WorldWideScience

Sample records for ataxia telangiectasia mutated

  1. Ataxia - telangiectasia

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001394.htm Ataxia - telangiectasia To use the sharing features on this page, please enable JavaScript. Ataxia-telangiectasia is a rare childhood disease. It affects ...

  2. Ataxia Telangiectasia

    Science.gov (United States)

    Ataxia-telangiectasia (A-T) is a rare, inherited disease. It affects the nervous system, immune system, and ... young children, usually before age 5. They include Ataxia - trouble coordinating movements Poor balance Slurred speech Tiny, ...

  3. Targeting the Ataxia Telangiectasia Mutated-null phenotype in chronic lymphocytic leukemia with pro-oxidants

    Science.gov (United States)

    Agathanggelou, Angelo; Weston, Victoria J.; Perry, Tracey; Davies, Nicholas J.; Skowronska, Anna; Payne, Daniel T.; Fossey, John S.; Oldreive, Ceri E.; Wei, Wenbin; Pratt, Guy; Parry, Helen; Oscier, David; Coles, Steve J.; Hole, Paul S.; Darley, Richard L.; McMahon, Michael; Hayes, John D.; Moss, Paul; Stewart, Grant S.; Taylor, A. Malcolm R.; Stankovic, Tatjana

    2015-01-01

    Inactivation of the Ataxia Telangiectasia Mutated gene in chronic lymphocytic leukemia results in resistance to p53-dependent apoptosis and inferior responses to treatment with DNA damaging agents. Hence, p53-independent strategies are required to target Ataxia Telangiectasia Mutated-deficient chronic lymphocytic leukemia. As Ataxia Telangiectasia Mutated has been implicated in redox homeostasis, we investigated the effect of the Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia genotype on cellular responses to oxidative stress with a view to therapeutic targeting. We found that in comparison to Ataxia Telangiectasia Mutated-wild type chronic lymphocytic leukemia, pro-oxidant treatment of Ataxia Telangiectasia Mutated-null cells led to reduced binding of NF-E2 p45-related factor-2 to antioxidant response elements and thus decreased expression of target genes. Furthermore, Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia cells contained lower levels of antioxidants and elevated mitochondrial reactive oxygen species. Consequently, Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia, but not tumors with 11q deletion or TP53 mutations, exhibited differentially increased sensitivity to pro-oxidants both in vitro and in vivo. We found that cell death was mediated by a p53- and caspase-independent mechanism associated with apoptosis inducing factor activity. Together, these data suggest that defective redox-homeostasis represents an attractive therapeutic target for Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia. PMID:25840602

  4. Novel compound heterozygous mutations in a child with Ataxia-Telangiectasia showing unrelated cerebellar disorders.

    Science.gov (United States)

    Piane, Maria; Molinaro, Anna; Soresina, Annarosa; Costa, Silvia; Maffeis, Marianna; Germani, Aldo; Pinelli, Lorenzo; Meschini, Roberta; Plebani, Alessandro; Chessa, Luciana; Micheli, Roberto

    2016-12-15

    We report the case of a 6-year-old female patient with Ataxia Telangiectasia, an extremely rare condition, who developed in addition a left cerebellar astrocytoma and a right cerebellar infarction, considered as two independent events. Children with AT have an increased risk of developing cancer, but only few cases of glioma are reported and, at our knowledge, no other case of unrelated cerebellar glioma and cerebellar infarction in with the same AT patient have been described. The molecular analysis of ATM (Ataxia Telangiectasia Mutated) gene showed that the patient is compound heterozygote for two previously unreported mutations: c.3291delC (p.Phe1097fs) at exon 25 and c.8198A>C (p.Gln2733Pro) at exon 58. The role of the identified ATM gene mutations in the pathogenesis of Ataxia Telangiectasia and the coexisting cerebellar disorders is discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Germline Mutations of the Ataxia-Telangiectasia Gene, ATM, as a Risk Factor for Radiation-Associated Breast Cancer

    National Research Council Canada - National Science Library

    Offit, Kenneth

    1998-01-01

    This project is a case-control study designed to determine whether or not the presence of a germline mutation in ATM, the gene responsible for ataxia-telangiectasia, significantly increases the risk...

  6. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Choi, Seong-Jun [Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Shim, Hosup, E-mail: shim@dku.edu [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Department of Physiology, Dankook University School of Medicine, Cheonan (Korea, Republic of)

    2014-10-03

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.

  7. Lack of mutations in the P53 gene exons 5 to 8 in ataxia-telangiectasia.

    Science.gov (United States)

    Jonveaux, P; Berger, R

    1993-04-01

    Alterations of the TP53 tumor suppressor gene are present in various human malignancies and in the dominantly inherited Li-Fraumeni syndrome. Recently, a cell cycle checkpoint pathway involving p53 and GADD45 has been identified as defective in ataxia-telangiectasia. Using single strand conformation polymorphism analysis of PCR products, we looked for TP53 mutations in DNA of patients with AT. We did not find any mutation in 6 patients, suggesting that TP53 mutations are not directly involved in the cancer susceptibility observed in AT.

  8. Mutation of ataxia-telangiectasia mutated is associated with dysfunctional glutathione homeostasis in cerebellar astroglia.

    Science.gov (United States)

    Campbell, Andrew; Bushman, Jared; Munger, Joshua; Noble, Mark; Pröschel, Christoph; Mayer-Pröschel, Margot

    2016-02-01

    Astroglial dysfunction plays an important role in neurodegenerative diseases otherwise attributed to neuronal loss of function. Here we focus on the role of astroglia in ataxia-telangiectasia (A-T), a disease caused by mutations in the ataxia-telangiectasia mutated (ATM) gene. A hallmark of A-T pathology is progressive loss of cerebellar neurons, but the mechanisms that impact neuronal survival are unclear. We now provide a possible mechanism by which A-T astroglia affect the survival of cerebellar neurons. As astroglial functions are difficult to study in an in vivo setting, particularly in the cerebellum where these cells are intertwined with the far more numerous neurons, we conducted in vitro coculture experiments that allow for the generation and pharmacological manipulation of purified cell populations. Our analyses revealed that cerebellar astroglia isolated from Atm mutant mice show decreased expression of the cystine/glutamate exchanger subunit xCT, glutathione (GSH) reductase, and glutathione-S-transferase. We also found decreased levels of intercellular and secreted GSH in A-T astroglia. Metabolic labeling of l-cystine, the major precursor for GSH, revealed that a key component of the defect in A-T astroglia is an impaired ability to import this rate-limiting precursor for the production of GSH. This impairment resulted in suboptimal extracellular GSH supply, which in turn impaired survival of cerebellar neurons. We show that by circumventing the xCT-dependent import of L-cystine through addition of N-acetyl-L-cysteine (NAC) as an alternative cysteine source, we were able to restore GSH levels in A-T mutant astroglia providing a possible future avenue for targeted therapeutic intervention. © 2015 Wiley Periodicals, Inc.

  9. Radiosensitive melanoma cell line with mutation of the gene for ataxia telangiectasia.

    OpenAIRE

    Ramsay, J.; Birrell, G.; K. Baumann; Bodero, A.; Parsons, P.; Lavin, M

    1998-01-01

    The human melanoma cell lines MM96L, A2058 and HT144 were examined for sensitivity to ionizing radiation and UVB radiation. HT144 demonstrated a significant increase in sensitivity to ionizing and UVB radiation compared with the MM96L and A2058 cells. Sensitivity to both agents was associated with susceptibility to apoptosis. Using a protein truncation assay, a mutation for the gene for ataxia telangiectasia (ATM) was identified in HT144 cells. This was confirmed to be a homozygous mutation b...

  10. What Is Ataxia-Telangiectasia?

    Science.gov (United States)

    ... About A-T Research Fundraising About Us About Ataxia-telangiectasia About A-T » WHAT IS A- ... develop slurred or distorted speech, and swallowing problems. Ataxia... The onset of this ataxia marks the beginning ...

  11. A high frequency of distinct ATM gene mutations in ataxia-telangiectasia

    Energy Technology Data Exchange (ETDEWEB)

    Wright, J.; Teraoka, S.; Concannon, P. [Univ. of Washington School of Medicine, Seattle, WA (United States)] [and others

    1996-10-01

    The clinical features of the autosomal recessive disorder ataxia-telangiectasia (AT) include a progressive cerebellar ataxia, hypersensitivity to ionizing radiation, and an increased susceptibility to malignancies. Epidemiological studies have suggested that AT heterozygotes may also be at increased risk for malignancy, possibly as a consequence of radiation exposure. A gene mutated in AT patients (ATM) has recently been isolated, making mutation screening in both patients and the general population possible. Because of the relatively large size of the ATM gene, the design of screening programs will depend on the types and distribution of mutations in the general population. In this report, we describe 30 mutations identified in a panel of unrelated AT patients and controls. Twenty-five of the 30 were distinct, and most patients were compound heterozygotes. The most frequently detected mutation was found in three different families and had previously been reported in five others. This corresponds to a frequency of 8% of all reported ATM mutations. Twenty-two of the alterations observed would be predicted to lead to protein truncation at sites scattered throughout the molecule. Two fibroblast cell lines, which displayed normal responses to ionizing radiation, also proved to be heterozygous for truncation mutations of ATM. These observations suggest that the carrier frequency of ATM mutations may be sufficiently high to make population screening practical. However, such screening may need to be done prospectively, that is, by searching for new mutations rather than by screening for just those already identified in AT families. 33 refs., 1 fig., 1 tab.

  12. Ataxia-Telangiectasia

    OpenAIRE

    J Gordon Millichap

    1990-01-01

    São apresentados os casos de dois irmãos com ataxia-telangiectasia, estudados sob os pontos de vista clínico, eletrencefalográfico, liquórico e encefalográfico. O autor resume os achados de diversos autores e chama a atenção para a regressão parcial da síndrome cerebelar em ambos os pacientes, fato ainda não referido na literatura.

  13. Genetics Home Reference: ataxia-telangiectasia

    Science.gov (United States)

    ... Email Facebook Twitter Home Health Conditions Ataxia-telangiectasia Ataxia-telangiectasia Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Ataxia-telangiectasia is a rare inherited disorder that affects ...

  14. Ataxia telangiectasia mutated inhibits oxidative stress-induced apoptosis by regulating heme oxygenase-1 expression.

    Science.gov (United States)

    Yu, Ji Hoon; Cho, Soon Ok; Lim, Joo Weon; Kim, Nanhee; Kim, Hyeyoung

    2015-03-01

    Ataxia telangiectasia (AT) is caused by mutational inactivation of the ataxia telangiectasia mutated (Atm) gene, which is involved in DNA repair. Increased oxidative stress has been shown in human AT cells and neuronal tissues of Atm-deficient mice. Heme oxygenase-1 (HO-1) is an inducible antioxidant enzyme and protects cells against oxidative stress. The purpose of this study is to determine whether ATM induces antioxidant enzyme HO-1 and protects cells from oxidative stress-mediated apoptosis by driving the activation of PKC-δ and NF-κB, by increasing cell viability, and by downregulating DNA fragmentation and apoptotic indicators (apoptosis-inducing factor and cleaved caspase-3). AT fibroblasts stably transfected with human full-length ATM cDNA (YZ5 cells) or the empty vector (MOCK cells) were treated with H2O2 as a source of reactive oxygen species (ROS). As a result, transfection with ATM inhibited ROS-induced cell death and DNA fragmentation in MOCK cells. Transfection with ATM induced expression of HO-1 which was mediated by PKC-δ and NF-κB in H2O2-treated MOCK cells. ZnPP, an HO-1 inhibitor, and transfection with HO-1 siRNA increased ROS levels and apoptosis, whereas hemin, an HO-1 activator, reduced ROS levels and apoptosis in H2O2-treated YZ5 cells. Rottlerin, a PKC-δ inhibitor, inhibited NF-κB activation and HO-1 expression in H2O2-treated YZ5 cells. MOCK cells showed increased cell death, DNA fragmentation, and apoptotic indicators compared to YZ5 cells exposed to H2O2. In addition, transfection with p65 siRNA increased ROS levels and DNA fragmentation, but decreased HO-1 protein levels in H2O2-treated YZ5 cells. In conclusion, ATM induces HO-1 expression via activation of PKC-δ and NF-κB and inhibits oxidative stress-induced apoptosis. A loss of HO-1 induction may explain why AT patients are vulnerable to oxidative stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Antioxidant vitamins intake, ataxia telangiectasia mutated (ATM) genetic polymorphisms, and breast cancer risk.

    Science.gov (United States)

    Lee, Sang-Ah; Lee, Kyoung-Mu; Lee, Seung-Joon; Yoo, Keun-Young; Park, Sue Kyung; Noh, Dong-Young; Ahn, Sei-Hyun; Kang, Daehee

    2010-01-01

    Ataxia telangiectasia mutated (ATM) cells exist under a constant state of oxidative stress with high levels of reactive oxygen species, which are removed by cellular antioxidant vitamins. We investigated the independent and combined effect of antioxidant vitamins intake and the ATM genotype or diplotype on the breast cancer risk. Analyses included 323 cases and age-matched controls who participated in the Korean Breast Cancer Study during 2001-2003 with complete dietary information. The vitamin A (P vitamins including vitamin B(2) (P = 0.01), vitamin C (P intake. No five single nucleotide polymorphisms (ATM-5144A > T (rs228589), IVS21 + 1049T > C (rs664677), IVS33-55T > C (rs664982), IVS34+60G > A (rs664143), and 3393T > G (rs4585)) studied showed significant differences in their allele frequencies between the cases and controls. On the other hand, compared with the diploid of ATTGT/ATTGT, as the number of ATTGT haplotype decreased, the risk of breast cancer increased (P = 0.04). The association between ATM diplotype and the breast cancer risk was predominantly among women with low intake of antioxidant vitamins including vitamin A, vitamin C, and folic acid. This study suggested that some antioxidant vitamins intake may modify the effect of ATM diplotype on the breast cancer risk among Korean women.

  16. Role of ataxia-telangiectasia mutated (ATM) in porcine oocyte in vitro maturation.

    Science.gov (United States)

    Lin, Zi-Li; Kim, Nam-Hyung

    2015-06-01

    Ataxia-telangiectasia mutated (ATM) is critical for the DNA damage response, cell cycle checkpoints, and apoptosis. Significant effort has focused on elucidating the relationship between ATM and other nuclear signal transducers; however, little is known about the connection between ATM and oocyte meiotic maturation. We investigated the function of ATM in porcine oocytes. ATM was expressed at all stages of oocyte maturation and localized predominantly in the nucleus. Furthermore, the ATM-specific inhibitor KU-55933 blocked porcine oocyte maturation, reducing the percentages of oocytes that underwent germinal vesicle breakdown (GVBD) and first polar body extrusion. KU-55933 also decreased the expression of DNA damage-related genes (breast cancer 1, budding uninhibited by benzimidazoles 1, and P53) and reduced the mRNA and protein levels of AKT and other cell cycle-regulated genes that are predominantly expressed during G2/M phase, including bone morphogenetic protein 15, growth differentiation factor 9, cell division cycle protein 2, cyclinB1, and AKT. KU-55933 treatment decreased the developmental potential of blastocysts following parthenogenetic activation and increased the level of apoptosis. Together, these data suggested that ATM influenced the meiotic and cytoplasmic maturation of porcine oocytes, potentially by decreasing their sensitivity to DNA strand breaks, stimulating the AKT pathway, and/or altering the expression of other maternal genes. © 2015 International Federation for Cell Biology.

  17. Caffeine Suppresses Apoptosis of Bladder Cancer RT4 Cells in Response to Ionizing Radiation by Inhibiting Ataxia Telangiectasia Mutated-Chk2-p53 Axis

    OpenAIRE

    Zhe-Wei Zhang; Jing Xiao; Wei Luo; Bo-Han Wang; Ji-Min Chen

    2015-01-01

    Background: Caffeine suppresses ataxia telangiectasia and Rad3 related and ataxia telangiectasia mutated (ATM) activities; ATM is the major kinase for DNA damage detection. This study aimed to investigate the effects of caffeine on DNA damage responses in cells from the bladder cancer cell line RT4 those were exposed to ionizing radiation (IR). Methods: Immunofluorescent staining was performed to investigate changes in the proteins involved in DNA damage responses with or without caffeine...

  18. Telomere length, ATM mutation status and cancer risk in Ataxia-Telangiectasia families.

    Science.gov (United States)

    Renault, Anne-Laure; Mebirouk, Noura; Cavaciuti, Eve; Le Gal, Dorothée; Lecarpentier, Julie; d'Enghien, Catherine Dubois; Laugé, Anthony; Dondon, Marie-Gabrielle; Labbé, Martine; Lesca, Gaetan; Leroux, Dominique; Gladieff, Laurence; Adenis, Claude; Faivre, Laurence; Gilbert-Dussardier, Brigitte; Lortholary, Alain; Fricker, Jean-Pierre; Dahan, Karin; Bay, Jacques-Olivier; Longy, Michel; Buecher, Bruno; Janin, Nicolas; Zattara, Hélène; Berthet, Pascaline; Combès, Audrey; Coupier, Isabelle; Hall, Janet; Stoppa-Lyonnet, Dominique; Andrieu, Nadine; Lesueur, Fabienne

    2017-10-01

    Recent studies have linked constitutive telomere length (TL) to aging-related diseases including cancer at different sites. ATM participates in the signaling of telomere erosion, and inherited mutations in ATM have been associated with increased risk of cancer, particularly breast cancer. The goal of this study was to investigate whether carriage of an ATM mutation and TL interplay to modify cancer risk in ataxia-telangiectasia (A-T) families.The study population consisted of 284 heterozygous ATM mutation carriers (HetAT) and 174 non-carriers (non-HetAT) from 103 A-T families. Forty-eight HetAT and 14 non-HetAT individuals had cancer, among them 25 HetAT and 6 non-HetAT were diagnosed after blood sample collection. We measured mean TL using a quantitative PCR assay and genotyped seven single-nucleotide polymorphisms (SNPs) recurrently associated with TL in large population-based studies.HetAT individuals were at increased risk of cancer (OR = 2.3, 95%CI = 1.2-4.4, P = 0.01), and particularly of breast cancer for women (OR = 2.9, 95%CI = 1.2-7.1, P = 0.02), in comparison to their non-HetAT relatives. HetAT individuals had longer telomeres than non-HetAT individuals (P = 0.0008) but TL was not associated with cancer risk, and no significant interaction was observed between ATM mutation status and TL. Furthermore, rs9257445 (ZNF311) was associated with TL in HetAT subjects and rs6060627 (BCL2L1) modified cancer risk in HetAT and non-HetAT women.Our findings suggest that carriage of an ATM mutation impacts on the age-related TL shortening and that TL per se is not related to cancer risk in ATM carriers. TL measurement alone is not a good marker for predicting cancer risk in A-T families. © The Author 2017. Published by Oxford University Press.

  19. Ataxia Telangiectasia-Mutated (ATMPolymorphisms and Risk of Lung Cancer in a Chinese Population

    Directory of Open Access Journals (Sweden)

    Ajay A. Myneni

    2017-06-01

    Full Text Available BackgroundThe ataxia telangiectasia-mutated (ATM gene has a key role in DNA repair including activation and stabilization of p53, which implicates the importance of ATM polymorphisms in the development of cancer. This study aims to investigate the association of two ATM single-nucleotide polymorphisms (SNPs with lung cancer, as well as their potential interaction with p53 gene and other known risk factors of lung cancer.MethodsA population-based case–control study was conducted in Taiyuan city, China with 399 cases and 466 controls matched on the distribution of age and sex of cases. The two ATM gene SNPs, ATMrs227060 and ATMrs228589 as well as p53 gene SNP, p53rs1042522 were genotyped using Sequenom platform. Unconditional logistic regression models were used to estimate crude and adjusted odds ratios (aOR and 95% confidence intervals (CIs. Adjusted models controlled for age, sex, and smoking status.ResultsThe study showed that TT genotype of ATMrs227060 (aOR = 1.58, 95% CI: 1.06–2.35 and AA genotype of ATMrs228589 were significantly associated with lung cancer (aOR = 1.50, 95% CI: 1.08–2.08 in a recessive model. Additionally, carrying variant genotypes of ATMrs227060 (TT, ATMrs228589 (AA, and p53rs1042522 (CC concomitantly was associated with much higher risk (aOR = 3.68, 95% CI: 1.43–9.45 of lung cancer than carrying variant genotypes of any one of the above three SNPs. We also found multiplicative and additive interaction between tea drinking and ATMrs227060 in association with lung cancer.ConclusionThis study indicates that ATM gene variants might be associated with development of lung cancer in Chinese population. These results need to be validated in larger and different population samples.

  20. Ataxia telangiectasia mutated (ATM) interacts with p400 ATPase for an efficient DNA damage response.

    Science.gov (United States)

    Smith, Rebecca J; Savoian, Matthew S; Weber, Lauren E; Park, Jeong Hyeon

    2016-11-04

    Ataxia telangiectasia mutated (ATM) and TRRAP proteins belong to the phosphatidylinositol 3-kinase-related kinase family and are involved in DNA damage repair and chromatin remodeling. ATM is a checkpoint kinase that is recruited to sites of DNA double-strand breaks where it phosphorylates a diverse range of proteins that are part of the chromatin and DNA repair machinery. As an integral subunit of the TRRAP-TIP60 complexes, p400 ATPase is a chromatin remodeler that is also targeted to DNA double-strand break sites. While it is understood that DNA binding transcriptional activators recruit p400 ATPase into a regulatory region of the promoter, how p400 recognises and moves to DNA double-strand break sites is far less clear. Here we investigate a possibility whether ATM serves as a shuttle to deliver p400 to break sites. Our data indicate that p400 co-immunoprecipitates with ATM independently of DNA damage state and that the N-terminal domain of p400 is vital for this interaction. Heterologous expression studies using Sf9 cells revealed that the ATM-p400 complex can be reconstituted without other mammalian bridging proteins. Overexpression of ATM-interacting p400 regions in U2OS cells induced dominant negative effects including the inhibition of both DNA damage repair and cell proliferation. Consistent with the dominant negative effect, the stable expression of an N-terminal p400 fragment showed a decrease in the association of p400 with ATM, but did not alter the association of p400 with TRRAP. Taken together, our findings suggest that a protein-protein interaction between ATM and p400 ATPase occurs independently of DNA damage and contributes to efficient DNA damage response and repair.

  1. Ataxia-telangiectasia: future prospects

    Directory of Open Access Journals (Sweden)

    Chaudhary MW

    2014-09-01

    Full Text Available Mohammed Wajid Chaudhary, Raidah Saleem Al-Baradie Pediatric Neurology, Neurosciences Centre, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia Abstract: Ataxia-telangiectasia (A-T is an autosomal recessive multi-system disorder caused by mutation in the ataxia-telangiectasia mutated gene (ATM. ATM is a large serine/threonine protein kinase, a member of the phosphoinositide 3-kinase-related protein kinase (PIKK family whose best-studied function is as master controller of signal transduction for the DNA damage response (DDR in the event of double strand breaks (DSBs. The DDR rapidly recognizes DNA lesions and initiates the appropriate cellular programs to maintain genome integrity. This includes the coordination of cell-cycle checkpoints, transcription, translation, DNA repair, metabolism, and cell fate decisions, such as apoptosis or senescence. DSBs can be generated by exposure to ionizing radiation (IR or various chemical compounds, such as topoisomerase inhibitors, or can be part of programmed generation and repair of DSBs via cellular enzymes needed for the generation of the antibody repertoire as well as the maturation of germ cells. AT patients have immunodeficiency, and are sterile with gonadal dysgenesis as a result of defect in meiotic recombination. In the cells of nervous system ATM has additional role in vesicle dynamics as well as in the maintenance of the epigenetic code of histone modifications. Moderate levels of ATM are associated with prolonged lifespan through resistance to oxidative stress. ATM inhibitors are being viewed as potential radiosensitizers as part of cancer radiotherapy. Though there is no cure for the disease at present, glucocorticoids have been shown to induce alternate splicing site in the gene for ATM partly restoring its activity, but their most effective timing in the disease natural history is not yet known. Gene therapy is promising but large size of the gene makes it technically difficult

  2. Ataxia telangiectasia mutated-dependent regulation of topoisomerase II alpha expression and sensitivity to topoisomerase II inhibitor.

    Science.gov (United States)

    Tamaichi, Hiroyuki; Sato, Masaki; Porter, Andrew C G; Shimizu, Toshiaki; Mizutani, Shuki; Takagi, Masatoshi

    2013-02-01

    Topoisomerase II alpha (TOP2A) has a crucial role in proper chromosome condensation and segregation. Here we report the interaction of TOP2A with ataxia telangiectasia mutated (ATM) and its phosphorylation in an ATM-dependent manner after DNA damage. In vitro kinase assay and site-directed mutagenesis studies revealed that serine 1512 is the target of phosphorylation through ATM. Serine 1512 to Alanine mutation of TOP2A showed increased stability of the protein, retaining TOP2A activity at least with regard to cell survival activity. Ataxia telangiectasia-derived cell lines showed high levels of TOP2A that were associated with hypersensitivity to the TOP2 inhibitor etoposide. These findings suggest that ATM-dependent TOP2A modification is required for proper regulation of TOP2 stability and subsequently of the sensitivity to TOP2 inhibitor. In a lymphoblastoid cell line derived from a patient who developed MLL rearrangement, positive infant leukemia, defective ATM expression, and increased TOP2A expression were shown. It was intriguing that hypersensitivity to TOP2 inhibitor and susceptibility to MLL gene rearrangement were shown by low-dose etoposide exposure in this cell line. Thus, our findings have clinically important implications for the pathogenesis of infantile acute leukemia as well as treatment-associated secondary leukemia following exposure to TOP2 inhibitors. © 2012 Japanese Cancer Association.

  3. Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation

    DEFF Research Database (Denmark)

    Gatei, Magtouf; Sloper, Katie; Sørensen, Claus Storgaard

    2003-01-01

    In mammals, the ATM (ataxia-telangiectasia-mutated) and ATR (ATM and Rad3-related) protein kinases function as critical regulators of the cellular DNA damage response. The checkpoint functions of ATR and ATM are mediated, in part, by a pair of checkpoint effector kinases termed Chk1 and Chk2...

  4. Ataxia Telangiectasia-Mutated (ATM) kinase activity is regulated by ATP-driven conformational changes in the Mre11/Rad50/Nbs1 (MRN) complex

    NARCIS (Netherlands)

    J.-H. Lee (Ji-Hoon); M.R. Mand (Michael); R.A. Deshpande (Rajashree); E. Kinoshita (Eri); S.-H. Yang (Soo-Hyun); C. Wyman (Claire); T.T. Paull

    2013-01-01

    textabstractThe Ataxia Telangiectasia-Mutated (ATM) protein kinase is recruited to sites of double-strand DNA breaks by the Mre11/Rad50/Nbs1 (MRN) complex, which also facilitates ATM monomerization and activation. MRN exists in at least two distinct conformational states, dependent on ATP binding

  5. MEK inhibitors block growth of lung tumours with mutations in ataxia-telangiectasia mutated

    Czech Academy of Sciences Publication Activity Database

    Smida, M.; de la Cruz, F.F.; Kerzendorfer, C.; Uras, I.Z.; Mair, B.; Mazouzi, A.; Suchánková, Tereza; Konopka, T.; Katz, A.M.; Paz, K.; Nagy-Bojarszky, K.; Muellner, M.K.; Bago-Horvath, Z.; Haura, E.B.; Loizou, J.I.; Nijman, S.M.B.

    2016-01-01

    Roč. 7, DEC2016 (2016), č. článku 13701. ISSN 2041-1723 Institutional support: RVO:68081707 Keywords : breast- cancer * insulin-resistance * missense mutations Subject RIV: BO - Biophysics Impact factor: 12.124, year: 2016

  6. [Ataxia telangiectasia: review of 13 new cases].

    Science.gov (United States)

    Valbuena, O; Póo, P; Campistol, J; Vernet, A; Fernández-Alvarez, E; Sierra, I; Gean, E

    1996-01-01

    We report the review of 13 patients who were diagnosed of ataxia telangiectasia before 6 years of age. All of them manifested cerebelous ataxia, oculocutaneus telangiectasias (11), sinopulmonary infections (9), dystonia (9), oculomotor apraxia (9) and Burkitt linfoma (1). We analyse the most common presentation of the disease in early stages and the complementary studies performed. The prompt diagnosis allow us a better control of infections, malignant process and finally the possibility of genetic counseling.

  7. Ataxia-telangiectasia mutated and the Mre11-Rad50-NBS1 complex: promising targets for radiosensitization.

    Science.gov (United States)

    Kuroda, Shinji; Urata, Yasuo; Fujiwara, Toshiyoshi

    2012-01-01

    Radiotherapy plays a central part in cancer treatment, and use of radiosensitizing agents can greatly enhance this modality. Although studies have shown that several chemotherapeutic agents have the potential to increase the radiosensitivity of tumor cells, investigators have also studied a number of molecularly targeted agents as radiosensitizers in clinical trials based on reasonably promising preclinical data. Recent intense research into the DNA damage-signaling pathway revealed that ataxia-telangiectasia mutated (ATM) and the Mre11-Rad50-NBS1 (MRN) complex play central roles in DNA repair and cell cycle checkpoints and that these molecules are promising targets for radiosensitization. Researchers recently developed three ATM inhibitors (KU-55933, CGK733, and CP466722) and an MRN complex inhibitor (mirin) and showed that they have great potential as radiosensitizers of tumors in preclinical studies. Additionally, we showed that a telomerase-dependent oncolytic adenovirus that we developed (OBP-301 [telomelysin]) produces profound radiosensitizing effects by inhibiting the MRN complex via the adenoviral E1B55kDa protein. A recent Phase I trial in the United States determined that telomelysin was safe and well tolerated in humans, and this agent is about to be tested in combination with radiotherapy in a clinical trial based on intriguing preclinical data demonstrating that telomelysin and ionizing radiation can potentiate each other. In this review, we highlight the great potential of ATM and MRN complex inhibitors, including telomelysin, as radiosensitizing agents.

  8. Clinical spectrum of ataxia-telangiectasia in adulthood

    NARCIS (Netherlands)

    Verhagen, M. M. M.; Abdo, W. F.; Willemsen, M. A. A. P.; Hogervorst, F. B. L.; Smeets, D. F. C. M.; Hiel, J. A. P.; Brunt, E. R.; van Rijn, M. A.; Krakauer, D. Majoor; Oldenburg, R. A.; Broeks, A.; Last, J. I.; van't Veer, L. J.; Tijssen, M. A. J.; Dubois, A. M. I.; Kremer, H. P. H.; Weemaes, C. M. R.; Taylor, A. M. R.; van Deuren, M.

    2009-01-01

    Objective: To describe the phenotype of adult patients with variant and classic ataxia-telangiectasia (A-T), to raise the degree of clinical suspicion for the diagnosis variant A-T, and to assess a genotype-phenotype relationship for mutations in the ATM gene. Methods: Retrospective analysis of the

  9. Clinical spectrum of ataxia-telangiectasia in adulthood.

    NARCIS (Netherlands)

    Verhagen, M.M.; Abdo, W.; Willemsen, M.A.A.P.; Hogervorst, F.B.L.; Smeets, D.F.C.M.; Hiel, J.A.P.; Brunt, E.R.; Rijn, M.A. van; Majoor Krakauer, D.; Oldenburg, R.A.; Broeks, A.; Last, J.I.; Veer, L.J. van 't; Tijssen, M.A.; Dubois, A.M.; Kremer, H.P.H.; Weemaes, C.M.R.; Taylor, A.M.; Deuren, M. van

    2009-01-01

    OBJECTIVE: To describe the phenotype of adult patients with variant and classic ataxia-telangiectasia (A-T), to raise the degree of clinical suspicion for the diagnosis variant A-T, and to assess a genotype-phenotype relationship for mutations in the ATM gene. METHODS: Retrospective analysis of the

  10. The Functional Role of the Ataxia Telangiectasia Gene

    National Research Council Canada - National Science Library

    Gautier, Jean

    2000-01-01

    Ataxia Telangiectasia (A-T) is an autosomal recessive disease characterized by a progressive cerebellar ataxia, severe immune deficiencies, gonadal atrophy, telangiectases, increased risk for cancer, particularly lymphomas...

  11. The Functional Role of the Ataxia Telangiectasia Gene

    National Research Council Canada - National Science Library

    Gautier, Jean

    1999-01-01

    Ataxia Telangiectasia (A-T) is an autosomal recessive disease characterized by a progressive cerebellar ataxia, severe immune deficiencies, gonadal atrophy, telangiectases, increased risk for cancer, particularly lymphomas...

  12. Ataxia-telangiectasia mutated (ATM) deficiency decreases reprogramming efficiency and leads to genomic instability in iPS cells

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Taisuke [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Nagamatsu, Go, E-mail: gonag@sc.itc.keio.ac.jp [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Kosaka, Takeo [Department of Urology, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Takubo, Keiyo [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Hotta, Akitsu [Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Department of Reprogramming Science, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Ellis, James [Ontario Human iPS Cell Facility, Molecular Genetics, University of Toronto, Developmental and Stem Cell Biology, SickKids, Toronto, Canada MG1L7 (Canada); Suda, Toshio, E-mail: sudato@sc.itc.keio.ac.jp [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan)

    2011-04-08

    Highlights: {yields} iPS cells were induced with a fluorescence monitoring system. {yields} ATM-deficient tail-tip fibroblasts exhibited quite a low reprogramming efficiency. {yields} iPS cells obtained from ATM-deficient cells had pluripotent cell characteristics. {yields} ATM-deficient iPS cells had abnormal chromosomes, which were accumulated in culture. -- Abstract: During cell division, one of the major features of somatic cell reprogramming by defined factors, cells are potentially exposed to DNA damage. Inactivation of the tumor suppressor gene p53 raised reprogramming efficiency but resulted in an increased number of abnormal chromosomes in established iPS cells. Ataxia-telangiectasia mutated (ATM), which is critical in the cellular response to DNA double-strand breaks, may also play an important role during reprogramming. To clarify the function of ATM in somatic cell reprogramming, we investigated reprogramming in ATM-deficient (ATM-KO) tail-tip fibroblasts (TTFs). Although reprogramming efficiency was greatly reduced in ATM-KO TTFs, ATM-KO iPS cells were successfully generated and showed the same proliferation activity as WT iPS cells. ATM-KO iPS cells had a gene expression profile similar to ES cells and WT iPS cells, and had the capacity to differentiate into all three germ layers. On the other hand, ATM-KO iPS cells accumulated abnormal genome structures upon continuous passages. Even with the abnormal karyotype, ATM-KO iPS cells retained pluripotent cell characteristics for at least 20 passages. These data indicate that ATM does participate in the reprogramming process, although its role is not essential.

  13. Biological and molecular mechanisms of sulfur mustard analogue-induced toxicity in JB6 and HaCaT cells: possible role of ataxia telangiectasia-mutated/ataxia telangiectasia-Rad3-related cell cycle checkpoint pathway.

    Science.gov (United States)

    Tewari-Singh, Neera; Gu, Mallikarjuna; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh

    2010-06-21

    Effective medical treatment and preventive measures for chemical warfare agent sulfur mustard (HD)-caused incapacitating skin toxicity are lacking, because of limited knowledge of its mechanism of action. The proliferating basal epidermal cells are primary major sites of attack during HD-caused skin injury. Therefore, employing mouse JB6 and human HaCaT epidermal cells, here, we investigated the molecular mechanism of HD analogue 2-chloroethyl ethyl sulfide (CEES)-induced skin cytotoxicity. As compared to the control, up to 1 mM CEES treatment of these cells for 2, 4, and 24 h caused dose-dependent decreases in cell viability and proliferation as measured by DNA synthesis, together with S and G2-M phase arrest in cell cycle progression. Mechanistic studies showed phosphorylation of DNA damage sensors and checkpoint kinases, ataxia telangiectasia-mutated (ATM) at ser1981 and ataxia telangiectasia-Rad3-related (ATR) at ser428 within 30 min of CEES exposure, and modulation of S and G2-M phase-associated cell cycle regulatory proteins, which are downstream targets of ATM and ATR kinases. Hoechst-propidium iodide staining demonstrated that CEES-induced cell death was both necrotic and apoptotic in nature, and the latter was induced at 4 and 24 h of CEES treatment in HaCaT and JB6 cells, respectively. An increase in caspase-3 activity and both caspase-3 and poly(ADP-ribose)polymerase (PARP) cleavage coinciding with CEES-caused apoptosis in both cell lines suggested the involvement of the caspase pathway. Together, our findings suggest a DNA-damaging effect of CEES that activates ATM/ATR cell cycle checkpoint signaling as well as caspase-PARP pathways, leading to cell cycle arrest and apoptosis/necrosis in both JB6 and HaCaT cells. The identified molecular targets, quantitative biomarkers, and epidermal cell models in this study have the potential and usefulness in rapid development of effective prophylactic and therapeutic interventions against HD-induced skin toxicity.

  14. Motor pathway degeneration in young ataxia telangiectasia patients: A diffusion tractography study

    Directory of Open Access Journals (Sweden)

    Ishani Sahama

    2015-01-01

    Conclusions: Whole tract analysis of the corticomotor, corticospinal and somatosensory pathways in ataxia telangiectasia showed significant white matter degeneration along the entire length of motor circuits, highlighting that ataxia–telangiectasia gene mutation impacts the cerebellum and multiple other motor circuits in young patients.

  15. Nitric Oxide Induces Ataxia Telangiectasia Mutated (ATM) Protein-dependent γH2AX Protein Formation in Pancreatic β Cells*

    Science.gov (United States)

    Oleson, Bryndon J.; Broniowska, Katarzyna A.; Schreiber, Katherine H.; Tarakanova, Vera L.; Corbett, John A.

    2014-01-01

    In this study, the effects of cytokines on the activation of the DNA double strand break repair factors histone H2AX (H2AX) and ataxia telangiectasia mutated (ATM) were examined in pancreatic β cells. We show that cytokines stimulate H2AX phosphorylation (γH2AX formation) in rat islets and insulinoma cells in a nitric oxide- and ATM-dependent manner. In contrast to the well documented role of ATM in DNA repair, ATM does not appear to participate in the repair of nitric oxide-induced DNA damage. Instead, nitric oxide-induced γH2AX formation correlates temporally with the onset of irreversible DNA damage and the induction of apoptosis. Furthermore, inhibition of ATM attenuates cytokine-induced caspase activation. These findings show that the formation of DNA double strand breaks correlates with ATM activation, irreversible DNA damage, and ATM-dependent induction of apoptosis in cytokine-treated β cells. PMID:24610783

  16. Ataxia Telangiectasia - A Report of a case in Port Harcourt

    African Journals Online (AJOL)

    TNHJOURNALPH

    Ataxia Telangiectasia - A Report of a case in Port Harcourt. Lucy Yaguo-Ide, Tochi Uchenwa, BalafamaAlex-Hart, Alice Nte, Chidi Ezeani. Department ofPeadiatrics and Child Health, University of Port Harcourt Teaching Hospital, Port. Harcourt, Nigeria. ABSTRACT. BACKGROUND. Ataxia telangiectasia is acomplex multi-.

  17. Caffeine Suppresses Apoptosis of Bladder Cancer RT4 Cells in Response to Ionizing Radiation by Inhibiting Ataxia Telangiectasia Mutated-Chk2-p53 Axis

    Directory of Open Access Journals (Sweden)

    Zhe-Wei Zhang

    2015-01-01

    Full Text Available Background: Caffeine suppresses ataxia telangiectasia and Rad3 related and ataxia telangiectasia mutated (ATM activities; ATM is the major kinase for DNA damage detection. This study aimed to investigate the effects of caffeine on DNA damage responses in cells from the bladder cancer cell line RT4 those were exposed to ionizing radiation (IR. Methods: Immunofluorescent staining was performed to investigate changes in the proteins involved in DNA damage responses with or without caffeine. A mouse xenograft model was used to study the effects of caffeine on the DNA damage responses. Western blotting was used to investigate the effects of caffeine pretreatment on the ATM-Chk2-p53-Puma axis, while real-time polymerase chain reaction (RT-PCR assessed changes in messenger RNA levels of p53 and downstream targets responding to IR. Finally, terminal deoxynucleotidyl transferase-dUTP nick end labeling assay. Western blotting and colony formation assay were used to measure the effects of caffeine on radiation-related apoptosis. All of the data were analyzed with a two-tailed Student′s t-test. Results: Immunofluorescent staining showed that caffeine pretreatment profoundly suppressed the formation of γH2AXand p53-binding protein 1 foci in RT4 cells in response to irradiation. Cellular and animal experiments suggested that this suppression was mediated by suppression of the ATM-Chk2-p53-Puma DNA damage-signaling axis. RT-PCR indicated caffeine also attenuated transactivation of p53 and p53-inducible genes. The colony formation assay revealed that caffeine displayed radioprotective effects on RT4 cells in response to low-dose radiation compared to the radiosensitization effects on T24 cells. Conclusion: Caffeine may inhibit IR-related apoptosis of bladder cancer RT4 cells by suppressing activation of the ATM-Chk2-p53-Puma axis.

  18. Caffeine Suppresses Apoptosis of Bladder Cancer RT4 Cells in Response to Ionizing Radiation by Inhibiting Ataxia Telangiectasia Mutated-Chk2-p53 Axis.

    Science.gov (United States)

    Zhang, Zhe-Wei; Xiao, Jing; Luo, Wei; Wang, Bo-Han; Chen, Ji-Min

    2015-11-05

    Caffeine suppresses ataxia telangiectasia and Rad3 related and ataxia telangiectasia mutated (ATM) activities; ATM is the major kinase for DNA damage detection. This study aimed to investigate the effects of caffeine on DNA damage responses in cells from the bladder cancer cell line RT4 those were exposed to ionizing radiation (IR). Immunofluorescent staining was performed to investigate changes in the proteins involved in DNA damage responses with or without caffeine. A mouse xenograft model was used to study the effects of caffeine on the DNA damage responses. Western blotting was used to investigate the effects of caffeine pretreatment on the ATM-Chk2-p53-Puma axis, while real-time polymerase chain reaction (RT-PCR) assessed changes in messenger RNA levels of p53 and downstream targets responding to IR. Finally, terminal deoxynucleotidyl transferase-dUTP nick end labeling assay. Western blotting and colony formation assay were used to measure the effects of caffeine on radiation-related apoptosis. All of the data were analyzed with a two-tailed Student's t-test. Immunofluorescent staining showed that caffeine pretreatment profoundly suppressed the formation of γH2AXand p53-binding protein 1 foci in RT4 cells in response to irradiation. Cellular and animal experiments suggested that this suppression was mediated by suppression of the ATM-Chk2-p53-Puma DNA damage-signaling axis. RT-PCR indicated caffeine also attenuated transactivation of p53 and p53-inducible genes. The colony formation assay revealed that caffeine displayed radioprotective effects on RT4 cells in response to low-dose radiation compared to the radiosensitization effects on T24 cells. Caffeine may inhibit IR-related apoptosis of bladder cancer RT4 cells by suppressing activation of the ATM-Chk2-p53-Puma axis.

  19. Brain glucose metabolism in adults with ataxia-telangiectasia and their asymptomatic relatives

    Science.gov (United States)

    Tomasi, Dardo; Wang, Gene-Jack; Studentsova, Yana; Margus, Brad; Crawford, Thomas O.

    2014-01-01

    Ataxia-telangiectasia is a recessive genetic disorder (ATM is the mutated gene) of childhood with severe motor impairments and whereas homozygotes manifest the disorder, heterozygotes are asymptomatic. Structural brain imaging and post-mortem studies in individuals with ataxia-telangiectasia have reported cerebellar atrophy; but abnormalities of motor control characteristic of extrapyramidal dysfunction suggest impairment of broader motor networks. Here, we investigated possible dysfunction in other brain areas in individuals with ataxia-telangiectasia and tested for brain changes in asymptomatic relatives to assess if heterozygocity affects brain function. We used positron emission tomography and 18F-fluorodeoxyglucose to measure brain glucose metabolism (quantified as µmol/100 g/min), which serves as a marker of brain function, in 10 adults with ataxia-telangiectasia, 19 non-affected adult relatives (12 siblings, seven parents) and 29 age-matched healthy controls. Statistical parametric mapping and region of interest analyses were used to compare individuals with ataxia-telangiectasia, asymptomatic relatives, and unrelated controls. We found that participants with ataxia-telangiectasia had lower metabolism in cerebellar hemispheres (14%, P ataxia-telangiectasia also had higher metabolism in globus pallidus (16%, P = 0.05), which correlated negatively with motor performance. Asymptomatic relatives had lower metabolism in anterior vermis (12%; P = 0.01) and hippocampus (19%; P = 0.002) than controls. Our results indicate that, in addition to the expected decrease in cerebellar metabolism, participants with ataxia-telangiectasia had widespread changes in metabolic rates including hyperactivity in globus pallidus indicative of basal ganglia involvement. Changes in basal ganglia metabolism offer potential insight into targeting strategies for therapeutic deep brain stimulation. Our finding of decreased metabolism in vermis and hippocampus of asymptomatic relatives

  20. Brain glucose metabolism in adults with ataxia-telangiectasia and their asymptomatic relatives.

    Science.gov (United States)

    Volkow, Nora D; Tomasi, Dardo; Wang, Gene-Jack; Studentsova, Yana; Margus, Brad; Crawford, Thomas O

    2014-06-01

    Ataxia-telangiectasia is a recessive genetic disorder (ATM is the mutated gene) of childhood with severe motor impairments and whereas homozygotes manifest the disorder, heterozygotes are asymptomatic. Structural brain imaging and post-mortem studies in individuals with ataxia-telangiectasia have reported cerebellar atrophy; but abnormalities of motor control characteristic of extrapyramidal dysfunction suggest impairment of broader motor networks. Here, we investigated possible dysfunction in other brain areas in individuals with ataxia-telangiectasia and tested for brain changes in asymptomatic relatives to assess if heterozygocity affects brain function. We used positron emission tomography and (18)F-fluorodeoxyglucose to measure brain glucose metabolism (quantified as µmol/100 g/min), which serves as a marker of brain function, in 10 adults with ataxia-telangiectasia, 19 non-affected adult relatives (12 siblings, seven parents) and 29 age-matched healthy controls. Statistical parametric mapping and region of interest analyses were used to compare individuals with ataxia-telangiectasia, asymptomatic relatives, and unrelated controls. We found that participants with ataxia-telangiectasia had lower metabolism in cerebellar hemispheres (14%, P brain stimulation. Our finding of decreased metabolism in vermis and hippocampus of asymptomatic relatives suggests that heterozygocity influences the function of these brain regions. Published by Oxford University Press on behalf of the Guarantors of Brain 2014. This work is written by US Government employees and is in the public domain in the US.

  1. Ataxia Telangiectasia-Mutated (ATM) Kinase Activity Is Regulated by ATP-driven Conformational Changes in the Mre11/Rad50/Nbs1 (MRN) Complex*

    Science.gov (United States)

    Lee, Ji-Hoon; Mand, Michael R.; Deshpande, Rajashree A.; Kinoshita, Eri; Yang, Soo-Hyun; Wyman, Claire; Paull, Tanya T.

    2013-01-01

    The Ataxia Telangiectasia-Mutated (ATM) protein kinase is recruited to sites of double-strand DNA breaks by the Mre11/Rad50/Nbs1 (MRN) complex, which also facilitates ATM monomerization and activation. MRN exists in at least two distinct conformational states, dependent on ATP binding and hydrolysis by the Rad50 protein. Here we use an ATP analog-sensitive form of ATM to determine that ATP binding, but not hydrolysis, by Rad50 is essential for MRN stimulation of ATM. Mre11 nuclease activity is dispensable, although some mutations in the Mre11 catalytic domain block ATM activation independent of nuclease function, as does the mirin compound. The coiled-coil domains of Rad50 are important for the DNA binding ability of MRN and are essential for ATM activation, but loss of the zinc hook connection can be substituted by higher levels of the complex. Nbs1 binds to the “closed” form of the MR complex, promoted by the zinc hook and by ATP binding. Thus the primary role of the hook is to tether Rad50 monomers together, promoting the association of the Rad50 catalytic domains into a form that binds ATP and also binds Nbs1. Collectively, these results show that the ATP-bound form of MRN is the critical conformation for ATM activation. PMID:23525106

  2. Ataxia telangiectasia-mutated (ATM) kinase activity is regulated by ATP-driven conformational changes in the Mre11/Rad50/Nbs1 (MRN) complex.

    Science.gov (United States)

    Lee, Ji-Hoon; Mand, Michael R; Deshpande, Rajashree A; Kinoshita, Eri; Yang, Soo-Hyun; Wyman, Claire; Paull, Tanya T

    2013-05-03

    The Ataxia Telangiectasia-Mutated (ATM) protein kinase is recruited to sites of double-strand DNA breaks by the Mre11/Rad50/Nbs1 (MRN) complex, which also facilitates ATM monomerization and activation. MRN exists in at least two distinct conformational states, dependent on ATP binding and hydrolysis by the Rad50 protein. Here we use an ATP analog-sensitive form of ATM to determine that ATP binding, but not hydrolysis, by Rad50 is essential for MRN stimulation of ATM. Mre11 nuclease activity is dispensable, although some mutations in the Mre11 catalytic domain block ATM activation independent of nuclease function, as does the mirin compound. The coiled-coil domains of Rad50 are important for the DNA binding ability of MRN and are essential for ATM activation, but loss of the zinc hook connection can be substituted by higher levels of the complex. Nbs1 binds to the "closed" form of the MR complex, promoted by the zinc hook and by ATP binding. Thus the primary role of the hook is to tether Rad50 monomers together, promoting the association of the Rad50 catalytic domains into a form that binds ATP and also binds Nbs1. Collectively, these results show that the ATP-bound form of MRN is the critical conformation for ATM activation.

  3. Síndrome de Ataxia-Telangiectasia

    Directory of Open Access Journals (Sweden)

    Amauri Batista da Silva

    1971-06-01

    Full Text Available A ataxia-telangiectasia, doença de Mme. Louis-Bar, é caracterizada pela associação de ataxia cerebelar progressiva, em geral com início na primeira infância, telangiectasas óculo-cutâneas, movimentos coreoatetósicos, tendência a infecções repetidas do sistema respiratório, retardo estaturo-ponderal, demenciação. São mais ou menos freqüentes os tumores do sistema reticuloendotelial. A doença é geralmente familiar, transmitida por genes recessivos, autossômicos, não ligados ao sexo. A alteração bioquímica mais encontrada consiste na diminuição ou ausência completa da fração A das gamaglobulinas, bem como na perturbação das reações de hipersensibilidade retardada. Os AA. relatam o estudo clínico, biológico e pneumencefalográfico de uma criança de 3 anos de idade, apresentando essa enfermidade desde os 18 meses de vida, sem antecedentes familiares.

  4. Cranial MRI in ataxia-telangiectasia

    Energy Technology Data Exchange (ETDEWEB)

    Sardanelli, F. [Dept. of Radiology, Univ. of Genoa (Italy); Parodi, R.C. [Dept. of Radiology, Univ. of Genoa (Italy); Ottonello, C. [Dept. of Radiology, Univ. of Genoa (Italy); Renzetti, P. [Dept. of Radiology, Univ. of Genoa (Italy); Saitta, S. [Dept. of Radiology, Univ. of Genoa (Italy); Lignana, E. [G. Gaslini Inst., Genoa (Italy); Mancardi, G.L. [Dept. of Neurology, Univ. of Genoa (Italy)

    1995-01-01

    We examined five males with laboratory-confirmed ataxia-telangiectasia (AT), aged 9-28 years, several times by MRI (9 examinations: 5 at 0.15 T, 3 at 0.5 T, 1 at 1.5 T). Intermediate, T1-, T2- and T2{sup *}-weighted spin-echo and gradient-echo sequences were performed. All patients showed vermian atrophy, enlarged fourth ventricle and cisterna magna; four showed cerebellar hemisphere atrophy; two enlarged infracerebellar subarachnoid spaces and four patients had sinusitis. No focal areas of abnormal signal were seen in the brain, diffuse high signal was found in the central cerebral white matter of the oldest patient. AT is an important human model of inherited cancer susceptibility and multisystem ageing; as in xeroderma pigmentosum and other ``breakage syndromes``, ionising radiation should be avoided. When imaging is necessary, MRI should be preferred to CT in patients known or suspected to have AT and those with undefined paediatric ataxias of nontraumatic origin. If atrophy of only the cerebellum, especially the vermis, is noted, laboratory research should be performed to confirm the diagnosis of AT. (orig.)

  5. Clinical and genetic features of ataxia-telangiectasia

    Energy Technology Data Exchange (ETDEWEB)

    Bundey, S. [Birmingham Maternity Hospital (United Kingdom). Clinical Genetics Unit

    1994-12-01

    There are several variants of ataxia-telangiectasia (A-T): classical A-T with marked radiation sensitivity; classical A-T with intermediate levels of radiation sensitivity; mild A-T with intermediate levels of radiation sensitivity; A-T without telangiectasia; A-T without oculomoto apraxia; and A-T with microcephaly. These disorders are probably caused by different allelic mutations, because affected sibs resemble the index patients, and because there is an association of certain haplo-types of 11q22-23 with specific phenotypes. The Nijmegen Breakage Syndrome, with its lack of ataxia, seems on clinical grounds to be a different disorder. Although A-T is almost always inherited as an autosomal recessive, there are some unusual features; an unexpectedly low parental consanguinity rate, an incidence in sibs that is < 0.25, and occurrence of disease in many different races and in the offspring of mixed race unions. Moreover, looking at haplotypes from 63 UK patients, there is a remarkably low incidence of homozygosity. An autosomal recessive condition that is deficient in parental consanguinity, and in homozygosity for the region around the gene, can be explained by J.H. Edwards` hypothesis that homozygosity for alleles at a neighbouring locus are lethal early in embryogenesis. Other possible mechanisms to explain the unusual genetic features are discussed. (author).

  6. [Ataxia telangiectasia: what impact in clinical oncology?].

    Science.gov (United States)

    Stoppa-Lyonnet, D; Aurias, A

    1992-01-01

    Ataxia telangiectasia (AT) is a hereditary disease transmitted in a recessive mode and characterized by chromosomal instability and radiosensitivity. AT patients have a 100-fold higher risk of cancer than the general population. Although AT is a rare disease of which the frequency has been estimated to be 1/40,000, the frequency of the heterozygosity status, when assessed with the Hardy-Weinberg equation is high (about 1.4%). Parents of AT children, thus obligate AT carriers, show chromosomal instability and radiosensitivity, but at a lower level than AT patients. Assuming that these AT characteristics deal with the cancer predisposition, it can be hypothesized that AT heterozygote individuals have a higher cancer susceptibility than the general population. To test this hypothesis, M Swift's group compared cancer incidence rates from adult blood relatives of AT patients with controls. The risk of cancer in AT heterozygotes could be increased by 3.5 and, for carrier women, the breast cancer risk could be increased by 5.1. Actually, the diagnosis of the AT heterozygote status is not possible. However, the near cloning of the gene (or genes) for the disease will permit to identify the AT carriers in a population of patients suffering from cancer and to assess precisely the impact of AT heterozygosity in the genetic predisposition to cancer.

  7. [Jaridonin, a new diterpenoid from Isodon rubescens, induces cell cycle arrest in gastric cancer cells through activating ataxia telangiectasia mutated kinase].

    Science.gov (United States)

    Ma, Y C; Su, N; Zhao, N M; Li, Q Y; Zhang, M; Zhao, H W; Liu, H M; Qin, Y H

    2016-04-01

    To study the effects of Jaridonin, a novel diterpenoid from isodon rubescens, on the cell cycle of human gastric cancer cells and its molecular mechanism of action. Flow cytometry was used to analyze the cell cycle distribution and expression of ataxia telangiectasia mutated kinase (ATM) after Jaridonin treatment. Western blot was performed to detect the expression of cell cycle-related proteins. The results of flow cytometry showed that the percentages of MGC-803 cells in G(2)/M phase at 6 hours after 0, 10, 20 μmol/L Jaridonin-treatment were (10.8±2.2)%, (18.2±2.5)%, (27.3±3.2)%, respectively; those at 12 hours after Jaridonin-treatment were (12.0±1.5)%, (24.1±2.0)% and (39.7±5.2)%, respectively, indicating a G2/M phase arrest of MGC-803 cells was resulted in a time- and dose-dependent manner. The expressions of ATM, Chk1, Chk2, phosphorylated Cdc2 and CDK2 were up-regulated in the MGC-803 cells after Jaridonin treatment, while the levels of Cdc2 and CDK2 were decreased. KU-55933, an inhibitor of ATM, reversed the expression of relevant proteins and G(2)/M phase arrest induced by Jaridonin. Jaridonin can significantly induce G(2)/M arrest in gastric cancer MGC-803 cells. Its mechanism may be related to the activation of ATM and Chk1/2, and inactivation of Cdc2 and CDK2 phosphorylation.

  8. Screening for Ataxia-Telangiectasia Mutations in a Population-Based Sample of Women with Early-Onset Breast Cancer

    Science.gov (United States)

    1999-09-01

    G, Itnyre J (1997) Prevalence and contribution of BRCA1 mutations in breast and ovarian cancer: results from three U.S. population-based case-control...GTTAAGAA two of these cases, AT1ILA and AT119LA, the families were consanguineous , and the mutations were homo- zygous, simplifying the interpretation...screening efficiency and expand significantly the number of cases to be screened. Assessment of the prevalence of ATM mutations in breast cancer

  9. Bladder Wall Telangiectasia in a Patient with Ataxia-Telangiectasia and How to Manage?

    Directory of Open Access Journals (Sweden)

    Fatma Deniz Aygün

    2015-01-01

    Full Text Available Ataxia-telangiectasia (A-T is a rare neurodegenerative, inherited disease causing severe morbidity. Oculocutaneous telangiectasias are almost constant findings among the affected cases as telangiectasia is considered the main clinical finding for diagnosis. Vascular abnormalities in organs have been reported infrequently but bladder wall telangiectasias are extremely rare. We aimed to report recurrent hemorrhage from bladder wall telangiectasia in a 9-year-old boy with A-T who had received intravenous cyclophosphamide for non-Hodgkin’s lymphoma. Since A-T patients are known to be more susceptible to chemical agents, we suggested that possibly cyclophosphamide was the drug which induced bladder wall injury in this patient.

  10. MicroRNA-223 Enhances Radiation Sensitivity of U87MG Cells In Vitro and In Vivo by Targeting Ataxia Telangiectasia Mutated

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Liping; Zhu, Ji [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Zaorsky, Nicholas G. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Deng, Yun [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Wu, Xingzhong [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai (China); Liu, Yong [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Liu, Fangqi; Cai, Guoxiang; Gu, Weilie [Department of Colorectal Cancer, Fudan University, Shanghai Cancer Center, Shanghai (China); Shen, Lijun [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Zhang, Zhen, E-mail: zhenzhang6@hotmail.com [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China)

    2014-03-15

    Purpose: Ataxia telangiectasia mutated (ATM) protein is important in the DNA damage response because it repairs radiation-induced damage in cancers. We examined the effect of microRNA-223 (miR-223), a regulator of ATM expression, on radiation sensitivity of cancer cells. Methods and Materials: Human embryonic kidney 293 T (293T) cells were infected with pLL3.7-miR-223 plasmid to generate the pLL3.7-miR-223 and -empty virus (EV) lentivirus (miR-223 and EV). A dual luciferase assay in which the reporter contained wild-type 3′ untranslated region (UTR) of ATM was performed. U87MG cells were infected with miR-223 or EV to establish the overexpressed stable cell lines (U87-223 or U87-EV, respectively). Cells were irradiated in vitro, and dose enhancement ratios at 2 Gy (DER{sub 2}) were calculated. Hind legs of BALB/c athymic mice were injected with U87-223 or U87-EV cells; after 2 weeks, half of the tumors were irradiated. Tumor volumes were tracked for a total of 5 weeks. Results: The dual luciferase reporter assay showed a significant reduction in luciferase activity of 293T cells cotransfected with miR-223 and the ATM 3′UTR compared to that in EV control. Overexpression of miR-223 in U87MG cells showed that ATM expression was significantly downregulated in the U87-223 cells compared to that in U87-EV (ATM/β-actin mRNA 1.0 vs 1.5, P<.05). U87-223 cells were hypersensitive to radiation compared to U87-EV cells in vitro (DER{sub 2} = 1.32, P<.01). Mice injected with miR-223-expressing tumors had almost the same tumors after 3 weeks (1.5 cm{sup 3} vs 1.7 cm{sup 3}). However, irradiation significantly decreased tumor size in miR-223-expressing tumors compared to those in controls (0.033 cm{sup 3} vs 0.829 cm{sup 3}). Conclusions: miR-223 overexpression downregulates ATM expression and sensitizes U87 cells to radiation in vitro and in vivo. MicroRNA-223 may be a novel cancer-targeting therapy, although its cancer- and patient-specific roles are

  11. Altered corticomotor-cerebellar integrity in young ataxia telangiectasia patients.

    Science.gov (United States)

    Sahama, Ishani; Sinclair, Kate; Fiori, Simona; Pannek, Kerstin; Lavin, Martin; Rose, Stephen

    2014-09-01

    Magnetic resonance imaging (MRI) research in identifying altered brain structure and function in ataxia-telangiectasia, an autosomal recessive neurodegenerative disorder, is limited. Diffusion-weighted MRI were obtained from 11 ataxia telangiectasia patients (age range, 7-22 years; mean, 12 years) and 11 typically developing age-matched participants (age range, 8-23 years; mean, 13 years). Gray matter volume alterations in patients were compared with those of healthy controls using voxel-based morphometry, whereas tract-based spatial statistics was employed to elucidate white matter microstructure differences between groups. White matter microstructure was probed using quantitative fractional anisotropy and mean diffusivity measures. Reduced gray matter volume in both cerebellar hemispheres and in the precentral-postcentral gyrus in the left cerebral hemisphere was observed in ataxia telangiectasia patients compared with controls (P cerebellar hemispheres, anterior/posterior horns of the medulla, cerebral peduncles, and internal capsule white matter, particularly in the left posterior limb of the internal capsule and corona radiata in the left cerebral hemisphere, was observed in patients compared with controls (P cerebellar hemisphere and the white matter of the superior lobule of the right cerebellar hemisphere (P ataxia telangiectasia patients along with white matter tract degeneration projecting from the cerebellum into corticomotor regions. The lack of cortical involvement may reflect early-stage white matter motor pathway degeneration within young patients. © 2014 International Parkinson and Movement Disorder Society.

  12. Disorders of Upper Limb Movements in Ataxia-Telangiectasia.

    Directory of Open Access Journals (Sweden)

    Aasef G Shaikh

    Full Text Available Ataxia-telangiectasia is known for cerebellar degeneration, but clinical descriptions of abnormal tone, posture, and movements suggest involvement of the network between cerebellum and basal ganglia. We quantitatively assessed the nature of upper-limb movement disorders in ataxia-telangiectasia. We used a three-axis accelerometer to assess the natural history and severity of abnormal upper-limb movements in 80 ataxia-telangiectasia and 19 healthy subjects. Recordings were made during goal-directed movements of upper limb (kinetic task, while arms were outstretched (postural task, and at rest. Almost all ataxia-telangiectasia subjects (79/80 had abnormal involuntary movements, such as rhythmic oscillations (tremor, slow drifts (dystonia or athetosis, and isolated rapid movements (dystonic jerks or myoclonus. All patients with involuntary movements had both kinetic and postural tremor, while 48 (61% also had resting tremor. The tremor was present in transient episodes lasting several seconds during two-minute recording sessions of all three conditions. Percent time during which episodic tremor was present was greater for postural and kinetic tasks compared to rest. Resting tremor had higher frequency but smaller amplitude than postural and kinetic tremor. Rapid non-rhythmic movements were minimal during rest, but were triggered during sustained arm postures and goal directed arm movements suggesting they are best considered a form of dystonic jerks or action myoclonus. Advancing age did not correlate with the severity of involuntary limb movements. Abnormal upper-limb movements in ataxia-telangiectasia feature classic cerebellar impairment, but also suggest involvement of the network between the cerebellum and basal ganglia.

  13. Accurate diagnostics of ataxia-telangiectasia cellular phenotype by employing in vitro lymphocyte radiosensitivity testing

    Directory of Open Access Journals (Sweden)

    Vujić Dragana S.

    2013-01-01

    Full Text Available In this paper we present the data of lymphocyte radiosensitivity testing used for characterization of radiosensitive cellular phenotype and diagnostics of ataxia-telangiectasia disease. We point out the advantage of lymphocyte micronucleus test (CBMN over other cellular tests for assessment of radiosensitivity: the first advantage of CBMN is that primary patient cells are used (less than 1 ml, the second one is that the results of testing are obtained within 3 days and there is no need for establishing a patient-derived cell line, which requires additional time and application of more expensive methods. The third advantage of CBMN method is that it gives information about proliferative ability of cells, which can recognize dysfunctional ataxia-telangiectasia mutated protein. The results are fast and accurate in diagnostics of ataxia-telagiectasia diseases.

  14. Neurodegeneration in ataxia-telangiectasia is caused by horror autotoxicus.

    Science.gov (United States)

    Kuljis, R O; Aguila, M C

    1999-05-01

    Ataxia-telangiectasia (A-T) is a pleiotropic, multi-system disorder with manifestations that include immune deficiency, sensitivity to ionizing radiation and neoplasms. Many of these manifestations are understood in principle since the identification in A-T patients of mutations in a gene encoding a protein kinase that plays a key role in signaling and repair of DNA damage. However, the cause of the neurodegeneration that afflicts patients with A-T for at least a decade before they succumb to overwhelming infections or malignancy remains mysterious. Based on our work in a mouse model of A-T and previous evidence of extra-neural autoimmune disorders in A-T, we postulate that the neurodegenerative process in A-T is not due to a function for A-T mutated (ATM) essential for the postnatal brain, but to an autoimmune process (hence 'horror autotoxicus', Paul Ehrlich's term for autoimmune disorder). This hypothetical mechanism may be analogous to that in the so-called 'paraneoplastic' neurodegenerative syndromes in patients with various malignancies. Thus, alterations in the balance between cellular and humoral immunity in A-T probably result in autoantibodies to cerebral epitopes shared with cells of the immune system. This hypothesis has important implications for the understanding and development of effective palliative and even preventative strategies for A-T, and probably for other so far relentlessly progressive neurodegenerative disorders.

  15. Ocular findings in Norwegian patients with ataxia-telangiectasia: a 5 year prospective cohort study.

    Science.gov (United States)

    Riise, Ruth; Ygge, Jan; Lindman, Carl; Stray-Pedersen, Asbjørg; Bek, Toke; Rødningen, Olaug Kristin; Heiberg, Arvid

    2007-08-01

    To describe the outcome of ophthalmologic examination of 10 Norwegian children with ataxia-telangiectasia (AT) followed through 5 years. Ten Norwegian patients with AT aged 2-22 years (three females, seven males) were examined. The diagnosis was confirmed clinically as well as with molecular genetic studies. Conventional ophthalmologic examination was performed and supplemented by photographs of the conjunctiva, video recordings and registration of eye motility in five consecutive years. Additionally conjunctival biopsies were performed at the end of the follow-up period. General ataxia was usually detected when the child started to walk. All children over the age of 4 years had abnormal saccade movements, a form of ocular motor apraxia. Conjunctival telangiectasias were mostly visible at 4-5 years, primarily within the palpebral fissure. Immunohistochemical examination of conjunctival biopsies showed an increased number of cross-sections of blood vessels and neurons surrounded by glial tissue. There was a tendency to slightly earlier onset of conjunctival telangiectasias in the patients homozygous for a founder mutation compared with the other patients. The diagnosis of AT can be supported at preschool age by the onset of ocular motor apraxia and conjunctival telangiectasias. The findings become more prominent with age. The conjunctival telangiectasias seem to appear slightly earlier in the patients who are homozygous for a Norwegian founder mutation than in the rest of the patients.

  16. Intrinsic mitochondrial DNA repair defects in Ataxia Telangiectasia.

    Science.gov (United States)

    Sharma, Nilesh K; Lebedeva, Maria; Thomas, Terace; Kovalenko, Olga A; Stumpf, Jeffrey D; Shadel, Gerald S; Santos, Janine H

    2014-01-01

    Ataxia Telangiectasia (A-T) is a progressive childhood disorder characterized most notably by cerebellar degeneration and predisposition to cancer. A-T is caused by mutations in the kinase ATM, a master regulator of the DNA double-strand break response. In addition to DNA-damage signaling defects, A-T cells display mitochondrial dysfunction that is thought to contribute to A-T pathogenesis. However, the molecular mechanism leading to mitochondrial dysfunction in A-T remains unclear. Here, we show that lack of ATM leads to reduced mitochondrial DNA (mtDNA) integrity and mitochondrial dysfunction, which are associated to defective mtDNA repair. While protein levels of mtDNA repair proteins are essentially normal, in the absence of ATM levels specifically of DNA ligase III (Lig3), the only DNA ligase working in mitochondria is reduced. The reduction of Lig3 is observed in different A-T patient cells, in brain and pre-B cells derived from ATM knockout mice as well as upon transient or stable knockdown of ATM. Furthermore, pharmacological inhibition of Lig3 in wild type cells phenocopies the mtDNA repair defects observed in A-T patient cells. As targeted deletion of LIG3 in the central nervous system causes debilitating ataxia in mice, reduced Lig3 protein levels and the consequent mtDNA repair defect may contribute to A-T neurodegeneration. A-T is thus the first disease characterized by diminished Lig3. Published by Elsevier B.V.

  17. Evaluation and Management of Pulmonary Disease in Ataxia-Telangiectasia

    Science.gov (United States)

    McGrath-Morrow, Sharon A.; Gower, W. Adam; Rothblum-Oviatt, Cynthia; Brody, Alan S.; Langston, Claire; Fan, Leland L.; Lefton-Greif, Maureen A.; Crawford, Thomas O.; Troche, Michelle; Sandlund, John T; Auwaerter, Paul G.; Easley, Blaine; Loughlin, Gerald M.; Carroll, John L.; Lederman, Howard M.

    2014-01-01

    Summary Ataxia-telangiectasia (A-T) is a rare autosomal recessive disorder caused by mutations in the ATM gene, resulting in faulty repair of breakages in double-stranded DNA. The clinical phenotype is complex, and is characterized by neurologic abnormalities, immunodeficiencies, susceptibility to malignancies, recurrent sinopulmonary infections, and cutaneous abnormalities. Lung disease is common in patients with A-T and often progresses with age and neurological decline. Diseases of the respiratory system cause significant morbidity and are a frequent cause of death in the A-T population. Lung disease in this population is thought to exhibit features of one or more of the following phenotypes: recurrent sinopulmonary infections with bronchiectasis, interstitial lung disease, and lung disease associated with neurological abnormalities. Here, we review available evidence and present expert opinion on the diagnosis, evaluation, and management of lung disease in A-T, as discussed in a recent multidisciplinary workshop. Although more data are emerging on this unique population, many recommendations are made based on similarities to other more well-studied diseases. Gaps in current knowledge and areas for future research in the field of pulmonary disease in A-T are also outlined. PMID:20583220

  18. Motor pathway degeneration in young ataxia telangiectasia patients: A diffusion tractography study.

    Science.gov (United States)

    Sahama, Ishani; Sinclair, Kate; Fiori, Simona; Doecke, James; Pannek, Kerstin; Reid, Lee; Lavin, Martin; Rose, Stephen

    2015-01-01

    Our understanding of the effect of ataxia-telangiectasia mutated gene mutations on brain structure and function is limited. In this study, white matter motor pathway integrity was investigated in ataxia telangiectasia patients using diffusion MRI and probabilistic tractography. Diffusion MRI were obtained from 12 patients (age range: 7-22 years, mean: 12 years) and 12 typically developing age matched participants (age range 8-23 years, mean: 13 years). White matter fiber tracking and whole tract statistical analyses were used to assess quantitative fractional anisotropy and mean diffusivity differences along the cortico-ponto-cerebellar, cerebellar-thalamo-cortical, somatosensory and lateral corticospinal tract length in patients using a linear mixed effects model. White matter tract streamline number and apparent fiber density in patient and control tracts were also assessed. Reduced fractional anisotropy along all analyzed patient tracts were observed (p < 0.001). Mean diffusivity was significantly elevated in anterior tract locations but was reduced within cerebellar peduncle regions of all patient tracts (p < 0.001). Reduced tract streamline number and tract volume in the left and right corticospinal and somatosensory tracts were observed in patients (p < 0.006). In addition, reduced apparent fiber density in the left and right corticospinal and right somatosensory tracts (p < 0.006) occurred in patients. Whole tract analysis of the corticomotor, corticospinal and somatosensory pathways in ataxia telangiectasia showed significant white matter degeneration along the entire length of motor circuits, highlighting that ataxia-telangiectasia gene mutation impacts the cerebellum and multiple other motor circuits in young patients.

  19. Anti-oxidative capacity in patients with ataxia telangiectasia

    Science.gov (United States)

    Reichenbach, J; Schubert, R; Schwan, C; Müller, K; Böhles, H J; Zielen, S

    1999-01-01

    Highly reactive oxygen species (ROS) are involved in T-cell activation and in the defense against environmental pathogens. An imbalance of ROS generation and detoxifying scavenger enzymes could contribute to the increased susceptibility to cancer and infections in ataxia telangiectasia. We studied oxidative status, i.e. plasma total antioxidant capacity (TEAC), retinol, α-tocopherol, ubiquinol, and the number of activated T cells in 10 patients with ataxia telangiectasia (AT) compared to age-matched healthy controls. As expected, patients showed significantly increased levels of activated human leukocyte antigen-DR and CD45RO expressing T cells. TEAC levels as well as the exogenous antioxidants retinol and α-tocopherol were significantly reduced in patients. In addition, patients showed slightly reduced plasma levels of the endogenous ROS scavenger enzyme ubiquinol (Q10). Although no correlation between number of activated T-cells and antioxidant capacity could be demonstrated, an increase in ROS and a diminished reactive oxygen scavenger capacity may be involved in the disease process of patients with AT. PMID:10469059

  20. Ataxia-telangiectasia: the pattern of cerebellar atrophy on MRI

    Energy Technology Data Exchange (ETDEWEB)

    Tavani, F. [Department of Radiology, University of Modena (Italy); Zimmerman, R.A.; Gatti, R.; Bingham, P. [Department of Radiology, Children' s Hospital of Philadelphia, 34th Street and Civic Center Boulevard, PA 19104, Philadelphia (United States); Berry, G.T. [Department of Endocrinology, Children' s Hospital of Philadelphia, 34th Street and Civic Center Boulevard, PA 19104, Philadelphia (United States); Sullivan, K. [Department of Immunology, Children' s Hospital of Philadelphia, 34th Street and Civic Center Boulevard, PA 19104, Philadelphia (United States)

    2003-05-01

    We describe MRI of the brain in 19 patients with ataxia-telangiectasia (AT) and correlate the appearances with the degree of neurologic deficit. We examined 10 male and nine female patients; 17 were aged between 2 and 12 years (mean 8 years) but a woman and her brother were 35 and 38 years old, and had a variant of AT. Ataxia was the first recognized sign of the disease in every patient. We detected the following patterns of cerebellar atrophy: in the youngest patient, aged 2 years, the study was normal; in the five next youngest patients 3-7 years of age, the lateral cerebellum and superior vermis showed the earliest changes of atrophy; and all but one of the other patients had moderate to marked diffuse atrophy of vermis and cerebellar hemispheres. There were 12 patients aged 9 years and above; one, who was normal, was 9 years old. The five patients who at the time of examination were unable to walk all had diffuse atrophy involving both vermis and cerebellar hemispheres. (orig.)

  1. Analysis of Residual DSBs in Ataxia-Telangiectasia Lymphoblast Cells Initiating Apoptosis

    Directory of Open Access Journals (Sweden)

    Teresa Anglada

    2016-01-01

    Full Text Available In order to examine the relationship between accumulation of residual DNA double-strand breaks (DSBs and cell death, we have used a control and an ATM (Ataxia-Telangiectasia Mutated defective cell line, as Ataxia-Telangiectasia (AT cells tend to accumulate residual DSBs at long times after damage infliction. After irradiation, AT cells showed checkpoint impairment and a fraction of cells displayed an abnormal centrosome number and tetraploid DNA content, and this fraction increased along with apoptosis rates. At all times analyzed, AT cells displayed a significantly higher rate of radiation-induced apoptosis than normal cells. Besides apoptosis, 70–85% of the AT viable cells (TUNEL-negative carried ≥10 γH2AX foci/cell, while only 12–27% of normal cells did. The fraction of AT and normal cells undergoing early and late apoptosis were isolated by flow cytometry and residual DSBs were concretely scored in these populations. Half of the γH2AX-positive AT cells undergoing early apoptosis carried ≥10 γH2AX foci/cell and this fraction increased to 75% in late apoptosis. The results suggest that retention of DNA damage-induced γH2AX foci is an indicative of lethal DNA damage, as cells undergoing apoptosis are those accumulating more DSBs. Scoring of residual γH2AX foci might function as a predictive tool to assess radiation-induced apoptosis.

