 95%CI = 1.17-6.12, p = 0.01; (GAOR = 1.79, 95%CI = 1.06-3.04 with an interaction approaching significance (p(int = 0.06. No significant modification in RCC risk was observed for the functional variant rs1800435(K68N. Haplotype analysis identified a region associated with risk supporting tagging SNP results. CONCLUSION: A common genetic variation in ALAD may alter the risk of RCC overall, and among individuals occupationally exposed to lead. Further work in larger exposed populations is warranted to determine if ALAD modifies RCC risk associated with lead exposure.

  15. Increased protein synthesis by cells exposed to a 1,800-MHz radio-frequency mobile phone electromagnetic field, detected by proteome profiling

    OpenAIRE

    Gerner, Christopher; Haudek, Verena; Schandl, Ulla; Bayer, Editha; Gundacker, Nina; Hutter, Hans Peter; Mosgoeller, Wilhelm

    2010-01-01

    Purpose To investigate whether or not low intensity radio frequency electromagnetic field exposure (RF-EME) associated with mobile phone use can affect human cells, we used a sensitive proteome analysis method to study changes in protein synthesis in cultured human cells. Methods Four different cell kinds were exposed to 2 W/kg specific absorption rate in medium containing 35S-methionine/cysteine, and autoradiography of 2D gel spots was used to measure the increased synthesis of individual pr...

  16. Effects of nitrogen on the apoptosis of and changes in gene expression in human lymphoma U937 cells exposed to argon-based cold atmospheric pressure plasma.

    Science.gov (United States)

    Tabuchi, Yoshiaki; Uchiyama, Hidefumi; Zhao, Qing-Li; Yunoki, Tatsuya; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Kondo, Takashi

    2016-06-01

    Cold atmospheric pressure plasma (CAP) is known as a source of biologically active agents, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS). In the present study, we examined the effects of nitrogen (N2) on the apoptosis of and changes in gene expression in human lymphoma U937 cells exposed to argon (Ar)-CAP. Enormous amounts of hydroxyl (·OH) radicals in aqueous solution were produced using Ar‑CAP generated using a 20 kHz low frequency at 18 kV with a flow rate of 2 l/min. The increase in the levels of ·OH radicals was significantly attenuated by the addition of N2 to Ar gas. On the other hand, the level of total nitrate/nitrite in the supernatant was significantly elevated in the Ar + N2-CAP‑exposed U937 cells. When the cells were exposed to Ar‑CAP, a significant increase in apoptosis was observed, whereas apoptosis was markedly decreased in the cells exposed to Ar + N2-CAP. Microarray and pathway analyses revealed that a newly identified gene network containing a number of heat shock proteins (HSPs), anti-apoptotic genes, was mainly associated with the biological function of the prevention of apoptosis. Quantitative PCR revealed that the expression levels of HSPs were significantly elevated in the cells exposed to Ar + N2-CAP than those exposed to Ar‑CAP. These results indicate that N2 gas in Ar‑CAP modifies the ratio of ROS to RNS, and suppresses the apoptosis induced by Ar‑CAP. The modulation of gaseous conditions in CAP may thus prove to be useful for future clinical applications, such as for switching from a sterilizing mode to cytocidal effect for cancer cells.

  17. Effects of nitrogen on the apoptosis of and changes in gene expression in human lymphoma U937 cells exposed to argon-based cold atmospheric pressure plasma.

    Science.gov (United States)

    Tabuchi, Yoshiaki; Uchiyama, Hidefumi; Zhao, Qing-Li; Yunoki, Tatsuya; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Kondo, Takashi

    2016-06-01

    Cold atmospheric pressure plasma (CAP) is known as a source of biologically active agents, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS). In the present study, we examined the effects of nitrogen (N2) on the apoptosis of and changes in gene expression in human lymphoma U937 cells exposed to argon (Ar)-CAP. Enormous amounts of hydroxyl (·OH) radicals in aqueous solution were produced using Ar‑CAP generated using a 20 kHz low frequency at 18 kV with a flow rate of 2 l/min. The increase in the levels of ·OH radicals was significantly attenuated by the addition of N2 to Ar gas. On the other hand, the level of total nitrate/nitrite in the supernatant was significantly elevated in the Ar + N2-CAP‑exposed U937 cells. When the cells were exposed to Ar‑CAP, a significant increase in apoptosis was observed, whereas apoptosis was markedly decreased in the cells exposed to Ar + N2-CAP. Microarray and pathway analyses revealed that a newly identified gene network containing a number of heat shock proteins (HSPs), anti-apoptotic genes, was mainly associated with the biological function of the prevention of apoptosis. Quantitative PCR revealed that the expression levels of HSPs were significantly elevated in the cells exposed to Ar + N2-CAP than those exposed to Ar‑CAP. These results indicate that N2 gas in Ar‑CAP modifies the ratio of ROS to RNS, and suppresses the apoptosis induced by Ar‑CAP. The modulation of gaseous conditions in CAP may thus prove to be useful for future clinical applications, such as for switching from a sterilizing mode to cytocidal effect for cancer cells. PMID:27121589

