WorldWideScience

Sample records for ataxia telangiectasia cells

  1. DNA strand breakage repair in ataxia telangiectasia fibroblast-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Jr, R A; Sheridan, III, R B; Huang, P C [Johns Hopkins Univ., Baltimore, Md. (USA). Dept. of Environmental and Biophysical Sciences

    1975-12-01

    Human diploid fibroblast-like cells derived from four patients with the genetic disease ataxia telangiectasia and from two non-mutant donors were examined for the repair of x-ray induced strand breaks in DNA. The ataxia telangiectasia cultures showed no significant differences from the non-mutant cultures in the kinetics and extent of strand repair. This suggests that the increased spontaneous and x-ray induced chromatid aberrations observed in ataxia telangiectasia cells are not caused by a defect in the repair of single strand breaks as might be suspected from a general model of aberration production.

  2. Hashimoto thyroiditis associated with ataxia telangiectasia.

    Science.gov (United States)

    Patiroglu, Turkan; Gungor, Hatice Eke; Unal, Ekrem; Kurtoglu, Selim; Yikilmaz, Ali; Patiroglu, Tahir

    2012-01-01

    Ataxia telangiectasia is a rare genetic disease characterized by neurological manifestations, infections, and cancers. In addition to these cardinal features, different autoimmune diseases can be seen in patients with ataxia telangiectasia. Although there were reports of positive autoimmune thyroid antibodies associated with ataxia telangiectasia, to our knowledge, we report the first cases of nodular Hashimoto thyroiditis in two patients with ataxia telangiectasia in the English medical literature. These cases illustrate that despite the rarity of nodular Hashimoto thyroiditis associated with ataxia telangiectasia, physicians should be aware of this possibility. Furthermore, thyroid examination of patient with ataxia telangiectasia is recommended for early diagnosis.

  3. Ataxia telangiectasia derived iPS cells show preserved x-ray sensitivity and decreased chromosomal instability

    OpenAIRE

    Fukawatase, Yoshihiro; Toyoda, Masashi; Okamura, Kohji; Nakamura, Ken-ichi; Nakabayashi, Kazuhiko; Takada, Shuji; Yamazaki-Inoue, Mayu; Masuda, Akira; Nasu, Michiyo; Hata, Kenichiro; Hanaoka, Kazunori; Higuchi, Akon; Takubo, Kaiyo; Umezawa, Akihiro

    2014-01-01

    Ataxia telangiectasia is a neurodegenerative inherited disease with chromosomal instability and hypersensitivity to ionizing radiation. iPS cells lacking ATM (AT-iPS cells) exhibited hypersensitivity to X-ray irradiation, one of the characteristics of the disease. While parental ataxia telangiectasia cells exhibited significant chromosomal abnormalities, AT-iPS cells did not show any chromosomal instability in vitro for at least 80 passages (560 days). Whole exome analysis also showed a compa...

  4. Cell biological study on ataxia-telangiectasia

    International Nuclear Information System (INIS)

    Ohta, Shigeru; Katsura, Tadahiko; Shimada, Morimi; Shima, Akihiro; Chishiro, Hiroko; Kasahara, Yoshitaka.

    1985-01-01

    Diagnosis of ataxia-telangiectasia (AT) has largely been dependent on the clinical findings such as cerebellar ataxia, telangiectasia, and immunological deficiency. However, diagnosis of AT by these ordinary criteria is sometimes not sufficient because of the lack of immunological abnormalities. We examined three cases of AT by ordinary clinical criteria and also by X-ray sensitivity of cultured skin fibroblasts. Case 1, a 9-year-old boy, revealed typical clinical features of AT. However, he had no abnormality in serum IgA or IgE. Case 2, a 10-year-old boy, showed decreased serum IgA level. Case 3, a 19-year-old female, had typical clinical features of AT with normal serum IgA, and developed papillary adenocarcinoma of thyroid which was surgically removed. Fibroblast strains derived from these three cases of AT and from the parents of Case 3 were examined with regard to X-ray sensitivity. Three fibroblast strains derived from AT patients (AT homozygotes) showed remarkable hypersensitivity to X-ray. Fibroblast strains derived from the parents (AT heterozygotes) of Case 3, however, showed normal X-ray sensitivity. Recently, AT fibroblasts have been known to show hypersensitivity also to some mutagen like neocarzinostazin as reported by Shiloh et al. Fibroblasts from Case 3 revealed hypersensitivity to neocarzinostazin. However, the sensitivity of the strains from AT heterozygotes (the parents of Case 3) showed no apparent difference from that of control cells. The assay system for mutagen is quite unstable and proper conditioning of the seeding cell number is important for the carrier detection. However, the diagnosis of AT homozygotes was definitely established by X-ray irradiation to cultured fibroblasts from patients. (author)

  5. Radiosensitivity in ataxia-telangiectasia

    International Nuclear Information System (INIS)

    Lavin, M.F.; Khanna, K.K.; Watters, D.

    1998-01-01

    Full text: Radiosensitivity is a major hallmark of the human genetic disorder ataxia-telangiectasia. This hypersensitivity to ionizing radiation has been demonstrated in vitro after exposure of patients to therapeutic thought to be the major factor contculture. Clearly an understanding of the nature of the molecular defect in ataxia-telangiectasia will be of considerable assistance in delineating additional pathways that determine cellular radiosensitivity/radioresistance. Furthermore, since patients with this syndrome are also predisposed to developing a number of leukaemias and lymphomas the possible connection between radiosensitivity and cancer predisposition is of interest. Now that the gene (ATM) responsible for this genetic disease has been cloned and identified, progress is being made in determining the role of the ATM protein in mediating the effects of cellular exposure to ionizing radiation and other forms of redox stress. Proteins such as the product of the tumour suppressor gene p53 and the proto-oncogene c-Abl (a protein tyrosine kinase) have been shown to interact with ATM. Since several intermediate steps in both the p53 and c-Abl pathways, activated by ionizing radiation, are known it will be possible to map the position of ATM in these pathways and describe its mechanism of action. What are the clinical implications of understanding the molecular basis of the defect in ataxia-telangiectasia? As outlined above since radiosensitivity is a universal characteristic of A-T understanding the mechanism of action of ATM will provide additional information or radiation signalling in human cells. With this information it may be possible to sensitize tumour cells to radiation and thus increase the therapeutic benefit of radiotherapy. This might involve the use of small molecules that would interfere with the normal ATM controlled pathways and thus sensitize cells to radiation or alternatively it might involve the efficient introduction of ATM anti-sense c

  6. Radiosensitivity in ataxia-telangiectasia

    Energy Technology Data Exchange (ETDEWEB)

    Lavin, M.F. [Royal Brisbane Hospital, QLD (Australia). Queensland Institute of Medical Research and The Department of Surgery; Khanna, K.K.; Watters, D. [Royal Brisbane Hospital, QLD (Australia). Queensland Institute of Medical Research

    1998-12-31

    Full text: Radiosensitivity is a major hallmark of the human genetic disorder ataxia-telangiectasia. This hypersensitivity to ionizing radiation has been demonstrated in vitro after exposure of patients to therapeutic thought to be the major factor contculture. Clearly an understanding of the nature of the molecular defect in ataxia-telangiectasia will be of considerable assistance in delineating additional pathways that determine cellular radiosensitivity/radioresistance. Furthermore, since patients with this syndrome are also predisposed to developing a number of leukaemias and lymphomas the possible connection between radiosensitivity and cancer predisposition is of interest. Now that the gene (ATM) responsible for this genetic disease has been cloned and identified, progress is being made in determining the role of the ATM protein in mediating the effects of cellular exposure to ionizing radiation and other forms of redox stress. Proteins such as the product of the tumour suppressor gene p53 and the proto-oncogene c-Abl (a protein tyrosine kinase) have been shown to interact with ATM. Since several intermediate steps in both the p53 and c-Abl pathways, activated by ionizing radiation, are known it will be possible to map the position of ATM in these pathways and describe its mechanism of action. What are the clinical implications of understanding the molecular basis of the defect in ataxia-telangiectasia? As outlined above since radiosensitivity is a universal characteristic of A-T understanding the mechanism of action of ATM will provide additional information or radiation signalling in human cells. With this information it may be possible to sensitize tumour cells to radiation and thus increase the therapeutic benefit of radiotherapy. This might involve the use of small molecules that would interfere with the normal ATM controlled pathways and thus sensitize cells to radiation or alternatively it might involve the efficient introduction of ATM anti-sense c

  7. DNA-repair synthesis in ataxia telangiectasia lymphoblastoid cells

    Energy Technology Data Exchange (ETDEWEB)

    Ford, M.D.; Houldsworth, J.; Lavin, M.F. (Queensland Univ., Brisbane (Australia). Dept. of Biochemistry)

    1981-12-01

    The ability of a number of Epstein-Barr virus-transformed lymphoblastoid cells from ataxia telangiectasia (AT) patients to repair ..gamma..-radiation damage to DNA was determined. All of these AT cells were previously shown to be hypersensitive to ..gamma..-radiation. Two methods were used to determine DNA-repair synthesis: isopycnic gradient analysis and a method employing hydroxyurea to inhibit semiconservative DNA synthesis. Control, AT heterozygote and AT homozygote cells were demonstrated to have similar capacities for repair of radiation damage to DNA. In addition at high radiation doses (10-40 krad) the extent of inhibition of DNA synthesis was similar in the different cell types.

  8. [Ataxia telangiectasia: review of 13 new cases].

    Science.gov (United States)

    Valbuena, O; Póo, P; Campistol, J; Vernet, A; Fernández-Alvarez, E; Sierra, I; Gean, E

    1996-01-01

    We report the review of 13 patients who were diagnosed of ataxia telangiectasia before 6 years of age. All of them manifested cerebelous ataxia, oculocutaneus telangiectasias (11), sinopulmonary infections (9), dystonia (9), oculomotor apraxia (9) and Burkitt linfoma (1). We analyse the most common presentation of the disease in early stages and the complementary studies performed. The prompt diagnosis allow us a better control of infections, malignant process and finally the possibility of genetic counseling.

  9. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Choi, Seong-Jun [Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Shim, Hosup, E-mail: shim@dku.edu [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Department of Physiology, Dankook University School of Medicine, Cheonan (Korea, Republic of)

    2014-10-03

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.

  10. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    International Nuclear Information System (INIS)

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung; Choi, Seong-Jun; Shim, Hosup

    2014-01-01

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies

  11. ATM (ataxia-telangiectasia mutated) abnormality and diseases

    International Nuclear Information System (INIS)

    Takagi, Masatoshi; Nakata, Shinichiro; Mizutani, Shuki

    2007-01-01

    Ataxia-Telangiectasia (A-T) is an autosomal recessive inherited disease due to mutation of ATM gene on chromosome 11q22.3, with major symptoms of ataxia, telangiectasia, immunodeficiency and frequent complication of cancer, and the cells have characters of chromosomal break, high sensitivity to radiation and inappropriate continuation of DNA synthesis after radiation. This review describes past and present studies of ATM functions with clinical features in the following order: Clinical symptoms and epidemiology; ATM gene mutation in A-T patients, mainly by frame-shift (80-90%); ATM, whose gene consisted from 66 exons (150 kb), functions in phosphoinositide-3-kinase related kinase family which protecting cells from stress and integrating their system, at response to DNA double strand break, and in the cell cycle checkpoints at G1/S, S and G2/M phases; ATM nonsense/missense mutations in embryonic cells leading to carcinogenesis and role of ATM in the suppression of carcinogenesis in somatic cells; Chromosomal translocation which relating to carcinogenesis, by functional defect of ATM; and Other functions of ATM in neuronal growth, immunodeficiency, carbohydrate and lipid metabolism, early senescence, and virus infection. ATM is thus an essential molecule to maintain growth and homeostasis. (T.I.)

  12. Brain glucose metabolism in adults with ataxia-telangiectasia and their asymptomatic relatives.

    Science.gov (United States)

    Volkow, Nora D; Tomasi, Dardo; Wang, Gene-Jack; Studentsova, Yana; Margus, Brad; Crawford, Thomas O

    2014-06-01

    Ataxia-telangiectasia is a recessive genetic disorder (ATM is the mutated gene) of childhood with severe motor impairments and whereas homozygotes manifest the disorder, heterozygotes are asymptomatic. Structural brain imaging and post-mortem studies in individuals with ataxia-telangiectasia have reported cerebellar atrophy; but abnormalities of motor control characteristic of extrapyramidal dysfunction suggest impairment of broader motor networks. Here, we investigated possible dysfunction in other brain areas in individuals with ataxia-telangiectasia and tested for brain changes in asymptomatic relatives to assess if heterozygocity affects brain function. We used positron emission tomography and (18)F-fluorodeoxyglucose to measure brain glucose metabolism (quantified as µmol/100 g/min), which serves as a marker of brain function, in 10 adults with ataxia-telangiectasia, 19 non-affected adult relatives (12 siblings, seven parents) and 29 age-matched healthy controls. Statistical parametric mapping and region of interest analyses were used to compare individuals with ataxia-telangiectasia, asymptomatic relatives, and unrelated controls. We found that participants with ataxia-telangiectasia had lower metabolism in cerebellar hemispheres (14%, P brain stimulation. Our finding of decreased metabolism in vermis and hippocampus of asymptomatic relatives suggests that heterozygocity influences the function of these brain regions. Published by Oxford University Press on behalf of the Guarantors of Brain 2014. This work is written by US Government employees and is in the public domain in the US.

  13. Complementation analysis of ataxia-telangiectasia

    International Nuclear Information System (INIS)

    Jaspers, N.G.; Painter, R.B.; Paterson, M.C.; Kidson, C.; Inoue, T.

    1985-01-01

    In a number of laboratories genetic analysis of ataxia-telangiectasia (AT) has been performed by studying the expression of the AT phenotype in fused somatic cells or mixtures of cell-free extracts from different patients. Complementation of the defective response to ionizing radiation was observed frequently, considering four different parameters for radiosensitivity in AT. The combined results from studies on cultured fibroblasts or lymphoblastoid cells from 17 unrelated families revealed the presence of at least four and possibly nine complementation groups. These findings suggest that there is an extensive genetic heterogeneity in AT. More extensive studies are needed for an integration of these data and to provide a set of genetically characterized cell strains for future research of the AT genetic defect

  14. Case Report: Neuro-Imaging Findings in Ataxia Telangiectasia

    Directory of Open Access Journals (Sweden)

    Farhad Mahvelati

    2004-06-01

    Full Text Available Ataxia Telangiectasia (AT is an autosomal recessive inherited disorder in which cutaneous and scleral Telangiectasia, cerebellar ataxia and immunodeficiency occur. There is a high incidence of development of malignant tumors, mainly lymphomas. Cerebellar atrophy is the most prominent abnormality and is shown better by magnetic resonance imaging (MRI than CT-Scan. Intracranial hemorrhage occurs rarely. We report a 7 years old boy who admitted for recurrent pulmonary infections. His examination showed ataxic gait with decreased deep tendon reflexes in lower extremities. He had telangiectasia in the eyes and his speech was slurred and difficult. Brain MRI showed cerebellar atrophy with diffuse hyperintensity in white matter, most prominent in occipital region, which was suggestive of leukodystrophy. This white matter change was not reported before in AT.

  15. Bladder Wall Telangiectasia in a Patient with Ataxia-Telangiectasia and How to Manage?

    Directory of Open Access Journals (Sweden)

    Fatma Deniz Aygün

    2015-01-01

    Full Text Available Ataxia-telangiectasia (A-T is a rare neurodegenerative, inherited disease causing severe morbidity. Oculocutaneous telangiectasias are almost constant findings among the affected cases as telangiectasia is considered the main clinical finding for diagnosis. Vascular abnormalities in organs have been reported infrequently but bladder wall telangiectasias are extremely rare. We aimed to report recurrent hemorrhage from bladder wall telangiectasia in a 9-year-old boy with A-T who had received intravenous cyclophosphamide for non-Hodgkin’s lymphoma. Since A-T patients are known to be more susceptible to chemical agents, we suggested that possibly cyclophosphamide was the drug which induced bladder wall injury in this patient.

  16. Cutaneous granulomatosis and combined immunodeficiency revealing Ataxia-Telangiectasia: a case report

    OpenAIRE

    Folgori, Laura; Scarselli, Alessia; Angelino, Giulia; Ferrari, Francesca; Antoccia, Antonio; Chessa, Luciana; Finocchi, Andrea

    2010-01-01

    Abstract Ataxia-telangiectasia (A-T) is a complex multisystem disorder characterized by progressive neurological impairment, variable immunodeficiency and oculo-cutaneous telangiectasia. A-T is a member of chromosomal breakage syndromes and it is caused by a mutation in the ataxia-telangiectasia mutated (ATM) gene. Because of a wide clinical heterogeneity, A-T is often difficult to diagnose in children. We report an unusual case of a 3-year-old boy affected by A-T who presented exclusively wi...

  17. Ataxia-telangiectasia: future prospects

    Directory of Open Access Journals (Sweden)

    Chaudhary MW

    2014-09-01

    Full Text Available Mohammed Wajid Chaudhary, Raidah Saleem Al-Baradie Pediatric Neurology, Neurosciences Centre, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia Abstract: Ataxia-telangiectasia (A-T is an autosomal recessive multi-system disorder caused by mutation in the ataxia-telangiectasia mutated gene (ATM. ATM is a large serine/threonine protein kinase, a member of the phosphoinositide 3-kinase-related protein kinase (PIKK family whose best-studied function is as master controller of signal transduction for the DNA damage response (DDR in the event of double strand breaks (DSBs. The DDR rapidly recognizes DNA lesions and initiates the appropriate cellular programs to maintain genome integrity. This includes the coordination of cell-cycle checkpoints, transcription, translation, DNA repair, metabolism, and cell fate decisions, such as apoptosis or senescence. DSBs can be generated by exposure to ionizing radiation (IR or various chemical compounds, such as topoisomerase inhibitors, or can be part of programmed generation and repair of DSBs via cellular enzymes needed for the generation of the antibody repertoire as well as the maturation of germ cells. AT patients have immunodeficiency, and are sterile with gonadal dysgenesis as a result of defect in meiotic recombination. In the cells of nervous system ATM has additional role in vesicle dynamics as well as in the maintenance of the epigenetic code of histone modifications. Moderate levels of ATM are associated with prolonged lifespan through resistance to oxidative stress. ATM inhibitors are being viewed as potential radiosensitizers as part of cancer radiotherapy. Though there is no cure for the disease at present, glucocorticoids have been shown to induce alternate splicing site in the gene for ATM partly restoring its activity, but their most effective timing in the disease natural history is not yet known. Gene therapy is promising but large size of the gene makes it technically difficult

  18. Ataxia telangiectasia: a review

    Directory of Open Access Journals (Sweden)

    Cynthia Rothblum-Oviatt

    2016-11-01

    Full Text Available Abstract Definition of the disease Ataxia telangiectasia (A-T is an autosomal recessive disorder primarily characterized by cerebellar degeneration, telangiectasia, immunodeficiency, cancer susceptibility and radiation sensitivity. A-T is often referred to as a genome instability or DNA damage response syndrome. Epidemiology The world-wide prevalence of A-T is estimated to be between 1 in 40,000 and 1 in 100,000 live births. Clinical description A-T is a complex disorder with substantial variability in the severity of features between affected individuals, and at different ages. Neurological symptoms most often first appear in early childhood when children begin to sit or walk. They have immunological abnormalities including immunoglobulin and antibody deficiencies and lymphopenia. People with A-T have an increased predisposition for cancers, particularly of lymphoid origin. Pulmonary disease and problems with feeding, swallowing and nutrition are common, and there also may be dermatological and endocrine manifestations. Etiology A-T is caused by mutations in the ATM (Ataxia Telangiectasia, Mutated gene which encodes a protein of the same name. The primary role of the ATM protein is coordination of cellular signaling pathways in response to DNA double strand breaks, oxidative stress and other genotoxic stress. Diagnosis The diagnosis of A-T is usually suspected by the combination of neurologic clinical features (ataxia, abnormal control of eye movement, and postural instability with one or more of the following which may vary in their appearance: telangiectasia, frequent sinopulmonary infections and specific laboratory abnormalities (e.g. IgA deficiency, lymphopenia especially affecting T lymphocytes and increased alpha-fetoprotein levels. Because certain neurological features may arise later, a diagnosis of A-T should be carefully considered for any ataxic child with an otherwise elusive diagnosis. A diagnosis of A-T can be confirmed by the

  19. Stable radioresistance in ataxia-telangiectasia cells containing DNA from normal human cells

    International Nuclear Information System (INIS)

    Kapp, L.N.; Painter, R.B.

    1989-01-01

    SV40-transformed ataxia-telangiectasia (AT) cells were transfected with a cosmid containing a normal human DNA library and selectable marker, the neo gene, which endows successfully transformed mammalian cells with resistance to the antibiotic G418. Cells from this line were irradiated with 50 Gy of X-rays and fused with non-transfected AT cells. Among the G418-resistant colonies recovered was one stably resistant to radiation. Resistance to ionizing radiation of both primary transfectant line and its fusion derivative was intermediate between that of AT cells and normal cells, as assayed by colony-forming ability and measurement of radiation-induced G 2 chromatic aberrations; both cell lines retained AT-like radioresistant DNA synthesis. Results suggest that, because radioresistance in transfected cells was not as great as in normal human cells, two hallmarks of AT, radiosensitivity and radioresistant DNA synthesis, may still be the result of a single defective AT gene. (author)

  20. Establishment of cell lines derived from ataxia telangiectasia and xeroderma pigmentosum patients with high radiation sensitivity

    International Nuclear Information System (INIS)

    Hashimoto, Tomoko; Furuyama, Jun-ichi; Nakano, Yoshiro; Owada, M. Koji; Kakunaga, Takeo

    1986-01-01

    Four human fibroblast cell lines, three of which were derived from a patient with ataxia telangiectasia and the other from a patient with xeroderma pigmentosum, were established after transfection with cloned SV40 DNA. These 4 cell lines showed some phenotypes characteristic of neoplastically transformed cells, and had a human karyotype with heteromorphisms identical to those of the parental fibroblasts. Their sensitivity to the cytotoxic effects of γ-rays or ultraviolet irradiation was as high as those of their parental fibroblasts. (Auth.)

  1. Health risks for ataxia-telangiectasia mutated heterozygotes : a systematic review, meta-analysis and evidence-based guideline

    NARCIS (Netherlands)

    van Os, N J H; Roeleveld, N; Weemaes, C M R; Jongmans, M C J; Janssens, G O; Taylor, A M R; Hoogerbrugge, N; Willemsen, Michel A A P

    Ataxia-telangiectasia (AT) is an autosomal recessive neurodegenerative disorder with immunodeficiency and an increased risk of developing cancer, caused by mutations in the ataxia-telangiectasia mutated (ATM) gene. Logically, blood relatives may also carry a pathogenic ATM mutation. Female carriers

  2. Genetic and cellular features of ataxia telangiectasia

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, A M.R.; Byrd, P J; McConville, C M; Thacker, S [Birmingham Univ. (United Kingdom). CRC Dept. of Cancer Studies

    1994-01-01

    Ataxia telangiectasia (AT) is a developmental disorder in which many organ systems are affected. The children are recognized by a progressive cerebellar deterioration. The gene for AT has now been localized to a region of chromosome 11q22-23 of no more than 3Mb in size and its product appears to be involved directly or indirectly in some form of DNA recombination. Patients and their cells are unusually sensitive to ionizing radiation and various radiometric drugs. Observations on the progressive nature of the disorder, with loss of selected cells or failure to develop normally, might be compatible with the pathological effect of an inability to correctly regulate apoptosis in some cell lineages. While this is an intriguing speculation, there is, at present, no evidence for such a defect in AT. (author).

  3. Motor pathway degeneration in young ataxia telangiectasia patients: A diffusion tractography study

    Directory of Open Access Journals (Sweden)

    Ishani Sahama

    2015-01-01

    Conclusions: Whole tract analysis of the corticomotor, corticospinal and somatosensory pathways in ataxia telangiectasia showed significant white matter degeneration along the entire length of motor circuits, highlighting that ataxia–telangiectasia gene mutation impacts the cerebellum and multiple other motor circuits in young patients.

  4. Atm reactivation reverses ataxia telangiectasia phenotypes in vivo.

    Science.gov (United States)

    Di Siena, Sara; Campolo, Federica; Gimmelli, Roberto; Di Pietro, Chiara; Marazziti, Daniela; Dolci, Susanna; Lenzi, Andrea; Nussenzweig, Andre; Pellegrini, Manuela

    2018-02-22

    Hereditary deficiencies in DNA damage signaling are invariably associated with cancer predisposition, immunodeficiency, radiation sensitivity, gonadal abnormalities, premature aging, and tissue degeneration. ATM kinase has been established as a central player in DNA double-strand break repair and its deficiency causes ataxia telangiectasia, a rare, multi-system disease with no cure. So ATM represents a highly attractive target for the development of novel types of gene therapy or transplantation strategies. Atm tamoxifen-inducible mouse models were generated to explore whether Atm reconstitution is able to restore Atm function in an Atm-deficient background. Body weight, immunodeficiency, spermatogenesis, and radioresistance were recovered in transgenic mice within 1 month from Atm induction. Notably, life span was doubled after Atm restoration, mice were protected from thymoma and no cerebellar defects were observed. Atm signaling was functional after DNA damage in vivo and in vitro. In summary, we propose a new Atm mouse model to investigate novel therapeutic strategies for ATM activation in ataxia telangiectasia disease.

  5. Imaging study of lymphoreticular tumor development in ataxia-telangiectasia and Nijmegen breakage syndrome; Estudio por imagen del desarrollo de tumores linforreticulares en la ataxia telangiectasia y el sindrome de Nijmegen

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Leon, M. I.; Ceres-Ruiz, L.; Cuesta, M. A.; Garcia-Martin, F. J. [Hospital Materno-Infantil C.H.U. Carlos Haya. Malaga (Spain)

    2003-07-01

    Ataxia-telangiectasia (AT), or Louis-Bar syndrome, is an autosomal recessive illness characterized by progressive cerebellar ataxia, oculo-cutaneous telangiectasia, immunodeficiency combined with susceptibility to sinopulmonary infections and high incidence of neoplastic development. Nijmegen breakage syndrome (NBS) is a variant of AT, is also an autosomal recessive illness that presents cerebellar ataxia, as well as combined immunodeficiency and a tendency toward tumor development. Contrary to Louis-Bar syndrome, it doesn't present telangiectasia and exhibits a characteristics phenotype (short stature, bird-like face and microcephaly). Both entities are classified as syndrome of chromosomal instability or chromosomal fragility, a group which also includes Bloom syndrome and Fanconi anemia. All of these show an increase in the frequency of neoplastic pathologies, mainly lymphoid tumors. We present three patients,two with AT and one with NBS, who developed different lymphoma types in the course of the illness. We highlight the most outstanding aspects from a clinical-radiological point of view. (Author) 17 refs.

  6. Cutaneous granulomatosis and combined immunodeficiency revealing Ataxia-Telangiectasia: a case report

    Directory of Open Access Journals (Sweden)

    Antoccia Antonio

    2010-04-01

    Full Text Available Abstract Ataxia-telangiectasia (A-T is a complex multisystem disorder characterized by progressive neurological impairment, variable immunodeficiency and oculo-cutaneous telangiectasia. A-T is a member of chromosomal breakage syndromes and it is caused by a mutation in the ataxia-telangiectasia mutated (ATM gene. Because of a wide clinical heterogeneity, A-T is often difficult to diagnose in children. We report an unusual case of a 3-year-old boy affected by A-T who presented exclusively with extensive cutaneous granulomatosis and severe combined immunodeficiency, without neurological abnormalities, at the time of diagnosis. This case clearly emphasizes the variable presentation of A-T syndrome and highlights the difficulties in the early diagnosis of A-T. A-T should be considered in children with evidence of combined humoral and cellular immunodeficiency associated with unexplained skin granulomatous lesions, even in the absence of the classic features of this syndrome.

  7. Imaging study of lymphoreticular tumor development in ataxia-telangiectasia and Nijmegen breakage syndrome

    International Nuclear Information System (INIS)

    Martinez-Leon, M. I.; Ceres-Ruiz, L.; Cuesta, M. A.; Garcia-Martin, F. J.

    2003-01-01

    Ataxia-telangiectasia (AT), or Louis-Bar syndrome, is an autosomal recessive illness characterized by progressive cerebellar ataxia, oculo-cutaneous telangiectasia, immunodeficiency combined with susceptibility to sinopulmonary infections and high incidence of neoplastic development. Nijmegen breakage syndrome (NBS) is a variant of AT, is also an autosomal recessive illness that presents cerebellar ataxia, as well as combined immunodeficiency and a tendency toward tumor development. Contrary to Louis-Bar syndrome, it doesn't present telangiectasia and exhibits a characteristics phenotype (short stature, bird-like face and microcephaly). Both entities are classified as syndrome of chromosomal instability or chromosomal fragility, a group which also includes Bloom syndrome and Fanconi anemia. All of these show an increase in the frequency of neoplastic pathologies, mainly lymphoid tumors. We present three patients,two with AT and one with NBS, who developed different lymphoma types in the course of the illness. We highlight the most outstanding aspects from a clinical-radiological point of view. (Author) 17 refs

  8. Gastric outlet obstruction due to adenocarcinoma in a patient with Ataxia-Telangiectasia syndrome: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Hammond Sue

    2009-03-01

    Full Text Available Abstract Background Ataxia-Telangiectasia syndrome is characterized by progressive cerebellar dysfunction, conjuctival and cutaneous telangiectasias, severe immune deficiencies, premature aging and predisposition to cancer. Clinical and radiographic evaluation for malignancy in ataxia-telangiectasia patients is usually atypical, leading to delays in diagnosis. Case presentation We report the case of a 20 year old ataxia-telangiectasia patient with gastric adenocarcinoma that presented as complete gastric outlet obstruction. Conclusion A literature search of adenocarcinoma associated with ataxia-telangiectasia revealed 6 cases. All patients presented with non-specific gastrointestinal complaints suggestive of ulcer disease. Although there was no correlation between immunoglobulin levels and development of gastric adenocarcinoma, the presence of chronic gastritis and intestinal metaplasia seem to lead to the development of gastric adenocarcinoma. One should consider adenocarcinoma in any patient with ataxia-telangiectasia who presents with non-specific gastrointestinal complaints, since this can lead to earlier diagnosis.