  2. Neurodegeneration in ataxia-telangiectasia: Multiple roles of ATM kinase in cellular homeostasis.

    Science.gov (United States)

    Choy, Kay Rui; Watters, Dianne J

    2017-05-22

    Ataxia-telangiectasia (A-T) is characterized by neuronal degeneration, cancer, diabetes, immune deficiency, and increased sensitivity to ionizing radiation. A-T is attributed to the deficiency of the protein kinase coded by the ATM (ataxia-telangiectasia mutated) gene. ATM is a sensor of DNA double-strand breaks (DSBs) and signals to cell cycle checkpoints and the DNA repair machinery. ATM phosphorylates numerous substrates and activates many cell-signaling pathways. There has been considerable debate about whether a defective DNA damage response is causative of the neurological aspects of the disease. In proliferating cells, ATM is localized mainly in the nucleus; however, in postmitotic cells such as neurons, ATM is mostly cytoplasmic. Recent studies reveal an increasing number of roles for ATM in the cytoplasm, including activation by oxidative stress. ATM associates with organelles including mitochondria and peroxisomes, both sources of reactive oxygen species (ROS), which have been implicated in neurodegenerative diseases and aging. ATM is also associated with synaptic vesicles and has a role in regulating cellular homeostasis and autophagy. The cytoplasmic roles of ATM provide a new perspective on the neurodegenerative process in A-T. This review will examine the expanding roles of ATM in cellular homeostasis and relate these functions to the complex A-T phenotype. Developmental Dynamics, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Characteristic Eye Movements in Ataxia-Telangiectasia-Like Disorder: An Explanatory Hypothesis

    Directory of Open Access Journals (Sweden)

    Pamela Federighi

    2017-11-01

    Full Text Available ObjectiveTo investigate cerebellar dysfunctions and quantitatively characterize specific oculomotor changes in ataxia-telangiectasia-like disorder (ATLD, a rare autosomal recessive disease caused by mutations in the MRE11 gene. Additionally, to further elucidate the pathophysiology of cerebellar damage in the ataxia-telangiectasia (AT spectrum disorders.MethodsSaccade dynamics, metrics, and visual fixation deficits were investigated in two Italian adult siblings with genetically confirmed ATLD. Visually guided saccades were compared with those of 40 healthy subjects. Steady fixation was tested in primary and eccentric positions. Quantitative characterization of saccade parameters, saccadic intrusions (SI, and nystagmus was performed.ResultsPatients showed abnormally hypermetric and fast horizontal saccades to the left and greater inaccuracy than healthy subjects in all saccadic eye movements. Eye movement abnormalities included slow eye movements that preceded the initial saccade. Horizontal and vertical spontaneous jerk nystagmus, gaze-evoked, and rebound nystagmus were evident. Fixation was interrupted by large square-wave jerk SI and macrosaccadic oscillations.ConclusionSlow eye movements accompanying saccades, SI, and cerebellar nystagmus are frequently seen in AT patients, additionally our ATLD patients showed the presence of fast and hypermetric saccades suggesting damage of granule cell-parallel fiber-Purkinje cell synapses of the cerebellar vermis. A dual pathogenetic mechanism involving neurodevelopmental and neurodegenerative changes is hypothesized to explain the peculiar phenotype of this disease.

  4. A haplotype common to intermediate radiosensitivity variants of ataxia-telangiectasia in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, A.M.R.; McConville, C.M.; Byrd, P.J. [Birmingham Univ. (United Kingdom). Medical School; Rotman, G.; Shiloh, Y. [Tel Aviv Univ. (Israel). Sackler School of Medicine

    1994-12-01

    In a study of ataxia-telangiectasia (A-T) in the UK, patients in10 out of 60 families were shown to have a much lower level of chromosomal radiosensitivity compared with the majority of patients. In some patients the level of radiosensitivity was hardly distinguishable from normal. Patients in this group, however, could be distinguished clinically from the majority either by the later onset of severe cerebellar features or the slower rate of progress of the disorder. By using highly polymorphic microsatellite repeat markers a chromosome 11q22-23 haplotype common to the majority of these patients, and not occurring in any non-A-T chromosome in 60 families, was identified on one chromosome. The haplotype probably defines the region of the A-T gene in these families and the mutation associated with this haplotype may be much less severe than the second mutation thereby producing the slightly milder phenotype. (author).

  5. NAD(+) Replenishment Improves Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA Repair

    DEFF Research Database (Denmark)

    Fang, Evandro Fei; Kassahun, Henok; Croteau, Deborah L

    2016-01-01

    Ataxia telangiectasia (A-T) is a rare autosomal recessive disease characterized by progressive neurodegeneration and cerebellar ataxia. A-T is causally linked to defects in ATM, a master regulator of the response to and repair of DNA double-strand breaks. The molecular basis of cerebellar atrophy...

  6. Chromosome aberrations in ataxia telangiectasia cells exposed to heavy ions

    Science.gov (United States)

    Kawata, T.; Cucinotta, F.; George, K.; Wu, H.; Shigematsu, N.; Furusawa, Y.; Uno, T.; Isobe, K.; Ito, H.

    Understanding of biological effects of heavy ions is important to assess healt h risk in space. One of the most important issues may be to take into account individual susceptibility. Ataxia telangiectasia (A-T) cells are known to exhibit abnormal responses to radiations but the mechanism of hyper radiosensitivity of A-T still remains unknown. We report chromosome aberrations in normal human fibroblasts and AT fibroblasts exposed to low- and high-LET radiations. A chemical-induced premature chromosome condensation (PCC) technique combined with chromosome- painting technique was applied to score chromosome aberrations in G2/M-phase cells. Following gamma irradiation, GM02052 cells were approximately 5 times more sensitive to g-rays than AG1522 cells. GM02052 cells had a much higher frequency of deletions and misrejoining than AG1522 cells. When the frequency of complex type aberrations was compared, GM02052 cells showed more than 10 times higher frequency than AG1522 cells. The results will be compared with those obtained from high-LET irradiations.

  7. Pulmonary function in children and young adults with ataxia telangiectasia.

    Science.gov (United States)

    McGrath-Morrow, Sharon A; Lederman, Howard M; Aherrera, Angela D; Lefton-Greif, Maureen A; Crawford, Thomas O; Ryan, Timothy; Wright, Jennifer; Collaco, Joseph M

    2014-01-01

    Pulmonary disease contributes to significant morbidity and mortality in people with ataxia telangiectasia (A-T). To determine the association between age and lung function in children and young adults with A-T and to identify factors associated with decreased lung function, pulmonary function tests were performed in 100 consecutive people with A-T. Children and adults ranging from 6 to 29 years of age and with the diagnosis of A-T were recruited, and underwent pulmonary function tests. The mean forced vital capacity % predicted (FVC %) in the population was 56.6 ± 20.0. Males and females between 6 and 10 years of age had similar pulmonary function. Older females were found to have significantly lower FVCs % than both older males (P pulmonary function testing on two or more occasions over an average of 2 years. In children and young adults with A-T, older females and people who required supplemental gamma globulin had significantly lower lung function by cross-sectional analysis. Stable lung function is possible over a 2-year period. Recognition of groups who are at higher risk for lower pulmonary function may help direct care and improve clinical outcomes in people with A-T. © 2013 Wiley Periodicals, Inc.

  8. Molecular and Functional Characterization of a Cohort of Spanish Patients with Ataxia-Telangiectasia.

    Science.gov (United States)

    Carranza, Diana; Vega, Ana Karina; Torres-Rusillo, Sara; Montero, Enrique; Martinez, Luis Javier; Santamaría, Manuel; Santos, Juan Luis; Molina, Ignacio J

    2017-03-01

    Ataxia-telangiectasia is a multisystemic disease with severe neurological affectation, immunodeficiency and telangiectasia. The disorder is caused by alterations in the ATM gene, whose size and complexity make molecular diagnosis difficult. We designed a target-enrichment next-generation sequencing strategy to characterize 28 patients from several regions of Spain. This approach allowed us to identify gene variants affecting function in 54 out of the 56 alleles analyzed, although the two unresolved alleles belong to brothers. We found 28 ATM gene mutations, of which 10 have not been reported. A total of 171 gene variants not affecting function were also found, of which 22 are reported to predispose to disease. Interestingly, all Roma (Spanish Gypsies) patients are homozygous for the same mutation and share the H3 ATM haplotype, which is strong evidence of a founder effect in this population. In addition, we generated a panel of 27 primary T cell lines from A-T patients, which revealed significant expression of ATM in two patients and traces of the protein in nine more. None of them retained residual ATM activity, and almost all T cell lines show increased or intermediate radiosensitivity.

  9. A novel porcine model of ataxia telangiectasia reproduces neurological features and motor deficits of human disease.

    Science.gov (United States)

    Beraldi, Rosanna; Chan, Chun-Hung; Rogers, Christopher S; Kovács, Attila D; Meyerholz, David K; Trantzas, Constantin; Lambertz, Allyn M; Darbro, Benjamin W; Weber, Krystal L; White, Katherine A M; Rheeden, Richard V; Kruer, Michael C; Dacken, Brian A; Wang, Xiao-Jun; Davis, Bryan T; Rohret, Judy A; Struzynski, Jason T; Rohret, Frank A; Weimer, Jill M; Pearce, David A

    2015-11-15

    Ataxia telangiectasia (AT) is a progressive multisystem disorder caused by mutations in the AT-mutated (ATM) gene. AT is a neurodegenerative disease primarily characterized by cerebellar degeneration in children leading to motor impairment. The disease progresses with other clinical manifestations including oculocutaneous telangiectasia, immune disorders, increased susceptibly to cancer and respiratory infections. Although genetic investigations and physiological models have established the linkage of ATM with AT onset, the mechanisms linking ATM to neurodegeneration remain undetermined, hindering therapeutic development. Several murine models of AT have been successfully generated showing some of the clinical manifestations of the disease, however they do not fully recapitulate the hallmark neurological phenotype, thus highlighting the need for a more suitable animal model. We engineered a novel porcine model of AT to better phenocopy the disease and bridge the gap between human and current animal models. The initial characterization of AT pigs revealed early cerebellar lesions including loss of Purkinje cells (PCs) and altered cytoarchitecture suggesting a developmental etiology for AT and could advocate for early therapies for AT patients. In addition, similar to patients, AT pigs show growth retardation and develop motor deficit phenotypes. By using the porcine system to model human AT, we established the first animal model showing PC loss and motor features of the human disease. The novel AT pig provides new opportunities to unmask functions and roles of ATM in AT disease and in physiological conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Assessment of impaired coordination between respiration and deglutition in children and young adults with ataxia telangiectasia.

    Science.gov (United States)

    Lefton-Greif, Maureen A; Perlman, Adrienne L; He, Xuming; Lederman, Howard M; Crawford, Thomas O

    2016-10-01

    This cross-sectional investigation aimed to assess the value of non-invasive measures of temporal respiratory-swallow coupling in individuals with ataxic swallowing. Twenty participants (11 males, 9 females; range 9-21y) with ataxia telangiectasia were presented with water and pudding boluses. Their 193 swallows were compared with 2200 swallows from 82 age-matched healthy controls. The two components of airway protection during swallowing that were analyzed were: direction of peri-deglutitive airflow and duration of deglutitive inhibition of respiratory airflow (DIORA). Safe expiratory patterns of peri-deglutitive airflow occurred significantly less often in participants with ataxia telangiectasia than in age-matched control participants (younger pdeglutitive airflow increased with age in participants in the comparison group (p=0.006), but not in those with ataxia telangiectasia (p=0.234). With age, mean duration of DIORA decreased in controls (p<0.001) but was unchanged in participants with ataxia telangiectasia (p=0.164). Non-invasive quantitative measures of respiratory-swallow coupling capture temporal relationships that plausibly contribute to airway compromise from dysphagia. Changes in respiratory-swallow coupling observed with advancing age in control participants were not seen in participants with ataxia telangiectasia. Measures of perturbations may herald swallowing problems prior to development of pulmonary and nutritional sequelae. © 2016 Mac Keith Press.

  11. Human iPSC-Derived Cerebellar Neurons from a Patient with Ataxia-Telangiectasia Reveal Disrupted Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Sam P. Nayler

    2017-10-01

    Full Text Available Ataxia-telangiectasia (A-T is a rare genetic disorder caused by loss of function of the ataxia-telangiectasia-mutated kinase and is characterized by a predisposition to cancer, pulmonary disease, immune deficiency and progressive degeneration of the cerebellum. As animal models do not faithfully recapitulate the neurological aspects, it remains unclear whether cerebellar degeneration is a neurodevelopmental or neurodegenerative phenotype. To address the necessity for a human model, we first assessed a previously published protocol for the ability to generate cerebellar neuronal cells, finding it gave rise to a population of precursors highly enriched for markers of the early hindbrain such as EN1 and GBX2, and later more mature cerebellar markers including PTF1α, MATH1, HOXB4, ZIC3, PAX6, and TUJ1. RNA sequencing was used to classify differentiated cerebellar neurons generated from integration-free A-T and control induced pluripotent stem cells. Comparison of RNA sequencing data with datasets from the Allen Brain Atlas reveals in vitro-derived cerebellar neurons are transcriptionally similar to discrete regions of the human cerebellum, and most closely resemble the cerebellum at 22 weeks post-conception. We show that patient-derived cerebellar neurons exhibit disrupted gene regulatory networks associated with synaptic vesicle dynamics and oxidative stress, offering the first molecular insights into early cerebellar pathogenesis of ataxia-telangiectasia.

  12. Growth and nutrition in children with ataxia telangiectasia.

    Science.gov (United States)

    Stewart, Emma; Prayle, Andrew P; Tooke, Alison; Pasalodos, Sara; Suri, Mohnish; Bush, Andy; Bhatt, Jayesh M

    2016-12-01

    Ataxia telangiectasia (A-T) is a rare multisystem disease with high early mortality from lung disease and cancer. Nutritional failure adversely impacts outcomes in many respiratory diseases. Several factors influence nutrition in children with A-T. We hypothesised that children with A-T have progressive growth failure and that early gastrostomy tube feeding (percutaneous endoscopic gastrostomy, PEG) is a favourable management option with good nutritional outcomes. Data were collected prospectively on weight, height and body mass index (BMI) at the national paediatric A-T clinic. Adequacy and safety of oral intake was assessed. Nutritional advice was given at each multidisciplinary review. 101 children (51 girls) had 222 measurements (32 once, 32 twice, 24 thrice) between 2009 and 2016. Median (IQR) age was 9.3 (6.4 to 13.1) years. Mean (SD) weight, height and BMI Z-scores were respectively -1 (1.6), -1.2 (1.2) and -0.4 (1.4). 35/101 children had weight Z-scores below -2 on at least one occasion. Weight, height and BMI Z-scores declined over time. Decline was most obvious after 8 years of age. 14/101 (14%) children had a PEG, with longitudinal data available for 12. In a nested case control study, there was a trend for improvement in weight in those with a PEG (p=0.10). Patients with A-T decline in growth over time. There is an urgent need for new strategies, including an understanding of why growth falters. We suggest early proactive consideration of PEG from age 8 years onwards to prevent progressive growth failure. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. Linear growth and endocrine function in children with ataxia telangiectasia

    Directory of Open Access Journals (Sweden)

    Mohammad Ehlayel

    2014-01-01

    Full Text Available Introduction: Ataxia telangiectasia (AT is a rare, genetic, primary immune deficiency disease characterized by immunodeficiency and neurological manifestations, with an increased tendency to infection, malignancy, and autoimmune diseases. Both growth delay and endocrine abnormalities are occasionally reported in these patients. Patients and Methods: We studied growth parameters height (Ht, weight, body mass index (BMI and calculated the Ht standard deviation scores (HtSDS of 13 patients (age 7.7 ± 3.5 years-age range: 3-14.5 years with AT in relation to their mid-parental Ht SDS (MPHtSDS. We measured their serum calcium (Ca, phosphorus (PO4, alkaline phosphatase, alanine transferase (ALT, serum ferritin, creatinine and albumin concentrations. Endocrine investigations included the assessment of serum free thyroxine (FT4, thyrotropin (TSH, insulin-like growth factor-I (IGF-I and morning cortisol. Complete blood count and serum immunoglobulins (IgG, IgM and IgA antibodies were also measured. Growth data were correlated to hormonal and immune data. Results: About 31% of patients with AT had short stature (HtSDS <−2. However, their MPHtSDS denoted that their short stature was familial because four out of 13 had MPHtSDS <−2. They had low BMI, and two of them had low serum albumin and IGF-I, denoting malnutrition or disturbed growth hormone secretion. Elevated serum ALT and ferritin in some patients suggest immune-related inflammation in the liver. 30% of patients had high TSH, two of them had low FT4 diagnosing overt (15% and sub-clinical (15% hypothyroidism. Anti-thyroid peroxidase antibodies were high in two out of 13 patients denoting immune-related thyroid aggression. Eight out of 13 patients had Vitamin D deficiency (<20 ng/ml however, their serum Ca and PO 4 levels were in the normal range. One adolescent girl (14.5 years had hyper-gonadotropic hypogonadism (low estradiol and high follicle stimulating hormone. All patients had normal 8 AM

  14. Assessment of impaired coordination between respiration and deglutition in children and young adults with ataxia telangiectasia

    Science.gov (United States)

    Lefton-Greif, Maureen A; Perlman, Adrienne L; He, Xuming; Lederman, Howard M; Crawford, Thomas O

    2016-01-01

    AIM This cross-sectional investigation aimed to assess the value of non-invasive measures of temporal respiratory–swallow coupling in individuals with ataxic swallowing. METHOD Twenty participants with ataxia telangiectasia were presented with water and pudding boluses. Their 193 swallows were compared with 2200 swallows from 82 age-matched healthy controls. The two components of airway protection during swallowing that were analyzed were: direction of peri-deglutitive airflow and duration of deglutitive inhibition of respiratory airflow (DIORA). RESULTS Safe expiratory patterns of peri-deglutitive airflow occurred significantly less often in participants with ataxia telangiectasia than in age-matched control participants (younger pataxia telangiectasia (p=0.234). With age, mean duration of DIORA decreased in controls (pataxia telangiectasia (p=0.164). INTERPRETATION Non-invasive quantitative measures of respiratory–swallow coupling capture temporal relationships that plausibly contribute to airway compromise from dysphagia. Changes in respiratory–swallow coupling observed with advancing age in control participants were not seen in participants with ataxia telangiectasia. Measures of perturbations may herald swallowing problems prior to development of pulmonary and nutritional sequelae. PMID:27214374

  15. Cognitive and speech-language performance in children with ataxia telangiectasia

    NARCIS (Netherlands)

    Vinck, A.; Verhagen, M.M.; Gerven, M.; Groot, I.J.M. de; Weemaes, C.M.R.; Maassen, B.A.M.; Willemsen, M.A.A.P.

    2011-01-01

    OBJECTIVE: To describe cognitive and speech-language functioning of patients with ataxia-telangiectasia (A-T) in relation to their deteriorating (oculo)motor function. DESIGN: Observational case series. METHODS: Cognitive functioning, language, speech and oral-motor functioning were examined in

  16. Cognitive and speech-language performance in children with ataxia telangiectasia

    NARCIS (Netherlands)

    Vinck, Anja; Verhagen, Mijke M. M.; van Gerven, Marjo; de Groot, Imelda J. M.; Weemaes, Corry M. R.; Maassen, Ben A. M.; Willemsen, Michel A. A. P.

    2011-01-01

    Objective: To describe cognitive and speech-language functioning of patients with ataxia-telangiectasia (A-T) in relation to their deteriorating (oculo)motor function. Design: Observational case series. Methods: Cognitive functioning, language, speech and oral-motor functioning were examined in

  17. A single ataxia telangiectasia gene with a product similar to PI-3 kinase

    Energy Technology Data Exchange (ETDEWEB)

    Savitsky, K.; Bar-Shira, A.; Gilad, S.; Rotman, G.; Ziv, Y.; Vanagaite, L.; Smith, S.; Uziel, T.; Sfez, S.; Ashkenazi, M. [Tel Aviv Univ. (Israel)] [and others

    1995-06-23

    A gene, ATM, that is mutated in the autosomal recessive disorder ataxia telangiectasia (AT) was identified by positional cloning on chromosome 11q22-23. AT is characterized by cerebellar degeneration, immunodeficiency, chromosomal instability, cancer predisposition, radiation sensitivity, and cell cycle abnormalities. The disease is genetically heterogeneous, with four complementation groups that have been suspected to represent different genes. ATM, which has a transcript of 12 kilobases, was found to be mutated in AT patients from all complementation groups, indicating that it is probably the sole gene responsible for this disorder. A partial ATM complementary DNA clone of 5.9 kilobases encoded a putative protein that is similar to several yeast and mammalian phosphatidylinositol-3{prime} kinases that are involved in mitogenic signal transduction, meiotic recombination, and cell cycle control. The discovery of ATM should enhance understanding of AT and related syndromes and may allow the identification of AT heterozygotes, who are at increased risk of cancer. 54 refs., 5 figs., 1 tab.

  18. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient.

    Directory of Open Access Journals (Sweden)

    Ninette Amariglio

    2009-02-01

    Full Text Available BACKGROUND: Neural stem cells are currently being investigated as potential therapies for neurodegenerative diseases, stroke, and trauma. However, concerns have been raised over the safety of this experimental therapeutic approach, including, for example, whether there is the potential for tumors to develop from transplanted stem cells. METHODS AND FINDINGS: A boy with ataxia telangiectasia (AT was treated with intracerebellar and intrathecal injection of human fetal neural stem cells. Four years after the first treatment he was diagnosed with a multifocal brain tumor. The biopsied tumor was diagnosed as a glioneuronal neoplasm. We compared the tumor cells and the patient's peripheral blood cells by fluorescent in situ hybridization using X and Y chromosome probes, by PCR for the amelogenin gene X- and Y-specific alleles, by MassArray for the ATM patient specific mutation and for several SNPs, by PCR for polymorphic microsatellites, and by human leukocyte antigen (HLA typing. Molecular and cytogenetic studies showed that the tumor was of nonhost origin suggesting it was derived from the transplanted neural stem cells. Microsatellite and HLA analysis demonstrated that the tumor is derived from at least two donors. CONCLUSIONS: This is the first report of a human brain tumor complicating neural stem cell therapy. The findings here suggest that neuronal stem/progenitor cells may be involved in gliomagenesis and provide the first example of a donor-derived brain tumor. Further work is urgently needed to assess the safety of these therapies.

  19. The role of the neuro-astro-vascular unit in the etiology of ataxia telangiectasia.

    Science.gov (United States)

    Meshulam, Leenoy; Galron, Ronit; Kanner, Sivan; De Pittà, Maurizio; Bonifazi, Paolo; Goldin, Miri; Frenkel, Dan; Ben-Jacob, Eshel; Barzilai, Ari

    2012-01-01

    The growing recognition that brain pathologies do not affect neurons only but rather are, to a large extent, pathologies of glial cells as well as of the vasculature opens to new perspectives in our understanding of genetic disorders of the CNS. To validate the role of the neuron-glial-vascular unit in the etiology of genome instability disorders, we report about cell death and morphological aspects of neuroglia networks and the associated vasculature in a mouse model of Ataxia Telangiectasia (A-T), a human genetic disorder that induces severe motor impairment. We found that A-T-mutated protein deficiency was consistent with aberrant astrocytic morphology and alterations of the vasculature, often accompanied by reactive gliosis. Interestingly similar findings could also be reported in the case of other genetic disorders. These observations bolster the notion that astrocyte-specific pathologies, hampered vascularization and astrocyte-endothelium interactions in the CNS could play a crucial role in the etiology of genome instability brain disorders and could underlie neurodegeneration.

  20. The role of the neuro-astro-vascular unit in the etiology of Ataxia Telangiectasia

    Directory of Open Access Journals (Sweden)

    Leenoy eMeshulam

    2012-09-01

    Full Text Available The growing recognition that brain pathologies do not affect neurons only but rather are, to a large extent, pathologies of glial cells as well as of the vasculature opens to new perspectives in our understanding of genetic disorders of the CNS. To validate the role of the neuron-glial-vascular unit in the etiology of genome instability disorders, we report about cell death and morphological aspects of neuro-glia networks and the associated vasculature in a mouse model of Ataxia Telangiectasia (A-T, a human genetic disorder that induces severe motor impairment. We found that AT-mutated protein deficiency was consistent with aberrant astrocytic morphology and alterations of the vasculature, often accompanied by reactive gliosis. Interestingly similar findings could also be reported in the case of other genetic disorders. These observations bolster the notion that astrocyte-specific pathologies, hampered vascularization and astrocyte-endothelium interactions in the CNS could play a crucial role in the etiology of genome instability brain disorders and could underlie neurodegeneration.

  1. Gastric outlet obstruction due to adenocarcinoma in a patient with Ataxia-Telangiectasia syndrome: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Hammond Sue

    2009-03-01

    Full Text Available Abstract Background Ataxia-Telangiectasia syndrome is characterized by progressive cerebellar dysfunction, conjuctival and cutaneous telangiectasias, severe immune deficiencies, premature aging and predisposition to cancer. Clinical and radiographic evaluation for malignancy in ataxia-telangiectasia patients is usually atypical, leading to delays in diagnosis. Case presentation We report the case of a 20 year old ataxia-telangiectasia patient with gastric adenocarcinoma that presented as complete gastric outlet obstruction. Conclusion A literature search of adenocarcinoma associated with ataxia-telangiectasia revealed 6 cases. All patients presented with non-specific gastrointestinal complaints suggestive of ulcer disease. Although there was no correlation between immunoglobulin levels and development of gastric adenocarcinoma, the presence of chronic gastritis and intestinal metaplasia seem to lead to the development of gastric adenocarcinoma. One should consider adenocarcinoma in any patient with ataxia-telangiectasia who presents with non-specific gastrointestinal complaints, since this can lead to earlier diagnosis.

  2. Inmunodeficiencia con ataxia telangiectasia: presentación de 4 casos

    Directory of Open Access Journals (Sweden)

    Ma. Victoria Guntiñas Zamora

    2004-03-01

    Full Text Available Se presentan 4 pacientes con síntomas y signos propios de una inmunodeficiencia con ataxia telangiectasia, tanto desde el punto de vista clínico como de los marcadores serológicos y celulares. En todos los casos la ataxia se evidenció cuando los pacientes comenzaron a caminar, las telangiectasias tuvieron una aparición más tardía y las infecciones fueron manifiestas desde edades muy tempranas. Los defectos inmunológicos fueron heterogéneos, tanto de células B como T. Todos los pacientes se encuentran actualmente bajo tratamiento inmunoestimulante a pesar de lo cual mantienen cuadros infecciosos frecuentes. La enfermedad neurológica progresa. Se recomienda el seguimiento estrecho de los casos por la posible aparición de complicaciones graves como enfermedad pulmonar crónica o neoplasias linforreticulares4 patients with symptoms and signs typical of an immunodeficiency with ataxia telangiectasia from the clinical point of view and from the point of view of the serological and cellular markers are presented. In all the cases, ataxia was confirmed when the patients began to walk. Telangiectasies had a later appearance and the infections manifested at very early ages. The immunological defects of B and T cells were heterogeneous. The patients maintain infectious pictures despite being under immunostimulating treatment. The neurological disease is in progress. It is recommended the close follow-up of the cases due to the possible emergence of severe complications, such as chronic pulmonary disease or lymphoreticular neoplasias.

  3. Role of chromatin structure modulation by the histone deacetylase inhibitor trichostatin A on the radio-sensitivity of ataxia telangiectasia

    Energy Technology Data Exchange (ETDEWEB)

    Meschini, Roberta, E-mail: meschini@unitus.it; Morucci, Elisa; Berni, Andrea; Lopez-Martinez, Wilner; Palitti, Fabrizio

    2015-07-15

    Highlights: • Role of chromatin compaction on chromosomal instability. • Reduced radiation-induced clastogenicity in Ataxia telangiectasia cell lines. • Histone tails hyperacetylation reduces heterochromatin content favouring DSBs repair. - Abstract: At present, a lot is known about biochemical aspects of double strand breaks (DBS) repair but how chromatin structure affects this process and the sensitivity of DNA to DSB induction is still an unresolved question. Ataxia telangiectasia (A-T) patients are characterised by very high sensitivity to DSB-inducing agents such as ionising radiation. This radiosensitivity is revealed with an enhancement of chromosomal instability as a consequence of defective DNA repair for a small fraction of breaks located in the heterochromatin, where they are less accessible. Besides, recently it has been reported that Ataxia Telangiectasia Mutated (ATM) mediated signalling modifies chromatin structure. In order to study the impact of chromatin compaction on the chromosomal instability of A-T cells, the response to trichostatin-A, an histone deacetylase inhibitor, in normal and A-T lymphoblastoid cell lines was investigated testing its effect on chromosomal aberrations, cell cycle progression, DNA damage and repair after exposure to X-rays. The results suggest that the response to both trichostatin-A pre- and continuous treatments is independent of the presence of either functional or mutated ATM protein, as the reduction of chromosomal damage was found also in the wild-type cell line. The presence of trichostatin-A before exposure to X-rays could give rise to prompt DNA repair functioning on chromatin structure already in an open conformation. Differently, trichostatin-A post-treatment causing hyperacetylation of histone tails and reducing the heterochromatic DNA content might diminish the requirement for ATM and favour DSBs repair reducing chromosomal damage only in A-T cells. This fact could suggest that trichostatin-A post

  4. Dano e reparo de dna em indivíduos com ataxia-telangiectasia e em seus pais heterozigotos

    OpenAIRE

    Roberta Passos Palazzo

    2010-01-01

    A presente pesquisa pretende demonstrar evidências capazes de contribuir para o entendimento dos mecanismos envolvidos na ataxia-telangiectasia, bem como oferecer dados que auxiliem na implementação de técnicas complementares ao diagnóstico desta síndrome. Desde a descoberta do gene envolvido na ataxia-telangiectasia (o gene ATM), muito conhecimento tem sido acumulado, especialmente sobre os mecanismos moleculares envolvidos na síndrome, bem como nas respectivas doenças relacionadas. Este est...

  5. Oxidative stress-driven pulmonary inflammation and fibrosis in a mouse model of human ataxia-telangiectasia

    Directory of Open Access Journals (Sweden)

    Ruth Duecker

    2018-04-01

    Full Text Available Lung failure is responsible for significant morbidity and is a frequent cause of death in ataxia-telangiectasia (A-T. Disturbance in the redox balance of alveolar epithelial cells must be considered as a causal factor for respiratory disease in A-T. To investigate bronchoalveolar sensitivity to reactive oxygen species (ROS and ROS-induced DNA damage, we used bleomycin (BLM to induce experimental inflammation and fibrotic changes in the Atm-deficient mouse model.BLM or saline was administered by oropharyngeal instillation into the lung of Atm-deficient mice and wild-type mice. Mice underwent pulmonary function testing at days 0, 9, and 28, and bronchoalveolar lavage (BAL was analysed for cell distribution and cytokines. Lung tissue was analysed by histochemistry.BLM administration resulted in a tremendous increase in lung inflammation and fibrotic changes in the lung tissue of Atm-deficient mice and was accompanied by irreversible deterioration of lung function. ATM (ataxia telangiectasia mutated deficiency resulted in reduced cell viability, a delay in the resolution of γH2AX expression and a significant increase in intracellular ROS in pulmonary epithelial cells after BLM treatment. This was confirmed in the human epithelial cell line A549 treated with the ATM-kinase inhibitor KU55933.Our results demonstrate high bronchoalveolar sensitivity to ROS and ROS-induced DNA damage in the Atm-deficient mouse model and support the hypothesis that ATM plays a pivotal role in the control of oxidative stress-driven lung inflammation and fibrosis. Keywords: Pulmonary inflammation, Lung fibrosis, Mice, Oxidative stress

  6. Small-molecule inhibitors of Ataxia Telangiectasia and Rad3 related kinase (ATR) sensitize lymphoma cells to UVA radiation

    DEFF Research Database (Denmark)

    Biskup, Edyta; Naym, David Gram; Gniadecki, Robert

    2016-01-01

    and require more aggressive therapies. OBJECTIVE: The aim of this project was to investigate whether inhibition of Ataxia Telangiectasia and Rad3 related kinase (ATR) may enhance efficacy of phototherapy. METHODS: CTCL cell lines (MyLa2000, SeAx and Mac2a) served as in vitro cell models. ATR and Chk1 were...

  7. Lymphoid tumours and breast cancer in ataxia telangiectasia; substantial protective effect of residual ATM kinase activity against childhood tumours

    NARCIS (Netherlands)

    Reiman, A.; Srinivasan, V.; Barone, G.; Last, J.I.; Wootton, L.L.; Davies, E.G.; Verhagen, M.M.; Willemsen, M.A.A.P.; Weemaes, C.M.R.; Byrd, P.J.; Izatt, L.; Easton, D.F.; Thompson, D.J.; Taylor, A.M.

    2011-01-01

    BACKGROUND: Immunodeficiency in ataxia telangiectasia (A-T) is less severe in patients expressing some mutant or normal ATM kinase activity. We, therefore, determined whether expression of residual ATM kinase activity also protected against tumour development in A-T. METHODS: From a total of 296

  8. National mutation study among Danish patients with hereditary haemorrhagic telangiectasia

    DEFF Research Database (Denmark)

    Tørring, P M; Brusgaard, K; Ousager, L B

    2014-01-01

    carry mutations in the ENG, ACVRL1 or SMAD4 genes. Here, we report on the genetic heterogeneity in the Danish national HHT population and address the prevalence of pulmonary arteriovenous malformations (PAVM). Probands of 107 apparently unrelated families received genetic testing, including sequencing....... Large deletions were identified in ENG and ACVRL1. The prevalence of PAVM was 52.3% in patients with an ENG mutation and 12.9% in the ACVRL1 mutation carriers. We diagnosed 80% of the patients clinically, fulfilling the Curaçao criteria, and those remaining were diagnosed by genetic testing......Hereditary haemorrhagic telangiectasia (HHT) is an autosomal dominantly inherited vascular disease characterized by the presence of mucocutaneous telangiectasia and visceral arteriovenous malformations (AVM). The clinical diagnosis of HHT is based on the Curaçao criteria. About 85% of HHT patients...

  9. Ataxia Telangiectasia

    Science.gov (United States)

    ... Research Funded by NINDS Basic Neuroscience Clinical Research Translational Research Research at NINDS Focus on Research Alzheimer's & Related Dementias Bioengineering Epilepsy Health Disparities Neural Interfaces Parkinson's Disease Spinal Cord Injury ...

  10. Ataxia Telangiectasia

    Science.gov (United States)

    ... Español 1-800-4-CANCER Live Chat Publications Dictionary Menu Contact Dictionary Search About Cancer Causes and Prevention Risk Factors ... my chances of getting breast cancer? What about environmental sources of radiation, such as cellular phones? Should ...

  11. Cell and Molecular Biology of Ataxia Telangiectasia Heterozygous Human Mammary Epithelial Cells Irradiated in Culture

    Science.gov (United States)

    Richmond, Robert C.

    2001-01-01

    Autologous isolates of cell types from obligate heterozygotes with the autosomal disorder ataxia-telangiectasia (A-T)were used to begin a tissue culture model for assessing pathways of radiation-induced cancer formation in this target tissue. This was done by establishing cultures of stromal fibroblasts and long-term growth human mammary epithelial cells (HMEC) in standard 2-dimensional tissue culture in order to establish expression of markers detailing early steps of carcinogenesis. The presumptive breast cancer susceptibility of A-T heterozygotes as a sequel to damage caused by ionizing radiation provided reason to study expression of markers in irradiated HMEC. Findings from our study with HMEC have included determination of differences in specific protein expression amongst growth phase (e.g., log vs stationary) and growth progression (e.g., pass 7 vs pass 9), as well as differences in morphologic markers within populations of irradiated HMEC (e.g., development of multinucleated cells).

  12. Cellular and molecular response to irradiation in ataxia telangiectasia and in Fanconi`s anemia

    Energy Technology Data Exchange (ETDEWEB)

    Ridet, A.; Guillouf, C.; Duchaud, E.; Moustacchi, E.; Rosselli, F. [Institut Curie-Recherche, UMR 218, CNRS, 75 - Paris (France)

    1997-03-01

    Ataxia telangiectasia (AT) and Fanconi anemia (FA) are recessive genetic diseases featuring chromosomal instability, increased predisposition to cancer and in vitro hypersensitivity to ionizing radiation (AT) or DNA cross-linking agents (FA). Moreover, an in vivo hypersensitivity to {gamma}-rays exposure was reported in both syndromes. Cellular response to irradiation includes growth arrest (cell cycle modification) and cell death (by apoptosis or necrosis). Since it is generally accepted that apoptosis modulates cellular sensitivity to genotoxic stress, it was of interest to investigate the contribution of apoptosis in determining FA and AT responses to DNA Damaging Agents. The results support the contention that the in vivo hypersensitivity to radiation in these syndromes is not related to a higher rate of apoptotic cells but could be to a higher necrotic response triggering inflammatory reactions in the patients affected by this syndromes. (authors)

  13. ENG mutational mosaicism in a family with hereditary hemorrhagic telangiectasia

    DEFF Research Database (Denmark)

    Tørring, Pernille M; Kjeldsen, Anette D; Ousager, Lilian Bomme

    2018-01-01

    BACKGROUND: Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant genetic disorder caused by mutations in ENG, ACVRL1, or SMAD4. Around 90% of HHT patients present with a heterozygous pathogenic genetic variation. Almost all cases of HHT have a family history. Very few cases are de......, and the flanking sequences of the genes were sequenced by NGS. RESULTS: The proband had clinical HHT fulfilling the Curaçao criteria and genetic testing identified a frameshift mutation in ENG. The mother of the proband, also with clinical HHT, was found negative when analyzing DNA from blood for the familial...... mutation using Sanger sequencing. Analyzing her DNA by NGS HHT panel sequencing when extracted from both peripheral blood leukocytes, and cheek swabs, identified the familial ENG mutation at low levels. CONCLUSION: We provide evidence of ENG mutational mosaicism in an individual presenting with clinical...

  14. Imaging study of lymphoreticular tumor development in ataxia-telangiectasia and Nijmegen breakage syndrome; Estudio por imagen del desarrollo de tumores linforreticulares en la ataxia telangiectasia y el sindrome de Nijmegen

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Leon, M. I.; Ceres-Ruiz, L.; Cuesta, M. A.; Garcia-Martin, F. J. [Hospital Materno-Infantil C.H.U. Carlos Haya. Malaga (Spain)

    2003-07-01

    Ataxia-telangiectasia (AT), or Louis-Bar syndrome, is an autosomal recessive illness characterized by progressive cerebellar ataxia, oculo-cutaneous telangiectasia, immunodeficiency combined with susceptibility to sinopulmonary infections and high incidence of neoplastic development. Nijmegen breakage syndrome (NBS) is a variant of AT, is also an autosomal recessive illness that presents cerebellar ataxia, as well as combined immunodeficiency and a tendency toward tumor development. Contrary to Louis-Bar syndrome, it doesn't present telangiectasia and exhibits a characteristics phenotype (short stature, bird-like face and microcephaly). Both entities are classified as syndrome of chromosomal instability or chromosomal fragility, a group which also includes Bloom syndrome and Fanconi anemia. All of these show an increase in the frequency of neoplastic pathologies, mainly lymphoid tumors. We present three patients,two with AT and one with NBS, who developed different lymphoma types in the course of the illness. We highlight the most outstanding aspects from a clinical-radiological point of view. (Author) 17 refs.

  15. 5'UTR mutations of ENG cause hereditary hemorrhagic telangiectasia

    Directory of Open Access Journals (Sweden)

    Damjanovich Kristy

    2011-12-01

    Full Text Available Abstract Background Hereditary hemorrhagic telangiectasia (HHT is a vascular disorder characterized by epistaxis, arteriovenous malformations, and telangiectases. The majority of the patients have a mutation in the coding region of the activin A receptor type II-like 1 (ACVRL1 or Endoglin (ENG gene. However, in approximately 15% of cases, sequencing analysis and deletion/duplication testing fail to identify mutations in the coding regions of these genes. Knowing its vital role in transcription and translation control, we were prompted to investigate the 5'untranslated region (UTR of ENG. Methods and Results We sequenced the 5'UTR of ENG for 154 HHT patients without mutations in ENG or ACVRL1 coding regions. We found a mutation (c.-127C > T, which is predicted to affect translation initiation and alter the reading frame of endoglin. This mutation was found in a family with linkage to the ENG, as well as in three other patients, one of which had an affected sibling with the same mutation. In vitro expression studies showed that a construct with the c.-127C > T mutation alters the translation and decreases the level of the endoglin protein. In addition, a c.-9G > A mutation was found in three patients, one of whom was homozygous for this mutation. Expression studies showed decreased protein levels suggesting that the c.-9G > A is a hypomorphic mutation. Conclusions Our results emphasize the need for the inclusion of the 5'UTR region of ENG in clinical testing for HHT.

  16. Mutation study of Spanish patients with Hereditary Hemorrhagic Telangiectasia

    Directory of Open Access Journals (Sweden)

    Blanco Francisco J

    2008-08-01

    Full Text Available Abstract Background Hereditary Hemorrhagic Telangiectasia (HHT is an autosomal dominant and age-dependent vascular disorder characterised mainly by mutations in the Endoglin (ENG or activin receptor-like kinase-1 (ALK1, ACVRL1 genes. Methods Here, we have identified 22 ALK1 mutations and 15 ENG mutations, many of which had not previously been reported, in independent Spanish families afflicted with HHT. Results We identified mutations in thirty-seven unrelated families. A detailed analysis of clinical symptoms was recorded for each patient analyzed, with a higher significant presence of pulmonary arteriovenous malformations (PAVM in HHT1 patients over HHT2. Twenty-two mutations in ALK1 and fifteen in ENG genes were identified. Many of them, almost half, represented new mutations in ALK1 and in ENG. Missense mutations in ENG and ALK1 were localized in a tridimensional protein structure model. Conclusion Overall, ALK1 mutations (HHT2 were predominant over ENG mutations (HHT1 in our Spanish population, in agreement with previous data from our country and other Mediterranean countries (France, Italy, but different to Northern Europe or North America. There was a significant increase of PAVM associated with HHT1 over HHT2 in these families.

  17. Cognitive and speech-language performance in children with ataxia telangiectasia.

    Science.gov (United States)

    Vinck, Anja; Verhagen, Mijke M M; Gerven, Marjo van; de Groot, Imelda J M; Weemaes, Corry M R; Maassen, Ben A M; Willemsen, Michel A A P

    2011-01-01

    To describe cognitive and speech-language functioning of patients with ataxia-telangiectasia (A-T) in relation to their deteriorating (oculo)motor function. Observational case series. Cognitive functioning, language, speech and oral-motor functioning were examined in eight individuals with A-T (six boys, two girls), taking into account the confounding effects of motor functioning on test performance. All patients, except the youngest one, suffered from mild-to-moderate/severe intellectual impairment. Compared to developmental age, patients showed cognitive deficits in attention, (non)verbal memory and verbal fluency. Furthermore, dysarthria and weak oral-motor performance was found. Language was one of the patients' assets. In contrast to the severe deterioration of motor functioning in A-T, cognitive and language functioning appeared to level off with a typical profile of neuropsychological strengths and weaknesses. Based on our experiences with A-T, suggestions are made to determine a valid assessment of the cognitive and speech-language manifestations.

  18. Breast cancer risk in ataxia telangiectasia (AT) heterozygotes: haplotype study in French AT families

    Science.gov (United States)

    Janin, N; Andrieu, N; Ossian, K; Laugé, A; Croquette, M-F; Griscelli, C; Debré, M; Bressac-de-Paillerets, B; Aurias, A; Stoppa-Lyonnet, D

    1999-01-01

    Epidemiological studies in ataxia telangiectasia (AT) families have suggested that AT heterozygotes could have an increased cancer risk, especially breast cancer (BC) in women. It has also been suggested that an increased sensibility of AT heterozygotes to the effect of ionizing radiation could be responsible for the increased BC risk. BC relative risk (RR) estimation in AT heterozygotes within families ascertained through AT children is presented here. Family data collected included demographic characteristics, occurrence of cancers, past radiation exposures and blood samples. DNA samples were studied using seven ATM linked microsatellites markers allowing AT haplotypes reconstitution. The relative risk of BC was assessed using French estimated incidence rates. A significant increase risk of BC is found among obligate ATM heterozygotes with a point estimate of 3.32 (P = 0.002). BC relative risk calculated according to age is significantly increased among the obligate ATM heterozygotes female relatives with an age ≤ 44 years (RR = 4.55, P = 0.005). The BC relative risk is statistically borderline among the obligate ATM heterozygote female relatives with an age ≥ 45 years (RR = 2.48, P = 0.08). The estimated BC relative risk among ATM heterozygotes is consistent with previously published data. However, the increased risk is only a little higher than classical reproductive risk factors and similar to the risk associated with a first-degree relative affected by BC. © 1999 Cancer Research Campaign PMID:10362113

  19. Identification of 4 ataxia telangiectasia cell lines hypersensitive to. gamma. -irradiation but not to hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Cantoni, O.; Sestili, P.; Santoro, M.P.; Tannoia, M.C.; Cattabeni, F. (Universita degli Studi di Urbino (Italy). Istituto di Farmacologia e Farmacognosia and Centro di Farmacologia Oncologia Sperimentale); Novelli, G.; Dallapiccola, B. (Universit degli Studi di Urbino (Italy). Cattedra di Genetica); Fiorilli, M. (Universita di Roma ' La Sapienze' (Italy). Cattedra di Allergologia e Immunologia Clinica)

    1989-09-01

    The effct of hydrogen peroxide on the rate of semi-conservative DNA synthesis in ataxia telangiectasia (AT) and normal human lymphoblastoid cells was investigated. The rate of DNA synthesis in AT cells was not depressed to a lesser extent than in normal cells, as might have been expected since H{sub 2O2} is a radiomimetic agent. On the contrary, 4 AT cell lines displayed a higher sensitivity to the inhibitory effect of H{sub 2O2} on DNA synthesis than 2 normal cell lines. Comparable levels of cytotoxicity were detected in cell vaibility studies. Furthermore, neither the level of DNA breakage produced by H{sub 2O2}, nor the rate of repair of these lesions was signigicantly different in normal and AT cells. Together, these results indicate that the AT cell lines utilized in this study are not hypersensitive to the oxidant. It is suggested that H-2-O-2 may not induce lethality via the direct ation of the hydroxyl radical (OH). (Author). 20 refs.; 3 figs.; 1 tab.

  20. Control of cell respiration by nitric oxide in Ataxia Telangiectasia lymphoblastoid cells.

    Science.gov (United States)

    Masci, Alessandra; Mastronicola, Daniela; Arese, Marzia; Piane, Maria; De Amicis, Andrea; Blanck, Thomas J J; Chessa, Luciana; Sarti, Paolo

    2008-01-01

    Ataxia Telangiectasia (AT) patients are particularly sensitive to oxidative-nitrosative stress. Nitric oxide (NO) controls mitochondrial respiration via the reversible inhibition of complex IV. The mitochondrial response to NO of AT lymphoblastoid cells was investigated. Cells isolated from three patients and three intrafamilial healthy controls were selected showing within each group a normal diploid karyotype and homogeneous telomere length. Different complex IV NO-inhibition patterns were induced by varying the electron flux through the respiratory chain, using exogenous cell membrane permeable electron donors. Under conditions of high electron flux the mitochondrial NO inhibition of respiration was greater in AT than in control cells (P< or =0.05). This property appears peculiar to AT, and correlates well to the higher concentration of cytochrome c detected in the AT cells. This finding is discussed on the basis of the proposed mechanism of reaction of NO with complex IV. It is suggested that the peculiar response of AT mitochondria to NO stress may be relevant to the mitochondrial metabolism of AT patients.

  1. Genetic, physical and functional analysis of the ataxia-telangiectasia locus on chromosome 11q22-23

    Energy Technology Data Exchange (ETDEWEB)

    Shiloh, Y.; Ziv, Y.; Savitski, K. [Tel Aviv Univ. (Israel)] [and others

    1994-09-01

    Ataxia-telangiectasia (A-T) is an autosomal recessive multisystem disorder featuring cerebellar degeneration, immunodeficiency, chromosomal instability, cancer susceptibility, and radiosensitivity. Four complementation groups have been observed in A-T. The two major groups, A and C, were localized to chromosome 11q22-23, and the other two, D and E, may map to the same chromosomal region. We developed an integrated system of positional and complementation cloning to identify the A-T gene(s). The A-T region was saturated with microsatellite markers by physically mapping markers generated at random by other labs and by identifying new polymorphic CA-repeats in YAC clones obtained from this region. According to recent linkage data based on these markers and linkage disequilibrium analysis in Moroccan Jewish A-T patients, the A-T(A) and A-T(C) mutations are contained within a 2 Mb interval between D11S1819 and D11S1960. This interval was cloned in YAC and cosmid contigs, and transcribed sequences were identified using the following methods: screening of cDNA libraries using cosmid clones; magnetic bead capture using YAC and cosmid clones; direct selection of cDNA clones using YAC clones immobilized on a solid matrix; and 3{prime} exon trapping. Preliminary results indicate that the A-T region is rich in transcribed sequences. Structural and functional analysis of these genes is being carried out by sequence analysis, by physical mapping using the cosmid contigs, and by testing their ability to complement the radiomimetic sensitivity of A-T cells.

  2. Safety and caregiver satisfaction with gastrostomy in patients with Ataxia Telangiectasia

    Directory of Open Access Journals (Sweden)

    Crawford Thomas O

    2011-05-01

    Full Text Available Abstract Background Ataxia Telangiectasia (A-T is a rare monogenetic neurodegenerative disease with pulmonary, nutritional, and dysphagic complications. Gastrostomy tube (GT feedings are commonly recommended to manage these co-morbidities. In general, outcomes of GT placement in patients with progressive diseases that develop during childhood are not well characterized. The primary purposes of this study were to determine whether GT placement in patients with A-T would be tolerated and associated with caregiver satisfaction. Methods We completed a retrospective review of 175 patients who visited the A-T Children's Center at Johns Hopkins Hospital from 2001 through 2008, and identified 28 patients with A-T (19 males, 9 females who underwent GT placement for non-palliative reasons. Information was obtained from medical records, interviews with primary health care providers, and 24 (83% caregivers of patients with GT's who responded to survey requests. Results Twenty-five (89% patients tolerated GT placement and were a median of 5.0 (0.4-12.6 years post GT placement at the time of this investigation. Three (11% patients died within one month of GT placement. In comparison to patients who tolerated GT placement, patients with early mortality were older when GT's were placed (median 24.9 vs. 12.3 years, p = 0.006 and had developed a combination of dysphagia, nutritional, and respiratory problems. Caregivers of patients tolerating GT placement reported significant improvements in mealtime satisfaction and participation in daily activities. Conclusions GT placement can be well tolerated and associated with easier mealtimes in patients with A-T when feeding tubes are placed at young ages. Patients with childhood onset of disorders with predictable progression of the disease process and impaired swallowing may benefit from early versus late placement of feeding tubes.

  3. Quantitative evaluation of brain involvement in ataxia telangiectasia by diffusion weighted MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Firat, Ahmet Kemal [Inonu University Medical Faculty, Turgut Ozal Medical Center, Department of Radiology, Malatya 44280 (Turkey); Karakas, Hakki Muammer [Inonu University Medical Faculty, Turgut Ozal Medical Center, Department of Radiology, Malatya 44280 (Turkey)]. E-mail: hkarakas@inonu.edu.tr; Firat, Yezdan [Inonu University Medical Faculty, Turgut Ozal Medical Center, Department of Otorhinolaryngology, Malatya (Turkey); Yakinci, Cengiz [Inonu University Medical Faculty, Turgut Ozal Medical Center, Department of Pediatrics, Malatya (Turkey)

    2005-11-01

    Objective: To evaluate the value of diffusion weighted imaging (DWI) in diagnosing ataxia telangiectasia (AT) and to investigate the spatial distribution of cerebral microstructural changes caused by the disease. Methods: Six AT patients (9-13 years) and nine healthy control subjects were examined on 1.5 T scanner. In addition to conventional MR images, DWI were performed with a fat suppressed, multishot spin echo EPI sequence using B values of 0, 500 and 1000 s/mm{sup 2}. Mean ADC values were measured from 16 different supra and infratentorial location. The difference between controls and AT patients regarding ADC values, and the accuracy, sensitivity and specificity of them in discrimination were analyzed with t-tests, logistic regression analysis, ANOVA and ROC curves. Results: Conventional images of the controls were normal. In AT patients, the only conventional MR abnormality was cerebellar atrophy. The difference between both groups regarding mean ADC values was not significant for any of the cerebral structures. In contrary to cerebrum, cerebellar mean ADC values of patients and controls were statistically different (p < 0.011-0.0001). Patients and controls were classified with 100% accuracy using ADC values of cerebellar white matter and cortex together (p < 0.016). The cut-off ADC value (0.699 mm{sup 2}/s) for middle cerebellar cortex had produced highest (100%) sensitivity and specificity. There was a difference between superior, middle and inferior cerebellar cortex regarding ADC values (p < 0.026). Superior cerebellar cortex (0.987 {+-} 0.1956 mm{sup 2}/s) had higher ADC values than the middle and inferior cerebellar cortex. Conclusion: DWI provides a supplementary and objective imaging finding in AT. This finding is highly accurate in the radiological discrimination of healthy subjects and AT. Our findings also implicate that AT causes a diffuse atrophy and mostly affects superior part of the cortex.

  4. Is age a risk factor for liver disease and metabolic alterations in ataxia Telangiectasia patients?

    Science.gov (United States)

    Paulino, Talita Lemos; Rafael, Marina Neto; Hix, Sonia; Shigueoka, David Carlos; Ajzen, Sergio Aron; Kochi, Cristiane; Suano-Souza, Fabíola Isabel; da Silva, Rosangela; Costa-Carvalho, Beatriz T; Sarni, Roseli O S

    2017-08-04

    Ataxia telangiectasia (A-T) is a neurodegenerative disease that leads to mitochondrial dysfunction and oxidative stress. Insulin resistance (IR), type 2 diabetes and the risk for development of cardiovascular disease was recently associated as an extended phenotype of the disease. We aimed to assess IR; liver involvement; carotid intima-media thickness (cIMT) and metabolic alterations associated to cardiovascular risk in A-T patients, and relate them with age. Glucose metabolism alterations were found in 54.6% of the patients. Hepatic steatosis was diagnosed in 11/17 (64.7%) A-T patients. AST/ALT ratio > 1 was observed in 10/17 (58.8%). A strong positive correlation was observed between insulin sum concentrations with ALT (r = 0.782, p < 0.004) and age (r = 0.818, p = 0.002). Dyslipidemia was observed in 55.5% of the patients. The apolipoprotein (Apo-B)/ApoA-I ratio (r = 0.619; p < 0.01), LDL/HDL-c (r = 0.490; p < 0.05) and the Apo-B levels (r = 0.545; p < 0.05) were positively correlated to cIMT. Metabolic disorders implicated in cardiovascular and liver diseases are frequently observed in adolescent A-T patients and those tend to get worse as they become older. Therefore, nutritional intervention and the use of drugs may be necessary.

  5. ELOVL5 mutations cause spinocerebellar ataxia 38.

    Science.gov (United States)

    Di Gregorio, Eleonora; Borroni, Barbara; Giorgio, Elisa; Lacerenza, Daniela; Ferrero, Marta; Lo Buono, Nicola; Ragusa, Neftj; Mancini, Cecilia; Gaussen, Marion; Calcia, Alessandro; Mitro, Nico; Hoxha, Eriola; Mura, Isabella; Coviello, Domenico A; Moon, Young-Ah; Tesson, Christelle; Vaula, Giovanna; Couarch, Philippe; Orsi, Laura; Duregon, Eleonora; Papotti, Mauro Giulio; Deleuze, Jean-François; Imbert, Jean; Costanzi, Chiara; Padovani, Alessandro; Giunti, Paola; Maillet-Vioud, Marcel; Durr, Alexandra; Brice, Alexis; Tempia, Filippo; Funaro, Ada; Boccone, Loredana; Caruso, Donatella; Stevanin, Giovanni; Brusco, Alfredo

    2014-08-07

    Spinocerebellar ataxias (SCAs) are a heterogeneous group of autosomal-dominant neurodegenerative disorders involving the cerebellum and 23 different genes. We mapped SCA38 to a 56 Mb region on chromosome 6p in a SCA-affected Italian family by whole-genome linkage analysis. Targeted resequencing identified a single missense mutation (c.689G>T [p.Gly230Val]) in ELOVL5. Mutation screening of 456 independent SCA-affected individuals identified the same mutation in two further unrelated Italian families. Haplotyping showed that at least two of the three families shared a common ancestor. One further missense variant (c.214C>G [p.Leu72Val]) was found in a French family. Both missense changes affect conserved amino acids, are predicted to be damaging by multiple bioinformatics tools, and were not identified in ethnically matched controls or within variant databases. ELOVL5 encodes an elongase involved in the synthesis of polyunsaturated fatty acids of the ω3 and ω6 series. Arachidonic acid and docosahexaenoic acid, two final products of the enzyme, were reduced in the serum of affected individuals. Immunohistochemistry on control mice and human brain demonstrated high levels in Purkinje cells. In transfection experiments, subcellular localization of altered ELOVL5 showed a perinuclear distribution with a signal increase in the Golgi compartment, whereas the wild-type showed a widespread signal in the endoplasmic reticulum. SCA38 and SCA34 are examples of SCAs due to mutations in elongase-encoding genes, emphasizing the importance of fatty-acid metabolism in neurological diseases. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  6. Mutation analysis in Norwegian families with hereditary hemorrhagic telangiectasia: founder mutations in ACVRL1.

    Science.gov (United States)

    Heimdal, K; Dalhus, B; Rødningen, O K; Kroken, M; Eiklid, K; Dheyauldeen, S; Røysland, T; Andersen, R; Kulseth, M A

    2016-02-01

    Hereditary hemorrhagic telangiectasia (HHT, Osler-Weber-Rendu disease) is an autosomal dominant inherited disease defined by the presence of epistaxis and mucocutaneous telangiectasias and arteriovenous malformations (AVMs) in internal organs. In most families (~85%), HHT is caused by mutations in the ENG (HHT1) or the ACVRL1 (HHT2) genes. Here, we report the results of genetic testing of 113 Norwegian families with suspected or definite HHT. Variants in ENG and ACVRL1 were found in 105 families (42 ENG, 63 ACVRL1), including six novel variants of uncertain pathogenic significance. Mutation types were similar to previous reports with more missense variants in ACVRL1 and more nonsense, frameshift and splice-site mutations in ENG. Thirty-two variants were novel in this study. The preponderance of ACVRL1 mutations was due to founder mutations, specifically, c.830C>A (p.Thr277Lys), which was found in 24 families from the same geographical area of Norway. We discuss the importance of founder mutations and present a thorough evaluation of missense and splice-site variants. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Establishment of immortal normal and ataxia telangiectasia fibroblast cell lines by introduction of the hTERT gene

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hideaki; Fukami, Hiroko; Hayashi, Yuko; Kiyono, Tohru; Ishizaki, Kanji [Aichi Cancer Center, Nagoya (Japan). Research Inst.; Nakatsugawa, Shigekazu; Hamaguchi, Michinari [Nagoya Univ. (Japan). School of Medicine

    2002-06-01

    To establish immortal human cells, we introduced the human catalytic subunit of telomerase (hTERT) gene into skin fibroblast cells obtained from normal and ataxia telangiectasia (AT) individuals of Japanese origin. After hTERT introduction, these cells continue to grow beyond a population doubling number of 200 while maintaining their original radiosensitivity. Inductions of p53, phosphorylation of Serl5 in p53, and induction of p21 by X-ray irradiation in immortal cells derived from normal individual were not affected by the hTERT introduction. Both normal and AT immortal cells exhibited an apparent inhibition of growth as original primary cells when they reached confluence. Karyotype analysis has revealed that they are in a diploid range. These results suggest that cells immortalized by hTERT introduction retain their original characteristics except for immortalization, and that they may be useful for analyzing various effects of radiation on human cells. (author)

  8. A YAC contig spanning the ataxia-telangiectasia locus (groups A and C) at 11q22-q23

    Energy Technology Data Exchange (ETDEWEB)

    Rotman, G.; Savitsky, K.; Ziv, Y. [Tel Aviv Univ. Ramat Aviv (Israel)] [and others

    1994-11-15

    Ataxia-telangiectasia (A-T) is an autosomal recessive disease involving cerebellar degeneration, immunodeficiency, cancer predisposition, chromosomal instability and radiosensitivity. A-T is heterogeneous, and the majority of A-T cases are associated with two complementation groups, A and C. The ATA and ATC loci are closely linked at chromosome 11q22-q23. Recombination mapping and linkage disequilibrium analysis have confined both loci between the markers D11S1817 and D11S927. Construction of this contig was expedited by prior generation of a region-specific ICRF sublibrary using Alu-PCR products derived from a radiation hybrid. The contig was expanded further by screening the libraries with Alu-PCR products derived from YAC clones and with STSs from YAC ends. YAC clones were aligned by fingerprinting with moderately repetitive probes. 56 refs., 5 figs., 1 tab.

  9. Radiation Dose-effects on Cell Cycle, Apoptosis, and Marker Expression of Ataxia Telangiectasia-Heterozygous Human Breast Epithelial Cells

    Science.gov (United States)

    Cruz, A.; Bors, K.; Jansen, H.; Richmond, R.

    2003-01-01

    Ataxia-telangiectasia (A-T) is a radiation-sensitive genetic condition. AT-heterozygous human mammary epithelial cells (HMEC) were irradiated using a Cs137 source in order to compare cell cycle, apoptosis, and marker expression responses across 3 radiation doses. No differences in cell cycle and apoptosis were found with any of the radiation doses used (30, 60, and 90 rads) compared with the unirradiated control (0 rad). At the same doses, however, differences were found in marker expression, such as keratin 18 (kl8), keratin 14 (k14), insulin-like growth factor I receptor (IGF-IR), and connexin 43 (cx43). This may indicate that radiation sensitivity in the heterozygous state may be initiated through signal transduction responses.

  10. Myoclonus epilepsy and ataxia due to KCNC1 mutation

    DEFF Research Database (Denmark)

    Oliver, Karen L; Franceschetti, Silvana; Milligan, Carol J

    2017-01-01

    OBJECTIVE: To comprehensively describe the new syndrome of myoclonus epilepsy and ataxia due to potassium channel mutation (MEAK), including cellular electrophysiological characterization of observed clinical improvement with fever. METHODS: We analyzed clinical, electroclinical, and neuroimaging.......5), with progressively severe myoclonus and rare tonic-clonic seizures. Ataxia was present early, but quickly became overshadowed by myoclonus; 10 patients were wheelchair-bound by their late teenage years. Mild cognitive decline occurred in half. Early death was not observed. Electroencephalogram (EEG) showed...

  11. Prenatal diagnosis of ataxia-telangiectasia and Nijmegen Breakage Syndrome by the assay of radioresistant DNA synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kleijer, W.J.; Kraan, M. van der; Los, F.J. [Erasmus Univ., Rotterdam (Netherlands). Dept. of Clinical Genetics; Jaspers, N.G.J. [Erasmus Univ., Rotterdam (Netherlands). Lab. of Cell Biology and Genetics

    1994-12-01

    Prenatal diagnosis was performed in 16 pregnancies at risk of ataxia-telangiectasia (A-T) or Nijmegen Breakage Syndrome (NBS). Radioresistant DNA synthesis (RDS) was investigated in cultured chorionic villus (CV) cells and/or amniotic fluid (AF) cells. In four pregnancies, an affected foetus was diagnosed with increased RDS in cultured CV cells. In three of the four cases confirmation of the diagnosis was obtained by analysis of AF cells and/or skin fibroblasts from the foetus cultured after termination of the pregnancy; in the fourth case a fibroblast culture from the aborted foetus failed. In one case, only AF cells could be analysed in a late stage of pregnancy; pregnancy was terminated due to intermediate/equivocal results but the foetus fibroblasts showed normal RDS. Normal RDS was demonstrated in the other 11 pregnancies at 25% risk either by analysis of CB cells (nine cases) or of AF cells (two cases). In some cases the (normal) results on the CV cells were corroborated by subsequent analysis of Af cells. The results suggest that RDS analysis of CV cells allows reliable prenatal diagnosis of A-T/NBS. However, amniocentesis may be necessary to confirm normal results on CV cells if the foetus is female (because of the risk of maternal cell contamination) or in the rare case of equivocal results. (author).

  12. Nutritional status of patients with ataxia-telangiectasia: A case for early and ongoing nutrition support and intervention.

    Science.gov (United States)

    Ross, Lynda J; Capra, Sandra; Baguley, Brenton; Sinclair, Kate; Munro, Kate; Lewindon, Peter; Lavin, Martin

    2015-08-01

    Ataxia-telangiectasia (A-T) is a rare genomic syndrome resulting in severe disability. Chronic childhood disorders can profoundly influence growth and development. Nutrition-related issues in A-T are not well described, and there are no nutritional guidelines. This study investigated the nutrition-related characteristics and behaviours of Australian A-T patients attending a national clinic. A cross-sectional analysis of 13 A-T patients (nine females; aged: 4-23 years): nutritional status was assessed by anthropometric and body cell mass (BCM) calculations. Parents reported their child's diet history and physical and behavioural factors that affect nutrition including fatigue and need for assistance. Ten (77%) had short stature (height for age z scores underweight for height (weight/height z scores nutritional barriers as chronic tiredness and the need for care giver assistance with meals. This study confirms profound malnutrition in Australian A-T patients. Poor intakes and diet quality suggest the need for early nutrition intervention. Ongoing support for families and early discussions on tube feeding are required to address changing needs in childhood and likely nutritional decline into adulthood. A prospective study is required to assess feasibility and effectiveness of nutrition interventions in young people with A-T. © 2015 The Authors. Journal of Paediatrics and Child Health © 2015 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  13. Dominant KCNA2 mutation causes episodic ataxia and pharmacoresponsive epilepsy.

    Science.gov (United States)

    Corbett, Mark A; Bellows, Susannah T; Li, Melody; Carroll, Renée; Micallef, Silvana; Carvill, Gemma L; Myers, Candace T; Howell, Katherine B; Maljevic, Snezana; Lerche, Holger; Gazina, Elena V; Mefford, Heather C; Bahlo, Melanie; Berkovic, Samuel F; Petrou, Steven; Scheffer, Ingrid E; Gecz, Jozef

    2016-11-08

    To identify the genetic basis of a family segregating episodic ataxia, infantile seizures, and heterogeneous epilepsies and to study the phenotypic spectrum of KCNA2 mutations. A family with 7 affected individuals over 3 generations underwent detailed phenotyping. Whole genome sequencing was performed on a mildly affected grandmother and her grandson with epileptic encephalopathy (EE). Segregating variants were filtered and prioritized based on functional annotations. The effects of the mutation on channel function were analyzed in vitro by voltage clamp assay and in silico by molecular modeling. KCNA2 was sequenced in 35 probands with heterogeneous phenotypes. The 7 family members had episodic ataxia (5), self-limited infantile seizures (5), evolving to genetic generalized epilepsy (4), focal seizures (2), and EE (1). They had a segregating novel mutation in the shaker type voltage-gated potassium channel KCNA2 (CCDS_827.1: c.765_773del; p.255_257del). A rare missense SCN2A (rs200884216) variant was also found in 2 affected siblings and their unaffected mother. The p.255_257del mutation caused dominant negative loss of channel function. Molecular modeling predicted repositioning of critical arginine residues in the voltage-sensing domain. KCNA2 sequencing revealed 1 de novo mutation (CCDS_827.1: c.890G>A; p.Arg297Gln) in a girl with EE, ataxia, and tremor. A KCNA2 mutation caused dominantly inherited episodic ataxia, mild infantile-onset seizures, and later generalized and focal epilepsies in the setting of normal intellect. This observation expands the KCNA2 phenotypic spectrum from EE often associated with chronic ataxia, reflecting the marked variation in severity observed in many ion channel disorders. © 2016 American Academy of Neurology.

  14. Mutations found in the Danish population causing Hereditary Hemorrhagic Telangiectasia

    DEFF Research Database (Denmark)

    Tørring, Pernille M; Brusgaard, Klaus

    2011-01-01

    been performing genetic screening of patients and relatives with HHT. The molecular genetic screening serves dual purposes, a) as part of the clinical management as genotype/phenotype correlations exists, b) to identify asymptomatic family members. Materials and Methods Inclusion of patient’s who were....... Results In 61 families we found mutations in either ENG (N=35) or ACVLR1 (N=26). In ENG a total of 22 different mutations were found 16 was unreported. In ACVLR1 24 different mutations were found 13 was unreported. The mutations were mainly of a familial character all though in ENG a single mutation...... is present in 11 families and 2 mutations are represented in 2 families. Likewise in ACVLR1 2 mutations was found in 2 different families. I ENG 1 and in ACVLR1 3 families had major deletions found by MLPA. No mutations were found in MADH4. Conclusion The majority of mutations found during clinical genetic...

  15. Gly118Asp is a SCA14 founder mutation in the Dutch ataxia population

    NARCIS (Netherlands)

    Verbeek, DS; van de Warrenburg, BPC; Hennekam, FAM; Dooijes, D; Ippel, PF; Verschuuren-Bemelmans, CC; Kremer, HPH; Sinke, RJ

    Missense mutations in the PRKCG gene have recently been identified in spinocerebellar ataxia 14 (SCA14) patients; these include the Gly118Asp mutation that we found in a large Dutch autosomal dominant cerebellar ataxia (ADCA) family. We subsequently screened the current Dutch ataxia cohort

  16. Oxidative stress, mitochondrial abnormalities and antioxidant defense in Ataxia-telangiectasia, Bloom syndrome and Nijmegen breakage syndrome.

    Science.gov (United States)

    Maciejczyk, Mateusz; Mikoluc, Bozena; Pietrucha, Barbara; Heropolitanska-Pliszka, Edyta; Pac, Malgorzata; Motkowski, Radosław; Car, Halina

    2017-04-01

    Rare pleiotropic genetic disorders, Ataxia-telangiectasia (A-T), Bloom syndrome (BS) and Nijmegen breakage syndrome (NBS) are characterised by immunodeficiency, extreme radiosensitivity, higher cancer susceptibility, premature aging, neurodegeneration and insulin resistance. Some of these functional abnormalities can be explained by aberrant DNA damage response and chromosomal instability. It has been suggested that one possible common denominator of these conditions could be chronic oxidative stress caused by endogenous ROS overproduction and impairment of mitochondrial homeostasis. Recent studies indicate new, alternative sources of oxidative stress in A-T, BS and NBS cells, including NADPH oxidase 4 (NOX4), oxidised low-density lipoprotein (ox-LDL) or Poly (ADP-ribose) polymerases (PARP). Mitochondrial abnormalities such as changes in the ultrastructure and function of mitochondria, excess mROS production as well as mitochondrial damage have also been reported in A-T, BS and NBS cells. A-T, BS and NBS cells are inextricably linked to high levels of reactive oxygen species (ROS), and thereby, chronic oxidative stress may be a major phenotypic hallmark in these diseases. Due to the presence of mitochondrial disturbances, A-T, BS and NBS may be considered mitochondrial diseases. Excess activity of antioxidant enzymes and an insufficient amount of low molecular weight antioxidants indicate new pharmacological strategies for patients suffering from the aforementioned diseases. However, at the current stage of research we are unable to ascertain if antioxidants and free radical scavengers can improve the condition or prolong the survival time of A-T, BS and NBS patients. Therefore, it is necessary to conduct experimental studies in a human model. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Oxidative stress, mitochondrial abnormalities and antioxidant defense in Ataxia-telangiectasia, Bloom syndrome and Nijmegen breakage syndrome

    Directory of Open Access Journals (Sweden)

    Mateusz Maciejczyk

    2017-04-01

    Full Text Available Rare pleiotropic genetic disorders, Ataxia-telangiectasia (A-T, Bloom syndrome (BS and Nijmegen breakage syndrome (NBS are characterised by immunodeficiency, extreme radiosensitivity, higher cancer susceptibility, premature aging, neurodegeneration and insulin resistance. Some of these functional abnormalities can be explained by aberrant DNA damage response and chromosomal instability. It has been suggested that one possible common denominator of these conditions could be chronic oxidative stress caused by endogenous ROS overproduction and impairment of mitochondrial homeostasis. Recent studies indicate new, alternative sources of oxidative stress in A-T, BS and NBS cells, including NADPH oxidase 4 (NOX4, oxidised low-density lipoprotein (ox-LDL or Poly (ADP-ribose polymerases (PARP. Mitochondrial abnormalities such as changes in the ultrastructure and function of mitochondria, excess mROS production as well as mitochondrial damage have also been reported in A-T, BS and NBS cells. A-T, BS and NBS cells are inextricably linked to high levels of reactive oxygen species (ROS, and thereby, chronic oxidative stress may be a major phenotypic hallmark in these diseases. Due to the presence of mitochondrial disturbances, A-T, BS and NBS may be considered mitochondrial diseases. Excess activity of antioxidant enzymes and an insufficient amount of low molecular weight antioxidants indicate new pharmacological strategies for patients suffering from the aforementioned diseases. However, at the current stage of research we are unable to ascertain if antioxidants and free radical scavengers can improve the condition or prolong the survival time of A-T, BS and NBS patients. Therefore, it is necessary to conduct experimental studies in a human model.

  18. Milestones in ataxia

    Science.gov (United States)

    Klockgether, Thomas; Paulson, Henry

    2010-01-01

    The past 25 years have seen enormous progress in the deciphering of the genetic and molecular basis of ataxias resulting in an improved understanding of their pathogenesis. The most significant milestones during this period were the cloning of the genes associated with the common spinocerebellar ataxias (SCAs), ataxia telangiectasia (AT) and Friedreich ataxia (FRDA). To date, the causative mutations of more than 30 SCAs and 20 recessive ataxias have been identified. In addition, there are numerous acquired ataxias with defined molecular causes so that the entire number of distinct ataxia disorders exceeds 50 and possibly approaches 100. Despite this enormous heterogeneity, a few recurrent pathopyhsiological themes stand out. These include protein aggregation, failure of protein homoestasis, perturbations in ion channel function, defects in DNA repair and mitochondrial dysfunction. The clinical phenotypes of the most common ataxia disorders have been firmly established, and their natural history is being studied in ongoing large observational trials. Effective therapies for ataxias are still lacking. However, novel drug targets are under investigation, and it is expected that there will be an increasing number of therapeutic trials in ataxia. PMID:21626557

  19. Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations.

    Science.gov (United States)

    Bockenhauer, Detlef; Feather, Sally; Stanescu, Horia C; Bandulik, Sascha; Zdebik, Anselm A; Reichold, Markus; Tobin, Jonathan; Lieberer, Evelyn; Sterner, Christina; Landoure, Guida; Arora, Ruchi; Sirimanna, Tony; Thompson, Dorothy; Cross, J Helen; van't Hoff, William; Al Masri, Omar; Tullus, Kjell; Yeung, Stella; Anikster, Yair; Klootwijk, Enriko; Hubank, Mike; Dillon, Michael J; Heitzmann, Dirk; Arcos-Burgos, Mauricio; Knepper, Mark A; Dobbie, Angus; Gahl, William A; Warth, Richard; Sheridan, Eamonn; Kleta, Robert

    2009-05-07

    Five children from two consanguineous families presented with epilepsy beginning in infancy and severe ataxia, moderate sensorineural deafness, and a renal salt-losing tubulopathy with normotensive hypokalemic metabolic alkalosis. We investigated the genetic basis of this autosomal recessive disease, which we call the EAST syndrome (the presence of epilepsy, ataxia, sensorineural deafness, and tubulopathy). Whole-genome linkage analysis was performed in the four affected children in one of the families. Newly identified mutations in a potassium-channel gene were evaluated with the use of a heterologous expression system. Protein expression and function were further investigated in genetically modified mice. Linkage analysis identified a single significant locus on chromosome 1q23.2 with a lod score of 4.98. This region contained the KCNJ10 gene, which encodes a potassium channel expressed in the brain, inner ear, and kidney. Sequencing of this candidate gene revealed homozygous missense mutations in affected persons in both families. These mutations, when expressed heterologously in xenopus oocytes, caused significant and specific decreases in potassium currents. Mice with Kcnj10 deletions became dehydrated, with definitive evidence of renal salt wasting. Mutations in KCNJ10 cause a specific disorder, consisting of epilepsy, ataxia, sensorineural deafness, and tubulopathy. Our findings indicate that KCNJ10 plays a major role in renal salt handling and, hence, possibly also in blood-pressure maintenance and its regulation. 2009 Massachusetts Medical Society

  20. Ataxia telangiectasia: un desorden multisistémico con inestabilidad cromosómica y predisposición al cáncer

    OpenAIRE

    M. Guzmán

    1994-01-01

    El síndrome de ataxia telangiectasia (A-T) fue descrito por Syllaba y Henneren 1926 y redescrito en 1941 por Louis Bar (1,2). Es una entidad autosómica recesiva que afecta a hombres y mujeres en igual proporción. La expresividad del gen A-Tes variable y la incidencia familiares alta (1,2). Se ha estimado que la frecuencia de individuos homocigotos (afectados) para el gen A-T, es de 1/40.000 nacidos vivos y 1% de la población general serían heterocigotos (portadores). Sin embargo, la incidenci...