  18. Immunohistochemical analysis of cytochrome P4501A induction in organs and cell types of Rivulus marmoratus exposed to waterborne 2,3,7,8-tetrachlorodibenzo-p-dioxin

    Energy Technology Data Exchange (ETDEWEB)

    Stegeman, J.; Smolowitz, R.; Burnett, K.; DiBona, D. [Woods Hole Oceanographic Institution, Woods Hole, MA (United States)]|[Medical College of South Carolina, Charleston, SC (United States)

    1994-12-31

    Identifying target cells and organs is critical to establishing the sites and mechanisms of toxicity of Ah-receptor agonists. Previous studies have described the localization of CYPLA induced in multiple organs of fish exposed to Ah-receptor agonists. Here the authors compare the responses in multiple cell types and organs of small fish (Rivulus) exposed to waterborne TCDD. Adult fish were exposed to TCDD at concentrations from 0.01 to 10 ng/liter for 48 hours, then prepared and analyzed by immunohistochemistry with monoclonal antibody to teleost CYPIAI. At the highest dose profound induction was detected in virtually every organ. Structures staining intensely were: nasal and cephalic chemoreceptors, including sensory and basal cells; superficial cells in skin and pharynx; cartilage cells (chondrocytes) in the head, gills, growth plates and fins; epithelial and endothelial cells of liver, gut, kidney, and gill; pseudobranch vessels and glandular cells; eye lens epithelium; endothelium in vessels of eye, brain, skin, muscle, thymus and gonad. Lesser concentrations of TCDD elicited less strong responses, and control fish showed mild staining only in cartilage structures. The dose-dependent patterns of induction differed between different cell types. Responsive cells identified is these fish indicate sites where toxicity associated with Ah-receptor agonists or with CYPLA function may be expressed.

  19. Observation of radiation-specific damage in human cells exposed to depleted uranium: dicentric frequency and neoplastic transformation as endpoints

    International Nuclear Information System (INIS)

    Depleted uranium (DU) is a dense heavy metal used primarily in military applications. Published data from our laboratory have demonstrated that DU exposure in vitro to immortalised human osteoblast cells (HOS) is both neoplastically transforming and genotoxic. DU possesses both a radiological (alpha-particle) and chemical (metal) component. Since DU has a low specific activity in comparison to natural uranium, it is not considered to be a significant radiological hazard. The potential contribution of radiation to DU-induced biological effects is unknown and the involvement of radiation in DU-induced biological effects could have significant implication for current risk estimates for internalised DU exposure. Two approaches were used to address this question. The frequency of dicentrics was measured in HOS cells following DU exposure in vitro. Data demonstrated that DU exposure (50 μM, 24h) induced a significant elevation in dicentric frequency in vitro in contrast to incubation with the heavy metals, nickel and tungsten which did not increase dicentric frequency above background levels. Using the same concentration (50 μM) of three uranyl nitrate compounds that have different uranium isotopic concentrations and therefore, different specific activities, the effect on neoplastic transformation in vitro was examined. HOS cells were exposed to one of three-uranyl nitrate compounds (238U-uranyl nitrate, specific activity 0.33 μCi.g-1: DU-uranyl nitrate, specific activity 0.44 μCi.g-1: and 235U-uranyl nitrate, specific activity 2.2 μCi.g-1) delivered at a concentration of 50 μM for 24 h. Results showed, at equal uranium concentration, there was a specific activity dependent increase in neoplastic transformation frequency. Taken together these data suggest that radiation can play a role in DU-induced biological effects in vitro. (author)

  20. Biomarker analysis of liver cells exposed to surfactant-wrapped and oxidized multi-walled carbon nanotubes (MWCNTs).

    Science.gov (United States)

    Henderson, W Matthew; Bouchard, Dermont; Chang, Xiaojun; Al-Abed, Souhail R; Teng, Quincy