  9. Clinical and genetic features of ataxia-telangiectasia

    International Nuclear Information System (INIS)

    Bundey, S.

    1994-01-01

    There are several variants of ataxia-telangiectasia (A-T): classical A-T with marked radiation sensitivity; classical A-T with intermediate levels of radiation sensitivity; mild A-T with intermediate levels of radiation sensitivity; A-T without telangiectasia; A-T without oculomoto apraxia; and A-T with microcephaly. These disorders are probably caused by different allelic mutations, because affected sibs resemble the index patients, and because there is an association of certain haplo-types of 11q22-23 with specific phenotypes. The Nijmegen Breakage Syndrome, with its lack of ataxia, seems on clinical grounds to be a different disorder. Although A-T is almost always inherited as an autosomal recessive, there are some unusual features; an unexpectedly low parental consanguinity rate, an incidence in sibs that is < 0.25, and occurrence of disease in many different races and in the offspring of mixed race unions. Moreover, looking at haplotypes from 63 UK patients, there is a remarkably low incidence of homozygosity. An autosomal recessive condition that is deficient in parental consanguinity, and in homozygosity for the region around the gene, can be explained by J.H. Edwards' hypothesis that homozygosity for alleles at a neighbouring locus are lethal early in embryogenesis. Other possible mechanisms to explain the unusual genetic features are discussed. (author)

  10. Neurodegeneration in ataxia-telangiectasia: Multiple roles of ATM kinase in cellular homeostasis.

    Science.gov (United States)

    Choy, Kay Rui; Watters, Dianne J

    2018-01-01

    Ataxia-telangiectasia (A-T) is characterized by neuronal degeneration, cancer, diabetes, immune deficiency, and increased sensitivity to ionizing radiation. A-T is attributed to the deficiency of the protein kinase coded by the ATM (ataxia-telangiectasia mutated) gene. ATM is a sensor of DNA double-strand breaks (DSBs) and signals to cell cycle checkpoints and the DNA repair machinery. ATM phosphorylates numerous substrates and activates many cell-signaling pathways. There has been considerable debate about whether a defective DNA damage response is causative of the neurological aspects of the disease. In proliferating cells, ATM is localized mainly in the nucleus; however, in postmitotic cells such as neurons, ATM is mostly cytoplasmic. Recent studies reveal an increasing number of roles for ATM in the cytoplasm, including activation by oxidative stress. ATM associates with organelles including mitochondria and peroxisomes, both sources of reactive oxygen species (ROS), which have been implicated in neurodegenerative diseases and aging. ATM is also associated with synaptic vesicles and has a role in regulating cellular homeostasis and autophagy. The cytoplasmic roles of ATM provide a new perspective on the neurodegenerative process in A-T. This review will examine the expanding roles of ATM in cellular homeostasis and relate these functions to the complex A-T phenotype. Developmental Dynamics 247:33-46, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. The Development of Ataxia Telangiectasia Mutated Kinase Inhibitors

    Czech Academy of Sciences Publication Activity Database

    Andrs, M.; Kobarecny, J.; Nepovimova, E.; Jun, D.; Hodný, Zdeněk; Moravcová, Simona; Hanzlíková, Hana; Kuca, K.

    2014-01-01

    Roč. 14, č. 10 (2014), s. 805-811 ISSN 1389-5575 R&D Projects: GA MŠk(CZ) CZ.1.07/2.3.00/30.0044 Grant - others:MH CZ - DRO (University Hospital Hradec Kralove(CZ) 00179906 Institutional support: RVO:68378050 Keywords : Ataxia telangiectasia mutated * cancer * chemosensitization * DNA damage response Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.903, year: 2014

  12. Cell and Molecular Biology of Ataxia Telangiectasia Heterozygous Human Mammary Epithelial Cells Irradiated in Culture

    Science.gov (United States)

    Richmond, Robert C.

    2001-01-01

    Autologous isolates of cell types from obligate heterozygotes with the autosomal disorder ataxia-telangiectasia (A-T)were used to begin a tissue culture model for assessing pathways of radiation-induced cancer formation in this target tissue. This was done by establishing cultures of stromal fibroblasts and long-term growth human mammary epithelial cells (HMEC) in standard 2-dimensional tissue culture in order to establish expression of markers detailing early steps of carcinogenesis. The presumptive breast cancer susceptibility of A-T heterozygotes as a sequel to damage caused by ionizing radiation provided reason to study expression of markers in irradiated HMEC. Findings from our study with HMEC have included determination of differences in specific protein expression amongst growth phase (e.g., log vs stationary) and growth progression (e.g., pass 7 vs pass 9), as well as differences in morphologic markers within populations of irradiated HMEC (e.g., development of multinucleated cells).

  13. Human iPSC-Derived Cerebellar Neurons from a Patient with Ataxia-Telangiectasia Reveal Disrupted Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Sam P. Nayler

    2017-10-01

    Full Text Available Ataxia-telangiectasia (A-T is a rare genetic disorder caused by loss of function of the ataxia-telangiectasia-mutated kinase and is characterized by a predisposition to cancer, pulmonary disease, immune deficiency and progressive degeneration of the cerebellum. As animal models do not faithfully recapitulate the neurological aspects, it remains unclear whether cerebellar degeneration is a neurodevelopmental or neurodegenerative phenotype. To address the necessity for a human model, we first assessed a previously published protocol for the ability to generate cerebellar neuronal cells, finding it gave rise to a population of precursors highly enriched for markers of the early hindbrain such as EN1 and GBX2, and later more mature cerebellar markers including PTF1α, MATH1, HOXB4, ZIC3, PAX6, and TUJ1. RNA sequencing was used to classify differentiated cerebellar neurons generated from integration-free A-T and control induced pluripotent stem cells. Comparison of RNA sequencing data with datasets from the Allen Brain Atlas reveals in vitro-derived cerebellar neurons are transcriptionally similar to discrete regions of the human cerebellum, and most closely resemble the cerebellum at 22 weeks post-conception. We show that patient-derived cerebellar neurons exhibit disrupted gene regulatory networks associated with synaptic vesicle dynamics and oxidative stress, offering the first molecular insights into early cerebellar pathogenesis of ataxia-telangiectasia.

  14. Impaired recovery and mutagenic SOS-like responses in ataxia telangiectasia cells

    Energy Technology Data Exchange (ETDEWEB)

    Hilgers, G. (Universite Libre de Bruxelles (Belgium) Rijksuniversiteit Leiden (Netherlands)); Abrahams, P.J. (Rijksuniversiteit Leiden (Netherlands)); Chen, Y.Q. (Universite Libre de Bruxelles (Belgium)); Schouten, R. (Rijksuniversiteit Leiden (Netherlands)); Cornelis, J.J. (Universite Libre de Bruxelles (Belgium) Institut Pasteur, 75 - Paris (France)); Lowe, J.E. (Sussex Univ., Brighton (UK)); Eb, A.J. van der (Rijksuniversiteit Leiden (Netherlands)); Rommelaere, J. (Universite Libre de Bruxelles (Belgium) Institut Pasteur, 75 - Paris (France))

    1989-01-01

    Radiosensitive fibroblasts from patients with ataxia telangiectasia (AT) were studied for their proficiency in two putative eukaryotic SOS-like responses, namely the enhanced reactivation (ER) and enhanced mutagenesis of damaged viruses infecting pre-irradiated versus mock-treated cells. A previous report indicated that, unlike normal human cells, a line of AT fibroblasts (AT5BIVA) could not be induced to express ER of damaged parvovirus H-1, a single-stranded DNA virus, by UV- or X-irradiation. In the present study, AT5BIVA fibroblasts were also distinguished from normal cells by the inability of the former to achieve enhanced mutagenesis of damaged H-1 virus upon cell UV-irradiation. In contrast, dose-response and time-course experiments revealed normal levels of ER of Herpes simplex virus 1, a double-stranded DNA virus, in X- or UV-irradiated AT5BIVA cells. Taken together, these data point to a possible deficiency of AT cells in a conditioned mutagenic process that contributes to a greater extent to the recovery of damaged single-stranded than double-stranded DNA. Such a defect may concern the replication of damaged DNA or the generation of signals promoting the latter process and may be related to the lack of radiation-induced delay that is typical of AT cell DNA synthesis. (author).

  15. Impaired recovery and mutagenic SOS-like responses in ataxia telangiectasia cells

    International Nuclear Information System (INIS)

    Hilgers, G.; Abrahams, P.J.; Chen, Y.Q.; Schouten, R.; Cornelis, J.J.; Lowe, J.E.; Eb, A.J. van der; Rommelaere, J.

    1989-01-01

    Radiosensitive fibroblasts from patients with ataxia telangiectasia (AT) were studied for their proficiency in two putative eukaryotic SOS-like responses, namely the enhanced reactivation (ER) and enhanced mutagenesis of damaged viruses infecting pre-irradiated versus mock-treated cells. A previous report indicated that, unlike normal human cells, a line of AT fibroblasts (AT5BIVA) could not be induced to express ER of damaged parvovirus H-1, a single-stranded DNA virus, by UV- or X-irradiation. In the present study, AT5BIVA fibroblasts were also distinguished from normal cells by the inability of the former to achieve enhanced mutagenesis of damaged H-1 virus upon cell UV-irradiation. In contrast, dose-response and time-course experiments revealed normal levels of ER of Herpes simplex virus 1, a double-stranded DNA virus, in X- or UV-irradiated AT5BIVA cells. Taken together, these data point to a possible deficiency of AT cells in a conditioned mutagenic process that contributes to a greater extent to the recovery of damaged single-stranded than double-stranded DNA. Such a defect may concern the replication of damaged DNA or the generation of signals promoting the latter process and may be related to the lack of radiation-induced delay that is typical of AT cell DNA synthesis. (author)

  16. Murine scid cells complement ataxia-telangiectasia cells and show a normal port-irradiation response of DNA synthesis

    International Nuclear Information System (INIS)

    Komatsu, K.; Yoshida, M.; Okumura, Y.

    1993-01-01

    The murine severe combined immunodeficient mutation (scid) is characterized by a lack of both B and T cells, due to a deficit in lymphoid variable-(diversity)-joining (V(D)J) rearrangement. Scid cells are highly sensitive to both radiation-induced killing and chromosomal aberrations. Significantly reduced D 0 and n values were demonstrated in scid cells and were similar to ataxia-telangiectasia (AT) cells (a unique human disease conferring whole body radiosensitivity). However, the kinetics of DNA synthesis after irradiation were different between the two cell types. In contrast with the radioresistant DNA synthesis of AT cells, DNA synthesis of scid cells was markedly inhibited after irradiation. The existence of different mutations was also supported by evidence of complementation in somatic cell hybrids between scid cells and AT cells. Results indicate that the radiobiological character of scid is similar to AT but is presumably caused by different mechanisms. (author)

  17. Phospho-SMC1 in-Cell ELISA based Detection of Ataxia Telangiectasia

    Directory of Open Access Journals (Sweden)

    Majid Zaki dizaji

    2016-12-01

    Full Text Available BackgroundAtaxia telangiectasia (A-T is a common genetically inherited cause of early childhood-onset ataxia. The infrequency of this disease, vast phenotype variation, disorders with features similar to those of A-T, and lack of definite laboratory test, make diagnosis difficult.  In addition, there is no rapid reliable laboratory method for identifying A-T heterozygotes, who susceptible to ionizing radiation (IR, atherosclerosis, diabetes, and cancers. We used SMC1pSer966 (pSMC1 in-cell colorimetric ELISA to diagnosis and screen in A-T families.Materials and Methods: With informed consent, 2cc peripheral blood was collected from the 15 A-T patients, their parents, and 24 healthy controls with no family history of malignancy, diabetes, and atherosclerosis. Extracted peripheral blood mononuclear cells (PBMCs were cultured in poly-L-Lysine treated 96-well plate with density of 70,000 cells per well. SMC1 phosphorylation was evaluated with cell-based ELISA kit 1 hour after 5 Gy IR and the pSMC1data normalized with Glyceraldehyde-3-phosphate dehydrogenase (GAPDH.Results: SMC1 phosphorylation was significantly low in A-T`s PBMC (mean + standard deviation [SD]: 0.075 + 0.034 in comparison to carriers (mean + SD: 0.190 + 0.060 and healthy controls (mean + SD: 0.312 +0.081, but unluckily could only discriminate A-T patients (Area Under the Curve -receiver operating characteristic [AUC-ROC]: 1.00, 1.00-1.00. This method in spite of rapidness and simplicity showed poor imprecision (22.49% coefficient of variation [CV] for intraday imprecision.Conclusion: It seems pSMC1 assessment by in-cell ELISA can be used for detection of A-T patients, but it may not sensitive enough for identification of carriers. This ELISA test is very simple, rapid, and requires less than 2cc blood. Thus it may be proposed for the early differential diagnosis of A-T as an alternative method.

  18. Ataxia telangiectasia: LET dependence of cellular inactivation

    International Nuclear Information System (INIS)

    Blakely, E.A.; Tobias, C.A.

    1984-01-01

    Human Ataxia telangiectasia cells (AT 2SF line) have been irradiated in vitro under aerobic and hypoxic conditions with heavy-ion beams accelerated at the Berkeley Bevalac as a part of a study to characterize the radiation responses of genetically sensitive and resistant cell lines to high LET radiations. Results from track-segment exposures to neon, silicon, argon and iron ion beams accelerated to initial energies of from 225 to 670 MeV/amu provided an LET range between 30 to 1,000 KeV/μm. The data indicate: (1) The sensitivity of AT cells increases with increasing LET, similar to resistant human lines (e.g., T-1 cells). However, due to efficient repair, T-1 cells are more resistant than AT cells at LET values below 200 keV/μm; (2) Maximum cell kill occurs for both lines at 100-200 keV/μm; at higher LET the sensitivity of the two lines approach each other; (3) There is only small variation in the sensitivity of AT cells to particles of various atomic numbers at the same LET; differences are more pronounced in the LET domain between 50 and 200 keV/μm; and (4) AT cells have slightly lower OER values than T-1 cells in the range of LET studied below 200 keV/μm

  19. CT and MR imaging of splenic leiomyoma in a child with ataxia telangiectasia

    Energy Technology Data Exchange (ETDEWEB)

    Coskun, M. [Dept. of Radiology, Hacettepe University Hospital, Ankara (Turkey); Aydingoez, Ue. [Dept. of Radiology, Hacettepe University Hospital, Ankara (Turkey); Tacal, T. [Dept. of Radiology, Hacettepe University Hospital, Ankara (Turkey); Ariyuerek, M. [Dept. of Radiology, Hacettepe University Hospital, Ankara (Turkey); Demirkazik, F. [Dept. of Radiology, Hacettepe University Hospital, Ankara (Turkey); Oguzkurt, L. [Dept. of Radiology, Hacettepe University Hospital, Ankara (Turkey)

    1995-02-01

    Computed tomographic and magnetic resonance imaging findings of a splenic leiomyoma in an 8-year-old boy with ataxia telangiectasia are presented. This is the first reported case of a splenic leiomyoma in the literature. (orig.)

  20. CT and MR imaging of splenic leiomyoma in a child with ataxia telangiectasia

    International Nuclear Information System (INIS)

    Coskun, M.; Aydingoez, Ue.; Tacal, T.; Ariyuerek, M.; Demirkazik, F.; Oguzkurt, L.

    1995-01-01

    Computed tomographic and magnetic resonance imaging findings of a splenic leiomyoma in an 8-year-old boy with ataxia telangiectasia are presented. This is the first reported case of a splenic leiomyoma in the literature. (orig.)

  1. Excision of gamma-ray induced thymine lesions by preparations from ataxia telangiectasia fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Remsen, J F; Cerutti, P A [Florida Univ., Gainesville (USA). Inst. of Food and Agricultural Sciences; Florida Univ., Gainesville (USA). Dept. of Biochemistry)

    1977-04-01

    The capacity of whole cell sonicates of skin fibroblasts of normal individuals and patients with the autosomal recessive disease Ataxia telangiectasia (AT) to remove aerobic gamma-ray products of the 5,6-dihydroxydihydrothymine type (tsub(O/sub 2/)sup(..gamma..)) from exogenous DNA substrates was investigated. All four AT strains (AT CRL 1312, AT CRL 1343, AT GM 367, AT 4BI) possessed normal capabilities to excise tsub(O/sub 2/)sup(..gamma..) from irradiated bacteriophage DNA and irradiated chromatin isolated from normal and AT-skin fibroblasts.

  2. Abnormal levels of UV-induced unscheduled DNA synthesis in ataxia telangiectasia cells after exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Jaspers, N.G.J.; Nederlandse Centrale Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek, Rijswijk. Medical Biological Lab.); Bootsma, D.

    1982-01-01

    In cultured cells from normal individuals and from patients having ataxia telangiectasia (AT) the rate of unscheduled DNA synthesis (UDS) induced by UV light was investigated by autoradiography. The number of grains in 6 different AT cell strains was similar to that observed in normal cells. Exposure of normal cells to doses of X-rays up to 20 krad had no influence on the rate of UV-induced UDS. In contrast, the UV-induced UDS was significantly modified in AT cells by treatment with X-rays. In AT cell strains that were reported to have reduced levels of γ-ray-induced repair DNA synthesis ('excision-deficient' AT cells) the effect of X-rays on UV-induced UDS was inhibitory, whereas UV-induced UDS was stimulated by X-ray exposure in 'excision-proficient' AT cell strains. Different UV and X-ray dose-response relationships were seen in the two categories of AT cell strains. (orig./AJ)

  3. A novel pathogenic variant in an Iranian Ataxia telangiectasia family revealed by next-generation sequencing followed by in silico analysis.

    Science.gov (United States)

    Tabatabaiefar, Mohammad Amin; Alipour, Paria; Pourahmadiyan, Azam; Fattahi, Najmeh; Shariati, Laleh; Golchin, Neda; Mohammadi-Asl, Javad

    2017-08-15

    Ataxia telangiectasia (A-T) is a neurodegenerative autosomal recessive disorder with the main characteristics of progressive cerebellar degeneration, sensitivity to ionizing radiation, immunodeficiency, telangiectasia, premature aging, recurrent sinopulmonary infections, and increased risk of malignancy, especially of lymphoid origin. Ataxia Telangiectasia Mutated gene, ATM, as a causative gene for the A-T disorder, encodes the ATM protein, which plays an important role in the activation of cell-cycle checkpoints and initiation of DNA repair in response to DNA damage. Targeted next-generation sequencing (NGS) was performed on an Iranian 5-year-old boy presented with truncal and limb ataxia, telangiectasia of the eye, Hodgkin lymphoma, hyper pigmentation, total alopecia, hepatomegaly, and dysarthria. Sanger sequencing was used to confirm the candidate pathogenic variants. Computational docking was done using the HEX software to examine how this change affects the interactions of ATM with the upstream and downstream proteins. Three different variants were identified comprising two homozygous SNPs and one novel homozygous frameshift variant (c.80468047delTA, p.Thr2682ThrfsX5), which creates a stop codon in exon 57 leaving the protein truncated at its C-terminal portion. Therefore, the activation and phosphorylation of target proteins are lost. Moreover, the HEX software confirmed that the mutated protein lost its interaction with upstream and downstream proteins. The variant was classified as pathogenic based on the American College of Medical Genetics and Genomics guideline. This study expands the spectrum of ATM pathogenic variants in Iran and demonstrates the utility of targeted NGS in genetic diagnostics. Copyright © 2017. Published by Elsevier B.V.

  4. Glutamine deprivation induces interleukin-8 expression in ataxia telangiectasia fibroblasts.

    Science.gov (United States)

    Kim, Min-Hyun; Kim, Aryung; Yu, Ji Hoon; Lim, Joo Weon; Kim, Hyeyoung

    2014-05-01

    To investigate whether glutamine deprivation induces expression of inflammatory cytokine interleukin-8 (IL-8) by determining NF-κB activity and levels of oxidative indices (ROS, reactive oxygen species; hydrogen peroxide; GSH, glutathione) in fibroblasts isolated from patients with ataxia telangiectasia (A-T). We used A-T fibroblasts stably transfected with empty vector (Mock) or with human full-length ataxia telangiectasia mutated (ATM) cDNA (YZ5) and mouse embryonic fibroblasts (MEFs) transiently transfected with ATM small interfering RNA (siRNA) or with non-specific control siRNA. The cells were cultured with or without glutamine or GSH. ROS levels were determined using a fluorescence reader and confocal microscopy. IL-8 or murine IL-8 homolog, keratinocyte chemoattractant (KC), and hydrogen peroxide levels in the medium were determined by enzyme-linked immunosorbent assay and colorimetric assay. GSH level was assessed by enzymatic assay, while IL-8 (KC) mRNA level was measured by reverse transcription-polymerase chain reaction (RT-PCR) and/or quantitative real-time PCR. NF-κB DNA-binding activity was determined by electrophoretic mobility shift assay. Catalase activity and ATM protein levels were determined by O2 generation and Western blotting. While glutamine deprivation induced IL-8 expression and increased NF-κB DNA-binding activity in Mock cells, both processes were decreased by treatment of cells with glutamine or GSH or both glutamine and GSH. Glutamine deprivation had no effect on IL-8 expression or NF-κB DNA-binding activity in YZ5 cells. Glutamine-deprived Mock cells had higher oxidative stress indices (increases in ROS and hydrogen peroxide, reduction in GSH) than glutamine-deprived YZ5 cells. In Mock cells, glutamine deprivation-induced oxidative stress indices were suppressed by treatment with glutamine or GSH or both glutamine and GSH. GSH levels and catalase activity were lower in Mock cells than YZ5 cells. MEFs transfected with ATM siRNA and

  5. Ataxia-telangiectasia cells are not uniformly deficient in poly(ADP-ribose) synthesis following X-irradiation

    International Nuclear Information System (INIS)

    Zwelling, L.A.; Kerrigan, D.; Mattern, M.R.

    1983-01-01

    The synthesis of poly(adenosine diphosphoribose [poly(ADP-R)] follows the DNA strand breakage produced by a number of physical and chemical agents, including X-radiation, and may be important for repair of several types of DNA damage. The reduction or abolition of its synthesis following X-irradiation might explain the enhanced sensitivity of ataxia-telangiectasia (A-T) cells to X-ray. We have examined 8 lines of human fibroblasts (including 4 A-T lines) for stimulation of the synthesis of poly(ADP-R) by X-irradiation. Similar amounts of X-ray-stimulated synthesis of poly(ADP-R) were detected in 4 lines of A-T fibroblasts, and in fibrolasts from a xeroderma pigmentosum (XP) patient, a Fanconi's anemia (FA) patient and 2 normal patients. 6 lines of human lymphoblastoid lines were also examined for X-ray-stimulated poly(ADP-R) synthesis. 4 A-T lines displayed an unusually high synthesis of poly(ADP-R) in unirradiated cells compared with 2 normal lines. (orig./AJ)

  6. Ataxia-telangiectasia cells are not uniformly deficient in poly(ADP-ribose) synthesis following X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zwelling, L.A.; Kerrigan, D. (National Cancer Inst., Bethesda, MD (USA). Lab. of Molecular Pharmacology); Mattern, M.R. (National Cancer Inst., Bethesda, MD (USA). Lab. of Molecular Carcinogenesis)

    1983-04-01

    The synthesis of poly(adenosine diphosphoribose (poly(ADP-R)) follows the DNA strand breakage produced by a number of physical and chemical agents, including X-radiation, and may be important for repair of several types of DNA damage. The reduction or abolition of its synthesis following X-irradiation might explain the enhanced sensitivity of ataxia-telangiectasia (A-T) cells to X-ray. We have examined 8 lines of human fibroblasts (including 4 A-T lines) for stimulation of the synthesis of poly(ADP-R) by X-irradiation. Similar amounts of X-ray-stimulated synthesis of poly(ADP-R) were detected in 4 lines of A-T fibroblasts, and in fibrolasts from a xeroderma pigmentosum (XP) patient, a Fanconi's anemia (FA) patient and 2 normal patients. 6 lines of human lymphoblastoid lines were also examined for X-ray-stimulated poly(ADP-R) synthesis. 4 A-T lines displayed an unusually high synthesis of poly(ADP-R) in unirradiated cells compared with 2 normal lines.

  7. Identification of 4 ataxia telangiectasia cell lines hypersensitive to. gamma. -irradiation but not to hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Cantoni, O.; Sestili, P.; Santoro, M.P.; Tannoia, M.C.; Cattabeni, F. (Universita degli Studi di Urbino (Italy). Istituto di Farmacologia e Farmacognosia and Centro di Farmacologia Oncologia Sperimentale); Novelli, G.; Dallapiccola, B. (Universit degli Studi di Urbino (Italy). Cattedra di Genetica); Fiorilli, M. (Universita di Roma ' La Sapienze' (Italy). Cattedra di Allergologia e Immunologia Clinica)

    1989-09-01

    The effct of hydrogen peroxide on the rate of semi-conservative DNA synthesis in ataxia telangiectasia (AT) and normal human lymphoblastoid cells was investigated. The rate of DNA synthesis in AT cells was not depressed to a lesser extent than in normal cells, as might have been expected since H{sub 2O2} is a radiomimetic agent. On the contrary, 4 AT cell lines displayed a higher sensitivity to the inhibitory effect of H{sub 2O2} on DNA synthesis than 2 normal cell lines. Comparable levels of cytotoxicity were detected in cell vaibility studies. Furthermore, neither the level of DNA breakage produced by H{sub 2O2}, nor the rate of repair of these lesions was signigicantly different in normal and AT cells. Together, these results indicate that the AT cell lines utilized in this study are not hypersensitive to the oxidant. It is suggested that H-2-O-2 may not induce lethality via the direct ation of the hydroxyl radical (OH). (Author). 20 refs.; 3 figs.; 1 tab.

  8. Identification of 4 ataxia telangiectasia cell lines hypersensitive to γ-irradiation but not to hydrogen peroxide

    International Nuclear Information System (INIS)

    Cantoni, O.; Sestili, P.; Santoro, M.P.; Tannoia, M.C.; Cattabeni, F.; Novelli, G.; Dallapiccola, B.; Fiorilli, M.

    1989-01-01

    The effct of hydrogen peroxide on the rate of semi-conservative DNA synthesis in ataxia telangiectasia (AT) and normal human lymphoblastoid cells was investigated. The rate of DNA synthesis in AT cells was not depressed to a lesser extent than in normal cells, as might have been expected since H 2O2 is a radiomimetic agent. On the contrary, 4 AT cell lines displayed a higher sensitivity to the inhibitory effect of H 2O2 on DNA synthesis than 2 normal cell lines. Comparable levels of cytotoxicity were detected in cell vaibility studies. Furthermore, neither the level of DNA breakage produced by H 2O2 , nor the rate of repair of these lesions was signigicantly different in normal and AT cells. Together, these results indicate that the AT cell lines utilized in this study are not hypersensitive to the oxidant. It is suggested that H-2-O-2 may not induce lethality via the direct ation of the hydroxyl radical (OH). (Author). 20 refs.; 3 figs.; 1 tab

  9. Radiation-induced chromosome aberrations and cell killing in normal human fibroblasts and ataxia telangiectasia fibroblasts

    International Nuclear Information System (INIS)

    Kawata, T.; Saito, M.; Uno, T.; Ito, H.; Shigematsu, N.

    2003-01-01

    Full text: When cells are held in a non-dividing state (G0) after irradiation, an enhanced survival can be observed compared to that of immediate plating. A change of survival depending on post irradiation condition is known to be repair of potentially lethal damage (RPLD). The effects of confluent holding recovery (24-h incubation following irradiation) on chromosome aberrations in normal human fibroblasts (AG1522) and ataxia telangiectasia fibroblasts (GM02052C) were examined. A chemical-induced premature chromosome condensation (PCC) technique with fluorescent in situ hybridization (FISH) was applied to study chromosome aberrations in G2 and M-phase. Results from cell survival showed that the capacity for potentially lethal damage repair was normal in AG1522 cells but very little in GM02052C cells. The frequency of chromosome aberrations in AG1522 cells decreased when cells were allowed to repair for 24-h. Especially complex type exchanges were found to decrease markedly at high doses (4Gy and 6Gy). However, the frequency of chromosome aberrations including complex type exchanges showed little decrease in GM02052C cells. Confluent holding can effectively reduce chromosome aberrations, especially complex type exchanges in normal cells

  10. Role of chromatin structure modulation by the histone deacetylase inhibitor trichostatin A on the radio-sensitivity of ataxia telangiectasia

    Energy Technology Data Exchange (ETDEWEB)

    Meschini, Roberta, E-mail: meschini@unitus.it; Morucci, Elisa; Berni, Andrea; Lopez-Martinez, Wilner; Palitti, Fabrizio

    2015-07-15

    Highlights: • Role of chromatin compaction on chromosomal instability. • Reduced radiation-induced clastogenicity in Ataxia telangiectasia cell lines. • Histone tails hyperacetylation reduces heterochromatin content favouring DSBs repair. - Abstract: At present, a lot is known about biochemical aspects of double strand breaks (DBS) repair but how chromatin structure affects this process and the sensitivity of DNA to DSB induction is still an unresolved question. Ataxia telangiectasia (A-T) patients are characterised by very high sensitivity to DSB-inducing agents such as ionising radiation. This radiosensitivity is revealed with an enhancement of chromosomal instability as a consequence of defective DNA repair for a small fraction of breaks located in the heterochromatin, where they are less accessible. Besides, recently it has been reported that Ataxia Telangiectasia Mutated (ATM) mediated signalling modifies chromatin structure. In order to study the impact of chromatin compaction on the chromosomal instability of A-T cells, the response to trichostatin-A, an histone deacetylase inhibitor, in normal and A-T lymphoblastoid cell lines was investigated testing its effect on chromosomal aberrations, cell cycle progression, DNA damage and repair after exposure to X-rays. The results suggest that the response to both trichostatin-A pre- and continuous treatments is independent of the presence of either functional or mutated ATM protein, as the reduction of chromosomal damage was found also in the wild-type cell line. The presence of trichostatin-A before exposure to X-rays could give rise to prompt DNA repair functioning on chromatin structure already in an open conformation. Differently, trichostatin-A post-treatment causing hyperacetylation of histone tails and reducing the heterochromatic DNA content might diminish the requirement for ATM and favour DSBs repair reducing chromosomal damage only in A-T cells. This fact could suggest that trichostatin-A post

  11. The rate of DNA synthesis in normal human and ataxia telangiectasia cells after exposure to X-irradiation

    International Nuclear Information System (INIS)

    Wit, J. de; Bootsma, D.; Jaspers, N.G.J.; Rijksverdedigingsorganisatie TNO, Rijswijk

    1981-01-01

    The rate of DNA synthesis was studied in normal cell strains and in strains from patients suffering from the inherited disorder ataxia telangiectasia (AT). After exposure to relatively low doses of oxic X-rays (0- 4 krad) DNA synthesis was depressed in AT cell strains to a significantly lesser extent than in normal cells. This response was observed in both an excision-deficient and an excision-proficient strain. In contrast, there was no difference in DNA-synthesis inhibition between AT and normal cells after UV exposure. After X-irradiation of cells from patients with xeroderma pigmentosum, both complementation group A and XP variants, the observed rate of DNA synthesis was equal to that in normal cells. An exception was the strain XP3BR which has been shown to be X-ray-sensitive. This strain exhibited diminished DNA synthesis inhibition after X-ray doses below 1 krad. These data suggest a relationship between hypersensitivity to X-rays and diminished depression of DNA synthesis. (orig.)