  1. Mutations in KCND3 cause spinocerebellar ataxia type 22

    Science.gov (United States)

    Lee, Yi-chung; Durr, Alexandra; Majczenko, Karen; Huang, Yen-hua; Liu, Yu-chao; Lien, Cheng-chang; Tsai, Pei-chien; Ichikawa, Yaeko; Goto, Jun; Monin, Marie-Lorraine; Li, Jun Z.; Chung, Ming-yi; Mundwiller, Emeline; Shakkottai, Vikram; Liu, Tze-tze; Tesson, Christelle; Lu, Yi-chun; Brice, Alexis; Tsuji, Shoji; Burmeister, Margit; Stevanin, Giovanni; Soong, Bing-wen

    2014-01-01

    Objective To identify the causative gene in SCA22, an autosomal dominant cerebellar ataxia mapped to chromosome 1p21-q23. Subjects and Methods We previously characterized a large Chinese family with progressive ataxia designated SCA22, which overlaps with the locus of SCA19. The disease locus in a French family and an Ashkenazi Jewish American family was also mapped to this region. Members from all three families were enrolled. Whole exome sequencing was performed to identify candidate mutations, which were narrowed by linkage analysis and confirmed by Sanger sequencing and co-segregation analyses. Mutational analyses were also performed in 105 Chinese and 55 Japanese families with cerebellar ataxia. Mutant gene products were examined in a heterologous expression system to address the changes in protein localization and electrophysiological functions. Results We identified heterozygous mutations in the voltage-gated potassium channel Kv4.3-encoding gene KCND3: an in-frame three-nucleotide deletion c.679_681delTTC p.F227del in both the Chinese and French pedigrees, and a missense mutation c.1034G>T p.G345V in the Ashkenazi Jewish family. Direct sequencing of KCND3 further identified three mutations, c.1034G>T p.G345V, c.1013T>C p.V338E and c.1130C>T p.T377M, in three Japanese kindreds. Immunofluorescence analyses revealed that the mutant p.F227del Kv4.3 subunits were retained in the cytoplasm, consistent with the lack of A-type K+ channel conductance in whole-cell patch-clamp recordings. Interpretation Our data identify the cause of SCA19/22 in patients of diverse ethnic origins as mutations in KCND3. These findings further emphasize the important role of ion channels as key regulators of neuronal excitability in the pathogenesis of cerebellar degeneration. PMID:23280837

  2. Three novel KCNA1 mutations in episodic ataxia type I families

    NARCIS (Netherlands)

    Scheffer, H; Brunt, ERP; Mol, GJJ; van der Vlies, P; Stulp, RP; Verlind, E; Mantel, G; Averyanov, YN; Hofstra, RMW; Buys, CHCM

    Hereditary paroxysmal ataxia, or episodic ataxia (EA), is a rare, genetically heterogeneous neurological disorder characterized by attacks of generalized ataxia. By direct sequence analysis, a different missense mutation of the potassium channel gene (KCNA1) has been identified in three families

  3. Ataxia.

    Science.gov (United States)

    Ashizawa, Tetsuo; Xia, Guangbin

    2016-08-01

    This article introduces the background and common etiologies of ataxia and provides a general approach to assessing and managing the patient with ataxia. Ataxia is a manifestation of a variety of disease processes, and an underlying etiology needs to be investigated. Pure ataxia is rare in acquired ataxia disorders, and associated symptoms and signs almost always exist to suggest an underlying cause. While the spectrum of hereditary degenerative ataxias is expanding, special attention should be addressed to those treatable and reversible etiologies, especially potentially life-threatening causes. This article summarizes the diseases that can present with ataxia, with special attention given to diagnostically useful features. While emerging genetic tests are becoming increasingly available for hereditary ataxia, they cannot replace conventional diagnostic procedures in most patients with ataxia. Special consideration should be focused on clinical features when selecting a cost-effective diagnostic test. Clinicians who evaluate patients with ataxia should be familiar with the disease spectrum that can present with ataxia. Following a detailed history and neurologic examination, proper diagnostic tests can be designed to confirm the clinical working diagnosis.

  4. Variation in Telangiectasia Predisposing Genes Is Associated With Overall Radiation Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Tanteles, George A. [Department of Genetics, University of Leicester, Leicester (United Kingdom); Department of Cancer Studies and Molecular Medicine, University Hospitals of Leicester, Leicester Royal Infirmary, Leicester (United Kingdom); Murray, Robert J.S. [Department of Genetics, University of Leicester, Leicester (United Kingdom); Mills, Jamie [Department of Cancer Studies and Molecular Medicine, University Hospitals of Leicester, Leicester Royal Infirmary, Leicester (United Kingdom); Barwell, Julian [Department of Genetics, University of Leicester, Leicester (United Kingdom); Department of Cancer Studies and Molecular Medicine, University Hospitals of Leicester, Leicester Royal Infirmary, Leicester (United Kingdom); Chakraborti, Prabir [Department of Clinical Oncology, Derby Hospitals NHS Foundation Trust, Derby (United Kingdom); Chan, Steve [Department of Clinical Oncology, Nottingham University Hospitals NHS Trust, Nottingham (United Kingdom); Cheung, Kwok-Leung [Division of Breast Surgery, University of Nottingham, Nottingham (United Kingdom); Ennis, Dawn [Department of Clinical Oncology, Derby Hospitals NHS Foundation Trust, Derby (United Kingdom); Khurshid, Nazish [Department of Genetics, University of Leicester, Leicester (United Kingdom); Lambert, Kelly [Department of Breast Surgery, University Hospitals of Leicester, Glenfield Hospital, Leicester (United Kingdom); Machhar, Rohan; Meisuria, Mitul [Department of Genetics, University of Leicester, Leicester (United Kingdom); Osman, Ahmed; Peat, Irene [Department of Cancer Studies and Molecular Medicine, University Hospitals of Leicester, Leicester Royal Infirmary, Leicester (United Kingdom); Sahota, Harjinder [Department of Genetics, University of Leicester, Leicester (United Kingdom); Woodings, Pamela [Department of Clinical Oncology, Derby Hospitals NHS Foundation Trust, Derby (United Kingdom); Talbot, Christopher J., E-mail: cjt14@le.ac.uk [Department of Genetics, University of Leicester, Leicester (United Kingdom); and others

    2012-11-15

    Purpose: In patients receiving radiotherapy for breast cancer where the heart is within the radiation field, cutaneous telangiectasiae could be a marker of potential radiation-induced heart disease. We hypothesized that single nucleotide polymorphisms (SNPs) in genes known to cause heritable telangiectasia-associated disorders could predispose to such late, normal tissue vascular damage. Methods and Materials: The relationship between cutaneous telangiectasia as a late normal tissue radiation injury phenotype in 633 breast cancer patients treated with radiotherapy was examined. Patients were clinically assessed for the presence of cutaneous telangiectasia and genotyped at nine SNPs in three candidate genes. Candidate SNPs were within the endoglin (ENG) and activin A receptor, type II-like 1 (ACVRL1) genes, mutations in which cause hereditary hemorrhagic telangiectasia and the ataxia-telangiectasia mutated (ATM) gene associated with ataxia-telangiectasia. Results: A total of 121 (19.1%) patients exhibited a degree of cutaneous telangiectasiae on clinical examination. Regression was used to examine the associations between the presence of telangiectasiae in patients who underwent breast-conserving surgery, controlling for the effects of boost and known brassiere size (n=388), and individual geno- or haplotypes. Inheritance of ACVRL1 SNPs marginally contributed to the risk of cutaneous telangiectasiae. Haplotypic analysis revealed a stronger association between inheritance of a ATM haplotype and the presence of cutaneous telangiectasiae, fibrosis and overall toxicity. No significant association was observed between telangiectasiae and the coinheritance of the candidate ENG SNPs. Conclusions: Genetic variation in the ATM gene influences reaction to radiotherapy through both vascular damage and increased fibrosis. The predisposing variation in the ATM gene will need to be better defined to optimize it as a predictive marker for assessing radiotherapy late effects.

  5. Ataxia.

    Science.gov (United States)

    Winchester, Sara; Singh, Piyush K; Mikati, Mohamad A

    2013-01-01

    The approach to the child with ataxia requires a detailed history and careful general and neurological examination as well as selected blood work and brain imaging and increasingly available genetic testing for inherited ataxias that usually have an episodic or progressive presentation. The differential of acute and recurring ataxia covered in this chapter includes intoxication (e.g., antiepileptics, lead, alcohol), postinfectious cerebellitis, hemorrhage, ischemic stroke, tumor (posterior fossa or cerebellum), brainstem encephalitis, occult neuroblastoma, Miller Fisher syndrome, conversion reaction, multiple sclerosis, epileptic pseudoataxia, vasculitis (e.g., Kawasaki), metabolic etiologies (e.g., maple syrup urine disease, pyruvate dehydrogenase deficiency, ornithine transcarbamylase deficiency, biotinidase deficiency, Hartnup disease, and argininosuccinic aciduria), migraine, migraine equivalents (benign paroxysmal positional vertigo), autosomal dominant episodic ataxias (with seven types currently identified), and hypothyroidism. Cooperation with therapists and providers from other specialties including ophthalmology and genetics and metabolism is essential to caring for these children and their families. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Adult-onset ataxia and polyneuropathy caused by mitochondrial 8993T-->C mutation.

    Science.gov (United States)

    Rantamäki, Maria T; Soini, Heidi K; Finnilä, Saara M; Majamaa, Kari; Udd, Bjarne

    2005-08-01

    The 8993T-->C mutation in mitochondrial DNA (mtDNA) has been described previously to be associated with infantile- or childhood-onset phenotypes, ranging from Leigh's syndrome to neurogenic weakness, ataxia, and retinitis pigmentosa syndrome. We report a kindred with adult-onset slowly progressive ataxia and polyneuropathy and with the heteroplasmic 8993T-->C mutation. Our findings suggest that the 8993T-->C mtDNA mutation should be considered in the differential diagnosis of nondominant adult-onset ataxia and axonal neuropathy.

  7. Polg mutation in a patient with recurrent major depression, cardiomyopathy and ataxia

    NARCIS (Netherlands)

    Verhoeven, W.M.A.; Egger, J.I.M.; Kremer, H.P.H.; Pont, B.J.H.B. de; Marcelis, C.L.M.

    2012-01-01

    Introduction Spinocerebellar ataxias represent a heterogeneous group of neurodegenerative disorders. Over the last decade, novel mitochondrial genetic diseases have been identified in which mutations in DNA polymerase γ (POLG) gene are involved. POLG1 is essential for mitochondrial (mt) DNA

  8. Mutation affecting the proximal promoter of Endoglin as the origin of hereditary hemorrhagic telangiectasia type 1.

    Science.gov (United States)

    Albiñana, Virginia; Zafra, Ma Paz; Colau, Jorge; Zarrabeitia, Roberto; Recio-Poveda, Lucia; Olavarrieta, Leticia; Pérez-Pérez, Julián; Botella, Luisa M

    2017-02-23

    Hereditary hemorrhagic telangiectasia (HHT) is a vascular multi-organ system disorder. Its diagnostic criteria include epistaxis, telangiectases in mucocutaneous sites, arteriovenous malformations (AVMs), and familial inheritance. HHT is transmitted as an autosomal dominant condition, caused in 85% of cases by mutations in either Endoglin (ENG) or Activin receptor-like kinase (ACVRL1/ACVRL1/ALK1) genes. Pathogenic mutations have been described in exons, splice junctions and, in a few cases with ENG mutations, in the proximal promoter, which creates a new ATG start site. However, no mutations affecting transcription regulation have been described to date in HHT, and this type of mutation is rarely identified in the literature on rare diseases. Sequencing data from a family with HHT lead to single nucleotide change, c.-58G > A. The functionality and pathogenicity of this change was analyzed by in vitro mutagenesis, quantitative PCR and Gel shift assay. Student t test was used for statistical significance. A single nucleotide change, c.-58G > A, in the proximal ENG promoter co-segregated with HHT clinical features in an HHT family. This mutation was present in the proband and in 2 other symptomatic members, whereas 2 asymptomatic relatives did not harbor the mutation. Analysis of RNA from activated monocytes from the probands and the healthy brother revealed reduced ENG mRNA expression in the HHT patient (p = 0.005). Site-directed mutagenesis of the ENG promoter resulted in a three-fold decrease in luciferase activity of the mutant c.-58A allele compared to wild type (p = 0.005). Finally, gel shift assay identified a DNA-protein specific complex. The novel ENG c.-58G > A substitution in the ENG promoter co-segregates with HHT symptoms in a family and appears to affect the transcriptional regulation of the gene, resulting in reduced ENG expression. ENG c.-58G > A may therefore be a pathogenic HHT mutation leading to haploinsufficiency of

  9. Ataxia telangiectasia: un desorden multisistémico con inestabilidad cromosómica y predisposición al cáncer

    Directory of Open Access Journals (Sweden)

    M. Guzmán

    1994-12-01

    Full Text Available El síndrome de ataxia telangiectasia (A-T fue descrito por Syllaba y Henneren 1926 y redescrito en 1941 por Louis Bar (1,2. Es una entidad autosómica recesiva que afecta a hombres y mujeres en igual proporción. La expresividad del gen A-Tes variable y la incidencia familiares alta (1,2. Se ha estimado que la frecuencia de individuos homocigotos (afectados para el gen A-T, es de 1/40.000 nacidos vivos y 1% de la población general serían heterocigotos (portadores. Sin embargo, la incidencia en la población se puede incrementar ya que los homocigotos pueden tener descendencia. Es así como se estima que en la población blanca de Estados Unidos los heterocigotos podrían llegar a constituir el 1,4% de la población (2,3. Otros autores estiman una frecuencia de heterocigotos mucho más alta entre 0,68% y 7,7% de la población (4.

  10. Spinocerebellar ataxia type 29 due to mutations in ITPR1: a case series and review of this emerging congenital ataxia.

    Science.gov (United States)

    Zambonin, Jessica L; Bellomo, Allison; Ben-Pazi, Hilla; Everman, David B; Frazer, Lee M; Geraghty, Michael T; Harper, Amy D; Jones, Julie R; Kamien, Benjamin; Kernohan, Kristin; Koenig, Mary Kay; Lines, Matthew; Palmer, Elizabeth Emma; Richardson, Randal; Segel, Reeval; Tarnopolsky, Mark; Vanstone, Jason R; Gibbons, Melissa; Collins, Abigail; Fogel, Brent L; Dudding-Byth, Tracy; Boycott, Kym M

    2017-06-28

    Spinocerebellar ataxia type 29 (SCA29) is an autosomal dominant, non-progressive cerebellar ataxia characterized by infantile-onset hypotonia, gross motor delay and cognitive impairment. Affected individuals exhibit cerebellar dysfunction and often have cerebellar atrophy on neuroimaging. Recently, missense mutations in ITPR1 were determined to be responsible. Clinical information on 21 individuals from 15 unrelated families with ITPR1 mutations was retrospectively collected using standardized questionnaires, including 11 previously unreported singletons and 2 new patients from a previously reported family. We describe the genetic, clinical and neuroimaging features of these patients to further characterize the clinical features of this rare condition and assess for any genotype-phenotype correlation for this disorder. Our cohort consisted of 9 males and 12 females, with ages ranging from 28 months to 49 years. Disease course was non-progressive with infantile-onset hypotonia and delays in motor and speech development. Gait ataxia was present in all individuals and 10 (48%) were not ambulating independently between the ages of 3-12 years of age. Mild-to-moderate cognitive impairment was present in 17 individuals (85%). Cerebellar atrophy developed after initial symptom presentation in 13 individuals (72%) and was not associated with disease progression or worsening functional impairment. We identified 12 different mutations including 6 novel mutations; 10 mutations were missense (with 4 present in >1 individual), 1 a splice site mutation leading to an in-frame insertion and 1 an in-frame deletion. No specific genotype-phenotype correlations were observed within our cohort. Our findings document significant clinical heterogeneity between individuals with SCA29 in a large cohort of molecularly confirmed cases. Based on the retrospective observed clinical features and disease course, we provide recommendations for management. Further research into the natural

  11. Identification of a novel mutation in theAPTXgene associated with ataxia-oculomotor apraxia.

    Science.gov (United States)

    Inlora, Jingga; Sailani, M Reza; Khodadadi, Hamidreza; Teymurinezhad, Ahmad; Takahashi, Shinichi; Bernstein, Jonathan A; Garshasbi, Masoud; Snyder, Michael P

    2017-11-01

    Hereditary ataxias are a clinically and genetically heterogeneous family of disorders defined by the inability to control gait and muscle coordination. Given the nonspecific symptoms of many hereditary ataxias, precise diagnosis relies on molecular genetic testing. To this end, we conducted whole-exome sequencing (WES) on a large consanguineous Iranian family with hereditary ataxia and oculomotor apraxia. WES in five affected and six unaffected individuals resulted in the identification of a homozygous novel stop-gain mutation in the APTX gene (c.739A>T; p.Lys247*) that segregates with the phenotype. Mutations in the APTX (OMIM 606350) gene are associated with ataxia with oculomotor apraxia type 1 (OMIM 208920). © 2017 Inlora et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy

    DEFF Research Database (Denmark)

    Winkelmann, Juliane; Lin, Ling; Schormair, Barbara

    2012-01-01

    Autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN) is characterized by late onset (30-40 years old) cerebellar ataxia, sensory neuronal deafness, narcolepsy-cataplexy and dementia. We performed exome sequencing in five individuals from three ADCA-DN kindreds and identified DNMT.......GLY605Ala mutation was subsequently identified. Narcolepsy and deafness were the first symptoms to appear in all pedigrees, followed by ataxia. DNMT1 is a widely expressed DNA methyltransferase maintaining methylation patterns in development, and mediating transcriptional repression by direct binding...

  13. Functional Analysis Helps to Define KCNC3 Mutational Spectrum in Dutch Ataxia Cases

    NARCIS (Netherlands)

    Duarri, Anna; Nibbeling, Esther A. R.; Fokkens, Michiel R.; Meijer, Michel; Boerrigter, Melissa; Verschuuren - Bemelmans, Corien C.; Kremer, Berry P. H.; van de Warrenburg, Bart P.; Dooijes, Dennis; Boddeke, Erik; Sinke, Richard J.; Verbeek, Dineke S.

    2015-01-01

    Spinocerebellar ataxia type 13 (SCA13) is an autosomal dominantly inherited neurodegenerative disorder of the cerebellum caused by mutations in the voltage gated potassium channel KCNC3. To identify novel pathogenic SCA13 mutations in KCNC3 and to gain insights into the disease prevalence in the

  14. KCNC3: phenotype, mutations, channel biophysics-a study of 260 familial ataxia patients.

    Science.gov (United States)

    Figueroa, Karla P; Minassian, Natali A; Stevanin, Giovanni; Waters, Michael; Garibyan, Vartan; Forlani, Sylvie; Strzelczyk, Adam; Bürk, Katrin; Brice, Alexis; Dürr, Alexandra; Papazian, Diane M; Pulst, Stefan M

    2010-02-01

    We recently identified KCNC3, encoding the Kv3.3 voltage-gated potassium channel, as the gene mutated in SCA13. One g.10684G>A (p.Arg420His) mutation caused late-onset ataxia resulting in a nonfunctional channel subunit with dominant-negative properties. A French early-onset pedigree with mild mental retardation segregated a g.10767T>C (p.Phe448Leu) mutation. This mutation changed the relative stability of the channel's open conformation. Coding exons were amplified and sequenced in 260 autosomal-dominant ataxia index cases of European descent. Functional analyses were performed using expression in Xenopus oocytes. The previously identified p.Arg420His mutation occurred in three families with late-onset ataxia. A novel mutation g.10693G>A (p.Arg423His) was identified in two families with early-onset. In one pedigree, a novel g.10522G>A (p.Arg366His) sequence variant was seen in one index case but did not segregate with affected status in the respective family. In a heterologous expression system, the p.Arg423His mutation exhibited dominant-negative properties. The p.Arg420His mutation, which results in a nonfunctional channel subunit, was recurrent and associated with late-onset progressive ataxia. In two families the p.Arg423His mutation was associated with early-onset slow-progressive ataxia. Despite a phenotype reminiscent of the p.Phe448Leu mutation, segregating in a large early-onset French pedigree, the p.Arg423His mutation resulted in a nonfunctional subunit with a strong dominant-negative effect. (c) 2009 Wiley-Liss, Inc.

  15. KCNC3: Phenotype, mutations, channel biophysics – a study of 260 familial ataxia patients

    Science.gov (United States)

    Figueroa, Karla P.; Minassian, Natali A.; Stevanin, Giovanni; Waters, Michael; Garibyan, Vartan; Forlani, Sylvie; Strzelczyk, Adam; Bűrk, Katrin; Brice, Alexis; Dűrr, Alexandra; Papazian, Diane M.; Pulst, Stefan-M

    2009-01-01

    We recently identified KCNC3, encoding the Kv3.3 voltage-gated potassium channel, as the gene mutated in SCA13. One g.10684G>A (p.Arg420His) mutation caused late-onset ataxia resulting in a non-functional channel subunit with dominant-negative properties. A French early-onset pedigree with mild mental retardation segregated a g.10767T>C (p.Phe448Leu) mutation. This mutation changed the relative stability of the channel’s open conformation. Coding exons were amplified and sequenced in 260 autosomal-dominant ataxia index cases of European descent. Functional analyses were performed using expression in Xenopus oocytes. The previously identified p.Arg420His mutation occurred in three families with late-onset ataxia. A novel mutation g.10693G>A (p.Arg423His) was identified in two families with early-onset. In one pedigree, a novel g.10522G>A (p.Arg366His) sequence variant was seen in one index case but did not segregate with affected status in the respective family. In a heterologous expression system, the p.Arg423His mutation exhibited dominant negative properties. The p.Arg420His mutation, results in a non-functional channel subunit was recurrent and associated with late-onset progressive ataxia. In two families the p.Arg423His mutation was associated with early-onset slow progressive ataxia. Despite a phenotype reminiscent of the p.Phe448Leu mutation, segregating in a large early-onset French pedigree, the p.Arg423His mutation resulted in a nonfunctional subunit with a strong dominant-negative effect. PMID:19953606

  16. Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia

    Directory of Open Access Journals (Sweden)

    Huang Lijia

    2012-09-01

    Full Text Available Abstract Background Congenital nonprogressive spinocerebellar ataxia is characterized by early gross motor delay, hypotonia, gait ataxia, mild dysarthria and dysmetria. The clinical presentation remains fairly stable and may be associated with cerebellar atrophy. To date, only a few families with autosomal dominant congenital nonprogressive spinocerebellar ataxia have been reported. Linkage to 3pter was demonstrated in one large Australian family and this locus was designated spinocerebellar ataxia type 29. The objective of this study is to describe an unreported Canadian family with autosomal dominant congenital nonprogressive spinocerebellar ataxia and to identify the underlying genetic causes in this family and the original Australian family. Methods and Results Exome sequencing was performed for the Australian family, resulting in the identification of a heterozygous mutation in the ITPR1 gene. For the Canadian family, genotyping with microsatellite markers and Sanger sequencing of ITPR1 gene were performed; a heterozygous missense mutation in ITPR1 was identified. Conclusions ITPR1 encodes inositol 1,4,5-trisphosphate receptor, type 1, a ligand-gated ion channel that mediates calcium release from the endoplasmic reticulum. Deletions of ITPR1 are known to cause spinocerebellar ataxia type 15, a distinct and very slowly progressive form of cerebellar ataxia with onset in adulthood. Our study demonstrates for the first time that, in addition to spinocerebellar ataxia type 15, alteration of ITPR1 function can cause a distinct congenital nonprogressive ataxia; highlighting important clinical heterogeneity associated with the ITPR1 gene and a significant role of the ITPR1-related pathway in the development and maintenance of the normal functions of the cerebellum.

  17. Spontaneous chromosomal aberrations in Fanconi anaemia, ataxia telangiectasia fibroblast and Bloom's syndrome lymphoblastoid cell lines as detected by conventional cytogenetic analysis and fluorescence in situ hybridisation (FISH) technique.

    Science.gov (United States)

    Sakamoto Hojo, E T; van Diemen, P C; Darroudi, F; Natarajan, A T

    1995-02-01

    Several primary and transformed human cell lines derived from cancer prone patients are employed routinely for biochemical and DNA repair studies. Since transformation leads to some chromosomal instability a cytogenetic analysis of spontaneous chromosome aberrations in fibroblast cell lines derived from patients with Fanconi anaemia (FA), ataxia telangiectasia (AT), and in lymphoblastoid cell lines derived from patients with Bloom's syndrome (BS), was undertaken. Unstable aberrations were analysed in Giemsa stained preparations and the chromosome painting technique was used for evaluating the frequencies of stable aberrations (translocations). In addition, the frequency of sister-chromatid exchanges (SCEs) was determined in differentially stained metaphases. The SV40-transformed fibroblasts from these cell lines have higher frequencies of unstable aberrations than the primary fibroblasts. In the four lymphoblastoid cell lines derived from BS patients higher frequencies of spontaneously occurring chromosomal aberrations in comparison to normal TK6wt cells were also evident. The frequency of spontaneously occurring chromosome translocations was determined with fluorescence in situ hybridisation (FISH) and using DNA libraries specific for chromosomes 1, 2, 3, 4, 7, 8, 11, 14, 19, 20 and X. The translocation levels were found to be elevated for primary FA fibroblasts and lymphoblastoid cells derived from BS patients in comparison with control cell lines, hetero- and homozygote BS cell lines not differing in this respect. The SV40-transformed cell lines showed very high frequencies of translocations independent of their origin and almost every cell contained at least one translocation. In addition, clonal translocations were found in transformed control TK6wt and AT cell lines for chromosomes 20 and 14, respectively. The spontaneous frequencies of SCEs were similar in transformed fibroblasts derived from normal individuals and AT patients, whereas in SV40-transformed FA

  18. PMPCA mutations cause abnormal mitochondrial protein processing in patients with non-progressive cerebellar ataxia.

    Science.gov (United States)

    Jobling, Rebekah K; Assoum, Mirna; Gakh, Oleksandr; Blaser, Susan; Raiman, Julian A; Mignot, Cyril; Roze, Emmanuel; Dürr, Alexandra; Brice, Alexis; Lévy, Nicolas; Prasad, Chitra; Paton, Tara; Paterson, Andrew D; Roslin, Nicole M; Marshall, Christian R; Desvignes, Jean-Pierre; Roëckel-Trevisiol, Nathalie; Scherer, Stephen W; Rouleau, Guy A; Mégarbané, André; Isaya, Grazia; Delague, Valérie; Yoon, Grace

    2015-06-01

    Non-progressive cerebellar ataxias are a rare group of disorders that comprise approximately 10% of static infantile encephalopathies. We report the identification of mutations in PMPCA in 17 patients from four families affected with cerebellar ataxia, including the large Lebanese family previously described with autosomal recessive cerebellar ataxia and short stature of Norman type and localized to chromosome 9q34 (OMIM #213200). All patients present with non-progressive cerebellar ataxia, and the majority have intellectual disability of variable severity. PMPCA encodes α-MPP, the alpha subunit of mitochondrial processing peptidase, the primary enzyme responsible for the maturation of the vast majority of nuclear-encoded mitochondrial proteins, which is necessary for life at the cellular level. Analysis of lymphoblastoid cells and fibroblasts from patients homozygous for the PMPCA p.Ala377Thr mutation and carriers demonstrate that the mutation impacts both the level of the alpha subunit encoded by PMPCA and the function of mitochondrial processing peptidase. In particular, this mutation impacts the maturation process of frataxin, the protein which is depleted in Friedreich ataxia. This study represents the first time that defects in PMPCA and mitochondrial processing peptidase have been described in association with a disease phenotype in humans. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Adult-onset spinocerebellar ataxia syndromes due to MTATP6 mutations.

    Science.gov (United States)

    Pfeffer, Gerald; Blakely, Emma L; Alston, Charlotte L; Hassani, Adam; Boggild, Mike; Horvath, Rita; Samuels, David C; Taylor, Robert W; Chinnery, Patrick F

    2012-09-01

    Spinocerebellar ataxia syndromes presenting in adulthood have a broad range of causes, and despite extensive investigation remain undiagnosed in up to ∼50% cases. Mutations in the mitochondrially encoded MTATP6 gene typically cause infantile-onset Leigh syndrome and, occasionally, have onset later in childhood. The authors report two families with onset of ataxia in adulthood (with pyramidal dysfunction and/or peripheral neuropathy variably present), who are clinically indistinguishable from other spinocerebellar ataxia patients. Genetic screening study of the MTATP6 gene in 64 pedigrees with unexplained ataxia, and case series of two families who had MTATP6 mutations. Three pedigrees had mutations in MTATP6, two of which have not been reported previously and are detailed in this report. These families had the m.9185T>C and m.9035T>C mutations, respectively, which have not previously been associated with adult-onset cerebellar syndromes. Other investigations including muscle biopsy and respiratory chain enzyme activity were non-specific or normal. MTATP6 sequencing should be considered in the workup of undiagnosed ataxia, even if other investigations do not suggest a mitochondrial DNA disorder.

  20. Missense mutations of CACNA1A are a frequent cause of autosomal dominant nonprogressive congenital ataxia.

    Science.gov (United States)

    Travaglini, Lorena; Nardella, Marta; Bellacchio, Emanuele; D'Amico, Adele; Capuano, Alessandro; Frusciante, Roberto; Di Capua, Matteo; Cusmai, Raffaella; Barresi, Sabina; Morlino, Silvia; Fernández-Fernández, José M; Trivisano, Marina; Specchio, Nicola; Valeriani, Massimiliano; Vigevano, Federico; Bertini, Enrico; Zanni, Ginevra

    2017-05-01

    Mutations in the CACNA1A gene, encoding the pore-forming CaV2.1 (P/Q-type) channel α1A subunit, localized at presynaptic terminals of brain and cerebellar neurons, result in clinically variable neurological disorders including hemiplegic migraine (HM) and episodic or progressive adult-onset ataxia (EA2, SCA6). Most recently, CACNA1A mutations have been identified in patients with nonprogressive congenital ataxia (NPCA). We performed targeted resequencing of known genes involved in cerebellar dysfunction, in 48 patients with congenital or early onset ataxia associated with cerebellar and/or vermis atrophy. De novo missense mutations of CACNA1A were found in four patients (4/48, ∼8.3%). Three of them developed migraine before or after the onset of ataxia. Seizures were present in half of the cases. Our results expand the clinical and mutational spectrum of CACNA1A-related phenotype in childhood and suggest that CACNA1A screening should be implemented in this subgroup of ataxias. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  1. Mutations in AIFM1 cause an X-linked childhood cerebellar ataxia partially responsive to riboflavin.

    Science.gov (United States)

    Heimer, G; Eyal, E; Zhu, X; Ruzzo, E K; Marek-Yagel, D; Sagiv, Doron; Anikster, Y; Reznik-Wolf, H; Pras, E; Oz Levi, D; Lancet, D; Ben-Zeev, B; Nissenkorn, A

    2017-09-15

    AIFM1 encodes a mitochondrial flavoprotein with a dual role (NADH oxidoreductase and regulator of apoptosis), which uses riboflavin as a cofactor. Mutations in the X-linked AIFM1 were reported in relation to two main phenotypes: a severe infantile mitochondrial encephalomyopathy and an early-onset axonal sensorimotor neuropathy with hearing loss. In this paper we report two unrelated males harboring AIFM1 mutations (one of which is novel) who display distinct phenotypes including progressive ataxia which partially improved with riboflavin treatment. For both patients trio whole exome sequencing was performed. Validation and segregation were performed with Sanger sequencing. Following the diagnosis, patients were treated with up to 200 mg riboflavin/day for 12 months. Ataxia was assessed by the ICARS scale at baseline, and 6 and 12 months following treatment. Patient 1 presented at the age of 5 years with auditory neuropathy, followed by progressive ataxia, vermian atrophy and axonal neuropathy. Patient 2 presented at the age of 4.5 years with severe limb and palatal myoclonus, followed by ataxia, cerebellar atrophy, ophthalmoplegia, sensorineural hearing loss, hyporeflexia and cardiomyopathy. Two deleterious missense mutations were found in the AIFM1 gene: p. Met340Thr mutation located in the FAD dependent oxidoreductase domain and the novel p. Thr141Ile mutation located in a highly conserved DNA binding motif. Ataxia score, decreased by 39% in patient 1 and 20% in patient 2 following 12 months of treatment. AIFM1 mutations cause childhood cerebellar ataxia, which may be partially treatable in some patients with high dose riboflavin. Copyright © 2017 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  2. Novel Autosomal Recessive c10orf2 Mutations Causing Infantile-Onset Spinocerebellar Ataxia

    OpenAIRE

    Hartley, Jessica N.; Booth, Frances A.; Del Bigio, Marc R.; Mhanni, Aizeddin A.

    2012-01-01

    Recessive mutations in genes encoding mitochondrial DNA replication machinery lead to mitochondrial DNA depletion syndromes. This genetically and phenotypically heterogeneous group includes infantile onset spinocerebellar ataxia (OMIM# 271245) a neurodegenerative disease caused by mutations in the mtDNA helicase gene, c10orf2, with an increased frequency in the Finnish population due to a founder mutation. We describe a child of English descent who presented with a severe phenotype of IOSCA ...

  3. Pure Cerebellar Ataxia with Homozygous Mutations in the PNPLA6 Gene.

    Science.gov (United States)

    Wiethoff, Sarah; Bettencourt, Conceição; Paudel, Reema; Madon, Prochi; Liu, Yo-Tsen; Hersheson, Joshua; Wadia, Noshir; Desai, Joy; Houlden, Henry

    2017-02-01

    Autosomal-recessive cerebellar ataxias (ARCA) are clinically and genetically heterogeneous conditions primarily affecting the cerebellum. Mutations in the PNPLA6 gene have been identified as the cause of hereditary spastic paraplegia and complex forms of ataxia associated with retinal and endocrine manifestations in a field where the genotype-phenotype correlations are rapidly expanding. We identified two cousins from a consanguineous family belonging to a large Zoroastrian (Parsi) family residing in Mumbai, India, who presented with pure cerebellar ataxia without chorioretinal dystrophy or hypogonadotropic hypogonadism. We used a combined approach of clinical characterisation, homozygosity mapping, whole-exome and Sanger sequencing to identify the genetic defect in this family. The phenotype in the family was pure cerebellar ataxia. Homozygosity mapping revealed one large region of shared homozygosity at chromosome 19p13 between affected individuals. Within this region, whole-exome sequencing of the index case identified two novel homozygous missense variants in the PNPLA6 gene at c.3847G>A (p.V1283M) and c.3929A>T (p.D1310V) in exon 32. Both segregated perfectly with the disease in this large family, with only the two affected cousins being homozygous. We identified for the first time PNPLA6 mutations associated with pure cerebellar ataxia in a large autosomal-recessive Parsi kindred. Previous mutations in this gene have been associated with a more complex phenotype but the results here suggest an extension of the associated disease spectrum.

  4. Hypomorphic mutations in POLR3A are a frequent cause of sporadic and recessive spastic ataxia.

    Science.gov (United States)

    Minnerop, Martina; Kurzwelly, Delia; Wagner, Holger; Soehn, Anne S; Reichbauer, Jennifer; Tao, Feifei; Rattay, Tim W; Peitz, Michael; Rehbach, Kristina; Giorgetti, Alejandro; Pyle, Angela; Thiele, Holger; Altmüller, Janine; Timmann, Dagmar; Karaca, Ilker; Lennarz, Martina; Baets, Jonathan; Hengel, Holger; Synofzik, Matthis; Atasu, Burcu; Feely, Shawna; Kennerson, Marina; Stendel, Claudia; Lindig, Tobias; Gonzalez, Michael A; Stirnberg, Rüdiger; Sturm, Marc; Roeske, Sandra; Jung, Johanna; Bauer, Peter; Lohmann, Ebba; Herms, Stefan; Heilmann-Heimbach, Stefanie; Nicholson, Garth; Mahanjah, Muhammad; Sharkia, Rajech; Carloni, Paolo; Brüstle, Oliver; Klopstock, Thomas; Mathews, Katherine D; Shy, Michael E; de Jonghe, Peter; Chinnery, Patrick F; Horvath, Rita; Kohlhase, Jürgen; Schmitt, Ina; Wolf, Michael; Greschus, Susanne; Amunts, Katrin; Maier, Wolfgang; Schöls, Ludger; Nürnberg, Peter; Zuchner, Stephan; Klockgether, Thomas; Ramirez, Alfredo; Schüle, Rebecca

    2017-06-01

    Despite extensive efforts, half of patients with rare movement disorders such as hereditary spastic paraplegias and cerebellar ataxias remain genetically unexplained, implicating novel genes and unrecognized mutations in known genes. Non-coding DNA variants are suspected to account for a substantial part of undiscovered causes of rare diseases. Here we identified mutations located deep in introns of POLR3A to be a frequent cause of hereditary spastic paraplegia and cerebellar ataxia. First, whole-exome sequencing findings in a recessive spastic ataxia family turned our attention to intronic variants in POLR3A, a gene previously associated with hypomyelinating leukodystrophy type 7. Next, we screened a cohort of hereditary spastic paraplegia and cerebellar ataxia cases (n = 618) for mutations in POLR3A and identified compound heterozygous POLR3A mutations in ∼3.1% of index cases. Interestingly, >80% of POLR3A mutation carriers presented the same deep-intronic mutation (c.1909+22G>A), which activates a cryptic splice site in a tissue and stage of development-specific manner and leads to a novel distinct and uniform phenotype. The phenotype is characterized by adolescent-onset progressive spastic ataxia with frequent occurrence of tremor, involvement of the central sensory tracts and dental problems (hypodontia, early onset of severe and aggressive periodontal disease). Instead of the typical hypomyelination magnetic resonance imaging pattern associated with classical POLR3A mutations, cases carrying c.1909+22G>A demonstrated hyperintensities along the superior cerebellar peduncles. These hyperintensities may represent the structural correlate to the cerebellar symptoms observed in these patients. The associated c.1909+22G>A variant was significantly enriched in 1139 cases with spastic ataxia-related phenotypes as compared to unrelated neurological and non-neurological phenotypes and healthy controls (P = 1.3 × 10-4). In this study we demonstrate that (i) autosomal

  5. The ataxia (axJ mutation causes abnormal GABAA receptor turnover in mice.

    Directory of Open Access Journals (Sweden)

    Corinna Lappe-Siefke

    2009-09-01

    Full Text Available Ataxia represents a pathological coordination failure that often involves functional disturbances in cerebellar circuits. Purkinje cells (PCs characterize the only output neurons of the cerebellar cortex and critically participate in regulating motor coordination. Although different genetic mutations are known that cause ataxia, little is known about the underlying cellular mechanisms. Here we show that a mutated ax(J gene locus, encoding the ubiquitin-specific protease 14 (Usp14, negatively influences synaptic receptor turnover. Ax(J mouse mutants, characterized by cerebellar ataxia, display both increased GABA(A receptor (GABA(AR levels at PC surface membranes accompanied by enlarged IPSCs. Accordingly, we identify physical interaction of Usp14 and the GABA(AR alpha1 subunit. Although other currently unknown changes might be involved, our data show that ubiquitin-dependent GABA(AR turnover at cerebellar synapses contributes to ax(J-mediated behavioural impairment.

  6. Mutations in endoglin and in activin receptor-like kinase 1 among Danish patients with hereditary haemorrhagic telangiectasia

    DEFF Research Database (Denmark)

    Brusgaard, K; Kjeldsen, A D; Poulsen, L

    2004-01-01

    Hereditary haemorrhagic telangiectasia (HHT) is a rare disorder with one per 6000-10,000 affected individuals in the general Caucasian population. HHT is genetically heterogeneous, involving at least two loci HHT1 mapping to chromosome 9q34.1 and HHT2 mapping to chromosome 12q31. The loci have been...... identified as endoglin (ENG) and activin receptor-like kinase 1 (ALK1). In order to gain knowledge of the genotype distribution and prevalence in the Danish population and to establish a reproducible and sensitive molecular genetic test method, we developed a denaturating gradient gel electrophoresis...... protocol for mutation scanning of the two loci. Twenty-five Danish HHT families were tested. A total of eight new as well as seven previously reported mutations were identified. A founder mutation was characterized present in seven families and possibly introduced around 350 years ago. In one individual...

  7. Spinocerebellar ataxia 35: novel mutations in TGM6 with clinical and genetic characterization.

    Science.gov (United States)

    Guo, Yuh-Cherng; Lin, Juei-Jueng; Liao, Yi-Chu; Tsai, Pei-Chien; Lee, Yi-Chung; Soong, Bing-Wen

    2014-10-21

    To elucidate the clinical and cellular characteristics of spinocerebellar ataxia type 35 (SCA35), which is caused by mutations in the TGM6 gene encoding transglutaminase 6 (TG6), in a Taiwanese cohort. Mutations in TGM6 were ascertained in 109 unrelated probands of Chinese descent with molecularly unassigned SCA from 512 pedigrees, in whom mutations responsible for 15 other ataxia syndromes had been excluded. The clinical features of all patients with a TGM6 mutation were systematically analyzed. The biological consequences of the newly identified TGM6 mutations were investigated in HEK293 cells transfected with mutant complementary DNA constructs. Two missense mutations (p.R111C and p.D510H) and one 3-base pair deletion (p.E574del) in TGM6 were identified. Among them, p.R111C and p.E574del were novel. The common features of SCA35 include a slowly progressive clinical course, trunk/limb ataxia, and hand tremors. The age at onset varies from adolescence to the fifth decade. Torticollis and intellectual impairment are rare manifestations. Brain MRI reveals diffuse cerebellar atrophy without involvement of the cerebral hemispheres or brainstem. The 3 mutations identified here attenuated the protein stability and catalytic activities of TG6. SCA35 is an uncommon ataxia syndrome, accounting for 0.6% (3/512) of SCAs among the Han-Chinese descent in Taiwan. This study broadens the mutational spectrum of SCA35 and stresses the importance of TG6 in cerebellar functions. © 2014 American Academy of Neurology.

  8. Cerebellar ataxia-dominant phenotype in patients with ERCC4 mutations.

    Science.gov (United States)

    Doi, Hiroshi; Koyano, Shigeru; Miyatake, Satoko; Nakajima, Shinji; Nakazawa, Yuka; Kunii, Misako; Tomita-Katsumoto, Atsuko; Oda, Kayoko; Yamaguchi, Yukie; Fukai, Ryoko; Ikeda, Shingo; Kato, Rumiko; Ogata, Katsuhisa; Kubota, Shun; Hayashi, Noriko; Takahashi, Keita; Tada, Mikiko; Tanaka, Kenichi; Nakashima, Mitsuko; Tsurusaki, Yoshinori; Miyake, Noriko; Saitsu, Hirotomo; Ogi, Tomoo; Aihara, Michiko; Takeuchi, Hideyuki; Matsumoto, Naomichi; Tanaka, Fumiaki

    2018-02-05

    Autosomal recessive cerebellar ataxias (ARCAs) are clinically and genetically heterogeneous neurological disorders. Through whole-exome sequencing of Japanese ARCA patients, we identified three index patients from unrelated families who had biallelic mutations in ERCC4. ERCC4 mutations have been known to cause xeroderma pigmentosum complementation group F (XP-F), Cockayne syndrome, and Fanconi anemia phenotypes. All of the patients described here showed very slowly progressive cerebellar ataxia and cognitive decline with choreiform involuntary movement, with young adolescent or midlife onset. Brain MRI demonstrated atrophy that included the cerebellum and brainstem. Of note, cutaneous symptoms were very mild: there was normal to very mild pigmentation of exposed skin areas and/or an equivocal history of pathological sunburn. However, an unscheduled DNA synthesis assay of fibroblasts from the patient revealed impairment of nucleotide excision repair. A similar phenotype was very recently recognized through genetic analysis of Caucasian cerebellar ataxia patients. Our results confirm that biallelic ERCC4 mutations cause a cerebellar ataxia-dominant phenotype with mild cutaneous symptoms, possibly accounting for a high proportion of the genetic causes of ARCA in Japan, where XP-F is prevalent.

  9. Relapsing encephalopathy with cerebellar ataxia related to an ATP1A3 mutation.

    Science.gov (United States)

    Dard, Rodolphe; Mignot, Cyril; Durr, Alexandra; Lesca, Gaetan; Sanlaville, Damien; Roze, Emmanuel; Mochel, Fanny

    2015-12-01

    ATP1A3, the gene encoding the α3-subunit of the Na(+) /K(+) -ATPase pump, has been involved in four clinical neurological entities: (1) alternating hemiplegia of childhood (AHC); (2) rapid-onset dystonia parkinsonism (RDP); (3) CAPOS (cerebellar ataxia, areflexia, pes cavus, optic atrophy, sensorineural hearing loss) syndrome; and (4) early infantile epileptic encephalopathy. Here, we report on a 34-year-old female presenting with a new ATP1A3-related entity involving a relapsing encephalopathy characterized by recurrent episodes of cerebellar ataxia and altered consciousness during febrile illnesses. The term RECA is suggested - relapsing encephalopathy with cerebellar ataxia. The phenotype of this patient, resembling mitochondrial oxidative phosphorylation defects, emphasizes the possible role of brain energy deficiency in patients with ATP1A3 mutations. Rather than multiple overlapping syndromes, ATP1A3-related disorders might be seen as a phenotypic continuum. © 2015 Mac Keith Press.

  10. Functional and splicing defect analysis of 23 ACVRL1 mutations in a cohort of patients affected by Hereditary Hemorrhagic Telangiectasia.

    Directory of Open Access Journals (Sweden)

    Ferdos Alaa El Din

    Full Text Available Hereditary Hemorrhagic Telangiectasia syndrome (HHT or Rendu-Osler-Weber (ROW syndrome is an autosomal dominant vascular disorder. Two most common forms of HHT, HHT1 and HHT2, have been linked to mutations in the endoglin (ENG and activin receptor-like kinase 1 (ACVRL1or ALK1 genes respectively. This work was designed to examine the pathogenicity of 23 nucleotide variations in ACVRL1 gene detected in more than 400 patients. Among them, 14 missense mutations and one intronic variant were novels, and 8 missense mutations were previously identified with questionable implication in HHT2. The functionality of missense mutations was analyzed in response to BMP9 (specific ligand of ALK1, the maturation of the protein products and their localization were analyzed by western blot and fluorescence microscopy. The splicing impairment of the intronic and of two missense mutations was examined by minigene assay. Functional analysis showed that 18 out of 22 missense mutations were defective. Splicing analysis revealed that one missense mutation (c.733A>G, p.Ile245Val affects the splicing of the harboring exon 6. Similarly, the intronic mutation outside the consensus splicing sites (c.1048+5G>A in intron 7 was seen pathogenic by splicing study. Both mutations induce a frame shift creating a premature stop codon likely resulting in mRNA degradation by NMD surveillance mechanism. Our results confirm the haploinsufficiency model proposed for HHT2. The affected allele of ACVRL1 induces mRNA degradation or the synthesis of a protein lacking the receptor activity. Furthermore, our data demonstrate that functional and splicing analyses together, represent two robust diagnostic tools to be used by geneticists confronted with novel or conflicted ACVRL1 mutations.

  11. Mutations in the ALK-1 gene and the phenotype of hereditary hemorrhagic telangiectasia in two large Danish families

    DEFF Research Database (Denmark)

    Kjeldsen, A D; Brusgaard, K; Poulsen, L

    2001-01-01

    Mutations in the ENG gene on chromosome 9 (HHT 1) and in the ALK-1 gene on chromosome 12 (HHT 2) have been reported as causes of hereditary hemorrhagic telangiectasia (HHT). HHT 1 has been correlated with a higher prevalence of pulmonary arteriovenous malformations than HHT 2. Other distinct...... phenotype-genotype correlations have not been described. The prevalence of HHT in the county of Fyn, Denmark, was 15.6 per 100,000 on January 1, 1995. All living patients and their first-degree relatives were invited to attend a detailed clinical examination and blood was drawn for mutation analysis. In two...... families mutations were identified in exon 8 of the ALK-1 gene. In family 6 we found a T1193A mutation. In this family a high prevalence of PAVM and severe GI bleeding was documented, while in family 8 with a C1120T mutation no individuals with PAVM were identified and only one patient had a history...

  12. DNA synthesis in ataxia telangiectasia

    OpenAIRE

    Jaspers, Nicolaas

    1985-01-01

    textabstractAfter the discovery that cultured cells from AT patients are hypersensitive to ionizing radiation the suggestion was made that AT-could be the 1 X-ray-analogue 1 of xeroderma pigmentosum. The latter syndrome (XP) is characterized by hypersensitivity to short-wave UV-radiation, caused by a reduced ability to properly remove UV-induced DNA damage. The evidence for a DNA repair defect in AT cells is not as strong as in the case of XP (see section 2.2.5 of this thesis). Different XP p...

  13. DNA synthesis in ataxia telangiectasia

    NARCIS (Netherlands)

    N.G.J. Jaspers (Nicolaas)

    1985-01-01

    textabstractAfter the discovery that cultured cells from AT patients are hypersensitive to ionizing radiation the suggestion was made that AT-could be the 1 X-ray-analogue 1 of xeroderma pigmentosum. The latter syndrome (XP) is characterized by hypersensitivity to short-wave UV-radiation, caused by

  14. Clinical, genetic, neurophysiological and functional study of new mutations in episodic ataxia type 1.

    Science.gov (United States)

    Tomlinson, Susan Elizabeth; Rajakulendran, Sanjeev; Tan, Stella Veronica; Graves, Tracey Dawn; Bamiou, Doris-Eva; Labrum, Robyn W; Burke, David; Sue, Carolyn M; Giunti, Paola; Schorge, Stephanie; Kullmann, Dimitri M; Hanna, Michael G

    2013-10-01

    Heterozygous mutations in KCNA1 cause episodic ataxia type 1 (EA1), an ion channel disorder characterised by brief paroxysms of cerebellar dysfunction and persistent neuromyotonia. This paper describes four previously unreported families with EA1, with the aim of understanding the phenotypic spectrum associated with different mutations. 15 affected individuals from four families underwent clinical, genetic and neurophysiological evaluation. The functional impact of new mutations identified in the KCNA1 gene was investigated with in vitro electrophysiology and immunocytochemistry. Detailed clinical documentation, dating back to 1928 in one family, indicates that all patients manifested episodic ataxia of varying severity. Four subjects from three families reported hearing impairment, which has not previously been reported in association with EA1. New mutations (R167M, C185W and I407M) were identified in three out of the four families. When expressed in human embryonic kidney cells, all three new mutations resulted in a loss of K(v)1.1 channel function. The fourth family harboured a previously reported A242P mutation, which has not been previously described in association with ataxia. The genetic basis of EA1 in four families is established and this report presents the earliest documented case from 1928. All three new mutations caused a loss of K(v)1.1 channel function. The finding of deafness in four individuals raises the possibility of a link between K(v)1.1 dysfunction and hearing impairment. Our findings broaden the phenotypic range associated with mutations in KCNA1.

  15. A novel mitochondrial mutation m.8989G>C associated with neuropathy, ataxia, retinitis pigmentosa - the NARP syndrome

    DEFF Research Database (Denmark)

    Duno, Morten; Wibrand, Flemming; Baggesen, Kirsten

    2013-01-01

    mitochondrial point mutation, m.8989G>C, in a patient presenting with neuropathy, ataxia and retinitis pigmentosa constituting the classical NARP phenotype. This mutation alters the amino acid right next to canonical NARP mutation. We suggest that classic NARP syndrome relates to a defined dysfunction of p...

  16. XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia.

    Science.gov (United States)

    Hoch, Nicolas C; Hanzlikova, Hana; Rulten, Stuart L; Tétreault, Martine; Komulainen, Emilia; Ju, Limei; Hornyak, Peter; Zeng, Zhihong; Gittens, William; Rey, Stephanie A; Staras, Kevin; Mancini, Grazia M S; McKinnon, Peter J; Wang, Zhao-Qi; Wagner, Justin D; Yoon, Grace; Caldecott, Keith W

    2017-01-05

    XRCC1 is a molecular scaffold protein that assembles multi-protein complexes involved in DNA single-strand break repair. Here we show that biallelic mutations in the human XRCC1 gene are associated with ocular motor apraxia, axonal neuropathy, and progressive cerebellar ataxia. Cells from a patient with mutations in XRCC1 exhibited not only reduced rates of single-strand break repair but also elevated levels of protein ADP-ribosylation. This latter phenotype is recapitulated in a related syndrome caused by mutations in the XRCC1 partner protein PNKP and implicates hyperactivation of poly(ADP-ribose) polymerase/s as a cause of cerebellar ataxia. Indeed, remarkably, genetic deletion of Parp1 rescued normal cerebellar ADP-ribose levels and reduced the loss of cerebellar neurons and ataxia in Xrcc1-defective mice, identifying a molecular mechanism by which endogenous single-strand breaks trigger neuropathology. Collectively, these data establish the importance of XRCC1 protein complexes for normal neurological function and identify PARP1 as a therapeutic target in DNA strand break repair-defective disease.

  17. Novel Missense Mitochondrial ND4L Gene Mutations in Friedreich's Ataxia

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Heidari

    2011-05-01

    Full Text Available AbstractObjective(sThe mitochondrial defects in Friedreich's ataxia have been reported in many researches. Mitochondrial DNA is one of the candidates for defects in mitochondrion, and complex I is the first and one of the largest catalytic complexes of oxidative phosphorylation (OXPHOS system. Materials and MethodsWe searched the mitochondrial ND4L gene for mutations by TTGE and sequencing on 30 FRDA patients and 35 healthy controls.ResultsWe found 3 missense mutations [m.10506A>G (T13A, m.10530G>A (V21M, and m.10653G>A (A62T] in four patients whose m.10530G>A and m.10653G>A were not reported previously. In two patients, heteroplasmic m.10530G>A mutation was detected. They showed a very early ataxia syndrome. Our results showed that the number of mutations in FRDA patients was higher than that in the control cases (P= 0.0287.ConclusionAlthough this disease is due to nuclear gene mutation, the presence of these mutations might be responsible for further mitochondrial defects and the increase of the gravity of the disease. Thus, it should be considered in patients with this disorder.

  18. Phenotype and frequency of STUB1 mutations: next-generation screenings in Caucasian ataxia and spastic paraplegia cohorts.

    Science.gov (United States)

    Synofzik, Matthis; Schüle, Rebecca; Schulze, Martin; Gburek-Augustat, Janina; Schweizer, Roland; Schirmacher, Anja; Krägeloh-Mann, Ingeborg; Gonzalez, Michael; Young, Peter; Züchner, Stephan; Schöls, Ludger; Bauer, Peter

    2014-04-17

    Mutations in the gene STUB1, encoding the protein CHIP (C-terminus of HSC70-interacting protein), have recently been suggested as a cause of recessive ataxia based on the findings in few Chinese families. Here we aimed to investigate the phenotypic and genotypic spectrum of STUB1 mutations, and to assess their frequency in different Caucasian disease cohorts. 300 subjects with degenerative ataxia (n = 167) or spastic paraplegia (n = 133) were screened for STUB1 variants by whole-exome-sequencing (n = 204) or shotgun-fragment-library-sequencing (n = 96). To control for the specificity of STUB1 variants, we screened an additional 1707 exomes from 891 index families with other neurological diseases. We identified 3 ataxia patients (3/167 = 1.8%) with 4 novel missense mutations in STUB1, including 3 mutations in its tetratricopeptide-repeat domain. All patients showed evidence of pyramidal tract damage. Cognitive impairment was present only in one and hypogonadism in none of them. Ataxia did not start before age 48 years in one subject. No recessive STUB1 variants were identified in families with other neurological diseases, demonstrating that STUB1 variants are not simply rare polymorphisms ubiquitous in neurodegenerative disease. STUB1-disease occurs also in Caucasian ataxia populations (1.8%). Our results expand the genotypic spectrum of STUB1-disease, showing that pathogenic mutations affect also the tetratricopeptide-repeat domain, thus providing clinical evidence for the functional importance of this domain. Moreover, they further delineate the phenotypic core features of STUB1-ataxia. Pyramidal tract damage is a common accompanying feature and can include lower limb spasticity, thus adding STUB1-ataxia to the differential diagnosis of "spastic ataxias". However, STUB1 is rare in subjects with predominant spastic paraplegia (0/133). In contrast to previous reports, STUB1-ataxia can start even above age 40 years, and neither hypogonadism nor prominent cognitive

  19. Infantile onset spinocerebellar ataxia caused by compound heterozygosity for Twinkle mutations and modeling of Twinkle mutations causing recessive disease.

    Science.gov (United States)

    Pierce, Sarah B; Gulsuner, Suleyman; Stapleton, Gail A; Walsh, Tom; Lee, Ming K; Mandell, Jessica B; Morales, Augusto; Klevit, Rachel E; King, Mary-Claire; Rogers, R Curtis

    2016-07-01

    Mutations in nuclear genes required for the replication and maintenance of mitochondrial DNA cause progressive multisystemic neuromuscular disorders with overlapping phenotypes. Biallelic mutations in C10orf2, encoding the Twinkle mitochondrial DNA helicase, lead to infantile-onset cerebellar ataxia (IOSCA), as well as milder and more severe phenotypes. We present a 13-year-old girl with ataxia, severe hearing loss, optic atrophy, peripheral neuropathy, and hypergonadotropic hypogonadism. Whole-exome sequencing revealed that the patient is compound heterozygous for previously unreported variants in the C10orf2 gene: a paternally inherited frameshift variant (c.333delT; p.L112Sfs*3) and a maternally inherited missense variant (c.904C>T; p.R302W). The identification of novel C10orf2 mutations extends the spectrum of mutations in the Twinkle helicase causing recessive disease, in particular the intermediate IOSCA phenotype. Structural modeling suggests that the p.R302W mutation and many other recessively inherited Twinkle mutations impact the position or interactions of the linker region, which is critical for the oligomeric ring structure and activity of the helicase. This study emphasizes the utility of whole-exome sequencing for the genetic diagnosis of a complex multisystemic disorder.

  20. Novel Autosomal Recessive c10orf2 Mutations Causing Infantile-Onset Spinocerebellar Ataxia.

    Science.gov (United States)

    Hartley, Jessica N; Booth, Frances A; Del Bigio, Marc R; Mhanni, Aizeddin A

    2012-01-01

    Recessive mutations in genes encoding mitochondrial DNA replication machinery lead to mitochondrial DNA depletion syndromes. This genetically and phenotypically heterogeneous group includes infantile onset spinocerebellar ataxia (OMIM# 271245) a neurodegenerative disease caused by mutations in the mtDNA helicase gene, c10orf2, with an increased frequency in the Finnish population due to a founder mutation. We describe a child of English descent who presented with a severe phenotype of IOSCA as a result of two-novel mutations in the c10orf2 gene. This paper expands the phenotypic spectrum of IOSCA and adds further evidence for the presence of a genotype-phenotype correlation among patients with recessive mutations in this gene.

  1. Novel Autosomal Recessive c10orf2 Mutations Causing Infantile-Onset Spinocerebellar Ataxia

    Directory of Open Access Journals (Sweden)

    Jessica N. Hartley

    2012-01-01

    Full Text Available Recessive mutations in genes encoding mitochondrial DNA replication machinery lead to mitochondrial DNA depletion syndromes. This genetically and phenotypically heterogeneous group includes infantile onset spinocerebellar ataxia (OMIM# 271245 a neurodegenerative disease caused by mutations in the mtDNA helicase gene, c10orf2, with an increased frequency in the Finnish population due to a founder mutation. We describe a child of English descent who presented with a severe phenotype of IOSCA as a result of two-novel mutations in the c10orf2 gene. This paper expands the phenotypic spectrum of IOSCA and adds further evidence for the presence of a genotype-phenotype correlation among patients with recessive mutations in this gene.

  2. Absence of PAX6 gene mutations in Gillespie syndrome (partial aniridia, cerebellar ataxia, and mental retardation)

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, T.; Maas, R.L. (Harvard Medical School, Boston, MA (United States)); Ton, C.C.T.; Housman, D.E. (Massachusetts Institute of Technology, Cambridge, MA (United States)); Mueller, R.; Oliver, C. (Leeds General Infirmary (United Kingdom)); Petzl-Erler, M.L. (Federal Univ. of Parana, Curitiba (Brazil)); Nevin, N.C. (Queen' s Univ. of Belfast (Ireland))

    1994-01-01

    The PAX6 gene is expressed at high levels in the developing eye and cerebellum and is mutated in patients with autosomal dominant aniridia. The authors have tested the role of PAX6 mutations in three families with Gillespie syndrome, a rare autosomal recessive condition consisting of partial aniridia, cerebellar ataxia, and mental retardation. Single-strand conformational polymorphism analysis of affected individuals revealed no alteration of PAX6 sequences. In two families, the disease trait segregates independently from chromosome 11p markers flanking PAX6. The authors conclude that Gillespie syndrome is genetically distinct from autosomal dominant aniridia. 28 refs., 2 figs., 1 tab.

  3. Novel mutations in typical and atypical genetic loci through exome sequencing in autosomal recessive cerebellar ataxia families.

    Science.gov (United States)

    Faruq, M; Narang, A; Kumari, R; Pandey, R; Garg, A; Behari, M; Dash, D; Srivastava, A K; Mukerji, M

    2014-10-01

    Nearly a thousand mutations mapping to 60 different loci have been identified in cerebellar ataxias. However, almost 50% of the cases remain genetically uncharacterized and there is a difference in prevalence as well as in the phenotypic spectrum of ataxia among various geographical regions. This poses a challenge for setting up a genetic panel for screening ataxia. In our ataxic cohort of 1014 families, 61% are genetically uncharacterized (UC). We investigated the potential of whole exome sequencing in conjunction with homozygosity mapping (HM) to delineate the genetic defects in three uncharacterized families with recessive inheritance each manifesting some unusual phenotype: (i) infantile onset ataxia with hearing loss (IOAH), (ii) Juvenile onset cerebellar ataxia with seizures (JCS) and (iii) Friedreich ataxia-like (FA-like). We identified a novel missense mutation in c10orf2 in the family with IOAH, compound heterozygous mutations in CLN6 in the family with JCS and a homozygous frame-shift mutation in SACS in the FA-like patient. Phenotypes observed in our families were concordant with reported phenotypes of known mutations in the same genes thus obviating the need for functional validation. Our study revealed novel variations in three genes, c10orf2, CLN6, and SACS, that have so far not been reported in India. This study also demonstrates the utility of whole exome screening in clinics for early diagnosis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. SCN2A mutation associated with neonatal epilepsy, late-onset episodic ataxia, myoclonus, and pain.

    Science.gov (United States)

    Liao, Y; Anttonen, A-K; Liukkonen, E; Gaily, E; Maljevic, S; Schubert, S; Bellan-Koch, A; Petrou, S; Ahonen, V E; Lerche, H; Lehesjoki, A-E

    2010-10-19

    Inherited and de novo mutations in sodium channel genes underlie a variety of channelopathies. Mutations in SCN2A, encoding the brain sodium channel Na(V)1.2, have previously been reported to be associated with benign familial neonatal infantile seizures, febrile seizures plus, and intractable epilepsy of infancy. We evaluated the clinical characteristics in a patient with a neonatal-onset complex episodic neurologic phenotype. We screened SCN2A for mutations and carried out in vitro electrophysiologic analyses to study the consequences of the identified mutation. We studied the developmental expression of Na(V)1.2 in cerebellum by immunohistochemical analysis. The patient presented with neonatal-onset seizures and variable episodes of ataxia, myoclonia, headache, and back pain after 18 months of age. The patient carries a de novo missense mutation (p.Ala263Val) in SCN2A, which leads to a pronounced gain-of-function, in particular an increased persistent Na(+) current. Immunohistochemical studies suggest a developmentally increasing expression of Na(V)1.2 in granule cell axons projecting to Purkinje neurons. These results can explain a neuronal hyperexcitability resulting in seizures and other episodic symptoms extending the spectrum of SCN2A-associated phenotypes. The developmentally increasing expression of Na(V)1.2 in cerebellum may be responsible for the later onset of episodic ataxia.

  5. X-linked sideroblastic anemia and ataxia: a new family with identification of a fourth ABCB7 gene mutation.

    Science.gov (United States)

    D'Hooghe, Marc; Selleslag, Dominik; Mortier, Geert; Van Coster, Rudy; Vermeersch, Pieter; Billiet, Johan; Bekri, Soumeya

    2012-11-01

    X-linked sideroblastic anemia and ataxia (XLSA-A) is a rare cause of early onset ataxia, which may be overlooked due to the usually mild asymptomatic anemia. The genetic defect has been identified as a mutation in the ABCB7 gene at Xq12-q13. The gene encodes a mitochondrial ATP-binding cassette (ABC) transporter protein involved in iron homeostasis. Until now only three families have been reported, each with a distinct missense mutation in this gene. We describe a fourth family with XLSA-A and a novel mutation in the ABCB7 gene. Copyright © 2012 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  6. Atypical Friedreich ataxia in patients with FXN p.R165P point mutation or comorbid hemochromatosis

    DEFF Research Database (Denmark)

    Ygland, Emil; Taroni, Franco; Gellera, Cinzia

    2014-01-01

    BACKGROUND: Compound heterozygosity for a trinucleotide repeat expansion and a point mutation in the FXN gene is a rare cause of Friedreich ataxia (FRDA). METHODS: We identified three Swedish FRDA patients with an FXN p.R165P missense mutation and compared their clinical features with six...

  7. Germline mutations in BMP9 are not identified in a series of Danish and French patients with hereditary hemorrhagic telangiectasia

    DEFF Research Database (Denmark)

    Tørring, P. M.; Dupuis-Girod, S.; Giraud, S

    2016-01-01

    Hereditary hemorrhagic telangiectasia (HHT), an inherited vascular disorder, is, in the majority of cases (85%), caused by mutations in one of three genes (ENG, ACVRL1, and SMAD4). In the remaining group of individuals with clinical HHT, mutations have not been identified, suggesting yet...... had a different vascular-anomaly syndrome, the suspicion that BMP9 mutations might cause HHT remained. To evaluate if germline mutations in BMP9 can be identified in HHT patients, we investigated the Danish and the French Lyon cohort of mutation-negative and clinically definite HHT patients. Exons...... and exon-intron boundaries of BMP9 were analyzed by bi-directional Sanger sequencing in 28 clinical HHT patients (from 28 different families) with no pathogenic mutations in ENG, ACVRL1 or SMAD4. No mutations of potential pathogenicity were identified in BMP9. This study does not suggest that BMP9...

  8. Recurrent gastrointestinal hemorrhage in treatment with dasatinib in a patient showing SMAD4 mutation with acute lymphoblastic leukemia Philadelphia positive and juvenile polyposis hereditary hemorrhagic telangiectasia syndrome

    Directory of Open Access Journals (Sweden)

    Chiara Sartor

    2013-07-01

    Full Text Available We report a case of a patient affected by juvenile polyposis and hereditary hemorrhagic telangiectasia linked to a SMAD4 mutation who developed acute lymphoblastic leukemia positive for the Philadelphia chromosome translocation and with a complex karyotype. During the treatment with the tyrosine kinase inhibitor dasatinib the patient presented recurrent severe gastrointestinal hemorrhages linked to the genetic background and aggravated by thrombocytopenia.

  9. Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay.

    Science.gov (United States)

    Kim, Myungjin; Sandford, Erin; Gatica, Damian; Qiu, Yu; Liu, Xu; Zheng, Yumei; Schulman, Brenda A; Xu, Jishu; Semple, Ian; Ro, Seung-Hyun; Kim, Boyoung; Mavioglu, R Nehir; Tolun, Aslıhan; Jipa, Andras; Takats, Szabolcs; Karpati, Manuela; Li, Jun Z; Yapici, Zuhal; Juhasz, Gabor; Lee, Jun Hee; Klionsky, Daniel J; Burmeister, Margit

    2016-01-26

    Autophagy is required for the homeostasis of cellular material and is proposed to be involved in many aspects of health. Defects in the autophagy pathway have been observed in neurodegenerative disorders; however, no genetically-inherited pathogenic mutations in any of the core autophagy-related (ATG) genes have been reported in human patients to date. We identified a homozygous missense mutation, changing a conserved amino acid, in ATG5 in two siblings with congenital ataxia, mental retardation, and developmental delay. The subjects' cells display a decrease in autophagy flux and defects in conjugation of ATG12 to ATG5. The homologous mutation in yeast demonstrates a 30-50% reduction of induced autophagy. Flies in which Atg5 is substituted with the mutant human ATG5 exhibit severe movement disorder, in contrast to flies expressing the wild-type human protein. Our results demonstrate the critical role of autophagy in preventing neurological diseases and maintaining neuronal health.

  10. A homozygous mutation of VWA3B causes cerebellar ataxia with intellectual disability.

    Science.gov (United States)

    Kawarai, Toshitaka; Tajima, Atsushi; Kuroda, Yukiko; Saji, Naoki; Orlacchio, Antonio; Terasawa, Hideo; Shimizu, Hirotaka; Kita, Yasushi; Izumi, Yuishin; Mitsui, Takao; Imoto, Issei; Kaji, Ryuji

    2016-06-01

    Hereditary cerebellar ataxia constitutes a heterogeneous group of neurodegenerative disorders, occasionally accompanied by other neurological features. Genetic defects remain to be elucidated in approximately 40% of hereditary cerebellar ataxia cases in Japan. We attempted to identify the gene responsible for autosomal recessive cerebellar ataxia with intellectual disability. The present study involved three patients in a consanguineous Japanese family. Neurological examination and gene analyses were performed in all family members. We performed genome-wide linkage analysis including single nucleotide polymorphism arrays, copy-number variation analysis and whole exome sequencing. To clarify the functional alteration resulting from the identified mutation, we performed cell viability assay of cultured cells expressing mutant protein. One homozygous region shared among the three patients on chromosomes 2p16.1-2q12.3 was identified. Using whole exome sequencing, six homozygous variants in genes in the region were detected. Only one variant, VWA3B c.A1865C, results in a change of a highly conserved amino acid (p.K622T) and was not present in control samples. VWA3B encodes a von Willebrand Factor A Domain-Containing Protein 3B with ubiquitous expression, including the cerebellum. The viability of cultured cells expressing the specific K622T mutation was proved to decrease through the activation of apoptotic pathway. Mutated VWA3B was found to be likely associated with cerebellar degeneration with intellectual disability. Although a rare cause of cerebellar degeneration, these findings indicate a critical role for VWA3B in the apoptosis pathway in neuronal tissues. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. Functional analysis helps to define KCNC3 mutational spectrum in Dutch ataxia cases.

    Science.gov (United States)

    Duarri, Anna; Nibbeling, Esther A R; Fokkens, Michiel R; Meijer, Michel; Boerrigter, Melissa; Verschuuren-Bemelmans, Corien C; Kremer, Berry P H; van de Warrenburg, Bart P; Dooijes, Dennis; Boddeke, Erik; Sinke, Richard J; Verbeek, Dineke S

    2015-01-01

    Spinocerebellar ataxia type 13 (SCA13) is an autosomal dominantly inherited neurodegenerative disorder of the cerebellum caused by mutations in the voltage gated potassium channel KCNC3. To identify novel pathogenic SCA13 mutations in KCNC3 and to gain insights into the disease prevalence in the Netherlands, we sequenced the entire coding region of KCNC3 in 848 Dutch cerebellar ataxia patients with familial or sporadic origin. We evaluated the pathogenicity of the identified variants by co-segregation analysis and in silico prediction followed by biochemical and electrophysiological studies. We identified 19 variants in KCNC3 including 2 non-coding, 11 missense and 6 synonymous variants. Two missense variants did not co-segregate with the disease and were excluded as potentially disease-causing mutations. We also identified the previously reported p.R420H and p.R423H mutations in our cohort. Of the remaining 7 missense variants, functional analysis revealed that 2 missense variants shifted Kv3.3 channel activation to more negative voltages. These variations were associated with early disease onset and mild intellectual disability. Additionally, one other missense variant shifted channel activation to more positive voltages and was associated with spastic ataxic gait. Whereas, the remaining missense variants did not change any of the channel characteristics. Of these three functional variants, only one variant was in silico predicted to be damaging and segregated with disease. The other two variants were in silico predicted to be benign and co-segregation analysis was not optimal or could only be partially confirmed. Therefore, we conclude that we have identified at least one novel pathogenic mutation in KCNC3 that cause SCA13 and two additionally potential SCA13 mutations. This leads to an estimate of SCA13 prevalence in the Netherlands to be between 0.6% and 1.3%.

  12. Functional analysis helps to define KCNC3 mutational spectrum in Dutch ataxia cases.

    Directory of Open Access Journals (Sweden)

    Anna Duarri

    Full Text Available Spinocerebellar ataxia type 13 (SCA13 is an autosomal dominantly inherited neurodegenerative disorder of the cerebellum caused by mutations in the voltage gated potassium channel KCNC3. To identify novel pathogenic SCA13 mutations in KCNC3 and to gain insights into the disease prevalence in the Netherlands, we sequenced the entire coding region of KCNC3 in 848 Dutch cerebellar ataxia patients with familial or sporadic origin. We evaluated the pathogenicity of the identified variants by co-segregation analysis and in silico prediction followed by biochemical and electrophysiological studies. We identified 19 variants in KCNC3 including 2 non-coding, 11 missense and 6 synonymous variants. Two missense variants did not co-segregate with the disease and were excluded as potentially disease-causing mutations. We also identified the previously reported p.R420H and p.R423H mutations in our cohort. Of the remaining 7 missense variants, functional analysis revealed that 2 missense variants shifted Kv3.3 channel activation to more negative voltages. These variations were associated with early disease onset and mild intellectual disability. Additionally, one other missense variant shifted channel activation to more positive voltages and was associated with spastic ataxic gait. Whereas, the remaining missense variants did not change any of the channel characteristics. Of these three functional variants, only one variant was in silico predicted to be damaging and segregated with disease. The other two variants were in silico predicted to be benign and co-segregation analysis was not optimal or could only be partially confirmed. Therefore, we conclude that we have identified at least one novel pathogenic mutation in KCNC3 that cause SCA13 and two additionally potential SCA13 mutations. This leads to an estimate of SCA13 prevalence in the Netherlands to be between 0.6% and 1.3%.

  13. Novel SIL1 mutations cause cerebellar ataxia and atrophy in a French-Canadian family.

    Science.gov (United States)

    Noreau, Anne; La Piana, Roberta; Marcoux, Camille; Dion, Patrick A; Brais, Bernard; Bernard, Geneviève; Rouleau, Guy A

    2015-10-01

    Two French-Canadian sibs with cerebellar ataxia and dysarthria were seen in our neurogenetics clinic. The older brother had global developmental delay and spastic paraplegia. Brain MRIs from these two affected individuals showed moderate to severe cerebellar atrophy. To identify the genetic basis for their disease, we conducted a whole exome sequencing (WES) investigation using genomic DNA prepared from the affected sibs and their healthy father. We identified two mutations in the SIL1 gene, which is reported to cause Marinesco-Sjögren syndrome. This study emphasizes how the diagnosis of patients with ataxic gait and cerebellar atrophy may benefit from WES to identify the genetic cause of their condition.

  14. ATP1A3 Mutation in Adult Rapid-Onset Ataxia.

    Directory of Open Access Journals (Sweden)

    Kathleen J Sweadner

    Full Text Available A 21-year old male presented with ataxia and dysarthria that had appeared over a period of months. Exome sequencing identified a de novo missense variant in ATP1A3, the gene encoding the α3 subunit of Na,K-ATPase. Several lines of evidence suggest that the variant is causative. ATP1A3 mutations can cause rapid-onset dystonia-parkinsonism (RDP with a similar age and speed of onset, as well as severe diseases of infancy. The patient's ATP1A3 p.Gly316Ser mutation was validated in the laboratory by the impaired ability of the expressed protein to support the growth of cultured cells. In a crystal structure of Na,K-ATPase, the mutated amino acid was directly apposed to a different amino acid mutated in RDP. Clinical evaluation showed that the patient had many characteristics of RDP, however he had minimal fixed dystonia, a defining symptom of RDP. Successive magnetic resonance imaging (MRI revealed progressive cerebellar atrophy, explaining the ataxia. The absence of dystonia in the presence of other RDP symptoms corroborates other evidence that the cerebellum contributes importantly to dystonia pathophysiology. We discuss the possibility that a second de novo variant, in ubiquilin 4 (UBQLN4, a ubiquitin pathway component, contributed to the cerebellar neurodegenerative phenotype and differentiated the disease from other manifestations of ATP1A3 mutations. We also show that a homozygous variant in GPRIN1 (G protein-regulated inducer of neurite outgrowth 1 deletes a motif with multiple copies and is unlikely to be causative.

  15. More Than Ataxia: Hyperkinetic Movement Disorders in Childhood Autosomal Recessive Ataxia Syndromes

    Science.gov (United States)

    Pearson, Toni S.