    2016-09-15

    Carbon nanotubes (CNTs) have great potential in industrial, consumer, and mechanical applications, based partly on their unique structural, optical and electronic properties. CNTs are commonly oxidized or treated with surfactants to facilitate aqueous solution processing, and these CNT surface modifications also increase possible human and ecological exposures to nanoparticle-contaminated waters. To determine the exposure outcomes of oxidized and surfactant-wrapped multiwalled carbon nanotubes (MWCNTs) on biochemical processes, metabolomics-based profiling of human liver cells (C3A) was utilized. Cells were exposed to 0, 10, or 100ng/mL of MWCNTs for 24 and 48h; MWCNT particle size distribution, charge, and aggregation were monitored concurrently during exposures. Following MWCNT exposure, cellular metabolites were extracted, lyophilized, and buffered for (1)H NMR analysis. Acquired spectra were subjected to both multivariate and univariate analysis to determine the consequences of nanotube exposure on the metabolite profile of C3A cells. Resulting scores plots illustrated temporal and dose-dependent metabolite responses to all MWCNTs tested. Loadings plots coupled with t-test filtered spectra identified metabolites of interest. XPS analysis revealed the presence of hydroxyl and carboxyl functionalities on both MWCNTs surfaces. Metal content analysis by ICP-AES indicated that the total mass concentration of the potentially toxic impurities in the exposure experiments were extremely low (i.e. [Ni]≤2×10(-10)g/mL). Preliminary data suggested that MWCNT exposure causes perturbations in biochemical processes involved in cellular oxidation as well as fluxes in amino acid metabolism and fatty acid synthesis. Dose-response trajectories were apparent and spectral peaks related to both dose and MWCNT dispersion methodologies were determined. Correlations of the significant changes in metabolites will help to identify potential biomarkers associated with carbonaceous

  1. Uranyl nitrate-exposed rat alveolar macrophages cell death: Influence of superoxide anion and TNF α mediators

    International Nuclear Information System (INIS)

    Uranium compounds are widely used in the nuclear fuel cycle, military and many other diverse industrial processes. Health risks associated with uranium exposure include nephrotoxicity, cancer, respiratory, and immune disorders. Macrophages present in body tissues are the main cell type involved in the internalization of uranium particles. To better understand the pathological effects associated with depleted uranium (DU) inhalation, we examined the metabolic activity, phagocytosis, genotoxicity and inflammation on DU-exposed rat alveolar macrophages (12.5–200 μM). Stability and dissolution of DU could differ depending on the dissolvent and in turn alter its biological action. We dissolved DU in sodium bicarbonate (NaHCO3 100 mM) and in what we consider a more physiological vehicle resembling human internal media: sodium chloride (NaCl 0.9%). We demonstrate that uranyl nitrate in NaCl solubilizes, enters the cell, and elicits its cytotoxic effect similarly to when it is diluted in NaHCO3. We show that irrespective of the dissolvent employed, uranyl nitrate impairs cell metabolism, and at low doses induces both phagocytosis and generation of superoxide anion (O2−). At high doses it provokes the secretion of TNFα and through all the range of doses tested, apoptosis. We herein suggest that at DU low doses O2− may act as the principal mediator of DNA damage while at higher doses the signaling pathway mediated by O2− may be blocked, prevailing damage to DNA by the TNFα route. The study of macrophage functions after uranyl nitrate treatment could provide insights into the pathophysiology of uranium‐related diseases. -- Highlights: ► Uranyl nitrate effect on cultured macrophages is linked to the doses and independent of its solubility. ► At low doses uranyl nitrate induces generation of superoxide anion. ► At high doses uranyl nitrate provokes secretion of TNFα. ► Uranyl nitrate induces apoptosis through all the range of doses tested.

  2. Gene Expression Profiling Identifies Cell Proliferation and Inflammation as the Predominant Pathways Regulated by Aryl Hydrocarbon Receptor in Primary Human Fetal Lung Cells Exposed to Hyperoxia.