  12. Sugammadex reversal of rocuronium-induced neuromuscular block in a patient with ataxia-telangiectasia

    International Nuclear Information System (INIS)

    Kang, E.; Jung, J.W.

    2015-01-01

    A 17-year-old adolescent with ataxia-telangiectasia was scheduled to have laparoscopic colectomy for a resection of colon cancer. He had symptoms and signs of dyspnea, generalized dystonia, dysmetria, ataxia, and telangiectasia on the orbit. General anesthesia was performed, and rocuronium 30 mg was administered for muscle relaxation. Deep neuromuscular block (post-tetanic count: 0-8) was maintained for 95 minutes without additional rocuronium. On completion of surgery, sugammadex 80 mg was injected and train-of-four ratio was 0.93 at 210 seconds after administration. The tracheal tube was removed 5 min after the end of surgery. He recovered full spontaneous respiration and voluntary movements within 1 minute after extubation. After the surgery, he transferred to the intensive care unit and discharged 14 days after the surgery without any concrete problem. The reversal of rocuronium induced neuromuscular block by sugammadex was fast, complete, and recovered to the initial preoperative level of neuromuscular function in this patient. (author)

  13. Kinetics of chromatid aberrations in G2 ataxia-telangiectasia cells exposed to X-rays and ara A

    International Nuclear Information System (INIS)

    Mozdarani, Hossein; Bryant, P.E.

    1989-01-01

    The cytogenetic effects of X-rays alone or in combination with 9-β-D-arabinofuranosyladenine (ara A) were studied in an immortalized fibroblastic line of ataxia-telangiectasia (A-T) cells. It is postulated that the kinetics of disappearance (rejoining) of chromatid deletions with postirradiation incubation time reflects the underlying repair of dsb, and is inhibited by ara A. The rejoining kinetics for deletions in A-T was similar to that found in a previous study of normal human fibroblasts (Mozdarani and Bryant 1987). The number of deletions in X-irradiated A-T cells at 1.5 h before fixation was found to be higher by a factor of approximately 2 than that found previously in normals, indicating that in A-T a higher rate of conversion of dsb into chromatid deletions occurs. The frequency of exchanges induced in G2 A-T cells was similarly enhanced but, unlike the situation in normal cells, ara A was found to cause only a slight increase in this frequency. (author)

  14. Defect in radiation signal transduction in ataxia-telangiectasia

    International Nuclear Information System (INIS)

    Lavin, M.F.

    1994-01-01

    Exposure of mammalian cells to ionizing radiation causes a delay in progression through the cycle at several checkpoints. Cells from patients with ataxia-telangiectasia (A-T) ignore these checkpoint controls postirradiation. The tumour suppressor gene product p53 plays a key role at the G 1 /S checkpoint preventing the progression of cells into S phase. The induction of p53 by radiation is reduced and/or delayed in A-T cells, which appears to account for the failure of delay at the G 1 /S checkpoint. We have investigated further this defect in radiation signal transduction in A-T. While the p53 response was defective after radiation, agents that interfered with cell cycle progression such as mimosine, aphidicolin and deprivation of serum led to a normal p53 response in A-T cells. None of these agents caused breaks in DNA, as determined by pulse-field gel electrophoresis, in order to elicit the response. Since this pathway is mediated by protein kinases, we investigated the activity of several of these enzymes in control and A-T cells. Ca +2 -dependent and -independent protein kinase C activities were increased by radiation to the same extent in the two cell types, a variety of serine/threonine protein kinase activities were approximately the same and anti-tyrosine antibodies failed to reveal any differences in protein phosphorylation between A-T and control cells. (author)

  15. The response of normal and ataxia-telangiectasia human fibroblasts to the lethal effects of far, mid and near ultraviolet radiations

    International Nuclear Information System (INIS)

    Keyse, S.M.; McAleer, M.A.; Davies, D.J.G.; Moss, S.H.

    1985-01-01

    The responses of two ataxia-telangiectasia (A-T) cell strains to the lethal effects of monochromatic far, mid and near ultraviolet radiations have been determined and compared with the responses of three normal human cell strains. The authors results confirm a previous observation that the A-T cell strain AT4BI is abnormally sensitive to the lethal effects of mid u.v. (313 nm) radiation. After far u.v. (254 nm) radiation the strain AT4BI exhibits a small but statistically significant increase in sensitivity compared to the normal strains. Of most interest, in terms of a mechanistic interpretation of the sensitivity of A-T strains, the survival responses of neither A-T strain tested to near u.v. (365 nm) radiation differed significantly from the mean response of the normal strains, although it is of interest that one normal strain (48BR) was found to be significantly more resistant to near u.v. radiation than any of the other strains tested. The results are discussed in terms of the possible induction of radiogenic lesions in DNA by ultraviolet radiations and the possible mechanisms of radiation sensitivity in ataxia-telangiectasia. (author)

  16. Cellular and molecular response to irradiation in ataxia telangiectasia and in Fanconi's anemia

    International Nuclear Information System (INIS)

    Ridet, A.; Guillouf, C.; Duchaud, E.; Moustacchi, E.; Rosselli, F.

    1997-01-01

    Ataxia telangiectasia (AT) and Fanconi anemia (FA) are recessive genetic diseases featuring chromosomal instability, increased predisposition to cancer and in vitro hypersensitivity to ionizing radiation (AT) or DNA cross-linking agents (FA). Moreover, an in vivo hypersensitivity to γ-rays exposure was reported in both syndromes. Cellular response to irradiation includes growth arrest (cell cycle modification) and cell death (by apoptosis or necrosis). Since it is generally accepted that apoptosis modulates cellular sensitivity to genotoxic stress, it was of interest to investigate the contribution of apoptosis in determining FA and AT responses to DNA Damaging Agents. The results support the contention that the in vivo hypersensitivity to radiation in these syndromes is not related to a higher rate of apoptotic cells but could be to a higher necrotic response triggering inflammatory reactions in the patients affected by this syndromes. (authors)

  17. Ataxia-telangiectasia: the pattern of cerebellar atrophy on MRI

    International Nuclear Information System (INIS)

    Tavani, F.; Zimmerman, R.A.; Gatti, R.; Bingham, P.; Berry, G.T.; Sullivan, K.

    2003-01-01

    We describe MRI of the brain in 19 patients with ataxia-telangiectasia (AT) and correlate the appearances with the degree of neurologic deficit. We examined 10 male and nine female patients; 17 were aged between 2 and 12 years (mean 8 years) but a woman and her brother were 35 and 38 years old, and had a variant of AT. Ataxia was the first recognized sign of the disease in every patient. We detected the following patterns of cerebellar atrophy: in the youngest patient, aged 2 years, the study was normal; in the five next youngest patients 3-7 years of age, the lateral cerebellum and superior vermis showed the earliest changes of atrophy; and all but one of the other patients had moderate to marked diffuse atrophy of vermis and cerebellar hemispheres. There were 12 patients aged 9 years and above; one, who was normal, was 9 years old. The five patients who at the time of examination were unable to walk all had diffuse atrophy involving both vermis and cerebellar hemispheres. (orig.)

  18. Cellular and molecular response to irradiation in ataxia telangiectasia and in Fanconi`s anemia

    Energy Technology Data Exchange (ETDEWEB)

    Ridet, A.; Guillouf, C.; Duchaud, E.; Moustacchi, E.; Rosselli, F. [Institut Curie-Recherche, UMR 218, CNRS, 75 - Paris (France)

    1997-03-01

    Ataxia telangiectasia (AT) and Fanconi anemia (FA) are recessive genetic diseases featuring chromosomal instability, increased predisposition to cancer and in vitro hypersensitivity to ionizing radiation (AT) or DNA cross-linking agents (FA). Moreover, an in vivo hypersensitivity to {gamma}-rays exposure was reported in both syndromes. Cellular response to irradiation includes growth arrest (cell cycle modification) and cell death (by apoptosis or necrosis). Since it is generally accepted that apoptosis modulates cellular sensitivity to genotoxic stress, it was of interest to investigate the contribution of apoptosis in determining FA and AT responses to DNA Damaging Agents. The results support the contention that the in vivo hypersensitivity to radiation in these syndromes is not related to a higher rate of apoptotic cells but could be to a higher necrotic response triggering inflammatory reactions in the patients affected by this syndromes. (authors)

  19. Effect of caffeine on γ-ray induced G2 delay in ataxia telangiectasia

    International Nuclear Information System (INIS)

    Bates, P.R.; Lavin, M.F.

    1985-01-01

    Exposure of normal control and ataxia-telangiectasia (A-T) lymphoblastoid cell lines to ionizing radiation gives rise to an increase in the proportion of G2 phase cells. The size and extent of the G2 phase block is greater in A-T cells than in normal cells. Caffeine has a similar overall effect in control and A-T cell lines in reducing the G2 arrest observed after ionizing radiation. While the proportion of cells accumulated in G2 in A-T cells is considerably greater than in controls, addition of caffeine at the time of maximal G2 block brings about a return of G2 phase cell numbers to unirradiated values in 3 hours in both cell types. In normal control cells the caffeine-mediated decrease in G2 cells is reflected by an increase in mitotic cells. These mitotic cells have a higher frequency of chromosome aberrations compared to cells harvested in the absence of caffeine. Similarly in A-T cells addition of caffeine to irradiated cultures, delayed in G2 phase, increased the number of mitotic cells and the frequency of chromosome aberrations. (author)

  20. Effects of X-irradiation on cell-cycle progression, induction of chromosomal aberrations and cell killing in ataxia telangiectasia (AT) fibroblasts

    International Nuclear Information System (INIS)

    Nagasawa, H.; Little, J.B.; Latt, S.A.; Lalande, M.E.

    1985-01-01

    Survival, cumulative labeling indices, chromosomal aberrations and cell-cycle distribution by flow microfluorometry (FMF) were studied in fibroblasts from normal and three ataxia telangiectasia (AT) families after X-irradiation during density-inhibition of growth and immediate release by subculture to low density. Homozygotic AT (proband) fibroblasts were very hypersensitive to cell killing by X-irradiation. Fibroblasts from AT heterozygotes (parents) were minimally hypersensitive, with D 0 's slightly lower than those for normal fibroblasts. There were three different response groups for a G 1 phase block induced by 400 rad of X-rays: (1) minimal or no G 1 block was observed in AT homozygote cell strains; (2) 10-20% of the cells were blocked in G 1 in normal cell strains; and (3) 50% or more of the cells were blocked in AT heterozygote strains. FMF profiles and cumulative labeling indices showed that homozygotic AT cells irradiated in plateau phase moved into the S-phase following subculture with no additional delay over non-irradiated controls. Homozygotic AT cells showed not only a 4-5 times higher frequency of X-ray-induced chromosomal aberrations than normal strains, but approximately 30% of these were of the chromatid-type. There were no differences in the frequency or type of X-ray-induced chromosomal aberrations between normal and heterozygotic AT cells. (orig.)

  1. Familial study of ataxia telangiectasia. Heterozygotes identification on the basis of sensitivity of gamma-irradiated cultures to caffeine post-treatment

    International Nuclear Information System (INIS)

    Pawlak, A.L.; Kotecki, M.

    1994-01-01

    The effects of caffeine (CF), γ-irradiation + CF post-treatment on chromosomal aberrations were studied in lymphocyte cultures from a patient with ataxia telangiectasia (AT), his parents and brother. In the studied family both the homozygotes and the obligatory heterozygotes of AT showed increased sensitivity to CF post-treatment. Individual differences in sensitivity to γ-irradiation + CF post-treatment proved to be correlated with the sensitivity of non-irradiated cells to CF treatment, but not to γ-irradiation. (author). 19 refs, 1 fig., 1 tab

  2. Familial study of ataxia telangiectasia. Heterozygotes identification on the basis of sensitivity of gamma-irradiated cultures to caffeine post-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, A.L.; Kotecki, M. [Polska Akademia Nauk, Poznan (Poland). Zaklad Genetyki Czlowieka; Ignatowicz, R. [Centrum Zdrowia Dziecka, Warsaw (Poland)

    1994-12-31

    The effects of caffeine (CF), {gamma}-irradiation + CF post-treatment on chromosomal aberrations were studied in lymphocyte cultures from a patient with ataxia telangiectasia (AT), his parents and brother. In the studied family both the homozygotes and the obligatory heterozygotes of AT showed increased sensitivity to CF post-treatment. Individual differences in sensitivity to {gamma}-irradiation + CF post-treatment proved to be correlated with the sensitivity of non-irradiated cells to CF treatment, but not to {gamma}-irradiation. (author). 19 refs, 1 fig., 1 tab.

  3. Gamma-ray induced inhibition of DNA synthesis in ataxia telangiectasia fibroblasts is a function of excision repair capacity

    International Nuclear Information System (INIS)

    Smith, P.J.; Paterson, M.C.

    1980-01-01

    The extent of the deficiency in γ-ray induced DNA repair synthesis in an ataxia telangiectasia (AT) human fibroblast strain was found to show no oxygen enhancement, consistent with a defect in the repair of base damage. Repair deficiency, but not repair proficiency, in AT cells was accompanied by a lack of inhibition of DNA synthesis by either γ-rays or the radiomimetic drug bleomycin. Experiments with 4-nitroquinoline 1-oxide indicated that lack of inhibition was specific for radiogenic-type damage. Thus excision repair, perhaps by DNA strand incision or chromatin modification, appears to halt replicon initiation in irradiated repair proficient cells whereas in repair defective AT strains this putatively important biological function is inoperative

  4. Ataxia-telangiectasia mutated (ATM) deficiency decreases reprogramming efficiency and leads to genomic instability in iPS cells

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Taisuke [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Nagamatsu, Go, E-mail: gonag@sc.itc.keio.ac.jp [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Kosaka, Takeo [Department of Urology, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Takubo, Keiyo [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Hotta, Akitsu [Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Department of Reprogramming Science, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Ellis, James [Ontario Human iPS Cell Facility, Molecular Genetics, University of Toronto, Developmental and Stem Cell Biology, SickKids, Toronto, Canada MG1L7 (Canada); Suda, Toshio, E-mail: sudato@sc.itc.keio.ac.jp [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan)

    2011-04-08

    Highlights: {yields} iPS cells were induced with a fluorescence monitoring system. {yields} ATM-deficient tail-tip fibroblasts exhibited quite a low reprogramming efficiency. {yields} iPS cells obtained from ATM-deficient cells had pluripotent cell characteristics. {yields} ATM-deficient iPS cells had abnormal chromosomes, which were accumulated in culture. -- Abstract: During cell division, one of the major features of somatic cell reprogramming by defined factors, cells are potentially exposed to DNA damage. Inactivation of the tumor suppressor gene p53 raised reprogramming efficiency but resulted in an increased number of abnormal chromosomes in established iPS cells. Ataxia-telangiectasia mutated (ATM), which is critical in the cellular response to DNA double-strand breaks, may also play an important role during reprogramming. To clarify the function of ATM in somatic cell reprogramming, we investigated reprogramming in ATM-deficient (ATM-KO) tail-tip fibroblasts (TTFs). Although reprogramming efficiency was greatly reduced in ATM-KO TTFs, ATM-KO iPS cells were successfully generated and showed the same proliferation activity as WT iPS cells. ATM-KO iPS cells had a gene expression profile similar to ES cells and WT iPS cells, and had the capacity to differentiate into all three germ layers. On the other hand, ATM-KO iPS cells accumulated abnormal genome structures upon continuous passages. Even with the abnormal karyotype, ATM-KO iPS cells retained pluripotent cell characteristics for at least 20 passages. These data indicate that ATM does participate in the reprogramming process, although its role is not essential.

  5. Ataxia-telangiectasia mutated (ATM) deficiency decreases reprogramming efficiency and leads to genomic instability in iPS cells

    International Nuclear Information System (INIS)

    Kinoshita, Taisuke; Nagamatsu, Go; Kosaka, Takeo; Takubo, Keiyo; Hotta, Akitsu; Ellis, James; Suda, Toshio

    2011-01-01

    Highlights: → iPS cells were induced with a fluorescence monitoring system. → ATM-deficient tail-tip fibroblasts exhibited quite a low reprogramming efficiency. → iPS cells obtained from ATM-deficient cells had pluripotent cell characteristics. → ATM-deficient iPS cells had abnormal chromosomes, which were accumulated in culture. -- Abstract: During cell division, one of the major features of somatic cell reprogramming by defined factors, cells are potentially exposed to DNA damage. Inactivation of the tumor suppressor gene p53 raised reprogramming efficiency but resulted in an increased number of abnormal chromosomes in established iPS cells. Ataxia-telangiectasia mutated (ATM), which is critical in the cellular response to DNA double-strand breaks, may also play an important role during reprogramming. To clarify the function of ATM in somatic cell reprogramming, we investigated reprogramming in ATM-deficient (ATM-KO) tail-tip fibroblasts (TTFs). Although reprogramming efficiency was greatly reduced in ATM-KO TTFs, ATM-KO iPS cells were successfully generated and showed the same proliferation activity as WT iPS cells. ATM-KO iPS cells had a gene expression profile similar to ES cells and WT iPS cells, and had the capacity to differentiate into all three germ layers. On the other hand, ATM-KO iPS cells accumulated abnormal genome structures upon continuous passages. Even with the abnormal karyotype, ATM-KO iPS cells retained pluripotent cell characteristics for at least 20 passages. These data indicate that ATM does participate in the reprogramming process, although its role is not essential.

  6. The role of the neuro-astro-vascular unit in the etiology of Ataxia Telangiectasia

    Directory of Open Access Journals (Sweden)

    Leenoy eMeshulam

    2012-09-01

    Full Text Available The growing recognition that brain pathologies do not affect neurons only but rather are, to a large extent, pathologies of glial cells as well as of the vasculature opens to new perspectives in our understanding of genetic disorders of the CNS. To validate the role of the neuron-glial-vascular unit in the etiology of genome instability disorders, we report about cell death and morphological aspects of neuro-glia networks and the associated vasculature in a mouse model of Ataxia Telangiectasia (A-T, a human genetic disorder that induces severe motor impairment. We found that AT-mutated protein deficiency was consistent with aberrant astrocytic morphology and alterations of the vasculature, often accompanied by reactive gliosis. Interestingly similar findings could also be reported in the case of other genetic disorders. These observations bolster the notion that astrocyte-specific pathologies, hampered vascularization and astrocyte-endothelium interactions in the CNS could play a crucial role in the etiology of genome instability brain disorders and could underlie neurodegeneration.

  7. Deficient expression of enhanced reactivation of parvovirus H-1 in ataxia telangiectasia cells irradiated with X-rays or u.v. light

    International Nuclear Information System (INIS)

    Gilgers, Genevieve; Chen, Y.Q.; Cornelis, J.J.; Rommelaere, Jean

    1987-01-01

    Cells of patients with ataxia telangiectasia (AT), an inherited disease characterized by a high propensity to cancer, are hypersensitive to ionizing radiation. We investigated whether the hyper-radiosensitivity of AT cells correlated with a defect in their constitutive and/or conditional ability to rescue a damaged exogenous virus. For that purpose, parvovirus H-1, a single-stranded DNA virus whose intranuclear replication mostly relies on host cell functions, was used as a probe. The survival of u.v.-or γ-irradiated H-1 was measured in X-, u.v.-or mock-irradiated human cells of normal (NB-E) or AT (AT5BIVA) origin. γ-Irradiated H-1 survived to similar extents in untreated normal and AT cell lines. Both X- and u.v.-irradiation induced normal cells to achieve an enhanced reactivation (ER) of γ- or u.v.-damaged H-1. In contrast, neither dose-effect curves nor time course revealed significant levels of ER expression after X- or u.v.-irradiation in AT5BIVA cells. Our results suggest that the impairment of ER of damaged parvoviruses may constitute a marker of the AT cell phenotype and be related to the radiosensitivity of AT cells. (author)

  8. Deficient expression of enhanced reactivation of parvovirus H-1 in ataxia telangiectasia cells irradiated with X-rays or u. v. light

    Energy Technology Data Exchange (ETDEWEB)

    Hilgers, G.; Chen, Y.Q.; Cornelis, J.J.; Rommelaere, J.

    1987-02-01

    Cells of patients with ataxia telangiectasia (AT), an inherited disease characterized by a high propensity to cancer, are hypersensitive to ionizing radiation. We investigated whether the hyper-radiosensitivity of AT cells correlated with a defect in their constitutive and/or conditional ability to rescue a damaged exogenous virus. For that purpose, parvovirus H-1, a single-stranded DNA virus whose intranuclear replication mostly relies on host cell functions, was used as a probe. The survival of u.v.- or gamma-irradiated H-1 was measured in X-, u.v.- or mock-irradiated human cells of normal (NB-E) or AT (AT5BIVA) origin. gamma-Irradiated H-1 survived to similar extents in untreated normal and AT cell lines. Both X- and u.v.-irradiation induced normal cells to achieve an enhanced reactivation (ER) of gamma- or u.v.-damaged H-1. In contrast, neither dose-effect curves nor time course revealed significant levels of ER expression after X- or u.v.-irradiation in AT5BIVA cells. Our results suggest that the impairment of ER of damaged parvoviruses may constitute a marker of the AT cell phenotype and be related to the radiosensitivity of AT cells.

  9. The effect of caffeine on X-ray-induced mitotic delay in normal human and ataxia-telangiectasia fibroblasts

    International Nuclear Information System (INIS)

    Zampetti-Bosseler, F.; Scott, D.

    1985-01-01

    The authors previously showed that radiation-sensitive fibroblasts from ataxia-telangiectasia (A-T) patients sustain less G 2 delay after X-irradiation than normal fibroblasts. Caffeine is known to reduce the amount of X-ray-induced delay in various mammalian cell types. It is proposed that A-T cells have an altered chromatin structure, similar to that of caffeine-treated normal cells and that this results in a failure of A-T cells to delay their progression through the cell cycle to allow time for DNA repair. The authors now show that caffeine treatment after X-irradiation reduces G 2 delay in both A-T and normal cells. The authors confirm the results previously obtained on lymphocytes that caffeine potentiates the chromosome-damaging effects of X-rays in both A-T and normal fibroblasts. These and other data suggest that the radiation responses of A-T cells and of caffeine-treated normal cells are caused by different mechanisms. (Auth.)

  10. Effects of hyperthermia and ionizing radiation in normal and ataxia telangiectasia human fibroblast lines

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Chan, A.; Smith, B.P.; Child, S.D.; Paterson, M.C.

    1984-01-01

    The effects of 45 0 C hyperthermia and γ radiation have been studied in three normal human fibroblast lines (GM38, GM730, WI38) and compared to the effects in two lines derived from patients with the hereditary disease ataxia telangiectasia (AR3BI, AT5BI). All lines, both normal and γ-sensitive AT, showed a similar resistance to killing by heat alone, suggesting that the defect responsible for the increased radiation sensitivity in AT lines does not confer increased heat sensitivity. Shouldered survival curves were obtained in each case indicating the ability to accumulate sublethal heat damage. All normal and AT cell lines exhibited increased resistance to the lethal effects of heat in response to a thermal stress, indicating that the defect that causes radiosensitivity in AT cell lines does not prevent the induction of thermotolerance. It was hypothesized that in normal cells, this heat treatment inactivates the process which is already defective in AT lines, and that this process may be required for the proper rejoining of double-strand breaks produced during the repair of other radiation-induced lesions

  11. Potentiation by caffeine of x-ray damage to cultured human skin fibroblasts from normal subjects and ataxia-telangiectasia patients

    International Nuclear Information System (INIS)

    Furcinitti, P.S.

    1983-01-01

    Caffeine was found to potentiate x-ray-induced killing of human diploid fibroblasts from a normal subject and an ataxia-telangiectasia (AT) patient when it was present at 2 mM concentration for 30 to 66 h postirradiation. The dose-modifying factor for caffeine-treated normal cells had an average value of 1.26 +- 0.13 which did not vary significantly with treatment time or x-ray dose. The dose-modifying factor for caffeine-treated AT cells was 1.12 +- 0.12 at 30 h, rose to 1.66 +- 0.17 at 41 h, and decreased to 1.31 +- 0.13 at 66 h. Thus no clear difference was observed between these two cell strains' susceptibility to postirradiation caffeine treatment

  12. ERS statement on the multidisciplinary respiratory management of ataxia telangiectasia

    Directory of Open Access Journals (Sweden)

    Jayesh M. Bhatt

    2015-12-01

    Full Text Available Ataxia telangiectasia (A-T is a rare, progressive, multisystem disease that has a large number of complex and diverse manifestations which vary with age. Patients with A-T die prematurely with the leading causes of death being respiratory diseases and cancer. Respiratory manifestations include immune dysfunction leading to recurrent upper and lower respiratory infections; aspiration resulting from dysfunctional swallowing due to neurodegenerative deficits; inefficient cough; and interstitial lung disease/pulmonary fibrosis. Malnutrition is a significant comorbidity. The increased radiosensitivity and increased risk of cancer should be borne in mind when requesting radiological investigations. Aggressive proactive monitoring and treatment of these various aspects of lung disease under multidisciplinary expertise in the experience of national multidisciplinary clinics internationally forms the basis of this statement on the management of lung disease in A-T. Neurological management is outwith the scope of this document.

  13. Small Molecules Targeting Ataxia Telangiectasia and Rad3-Related (ATR) Kinase: An Emerging way to Enhance Existing Cancer Therapy

    Czech Academy of Sciences Publication Activity Database

    Andrs, M.; Korábečný, J.; Nepovimova, E.; Jun, D.; Hodný, Zdeněk; Kuca, K.

    2016-01-01

    Roč. 16, č. 3 (2016), s. 200-208 ISSN 1568-0096 Institutional support: RVO:68378050 Keywords : Ataxia telangiectasia and Rad3-related kinase (ATR) * cancer * chemosensitization * DNA damage response * phosphatidylinositol 3-kinase-related protein kinases (PIKK) * radiosensitization * synthetic lethality Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.992, year: 2016

  14. Rejoining of DNA double-strand breaks in human fibroblasts and its impairment in one ataxia telangiectasia and two Fanconi strains

    International Nuclear Information System (INIS)

    Coquerelle, T.M.; Weibezahn, K.F.

    1981-01-01

    Using the technique of neutral elution through polycarbonate filters as a measure of DNA length, and hence of the number of double-strand breaks incurred as a result of radiation damage, we found that normal human fibroblasts rejoin 50% of all breaks within only 3 min (37 degrees C). This fast rejoining was impaired in fibroblasts from one patient with Ataxia telangiectasia and in fibroblasts from two patients with Fanconi's anemia. Also the number of residual breaks after several hours of repair was higher than in control cells. Other cases with the same diseases were normal in their rejoining of double-strand breaks

  15. Role of ataxia-telangiectasia mutated (ATM) in porcine oocyte in vitro maturation.

    Science.gov (United States)

    Lin, Zi-Li; Kim, Nam-Hyung

    2015-06-01

    Ataxia-telangiectasia mutated (ATM) is critical for the DNA damage response, cell cycle checkpoints, and apoptosis. Significant effort has focused on elucidating the relationship between ATM and other nuclear signal transducers; however, little is known about the connection between ATM and oocyte meiotic maturation. We investigated the function of ATM in porcine oocytes. ATM was expressed at all stages of oocyte maturation and localized predominantly in the nucleus. Furthermore, the ATM-specific inhibitor KU-55933 blocked porcine oocyte maturation, reducing the percentages of oocytes that underwent germinal vesicle breakdown (GVBD) and first polar body extrusion. KU-55933 also decreased the expression of DNA damage-related genes (breast cancer 1, budding uninhibited by benzimidazoles 1, and P53) and reduced the mRNA and protein levels of AKT and other cell cycle-regulated genes that are predominantly expressed during G2/M phase, including bone morphogenetic protein 15, growth differentiation factor 9, cell division cycle protein 2, cyclinB1, and AKT. KU-55933 treatment decreased the developmental potential of blastocysts following parthenogenetic activation and increased the level of apoptosis. Together, these data suggested that ATM influenced the meiotic and cytoplasmic maturation of porcine oocytes, potentially by decreasing their sensitivity to DNA strand breaks, stimulating the AKT pathway, and/or altering the expression of other maternal genes. © 2015 International Federation for Cell Biology.