    2016-01-01

    Background The autosomal recessive ataxias are a heterogeneous group of disorders that are characterized by complex neurological features in addition to progressive ataxia. Hyperkinetic movement disorders occur in a significant proportion of patients, and may sometimes be the presenting motor symptom. Presentations with involuntary movements rather than ataxia are diagnostically challenging, and are likely under-recognized. Methods A PubMed literature search was performed in October 2015 utilizing pairwise combinations of disease-related terms (autosomal recessive ataxia, ataxia–telangiectasia, ataxia with oculomotor apraxia type 1 (AOA1), ataxia with oculomotor apraxia type 2 (AOA2), Friedreich ataxia, ataxia with vitamin E deficiency), and symptom-related terms (movement disorder, dystonia, chorea, choreoathetosis, myoclonus). Results Involuntary movements occur in the majority of patients with ataxia–telangiectasia and AOA1, and less frequently in patients with AOA2, Friedreich ataxia, and ataxia with vitamin E deficiency. Clinical presentations with an isolated hyperkinetic movement disorder in the absence of ataxia include dystonia or dystonia with myoclonus with predominant upper limb and cervical involvement (ataxia–telangiectasia, ataxia with vitamin E deficiency), and generalized chorea (ataxia with oculomotor apraxia type 1, ataxia-telangiectasia). Discussion An awareness of atypical presentations facilitates early and accurate diagnosis in these challenging cases. Recognition of involuntary movements is important not only for diagnosis, but also because of the potential for effective targeted symptomatic treatment. PMID:27536460

  16. PRRT2 gene mutations: from paroxysmal dyskinesia to episodic ataxia and hemiplegic migraine.

    Science.gov (United States)

    Gardiner, Alice R; Bhatia, Kailash P; Stamelou, Maria; Dale, Russell C; Kurian, Manju A; Schneider, Susanne A; Wali, G M; Counihan, Tim; Schapira, Anthony H; Spacey, Sian D; Valente, Enza-Maria; Silveira-Moriyama, Laura; Teive, Hélio A G; Raskin, Salmo; Sander, Josemir W; Lees, Andrew; Warner, Tom; Kullmann, Dimitri M; Wood, Nicholas W; Hanna, Michael; Houlden, Henry

    2012-11-20

    The proline-rich transmembrane protein (PRRT2) gene was recently identified using exome sequencing as the cause of autosomal dominant paroxysmal kinesigenic dyskinesia (PKD) with or without infantile convulsions (IC) (PKD/IC syndrome). Episodic neurologic disorders, such as epilepsy, migraine, and paroxysmal movement disorders, often coexist and are thought to have a shared channel-related etiology. To investigate further the frequency, spectrum, and phenotype of PRRT2 mutations, we analyzed this gene in 3 large series of episodic neurologic disorders with PKD/IC, episodic ataxia (EA), and hemiplegic migraine (HM). The PRRT2 gene was sequenced in 58 family probands/sporadic individuals with PKD/IC, 182 with EA, 128 with HM, and 475 UK and 96 Asian controls. PRRT2 genetic mutations were identified in 28 out of 58 individuals with PKD/IC (48%), 1/182 individuals with EA, and 1/128 individuals with HM. A number of loss-of-function and coding missense mutations were identified; the most common mutation found was the p.R217Pfs*8 insertion. Males were more frequently affected than females (ratio 52:32). There was a high proportion of PRRT2 mutations found in families and sporadic cases with PKD associated with migraine or HM (10 out of 28). One family had EA with HM and another large family had typical HM alone. This work expands the phenotype of mutations in the PRRT2 gene to include the frequent occurrence of migraine and HM with PKD/IC, and the association of mutations with EA and HM and with familial HM alone. We have also extended the PRRT2 mutation type and frequency in PKD and other episodic neurologic disorders.

  17. Hereditary spastic paraplegia with cerebellar ataxia: a complex phenotype associated with a new SPG4 gene mutation

    DEFF Research Database (Denmark)

    Nielsen, Jørgen Erik; Johnson, B; Koefoed, Pernille

    2004-01-01

    Complex forms of hereditary spastic paraplegia (HSP) are rare and usually transmitted in an autosomal recessive pattern. A family of four generations with autosomal dominant hereditary spastic paraplegia (AD-HSP) and a complex phenotype with variably expressed co-existing ataxia, dysarthria...... in those individuals who were clinically affected by a complex phenotype consisting of HSP and cerebellar ataxia. Other features noted in this kindred including epilepsy, cognitive impairment, depression, and migraine did not segregate with the HSP phenotype or mutation, and therefore the significance...... relatively decreased regional cerebral blood flow in most of the cerebellum. We conclude that this kindred demonstrates a considerable overlap between cerebellar ataxia and spastic paraplegia, emphasizing the marked clinical heterogeneity of HSP associated with spastin mutations...

  18. Identification of a novel Twinkle mutation in a family with infantile onset spinocerebellar ataxia by whole exome sequencing.

    Science.gov (United States)

    Dündar, Halil; Ozgül, Rıza Köksal; Yalnızoğlu, Dilek; Erdem, Sevim; Oğuz, Kader Karlı; Tuncel, Deniz; Temuçin, Cağrı Mesut; Dursun, Ali

    2012-03-01

    Whole exome sequencing combined with homozygosity mapping comprises a genetic diagnostic tool to identify genetic defects in families with multiple affected members, compatible with presumed autosomal recessively inherited neurometabolic/neurogenetic disease. These tools were applied to a family with two individuals manifesting ataxia, associated with peripheral sensory neuropathy, athetosis, seizures, deafness, and ophthalmoplegia. A novel homozygous missense mutation c.1366C>G (L456V) in C10orf2 (the Twinkle gene) was identified, confirming infantile onset spinocerebellar ataxia in the probands. Signs in infantile onset spinocerebellar ataxia follow a fairly distinct pattern, affecting early development, followed by ataxia and loss of skills. However, this very rare disease was previously reported only in Finland. We suggest that infantile onset spinocerebellar ataxia should be more frequently considered in the differential diagnosis of neurometabolic diseases in childhood. Next-generation sequencing and its use along with homozygosity mapping offer highly promising techniques for molecular diagnosis, especially in small families affected with very rare neurometabolic disorders such as infantile onset spinocerebellar ataxia. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. A novel mitochondrial ATP6 frameshift mutation causing isolated complex V deficiency, ataxia and encephalomyopathy.

    Science.gov (United States)

    Jackson, Christopher B; Hahn, Dagmar; Schröter, Barbara; Richter, Uwe; Battersby, Brendan J; Schmitt-Mechelke, Thomas; Marttinen, Paula; Nuoffer, Jean-Marc; Schaller, André

    2017-06-01

    We describe a novel frameshift mutation in the mitochondrial ATP6 gene in a 4-year-old girl associated with ataxia, microcephaly, developmental delay and intellectual disability. A heteroplasmic frameshift mutation in the MT-ATP6 gene was confirmed in the patient's skeletal muscle and blood. The mutation was not detectable in the mother's DNA extracted from blood or buccal cells. Enzymatic and oxymetric analysis of the mitochondrial respiratory system in the patients' skeletal muscle and skin fibroblasts demonstrated an isolated complex V deficiency. Native PAGE with subsequent immunoblotting for complex V revealed impaired complex V assembly and accumulation of ATPase subcomplexes. Whilst northern blotting confirmed equal presence of ATP8/6 mRNA, metabolic (35)S-labelling of mitochondrial translation products showed a severe depletion of the ATP6 protein together with aberrant translation product accumulation. In conclusion, this novel isolated complex V defect expands the clinical and genetic spectrum of mitochondrial defects of complex V deficiency. Furthermore, this work confirms the benefit of native PAGE as an additional diagnostic method for the identification of OXPHOS defects, as the presence of complex V subcomplexes is associated with pathogenic mutations of mtDNA. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Mutations in the IRBIT domain of ITPR1 are a frequent cause of autosomal dominant nonprogressive congenital ataxia.

    Science.gov (United States)

    Barresi, S; Niceta, M; Alfieri, P; Brankovic, V; Piccini, G; Bruselles, A; Barone, M R; Cusmai, R; Tartaglia, M; Bertini, E; Zanni, G

    2017-01-01

    Congenital ataxias are nonprogressive neurological disorders characterized by neonatal hypotonia, developmental delay and ataxia, variably associated with intellectual disability and other neurological or extraneurological features. We performed trio-based whole-exome sequencing of 12 families with congenital cerebellar and/or vermis atrophy in parallel with targeted next-generation sequencing of known ataxia genes (CACNA1A, ITPR1, KCNC3, ATP2B3 and GRM1) in 12 additional patients with a similar phenotype. Novel pathological mutations of ITPR1 (inositol 1,4,5-trisphosphate receptor, type 1) were found in seven patients from four families (4/24, ∼16.8%) all localized in the IRBIT (inositol triphosphate receptor binding protein) domain which plays an essential role in the regulation of neuronal plasticity and development. Our study expands the mutational spectrum of ITPR1-related congenital ataxia and indicates that ITPR1 gene screening should be implemented in this subgroup of ataxias. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Phenotype and frequency of STUB1 mutations: next-generation screenings in Caucasian ataxia and spastic paraplegia cohorts

    Science.gov (United States)

    2014-01-01

    Background Mutations in the gene STUB1, encoding the protein CHIP (C-terminus of HSC70-interacting protein), have recently been suggested as a cause of recessive ataxia based on the findings in few Chinese families. Here we aimed to investigate the phenotypic and genotypic spectrum of STUB1 mutations, and to assess their frequency in different Caucasian disease cohorts. Methods 300 subjects with degenerative ataxia (n = 167) or spastic paraplegia (n = 133) were screened for STUB1 variants by whole-exome-sequencing (n = 204) or shotgun-fragment-library-sequencing (n = 96). To control for the specificity of STUB1 variants, we screened an additional 1707 exomes from 891 index families with other neurological diseases. Results We identified 3 ataxia patients (3/167 = 1.8%) with 4 novel missense mutations in STUB1, including 3 mutations in its tetratricopeptide-repeat domain. All patients showed evidence of pyramidal tract damage. Cognitive impairment was present only in one and hypogonadism in none of them. Ataxia did not start before age 48 years in one subject. No recessive STUB1 variants were identified in families with other neurological diseases, demonstrating that STUB1 variants are not simply rare polymorphisms ubiquitous in neurodegenerative disease. Conclusions STUB1-disease occurs also in Caucasian ataxia populations (1.8%). Our results expand the genotypic spectrum of STUB1-disease, showing that pathogenic mutations affect also the tetratricopeptide-repeat domain, thus providing clinical evidence for the functional importance of this domain. Moreover, they further delineate the phenotypic core features of STUB1-ataxia. Pyramidal tract damage is a common accompanying feature and can include lower limb spasticity, thus adding STUB1-ataxia to the differential diagnosis of “spastic ataxias”. However, STUB1 is rare in subjects with predominant spastic paraplegia (0/133). In contrast to previous reports, STUB1-ataxia can start even above age 40

  2. Isolated case of mental retardation and ataxia due to a de novo mitochondrial T8993G mutation

    Energy Technology Data Exchange (ETDEWEB)

    De Coo, I.F.M.; Smeets, H.J.M.; Oost, B.A. van [and others

    1996-03-01

    Neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP) and subacute necrotizing encephalomyelopathy (Leigh disease) are both associated with an alteration of nt 8993 in the mitochondrial ATPase 6 gene. In NARP, the T-to-G transversion at that position changes leucine into arginine. In Leigh syndrome, the same mutation can be found, as can a T-to-C transition, which changes this leucine into proline. Clinical manifestations occur for NARP when {approximately}60%-90% mutated mtDNA is present. In case of Leigh, these percentages usually exceed 95%. It is known that this mutation can segregate very rapidly within pedigrees. Here we report on a sporadic case with mental retardation and ataxia without retinitis pigmentosa in which the T8993G mutation was found. 13 refs., 1 fig.

  3. Infantile onset spinocerebellar ataxia is caused by recessive mutations in mitochondrial proteins Twinkle and Twinky.

    Science.gov (United States)

    Nikali, Kaisu; Suomalainen, Anu; Saharinen, Juha; Kuokkanen, Mikko; Spelbrink, Johannes N; Lönnqvist, Tuula; Peltonen, Leena

    2005-10-15

    Infantile onset spinocerebellar ataxia (IOSCA) (MIM 271245) is a severe autosomal recessively inherited neurodegenerative disorder characterized by progressive atrophy of the cerebellum, brain stem and spinal cord and sensory axonal neuropathy. We report here the molecular background of this disease based on the positional cloning/candidate approach of the defective gene. Having established the linkage to chromosome 10q24, we restricted the critical DNA region using single nucleotide polymorphism-based haplotypes. After analyzing all positional candidate transcripts, we identified two point mutations in the gene C10orf2 encoding Twinkle, a mitochondrial deoxyribonucleic acid (mtDNA)-specific helicase, and a rarer splice variant Twinky, underlying IOSCA. The founder IOSCA mutation, homozygous in all but one of the patients, leads to a Y508C amino acid change in the polypeptides. One patient, heterozygous for Y508C, carries a silent coding region cytosine to thymine transition mutation in his paternal disease chromosome. This allele is expressed at a reduced level, causing the preponderance of messenger RNAs encoding Y508C polypeptides and thus leads to the IOSCA disease phenotype. Previously, we have shown that different mutations in this same gene cause autosomal dominant progressive external ophthalmoplegia (adPEO) with multiple mtDNA deletions (MIM 606075), a neuromuscular disorder sharing a spectrum of symptoms with IOSCA. IOSCA phenotype is the first recessive one due to Twinkle and Twinky mutations, the dominant PEO mutations affecting mtDNA maintenance, but in IOSCA, mtDNA stays intact. The severe neurological phenotype observed in IOSCA, a result of only a single amino acid substitution in Twinkle and Twinky, suggests that these proteins play a crucial role in the maintenance and/or function of specific affected neuronal subpopulations.

  4. Germline Mutations of the Ataxia-Telangiectasia Gene, ATM, as a Risk Factor for Radiation-Associated Breast Cancer

    National Research Council Canada - National Science Library

    Offit, Kenneth

    1998-01-01

    ... of breast cancer after exposure to a defined dose of therapeutic irradiation. The study population will be comprised of women who have developed breast cancer after treatment for Hodgkin's Disease...

  5. [Progressive disseminated essential telangiectasia with conjunctival involvement].

    Science.gov (United States)

    Swensson, B; Swensson, O; Häring, G

    1998-02-01

    Widespread idiopathic telangiectasia (generalized essential telangiectasia) is a rare skin disorder characterized by the development and gradual spreading of telangiectases. The condition tends to affect women in their midthirties. For no apparent reason telangiectases start to appear to the lower extremities and progress steadily to involve the skin of the trunk, the arms, and the face. General health is not affected by the condition and standard laboratory tests consistently yield normal results. In February 1997 a 78-year-old lady was admitted for treatment of cataracta corticonuclearis of her left eye. Complete ophthalmological and dermatological examinations were performed. She presented marked conjunctival telangiectases of both eyes and widespread cutaneous telangiectases involving her face, trunk, arms, and legs. Complete blanching of lesional skin was observed on diascopy. The Rumpel-Leede-test was normal. Cutaneous and conjunctival changes appeared not to be associated with internal disease or bleeding abnormalities. The patient presented here shows widespread idiopathic telangiectasia with marked conjunctival involvement. Ocular changes rarely have been reported in patients with generalized essential telangiectasia to date. Concomittant conjunctival and cutaneous telangiectases may be seen in other conditions such as hereditary hemorrhagic telangiectasia (Rendu-Osler-Weber disease) and ataxia telangiectasia (Louis-Bar syndrome). The former shows an associated bleeding abnormality and is transmitted autosomal dominantly. The latter presents associated neurological signs such as cerebellar ataxia, strabism, nystagmus, apraxia, and mental retardation.

  6. KCNJ10 gene mutations causing EAST syndrome (epilepsy, ataxia, sensorineural deafness, and tubulopathy) disrupt channel function.

    Science.gov (United States)

    Reichold, Markus; Zdebik, Anselm A; Lieberer, Evelyn; Rapedius, Markus; Schmidt, Katharina; Bandulik, Sascha; Sterner, Christina; Tegtmeier, Ines; Penton, David; Baukrowitz, Thomas; Hulton, Sally-Anne; Witzgall, Ralph; Ben-Zeev, Bruria; Howie, Alexander J; Kleta, Robert; Bockenhauer, Detlef; Warth, Richard

    2010-08-10

    Mutations of the KCNJ10 (Kir4.1) K(+) channel underlie autosomal recessive epilepsy, ataxia, sensorineural deafness, and (a salt-wasting) renal tubulopathy (EAST) syndrome. We investigated the localization of KCNJ10 and the homologous KCNJ16 in kidney and the functional consequences of KCNJ10 mutations found in our patients with EAST syndrome. Kcnj10 and Kcnj16 were found in the basolateral membrane of mouse distal convoluted tubules, connecting tubules, and cortical collecting ducts. In the human kidney, KCNJ10 staining was additionally observed in the basolateral membrane of the cortical thick ascending limb of Henle's loop. EM of distal tubular cells of a patient with EAST syndrome showed reduced basal infoldings in this nephron segment, which likely reflects the morphological consequences of the impaired salt reabsorption capacity. When expressed in CHO and HEK293 cells, the KCNJ10 mutations R65P, G77R, and R175Q caused a marked impairment of channel function. R199X showed complete loss of function. Single-channel analysis revealed a strongly reduced mean open time. Qualitatively similar results were obtained with coexpression of KCNJ10/KCNJ16, suggesting a dominance of KCNJ10 function in native renal KCNJ10/KCNJ16 heteromers. The decrease in the current of R65P and R175Q was mainly caused by a remarkable shift of pH sensitivity to the alkaline range. In summary, EAST mutations of KCNJ10 lead to impaired channel function and structural changes in distal convoluted tubules. Intriguingly, the metabolic alkalosis present in patients carrying the R65P mutation possibly improves residual function of KCNJ10, which shows higher activity at alkaline pH.

  7. Ataxia and myoclonic epilepsy due to a heterozygous new mutation in KCNA2: proposal for a new channelopathy.

    Science.gov (United States)

    Pena, S D J; Coimbra, R L M

    2015-02-01

    We have recently performed exome analysis in a 7 year boy who presented in infancy with an encephalopathy characterized by ataxia and myoclonic epilepsy. Parents were not consanguineous and there was no family history of the disease. Exome analysis did not show any pathogenic variants in genes known to be associated with seizures and/or ataxia in children, including all known human channelopathies. However, we have identified a mutation in KCNA2 that we believe to be responsible for the disease in our patient. This gene, which encodes a member of the potassium channel, voltage-gated, shaker-related subfamily, has not been previously described as a cause of disease in humans, but mutations of the orthologous gene in mice (Kcna2) are known to cause both ataxia and convulsions. The mutation is c.890C>A, leading to the amino acid substitution p.Arg297Gln, which involves the second of the critical arginines in the S4 voltage sensor. This mutation is characterized as pathogenic by five different prediction programs. RFLP analysis and Sanger sequencing confirmed the presence of the mutation in the patient, but not in his parents, characterizing it as de novo. We believe that this discovery characterizes a new channelopathy. © 2014 John Wiley | Clinical Exome Genome Reports.

  8. A Gain-of-Function Mutation in NALCN in a Child with Intellectual Disability, Ataxia, and Arthrogryposis.

    Science.gov (United States)

    Aoyagi, Kyota; Rossignol, Elsa; Hamdan, Fadi F; Mulcahy, Ben; Xie, Lin; Nagamatsu, Shinya; Rouleau, Guy A; Zhen, Mei; Michaud, Jacques L

    2015-08-01

    NALCN and its homologues code for the ion channel responsible for half of background Na(+) -leak conductance in vertebrate and invertebrate neurons. Recessive mutations in human NALCN cause intellectual disability (ID) with hypotonia. Here, we report a de novo heterozygous mutation in NALCN affecting a conserved residue (p.R1181Q) in a girl with ID, episodic and persistent ataxia, and arthrogryposis. Interestingly, her episodes of ataxia were abolished by the administration of acetazolamide, similar to the response observed in episodic ataxia associated with other ion channels. Introducing the analogous mutation in the Caenorhabditis elegans homologue nca-1 induced a coiling locomotion phenotype, identical to that obtained with previously characterized C. elegans gain-of-function nca alleles, suggesting that p.R1181Q confers the same property to NALCN. This observation thus suggests that dominant mutations in NALCN can cause a neurodevelopmental phenotype that overlaps with, while being mostly distinct from that associated with recessive mutations in the same gene. © 2015 WILEY PERIODICALS, INC.

  9. First de novo KCND3 mutation causes severe Kv4.3 channel dysfunction leading to early onset cerebellar ataxia, intellectual disability, oral apraxia and epilepsy

    NARCIS (Netherlands)

    Smets, K.; Duarri, A.; Deconinck, T.; Ceulemans, B.; Warrenburg, B.P.C. van de; Zuchner, S.; Gonzalez, M.A.; Schule, R.; Synofzik, M.; Aa, N. van der; Jonghe, P. De; Verbeek, D.S.; Baets, J.

    2015-01-01

    BACKGROUND: Identification of the first de novo mutation in potassium voltage-gated channel, shal-related subfamily, member 3 (KCND3) in a patient with complex early onset cerebellar ataxia in order to expand the genetic and phenotypic spectrum. METHODS: Whole exome sequencing in a cerebellar ataxia

  10. First de novo KCND3 mutation causes severe Kv4.3 channel dysfunction leading to early onset cerebellar ataxia, intellectual disability, oral apraxia and epilepsy

    NARCIS (Netherlands)

    Smets, Katrien; Duarri, Anna; Deconinck, Tine; Ceulemans, Berten; van de Warrenburg, Bart P.; Zuechner, Stephan; Gonzalez, Michael Anthony; Schuele, Rebecca; Synofzik, Matthis; Van der Aa, Nathalie; De Jonghe, Peter; Verbeek, Dineke S.; Baets, Jonathan

    2015-01-01

    Background: Identification of the first de novo mutation in potassium voltage-gated channel, shal-related subfamily, member 3 (KCND3) in a patient with complex early onset cerebellar ataxia in order to expand the genetic and phenotypic spectrum. Methods: Whole exome sequencing in a cerebellar ataxia

  11. Early onset and slow progression of SCA28, a rare dominant ataxia in a large four-generation family with a novel AFG3L2 mutation

    OpenAIRE

    Zuehlke, Christine; Edener, Ulf; Woellner, Janine; Hehr, Ute; Kohl, Zacharias; Schilling, Stefan; Kreuz, Friedmar; Bauer, Peter; Bernard, Veronica; Gillessen-Kaesbach, Gabriele

    2010-01-01

    Abstract The autosomal dominantly inherited spinocerebellar ataxias are a heterogeneous group of neurodegenerative disorders primarily affecting the cerebellum. Genetically, 26 different loci have been identified so far whereas the corresponding gene has not yet been determined for 10 of them. Recently, mutations in the ATPase family gene 3-like 2 gene were presented to cause spinocerebellar ataxia type 28. In order to define the frequency of SCA28 mutations, we performed molecular...

  12. A novel de novo exon 21 DNMT1 mutation causes cerebellar ataxia, deafness, and narcolepsy in a Brazilian patient.

    Science.gov (United States)

    Pedroso, José Luiz; Povoas Barsottini, Orlando Graziani; Lin, Ling; Melberg, Atle; Oliveira, Acary S B; Mignot, Emmanuel

    2013-08-01

    Autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN) is caused by DNMT1 mutations. Diagnosing the syndrome can be difficult, as all clinical features may not be present at onset, HLA-DQB1*06:02 is often negative, and sporadic cases occur. We report on clinical and genetic findings in a 31-year-old woman with cerebellar ataxia, deafness, and narcolepsy, and discuss diagnostic challenges. Clinical and genetic investigation in a patient and family members. Ataxia clinic, São Paulo, Brazil. One patient and her family members. N/A. Narcolepsy was supported by polysomnographic and multiple sleep latency testing. HLA-DQB1*06:02 was positive. CSF hypocretin-1 was 191 pg/mL (normal values > 200 pg/mL). Mild brain atrophy was observed on MRI, with cerebellar involvement. The patient, her asymptomatic mother, and 3 siblings gave blood samples for genetic analysis. DNMT1 exons 20 and 21 were sequenced. Haplotyping of polymorphic markers surrounding the mutation was performed. The proband had a novel DNMT1 mutation in exon 21, p.Cys596Arg, c.1786T > C. All 4 parental haplotypes could be characterized in asymptomatic siblings without the mutation, indicating that the mutation is de novo in the patient. The Brazilian patient reported here further adds to the worldwide distribution of ADCA-DN. The mutation is novel, and illustrates a sporadic case with de novo mutation. We believe that many more cases with this syndrome are likely to be diagnosed in the near future, mandating knowledge of this condition and consideration of the diagnosis.

  13. ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency.

    Science.gov (United States)

    Lagier-Tourenne, Clotilde; Tazir, Meriem; López, Luis Carlos; Quinzii, Catarina M; Assoum, Mirna; Drouot, Nathalie; Busso, Cleverson; Makri, Samira; Ali-Pacha, Lamia; Benhassine, Traki; Anheim, Mathieu; Lynch, David R; Thibault, Christelle; Plewniak, Frédéric; Bianchetti, Laurent; Tranchant, Christine; Poch, Olivier; DiMauro, Salvatore; Mandel, Jean-Louis; Barros, Mario H; Hirano, Michio; Koenig, Michel

    2008-03-01

    Muscle coenzyme Q(10) (CoQ(10) or ubiquinone) deficiency has been identified in more than 20 patients with presumed autosomal-recessive ataxia. However, mutations in genes required for CoQ(10) biosynthetic pathway have been identified only in patients with infantile-onset multisystemic diseases or isolated nephropathy. Our SNP-based genome-wide scan in a large consanguineous family revealed a locus for autosomal-recessive ataxia at chromosome 1q41. The causative mutation is a homozygous splice-site mutation in the aarF-domain-containing kinase 3 gene (ADCK3). Five additional mutations in ADCK3 were found in three patients with sporadic ataxia, including one known to have CoQ(10) deficiency in muscle. All of the patients have childhood-onset cerebellar ataxia with slow progression, and three of six have mildly elevated lactate levels. ADCK3 is a mitochondrial protein homologous to the yeast COQ8 and the bacterial UbiB proteins, which are required for CoQ biosynthesis. Three out of four patients tested showed a low endogenous pool of CoQ(10) in their fibroblasts or lymphoblasts, and two out of three patients showed impaired ubiquinone synthesis, strongly suggesting that ADCK3 is also involved in CoQ(10) biosynthesis. The deleterious nature of the three identified missense changes was confirmed by the introduction of them at the corresponding positions of the yeast COQ8 gene. Finally, a phylogenetic analysis shows that ADCK3 belongs to the family of atypical kinases, which includes phosphoinositide and choline kinases, suggesting that ADCK3 plays an indirect regulatory role in ubiquinone biosynthesis possibly as part of a feedback loop that regulates ATP production.

  14. Rare forms of autosomal recessive neurodegenerative ataxia.

    Science.gov (United States)

    Koenig, Michel

    2003-09-01

    There has been a recent explosion in knowledge regarding the genetic basis of several autosomal recessive ataxias. This article summarizes current information regarding rare forms of recessive ataxias. Friedreich's ataxia and ataxia telangiectasia are dealt with in other articles in this issue. The rarer recessive ataxias can be clinically classified as sensory and spinocerbellar ataxias, cerebellar ataxia with sensory-motor polyneuropathy, and purely cerebellar ataxias. Examples of the first category include ataxia with isolated vitamin E deficiency, abetalipoproteinemia, Refsum's disease, infantile-onset spinocerebellar ataxia, and ataxia with blindness and deafness. Examples of ataxia with sensory-motor polyneuropathy include ataxia with oculomotor apraxia 1 and 2 and spinocerebellar ataxia with neuropathy 1. Examples of purely cerebellar ataxia include autosomal recessive spastic ataxia of Charlevoix-Saguenay and ataxia with hypogonadotropic hypogonadism. This review summarizes the clinical and genetic features of these entities and concludes that the pathogenic basis of such ataxias at this time appear to involve two broad types of processes: free-radical injury and defects of DNA single- or double-strand break repair.

  15. Autosomal recessive posterior column ataxia with retinitis pigmentosa caused by novel mutations in the FLVCR1 gene.

    Science.gov (United States)

    Shaibani, Aziz; Wong, Lee-Jun; Wei Zhang, Victor; Lewis, Richard Alan; Shinawi, Marwan

    2015-01-01

    Posterior column ataxia with retinitis pigmentosa (PCARP) is an autosomal recessive disorder characterized by severe sensory ataxia, muscle weakness and atrophy, and progressive pigmentary retinopathy. Recently, mutations in the FLVCR1 gene were described in four families with this condition. We investigated the molecular basis and studied the phenotype of PCARP in a new family. The proband is a 33-year-old woman presented with sensory polyneuropathy and retinitis pigmentosa (RP). The constellation of clinical findings with normal metabolic and genetic evaluation, including mitochondrial DNA (mtDNA) analysis and normal levels of phytanic acid and vitamin E, prompted us to seek other causes of our patient's condition. Sequencing of FLVCR1 in the proband and targeted mutation testing in her two affected siblings revealed two novel variants, c.1547G > A (p.R516Q) and c.1593+5_+8delGTAA predicted, respectively, to be highly conserved throughout evolution and affecting the normal splicing, therefore, deleterious. This study supports the pathogenic role of FLVCR1 in PCARP and expands the molecular and clinical spectra of PCARP. We show for the first time that nontransmembrane domain (TMD) mutations in the FLVCR1 can cause PCARP, suggesting different mechanisms for pathogenicity. Our clinical data reveal that impaired sensation can be part of the phenotypic spectrum of PCARP. This study along with previously reported cases suggests that targeted sequencing of the FLVCR1 gene should be considered in patients with severe sensory ataxia, RP, and peripheral sensory neuropathy.

  16. Mutations in the sodium channel gene SCN2A cause neonatal epilepsy with late-onset episodic ataxia.

    Science.gov (United States)

    Schwarz, N; Hahn, A; Bast, T; Müller, S; Löffler, H; Maljevic, S; Gaily, E; Prehl, I; Biskup, S; Joensuu, T; Lehesjoki, A-E; Neubauer, B A; Lerche, H; Hedrich, U B S

    2016-02-01

    Mutations in SCN2A cause epilepsy syndromes of variable severity including neonatal-infantile seizures. In one case, we previously described additional childhood-onset episodic ataxia. Here, we corroborate and detail the latter phenotype in three further cases. We describe the clinical characteristics, identify the causative SCN2A mutations and determine their functional consequences using whole-cell patch-clamping in mammalian cells. In total, four probands presented with neonatal-onset seizures remitting after five to 13 months. In early childhood, they started to experience repeated episodes of ataxia, accompanied in part by headache or back pain lasting minutes to several hours. In two of the new cases, we detected the novel mutation p.Arg1882Gly. While this mutation occurred de novo in both patients, one of them carries an additional known variant on the same SCN2A allele, inherited from the unaffected father (p.Gly1522Ala). Whereas p.Arg1882Gly alone shifted the activation curve by -4 mV, the combination of both variants did not affect activation, but caused a depolarizing shift of voltage-dependent inactivation, and a significant increase in Na(+) current density and protein production. p.Gly1522Ala alone did not change channel gating. The third new proband carries the same de novo SCN2A gain-of-function mutation as our first published case (p.Ala263Val). Our findings broaden the clinical spectrum observed with SCN2A gain-of-function mutations, showing that fairly different biophysical mechanisms can cause a convergent clinical phenotype of neonatal seizures and later onset episodic ataxia.

  17. Autosomal recessive cerebellar ataxia caused by mutations in the PEX2 gene

    NARCIS (Netherlands)

    Sevin, C.; Ferdinandusse, S.; Waterham, H.R.; Wanders, R.J.; Aubourg, P.

    2011-01-01

    ABSTRACT: OBJECTIVE: To expand the spectrum of genetic causes of autosomal recessive cerebellar ataxia (ARCA). Case report: Two brothers are described who developed progressive cerebellar ataxia at 3 1/2 and 18 years, respectively. After ruling out known common genetic causes of ARCA, analysis of

  18. Friedreich ataxia: Detection of GAA repeat expansions and frataxin point mutations.

    Science.gov (United States)

    Pandolfo, Massimo

    2006-01-01

    Friedreich ataxia (FA) is an autosomal-recessive disease primarily characterized by progressive neurological disability. A significant proportion of patients also present with a hypertrophic cardiomyopathy, which may, in some cases, cause premature death. FA is caused by insufficient levels of the protein, frataxin, which is involved in mitochondrial iron metabolism. All patients carry at least one copy of an intronic GAA triplet-repeat expansion that interferes with frataxin transcription. Normal chromosomes contain up to 35 to 40 GAA triplets in an Alu sequence localized in the first intron of the frataxin gene; FA chromosomes carry from approx 70 to more than 1000 GAA triplets. The molecular diagnosis of FA is, therefore, based on the detection of this expansion, which is present in homozygosity in more than 95% of the cases. The remaining patients are heterozygous for the GAA expansion and carry a frataxin point mutation as the other pathogenic allele. The expanded GAA triplet repeat may be detected by polymerase chain reaction (PCR) amplification followed by agarose gel electrophoresis analysis. In our hands, carefully performed PCR testing, in particular, if fragment detection is enhanced by hybridization with a GAA oligonucleotide probe, is as effective in identifying patients and carriers as is Southern blot analysis of genomic DNA, and allows a more accurate sizing of the repeat. Furthermore, in the case of smaller expansions, the amplified fragment may be directly sequenced to identify very rare nonpathogenic variant repeats, such as GAAGGA. Sequence analysis of the five coding exons of the frataxin gene should be performed in clinically affected individuals who are heterozygous for an expanded GAA repeat to identify point mutations.

  19. Executive and Attentional Disorders, Epilepsy and Porencephalic Cyst in Autosomal Recessive Cerebellar Ataxia Type 3 Due to ANO10 Mutation.

    Science.gov (United States)

    Chamard, Ludivine; Sylvestre, Géraldine; Koenig, Michel; Magnin, Eloi

    2016-01-01

    ANO10 mutations have recently been reported in autosomal recessive cerebellar ataxia type 3 (ARCA3). The objective of this study was to describe the phenotype of 2 siblings with compound heterozygous ANO10 mutations and progressive cerebellar ataxia, epilepsy, and cognitive impairment. A porencephalic cyst was also described in one of them and a coenzyme Q10 deficiency in the other one. We performed neurological, neuropsychological, electromyographic, electroencephalic and MRI examinations in 2 siblings with compound heterozygous ANO10 mutations. We reported for the first time the neuropsychological profile of 2 ARCA3 patients showing an adult-onset executive and attentional syndrome. Both presented epilepsy. One of them presented a porencephalic cyst. These results suggest that executive and attentional disorders are impaired in ANO10 mutation. In addition, epilepsy and porencephalic cysts were also described in our ARCA3 patients, the cyst thus expanding the clinical phenotype of ARCA3 patients due to ANO10 mutation. © 2016 S. Karger AG, Basel.

  20. Sporadic infantile-onset spinocerebellar ataxia caused by missense mutations of the inositol 1,4,5-triphosphate receptor type 1 gene.

    Science.gov (United States)

    Sasaki, Masayuki; Ohba, Chihiro; Iai, Mizue; Hirabayashi, Shinichi; Osaka, Hitoshi; Hiraide, Takuya; Saitsu, Hirotomo; Matsumoto, Naomichi

    2015-05-01

    Mutations in the inositol 1,4,5-triphosphate receptor type 1 gene (ITPR1) have been identified in families with early-onset spinocerebellar ataxia type 29 (SCA29) and late-onset SCA15, but have not been found in sporadic infantile-onset cerebellar ataxia. We examined if mutations of ITPR1 are also involved in sporadic infantile-onset SCA. Sixty patients with childhood-onset cerebellar atrophy of unknown etiology and their families were examined by whole-exome sequencing. We found de novo heterozygous ITPR1 missense mutations in four unrelated patients with sporadic infantile-onset, nonprogressive cerebellar ataxia. Patients displayed nystagmus, tremor, and hypotonia from very early infancy. Nonprogressive ataxia, motor delay, and mild cognitive deficits were common clinical findings. Brain magnetic resonance imaging revealed slowly progressive cerebellar atrophy. ITPR1 missense mutations cause infantile-onset cerebellar ataxia. ITPR1-related SCA includes sporadic infantile-onset cerebellar ataxia as well as SCA15 and SCA29.

  1. Proteomic Characterization of Cerebrospinal Fluid from Ataxia-Telangiectasia (A-T Patients Using a LC/MS-Based Label-Free Protein Quantification Technology

    Directory of Open Access Journals (Sweden)

    Monika Dzieciatkowska

    2011-01-01

    Full Text Available Cerebrospinal fluid (CSF has been used for biomarker discovery of neurodegenerative diseases in humans since biological changes in the brain can be seen in this biofluid. Inactivation of A-T-mutated protein (ATM, a multifunctional protein kinase, is responsible for A-T, yet biochemical studies have not succeeded in conclusively identifying the molecular mechanism(s underlying the neurodegeneration seen in A-T patients or the proteins that can be used as biomarkers for neurologic assessment of A-T or as potential therapeutic targets. In this study, we applied a high-throughput LC/MS-based label-free protein quantification technology to quantitatively characterize the proteins in CSF samples in order to identify differentially expressed proteins that can serve as potential biomarker candidates for A-T. Among 204 identified CSF proteins with high peptide-identification confidence, thirteen showed significant protein expression changes. Bioinformatic analysis revealed that these 13 proteins are either involved in neurodegenerative disorders or cancer. Future molecular and functional characterization of these proteins would provide more insights into the potential therapeutic targets for the treatment of A-T and the biomarkers that can be used to monitor or predict A-T disease progression. Clinical validation studies are required before any of these proteins can be developed into clinically useful biomarkers.

  2. Recessive C10orf2 mutations in a family with infantile-onset spinocerebellar ataxia, sensorimotor polyneuropathy, and myopathy.

    Science.gov (United States)

    Park, Mi-Hyun; Woo, Hae-Mi; Hong, Young Bin; Park, Ji Hoon; Yoon, Bo Ram; Park, Jin-Mo; Yoo, Jeong Hyun; Koo, Heasoo; Chae, Jong-Hee; Chung, Ki Wha; Choi, Byung-Ok; Koo, Soo Kyung

    2014-08-01

    Recessive mutations in chromosome 10 open reading frame 2 (C10orf2) are relevant in infantile-onset spinocerebellar ataxia (IOSCA). In this study, we investigated the causative mutation in a Korean family with combined phenotypes of IOSCA, sensorimotor polyneuropathy, and myopathy. We investigated recessive mutations in a Korean family with two individuals affected by IOSCA. Causative mutations were investigated using whole exome sequencing. Electrophysiological analyses and muscle and nerve biopsies were performed, along with magnetic resonance imaging (MRI) of the brain and lower extremities. Compound heterozygous mutations c.1460C>T and c.1485-1G>A in C10orf2 were identified as causative of IOSCA. Skeletal muscle showed mitochondrial DNA (mtDNA) deletions. Both patients showed a period of normal development until 12-15 months, followed by ataxia, athetosis, hearing loss, and intellectual disability. Electrophysiological findings indicated motor and sensory polyneuropathies. Muscle biopsy revealed variations in the size and shape of myofibers with scattered, small, and angulated degenerating myofibers containing abnormal mitochondria; these observations are consistent with myopathy and may be the result of mtDNA deletions. Sural nerve biopsy revealed an axonal neuropathy. High-signal-intensity lesions in the middle cerebellar peduncles were correlated with clinical severity, and MRI of the lower legs was compatible with the hypothesis of length-dependent axonal degeneration. We identified novel compound heterozygous mutations of the C10orf2 gene as the cause of IOSCA with sensorimotor polyneuropathy and myopathy. Signs of motor neuropathy and myopathy were discovered for the first time in IOSCA patients with C10orf2 mutations. These results suggest that the clinical spectrum of IOSCA caused by C10orf2 mutations may be more variable than previously reported.

  3. Huntington's disease-like and ataxia syndromes: identification of a family with a de novo SCA17/TBP mutation

    DEFF Research Database (Denmark)

    Bech, Sara; Petersen, Thor; Nørremølle, Anne

    2010-01-01

    tract in the respective proteins. SCA17 is caused by a CAG/CAA repeat expansion in the TATA box-binding protein-gene (TBP). In some cases the clinical phenotype of SCA17 overlaps that of Huntington's disease (HD), hence the use of the term Huntington's disease-like. We screened 89 patients...... with a Huntington's disease-like phenotype without the HD-gene mutation and 178 patients with genetically unclassified cerebellar ataxia for the mutation in TBP. A 33-year old woman presenting with an HD like phenotype with a de novo 54 CAG/CAA repeat expansion was identified. Her normal allele included 38 repeats....... The patient's mother and father both carried normal range repeats, 38/38 and 33/39 respectively. Analysis of the repeat structures revealed that the expansion had occurred upon expansion of the longer paternal allele. We conclude that, however rare, SCA17 must be considered as a cause of Huntington's disease...

  4. The First Cellular Models Based on Frataxin Missense Mutations That Reproduce Spontaneously the Defects Associated with Friedreich Ataxia

    Science.gov (United States)

    Wattenhofer-Donzé, Marie; Martelli, Alain; Vaucamps, Nadège; Reutenauer, Laurence; Messaddeq, Nadia; Bouton, Cécile; Koenig, Michel; Puccio, Hélène

    2009-01-01

    Background Friedreich ataxia (FRDA), the most common form of recessive ataxia, is due to reduced levels of frataxin, a highly conserved mitochondrial iron-chaperone involved in iron-sulfur cluster (ISC) biogenesis. Most patients are homozygous for a (GAA)n expansion within the first intron of the frataxin gene. A few patients, either with typical or atypical clinical presentation, are compound heterozygous for the GAA expansion and a micromutation. Methodology We have developed a new strategy to generate murine cellular models for FRDA: cell lines carrying a frataxin conditional allele were used in combination with an EGFP-Cre recombinase to create murine cellular models depleted for endogenous frataxin and expressing missense-mutated human frataxin. We showed that complete absence of murine frataxin in fibroblasts inhibits cell division and leads to cell death. This lethal phenotype was rescued through transgenic expression of human wild type as well as mutant (hFXNG130V and hFXNI154F) frataxin. Interestingly, cells expressing the mutated frataxin presented a FRDA-like biochemical phenotype. Though both mutations affected mitochondrial ISC enzymes activities and mitochondria ultrastructure, the hFXNI154F mutant presented a more severe phenotype with affected cytosolic and nuclear ISC enzyme activities, mitochondrial iron accumulation and an increased sensitivity to oxidative stress. The differential phenotype correlates with disease severity observed in FRDA patients. Conclusions These new cellular models, which are the first to spontaneously reproduce all the biochemical phenotypes associated with FRDA, are important tools to gain new insights into the in vivo consequences of pathological missense mutations as well as for large-scale pharmacological screening aimed at compensating frataxin deficiency. PMID:19629184

  5. A novel c.5308_5311delGAGA mutation in Senataxin in a Cypriot family with an autosomal recessive cerebellar ataxia

    Directory of Open Access Journals (Sweden)

    Zamba-Papanicolaou Eleni

    2008-04-01

    Full Text Available Abstract Background Senataxin (chromosome 9q34 was recently identified as the causative gene for an autosomal recessive form of Ataxia (ARCA, termed as Ataxia with Oculomotor Apraxia, type 2 (AOA2 and characterized by generalized incoordination, cerebellar atrophy, peripheral neuropathy, "oculomotor apraxia" and increased alpha-fetoprotein (AFP. Here, we report a novel Senataxin mutation in a Cypriot ARCA family. Methods We studied several Cypriot autosomal recessive cerebellar ataxia (ARCA families for linkage to known ARCA gene loci. We linked one family (909 to the SETX locus on chromosome 9q34 and screened the proband for mutations by direct sequencing. Results Sequence analysis revealed a novel c.5308_5311delGAGA mutation in exon 11 of the SETX gene. The mutation has not been detected in 204 control chromosomes from the Cypriot population, the remaining Cypriot ARCA families and 37 Cypriot sporadic cerebellar ataxia patients. Conclusion We identified a novel SETX homozygous c.5308_5311delGAGA mutation that co-segregates with ARCA with cerebellar atrophy and raised AFP.

  6. Genome-wide association study for hereditary ataxia in the Parson Russell Terrier and DNA-testing for ataxia-associated mutations in the Parson and Jack Russell Terrier.

    Science.gov (United States)

    Gast, Alana Christina; Metzger, Julia; Tipold, Andrea; Distl, Ottmar

    2016-10-10

    Spinocerebellar ataxia also referred to as hereditary ataxia comprises different forms of progressive neurodegenerative diseases. A complex mode of inheritance was most likely in Parson Russell Terriers (PRT) and in Jack Russell Terriers (JRT). Recently, the missense mutation KCNJ10:c.627C > G was shown to be associated with the spinocerebellar ataxia (SCA) in JRT and related Russell group of terriers, whereas the missense mutation CAPN1:c.344G > A was associated with late onset ataxia (LOA) in PRT. We performed a genome-wide association study (GWAS) in PRT including 15 cases and 29 controls and found a statistically strong signal in the genomic region on dog chromosome 38 (CFA38) where KCNJ10 is located. We tested the CAPN1:c.344G > A and KCNJ10:c.627C > G (Transcript XM_545752.4) mutations in a sample of 77 PRT and 9 JRT from Germany as well as further 179 controls from 20 different dog breeds. All cases and controls genotyped carried the wild-type for the CAPN1:c.344G > A mutation. Among the PRT, 17/77 (22.1 %) dogs were homozygous for the mutant KCNJ10 allele and 22/77 (28.6 %) dogs were heterozygous. Three cases of PRT had the homozygous KCNJ10 wild-type. In JRT, 1/3 cases did show the mutant KCNJ10 allele homozygous. Thus, we sequenced the KCNJ10 exons with their adjacent regions from 10 PRT and 3 JRT including the animals with imperfect co-segregation of the c.627C > G mutation. We identified a total of 45 genetic variants within KCNJ10. The most likely variant explaining the cases appeared a 1-bp-insertion in a C-stretch within exon 3 (KCNJ10:g.22141027insC). In silico analysis showed that this indel may influence the regulation of gene expression. In the present study, 16/21 cases of hereditary ataxia perfectly co-segregated with the KCNJ10:c.627C > G mutation. The CAPN1:c.344G > A mutation could not be validated and seems to be a rare variant in the samples screened. Screening KCNJ10 for further mutations did result in a

  7. Spinocerebellar ataxia 28: a novel AFG3L2 mutation in a German family with young onset, slow progression and saccadic slowing.

    Science.gov (United States)

    Zühlke, Christine; Mikat, Barbara; Timmann, Dagmar; Wieczorek, Dagmar; Gillessen-Kaesbach, Gabriele; Bürk, Katrin

    2015-01-01

    Spinocerebellar ataxia type 28 (SCA28) is related to mutations of the ATPase family gene 3-like 2 gene (AFG3L2). To date, 13 private missense mutations have been identified in families of French, Italian, and German ancestry, but overall, the disorder seems to be rare in Europe. Here, we report a kindred of German ancestry with four affected family members presenting with slowly progressive ataxia, mild pyramidal tract signs and slow saccades. After excluding repeat expansions in the genes for SCA1-3, 6-8, 10, 12, and 17, Sanger sequencing of the coding regions of TTBK2 (SCA11), KCNC3 (SCA13), PRKCG (SCA14), FGF14 (SCA27) and AFG3L2 (SCA28) was performed. The 17 coding exons of AFG3L2 with flanking intronic sequences were amplified by PCR and sequenced on both strands. Sequencing detected a novel potential missense mutation (p.Y689N) in the C-terminal proteolytic domain, the mutational hotspot of AFG3L2. The online programme "PolyPhen-2" classifies this amino acid exchange as probably damaging (score 0.990). Similarly to most of the published SCA28 mutations, the novel mutation is located within exon 16. Mutations in exon 16 alter the proteolytic activity of the protease AFG3L2 that is highly expressed in Purkinje cells. Genetic testing should be considered in dominant ataxia with pyramidal tract signs and saccadic slowing.

  8. A SEL1L mutation links a canine progressive early-onset cerebellar ataxia to the endoplasmic reticulum-associated protein degradation (ERAD machinery.

    Directory of Open Access Journals (Sweden)

    Kaisa Kyöstilä

    Full Text Available Inherited ataxias are characterized by degeneration of the cerebellar structures, which results in progressive motor incoordination. Hereditary ataxias occur in many species, including humans and dogs. Several mutations have been found in humans, but the genetic background has remained elusive in dogs. The Finnish Hound suffers from an early-onset progressive cerebellar ataxia. We have performed clinical, pathological, and genetic studies to describe the disease phenotype and to identify its genetic cause. Neurological examinations on ten affected dogs revealed rapidly progressing generalized cerebellar ataxia, tremors, and failure to thrive. Clinical signs were present by the age of 3 months, and cerebellar shrinkage was detectable through MRI. Pathological and histological examinations indicated cerebellum-restricted neurodegeneration. Marked loss of Purkinje cells was detected in the cerebellar cortex with secondary changes in other cortical layers. A genome-wide association study in a cohort of 31 dogs mapped the ataxia gene to a 1.5 Mb locus on canine chromosome 8 (p(raw = 1.1x10(-7, p(genome = 7.5x10(-4. Sequencing of a functional candidate gene, sel-1 suppressor of lin-12-like (SEL1L, revealed a homozygous missense mutation, c.1972T>C; p.Ser658Pro, in a highly conserved protein domain. The mutation segregated fully in the recessive pedigree, and a 10% carrier frequency was indicated in a population cohort. SEL1L is a component of the endoplasmic reticulum (ER-associated protein degradation (ERAD machinery and has not been previously associated to inherited ataxias. Dysfunctional protein degradation is known to cause ER stress, and we found a significant increase in expression of nine ER stress responsive genes in the cerebellar cortex of affected dogs, supporting the pathogenicity of the mutation. Our study describes the first early-onset neurodegenerative ataxia mutation in dogs, establishes an ERAD-mediated neurodegenerative

  9. An altered GABA-A receptor function in spinocerebellar ataxia type 6 and familial hemiplegic migraine type 1 associated with the CACNA1A gene mutation

    Directory of Open Access Journals (Sweden)

    Satoshi Kono

    2014-12-01

    General significance: An altered GABA-A receptor function has previously been reported in models of inherited murine cerebellar ataxia caused by a mutation in the CACNA1A gene. This study showed novel clinical characteristics of alteration in the GABA-A receptor in vivo, which may provide clinical evidence indicating a pathological mechanism common to neurological disorders associated with CACNA1A gene mutation.

  10. "ATP1A3" Mutations in Infants: A New Rapid-Onset Dystonia-Parkinsonism Phenotype Characterized by Motor Delay and Ataxia

    Science.gov (United States)

    Brashear, Allison; Mink, Jonathan W.; Hill, Deborah F.; Boggs, Niki; McCall, W. Vaughn; Stacy, Mark A.; Snively, Beverly; Light, Laney S.; Sweadner, Kathleen J.; Ozelius, Laurie J.; Morrison, Leslie

    2012-01-01

    We report new clinical features of delayed motor development, hypotonia, and ataxia in two young children with mutations (R756H and D923N) in the "ATP1A3" gene. In adults, mutations in "ATP1A3" cause rapid-onset dystonia-Parkinsonism (RDP, DYT12) with abrupt onset of fixed dystonia. The parents and children were examined and videotaped, and…

  11. CHEK2 1100DELC germline mutation: a frequency study in hereditary breast and colon cancer Brazilian families

    OpenAIRE

    Abud, Jamile; Prolla, João Carlos; Koehler-Santos, Patrícia; Ashton-Prolla, Patricia

    2012-01-01

    CONTEXT: CHEK2 encodes a cell cycle checkpoint kinase that plays an important role in the DNA damage repair pathway, activated mainly by ATM (Ataxia Telangiectasia Mutated) in response to double-stranded DNA breaks. A germline mutation in CHEK2, 1100delC, has been described as a low penetrance allele in a significant number of families with breast and colorectal cancer in certain countries and is also associated with increased risk of contralateral breast cancer in women previously affected b...

  12. Myoclonus epilepsy and ataxia due to KCNC1 mutation: Analysis of 20 cases and K+channel properties.

    Science.gov (United States)

    Oliver, Karen L; Franceschetti, Silvana; Milligan, Carol J; Muona, Mikko; Mandelstam, Simone A; Canafoglia, Laura; Boguszewska-Chachulska, Anna M; Korczyn, Amos D; Bisulli, Francesca; Di Bonaventura, Carlo; Ragona, Francesca; Michelucci, Roberto; Ben-Zeev, Bruria; Straussberg, Rachel; Panzica, Ferruccio; Massano, João; Friedman, Daniel; Crespel, Arielle; Engelsen, Bernt A; Andermann, Frederick; Andermann, Eva; Spodar, Krystyna; Lasek-Bal, Anetta; Riguzzi, Patrizia; Pasini, Elena; Tinuper, Paolo; Licchetta, Laura; Gardella, Elena; Lindenau, Matthias; Wulf, Annette; Møller, Rikke S; Benninger, Felix; Afawi, Zaid; Rubboli, Guido; Reid, Christopher A; Maljevic, Snezana; Lerche, Holger; Lehesjoki, Anna-Elina; Petrou, Steven; Berkovic, Samuel F

    2017-05-01

    To comprehensively describe the new syndrome of myoclonus epilepsy and ataxia due to potassium channel mutation (MEAK), including cellular electrophysiological characterization of observed clinical improvement with fever. We analyzed clinical, electroclinical, and neuroimaging data for 20 patients with MEAK due to recurrent KCNC1 p.R320H mutation. In vitro electrophysiological studies were conducted using whole cell patch-clamp to explore biophysical properties of wild-type and mutant K V 3.1 channels. Symptoms began at between 3 and 15 years of age (median = 9.5), with progressively severe myoclonus and rare tonic-clonic seizures. Ataxia was present early, but quickly became overshadowed by myoclonus; 10 patients were wheelchair-bound by their late teenage years. Mild cognitive decline occurred in half. Early death was not observed. Electroencephalogram (EEG) showed generalized spike and polyspike wave discharges, with documented photosensitivity in most. Polygraphic EEG-electromyographic studies demonstrated a cortical origin for myoclonus and striking coactivation of agonist and antagonist muscles. Magnetic resonance imaging revealed symmetrical cerebellar atrophy, which appeared progressive, and a prominent corpus callosum. Unexpectedly, transient clinical improvement with fever was noted in 6 patients. To explore this, we performed high-temperature in vitro recordings. At elevated temperatures, there was a robust leftward shift in activation of wild-type K V 3.1, increasing channel availability. MEAK has a relatively homogeneous presentation, resembling Unverricht-Lundborg disease, despite the genetic and biological basis being quite different. A remarkable improvement with fever may be explained by the temperature-dependent leftward shift in activation of wild-type K V 3.1 subunit-containing channels, which would counter the loss of function observed for mutant channels, highlighting KCNC1 as a potential target for precision therapeutics. Ann Neurol 2017

  13. KCNC3R420H, a K+ Channel Mutation Causative in Spinocerebellar Ataxia 13 Displays Aberrant Intracellular Trafficking

    Science.gov (United States)

    Gallego-Iradi, Carolina; Bickford, Justin S.; Khare, Swati; Hall, Alexis; Nick, Jerelyn A.; Salmasinia, Donya; Wawrowsky, Kolja; Bannykh, Serguei; Huynh, Duong P.; Rincon-Limas, Diego E.; Pulst, Stefan M.; Nick, Harry S.; Fernandez-Funez, Pedro; Waters, Michael F.

    2014-01-01

    Spinocerebellar ataxia 13 (SCA13) is an autosomal dominant disease resulting from mutations in KCNC3 (Kv3.3), a voltage-gated potassium channel. The KCNC3R420H mutation was first identified as causative for SCA13 in a four-generation Filipino kindred with over 20 affected individuals. Electrophysiological analyses in oocytes previously showed that this mutation did not lead to a functional channel and displayed a dominant negative phenotype. In an effort to identify the molecular basis of this allelic form of SCA13, we first determined that human KCNC3WT and KCNC3R420H display disparate posttranslational modifications, and the mutant protein has reduced complex glycan adducts. Immunohistochemical analyses demonstrated that KCNC3R420H was not properly trafficking to the plasma membrane and surface biotinylation demonstrated that KCNC3R420H exhibited only 24% as much surface expression as KCNC3WT. KCNC3R420H trafficked through the ER but was retained in the Golgi. KCNC3R420H expression results in altered Golgi and cellular morphology. Electron microscopy of KCNC3R420H localization further supports retention in the Golgi. These results are specific to the KCNC3R420H allele and provide new insight into the molecular basis of disease manifestation in SCA13. PMID:25152487

  14. KCNC3(R420H), a K(+) channel mutation causative in spinocerebellar ataxia 13 displays aberrant intracellular trafficking.

    Science.gov (United States)

    Gallego-Iradi, Carolina; Bickford, Justin S; Khare, Swati; Hall, Alexis; Nick, Jerelyn A; Salmasinia, Donya; Wawrowsky, Kolja; Bannykh, Serguei; Huynh, Duong P; Rincon-Limas, Diego E; Pulst, Stefan M; Nick, Harry S; Fernandez-Funez, Pedro; Waters, Michael F

    2014-11-01

    Spinocerebellar ataxia 13 (SCA13) is an autosomal dominant disease resulting from mutations in KCNC3 (Kv3.3), a voltage-gated potassium channel. The KCNC3(R420H) mutation was first identified as causative for SCA13 in a four-generation Filipino kindred with over 20 affected individuals. Electrophysiological analyses in oocytes previously showed that this mutation did not lead to a functional channel and displayed a dominant negative phenotype. In an effort to identify the molecular basis of this allelic form of SCA13, we first determined that human KCNC3(WT) and KCNC3(R420H) display disparate post-translational modifications, and the mutant protein has reduced complex glycan adducts. Immunohistochemical analyses demonstrated that KCNC3(R420H) was not properly trafficking to the plasma membrane and surface biotinylation demonstrated that KCNC3(R420H) exhibited only 24% as much surface expression as KCNC3(WT). KCNC3(R420H) trafficked through the ER but was retained in the Golgi. KCNC3(R420H) expression results in altered Golgi and cellular morphology. Electron microscopy of KCNC3(R420H) localization further supports retention in the Golgi. These results are specific to the KCNC3(R420H) allele and provide new insight into the molecular basis of disease manifestation in SCA13. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. EPISODIC ATAXIA MYOKYMIA SYNDROME IS ASSOCIATED WITH POINT MUTATIONS IN THE HUMAN POTASSIUM CHANNEL GENE, KCNA1

    NARCIS (Netherlands)

    BROWNE, DL; GANCHER, ST; NUTT, JG; BRUNT, ERP; SMITH, EA; KRAMER, P; LITT, M

    1994-01-01

    Episodic ataxia (EA) is a rare, familial disorder producing attacks of generalized ataxia, with normal or near-normal neurological function between attacks. One type of EA is characterized by brief episodes of ataxia with myokymia (rippling of muscles) evident between attacks. Linkage studies in

  16. Infantile nystagmus and late onset ataxia associated with a CACNA1A mutation in the intracellular loop between s4 and s5 of domain 3.

    Science.gov (United States)

    Self, J; Mercer, C; Boon, E M J; Murugavel, M; Shawkat, F; Hammans, S; Hodgkins, P; Griffiths, H; Lotery, A

    2009-12-01

    Mutations in the 1A-subunit of the brain P/Q-type calcium channel gene CACNA1A are responsible for spinocerebellar ataxia type 6 (SCA6), familial haemiplegic migraine (FHM) and episodic ataxia type 2 (EA2). Considerable clinical and genetic overlap exists between these 3 allelic disorders. Clinical findings are varied and may include nystagmus. To study the clinical phenotype and identify a causative mutation in a family who presented when the youngest member was diagnosed with apparent isolated congenital nystagmus (age 3 months). 8 patients from one family underwent detailed clinical phenotyping comprising; ophthalmic and neurological examination, nystagmology, electrodiagnostic tests and brain imaging. The CACNA1A gene was screened for mutations by direct sequencing in one patient. Co-segregation of the disease and an identified sequence variation was shown using direct sequencing. Phenotyping revealed isolated atypical nystagmus in 4 family members and nystagmus in addition to late onset ataxia in 1 family member. Direct sequencing of the CACNA1A gene identified a novel missense mutation; (c.4110T>G p.Phe1370Leu (NM_000068.3)). We have shown that a mutation in the intracellular domain between s4 and s5 of repeat 3 can cause atypical nystagmus/cerebellar phenotypes, including isolated nystagmus in an infant. We also illustrate the necessity for detailed examination of relatives in cases of apparent isolated congenital nystagmus.

  17. Mutations in PTRH2 cause novel infantile-onset multisystem disease with intellectual disability, microcephaly, progressive ataxia, and muscle weakness.

    Science.gov (United States)

    Hu, Hao; Matter, Michelle L; Issa-Jahns, Lina; Jijiwa, Mayumi; Kraemer, Nadine; Musante, Luciana; de la Vega, Michelle; Ninnemann, Olaf; Schindler, Detlev; Damatova, Natalia; Eirich, Katharina; Sifringer, Marco; Schrötter, Sandra; Eickholt, Britta J; van den Heuvel, Lambert; Casamina, Chanel; Stoltenburg-Didinger, Gisela; Ropers, Hans-Hilger; Wienker, Thomas F; Hübner, Christoph; Kaindl, Angela M

    2014-12-01

    To identify the cause of a so-far unreported phenotype of infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD). We characterized a consanguineous family of Yazidian-Turkish descent with IMNEPD. The two affected children suffer from intellectual disability, postnatal microcephaly, growth retardation, progressive ataxia, distal muscle weakness, peripheral demyelinating sensorimotor neuropathy, sensorineural deafness, exocrine pancreas insufficiency, hypothyroidism, and show signs of liver fibrosis. We performed whole-exome sequencing followed by bioinformatic analysis and Sanger sequencing on affected and unaffected family members. The effect of mutations in the candidate gene was studied in wild-type and mutant mice and in patient and control fibroblasts. In a consanguineous family with two individuals with IMNEPD, we identified a homozygous frameshift mutation in the previously not disease-associated peptidyl-tRNA hydrolase 2 (PTRH2) gene. PTRH2 encodes a primarily mitochondrial protein involved in integrin-mediated cell survival and apoptosis signaling. We show that PTRH2 is highly expressed in the developing brain and is a key determinant in maintaining cell survival during human tissue development. Moreover, we link PTRH2 to the mTOR pathway and thus the control of cell size. The pathology suggested by the human phenotype and neuroimaging studies is supported by analysis of mutant mice and patient fibroblasts. We report a novel disease phenotype, show that the genetic cause is a homozygous mutation in the PTRH2 gene, and demonstrate functional effects in mouse and human tissues. Mutations in PTRH2 should be considered in patients with undiagnosed multisystem neurologic, endocrine, and pancreatic disease.

  18. Homozygous c.649dupC mutation in PRRT2 worsens the BFIS/PKD phenotype with mental retardation, episodic ataxia, and absences.

    Science.gov (United States)

    Labate, Angelo; Tarantino, Patrizia; Viri, Maurizio; Mumoli, Laura; Gagliardi, Monica; Romeo, Antonino; Zara, Federico; Annesi, Grazia; Gambardella, Antonio

    2012-12-01

    Heterozygous mutations of PRRT2, which encodes proline-rich transmembrane protein 2, are associated with heterogeneous phenotypes including benign familial infantile seizures (BFIS), or familial paroxysmal kinesigenic dystonia (PKD). We report a consanguineous Italian family with BFIS/PKD phenotype that contained 14 living members with 6 affected individuals (four men, ranging in age from 6-44 years). We identified the reported c.649dupC (p.Arg217ProfsX8) mutation of PRRT2 gene that cosegregated with the disease and was not observed in 100 controls of matched ancestry. Four patients with BFIS phenotype were heterozygous for this mutation, including the consanguineous parents of the two affected brothers with more severe phenotypes of BFIS/PKD--mental retardation, episodic ataxia, and absences--who were the only individuals to carry a homozygous c.649dupC mutation. This family provides strong evidence that homozygous PRRT2 mutations give rise to more severe clinical disease of mental retardation, episodic ataxia, and absences, and, thus, enlarges the clinical spectrum related to PRRT2 mutations. Moreover, it suggests an additive effect of double dose of the genetic mutation and underscores the complexity of the phenotypic consequences of mutations in this gene. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.

  19. The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues.

    Science.gov (United States)

    Al-Mahdawi, Sahar; Pinto, Ricardo Mouro; Ismail, Ozama; Varshney, Dhaval; Lymperi, Stefania; Sandi, Chiranjeevi; Trabzuni, Daniah; Pook, Mark

    2008-03-01

    Friedreich ataxia (FRDA) is caused by a homozygous GAA repeat expansion mutation within intron 1 of the FXN gene, leading to reduced expression of frataxin protein. Evidence suggests that the mutation may induce epigenetic changes and heterochromatin formation, thereby impeding gene transcription. In particular, studies using FRDA patient blood and lymphoblastoid cell lines have detected increased DNA methylation of specific CpG sites upstream of the GAA repeat and histone modifications in regions flanking the GAA repeat. In this report we show that such epigenetic changes are also present in FRDA patient brain, cerebellum and heart tissues, the primary affected systems of the disorder. Bisulfite sequence analysis of the FXN flanking GAA regions reveals a shift in the FRDA DNA methylation profile, with upstream CpG sites becoming consistently hypermethylated and downstream CpG sites becoming consistently hypomethylated. We also identify differential DNA methylation at three specific CpG sites within the FXN promoter and one CpG site within exon 1. Furthermore, we show by chromatin immunoprecipitation analysis that there is overall decreased histone H3K9 acetylation together with increased H3K9 methylation of FRDA brain tissue. Further studies of brain, cerebellum and heart tissues from our GAA repeat expansion-containing FRDA YAC transgenic mice reveal comparable epigenetic changes to those detected in FRDA patient tissue. We have thus developed a mouse model that will be a valuable resource for future therapeutic studies targeting epigenetic modifications of the FXN gene to increase frataxin expression.

  20. Congenital ataxia and hemiplegic migraine with cerebral edema associated with a novel gain of function mutation in the calcium channel CACNA1A.

    Science.gov (United States)

    García Segarra, Nuria; Gautschi, Ivan; Mittaz-Crettol, Laureane; Kallay Zetchi, Christine; Al-Qusairi, Lama; Van Bemmelen, Miguel Xavier; Maeder, Philippe; Bonafé, Luisa; Schild, Laurent; Roulet-Perez, Eliane

    2014-07-15

    Mutations in the CACNA1A gene, encoding the α1 subunit of the voltage-gated calcium channel Ca(V)2.1 (P/Q-type), have been associated with three neurological phenotypes: familial and sporadic hemiplegic migraine type 1 (FHM1, SHM1), episodic ataxia type 2 (EA2), and spinocerebellar ataxia type 6 (SCA6). We report a child with congenital ataxia, abnormal eye movements and developmental delay who presented severe attacks of hemiplegic migraine triggered by minor head traumas and associated with hemispheric swelling and seizures. Progressive cerebellar atrophy was also observed. Remission of the attacks was obtained with acetazolamide. A de novo 3 bp deletion was found in heterozygosity causing loss of a phenylalanine residue at position 1502, in one of the critical transmembrane domains of the protein contributing to the inner part of the pore. We characterized the electrophysiology of this mutant in a Xenopus oocyte in vitro system and showed that it causes gain of function of the channel. The mutant Ca(V)2.1 activates at lower voltage threshold than the wild type. These findings provide further evidence of this molecular mechanism as causative of FHM1 and expand the phenotypic spectrum of CACNA1A mutations with a child exhibiting severe SHM1 and non-episodic ataxia of congenital onset. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Canine hereditary ataxia.

    Science.gov (United States)

    Urkasemsin, Ganokon; Olby, Natasha J

    2014-11-01

    The hereditary ataxias are a group of neurodegenerative diseases that cause a progressive (or episodic) cerebellar ataxia. A large number of different disorders have been described in different breeds of purebred dog, and in some instances, more than one disorder occurs in a single breed, creating a confusing clinical picture. The mutations associated with these disorders are being described at a rapid rate, potentially changing our ability to prevent, diagnose, and treat affected dogs. A breed-related neurodegenerative process should be suspected in any pure bred dog with slowly progressive, symmetric signs of ataxia. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Whole-genome sequencing identifies a novel ABCB7 gene mutation for X-linked congenital cerebellar ataxia in a large family of Mongolian ancestry

    OpenAIRE

    Protasova, Maria S; Grigorenko, Anastasia P.; Tyazhelova, Tatiana V.; Tatiana V Andreeva; Reshetov, Denis A; Gusev, Fedor E; Laptenko, Alexander E; Kuznetsova, Irina L; Goltsov, Andrey Y; Klyushnikov, Sergey A; Sergey N. Illarioshkin; Rogaev, Evgeny I.

    2015-01-01

    X-linked congenital cerebellar ataxia is a heterogeneous nonprogressive neurodevelopmental disorder with onset in early childhood. We searched for a genetic cause of this condition, previously reported in a Buryat pedigree of Mongolian ancestry from southeastern Russia. Using whole-genome sequencing on Illumina HiSeq 2000 platform, we found a missense mutation in the ABCB7 (ABC-binding cassette transporter B7) gene, encoding a mitochondrial transporter, involved in heme synthesis and previous...

  3. Autosomal Recessive Cerebellar Ataxia type 1 mimicking multiple sclerosis: A report of two siblings with a novel mutation in SYNE1 gene in a Saudi family.

    Science.gov (United States)

    Algahtani, Hussein; Marzouk, Yousef; Algahtani, Raghad; Salman, Sali; Shirah, Bader

    2017-01-15

    Autosomal Recessive Cerebellar Ataxia type 1 (ARCA1), also known as recessive ataxia of Beauce, is an adult onset pure cerebellar ataxia that typically presents with cerebellar ataxia and/or dysarthria. A mutation in the synaptic nuclear envelope protein 1 (SYNE1) gene that is located on chromosome 6p25 results in premature termination of the protein. It was first reported in 2007 as the first identified gene responsible for a recessively inherited pure cerebellar ataxia. In this article, we are presenting two brothers with ARCA1 who were misdiagnosed and treated as multiple sclerosis for more than a decade. We are not only presenting a rare mutation in a Saudi family, but we are also expanding on the heterogeneity of the clinical presentation of this disorder and elaborating on the pathophysiology of neurological involvement. These cases illustrate that white matter abnormalities on MRI may occur in ARCA1. The clinical and radiological spectrum of ARCA1 indicate that this disease is more than a pure cerebellar degeneration. ARCA1 should be considered in the differential diagnosis of patients diagnosed with MS especially in the presence of strong family history. The disease is gradually progressive, and clinical features are atypical for MS. Applying diagnostic criteria for MS is extremely important for confirming or excluding the diagnosis. Detailed history and physical examination are of paramount importance to score the final diagnosis. Another less likely possibility is a chance association, which may question the biological relevance of our data. To confirm or exclude this possibility, further studies reporting different cohorts need to be conducted. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. [A case of neurologic muscle weakness, ataxia, and retinitis pigmentosa (NARP) syndrome with a novel mitochondrial mutation m.8729 G>A].

    Science.gov (United States)

    Miyawaki, Toko; Koto, Shusuke; Ishihara, Hiroyuki; Goto, Yuichi; Nishino, Ichizo; Kanda, Fumio; Toda, Tatsushi

    2015-01-01

    We report a patient having classical clinical feature of neurologic muscle weakness, ataxia, and retinitis pigmentosa (NARP) and a novel mutation, m.8729 G>A in mitochondria DNA. The patient was referred to our hospital because of progressive ataxia in her limbs and trunk. She had a history of incapability of running long distances from childhood. Neurological examination revealed cerebellar ataxia, distal dominant muscle weakness in the limbs, hyporeflexia, hypoesthesia, myoclonus, sensorineural deafness, and retinitis pigmentosa. Magnetic resonance imaging (MRI) showed atrophy of brain stem and cerebellum as well as calcification of basal ganglia. In both serum and cerebrospinal fluid, lactate and pyruvate levels were elevated. Histological examination of biopsied muscle revealed chronic neurogenic changes without ragged red fibers. Genetic analysis of mitochondrial DNA (mtDNA) of the muscle revealed a heteroplasmic mutation, m.8729 G>A. Chemical analysis of the respiratory chain complexes in her muscle specimen demonstrated lower activities of complexes I and V. In our case, novel mutation of m.8729 G>A in mtDNA was indicated as the cause of NARP syndrome.

  5. Recurrent major depression, ataxia, and cardiomyopathy: association with a novel POLG mutation?

    NARCIS (Netherlands)

    Verhoeven, W.M.A.; Egger, J.I.M.; Kremer, H.P.H.; Pont, B.J.H.B. de; Marcelis, C.L.M.

    2011-01-01

    At present, more than 100 disease mutations in mitochondrial DNA polymerase γ (POLG) have been indentified that are causally related to an array of neuropsychiatric diseases affecting multiple systems. Both autosomal recessive and autosomal dominant forms can be delineated, the latter being

  6. Recurrent major depression, ataxia, and cardiomyopathy: Association with a novel POLG mutation?

    NARCIS (Netherlands)

    W.M.A. Verhoeven (Wim); J.I.M. Egger (Jos); H.P.H. Kremer (Berry); B.J.H.B. de Pont (Boudewijn J.H.B.); C.L.M. Marcelis (Carlo)

    2011-01-01

    textabstractAt present, more than 100 disease mutations in mitochondrial DNA polymerase γ (POLG) have been indentified that are causally related to an array of neuropsychiatric diseases affecting multiple systems. Both autosomal recessive and autosomal dominant forms can be delineated, the latter

  7. Recurrent major depression, ataxia, and cardiomyopathy : association with a novel POLG mutation?

    NARCIS (Netherlands)

    Verhoeven, Willem M. A.; Egger, Jos I. M.; Kremer, Berry P. H.; de Pont, Boudewijn J. H. B.; Marcelis, Carlo L. M.

    2011-01-01

    At present, more than 100 disease mutations in mitochondrial DNA polymerase gamma (POLG) have been indentified that are causally related to an array of neuropsychiatric diseases affecting multiple systems. Both autosomal recessive and autosomal dominant forms can be delineated, the latter being

  8. Recurrent major depression, ataxia, and cardiomyopathy: association with a novel POLG mutation?

    NARCIS (Netherlands)

    Verhoeven, W.M.A.; Egger, J.I.; Kremer, H.P.H.; Pont, B.J.H.B. de; Marcelis, C.L.M.

    2011-01-01

    At present, more than 100 disease mutations in mitochondrial DNA polymerase gamma (POLG) have been indentified that are causally related to an array of neuropsychiatric diseases affecting multiple systems. Both autosomal recessive and autosomal dominant forms can be delineated, the latter being

  9. GAA repeat expansion mutation mouse models of Friedreich ataxia exhibit oxidative stress leading to progressive neuronal and cardiac pathology.

    Science.gov (United States)

    Al-Mahdawi, Sahar; Pinto, Ricardo Mouro; Varshney, Dhaval; Lawrence, Lorraine; Lowrie, Margaret B; Hughes, Sian; Webster, Zoe; Blake, Julian; Cooper, J Mark; King, Rosalind; Pook, Mark A

    2006-11-01

    Friedreich ataxia (FRDA) is a neurodegenerative disorder caused by an unstable GAA repeat expansion mutation within intron 1 of the FXN gene. However, the origins of the GAA repeat expansion, its unstable dynamics within different cells and tissues, and its effects on frataxin expression are not yet completely understood. Therefore, we have chosen to generate representative FRDA mouse models by using the human FXN GAA repeat expansion itself as the genetically modified mutation. We have previously reported the establishment of two lines of human FXN YAC transgenic mice that contain unstable GAA repeat expansions within the appropriate genomic context. We now describe the generation of FRDA mouse models by crossbreeding of both lines of human FXN YAC transgenic mice with heterozygous Fxn knockout mice. The resultant FRDA mice that express only human-derived frataxin show comparatively reduced levels of frataxin mRNA and protein expression, decreased aconitase activity, and oxidative stress, leading to progressive neurodegenerative and cardiac pathological phenotypes. Coordination deficits are present, as measured by accelerating rotarod analysis, together with a progressive decrease in locomotor activity and increase in weight. Large vacuoles are detected within neurons of the dorsal root ganglia (DRG), predominantly within the lumbar regions in 6-month-old mice, but spreading to the cervical regions after 1 year of age. Secondary demyelination of large axons is also detected within the lumbar roots of older mice. Lipofuscin deposition is increased in both DRG neurons and cardiomyocytes, and iron deposition is detected in cardiomyocytes after 1 year of age. These mice represent the first GAA repeat expansion-based FRDA mouse models that exhibit progressive FRDA-like pathology and thus will be of use in testing potential therapeutic strategies, particularly GAA repeat-based strategies.

  10. Friedreich's Ataxia

    Science.gov (United States)

    Friedreich's ataxia is an inherited disease that damages your nervous system. The damage affects your spinal cord and the ... of 5 and 15. The main symptom is ataxia, which means trouble coordinating movements. Specific symptoms include ...

  11. Allele and genotype frequency of a genetic variant in ataxia telangiectasia mutated gene affecting glycemic response to metformin in South Indian population

    Directory of Open Access Journals (Sweden)

    Saranya Vilvanathan

    2014-01-01

    Full Text Available Allele and genotype frequency of a genetic variant in ATM gene affecting glycemic response to metformin in South Indian population . Context: The novel polymorphism in ATM gene (rs11212617, which is implicated to have association with metformin response, exhibits inter-ethnic variability in the allele and genotype frequency distribution . Aims and Design: The objective of the present study is to establish the allele and genotype frequency of rs11212617 single nucleotide polymorphism in ATM gene, in South Indian population and to find if this variant has any role in the etiology of type 2 diabetes mellitus . Materials and Methods: The study was performed in 2 cohorts of populations, 112 healthy volunteers and 118 type 2 diabetes mellitus patients. Genomic deoxyribonucleic acid (DNA was extracted from peripheral blood leucocytes by phenol-chloroform method and genotyping was performed by real-time polymerase chain reaction using TaqMan assay. Results: In South Indian population, the frequency of major A allele was 0.65 and the minor C allele was 0.35. AA and CC are the homozygous genotypes with frequency of 0.39 and 0.09 respectively. The frequency of heterozygous genotype AC (0.52 was found to be higher than the homozygotes. There was no significant difference in the frequency distribution in the diabetic population, which implies that this variant does not have any causative role in the disease etiology. The frequency distributions were found to be significantly different from the distributions in other ethnic populations such as Caucasians, Chinese, Japanese and Africans. But there was no significant difference when compared with the Gujarati Indians of Houston. Conclusion: The frequency distribution of this novel variant in South Indian population forms a framework for further gene disease association studies to establish the association of this variant with metformin response. Our study could not find any association of this variant with respect to the disease etiology.