    Science.gov (United States)

    Shivanna, Binoy; Maity, Suman; Zhang, Shaojie; Patel, Ananddeep; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E; Belmont, John; Coarfa, Cristian; Moorthy, Bhagavatula

    2016-07-01

    Exposure to hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. We observed that aryl hydrocarbon receptor (AhR) signaling protects newborn mice and primary fetal human pulmonary microvascular endothelial cells (HPMECs) against hyperoxic injury. Additionally, a recent genome-wide transcriptome study in a newborn mouse model of BPD identified AhR as a key regulator of hyperoxia-induced gene dysregulation. Whether the AhR similarly deregulates genes in HPMEC is unknown. Therefore, the objective of this study was to characterize transcriptome level gene expression profile in AhR-sufficient and -deficient HPMEC exposed to normoxic and hyperoxic conditions. Global gene expression profiling was performed using Illumina microarray platform and selected genes were validated by real-time RT-PCR. AhR gene expression and hyperoxia independently affected the expression of 540 and 593 genes, respectively. Two-way ANOVA further identified 85 genes that were affected by an interaction between AhR expression and exposure to hyperoxia. Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology, and Reactome pathway analysis identified cell proliferation, immune function, cytokine signaling, and organ development as the major pathways affected in AhR-deficient cells. The biological processes that were significantly enriched by hyperoxia included metabolic process, stress response, signal transduction, cell cycle, and immune regulation. Cell cycle was the predominant pathway affected by the combined effect of AhR knockdown and hyperoxia. Functional analysis of cell cycle showed that AhR-deficient cells had decreased proliferation compared with AhR-sufficient cells. These findings suggest that AhR modulates hyperoxic lung injury by regulating the genes that are necessary for cell proliferation and inflammation. PMID:27103661

  3. In vitro response of the human breast cancer cell line MDAMB-231 and human peripheral blood mononuclear cells exposed to {sup 60}Co at single fraction

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Lidia Maria; Campos, Tarcisio Passos Ribeiro de [Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear]. E-mail: lidia.andrade@unifenas.br; Leite, M.F. [Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil). Dept. de Fisiologia e Biofisica; Goes, A.M. [Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil). Dept. de Bioquimica e Imunologia

    2005-10-15

    Radiotherapy using gamma rays is a common modality of breast cancer treatment. The aim of this research is to investigate the biological response of the human breast cancer cell line MDAMB-231 and human peripheral blood mononuclear cells (PBMC) exposed in vitro to {sup 60} Co irradiation at a single fraction of 10 Gy, 25 Gy and 50 Gy doses at 136,4 cGy.min{sup -1} rate. Cells were irradiated at room temperature by the Theratron 80 radiotherapy system. Biological response was evaluated through cellular viability using MTT assay and nucleus damages visualized by Propidium Iodide assay and electrophoresis agarose gel after gamma irradiation. Nucleus damages induced by {sup 60} Co irradiation were compared to damage caused by cell exposure to 10% methanol. The 50 Gy dose of irradiation did not stimulate nucleus damages at the same level as that affected by 10% methanol induction in the MDAMB-231. Further studies are necessary to understand these mechanisms in the MDAMB-231 human breast carcinoma cell line.(author)

  4. Assessment of Genotoxic and Cytotoxic Hazards in Brain and Bone Marrow Cells of Newborn Rats Exposed to Extremely Low-Frequency Magnetic Field

    Directory of Open Access Journals (Sweden)

    Monira M. Rageh

    2012-01-01

    Full Text Available The present study aimed to evaluate the association between whole body exposure to extremely low frequency magnetic field (ELF-MF and genotoxic , cytotoxic hazards in brain and bone marrow cells of newborn rats. Newborn rats (10 days after delivery were exposed continuously to 50 Hz, 0.5 mT for 30 days. The control group was treated as the exposed one with the sole difference that the rats were not exposed to magnetic field. Comet assay was used to quantify the level of DNA damage in isolated brain cells. Also bone marrow cells were flushed out to assess micronucleus induction and mitotic index. Spectrophotometric methods were used to measure the level of malondialdehyde (MDA and the activity of glutathione (GSH and superoxide dismutase (SOD. The results showed a significant increase in the mean tail moment indicating DNA damage in exposed group (P<0.01,0.001,0.0001. Moreover ELF-MF exposure induced a significant (P<0.01,0.001 four folds increase in the induction of micronucleus and about three folds increase in mitotic index (P<0.0001. Additionally newborn rats exposed to ELF-MF showed significant higher levels of MDA and SOD (P<0.05. Meanwhile ELF-MF failed to alter the activity of GSH. In conclusion, the present study suggests an association between DNA damage and ELF-MF exposure in newborn rats.

  5. Increased oxidative stress and toxicity in ADH and CYP2E1 overexpressing human hepatoma VL-17A cells exposed to high glucose.