  16. Normal rejoining of DNA strand breaks in ataxia telangiectasia fibroblast lines after low x-ray exposure

    International Nuclear Information System (INIS)

    Hariharan, P.V.; Eleczko, S.; Smith, B.P.; Paterson, M.C.

    1981-01-01

    The alkaline elution method was used to measure the enzymatic repair of x-ray-induced DNA strand breaks in skin fibroblasts derived from human subjects afflicted with ataxia telangiectasia (AT). Monolayer cultures of normal control and AT cell lines were exposed acutely to moderately lethal (250-rad) and highly lethal (1250-rad) doses of 250-kV x rays under aerobic conditions. Upon receiving 250 rad, the control fibroblasts from a clinically normal donor rejoined all detectable single-strand breaks (plus alkali-labile bonds) within 30 to 60 min of incubation. When challenged with 1250 rad the kinetics of strand rejoining by the normal control cells were biphasic. For both exposures, no significant difference in either the rate or the extent of strand rejoining was detected between the normal cell line (GM38) and three mutant cell lines (AT2BE, AT3BI, AT4BI) belonging to the three known genetic complementation groups in AT. It would thus appear that the enhanced radiosensitivity of cultured AT cells does not stem from faulty rejoining of radiogenic DNA strand breaks

  17. Identification of ataxia telangiectasia heterozygotes by flow cytometric analysis of X-ray damage

    International Nuclear Information System (INIS)

    Rudolph, N.S.

    1989-01-01

    Flow cytometry was used to identify heterozygotes for the autosomal recessive DNA-repair deficiency disease ataxia telangiectasia (AT). Confluent G 0 /G 1 fibroblasts from 4 homozygotes (at/at), 5 obligate heterozygates (at/+) and 7 presumed normal (+/+) were X-irradiated with 200 Rad and subcultured immediately in medium containing 5-bromodeoxyuridine (BrdU). Cells were harvested 72 h later and stained with fluoresceinated anti-BrdU antibody to identify cells that had entered S phase. They were counterstained with propidium iodide to measure total DNA content. On the basis of relative release from G 0 /G 1 , the at/+ strains as a group were distinguished from both the presumed +/+ strains and at/at strains, although the individual values for some strains did show overlap between genotypes. When 10 cell strains were coded and analyzed in 'blind' experiments, all 4 heterozygotes were correctly assigned. By a similar assay in which exponentially growing cultures were pulsed briefly with BrdU 8 h after irradiation with 400 Rad and then harvested immediately, presumed +/+ cells as a group could be distinguished from at/at cells but not from at/- cells. This combination of assays assists in the identification of all 3 AT genotypes. This should be of both basic and diagnostic use, particularly in families known to segregate AT. (author). 37 refs.; 3 figs.; 5 tabs

  18. NAD+ Replenishment Improves Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA Repair.

    Science.gov (United States)

    Fang, Evandro Fei; Kassahun, Henok; Croteau, Deborah L; Scheibye-Knudsen, Morten; Marosi, Krisztina; Lu, Huiming; Shamanna, Raghavendra A; Kalyanasundaram, Sumana; Bollineni, Ravi Chand; Wilson, Mark A; Iser, Wendy B; Wollman, Bradley N; Morevati, Marya; Li, Jun; Kerr, Jesse S; Lu, Qiping; Waltz, Tyler B; Tian, Jane; Sinclair, David A; Mattson, Mark P; Nilsen, Hilde; Bohr, Vilhelm A

    2016-10-11

    Ataxia telangiectasia (A-T) is a rare autosomal recessive disease characterized by progressive neurodegeneration and cerebellar ataxia. A-T is causally linked to defects in ATM, a master regulator of the response to and repair of DNA double-strand breaks. The molecular basis of cerebellar atrophy and neurodegeneration in A-T patients is unclear. Here we report and examine the significance of increased PARylation, low NAD + , and mitochondrial dysfunction in ATM-deficient neurons, mice, and worms. Treatments that replenish intracellular NAD + reduce the severity of A-T neuropathology, normalize neuromuscular function, delay memory loss, and extend lifespan in both animal models. Mechanistically, treatments that increase intracellular NAD + also stimulate neuronal DNA repair and improve mitochondrial quality via mitophagy. This work links two major theories on aging, DNA damage accumulation, and mitochondrial dysfunction through nuclear DNA damage-induced nuclear-mitochondrial signaling, and demonstrates that they are important pathophysiological determinants in premature aging of A-T, pointing to therapeutic interventions. Published by Elsevier Inc.

  19. The ATM gene and the radiobiology of ataxia-telangiectasia

    International Nuclear Information System (INIS)

    Jorgensen, T.J.; Shiloh, Y.

    1996-01-01

    Ataxia-telangiectasia (A-T) is the classic human genetic disease involving severe ionizing radiation sensitivity and as such has been intensely studied by radiation biologists over the years. Unlike its counterpart for UV light sensitivity -xeroderma pigmentosum - A-T has no obvious DNA repair defect; and there has been much speculation as to the mechanism underlying the altered radioresponses associated with this disease. The gene defective in A-T (ATM) has recently been cloned, and its primary coding sequence determined. The primary sequence of the ATM protein suggests that it has some regulatory functions related to cellular radioresponse and maintenance of genomic stability, and shares these functions with a growing family of other proteins in various organisms. At this juncture it is appropriate to review our current knowledge about the radiobiology of A-T and reflect on the possible radiobiological mechanisms that are suggested by the ATM gene itself. This article will attempt briefly to review current knowledge about the radiobiology of A-T and to introduce new speculations about underlying radiobiological mechanisms that are suggested by the primary amino acid sequence of the predicted ATM gene product. (Author)

  20. Type I IFN-related NETosis in ataxia telangiectasia and Artemis deficiency.

    Science.gov (United States)

    Gul, Ersin; Sayar, Esra Hazar; Gungor, Bilgi; Eroglu, Fehime Kara; Surucu, Naz; Keles, Sevgi; Guner, Sukru Nail; Findik, Siddika; Alpdundar, Esin; Ayanoglu, Ihsan Cihan; Kayaoglu, Basak; Geckin, Busra Nur; Sanli, Hatice Asena; Kahraman, Tamer; Yakicier, Cengiz; Muftuoglu, Meltem; Oguz, Berna; Cagdas Ayvaz, Deniz Nazire; Gursel, Ihsan; Ozen, Seza; Reisli, Ismail; Gursel, Mayda

    2017-11-16

    Pathological inflammatory syndromes of unknown etiology are commonly observed in ataxia telangiectasia (AT) and Artemis deficiency. Similar inflammatory manifestations also exist in patients with STING-associated vasculopathy in infancy (SAVI). We sought to test the hypothesis that the inflammation-associated manifestations observed in patients with AT and Artemis deficiency stem from increased type I IFN signature leading to neutrophil-mediated pathological damage. Cytokine/protein signatures were determined by ELISA, cytometric bead array, or quantitative PCR. Stat1 phosphorylation levels were determined by flow cytometry. DNA species accumulating in the cytosol of patients' cells were quantified microscopically and flow cytometrically. Propensity of isolated polymorhonuclear granulocytes to form neutrophil extracellular traps (NETs) was determined using fluorescence microscopy and picogreen assay. Neutrophil reactive oxygen species levels and mitochondrial stress were assayed using fluorogenic probes, microscopy, and flow cytometry. Type I and III IFN signatures were elevated in plasma and peripheral blood cells of patients with AT, Artemis deficiency, and SAVI. Chronic IFN production stemmed from the accumulation of DNA in the cytoplasm of AT and Artemis-deficient cells. Neutrophils isolated from patients spontaneously produced NETs and displayed indicators of oxidative and mitochondrial stress, supportive of their NETotic tendencies. A similar phenomenon was also observed in neutrophils from healthy controls exposed to patient plasma samples or exogeneous IFN-α. Type I IFN-mediated neutrophil activation and NET formation may contribute to inflammatory manifestations observed in patients with AT, Artemis deficiency, and SAVI. Thus, neutrophils represent a promising target to manage inflammatory syndromes in diseases with active type I IFN signature. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights

  1. Patients with an inherited syndrome characterized by immunodeficiency, microcephaly, and chromosomal instability: genetic relationship to ataxia telangiectasia

    International Nuclear Information System (INIS)

    Jaspers, N.G.; Taalman, R.D.; Baan, C.

    1988-01-01

    Fibroblast cultures from six unrelated patients having a familial type of immunodeficiency combined with microcephaly, developmental delay, and chromosomal instability were studied with respect to their response to ionizing radiation. The cells from five of them resembled those from individuals with ataxia telangiectasia (AT) in that they were two to three times more radiosensitive on the basis of clonogenic cell survival. In addition, after exposure to either X-rays or bleomycin, they showed an inhibition of DNA replication that was less pronounced than that in normal cells and characteristic of AT fibroblasts. However, the patients are clinically very different from AT patients, not showing any signs of neurocutaneous symptoms. Genetic complementation studies in fused cells, with the radioresistant DNA synthesis used as a marker, showed that the patients' cells could complement representatives of all presently known AT complementation groups. Furthermore, they were shown to constitute a genetically heterogeneous group as well. It is concluded that these patients are similar to AT patients with respect to cytological parameters. The clinical differences between these patients and AT patients are a reflection of genetic heterogeneity. The data indicate that the patients suffer from a chromosome-instability syndrome that is distinct from AT

  2. Prenatal diagnosis of ataxia-telangiectasia and Nijmegen Breakage Syndrome by the assay of radioresistant DNA synthesis

    International Nuclear Information System (INIS)

    Kleijer, W.J.; Kraan, M. van der; Los, F.J.; Jaspers, N.G.J.

    1994-01-01

    Prenatal diagnosis was performed in 16 pregnancies at risk of ataxia-telangiectasia (A-T) or Nijmegen Breakage Syndrome (NBS). Radioresistant DNA synthesis (RDS) was investigated in cultured chorionic villus (CV) cells and/or amniotic fluid (AF) cells. In four pregnancies, an affected foetus was diagnosed with increased RDS in cultured CV cells. In three of the four cases confirmation of the diagnosis was obtained by analysis of AF cells and/or skin fibroblasts from the foetus cultured after termination of the pregnancy; in the fourth case a fibroblast culture from the aborted foetus failed. In one case, only AF cells could be analysed in a late stage of pregnancy; pregnancy was terminated due to intermediate/equivocal results but the foetus fibroblasts showed normal RDS. Normal RDS was demonstrated in the other 11 pregnancies at 25% risk either by analysis of CB cells (nine cases) or of AF cells (two cases). In some cases the (normal) results on the CV cells were corroborated by subsequent analysis of Af cells. The results suggest that RDS analysis of CV cells allows reliable prenatal diagnosis of A-T/NBS. However, amniocentesis may be necessary to confirm normal results on CV cells if the foetus is female (because of the risk of maternal cell contamination) or in the rare case of equivocal results. (author)

  3. Pulmonary function in adolescents with ataxia telangiectasia.

    Science.gov (United States)

    McGrath-Morrow, Sharon; Lefton-Greif, Maureen; Rosquist, Karen; Crawford, Thomas; Kelly, Amber; Zeitlin, Pamela; Carson, Kathryn A; Lederman, Howard M

    2008-01-01

    Pulmonary complications are common in adolescents with ataxia telangiectasia (A-T), however objective measurements of lung function may be difficult to obtain because of underlying bulbar weakness, tremors, and difficulty coordinating voluntary respiratory maneuvers. To increase the reliability of pulmonary testing, minor adjustments were made to stabilize the head and to minimize leaks in the system. Fifteen A-T adolescents completed lung volume measurements by helium dilution. To assess for reproducibility of spirometry testing, 10 A-T adolescents performed spirometry on three separate occasions. Total lung capacity (TLC) was normal or just mildly decreased in 12/15 adolescents tested. TLC correlated positively with functional residual capacity (FRC), a measurement independent of patient effort (R2=0.71). The majority of individuals had residual volumes (RV) greater than 120% predicted (10/15) and slow vital capacities (VC) less than 70% predicted (9/15). By spirometry, force vital capacity (FVC) and forced expiratory volume in 1 sec (FEV1) values were reproducible in the 10 individuals who underwent testing on three separate occasions (R=0.97 and 0.96 respectively). Seven of the 10 adolescents had FEV1/FVC ratios>90%. Lung volume measurements from A-T adolescents revealed near normal TLC values with increased RV and decreased VC values. These findings indicate a decreased ability to expire to residual volume rather then a restrictive defect. Spirometry was also found to be reproducible in A-T adolescents suggesting that spirometry testing may be useful for tracking changes in pulmonary function over time in this population. Copyright (c) 2007 Wiley-Liss, Inc.

  4. S phase entry causes homocysteine-induced death while ataxia telangiectasia and Rad3 related protein functions anti-apoptotically to protect neurons.

    Science.gov (United States)

    Ye, Weizhen; Blain, Stacy W

    2010-08-01

    A major phenotype seen in neurodegenerative disorders is the selective loss of neurons due to apoptotic death and evidence suggests that inappropriate re-activation of cell cycle proteins in post-mitotic neurons may be responsible. To investigate whether reactivation of the G1 cell cycle proteins and S phase entry was linked with apoptosis, we examined homocysteine-induced neuronal cell death in a rat cortical neuron tissue culture system. Hyperhomocysteinaemia is a physiological risk factor for a variety of neurodegenerative diseases, including Alzheimer's disease. We found that in response to homocysteine treatment, cyclin D1, and cyclin-dependent kinases 4 and 2 translocated to the nucleus, and p27 levels decreased. Both cyclin-dependent kinases 4 and 2 regained catalytic activity, the G1 gatekeeper retinoblastoma protein was phosphorylated and DNA synthesis was detected, suggesting transit into S phase. Double-labelling immunofluorescence showed a 95% co-localization of anti-bromodeoxyuridine labelling with apoptotic markers, demonstrating that those cells that entered S phase eventually died. Neurons could be protected from homocysteine-induced death by methods that inhibited G1 phase progression, including down-regulation of cyclin D1 expression, inhibition of cyclin-dependent kinases 4 or 2 activity by small molecule inhibitors, or use of the c-Abl kinase inhibitor, Gleevec, which blocked cyclin D and cyclin-dependent kinase 4 nuclear translocation. However, blocking cell cycle progression post G1, using DNA replication inhibitors, did not prevent apoptosis, suggesting that death was not preventable post the G1-S phase checkpoint. While homocysteine treatment caused DNA damage and activated the DNA damage response, its mechanism of action was distinct from that of more traditional DNA damaging agents, such as camptothecin, as it was p53-independent. Likewise, inhibition of the DNA damage sensors, ataxia-telangiectasia mutant and ataxia telangiectasia and Rad

  5. The production and repair of double strand breaks in cells from normal humans and patients with ataxia telangiectasia

    International Nuclear Information System (INIS)

    Lehman, A.R.; Stevens, S.

    1977-01-01

    The production and repair of double strand breaks induced by γ-rays in the DNA of human fibroblasts have been measured by sedimentation in sucrose gradients under non-denaturing conditions. Unirradiated DNA formed a rapidly sedimenting gel. Low doses of radiation released freely sedimenting DNA molecules from this gel. Higher doses reduced the rate of sedimentation of the free DNA due to the introduction of double strand breaks. The breakage efficiency was 1 break/1.3x10 10 daltons of DNA/krad. Postirradiation incubation after a high dose of radiation resulted in an increase in molecular weight of the free DNA molecules, and after a low dose the rapidly-sedimenting gel was reformed. These data suggest that double strand breaks are repaired in human fibroblasts. No significant differences were found between fibroblasts from two normal donors and four patients with the radiosensitive disorder, ataxia telangiectasia, in either the production or repair of double strand breaks

  6. Excision repair in ataxia telangiectasia, Fanconi's anemia, Cockayne syndrome, and Bloom's syndrome after treatment with ultraviolet radiation and N-acetoxy-2-acetylaminofluorene

    International Nuclear Information System (INIS)

    Ahmed, F.E.; Setlow, R.B.

    1978-01-01

    Excision repair of damage due to ultraviolet radiation, N-acetoxy-2-acetylaminofluorene and a combination of both agents was studied in normal human fibroblasts and various cells from cancer prone patients (ataxia telangiectasia, Fanconi's anemia, Cockayne syndrome and Bloom's syndrome). Three methods giving similar results were used: unscheduled DNA synthesis by radioautography, photolysis of bromodeoxyuridine incorporated into parental DNA during repair, and loss of sites sensitive to an ultraviolet endonuclease. All cell lines were proficient in repair of ultraviolet and acetoxy acetylaminofluorene damage and at saturation doses of both agents repair was additive. We interpret these data as indicating that the rate limiting step in excision repair of ultraviolet and acetoxy acetylaminofluorene is different and that there are different enzyme(s) working on incision of both types of damages. (Auth.)

  7. Body composition, muscle strength and hormonal status in patients with ataxia telangiectasia: a cohort study.

    Science.gov (United States)

    Pommerening, H; van Dullemen, S; Kieslich, M; Schubert, R; Zielen, S; Voss, S

    2015-12-09

    Ataxia-telangiectasia (A-T) is a devastating human autosomal recessive disorder that causes progressive cerebellar ataxia, immunodeficiency, premature aging, chromosomal instability and increased cancer risk. Affected patients show growth failure, poor weight gain, low body mass index (BMI), myopenia and increased fatigue during adolescence. The prevalence of alterations in body composition, muscle strength and hormonal status has not been well described in classical A-T patients. Additionally, no current guidelines are available for the assessment and management of these changes. We analyzed body composition, manual muscle strength and hormonal status in 25 A-T patients and 26 age-matched, healthy controls. Bioelectrical impedance analysis (BIA) was performed to evaluate the body composition, fat-free mass (FFM), body cell mass (BCM), extracellular matrix (ECM), phase angle (PhA), fat mass (FM) and ECM to BCM ratio. Manual muscle strength was measured using a hydraulic hand dynamometer. The BMI, FFM and PhA were significantly lower in A-T patients than in controls (BMI 16.56 ± 3.52 kg/m(2) vs. 19.86 ± 3.54 kg/m(2); Z-Score: -1.24 ± 1.29 vs. 0.05 ± 0.92, p body composition, characterized by depleted BMI, PhA and BCM; by the need to sit in a wheelchair; by altered hormone levels; and by poor muscle strength, is a major factor underlying disease progression and increased fatigue in A-T patients. ClinicalTrials.gov NCT02345200.

  8. Lack of effect of inhibitors of DNA synthesis/repair on the ionizing radiation-induced chromosomal damage in G[sub 2] stage of ataxia telangiectasia cells

    Energy Technology Data Exchange (ETDEWEB)

    Antoccia, A. (Univ. ' La Sapienza' , Rome (Italy). Dipt. di Genetica e Biologia Molecolare); Palitti, F.; Raggi, T. (Univ. del Tuscia, Viterbo (Italy). Dipt. di Agrobiologia ed Agrochimica); Catena, C. (ENEA, Casaccia (Italy). Centro Ricerche Energia); Tanzarella, C. (Rome Univ. 3 (Italy). Dipt. di Biologia)

    1994-09-01

    The relationship between the repair processes occurring at the G[sub 2] phase of the cell cycle and cytogenetic damage in ataxia telangiectasia (AT) cells was studied. Lymphoblastoid cells derived from normal, heterozygote AT (HzAT) and three AT patients were exposed to X-rays or fission neutrons and post-treated with inhibitors of DNA synthesis/repair, such as inhibitors of DNA polymerases [alpha], [sigma] and [epsilon] (cytosine arabinoside, ara-C; aphidicolin, APC; buthylphenyl-guanine, BuPdG) or ribonucleotide reductase (hydroxyurea HU). A strong increase of radiation-induced chromosomal aberrations was observed in normal and HzAT cells post-treated with ara-C, APC and HU, but not in the presence of BuPdG. No enhancing effect was observed in cells derived from AT patients, except for HU post-irradiation treatment. These results suggest that the enzymes that can be inhibited by these agents are not directly involved in the repair of radiation damage induced in G[sub 2] cells from AT patients, indicating that probably the AT cells that we used lack the capability to transform the primary DNA lesions into reparable products, or that AT cells might contain a mutated form of DNA polymerase resistant to the inhibitors. (author).

  9. Characterization of glioma stem cells through multiple stem cell markers and their specific sensitization to double-strand break-inducing agents by pharmacological inhibition of ataxia telangiectasia mutated protein.

    Science.gov (United States)

    Raso, Alessandro; Vecchio, Donatella; Cappelli, Enrico; Ropolo, Monica; Poggi, Alessandro; Nozza, Paolo; Biassoni, Roberto; Mascelli, Samantha; Capra, Valeria; Kalfas, Fotios; Severi, Paolo; Frosina, Guido

    2012-09-01

    Previous studies have shown that tumor-driving glioma stem cells (GSC) may promote radio-resistance by constitutive activation of the DNA damage response started by the ataxia telangiectasia mutated (ATM) protein. We have investigated whether GSC may be specifically sensitized to ionizing radiation by inhibiting the DNA damage response. Two grade IV glioma cell lines (BORRU and DR177) were characterized for a number of immunocytochemical, karyotypic, proliferative and differentiative parameters. In particular, the expression of a panel of nine stem cell markers was quantified by reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry. Overall, BORRU and DR177 displayed pronounced and poor stem phenotypes, respectively. In order to improve the therapeutic efficacy of radiation on GSC, the cells were preincubated with a nontoxic concentration of the ATM inhibitors KU-55933 and KU-60019 and then irradiated. BORRU cells were sensitized to radiation and radio-mimetic chemicals by ATM inhibitors whereas DR177 were protected under the same conditions. No sensitization was observed after cell differentiation or to drugs unable to induce double-strand breaks (DSB), indicating that ATM inhibitors specifically sensitize glioma cells possessing stem phenotype to DSB-inducing agents. In conclusion, pharmacological inhibition of ATM may specifically sensitize GSC to DSB-inducing agents while sparing nonstem cells. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  10. Ionizing radiation-induced phosphorylation of RPA p34 is deficient in ataxia telangiectasia and reduced in aged normal fibroblasts

    International Nuclear Information System (INIS)

    Xinbo Cheng; Nge Cheong; Ya Wang; Iliakis, George

    1996-01-01

    Replication protein A (RPA, also called human single stranded DNA binding protein, hSSB) is a trimeric, multifunctional protein complex involved in DNA replication, DNA repair and recombination. Phosphorylation of RPA p34 subunit is observed after exposure of cells to radiation and other DNA damaging agents, which implicates the protein not only in repair but also in the regulation of replication on damaged DNA template. Here, we show that the phosphorylation observed in RPA p34 after exposure to ionizing radiation, X- or γ-rays, is reduced and occurs later in primary fibroblasts from patients suffering from ataxia telangiectasia (AT), as compared to normal fibroblasts. We also show that in primary normal human fibroblasts, radiation-induced phosphorylation of RPA p34 is 'age'-dependent and decreases significantly as cultures senesce. Radiation-induced phosphorylation of RPA p34 is nearly absent in non-cycling cells, while the expression of p21 cip1/waf1/sdi1 remains inducible. The results demonstrate a growth-stage and culture-age dependency in radiation-induced RPA p34 phosphorylation, and suggest the operation of a signal transduction pathway that is inactivated in senescing or quiescent fibroblasts and defective in AT cells

  11. DNA-mediated gene transfer into human diploid fibroblasts derived from normal and ataxia-telangiectasia donors: parameters for DNA transfer and properties of DNA transformants

    International Nuclear Information System (INIS)

    Debenham, P.G.; Webb, M.B.T.; Masson, W.K.; Cox, R.

    1984-01-01

    An investigation was made of the feasibility of DNA-mediated gene transfer into human diploid fibroblasts derived from patients with the radiation sensitive syndrome ataxia-telangiectasia (A-T) and from a normal donor. Although they are markedly different in their growth characteristics, both normal and A-T strains give similar frequencies for DNA transfer in a model system using the recombinant plasmid pSV2-gpt. pSV2-gpt DNA transformants arise with a frequency between 10 -5 and 10 -4 per viable cell. Analysis of such transformants, although possible, is severely handicapped by the limited clonal life span of diploid human cells. Despite these problems it may be concluded that diploid human fibroblasts are competent recipients for DNA-mediated gene transfer and the putative repair deficiency of A-T does not markedly effect the efficiency of this process. (author)

  12. Oxidative stress, mitochondrial abnormalities and antioxidant defense in Ataxia-telangiectasia, Bloom syndrome and Nijmegen breakage syndrome

    Directory of Open Access Journals (Sweden)

    Mateusz Maciejczyk

    2017-04-01

    Full Text Available Rare pleiotropic genetic disorders, Ataxia-telangiectasia (A-T, Bloom syndrome (BS and Nijmegen breakage syndrome (NBS are characterised by immunodeficiency, extreme radiosensitivity, higher cancer susceptibility, premature aging, neurodegeneration and insulin resistance. Some of these functional abnormalities can be explained by aberrant DNA damage response and chromosomal instability. It has been suggested that one possible common denominator of these conditions could be chronic oxidative stress caused by endogenous ROS overproduction and impairment of mitochondrial homeostasis. Recent studies indicate new, alternative sources of oxidative stress in A-T, BS and NBS cells, including NADPH oxidase 4 (NOX4, oxidised low-density lipoprotein (ox-LDL or Poly (ADP-ribose polymerases (PARP. Mitochondrial abnormalities such as changes in the ultrastructure and function of mitochondria, excess mROS production as well as mitochondrial damage have also been reported in A-T, BS and NBS cells. A-T, BS and NBS cells are inextricably linked to high levels of reactive oxygen species (ROS, and thereby, chronic oxidative stress may be a major phenotypic hallmark in these diseases. Due to the presence of mitochondrial disturbances, A-T, BS and NBS may be considered mitochondrial diseases. Excess activity of antioxidant enzymes and an insufficient amount of low molecular weight antioxidants indicate new pharmacological strategies for patients suffering from the aforementioned diseases. However, at the current stage of research we are unable to ascertain if antioxidants and free radical scavengers can improve the condition or prolong the survival time of A-T, BS and NBS patients. Therefore, it is necessary to conduct experimental studies in a human model.

  13. Nutritional status of patients with ataxia-telangiectasia: A case for early and ongoing nutrition support and intervention.

    Science.gov (United States)

    Ross, Lynda J; Capra, Sandra; Baguley, Brenton; Sinclair, Kate; Munro, Kate; Lewindon, Peter; Lavin, Martin

    2015-08-01

    Ataxia-telangiectasia (A-T) is a rare genomic syndrome resulting in severe disability. Chronic childhood disorders can profoundly influence growth and development. Nutrition-related issues in A-T are not well described, and there are no nutritional guidelines. This study investigated the nutrition-related characteristics and behaviours of Australian A-T patients attending a national clinic. A cross-sectional analysis of 13 A-T patients (nine females; aged: 4-23 years): nutritional status was assessed by anthropometric and body cell mass (BCM) calculations. Parents reported their child's diet history and physical and behavioural factors that affect nutrition including fatigue and need for assistance. Ten (77%) had short stature (height for age z scores nutritional barriers as chronic tiredness and the need for care giver assistance with meals. This study confirms profound malnutrition in Australian A-T patients. Poor intakes and diet quality suggest the need for early nutrition intervention. Ongoing support for families and early discussions on tube feeding are required to address changing needs in childhood and likely nutritional decline into adulthood. A prospective study is required to assess feasibility and effectiveness of nutrition interventions in young people with A-T. © 2015 The Authors. Journal of Paediatrics and Child Health © 2015 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  14. Ataxia telangiectasia mutated (ATM) interacts with p400 ATPase for an efficient DNA damage response.

    Science.gov (United States)

    Smith, Rebecca J; Savoian, Matthew S; Weber, Lauren E; Park, Jeong Hyeon

    2016-11-04

    Ataxia telangiectasia mutated (ATM) and TRRAP proteins belong to the phosphatidylinositol 3-kinase-related kinase family and are involved in DNA damage repair and chromatin remodeling. ATM is a checkpoint kinase that is recruited to sites of DNA double-strand breaks where it phosphorylates a diverse range of proteins that are part of the chromatin and DNA repair machinery. As an integral subunit of the TRRAP-TIP60 complexes, p400 ATPase is a chromatin remodeler that is also targeted to DNA double-strand break sites. While it is understood that DNA binding transcriptional activators recruit p400 ATPase into a regulatory region of the promoter, how p400 recognises and moves to DNA double-strand break sites is far less clear. Here we investigate a possibility whether ATM serves as a shuttle to deliver p400 to break sites. Our data indicate that p400 co-immunoprecipitates with ATM independently of DNA damage state and that the N-terminal domain of p400 is vital for this interaction. Heterologous expression studies using Sf9 cells revealed that the ATM-p400 complex can be reconstituted without other mammalian bridging proteins. Overexpression of ATM-interacting p400 regions in U2OS cells induced dominant negative effects including the inhibition of both DNA damage repair and cell proliferation. Consistent with the dominant negative effect, the stable expression of an N-terminal p400 fragment showed a decrease in the association of p400 with ATM, but did not alter the association of p400 with TRRAP. Taken together, our findings suggest that a protein-protein interaction between ATM and p400 ATPase occurs independently of DNA damage and contributes to efficient DNA damage response and repair.