  12. Caffeine Suppresses Apoptosis of Bladder Cancer RT4 Cells in Response to Ionizing Radiation by Inhibiting Ataxia Telangiectasia Mutated-Chk2-p53 Axis

    National Research Council Canada - National Science Library

    Zhe-Wei Zhang Jing Xiao Wei Luo Bo-Han Wang Ji-Min Chen

    2015-01-01

    ...; ATM is the major kinase for DNA damage detection. This study aimed to investigate the effects of caffeine on DNA damage responses in cells from the bladder cancer cell line RT4 those were exposed to ionizing radiation (IR). Methods...

  13. CHEK2 1100DELC germline mutation: a frequency study in hereditary breast and colon cancer Brazilian families Mutação germinativa 1100delC no gene CHEK2: estudo da frequência em famílias brasileiras com câncer de mama e cólon hereditários

    OpenAIRE

    Jamile Abud; João Carlos Prolla

    2012-01-01

    CONTEXT: CHEK2 encodes a cell cycle checkpoint kinase that plays an important role in the DNA damage repair pathway, activated mainly by ATM (Ataxia Telangiectasia Mutated) in response to double-stranded DNA breaks. A germline mutation in CHEK2, 1100delC, has been described as a low penetrance allele in a significant number of families with breast and colorectal cancer in certain countries and is also associated with increased risk of contralateral breast cancer in women previously affected b...

  14. Whole-exome sequencing identifies homozygous AFG3L2 mutations in a spastic ataxia-neuropathy syndrome linked to mitochondrial m-AAA proteases.

    Directory of Open Access Journals (Sweden)

    Tyler Mark Pierson

    2011-10-01

    Full Text Available We report an early onset spastic ataxia-neuropathy syndrome in two brothers of a consanguineous family characterized clinically by lower extremity spasticity, peripheral neuropathy, ptosis, oculomotor apraxia, dystonia, cerebellar atrophy, and progressive myoclonic epilepsy. Whole-exome sequencing identified a homozygous missense mutation (c.1847G>A; p.Y616C in AFG3L2, encoding a subunit of an m-AAA protease. m-AAA proteases reside in the mitochondrial inner membrane and are responsible for removal of damaged or misfolded proteins and proteolytic activation of essential mitochondrial proteins. AFG3L2 forms either a homo-oligomeric isoenzyme or a hetero-oligomeric complex with paraplegin, a homologous protein mutated in hereditary spastic paraplegia type 7 (SPG7. Heterozygous loss-of-function mutations in AFG3L2 cause autosomal-dominant spinocerebellar ataxia type 28 (SCA28, a disorder whose phenotype is strikingly different from that of our patients. As defined in yeast complementation assays, the AFG3L2(Y616C gene product is a hypomorphic variant that exhibited oligomerization defects in yeast as well as in patient fibroblasts. Specifically, the formation of AFG3L2(Y616C complexes was impaired, both with itself and to a greater extent with paraplegin. This produced an early-onset clinical syndrome that combines the severe phenotypes of SPG7 and SCA28, in additional to other "mitochondrial" features such as oculomotor apraxia, extrapyramidal dysfunction, and myoclonic epilepsy. These findings expand the phenotype associated with AFG3L2 mutations and suggest that AFG3L2-related disease should be considered in the differential diagnosis of spastic ataxias.

  15. Spinocerebellar ataxia 13 and 25.

    Science.gov (United States)

    Stevanin, Giovanni; Dürr, Alexandra

    2012-01-01

    Spinocerebellar ataxia (SCA) types 13 and 25 are two genetic entities among the autosomal dominant cerebellar ataxias, initially mapped in two French families to chromosomes 19q and 2p, respectively. The SCA13 locus was confirmed by the identification of a second kindred of Filipino ancestry. SCA13 patients have cerebellar ataxia of adult onset, or of early onset when associated with mental impairment. SCA25 patients present with cerebellar ataxia with sensory neuropathy and frequent gastrointestinal features. While the gene responsible for SCA25 is still unknown, missense mutations affecting the potassium channel KCNC3 function have been identified. 2012 Elsevier B.V. All rights reserved.

  16. Spinocerebellar ataxias Ataxias espinocerebelares

    Directory of Open Access Journals (Sweden)

    Hélio A.G. Teive

    2009-12-01

    Full Text Available Spinocerebellar ataxias (SCAs constitute a heterogeneous group of neurodegenerative diseases characterized by progressive cerebellar ataxia in association with some or all of the following conditions: ophthalmoplegia, pyramidal signs, movement disorders, pigmentary retinopathy, peripheral neuropathy, cognitive dysfunction and dementia. OBJECTIVE: To carry out a clinical and genetic review of the main types of SCA. METHOD: The review was based on a search of the PUBMED and OMIM databases. RESULTS: Thirty types of SCAs are currently known, and 16 genes associated with the disease have been identified. The most common types are SCA type 3, or Machado-Joseph disease, SCA type 10 and SCA types 7, 2, 1 and 6. SCAs are genotypically and phenotypically very heterogeneous. A clinical algorithm can be used to distinguish between the different types of SCAs. CONCLUSIONS: Detailed clinical neurological examination of SCA patients can be of great help when assessing them, and the information thus gained can be used in an algorithm to screen patients before molecular tests to investigate the correct etiology of the disease are requested.As ataxias espinocerebelares (AECs compreendem um grupo heterogeneo de enfermidades neurodegenerativas, que se caracterizam pela presença de ataxia cerebelar progressiva, associada de forma variada com oftalmoplegia, sinais piramidais, distúrbios do movimento, retinopatia pigmentar, neuropatia periférica, disfunção cognitiva e demência. OBJETIVO: Realizar uma revisão clínico-genética dos principais tipos de AECs. MÉTODO: A revisão foi realizada através da pesquisa pelo sistema do PUBMED e do OMIM. RESULTADOS: Na atualidade existem cerca de 30 tipos de AECs, com a descoberta de 16 genes. Os tipos mais comuns são a AEC tipo 3, ou doença de Machado-Joseph, a AEC tipo 10, e as AECs tipo 7, 2 1, e 6. As AECs apresentam grande heterogeneidade genotípica e fenotípica. Pode-se utilizar um algoritmo clínico para a

  17. Clinical and molecular effect on offspring of a marriage of consanguineous spinocerebellar ataxia type 7 mutation carriers: a family case report.

    Science.gov (United States)

    Magaña, Jonathan J; Tapia-Guerrero, Yessica S; Velázquez-Pérez, Luis; Cruz-Mariño, Tania; Cerecedo-Zapata, Cesar M; Gómez, Rocío; Murillo-Melo, Nadia M; González-Piña, Rigoberto; Hernández-Hernández, Oscar; Cisneros, Bulmaro

    2014-01-01

    Spinocerebellar ataxia type 7 (SCA7) is a genetic disorder characterized by degeneration of the cerebellum, brainstem, and retina that is caused by abnormal expansion of a CAG repeat located in the ATXN7 gene encoding sequence on chromosome 3p21.1. Although SCA7 is an uncommon autosomal dominant ataxia, we previously found increased prevalence of the disease in a Southeastern Mexican population. In this study, we described to our knowledge for the first time a marriage of consanguineous SCA7 mutation carriers and their offspring effect. We characterized a severely affected infantile-onset female patient whose parents and two siblings exhibited no symptoms of the disease at time of diagnosis. A comprehensive clinical analysis of the proband showed a progressive cerebellar syndrome, including gait ataxia, movement disorders, and saccadic movements, as well as hyperreflexia, visual deterioration, urinary and cardiovascular dysfunction, and impaired nerve conduction. The SCA7 mutation was detected in the proband patient. Subsequently, genetic examination using four ATXN7 gene-linked markers (three centromeric microsatellite markers [D3S1228, D3S1287, and D3S3635] and an intragenic Single Nucleotide Polymorphism [SNP-3145G/A]) revealed that the proband descends from a couple of consanguineous SCA7 mutation carriers. Genotyping analysis demonstrated that all offspring inherited only one mutant allele, and that the severe infantile-onset phenotype is caused by germinal expansion (from 37 to 72 CAG repeats) of the paternal mutant allele. Interestingly, the couple also referred a miscarriage. Finally, we found no CAA interruptions in the ATXN7 gene CAG repeats tract in this family, which might explain, at least in part, the triplet instability in the proband.

  18. Autosomal-recessive cerebellar ataxia caused by a novel ADCK3 mutation that elongates the protein: clinical, genetic and biochemical characterisation.

    Science.gov (United States)

    Liu, Yo-Tsen; Hersheson, Joshua; Plagnol, Vincent; Fawcett, Katherine; Duberley, Kate E C; Preza, Elisavet; Hargreaves, Iain P; Chalasani, Annapurna; Laurá, Matilde; Wood, Nick W; Reilly, Mary M; Houlden, Henry

    2014-05-01

    The autosomal-recessive cerebellar ataxias (ARCA) are a clinically and genetically heterogeneous group of neurodegenerative disorders. The large number of ARCA genes leads to delay and difficulties obtaining an exact diagnosis in many patients and families. Ubiquinone (CoQ10) deficiency is one of the potentially treatable causes of ARCAs as some patients respond to CoQ10 supplementation. The AarF domain containing kinase 3 gene (ADCK3) is one of several genes associated with CoQ10 deficiency. ADCK3 encodes a mitochondrial protein which functions as an electron-transfer membrane protein complex in the mitochondrial respiratory chain (MRC). We report two siblings from a consanguineous Pakistani family who presented with cerebellar ataxia and severe myoclonus from adolescence. Whole exome sequencing and biochemical assessment of fibroblasts were performed in the index patient. A novel homozygous frameshift mutation in ADCK3 (p.Ser616Leufs*114), was identified in both siblings. This frameshift mutation results in the loss of the stop codon, extending the coding protein by 81 amino acids. Significant CoQ10 deficiency and reduced MRC enzyme activities in the index patient's fibroblasts suggested that the mutant protein may reduce the efficiency of mitochondrial electron transfer. CoQ10 supplementation was initiated following these genetic and biochemical analyses. She gained substantial improvement in myoclonic movements, ataxic gait and dysarthric speech after treatment. This study highlights the importance of diagnosing ADCK3 mutations and the potential benefit of treatment for patients. The identification of this new mutation broadens the phenotypic spectrum associated with ADCK3 mutations and provides further understanding of their pathogenic mechanism.

  19. A Novel TTBK2 De Novo Mutation in a Danish Family with Early-Onset Spinocerebellar Ataxia

    DEFF Research Database (Denmark)

    Lindquist, Suzanne Granhøj; Møller, Lisbeth Birk; Dali, Christine I.

    2017-01-01

    Spinocerebellar ataxia type 11 (SCA11) is rare and has previously been described in four families worldwide. We report a Danish family with onset of symptoms in early childhood and affected family members in two generations. The proband, a Danish female born in 1968, and family members were...

  20. Newly characterised 5' and 3' regions of CACNA1A gene harbour mutations associated with Familial Hemiplegic Migraine and Episodic Ataxia.

    Science.gov (United States)

    Veneziano, Liana; Guida, Serena; Mantuano, Elide; Bernard, Paola; Tarantino, Patrizia; Boccone, Loredana; Hisama, Fuki M; Carrera, Paola; Jodice, Carla; Frontali, Marina

    2009-01-15

    The CACNA1A gene codes for the alpha(1A) pore-forming subunit of Ca(2+) voltage-gated Cav2.1 channels. CACNA1A mutations are responsible for Familial Hemiplegic Migraine (FHM) type 1, Episodic Ataxia (EA) type 2 and Spinocerebellar Ataxia type 6. The structure of the human gene includes, at present, 49 exons; however almost nothing is known about the 5' regulatory region, and there is now evidence suggesting the presence of additional exons at the 3' of the gene. The 892 bp fragment upstream of exon 1 and its deletion mutants were characterised for their transcriptional activity by using luciferase as a reporter gene. The 3' region was analysed by Rapid Amplification of the cDNA 3' End. Both regions were screened for mutations in a series of FHM and EA patients by SSCP and sequencing. At the 5' end of the gene a minimal promoter region was identified within the first 497 bp from ATG. By screening a larger fragment for mutations, the 5 bp deletion (g.-757_-753delCTTTC) was identified in a FHM patient. The deletion significantly increased the transcriptional activity, most likely due to the removal of half a turn of the DNA helix, changing the orientation of downstream binding sites for transcriptional factors. At the 3' end of the gene a new exon 48, followed by a strong poly-A signal, was identified as well as a new splice variant. The 5 bp insertion (g.38429_38430insCTTTT) in this exon was found in an EA patient. The two new regions can open the way for the study of human CACNA1A gene expression regulation and can be sites of mutations associated with FHM or EA phenotypes.

  1. A Novel Mutation in Isoform 3 of the Plasma Membrane Ca2+ Pump Impairs Cellular Ca2+ Homeostasis in a Patient with Cerebellar Ataxia and Laminin Subunit 1α Mutations*

    Science.gov (United States)

    Calì, Tito; Lopreiato, Raffaele; Shimony, Joshua; Vineyard, Marisa; Frizzarin, Martina; Zanni, Ginevra; Zanotti, Giuseppe; Brini, Marisa; Shinawi, Marwan; Carafoli, Ernesto

    2015-01-01

    The particular importance of Ca2+ signaling to neurons demands its precise regulation within their cytoplasm. Isoform 3 of the plasma membrane Ca2+ ATPase (the PMCA3 pump), which is highly expressed in brain and cerebellum, plays an important role in the regulation of neuronal Ca2+. A genetic defect of the PMCA3 pump has been described in one family with X-linked congenital cerebellar ataxia. Here we describe a novel mutation in the ATP2B3 gene in a patient with global developmental delay, generalized hypotonia and cerebellar ataxia. The mutation (a R482H replacement) impairs the Ca2+ ejection function of the pump. It reduces the ability of the pump expressed in model cells to control Ca2+ transients generated by cell stimulation and impairs its Ca2+ extrusion function under conditions of low resting cytosolic Ca2+ as well. In silico analysis of the structural effect of the mutation suggests a reduced stabilization of the portion of the pump surrounding the mutated residue in the Ca2+-bound state. The patient also carries two missense mutations in LAMA1, encoding laminin subunit 1α. On the basis of the family pedigree of the patient, the presence of both PMCA3 and laminin subunit 1α mutations appears to be necessary for the development of the disease. Considering the observed defect in cellular Ca2+ homeostasis and the previous finding that PMCAs act as digenic modulators in Ca2+-linked pathologies, the PMCA3 dysfunction along with LAMA1 mutations could act synergistically to cause the neurological phenotype. PMID:25953895

  2. A Novel Mutation in Isoform 3 of the Plasma Membrane Ca2+ Pump Impairs Cellular Ca2+ Homeostasis in a Patient with Cerebellar Ataxia and Laminin Subunit 1α Mutations.

    Science.gov (United States)

    Calì, Tito; Lopreiato, Raffaele; Shimony, Joshua; Vineyard, Marisa; Frizzarin, Martina; Zanni, Ginevra; Zanotti, Giuseppe; Brini, Marisa; Shinawi, Marwan; Carafoli, Ernesto

    2015-06-26

    The particular importance of Ca(2+) signaling to neurons demands its precise regulation within their cytoplasm. Isoform 3 of the plasma membrane Ca(2+) ATPase (the PMCA3 pump), which is highly expressed in brain and cerebellum, plays an important role in the regulation of neuronal Ca(2+). A genetic defect of the PMCA3 pump has been described in one family with X-linked congenital cerebellar ataxia. Here we describe a novel mutation in the ATP2B3 gene in a patient with global developmental delay, generalized hypotonia and cerebellar ataxia. The mutation (a R482H replacement) impairs the Ca(2+) ejection function of the pump. It reduces the ability of the pump expressed in model cells to control Ca(2+) transients generated by cell stimulation and impairs its Ca(2+) extrusion function under conditions of low resting cytosolic Ca(2+) as well. In silico analysis of the structural effect of the mutation suggests a reduced stabilization of the portion of the pump surrounding the mutated residue in the Ca(2+)-bound state. The patient also carries two missense mutations in LAMA1, encoding laminin subunit 1α. On the basis of the family pedigree of the patient, the presence of both PMCA3 and laminin subunit 1α mutations appears to be necessary for the development of the disease. Considering the observed defect in cellular Ca(2+) homeostasis and the previous finding that PMCAs act as digenic modulators in Ca(2+)-linked pathologies, the PMCA3 dysfunction along with LAMA1 mutations could act synergistically to cause the neurological phenotype. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Whole-genome sequencing identifies a novel ABCB7 gene mutation for X-linked congenital cerebellar ataxia in a large family of Mongolian ancestry.

    Science.gov (United States)

    Protasova, Maria S; Grigorenko, Anastasia P; Tyazhelova, Tatiana V; Andreeva, Tatiana V; Reshetov, Denis A; Gusev, Fedor E; Laptenko, Alexander E; Kuznetsova, Irina L; Goltsov, Andrey Y; Klyushnikov, Sergey A; Illarioshkin, Sergey N; Rogaev, Evgeny I

    2016-04-01

    X-linked congenital cerebellar ataxia is a heterogeneous nonprogressive neurodevelopmental disorder with onset in early childhood. We searched for a genetic cause of this condition, previously reported in a Buryat pedigree of Mongolian ancestry from southeastern Russia. Using whole-genome sequencing on Illumina HiSeq 2000 platform, we found a missense mutation in the ABCB7 (ABC-binding cassette transporter B7) gene, encoding a mitochondrial transporter, involved in heme synthesis and previously associated with sideroblastic anemia and ataxia. The mutation resulting in a substitution of a highly conserved glycine to serine in position 682 is apparently a major causative factor of the cerebellar hypoplasia/atrophy found in affected individuals of a Buryat family who had no evidence of sideroblastic anemia. Moreover, in these affected men we also found the genetic defects in two other genes closely linked to ABCB7 on chromosome X: a deletion of a genomic region harboring the second exon of copper-transporter gene (ATP7A) and a complete deletion of PGAM4 (phosphoglycerate mutase family member 4) retrogene located in the intronic region of the ATP7A gene. Despite the deletion, eliminating the first of six metal-binding domains in ATP7A, no signs for Menkes disease or occipital horn syndrome associated with ATP7A mutations were found in male carriers. The role of the PGAM4 gene has been previously implicated in human reproduction, but our data indicate that its complete loss does not disrupt male fertility. Our finding links cerebellar pathology to the genetic defect in ABCB7 and ATP7A structural variant inherited as X-linked trait, and further reveals the genetic heterogeneity of X-linked cerebellar disorders.

  4. Cerebellar ataxia and severe muscle CoQ10 deficiency in a patient with a novel mutation in ADCK3.

    Science.gov (United States)

    Barca, E; Musumeci, O; Montagnese, F; Marino, S; Granata, F; Nunnari, D; Peverelli, L; DiMauro, S; Quinzii, C M; Toscano, A

    2016-08-01

    Inherited ataxias are a group of heterogeneous disorders in children or adults but their genetic definition remains still undetermined in almost half of the patients. However, CoQ10 deficiency is a rare cause of cerebellar ataxia and ADCK3 is the most frequent gene associated with this defect. We herein report a 48 year old man, who presented with dysarthria and walking difficulties. Brain magnetic resonance imaging showed a marked cerebellar atrophy. Serum lactate was elevated. Tissues obtained by muscle and skin biopsies were studied for biochemical and genetic characterization. Skeletal muscle biochemistry revealed decreased activities of complexes I+III and II+III and a severe reduction of CoQ10 , while skin fibroblasts showed normal CoQ10 levels. A mild loss of maximal respiration capacity was also found by high-resolution respirometry. Molecular studies identified a novel homozygous deletion (c.504del_CT) in ADCK3, causing a premature stop codon. Western blot analysis revealed marked reduction of ADCK3 protein levels. Treatment with CoQ10 was started and, after 1 year follow-up, patient neurological condition slightly improved. This report suggests the importance of investigating mitochondrial function and, in particular, muscle CoQ10 levels, in patients with adult-onset cerebellar ataxia. Moreover, clinical stabilization by CoQ10 supplementation emphasizes the importance of an early diagnosis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Posterior column ataxia with retinitis pigmentosa coexisting with sensory-autonomic neuropathy and leukemia due to the homozygous p.Pro221Ser FLVCR1 mutation.

    Science.gov (United States)

    Castori, Marco; Morlino, Silvia; Ungelenk, Martin; Pareyson, Davide; Salsano, Ettore; Grammatico, Paola; Tolosano, Emanuela; Kurth, Ingo; Chiabrando, Deborah

    2017-10-01

    FLVCR1 encodes for a ubiquitous heme exporter, whose recessive mutations cause posterior column ataxia with retinitis pigmentosa (PCARP). Recently, FLVCR1 recessive mutations were also found in two sporadic children with hereditary sensory-autonomic neuropathy (HSAN). We report the unique case of a 33-year-old Italian woman with a combination of typical PCARP, sensory-autonomic neuropathy with sensory loss to all modalities and multiple autonomic dysfuctions, and acute lymphocytic leukemia. Molecular analysis demonstrated homozygosity for the previously identified FLVCR1 p.Pro221Ser variation. The same variation, in combination with a frameshift mutation, was previously identified in an Italian child with HSAN. Functional studies carried out on patient-derived lymphoblastoid cell lines showed decreased FLVCR1a transcript, increased reactive oxygen species, excessive intracellular heme accumulation, and increased number of Annexin V positive cells. This indicates that the homozygous p.Pro221Ser FLVCR1 variation compromises the ability of FLVCR1a to export heme leading to enhanced susceptibility to programmed cell death. Our study demonstrates the existence of a phenotypic continuum among the discrete disorders previously linked to FLVCR1 mutations, and suggests that the related alteration of heme metabolism may lead to the degeneration of specific neuronal cell populations. © 2017 Wiley Periodicals, Inc.

  6. Acute cerebellar ataxia

    Science.gov (United States)

    Cerebellar ataxia; Ataxia - acute cerebellar; Cerebellitis; Post-varicella acute cerebellar ataxia; PVACA ... Acute cerebellar ataxia in children, particularly younger than age 3, may occur several weeks after an illness caused by a virus. ...

  7. Mutations in the mitochondrial methionyl-tRNA synthetase cause a neurodegenerative phenotype in flies and a recessive ataxia (ARSAL in humans.

    Directory of Open Access Journals (Sweden)

    Vafa Bayat

    Full Text Available An increasing number of genes required for mitochondrial biogenesis, dynamics, or function have been found to be mutated in metabolic disorders and neurological diseases such as Leigh Syndrome. In a forward genetic screen to identify genes required for neuronal function and survival in Drosophila photoreceptor neurons, we have identified mutations in the mitochondrial methionyl-tRNA synthetase, Aats-met, the homologue of human MARS2. The fly mutants exhibit age-dependent degeneration of photoreceptors, shortened lifespan, and reduced cell proliferation in epithelial tissues. We further observed that these mutants display defects in oxidative phosphorylation, increased Reactive Oxygen Species (ROS, and an upregulated mitochondrial Unfolded Protein Response. With the aid of this knowledge, we identified MARS2 to be mutated in Autosomal Recessive Spastic Ataxia with Leukoencephalopathy (ARSAL patients. We uncovered complex rearrangements in the MARS2 gene in all ARSAL patients. Analysis of patient cells revealed decreased levels of MARS2 protein and a reduced rate of mitochondrial protein synthesis. Patient cells also exhibited reduced Complex I activity, increased ROS, and a slower cell proliferation rate, similar to Drosophila Aats-met mutants.

  8. [Ataxias and hereditary spastic paraplegias].

    Science.gov (United States)

    Schüle, R; Schöls, L

    2017-07-01

    Hereditary ataxias and spastic paraplegias are genetic disorders with age-dependent nearly complete penetrance. The mostly monogenetic etiology allows one to establish the diagnosis, study pathogenesis and to develop new causative therapeutic approaches for these diseases. Both the causative genes as well as the clinical presentation overlap considerably between hereditary ataxias and spastic paraplegias. This strongly argues towards a united classification for these two groups of diseases. Next generation sequencing technologies have greatly expanded the number of genes known to be causative for hereditary ataxias and spastic paraplegias and allow simultaneous time- and cost-effective diagnostic testing of > 200 genes. However, repeat expansions and large genomic deletions must be considered separately. Here, we suggest a pragmatic algorithm for genetic testing in hereditary ataxias and spastic paraplegias that we have developed in our specialized outpatient clinics. Detailed phenotyping remains crucial to interpret the multitude of genetic variants discovered by high throughput sequencing techniques. Despite recent technical advances, a substantial proportion of ataxia and spastic paraplegia families are still without a molecular diagnosis. Beside new and so far undetected ataxia and spasticity genes, unusual mutation types including noncoding variants and polygenic inheritance patterns may contribute. Because of these clinical, genetic, and technological challenges, patients with hereditary ataxias and spastic paraplegias should be referred to specialized centers offering research and clinical studies. This will also help to recruit representative patient cohorts for upcoming interventional trials.

  9. Friedreich ataxia.

    Science.gov (United States)

    Pandolfo, Massimo

    2008-10-01

    Friedreich ataxia is an autosomal recessive degenerative disease that primarily affects the nervous system and the heart. It is named after its original description as a "degenerative atrophy of the posterior columns of the spinal cord" by Nicholaus Friedreich, who was a professor of medicine in Heidelberg in the second half of the 19th century. The full extent of the Friedreich ataxia phenotype and its genetic epidemiology could only be appreciated after a direct genetic test became available in 1996. At the same time, the complex pathogenesis of Friedreich ataxia started to be unraveled. Herein, I review our current knowledge of the disease and how it is contributing to the development of therapeutic approaches.

  10. The ataxia related G1107D mutation of the plasma membrane Ca2+ ATPase isoform 3 affects its interplay with calmodulin and the autoinhibition process.

    Science.gov (United States)

    Calì, Tito; Frizzarin, Martina; Luoni, Laura; Zonta, Francesco; Pantano, Sergio; Cruz, Carlos; Bonza, Maria Cristina; Bertipaglia, Ilenia; Ruzzene, Maria; De Michelis, Maria Ida; Damiano, Nunzio; Marin, Oriano; Zanni, Ginevra; Zanotti, Giuseppe; Brini, Marisa; Lopreiato, Raffaele; Carafoli, Ernesto

    2017-01-01

    The plasma membrane Ca2+ ATPases (PMCA pumps) have a long, cytosolic C-terminal regulatory region where a calmodulin-binding domain (CaM-BD) is located. Under basal conditions (low Ca2+), the C-terminal tail of the pump interacts with autoinhibitory sites proximal to the active center of the enzyme. In activating conditions (i.e., high Ca2+), Ca2+-bound CaM displaces the C-terminal tail from the autoinhibitory sites, restoring activity. We have recently identified a G1107D replacement within the CaM-BD of isoform 3 of the PMCA pump in a family affected by X-linked congenital cerebellar ataxia. Here, we investigate the effects of the G1107D replacement on the interplay of the mutated CaM-BD with both CaM and the pump core, by combining computational, biochemical and functional approaches. We provide evidence that the affinity of the isolated mutated CaM-BD for CaM is significantly reduced with respect to the wild type (wt) counterpart, and that the ability of CaM to activate the pump in vitro is thus decreased. Multiscale simulations support the conclusions on the detrimental effect of the mutation, indicating reduced stability of the CaM binding. We further show that the G1107D replacement impairs the autoinhibition mechanism of the PMCA3 pump as well, as the introduction of a negative charge perturbs the contacts between the CaM-BD and the pump core. Thus, the mutation affects both the ability of the pump to optimally transport Ca2+ in the activated state, and the autoinhibition mechanism in its resting state. Copyright © 2016. Published by Elsevier B.V.

  11. Previously Unreported Biallelic Mutation in DNAJC19: Are Sensorineural Hearing Loss and Basal Ganglia Lesions Additional Features of Dilated Cardiomyopathy and Ataxia (DCMA) Syndrome?

    Science.gov (United States)

    Ucar, Sema Kalkan; Mayr, Johannes A; Feichtinger, René G; Canda, Ebru; Çoker, Mahmut; Wortmann, Saskia B

    2017-01-01

    Dilated cardiomyopathy (DCM), non-progressive cerebellar ataxia (A), testicular dysgenesis, growth failure, and 3-methylglutaconic aciduria are the hallmarks of DNAJC19 defect (or DCMA syndrome) due to biallelic mutations in DNAJC19. To date DCMA syndrome has been reported in 19 patients from Canada and in two Finnish siblings. The underlying pathomechanism is unknown; however, DNAJC19 is presumed to be involved in mitochondrial membrane related processes (e.g., protein import and cardiolipin remodeling). Here, we report an additional patient with progressive cerebellar atrophy and white matter changes. A Turkish boy presented at age 2 months with dilated cardiomyopathy (initially worsening then stabilizing in the second year of life), growth failure, bilateral cryptorchidism, and facial dysmorphism. Mental and motor developmental were, respectively, moderately and severely delayed. Profound intentional tremor and dyskinesia, spasticity (particularly at the lower extremities), and dystonia were observed. Sensorineural hearing loss was also diagnosed. MRI showed bilateral basal ganglia signal alterations. Plasma lactate levels were increased, as was urinary excretion of 3-methylglutaconic acid. He deceased aged 3 years. Sanger Sequencing of DNAJC19 confirmed the clinical diagnosis of DNAJC19 defect by revealing the previously unreported homozygous stop mutation c.63delC (p.Tyr21*). Investigation of enzymes of mitochondrial energy metabolism revealed decreased activity of cytochrome c oxidase in muscle tissue. Sensorineural hearing loss and bilateral basal ganglia lesions are common symptoms of mitochondrial disorders. This is the first report of an association with DNAJC19 defect.

  12. Risk for Sporadic Breast Cancer in Ataxia Telangiectasia Heterozygotes

    Science.gov (United States)

    2001-08-01

    6 7 gas 9 a poly p73a poly p73e poly p73N FiG. 1. Endogenous p73 a and P proteins are detectable by various p73-specific antibodies. Immunoblots of...even p73-specific targets. One example may be the Aquaporin 3 gene, a glycerol and solute transporter, which is greatly preferred by the p7313...model in which some DNA damage signals are channeled through c-abl to p73. Hence, one would predict that p73-deficient cells should have defective DNA

  13. Cerebellar Ataxia.

    Science.gov (United States)

    Perlman

    2000-05-01

    There is nothing more discouraging than for a patient to be given a specific diagnosis, then to be told that there is nothing that can be done. Physicians are equally disheartened to see exponential progress being made in the understanding of the pathophysiology of a complex disorder but few direct benefits resulting for their patients. Over the past 5 years, molecular genetic research has completely revolutionized the way in which the progressive cerebellar ataxias are classified and diagnosed, but it has yet to produce effective gene-based, neuroprotective, or neurorestorative therapies. The treatment of cerebellar ataxia remains primarily a neurorehabilitation challenge, employing physical, occupational, speech, and swallowing therapy; adaptive equipment; driver safety training; and nutritional counseling. Modest additional gains are seen with the use of medications that can improve imbalance, incoordination, or dysarthria (amantadine, buspirone, acetazolamide); cerebellar tremor (clonazepam, propranolol); and cerebellar or central vestibular nystagmus (gabapentin, baclofen, clonazepam). Many of the progressive cerebellar syndromes have associated features involving other neurologic systems (eg, spasticity, dystonia or rigidity, resting or rubral tremor, chorea, motor unit weakness or fatigue, autonomic dysfunction, peripheral or posterior column sensory loss, neuropathic pain or cramping, double vision, vision and hearing loss, dementia, and bowel, bladder, and sexual dysfunction), which can impede the treatment of the ataxic symptoms or can worsen with the use of certain drugs. Treatment of the associated features themselves may in turn worsen the ataxia either directly (as side effects of medication) or indirectly (eg, relaxation of lower limb spasticity that was acting as a stabilizer for an ataxic gait). Secondary complications of progressive ataxia can include deconditioning or immobility, weight loss or gain, skin breakdown, recurrent pulmonary and

  14. Trial in Adult Subjects With Spinocerebellar Ataxia

    Science.gov (United States)

    2017-08-22

    Spinocerebellar Ataxias; Spinocerebellar Ataxia Type 1; Spinocerebellar Ataxia Type 2; Spinocerebellar Ataxia Type 3; Spinocerebellar Ataxia Type 6; Spinocerebellar Ataxia Type 7; Spinocerebellar Ataxia Type 8; Spinocerebellar Ataxia Type 10

  15. Friedreich's Ataxia Research Alliance

    Science.gov (United States)

    ... Tools Raising Awareness Advocacy Memorials What is Friedreich's Ataxia? About FARA Mission & Organization Financials Leadership & Staff Scientific ... Tools Raising Awareness Advocacy Memorials What is Friedreich's Ataxia? FARA News / Blogs Ride Ataxia 2017 AAI Grant ...

  16. Mutation in the kv3.3 voltage-gated potassium channel causing spinocerebellar ataxia 13 disrupts sound-localization mechanisms.

    Directory of Open Access Journals (Sweden)

    John C Middlebrooks

    Full Text Available Normal sound localization requires precise comparisons of sound timing and pressure levels between the two ears. The primary localization cues are interaural time differences, ITD, and interaural level differences, ILD. Voltage-gated potassium channels, including Kv3.3, are highly expressed in the auditory brainstem and are thought to underlie the exquisite temporal precision and rapid spike rates that characterize brainstem binaural pathways. An autosomal dominant mutation in the gene encoding Kv3.3 has been demonstrated in a large Filipino kindred manifesting as spinocerebellar ataxia type 13 (SCA13. This kindred provides a rare opportunity to test in vivo the importance of a specific channel subunit for human hearing. Here, we demonstrate psychophysically that individuals with the mutant allele exhibit profound deficits in both ITD and ILD sensitivity, despite showing no obvious impairment in pure-tone sensitivity with either ear. Surprisingly, several individuals exhibited the auditory deficits even though they were pre-symptomatic for SCA13. We would expect that impairments of binaural processing as great as those observed in this family would result in prominent deficits in localization of sound sources and in loss of the "spatial release from masking" that aids in understanding speech in the presence of competing sounds.

  17. Genetic mutation, linkage and heterogeneity analysis in Spanish pedigrees and isolated cases of autosomal dominant spinocerebellar ataxia (SCA)

    Energy Technology Data Exchange (ETDEWEB)

    Volpini, V.; Matilla, T.; Genis, D. [Institut de Recerca Oncologica, Barcelona (Spain)] [and others

    1994-09-01

    We report a genetic study of 14 Spanish kindreds and 11 isolated cases with SCA. The diagnosis was ascertained in 60 members, but clinical data were only obtained for 35 of them. One defective gene responsible for the disease was localized to 6p22-p23 (SCA1) and the mutation consists of an expansion of an intragenic (CAG){sub n} repeat (REP). We studied all of our genealogical and isolated affected individuals in order to know their 6p mutational status. Thus we detected a large pedigree which has the pathological expansion with {open_quotes}n{close_quotes} in the range of 41 to 57 repeats. The expansion increases through generations and correlates with anticipation. In the Spanish population, the non-pathological range of {open_quotes}n{close_quotes} is from 6 to 39 repeats. These sequences are {open_quotes}protected{close_quotes} having an interrupted repeat configuration, studied by restriction and sequencing analysis. This mutation was not present in the genealogical or isolated affected individuals studied. We also tested our families with the recently reported CAG expansion in 12p-12ter (DRPLA) and obtained negative results. Linkage analysis in non-SCA1, DRPLA families using markers from others chromosomal regions, 12q23-24.1 (SCA2) and 14q24.3-q32 (SCA3), results in negative lod scores and shows genetic heterogeneity in our population.

  18. Unmasking adrenoleukodystrophy in a cohort of cerebellar ataxia.

    Directory of Open Access Journals (Sweden)

    Ying-Hao Chen

    Full Text Available Adrenoleukodystrophy (ALD is a rare and progressive neurogenetic disease that may manifest disparate symptoms. The present study aims at investigating the role of ataxic variant of ALD (AVALD in patients with adult-onset cerebellar ataxia, as well as characterizing their clinical features that distinguish AVALD from other cerebellar ataxias. Mutations in the ATP binding cassette subfamily D member 1 gene (ABCD1 were ascertained in 516 unrelated patients with ataxia. The patients were categorized into three groups: molecularly unassigned hereditary ataxia (n = 118, sporadic ataxia with autonomic dysfunctions (n = 296, and sporadic ataxia without autonomic dysfunctions (n = 102. Brain MRIs were scrutinized for white matter hyperintensity (WMH in the parieto-occipital lobes, frontal lobes, corticospinal tracts, pons, middle cerebellar peduncles and cerebellar hemispheres. Two ABCD1 mutations (p.S108L and p.P623fs previously linked to cerebral ALD and adrenomyeloneuropathy but not AVALD were identified. ALD accounts for 0.85% (1/118 of the patients with molecularly unassigned hereditary ataxia and 0.34% (1/296 of the patients with sporadic ataxia with autonomic dysfunctions. WMH in the corticospinal tracts and WMH in the cerebellar hemispheres were strongly associated with AVALD rather than other ataxias. To conclude, ALD accounts for approximately 0.39% (2/516 of adult-onset cerebellar ataxias. This study expands the mutational spectrum of AVALD and underscores the importance of considering ALD as a potential etiology of cerebellar ataxia.

  19. Unmasking adrenoleukodystrophy in a cohort of cerebellar ataxia.

    Science.gov (United States)

    Chen, Ying-Hao; Lee, Yi-Chung; Tsai, Yu-Shuen; Guo, Yuh-Cherng; Hsiao, Cheng-Tsung; Tsai, Pei-Chien; Huang, Jin-An; Liao, Yi-Chu; Soong, Bing-Wen

    2017-01-01

    Adrenoleukodystrophy (ALD) is a rare and progressive neurogenetic disease that may manifest disparate symptoms. The present study aims at investigating the role of ataxic variant of ALD (AVALD) in patients with adult-onset cerebellar ataxia, as well as characterizing their clinical features that distinguish AVALD from other cerebellar ataxias. Mutations in the ATP binding cassette subfamily D member 1 gene (ABCD1) were ascertained in 516 unrelated patients with ataxia. The patients were categorized into three groups: molecularly unassigned hereditary ataxia (n = 118), sporadic ataxia with autonomic dysfunctions (n = 296), and sporadic ataxia without autonomic dysfunctions (n = 102). Brain MRIs were scrutinized for white matter hyperintensity (WMH) in the parieto-occipital lobes, frontal lobes, corticospinal tracts, pons, middle cerebellar peduncles and cerebellar hemispheres. Two ABCD1 mutations (p.S108L and p.P623fs) previously linked to cerebral ALD and adrenomyeloneuropathy but not AVALD were identified. ALD accounts for 0.85% (1/118) of the patients with molecularly unassigned hereditary ataxia and 0.34% (1/296) of the patients with sporadic ataxia with autonomic dysfunctions. WMH in the corticospinal tracts and WMH in the cerebellar hemispheres were strongly associated with AVALD rather than other ataxias. To conclude, ALD accounts for approximately 0.39% (2/516) of adult-onset cerebellar ataxias. This study expands the mutational spectrum of AVALD and underscores the importance of considering ALD as a potential etiology of cerebellar ataxia.

  20. A Case of Ataxia with Isolated Vitamin E Deficiency Initially Diagnosed as Friedreich’s Ataxia

    Directory of Open Access Journals (Sweden)

    Michael Bonello

    2016-01-01

    Full Text Available Ataxia with isolated vitamin E deficiency (AVED is a rare autosomal recessive condition that is caused by a mutation in the alpha tocopherol transfer protein gene. It is almost indistinguishable clinically from Friedreich’s ataxia but with appropriate treatment its devastating neurological features can be prevented. Patients can present with a progressive cerebellar ataxia, pyramidal spasticity, and evidence of a neuropathy with absent deep tendon reflexes. It is important to screen for this condition on initial evaluation of a young patient presenting with progressive ataxia and it should be considered in patients with a long standing ataxia without any diagnosis in view of the potential therapeutics and genetic counselling. In this case report we present a patient who was initially diagnosed with Friedreich’s ataxia but was later found to have AVED.

  1. Palmar Telangiectasias: A Cutaneous Sign for Smoking.

    Science.gov (United States)

    Levi, Assi; Shechter, Ronen; Lapidoth, Moshe; Enk, Claes D

    2017-12-07

    Telangiectasias are permanent dilations of blood capillaries which appear in a variety of medical conditions. Cutaneous palmar telangiectasias have been postulated to be associated with smoking. To determine whether a significant correlation exists between palmar telangiectasias and smoking habits. A total of 124 volunteers participated in this observational study by allowing physical evaluation of their palms and by completing a questionnaire. Palmar telangiectasias were found to be associated with current or past smoking. Neither age nor gender was found to be a co-contributor. Palmar telangiectasias were found to constitute highly specific and sensitive markers for prolonged smoking. © 2017 S. Karger AG, Basel.

  2. Linkage disequilibrium at the Machado-Joseph disease spinal cerebellar ataxia 3 locus: Evidence for a common founder effect in French and Portuguese-Brazilian families as well as a second ancestral Portuguese-Azorean mutation

    Energy Technology Data Exchange (ETDEWEB)

    Stevanin, G.; Cancel, G.; Didierjean, O. [and others

    1995-11-01

    Spinal cerebellar ataxia 3 (SCA3) is a genetic subtype of the type I autosomal dominant cerebellar ataxias (ADCA type I), a clinically and genetically heterogeneous group of neurological disorders. SCA3 was mapped in French families to chromosome 14q24.3-qter in the same region as the gene for Machado-Joseph disease (MJD), which was classified as a form of ADCA type I on the basis of similarities in the clinical presentation of individual patients. The MJD gene was recently identified in Japanese kindreds, and the mutation was characterized as an unstable CAG repeat that is expanded in affected individuals. The same mutation is observed in families of Portuguese-Azorean ancestry, as well as in French SCA3 kindreds. In other disorders caused by unstable and expanded triplet repeats, such as fragile X syndrome (FRA-X), myotonic dystrophy (MD), Huntington disease (HD), and SCA1, linkage disequilibrium (LD) between the mutation and closely linked polymorphic markers was detected, suggesting that there were only one or a few founders or predisposing haplotypes. In the present study, 29 families of different geographical origins were tested for LD between the MJD/SCA3 mutation and four flanking microsatellite markers. 27 refs., 2 tabs.

  3. Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients.

    LENUS (Irish Health Repository)

    Anheim, M

    2009-10-01

    Ataxia with oculomotor apraxia type 2 (AOA2) is an autosomal recessive disease due to mutations in the senataxin gene, causing progressive cerebellar ataxia with peripheral neuropathy, cerebellar atrophy, occasional oculomotor apraxia and elevated alpha-feto-protein (AFP) serum level. We compiled a series of 67 previously reported and 58 novel ataxic patients who underwent senataxin gene sequencing because of suspected AOA2. An AOA2 diagnosis was established for 90 patients, originating from 15 countries worldwide, and 25 new senataxin gene mutations were found. In patients with AOA2, median AFP serum level was 31.0 microg\\/l at diagnosis, which was higher than the median AFP level of AOA2 negative patients: 13.8 microg\\/l, P = 0.0004; itself higher than the normal level (3.4 microg\\/l, range from 0.5 to 17.2 microg\\/l) because elevated AFP was one of the possible selection criteria. Polyneuropathy was found in 97.5% of AOA2 patients, cerebellar atrophy in 96%, occasional oculomotor apraxia in 51%, pyramidal signs in 20.5%, head tremor in 14%, dystonia in 13.5%, strabismus in 12.3% and chorea in 9.5%. No patient was lacking both peripheral neuropathy and cerebellar atrophy. The age at onset and presence of occasional oculomotor apraxia were negatively correlated to the progression rate of the disease (P = 0.03 and P = 0.009, respectively), whereas strabismus was positively correlated to the progression rate (P = 0.03). An increased AFP level as well as cerebellar atrophy seem to be stable in the course of the disease and to occur mostly at or before the onset of the disease. One of the two patients with a normal AFP level at diagnosis had high AFP levels 4 years later, while the other had borderline levels. The probability of missing AOA2 diagnosis, in case of sequencing senataxin gene only in non-Friedreich ataxia non-ataxia-telangiectasia ataxic patients with AFP level > or =7 microg\\/l, is 0.23% and the probability for a non-Friedreich ataxia non-ataxia-telangiectasia

  4. Genes and genetic testing in hereditary ataxias.

    Science.gov (United States)

    Sandford, Erin; Burmeister, Margit

    2014-07-22

    Ataxia is a neurological cerebellar disorder characterized by loss of coordination during muscle movements affecting walking, vision, and speech. Genetic ataxias are very heterogeneous, with causative variants reported in over 50 genes, which can be inherited in classical dominant, recessive, X-linked, or mitochondrial fashion. A common mechanism of dominant ataxias is repeat expansions, where increasing lengths of repeated DNA sequences result in non-functional proteins that accumulate in the body causing disease. Greater understanding of all ataxia genes has helped identify several different pathways, such as DNA repair, ubiquitination, and ion transport, which can be used to help further identify new genes and potential treatments. Testing for the most common mutations in these genes is now clinically routine to help with prognosis and treatment decisions, but next generation sequencing will revolutionize how genetic testing will be done. Despite the large number of known ataxia causing genes, however, many individuals with ataxia are unable to obtain a genetic diagnosis, suggesting that more genes need to be discovered. Utilization of next generation sequencing technologies, expression studies, and increased knowledge of ataxia pathways will aid in the identification of new ataxia genes.

  5. A homozygote for the c.459+1G>A mutation in the ARSA gene presents with cerebellar ataxia as the only first clinical sign of metachromatic leukodystrophy.

    Science.gov (United States)

    Lugowska, Agnieszka; Mierzewska, Hanna; Bekiesińska-Figatowska, Monika; Szczepanik, Elżbieta; Goszczańska-Ciuchta, Alicja; Bednarska-Makaruk, Małgorzata

    2014-03-15

    Metachromatic leukodystrophy (MLD) is a rare lysosomal disorder caused by deficient activity of arylsulfatase A or the lack of saposin B, which results in the accumulation of sulfatide in the oligodendrocytes and in the Schwann cells. Three main clinical types of MLD can be distinguished according to the age of onset and the dynamics of clinical outcome: late infantile, juvenile, and adult. We report on a case of late infantile MLD presenting with cerebellar ataxia as the only first clinical sign preceding even changes in white matter visible in MR imaging. The diagnosis was made on the basis of successive MRI, characteristic of demyelination, which developed in the course of the disease, and on the results of the following biochemical and molecular analyses. Very low residual activity of arylsulfatase A was demonstrated in blood leukocytes and the patient was a homozygote for a common mutation c.459+1G>A in the ARSA gene. Since cerebellar ataxia is a relatively common but unspecific neurological symptom in toddlers, it is recommended that MLD be considered as part of the differential diagnosis even if the initial neuroimaging studies are normal and ataxia is the only clinical symptom of the disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Frequency of the different mutations causing spinocerebellar ataxia (SCA1, SCA2, MJD/SCA3 and DRPLA in a large group of Brazilian patients Freqüência das mutações que causam ataxia espinocerebelar (SCA1, SCA2, MJD/SCA3 e DRPLA em um grupo numeroso de pacientes Brasileiros

    Directory of Open Access Journals (Sweden)

    Iscia Lopes-Cendesi

    1997-09-01

    Full Text Available Spinocerebellar ataxia type 1 (SCA1, spinocerebellar ataxia type 2 (SCA2 and Machado-Joseph disease or spinocerebellar ataxia type 3 (MJD/SCA3 are three distinctive forms of autosomal dominant spinocerebellar ataxia (SCA caused by expansions of an unstable CAG repeat localized in the coding region of the causative genes. Another related disease, dentatorubropallidoluysian atrophy (DRPLA is also caused by an unstable triplet repeat and can present as SCA in late onset patients. We investigated the frequency of the SCA1, SCA2, MJD/SCA3 and DRPLA mutations in 328 Brazilian patients with SCA, belonging to 90 unrelated families with various patterns of inheritance and originating in different geographic regions of Brazil. We found mutations in 35 families (39%, 32 of them with a clear autosomal dominant inheritance. The frequency of the SCA1 mutation was 3% of all patients; and 6 % in the dominantly inherited SCAs. We identified the SCA2 mutation in 6% of all families and in 9% of the families with autosomal dominant inheritance. The MJD/SCA3 mutation was detected in 30 % of all patients; and in the 44% of the dominantly inherited cases. We found no DRPLA mutation. In addition, we observed variability in the frequency of the different mutations according to geographic origin of the patients, which is probably related to the distinct colonization of different parts of Brazil. These results suggest that SCA may be occasionally caused by the SCA1 and SCA2 mutations in the Brazilian population, and that the MJD/SCA3 mutation is the most common cause of dominantly inherited SCA in Brazil.Ataxia espinocerebelar tipo 1 (SCA1, ataxia espinocerebelar tipo 2 (SCA2 e doença de Machado-Joseph ou ataxia espinocerebelar tipo 3 (MJD/SCA3 são três formas de ataxia espinocerebelar (SCA que apresentam herança genética autossômica dominante. Nessas três doenças foi encontrada uma expansão instável de trinucleotídeo CAG localizada na região codificadora dos

  7. Optimal management of hereditary hemorrhagic telangiectasia

    Directory of Open Access Journals (Sweden)

    Garg N

    2014-10-01

    Full Text Available Neetika Garg,1 Monica Khunger,2 Arjun Gupta,3 Nilay Kumar4 1Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA; 2Department of Medicine, All India Institute of Medical Sciences, New Delhi, India; 3Department of Medicine, UT Southwestern Medical Center, Dallas, TX, USA; 4Department of Medicine, Cambridge Health Alliance/Harvard Medical School, Cambridge, MA, USA Abstract: Hereditary hemorrhagic telangiectasia (HHT, also known by the eponym Osler–Weber–Rendu syndrome, is a group of related disorders inherited in an autosomal dominant fashion and characterized by the development of arteriovenous malformations (AVM in the skin, mucous membranes, and/or internal organs such as brain, lungs, and liver. Its prevalence is currently estimated at one in 5,000 to 8,000. Most cases are due to mutations in the endoglin (HHT1 or ACVRLK1 (HHT2 genes. Telangiectasias in nasal and gastrointestinal mucosa generally present with recurrent/chronic bleeding and iron deficiency anemia. Larger AVMs occur in lungs (~40%–60% of affected individuals, liver (~40%–70%, brain (~10%, and spine (~1%. Due to the devastating and potentially fatal complications of some of these lesions (for example, strokes and brain abscesses with pulmonary AVMs, presymptomatic screening and treatment are of utmost importance. However, due to the rarity of this condition, many providers lack an appreciation for the whole gamut of its manifestations and complications, age-dependent penetrance, and marked intrafamilial variation. As a result, HHT remains frequently underdiagnosed and many families do not receive the appropriate screening and treatments. This article provides an overview of the clinical features of HHT, discusses the clinical and genetic diagnostic strategies, and presents an up-to-date review of literature and detailed considerations regarding screening for visceral AVMs, preventive modalities, and treatment options. Keywords: arteriovenous

  8. Case of infantile onset spinocerebellar ataxia type 5.

    Science.gov (United States)

    Jacob, Francois-Dominique; Ho, Eugenia S; Martinez-Ojeda, Mayra; Darras, Basil T; Khwaja, Omar S

    2013-10-01

    Dominant spinocerebellar ataxias are a rare clinically and genetically heterogeneous group of neurodegenerative disorders. They are characterized by progressive cerebellar ataxia resulting in unsteady gait, clumsiness, dysarthria, and swallowing difficulty. The onset of symptoms is usually in the third or fourth decade of life; however, more subtle clinical manifestations can start in early childhood. Spinocerebellar ataxia type 5, a dominant spinocerebellar ataxia associated with mutations involving β-III spectrin (SPTBN2), has been described in 3 families. It typically consists of a slowly progressive spinocerebellar ataxia with onset in the third decade. The authors present the first case of infantile-onset spinocerebellar ataxia associated with a novel SPTBN2 mutation (transition C>T at nucleotide position 1438), the proband having a much more severe phenotype with global developmental delay, hypotonia, tremor, nystagmus, and facial myokymia.

  9. Ataxia Telangiectasia–Mutated Gene Polymorphisms and Acute Normal Tissue Injuries in Cancer Patients After Radiation Therapy: A Systematic Review and Meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Lihua [Department of Radiation Oncology, The First Hospital of Jilin University, Changchun (China); Cui, Jingkun [Department of Internal Medicine, Nanling School District Hospital of Jilin University, Changchun (China); Tang, Fengjiao; Cong, Xiaofeng [Cancer Center, The First Hospital of Jilin University, Changchun (China); Han, Fujun, E-mail: fujun_han@aliyun.com [Cancer Center, The First Hospital of Jilin University, Changchun (China)

    2015-04-01

    Purpose: Studies of the association between ataxia telangiectasia–mutated (ATM) gene polymorphisms and acute radiation injuries are often small in sample size, and the results are inconsistent. We conducted the first meta-analysis to provide a systematic review of published findings. Methods and Materials: Publications were identified by searching PubMed up to April 25, 2014. Primary meta-analysis was performed for all acute radiation injuries, and subgroup meta-analyses were based on clinical endpoint. The influence of sample size and radiation injury incidence on genetic effects was estimated in sensitivity analyses. Power calculations were also conducted. Results: The meta-analysis was conducted on the ATM polymorphism rs1801516, including 5 studies with 1588 participants. For all studies, the cut-off for differentiating cases from controls was grade 2 acute radiation injuries. The primary meta-analysis showed a significant association with overall acute radiation injuries (allelic model: odds ratio = 1.33, 95% confidence interval: 1.04-1.71). Subgroup analyses detected an association between the rs1801516 polymorphism and a significant increase in urinary and lower gastrointestinal injuries and an increase in skin injury that was not statistically significant. There was no between-study heterogeneity in any meta-analyses. In the sensitivity analyses, small studies did not show larger effects than large studies. In addition, studies with high incidence of acute radiation injuries showed larger effects than studies with low incidence. Power calculations revealed that the statistical power of the primary meta-analysis was borderline, whereas there was adequate power for the subgroup analysis of studies with high incidence of acute radiation injuries. Conclusions: Our meta-analysis showed a consistency of the results from the overall and subgroup analyses. We also showed that the genetic effect of the rs1801516 polymorphism on acute radiation injuries was

  10. Genetics Home Reference: hereditary hemorrhagic telangiectasia

    Science.gov (United States)

    ... Osler-Weber-Rendu syndrome Health Topic: Arteriovenous Malformations Genetic and Rare Diseases Information Center (1 link) Hereditary hemorrhagic telangiectasia Additional NIH Resources (1 link) National ...

  11. Fragile X-associated tremor/ataxia syndrome.

    Science.gov (United States)

    Hoem, Gry; Koht, Jeanette

    2017-10-31

    Fragile X-associated tremor/ataxia syndrome (FXTAS) is a hereditary neurodegenerative disorder caused by a mutation on the X chromosome. The major signs and symptoms are tremor, ataxia and parkinsonism. Up to one in 2 000 persons over 50 years of age will develop the syndrome. There is reason to believe that too few individuals in Norway undergo testing for this condition.

  12. Ataxia crónica en pediatría

    Directory of Open Access Journals (Sweden)

    Ricardo Erazo Torricelli

    2013-09-01

    Full Text Available Las ataxias crónicas constituyen un grupo heterogéneo de enfermedades, que afectan al niño a diferentes edades. Así las formas congénitas, generalmente no progresivas, se observan desde los primeros meses de vida y se expresan por hipotonía y retraso motor, mucho antes de que la ataxia se haga evidente. La resonancia magnética cerebral puede ser diagnóstica en algunos cuadros, como ocurre con el síndrome de Joubert. El grupo de ataxias hereditarias progresivas, en constante expansión, suelen comenzar después del período del lactante. Los signos clínicos destacables son la apraxia ocular y la inestabilidad de la marcha que pueden asociarse a telangiectasias oculocutáneas (ataxia-telangiectasia o a neuropatía sensitiva (ataxia de Friedreich. En esta revisión se describen en forma sucinta las ataxias congénitas y en forma más detallada las causas principales de ataxias hereditarias progresivas autosómicas recesivas, autosómicas dominantes y mitocondriales. Se destaca la importancia del estudio genético, que es la clave para lograr el diagnóstico en la mayoría de estas enfermedades. Aunque aún no hay tratamiento para la mayoría de las ataxias hereditarias progresivas, algunas sí lo tienen, como la enfermedad de Refsum, déficit de vitamina E, déficit de Coenzima Q10, por lo cual el diagnóstico en estos casos es aún más relevante. En la actualidad, el diagnóstico de los cuadros de ataxia hereditaria del niño aún no tratable es fundamental para lograr un manejo adecuado, determinar un pronóstico preciso y dar a la familia un consejo genético oportuno.

  13. Dystonia and ataxia progression in spinocerebellar ataxias.

    Science.gov (United States)

    Kuo, Pei-Hsin; Gan, Shi-Rui; Wang, Jie; Lo, Raymond Y; Figueroa, Karla P; Tomishon, Darya; Pulst, Stefan M; Perlman, Susan; Wilmot, George; Gomez, Christopher M; Schmahmann, Jeremy D; Paulson, Henry; Shakkottai, Vikram G; Ying, Sarah H; Zesiewicz, Theresa; Bushara, Khalaf; Geschwind, Michael D; Xia, Guangbin; Subramony, S H; Ashizawa, Tetsuo; Kuo, Sheng-Han

    2017-10-23

    Dystonia is a common feature in spinocerebellar ataxias (SCAs). Whether the presence of dystonia is associated with different rate of ataxia progression is not known. To study clinical characteristics and ataxia progression in SCAs with and without dystonia. We studied 334 participants with SCA 1, 2, 3 and 6 from the Clinical Research Consortium for Spinocerebellar Ataxias (CRC-SCA) and compared the clinical characteristics of SCAs with and without dystonia. We repeatedly measured ataxia progression by the Scale for Assessment and Rating of Ataxia every 6 months for 2 years. Regression models were employed to study the association between dystonia and ataxia progression after adjusting for age, sex and pathological CAG repeats. We used logistic regression to analyze the impact of different repeat expansion genes on dystonia in SCAs. Dystonia was most commonly observed in SCA3, followed by SCA2, SCA1, and SCA6. Dystonia was associated with longer CAG repeats in SCA3. The CAG repeat number in TBP normal alleles appeared to modify the presence of dystonia in SCA1. The presence of dystonia was associated with higher SARA scores in SCA1, 2, and 3. Although relatively rare in SCA6, the presence of dystonia was associated with slower progression of ataxia. The presence of dystonia is associated with greater severity of ataxia in SCA1, 2, and 3, but predictive of a slower progression in SCA6. Complex genetic interactions among repeat expansion genes can lead to diverse clinical symptoms and progression in SCAs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Ethnicity and geographic distribution of pediatric chronic ataxia in Manitoba.

    Science.gov (United States)

    Salman, Michael S; Masood, Shaheen; Azad, Meghan; Chodirker, Bernard N

    2014-01-01

    Genetic and environmental factors are important determinants of disease distribution. Several disorders associated with ataxia are known to occur more commonly in certain ethnic groups; for example, the disequilibrium syndrome in the Hutterites. The aim of this study was to determine the ethnic and geographic distribution of pediatric patients with chronic ataxia in Manitoba, Canada. We identified 184 patients less than 17 years-of-age with chronic ataxia during 1991-2008 from multiple sources. Their diagnosis, ethnicity and place of residence were determined following a chart review. Most patients resided in Manitoba (N=177) and the majority in Winnipeg, the provincial capital. Thirty five Aboriginal, 29 Mennonite and 11 Hutterite patients resided in Manitoba. The latter two groups were significantly overrepresented in our cohort. Ataxia telangiectasia, mitochondrial disorders, and non-progressive ataxia of unknown etiology associated with pyramidal tracts signs and developmental delay were significantly more common in Mennonite patients. Four of five patients with neuronal migration disorders associated with chronic ataxia were Aboriginal. Few isolated disorders with chronic ataxia occurred in the 11 Hutterite patients including a Joubert syndrome related disorder. Three disorders associated with chronic ataxia were more prevalent than expected in Mennonites in Manitoba. Few rare disorders were more prevalent in the Hutterite and Aboriginal population. Further research is needed to determine the risk factors underlying these variations in prevalence within different ethnic groups. The unique risk factor profiles of each ethnic group need to be considered in health promotion endeavors. Ethnie et distribution géographique de l'ataxie chronique chez des patients d'âge pédiatrique au Manitoba.

  15. Hereditary spastic paraplegia with cerebellar ataxia

    DEFF Research Database (Denmark)

    Nielsen, J E; Johnsen, B; Koefoed, P

    2004-01-01

    Complex forms of hereditary spastic paraplegia (HSP) are rare and usually transmitted in an autosomal recessive pattern. A family of four generations with autosomal dominant hereditary spastic paraplegia (AD-HSP) and a complex phenotype with variably expressed co-existing ataxia, dysarthria...... in those individuals who were clinically affected by a complex phenotype consisting of HSP and cerebellar ataxia. Other features noted in this kindred including epilepsy, cognitive impairment, depression, and migraine did not segregate with the HSP phenotype or mutation, and therefore the significance...... relatively decreased regional cerebral blood flow in most of the cerebellum. We conclude that this kindred demonstrates a considerable overlap between cerebellar ataxia and spastic paraplegia, emphasizing the marked clinical heterogeneity of HSP associated with spastin mutations....

  16. Genetics Home Reference: episodic ataxia

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions Episodic ataxia Episodic ataxia Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Episodic ataxia is a group of related conditions that affect ...

  17. Ataxia with Vitamin E Deficiency in Norway

    Directory of Open Access Journals (Sweden)

    Areej Elkamil

    2015-01-01

    Full Text Available Objective Ataxia with vitamin E deficiency (AVED is a rare autosomal recessive neurological disorder which usually starts in childhood. The clinical presentation is very similar to Friedreich ataxia, most patients have progressive truncal and extremity ataxia, areflexia, positive Babinski sign, dysarthria and sensory neuropathy. Methods We made an inquiry to our colleagues in Norway, we included information from a prevalence study published southern Norway and added data from our own known case. Results A newly published prevalence study of hereditary ataxias (total of 171 subjects found only one subject with AVED in Southeast Norway. We describe two more patients, one from the Central part and one from the Northern part of Norway. All 3 cases had age of onset in early childhood (age of 4–5 years and all experienced gait ataxia and dysarthria. The genetic testing confirmed that they had pathogenic mutations in the α-tocopherol transfer protein gene (TTPA. All were carriers of the non-sense c.400C > T mutation, one was homozygous for that mutation and the others were compound heterozygous, either with c.358G > A or c.513_514insTT. The homozygous carrier was by far the most severely affected case. Conclusions We estimate the occurrence of AVED in Norway to be at least 0.6 per million inhabitants. We emphasize that all patients who develop ataxia in childhood should be routinely tested for AVED to make an early diagnosis for initiating treatment with high dose vitamin E to avoid severe neurological deficits.

  18. Phenotype variability and early onset ataxia symptoms in spinocerebellar ataxia type 7: comparison and correlation with other spinocerebellar ataxias

    Directory of Open Access Journals (Sweden)

    Marcus Vinicius Cristino de Albuquerque

    2015-01-01

    Full Text Available The spinocerebellar ataxias (SCA are a group of neurodegenerative disorders characterized by heterogeneous clinical presentation. Spinocerebellar ataxia type 7 (SCA7 is caused by an abnormal CAG repeat expansion and includes cerebellar signs associated with visual loss and ophthalmoplegia. Marked anticipation and dynamic mutation is observed in SCA7. Moreover, phenotype variability and very early onset of symptoms may occur. In this article, a large series of Brazilian patients with different SCA subtypes was evaluated, and we compared the age of onset of SCA7 with other SCA. From the 26 patients with SCA7, 4 manifested their symptoms before 10-year-old. Also, occasionally the parents may have the onset of symptoms after their children. In conclusion, our study highlights the genetic anticipation phenomenon that occurs in SCA7 families. Patients with very early onset ataxia in the context of a remarkable family history, must be considered and tested for SCA7.

  19. Life expextancy of parents with Hereditary Haemorrhagic Telangiectasia.

    Science.gov (United States)

    de Gussem, E M; Edwards, C P; Hosman, A E; Westermann, C J J; Snijder, R J; Faughnan, M E; Mager, J J

    2016-04-22

    Hereditary Haemorrhagic Telangiectasia (HHT) is an autosomal dominant disease associated with epistaxis, arteriovenous malformations and telangiectasias. Disease complications may result in premature death. We investigated life-expectancies of parents of HHT patients compared with their non-HHT partners using self- or telephone-administered questionnaires sent to their children. Patients were extracted from the databases of 2 participating HHT Centres: the Toronto HHT Database (Toronto, Canada) and the St. Antonius Hospital HHT Database (Nieuwegein, The Netherlands). Two hundred twenty five/407 (55%) of respondents were included creating HHT- (n = 225) and control groups (n = 225) of equal size. Two hundred thirteen/225 (95%) of the HHT group had not been screened for organ involvement of the disease prior to death. The life expectancy in parents with HHT was slightly lower compared to parents without (median age at death 73.3 years in patients versus 76.6 years in controls, p0.018). Parents with ACVRL 1 mutations had normal life expectancies, whereas parents with Endoglin mutations died 7.1 years earlier than controls (p = 0.024). Women with Endoglin mutations lived a median of 9.3 years shorter than those without (p = 0.04). Seven/123 (5%) of deaths were HHT related with a median age at death of 61.5 years (IQ range 54.4-67.7 years). Our study showed that the life expectancy of largely unscreened HHT patients was lower than people without HHT. Female patients with Endoglin mutations were most strikingly at risk of premature death from complications. These results emphasize the importance of referring patients with HHT for screening of organ involvement and timely intervention to prevent complications.

  20. Paroxysmal movement disorders and episodic ataxias.

    Science.gov (United States)

    Fernández-Alvarez, Emilio; Perez-Dueñas, Belén

    2013-01-01

    This chapter summarizes clinical symptoms of some paroxysmal dyskinesias (PDs) of infancy and childhood, as well as episodic ataxias. PDs refer to a complex group of disorders whose main feature is the occurrence of sudden, intermittent attacks of abnormal postures and involuntary movements. PDs can sometimes be symptomatic (secondary PDs), but usually an underlying cerebral lesion is not present (primary PDs). Some of the primary PDs are transient, such as benign paroxysmal torticollis of infancy. Chronic PDs are subdivided into nonkinesigenic (Mount and Reback type), kinesigenic (Kertesz type), and exercise-induced (Lance type) but cases that overlap with these types are on record. They are autosomal dominant inherited conditions. The myofibrillogenesis regulator-1 gene is responsible for nonkinesigenic PDs. To date, the genetic basis of kinesigenic PDs remains unknown. Several clinical entities associated epilepsy with PDs, such as infantile convulsions and choreoathetosis (ICCA). Exercise-induced PD type can be produced by mutations in the SLC2A1 gene that encodes Glut1 (glucose transporter type1). Episodic ataxias are inherited disorders of intermittent ataxia. The attacks are brief and triggered by abrupt exercise and emotional stimulus. Between attacks, palpebral and hand muscle myokymia is often seen in episodic ataxia type 1 (EA1). In episodic ataxia type 2 (EA2) interictal nystagmus is usually present. Some of these latter patients develop progressive ataxia with vermian atrophy. This disorder is associated with mutations in the human Ca channel alfa 1 subunit CACN1A4 gene. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Spinocerebellar ataxia-10 with paranoid schizophrenia

    Directory of Open Access Journals (Sweden)

    Bhavesh Trikamji

    2015-01-01

    Full Text Available Spino-cerebellar ataxia type 10 (SCA10 is an autosomal dominant disorder that is characterized by cerebellar ataxia, seizures and nystagmus with a fragmented pursuit. Schizophrenia has been reported with SCAs 1 and 2 yet in SCA 10, psychiatric manifestations are uncommon. We report a Hispanic family involving a father and his four children with SCA10 genetic mutation. Two of his children, a 20-year-old female and a 23-year-old male, presented with gradually progressive spino-cerebellar ataxia and paranoid schizophrenia. Neurological examination revealed ocular dysmetria, dysdiadokinesia, impaired finger-to-nose exam, gait ataxia and hyperreflexia in both the cases. Additionally, they had a history of psychosis with destructive behavior, depression and paranoid delusions with auditory hallucinations. Serology and CSF studies were unremarkable and MRI brain revealed cerebellar volume loss. Ultimately, a test for ATAXIN-10 mutation was positive thus confirming the diagnosis of SCA10 in father and his four children. We now endeavor to investigate the association between schizophrenia and SCA10.

  2. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies.

    Science.gov (United States)

    Ruano, Luis; Melo, Claudia; Silva, M Carolina; Coutinho, Paula

    2014-01-01

    Hereditary cerebellar ataxias (HCA) and hereditary spastic paraplegias (HSP) are two groups of neurodegenerative disorders that usually present with progressive gait impairment, often leading to permanent disability. Advances in genetic research in the last decades have improved their diagnosis and brought new possibilities for prevention and future treatments. Still, there is great uncertainty regarding their global epidemiology. Our objective was to assess the global distribution and prevalence of HCA and HSP by a systematic review and meta-analysis of prevalence studies. The MEDLINE, ISI Web of Science and Scopus databases were searched (1983-2013) for studies performed in well-defined populations and geographical regions. Two independent reviewers assessed the studies and extracted data and predefined methodological parameters. Overall, 22 studies were included, reporting on 14,539 patients from 16 countries. Multisource population-based studies yielded higher prevalence values than studies based primarily on hospitals or genetic centres. The prevalence range of dominant HCA was 0.0-5.6/10(5), with an average of 2.7/10(5) (1.5-4.0/10(5)). Spinocerebellar ataxia type 3 (SCA3)/Machado-Joseph disease was the most common dominant ataxia, followed by SCA2 and SCA6. The autosomal recessive (AR) HCA (AR-HCA) prevalence range was 0.0-7.2/10(5), the average being 3.3/10(5) (1.8-4.9/10(5)). Friedreich ataxia was the most frequent AR-HCA, followed by ataxia with oculomotor apraxia or ataxia-telangiectasia. The prevalence of autosomal dominant (AD) HSP (AD-HSP) ranged from 0.5 to 5.5/10(5) and that of AR-HSP from 0.0 to 5.3/10(5), with pooled averages of 1.8/10(5) (95% CI: 1.0-2.7/10(5)) and 1.8/10(5) (95% CI: 1.0-2.6/10(5)), respectively. The most common AD-HSP form in every population was spastic paraplegia, autosomal dominant, type 4 (SPG4), followed by SPG3A, while SPG11 was the most frequent AR-HSP, followed by SPG15. In population-based studies, the number of

  3. The diagnostic quandary of hereditary haemorrhagic telangiectasia vs. CREST syndrome.

    Science.gov (United States)

    Lee, J B; Ben-Aviv, D; Covello, S P

    2001-10-01

    The distribution and clinical appearance of the telangiectasia in the CREST syndrome (calcinosis, Raynaud's phenomenon, oesophageal involvement, sclerodactyly, telangiectasia) and hereditary haemorrhagic telangiectasia (HHT) are very similar. Several previously reported cases of the CREST syndrome simulating HHT illustrate this diagnostic quandary. We report a patient who met the diagnostic criteria for both the CREST syndrome and HHT, and discuss the distinguishing features of the two diseases, including the distinctive histopathological findings of telangiectasia in HHT.

  4. 'Costa da Morte' ataxia is spinocerebellar ataxia 36: clinical and genetic characterization.

    Science.gov (United States)

    García-Murias, María; Quintáns, Beatriz; Arias, Manuel; Seixas, Ana I; Cacheiro, Pilar; Tarrío, Rosa; Pardo, Julio; Millán, María J; Arias-Rivas, Susana; Blanco-Arias, Patricia; Dapena, Dolores; Moreira, Ramón; Rodríguez-Trelles, Francisco; Sequeiros, Jorge; Carracedo, Angel; Silveira, Isabel; Sobrido, María J

    2012-05-01

    Spinocerebellar ataxia 36 has been recently described in Japanese families as a new type of spinocerebellar ataxia with motor neuron signs. It is caused by a GGCCTG repeat expansion in intron 1 of NOP56. Family interview and document research allowed us to reconstruct two extensive, multigenerational kindreds stemming from the same village (Costa da Morte in Galicia, Spain), in the 17th century. We found the presence of the spinocerebellar ataxia 36 mutation co-segregating with disease in these families in whom we had previously identified an ~0.8 Mb linkage region to chromosome 20 p. Subsequent screening revealed the NOP56 expansion in eight additional Galician ataxia kindreds. While normal alleles contain 5-14 hexanucleotide repeats, expanded alleles range from ~650 to 2500 repeats, within a shared haplotype. Further expansion of repeat size was frequent, especially upon paternal transmission, while instances of allele contraction were observed in maternal transmissions. We found a total of 63 individuals carrying the mutation, 44 of whom were confirmed to be clinically affected; over 400 people are at risk. We describe here the detailed clinical picture, consisting of a late-onset, slowly progressive cerebellar syndrome with variable eye movement abnormalities and sensorineural hearing loss. There were signs of denervation in the tongue, as well as mild pyramidal signs, but otherwise no signs of classical amyotrophic lateral sclerosis. Magnetic resonance imaging findings were consistent with the clinical course, showing atrophy of the cerebellar vermis in initial stages, later evolving to a pattern of olivo-ponto-cerebellar atrophy. We estimated the origin of the founder mutation in Galicia to have occurred ~1275 years ago. Out of 160 Galician families with spinocerebellar ataxia, 10 (6.3%) were found to have spinocerebellar ataxia 36, while 15 (9.4%) showed other of the routinely tested dominant spinocerebellar ataxia types. Spinocerebellar ataxia 36 is

  5. ‘Costa da Morte’ ataxia is spinocerebellar ataxia 36: clinical and genetic characterization

    Science.gov (United States)

    García-Murias, María; Quintáns, Beatriz; Arias, Manuel; Seixas, Ana I.; Cacheiro, Pilar; Tarrío, Rosa; Pardo, Julio; Millán, María J.; Arias-Rivas, Susana; Blanco-Arias, Patricia; Dapena, Dolores; Moreira, Ramón; Rodríguez-Trelles, Francisco; Sequeiros, Jorge; Carracedo, Ángel; Silveira, Isabel

    2012-01-01

    Spinocerebellar ataxia 36 has been recently described in Japanese families as a new type of spinocerebellar ataxia with motor neuron signs. It is caused by a GGCCTG repeat expansion in intron 1 of NOP56. Family interview and document research allowed us to reconstruct two extensive, multigenerational kindreds stemming from the same village (Costa da Morte in Galicia, Spain), in the 17th century. We found the presence of the spinocerebellar ataxia 36 mutation co-segregating with disease in these families in whom we had previously identified an ∼0.8 Mb linkage region to chromosome 20 p. Subsequent screening revealed the NOP56 expansion in eight additional Galician ataxia kindreds. While normal alleles contain 5–14 hexanucleotide repeats, expanded alleles range from ∼650 to 2500 repeats, within a shared haplotype. Further expansion of repeat size was frequent, especially upon paternal transmission, while instances of allele contraction were observed in maternal transmissions. We found a total of 63 individuals carrying the mutation, 44 of whom were confirmed to be clinically affected; over 400 people are at risk. We describe here the detailed clinical picture, consisting of a late-onset, slowly progressive cerebellar syndrome with variable eye movement abnormalities and sensorineural hearing loss. There were signs of denervation in the tongue, as well as mild pyramidal signs, but otherwise no signs of classical amyotrophic lateral sclerosis. Magnetic resonance imaging findings were consistent with the clinical course, showing atrophy of the cerebellar vermis in initial stages, later evolving to a pattern of olivo-ponto-cerebellar atrophy. We estimated the origin of the founder mutation in Galicia to have occurred ∼1275 years ago. Out of 160 Galician families with spinocerebellar ataxia, 10 (6.3%) were found to have spinocerebellar ataxia 36, while 15 (9.4%) showed other of the routinely tested dominant spinocerebellar ataxia types. Spinocerebellar ataxia

  6. Speech in spinocerebellar ataxia.

    Science.gov (United States)

    Schalling, Ellika; Hartelius, Lena

    2013-12-01

    Spinocerebellar ataxias (SCAs) are a heterogeneous group of autosomal dominant cerebellar ataxias clinically characterized by progressive ataxia, dysarthria and a range of other concomitant neurological symptoms. Only a few studies include detailed characterization of speech symptoms in SCA. Speech symptoms in SCA resemble ataxic dysarthria but symptoms related to phonation may be more prominent. One study to date has shown an association between differences in speech and voice symptoms related to genotype. More studies of speech and voice phenotypes are motivated, to possibly aid in clinical diagnosis. In addition, instrumental speech analysis has been demonstrated to be a reliable measure that may be used to monitor disease progression or therapy outcomes in possible future pharmacological treatments. Intervention by speech and language pathologists should go beyond assessment. Clinical guidelines for management of speech, communication and swallowing need to be developed for individuals with progressive cerebellar ataxia. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Allelic Dropout in the ENG Gene, Affecting the Results of Genetic Testing in Hereditary Hemorrhagic Telangiectasia

    DEFF Research Database (Denmark)

    Tørring, Pernille M; Kjeldsen, A.D.; Ousager, L.B.

    2012-01-01

    Background: Hereditary hemorrhagic telangiectasia (HHT) is an autosomal-dominant vascular disorder with three disease-causing genes identified to date: ENG, ACVRL1, and SMAD4. We report an HHT patient with allelic dropout that on routine sequence analysis for a known mutation in the family (c.817......-3T>G in ENG) initially seemed to be homozygous for the mutation. Aim: To explore the possibility of allelic dropout causing a false result in this patient. Methods: Mutation analysis of additional family members was performed and haplotype analysis carried out. New primers were designed to reveal...