    Science.gov (United States)

    Chandrasekaran, Karthikeyan; Swaminathan, Kavitha; Kumar, S Mathan; Clemens, Dahn L; Dey, Aparajita

    2012-05-01

    High glucose mediated oxidative stress and cell death is a well documented phenomenon. Using VL-17A cells which are HepG2 cells over-expressing alcohol dehydrogenase (ADH) and cytochrome P450 2E1 (CYP2E1) and control HepG2 cells, the association of ADH and CYP2E1 with high glucose mediated oxidative stress and toxicity in liver cells was investigated. Cell viability was measured and apoptosis or necrosis was determined through caspase-3 activity, Annexin V-propidium iodide staining and detecting decreases in mitochondrial membrane potential. Reactive oxygen species, lipid peroxidation and the formation of advanced glycated-end products were assessed. The levels of several antioxidants which included glutathione, glutathione peroxidase, catalase and superoxide dismutase were altered in high glucose treated VL-17A cells. Greater toxicity was observed in VL-17A cells exposed to high glucose when compared to HepG2 cells. Oxidative stress parameters were greatly increased in high glucose exposed VL-17A cells and apoptotic cell death was observed. Inhibition of CYP2E1 or caspase 3 or addition of the antioxidant trolox led to significant decreases in high glucose mediated oxidative stress and toxicity. Thus, the over-expression of ADH and CYP2E1 in liver cells is associated with increased high glucose mediated oxidative stress and toxicity.

  6. Use of the comet assay to measure DNA damage in cells exposed to photosensitizers and gamma radiation

    Science.gov (United States)

    Pouget, J.-P.; Ravanat, J.-L.; Douki, T.; Richard, M.-J.; Cadet, J.

    1999-01-01

    We used the comet assay associated with DNA-glycosylases to estimate DNA damage in cells exposed to gamma irradiation or photosensitized either with methylene blue or orange acridine. A calibration performed using irradiation allowed the measurement of the steady-state level and the yield of 8-oxodGuo as well as strand breaks and alkali-labile sites. Nous avons utilisé la méthode des comètes associée à des ADN-glycosylases, pour estimer les dommages de l'ADN dans des cellules après l'exposition à un rayonnement gamma ou après photosensibilisation par le bleu de méthylène ou l'acridine orange. Une calibration de la méthode des comètes a permis de mesurer le niveau basal et les taux de formation de 8-oxodGuo ainsi que le nombre de cassures de brins et de sites alcali labiles.

  7. Thymosin α1 Interacts with Exposed Phosphatidylserine in Membrane Models and in Cells and Uses Serum Albumin as a Carrier.

    Science.gov (United States)

    Mandaliti, Walter; Nepravishta, Ridvan; Sinibaldi Vallebona, Paola; Pica, Francesca; Garaci, Enrico; Paci, Maurizio

    2016-03-15

    Thymosin α1 is a peptidic hormone with pleiotropic activity and is used in the therapy of several diseases. It is unstructured in water solution and interacts with negative regions of vesicles by assuming two tracts of helical conformation with a structural break between them. This study reports on Thymosin α1's interaction with mixed phospholipids phosphatidylcholine and phosphatidylserine, the negative component of the membranes, by ¹H and natural abundance ¹⁵N nuclear magnetic resonance (NMR). The results indicate that interaction occurs when the membrane is negatively charged by exposing phosphatidylserine. Moreover, the direct interaction of Thymosin α1 with K562 cells with an overexposure of phosphatidylserine as a consequence of resveratrol-induced apoptosis was conducted. Thymosin α1's interaction with human serum albumin was also investigated by NMR spectroscopy. Steady-state saturation transfer, transfer nuclear Overhauser effect spectroscopy, and diffusion-ordered spectroscopy methodologies all reveal that the C-terminal region of Thymosin α1 is involved in the interaction with serum albumin. These results may shed more light on Thymosin α1's mechanism of action by its insertion in negative regions of membranes due to the exposure of phosphatidylserine. Once Thymosin α1's N-terminus has been inserted into the membrane, the rest may interact with nearby proteins and/or receptors acting as effectors and causing a biological signaling cascade, thus exerting thymosin α1's pleiotropy. PMID:26909491

  8. Activation of the adenylyl cyclase/cyclic AMP/protein kinase A pathway in endothelial cells exposed to cyclic strain

    Science.gov (United States)

    Cohen, C. R.; Mills, I.; Du, W.; Kamal, K.; Sumpio, B. E.