  15. Common ataxia telangiectasia mutated haplotypes and risk of breast cancer: a nested case–control study

    International Nuclear Information System (INIS)

    Tamimi, Rulla M; Hankinson, Susan E; Spiegelman, Donna; Kraft, Peter; Colditz, Graham A; Hunter, David J

    2004-01-01

    The ataxia telangiectasia mutated (ATM) gene is a tumor suppressor gene with functions in cell cycle arrest, apoptosis, and repair of DNA double-strand breaks. Based on family studies, women heterozygous for mutations in the ATM gene are reported to have a fourfold to fivefold increased risk of breast cancer compared with noncarriers of the mutations, although not all studies have confirmed this association. Haplotype analysis has been suggested as an efficient method for investigating the role of common variation in the ATM gene and breast cancer. Five biallelic haplotype tagging single nucleotide polymorphisms are estimated to capture 99% of the haplotype diversity in Caucasian populations. We conducted a nested case–control study of breast cancer within the Nurses' Health Study cohort to address the role of common ATM haplotypes and breast cancer. Cases and controls were genotyped for five haplotype tagging single nucleotide polymorphisms. Haplotypes were predicted for 1309 cases and 1761 controls for which genotype information was available. Six unique haplotypes were predicted in this study, five of which occur at a frequency of 5% or greater. The overall distribution of haplotypes was not significantly different between cases and controls (χ 2 = 3.43, five degrees of freedom, P = 0.63). There was no evidence that common haplotypes of ATM are associated with breast cancer risk. Extensive single nucleotide polymorphism detection using the entire genomic sequence of ATM will be necessary to rule out less common variation in ATM and sporadic breast cancer risk

  16. Ataxia crónica en pediatría

    Directory of Open Access Journals (Sweden)

    Ricardo Erazo Torricelli

    2013-09-01

    Full Text Available Las ataxias crónicas constituyen un grupo heterogéneo de enfermedades, que afectan al niño a diferentes edades. Así las formas congénitas, generalmente no progresivas, se observan desde los primeros meses de vida y se expresan por hipotonía y retraso motor, mucho antes de que la ataxia se haga evidente. La resonancia magnética cerebral puede ser diagnóstica en algunos cuadros, como ocurre con el síndrome de Joubert. El grupo de ataxias hereditarias progresivas, en constante expansión, suelen comenzar después del período del lactante. Los signos clínicos destacables son la apraxia ocular y la inestabilidad de la marcha que pueden asociarse a telangiectasias oculocutáneas (ataxia-telangiectasia o a neuropatía sensitiva (ataxia de Friedreich. En esta revisión se describen en forma sucinta las ataxias congénitas y en forma más detallada las causas principales de ataxias hereditarias progresivas autosómicas recesivas, autosómicas dominantes y mitocondriales. Se destaca la importancia del estudio genético, que es la clave para lograr el diagnóstico en la mayoría de estas enfermedades. Aunque aún no hay tratamiento para la mayoría de las ataxias hereditarias progresivas, algunas sí lo tienen, como la enfermedad de Refsum, déficit de vitamina E, déficit de Coenzima Q10, por lo cual el diagnóstico en estos casos es aún más relevante. En la actualidad, el diagnóstico de los cuadros de ataxia hereditaria del niño aún no tratable es fundamental para lograr un manejo adecuado, determinar un pronóstico preciso y dar a la familia un consejo genético oportuno.

  17. Effects of radiation therapy for Hodgkin's disease in a child with ataxia telangiectasia: a clinical, biological and pathologic study

    International Nuclear Information System (INIS)

    Pritchard, J.; Sandland, M.R.; Breatnach, F.B.; Pincott, J.R.; Cox, R.; Husband, P.

    1982-01-01

    Stage I lymphocyte-predominant Hodgkin's disease was diagnosed in a 44-month-old girl. Although immune deficiency was suspected and IgA deficiency demonstrated, the diagnosis of an ataxia-telangiectasia (AT)-like syndrome was not confirmed until eight weeks later when results of studies on the radiosensitivity of cultured skin fibroblasts were available. The child had none of the usual physical stigmata of AT. Severe acute radiation damage followed the treatment of this child with standard doses of radiation therapy. Clinical, pathologic, and radiobiologic correlations are drawn. The diagnosis of a malignant lymphoma disorder in children under the age of five should alert clinicians to the possibility of immune deficiency and, even in the absence of classical physical signs, to AT in particular. Suggestions for the management of future similar cases are put forward

  18. Trovafloxacin-induced replication stress sensitizes HepG2 cells to tumor necrosis factor-alpha-induced cytotoxicity mediated by extracellular signal-regulated kinase and ataxia telangiectasia and Rad3-related

    International Nuclear Information System (INIS)

    Beggs, Kevin M.; Maiuri, Ashley R.; Fullerton, Aaron M.; Poulsen, Kyle L.; Breier, Anna B.; Ganey, Patricia E.; Roth, Robert A.

    2015-01-01

    Use of the fluoroquinolone antibiotic trovafloxacin (TVX) was restricted due to idiosyncratic, drug-induced liver injury (IDILI). Previous studies demonstrated that tumor necrosis factor-alpha (TNF) and TVX interact to cause death of hepatocytes in vitro that was associated with prolonged activation of c-Jun N-terminal kinase (JNK), activation of caspases 9 and 3, and DNA damage. The purpose of this study was to explore further the mechanism by which TVX interacts with TNF to cause cytotoxicity. Treatment with TVX caused cell cycle arrest, enhanced expression of p21 and impaired proliferation, but cell death only occurred after cotreatment with TVX and TNF. Cell death involved activation of extracellular signal-related kinase (ERK), which in turn activated caspase 3 and ataxia telangiectasia and Rad3-related (ATR), both of which contributed to cytotoxicity. Cotreatment of HepG2 cells with TVX and TNF caused double-strand breaks in DNA, and ERK contributed to this effect. Inhibition of caspase activity abolished the DNA strand breaks. The data suggest a complex interaction of TVX and TNF in which TVX causes replication stress, and the downstream effects are exacerbated by TNF, leading to hepatocellular death. These results raise the possibility that IDILI from TVX results from MAPK and ATR activation in hepatocytes initiated by interaction of cytokine signaling with drug-induced replication stress

  19. Ataxia Telangiectasia - A Report of a case in Port Harcourt

    African Journals Online (AJOL)

    TNHJOURNALPH

    ocularand cutaneous telangiectasia, and a predisposition to ... complications because early management with monitoring of lung ... Blymphoid malignancy and hypersensitivity to ionizing radiation. 4 Data on the prevalence of A-T in Nigeria is limited. Few cases of A-T have been reported in Nigeria. 5 The prevalence.

  20. MicroRNA-223 Enhances Radiation Sensitivity of U87MG Cells In Vitro and In Vivo by Targeting Ataxia Telangiectasia Mutated

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Liping; Zhu, Ji [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Zaorsky, Nicholas G. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Deng, Yun [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Wu, Xingzhong [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai (China); Liu, Yong [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Liu, Fangqi; Cai, Guoxiang; Gu, Weilie [Department of Colorectal Cancer, Fudan University, Shanghai Cancer Center, Shanghai (China); Shen, Lijun [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Zhang, Zhen, E-mail: zhenzhang6@hotmail.com [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China)

    2014-03-15

    Purpose: Ataxia telangiectasia mutated (ATM) protein is important in the DNA damage response because it repairs radiation-induced damage in cancers. We examined the effect of microRNA-223 (miR-223), a regulator of ATM expression, on radiation sensitivity of cancer cells. Methods and Materials: Human embryonic kidney 293 T (293T) cells were infected with pLL3.7-miR-223 plasmid to generate the pLL3.7-miR-223 and -empty virus (EV) lentivirus (miR-223 and EV). A dual luciferase assay in which the reporter contained wild-type 3′ untranslated region (UTR) of ATM was performed. U87MG cells were infected with miR-223 or EV to establish the overexpressed stable cell lines (U87-223 or U87-EV, respectively). Cells were irradiated in vitro, and dose enhancement ratios at 2 Gy (DER{sub 2}) were calculated. Hind legs of BALB/c athymic mice were injected with U87-223 or U87-EV cells; after 2 weeks, half of the tumors were irradiated. Tumor volumes were tracked for a total of 5 weeks. Results: The dual luciferase reporter assay showed a significant reduction in luciferase activity of 293T cells cotransfected with miR-223 and the ATM 3′UTR compared to that in EV control. Overexpression of miR-223 in U87MG cells showed that ATM expression was significantly downregulated in the U87-223 cells compared to that in U87-EV (ATM/β-actin mRNA 1.0 vs 1.5, P<.05). U87-223 cells were hypersensitive to radiation compared to U87-EV cells in vitro (DER{sub 2} = 1.32, P<.01). Mice injected with miR-223-expressing tumors had almost the same tumors after 3 weeks (1.5 cm{sup 3} vs 1.7 cm{sup 3}). However, irradiation significantly decreased tumor size in miR-223-expressing tumors compared to those in controls (0.033 cm{sup 3} vs 0.829 cm{sup 3}). Conclusions: miR-223 overexpression downregulates ATM expression and sensitizes U87 cells to radiation in vitro and in vivo. MicroRNA-223 may be a novel cancer-targeting therapy, although its cancer- and patient-specific roles are

  1. Breast cancer risk in ataxia telangiectasia (AT) heterozygotes: haplotype study in French AT families

    Science.gov (United States)

    Janin, N; Andrieu, N; Ossian, K; Laugé, A; Croquette, M-F; Griscelli, C; Debré, M; Bressac-de-Paillerets, B; Aurias, A; Stoppa-Lyonnet, D

    1999-01-01

    Epidemiological studies in ataxia telangiectasia (AT) families have suggested that AT heterozygotes could have an increased cancer risk, especially breast cancer (BC) in women. It has also been suggested that an increased sensibility of AT heterozygotes to the effect of ionizing radiation could be responsible for the increased BC risk. BC relative risk (RR) estimation in AT heterozygotes within families ascertained through AT children is presented here. Family data collected included demographic characteristics, occurrence of cancers, past radiation exposures and blood samples. DNA samples were studied using seven ATM linked microsatellites markers allowing AT haplotypes reconstitution. The relative risk of BC was assessed using French estimated incidence rates. A significant increase risk of BC is found among obligate ATM heterozygotes with a point estimate of 3.32 (P = 0.002). BC relative risk calculated according to age is significantly increased among the obligate ATM heterozygotes female relatives with an age ≤ 44 years (RR = 4.55, P = 0.005). The BC relative risk is statistically borderline among the obligate ATM heterozygote female relatives with an age ≥ 45 years (RR = 2.48, P = 0.08). The estimated BC relative risk among ATM heterozygotes is consistent with previously published data. However, the increased risk is only a little higher than classical reproductive risk factors and similar to the risk associated with a first-degree relative affected by BC. © 1999 Cancer Research Campaign PMID:10362113

  2. Comparative human cellular radiosensitivity: I. The effect of SV40 transformation and immortalisation on the gamma-irradiation survival of skin derived fibroblasts from normal individuals and from ataxia-telangiectasia patients and heterozygotes.

    Science.gov (United States)

    Arlett, C F; Green, M H; Priestley, A; Harcourt, S A; Mayne, L V

    1988-12-01

    We have compared cell killing following 60Co gamma irradiation in 22 primary human fibroblast strains, nine SV40-immortalized human fibroblast lines and seven SV40-transformed pre-crisis human fibroblast cultures. We have examined material from normal individuals, from ataxia-telangiectasia (A-T) patients and from A-T heterozygotes. We have confirmed the greater sensitivity of A-T derived cells to gamma radiation. The distinction between A-T and normal cells is maintained in cells immortalized by SV40 virus but the immortal cells are more gamma radiation resistant than the corresponding primary fibroblasts. Cells transformed by plasmids (pSV3gpt and pSV3neo) expressing SV40 T-antigen, both pre- and post-crisis, show this increased resistance, indicating that it is expression of SV40 T-antigen, rather than immortalization per se which is responsible for the change. We use D0, obtained from a straight line fit, and D, estimated from a multitarget curve, as parameters to compare radiosensitivity. We suggest that both have their advantages; D0 is perhaps more reproducible, but D is more realistic when comparing shouldered and non-shouldered data.

  3. Ataxia telangiectasia: un desorden multisistémico con inestabilidad cromosómica y predisposición al cáncer

    Directory of Open Access Journals (Sweden)

    M. Guzmán

    1994-12-01

    Full Text Available El síndrome de ataxia telangiectasia (A-T fue descrito por Syllaba y Henneren 1926 y redescrito en 1941 por Louis Bar (1,2. Es una entidad autosómica recesiva que afecta a hombres y mujeres en igual proporción. La expresividad del gen A-Tes variable y la incidencia familiares alta (1,2. Se ha estimado que la frecuencia de individuos homocigotos (afectados para el gen A-T, es de 1/40.000 nacidos vivos y 1% de la población general serían heterocigotos (portadores. Sin embargo, la incidencia en la población se puede incrementar ya que los homocigotos pueden tener descendencia. Es así como se estima que en la población blanca de Estados Unidos los heterocigotos podrían llegar a constituir el 1,4% de la población (2,3. Otros autores estiman una frecuencia de heterocigotos mucho más alta entre 0,68% y 7,7% de la población (4.

  4. Ataxia Telangiectasia-Mutated (ATMPolymorphisms and Risk of Lung Cancer in a Chinese Population

    Directory of Open Access Journals (Sweden)

    Ajay A. Myneni

    2017-06-01

    Full Text Available BackgroundThe ataxia telangiectasia-mutated (ATM gene has a key role in DNA repair including activation and stabilization of p53, which implicates the importance of ATM polymorphisms in the development of cancer. This study aims to investigate the association of two ATM single-nucleotide polymorphisms (SNPs with lung cancer, as well as their potential interaction with p53 gene and other known risk factors of lung cancer.MethodsA population-based case–control study was conducted in Taiyuan city, China with 399 cases and 466 controls matched on the distribution of age and sex of cases. The two ATM gene SNPs, ATMrs227060 and ATMrs228589 as well as p53 gene SNP, p53rs1042522 were genotyped using Sequenom platform. Unconditional logistic regression models were used to estimate crude and adjusted odds ratios (aOR and 95% confidence intervals (CIs. Adjusted models controlled for age, sex, and smoking status.ResultsThe study showed that TT genotype of ATMrs227060 (aOR = 1.58, 95% CI: 1.06–2.35 and AA genotype of ATMrs228589 were significantly associated with lung cancer (aOR = 1.50, 95% CI: 1.08–2.08 in a recessive model. Additionally, carrying variant genotypes of ATMrs227060 (TT, ATMrs228589 (AA, and p53rs1042522 (CC concomitantly was associated with much higher risk (aOR = 3.68, 95% CI: 1.43–9.45 of lung cancer than carrying variant genotypes of any one of the above three SNPs. We also found multiplicative and additive interaction between tea drinking and ATMrs227060 in association with lung cancer.ConclusionThis study indicates that ATM gene variants might be associated with development of lung cancer in Chinese population. These results need to be validated in larger and different population samples.

  5. Telomere length, ATM mutation status and cancer risk in Ataxia-Telangiectasia families.

    Science.gov (United States)

    Renault, Anne-Laure; Mebirouk, Noura; Cavaciuti, Eve; Le Gal, Dorothée; Lecarpentier, Julie; d'Enghien, Catherine Dubois; Laugé, Anthony; Dondon, Marie-Gabrielle; Labbé, Martine; Lesca, Gaetan; Leroux, Dominique; Gladieff, Laurence; Adenis, Claude; Faivre, Laurence; Gilbert-Dussardier, Brigitte; Lortholary, Alain; Fricker, Jean-Pierre; Dahan, Karin; Bay, Jacques-Olivier; Longy, Michel; Buecher, Bruno; Janin, Nicolas; Zattara, Hélène; Berthet, Pascaline; Combès, Audrey; Coupier, Isabelle; Hall, Janet; Stoppa-Lyonnet, Dominique; Andrieu, Nadine; Lesueur, Fabienne

    2017-10-01

    Recent studies have linked constitutive telomere length (TL) to aging-related diseases including cancer at different sites. ATM participates in the signaling of telomere erosion, and inherited mutations in ATM have been associated with increased risk of cancer, particularly breast cancer. The goal of this study was to investigate whether carriage of an ATM mutation and TL interplay to modify cancer risk in ataxia-telangiectasia (A-T) families.The study population consisted of 284 heterozygous ATM mutation carriers (HetAT) and 174 non-carriers (non-HetAT) from 103 A-T families. Forty-eight HetAT and 14 non-HetAT individuals had cancer, among them 25 HetAT and 6 non-HetAT were diagnosed after blood sample collection. We measured mean TL using a quantitative PCR assay and genotyped seven single-nucleotide polymorphisms (SNPs) recurrently associated with TL in large population-based studies.HetAT individuals were at increased risk of cancer (OR = 2.3, 95%CI = 1.2-4.4, P = 0.01), and particularly of breast cancer for women (OR = 2.9, 95%CI = 1.2-7.1, P = 0.02), in comparison to their non-HetAT relatives. HetAT individuals had longer telomeres than non-HetAT individuals (P = 0.0008) but TL was not associated with cancer risk, and no significant interaction was observed between ATM mutation status and TL. Furthermore, rs9257445 (ZNF311) was associated with TL in HetAT subjects and rs6060627 (BCL2L1) modified cancer risk in HetAT and non-HetAT women.Our findings suggest that carriage of an ATM mutation impacts on the age-related TL shortening and that TL per se is not related to cancer risk in ATM carriers. TL measurement alone is not a good marker for predicting cancer risk in A-T families. © The Author 2017. Published by Oxford University Press.

  6. Comparison of γ i-irradiation-induced accumulation of ataxia telangiesctasia and control cells in G2 phase

    International Nuclear Information System (INIS)

    Bates, P.R.; Lavin, M.F.

    1989-01-01

    Recent reports from a number of laboratories have linked radiosensitivity in ataxia telangiectasia (AT) to a large and prolonged block of some cells in G 2 phase. Previous results from this laboratory, largely with one Epstein-Barr virus-transformed A-T lymphoblastoid cell line, presented evidence for a dramatic increase in the number of cells in G 2 phase over controls during a 24 h period post irradiation. We describe here a study of the effect of γ-radiation on G 2 phase delay in several A-T cell lines. Based on previous results with several cell lines 24 h post irradiation was selected as the optimum time to discriminate between G 2 phase delay in control and A-T cells. All A-T homozygotes showed a signigicantly greater number of cells in G 2 phase, 24 h post irradiation, than observed in controls. A more prolonged delay in G 2 phase after irradiation was seen in different A-T cell types that included lymphoblastoid cells, fibroblasts and SV40-transformed fibroblasts. At the radiation dose used it was not possibel to distinguish A-T heterozygotes from controls (Author). 28 refs.; 2 figs.; 1 tab

  7. Abnormal regulation of DNA replication and increased lethality in ataxia telangiectasia cells exposed to carcinogenic agents

    International Nuclear Information System (INIS)

    Jaspers, N.G.; de Wit, J.; Regulski, M.R.; Bootsma, D.

    1982-01-01

    The effect of different carcinogenic agents on the rate of semiconservative DNA replication in normal and ataxia telangiectasis (AT) cells was investigated. The rate of DNA synthesis in all AT cell strains tested was depressed to a significantly lesser extent than in normal cells after exposure to X-rays under oxia or hypoxia or to bleomycin, agents to which AT cells are hypersensitive. In contrast, inhibition of DNA replication in normal human and AT cells was similar after treatment with some DNA-methylating agents or mitomycin C. Colony-forming ability of AT cells treated with these agents was not different from normal cells. Treatment with 4-nitroquinoline 1-oxide elicited a variable response in both AT and normal cell strains. In some strains, including those shown to be hypersensitive to the drug by other workers, the inhibition of DNA synthesis was more pronounced than in other cell strains, but no significant difference between AT and normal cells could be detected. The rejoining of DNA strand breaks induced by X-rays, measured by DNA elution techniques, occurred within l2 hr after treatment and could not be correlated with the difference in DNA synthesis inhibition in AT and normal cells. After low doses of X-rays, AT cells rejoined single-strand breaks slightly more slowly than did normal cells. The rate of DNA replication in X-irradiation AT and normal cells was not affected by nicotinamide, an inhibitor of poly(adenosine diphosphate ribose) synthesis. These data indicate that the diminished inhibition of DNA replication in carcinogen-treated AT cells (a) is a general characteristic of all AT cell strains, (b) correlates with AT cellular hypersensitivity, (c) is not directly caused by the bulk of the DNA strand breaks produced by carcinogenic agents, and (d) is not based on differences in the induction of poly(adenosine diphosphate ribose) synthesis between X-irradiated AT and normal cells

  8. DNA-mediated gene transfer into ataxia-telangiectasia cells

    International Nuclear Information System (INIS)

    Crescenzi, M.; Pulciani, S.; Carbonari, M.; Tedesco, L.; Russo, G.; Gaetano, C.; Fiorilli, M.

    1986-01-01

    The complete description of the genetic lesion(s) underlying the AT mutation might, therefore, highlight not only a DNA-repair pathwa, but also an important aspect of the physiology of lymphocytes. DNA-mediated gene transfer into eukaryotic cells has proved a powerful tool for the molecular cloning of certain mammalian genes. The possibility to clone a given gene using this technology depends, basically, on the availability of a selectable marker associated with the expression of the transfected gene in the recipient cell. Recently, a human DNA repair gene has been cloned in CHO mutant cells by taking advantage of the increased resistance to ultraviolet radiation of the transformants. As a preliminary step toward the molecular cloning of the AT gene(s), the authors have attempted to confer radioresistance to AT cells by transfection with normal human DNA

  9. Survey of radiosensitivity in a variety of human cell strains

    Energy Technology Data Exchange (ETDEWEB)

    Arlett, C.F.; Harcourt, S.A.

    1980-03-01

    Gamma-ray sensitivity for cell killing was assayed in 54 human cell strains, including some derived from individuals suffering from certain hereditary diseases. The overall range of Do values in this study was 38 to 180 rads, indicating a considerable range of variability in humans. The normal sensitivity was described by a range of Do values of 97 to 180 rads. All ten ataxia telangiectasia cell strains tested proved radiosensitive and gave a mean Do value of 57 +- 15 (S.E.) rads, and these represent the most radiosensitive human skin fibroblasts currently available. Representative cell strains from familial retinoblastoma, Fanconi's anemia, and Hutchinson-Gilford progeria occupied positions of intermediate sensitivity, as did one of two ataxia telangiectasia heterozygotes. Six xeroderma pigmentosum cell strains together with two Cockayne's syndrome cell strains (all known to be sensitive to ultraviolet light) fell into the normal range, indicating an absence of cross-sensitivity between ultraviolet light and gamma-irradiation.

  10. Avances en el tratamiento de las ataxias crónicas

    Directory of Open Access Journals (Sweden)

    María Celeste Buompadre

    2013-09-01

    Full Text Available Las ataxias crónicas cerebelosas autosómicas recesivas constituyen el grupo más amplio de ataxias hereditarias, con presentación principalmente en la edad pediátrica, se caracterizan por degeneración o desarrollo anormal del cerebelo y de la médula espinal. Hasta el momento el tratamiento etiológico está disponible sólo para algunas formas: aquellas con defecto metabólico conocido como la abetalipoproteinemia, la ataxia con deficiencia de vitamina E y la xantomatosis cerebrotendinosa. En estas entidades la modificación de la dieta, el suplemento con vitaminas E y A principalmente y la administración de ácido quenodexocicólico pueden cambiar el curso de la enfermedad. En la mayoría de los otros tipos de ataxia el tratamiento es solo de soporte, como por ejemplo el uso de antioxidantes y quelantes del hierro en la ataxia de Friederich con el objetivo de disminuir los depósitos de hierro mitocondriales, de corticoides en la ataxia telangiectasia y de ubiquinona /coenzima Q10 en la ataxia por deficiencia de coenzima Q-10. Si bien hasta el momento ningún tratamiento es curativo para la mayoría de las ataxias crónicas autosómico recesivas, el diagnóstico precoz de estas entidades se asocia con una mejor respuesta a las diferentes drogas.

  11. Dysphonia and vocal fold telangiectasia in hereditary hemorrhagic telangiectasia.

    Science.gov (United States)

    Chang, Joseph; Yung, Katherine C

    2014-11-01

    This case report is the first documentation of dysphonia and vocal fold telangiectasia as a complication of hereditary hemorrhagic telangiectasia (HHT). Case report of a 40-year-old man with HHT presenting with 2 years of worsening hoarseness. Hoarseness corresponded with a period of anticoagulation. Endoscopy revealed vocal fold scarring, vocal fold telangiectasias, and plica ventricular is suggestive of previous submucosal vocal fold hemorrhage and subsequent counterproductive compensation with ventricular phonation. Hereditary hemorrhagic telangiectasia may present as dysphonia with vocal fold telangiectasias and place patients at risk of vocal fold hemorrhage. © The Author(s) 2014.

  12. Comparison of. gamma. i-irradiation-induced accumulation of ataxia telangiesctasia and control cells in G sub 2 phase

    Energy Technology Data Exchange (ETDEWEB)

    Bates, P.R. (Royal Brisbane Hospital, Herston (Australia)); Lavin, M.F. (Queensland Inst. of Medical Research, Brisbane (Australia))

    1989-09-01

    Recent reports from a number of laboratories have linked radiosensitivity in ataxia telangiectasia (AT) to a large and prolonged block of some cells in G{sub 2} phase. Previous results from this laboratory, largely with one Epstein-Barr virus-transformed A-T lymphoblastoid cell line, presented evidence for a dramatic increase in the number of cells in G{sub 2} phase over controls during a 24 h period post irradiation. We describe here a study of the effect of {gamma}-radiation on G{sub 2} phase delay in several A-T cell lines. Based on previous results with several cell lines 24 h post irradiation was selected as the optimum time to discriminate between G{sub 2} phase delay in control and A-T cells. All A-T homozygotes showed a signigicantly greater number of cells in G{sub 2} phase, 24 h post irradiation, than observed in controls. A more prolonged delay in G{sub 2} phase after irradiation was seen in different A-T cell types that included lymphoblastoid cells, fibroblasts and SV40-transformed fibroblasts. At the radiation dose used it was not possibel to distinguish A-T heterozygotes from controls (Author). 28 refs.; 2 figs.; 1 tab.

  13. Comparison of Selected Parameters of Redox Homeostasis in Patients with Ataxia-Telangiectasia and Nijmegen Breakage Syndrome

    Directory of Open Access Journals (Sweden)

    Barbara Pietrucha

    2017-01-01

    Full Text Available This study compared the antioxidant status and major lipophilic antioxidants in patients with ataxia-telangiectasia (AT and Nijmegen breakage syndrome (NBS. Total antioxidant status (TAS, total oxidant status (TOS, oxidative stress index (OSI, and concentrations of coenzyme Q10 (CoQ10 and vitamins A and E were estimated in the plasma of 22 patients with AT, 12 children with NBS, and the healthy controls. In AT patients, TAS (median 261.7 μmol/L was statistically lower but TOS (496.8 μmol/L was significantly elevated in comparison with the healthy group (312.7 μmol/L and 311.2 μmol/L, resp.. Tocopherol (0.8 μg/mL and CoQ10 (0.1 μg/mL were reduced in AT patients versus control (1.4 μg/mL and 0.3 μg/mL, resp.. NBS patients also displayed statistically lower TAS levels (290.3 μmol/L, while TOS (404.8 μmol/L was comparable to the controls. We found that in NBS patients retinol concentration (0.1 μg/mL was highly elevated and CoQ10 (0.1 μg/mL was significantly lower in comparison with those in the healthy group. Our study confirms disturbances in redox homeostasis in AT and NBS patients and indicates a need for diagnosing oxidative stress in those cases as a potential disease biomarker. Decreased CoQ10 concentration found in NBS and AT indicates a need for possible supplementation.

  14. Cooperative Enhancement of Radiosensitivity After Combined Treatment of 17-(Allylamino)-17-Demethoxygeldanamycin and Celecoxib in Human Lung and Colon Cancer Cell Lines

    Science.gov (United States)

    Kim, Young-Mee

    2012-01-01

    We investigated whether the combined treatment of 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), an inhibitor of heat-shock protein 90 (hsp90), and celecoxib, an inhibitor of cyclooxygenase-2, can cooperatively enhance the radiosensitivity of various human cancer cells. Combined treatment with 17-AAG and celecoxib, at clinically relevant concentrations, cooperatively induced radiosensitization in all tested cancer cells, but not in normal cells. Cooperative radiosensitization by the drug combination was also shown in a human tumor xenograft system. We found that ataxia-telangiectasia and rad3-related (ATR) and ataxia-telangiectasia mutated (ATM) are novel client proteins of hsp90. Combined treatment with 17-AAG and celecoxib cooperatively induced downregulation of ATR and ATM. In conclusion, combined treatment with 17-AAG and celecoxib at clinically relevant concentrations may significantly enhance the therapeutic efficacy of ionizing radiation. PMID:21830942

  15. IFN-γ Induces Mimic Extracellular Trap Cell Death in Lung Epithelial Cells Through Autophagy-Regulated DNA Damage.

    Science.gov (United States)

    Lin, Chiou-Feng; Chien, Shun-Yi; Chen, Chia-Ling; Hsieh, Chia-Yuan; Tseng, Po-Chun; Wang, Yu-Chih

    2016-02-01

    Treatment of interferon-γ (IFN-γ) causes cell growth inhibition and cytotoxicity in lung epithelial malignancies. Regarding the induction of autophagy related to IFN-γ signaling, this study investigated the link between autophagy and IFN-γ cytotoxicity. In A549 human lung cancer cells, IFN-γ treatment induced concurrent apoptotic and nonapoptotic events. Unexpectedly, the nonapoptotic cells present mimic extracellular trap cell death (ETosis), which was regulated by caspase-3 and by autophagy induction through immunity-related GTPase family M protein 1 and activating transcription factor 6. Furthermore, IFN-γ signaling controlled mimic ETosis through a mechanism involving an autophagy- and Fas-associated protein with death domain-controlled caspase-8/-3 activation. Following caspase-mediated lamin degradation, IFN-γ caused DNA damage-associated ataxia telangiectasia and Rad3-related protein (ATR)/ataxia telangiectasia mutated (ATM)-regulated mimic ETosis. Upon ATR/ATM signaling, peptidyl arginine deiminase 4 (PAD4)-mediated histone 3 citrullination promoted mimic ETosis. Such IFN-γ-induced effects were defective in PC14PE6/AS2 human lung cancer cells, which were unsusceptible to IFN-γ-induced autophagy. Due to autophagy-based caspase cascade activation, IFN-γ triggers unconventional caspase-mediated DNA damage, followed by ATR/ATM-regulated PAD4-mediated histone citrullination during mimic ETosis in lung epithelial malignancy.