  8. Epigenetic-based therapies for Friedreich ataxia

    OpenAIRE

    Sandi, C; Sandi, M; Virmouni, SA; Al-Mahdawi, S; Pook, MA

    2014-01-01

    This article has been made available through the Brunel Open Access Publishing Fund. Friedreich ataxia (FRDA) is a lethal autosomal recessive neurodegenerative disorder caused primarily by a homozygous GAA repeat expansion mutation within the first intron of the FXN gene, leading to inhibition of FXN transcription and thus reduced frataxin protein expression. Recent studies have shown that epigenetic marks, comprising chemical modifications of DNA and histones, are associated with FXN gene...

  9. Investigation of recessive ataxia loci in patients with young age of onset.

    Science.gov (United States)

    Zühlke, C; Bernard, V; Gillessen-Kaesbach, G

    2007-08-01

    Autosomal recessive cerebellar ataxias are a phenotypically and genetically heterogeneous group of diseases. Major forms can be distinguished on the basis of clinical signs, age of onset, biochemical parameters or genotypes. To develop rational diagnostic strategies, phenotypic information, e.g., age of onset combined with population-specific disease frequencies could be highly favourable. We tested this hypothesis for single candidate loci and mutations in North European ataxia patients with juvenile and early adult onset. While we could prove that Friedreich ataxia (FRDA) is frequent in Germany, only few patients with ataxia-oculomotor apraxia type 1 (AOA1) and type 2 (AOA2) were diagnosed. The frequency of the mitochondrial recessive ataxia syndrome (MIRAS) and the infantile onset spinocerebellar ataxia (IOSCA) in this population remains unknown since no case with the common mutation of the corresponding gene was detected.

  10. Specific cerebellar and cortical degeneration correlates with ataxia severity in spinocerebellar ataxia type 7.

    Science.gov (United States)

    Hernandez-Castillo, Carlos R; Galvez, Victor; Diaz, Rosalinda; Fernandez-Ruiz, Juan

    2016-03-01

    Spinocerebellar ataxia type 7 (SCA7) is a progressive neurodegenerative disorder that is accompanied by loss of motor control and macular degeneration. Previous studies have shown cerebellar and pons atrophy as well as functional connectivity changes across the whole brain. Although different MRI modalities have been used to study the degenerative process, little is known about the relationship between the motor symptoms and cerebral atrophy. Twenty-four patients with molecular diagnosis of SCA7 where invited to participate in this study. Ataxia severity was evaluated using the scale for the assessment and rating of ataxia (SARA). Structural magnetic resonance imaging (MRI) brain images were used to obtain the grey matter volume of each participant. As expected, we found a significant negative correlation between the SARA score and the grey matter volume in distinct regions of the cerebellum in the patient group. Additionally, we found significant correlations between the ataxia degree and the degeneration of specific cortical areas in these patients. These findings provide a better understanding of the relationship between gray matter atrophy and ataxia related symptoms that result from the SCA7 mutation.

  11. Rehabilitative Trial With Cerebello-Spinal tDCS in Neurodegenerative Ataxia

    Science.gov (United States)

    2017-09-05

    Ataxia, Cerebellar; Cerebellar Ataxia; Spinocerebellar Ataxias; Ataxia, Spinocerebellar; Spinocerebellar Ataxia Type 1; Spinocerebellar Ataxia Type 2; Spinocerebellar Ataxia 3; Spinocerebellar Degenerations; Friedreich Ataxia; Ataxia With Oculomotor Apraxia; Multiple System Atrophy

  12. Brain pathology of spinocerebellar ataxias

    NARCIS (Netherlands)

    Seidel, Kay; Siswanto, Sonny; Brunt, Ewout R. P.; den Dunnen, Wilfred; Korf, Horst-Werner; Rueb, Udo

    The autosomal dominant cerebellar ataxias (ADCAs) represent a heterogeneous group of neurodegenerative diseases with progressive ataxia and cerebellar degeneration. The current classification of this disease group is based on the underlying genetic defects and their typical disease courses.

  13. Infantile-onset spinocerebellar ataxia and mitochondrial recessive ataxia syndrome are associated with neuronal complex I defect and mtDNA depletion

    National Research Council Canada - National Science Library

    Hakonen, Anna H; Goffart, Steffi; Marjavaara, Sanna; Paetau, Anders; Cooper, Helen; Mattila, Kimmo; Lampinen, Milla; Sajantila, Antti; Lönnqvist, Tuula; Spelbrink, Johannes N; Suomalainen, Anu

    2008-01-01

    Infantile-onset spinocerebellar ataxia (IOSCA) is a severe neurodegenerative disorder caused by the recessive mutation in PEO1, leading to an Y508C change in the mitochondrial helicase Twinkle, in its helicase domain...

  14. Childhood Cerebellar Ataxia

    Science.gov (United States)

    Fogel, Brent L.

    2012-01-01

    Childhood presentations of ataxia, an impairment of balance and coordination caused by damage to or dysfunction of the cerebellum, can often be challenging to diagnose. Presentations tend to be clinically heterogeneous but key considerations may vary based on the child's age at onset, the course of illness, and subtle differences in phenotype. Systematic investigation is recommended for efficient diagnosis. In this review, we outline common etiologies and describe a comprehensive approach to the evaluation of both acquired and genetic cerebellar ataxia in children. PMID:22764177

  15. Mutations of the CHK2 gene are found in some osteosarcomas, but are rare in breast, lung, and ovarian tumors.

    Science.gov (United States)

    Miller, Carl W; Ikezoe, Takayuki; Krug, Utz; Hofmann, Wolf-K; Tavor, Sigal; Vegesna, Vijaya; Tsukasaki, Kunihiro; Takeuchi, Seisho; Koeffler, H Phillip

    2002-01-01

    Checkpoint genes, activated in response to DNA damage and other stresses, are frequently targeted for alteration in cancer. Checkpoint kinase 2 (CHK2, CDS1, RAD53) is activated by ataxia telangiectasia mutated (ATM) in response to gamma irradiation. Activated CHK2 stabilizes TP53, and acts on other cell cycle and stress regulators. These findings place CHK2 in the middle of a pathway frequently targeted in cancer. Because of this, and the observation that CHK2 mutations are inherited in some Li-Fraumeni cancer syndrome families, we decided to examine the role of CHK2 mutations in sporadic cancers. Exploiting the genomic sequence of chromosome 22, we looked for mutations in the exons and intron junctions of the CHK2 gene in DNA samples from 170 patients (57 osteosarcomas, 25 other sarcomas, 35 nonsmall-cell lung, 20 ovarian, and 33 breast cancers). Missense mutations affecting the forkhead and kinase domains were detected in four osteosarcomas and in one ovarian and one lung cancer. These findings of CHK2 gene mutations are consistent with osteosarcoma being a defining tumor of Li-Fraumeni syndrome. The occurrence of CHK2 mutations in sporadic cancers emphasizes the importance of the stress pathway which includes TP53.

  16. Ataxia with Vitamin E Deficiency May Present with Cervical Dystonia

    Directory of Open Access Journals (Sweden)

    Andrew E. Becker

    2016-05-01

    Full Text Available Background: Ataxia with vitamin E deficiency (AVED is an autosomal recessive disorder that usually presents with ataxia, areflexia, and proprioceptive and vibratory sensory loss. Dystonia has been reported rarely. Case Report: An 11‐year‐old female presented with dystonic head tremor and cervical and bilateral arm dystonia. Her 14‐year‐old older brother had dystonic head tremor and generalized dystonia. One year later, the brother developed dysarthria, limb dysmetria, and gait ataxia. Compound heterozygous mutations in TTPA were detected, confirming the diagnosis of AVED. Discussion: AVED may present with dystonia rather than ataxia, and should be considered in the differential diagnosis of progressive dystonia. 

  17. Epilepsy and Spinocerebellar Ataxia

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2007-07-01

    Full Text Available A large consanguinous family from Saudi Arabia with 4 affected children presenting with an autosomal recessive ataxia, generalized tonic-clonic epilepsy and mental retardation is reported from the Institut de Genetique, Universite Louis Pasteur, Illkirch, France; Division of Pediatric Neurology, King Saud University, Riyadh, Saudi Arabia; and other centers.

  18. Novel Diagnostic Paradigms for Friedreich Ataxia

    Science.gov (United States)

    Brigatti, Karlla W.; Deutsch, Eric C.; Lynch, David R.; Farmer, Jennifer M.

    2013-01-01

    Friedreich ataxia is the most common inherited ataxia, with a wide phenotypic spectrum. It is generally caused by GAA expansions on both alleles of FXN, but a small percentage of patients are compound heterozygotes for a pathogenic expansion and a point mutation. Two recent diagnostic innovations are further characterizing individuals with the phenotype but without the classic genotypes. First, lateral-flow immunoassay is able to quantify the frataxin protein, thereby further characterizing these atypical individuals as likely affected or not affected, and providing some correlation to phenotype. It also holds promise as a biomarker for clinical trials in which the investigative agent increases frataxin. Second, gene dosage analysis and the identification of affected individuals with gene deletions introduce a novel genetic mechanism of disease. Both tests are now clinically available and suggest a new diagnostic paradigm for the disorder. Genetic counseling issues and future diagnostic testing approaches are considered as well. PMID:22752491

  19. Avances en el tratamiento de las ataxias crónicas

    Directory of Open Access Journals (Sweden)

    María Celeste Buompadre

    2013-09-01

    Full Text Available Las ataxias crónicas cerebelosas autosómicas recesivas constituyen el grupo más amplio de ataxias hereditarias, con presentación principalmente en la edad pediátrica, se caracterizan por degeneración o desarrollo anormal del cerebelo y de la médula espinal. Hasta el momento el tratamiento etiológico está disponible sólo para algunas formas: aquellas con defecto metabólico conocido como la abetalipoproteinemia, la ataxia con deficiencia de vitamina E y la xantomatosis cerebrotendinosa. En estas entidades la modificación de la dieta, el suplemento con vitaminas E y A principalmente y la administración de ácido quenodexocicólico pueden cambiar el curso de la enfermedad. En la mayoría de los otros tipos de ataxia el tratamiento es solo de soporte, como por ejemplo el uso de antioxidantes y quelantes del hierro en la ataxia de Friederich con el objetivo de disminuir los depósitos de hierro mitocondriales, de corticoides en la ataxia telangiectasia y de ubiquinona /coenzima Q10 en la ataxia por deficiencia de coenzima Q-10. Si bien hasta el momento ningún tratamiento es curativo para la mayoría de las ataxias crónicas autosómico recesivas, el diagnóstico precoz de estas entidades se asocia con una mejor respuesta a las diferentes drogas.

  20. Cleavage of the BRCT tandem domains of nibrin by the 657del5 mutation affects the DNA damage response less than the Arg215Trp mutation.

    Science.gov (United States)

    Mendez, Gina; Cilli, Domenica; Berardinelli, Francesco; Viganotti, Mara; Ascenzi, Paolo; Tanzarella, Caterina; Antoccia, Antonio; di Masi, Alessandra

    2012-10-01

    The Nijmegen breakage syndrome (NBS) is a genetic disorder caused by mutations in NBN gene and characterized by chromosomal instability and hypersensitivity to ionizing radiations (IR). The N-terminus of nibrin (NBN) contains a tandem breast cancer 1 (BRCA1) carboxy-terminal (BRCT) domain that represents one of the major mediators of phosphorylation-dependent protein-protein interactions in processes related to cell cycle checkpoint and DNA repair functions. Patients with NBS compound heterozygous for the 657del5 hypomorphic mutation and for the Arg215Trp missense mutation (corresponding to the 643C>T gene mutation) display a clinical phenotype more severe than that of patients homozygous for the 657del5 mutation. Here, we show that both the 657del5 and Arg215Trp mutations, occurring within the tandem BRCT domains of NBN, although not altering the assembly of the MRE11/RAD50/NBN (MRN) complex, affect the MRE11 IR-induced nuclear foci (IRIF) formation and the DNA double-strand break (DSB) signaling via the phosphorylation of both ataxia-telangiectasia-mutated (ATM) kinase and ATM downstream targets (e.g., SMC1 and p53). Remarkably, data obtained indicate that the cleavage of the BRCT tandem domains of NBN by the 657del5 mutation affects the DNA damage response less than the Arg215Trp mutation. Indeed, the 70-kDa NBN fragment, arising from the 657del5 mutation, maintains the capability to interact with MRE11 and γ-H2AX and to form IRIF. Altogether, the role of the tandem BRCT domains of NBN in the localization of the MRN complex at the DNA DSB and in the activation of the damage response is highlighted. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  1. An autosomal recessive cerebellar ataxia syndrome with upward gaze palsy, neuropathy, and seizures

    NARCIS (Netherlands)

    Straussberg, R; Basel-Vanagaite, L; Kivity, S; Dabby, R; Cirak, S; Nurnberg, P; Voit, T; Mahajnah, M; Inbar, D; Saifi, GM; Lupski, [No Value; Delague, [No Value; Megarbane, A; Richter, A; Leshinsky, E; Berkovic, SF

    2005-01-01

    The authors describe three siblings born to consanguineous parents with early onset ataxia, dysarthria, myoclonic, generalized tonic clonic seizures, upward gaze palsy, extensor plantar reflexes, sensory neuropathy, and normal cognition. Direct screening excluded mutations in FRDA, TDP1, and SACS

  2. Research on Potential Biomarkers in Hereditary Haemorrhagic Telangiectasia

    Directory of Open Access Journals (Sweden)

    Luisa Maria Botella

    2015-03-01

    Full Text Available Hereditary Hemorrhagic Telangiectasia (HHT is a genetically heterogeneous disorder, involving mutations in two predominant genes known as Endoglin (ENG; HHT1 and Activin receptor like kinase 1 (ACVRL1/ALK1; HHT2, as well as in some less frequent genes, such as MADH4/SMAD4 (JP-HHT or BMP9/GDF2 (HHT5. The diagnosis of HHT patients currently remains at the clinical level, according to the Curaçao criteria, whereas the molecular diagnosis is used to confirm or rule out suspected HHT cases, especially when a well characterized index case is present in the family or in an isolated population. Unfortunately, many suspected patients do not present a clear HHT diagnosis or do not show pathogenic mutations in HHT genes, prompting the need to investigate additional biomarkers of the disease. Here, several HHT biomarkers and novel methodological approaches developed during the last years will be reviewed. On one hand, products detected in plasma or serum samples: soluble proteins (VEGF, TGF-β1, soluble endoglin, angiopoietin-2 and microRNA variants (miR-27a, miR-205, miR-210. On the other hand, differential HHT gene expression fingerprinting, Next Generation Sequencing (NGS of a panel of genes involved in HHT, and infrared spectroscopy combined with Artificial Neural Network (ANN patterns will also be reviewed. All these biomarkers might help to improve and refine HHT diagnosis by distinguishing from the non-HHT population.

  3. Genetics Home Reference: ataxia-pancytopenia syndrome

    Science.gov (United States)

    ... Baranko PV, Potter NU. Ataxia-pancytopenia: syndrome of cerebellar ataxia, hypoplastic anemia, monosomy 7, and acute myelogenous leukemia. ... A family with acute leukemia, hypoplastic anemia and cerebellar ataxia: association with bone marrow C-monosomy. Am J ...

  4. Sleep disorders in cerebellar ataxias

    Directory of Open Access Journals (Sweden)

    José L. Pedroso

    2011-04-01

    Full Text Available Cerebellar ataxias comprise a wide range of etiologies leading to central nervous system-related motor and non-motor symptoms. Recently, a large body of evidence has demonstrated a high frequency of non-motor manifestations in cerebellar ataxias, specially in autosomal dominant spinocerebellar ataxias (SCA. Among these non-motor dysfunctions, sleep disorders have been recognized, although still under or even misdiagnosed. In this review, we highlight the main sleep disorders related to cerebellar ataxias focusing on REM sleep behavior disorder (RBD, restless legs syndrome (RLS, periodic limb movement in sleep (PLMS, excessive daytime sleepiness (EDS, insomnia and sleep apnea.

  5. Cerebral abscesses among Danish patients with hereditary haemorrhagic telangiectasia

    DEFF Research Database (Denmark)

    Kjeldsen, A D; Tørring, P M; Nissen, H

    2013-01-01

    Hereditary haemorrhagic telangiectasia (HHT) is a dominantly inherited disease characterized by a wide variety of clinical manifestations, including pulmonary arteriovenous malformations (PAVMs), which due to paradoxical embolization may cause cerebral abscess.......Hereditary haemorrhagic telangiectasia (HHT) is a dominantly inherited disease characterized by a wide variety of clinical manifestations, including pulmonary arteriovenous malformations (PAVMs), which due to paradoxical embolization may cause cerebral abscess....

  6. Genetic heterogeneity in hereditary haemorrhagic telangiectasia.

    Science.gov (United States)

    Porteous, M E; Curtis, A; Williams, O; Marchuk, D; Bhattacharya, S S; Burn, J

    1994-01-01

    A locus causing hereditary haemorrhagic telangiectasia (HHT) has recently been mapped to 9q34 in four families and designated HHT1. In this paper, the results of a linkage study showing genetic heterogeneity in four families in whom HHT is segregating are reported. All the previously reported 9q34 linked families contain at least one affected member with a symptomatic pulmonary arteriovenous malformation. We postulate that clinical heterogeneity may also be a feature of HHT with a significantly higher predisposition to symptomatic PAVMs associated with the HHT1 linked families. PMID:7891373

  7. Consensus Paper: Neuroimmune Mechanisms of Cerebellar Ataxias.

    Science.gov (United States)

    Mitoma, Hiroshi; Adhikari, Keya; Aeschlimann, Daniel; Chattopadhyay, Partha; Hadjivassiliou, Marios; Hampe, Christiane S; Honnorat, Jérôme; Joubert, Bastien; Kakei, Shinji; Lee, Jongho; Manto, Mario; Matsunaga, Akiko; Mizusawa, Hidehiro; Nanri, Kazunori; Shanmugarajah, Priya; Yoneda, Makoto; Yuki, Nobuhiro

    2016-04-01

    In the last few years, a lot of publications suggested that disabling cerebellar ataxias may develop through immune-mediated mechanisms. In this consensus paper, we discuss the clinical features of the main described immune-mediated cerebellar ataxias and address their presumed pathogenesis. Immune-mediated cerebellar ataxias include cerebellar ataxia associated with anti-GAD antibodies, the cerebellar type of Hashimoto's encephalopathy, primary autoimmune cerebellar ataxia, gluten ataxia, Miller Fisher syndrome, ataxia associated with systemic lupus erythematosus, and paraneoplastic cerebellar degeneration. Humoral mechanisms, cell-mediated immunity, inflammation, and vascular injuries contribute to the cerebellar deficits in immune-mediated cerebellar ataxias.

  8. Ataxia telangiectasia - A report of a case in Port Harcourt | Yaguo ...

    African Journals Online (AJOL)

    She achieved normal early developmental milestones. She is the second child of adoptive parents and was adopted at 2weeks of age. Her biological mother was said to have died immediately after delivery. Her adoptive parents were of high socioeconomic class. The detail of child's family history was not known to the ...

  9. ATM function and its relationship with ATM gene mutations in chronic lymphocytic leukemia with the recurrent deletion (11q22.3-23.2).

    Science.gov (United States)

    Jiang, Y; Chen, H-C; Su, X; Thompson, P A; Liu, X; Do, K-A; Wierda, W; Keating, M J; Plunkett, W

    2016-09-02

    Approximately 10-20% of chronic lymphocytic leukemia (CLL) patients exhibit del(11q22-23) before treatment, this cohort increases to over 40% upon progression following chemoimmunotherapy. The coding sequence of the DNA damage response gene, ataxia-telangiectasia-mutated (ATM), is contained in this deletion. The residual ATM allele is frequently mutated, suggesting a relationship between gene function and clinical response. To investigate this possibility, we sought to develop and validate an assay for the function of ATM protein in these patients. SMC1 (structural maintenance of chromosomes 1) and KAP1 (KRAB-associated protein 1) were found to be unique substrates of ATM kinase by immunoblot detection following ionizing radiation. Using a pool of eight fluorescence in situ hybridization-negative CLL samples as a standard, the phosphorylation of SMC1 and KAP1 from 46 del (11q22-23) samples was analyzed using normal mixture model-based clustering. This identified 13 samples (28%) that were deficient in ATM function. Targeted sequencing of the ATM gene of these samples, with reference to genomic DNA, revealed 12 somatic mutations and 15 germline mutations in these samples. No strong correlation was observed between ATM mutation and function. Therefore, mutation status may not be taken as an indicator of ATM function. Rather, a direct assay of the kinase activity should be used in the development of therapies.

  10. Prevalence of ataxia in children

    Science.gov (United States)

    Stoyanov, Cristina T.; Marasigan, Rhul; Jenkins, Mary E.; Konczak, Jürgen; Morton, Susanne M.; Bastian, Amy J.

    2014-01-01

    Objective: To estimate the prevalence of childhood ataxia resulting from both genetic and acquired causes. Methods: A systematic review was conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) statement. Five databases were searched for articles reporting a frequency measure (e.g., prevalence, incidence) of ataxia in children. Included articles were first grouped according to the World Health Organization (WHO) regions and subsequently classified according to etiology (genetic, acquired, or mixed). Each article was assessed for its risk of bias on the domains of sampling, measurement, and analysis. Incidence values were converted to prevalence estimates whenever possible. European prevalence estimates for different etiologies of ataxia were summed to gauge the overall prevalence of childhood ataxia. Results: One hundred fifteen articles were included in the review. More than 50% of the data originated from the Europe WHO region. Data from this region also showed the least susceptibility to bias. Little data were available for Africa and Southeast Asia. The prevalence of acquired ataxias was found to vary more greatly across regions than the genetic ataxias. Ataxic cerebral palsy was found to be a significant contributor to the overall prevalence of childhood ataxia across WHO regions. The prevalence of childhood ataxias in Europe was estimated to be ∼26/100,000 children and likely reflects a minimum prevalence worldwide. Conclusions: The findings show that ataxia is a common childhood motor disorder with a higher prevalence than previously assumed. More research concerning the epidemiology, assessment, and treatment of childhood ataxia is warranted. PMID:24285620

  11. Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans.

    Directory of Open Access Journals (Sweden)

    Joyce van de Leemput

    2007-06-01

    Full Text Available We observed a severe autosomal recessive movement disorder in mice used within our laboratory. We pursued a series of experiments to define the genetic lesion underlying this disorder and to identify a cognate disease in humans with mutation at the same locus. Through linkage and sequence analysis we show here that this disorder is caused by a homozygous in-frame 18-bp deletion in Itpr1 (Itpr1(Delta18/Delta18, encoding inositol 1,4,5-triphosphate receptor 1. A previously reported spontaneous Itpr1 mutation in mice causes a phenotype identical to that observed here. In both models in-frame deletion within Itpr1 leads to a decrease in the normally high level of Itpr1 expression in cerebellar Purkinje cells. Spinocerebellar ataxia 15 (SCA15, a human autosomal dominant disorder, maps to the genomic region containing ITPR1; however, to date no causal mutations had been identified. Because ataxia is a prominent feature in Itpr1 mutant mice, we performed a series of experiments to test the hypothesis that mutation at ITPR1 may be the cause of SCA15. We show here that heterozygous deletion of the 5' part of the ITPR1 gene, encompassing exons 1-10, 1-40, and 1-44 in three studied families, underlies SCA15 in humans.

  12. Cerebellar Cognitive Affective Syndrome and Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay : A Report of Two Male Sibs

    NARCIS (Netherlands)

    Verhoeven, Willem M. A.; Egger, Jos I. M.; Ahmed, Amir I. M.; Kremer, Berry P. H.; Vermeer, Sascha; van de Warrenburg, Bart P. C.

    2012-01-01

    Background: Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a rare neurodegenerative disorder caused by mutations in the SACS gene (13q12) encoding the protein sacsin. It is characterized by early-onset cerebellar ataxia, lower limb spasticity, sensorimotor axonal

  13. Cognition in Friedreich ataxia.

    Science.gov (United States)

    Nieto, Antonieta; Correia, Rut; de Nóbrega, Erika; Montón, Fernando; Hess, Stephany; Barroso, Jose

    2012-12-01

    Friedreich ataxia (FRDA) is the most frequent of the inherited ataxias. However, very few studies have examined the cognitive status of patients with genetically defined FRDA. Our aim was to study cognitive performance of FRDA patients taking into account the motor problems characteristic of this clinical population. Thirty-six FRDA patients were administered a comprehensive neuropsychological battery measuring multiple domains: processing speed, attention, working memory, executive functions, verbal and visual memory, visuoperceptive and visuospatial skills, visuoconstructive functions, and language. Thirty-one gender, age, years of education, and estimated IQ-matched healthy participants served as control subjects. All participants were native Spanish speakers. Patients showed decreased motor and mental speed, problems in conceptual thinking, a diminished verbal fluency, deficits in acquisition of verbal information and use of semantic strategies in retrieval, visuoperceptive and visuoconstructive problems, and poor action naming. Scores on the depression inventory were significantly higher in patients than controls, but depression did not account for group differences in cognitive performance. The observed pattern of neuropsychological impairment is indicative of executive problems and parieto-temporal dysfunction. Neuropathological and neuroimaging studies with FRDA patients have reported only mild anomalies in cerebral hemispheres. Thus, cognitive impairment in FRDA is probably caused by the interruption of the cerebro-cerebellar circuits that have been proposed as the anatomical substrate of the cerebellar involvement in cognition.

  14. Clinical and genetic abnormalities in patients with Friedreich's ataxia.

    Science.gov (United States)

    Dürr, A; Cossee, M; Agid, Y; Campuzano, V; Mignard, C; Penet, C; Mandel, J L; Brice, A; Koenig, M

    1996-10-17

    Friedreich's ataxia, the most common inherited ataxia, is associated with a mutation that consists of an unstable expansion of GAA repeats in the first intron of the frataxin gene on chromosome 9, which encodes a protein of unknown function. We studied 187 patients with autosomal recessive ataxia, determined the size of the GAA expansions, and analyzed the clinical manifestations in relation to the number of GAA repeats and the duration of disease. One hundred forty of the 187 patients, with ages at onset ranging from 2 to 51 years, were homozygous for a GAA expansion that had 120 to 1700 repeats of the trinucleotides. About one quarter of the patients, despite being homozygous, had atypical Friedreich's ataxia; they were older at presentation and had intact tendon reflexes. Larger GAA expansions correlated with earlier age at onset and shorter times to loss of ambulation. The size of the GAA expansions (and particularly that of the smaller of each pair) was associated with the frequency of cardiomyopathy and loss of reflexes in the upper limbs. The GAA repeats were unstable during transmission. The clinical spectrum of Friedreich's ataxia is broader than previously recognized, and the direct molecular test for the GAA expansion on chromosome 9 is useful for diagnosis, determination of prognosis, and genetic counseling.

  15. Pulmonary vascular complications of hereditary haemorrhagic telangiectasia.

    Science.gov (United States)

    Circo, Sebastian; Gossage, James R

    2014-09-01

    The purpose of this study is to present the latest advances and recommendations in the diagnosis and treatment of pulmonary vascular complications associated with hereditary haemorrhagic telangiectasia (HHT): pulmonary arteriovenous malformations (PAVMs), pulmonary arterial hypertension (PAH), pulmonary hypertension associated with high output cardiac failure or liver vascular malformations, haemoptysis, haemothorax and thromboembolic disease. Transthoracic contrast echocardiography has been validated as a screening tool for PAVM in patients with suspected HHT. Advancements in genetic testing support its use in family members at risk as a cost-effective measure. Therapy with bevacizumab in patients with high output cardiac failure and severe liver AVMs showed promising results. PAH tends to be more aggressive in HHT type 2 patients. Patients suffering from this elusive disease should be referred to HHT specialized centres to ensure a standardized and timely approach to diagnosis and management.

  16. Episodic ataxia type 1: clinical characterization, quality of life and genotype-phenotype correlation.

    Science.gov (United States)

    Graves, Tracey D; Cha, Yoon-Hee; Hahn, Angelika F; Barohn, Richard; Salajegheh, Mohammed K; Griggs, Robert C; Bundy, Brian N; Jen, Joanna C; Baloh, Robert W; Hanna, Michael G

    2014-04-01

    Episodic ataxia type 1 is considered a rare neuronal ion channel disorder characterized by brief attacks of unsteadiness and dizziness with persistent myokymia. To characterize the natural history, develop outcome measures for future clinical trials, and correlate genotype with phenotype, we undertook an international, prospective, cross-sectional study. Thirty-nine individuals (51% male) were enrolled: median age 37 years (range 15-65 years). We identified 10 different pathogenic point mutations in KCNA1 that accounted for the genetic basis of 85% of the cohort. Participants with KCNA1 mutations were more likely to have a positive family history. Analysis of the total cohort showed that the first episode of ataxia occurred before age 20 in all but one patient, with an average age of onset of 7.9 years. Physical exertion, emotional stress and environmental temperature were the most common triggers for attacks. Attack frequency ranged from daily to monthly, even with the same KCNA1 genotype. Average attack duration was in the order of minutes. Ten participants (26%) developed permanent cerebellar signs, which were related to disease duration. The average Scale for the Assessment and Rating of Ataxia score (SARA, a standardized measure of cerebellar dysfunction on clinical examination, scores range from 0-40) was an average of 3.15 for all participants (range 0-14), but was only 2 in those with isolated episodic ataxia compared with 7.7 in those with progressive cerebellar ataxia in addition to episodic ataxia. Thirty-seven participants completed the SF-36, a quality of life survey; all eight domain norm-based average scores (mean=50) were below normal with mental health being the lowest (41.3) in those with mutation positive episodic ataxia type 1. Scores on SF-36 correlated negatively with attack frequency. Of the 39 participants in the study, 33 harboured mutations in KCNA1 whereas the remaining six had no mutation identified. Episodic ataxia type 1 phenocopies

  17. Episodic ataxia type 1: clinical characterization, quality of life and genotype–phenotype correlation

    Science.gov (United States)

    Graves, Tracey D.; Cha, Yoon-Hee; Hahn, Angelika F.; Barohn, Richard; Salajegheh, Mohammed K.; Griggs, Robert C.; Bundy, Brian N.; Jen, Joanna C.; Baloh, Robert W.

    2014-01-01

    Episodic ataxia type 1 is considered a rare neuronal ion channel disorder characterized by brief attacks of unsteadiness and dizziness with persistent myokymia. To characterize the natural history, develop outcome measures for future clinical trials, and correlate genotype with phenotype, we undertook an international, prospective, cross-sectional study. Thirty-nine individuals (51% male) were enrolled: median age 37 years (range 15–65 years). We identified 10 different pathogenic point mutations in KCNA1 that accounted for the genetic basis of 85% of the cohort. Participants with KCNA1 mutations were more likely to have a positive family history. Analysis of the total cohort showed that the first episode of ataxia occurred before age 20 in all but one patient, with an average age of onset of 7.9 years. Physical exertion, emotional stress and environmental temperature were the most common triggers for attacks. Attack frequency ranged from daily to monthly, even with the same KCNA1 genotype. Average attack duration was in the order of minutes. Ten participants (26%) developed permanent cerebellar signs, which were related to disease duration. The average Scale for the Assessment and Rating of Ataxia score (SARA, a standardized measure of cerebellar dysfunction on clinical examination, scores range from 0–40) was an average of 3.15 for all participants (range 0–14), but was only 2 in those with isolated episodic ataxia compared with 7.7 in those with progressive cerebellar ataxia in addition to episodic ataxia. Thirty-seven participants completed the SF-36, a quality of life survey; all eight domain norm-based average scores (mean = 50) were below normal with mental health being the lowest (41.3) in those with mutation positive episodic ataxia type 1. Scores on SF-36 correlated negatively with attack frequency. Of the 39 participants in the study, 33 harboured mutations in KCNA1 whereas the remaining six had no mutation identified. Episodic ataxia type 1

  18. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond.

    Science.gov (United States)

    Durr, Alexandra

    2010-09-01

    Cerebellar ataxias with autosomal dominant transmission are rare, but identification of the associated genes has provided insight into the mechanisms that could underlie other forms of genetic or non-genetic ataxias. In many instances, the phenotype is not restricted to cerebellar dysfunction but includes complex multisystemic neurological deficits. The designation of the loci, SCA for spinocerebellar ataxia, indicates the involvement of at least two systems: the spinal cord and the cerebellum. 11 of 18 known genes are caused by repeat expansions in the corresponding proteins, sharing the same mutational mechanism. All other SCAs are caused by either conventional mutations or large rearrangements in genes with different functions, including glutamate signalling (SCA5/SPTBN2) and calcium signalling (SCA15/16/ITPR1), channel function (SCA13/KCNC3, SCA14/PRKCG, SCA27/FGF14), tau regulation (SCA11/TTBK2), and mitochondrial activity (SCA28/AFG3L2) or RNA alteration (SCA31/BEAN-TK2). The diversity of underlying mechanisms that give rise to the dominant cerebellar ataxias need to be taken into account to identify therapeutic targets. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Deep Brain Stimulation for Tremor Associated with Underlying Ataxia Syndromes: A Case Series and Discussion of Issues

    Directory of Open Access Journals (Sweden)

    Genko Oyama

    2014-07-01

    Full Text Available Background: Deep brain stimulation (DBS has been utilized to treat various symptoms in patients suffering from movement disorders such as Parkinson's disease, dystonia, and essential tremor. Though ataxia syndromes have not been formally or frequently addressed with DBS, there are patients with ataxia and associated medication refractory tremor or dystonia who may potentially benefit from therapy.Methods: A retrospective database review was performed, searching for cases of ataxia where tremor and/or dystonia were addressed by utilizing DBS at the University of Florida Center for Movement Disorders and Neurorestoration between 2008 and 2011. Five patients were found who had DBS implantation to address either medication refractory tremor or dystonia. The patient's underlying diagnoses included spinocerebellar ataxia type 2 (SCA2, fragile X associated tremor ataxia syndrome (FXTAS, a case of idiopathic ataxia (ataxia not otherwise specified [NOS], spinocerebellar ataxia type 17 (SCA17, and a senataxin mutation (SETX.Results: DBS improved medication refractory tremor in the SCA2 and the ataxia NOS patients. The outcome for the FXTAS patient was poor. DBS improved dystonia in the SCA17 and SETX patients, although dystonia did not improve in the lower extremities of the SCA17 patient. All patients reported a transient gait dysfunction postoperatively, and there were no reports of improvement in ataxia‐related symptoms.Discussion: DBS may be an option to treat tremor, inclusive of dystonic tremor in patients with underlying ataxia; however, gait and other symptoms may possibly be worsened.Erratum published on July 27, 2016

  20. Infantile onset spinocerebellar ataxia 2 (SCA2): a clinical report with review of previous cases.

    Science.gov (United States)

    Singh, Ankur; Faruq, Mohammed; Mukerji, Mitali; Dwivedi, Manish Kumar; Pruthi, Sumit; Kapoor, Seema

    2014-01-01

    Autosomal dominant cerebellar ataxia type I is a heterogeneous group of spinocerebellar ataxias with variable neurologic presentations, with age of onset varying from infancy to adulthood. Autosomal dominant cerebellar ataxia type I is composed mainly of 3 prevalent spinocerebellar ataxia types with different pathogenic loci, specifically spinocerebellar ataxia 1 (6p24-p23), spinocerebellar ataxia 2 (12q24.1), and spinocerebellar ataxia 3 (14q32.1). The shared pathogenic mutational event is the expansion of the CAG repeat that results in polyglutamine extended stretches in the encoded proteins. CAG repeat disorders generally show the phenomenon of anticipation, which is more often associated with paternal transmission. In this report, we describe a patient with infantile-onset spinocerebellar ataxia type 2 (~320 CAG repeat) who inherited the disease from his father (47 CAG repeats). We have summarized the clinical, neuroimaging, electroencephalographic (EEG), and molecular data of previous cases and attempt to highlight the most consistent findings. Our intent is to help treating clinicians to suspect this disorder and to offer timely genetic counseling for a currently potentially untreatable disorder.

  1. Ataxias cerebelares hereditárias: do martelo ao gen Hereditary cerebellar ataxias from neurological hammer to genetics

    Directory of Open Access Journals (Sweden)

    Walter Oleschko Arruda

    1997-09-01

    (SCA1 to SCA7, including Machado-Joseph disease / SCA3, probably the most common form of ADCA in South Brazil, and Friedreich ataxia (GAA expansion - chromosome 9p. Familial alpha-tocopherol deficiency (chromosome 8q may have a Friedreich ataxia phenotype and responds to the oral supplementaion with vitamin E. Familial episodic ataxias with (EA1 - chromosome 12p and without (chromosome 19p - EA2 myokimia were identified, the first one caused by point mutations in the gene encoding the KCNA1 potassium voltage-gated channel. The gene responsible for ataxia-teleangiectasia (chromosome 1 lq was found to encode a putative DNA binding protein kinase (ATM, related to the cell cycle control. One to 3% of the population are heterozygotic ATM gen carry and pose a higher risk of cancer when exposed to ionizing radiation. Molecular biology has provided us with useful tools to diagnosis and genetic counseling and, hopefully, will provide us with a better understanding of the pathogenesis and eventual treatment of the several forms of hereditary ataxias.

  2. Abcb7, the gene responsible for X-linked sideroblastic anemia with ataxia, is essential for hematopoiesis

    OpenAIRE

    Pondarre, Corinne; Campagna, Dean R.; Antiochos, Brendan; Sikorski, Lindsay; Mulhern, Howard; Fleming, Mark D.

    2007-01-01

    X-linked sideroblastic anemia with ataxia (XLSA/A) is a rare syndromic form of inherited sideroblastic anemia associated with spinocerebellar ataxia, and is due to mutations in the mitochondrial ATP-binding cassette transporter Abcb7. Here, we show that Abcb7 is essential for hematopoiesis and formally demonstrate that XLSA/A is due to partial loss of function mutations in Abcb7 that directly or indirectly inhibit heme biosynthesis.

  3. Abcb7, the gene responsible for X-linked sideroblastic anemia with ataxia, is essential for hematopoiesis.

    Science.gov (United States)

    Pondarre, Corinne; Campagna, Dean R; Antiochos, Brendan; Sikorski, Lindsay; Mulhern, Howard; Fleming, Mark D

    2007-04-15

    X-linked sideroblastic anemia with ataxia (XLSA/A) is a rare syndromic form of inherited sideroblastic anemia associated with spinocerebellar ataxia, and is due to mutations in the mitochondrial ATP-binding cassette transporter Abcb7. Here, we show that Abcb7 is essential for hematopoiesis and formally demonstrate that XLSA/A is due to partial loss of function mutations in Abcb7 that directly or indirectly inhibit heme biosynthesis.

  4. Adult-onset cerebellar Ataxia: a clinical and genetic Survey

    NARCIS (Netherlands)

    E. Brusse (Esther)

    2011-01-01

    textabstractCerebellar ataxias represent a heterogeneous group of neurodegenerative disorders. Two main categories are distinguished: hereditary and sporadic ataxias. Sporadic ataxias may be symptomatic or idiopathic. The clinical classification of hereditary ataxias is nowadays being replaced by

  5. Clinical symptoms according to genotype amongst patients with hereditary haemorrhagic telangiectasia

    DEFF Research Database (Denmark)

    Kjeldsen, A D; Møller, T R; Brusgaard, K

    2005-01-01

    families. In 14 of the families we identified a disease-causing mutation. Thirty-nine patients (from 10 families) had HHT1 and 16 HHT patients from four families had HHT2. CONCLUSION: Amongst patients with HHT1 genotype the prevalence of PAVM was higher than amongst HHT patients with HHT2 genotype. HHT1......BACKGROUND: Hereditary haemorrhagic telangiectasia (HHT) is a dominantly inherited disease, characterized by a wide variety of clinical manifestations, including epistaxis, gastrointestinal (GI) bleeding, pulmonary arteriovenous malformations (PAVMs) and neurological symptoms. HHT is a genetically...... for PAVM and neurological evaluation. Blood tests were performed for analysis of disease-causing mutation, and clinical manifestations in the HHT subtypes were compared. The survival of the patients was studied in the follow-up period. RESULTS: Included in the study were 73 HHT patients representing 18...

  6. Adult onset sporadic ataxias: a diagnostic challenge

    Directory of Open Access Journals (Sweden)

    Orlando Graziani Povoas Barsottini

    2014-03-01

    Full Text Available Patients with adult onset non-familial progressive ataxia are classified in sporadic ataxia group. There are several disease categories that may manifest with sporadic ataxia: toxic causes, immune-mediated ataxias, vitamin deficiency, infectious diseases, degenerative disorders and even genetic conditions. Considering heterogeneity in the clinical spectrum of sporadic ataxias, the correct diagnosis remains a clinical challenge. In this review, the different disease categories that lead to sporadic ataxia with adult onset are discussed with special emphasis on their clinical and neuroimaging features, and diagnostic criteria.

  7. Cognitive Functions in Ataxia with Oculomotor Apraxia Type 2

    OpenAIRE

    Klivényi, Peter; Nemeth, Dezso; Sefcsik, Tamas; Janacsek, Karolina; Hoffmann, Ildiko; Haden, Gabor Peter; Londe, Zsuzsa; Vecsei, Laszlo

    2012-01-01

    Background: Ataxia with oculomotor apraxia type 2 (AOA2) is characterized by cerebellar atrophy, peripheral neuropathy, oculomotor apraxia, and elevated serum alpha-fetoprotein (AFP) levels. The disease is caused by a recessive mutation in the senataxin gene. Since it is a very rare cerebellar disorder, no detailed examination of cognitive functions in AOA2 has been published to date. The aim of the present study was to investigate the neuropsychological profile of a 54-year-old patient with ...

  8. Cognitive Functions in Ataxia with Oculomotor Apraxia Type 2

    OpenAIRE

    Péter eKlivényi; Dezso eNemeth; Tamás eSefcsik; Karolina eJanacsek; Ildiko eHoffmann; Gábor Péter Háden; Zsuzsa eLonde; László eVécsei

    2012-01-01

    Background: Ataxia with oculomotor apraxia type 2 (AOA2) is characterized by cerebellar atrophy, peripheral neuropathy, oculomotor apraxia, and elevated serum alpha-fetoprotein levels. The disease is caused by a recessive mutation in the senataxin gene. Since it is a very rare cerebellar disorder, no detailed examination of cognitive functions in AOA2 has been published to date. The aim of the present study was to investigate the neuropsychological profile of a 54-year-old patient with AOA2. ...

  9. Spinocerebellar ataxia type 7.

    Science.gov (United States)

    Martin, Jean-Jacques

    2012-01-01

    Spinocerebellar ataxia type 7 (SCA7) is associated with progressive blindness, dominant transmission, and marked anticipation. SCA7 represents one of the polyglutamine expansion diseases with increase of CAG repeats. The gene maps to chromosome 3p12-p21.1. Normal values of CAG repeats range from 4 to 18. The SCA7 gene encodes a protein of largely unknown function, called ataxin-7. SCA7 is reported in many countries and ethnic groups. Its phenotypic expression depends on the number of expanded repeats. The infantile phenotype is very severe, with more than 100 repeats. The classic type has 50 to 55 repeats and is characterized by a combination of visual and ataxic disturbances lasting for 20-40 years.When the number of CAG repeats is between 36 and 43, the evolution is much slower, with few or no retinal abnormalities. A CAG repeat number from 18 to 35 is asymptomatic but predisposes to the development of the disorder when expanding to the pathological range through transmission. The diagnosis is made by molecular genetics. The neuropathology of the disorder includes atrophy of the spinocerebellar pathways, pyramidal tracts, and motor nuclei in the brainstem and spinal cord, a cone-rod sytrophy of the retina, and ataxin-7 immunoreactive neuronal intranuclear inclusions. The neuropathological features vary as a function of the number of CAG repeats. Present research deals mainly with the study of ataxin-7 in transfected neural cells and transgenic mouse models. 2012 Elsevier B.V. All rights reserved.

  10. The first knockin mouse model of episodic ataxia type 2.

    Science.gov (United States)

    Rose, Samuel J; Kriener, Lisa H; Heinzer, Ann K; Fan, Xueliang; Raike, Robert S; van den Maagdenberg, Arn M J M; Hess, Ellen J

    2014-11-01

    Episodic ataxia type 2 (EA2) is an autosomal dominant disorder associated with attacks of ataxia that are typically precipitated by stress, ethanol, caffeine or exercise. EA2 is caused by loss-of-function mutations in the CACNA1A gene, which encodes the α1A subunit of the CaV2.1 voltage-gated Ca(2+) channel. To better understand the pathomechanisms of this disorder in vivo, we created the first genetic animal model of EA2 by engineering a mouse line carrying the EA2-causing c.4486T>G (p.F1406C) missense mutation in the orthologous mouse Cacna1a gene. Mice homozygous for the mutated allele exhibit a ~70% reduction in CaV2.1 current density in Purkinje cells, though surprisingly do not exhibit an overt motor phenotype. Mice hemizygous for the knockin allele (EA2/- mice) did exhibit motor dysfunction measurable by rotarod and pole test. Studies using Cre-flox conditional genetics explored the role of cerebellar Purkinje cells or cerebellar granule cells in the poor motor performance of EA2/- mice and demonstrate that manipulation of either cell type alone did not cause poor motor performance. Thus, it is possible that subtle dysfunction arising from multiple cell types is necessary for the expression of certain ataxia syndromes. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Epigenetic-based therapies for Friedreich ataxia

    Directory of Open Access Journals (Sweden)

    Chiranjeevi eSandi

    2014-06-01

    Full Text Available Friedreich ataxia (FRDA is a lethal autosomal recessive neurodegenerative disorder caused primarily by a homozygous GAA repeat expansion mutation within the first intron of the FXN gene, leading to inhibition of FXN transcription and thus reduced frataxin protein expression. Recent studies have shown that epigenetic marks, comprising chemical modifications of DNA and histones, are associated with FXN gene silencing. Such epigenetic marks can be reversed, making them suitable targets for epigenetic-based therapy. Furthermore, since FRDA is caused by insufficient, but functional, frataxin protein, epigenetic-based transcriptional re-activation of the FXN gene is an attractive therapeutic option. In this review we summarise our current understanding of the epigenetic basis of FXN gene silencing and we discuss current epigenetic-based FRDA therapeutic strategies.

  12. Postural Tremor and Ataxia Progression in Spinocerebellar Ataxias.

    Science.gov (United States)

    Gan, Shi-Rui; Wang, Jie; Figueroa, Karla P; Pulst, Stefan M; Tomishon, Darya; Lee, Danielle; Perlman, Susan; Wilmot, George; Gomez, Christopher M; Schmahmann, Jeremy; Paulson, Henry; Shakkottai, Vikram G; Ying, Sarah H; Zesiewicz, Theresa; Bushara, Khalaf; Geschwind, Michael D; Xia, Guangbin; Subramony, S H; Ashizawa, Tetsuo; Kuo, Sheng-Han

    2017-01-01

    Postural tremor can sometimes occur in spinocerebellar ataxias (SCAs). However, the prevalence and clinical characteristics of postural tremor in SCAs are poorly understood, and whether SCA patients with postural tremor have different ataxia progression is not known. We studied postural tremor in 315 patients with SCA1, 2, 3, and 6 recruited from the Clinical Research Consortium for Spinocerebellar Ataxias (CRC-SCA), which consists of 12 participating centers in the United States, and we evaluated ataxia progression in these patients from January 2010 to August 2012. Among 315 SCA patients, postural tremor was most common in SCA2 patients (SCA1, 5.8%; SCA2, 27.5%; SCA3, 12.4%; SCA6, 16.9%; p = 0.007). SCA3 patients with postural tremor had longer CAG repeat expansions than SCA3 patients without postural tremor (73.67 ± 3.12 vs. 70.42 ± 3.96, p = 0.003). Interestingly, SCA1 and SCA6 patients with postural tremor had a slower rate of ataxia progression (SCA1, β = -0.91, p < 0.001; SCA6, β = -1.28, p = 0.025), while SCA2 patients with postural tremor had a faster rate of ataxia progression (β = 1.54, p = 0.034). We also found that the presence of postural tremor in SCA2 patients could be influenced by repeat expansions of ATXN1 (β = -1.53, p = 0.037) and ATXN3 (β = 0.57, p = 0.018), whereas postural tremor in SCA3 was associated with repeat lengths in TBP (β = 0.63, p = 0.041) and PPP2R2B (β = -0.40, p = 0.032). Postural tremor could be a clinical feature of SCAs, and the presence of postural tremor could be associated with different rates of ataxia progression. Genetic interactions between ataxia genes might influence the brain circuitry and thus affect the clinical presentation of postural tremor.

  13. Maculopathy and spinocerebellar ataxia type 1

    DEFF Research Database (Denmark)

    Lebranchu, Pierre; Le Meur, Guylène; Magot, Armelle

    2013-01-01

    Autosomal dominant cerebellar ataxia is a rare heterogeneous group of diseases characterized by cerebellar symptoms, often associated with other multisystemic signs. Mild optic neuropathy has been associated with spinocerebellar ataxia type 1 (SCA1), but macular dysfunction has been reported...

  14. Genetics Home Reference: spinocerebellar ataxia type 1

    Science.gov (United States)

    ... Email Facebook Twitter Home Health Conditions SCA1 Spinocerebellar ataxia type 1 Printable PDF Open All Close All ... to view the expand/collapse boxes. Description Spinocerebellar ataxia type 1 ( SCA1 ) is a condition characterized by ...

  15. Genetics Home Reference: spinocerebellar ataxia type 2

    Science.gov (United States)

    ... Email Facebook Twitter Home Health Conditions SCA2 Spinocerebellar ataxia type 2 Printable PDF Open All Close All ... to view the expand/collapse boxes. Description Spinocerebellar ataxia type 2 ( SCA2 ) is a condition characterized by ...

  16. Genetics Home Reference: spinocerebellar ataxia type 3

    Science.gov (United States)

    ... Email Facebook Twitter Home Health Conditions SCA3 Spinocerebellar ataxia type 3 Printable PDF Open All Close All ... to view the expand/collapse boxes. Description Spinocerebellar ataxia type 3 ( SCA3 ) is a condition characterized by ...

  17. Genetics Home Reference: spinocerebellar ataxia type 6

    Science.gov (United States)

    ... Email Facebook Twitter Home Health Conditions SCA6 Spinocerebellar ataxia type 6 Printable PDF Open All Close All ... to view the expand/collapse boxes. Description Spinocerebellar ataxia type 6 ( SCA6 ) is a condition characterized by ...

  18. Familial cerebellar ataxia and diabetes insipidus.

    OpenAIRE

    Robinson, I C; O'Malley, B P; Young, I D

    1988-01-01

    Two sisters are reported who both developed partial cranial diabetes insipidus in their 4th decade, followed by progressive cerebellar ataxia. This appears to be the first report of cerebellar ataxia and diabetes insipidus occurring together as a genetic entity.

  19. Abnormal cerebellar development and ataxia in CARP VIII morphant zebrafish.

    Science.gov (United States)

    Aspatwar, Ashok; Tolvanen, Martti E E; Jokitalo, Eija; Parikka, Mataleena; Ortutay, Csaba; Harjula, Sanna-Kaisa E; Rämet, Mika; Vihinen, Mauno; Parkkila, Seppo

    2013-02-01

    Congenital ataxia and mental retardation are mainly caused by variations in the genes that affect brain development. Recent reports have shown that mutations in the CA8 gene are associated with mental retardation and ataxia in humans and ataxia in mice. The gene product, carbonic anhydrase-related protein VIII (CARP VIII), is predominantly present in cerebellar Purkinje cells, where it interacts with the inositol 1,4,5-trisphosphate receptor type 1, a calcium channel. In this study, we investigated the effects of the loss of function of CARP VIII during embryonic development in zebrafish using antisense morpholino oligonucleotides against the CA8 gene. Knockdown of CA8 in zebrafish larvae resulted in a curved body axis, pericardial edema and abnormal movement patterns. Histologic examination revealed gross morphologic defects in the cerebellar region and in the muscle. Electron microscopy studies showed increased neuronal cell death in developing larvae injected with CA8 antisense morpholinos. These data suggest a pivotal role for CARP VIII during embryonic development. Furthermore, suppression of CA8 expression leads to defects in motor and coordination functions, mimicking the ataxic human phenotype. This work reveals an evolutionarily conserved function of CARP VIII in brain development and introduces a novel zebrafish model in which to investigate the mechanisms of CARP VIII-related ataxia and mental retardation in humans.

  20. Childhood Ataxia: Clinical Features, Pathogenesis, Key Unanswered Questions, and Future Directions

    Science.gov (United States)

    Ashley, Claire N.; Hoang, Kelly D.; Lynch, David R.; Perlman, Susan L.; Maria, Bernard L.

    2013-01-01

    Childhood ataxia is characterized by impaired balance and coordination primarily due to cerebellar dysfunction. Friedreich ataxia, a form of childhood ataxia, is the most common multisystem autosomal recessive disease. Most of these patients are homozygous for the GAA repeat expansion located on the first intron of the frataxin gene on chromosome 9. Mutations in the frataxin gene impair mitochondrial function, increase reactive oxygen species, and trigger redistribution of iron in the mitochondria and cytosol. Targeted therapies for Friedreich ataxia are undergoing testing. In addition, a centralized database, patient registry, and natural history study have been launched to support clinical trials in Friedreich ataxia. The 2011 Neurobiology of Disease in Children symposium, held in conjunction with the 40th annual Child Neurology Society meeting, aimed to (1) describe clinical features surrounding Friedreich ataxia, including cardiomyopathy and genetics; (2) discuss recent advances in the understanding of the pathogenesis of Friedreich ataxia and developments of clinical trials; (3) review new investigations of characteristic symptoms; (4) establish clinical and biochemical overlaps in neurodegenerative diseases and possible directions for future basic, translational, and clinical studies. PMID:22859693

  1. Hereditary haemorrhagic telangiectasia: a cause of preventable morbidity and mortality.

    LENUS (Irish Health Repository)

    Brady, A P

    2012-01-31

    Hereditary haemorrhagic telangiectasia (HHT) is an autosomal dominant condition whose effects are mediated through deficient blood vessel formation and regeneration, with multisystem involvement. Patients are usually aware of resulting skin telangiectasia and epistaxis, but are also exposed to dangers posed by occult vascular malformations in other organs. About 15-35% of HHT patients have pulmonary AVMs (PAVMs), 10% have cerebral AVMs (CAVMs), 25-33% suffer significant GI blood loss from GI tract telangiectasia, and an unknown but high percentage have liver involvement. In total, 10% of affected individuals die prematurely or suffer major disability from HHT, largely because of bleeding from CAVMs and PAVMs, or paradoxical embolization through PAVMs. Screening for and early intervention to treat occult PAVMs and CAVMs can largely eliminate these risks, and should be undertaken in a specialist centre. The National HHT Center in The Mercy University Hospital in Cork is the referral centre for HHT screening in Ireland.

  2. Movement disorders in spinocerebellar ataxias

    NARCIS (Netherlands)

    Gaalen, J. van; Giunti, P.; Warrenburg, B.P.C. van de

    2011-01-01

    Autosomal dominant spinocerebellar ataxias (SCAs) can present with a large variety of noncerebellar symptoms, including movement disorders. In fact, movement disorders are frequent in many of the various SCA subtypes, and they can be the presenting, dominant, or even isolated disease feature. When

  3. Language Impairment in Cerebellar Ataxia

    NARCIS (Netherlands)

    van Gaalen, Judith; de Swart, Bert J. M.; Oostveen, Judith; Knuijt, Simone; van de Warrenburg, Bart P. C.; Kremer, Berry (H. ) P. H.

    Background: Several studies have suggested that language impairment can be observed in patients with cerebellar pathology. The aim of this study was to investigate language performance in patients with spinocerebellar ataxia type 6 (SCA6). Methods: We assessed speech and language in 29 SCA6 patients

  4. Speech Prosody in Cerebellar Ataxia

    Science.gov (United States)

    Casper, Maureen A.; Raphael, Lawrence J.; Harris, Katherine S.; Geibel, Jennifer M.

    2007-01-01

    Persons with cerebellar ataxia exhibit changes in physical coordination and speech and voice production. Previously, these alterations of speech and voice production were described primarily via perceptual coordinates. In this study, the spatial-temporal properties of syllable production were examined in 12 speakers, six of whom were healthy…

  5. Hereditary Cerebellar Ataxias: A Korean Perspective

    Directory of Open Access Journals (Sweden)

    Ji Sun Kim

    2015-05-01

    Full Text Available Hereditary ataxia is a heterogeneous disorder characterized by progressive ataxia combined with/without peripheral neuropathy, extrapyramidal symptoms, pyramidal symptoms, seizure, and multiple systematic involvements. More than 35 autosomal dominant cerebellar ataxias have been designated as spinocerebellar ataxia, and there are 55 recessive ataxias that have not been named systematically. Conducting genetic sequencing to confirm a diagnosis is difficult due to the large amount of subtypes with phenotypic overlap. The prevalence of hereditary ataxia can vary among countries, and estimations of prevalence and subtype frequencies are necessary for planning a diagnostic strategy in a specific population. This review covers the various hereditary ataxias reported in the Korean population with a focus on the prevalence and subtype frequencies as the clinical characteristics of the various subtypes.

  6. Clinical and genetic characteristics of sporadic adult-onset degenerative ataxia.

    Science.gov (United States)

    Giordano, Ilaria; Harmuth, Florian; Jacobi, Heike; Paap, Brigitte; Vielhaber, Stefan; Machts, Judith; Schöls, Ludger; Synofzik, Matthis; Sturm, Marc; Tallaksen, Chantal; Wedding, Iselin M; Boesch, Sylvia; Eigentler, Andreas; van de Warrenburg, Bart; van Gaalen, Judith; Kamm, Christoph; Dudesek, Ales; Kang, Jun-Suk; Timmann, Dagmar; Silvestri, Gabriella; Masciullo, Marcella; Klopstock, Thomas; Neuhofer, Christiane; Ganos, Christos; Filla, Alessandro; Bauer, Peter; Tezenas du Montcel, Sophie; Klockgether, Thomas

    2017-09-05

    To define the clinical phenotype and natural history of sporadic adult-onset degenerative ataxia and to identify putative disease-causing mutations. The primary measure of disease severity was the Scale for the Assessment and Rating of Ataxia (SARA). DNA samples were screened for mutations using a high-coverage ataxia-specific gene panel in combination with next-generation sequencing. The analysis was performed on 249 participants. Among them, 83 met diagnostic criteria of clinically probable multiple system atrophy cerebellar type (MSA-C) at baseline and another 12 during follow-up. Positive MSA-C criteria (4.94 ± 0.74, p 10 years were designated sporadic adult-onset ataxia of unknown etiology/non-MSA (SAOA/non-MSA). Compared with MSA-C, SAOA/non-MSA patients had lower SARA scores (13.6 ± 6.0 vs 16.0 ± 5.8, p = 0.0200) and a slower annual SARA increase (1.1 ± 2.3 vs 3.3 ± 3.2, p = 0.0013). In 11 of 194 tested participants (6%), a definitive or probable genetic diagnosis was made. Our study provides quantitative data on the clinical phenotype and progression of sporadic ataxia with adult onset. Screening for causative mutations with a gene panel approach yielded a genetic diagnosis in 6% of the cohort. NCT02701036. © 2017 American Academy of Neurology.

  7. Reliability and discriminant validity of ataxia rating scales in early onset ataxia.

    Science.gov (United States)

    Brandsma, Rick; Lawerman, Tjitske F; Kuiper, Marieke J; Lunsing, Roelineke J; Burger, Huibert; Sival, Deborah A

    2017-04-01

    To determine whether ataxia rating scales are reliable disease biomarkers for early onset ataxia (EOA). In 40 patients clinically identified with EOA (28 males, 12 females; mean age 15y 3mo [range 5-34y]), we determined interobserver and intraobserver agreement (interclass correlation coefficient [ICC]) and discriminant validity of ataxia rating scales (International Cooperative Ataxia Rating Scale [ICARS], Scale for Assessment and Rating of Ataxia [SARA], and Brief Ataxia Rating Scale [BARS]). Three paediatric neurologists independently scored ICARS, SARA and BARS performances recorded on video, and also phenotyped the primary and secondary movement disorder features. When ataxia was the primary movement disorder feature, we assigned patients to the subgroup 'EOA with core ataxia' (n=26). When ataxia concurred with other prevailing movement disorders (such as dystonia, myoclonus, and chorea), we assigned patients to the subgroup 'EOA with comorbid ataxia' (n=12). ICC values were similar in both EOA subgroups of 'core' and 'comorbid' ataxia (0.92-0.99; ICARS, SARA, and BARS). Independent of the phenotype, the severity of the prevailing movement disorder predicted the ataxia rating scale scores (β=0.83-0.88; pataxia rating scales is high. However, the discriminative validity for 'ataxia' is low. For adequate interpretation of ataxia rating scale scores, application in uniform movement disorder phenotypes is essential. © 2016 Mac Keith Press.

  8. Gastrointestinal bleeding in patients with hereditary hemorrhagic telangiectasia

    DEFF Research Database (Denmark)

    Kjeldsen, A D; Kjeldsen, J

    2000-01-01

    Gastrointestinal bleeding occurs in a number of patients with hereditary hemorrhagic telangiectasia (HHT) and may lead to a high transfusion need. The aim of this study was to estimate the occurrence and severity of gastrointestinal bleeding in a geographically well defined HHT population....

  9. Rats with a missense mutation in Atm display neuroinflammation and neurodegeneration subsequent to accumulation of cytosolic DNA following unrepaired DNA damage.

    Science.gov (United States)

    Quek, Hazel; Luff, John; Cheung, KaGeen; Kozlov, Sergei; Gatei, Magtouf; Lee, C Soon; Bellingham, Mark C; Noakes, Peter G; Lim, Yi Chieh; Barnett, Nigel L; Dingwall, Steven; Wolvetang, Ernst; Mashimo, Tomoji; Roberts, Tara L; Lavin, Martin F

    2017-04-01

    Mutations in the ataxia-telangiectasia (A-T)-mutated (ATM) gene give rise to the human genetic disorder A-T, characterized by immunodeficiency, cancer predisposition, and neurodegeneration. Whereas a series of animal models recapitulate much of the A-T phenotype, they fail to present with ataxia or neurodegeneration. We describe here the generation of an Atm missense mutant [amino acid change of leucine (L) to proline (P) at position 2262 (L2262P)] rat by intracytoplasmic injection (ICSI) of mutant sperm into oocytes. Atm-mutant rats (AtmL2262P/L2262P ) expressed low levels of ATM protein, suggesting a destabilizing effect of the mutation, and had a significantly reduced lifespan compared with Atm+/+ Whereas these rats did not show cerebellar atrophy, they succumbed to hind-limb paralysis (45%), and the remainder developed tumors. Closer examination revealed the presence of both dsDNA and ssDNA in the cytoplasm of cells in the hippocampus, cerebellum, and spinal cord of AtmL2262P/L2262P rats. Significantly increased levels of IFN-β and IL-1β in all 3 tissues were indicative of DNA damage induction of the type 1 IFN response. This was further supported by NF-κB activation, as evidenced by p65 phosphorylation (P65) and translocation to the nucleus in the spinal cord and parahippocampus. Other evidence of neuroinflammation in the brain and spinal cord was the loss of motor neurons and the presence of increased activation of microglia. These data provide support for a proinflammatory phenotype that is manifested in the Atm mutant rat as hind-limb paralysis. This mutant represents a useful model to investigate the importance of neuroinflammation in A-T. © Society for Leukocyte Biology.

  10. Non-opioid nociceptive activity of human dynorphin mutants that cause neurodegenerative disorder spinocerebellar ataxia type 23

    NARCIS (Netherlands)

    Watanabe, Hiroyuki; Mizoguchi, Hirokazu; Verbeek, Dineke S.; Kuzmin, Alexander; Nyberg, Fred; Krishtal, Oleg; Sakurada, Shinobu; Bakalkin, Georgy

    We previously identified four missense mutations in the prodynorphin gene that cause human neurodegenerative disorder spinocerebellar ataxia type 23 (SCA23). Three mutations substitute Leu(5), Arg(6), and Arg(9) to Ser (L5S), Trp (R6W) and Cys (R9C) in dynorphin A(1-17) (Dyn A), a peptide with both

  11. ATM mutants

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. ATM mutants. ATM (Ataxia Telangiectasia Mutated). AT2BE and AT5B1 cells – fibroblast cell lines from Ataxia telangiectasia patients. Deletion mutants expressing truncated ATM protein which is inactive. Have been used in studies looking at the role of ATM in DNA damage ...

  12. Frequency of KCNC3 DNA variants as causes of spinocerebellar ataxia 13 (SCA13).

    Science.gov (United States)

    Figueroa, Karla P; Waters, Michael F; Garibyan, Vartan; Bird, Thomas D; Gomez, Christopher M; Ranum, Laura P W; Minassian, Natali A; Papazian, Diane M; Pulst, Stefan M

    2011-03-29

    Gain-of function or dominant-negative mutations in the voltage-gated potassium channel KCNC3 (Kv3.3) were recently identified as a cause of autosomal dominant spinocerebellar ataxia. Our objective was to describe the frequency of mutations associated with KCNC3 in a large cohort of index patients with sporadic or familial ataxia presenting to three US ataxia clinics at academic medical centers. DNA sequence analysis of the coding region of the KCNC3 gene was performed in 327 index cases with ataxia. Analysis of channel function was performed by expression of DNA variants in Xenopus oocytes. Sequence analysis revealed two non-synonymous substitutions in exon 2 and five intronic changes, which were not predicted to alter splicing. We identified another pedigree with the p.Arg423His mutation in the highly conserved S4 domain of this channel. This family had an early-onset of disease and associated seizures in one individual. The second coding change, p.Gly263Asp, subtly altered biophysical properties of the channel, but was unlikely to be disease-associated as it occurred in an individual with an expansion of the CAG repeat in the CACNA1A calcium channel. Mutations in KCNC3 are a rare cause of spinocerebellar ataxia with a frequency of less than 1%. The p.Arg423His mutation is recurrent in different populations and associated with early onset. In contrast to previous p.Arg423His mutation carriers, we now observed seizures and mild mental retardation in one individual. This study confirms the wide phenotypic spectrum in SCA13.

  13. Frequency of KCNC3 DNA variants as causes of spinocerebellar ataxia 13 (SCA13.

    Directory of Open Access Journals (Sweden)

    Karla P Figueroa

    2011-03-01

    Full Text Available Gain-of function or dominant-negative mutations in the voltage-gated potassium channel KCNC3 (Kv3.3 were recently identified as a cause of autosomal dominant spinocerebellar ataxia. Our objective was to describe the frequency of mutations associated with KCNC3 in a large cohort of index patients with sporadic or familial ataxia presenting to three US ataxia clinics at academic medical centers.DNA sequence analysis of the coding region of the KCNC3 gene was performed in 327 index cases with ataxia. Analysis of channel function was performed by expression of DNA variants in Xenopus oocytes.Sequence analysis revealed two non-synonymous substitutions in exon 2 and five intronic changes, which were not predicted to alter splicing. We identified another pedigree with the p.Arg423His mutation in the highly conserved S4 domain of this channel. This family had an early-onset of disease and associated seizures in one individual. The second coding change, p.Gly263Asp, subtly altered biophysical properties of the channel, but was unlikely to be disease-associated as it occurred in an individual with an expansion of the CAG repeat in the CACNA1A calcium channel.Mutations in KCNC3 are a rare cause of spinocerebellar ataxia with a frequency of less than 1%. The p.Arg423His mutation is recurrent in different populations and associated with early onset. In contrast to previous p.Arg423His mutation carriers, we now observed seizures and mild mental retardation in one individual. This study confirms the wide phenotypic spectrum in SCA13.

  14. [IOSCA - Infantile onset spinocerebellar ataxia].

    Science.gov (United States)

    Lönnqvist, Tuula

    2011-01-01

    IOSCA is a difficult, progressive degenerative disease causing damage to the peripheral and central nervous system. All known 24 patients are Finnish. Initial symptoms include ataxia, athetosis, ophthalmoplegia, hearing disability and muscular hypotonia. Sensory axonal neuropathy and associated optic atrophy are typical of the disease, as well as primary hypergonadotropic hypogonadism in girls. The patients are progressively severely disabled from the age of approx. eighteen months. The pathogenesis is unknown and there is no curative treatment for the disease.

  15. Telangiectasia hemorrágica hereditária: resposta hematológica após terapêutica com talidomida

    Directory of Open Access Journals (Sweden)

    Eduardo Ribeiro

    2013-03-01

    Full Text Available A telangiectasia hemorrágica hereditária (THH é uma doença autossómica dominante, que se distingue em dois tipos, devidos a mutações em genes diferentes. É caracterizada por telangiectasias mucocutâneas e viscerais, envolvendo vários órgãos com malformações vasculares. O sintoma comum é a anemia. O diagnóstico clínico é baseado na presença de pelo menos três das quatro principais características clínicas: epistáxis, telangiectasias cutâneas ou mucosas, envolvimento visceral e história familiar. Dependendo das manifestações da doença e da sua gravidade, existem várias formas de tratamento que variam desde terapêutica local, a cirurgia, ou terapêutica farmacológica. Apresentamos o caso de um paciente com THH e anemia por deficiência de ferro grave, dependente de transfusões de sangue frequentes, que teve uma melhoria dramática após terapêutica com a talidomida, sem ocorrência de efeitos colaterais. Hereditary hemorrhagic telangiectasia (HHT is an autosomal dominant disease and is distinguished into two types, which are due to mutations in different genes. It is characterized by mucocutaneous and visceral telangiectasia and involves several organs with vascular malformations. The common symptom is anemia. The clinical diagnosis is based on the presence of at least three of four main clinical features: epistaxis, cutaneous or mucosal telangiectases, visceral involvement and a family history. Depending on disease manifestation and it severity, there are several forms of therapy ranging from local therapy, surgery ou drug therapy. Here we describe a dramatic improvement of a patient with HHT and severe iron deficiency anemia, requiring frequent blood transfusion, successfully treated with thalidomide, without side effects.

  16. Molecular, clinical and peripheral neuropathy study of Tunisian patients with ataxia with vitamin E deficiency.

    Science.gov (United States)

    El Euch-Fayache, Ghada; Bouhlal, Yosr; Amouri, Rim; Feki, Moncef; Hentati, Fayçal

    2014-02-01

    Ataxia with vitamin E deficiency is an autosomal recessive cerebellar ataxia caused by mutations in the α-tocopherol transfer protein coding gene localized on chromosome 8q, leading to lower levels of serum vitamin E. More than 91 patients diagnosed with ataxia with vitamin E deficiency have been reported worldwide. The majority of cases originated in the Mediterranean region, and the 744delA was the most common mutation among the 22 mutants previously described. We examined the clinical and molecular features of a large cohort of 132 Tunisian patients affected with ataxia with vitamin E deficiency. Of these patients, nerve conduction studies were performed on 45, and nerve biopsy was performed on 13. Serum vitamin E was dramatically reduced for 105 of the patients analysed. Molecular analysis revealed that 91.7% of the patients (n = 121) were homozygous for the 744delA mutation. Three other mutations were detected among the remaining patients (8.3%, n = 11) in the homozygous state. Two were previously reported (400C>T and 205-1G>T), and one was novel (553+1T>A). Age of onset was 13.2 ± 5.9 years, with extremes of 2 and 37 years. All described patients exhibited persistent progressive cerebellar ataxia with generally absent tendon reflexes. Deep sensory disturbances, pyramidal syndrome and skeletal deformities were frequent. Head tremor was present in 40% of the patients. Absence of neuropathy or mild peripheral neuropathy was noted in more than half of the cohort. This is the largest study of the genetic, clinical and peripheral neuropathic characteristics in patients with ataxia and vitamin E deficiency. The 744delA mutation represents the most common pathological mutation in Tunisia and worldwide, likely because of a Mediterranean founder effect. Our study led us to suggest that any patient displaying an autosomal recessive cerebellar ataxia phenotype with absent tendon reflexes and minor nerve abnormalities should first be screened for the 744delA mutation

  17. Genetics Home Reference: X-linked sideroblastic anemia and ataxia

    Science.gov (United States)

    ... linked sideroblastic anemia and ataxia X-linked sideroblastic anemia and ataxia Printable PDF Open All Close All ... the expand/collapse boxes. Description X-linked sideroblastic anemia and ataxia is a rare condition characterized by ...

  18. Genetics Home Reference: ataxia with vitamin E deficiency

    Science.gov (United States)

    ... Home Health Conditions Ataxia with vitamin E deficiency Ataxia with vitamin E deficiency Printable PDF Open All ... Javascript to view the expand/collapse boxes. Description Ataxia with vitamin E deficiency is a disorder that ...

  19. Hepatic mitochondrial dysfunction in Friedreich Ataxia

    Directory of Open Access Journals (Sweden)

    Stüwe Sven H

    2011-11-01

    Full Text Available Abstract Background Mitochondrial dysfunction due to respiratory chain impairment is a key feature in pathogenesis of Friedreich ataxia. Friedreich ataxia affects the nervous system, heart and pancreas. Methods We assessed hepatic mitochondrial function by 13C-methionine-breath-test in 16 Friedreich ataxia patients and matched healthy controls. Results Patients exhaled significantly smaller amounts of 13CO2 over 90 minutes. Maximal exhaled percentage dose of 13CO2 recovery was reduced compared to controls. Conclusions 13C-methionine-breath-test indicates subclinical hepatic mitochondrial dysfunction in Friedreich ataxia but did not correlate with GAA repeat lengths, disease duration or disease severity.

  20. Endoplasmic reticulum quality control is involved in the mechanism of endoglin-mediated hereditary haemorrhagic telangiectasia.

    Directory of Open Access Journals (Sweden)

    Bassam R Ali

    Full Text Available Hereditary haemorrhagic telangiectasia (HHT is an autosomal dominant genetic condition affecting the vascular system and is characterised by epistaxis, arteriovenous malformations and mucocutaneous and gastrointestinal telangiectases. This disorder affects approximately 1 in 8,000 people worldwide. Significant morbidity is associated with this condition in affected individuals, and anaemia can be a consequence of repeated haemorrhages from telangiectasia in the gut and nose. In the majority of the cases reported, the condition is caused by mutations in either ACVRL1 or endoglin genes, which encode components of the TGF-beta signalling pathway. Numerous missense mutations in endoglin have been reported as causative defects for HHT but the exact underlying cellular mechanisms caused by these mutations have not been fully established despite data supporting a role for the endoplasmic reticulum (ER quality control machinery. For this reason, we examined the subcellular trafficking of twenty-five endoglin disease-causing missense mutations. The mutant proteins were expressed in HeLa and HEK293 cell lines, and their subcellular localizations were established by confocal fluorescence microscopy alongside the analysis of their N-glycosylation profiles. ER quality control was found to be responsible in eight (L32R, V49F, C53R, V125D, A160D, P165L, I271N and A308D out of eleven mutants located on the orphan extracellular domain in addition to two (C363Y and C382W out of thirteen mutants in the Zona Pellucida (ZP domain. In addition, a single intracellular domain missense mutant was examined and found to traffic predominantly to the plasma membrane. These findings support the notion of the involvement of the ER's quality control in the mechanism of a significant number, but not all, missense endoglin mutants found in HHT type 1 patients. Other mechanisms including loss of interactions with signalling partners as well as adverse effects on functional

  1. Pancreatic Cancer Screening of High-Risk Individuals in Arkansas

    Science.gov (United States)

    2017-06-12

    Pancreatic Neoplasms; Peutz-Jegher's Syndrome; BRCA1 Gene Mutation; BRCA2 Gene Mutation; Ataxia Telangiectasia; Familial Atypical Mole-Malignant Melanoma Syndrome; Colorectal Neoplasms, Hereditary Nonpolyposis; Hereditary Pancreatitis

  2. Hereditary Hemorrhagic Telangiectasia: A Primer for Critical Care Nurses.

    Science.gov (United States)

    Sacco, Kathleen M; Barkley, Thomas W

    2016-06-01

    Hereditary hemorrhagic telangiectasia is a rare, autosomal dominant genetic disease that causes abnormal growth of blood vessels and, subsequently, life-threatening arteriovenous malformations in vital organs. Epistaxis may be one of the initial clues that a patient has more serious, generalized arteriovenous malformations. Recommended treatment involves careful evaluation to determine the severity and risk of spontaneous rupture of the malformations and the management of various signs and symptoms. The disease remains undiagnosed in many patients, and health care providers may miss the diagnosis until catastrophic events happen in multiple family members. Prompt recognition of hereditary hemorrhagic telangiectasia and early intervention can halt the dangerous course of the disease. Critical care nurses can assist with early diagnosis within families with this genetic disease, thus preventing early death and disability. ©2016 American Association of Critical-Care Nurses.

  3. Pediatric retinal detachment in cutis aplasia and cutis marmorata telangiectasia.

    Science.gov (United States)

    Lagan, Maeve; Brennan, Rosie; McLoone, Eibhlin

    2012-01-01

    This is a report of 2 cases of cutis aplasia and cutis marmorata telangiectasia with associated retinal detachment. Retrospective case report. Illustration of ophthalmic associations of the rare congenital dermatologic presentations and description of successful treatment with laser photocoagulation. Awareness of the association between retinal detachment and cutis aplasia and cutis marmorata should be acted upon as laser photocoagulation has been shown in this case report to successfully treat the associated retinal detachment.