  16. Two Novel Mutations Associated With Ataxia-Telangiectasia Identified Using an Ion AmpliSeq Inherited Disease Panel

    Directory of Open Access Journals (Sweden)

    Maria V. Kuznetsova

    2017-10-01

    Full Text Available Ataxia-telangiectasia (A-T, or Louis-Bar syndrome, is a rare neurodegenerative disorder associated with immunodeficiency. For families with at least one affected child, timely A-T genotyping during any subsequent pregnancy allows the parents to make an informed decision about whether to continue to term when the fetus is affected. Mutations in the ATM gene, which is 150 kb long, give rise to A-T; more than 600 pathogenic variants in ATM have been characterized since 1990 and new mutations continue to be discovered annually. Therefore, limiting genetic screening to previously known SNPs by PCR or hybridization with microarrays may not identify the specific pathogenic genotype in ATM for a given A-T family. However, recent developments in next-generation sequencing technology offer prompt high-throughput full-length sequencing of genomic fragments of interest. This allows the identification of the whole spectrum of mutations in a gene, including any novel ones. We report two A-T families with affected children and current pregnancies. Both families are consanguineous and originate from Caucasian regions of Russia and Azerbaijan. Before our study, no ATM mutations had been identified in the older children of these families. We used ion semiconductor sequencing and an Ion AmpliSeq™ Inherited Disease Panel to perform complete ATM gene sequencing in a single member of each family. Then we compared the experimentally determined genotype with the affected/normal phenotype distribution in the whole family to provide unambiguous evidence of pathogenic mutations responsible for A-T. A single novel SNP was allocated to each family. In the first case, we found a mononucleotide deletion, and in the second, a mononucleotide insertion. Both mutations lead to truncation of the ATM protein product. Identification of the pathogenic mutation in each family was performed in a timely fashion, allowing the fetuses to be tested and diagnosed. The parents chose to

  17. An Immunotherapeutic Approach to the Treatment and Prevention of Breast Cancer, Based on Epidermal Growth Factor Receptor Variant, Type III

    Science.gov (United States)

    1999-05-01

    clofibrate [CLF] for 3-60 days to induce hepatic hyperplasia, and 4-chloro-6-(2,3 xylidino)-2-pyrimidinyl-thio(N-ß-hydroxyethyl) acetamide [BR931] for 10...XIV List of Abbreviations aa Amino Acid ABs Alveolar Buds ABC ATP-Binding Cassette Ad Adenovirus APC Antigen Presenting Cell AT Ataxia...Telangiectasia ATCC American Type Culture Collection ATM Ataxia Telangiectasia, Mutated BCA Bicinchoninic Acid BDC Bile Duct Carcinomas BrdU

  18. Targeting Werner syndrome protein sensitizes U-2 OS osteosarcoma cells to selenium-induced DNA damage response and necrotic death

    DEFF Research Database (Denmark)

    Cheng, Wen-Hsing; Wu, Ryan T Y; Wu, Min

    2012-01-01

    to MSeA-induced necrotic death. Co-treatment with the ataxia-telangiectasia mutated (ATM) kinase inhibitor KU55933 desensitized the control shRNA cells, but not WRN shRNA cells, to MSeA treatment. WRN did not affect MSeA-induced ATM phosphorylation on Ser-1981 or H2A.X phosphorylation on Ser-139...

  19. ATM deficiency results in accumulation of DNA-topoisomerase I covalent intermediates in neural cells.

    Directory of Open Access Journals (Sweden)

    Meryem Alagoz

    Full Text Available Accumulation of peptide-linked DNA breaks contributes to neurodegeration in humans. This is typified by defects in tyrosyl DNA phosphodiesterase 1 (TDP1 and human hereditary ataxia. TDP1 primarily operates at single-strand breaks (SSBs created by oxidative stress or by collision of transcription machinery with topoisomerase I intermediates (Top1-CCs. Cellular and cell-free studies have shown that Top1 at stalled Top1-CCs is first degraded to a small peptide resulting in Top1-SSBs, which are the primary substrates for TDP1. Here we established an assay to directly compare Top1-SSBs and Top1-CCs. We subsequently employed this assay to reveal an increased steady state level of Top1-CCs in neural cells lacking Atm; the protein mutated in ataxia telangiectasia. Our data suggest that the accumulation of endogenous Top1-CCs in Atm-/- neural cells is primarily due to elevated levels of reactive oxygen species. Biochemical purification of Top1-CCs from neural cell extract and the use of Top1 poisons further confirmed a role for Atm during the formation/resolution of Top1-CCs. Finally, we report that global transcription is reduced in Atm-/- neural cells and fails to recover to normal levels following Top1-mediated DNA damage. Together, these data identify a distinct role for ATM during the formation/resolution of neural Top1-CCs and suggest that their accumulation contributes to the neuropathology of ataxia telangiectasia.

  20. Cellular and molecular studies on ataxia-telangiectasia lymphoblastoid cell lines

    International Nuclear Information System (INIS)

    Fiorilli, M.; Crescenzi, M.; Carbonari, M.; Russo, G.; Businco, L.; Aiuti, F.

    1985-01-01

    We have examined several AT-related lesions in lymphoblastoid cell lines (LCLs) derived from AT patients. Diminished sensitivity to gamma-irradiation was found in six of seven AT-LCLs. A seventh line, from a patient with apparently normal T-cell immunity, responded normally following radiation. Constitutive proteins from exponentially growing AT-LCLs were assessed by SDS-PAGE analysis and did not differ significantly from normals. IgM synthesis was also normal except for one AT-LCL that contained native IgM molecules of different sizes, corresponding to the presence of pentamers and oligomers. Analysis under reducing conditions showed normal-sized secretory mu-chains. Finally, we examined mRNAs corresponding to two oncogenes, c-myc and c-myb, in AT and normal LCLs and found marked overproduction of c-myc in one AT-LCL (i.e., ATL6). The latter findings suggest that AT cells might be prone to aberrantly express cellular oncogenes as a result of chromosomal instability and consequent transposition of oncogenes

  1. DNA synthesis in ataxia telangiectasia

    OpenAIRE

    Jaspers, Nicolaas

    1985-01-01

    textabstractAfter the discovery that cultured cells from AT patients are hypersensitive to ionizing radiation the suggestion was made that AT-could be the 1 X-ray-analogue 1 of xeroderma pigmentosum. The latter syndrome (XP) is characterized by hypersensitivity to short-wave UV-radiation, caused by a reduced ability to properly remove UV-induced DNA damage. The evidence for a DNA repair defect in AT cells is not as strong as in the case of XP (see section 2.2.5 of this thesis). Different XP p...

  2. Middle infrared radiation induces G2/M cell cycle arrest in A549 lung cancer cells.

    Science.gov (United States)

    Chang, Hsin-Yi; Shih, Meng-Her; Huang, Hsuan-Cheng; Tsai, Shang-Ru; Juan, Hsueh-Fen; Lee, Si-Chen

    2013-01-01

    There were studies investigating the effects of broadband infrared radiation (IR) on cancer cell, while the influences of middle-infrared radiation (MIR) are still unknown. In this study, a MIR emitter with emission wavelength band in the 3-5 µm region was developed to irradiate A549 lung adenocarcinoma cells. It was found that MIR exposure inhibited cell proliferation and induced morphological changes by altering the cellular distribution of cytoskeletal components. Using quantitative PCR, we found that MIR promoted the expression levels of ATM (ataxia telangiectasia mutated), ATR (ataxia-telangiectasia and Rad3-related and Rad3-related), TP53 (tumor protein p53), p21 (CDKN1A, cyclin-dependent kinase inhibitor 1A) and GADD45 (growth arrest and DNA-damage inducible), but decreased the expression levels of cyclin B coding genes, CCNB1 and CCNB2, as well as CDK1 (Cyclin-dependent kinase 1). The reduction of protein expression levels of CDC25C, cyclin B1 and the phosphorylation of CDK1 at Thr-161 altogether suggest G(2)/M arrest occurred in A549 cells by MIR. DNA repair foci formation of DNA double-strand breaks (DSB) marker γ-H2AX and sensor 53BP1 was induced by MIR treatment, it implies the MIR induced G(2)/M cell cycle arrest resulted from DSB. This study illustrates a potential role for the use of MIR in lung cancer therapy by initiating DSB and blocking cell cycle progression.

  3. ROS-activated ATM-dependent phosphorylation of cytoplasmic substrates identified by large scale phosphoproteomics screen

    DEFF Research Database (Denmark)

    Kozlov, Sergei V; Waardenberg, Ashley J; Engholm-Keller, Kasper

    2016-01-01

    ATM (ataxia-telangiectasia, mutated) protein plays a central role in phosphorylating a network of proteins in response to DNA damage. These proteins function in signalling pathways designed to maintain the stability of the genome and minimize the risk of disease by controlling cell cycle checkpoi......ATM (ataxia-telangiectasia, mutated) protein plays a central role in phosphorylating a network of proteins in response to DNA damage. These proteins function in signalling pathways designed to maintain the stability of the genome and minimize the risk of disease by controlling cell cycle...... checkpoints, initiating DNA repair and regulating gene expression. ATM kinase can be activated by a variety of stimuli, including oxidative stress. Here we confirmed activation of cytoplasmic ATM by autophosphorylation at multiple sites. Then we employed a global quantitative phosphoproteomics approach...... to identify cytoplasmic proteins altered in their phosphorylation state in control and A-T (ataxia-telangiectasia) cells in response to oxidative damage. We demonstrated that ATM was activated by oxidative damage in the cytoplasm as well as in the nucleus and identified a total of 9,833 phosphorylation sites...

  4. Enhanced radiosensitivity of cultured fibroblasts from ataxia telangiectasia heterozygotes manifested by defective colony-forming ability and reduced DNA repair replication after hypoxic γ-irradiation

    International Nuclear Information System (INIS)

    Paterson, M.C.; Anderson, A.K.; Smith, B.P.; Smith, P.J.

    1979-01-01

    We have measured the sensitivity to γ-ray inactivation of diploid skin fibroblasts cultured from 10 persons in four families with ataxia telangiectasia (AT). Persons heterozygous for AT, including parents of afflicted patients, are not as yet detectable by any specific clinical or laboratory marker but are believed to constitute a substantial portion of the middle-aged cancer population. In one AT family, fibroblast strains from both parents exhibited a colony-forming ability after hypoxic irradiation which was intermediate between that displayed by five control strains from normal children and that from the affected child. In the remaining three families, cultures from only one parent were available; one parental strain displayed an intermediate survival capacity as above, whereas the other two responded normally. The homozygous recessive strains from the five afflicted children in the four families were all equally hypersensitive to hypoxic γ-ray inactivation. The three presumed AT heterozygous strains that displayed intermediate rayiosensitivity also carried out γ-rad-induced DNA repair replication to an extent intermediate between those in normals and AT homozygotes. These findings suggest that a numerically significant, cancer-prone subpopulation of humans carrying one normal and one abnormal AT gene may also be moderately sensitive to lethal effects of hypoxic γ-rays due to a defect in the enzymatic repair of DNA

  5. DNA synthesis in ataxia telangiectasia

    NARCIS (Netherlands)

    N.G.J. Jaspers (Nicolaas)

    1985-01-01

    textabstractAfter the discovery that cultured cells from AT patients are hypersensitive to ionizing radiation the suggestion was made that AT-could be the 1 X-ray-analogue 1 of xeroderma pigmentosum. The latter syndrome (XP) is characterized by hypersensitivity to short-wave UV-radiation, caused by

  6. DNA fork displacement rates in human cells

    International Nuclear Information System (INIS)

    Kapp, L.N.; Painter, R.B.

    1981-01-01

    DNA fork displacement rates were measured in 20 human cell lines by a bromodeoxyuridine-313 nm photolysis technique. Cell lines included representatives of normal diploid, Fanconi's anemia, ataxia telangiectasia, xeroderma pigmentosum, trisomy-21 and several transformed lines. The average value for all the cell lines was 0.53 +- 0.08 μm/min. The average value for individual cell lines, however, displayed a 30% variation. Less than 10% of variation in the fork displacement rate appears to be due to the experimental technique; the remainder is probably due to true variation among the cell types and to culture conditions. (Auth.)

  7. DNA fork displacement rates in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Kapp, L.N.; Painter, R.B. (California Univ., San Francisco (USA). Lab. of Radiobiology)

    1981-11-27

    DNA fork displacement rates were measured in 20 human cell lines by a bromodeoxyuridine-313 nm photolysis technique. Cell lines included representatives of normal diploid, Fanconi's anemia, ataxia telangiectasia, xeroderma pigmentosum, trisomy-21 and several transformed lines. The average value for all the cell lines was 0.53 +- 0.08 ..mu..m/min. The average value for individual cell lines, however, displayed a 30% variation. Less than 10% of variation in the fork displacement rate appears to be due to the experimental technique; the remainder is probably due to true variation among the cell types and to culture conditions.

  8. Purkinje Cell Signaling Deficits in Animal Models of Ataxia

    Directory of Open Access Journals (Sweden)

    Eriola Hoxha

    2018-04-01

    Full Text Available Purkinje cell (PC dysfunction or degeneration is the most frequent finding in animal models with ataxic symptoms. Mutations affecting intrinsic membrane properties can lead to ataxia by altering the firing rate of PCs or their firing pattern. However, the relationship between specific firing alterations and motor symptoms is not yet clear, and in some cases PC dysfunction precedes the onset of ataxic signs. Moreover, a great variety of ionic and synaptic mechanisms can affect PC signaling, resulting in different features of motor dysfunction. Mutations affecting Na+ channels (NaV1.1, NaV1.6, NaVβ4, Fgf14 or Rer1 reduce the firing rate of PCs, mainly via an impairment of the Na+ resurgent current. Mutations that reduce Kv3 currents limit the firing rate frequency range. Mutations of Kv1 channels act mainly on inhibitory interneurons, generating excessive GABAergic signaling onto PCs, resulting in episodic ataxia. Kv4.3 mutations are responsible for a complex syndrome with several neurologic dysfunctions including ataxia. Mutations of either Cav or BK channels have similar consequences, consisting in a disruption of the firing pattern of PCs, with loss of precision, leading to ataxia. Another category of pathogenic mechanisms of ataxia regards alterations of synaptic signals arriving at the PC. At the parallel fiber (PF-PC synapse, mutations of glutamate delta-2 (GluD2 or its ligand Crbl1 are responsible for the loss of synaptic contacts, abolishment of long-term depression (LTD and motor deficits. At the same synapse, a correct function of metabotropic glutamate receptor 1 (mGlu1 receptors is necessary to avoid ataxia. Failure of climbing fiber (CF maturation and establishment of PC mono-innervation occurs in a great number of mutant mice, including mGlu1 and its transduction pathway, GluD2, semaphorins and their receptors. All these models have in common the alteration of PC output signals, due to a variety of mechanisms affecting incoming

  9. Ataxia Telangiectasia

    Science.gov (United States)

    ... is the measurement of "fetal proteins," or serum alpha-fetoprotein , in the blood. These are proteins that are ... than 95 percent) have elevated levels of serum alpha-fetoprotein. When other causes of elevations of alpha-fetoprotein ...

  10. Ataxia Telangiectasia

    Science.gov (United States)

    ... the hair, difficulty swallowing, and delayed physical and sexual development. Children with A-T usually have normal or ... the hair, difficulty swallowing, and delayed physical and sexual development. Children with A-T usually have normal or ...

  11. ATM-Deficient Colorectal Cancer Cells Are Sensitive to the PARP Inhibitor Olaparib.

    Science.gov (United States)

    Wang, Chen; Jette, Nicholas; Moussienko, Daniel; Bebb, D Gwyn; Lees-Miller, Susan P

    2017-04-01

    The ataxia telangiectasia mutated (ATM) protein kinase plays a central role in the cellular response to DNA damage. Loss or inactivation of both copies of the ATM gene (ATM) leads to ataxia telangiectasia, a devastating childhood condition characterized by neurodegeneration, immune deficiencies, and cancer predisposition. ATM is also absent in approximately 40% of mantle cell lymphomas (MCLs), and we previously showed that MCL cell lines with loss of ATM are sensitive to poly-ADP ribose polymerase (PARP) inhibitors. Next-generation sequencing of patient tumors has revealed that ATM is altered in many human cancers including colorectal, lung, prostate, and breast. Here, we show that the colorectal cancer cell line SK-CO-1 lacks detectable ATM protein expression and is sensitive to the PARP inhibitor olaparib. Similarly, HCT116 colorectal cancer cells with shRNA depletion of ATM are sensitive to olaparib, and depletion of p53 enhances this sensitivity. Moreover, HCT116 cells are sensitive to olaparib in combination with the ATM inhibitor KU55933, and sensitivity is enhanced by deletion of p53. Together our studies suggest that PARP inhibitors may have potential for treating colorectal cancer with ATM dysfunction and/or colorectal cancer with mutation of p53 when combined with an ATM kinase inhibitor. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Vertical transmission of macular telangiectasia type 2.

    Science.gov (United States)

    Delaere, Lien; Spielberg, Leigh; Leys, Anita M

    2012-01-01

    The purpose of this study was to report vertical transmission of macular telangiectasia type 2 and type 2 diabetes mellitus in 3 families. In this retrospective interventional case series, the charts of patients with inherited macular telangiectasia type 2 were reviewed. A large spectrum of presentations of macular telangiectasia type 2 was observed and has been studied with different techniques including best-corrected visual acuity, microperimetry, confocal blue reflectance fundus autofluorescence, fluorescein angiography, and time domain and spectral domain optical coherence tomography. Vertical transmission of macular telangiectasia type 2 and associated type 2 diabetes mellitus is described in 3 families. Symptomatic as well as asymptomatic eyes with macular telangiectasia type 2 were identified. In 2 families, a mother and son experienced visual loss and were diagnosed with macular telangiectasia type 2. All 4 patients had type 2 diabetes. Diabetic retinopathy was observed in one mother and her son. In the third family, the index patient was diagnosed macular telangiectasia type 2 after complaints of metamorphopsia. She and her family members had type 2 diabetes mellitus, and further screening of her family revealed familial macular telangiectasia type 2. None of the patients were treated for macular telangiectasia type 2. Macular telangiectasia type 2 may be more common than previously assumed, as vision can remain preserved and patients may go undiagnosed. Screening of family members is indicated, and detection of mild anomalies is possible using fundus autofluorescence and spectral domain optical coherence tomography.

  13. Response of sensitive human ataxia and resistant T-1 cell lines to accelerated heavy ions

    International Nuclear Information System (INIS)

    Tobias, C.A.; Blakely, E.A.; Chang, P.Y.; Lommel, L.; Roots, R.

    1983-07-01

    The radiation dose responses of fibroblast from a patient with Ataxia telangiectasis (AT-2SF) and an established line of human T-1 cells were studied. Nearly monoenergetic accelerated neon and argon ions were used at the Berkeley Bevalac with various residual range values. The LET of the particles varied from 30 keV/μm to over 1000 keV/μm. All Ataxia survival curves were exponential functions of the dose. Their radiosensitivity reached peak values at 100 to 200 keV/μm. Human T-1 cells have effective sublethal damage repair as has been evidenced by split dose experiments, and they are much more resistant to low LET than to high LET radiation. The repair-misrepair model has been used to interpret these results. We have obtained mathematical expressions that describe the cross sections and inactivation coefficients for both human cell lines as a function of the LET and the type of particle used. The results suggest either that high-LET particles induce a greater number of radiolesions per track or that heavy-ions at high LET induce lesions that kill cells more effectively and that are different from those produced at low LET. We assume that the lesions induced in T-1 and Ataxia cells are qualitatively similar and that each cell line attempts to repair these lesions. The result in most irradiated Ataxia cells, however, is either lethal misrepair or incomplete repair leading to cell death. 63 references, 10 figures, 1 table

  14. Molecular diagnosis of known recessive ataxias by homozygosity mapping with SNP arrays.

    Science.gov (United States)

    H'mida-Ben Brahim, D; M'zahem, A; Assoum, M; Bouhlal, Y; Fattori, F; Anheim, M; Ali-Pacha, L; Ferrat, F; Chaouch, M; Lagier-Tourenne, C; Drouot, N; Thibaut, C; Benhassine, T; Sifi, Y; Stoppa-Lyonnet, D; N'Guyen, K; Poujet, J; Hamri, A; Hentati, F; Amouri, R; Santorelli, F M; Tazir, M; Koenig, M

    2011-01-01

    The diagnosis of rare inherited diseases is becoming more and more complex as an increasing number of clinical conditions appear to be genetically heterogeneous. Multigenic inheritance also applies to the autosomal recessive progressive cerebellar ataxias (ARCAs), for which 14 genes have been identified and more are expected to be discovered. We used homozygosity mapping as a guide for identification of the defective locus in patients with ARCA born from consanguineous parents. Patients from 97 families were analyzed with GeneChip Mapping 10K or 50K SNP Affymetrix microarrays. We identified six families homozygous for regions containing the autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) gene, two families homozygous for the ataxia-telangiectasia gene (ATM), two families homozygous for the ataxia with oculomotor apraxia type 1 (AOA1) gene, and one family homozygous for the AOA type 2 (AOA2) gene. Upon direct gene testing, we were able to identify a disease-related mutation in all families but one of the two kindred homozygous at the ATM locus. Although linkage analyses pointed to a single locus on chromosome 11q22.1-q23.1 for this family, clinical features, normal levels of serum alpha-foetoprotein as well as absence of mutations in the ATM gene rather suggest the existence of an additional ARCA-related gene in that interval. While the use of homozygosity mapping was very effective at pointing to the correct gene, it also suggests that the majority of patients harbor mutations either in the genes of the rare forms of ARCA or in genes yet to be identified.

  15. Cytological characterization of Chinese hamster ovary X-ray-sensitive mutant cells xrs 5 and xrs 6. 1

    International Nuclear Information System (INIS)

    Darroudi, F.

    1987-01-01

    The authors have determined the rate of progression of the cell cycle of irradiated cells in the presence of caffeine as well as the potentiating effect of caffeine on the frequency of chromosomal aberrations after X-irradiation. The characteristics for survival, frequency of chromosomal alterations and cell cycle progression in the presence or absence of 3-aminobenzamide (3AB) and caffeine of X-irradiated xrs 5, xrs 6 and parental wild-type CHO-K1 cells are discussed and compared to other X-ray-sensitive cells such as cells from ataxia telangiectasia patients. (Auth.)

  16. Alterations in radioresistance of eucaryotic cells after the transfer of genomic wildtype DNA and metallothionein genes

    International Nuclear Information System (INIS)

    Lohrer, H.

    1987-01-01

    The presented paper describes experiments concerning the alteration of radiosensitivity of eucaryotic cells after gene transfer. Ionizing radiation (γ- or X-ray) induces DNA single- or double strand breaks, which are religated by an unknown repair system. Repair deficient cells are highly sensitive to ionizing radiation. In the experiments described, cells from a patient with the heritable disease Ataxia telangiectasia were used as well as two X-ray sensitive CHO mutant cell lines. After gene transfer of an intact human DNA repair gene or a metallothionein gene the cells should regain radioresistance. (orig.) [de

  17. Hereditary syndromes with enhanced radiosensitivity

    International Nuclear Information System (INIS)

    Lohmann, D.

    2000-01-01

    Sensitivity to ionizing radiation is modified by heritable genetic factors. This is exemplified by heritable disorders that are characterized by predisposition to the development of neoplasms. Cells derived from patients with ataxia telangiectasia, Nijmegen breakage syndrome and ataxia telangiektasia-like disorder show a markedly changed reaction to exposure to ionizing radiation. Correspondingly, at least in patients with ataxia telangiectasia, an enhanced radiosensitivity that is of clinical importance has been observed. In addition to these recessive disorders, some autosomal dominant cancer predisposition syndromes are associated with increased radiosensitivity. As cells from these patients still have a normal allele (that is dominant over the mutant allele), the cellular phenotype is most often normal. Specifically, there is no overtly altered reaction in response to ionizing radiation. Nevertheless, two dominant cancer predisposition syndromes, namely hereditary retinoblastoma and naevoid basal cell carcinoma syndrome, are associated with a enhanced radiosensitivity as indicated by increased development of tumors following radiation therapy. (orig.) [de

  18. Plasma induced DNA damage: Comparison with the effects of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lazović, S.; Maletić, D.; Puač, N.; Malović, G.; Petrović, Z. Lj. [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Leskovac, A.; Filipović, J.; Joksić, G. [Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, 11001 Belgrade (Serbia)

    2014-09-22

    We use human primary fibroblasts for comparing plasma and gamma rays induced DNA damage. In both cases, DNA strand breaks occur, but of fundamentally different nature. Unlike gamma exposure, contact with plasma predominantly leads to single strand breaks and base-damages, while double strand breaks are mainly consequence of the cell repair mechanisms. Different cell signaling mechanisms are detected confirming this (ataxia telangiectasia mutated - ATM and ataxia telangiectasia and Rad3 related - ATR, respectively). The effective plasma doses can be tuned to match the typical therapeutic doses of 2 Gy. Tailoring the effective dose through plasma power and duration of the treatment enables safety precautions mainly by inducing apoptosis and consequently reduced frequency of micronuclei.

  19. Are lesions induced by ionizing radiation direct blocks to DNA chain elongation

    International Nuclear Information System (INIS)

    Painter, R.B.

    1983-01-01

    Ionizing radiation blocks DNA chain elongation in normal diploid fibroblasts but not in fibroblasts from patients with ataxia-telangiectasia, even though there are no differences in the damage induced between the two cell types. This difference suggests that radiation-induced lesions in DNA are not themselves blocks to chain elongation in ataxia cells and raises the possibility that in normal cells a mediator exists between DNA damage and chain termination

  20. Breakpoint of an inversion of chromosome 14 in a T-cell leukemia: sequences downstream of the immunoglobulin heavy chain locus are implicated in tumorigenesis

    International Nuclear Information System (INIS)

    Baer, R.; Heppell, A.; Taylor, A.M.R.; Rabbitts, P.H.; Boullier, B.; Rabbitts, T.H.

    1987-01-01

    T-cell tumors are characterized by inversions or translocations of chromosome 14. The breakpoints of these karyotypic abnormalities occur in chromosome bands 14q11 and 14q32 - the same bands in which the T-cell receptor (TCR) α-chain and immunoglobulin heavy chain genes have been mapped, respectively. Patients with ataxia-telangiectasia are particularly prone to development of T-cell chronic lymphocytic leukemia with such chromosomal abnormalities. The authors describe DNA rearrangements of the TCR α-chain gene in an ataxia-telangiectasia-associated leukemia containing both a normal and an inverted chromosome 14. The normal chromosome 14 has undergone a productive join of TCR α-chain variable (V/sub α/) and joining (J/sub α/) gene segments. The other allele of the TCR α-chain gene features a DNA rearrangement, about 50 kilobases from the TCR α-chain constant (C/sub α/) gene, that represents the breakpoint of the chromosome 14 inversion; this breakpoint is comprised of a TCR J/sub α/) segment (from 14q11) fused to sequences derived from 14q32 but on the centromeric side of C/sub μ/. These results imply that 14q32 sequences located at an undetermined distance downstream of immunoglobulin C/sub μ/ locus can contribute to the development of T-cell tumors

  1. Selective loss of Purkinje cells in a patient with anti-gliadin-antibody-positive autoimmune cerebellar ataxia

    Directory of Open Access Journals (Sweden)

    Hasegawa Akira

    2011-02-01

    Full Text Available Abstract The patient was an 84-year-old woman who had the onset of truncal ataxia at age 77 and a history of Basedow's disease. Her ataxic gait gradually deteriorated. She could not walk without support at age 81 and she was admitted to our hospital at age 83. Gaze-evoked nystagmus and dysarthria were observed. Mild ataxia was observed in all limbs. Her deep tendon reflex and sense of position were normal. IgA anti-gliadin antibody, IgG anti-gliadin antibody, anti-SS-A/Ro antibody, anti-SS-B/La antibody and anti-TPO antibody were positive. A conventional brain MRI did not show obvious cerebellar atrophy. However, MRI voxel based morphometry (VBM and SPECT-eZIS revealed cortical cerebellar atrophy and reduced cerebellar blood flow. IVIg treatment was performed and was moderately effective. After her death at age 85, the patient was autopsied. Neuropathological findings were as follows: selective loss of Purkinje cells; no apparent degenerative change in the efferent pathways, such as the dentate nuclei or vestibular nuclei; no prominent inflammatory reaction. From these findings, we diagnosed this case as autoimmune cerebellar atrophy associated with gluten ataxia. All 3 autopsies previously reported on gluten ataxia have noted infiltration of inflammatory cells in the cerebellum. In this case, we postulated that the infiltration of inflammatory cells was not found because the patient's condition was based on humoral immunity. The clinical conditions of gluten ataxia have not yet been properly elucidated, but are expected to be revealed as the number of autopsied cases increases.

  2. Radioresistance of chordoma cells is associated with the ATM/ATR pathway, in which RAD51 serves as an important downstream effector.