  4. Marinesco-Sjogren syndrome due to SIL1 mutations with a comment on the clinical phenotype

    NARCIS (Netherlands)

    Horvers, M.; Anttonen, A.K.; Lehesjoki, A.E.; Morava, E.; Wortmann, S.B.; Vermeer, S.; Warrenburg, B.P.C. van de; Willemsen, M.A.A.P.

    2013-01-01

    BACKGROUND: Marinesco-Sjogren syndrome is an autosomal recessive cerebellar ataxia, characterised by cerebellar ataxia, myopathy, cataracts and intellectual disability, due to mutations in the SIL1 gene. METHODS: The clinical features and two novel SIL1 mutations of four Dutch patients with

  5. Mesial temporal lobe epilepsy in a patient with spinocerebellar ataxia type 13 (SCA13).

    Science.gov (United States)

    Bürk, Katrin; Strzelczyk, Adam; Reif, Philipp S; Figueroa, Karla P; Pulst, Stefan M; Zühlke, Christine; Oertel, Wolfgang H; Hamer, Hajo M; Rosenow, Felix

    2013-04-01

    We report a female patient of German descent with a molecular diagnosis of SCA13 who presented with a history of cerebellar ataxia and epilepsy. The underlying mutation R420H had been shown to cause a dominant negative effect on the functional properties of the voltage-gated potassium channel KCNC3. Despite widespread KCNC3 expression in the central nervous system, the patient presented with a left mesiotemporal electroencephalogram focus and left hippocampal sclerosis. This is the first case, which reports an association between mesial temporal lobe epilepsy and spinocerebellar ataxia type 13. This demonstrates that epilepsy of structural-metabolic cause may be contingent upon genetically defined channelopathies.

  6. The scale for the assessment and rating of ataxia correlates with dysarthria assessment in Friedreich's ataxia.

    Science.gov (United States)

    Eigentler, Andreas; Rhomberg, Johanna; Nachbauer, Wolfgang; Ritzer, Irmgard; Poewe, Werner; Boesch, Sylvia

    2012-03-01

    Dysarthria is an acquired neurogenic sensorimotor speech symptom and an integral part within the clinical spectrum of ataxia syndromes. Ataxia measurements and disability scores generally focus on the assessment of motor functions. Since comprehensive investigations of dysarthria in ataxias are sparse, we assessed dysarthria in ataxia patients using the Frenchay Dysarthria Assessment. The Frenchay Dysarthria Assessment is a ten-item validated test in which eight items focus on the observation of oral structures and speech functions. Fifteen Friedreich's ataxia patients and 15 healthy control individuals were analyzed using clinical and logopedic methodology. All patients underwent neurological assessment applying the Scale for the Assessment and Rating of Ataxia. In Friedreich's ataxia patients, the Frenchay sub-item voice showed to be most affected compared to healthy individuals followed by items such as reflexes, palate, tongue, and intelligibility. Scoring of lips, jaw, and respiration appeared to be mildly affected. Ataxia severity in Friedreich's ataxia patients revealed a significant correlation with the Frenchay dysarthria sum score. The introduction of a binary Adapted Dysarthria Score additionally allowed allocation to distinct dysarthria pattern in ataxias. The Frenchay Dysarthria Assessment proved to be a valid dysarthria measure in Friedreich's ataxia. Its availability in several languages provides a major advantage regarding the applicability in international clinical studies. Shortcomings of the Frenchay test are the multiplicity of items tested and its alphabetic coding. Numerical scoring and condensation of assessments in a modified version may, however, provide an excellent clinical tool for the measurement and scoring of dysarthria in ataxic speech disorders.

  7. Diagnostic criteria for hereditary hemorrhagic telangiectasia (Rendu-Osler-Weber syndrome)

    DEFF Research Database (Denmark)

    Shovlin, C L; Guttmacher, A E; Buscarini, E

    2000-01-01

    Hereditary Hemorrhagic Telangiectasia (HHT) is easily recognized in individuals displaying the classical triad of epistaxis, telangiectasia, and a suitable family history, but the disease is more difficult to diagnosis in many patients. Serious consequences may result if visceral arteriovenous...... of the HHT Foundation International, Inc., we present consensus clinical diagnostic criteria. The four criteria (epistaxes, telangiectasia, visceral lesions and an appropriate family history) are carefully delineated. The HHT diagnosis is definite if three criteria are present. A diagnosis of HHT cannot...

  8. Gclust Server: 135825 [Gclust Server

    Lifescience Database Archive (English)

    Full Text Available _945884.1 PREDICTED: similar to Serine-protein kinase ATM (Ataxia telangiectasia mutated) (A-T, mutated) ; n...ne-protein kinase ATM (Ataxia telangiectasia mutated) (A-T, mutated) ; no annotation 1 1.00e+00 0.0 0.0 0.0 ...135825 HSA_89062054 Cluster Sequences - 2932 XP_945884.1 PREDICTED: similar to Seri

  9. [Friedrich's ataxia: clinical difficulties and genetic possibilities

    NARCIS (Netherlands)

    Warrenburg, B.P.C. van de; Knoers, N.V.A.M.; Kremer, H.P.H.

    2002-01-01

    Atypical Friedreich's ataxia was diagnosed by DNA-analysis in 4 patients, 2 men aged 70 and 67 and 2 women aged 32 and 37, who had features that included an onset of ataxia after the age of 25, retained tendon reflexes or hyperreflexia, absence of Babinski's sign, and/or a slowly progressive course.

  10. Ataxias agudas en la infancia

    Directory of Open Access Journals (Sweden)

    Yaline Betancourt Fursow

    2013-09-01

    Full Text Available La ataxia cerebelosa aguda infantil (ACAI es la forma más frecuente de complicación neurológica por el virus de la varicela.Descritas dentro del grupo de las cerebelitis agudas. Los objetivos de este estudio fueron: evaluar la presentación clínica, manejo y seguimiento de niños hospitalizados con ACAI en un hospital pediátrico terciario donde la inmunización para varicela no está disponible (parte I y describir los diagnósticos diferenciales de la cerebelitis aguda (parte II. Estudiamos 95 pacientes. Los criterios diagnósticos de ataxia aguda se basaron en: pérdida aguda de la coordinación o dificultad para la marcha con o sin nistagmo asociado y duración menor de 48 horas, en un niño previamente sano. Estos criterios se cumplían en todos los casos valorados, excepto en las ataxias secundarias a ingesta de tóxicos, en los que la duración debía ser menor de 24 horas para su inclusión en el estudio. Se registraron los datos en una historia clínica pediátrica y neurológica. Entre los pacientes inmunosuprimidos la incidencia mayor fue la complicación por varicela. La mayoría de los pacientes fueron varones. El rango de edad fue la preescolar, 5 años . El intervalo entre la presentación del rash y el ingreso fue de 1 a 3 días. El estudio de LCR se practicó en 59.5% de los casos. La TAC y la resonancia magnética cerebral (RM presentaron edema en el 33.3%. El aciclovir endovenoso fue utilizado en 23 pacientes; pero no hubo diferencias significativas en las manifestaciones clínicas y seguimiento entre tratados y no tratados. La ataxia fue la primera manifestación clínica. La estadía hospitalaria fue de 4 días (rango: 2-11 días.

  11. Emerging therapies in Friedreich's ataxia

    Science.gov (United States)

    Aranca, Tanya V; Jones, Tracy M; Shaw, Jessica D; Staffetti, Joseph S; Ashizawa, Tetsuo; Kuo, Sheng-Han; Fogel, Brent L; Wilmot, George R; Perlman, Susan L; Onyike, Chiadi U; Ying, Sarah H; Zesiewicz, Theresa A

    2016-01-01

    Friedreich's ataxia (FRDA) is an inherited, progressive neurodegenerative disease that typically affects teenagers and young adults. Therapeutic strategies and disease insight have expanded rapidly over recent years, leading to hope for the FRDA population. There is currently no US FDA-approved treatment for FRDA, but advances in research of its pathogenesis have led to clinical trials of potential treatments. This article reviews emerging therapies and discusses future perspectives, including the need for more precise measures for detecting changes in neurologic symptoms as well as a disease-modifying agent. PMID:26782317

  12. Clinical and neuroradiological features of spinocerebellar ataxia 38 (SCA38).

    Science.gov (United States)

    Borroni, Barbara; Di Gregorio, Eleonora; Orsi, Laura; Vaula, Giovanna; Costanzi, Chiara; Tempia, Filippo; Mitro, Nico; Caruso, Donatella; Manes, Marta; Pinessi, Lorenzo; Padovani, Alessandro; Brusco, Alfredo; Boccone, Loredana

    2016-07-01

    SCA38 (MIM 611805) caused by mutations within the ELOVL5 gene, which encodes an enzyme involved in the synthesis of long-chain fatty acids with a high and specific expression in Purkinje cells, has recently been identified. The present study was aimed at describing the clinical and neuroimaging features, and the natural history of SCA38. We extended our clinical and brain neuroimaging data on SCA38 including 21 cases from three Italian families. All had the ELOVL5 c.689G > T (p.Gly230Val) missense mutation. Age at disease onset was in the fourth decade of life. The presenting features were nystagmus (100% of cases) and slowly progressive gait ataxia (95%). Frequent signs and symptoms included pes cavus (82%) and hyposmia (76%); rarer symptoms were hearing loss (33%) and anxiety disorder (33%). The disease progressed with cerebellar symptoms such as limb ataxia, dysarthria, dysphagia, and ophtalmoparesis followed in the later stages by ophtalmoplegia. Peripheral nervous system involvement was present in the last phase of disease with sensory loss. Dementia or extrapyramidal signs were not detected. Significant loss of abilities of daily living was reported only after 20 years of the disease. Brain imaging documented cerebellar atrophy with sparing of cerebral cortex and no white matter disease. SCA38 is a rare form of inherited ataxia with characteristic clinical features, including pes cavus and hyposmia, that may guide genetic screening and prompt diagnosis in light of possible future therapeutic interventions. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. SNP Analysis and Whole Exome Sequencing: Their Application in the Analysis of a Consanguineous Pedigree Segregating Ataxia

    Directory of Open Access Journals (Sweden)

    Sarah L. Nickerson

    2015-10-01

    Full Text Available Autosomal recessive cerebellar ataxia encompasses a large and heterogeneous group of neurodegenerative disorders. We employed single nucleotide polymorphism (SNP analysis and whole exome sequencing to investigate a consanguineous Maori pedigree segregating ataxia. We identified a novel mutation in exon 10 of the SACS gene: c.7962T>G p.(Tyr2654*, establishing the diagnosis of autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS. Our findings expand both the genetic and phenotypic spectrum of this rare disorder, and highlight the value of high-density SNP analysis and whole exome sequencing as powerful and cost-effective tools in the diagnosis of genetically heterogeneous disorders such as the hereditary ataxias.

  14. Spinocerebellar ataxia type 13 is an uncommon SCA subtype in the Chinese Han population.

    Science.gov (United States)

    Peng, Lan; Wang, Chunrong; Chen, Zhao; Wang, Jun-Ling; Tang, Bei-Sha; Jiang, Hong

    2013-07-01

    The spinocerebellar ataxias (SCAs) are a clinically and genetically heterogeneous group of neurodegenerative disorders, among which SCA subtype 13 (SCA13) was found associated with mutations in the KCNC3 gene. Among 522 Chinese Han SCA patients (including familial and sporadic) we have collected since 1995, approximately 40% of them have not yet been assigned genotype. To investigate the mutation frequency of KCNC3 in SCA patients from mainland Chinese Han population, we analyzed the KCNC3 gene in 201 unrelated patients diagnosed with dominantly inherited cerebellar ataxia using the denaturing high-performance liquid chromatography (DHPLC) method. All analyzed samples displayed the normal elution profile, which denoted that no disease-related mutation was identified, suggesting that SCA13 be a rare form of SCA in mainland China.

  15. A gene for nystagmus-associated episodic ataxia maps to chromosome 19p

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, P.L.; Root, D.; Gancher, S. [and others

    1994-09-01

    Episodic ataxia (EA) is a rare, autosomal dominant disorder, characterized by attacks of generalized ataxia and relatively normal neurological function between attacks. Onset occurs in childhood or adolescence and persists through adulthood. Penetrance is nearly complete. EA is clinically heterogeneous, including at least two distinct entities: (1) episodes of ataxia and dysarthria lasting hours to days, generally with interictal nystagmus (MIM 108500); (2) episodes of ataxia and dysarthria lasting only minutes, with interictal myokymia (MMM 160120). The EA/nystagmus patients sometimes develop persistent ataxia and cerebellar atrophy. Previously we reported linkage in four EA/myokymia families to a K{sup +} channel gene on chromosome 12p. We excluded this region in a large family with EA/nystagmus. We now report evidence for linkage to chromosome 19p in this and in one other EA/nystagmus family, based on eight microsatellite markers which span approximately 30 cM. The region is flanked distally by D19S209 and proximally by D19S226. All six markers within this region gave positive evidence for linkage; the highest total two-point lod scores occurred wtih D19S221 (3.98 at theta = 0.10) and D19S413 (3.37 at theta = 0.05). Interestingly, Joutel et al. (1993) mapped a gene for familial hemiplegic migraine (FHM) to the region around D19S221. Some individuals in these families have ataxia, cerebellar atrophy and interictal nystagmus, but no episodic ataxia. These results demonstrate that the clinical heterogeneity in EA reflects underlying genetic hetreogeneity. In addition, they suggest that EA/nystagmus and some FHM may represent different mutations in the same gene locus on chromosome 19p.

  16. Pulmonary arterial hypertension and portal hypertension in a patient with hereditary hemorrhagic telangiectasia.

    Science.gov (United States)

    Pousada, Guillermo; Baloira, Adolfo; Valverde, Diana

    2015-03-15

    Pulmonary arterial hypertension (PAH) is a rare disease that could be inherited with an autosomal dominant pattern. Mutations in BMPR2 gene are described in over 70% of cases, although other genes are involved in lesser extend in PAH. Hereditary hemorrhagic telangiectasia (HHT) is another rare autosomal dominant disease. PAH is a rare complication of HHT that occurs in less than 1% of cases. Liver cirrhosis with portal hypertension is also associated with the presence of PAHs in 1-2% of cases. We present here a patient with HHT who developed PAH shortly after showing portal hypertension. Some genes (BMPR2, ACVRL1, ENG) seem to play an important role in PAH pathogenesis. We analyzed these genes, detecting mutations in BMPR2 gene (c.1021G>A (V341L), c.327G>A (p.Q109Q)), ACVRL1 (c.313+20C>A, c.1502+7A>G) and ENG (c.498G>A (Q166Q)). The patient also had 3 polymorphisms in the TRPC6 gene (c.1-361A>T, c.1-254C>G, c.1-218C>T). The study of these genes will help us to identify and track individuals susceptible for developing PAH associated with other diseases. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  17. T-cell ALL in ataxia telangiectasia cured with only 7 weeks of anti-leukemic therapy

    DEFF Research Database (Denmark)

    Hersby, Ditte S; Sehested, Astrid; Kristensen, Kim

    2015-01-01

    A 20-month-old girl diagnosed with T-cell acute lymphoblastic leukemia was treated according to the Nordic NOPHO ALL2000 protocol. The patient developed severe immunosuppression and experienced life-threatening adenovirus infection, which was treated with ribavirin and cidofovir. α-fetoprotein wa......A 20-month-old girl diagnosed with T-cell acute lymphoblastic leukemia was treated according to the Nordic NOPHO ALL2000 protocol. The patient developed severe immunosuppression and experienced life-threatening adenovirus infection, which was treated with ribavirin and cidofovir. α...

  18. Mouse Models of Hereditary Haemorrhagic Telangiectasia: Recent Advances and Future Challenges

    Directory of Open Access Journals (Sweden)

    Simon eTual-Chalot

    2015-02-01

    Full Text Available Hereditary Haemorrhagic Telangiectasia (HHT is a genetic disorder characterised by a multi-systemic vascular dysplasia and haemorrhage. The precise factors leading to these vascular malformations are not yet understood and robust animal models of HHT are essential to gain a detailed understanding of the molecular and cellular events that lead to clinical symptoms, as well as to test new therapeutic modalities. Most cases of HHT are caused by mutations in either endoglin (ENG or activin receptor like kinase 1 (ACVRL1, also known as ALK1. Both genes are associated with TGFβ/BMP signalling, and loss of function mutations in the co-receptor ENG are causal in HHT1, whilst HHT2 is associated with mutations in the signalling receptor ACVRL1. Significant advances in mouse genetics have provided powerful ways to study the function of Eng and Acvrl1 in vivo, and to generate mouse models of HHT disease. Mice that are null for either Acvrl1 or Eng genes show embryonic lethality due to major defects in angiogenesis. However mice that are heterozygous for mutations in either of these genes develop to adulthood with no effect on survival. Although these heterozygous mice exhibit selected vascular phenotypes relevant to the clinical pathology of HHT, the phenotypes are variable and generally quite mild. An alternative approach using conditional knockout mice allows us to study the effects of specific inactivation of either Eng or Acvrl1 at different times in development and in different cell types. These conditional knockout mice provide robust and reproducible models of arteriovenous malformations, and they are currently being used to unravel the causal factors in HHT pathologies. In this review, we will summarize the strengths and limitations of current mouse models of HHT, discuss how knowledge obtained from these studies has already informed clinical care and explore the potential of these models for developing improved treatments for HHT patients in the

  19. Reviewing the genetic causes of spastic-ataxias

    NARCIS (Netherlands)

    de Bot, Susanne T.; Willemsen, Michel A. A. P.; Vermeer, Sascha; Kremer, Hubertus P. H.; van de Warrenburg, Bart P. C.

    2012-01-01

    Although the combined presence of ataxia and pyramidal features has a long differential, the presence of a true spastic-ataxia as the predominant clinical syndrome has a rather limited differential diagnosis. Autosomal recessive ataxia of Charlevoix-Saguenay, late-onset Friedreich ataxia, and

  20. Juvenil polypose-syndrom og hereditær hæmoragisk telangiektasi hos en patient med SMAD4-mutation

    DEFF Research Database (Denmark)

    Jelsig, Anne Marie; Tørring, Pernille Mathiesen; Wikman, Friedrik

    2014-01-01

    Germ line mutations in SMAD4 can cause both juvenile polyposis syndrome and hereditary haemorrhagic telangiectasia syndrome. In this case we present a 37-year-old man with a frameshift mutation in SMAD4. The patient had multiple polyps in the gastrointestinal tract and was diagnosed with colon...... cancer at the age of 21 and gastro-oesophageal junction cancer at the age of 37. Furthermore the patient had telangiectasias and recurrent epistaxis....

  1. Infantile-onset spinocerebellar ataxia and mitochondrial recessive ataxia syndrome are associated with neuronal complex I defect and mtDNA depletion.

    Science.gov (United States)

    Hakonen, Anna H; Goffart, Steffi; Marjavaara, Sanna; Paetau, Anders; Cooper, Helen; Mattila, Kimmo; Lampinen, Milla; Sajantila, Antti; Lönnqvist, Tuula; Spelbrink, Johannes N; Suomalainen, Anu

    2008-12-01

    Infantile-onset spinocerebellar ataxia (IOSCA) is a severe neurodegenerative disorder caused by the recessive mutation in PEO1, leading to an Y508C change in the mitochondrial helicase Twinkle, in its helicase domain. However, no mitochondrial dysfunction has been found in this disease. We studied here the consequences of IOSCA for the central nervous system, as well as the in vitro performance of the IOSCA mutant protein. The results of the mtDNA analyses were compared to findings in a similar juvenile or adult-onset ataxia syndrome, mitochondrial recessive ataxia syndrome (MIRAS), caused by the W748S mutation in the mitochondrial DNA polymerase (POLG). We show here that IOSCA brain does not harbor mtDNA deletions or increased amount of mtDNA point mutations, whereas MIRAS brain shows multiple deletions of mtDNA. However, IOSCA, and to a lesser extent also MIRAS, show mtDNA depletion in the brain and the liver. In both diseases, especially large neurons show respiratory chain complex I (CI) deficiency, but also CIV is decreased in IOSCA. Helicase activity, hexamerization and nucleoid structure of the IOSCA mutant were, however, unaffected. The lack of in vitro helicase defect or cell culture phenotype suggest that Twinkle-Y508C dysfunction affects mtDNA maintenance in a highly context and cell-type specific manner. Our results indicate that IOSCA is a new member of the mitochondrial DNA depletion syndromes.

  2. C9ORF72 repeat expansion is not a significant cause of late onset cerebellar ataxia syndrome.

    Science.gov (United States)

    Hsiao, Cheng-Tsung; Tsai, Pei-Chien; Liao, Yi-Chu; Lee, Yi-Chung; Soong, Bing-Wen

    2014-12-15

    The GGGGCC hexanucleotide expansion in the C9ORF72 gene is the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in Caucasian populations. The phenotypic spectrum of C9ORF72 hexanucleotide repeat expansion mutation has been reported to include parkinsonian syndrome, Huntington's disease-like syndrome and dementia syndrome. Although few individuals with cerebellar ataxia have also anecdotally been found to harbor the mutation, the relationship between the mutation and cerebellar ataxia awaits further clarification. We hereby screened for the presence of the C9ORF72 hexanucleotide repeat expansion in 331 patients with multiple system atrophy-cerebellar variant and 98 unrelated patients with molecularly un-assigned spinocerebellar ataxia in Taiwan utilizing a repeat-primed polymerase chain reaction assay. We found that none of the 429 patients had the C9ORF72 hexanucleotide repeat expansion mutation. Therefore, our study does not support that the mutation plays a significant role in cerebellar ataxia. Copyright © 2014. Published by Elsevier B.V.

  3. Paroxysmal ataxia and dysarthria in multiple sclerosis.

    Science.gov (United States)

    Iorio, R; Capone, F; Plantone, D; Batocchi, A P

    2014-01-01

    Paroxysmal ataxia and dysarthria are part of the spectrum of transient neurological disturbances that can be frequently encountered in multiple sclerosis (MS). Prompt recognition of these symptoms is important because they can be the only manifestation of a MS relapse and symptomatic therapy is often beneficial. We report a patient who developed paroxysmal ataxia and dysarthria, documented by video imaging, while he was recovering from a MS relapse. Treatment with carbamazepine resulted in the complete reversal of the paroxysmal ataxia and dysarthria. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Synthetic dural graft septoplasty in epistaxis from hereditary hemorrhagic telangiectasia.

    Science.gov (United States)

    Burckhardt B, Wilfred; Guerra, Claudia Patricia

    2013-07-01

    It is an autosomal dominant vascular disorder, which has a variety of clinical manifestations, with epistaxis being one of the most common. Many treatment options exist for epistaxis, but with no consensus on which is the method of choice. We describe the case of a patient with hereditary hemorrhagic telangiectasia (HHT) secondary epistaxis with septoplasty managed with synthetic hard graft, which improved intensity and frequency of bleeding episodes. This technique is a variant of the septodermoplasty described by several authors, but the use of synthetic dura can help in obtaining better results and avoid taking skin grafts from other sites different from the surgical site.

  5. [Ataxia-opsoclonus-myoclonus syndrome].

    Science.gov (United States)

    Pinsard, N; Pons-Cerdan, C; Mancini, J; Livet, M O; Bernard, R

    The ataxia-opsoclonus-myoclonus syndrome that was well individualized by Kinsbourne is mostly observed in young children (less than three years old in 90 percent of the cases). From six personal cases, and from a review of ninety cases of the literature, the clinical and etiological features, as well as the evolution of the syndrome, are studied. Prodromes (infectious and digestive manifestations) and comportmental changes usually precede the sudden onset of the clinical triad. Neurologic complementary investigations are typically normal during the acute phase. The frequent association (46 percent of the cases) of this syndrome to a neuroblastoma (usually thoracic) makes it very particular from the etiological point of view. The evolution is identical whatever the type ("isolated" or "tumoral"). Corticotherapy (ACTH or corticoids) is efficient in 60 percent of the cases. But recurrences and cerebral sequelae (mental deficiency and speech disorders) are frequent.

  6. A panel study on patients with dominant cerebellar ataxia highlights the frequency of channelopathies.

    Science.gov (United States)

    Coutelier, Marie; Coarelli, Giulia; Monin, Marie-Lorraine; Konop, Juliette; Davoine, Claire-Sophie; Tesson, Christelle; Valter, Rémi; Anheim, Mathieu; Behin, Anthony; Castelnovo, Giovanni; Charles, Perrine; David, Albert; Ewenczyk, Claire; Fradin, Mélanie; Goizet, Cyril; Hannequin, Didier; Labauge, Pierre; Riant, Florence; Sarda, Pierre; Sznajer, Yves; Tison, François; Ullmann, Urielle; Van Maldergem, Lionel; Mochel, Fanny; Brice, Alexis; Stevanin, Giovanni; Durr, Alexandra

    2017-06-01

    Autosomal dominant cerebellar ataxias have a marked heterogeneous genetic background, with mutations in 34 genes identified so far. This large amount of implicated genes accounts for heterogeneous clinical presentations, making genotype-phenotype correlations a major challenge in the field. While polyglutamine ataxias, linked to CAG repeat expansions in genes such as ATXN1, ATXN2, ATXN3, ATXN7, CACNA1A and TBP, have been extensively characterized in large cohorts, there is a need for comprehensive assessment of frequency and phenotype of more 'conventional' ataxias. After exclusion of CAG/polyglutamine expansions in spinocerebellar ataxia genes in 412 index cases with dominantly inherited cerebellar ataxias, we aimed to establish the relative frequencies of mutations in other genes, with an approach combining panel sequencing and TaqMan® polymerase chain reaction assay. We found relevant genetic variants in 59 patients (14.3%). The most frequently mutated were channel genes [CACNA1A (n = 16), KCND3 (n = 4), KCNC3 (n = 2) and KCNA1 (n = 2)]. Deletions in ITPR1 (n = 11) were followed by biallelic variants in SPG7 (n = 9). Variants in AFG3L2 (n = 7) came next in frequency, and variants were rarely found in STBN2 (n = 2), ELOVL5, FGF14, STUB1 and TTBK2 (n = 1 each). Interestingly, possible risk factor variants were detected in SPG7 and POLG. Clinical comparisons showed that ataxias due to channelopathies had a significantly earlier age at onset with an average of 24.6 years, versus 40.9 years for polyglutamine expansion spinocerebellar ataxias and 37.8 years for SPG7-related forms (P = 0.001). In contrast, disease duration was significantly longer in the former (20.5 years versus 9.3 and 13.7, P=0.001), though for similar functional stages, indicating slower progression of the disease. Of interest, intellectual deficiency was more frequent in channel spinocerebellar ataxias, while cognitive impairment in adulthood was similar among the three groups. Similar

  7. Identification, Characterisation and Clinical Development of the New Generation of Breast Cancer Susceptibility Alleles

    Science.gov (United States)

    2009-03-01

    syndrome characterized by progres- sive cerebellar ataxia , immune deficiency, and cancer predisposition. This astute observation preceded the mapping of...A. Renwick, D. Thompson, S. Seal, P. Kelly, T. Chagtai, et al. ATM mutations that cause ataxia -telangiectasia are breast cancer susceptibility...epidemiological study that reported an ex- cess of breast cancer in female relatives of pa- tients with ataxia telangiectasia, an autosomal recessive

  8. Friedreich ataxia is not only a GAA repeats expansion disorder: implications for molecular testing and counselling.

    Science.gov (United States)

    Hoffman-Zacharska, Dorota; Mazurczak, Tomasz; Zajkowski, Tomasz; Tataj, Renata; Górka-Skoczylas, Paulina; Połatyńska, Katarzyna; Kępczyński, Łukasz; Stasiołek, Mariusz; Bal, Jerzy

    2016-08-01

    Friedreich ataxia (FRDA) is the most common hereditary ataxia. It is an autosomal recessive disorder caused by mutations of the FXN gene, mainly the biallelic expansion of the (GAA)n repeats in its first intron. Heterozygous expansion/point mutations or deletions are rare; no patients with two point mutations or a point mutation/deletion have been described, suggesting that loss of the FXN gene product, frataxin, is lethal. This is why routine FRDA molecular diagnostics is focused on (GAA)n expansion analysis. Additional tests are considered only in cases of heterozygous expansion carriers and an atypical clinical picture. Analyses of the parent's carrier status, together with diagnostic tests, are performed in rare cases, and, because of that, we may underestimate the frequency of deletions. Even though FXN deletions are characterised as 'exquisitely rare,' we were able to identify one case (2.4 %) of a (GAA)n expansion/exonic deletion in a group of 41 probands. This was a patient with very early onset of disease with rapid progression of gait instability and hypertrophic cardiomyopathy. We compared the patient's clinical data to expansion/deletion carriers available in the literature and suggest that, in clinical practice, the FXN deletion test should be taken into account in patients with early-onset, rapid progressive ataxia and severe scoliosis.

  9. Acute cerebellar ataxia in enteric fever.

    Science.gov (United States)

    Sawhney, I M; Prabhakar, S; Dhand, U K; Chopra, J S

    1986-01-01

    Acute cerebellar ataxia as an isolated neurological manifestation of enteric fever is very rare. Three cases of acute cerebellar ataxia associated with enteric fever are reported. The diagnosis of enteric fever was confirmed by positive blood culture, strongly positive Widal test and rising antibody titres. The major clinical features were rapid development of gait ataxia, limb ataxia and dysarthria. None of the patients had altered sensorium. The cerebellar involvement was noticed on the second or third day of fever which progressed for one to two days. The symptoms remained static for one to two weeks and thereafter all the patients showed gradual recovery in a few weeks. Acute onset of cerebellar lesion, self limiting course and cerebrospinal fluid pleocytosis suggest par- or post-infectious demyelinating pathology in these patients, who were not related to each other.

  10. Dysarthria in Friedreich's Ataxia: A Perceptual Analysis

    National Research Council Canada - National Science Library

    Folker, Joanne; Murdoch, Bruce; Cahill, Louise; Delatycki, Martin; Corben, Louise; Vogel, Adam

    2010-01-01

    The aims of this study were to: (1) evaluate the perceptual speech dimensions, speech intelligibility and dysarthria severity of a group of individuals diagnosed with Friedreich's ataxia (FRDA); (2...

  11. Ataxias and Cerebellar or Spinocerebellar Degeneration

    Science.gov (United States)

    ... Division of Neuroscience Director, NIH BRAIN Initiative® Health Scientist Administrator Channels Synapses Circuits Cluster Scientific Director, Division of Intramural Research Featured Director's Message menu search Enter Search Term Submit Search Ataxias and Cerebellar ...

  12. Cerebellar Involvement in Ataxia and Generalized Epilepsy

    NARCIS (Netherlands)

    L. Kros (Lieke)

    2015-01-01

    markdownabstract__Abstract__ The work described in this thesis was performed in order to elucidate the role of different cerebellar modules in ataxia and generalized epilepsy using various techniques including in vivo electrophysiology, optogenetics, pharmacological interventions, immunohistology

  13. Vestibular ataxia and its measurement in man

    Science.gov (United States)

    Fregly, A. R.

    1974-01-01

    Methods involved in and results obtained with a new comprehensive ataxia test battery are described, and definitions of spontaneous and induced vestibular ataxia in man are given in terms of these findings. In addition, the topic of alcohol-induced ataxia in relation to labyrinth function is investigated. Items in the test battery comprise a sharpened Romberg test, in which the subject stands on the floor with eyes closed and arms folded against his chest, feet heel-to-toe, for 60 seconds; an eyes-open walking test; an eyes-open standing test; an eyes-closed standing test; an eyes-closed on-leg standing test; an eyes-closed walk a line test; an eyes-closed heel-to-toe walking test; and supplementary ataxia tests such as the classical Romberg test.

  14. Acute Cerebellar Ataxia and Lyme Disease

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2013-06-01

    Full Text Available Child neurologists at Baskent University Faculty of Medicine, Turkey, report the case of a 5-year-old girl from the Mediterranean region of Anatolia with a 4-day history of progressive ataxia.

  15. Diversity of ARSACS mutations in French-Canadians.

    Science.gov (United States)

    Thiffault, I; Dicaire, M J; Tetreault, M; Huang, K N; Demers-Lamarche, J; Bernard, G; Duquette, A; Larivière, R; Gehring, K; Montpetit, A; McPherson, P S; Richter, A; Montermini, L; Mercier, J; Mitchell, G A; Dupré, N; Prévost, C; Bouchard, J P; Mathieu, J; Brais, B

    2013-01-01

    The growing number of spastic ataxia of Charlevoix-Saguenay (SACS) gene mutations reported worldwide has broadened the clinical phenotype of autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). The identification of Quebec ARSACS cases without two known SACS mutation led to the development of a multi-modal genomic strategy to uncover mutations in this large gene and explore phenotype variability. Search for SACS mutations by combining various methods on 20 cases with a classical French-Canadian ARSACS phenotype without two mutations and a group of 104 sporadic or recessive spastic ataxia cases of unknown cause. Western blot on lymphoblast protein from cases with different genotypes was probed to establish if they still expressed sacsin. A total of 12 mutations, including 7 novels, were uncovered in Quebec ARSACS cases. The screening of 104 spastic ataxia cases of unknown cause for 98 SACS mutations did not uncover carriers of two mutations. Compounds heterozygotes for one missense SACS mutation were found to minimally express sacsin. The large number of SACS mutations present even in Quebec suggests that the size of the gene alone may explain the great genotypic diversity. This study does not support an expanding ARSACS phenotype in the French-Canadian population. Most mutations lead to loss of function, though phenotypic variability in other populations may reflect partial loss of function with preservation of some sacsin expression. Our results also highlight the challenge of SACS mutation screening and the necessity to develop new generation sequencing methods to ensure low cost complete gene sequencing.

  16. Autosomal dominant SCA5 and autosomal recessive infantile SCA are allelic conditions resulting from SPTBN2 mutations.

    Science.gov (United States)

    Elsayed, Solaf M; Heller, Raoul; Thoenes, Michaela; Zaki, Maha S; Swan, Daniel; Elsobky, Ezzat; Zühlke, Christine; Ebermann, Inga; Nürnberg, Gudrun; Nürnberg, Peter; Bolz, Hanno J

    2014-02-01

    Although many genes have been identified for the autosomal recessive cerebellar ataxias (ARCAs), several patients are unlinked to the respective loci, suggesting further genetic heterogeneity. We combined homozygosity mapping and exome sequencing in a consanguineous Egyptian family with congenital ARCA, mental retardation and pyramidal signs. A homozygous 5-bp deletion in SPTBN2, the gene whose in-frame mutations cause autosomal dominant spinocerebellar ataxia type 5, was shown to segregate with ataxia in the family. Our findings are compatible with the concept of truncating SPTBN2 mutations acting recessively, which is supported by disease expression in homozygous, but not heterozygous, knockout mice, ataxia in Beagle dogs with a homozygous frameshift mutation and, very recently, a homozygous SPTBN2 nonsense mutation underlying infantile ataxia and psychomotor delay in a human family. As there was no evidence for mutations in 23 additional consanguineous families, SPTBN2-related ARCA is probably rare.

  17. Disease: H00848 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available H00848 Ataxia with ocular apraxia (AOA), including: Ataxia telangiectasia (AT); Ata...xia telangiectasia like disorder (ATLD); Ataxia oculomotor apraxia type 1 (AOA1); Ataxia oculomotor apraxia ...type 2 (AOA2) Ataxia with oculomotor apraxia (AOA) is a group of autosomal recessive cerebellar ataxias main...ly characterized by ataxia, oculomotor apraxia and choreoathetosis. AOA includes ...ataxia telangiectasia (AT), ataxia telangiectasia like disorder (ATLD), ataxia oculomotor apraxia type 1 (AO

  18. Generation of spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cell line SCA3.A11

    DEFF Research Database (Denmark)

    Hansen, Susanne Kofoed; Borland, Helena; Hasholt, Lis Frydenreich

    2016-01-01

    Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disease caused by a CAG-repeat expanding mutation in ATXN3. We generated induced pluripotent stem cells (iPSCs) from a SCA3 patient by electroporation of dermal fibroblasts with episomal plasmids encoding L-MYC, LIN28...

  19. The Moonwalker mouse: new insights into TRPC3 function, cerebellar development, and ataxia.

    Science.gov (United States)

    Becker, Esther B E

    2014-10-01

    The Moonwalker (Mwk) mouse is a recent model of dominantly inherited cerebellar ataxia. The motor phenotype of the Mwk mouse is due to a gain-of-function mutation in the gene encoding the cation-permeable transient receptor potential channel (TRPC3). This mutation converts a threonine into an alanine in the highly conserved cytoplasmic S4-S5 linker of the channel, affecting channel gating. TRPC3 is highly expressed in cerebellar Purkinje cells and type II unipolar brush cells that both degenerate in the Mwk mouse. Studies of the Mwk mouse have provided new insights into the role of TRPC3 in cerebellar development and disease, which could not have been predicted from the Trpc3 knockout phenotype. Here, the genetic, behavioral, histological, and functional characterization of the Mwk mouse is reviewed. Moreover, the relationship of the Mwk mutant to other cerebellar mouse models and its relevance as a model for cerebellar ataxia are discussed.

  20. Kv3.3 potassium channels and spinocerebellar ataxia.

    Science.gov (United States)

    Zhang, Yalan; Kaczmarek, Leonard K

    2016-08-15

    The voltage-dependent potassium channel subunit Kv3.3 is expressed at high levels in cerebellar Purkinje cells, in auditory brainstem nuclei and in many other neurons capable of firing at high rates. In the cerebellum, it helps to shape the very characteristic complex spike of Purkinje cells. Kv3.3 differs from other closely related channels in that human mutations in the gene encoding Kv3.3 (KCNC3) result in a unique neurodegenerative disease termed spinocerebellar ataxia type 13 (SCA13). This primarily affects the cerebellum, but also results in extracerebellar symptoms. Different mutations produce either early onset SCA13, associated with delayed motor and impaired cognitive skill acquisition, or late onset SCA13, which typically produces cerebellar degeneration in middle age. This review covers the localization and physiological function of Kv3.3 in the central nervous system and how the normal function of the channel is altered by the disease-causing mutations. It also describes experimental approaches that are being used to understand how Kv3.3 mutations are linked to neuronal survival, and to develop strategies for treatment. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  1. Reliability and discriminant validity of ataxia rating scales in early onset ataxia

    NARCIS (Netherlands)

    Brandsma, Rick; Lawerman, Tjitske F.; Kuiper, Marieke J; Lunsing, Roelineke J; Burger, Huibert; Sival, Deborah A

    AIM: To determine whether ataxia rating scales are reliable disease biomarkers for early onset ataxia (EOA). METHOD: In 40 patients clinically identified with EOA (28 males, 12 females; mean age 15y 3mo [range 5-34y]), we determined interobserver and intraobserver agreement (interclass correlation

  2. Reliability and discriminant validity of ataxia rating scales in early onset ataxia

    NARCIS (Netherlands)

    Brandsma, R.; Lawerman, T. F.; Kuiper, M. J.; Geffen, van Joke; Lunsing, I. J.; Burger, H.; de Koning, T. J.; de Vries, J. J.; de Koning-Tijssen, M. A. J.; Sival, D. A.

    Objective: To determine observer-agreement and discriminantvalidity of ataxia rating scales.Background: In children and young adults, Early Onset Ataxia(EOA) is frequently concurrent with other Movement Disorders,resulting in moderate inter-observer agreement among MovementDisorder professionals. To

  3. Reliability and discriminant validity of ataxia rating scales in early onset ataxia

    NARCIS (Netherlands)

    Brandsma, Rick; Lawerman, Tjitske F.; Kuiper, Marieke J.; Lunsing, Roelineke J.; Burger, Huibert; Sival, Deborah A.

    AIM To determine whether ataxia rating scales are reliable disease biomarkers for early onset ataxia (EOA). METHOD In 40 patients clinically identified with EOA (28 males, 12 females; mean age 15y 3mo [range 5-34y]), we determined interobserver and intraobserver agreement (interclass correlation

  4. Spinocerebellar ataxia in the Italian Spinone dog is associated with an intronic GAA repeat expansion in ITPR1.

    Science.gov (United States)

    Forman, Oliver P; De Risio, Luisa; Matiasek, Kaspar; Platt, Simon; Mellersh, Cathryn

    2015-02-01

    Spinocerebellar ataxia in the Italian Spinone dog breed is characterised by a progressive gait abnormality that manifests from approximately 4 months of age. The disorder shows an autosomal recessive mode of inheritance, and affected individuals are usually euthanized by one year of age on welfare grounds due to an inability to ambulate. Using a homozygosity mapping technique with six cases and six controls, we mapped the disease locus to chromosome 20 of the canine genome. Linkage analysis across an extended pedigree confirmed the association, with microsatellite C20.374 achieving a maximal LOD score of 4.41. All five genes within the disease-associated interval were exon resequenced, although no exonic candidate mutations were identified. A targeted resequencing approach was therefore adopted to sequence the entire disease-associated interval. Analysis of the sequencing data revealed a GAA repeat expansion in intron 35 of ITPR1, which was homozygous in all cases and heterozygous in obligate carriers. Partial impairment of cerebellar ITPR1 expression in affected dogs was demonstrated by immunohistochemistry. Given the association of ITPR1 mutations with spinocerebellar ataxia (SCA) type 15 (also designated SCA16) in humans and that an intronic GAA repeat expansion has been shown to cause Friedreich ataxia, the repeat expansion is an excellent candidate for the cause of spinocerebellar ataxia in the Italian Spinone. This finding represents the first naturally occurring pathogenic intronic GAA repeat expansion in a non-human species and a novel mechanism for ITPR1 associated spinocerebellar ataxia.

  5. Hereditary Hemorrhagic Telangiectasia, a Vascular Dysplasia Affecting the TGF-β Signaling Pathway

    Science.gov (United States)

    Fernández-L, Africa; Sanz-Rodriguez, Francisco; Blanco, Francisco J.; Bernabéu, Carmelo; Botella, Luisa M.

    2006-01-01

    Hereditary hemorrhagic telangiectasia (HHT) is caused by mutations in endoglin (ENG; HHT1) or ACVRL1/ALK1 (HHT2) genes and is an autosomal dominant vascular dysplasia. Clinically, HHT is characterized by epistaxis, telangiectases and arteriovenous malformations in some internal organs such as the lung, brain or liver. Endoglin and ALK1 proteins are specific endothelial receptors of the transforming growth factor (TGF)-β superfamily that are essential for vascular integrity. Genetic studies in mice and humans have revealed the pivotal role of TGF-β signaling during angiogenesis. Through binding to the TGF-β type II receptor, TGF-β can activate two distinct type I receptors (ALK1 and ALK5) in endothelial cells, each one leading to opposite effects on endothelial cell proliferation and migration. The recent isolation and characterization of circulating endothelial cells from HHT patients has revealed a decreased endoglin expression, impaired ALK1- and ALK5-dependent TGF-β signaling, disorganized cytoskeleton and the failure to form cord-like structures which may lead to the fragility of small vessels with bleeding characteristic of HHT vascular dysplasia or to disrupted and abnormal angiogenesis after injuries and may explain the clinical symptoms associated with this disease. PMID:16595794

  6. Cerebellar ataxia and functional genomics : Identifying the routes to cerebellar neurodegeneration

    NARCIS (Netherlands)

    Smeets, C J L M; Verbeek, D S

    2014-01-01

    Cerebellar ataxias are progressive neurodegenerative disorders characterized by atrophy of the cerebellum leading to motor dysfunction, balance problems, and limb and gait ataxia. These include among others, the dominantly inherited spinocerebellar ataxias, recessive cerebellar ataxias such as

  7. Autosomal dominant cerebellar ataxia type III: a review of the phenotypic and genotypic characteristics

    Science.gov (United States)

    2013-01-01

    Autosomal Dominant Cerebellar Ataxia (ADCA) Type III is a type of spinocerebellar ataxia (SCA) classically characterized by pure cerebellar ataxia and occasionally by non-cerebellar signs such as pyramidal signs, ophthalmoplegia, and tremor. The onset of symptoms typically occurs in adulthood; however, a minority of patients develop clinical features in adolescence. The incidence of ADCA Type III is unknown. ADCA Type III consists of six subtypes, SCA5, SCA6, SCA11, SCA26, SCA30, and SCA31. The subtype SCA6 is the most common. These subtypes are associated with four causative genes and two loci. The severity of symptoms and age of onset can vary between each SCA subtype and even between families with the same subtype. SCA5 and SCA11 are caused by specific gene mutations such as missense, inframe deletions, and frameshift insertions or deletions. SCA6 is caused by trinucleotide CAG repeat expansions encoding large uninterrupted glutamine tracts. SCA31 is caused by repeat expansions that fall outside of the protein-coding region of the disease gene. Currently, there are no specific gene mutations associated with SCA26 or SCA30, though there is a confirmed locus for each subtype. This disease is mainly diagnosed via genetic testing; however, differential diagnoses include pure cerebellar ataxia and non-cerebellar features in addition to ataxia. Although not fatal, ADCA Type III may cause dysphagia and falls, which reduce the quality of life of the patients and may in turn shorten the lifespan. The therapy for ADCA Type III is supportive and includes occupational and speech modalities. There is no cure for ADCA Type III, but a number of recent studies have highlighted novel therapies, which bring hope for future curative treatments. PMID:23331413

  8. Gluten-related disorders: gluten ataxia.

    Science.gov (United States)

    Hadjivassiliou, Marios; Sanders, David D; Aeschlimann, Daniel P

    2015-01-01

    The term gluten-related disorders (GRD) refers to a spectrum of diverse clinical manifestations triggered by the ingestion of gluten in genetically susceptible individuals. They include both intestinal and extraintestinal manifestations. Gluten ataxia (GA) is one of the commonest neurological manifestations of GRD. It was originally defined as otherwise idiopathic sporadic ataxia in the presence of circulating antigliadin antibodies of IgA and/or IgG type. Newer more specific serological markers have been identified but are not as yet readily available. GA has a prevalence of 15% amongst all ataxias and 40% of all idiopathic sporadic ataxias. It usually presents with gait and lower limb ataxia. It is of insidious onset with a mean age at onset of 53 years. Up to 40% of patients have evidence of enteropathy on duodenal biopsy. Gastrointestinal symptoms are seldom prominent and are not a reliable indicator for the presence of enteropathy. Furthermore, the presence of enteropathy does not influence the response to a gluten-free diet. Most patients will stabilise or improve with strict adherence to gluten-free diet depending on the duration of the ataxia prior to the treatment. Up to 60% of patients with GA have evidence of cerebellar atrophy on MR imaging, but all patients have spectroscopic abnormalities primarily affecting the vermis. Recent evidence suggests that patients with newly diagnosed coeliac disease presenting to the gastroenterologists have abnormal MR spectroscopy at presentation associated with clinical evidence of subtle cerebellar dysfunction. The advantage of early diagnosis and treatment (mean age 42 years in patients presenting with gastrointestinal symptoms vs. 53 years in patients presenting with ataxia) may protect the first group from the development and/or progression of neurological dysfunction. © 2015 S. Karger AG, Basel.

  9. Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model.

    Science.gov (United States)

    Németh, Andrea H; Kwasniewska, Alexandra C; Lise, Stefano; Parolin Schnekenberg, Ricardo; Becker, Esther B E; Bera, Katarzyna D; Shanks, Morag E; Gregory, Lorna; Buck, David; Zameel Cader, M; Talbot, Kevin; de Silva, Rajith; Fletcher, Nicholas; Hastings, Rob; Jayawant, Sandeep; Morrison, Patrick J; Worth, Paul; Taylor, Malcolm; Tolmie, John; O'Regan, Mary; Valentine, Ruth; Packham, Emily; Evans, Julie; Seller, Anneke; Ragoussis, Jiannis

    2013-10-01

    Many neurological conditions are caused by immensely heterogeneous gene mutations. The diagnostic process is often long and complex with most patients undergoing multiple invasive and costly investigations without ever reaching a conclusive molecular diagnosis. The advent of massively parallel, next-generation sequencing promises to revolutionize genetic testing and shorten the 'diagnostic odyssey' for many of these patients. We performed a pilot study using heterogeneous ataxias as a model neurogenetic disorder to assess the introduction of next-generation sequencing into clinical practice. We captured 58 known human ataxia genes followed by Illumina Next-Generation Sequencing in 50 highly heterogeneous patients with ataxia who had been extensively investigated and were refractory to diagnosis. All cases had been tested for spinocerebellar ataxia 1-3, 6, 7 and Friedrich's ataxia and had multiple other biochemical, genetic and invasive tests. In those cases where we identified the genetic mutation, we determined the time to diagnosis. Pathogenicity was assessed using a bioinformatics pipeline and novel variants were validated using functional experiments. The overall detection rate in our heterogeneous cohort was 18% and varied from 8.3% in those with an adult onset progressive disorder to 40% in those with a childhood or adolescent onset progressive disorder. The highest detection rate was in those with an adolescent onset and a family history (75%). The majority of cases with detectable mutations had a childhood onset but most are now adults, reflecting the long delay in diagnosis. The delays were primarily related to lack of easily available clinical testing, but other factors included the presence of atypical phenotypes and the use of indirect testing. In the cases where we made an eventual diagnosis, the delay was 3-35 years (mean 18.1 years). Alignment and coverage metrics indicated that the capture and sequencing was highly efficient and the consumable cost

  10. ATM modulates the loading of recombination proteins onto a chromosomal translocation breakpoint hotspot

    NARCIS (Netherlands)

    J. Sun (Jiying); Y. Oma (Yukako); M. Harata (Masahiko); K. Kono (Kazuteru); H. Shima (Hiroki); A. Kinomura (Aiko); T. Ikura (Tsuyoshi); H. Suzuki (Hidekazu); S. Mizutani (Shuki); R. Kanaar (Roland); S. Tashiro (Satoshi)

    2010-01-01

    textabstractChromosome translocations induced by DNA damaging agents, such as ionizing radiation and certain chemotherapies, alter genetic information resulting in malignant transformation. Abrogation or loss of the ataxia-telangiectasia mutated (ATM) protein, a DNA damage signaling regulator,

  11. Activation of ATM by DNA Damaging Agents

    National Research Council Canada - National Science Library

    Kurz, Ebba U; Lees-Miller, Susan P

    2005-01-01

    Ataxia-telangiectasia mutated (ATM) is a serine/threonine protein kinase that acts as a master switch controlling the cell cycle in response to ionizing radiation-induced DNA double-strand breaks (DSBs...

  12. Activation of ATM by DNA Damaging Agents

    National Research Council Canada - National Science Library

    Kurz, Ebba U; Lees-Miller, Susan P

    2004-01-01

    Ataxia-telangiectasia mutated (ATM) is a serine/threonine protein kinase that acts as a master switch controlling the cell cycle in response to ionizing radiation-induced DNA double-strand breaks (DSBs...

  13. Autosomal dominant cerebellar ataxia type I: A review of the phenotypic and genotypic characteristics

    Science.gov (United States)

    2011-01-01

    Type I autosomal dominant cerebellar ataxia (ADCA) is a type of spinocerebellar ataxia (SCA) characterized by ataxia with other neurological signs, including oculomotor disturbances, cognitive deficits, pyramidal and extrapyramidal dysfunction, bulbar, spinal and peripheral nervous system involvement. The global prevalence of this disease is not known. The most common type I ADCA is SCA3 followed by SCA2, SCA1, and SCA8, in descending order. Founder effects no doubt contribute to the variable prevalence between populations. Onset is usually in adulthood but cases of presentation in childhood have been reported. Clinical features vary depending on the SCA subtype but by definition include ataxia associated with other neurological manifestations. The clinical spectrum ranges from pure cerebellar signs to constellations including spinal cord and peripheral nerve disease, cognitive impairment, cerebellar or supranuclear ophthalmologic signs, psychiatric problems, and seizures. Cerebellar ataxia can affect virtually any body part causing movement abnormalities. Gait, truncal, and limb ataxia are often the most obvious cerebellar findings though nystagmus, saccadic abnormalities, and dysarthria are usually associated. To date, 21 subtypes have been identified: SCA1-SCA4, SCA8, SCA10, SCA12-SCA14, SCA15/16, SCA17-SCA23, SCA25, SCA27, SCA28 and dentatorubral pallidoluysian atrophy (DRPLA). Type I ADCA can be further divided based on the proposed pathogenetic mechanism into 3 subclasses: subclass 1 includes type I ADCA caused by CAG repeat expansions such as SCA1-SCA3, SCA17, and DRPLA, subclass 2 includes trinucleotide repeat expansions that fall outside of the protein-coding regions of the disease gene including SCA8, SCA10 and SCA12. Subclass 3 contains disorders caused by specific gene deletions, missense mutation, and nonsense mutation and includes SCA13, SCA14, SCA15/16, SCA27 and SCA28. Diagnosis is based on clinical history, physical examination, genetic molecular

  14. Autosomal dominant cerebellar ataxia type I: A review of the phenotypic and genotypic characteristics

    Directory of Open Access Journals (Sweden)

    Fujioka Shinsuke

    2011-05-01

    Full Text Available Abstract Type I autosomal dominant cerebellar ataxia (ADCA is a type of spinocerebellar ataxia (SCA characterized by ataxia with other neurological signs, including oculomotor disturbances, cognitive deficits, pyramidal and extrapyramidal dysfunction, bulbar, spinal and peripheral nervous system involvement. The global prevalence of this disease is not known. The most common type I ADCA is SCA3 followed by SCA2, SCA1, and SCA8, in descending order. Founder effects no doubt contribute to the variable prevalence between populations. Onset is usually in adulthood but cases of presentation in childhood have been reported. Clinical features vary depending on the SCA subtype but by definition include ataxia associated with other neurological manifestations. The clinical spectrum ranges from pure cerebellar signs to constellations including spinal cord and peripheral nerve disease, cognitive impairment, cerebellar or supranuclear ophthalmologic signs, psychiatric problems, and seizures. Cerebellar ataxia can affect virtually any body part causing movement abnormalities. Gait, truncal, and limb ataxia are often the most obvious cerebellar findings though nystagmus, saccadic abnormalities, and dysarthria are usually associated. To date, 21 subtypes have been identified: SCA1-SCA4, SCA8, SCA10, SCA12-SCA14, SCA15/16, SCA17-SCA23, SCA25, SCA27, SCA28 and dentatorubral pallidoluysian atrophy (DRPLA. Type I ADCA can be further divided based on the proposed pathogenetic mechanism into 3 subclasses: subclass 1 includes type I ADCA caused by CAG repeat expansions such as SCA1-SCA3, SCA17, and DRPLA, subclass 2 includes trinucleotide repeat expansions that fall outside of the protein-coding regions of the disease gene including SCA8, SCA10 and SCA12. Subclass 3 contains disorders caused by specific gene deletions, missense mutation, and nonsense mutation and includes SCA13, SCA14, SCA15/16, SCA27 and SCA28. Diagnosis is based on clinical history, physical

  15. Genetics Home Reference: autosomal recessive cerebellar ataxia type 1

    Science.gov (United States)

    ... Twitter Home Health Conditions ARCA1 Autosomal recessive cerebellar ataxia type 1 Printable PDF Open All Close All ... the expand/collapse boxes. Description Autosomal recessive cerebellar ataxia type 1 ( ARCA1 ) is a condition characterized by ...

  16. Genetics Home Reference: autosomal dominant cerebellar ataxia, deafness, and narcolepsy

    Science.gov (United States)

    ... Twitter Home Health Conditions ADCADN Autosomal dominant cerebellar ataxia, deafness, and narcolepsy Printable PDF Open All Close ... the expand/collapse boxes. Description Autosomal dominant cerebellar ataxia, deafness, and narcolepsy ( ADCADN ) is a nervous system ...

  17. Sun1 deficiency leads to cerebellar ataxia in mice

    Directory of Open Access Journals (Sweden)

    Jing-Ya Wang

    2015-08-01

    Full Text Available Migration and organization of the nucleus are essential for the proliferation and differentiation of cells, including neurons. However, the relationship between the positioning of the nucleus and cellular morphogenesis remains poorly understood. Inherited recessive cerebellar ataxia has been attributed to mutations in SYNE1, a component of the linker of nucleoskeleton and cytoskeleton (LINC complex. Regardless, Syne1-mutant mice present with normal cerebellar development. The Sad1-Unc-84 homology (SUN-domain proteins are located at the inner nuclear membrane and recruit Syne proteins through the KASH domain to the outer nuclear membrane. Here, we report an unrecognized contribution of Sun1 and Sun2 to the postnatal development of murine cerebellum. Mice depleted of Sun1 showed a marked reduction in the cerebellar volume, and this phenotype is exacerbated with additional loss of a Sun2 allele. Consistent with these histological changes, Sun1−/− and Sun1−/−Sun2+/− mice exhibited defective motor coordination. Results of immunohistochemical analyses suggested that Sun1 is highly expressed in Purkinje cells and recruits Syne2 to the periphery of the nucleus. Approximately 33% of Purkinje cells in Sun1−/− mice and 66% of Purkinje cells in Sun1−/−Sun2+/− mice were absent from the surface of the internal granule layer (IGL, whereas the proliferation and migration of granule neurons were unaffected. Furthermore, the Sun1−/−Sun2+/− Purkinje cells exhibited retarded primary dendrite specification, reduced dendritic complexity and aberrant patterning of synapses. Our findings reveal a cell-type-specific role for Sun1 and Sun2 in nucleokinesis during cerebellar development, and we propose the use of Sun-deficient mice as a model for studying cerebellar ataxia that is associated with mutation of human SYNE genes or loss of Purkinje cells.

  18. Sun1 deficiency leads to cerebellar ataxia in mice.

    Science.gov (United States)

    Wang, Jing-Ya; Yu, I-Shing; Huang, Chien-Chi; Chen, Chia-Yen; Wang, Wan-Ping; Lin, Shu-Wha; Jeang, Kuan-Teh; Chi, Ya-Hui

    2015-08-01

    Migration and organization of the nucleus are essential for the proliferation and differentiation of cells, including neurons. However, the relationship between the positioning of the nucleus and cellular morphogenesis remains poorly understood. Inherited recessive cerebellar ataxia has been attributed to mutations in SYNE1, a component of the linker of nucleoskeleton and cytoskeleton (LINC) complex. Regardless, Syne1-mutant mice present with normal cerebellar development. The Sad1-Unc-84 homology (SUN)-domain proteins are located at the inner nuclear membrane and recruit Syne proteins through the KASH domain to the outer nuclear membrane. Here, we report an unrecognized contribution of Sun1 and Sun2 to the postnatal development of murine cerebellum. Mice depleted of Sun1 showed a marked reduction in the cerebellar volume, and this phenotype is exacerbated with additional loss of a Sun2 allele. Consistent with these histological changes, Sun1(-/-) and Sun1(-/-)Sun2(+/-) mice exhibited defective motor coordination. Results of immunohistochemical analyses suggested that Sun1 is highly expressed in Purkinje cells and recruits Syne2 to the periphery of the nucleus. Approximately 33% of Purkinje cells in Sun1(-/-) mice and 66% of Purkinje cells in Sun1(-/-)Sun2(+/-) mice were absent from the surface of the internal granule layer (IGL), whereas the proliferation and migration of granule neurons were unaffected. Furthermore, the Sun1(-/-)Sun2(+/-) Purkinje cells exhibited retarded primary dendrite specification, reduced dendritic complexity and aberrant patterning of synapses. Our findings reveal a cell-type-specific role for Sun1 and Sun2 in nucleokinesis during cerebellar development, and we propose the use of Sun-deficient mice as a model for studying cerebellar ataxia that is associated with mutation of human SYNE genes or loss of Purkinje cells. © 2015. Published by The Company of Biologists Ltd.

  19. Friedreich's ataxia cardiomyopathy: case based discussion and management issues.

    LENUS (Irish Health Repository)

    Hanley, A

    2010-04-01

    Cardiac involvement is common in Friedreich\\'s Ataxia and is a common cause of premature death. Evidence regarding treatment of congestive heart failure in patients with Friedreich\\'s Ataxia is lacking. The case of a 31-year-old male with advanced Friedreich\\'s Ataxia who presented with an acute diarrhoeal illness and features of acute heart failure is discussed. We then review the reported cardiac manifestations of Friedreich\\'s Ataxia and discuss management options.

  20. Terapia alternativa para microvarizes e telangiectasias com uso de agulha Alternative therapy for microvarices and telangiectasias with use of needle

    Directory of Open Access Journals (Sweden)

    Raimundo Rosendo de Oliveira

    2007-03-01

    Full Text Available CONTEXTO: O desenvolvimento de terapia alternativa à convencional para a destruição de microvarizes e telangiectasias sem o uso de produtos químicos tem como objetivo reduzir os efeitos colaterais, faz uso de agulha para lise mecânica dos vasos e tem como modelo experimental galinhas da linhagem Lohmann Brown. OBJETIVO: Elaborar uma nova técnica, desenvolvendo um tratamento alternativo, sem uso de produtos químicos, objetivando a redução dos efeitos colaterais. MÉTODOS: Foram utilizadas 30 galinhas da linhagem Lohmann Brown, sendo que 15 foram submetidas ao método convencional de tratamento de microvarizes e telangiectasias (grupo-controle e as outras 15 receberam o tratamento experimental proposto (grupo experimental. O grupo experimental foi tratado com agulha de lise vascular, percorrendo todo o trajeto dos vasos escolhidos em punções escalonadas até que todo o vaso ser atingido. O grupo-controle foi tratado com oleato de monoetanolamina e glicose a 50%, puncionando-se o vaso com agulha 13 x 3 mm e injetando-se, em média, 0,3 mL da solução em cada vaso. RESULTADOS: Dos 50 vasos tratados no grupo experimental, dois apresentaram recidiva total, cinco apresentaram recidiva parcial, e 43 apresentaram destruição (lise satisfatória; enquanto que, no grupo-controle, dos 51 vasos tratados, quatro apresentaram recidiva total, 12, recidiva parcial, 22, destruição satisfatória, e em 13 ocorreu endurecimento de trajeto. CONCLUSÃO: O presente estudo demonstrou que o método experimental proposto, com uso de agulha de lise vascular, possui mais eficiência no tratamento de microvarizes se comparado com o método convencional, devido à redução das recidivas e à ausência de hipercromia de trajeto endurecido.BACKGROUND: The development of an alternative to the conventional therapy for microvarices and telangiectasias without using chemical products aims at reducing side effects, using a needle for mechanical lysis of vessels. It

  1. Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans.

    Science.gov (United States)

    Wang, Yubin; Hersheson, Joshua; Lopez, Dulce; Hammer, Monia; Liu, Yan; Lee, Ka-Hung; Pinto, Vanessa; Seinfeld, Jeff; Wiethoff, Sarah; Sun, Jiandong; Amouri, Rim; Hentati, Faycal; Baudry, Neema; Tran, Jennifer; Singleton, Andrew B; Coutelier, Marie; Brice, Alexis; Stevanin, Giovanni; Durr, Alexandra; Bi, Xiaoning; Houlden, Henry; Baudry, Michel

    2016-06-28

    A CAPN1 missense mutation in Parson Russell Terrier dogs is associated with spinocerebellar ataxia. We now report that homozygous or heterozygous CAPN1-null mutations in humans result in cerebellar ataxia and limb spasticity in four independent pedigrees. Calpain-1 knockout (KO) mice also exhibit a mild form of ataxia due to abnormal cerebellar development, including enhanced neuronal apoptosis, decreased number of cerebellar granule cells, and altered synaptic transmission. Enhanced apoptosis is due to absence of calpain-1-mediated cleavage of PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1), which results in inhibition of the Akt pro-survival pathway in developing granule cells. Injection of neonatal mice with the indirect Akt activator, bisperoxovanadium, or crossing calpain-1 KO mice with PHLPP1 KO mice prevented increased postnatal cerebellar granule cell apoptosis and restored granule cell density and motor coordination in adult mice. Thus, mutations in CAPN1 are an additional cause of ataxia in mammals, including humans. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Clinical and molecular studies in five Brazilian cases of Friedreich ataxia Avaliação clínica e molecular de cinco pacientes brasileiros com ataxia de Friedreich

    Directory of Open Access Journals (Sweden)

    IDA V.D. SCHWARTZ

    1999-03-01

    Full Text Available Friedreich ataxia (FRDA, the most common autosomal recessive ataxia, is caused in 94% of cases by homozygous expansions of an unstable GAA repeat localised in intron 1 of the X25 gene. We have investigated this mutation in five Brazilian patients: four with typical FRDA findings and one patient with atypical manifestations, who was considered to have some other form of cerebellar ataxia with retained reflexes. The GAA expansion was detected in all these patients. The confirmation of FRDA diagnosis in the atypical case may be pointing out, as in other reports, that clinical spectrum of Friedreich's ataxia is broader than previously recognised and includes cases with intact tendon reflexes.A ataxia de Friedreich (FRDA é a mais frequente das ataxias com herança autossômica recessiva. Em 94 % dos casos, é causada por uma expansão homozigota instável da repetição de trinucleotídeos GAA, localizada no primeiro íntron do gene X25. Esta mutação foi investigada em cinco pacientes brasileiros: quatro com quadro clínico típico de FRDA e um paciente com manifestações atípicas, cujo diagnóstico prévio era o de alguma outra forma de ataxia cerebelar com preservação de reflexos. A investigação foi positiva nos cinco casos. A confirmação do diagnóstico de FRDA no paciente com quadro atípico, assim como em outros casos semelhantes já relatados na literatura, sugere que o espectro de manifestações clínicas da FRDA seja mais amplo do que o classicamente reconhecido, incluindo casos com preservação de reflexos.

  3. Ataxia in children: think about vitamin E deficiency ! (comment on: ataxia in children: early recognition and clinical evaluation).

    Science.gov (United States)

    Rahmoune, H; Boutrid, N; Amrane, M; Chekkour, M C; Bioud, B

    2017-07-19

    A recent article from Pavone et al. published in the Italian Journal of Pediatrics entitled «Ataxia in children: early recognition and clinical evaluation» made an exhaustive overview of the large spectrum of pediatric ataxias. However, we would underline the importance of considering hereditary ataxia due to isolated vitamin E deficiency as a specific and treatable cause of child ataxia. We present a short clinical and therpeutic synopsis of this peculiar genetic etiology, frequently encountred in the mediterranean region.

  4. Modest increased sensitivity to radiation oncogenesis in ATM heterozygous versus wild-type mammalian cells

    Science.gov (United States)

    Smilenov, L. B.; Brenner, D. J.; Hall, E. J.

    2001-01-01

    Subpopulations that are genetically predisposed to radiation-induced cancer could have significant public health consequences. Individuals homozygous for null mutations at the ataxia telangiectasia gene are indeed highly radiosensitive, but their numbers are very small. Ataxia Telangiectasia heterozygotes (1-2% of the population) have been associated with somewhat increased radiosensitivity for some end points, but none directly related to carcinogenesis. Here, intralitter comparisons between wild-type mouse embryo fibroblasts and mouse embryo fibroblasts carrying ataxia telangiectasia mutated (ATM) null mutation indicate that the heterozygous cells are more sensitive to radiation oncogenesis than their normal, litter-matched, counterparts. From these data we suggest that Ataxia Telangiectasia heterozygotes could indeed represent a societally-significant radiosensitive human subpopulation.

  5. Disease: H00064 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available H00064 Ataxia telangiectasia (AT); Ataxia telangiectasia like disorder (ATLD); Lou...is-Bar syndrome; Boder-Sedgwick syndrome Ataxia-telangiectasia (AT) is an autosomal recessive disorder with

  6. Comprehensive study of early features in spinocerebellar ataxia 2: delineating the prodromal stage of the disease.

    Science.gov (United States)

    Velázquez-Pérez, Luis; Rodríguez-Labrada, Roberto; Cruz-Rivas, Edilia M; Fernández-Ruiz, Juan; Vaca-Palomares, Israel; Lilia-Campins, Jandy; Cisneros, Bulmaro; Peña-Acosta, Arnoy; Vázquez-Mojena, Yaimeé; Diaz, Rosalinda; Magaña-Aguirre, Jonathan J; Cruz-Mariño, Tania; Estupiñán-Rodríguez, Annelié; Laffita-Mesa, José M; González-Piña, Rigoberto; Canales-Ochoa, Nalia; González-Zaldivar, Yanetza

    2014-10-01

    The prodromal phase of spinocerebellar ataxias (SCAs) has not been systematically studied. Main findings come from a homogeneous SCA type 2 (SCA2) population living in Cuba. The aim of this study was to characterize extensively the prodromal phase of SCA2 by several approaches. Thirty-seven non-ataxic SCA2 mutation carriers and its age- and sex-matched controls underwent clinical assessments, including standardized neurological exam, structured interviews and clinical scales, and looking for somatic and autonomic features, as well as a neuropsychological battery, antisaccadic recordings, and MRI scans. Main clinical somatic features of non-ataxic mutation carriers were cramps, sensory symptoms, sleep disorders, and hyperreflexia, whereas predominating autonomic symptoms were pollakiuria/nocturia, constipation, and frequent throat clearing. Cognitive impairments included early deficits of executive functions and visual memory, suggesting the involvement of cerebro-cerebellar-cerebral loops and/or reduced cholinergic basal forebrain input to the cortex. Antisaccadic task revealed impaired oculomotor inhibitory control but preserved ability for error correction. Cognitive and antisaccadic deficits were higher as carriers were closer to the estimated onset of ataxia, whereas higher Scale for the Assessment and Rating of Ataxia (SARA) scores were associated most notably to vermis atrophy. The recognition of early features of SCA2 offers novel insights into the prodromal phase and physiopathological base of the disease, allowing the assessment of its progression and the efficacy of treatments, in particular at early phases when therapeutical options should be most effective.

  7. Recent advances in hereditary spinocerebellar ataxias

    NARCIS (Netherlands)

    van de Warrenburg, Bart P C; Sinke, Richard J; Kremer, Berry

    In recent years, molecular genetic research has unraveled a major part of the genetic background of autosomal dominant and recessive spinocerebellar ataxias. These advances have also allowed insight in (some of) the pathophysiologic pathways assumed to be involved in these diseases. For the

  8. Genetic testing for clinically suspected spinocerebellar ataxias ...

    Indian Academy of Sciences (India)

    Mahesh

    Yichuanxue Zazhi = Chinese Journal of Medical Genetics 27(5): 501–505. Wu, Y. R., H. Y. Lin, C. M. Chen, et al. 2004 Genetic Testing in Spinocerebellar Ataxia in Taiwan: Expansions of Trinucleotide Repeats in SCA8 and SCA17 Are Associated with Typical Parkinson's Disease. Clinical Genetics 65(3): 209–214.

  9. Hereditary spastic paraplegia with cerebellar ataxia

    DEFF Research Database (Denmark)

    Nielsen, J E; Johnsen, B; Koefoed, P

    2004-01-01

    Complex forms of hereditary spastic paraplegia (HSP) are rare and usually transmitted in an autosomal recessive pattern. A family of four generations with autosomal dominant hereditary spastic paraplegia (AD-HSP) and a complex phenotype with variably expressed co-existing ataxia, dysarthria...

  10. Friedreich ataxia: dysarthria profile and clinical data.

    Science.gov (United States)

    Brendel, Bettina; Ackermann, Hermann; Berg, Daniela; Lindig, Tobias; Schölderle, Theresa; Schöls, Ludger; Synofzik, Matthis; Ziegler, Wolfram

    2013-08-01

    Friedreich ataxia (FRDA) is the most frequent recessive ataxia in the Western world. Dysarthria is a cardinal feature of FRDA, often leading to severe impairments in daily functioning, but its exact characteristics are only poorly understood so far. We performed a comprehensive evaluation of dysarthria severity and the profile of speech motor deficits in 20 patients with a genetic diagnosis of FRDA based on a carefully selected battery of speaking tasks and two widely used paraspeech tasks, i.e., oral diadochokinesis and sustained vowel productions. Perceptual ratings of the speech samples identified respiration, voice quality, voice instability, articulation, and tempo as the most affected speech dimensions. Whereas vocal instability predicted ataxia severity, tempo turned out as a significant correlate of disease duration. Furthermore, articulation predicted the overall intelligibility score as determined by a systematic speech pathology assessment tool. In contrast, neurologists' ratings of intelligibility--a component of the "Scale for the Assessment and Rating of Ataxia"--were found to be related to perceived speech tempo. Obviously, clinicians are more sensitive to slowness of speech than to any other feature of spoken language during dysarthria evaluation. Our results suggest that different components of speech production and trunk/limb motor functions are differentially susceptible to FRDA pathology. Furthermore, evidence emerged that paraspeech tasks do not allow for an adequate scaling of speech deficits in FRDA.

  11. Spinocerebellar ataxia type 2 presenting with cognitive regression in childhood.

    Science.gov (United States)

    Ramocki, Melissa B; Chapieski, Lynn; McDonald, Ryan O; Fernandez, Fabio; Malphrus, Amy D

    2008-09-01

    Spinocerebellar ataxia type 2 typically presents in adulthood with progressive ataxia, dysarthria, tremor, and slow saccadic eye movements. Childhood-onset spinocerebellar ataxia type 2 is rare, and only the infantile-onset form has been well characterized clinically. This article describes a girl who met all developmental milestones until age 3(1/2) years, when she experienced cognitive regression that preceded motor regression by 6 months. A diagnosis of spinocerebellar ataxia type 2 was delayed until she presented to the emergency department at age 7 years. This report documents the results of her neuropsychologic evaluation at both time points. This case broadens the spectrum of spinocerebellar ataxia type 2 presentation in childhood, highlights the importance of considering a spinocerebellar ataxia in a child who presents with cognitive regression only, and extends currently available clinical information to help clinicians discuss the prognosis in childhood spinocerebellar ataxia type 2.

  12. Familial cosegregation of manic-depressive illness and a form of hereditary cerebellar ataxia

    Energy Technology Data Exchange (ETDEWEB)

    Piqueras, J.F.; Santos, J.; Puertollano, R. [Universidad Autonoma, Madrid (Spain)] [and others

    1995-06-19

    We report on a Spanish family with co-occurrence of manic-depression and a form of hereditary cerebellar ataxia. All affected individuals in the second generation showed cerebellar ataxia and manic-depression simultaneously. Since anticipation has been described in both disorders and the pattern of segregation may be autosomal as well as X-linked, we have searched for a possible involvement of two candidate genes which are located either on an autosome (SCA1) or on the X-chromosome (GABRA3). We concluded that expansion of trinucleotide repeats at SCA1 gene cannot be considered as a disease-causing mutation, and this gene should be initially discarded. 19 refs., 3 figs.

  13. Contribution of Oxidative stress to Endothelial Dysfunction in Hereditary Hemorrhagic Telangiectasia

    Directory of Open Access Journals (Sweden)

    Mirjana eJerkic

    2015-02-01

    Full Text Available Oxidative stress causes endothelial dysfunction and is implicated in the pathogenesis of cardiovascular diseases. Our studies suggested that reactive oxygen species (ROS play a crucial role in Hereditary Hemorrhagic Telangiectasia (HHT disease, a vascular dysplasia affecting 1 in 5,000-8,000 people. Mutations in endoglin (ENG and activin receptor-like kinase (ACVRL1 genes are responsible for HHT1 and HHT2 and are associated with arteriovenous malformations. Endoglin and ACVRL1 interact with endothelial NO synthase (eNOS and regulate its activation. Mice heterozygous for these genes (Eng+/− and Acvrl1+/- show reduced endoglin or ACVRL1 protein levels in endothelial cells causing eNOS uncoupling, generation of reactive oxygen species (ROS rather than nitric oxide (NO•, leading to impaired NO• mediated vasodilation. ROS production is increased in several organs of Eng+/− and Acvrl1+/− mice, including lungs, liver, and colon, affected in HHT. The major source of increased oxidative stress in these tissues is eNOS-derived ROS and not mitochondrial or NADPH oxidase-dependent ROS. Eng+/− and Acvrl1+/− mice also develop with age signs of pulmonary arterial hypertension (PH attributable to eNOS-derived ROS, which was preventable by antioxidant treatment. To date, only one pilot study has been carried out in HHT patients, and it showed beneficial effects of antioxidant therapy on epistaxis. We suggest that more clinical studies are warranted to investigate whether antioxidants would prevent, delay or attenuate manifestations of disease in individuals with HHT, based on our experimental data in mouse models.

  14. Bazedoxifene, a new orphan drug for the treatment of bleeding in hereditary haemorrhagic telangiectasia.

    Science.gov (United States)

    Zarrabeitia, Roberto; Ojeda-Fernandez, Luisa; Recio, Lucia; Bernabéu, Carmelo; Parra, Jose A; Albiñana, Virginia; Botella, Luisa M

    2016-06-02

    Hereditary haemorrhagic telangiectasia (HHT), or Rendu-Osler-Weber syndrome, is a dominant genetic vascular disorder. In HHT, blood vessels are weak and prone to bleeding, leading to epistaxis and anaemia, severely affecting patients' quality of life. Development of vascular malformations in HHT patients is originated mainly by mutations in ACVRL1/ALK1 (activin receptor-like kinase type I) or Endoglin (ENG) genes. These genes encode proteins of the TGF-β signalling pathway in endothelial cells, controlling angiogenesis. Haploinsufficiency of these proteins is the basis of HHT pathogenicity. It was our objective to study the efficiency of Bazedoxifene, a selective estrogen receptor modulator (SERM) in HHT, looking for a decrease in epistaxis, and understanding the underlying molecular mechanism. Plasma samples of five HHT patients were collected before, and after 1 and 3 months of Bazedoxifene treatment. ENG and ALK1 expression in activated mononuclear cells derived from blood, as well as VEGF plasma levels, were measured. Quantification of Endoglin and ALK1 mRNA was done in endothelial cells derived from HHT and healthy donors, after in vitro treatment with Bazedoxifene. Angiogenesis was also measured by tubulogenesis and wound healing assays. Upon Bazedoxifene treatment, haemoglobin levels of HHT patients increased and the quantity and frequency of epistaxis decreased. Bazedoxifene increased Endoglin and ALK1 mRNA levels, in cells derived from blood samples and in cultured endothelial cells, promoting tube formation. In conclusion, Bazedoxifene seems to decrease bleeding in HHT by partial compensation of haploinsufficiency. The results shown here are the basis of a new orphan drug designation for HHT by the European Medicine Agency (EMA).