    Science.gov (United States)

    Zhang, Chao; Wang, Bing; Li, Lei; Li, Yawei; Li, Pengzhi; Lv, Guohua

    2017-09-01

    Surgery followed by radiotherapy is the standard treatment for chordomas, which are a rare but low-grade type of bone cancer arising from remnants of the embryonic notochord. However, disease recurrence following radiotherapy is common, most likely due to endogenous DNA repair mechanisms that promote cell survival upon radiation strikes. The ataxia telangiectasia mutated/ataxia telangiectasia mutated and Rad3 related (ATM/ATR)-mediated pathway has a critical role in DNA repair mechanisms; however, it has rarely been investigated in chordomas. In the present study, the expression of signal molecules related to the ATM/ATR pathway in chordoma tissues and adjacent normal tissues were initially examined using immunohistochemistry and western blot analysis. Chordoma U-CH1 and U-CH2 cells were subsequently used to investigate cell responses to ionizing radiation and the potential protective actions mediated by the ATM/ATR pathway. Phosphorylated (p)-ATM, p-ATR, γ-H2A histone family, member X (H2AX) and RAD51 were significantly upregulated in chordoma tissues relative to adjacent normal tissues (PATM, γ-H2AX and RAD51 expression in U-CH1 cells (PATM, p-ATR and RAD51 levels in U-CH2 cells (PATM/ATR pathway, in which RAD51 serves as an important downstream effector. Thus, RAD51 presents a promising therapeutic target for improving the outcome of radiotherapy treatment in chordomas.

  3. Clinical features of Hereditary Haemorrhagic Telangiectasia

    NARCIS (Netherlands)

    Hosman, A.E.

    2017-01-01

    Hereditary Haemorrhagic Telangiectasia (HHT), also known as Rendu-Osler-Weber disease (ROW), is an autosomal dominant disease with multi-systemic vascular dysplasia characterized by mucocutaneous telangiectasia, arteriovenous malformations and recurrent spontaneous epistaxis (nosebleeds). Most cases

  4. Human hereditary diseases associated with elevated frequency of chromosome aberrations

    International Nuclear Information System (INIS)

    Ejima, Yosuke

    1988-01-01

    Human recessive diseases collectively known as chromosome breakage syndromes include Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. Cells from these patients show chromosome instabilities both spontaneously and following treatments with radiations or certain chemicals, where defects in DNA metabolisms are supposed to be involved. Cells from patients with ataxia telangiectasia are hypersensitive to ionizing radiations, though DNA replication is less affected than in normal cells. Chromatid-type as well as chromosom-type aberrations are induced in cells irradiated in G 0 or G 1 phases. These unusual responses to radiations may provide clues for understanding the link between DNA replicative response and cellular radiosensitivity. Alterations in cellular radiosensitivity or spontaneous chromosome instabilities are observed in some patients with congenital chromosome anomalies or dominant diseases, where underlying defects may be different from those in recessive diseases. (author)

  5. Human hereditary diseases associated with elevated frequency of chromosome aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Ejima, Yosuke; Ikushima, Takaji (ed.)

    1988-07-01

    Human recessive diseases collectively known as chromosome breakage syndromes include Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. Cells from these patients show chromosome instabilities both spontaneously and following treatments with radiations or certain chemicals, where defects in DNA metabolisms are supposed to be involved. Cells from patients with ataxia telangiectasia are hypersensitive to ionizing radiations, though DNA replication is less affected than in normal cells. Chromatid-type as well as chromosom-type aberrations are induced in cells irradiated in G/sub 0/ or G/sub 1/ phases. These unusual responses to radiations may provide clues for understanding the link between DNA replicative response and cellular radiosensitivity. Alterations in cellular radiosensitivity or spontaneous chromosome instabilities are observed in some patients with congenital chromosome anomalies or dominant diseases, where underlying defects may be different from those in recessive diseases.

  6. Activation of ATM by DNA Damaging Agents

    National Research Council Canada - National Science Library

    Kurz, Ebba U; Lees-Miller, Susan P

    2004-01-01

    Ataxia-telangiectasia mutated (ATM) is a serine/threonine protein kinase that acts as a master switch controlling the cell cycle in response to ionizing radiation-induced DNA double-strand breaks (DSBs...

  7. Activation of ATM by DNA Damaging Agents

    National Research Council Canada - National Science Library

    Kurz, Ebba U; Lees-Miller, Susan P

    2005-01-01

    Ataxia-telangiectasia mutated (ATM) is a serine/threonine protein kinase that acts as a master switch controlling the cell cycle in response to ionizing radiation-induced DNA double-strand breaks (DSBs...

  8. Splenic Involvement in Hereditary Hemorrhagic Telangiectasia

    Directory of Open Access Journals (Sweden)

    Susumu Takamatsu

    2016-01-01

    Full Text Available A 33-year-old man who presented with prolonged epigastric pain was referred to our hospital. He had experienced recurrent epistaxis and had a family history of hereditary hemorrhagic telangiectasia. Computed tomography and magnetic resonance imaging revealed splenomegaly and a 9 cm hypervascular mass in his spleen. Computed tomography also showed a pulmonary arteriovenous malformation and heterogeneous enhancement of the liver parenchyma, suggesting the presence of arteriosystemic shunts and telangiectases. Based on these findings, the patient was definitely diagnosed with hereditary hemorrhagic telangiectasia according to Curaçao criteria. He underwent splenectomy, and his symptoms disappeared after surgery. Pathological examination of the resected specimen revealed that the hypervascular lesion of the spleen was not a tumor but was composed of abnormal vessels associated with hereditary hemorrhagic telangiectasia. Symptomatic splenic involvement may be a rare manifestation of hereditary hemorrhagic telangiectasia but can be revealed by imaging modalities.

  9. Susceptibility of ATM-deficient pancreatic cancer cells to radiation.

    Science.gov (United States)

    Ayars, Michael; Eshleman, James; Goggins, Michael

    2017-05-19

    Ataxia telangiectasia mutated (ATM) is inactivated in a significant minority of pancreatic ductal adenocarcinomas and may be predictor of treatment response. We determined if ATM deficiency renders pancreatic cancer cells more sensitive to fractionated radiation or commonly used chemotherapeutics. ATM expression was knocked down in three pancreatic cancer cell lines using ATM-targeting shRNA. Isogenic cell lines were tested for sensitivity to several chemotherapeutic agents and radiation. DNA repair kinetics were analyzed in irradiated cells using the comet assay. We find that while rendering pancreatic cancer cells ATM-deficient did not significantly change their sensitivity to several chemotherapeutics, it did render them exquisitely sensitized to radiation. Pancreatic cancer ATM status may help predict response to radiotherapy.

  10. Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients.

    LENUS (Irish Health Repository)

    Anheim, M

    2009-10-01

    Ataxia with oculomotor apraxia type 2 (AOA2) is an autosomal recessive disease due to mutations in the senataxin gene, causing progressive cerebellar ataxia with peripheral neuropathy, cerebellar atrophy, occasional oculomotor apraxia and elevated alpha-feto-protein (AFP) serum level. We compiled a series of 67 previously reported and 58 novel ataxic patients who underwent senataxin gene sequencing because of suspected AOA2. An AOA2 diagnosis was established for 90 patients, originating from 15 countries worldwide, and 25 new senataxin gene mutations were found. In patients with AOA2, median AFP serum level was 31.0 microg\\/l at diagnosis, which was higher than the median AFP level of AOA2 negative patients: 13.8 microg\\/l, P = 0.0004; itself higher than the normal level (3.4 microg\\/l, range from 0.5 to 17.2 microg\\/l) because elevated AFP was one of the possible selection criteria. Polyneuropathy was found in 97.5% of AOA2 patients, cerebellar atrophy in 96%, occasional oculomotor apraxia in 51%, pyramidal signs in 20.5%, head tremor in 14%, dystonia in 13.5%, strabismus in 12.3% and chorea in 9.5%. No patient was lacking both peripheral neuropathy and cerebellar atrophy. The age at onset and presence of occasional oculomotor apraxia were negatively correlated to the progression rate of the disease (P = 0.03 and P = 0.009, respectively), whereas strabismus was positively correlated to the progression rate (P = 0.03). An increased AFP level as well as cerebellar atrophy seem to be stable in the course of the disease and to occur mostly at or before the onset of the disease. One of the two patients with a normal AFP level at diagnosis had high AFP levels 4 years later, while the other had borderline levels. The probability of missing AOA2 diagnosis, in case of sequencing senataxin gene only in non-Friedreich ataxia non-ataxia-telangiectasia ataxic patients with AFP level > or =7 microg\\/l, is 0.23% and the probability for a non-Friedreich ataxia non-ataxia-telangiectasia

  11. Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients.

    Science.gov (United States)

    Anheim, M; Monga, B; Fleury, M; Charles, P; Barbot, C; Salih, M; Delaunoy, J P; Fritsch, M; Arning, L; Synofzik, M; Schöls, L; Sequeiros, J; Goizet, C; Marelli, C; Le Ber, I; Koht, J; Gazulla, J; De Bleecker, J; Mukhtar, M; Drouot, N; Ali-Pacha, L; Benhassine, T; Chbicheb, M; M'Zahem, A; Hamri, A; Chabrol, B; Pouget, J; Murphy, R; Watanabe, M; Coutinho, P; Tazir, M; Durr, A; Brice, A; Tranchant, C; Koenig, M

    2009-10-01

    Ataxia with oculomotor apraxia type 2 (AOA2) is an autosomal recessive disease due to mutations in the senataxin gene, causing progressive cerebellar ataxia with peripheral neuropathy, cerebellar atrophy, occasional oculomotor apraxia and elevated alpha-feto-protein (AFP) serum level. We compiled a series of 67 previously reported and 58 novel ataxic patients who underwent senataxin gene sequencing because of suspected AOA2. An AOA2 diagnosis was established for 90 patients, originating from 15 countries worldwide, and 25 new senataxin gene mutations were found. In patients with AOA2, median AFP serum level was 31.0 microg/l at diagnosis, which was higher than the median AFP level of AOA2 negative patients: 13.8 microg/l, P = 0.0004; itself higher than the normal level (3.4 microg/l, range from 0.5 to 17.2 microg/l) because elevated AFP was one of the possible selection criteria. Polyneuropathy was found in 97.5% of AOA2 patients, cerebellar atrophy in 96%, occasional oculomotor apraxia in 51%, pyramidal signs in 20.5%, head tremor in 14%, dystonia in 13.5%, strabismus in 12.3% and chorea in 9.5%. No patient was lacking both peripheral neuropathy and cerebellar atrophy. The age at onset and presence of occasional oculomotor apraxia were negatively correlated to the progression rate of the disease (P = 0.03 and P = 0.009, respectively), whereas strabismus was positively correlated to the progression rate (P = 0.03). An increased AFP level as well as cerebellar atrophy seem to be stable in the course of the disease and to occur mostly at or before the onset of the disease. One of the two patients with a normal AFP level at diagnosis had high AFP levels 4 years later, while the other had borderline levels. The probability of missing AOA2 diagnosis, in case of sequencing senataxin gene only in non-Friedreich ataxia non-ataxia-telangiectasia ataxic patients with AFP level > or =7 microg/l, is 0.23% and the probability for a non-Friedreich ataxia non-ataxia-telangiectasia

  12. The effect of piracetam on ataxia: clinical observations in a group of autosomal dominant cerebellar ataxia patients.

    Science.gov (United States)

    Ince Gunal, D; Agan, K; Afsar, N; Borucu, D; Us, O

    2008-04-01

    Autosomal dominant cerebellar ataxias are clinically and genetically heterogeneous neurodegenerative disorders. There is no known treatment to prevent neuronal cell death in these disorders. Current treatment is purely symptomatic; ataxia is one of the most disabling symptoms and represents the main therapeutic challenge. A previous case report suggesting benefit from administration of high dose piracetam inspired the present study of the efficacy of this agent in patients with cerebellar ataxia. Piracetam is a low molecular weight derivative of gamma-aminobutyric acid. Although little is known of its mode of action, its efficacy has been documented in a wide range of clinical indications, such as cognitive disorders, dementia, vertigo and dyslexia, as well as cortical myoclonus. The present report investigated the role of high dose piracetam in patients with cerebellar ataxia. Eight patients with autosomal dominant cerebellar ataxia were given intravenous piracetam 60 g/day by a structured protocol for 14 days. The baseline and end-of-the study evaluations were based on the International Cooperative Ataxia Rating Scale. Statistical analysis demonstrated a significant improvement in the patients' total score (P = 0.018) and a subscale analysis showed statistical significance for only the posture and gait disturbances item (P = 0.018). This study is providing good clinical observation in favour of high dose piracetam infusion to reduce the disability of the patients by improving their gait ataxia.

  13. Sensitivity of hyperthermia-treated human cells to killing by ultraviolet or gamma radiation

    International Nuclear Information System (INIS)

    Mitchel, R.E.; Smith, B.P.; Wheatly, N.; Chan, A.; Child, S.; Paterson, M.C.

    1985-01-01

    Human xeroderma pigmentosum (XP) or Fanconi anemia (FA) fibroblasts displayed shouldered 45 0 C heat survival curves not significantly different from normal fibroblasts, a result similar to that previously found for ataxia telangiectasia (AT) cells, indicating heat resistance is not linked to either uv or low-LET ionizing radiation resistance. Hyperthermia (45 0 C) sensitized normal and XP fibroblasts to killing by gamma radiation but failed to sensitize the cells to the lethal effects of 254 nm uv radiation. Thermal inhibition of repair of ionizing radiation lesions but not uv-induced lesions appears to contribute synergistically to cell death. The thermal enhancement ratio (TER) for the synergistic interaction of hyperthermia (45 0 C, 30 min) and gamma radiation was significantly lower in one FA and two strains (TER = 1.7-1.8) than that reported previously for three normal strains (TER = 2.5-3.0). These XP and FA strains may be more gamma sensitive than normal human fibroblasts. Since hyperthermia treatment only slightly increases the gamma-radiation sensitivity of ataxia telangiectasia (AT) fibroblasts compared to normal strains, it is possible that the degree of thermal enhancement attainable reflects the genetically inherent ionizing radiation repair capacity of the cells. The data indicate that both repair inhibition and particular lesion types are required for lethal synergism between heat and radiation. We therefore postulate that the transient thermal inhibition of repair results in the conversion of gamma-induced lesions to irrepairable lethal damage, while uv-type damage can remain unaltered during this period

  14. Defective fluid shear stress mechanotransduction mediates hereditary hemorrhagic telangiectasia

    Science.gov (United States)

    Baeyens, Nicolas; Larrivée, Bruno; Ola, Roxana; Hayward-Piatkowskyi, Brielle; Dubrac, Alexandre; Huang, Billy; Ross, Tyler D.; Coon, Brian G.; Min, Elizabeth; Tsarfati, Maya; Tong, Haibin; Eichmann, Anne

    2016-01-01

    Morphogenesis of the vascular system is strongly modulated by mechanical forces from blood flow. Hereditary hemorrhagic telangiectasia (HHT) is an inherited autosomal-dominant disease in which arteriovenous malformations and telangiectasias accumulate with age. Most cases are linked to heterozygous mutations in Alk1 or Endoglin, receptors for bone morphogenetic proteins (BMPs) 9 and 10. Evidence suggests that a second hit results in clonal expansion of endothelial cells to form lesions with poor mural cell coverage that spontaneously rupture and bleed. We now report that fluid shear stress potentiates BMPs to activate Alk1 signaling, which correlates with enhanced association of Alk1 and endoglin. Alk1 is required for BMP9 and flow responses, whereas endoglin is only required for enhancement by flow. This pathway mediates both inhibition of endothelial proliferation and recruitment of mural cells; thus, its loss blocks flow-induced vascular stabilization. Identification of Alk1 signaling as a convergence point for flow and soluble ligands provides a molecular mechanism for development of HHT lesions. PMID:27646277

  15. Hereditary haemorrhagic telangiectasia

    DEFF Research Database (Denmark)

    Kjeldsen, A D; Vase, P; Green, A

    1999-01-01

    Hereditary haemorrhagic telangiectasia (HHT) is a dominantly inherited disease characterized by telangiectatic lesions. The disease manifestations are variable and include epistaxis, gastrointestinal bleeding, pulmonary arteriovenous malformations and cerebral arteriovenous malformations. Early...

  16. The mammalian mid-pachytene checkpoint: meiotic arrest in spermatocytes with a mutation in Atm alone or in combination with a Trp53 (p53) or Cdkn1a (p21/cip1) mutation

    NARCIS (Netherlands)

    Ashley, T.; Westphal, C.; Plug-de Maggio, A.; de rooij, D. G.

    2004-01-01

    ATM, the protein product of the gene mutated in the human autosomal recessive disorder ataxia telangiectasia, is involved in detection of double strand breaks (DSBs) and is a key component of the damage surveillance network of cell cycle proteins. In somatic cells ATM phosphorylates many other

  17. No evidence for association of ataxia-telangiectasia mutated gene T2119C and C3161G amino acid substitution variants with risk of breast cancer

    International Nuclear Information System (INIS)

    Spurdle, Amanda B; Hopper, John L; Chen, Xiaoqing; McCredie, Margaret RE; Giles, Graham G; Newman, Beth; Chenevix-Trench, Georgia; Khanna, KumKum

    2002-01-01

    There is evidence that certain mutations in the double-strand break repair pathway ataxia-telangiectasia mutated gene act in a dominant-negative manner to increase the risk of breast cancer. There are also some reports to suggest that the amino acid substitution variants T2119C Ser707Pro and C3161G Pro1054Arg may be associated with breast cancer risk. We investigate the breast cancer risk associated with these two nonconservative amino acid substitution variants using a large Australian population-based case–control study. The polymorphisms were genotyped in more than 1300 cases and 600 controls using 5' exonuclease assays. Case–control analyses and genotype distributions were compared by logistic regression. The 2119C variant was rare, occurring at frequencies of 1.4 and 1.3% in cases and controls, respectively (P = 0.8). There was no difference in genotype distribution between cases and controls (P = 0.8), and the TC genotype was not associated with increased risk of breast cancer (adjusted odds ratio = 1.08, 95% confidence interval = 0.59–1.97, P = 0.8). Similarly, the 3161G variant was no more common in cases than in controls (2.9% versus 2.2%, P = 0.2), there was no difference in genotype distribution between cases and controls (P = 0.1), and the CG genotype was not associated with an increased risk of breast cancer (adjusted odds ratio = 1.30, 95% confidence interval = 0.85–1.98, P = 0.2). This lack of evidence for an association persisted within groups defined by the family history of breast cancer or by age. The 2119C and 3161G amino acid substitution variants are not associated with moderate or high risks of breast cancer in Australian women

  18. Human uracil DNA N-glycosidase: studies in normal and repair defective cultured fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Kuhnlein, U; Lee, B; Linn, S

    1978-01-01

    Uracil DNA N-glycosidase, an enzyme which participates in the excision of uracil from DNA, was measured in extracts from fibroblast lines cultured from normal subjects, from several subjects with the genetic disease xeroderma pigmentosum, and from a subject with ataxia telangiectasia. The cell lines representative of complementation groups A and D of xeroderma pigmentosum and of ataxia telangiectasia had roughly the same level of activity as did the normal cells. On the other hand, cells from two xeroderma pigmentosum variants (XP4BE and XP13BE) had roughly half the normal level of activity, and cells from the heterozygous mother of XP4BE had an intermediate level of activity. In spite of these quantitative differences, no systematic alterations in reaction characteristics, apparent K/sub m/ for substrate, or purification characteristics were noted for enzyme from any of the lines. Thus a causal relationship, if any, between levels of activity and the disease symptoms is equivocal.

  19. Evidence-based management of epistaxis in hereditary haemorrhagic telangiectasia.

    Science.gov (United States)

    Syed, I; Sunkaraneni, V S

    2015-05-01

    There are currently no guidelines in the UK for the specific management of hereditary haemorrhagic telangiectasia related epistaxis. The authors aimed to review the literature and provide an algorithm for the management of hereditary haemorrhagic telangiectasia related epistaxis. The Medline and Embase databases were interrogated on 15 November 2013 using the search items 'hereditary haemorrhagic telangiectasia' (title), 'epistaxis' (title) and 'treatment' (title and abstract), and limiting the search to articles published in English. A total of 46 publications were identified, comprising 1 systematic review, 2 randomised, controlled trials, 27 case series, 9 case reports, 4 questionnaire studies and 3 in vitro studies. There is a lack of high-level evidence for the use of many of the available treatments for the specific management of epistaxis in hereditary haemorrhagic telangiectasia. Current management should be based on a multidisciplinary team approach involving both a hereditary haemorrhagic telangiectasia physician and an ENT surgeon, especially when systemic therapy is being considered. The suggested treatment algorithm considers that the severity of epistaxis merits intervention at different levels of the treatment ladder. The patient should be assessed using a reproducible validated assessment tool, for example an epistaxis severity score, to guide treatment. More research is required, particularly in the investigation of topical agents targeting the development and fragility of telangiectasiae in hereditary haemorrhagic telangiectasia.

  20. In children with Friedreich ataxia, muscle and ataxia parameters are associated

    NARCIS (Netherlands)

    Sival, Deborah A.; Pouwels, Maria E.; van Brederode, Agnes; Maurits, Natasha M.; Verschuuren - Bemelmans, Corien C.; Brunt, Ewout R.; Sarvaas, Gideon J. Du Marchie; Verbeek, Renate J.; Brouwer, Oebele F.; van der Hoeven, Johannes H.

    Aim In children with Friedreich ataxia (FRDA), ataxia is assessed using the surrogate marker the International Cooperative Ataxia Rating Scale (ICARS). We aimed to determine whether ICARS scores in children with FRDA are confounded by muscle weakness. Method In 12 children with FRDA (10 males, two

  1. Induced pluripotent stem cell - derived neurons for the study of spinocerebellar ataxia type 3

    DEFF Research Database (Denmark)

    Hansen, Susanne Kofoed; Stummann, Tina C.; Madsen, Helena Borland

    2016-01-01

    The neurodegenerative disease spinocerebellar ataxia type 3 (SCA3) is caused by a CAG-repeat expansion in the ATXN3 gene. In this study, induced pluripotent stem cell (iPSC) lines were established from two SCA3 patients. Dermal fibroblasts were reprogrammed using an integration-free method...

  2. Effect of caffeine posttreatment on X-ray-induced chromosomal aberrations in human blood lymphocytes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, A T [Rijksuniversiteit Leiden (Netherlands). Dept. of Radiation Genetics and Chemical Mutagenesis; Cohen (J.A.) Inst. voor Radiopathologie en Stralenbescherming, Leiden (Netherlands)); Obe, G [Rijksuniversiteit Leiden (Netherlands). Dept. of Radiation Genetics and Chemical Mutagenesis; Cohen (J.A.) Inst. voor Radiopathologie en Stralenbescherming, Leiden (Netherlands); Freie Univ. Berlin (Germany, F.R.). Inst. fuer Genetik); Dulout, F N [Rijksuniversiteit Leiden (Netherlands). Dept. of Radiation Genetics and Chemical Mutagenesis; Instituto Multidisciplinario de Biologia Celular, La Plata (Argentinia))

    1980-01-01

    The potentiating effect of caffeine on X-ray-induced chromosomal aberrations in human blood lymphocytes has been investigated, with special reference to cell cycle stages (G0 and G2). Both quantitative and qualitative differences in the yield of chromosomal aberrations were detected in caffeine-posttreated cells, depending on the cell stage irradiated. The studies on caffeine potentiating effects on X-irradiated G0 lymphocytes from normal adults, newborns, Down syndrome patients, and an ataxia telangiectasia patient pointed to interindividual variations in the response to caffeine potentiation among normal probands and a very profound effect in ataxia cells.

  3. The effect of caffeine posttreatment on X-ray-induced chromosomal aberrations in human blood lymphocytes in vitro

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Obe, G.

    1980-01-01

    The potentiating effect of caffeine on X-ray-induced chromosomal aberrations in human blood lymphocytes has been investigated, with special reference to cell cycle stages (G0 and G2). Both quantitative and qualitative differences in the yield of chromosomal aberrations were detected in caffeine-posttreated cells, depending on the cell stage irradiated. The studies on caffeine potentiating effects on X-irradiated G0 lymphocytes from normal adults, newborns, Down syndrome patients, and an ataxia telangiectasia patient pointed to interindividual variations in the response to caffeine potentiation among normal probands and a very profound effect in ataxia cells. (orig.) [de

  4. Multifunctional Role of ATM/Tel1 Kinase in Genome Stability: From the DNA Damage Response to Telomere Maintenance

    Science.gov (United States)

    2014-01-01

    The mammalian protein kinase ataxia telangiectasia mutated (ATM) is a key regulator of the DNA double-strand-break response and belongs to the evolutionary conserved phosphatidylinositol-3-kinase-related protein kinases. ATM deficiency causes ataxia telangiectasia (AT), a genetic disorder that is characterized by premature aging, cerebellar neuropathy, immunodeficiency, and predisposition to cancer. AT cells show defects in the DNA damage-response pathway, cell-cycle control, and telomere maintenance and length regulation. Likewise, in Saccharomyces cerevisiae, haploid strains defective in the TEL1 gene, the ATM ortholog, show chromosomal aberrations and short telomeres. In this review, we outline the complex role of ATM/Tel1 in maintaining genomic stability through its control of numerous aspects of cellular survival. In particular, we describe how ATM/Tel1 participates in the signal transduction pathways elicited by DNA damage and in telomere homeostasis and its importance as a barrier to cancer development. PMID:25247188

  5. Adaptive Response to ionizing Radiation Induced by Low Doses of Gamma Rays in Human Lymphoblastoid Cell Lines

    International Nuclear Information System (INIS)

    Seong, Jin Sil; Suh, Chang Ok; Kim, Gwi Eon

    1994-01-01

    When cells are exposed to low doses of a mutagenic or clastogenic agents, they often become less sensitive to the effects of a higher does administered subsequently. Such adaptive responses were first described in Escherichia coli and mammalian cells to low doses of an alkylating agent. Since most of the studies have been carried out with human lymphocytes, it is urgently necessary to study this effect in different cellular systems. Its relation with inherent cellular radiosensitivity and underlying mechanism also remain to be answered. In this study, adaptive response by 1 cGy of gamma rays was investigated in three human lymphoblastoid cell lines which were derived from ataxia telangiectasia homozygote, ataxia telangiectasia heterozygote, and normal individual. Experiments were carried out by delivering 1 cGy followed by 50 cGy of gamma radiation and chromatid breaks were scored as an endpoint. The results indicate that prior exposure to 1 cGy of gamma rays reduces the number of chromatid breaks induced by subsequent higher does (50 cGy). The expression of this adaptive response was similar among three cell lines despite of their different radiosensitivity. When 3-aminobenzamide, an inhibitor of poly (ADP-ribose) polymerase, was added after 50 cGy, adaptive responses were abolished in all the tested cell lines. Therefore it is suggested that the adaptive response can be observed in human lymphoblastoid cell lines. Which was first documented through this study. The expression of adaptive response was similar among the cell lines regardless of their radiosensitivity. The elimination of the adaptive response by 3-aminobenzamide is consistent with the proposal that this adaptive response is the result of the induction of a certain chromosomal repair mechanism

  6. Rapid and Complete Reversal of Sensory Ataxia by Gene Therapy in a Novel Model of Friedreich Ataxia.

    Science.gov (United States)

    Piguet, Françoise; de Montigny, Charline; Vaucamps, Nadège; Reutenauer, Laurence; Eisenmann, Aurélie; Puccio, Hélène

    2018-05-28

    Friedreich ataxia (FA) is a rare mitochondrial disease characterized by sensory and spinocerebellar ataxia, hypertrophic cardiomyopathy, and diabetes, for which there is no treatment. FA is caused by reduced levels of frataxin (FXN), an essential mitochondrial protein involved in the biosynthesis of iron-sulfur (Fe-S) clusters. Despite significant progress in recent years, to date, there are no good models to explore and test therapeutic approaches to stop or reverse the ganglionopathy and the sensory neuropathy associated to frataxin deficiency. Here, we report a new conditional mouse model with complete frataxin deletion in parvalbumin-positive cells that recapitulate the sensory ataxia and neuropathy associated to FA, albeit with a more rapid and severe course. Interestingly, although fully dysfunctional, proprioceptive neurons can survive for many weeks without frataxin. Furthermore, we demonstrate that post-symptomatic delivery of frataxin-expressing AAV allows for rapid and complete rescue of the sensory neuropathy associated with frataxin deficiency, thus establishing the pre-clinical proof of concept for the potential of gene therapy in treating FA neuropathy. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  7. Identification of ATM Protein Kinase Phosphorylation Sites by Mass Spectrometry.

    Science.gov (United States)

    Graham, Mark E; Lavin, Martin F; Kozlov, Sergei V

    2017-01-01

    ATM (ataxia-telangiectasia mutated) protein kinase is a key regulator of cellular responses to DNA damage and oxidative stress. DNA damage triggers complex cascade of signaling events leading to numerous posttranslational modification on multitude of proteins. Understanding the regulation of ATM kinase is therefore critical not only for understanding the human genetic disorder ataxia-telangiectasia and potential treatment strategies, but essential for deciphering physiological responses of cells to stress. These responses play an important role in carcinogenesis, neurodegeneration, and aging. We focus here on the identification of DNA damage inducible ATM phosphorylation sites to understand the importance of autophosphorylation in the mechanism of ATM kinase activation. We demonstrate the utility of using immunoprecipitated ATM in quantitative LC-MS/MS workflow with stable isotope dimethyl labeling of ATM peptides for identification of phosphorylation sites.

  8. Ataxia-Telangiectasia Children's Project

    Science.gov (United States)

    ... T CURE TEAM Walt Disney World® Marathon Weekend Star Wars™ Half Marathon - The Dark Side Pittsburgh Marathon Weekend Hess Lake Run Half Marathon Super Heroes Half Marathon Run Any Race What's New Exploring the Epidemiology of A-T in ...