  15. Emerging roles of BMP9 and BMP10 in hereditary hemorrhagic telangiectasia

    Directory of Open Access Journals (Sweden)

    Emmanuelle eTillet

    2015-01-01

    Full Text Available Rendu-Osler-Weber syndrome, also known as hereditary hemorrhagic telangiectasia (HHT, is an autosomal dominant vascular disorder. Three genes are causally related to HHT: the ENG gene encoding endoglin, a co-receptor of the TGFß family (HHT1, the ACVRL1 gene encoding ALK1 (activin receptor-like kinase 1, a type I receptor of the TGFß family (HHT2, and the SMAD4 gene, encoding a transcription factor critical for this signaling pathway. Bone morphogenetic proteins (BMPs are growth factors of the TGFß family. Among them, BMP9 and BMP10 have been shown to bind directly with high affinity to ALK1 and endoglin, and BMP9 mutations have recently been linked to a vascular-anomaly syndrome that has phenotypic overlap with HHT. BMP9 and BMP10 are both circulating cytokines in blood, and the current working model is that BMP9 and BMP10 maintain a quiescent endothelial state that is dependent on the level of ALK1/endoglin activation on endothelial cells. In accordance with this model, to explain the etiology of HHT we hypothesize that a deficient BMP9/BMP10/ALK1/endoglin pathway may lead to re-activation of angiogenesis or a greater sensitivity to an angiogenic stimulus. Resulting endothelial hyperproliferation and hypermigration may lead to vasodilatation and formation of arteriovenous malformation (AVM. HHT would thus result from a defect in the angiogenic balance. This review will focus on the emerging role played by BMP9 and BMP10 in the development of this disease and the therapeutic approaches that this opens.

  16. Crystalline deposits in the macula - tamoxifen maculopathy or macular telangiectasia?

    Science.gov (United States)

    Rijal, Roshija Khanal; Nakhwa, Chinmay; Sindal, Manavi D

    2014-01-01

    Tamoxifen citrate is an anti-estrogen agent used in the treatment of breast carcinoma. Crystalline maculopathy is a rare complication of tamoxifen therapy. The clinical picture resembles that of idiopathic macular telangiectasia (IMT) Type 2, which is a more common clinical entity. To report a case of crystalline maculopathy secondary to tamoxifen and highlight the importance of the medical history and investigations in differentiating it from IMT Type 2. A diabetic female with a past history of breast carcinoma treated with tamoxifen came to the hospital for a routine eye check-up. Crystalline deposits were seen in the parafoveal region in both the eyes.The spectral domain optical coherence tomography (SD-OCT) showed foveal cysts in the inner retinal layer and fundus autofluorescence (FAF) and fundus fluorescein angiography (FFA) were within normal limits. While tamoxifen maculopathy is reversible on stopping the therapy, IMT needs a long-term follow-up to monitor the potential risk of loss of vision due to choroidal neovascularization, hence necessitating the distinction between these two different clinical entities.

  17. Dose - response relationship of bevacizumab in hereditary hemorrhagic telangiectasia.

    Science.gov (United States)

    Azzopardi, Nicolas; Dupuis-Girod, Sophie; Ternant, David; Fargeton, Anne-Emmanuelle; Ginon, Isabelle; Faure, Frédéric; Decullier, Evelyne; Roux, Adeline; Carette, Marie-France; Gilbert-Dussardier, Brigitte; Hatron, Pierre-Yves; Lacombe, Pascal; Leguy-Seguin, Vanessa; Rivière, Sophie; Corre, Romain; Bailly, Sabine; Paintaud, Gilles

    2015-01-01

    Hereditary hemorrhagic telangiectasia (HHT), a genetic vascular disorder associated with epistaxis and hepatic shunts, is responsible for high-output cardiac failure in rare cases. Bevacizumab, which targets vascular endothelial growth factor, was shown to decrease both cardiac index (CI) and epistaxis duration in HHT patients with severe liver involvement. The relationship between its serum concentration and change in both CI and epistaxis duration was investigated to design the bevacizumab maintenance dosing regimen of future therapeutic studies. Twenty-five HHT patients with dyspnea and high CI were included in a prospective non-comparative study. They received bevacizumab at a dose of 5 mg/kg per infusion every 14 days for a total of 6 injections. The relationships between bevacizumab serum concentration and both CI and epistaxis duration were described using transit compartments and direct inhibition pharmacokinetic-pharmacodynamic models. The performances of different maintenance regimens were evaluated using simulation. Infusions every 3, 2 and one months were predicted to maintain 41%, 45% and 50% of patients with CI <4 L/min/m(2) at 24 months, respectively. The fraction of patients with <20 min epistaxis per month was predicted to be 34%, 43% and 60%, with infusion every 3, 2 or one months, respectively. Simulations of the effects of different maintenance dosing regimens predict that monthly 5 mg/kg infusions of bevacizumab should allow sustained control of both cardiac index and epistaxis.

  18. Fragile X syndrome and fragile X-associated tremor ataxia syndrome.

    Science.gov (United States)

    Hall, Deborah A; Berry-Kravis, Elizabeth

    2018-01-01

    Fragile X-associated disorders encompass several conditions, which are caused by expansion mutations in the fragile X mental retardation 1 (FMR1) gene. Fragile X syndrome is the most common inherited etiology of intellectual disability and results from a full mutation or >200 CGG repeats in FMR1. It is associated with developmental delay, autism spectrum disorder, and seizures. Fragile X-associated tremor/ataxia syndrome is a progressive neurodegenerative disease that occurs in premutation carriers of 55-200 CGG repeats in FMR1 and is characterized by kinetic tremor, gait ataxia, parkinsonism, executive dysfunction, and neuropathy. Fragile X-associated primary ovarian insufficiency also occurs in premutation carrier women and manifests with infertility and early menopause. The diseases constituting fragile X-associated disorders differ mechanistically, due to the distinct molecular properties of premutation versus full mutations. Fragile X syndrome occurs when there is a lack of fragile X mental retardation protein (FMRP) due to FMR1 methylation and silencing. In fragile X-associated tremor ataxia syndrome, a toxic gain of function is postulated with the production of excess CGG repeat-containing FMR1 mRNA, abnormal translation of the repeat sequence leading to production of polyglycine, polyalanine, and other polypeptides and to outright deficits in translation leading to reduced FMRP at larger premutation sizes. The changes in underlying brain chemistry due to FMR1 mutations have led to therapeutic studies in these disorders, with some progress being made in fragile X syndrome. This paper also summarizes indications for testing, genetic counseling issues, and what the future holds for these disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Large Genomic Deletions in CACNA1A Cause Episodic Ataxia Type 2

    Directory of Open Access Journals (Sweden)

    Jijun eWan

    2011-09-01

    Full Text Available Episodic ataxia (EA syndromes are heritable diseases characterized by dramatic episodes of imbalance and incoordination. Episodic ataxia type 2 (EA2, the most common and the best characterized subtype, is caused by mostly nonsense, splice site, small indel and sometimes missense mutations in CACNA1A. Direct sequencing of CACNA1A fails to identify mutations in some patients with EA2-like features, possibly due to incomplete interrogation of CACNA1A or defects in other EA genes not yet defined. Previous reports described genomic deletions between 4-40kb in EA2. In 47 subjects with EA (26 with EA2-like features who tested negative for mutations in the known EA genes, we used Multiplex Ligation-dependent Probe Amplification (MLPA to analyze CACNA1A for exonic copy number variations. Breakpoints were further defined by long-range PCR. We identified distinct multi-exonic deletions in three probands with classic EA2-like features: episodes of prolonged vertigo and ataxia triggered by stress and fatigue, interictal nystagmus, with onset during infancy or early childhood. The breakpoints in all three probands are located in Alu sequences, indicating errors in homologous recombination of Alu sequences as the underlying mechanism. The smallest deletion spanned exons 39 and 40, while the largest deletion spanned 200kb, missing all but the first three exons. One deletion involving exons 39 through 47 arose spontaneously. The search for mutations in CACNA1A appears most fruitful in EA patients with interictal nystagmus and onset early in life. The finding of large heterozygous deletions suggests haploinsufficiency as a possible pathomechanism of EA2.

  20. Prevalence of ataxia in children: a systematic review.

    Science.gov (United States)

    Musselman, Kristin E; Stoyanov, Cristina T; Marasigan, Rhul; Jenkins, Mary E; Konczak, Jürgen; Morton, Susanne M; Bastian, Amy J

    2014-01-07

    To estimate the prevalence of childhood ataxia resulting from both genetic and acquired causes. A systematic review was conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) statement. Five databases were searched for articles reporting a frequency measure (e.g., prevalence, incidence) of ataxia in children. Included articles were first grouped according to the World Health Organization (WHO) regions and subsequently classified according to etiology (genetic, acquired, or mixed). Each article was assessed for its risk of bias on the domains of sampling, measurement, and analysis. Incidence values were converted to prevalence estimates whenever possible. European prevalence estimates for different etiologies of ataxia were summed to gauge the overall prevalence of childhood ataxia. One hundred fifteen articles were included in the review. More than 50% of the data originated from the Europe WHO region. Data from this region also showed the least susceptibility to bias. Little data were available for Africa and Southeast Asia. The prevalence of acquired ataxias was found to vary more greatly across regions than the genetic ataxias. Ataxic cerebral palsy was found to be a significant contributor to the overall prevalence of childhood ataxia across WHO regions. The prevalence of childhood ataxias in Europe was estimated to be ∼26/100,000 children and likely reflects a minimum prevalence worldwide. The findings show that ataxia is a common childhood motor disorder with a higher prevalence than previously assumed. More research concerning the epidemiology, assessment, and treatment of childhood ataxia is warranted.

  1. Exon deletions and intragenic insertions are not rare in ataxia with oculomotor apraxia 2

    Directory of Open Access Journals (Sweden)

    Kreuz Friedmar

    2009-09-01

    Full Text Available Abstract Background The autosomal recessively inherited ataxia with oculomotor apraxia 2 (AOA2 is a neurodegenerative disorder characterized by juvenile or adolescent age of onset, gait ataxia, cerebellar atrophy, axonal sensorimotor neuropathy, oculomotor apraxia, and elevated serum AFP levels. AOA2 is caused by mutations within the senataxin gene (SETX. The majority of known mutations are nonsense, missense, and splice site mutations, as well as small deletions and insertions. Methods To detect mutations in patients showing a clinical phenotype consistent with AOA2, the coding region including splice sites of the SETX gene was sequenced and dosage analyses for all exons were performed on genomic DNA. The sequence of cDNA fragments of alternative transcripts isolated after RT-PCR was determined. Results Sequence analyses of the SETX gene in four patients revealed a heterozygous nonsense mutation or a 4 bp deletion in three cases. In another patient, PCR amplification of exon 11 to 15 dropped out. Dosage analyses and breakpoint localisation yielded a 1.3 kb LINE1 insertion in exon 12 (patient P1 and a 6.1 kb deletion between intron 11 and intron 14 (patient P2 in addition to the heterozygous nonsense mutation R1606X. Patient P3 was compound heterozygous for a 4 bp deletion in exon 10 and a 20.7 kb deletion between intron 10 and 15. This deletion was present in a homozygous state in patient P4. Conclusion Our findings indicate that gross mutations seem to be a frequent cause of AOA2 and reveal the importance of additional copy number analysis for routine diagnostics.

  2. Cancer incidence in patients with hereditary hemorrhagic telangiectasia.

    Science.gov (United States)

    Duarte, Christine W; Black, Adam W; Lucas, F Lee; Vary, Calvin P H

    2017-02-01

    Hereditary hemorrhagic telangiectasia (HHT) is a genetic disorder characterized by deficiency in endoglin, an angiogenic protein. We previously showed that HHT, in which systemic endoglin expression is reduced, was associated with better survival outcomes in cancer patients (Duarte et al. in Cancer Epidemiol Biomarkers Prev 23:117-125, 2014). Here, we evaluated whether HHT was associated with reduced cancer incidence. A matched case-control analysis using SEER Medicare was conducted to evaluate the effect of HHT on diagnosis with breast, colorectal, lung, or prostate cancer between 2000 and 2007 (n = 633,162). Cancer and non-cancer patients were matched on age, sex, SEER registry region, and length of the ascertainment period for HHT. We assessed crude association using a McNemar's test and then adjusted for demographic variables, cancer type, cancer stage, comorbidities, and ascertainment period with a conditional logistic regression model for cancer incidence. The McNemar's test showed no significant association between HHT and cancer incidence (p = 0.74). Adjusting for covariates with the conditional logistic regression model did not change the result [HHT odds ratio 0.978; 95 % CI (0.795, 1.204)]. The lack of association between HHT and cancer incidence is unexpected given the previously discovered significant association between HHT and improved survival outcomes (Duarte et al. in Cancer Epidemiol Biomarkers Prev 23:117-125, 2014). We conclude that the protective effect of reduced systemic endoglin expression in cancer is specific to cancer progression through its effect on vascularization and other stromal effects but does not extend to cancer initiation.

  3. Friedreich's Ataxia – A Clinical Diagnosis

    Directory of Open Access Journals (Sweden)

    Md. Fekarul Islam

    2015-01-01

    Full Text Available Friedreich's ataxia (FA is an autosomal recessive spinocerebellar degenerative disease characterized by hyperexpansion of GAA triplets in Frataxin gene. The hallmark of this disorder is ataxic gait, areflexia, Babinski's sign and positive Romberg test. We report a 9 year old child who presented with all these features and was diagnosed with FA on the basis of these clinical features. There are few case reports of FA where the diagnosis was made so early

  4. Prevalence of pulmonary arteriovenous malformations (PAVMs) and occurrence of neurological symptoms in patients with hereditary haemorrhagic telangiectasia (HHT)

    DEFF Research Database (Denmark)

    Kjeldsen, A D; Oxhøj, H; Andersen, P E

    2000-01-01

    Hereditary haemorrhagic telangiectasia (HHT) is a dominantly inherited disease. HHT is characterized by a wide variety of clinical manifestations, including pulmonary arteriovenous malformations (PAVMs) and neurological symptoms.......Hereditary haemorrhagic telangiectasia (HHT) is a dominantly inherited disease. HHT is characterized by a wide variety of clinical manifestations, including pulmonary arteriovenous malformations (PAVMs) and neurological symptoms....

  5. Acute cerebellar ataxia, acute cerebellitis, and opsoclonus-myoclonus syndrome.

    Science.gov (United States)

    Desai, Jay; Mitchell, Wendy G

    2012-11-01

    Acute cerebellar ataxia and acute cerebellitis represent a process characterized by parainfectious, postinfectious, or postvaccination cerebellar inflammation. There is considerable overlap between these entities. The mildest cases of acute cerebellar ataxia represent a benign condition that is characterized by acute truncal and gait ataxia, variably with appendicular ataxia, nystagmus, dysarthria, and hypotonia. It occurs mostly in young children, presents abruptly, and recovers over weeks. Neuroimaging is normal. Severe cases of cerebellitis represent the other end of the spectrum, presenting with acute cerebellar signs often overshadowed by alteration of consciousness, focal neurological deficits, raised intracranial pressure, hydrocephalus, and even herniation. Neuroimaging is abnormal and the prognosis is less favorable than in acute cerebellar ataxia. Acute disseminated encephalomyelitis may be confused with acute cerebellitis when the clinical findings are predominantly cerebellar, but lesions on neuroimaging are usually widespread. Paraneoplastic opsoclonus-myoclonus syndrome is often initially misdiagnosed as acute cerebellar ataxia, but has very specific features, course, and etiopathogensis.

  6. Acute cerebellar ataxia following meningococcal group C conjugate vaccination.

    Science.gov (United States)

    Cutroneo, Paola Maria; Italiano, Domenico; Trifirò, Gianluca; Tortorella, Gaetano; Russo, Alessandra; Isola, Stefania; Caputi, Achille Patrizio; Spina, Edoardo

    2014-01-01

    Acute cerebellar ataxia is the most common cause of childhood ataxia, usually resulting from infections or vaccinations. Cases of acute cerebellar ataxia have been reported as a consequence of several viral and bacterial infections as well as immunizing agents, such as varicella, influenza, hepatitis B, and diphtheria-pertussis-tetanus vaccines. Although immunization with meningococcal group C conjugate vaccines has been associated with several neurological side effects, acute cerebellar ataxia has not been previously reported. The authors describe a case of a 12-year-old girl exhibiting acute cerebellar ataxia following meningococcal group C conjugate vaccination. In this patient, cerebellar symptoms started within 24 hours from the vaccination, and infective causes have been ruled out by serum and liquoral analyses. Magnetic resonance imaging findings were normal. Progressive clinical improvement was obtained after corticosteroid treatment. This case increases the small number of postvaccinal ataxias and contributes to further clarifying the complex pathogenesis of this disorder.

  7. The Saccharomyces cerevisiae MEC1 gene, which encodes a homolog of the human ATM gene product, is required for G1 arrest following radiation treatment.

    OpenAIRE

    Siede, W.; Allen, J B; Elledge, S. J.; Friedberg, E C

    1996-01-01

    The Saccharomyces cerevisiae gene MEC1 represents a structural homolog of the human gene ATM mutated in ataxia telangiectasia patients. Like human ataxia telangiectasia cell lines, mec1 mutants are defective in G2 and S-phase cell cycle checkpoints in response to radiation treatment. Here we show an additional defect in G1 arrest following treatment with UV light or gamma rays and map a defective arrest stage at or upstream of START in the yeast cell cycle.

  8. JP-HHT phenotype in Danish patients with SMAD4 mutations

    DEFF Research Database (Denmark)

    Jelsig, A M; Tørring, P M; Kjeldsen, A D

    2016-01-01

    Patients with germline mutations in SMAD4 can present symptoms of both juvenile polyposis syndrome (JPS) and hereditary hemorrhagic telangiectasia (HHT): the JP-HHT syndrome. The complete phenotypic picture of this syndrome is only just emerging. We describe the clinical characteristics of 14...

  9. Infantile spinocerebellar ataxia type 6: relationship to episodic ataxia type 6.

    Science.gov (United States)

    Gosalakkal, Jayaprakash A; Swamy, Puttamadaiah Mallikarjuna

    2006-04-01

    Spinocerebellar ataxia type 6 is one of the hereditary progressive cerebellar ataxias first described in 1997. Genetic studies have identified the defect as abnormal expansion of CAG trinucleotide repeat in 1 alpha subunit of the calcium channel gene located on chromosome 19p13. The symptomatic individuals have 20 or 23 repeats in contrast to normal individuals who manifest 19 or less CAG repeats. Most of the earlier reports indicate the age of onset of symptoms to be after the third decade. This report presents a patient with episodic symptoms soon after birth, which is unusual, and to our knowledge this is the youngest reported case. The clinical features of spinocerebellar ataxia type 6 are variable. The mode of inheritance and the common symptoms of this condition are also discussed.

  10. Genetics Home Reference: PRICKLE1-related progressive myoclonus epilepsy with ataxia

    Science.gov (United States)

    ... with ataxia PRICKLE1-related progressive myoclonus epilepsy with ataxia Printable PDF Open All Close All Enable Javascript ... boxes. Description PRICKLE1 -related progressive myoclonus epilepsy with ataxia is a rare inherited condition characterized by recurrent ...

  11. Keys to overcoming the challenge of diagnosing autosomal recessive spinocerebellar ataxia.

    Science.gov (United States)

    Arias, M

    2016-07-23

    Autosomal recessive spinocerebellar ataxia refers to a large group of diseases affecting the cerebellum and/or its connections, although they may also involve other regions of the nervous system. These diseases are accompanied by a wide range of systemic manifestations (cardiopathies, endocrinopathies, skeletal deformities, and skin abnormalities). This study reviews current knowledge of the most common forms of autosomal recessive spinocerebellar ataxia in order to provide tips that may facilitate diagnosis. A thorough assessment of clinical phenotype (pure cerebellar or cerebellar-plus syndrome, with or without systemic manifestations), laboratory tests (vitamin E, acanthocytosis, albumin, cholesterol, phytanic acid, lactic acid, creatine kinase, cholestanol, coenzyme Q10, alpha-fetoprotein, copper, ceruloplasmin, chitotriosidase), nerve conduction studies (presence and type of neuropathy), and an magnetic resonance imaging study (presence of cerebellar atrophy, presence and location of signal alterations) may help establish a suspected diagnosis, which should be confirmed by detecting the underlying genetic mutation. A positive genetic test result is necessary to determine prognosis and provide adequate genetic counselling, and will also permit appropriate treatment of some entities (abetalipoproteinaemia, ataxia with vitamin E deficiency, Refsum disease, cerebrotendinous xanthomatosis, Niemann-Pick disease type C, Wilson disease). Without a genetic diagnosis, conducting basic research and therapeutic trials will not be possible. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Video game-based coordinative training improves ataxia in children with degenerative ataxia.

    Science.gov (United States)

    Ilg, Winfried; Schatton, Cornelia; Schicks, Julia; Giese, Martin A; Schöls, Ludger; Synofzik, Matthis

    2012-11-13

    Degenerative ataxias in children present a rare condition where effective treatments are lacking. Intensive coordinative training based on physiotherapeutic exercises improves degenerative ataxia in adults, but such exercises have drawbacks for children, often including a lack of motivation for high-frequent physiotherapy. Recently developed whole-body controlled video game technology might present a novel treatment strategy for highly interactive and motivational coordinative training for children with degenerative ataxias. We examined the effectiveness of an 8-week coordinative training for 10 children with progressive spinocerebellar ataxia. Training was based on 3 Microsoft Xbox Kinect video games particularly suitable to exercise whole-body coordination and dynamic balance. Training was started with a laboratory-based 2-week training phase and followed by 6 weeks training in children's home environment. Rater-blinded assessments were performed 2 weeks before laboratory-based training, immediately prior to and after the laboratory-based training period, as well as after home training. These assessments allowed for an intraindividual control design, where performance changes with and without training were compared. Ataxia symptoms were significantly reduced (decrease in Scale for the Assessment and Rating of Ataxia score, p = 0.0078) and balance capacities improved (dynamic gait index, p = 0.04) after intervention. Quantitative movement analysis revealed improvements in gait (lateral sway: p = 0.01; step length variability: p = 0.01) and in goal-directed leg placement (p = 0.03). Despite progressive cerebellar degeneration, children are able to improve motor performance by intensive coordination training. Directed training of whole-body controlled video games might present a highly motivational, cost-efficient, and home-based rehabilitation strategy to train dynamic balance and interaction with dynamic environments in a large variety of young-onset neurologic

  13. Trinucleotide repeat expansion of spinocerebellar ataxia (SCA1) found in a Chinese family.

    Science.gov (United States)

    Cai, T; Yu, P; Chen, X; Lopa, M

    1998-02-01

    To investigate the gene mutation and the ratio of the spinocerebellar ataxia type 1 (SCA1) in Chinese patients with autosomal dominant spinocerebellar ataxia (ADSCA). The family material and DNA samples were collected from thirteen families with ADSCA. To determine the characteristics of the CAG trinucleotide repeats in SCA1 gene, the PCR products of the Rep1 and Rep2 primers were analyzed, and the bands with CAG repeat expansion were cloned by PCR2. 1 vector and sequenced. One family was found to have an expanded CAG repeat in the 13 families with ADSCA. The clinically affected individual was heterozygous with one disease allele being 55 CAG repeats, whereas the mean size of the CAG repeats on 104 chromosomes generated from unrelated control Chinese individuals is 29.3 (ranging from 18 to 34). The frequency of the SCA1 mutation is about 7% in the 13 Chinese families with ADSCA, suggesting that this type of genetic defect is not the main cause involved in the pathogenesis of ADSCA in China. Since the mutation has also been found in Caucasian, Japanese, Malaysian, and Bangladeshi kindreds, it is suggested that this genetic defect may well have multiple origins in different ethnic groups.

  14. Response to ethanol induced ataxia between C57BL/6J and 129X1/SvJ mouse strains using a treadmill based assay

    OpenAIRE

    Hansen, Stephen T.; Pulst, Stefan M.

    2012-01-01

    More sensitive assays of mouse motor ataxia may provide a better understanding of the pathological profile. Treadmill gait analysis using ventral imaging allows for unhindered access to the ambulating mouse. In contrast to genetic mutations or exogenous brain injury, ethanol (EtOH) allows for the detection of dose dependent changes in motor behavior, which can be used to assess an assay’s detection sensitivity. EtOH induced ataxia was assessed in C57BL/6J (B6) and 129X1/SvJ (129) mice using t...

  15. Comparative multiplex dosage analysis in spinocerebellar ataxia type 2 patients.

    Science.gov (United States)

    Calì, F; Chiavetta, V; Ragalmuto, A; Vinci, M; Ruggeri, G; Schinocca, P; Romano, V

    2013-04-12

    We developed a new application of comparative multiplex dosage analysis (CMDA) for evaluation of the ataxin 2 gene. Expansions of the triplet CAG can cause spinocerebellar ataxia type 2 (SCA2), a neurodegenerative disease with an autosomal-dominant mode of inheritance. Molecular diagnosis of SCA2 is routinely based on the use of conventional PCR to detect the CAG expansion. However, PCR does not amplify an allele with an expansion of many triplets (>80), which is typically found in infantile and juvenile forms of SCA2, thus leading to false negatives. We propose the analysis of the ATXN2 gene by CMDA to complement existing methods currently used for the detection of large expansions of the CAG repeat. Using CMDA, the presence of any longer mutated allele in a heterozygous patient or fetus would be inferred due to dosage variation of the very frequent normal allele #22. CMDA can be completed in 1 day, at very low cost, and would be a useful tool for prenatal diagnosis and for diagnosis of presymptomatic forms of early-onset SCA2.

  16. Treatment of Laryngeal Telangiectatic Lesions in a Patient Diagnosed with Hereditary Haemorrhagic Telangiectasia

    DEFF Research Database (Denmark)

    Kjeldsen, Anette Drøhse; Printz, Trine; Slot Mehlum, Camilla

    2015-01-01

    Abstract We here present a case concerning a 69 year old female patient with Hereditary Haemorrhagic Telangiectasia (HHT). She was suffering from hoarseness due to a telangiectatic lesion on the right vocal cord. The lesion was treated with laser and the voice improved markedly, which is document...

  17. Splenic arteriovenous malformation manifested by thrombocytopenia in hereditary hemorrhagic telangiectasia: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hee Jin; Choi, Jong Cheol; Oh, Jong Yeong; Cho, Jin Han; Kang, Myong Jin; Lee, Jin Hwa; Yoon, Seong Kuk; Nam, Kyeong Jin [College of Medicine, Dong-A University, Busan (Korea, Republic of)

    2008-09-15

    Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant inherited disease characterized by epistaxis, telangiectases and visceral arteriovenous malformations (AVMs). The involvement of the gastrointestinal tract, liver, lung and cerebrum for HHT has been described, whereas little is known about AVMs of the spleen. We report here the radiological findings of a case of a splenic AVM manifested by thrombocytopenia in HHT.

  18. Global Gene Expression Profiling of Telangiectasial Tissue from Patients with Hereditary Haemorrhagic Telangiectasia

    DEFF Research Database (Denmark)

    Tørring, Pernille M; Larsen, Martin Jakob; Kjeldsen, Anette D

    2015-01-01

    and arteriovenous malformations in visceral organs, primarily the lungs, brain and liver. The most common symptom in HHT is epistaxis originating from nasal telangiectasia, which can be difficult to prevent and can lead to severe anaemia. The clinical manifestations of HHT are extremely variable, even within family...

  19. Intravenous Bevacizumab Therapy in a Patient with Hereditary Hemorrhagic Telangiectasia, ENG E137K, Alcoholic Cirrhosis, and Portal Hypertension

    Directory of Open Access Journals (Sweden)

    Luigi F. Bertoli

    2017-05-01

    Full Text Available Intravenous bevacizumab decreased mucosal bleeding in some patients with hereditary hemorrhagic telangiectasia (HHT. We treated a 47-year-old male who had HHT, severe epistaxis, and gastrointestinal bleeding, alcoholic cirrhosis, and portal hypertension with intravenous bevacizumab 2.5 mg/kg every 2 weeks. We tabulated these measures weekly during weeks 1–33 (no bevacizumab; 34–57 (bevacizumab; and 58–97 (no bevacizumab: hemoglobin (Hb levels; platelet counts; units of transfused packed erythrocytes (PRBC units; and quantities of iron infused as iron dextran to support erythropoiesis. We performed univariate and multivariable analyses. We sequenced his ENG and ACVRL1 genes. Epistaxis and melena decreased markedly during bevacizumab treatment. He reported no adverse effects due to bevacizumab. Mean weekly Hb levels were significantly higher and mean weekly PRBC units and quantities of intravenous iron were significantly lower during bevacizumab treatment. We performed a multiple regression on weekly Hb levels using these independent variables: bevacizumab treatment (dichotomous; weekly platelet counts; weekly PRBC units; and weekly quantities of intravenous iron. There was 1 positive association: (bevacizumab treatment; p = 0.0046 and 1 negative association (PRBC units; p = 0.0004. This patient had the novel ENG mutation E137K (exon 4; c.409G→A. Intravenous bevacizumab treatment 2.5 mg/kg every 2 weeks for 24 weeks was well-tolerated by a patient with HHT due to ENG E137K and was associated with higher weekly Hb levels and fewer weekly PRBC units.

  20. Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia.

    Science.gov (United States)

    Park, Sung Ok; Wankhede, Mamta; Lee, Young Jae; Choi, Eun-Jung; Fliess, Naime; Choe, Se-Woon; Oh, Seh-Hoon; Walter, Glenn; Raizada, Mohan K; Sorg, Brian S; Oh, S Paul

    2009-11-01

    Arteriovenous malformations (AVMs) are vascular anomalies where arteries and veins are directly connected through a complex, tangled web of abnormal arteries and veins instead of a normal capillary network. AVMs in the brain, lung, and visceral organs, including the liver and gastrointestinal tract, result in considerable morbidity and mortality. AVMs are the underlying cause of three major clinical symptoms of a genetic vascular dysplasia termed hereditary hemorrhagic telangiectasia (HHT), which is characterized by recurrent nosebleeds, mucocutaneous telangiectases, and visceral AVMs and caused by mutations in one of several genes, including activin receptor-like kinase 1 (ALK1). It remains unknown why and how selective blood vessels form AVMs, and there have been technical limitations to observing the initial stages of AVM formation. Here we present in vivo evidence that physiological or environmental factors such as wounds in addition to the genetic ablation are required for Alk1-deficient vessels to develop to AVMs in adult mice. Using the dorsal skinfold window chamber system, we have demonstrated for what we believe to be the first time the entire course of AVM formation in subdermal blood vessels by using intravital bright-field images, hyperspectral imaging, fluorescence recordings of direct arterial flow through the AV shunts, and vascular casting techniques. We believe our data provide novel insights into the pathogenetic mechanisms of HHT and potential therapeutic approaches.

  1. ALK5- and TGFBR2-independent role of ALK1 in the pathogenesis of hereditary hemorrhagic telangiectasia type 2.

    Science.gov (United States)

    Park, Sung O; Lee, Young Jae; Seki, Tsugio; Hong, Kwon-Ho; Fliess, Naime; Jiang, Zhigang; Park, Alice; Wu, Xiaofang; Kaartinen, Vesa; Roman, Beth L; Oh, S Paul

    2008-01-15

    ALK1 belongs to the type I receptor family for transforming growth factor-beta family ligands. Heterozygous ALK1 mutations cause hereditary hemorrhagic telangiectasia type 2 (HHT2), a multisystemic vascular disorder. Based largely on in vitro studies, TGF-beta1 has been considered as the most likely ALK1 ligand related to HHT, yet the identity of the physiologic ALK1 ligand remains controversial. In cultured endothelial cells, ALK1 and another TGF-beta type I receptor, ALK5, regulate angiogenesis by controlling TGF-beta signal transduction, and ALK5 is required for ALK1 signaling. However, the extent to which such interactions between these 2 receptors play a role in pathogenesis of HHT is unknown. We directly addressed these issues in vivo by comparing the phenotypes of mice in which the Alk1, Alk5, or Tgfbr2 gene was conditionally deleted in restricted vascular endothelia using a novel endothelial Cre transgenic line. Alk1-conditional deletion resulted in severe vascular malformations mimicking all pathologic features of HHT. Yet Alk5- or Tgfbr2-conditional deletion in mice, or Alk5 inhibition in zebrafish, did not affect vessel morphogenesis. These data indicate that neither ALK5 nor TGFBR2 is required for ALK1 signaling pertinent to the pathogenesis of HHT and suggest that HHT might not be a TGF-beta subfamily disease.

  2. Drug-induced cerebellar ataxia: a systematic review

    NARCIS (Netherlands)

    Gaalen, J. van; Kerstens, F.G.; Maas, R.P.P.W.M.; Harmark, L.; Warrenburg, B.P.C. van de

    2014-01-01

    BACKGROUND AND OBJECTIVES: Cerebellar ataxia can be induced by a large number of drugs. We here conducted a systemic review of the drugs that can lead to cerebellar ataxia as an adverse drug reaction (ADR). METHODS: We performed a systematic literature search in Pubmed (1966 to January 2014) and

  3. Seasonal ataxia: a case report of a disappearing disease

    African Journals Online (AJOL)

    Abstract: Introduction: Seasonal ataxia is a clinical syndrome of acute cerebellar ataxia which follows ingestion of roasted larvae of. Anaphe venata Butler, an alternative protein source consumed in western Nigeria. It was first reported in the 1950s in west- ern Nigeria when it caused a wave of epidemics. This is the first ...

  4. Seasonal ataxia: a case report of a disappearing disease | Moyo ...

    African Journals Online (AJOL)

    Introduction: Seasonal ataxia is a clinical syndrome of acute cerebellar ataxia which follows ingestion of roasted larvae of Anaphe venata Butler, an alternative protein source consumed in western Nigeria. It was first reported in the 1950s in western Nigeria when it caused a wave of epidemics. This is the first case report of ...

  5. Longitudinal Cerebral Blood Flow Changes during Speech in Hereditary Ataxia

    Science.gov (United States)

    Sidtis, John J.; Strother, Stephen C.; Naoum, Ansam; Rottenberg, David A.; Gomez, Christopher

    2010-01-01

    The hereditary ataxias constitute a group of degenerative diseases that progress over years or decades. With principal pathology involving the cerebellum, dysarthria is an early feature of many of the ataxias. Positron emission tomography was used to study regional cerebral blood flow changes during speech production over a 21 month period in a…

  6. Ataxia rating scales are age-dependent in healthy children

    NARCIS (Netherlands)

    Brandsma, Rick; Spits, Anne H.; Kuiper, Marieke J.; Lunsing, Roelinka J.; Burger, Huibert; Kremer, Hubertus P.; Sival, Deborah A.

    AIM: To investigate ataxia rating scales in children for reliability and the effect of age and sex. METHOD: Three independent neuropaediatric observers cross-sectionally scored a set of paediatric ataxia rating scales in a group of 52 healthy children (26 males, 26 females) aged 4 to 16 years (mean

  7. Progressive cerebellar atrophy: hereditary ataxias and disorders with spinocerebellar degeneration

    NARCIS (Netherlands)

    Wolf, N.I.; Koenig, M.; Dulac, O.L.M.; Sarnat, H.B.

    2013-01-01

    The hereditary ataxias with onset in childhood are a group of heterogeneous disorders, usually with autosomal recessive inheritance. In many of them, magnetic resonance imaging (MRI) shows cerebellar atrophy. The most prominent exception to this is Friedreich's ataxia, where MRI shows normal

  8. Autosomal recessive cerebellar ataxia with bull's-eye macular dystrophy.

    NARCIS (Netherlands)

    Cruysberg, J.R.M.; Eerola, K.U.; Vrijland, H.R.; Aandekerk, A.L.; Kremer, H.P.H.; Deutman, A.F.

    2002-01-01

    PURPOSE: In 1980, we published in the American Journal of Ophthalmology two siblings with hereditary ataxia and atrophic maculopathy. The report is cited in the literature as autosomal dominant cerebellar ataxia with retinal degeneration. The purpose of the present study is to document the

  9. A case of spinocerebellar ataxia type 6 mimicking olivopontocerebellar atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, N.; Katayama, T.; Makita, Y.; Kuroda, K.; Aizawa, H.; Kikuchi, K. [First Dept. of Internal Medicine, Asahikawa Medical Coll. (Japan)

    1999-07-01

    Spinocerebellar ataxia type 6 (SCA6) is an autosomal dominant, slowly progressive cerebellar ataxia without multisystem involvement. We report a 57-year-old woman with genetically confirmed SCA6 who showed clinical features of olivopontocerebellar atrophy. Conventional T2-weighted and FLAIR MRI demonstrated high signal in the middle cerebellar peduncles, in addition to mild atrophy of the pons and cerebellum. (orig.)

  10. Spinocerebellar ataxia 17: Inconsistency between phenotype and neuroimage findings

    Directory of Open Access Journals (Sweden)

    Jin Zhang

    2013-01-01

    Full Text Available Spinocerebellar ataxia 17 (SCA17 is an autosomal dominant neurodegenerative disease clinically characterized by the presence of cerebellar ataxia in combination with variable neurological symptoms. Here we report a Chinese SCA17 family which proband′s clinical manifestation was inconsistent with the neuroimage findings.

  11. Dysarthria and Friedreich's Ataxia: What Can Intelligibility Assessment Tell Us?

    Science.gov (United States)

    Blaney, Bronagh; Hewlett, Nigel

    2007-01-01

    Background: Friedreich's ataxia is one of the most common hereditary disorders of the nervous system. Dysarthria is a pervasive symptom of Friedreich's ataxia, yet the clinical presentation of speech symptoms remains poorly understood, leaving clinicians without the evidence required to develop therapy interventions. Aims: The research reported…

  12. Gerstmann's syndrome and unilateral optic ataxia in the emergency department.

    Science.gov (United States)

    Barbosa, Breno José Alencar Pires; de Brito, Marcelo Houat; Rodrigues, Júlia Chartouni; Kubota, Gabriel Taricani; Parmera, Jacy Bezerra

    2017-01-01

    A 75-year-old right-handed woman presented to the emergency department with simultanagnosia and right unilateral optic ataxia. Moreover, the patient had agraphia, acalculia, digital agnosia and right-left disorientation, consistent with complete Gerstmann's syndrome. This case highlights the concurrence of Gerstmann's syndrome and unilateral optic ataxia in the acute phase of a left middle cerebral artery stroke.

  13. Redefining cerebellar ataxia in degenerative ataxias: lessons from recent research on cerebellar systems.

    Science.gov (United States)

    Tada, Masayoshi; Nishizawa, Masatoyo; Onodera, Osamu

    2015-08-01

    Recent advances in our understanding of neurophysiological functions in the cerebellar system have revealed that each region involved in degenerative ataxias contributes differently. To regulate voluntary movements, the cerebellum forms internal models within its neural circuits that mimic the behaviour of the sensorimotor system and objects in the external environment. The cerebellum forms two different internal models: forward and inverse. The forward model is formed by efference copy signals conveyed by the corticopontocerebellar system, and it derives the estimated consequences for action. The inverse model describes sequences of motor commands to accomplish an aim. During motor learning, we improve internal models by comparing the estimated consequence of an action from the forward model with the actual consequence of the action produced by the inverse model. The functions of the cerebellum encompass the formation, storage and selection of internal models. Considering the neurophysiological properties of the cerebellar system, we have classified degenerative ataxias into four types depending on which system is involved: Purkinje cells, the corticopontocerebellar system, the spinocerebellar system and the cerebellar deep nuclei. With regard to their respective contributions to the internal models, we speculate that loss of Purkinje cells leads to malformation of the internal models, whereas disturbance of the afferent system, corticopontocerebellar system or spinocerebellar system leads to mis-selection of the proper internal model. An understanding of the pathophysiological properties of ataxias in each degenerative ataxia enables the development of new methods to evaluate ataxias. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Cerebellar ataxias: β‐III spectrin's interactions suggest common pathogenic pathways

    Science.gov (United States)

    Perkins, Emma; Suminaite, Daumante

    2016-01-01

    Abstract Spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of disorders all characterised by postural abnormalities, motor deficits and cerebellar degeneration. Animal and in vitro models have revealed β‐III spectrin, a cytoskeletal protein present throughout the soma and dendritic tree of cerebellar Purkinje cells, to be required for the maintenance of dendritic architecture and for the trafficking and/or stabilisation of several membrane proteins: ankyrin‐R, cell adhesion molecules, metabotropic glutamate receptor‐1 (mGluR1), voltage‐gated sodium channels (Nav) and glutamate transporters. This scaffold of interactions connects β‐III spectrin to a wide variety of proteins implicated in the pathology of many SCAs. Heterozygous mutations in the gene encoding β‐III spectrin (SPTBN2) underlie SCA type‐5 whereas homozygous mutations cause spectrin associated autosomal recessive ataxia type‐1 (SPARCA1), an infantile form of ataxia with cognitive impairment. Loss‐of β‐III spectrin function appears to underpin cerebellar dysfunction and degeneration in both diseases resulting in thinner dendrites, excessive dendritic protrusion with loss of planarity, reduced resurgent sodium currents and abnormal glutamatergic neurotransmission. The initial physiological consequences are a decrease in spontaneous activity and excessive excitation, likely to be offsetting each other, but eventually hyperexcitability gives rise to dark cell degeneration and reduced cerebellar output. Similar molecular mechanisms have been implicated for SCA1, 2, 3, 7, 13, 14, 19, 22, 27 and 28, highlighting alterations to intrinsic Purkinje cell activity, dendritic architecture and glutamatergic transmission as possible common mechanisms downstream of various loss‐of‐function primary genetic defects. A key question for future research is whether similar mechanisms underlie progressive cerebellar decline in normal ageing. PMID:26821241

  15. In vivo impact of presynaptic calcium channel dysfunction on motor axons in episodic ataxia type 2.

    Science.gov (United States)

    Tomlinson, Susan E; Tan, S Veronica; Burke, David; Labrum, Robyn W; Haworth, Andrea; Gibbons, Vaneesha S; Sweeney, Mary G; Griggs, Robert C; Kullmann, Dimitri M; Bostock, Hugh; Hanna, Michael G

    2016-02-01

    Ion channel dysfunction causes a range of neurological disorders by altering transmembrane ion fluxes, neuronal or muscle excitability, and neurotransmitter release. Genetic neuronal channelopathies affecting peripheral axons provide a unique opportunity to examine the impact of dysfunction of a single channel subtype in detail in vivo. Episodic ataxia type 2 is caused by mutations in CACNA1A, which encodes the pore-forming subunit of the neuronal voltage-gated calcium channel Cav2.1. In peripheral motor axons, this channel is highly expressed at the presynaptic neuromuscular junction where it contributes to action potential-evoked neurotransmitter release, but it is not expressed mid-axon or thought to contribute to action potential generation. Eight patients from five families with genetically confirmed episodic ataxia type 2 underwent neurophysiological assessment to determine whether axonal excitability was normal and, if not, whether changes could be explained by Cav2.1 dysfunction. New mutations in the CACNA1A gene were identified in two families. Nerve conduction studies were normal, but increased jitter in single-fibre EMG studies indicated unstable neuromuscular transmission in two patients. Excitability properties of median motor axons were compared with those in 30 age-matched healthy control subjects. All patients had similar excitability abnormalities, including a high electrical threshold and increased responses to hyperpolarizing (P ataxia type 2 thus has unexpected effects on axon excitability, which may reflect an indirect effect of abnormal calcium current fluxes during development. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved.

  16. Posterior fossa imaging in 158 children with ataxia.

    Science.gov (United States)

    Boddaert, N; Desguerre, I; Bahi-Buisson, N; Romano, S; Valayannopoulos, V; Saillour, Y; Seidenwurm, D; Grevent, D; Berteloot, L; Lebre, A-S; Zilbovicius, M; Puget, S; Salomon, R; Attie-Bitach, T; Munnich, A; Brunelle, F; de Lonlay, P

    2010-10-01

    To propose a MRI cerebellar algorithm that may be applied to guide genetic/malformative or biochemical investigations for patients with cerebellar ataxia. Cerebral MRI of 158 patients with cerebellar ataxia and no supratentorial abnormality were examined according to a new categorization system based on posterior fossa imaging. The clinical and radiological findings were confronted to biochemical and/or genetic results using the MR cerebellar algorithm. Seven groups of cerebellar MRI pattern were described: vermian dysgenesis (n=27), cerebellar hypoplasia (n=15), hemispheric cerebellar dysgenesis (n=6), unilateral hemispheric atrophy (n=5), global cerebellar atrophy (n=84), signal abnormalities (n=11) and normal MRI (n=10). Cerebellar hypoplasia, vermian dysgenesis and hemispheric cerebellar dysgenesis groups were classified as malformative disorders. Global atrophy and signal abnormality groups were classified as metabolic disorders. In the vermian dysgenesis group, a specific genetic diagnosis was obtained in eight children (8/27) and all of the mutated genes (AHI1 (JBS3), CEP290 (JBS5), TMEM67 (JBS6), and RPGRIP1L (JBS7)) are involved in primary cilia function. In the group of pontocerebellar hypoplasia specific genetic diagnosis was obtained in one patient (PCH2) (1/15). Thus, nine of 42 children classified as malformative disorder had a molecular diagnosis. Global atrophy and signal abnormality groups were classified as metabolic disorders, specific biochemical was obtained in 46/95 children. In global atrophy group, respiratory chain deficiency was diagnosed in 18 children (18/84). In 21 children a congenital disorders of glycosylation type 1a (CDG Ia) was diagnosed (21/84) and infantile neuroaxonale dystrophy (INAD) was diagnosed in one child. In signal abnormalities group, specific biochemical diagnosis was obtained in six out of 11 children, five children with respiratory chain deficiency and one child with sulphite oxidase deficiency. In hemispheric

  17. Personality and Neuropsychological Profiles in Friedreich Ataxia.

    Science.gov (United States)

    Sayah, Sabrina; Rotgé, Jean-Yves; Francisque, Hélène; Gargiulo, Marcela; Czernecki, Virginie; Justo, Damian; Lahlou-Laforet, Khadija; Hahn, Valérie; Pandolfo, Massimo; Pelissolo, Antoine; Fossati, Philippe; Durr, Alexandra

    2017-10-30

    Friedreich ataxia, an autosomal recessive mitochondrial disease, is the most frequent inherited ataxia. Many studies have attempted to identify cognitive and affective changes associated with the disease, but conflicting results have been obtained, depending on the tests used and because many of the samples studied were very small. We investigated personality and neuropsychological characteristics in a cohort of 47 patients with genetically confirmed disease. The neuropsychological battery assessed multiple cognition domains: processing speed, attention, working memory, executive functions, verbal memory, vocabulary, visual reasoning, emotional recognition, and social cognition. Personality was assessed with the Temperament and Character Inventory, and depressive symptoms were assessed with the Beck Depression Inventory. We found deficits of sustained attention, processing speed, semantic capacities, and verbal fluency only partly attributable to motor deficit or depressed mood. Visual reasoning, memory, and learning were preserved. Emotional processes and social cognition were unimpaired. We also detected a change in automatic processes, such as reading. Personality traits were characterized by high persistence and low self-transcendence. The mild cognitive impairment observed may be a developmental rather than degenerative problem, due to early cerebellum dysfunction, with the impairment of cognitive and emotional processing. Disease manifestations at crucial times for personality development may also have an important impact on personality traits.

  18. PRRT2 gene mutations

    Science.gov (United States)

    Gardiner, Alice R.; Bhatia, Kailash P.; Stamelou, Maria; Dale, Russell C.; Kurian, Manju A.; Schneider, Susanne A.; Wali, G.M.; Counihan, Tim; Schapira, Anthony H.; Spacey, Sian D.; Valente, Enza-Maria; Silveira-Moriyama, Laura; Teive, Hélio A.G.; Raskin, Salmo; Sander, Josemir W.; Lees, Andrew; Warner, Tom; Kullmann, Dimitri M.; Wood, Nicholas W.; Hanna, Michael

    2012-01-01

    ABSTRACT Objective: The proline-rich transmembrane protein (PRRT2) gene was recently identified using exome sequencing as the cause of autosomal dominant paroxysmal kinesigenic dyskinesia (PKD) with or without infantile convulsions (IC) (PKD/IC syndrome). Episodic neurologic disorders, such as epilepsy, migraine, and paroxysmal movement disorders, often coexist and are thought to have a shared channel-related etiology. To investigate further the frequency, spectrum, and phenotype of PRRT2 mutations, we analyzed this gene in 3 large series of episodic neurologic disorders with PKD/IC, episodic ataxia (EA), and hemiplegic migraine (HM). Methods: The PRRT2 gene was sequenced in 58 family probands/sporadic individuals with PKD/IC, 182 with EA, 128 with HM, and 475 UK and 96 Asian controls. Results: PRRT2 genetic mutations were identified in 28 out of 58 individuals with PKD/IC (48%), 1/182 individuals with EA, and 1/128 individuals with HM. A number of loss-of-function and coding missense mutations were identified; the most common mutation found was the p.R217Pfs*8 insertion. Males were more frequently affected than females (ratio 52:32). There was a high proportion of PRRT2 mutations found in families and sporadic cases with PKD associated with migraine or HM (10 out of 28). One family had EA with HM and another large family had typical HM alone. Conclusions: This work expands the phenotype of mutations in the PRRT2 gene to include the frequent occurrence of migraine and HM with PKD/IC, and the association of mutations with EA and HM and with familial HM alone. We have also extended the PRRT2 mutation type and frequency in PKD and other episodic neurologic disorders. PMID:23077024

  19. Assessment of speech in early-onset ataxia : a pilot study

    NARCIS (Netherlands)

    Kuiper, Marieke J.; Brandsma, Rick; Lawerman, T.F.; Lunsing, Roelineke J.; Keegstra, Anne L.; Burger, Huibert; De Koning, Tom J.; Tijssen, Marina A. J.; Sival, Deborah A.

    2014-01-01

    AIM: The aim of the study was to determine whether paediatric ataxia speech subscores are reliably applicable for international early-onset ataxia (EOA) databases. If so, we reasoned that ataxia speech subscores should be associated with ataxia scores and involve high interobserver agreement,

  20. Ataxia rating scales are age-dependent in healthy children.

    Science.gov (United States)

    Brandsma, Rick; Spits, Anne H; Kuiper, Marieke J; Lunsing, Roelinka J; Burger, Huibert; Kremer, Hubertus P; Sival, Deborah A

    2014-06-01

    To investigate ataxia rating scales in children for reliability and the effect of age and sex. Three independent neuropaediatric observers cross-sectionally scored a set of paediatric ataxia rating scales in a group of 52 healthy children (26 males, 26 females) aged 4 to 16 years (mean age 10y 5mo SD 3y 11mo). The investigated scales involved the commonly applied International Cooperative Ataxia Rating Scale (ICARS), the Scale for Assessment and Rating of Ataxia (SARA), the Brief Ataxia Rating Scale (BARS), and PEG-board tests. We investigated the interrelatedness between individual ataxia scales, the influence of age and sex, inter- and intra-observer agreement, and test-retest reliability. Spearman's rank correlations revealed strong correlations between ICARS, SARA BARS, and PEG-board test (all pataxia rating scales are reliable, but should include age-dependent interpretation in children up to 12 years of age. To enable longitudinal interpretation of quantitative ataxia rating scales in children, European paediatric normative values are necessary. © 2014 Mac Keith Press.

  1. Update on the Pharmacotherapy of Cerebellar Ataxia and Nystagmus.

    Science.gov (United States)

    Feil, Katharina; Bremova, Tatiana; Muth, Carolin; Schniepp, Roman; Teufel, Julian; Strupp, Michael

    2016-02-01

    Pharmacological treatment of cerebellar ataxias and cerebellar nystagmus still remains difficult. The efficacy of most of the agents recommended in the past for symptomatic or even causative therapy could not be proven in larger state-of-the art clinical trials. Exceptions are (a) 4-aminopyridine (4-AP) for episodic ataxia type 2 (EA2): one observational and one randomized controlled trial showed a significant effect on the number of attacks of ataxia and quality of life; (b) aminopyridines in cerebellar downbeat nystagmus (DBN): two randomized controlled trials and several observational studies demonstrate a significant improvement of the intensity of DBN, visual acuity, and postural imbalance. In both diseases the sustained-release form is evidently also efficient; (c) 4-AP in cerebellar gait ataxia: evidence comes from two observational studies. (d) chlorzoxazone in DBN which, however, was so far demonstrated in only one observational study; (e) the modified amino acid acetyl-DL-leucine: evidently effective in cerebellar ataxias, shown in three observational studies, one on patients with Niemann-Pick type C; its mode of action has to be evaluated in animal models and on a cellular/electrophysiological level. There are ongoing randomized placebo-controlled trials on EA2 with 4-AP versus acetazolamide (EAT-2-TREAT), cerebellar gait ataxia with 4-AP (FACEG), and a multinational trial on cerebellar ataxia with acetyl-DL-leucine (ALCAT).

  2. Mitochondrial EFTs defects in juvenile-onset Leigh disease, ataxia, neuropathy, and optic atrophy.

    Science.gov (United States)

    Ahola, Sofia; Isohanni, Pirjo; Euro, Liliya; Brilhante, Virginia; Palotie, Aarno; Pihko, Helena; Lönnqvist, Tuula; Lehtonen, Tanita; Laine, Jukka; Tyynismaa, Henna; Suomalainen, Anu

    2014-08-19

    We report novel defects of mitochondrial translation elongation factor Ts (EFTs), with high carrier frequency in Finland and expand the manifestations of this disease group from infantile cardiomyopathy to juvenile neuropathy/encephalopathy disorders. DNA analysis, whole-exome analysis, protein biochemistry, and protein modeling. We used whole-exome sequencing to find the genetic cause of infantile-onset mitochondrial cardiomyopathy, progressing to juvenile-onset Leigh syndrome, neuropathy, and optic atrophy in 2 siblings. We found novel compound heterozygous mutations, c.944G>A [p.C315Y] and c.856C>T [p.Q286X], in the TSFM gene encoding mitochondrial EFTs. The same p.Q286X variant was found as compound heterozygous with a splice site change in a patient from a second family, with juvenile-onset optic atrophy, peripheral neuropathy, and ataxia. Our molecular modeling predicted the coding-region mutations to cause protein instability, which was experimentally confirmed in cultured patient cells, with mitochondrial translation defect and lacking EFTs. Only a single TSFM mutation has been previously described in different populations, leading to an infantile fatal multisystem disorder with cardiomyopathy. Sequence data from 35,000 Finnish population controls indicated that the heterozygous carrier frequency of p.Q286X change was exceptionally high in Finland, 1:80, but no homozygotes were found in the population, in our mitochondrial disease patient collection, or in an intrauterine fetal death material, suggesting early developmental lethality of the homozygotes. We show that in addition to early-onset cardiomyopathy, TSFM mutations should be considered in childhood and juvenile encephalopathies with optic and/or peripheral neuropathy, ataxia, or Leigh disease. © 2014 American Academy of Neurology.

  3. Spontaneous shaker rat mutant – a new model for X-linked tremor/ataxia

    Science.gov (United States)

    Figueroa, Karla P.; Paul, Sharan; Calì, Tito; Lopreiato, Raffaele; Karan, Sukanya; Frizzarin, Martina; Ames, Darren; Zanni, Ginevra; Brini, Marisa; Dansithong, Warunee; Milash, Brett; Scoles, Daniel R.; Carafoli, Ernesto; Pulst, Stefan M.

    2016-01-01

    ABSTRACT The shaker rat is an X-linked recessive spontaneous model of progressive Purkinje cell (PC) degeneration exhibiting a shaking ataxia and wide stance. Generation of Wistar Furth (WF)/Brown Norwegian (BN) F1 hybrids and genetic mapping of F2 sib-sib offspring using polymorphic markers narrowed the candidate gene region to 26 Mbp denoted by the last recombinant genetic marker DXRat21 at 133 Mbp to qter (the end of the long arm). In the WF background, the shaker mutation has complete penetrance, results in a stereotypic phenotype and there is a narrow window for age of disease onset; by contrast, the F2 hybrid phenotype was more varied, with a later age of onset and likely non-penetrance of the mutation. By deep RNA-sequencing, five variants were found in the candidate region; four were novel without known annotation. One of the variants caused an arginine (R) to cysteine (C) change at codon 35 of the ATPase, Ca2+ transporting, plasma membrane 3 (Atp2b3) gene encoding PMCA3 that has high expression in the cerebellum. The variant was well supported by hundreds of overlapping reads, and was found in 100% of all affected replicas and 0% of the wild-type (WT) replicas. The mutation segregated with disease in all affected animals and the amino acid change was found in an evolutionarily conserved region of PMCA3. Despite strong genetic evidence for pathogenicity, in vitro analyses of PMCA3R35C function did not show any differences to WT PMCA3. Because Atp2b3 mutation leads to congenital ataxia in humans, the identified Atp2b3 missense change in the shaker rat presents a good candidate for the shaker rat phenotype based on genetic criteria, but cannot yet be considered a definite pathogenic variant owing to lack of functional changes. PMID:27013529

  4. Spontaneous shaker rat mutant - a new model for X-linked tremor/ataxia.

    Science.gov (United States)

    Figueroa, Karla P; Paul, Sharan; Calì, Tito; Lopreiato, Raffaele; Karan, Sukanya; Frizzarin, Martina; Ames, Darren; Zanni, Ginevra; Brini, Marisa; Dansithong, Warunee; Milash, Brett; Scoles, Daniel R; Carafoli, Ernesto; Pulst, Stefan M

    2016-05-01

    The shaker rat is an X-linked recessive spontaneous model of progressive Purkinje cell (PC) degeneration exhibiting a shaking ataxia and wide stance. Generation of Wistar Furth (WF)/Brown Norwegian (BN) F1 hybrids and genetic mapping of F2 sib-sib offspring using polymorphic markers narrowed the candidate gene region to 26 Mbp denoted by the last recombinant genetic marker DXRat21 at 133 Mbp to qter (the end of the long arm). In the WF background, the shaker mutation has complete penetrance, results in a stereotypic phenotype and there is a narrow window for age of disease onset; by contrast, the F2 hybrid phenotype was more varied, with a later age of onset and likely non-penetrance of the mutation. By deep RNA-sequencing, five variants were found in the candidate region; four were novel without known annotation. One of the variants caused an arginine (R) to cysteine (C) change at codon 35 of the ATPase, Ca(2+) transporting, plasma membrane 3 (Atp2b3) gene encoding PMCA3 that has high expression in the cerebellum. The variant was well supported by hundreds of overlapping reads, and was found in 100% of all affected replicas and 0% of the wild-type (WT) replicas. The mutation segregated with disease in all affected animals and the amino acid change was found in an evolutionarily conserved region of PMCA3. Despite strong genetic evidence for pathogenicity, in vitro analyses of PMCA3(R35C) function did not show any differences to WT PMCA3. Because Atp2b3 mutation leads to congenital ataxia in humans, the identified Atp2b3 missense change in the shaker rat presents a good candidate for the shaker rat phenotype based on genetic criteria, but cannot yet be considered a definite pathogenic variant owing to lack of functional changes. © 2016. Published by The Company of Biologists Ltd.

  5. Spontaneous shaker rat mutant – a new model for X-linked tremor/ataxia

    Directory of Open Access Journals (Sweden)

    Karla P. Figueroa

    2016-05-01

    Full Text Available The shaker rat is an X-linked recessive spontaneous model of progressive Purkinje cell (PC degeneration exhibiting a shaking ataxia and wide stance. Generation of Wistar Furth (WF/Brown Norwegian (BN F1 hybrids and genetic mapping of F2 sib-sib offspring using polymorphic markers narrowed the candidate gene region to 26 Mbp denoted by the last recombinant genetic marker DXRat21 at 133 Mbp to qter (the end of the long arm. In the WF background, the shaker mutation has complete penetrance, results in a stereotypic phenotype and there is a narrow window for age of disease onset; by contrast, the F2 hybrid phenotype was more varied, with a later age of onset and likely non-penetrance of the mutation. By deep RNA-sequencing, five variants were found in the candidate region; four were novel without known annotation. One of the variants caused an arginine (R to cysteine (C change at codon 35 of the ATPase, Ca2+ transporting, plasma membrane 3 (Atp2b3 gene encoding PMCA3 that has high expression in the cerebellum. The variant was well supported by hundreds of overlapping reads, and was found in 100% of all affected replicas and 0% of the wild-type (WT replicas. The mutation segregated with disease in all affected animals and the amino acid change was found in an evolutionarily conserved region of PMCA3. Despite strong genetic evidence for pathogenicity, in vitro analyses of PMCA3R35C function did not show any differences to WT PMCA3. Because Atp2b3 mutation leads to congenital ataxia in humans, the identified Atp2b3 missense change in the shaker rat presents a good candidate for the shaker rat phenotype based on genetic criteria, but cannot yet be considered a definite pathogenic variant owing to lack of functional changes.

  6. The fragile x-associated tremor and ataxia syndrome (FXTAS A síndrome de tremor e ataxia associada ao X frágil (FXTAS

    Directory of Open Access Journals (Sweden)

    Leonardo Pires Capelli

    2010-10-01

    Full Text Available FXTAS (Fragile X-associated tremor and ataxia syndrome is a late- onset neurodegenerative disorder affecting mainly men, over 50 years of age, who are carriers of the FMR1 gene premutation. The full mutation of this gene causes the fragile X syndrome (FXS, the most common cause of inherited mental retardation. Individuals affected by FXTAS generally present intention tremor and gait ataxia that might be associated to specific radiological and/or neuropathological signs. Other features commonly observed are parkinsonism, cognitive decline, peripheral neuropathy and autonomic dysfunction. Nearly a decade after its clinical characterization, FXTAS is poorly recognized in Brazil. Here we present a review of the current knowledge on the clinical, genetic and diagnostic aspects of the disease.A FXTAS (síndrome de tremor e ataxia associada ao X frágil é uma doença neurodegenerativa de início tardio que afeta principalmente homens acima dos 50 anos de idade, portadores de pré-mutação do gene FMR1. A mutação completa desse gene é responsável pela síndrome do cromossomo X frágil (SXF, a causa mais comum de deficiência mental herdada. Indivíduos afetados pela FXTAS geralmente apresentam tremor de intenção e ataxia de marcha que podem estar associados a sinais radiológicos ou neuropatológicos específicos. Outras características comumente observadas são parkinsonismo, declínio cognitivo, neuropatia periférica e disfunções autonômicas. Quase uma década após sua caracterização clínica, a FXTAS é mal conhecida por médicos no Brasil. Esta revisão apresenta o conhecimento atual sobre os aspectos clínicos, genéticos e diagnósticos da síndrome.

  7. Ataxia cerebelar aguda na criança Acute cerebellar ataxia in children

    Directory of Open Access Journals (Sweden)

    Valeriana Moura Ribeiro

    1968-03-01

    Full Text Available São relatados os casos de 6 crianças com ataxia cerebelar aguda. Admitem os autores a presença de um fator etiológico de caráter viral comum a todos êles, discutindo os mecanismos patogênicos com base nos casos da literatura. A evolução foi favorável em todos os pacientes, com regressão completa da sintomatologia, dentro do período de 6 a 60 dias.Clinical observations of 6 children with acute cerebellar ataxia and respective laboratorial data are reported. Considerations are made in order to support the hypothesis of involving virus. The evolution of the disorder was a nonfatal one and the patients regained normal cerebellar function within a period of 6 to 60 days.

  8. Ataxia espinocerebelar tipo 6: relato de caso

    Directory of Open Access Journals (Sweden)

    Bianca Simone Zeigelboim

    2014-10-01

    Full Text Available O objetivo deste estudo foi verificar as alterações vestibulococleares observadas em um caso de ataxia espinocerebelar tipo 6. O caso foi encaminhado do Hospital de Clínicas para o Laboratório de Otoneurologia de uma Instituição de Ensino e foi submetido aos seguintes procedimentos: anamnese, inspeção otológica, avaliações audiológica e vestibular. O caso retrata uma paciente com diagnóstico genético de ataxia espinocerebelar tipo 6, do sexo feminino, com 57 anos de idade, que referiu desequilíbrio à marcha com tendência a queda para a esquerda, disartria e disfonia. Na avaliação audiológica apresentou configuração audiométrica descendente a partir da frequência de 4kHz e curva timpanométrica do tipo "A" com presença dos reflexos estapedianos bilateralmente. No exame vestibular observou-se na pesquisa da vertigem posicional presença de nistagmo vertical inferior e oblíquo, espontâneo e semiespontâneo múltiplo com características centrais (ausência de latência, paroxismo, fatigabilidade e vertigem, nistagmooptocinético abolido e hiporreflexia à prova calórica. Constataram-se alterações labirínticas que indicaram afecção do sistema vestibular central evidenciando-se a importância dessa avaliação. A existência da possível relação entre os achados com os sintomas vestibulares apresentados pela paciente apontou a relevância do exame labiríntico neste tipo de ataxia uma vez que a presença do nistagmo vertical inferior demonstrou ser frequente neste tipo de patologia.

  9. 1H MR Spectroscopy in Friedreich's Ataxia and Ataxia with Oculomotor Apraxia Type 2

    Science.gov (United States)

    Iltis, Isabelle; Hutter, Diane; Bushara, Khalaf O.; Clark, H. Brent; Gross, Myron; Eberly, Lynn E.; Gomez, Christopher M.; Öz, Gülin

    2010-01-01

    Background and aim Friedreich's ataxia (FRDA) and ataxia with oculomotor apraxia type 2 (AOA2) are the two most frequent forms of autosomal recessive cerebellar ataxias. However, brain metabolism in these disorders is poorly characterized and biomarkers of the disease progression are lacking. We aimed at assessing the neurochemical profile of the pons, the cerebellar hemisphere and the vermis in patients with FRDA and AOA2 to identify potential biomarkers of these diseases. Methods Short-echo, single voxel proton (1H) magnetic resonance spectroscopy data were acquired from 8 volunteers with FRDA, 9 volunteers with AOA2, and 38 control volunteers at 4T. Disease severity was assessed by the Friedreich's Ataxia Rating Scale (FARS). Results Neuronal loss/dysfunction was indicated in the cerebellar vermis and hemispheres in both diseases by lower total N-acetylaspartate levels than controls. The putative gliosis marker myo-inositol was higher than controls in the vermis and pons in AOA2 and in the vermis in FRDA. Total creatine, another potential gliosis marker, was higher in the cerebellar hemispheres in FRDA relative to controls. Higher glutamine in FRDA and lower glutamate in AOA2 than controls were observed in the vermis, indicating different mechanisms possibly leading to altered glutamatergic neurotransmission. In AOA2, total N-acetylaspartate levels in the cerebellum strongly correlated with the FARS score (p < 0.01). Conclusion Distinct neurochemical patterns were observed in the two patient populations, warranting further studies with larger patient populations to determine if the alterations in metabolite levels observed here may be utilized to monitor disease progression and treatment. PMID:20713024

  10. Ataxia crónica en pediatría

    OpenAIRE

    Ricardo Erazo Torricelli

    2013-01-01

    Las ataxias crónicas constituyen un grupo heterogéneo de enfermedades, que afectan al niño a diferentes edades. Así las formas congénitas, generalmente no progresivas, se observan desde los primeros meses de vida y se expresan por hipotonía y retraso motor, mucho antes de que la ataxia se haga evidente. La resonancia magnética cerebral puede ser diagnóstica en algunos cuadros, como ocurre con el síndrome de Joubert. El grupo de ataxias hereditarias progresivas, en constante expansión, suelen ...

  11. Autosomal recessive cerebellar ataxias: the current state of affairs.

    Science.gov (United States)

    Vermeer, S; van de Warrenburg, B P C; Willemsen, M A A P; Cluitmans, M; Scheffer, H; Kremer, B P; Knoers, N V A M

    2011-10-01

    Among the hereditary ataxias, autosomal recessive cerebellar ataxias (ARCAs) encompass a diverse group of rare neurodegenerative disorders in which a cerebellar syndrome is the key clinical feature. The clinical overlap between the different cerebellar ataxias, the occasional atypical phenotypes, and the genetic heterogeneity often complicate the clinical management of such patients. Despite the steady increase in newly discovered ARCA genes, many patients with a putative ARCA cannot be genotyped yet, proving that more genes must be involved. This review presents an updated overview of the various ARCAs. The clinical and genetic characteristics of those forms with a known molecular genetic defect are discussed, along with the emerging insights in the underlying pathophysiological mechanisms.

  12. Ataxia with vitamin E deficiency associated with deafness.

    Science.gov (United States)

    Kara, Bülent; Uzümcü, Abdullah; Uyguner, Oya; Rosti, Rasim Ozgür; Koçbaş, Ayça; Ozmen, Meral; Kayserili, Hülya

    2008-01-01

    Ataxia with vitamin E deficiency (AVED) is a rare autosomal recessive disorder, usually with a phenotype resembling Friedreich ataxia, caused by selective impairment of gastrointestinal vitamin E absorption. Vitamin E supplementation improves symptoms and prevents disease progress. In North Africa and Southern Europe, AVED is as common as Friedreich ataxia. There are no reported cases from Turkey. We herein report a 16-year-old Turkish girl with AVED, who was found to have total deletion of the TTPA gene as well as sensorineural deafness, and we present her follow-up data after vitamin E therapy.

  13. Ataxia crónica en pediatría

    National Research Council Canada - National Science Library

    Ricardo Erazo Torricelli

    2013-01-01

    ... expansión, suelen comenzar después del período del lactante. Los signos clínicos destacables son la apraxia ocular y la inestabilidad de la marcha que pueden asociarse a telangiectasias oculocutáneas...

  14. Epilepsy is not a mandatory feature of STXBP1 associated ataxia-tremor-retardation syndrome.

    Science.gov (United States)

    Gburek-Augustat, Janina; Beck-Woedl, Stefanie; Tzschach, Andreas; Bauer, Peter; Schoening, Martin; Riess, Angelika

    2016-07-01

    Mutations in the STXBP1 gene (MUNC18-1) were first described to cause Ohtahara syndrome (Early infantile epileptic encephalopathy, EIEE)(12-14) characterized by very early infantile epileptic encephalopathy with frequent tonic spasms and a suppression-burst pattern on electroencephalogram. In the following years a wider phenotype was recognized having milder forms of epilepsies. All patients showed also intellectual disability and movement disorders. Here, we present three female patients with an ataxia-tremor-retardation syndrome caused by a de novo STXBP1 mutation. Two of the girls were diagnosed through next-generation-sequencing as mutations in STXBP1 were not suspected. The third patient was diagnosed by targeted genetic testing due to its clinical features strikingly similar to the first two girls. The characteristic feature of our three patients is the lack of epilepsy which is in contrast to the majority of the patients with STXBP1 mutation. Hence, epilepsy is not a mandatory feature of patients with a STXBP1 mutation. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  15. Research progress of spinocerebellar ataxia type 1

    Directory of Open Access Journals (Sweden)

    Lin-wei ZHANG

    2014-05-01

    Full Text Available Spinocerebellar ataxia type 1 (SCA1 is a kind of autosomal dominant genetic neurodegenerative disorder. To date, the pathogenesis of SCA1 remains unclear. Studies in numerous SCA1 experimental models, including transgenic mice, transgenic drosophila and induced pluripotent stem cells, have shown that phosphorylation of S776 in mutant ataxin-1, molecular chaperones, ubiquitin-proteasome system and down-regulation of several components of RAS-MAPK-MSK1 pathway may involve in the pathogenesis of SCA1. In this review, the clinical and pathological features of SCA1, and the latest advances of pathogenesis, model systems and therapeutic exploration will be briefly summarized. doi: 10.3969/j.issn.1672-6731.2014.05.017

  16. Ataxia heredo-degenerativa associada a hipoacusia

    Directory of Open Access Journals (Sweden)

    José Antonio Levy

    1964-06-01

    Full Text Available São estudados três irmãos, respectivamente com 16, 8 e 6 anos de idade, todos do sexo masculino, com ataxia heredo-degenerativa associada, em dois dêles, a hipoacusia. Nos antecedentes há referência a moléstia semelhante em um avô e um tio-avô. É discutido o diagnóstico diferencial com a moléstia de Pièrre Marie, a doença de Charcot-Marie-Tooth, a síndrome de Refsum e a neurite intersticial hipertrófica, sendo acentuada a semelhança dos casos estudados com a moléstia de Friedreich. São feitos comentários à associação da doença de Friedreich com distúrbios da audição.

  17. PET and MRI reveal early evidence of neurodegeneration in spinocerebellar ataxia type 17.

    Science.gov (United States)

    Brockmann, Kathrin; Reimold, Matthias; Globas, Christoph; Hauser, Till Karsten; Walter, Uwe; Machulla, Hans-Jürgen; Rolfs, Arndt; Schöls, Ludger

    2012-07-01

    Spinocerebellar ataxia type 17 (SCA17) is a rare autosomal dominantly inherited neurodegenerative disorder presenting with a variable phenotype including ataxia, dystonia, chorea, and parkinsonism, as well as cognitive impairment. We evaluated morphologic and functional imaging characteristics to elucidate evidence of neurodegeneration in SCA17, even in the presymptomatic stage of the disease. Nine individuals of 3 large SCA17 pedigrees, including 4 presymptomatic mutation carriers, underwent cranial 3-dimensional MRI volumetry, as well as multitracer PET with (18)F-FDG, (11)C-d-threo-methylphenidate, and (11)C-raclopride. Healthy subjects showing no signs of a neurologic or psychiatric disease served as controls. MRI volumetry revealed atrophy of the cerebellum and caudate nucleus in manifesting patients (P = 0.04 and 0.05, respectively) and in presymptomatic mutation carriers (P = 0.04 and 0.01, respectively). PET demonstrated decreased glucose metabolism in the striatum, as well as in the cuneus, cingulum, and parietal lobe, in all SCA17 patients and presymptomatic mutation carriers. In addition, PET was closely correlated with motor performance as assessed by the Scale for the Assessment and Rating of Ataxia (P = 0.037) and Unified Parkinson Disease Rating Scale (P = 0.05) and with cognitive function as assessed by the Mini-Mental Status Examination (P = 0.037). Furthermore, (11)C-raclopride PET showed impairment of the postsynaptic dopaminergic compartment of the putamen and caudate nucleus not only in manifest SCA17 patients (P = 0.04 and 0.008, respectively) but also in yet-unaffected mutation carriers (P = 0.05 and 0.05, respectively). The degree of postsynaptic dopaminergic dysfunction was associated with impairment of motor performance. In contrast, significant presynaptic dopaminergic deficits assessed with (11)C-d-threo-methylphenidate PET were not detected. MRI volumetry, as well as (11)C-raclopride and (18)F-FDG PET, reveal neuronal dysfunction and

  18. Mutation analysis and characterization of ATR sequence variants in breast cancer cases from high-risk French Canadian breast/ovarian cancer families

    Directory of Open Access Journals (Sweden)

    Pichette Roxane

    2006-09-01

    Full Text Available Abstract Background Ataxia telangiectasia-mutated and Rad3-related (ATR is a member of the PIK-related family which plays, along with ATM, a central role in cell-cycle regulation. ATR has been shown to phosphorylate several tumor suppressors like BRCA1, CHEK1 and TP53. ATR appears as a good candidate breast cancer susceptibility gene and the current study was designed to screen for ATR germline mutations potentially involved in breast cancer predisposition. Methods ATR direct sequencing was performed using a fluorescent method while widely available programs were used for linkage disequilibrium (LD, haplotype analyses, and tagging SNP (tSNP identification. Expression analyses were carried out using real-time PCR. Results The complete sequence of all exons and flanking intronic sequences were analyzed in DNA samples from 54 individuals affected with breast cancer from non-BRCA1/2 high-risk French Canadian breast/ovarian families. Although no germline mutation has been identified in the coding region, we identified 41 sequence variants, including 16 coding variants, 3 of which are not reported in public databases. SNP haplotypes were established and tSNPs were identified in 73 healthy unrelated French Canadians, providing a valuable tool for further association studies involving the ATR gene, using large cohorts. Our analyses led to the identification of two novel alternative splice transcripts. In contrast to the transcript generated by an alternative splicing site in the intron 41, the one resulting from a deletion of 121 nucleotides in exon 33 is widely expressed, at significant but relatively low levels, in both normal and tumoral cells including normal breast and ovarian tissue. Conclusion Although no deleterious mutations were identified in the ATR gene, the current study provides an haplotype analysis of the ATR gene polymorphisms, which allowed the identification of a set of SNPs that could be used as tSNPs for large-scale association

  19. Compound mitochondrial DNA mutations in a neurological patient ...

    Indian Academy of Sciences (India)

    [Park J. H., Yoon B. R., Kim H. J., Lee P. H., Choi B.-O. and Chung K. W. 2014 Compound mitochondrial DNA mutations in a neurological patient with ataxia ... nuclear genes of the patient, from which two causative muta- tions in the 12S rRNA and .... Clinical and electrophysiological features. The patient (57-year-old man) ...

  20. Compound mitochondrial DNA mutations in a neurological patient ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 93; Issue 1. Compound mitochondrial DNA mutations in a neurological patient with ataxia, myoclonus and deafness. Ji Hoon Park Bo Ram Yoon Hye Jin Kim Phil Hyu Lee Byung-Ok Choi Ki Wha Chung. Research Note Volume 93 Issue 1 April 2014 pp 173-177 ...