  9. Differential responses to high- and low-dose ultraviolet-B stress in tobacco Bright Yellow-2 cells

    Science.gov (United States)

    Takahashi, Shinya; Kojo, Kei H.; Kutsuna, Natsumaro; Endo, Masaki; Toki, Seiichi; Isoda, Hiroko; Hasezawa, Seiichiro

    2015-01-01

    Ultraviolet (UV)-B irradiation leads to DNA damage, cell cycle arrest, growth inhibition, and cell death. To evaluate the UV-B stress–induced changes in plant cells, we developed a model system based on tobacco Bright Yellow-2 (BY-2) cells. Both low-dose UV-B (low UV-B: 740 J m−2) and high-dose UV-B (high UV-B: 2960 J m−2) inhibited cell proliferation and induced cell death; these effects were more pronounced at high UV-B. Flow cytometry showed cell cycle arrest within 1 day after UV-B irradiation; neither low- nor high-UV-B–irradiated cells entered mitosis within 12 h. Cell cycle progression was gradually restored in low-UV-B–irradiated cells but not in high-UV-B–irradiated cells. UV-A irradiation, which activates cyclobutane pyrimidine dimer (CPD) photolyase, reduced inhibition of cell proliferation by low but not high UV-B and suppressed high-UV-B–induced cell death. UV-B induced CPD formation in a dose-dependent manner. The amounts of CPDs decreased gradually within 3 days in low-UV-B–irradiated cells, but remained elevated after 3 days in high-UV-B–irradiated cells. Low UV-B slightly increased the number of DNA single-strand breaks detected by the comet assay at 1 day after irradiation, and then decreased at 2 and 3 days after irradiation. High UV-B increased DNA fragmentation detected by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay 1 and 3 days after irradiation. Caffeine, an inhibitor of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) checkpoint kinases, reduced the rate of cell death in high-UV-B–irradiated cells. Our data suggest that low-UV-B–induced CPDs and/or DNA strand-breaks inhibit DNA replication and proliferation of BY-2 cells, whereas larger contents of high-UV-B–induced CPDs and/or DNA strand-breaks lead to cell death. PMID:25954287

  10. miR-30a can inhibit DNA replication by targeting RPA1 thus slowing cancer cell proliferation.

    Science.gov (United States)

    Zou, Zhenyou; Ni, Mengjie; Zhang, Jing; Chen, Yongfeng; Ma, Hongyu; Qian, Shihan; Tang, Longhua; Tang, Jiamei; Yao, Hailun; Zhao, Chengbin; Lu, Xiongwen; Sun, Hongyang; Qian, Jue; Mao, Xiaoting; Lu, Xulin; Liu, Qun; Zen, Juping; Wu, Hanbing; Bao, Zhaosheng; Lin, Shudan; Sheng, Hongyu; Li, Yunlong; Liang, Yong; Chen, Zhiqiang; Zong, Dan

    2016-07-15

    Cell proliferation was inhibited following forced over-expression of miR-30a in the ovary cancer cell line A2780DX5 and the gastric cancer cell line SGC7901R. Interestingly, miR-30a targets the DNA replication protein RPA1, hinders the replication of DNA and induces DNA fragmentation. Furthermore, ataxia telangiectasia mutated (ATM) and checkpoint kinase 2 (CHK2) were phosphorylated after DNA damage, which induced p53 expression, thus triggering the S-phase checkpoint, arresting cell cycle progression and ultimately initiating cancer cell apoptosis. Therefore, forced miR-30a over-expression in cancer cells can be a potential way to inhibit tumour development. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  11. Very early disease manifestations of macular telangiectasia type 2

    NARCIS (Netherlands)

    Issa, P.C.; Heeren, T.F.C.; Kupitz, E.H.; Holz, F.G.; Berendschot, T.T.J.M.

    Background: To report very early morphologic and functional alterations in patients with macular telangiectasia type 2. Methods: Patients with asymmetric disease manifestations, in whom retinal alterations characteristic for macular telangiectasia type 2 were present in one but not in the apparently

  12. Ionizing Radiation Deregulates the MicroRNA Expression Profile in Differentiated Thyroid Cells.

    Science.gov (United States)

    Penha, Ricardo Cortez Cardoso; Pellecchia, Simona; Pacelli, Roberto; Pinto, Luis Felipe Ribeiro; Fusco, Alfredo

    2018-03-01

    Ionizing radiation (IR) is a well-known risk factor for papillary thyroid cancer, and it has been reported to deregulate microRNA expression, which is important to thyroid carcinogenesis. Therefore, this study investigated the impact of IR on microRNA expression profile of the normal thyroid cell line (FRTL-5 CL2), as well as its effect on radiosensitivity of thyroid cancer cell lines, especially the human anaplastic thyroid carcinoma cell line (8505c). The global microRNA expression profile of irradiated FRTL-5 CL2 cells (5 Gy X-ray) was characterized, and data were confirmed by quantitative real-time polymerase chain reaction evaluating the expression of rno-miR-10b-5p, rno-miR-33-5p, rno-miR-128-1-5p, rno-miR-199a-3p, rno-miR-296-5p, rno-miR-328a-3p, and rno-miR-541-5p in irradiated cells. The miR-199a-3p and miR-10b-5p targets were validated by quantitative real-time polymerase chain reaction, Western blot, and luciferase target assays. The effects of miR-199a-3p and miR-10b-5p on DNA repair were determined by evaluating the activation of the protein kinases ataxia-telangiectasia mutated, ataxia telangiectasia, and Rad3-related and the serine 39 phosphorylation of variant histone H2AX as an indirect measure of double-strand DNA breaks in irradiated FRTL-5 CL2 cells. The impact of miR-10b-5p on radiosensitivity was analyzed by cell counting and MTT assays in FRTL-5 CL2, Kras-transformed FRTL-5 CL2 (FRTL KiKi), and 8505c cell lines. The results reveal that miR-10b-5p and miR-199a-3p display the most pronounced alterations in expression in irradiated FRTL-5 CL2 cells. Dicer1 and Lin28b were validated as targets of miR-10b-5p and miR-199a-3p, respectively. Functional studies demonstrate that miR-10b-5p increases the growth rate of FRTL-5 CL2 cells, while miR-199a-3p inhibits their proliferation. Moreover, both of these microRNAs negatively affect homologous recombination repair, reducing activated ataxia-telangiectasia mutated and Rad3-related protein levels

  13. Spectrum of centrosome autoantibodies in childhood varicella and post-varicella acute cerebellar ataxia

    Directory of Open Access Journals (Sweden)

    Stinton Laura M

    2003-09-01

    Full Text Available Abstract Background Sera from children with post-varicella infections have autoantibodies that react with centrosomes in brain and tissue culture cells. We investigated the sera of children with infections and post-varicella ataxia and related conditions for reactivity to five recombinant centrosome proteins: γγ-enolase, pericentrin, ninein, PCM-1, and Mob1. Methods Sera from 12 patients with acute post-varicella ataxia, 1 with post-Epstein Barr virus (EBV ataxia, 5 with uncomplicated varicella infections, and other conditions were tested for reactivity to cryopreserved cerebellum tissue and recombinant centrosome proteins. The distribution of pericentrin in the cerebellum was studied by indirect immunofluorescence (IIF using rabbit antibodies to the recombinant protein. Antibodies to phospholipids (APL were detected by ELISA. Results Eleven of 12 children with post-varicella ataxia, 4/5 children with uncomplicated varicella infections, 1/1 with post-EBV ataxia, 2/2 with ADEM, 1/2 with neuroblastoma and ataxia, and 2/2 with cerebellitis had antibodies directed against 1 or more recombinant centrosome antigens. Antibodies to pericentrin were seen in 5/12 children with post-varicella ataxia but not in any of the other sera tested. IIF demonstrated that pericentrin is located in axons and centrosomes of cerebellar cells. APL were detected in 75% of the sera from children with post-varicella ataxia and 50% of children with varicella without ataxia and in none of the controls. Conclusion This is the first study to show the antigen specificity of anti-centrosome antibodies in children with varicella. Our data suggest that children with post-varicella ataxia have unique autoantibody reactivity to pericentrin.

  14. A Case of Ataxia with Isolated Vitamin E Deficiency Initially Diagnosed as Friedreich’s Ataxia

    Directory of Open Access Journals (Sweden)

    Michael Bonello

    2016-01-01

    Full Text Available Ataxia with isolated vitamin E deficiency (AVED is a rare autosomal recessive condition that is caused by a mutation in the alpha tocopherol transfer protein gene. It is almost indistinguishable clinically from Friedreich’s ataxia but with appropriate treatment its devastating neurological features can be prevented. Patients can present with a progressive cerebellar ataxia, pyramidal spasticity, and evidence of a neuropathy with absent deep tendon reflexes. It is important to screen for this condition on initial evaluation of a young patient presenting with progressive ataxia and it should be considered in patients with a long standing ataxia without any diagnosis in view of the potential therapeutics and genetic counselling. In this case report we present a patient who was initially diagnosed with Friedreich’s ataxia but was later found to have AVED.

  15. Clinical neurogenetics: friedreich ataxia.

    Science.gov (United States)

    Collins, Abigail

    2013-11-01

    Friedreich ataxia is the most common autosomal recessive ataxia. It is a progressive neurodegenerative disorder, typically with onset before 20 years of age. Signs and symptoms include progressive ataxia, ascending weakness and ascending loss of vibration and joint position senses, pes cavus, scoliosis, cardiomyopathy, and arrhythmias. There are no disease-modifying medications to either slow or halt the progression of the disease, but research investigating therapies to increase endogenous frataxin production and decrease the downstream consequences of disrupted iron homeostasis is ongoing. Clinical trials of promising medications are underway, and the treatment era of Friedreich ataxia is beginning. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Normal inhibition of DNA synthesis following γ-irradiation of radiosensitive cell lines from patients with Down's syndrome and Alzheimer's disease

    International Nuclear Information System (INIS)

    Lavin, M.F.; Le poidevin, P.; Chen, P.C.; Bates, P.

    1989-01-01

    Inhibition of DNA synthesis was studied in γ-iradiated lymphoblastoid cells from patients with Alzheimer's disease and Down's syndrome. A normal biphasic pattern of inhibition was observed over a dose range of 0-4 krad of γ-rays in all of the cell lines 3 out of 4 Down's and all the Alzheimer's cell lines were shown to be hypersensitive to ionizing radiation based on induced chromosomal aberrations. Increased G2 phase delay, comparable to that occurring in ataxia-telangiectasia cells, was observed for some of the cell lines, after exposure to γ-rays. Contrary to other data in the literature these results demonstrate that radioresistand DNA synthesis is not an intrinsic feature of all disorders characterized by radiosensitivitey. (author).; 25 refs.; 2 figs.; 1 tab

  17. Comparative study of G2 delay and survival after /sup 241/Americium-. cap alpha. and /sup 60/Cobalt-. gamma. irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Luecke-Huhle, C.; Comper, W.; Hieber, L.; Pech, M.

    1982-06-01

    Survival and G2 delay following exposure to either /sup 60/Cobalt-..gamma..-rays or /sup 241/Americium-..cap alpha..-particles were studied in eight mammalian cell lines of human and animal origin including human fibroblasts from normal individuals and from patients with Ataxia telangiectasia or Fanconi's anemia. For both endpoints the effectiveness of alpha particle was greater as compared to ..gamma..-rays. RBE values for G2 delay (4.6-9.2) were in general comparable to RBE values derived from initial slopes of survival curves but higher compared to the ratio of mean inactivation doses. Ataxia cells were particularly sensitive to cell killing by ..gamma..-irradiation, however, showed average sensitivity to ..cap alpha..-particles of high LET. With the exception of Ataxia cells, cell killing and G2 delay seem to be related processes if individual cell cycle parameters are taken into account.

  18. miR-26b promotes granulosa cell apoptosis by targeting ATM during follicular atresia in porcine ovary.

    Directory of Open Access Journals (Sweden)

    Fei Lin

    Full Text Available More than 99% of ovarian follicles undergo atresia in mammals, but the mechanism of follicular atresia remains to be elucidated. In this study, we explored microRNA (miRNA regulation of follicular atresia in porcine ovary. A miRNA expression profile was constructed for healthy, early atretic, and progressively atretic follicles, and the differentially expressed miRNAs were selected and analyzed. We found that miR-26b, which was upregulated during follicular atresia, increased the number of DNA breaks and promoted granulosa cell apoptosis by targeting the ataxia telangiectasia mutated gene directly in vitro.

  19. Video game-based coordinative training improves ataxia in children with degenerative ataxia.

    Science.gov (United States)

    Ilg, Winfried; Schatton, Cornelia; Schicks, Julia; Giese, Martin A; Schöls, Ludger; Synofzik, Matthis

    2012-11-13

    Degenerative ataxias in children present a rare condition where effective treatments are lacking. Intensive coordinative training based on physiotherapeutic exercises improves degenerative ataxia in adults, but such exercises have drawbacks for children, often including a lack of motivation for high-frequent physiotherapy. Recently developed whole-body controlled video game technology might present a novel treatment strategy for highly interactive and motivational coordinative training for children with degenerative ataxias. We examined the effectiveness of an 8-week coordinative training for 10 children with progressive spinocerebellar ataxia. Training was based on 3 Microsoft Xbox Kinect video games particularly suitable to exercise whole-body coordination and dynamic balance. Training was started with a laboratory-based 2-week training phase and followed by 6 weeks training in children's home environment. Rater-blinded assessments were performed 2 weeks before laboratory-based training, immediately prior to and after the laboratory-based training period, as well as after home training. These assessments allowed for an intraindividual control design, where performance changes with and without training were compared. Ataxia symptoms were significantly reduced (decrease in Scale for the Assessment and Rating of Ataxia score, p = 0.0078) and balance capacities improved (dynamic gait index, p = 0.04) after intervention. Quantitative movement analysis revealed improvements in gait (lateral sway: p = 0.01; step length variability: p = 0.01) and in goal-directed leg placement (p = 0.03). Despite progressive cerebellar degeneration, children are able to improve motor performance by intensive coordination training. Directed training of whole-body controlled video games might present a highly motivational, cost-efficient, and home-based rehabilitation strategy to train dynamic balance and interaction with dynamic environments in a large variety of young-onset neurologic

  20. Diagnostic criteria for hereditary hemorrhagic telangiectasia (Rendu-Osler-Weber syndrome)

    DEFF Research Database (Denmark)

    Shovlin, C L; Guttmacher, A E; Buscarini, E

    2000-01-01

    Hereditary Hemorrhagic Telangiectasia (HHT) is easily recognized in individuals displaying the classical triad of epistaxis, telangiectasia, and a suitable family history, but the disease is more difficult to diagnosis in many patients. Serious consequences may result if visceral arteriovenous ma...... in this disorder. These criteria may be refined as molecular diagnostic tests become available in the next few years....... of the HHT Foundation International, Inc., we present consensus clinical diagnostic criteria. The four criteria (epistaxes, telangiectasia, visceral lesions and an appropriate family history) are carefully delineated. The HHT diagnosis is definite if three criteria are present. A diagnosis of HHT cannot...

  1. Repair-deficient xeroderma pigmentosum cells made UV light resistant by fusion with X-ray-inactivated Chinese hamster cells

    International Nuclear Information System (INIS)

    Karentz, D.; Cleaver, J.E.

    1986-01-01

    Xeroderma pigmentosum (XP) is an autosomal recessive human disease, characterized by an extreme sensitivity to sunlight, caused by the inability of cells to repair UV light-induced damage to DNA. Cell fusion was used to transfer fragments of Chinese hamster ovary (CHO) chromosomes into XP cells. The hybrid cells exhibited UV resistance and DNA repair characteristics comparable to those expressed by CHO cells, and their DNA had greater homology with CHO DNA than did the DNA from XP cells. Control experiments consisted of fusion of irradiated and unirradiated XP cells and repeated exposure of unfused XP cells to UV doses used for hybrid selection. These treatments did not result in an increase in UV resistance, repair capability, or homology with CHO DNA. The hybrid cell lines do not, therefore, appear to be XP revertants. The establishment of these stable hybrid cell lines is an initial step toward identifying and cloning CHO DNA repair genes that complement the XP defect in human cells. The method should also be applicable to cloning genes for other diseases, such as ataxia-telangiectasia and Fanconi's anemia

  2. Premeiotic germ cell defect in seminiferous tubules of Atm-null testis

    International Nuclear Information System (INIS)

    Takubo, Keiyo; Hirao, Atsushi; Ohmura, Masako; Azuma, Masaki; Arai, Fumio; Nagamatsu, Go; Suda, Toshio

    2006-01-01

    Lifelong spermatogenesis is maintained by coordinated sequential processes including self-renewal of stem cells, proliferation of spermatogonial cells, meiotic division, and spermiogenesis. It has been shown that ataxia telangiectasia-mutated (ATM) is required for meiotic division of the seminiferous tubules. Here, we show that, in addition to its role in meiosis, ATM has a pivotal role in premeiotic germ cell maintenance. ATM is activated in premeiotic spermatogonial cells and the Atm-null testis shows progressive degeneration. In Atm-null testicular cells, differing from bone marrow cells of Atm-null mice, reactive oxygen species-mediated p16 Ink4a activation does not occur in Atm-null premeiotic germ cells, which suggests the involvement of different signaling pathways from bone marrow defects. Although Atm-null bone marrow undergoes p16 Ink4a -mediated cellular senescence program, Atm-null premeiotic germ cells exhibited cell cycle arrest and apoptotic elimination of premeiotic germ cells, which is different from p16 Ink4a -mediated senescence

  3. Generation of spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cell line SCA3.B11

    DEFF Research Database (Denmark)

    Hansen, Susanne Kofoed; Borland, Helena; Hasholt, Lis Frydenreich

    2016-01-01

    Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disease caused by an expansion of the CAG-repeat in ATXN3. In this study, induced pluripotent stem cells (iPSCs) were generated from SCA3 patient dermal fibroblasts by electroporation with episomal plasmids encoding L...

  4. Caffeine markedly sensitizes human mesothelioma cell lines to pemetrexed

    Science.gov (United States)

    Min, Sang Hee; Goldman, I. David; Zhao, Rongbao

    2013-01-01

    Pemetrexed is a new generation antifolate approved for the treatment of mesothelioma and non-small cell lung cancer. Caffeine is known to augment radiation or chemotherapeutic drug-induced cell killing. The current study addresses the impact of caffeine on the activity of pemetrexed in mesothelioma cell lines. Caffeine enhanced pemetrexed activity in all four mesothelioma cell lines tested (H2052, H2373, H28 and MSTO-211H). Caffeine sensitized H2052 cells in a dose- and schedule-dependent manner, and was associated with a markedly decreased clonogenic survival. Caffeine sensitization occurred only in cells subjected to pulse, but not continuous, exposure to pemetrexed. Similar pemetrexed sensitization was also observed with the clinically better tolerated caffeine analog, theobromine. Pemetrexed sensitization by caffeine was associated with an increase in pemetrexed-induced phosphorylation of ataxia-telangiectasia-mutated (ATM) and Chk1. These data indicate that caffeine and its analog, theobromine, may be a useful approach to enhance pemetrexed-based chemotherapy. PMID:17594092

  5. Spinocerebellar ataxias Ataxias espinocerebelares

    Directory of Open Access Journals (Sweden)

    Hélio A.G. Teive

    2009-12-01

    Full Text Available Spinocerebellar ataxias (SCAs constitute a heterogeneous group of neurodegenerative diseases characterized by progressive cerebellar ataxia in association with some or all of the following conditions: ophthalmoplegia, pyramidal signs, movement disorders, pigmentary retinopathy, peripheral neuropathy, cognitive dysfunction and dementia. OBJECTIVE: To carry out a clinical and genetic review of the main types of SCA. METHOD: The review was based on a search of the PUBMED and OMIM databases. RESULTS: Thirty types of SCAs are currently known, and 16 genes associated with the disease have been identified. The most common types are SCA type 3, or Machado-Joseph disease, SCA type 10 and SCA types 7, 2, 1 and 6. SCAs are genotypically and phenotypically very heterogeneous. A clinical algorithm can be used to distinguish between the different types of SCAs. CONCLUSIONS: Detailed clinical neurological examination of SCA patients can be of great help when assessing them, and the information thus gained can be used in an algorithm to screen patients before molecular tests to investigate the correct etiology of the disease are requested.As ataxias espinocerebelares (AECs compreendem um grupo heterogeneo de enfermidades neurodegenerativas, que se caracterizam pela presença de ataxia cerebelar progressiva, associada de forma variada com oftalmoplegia, sinais piramidais, distúrbios do movimento, retinopatia pigmentar, neuropatia periférica, disfunção cognitiva e demência. OBJETIVO: Realizar uma revisão clínico-genética dos principais tipos de AECs. MÉTODO: A revisão foi realizada através da pesquisa pelo sistema do PUBMED e do OMIM. RESULTADOS: Na atualidade existem cerca de 30 tipos de AECs, com a descoberta de 16 genes. Os tipos mais comuns são a AEC tipo 3, ou doença de Machado-Joseph, a AEC tipo 10, e as AECs tipo 7, 2 1, e 6. As AECs apresentam grande heterogeneidade genotípica e fenotípica. Pode-se utilizar um algoritmo clínico para a

  6. Adult onset sporadic ataxias: a diagnostic challenge

    Directory of Open Access Journals (Sweden)

    Orlando Graziani Povoas Barsottini

    2014-03-01

    Full Text Available Patients with adult onset non-familial progressive ataxia are classified in sporadic ataxia group. There are several disease categories that may manifest with sporadic ataxia: toxic causes, immune-mediated ataxias, vitamin deficiency, infectious diseases, degenerative disorders and even genetic conditions. Considering heterogeneity in the clinical spectrum of sporadic ataxias, the correct diagnosis remains a clinical challenge. In this review, the different disease categories that lead to sporadic ataxia with adult onset are discussed with special emphasis on their clinical and neuroimaging features, and diagnostic criteria.

  7. Sleep disorders in cerebellar ataxias

    Directory of Open Access Journals (Sweden)

    José L. Pedroso

    2011-04-01

    Full Text Available Cerebellar ataxias comprise a wide range of etiologies leading to central nervous system-related motor and non-motor symptoms. Recently, a large body of evidence has demonstrated a high frequency of non-motor manifestations in cerebellar ataxias, specially in autosomal dominant spinocerebellar ataxias (SCA. Among these non-motor dysfunctions, sleep disorders have been recognized, although still under or even misdiagnosed. In this review, we highlight the main sleep disorders related to cerebellar ataxias focusing on REM sleep behavior disorder (RBD, restless legs syndrome (RLS, periodic limb movement in sleep (PLMS, excessive daytime sleepiness (EDS, insomnia and sleep apnea.

  8. Generation of spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cell line SCA3.A11

    DEFF Research Database (Denmark)

    Hansen, Susanne Kofoed; Borland, Helena; Hasholt, Lis Frydenreich

    2016-01-01

    Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disease caused by a CAG-repeat expanding mutation in ATXN3. We generated induced pluripotent stem cells (iPSCs) from a SCA3 patient by electroporation of dermal fibroblasts with episomal plasmids encoding L-MYC, LIN28...

  9. Spinocerebellar ataxia 36 (SCA36): «Costa da Morte ataxia».

    Science.gov (United States)

    Arias, M; García-Murias, M; Sobrido, M J

    To describe the history of the discovery of SCA36 and review knowledge of this entity, which is currently the most prevalent hereditary ataxia in Galicia (Spain) owing to a founder effect. SCA36 is an autosomal dominant hereditary ataxia with late onset and slow progression. It presents with cerebellar ataxia, sensorineural hearing loss, and discrete motor neuron impairment (tongue atrophy with denervation, discrete pyramidal signs). SCA36 was first described in Japan (Asida River ataxia) and in Galicia(Costa da Morte ataxia). The condition is caused by a genetic mutation (intronic hexanucleotide repeat expansion) in the NOP56 gene on the short arm of chromosome 20 (20p13). Magnetic resonance image study initially shows cerebellar vermian atrophy that subsequently extends to the rest of the cerebellum and finally to the pontomedullary region of the brainstem without producing white matter lesions. Peripheral nerve conduction velocities are normal, and sensorimotor evoked potential studies show delayed conduction of stimuli to lower limbs. In patients with hearing loss, audiometric studies show a drop of >40dB in frequencies exceeding 2,500Hz. Auditory evoked potential studies may also show lack of waves I and II. Costa da Morte ataxia or SCA36 is the most prevalent SCA in the Spanish region of Galicia. Given the region's history of high rates of emigration, new cases may be diagnosed in numerous countries, especially in Latin America. Genetic studies are now available to patients and asymptomatic carriers. Since many people are at risk for this disease, we will continue our investigations aimed at elucidating the underlying pathogenic molecular mechanisms and discovering effective treatment. Copyright © 2014 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. From mild ataxia to huntington disease phenocopy: the multiple faces of spinocerebellar ataxia 17.

    Science.gov (United States)

    Koutsis, Georgios; Panas, Marios; Paraskevas, George P; Bougea, Anastasia M; Kladi, Athina; Karadima, Georgia; Kapaki, Elisabeth

    2014-01-01

    Introduction. Spinocerebellar ataxia 17 (SCA 17) is a rare autosomal dominant cerebellar ataxia (ADCA) caused by a CAG/CAA expansion in the TBP gene, reported from a limited number of countries. It is a very heterogeneous ADCA characterized by ataxia, cognitive decline, psychiatric symptoms, and involuntary movements, with some patients presenting with Huntington disease (HD) phenocopies. The SCA 17 expansion is stable during parent-child transmission and intrafamilial phenotypic homogeneity has been reported. However, significant phenotypic variability within families has also been observed. Report of the Family. We presently report a Greek family with a pathological expansion of 54 repeats at the SCA 17 locus that displayed remarkable phenotypic variability. Among 3 affected members, one presented with HD phenocopy; one with progressive ataxia, dementia, chorea, dystonia, and seizures, and one with mild slowly progressive ataxia with minor cognitive and affective symptoms. Conclusions. This is the first family with SCA 17 identified in Greece and highlights the multiple faces of this rare disorder, even within the same family.

  11. The Future of Radiobiology.

    Science.gov (United States)

    Kirsch, David G; Diehn, Max; Kesarwala, Aparna H; Maity, Amit; Morgan, Meredith A; Schwarz, Julie K; Bristow, Robert; Demaria, Sandra; Eke, Iris; Griffin, Robert J; Haas-Kogan, Daphne; Higgins, Geoff S; Kimmelman, Alec C; Kimple, Randall J; Lombaert, Isabelle M; Ma, Li; Marples, Brian; Pajonk, Frank; Park, Catherine C; Schaue, Dörthe; Bernhard, Eric J

    2018-04-01

    Innovation and progress in radiation oncology depend on discovery and insights realized through research in radiation biology. Radiobiology research has led to fundamental scientific insights, from the discovery of stem/progenitor cells to the definition of signal transduction pathways activated by ionizing radiation that are now recognized as integral to the DNA damage response (DDR). Radiobiological discoveries are guiding clinical trials that test radiation therapy combined with inhibitors of the DDR kinases DNA-dependent protein kinase (DNA-PK), ataxia telangiectasia mutated (ATM), ataxia telangiectasia related (ATR), and immune or cell cycle checkpoint inhibitors. To maintain scientific and clinical relevance, the field of radiation biology must overcome challenges in research workforce, training, and funding. The National Cancer Institute convened a workshop to discuss the role of radiobiology research and radiation biologists in the future scientific enterprise. Here, we review the discussions of current radiation oncology research approaches and areas of scientific focus considered important for rapid progress in radiation sciences and the continued contribution of radiobiology to radiation oncology and the broader biomedical research community.

  12. Recurrent Ataxia in Children and Adolescents.

    Science.gov (United States)

    Salman, Michael S; Klassen, Samantha F; Johnston, Janine L

    2017-07-01

    Recurrent ataxia is encountered infrequently in clinical pediatric neurology practise and presents with diagnostic challenges. It is caused by several disorders. Our aims were to describe the epidemiology and clinical features in children with recurrent ataxia. A retrospective review was undertaken in 185 children with chronic ataxia, who presented during 1991 to 2008. Several databases were searched to ensure optimum ascertainment. Patients with brain tumors or isolated disorders of the peripheral nerves or vestibular system were excluded. Recurrent ataxia was reported in 21 patients. Their age range was between 6 and 32.75 years (males=12). The crude period prevalence rate for the 18-year study period was 7.44/100,000. Eight patients had episodic ataxia and seven had inflammatory and metabolic disorders. In the rest the etiology was unknown. Many patients presented with ataxia, dizziness, and vertigo. The frequency and duration of the ataxic episodes varied from several per day to one every few months. Other clinical features included developmental delay and seizures. Neuroimaging in episodic ataxia was normal and abnormal in inflammatory or metabolic disorders. Acetazolamide provided symptomatic relief in patients with episodic ataxia, while steroids were beneficial in patients with an inflammatory etiology. One child with a metabolic disorder died. Recurrent ataxia is an uncommon presentation in children and mortality is rare. Genetic, metabolic, and inflammatory disorders should be considered in these patients. Neuroimaging is essential. Acetazolamide in selected patients provides good symptomatic relief.

  13. Defective recoveryfrom potentially lethal damage in some human fibroblast cell strains

    International Nuclear Information System (INIS)

    Arlett, C.F.; Priestley, A.

    1983-01-01

    The repair of potentially lethal damage following treatment by gamma radiation was investigated in human fibroblasts held in a non-cycling state by maintenance in a medium containing 0.5 per cent foetal calf serum. Variation in their capacity to repair PLD was noted between three normal cell strains. A failure to repair PLD in ataxia-telangiectasia cells (AT5BI) was confirmed. In three cell strains which were intermediate between normals and A-T cells in their sensitivity, XP3BR, 46BR and GB1142, a limited capacity for the repair of PLD was observed. Two other cell strains, 47BR and 67BR, which showed little if any hypersensitivity could be clearly distinguished from normals after a 24 hour period for the repair of PLD. Thus the technique might permit better discrimination between cell strains. One other cell strain, H15617, could be distinguished from normals by proving hypersensitive under all conditions. Here, however, the repair of PLD appeared to be normal. (author)

  14. JS-K, a nitric oxide prodrug, induces DNA damage and apoptosis in HBV-positive hepatocellular carcinoma HepG2.2.15 cell.

    Science.gov (United States)

    Liu, Zhengyun; Li, Guangmin; Gou, Ying; Xiao, Dongyan; Luo, Guo; Saavedra, Joseph E; Liu, Jie; Wang, Huan

    2017-08-01

    Hepatocellular carcinoma (HCC) is the most important cause of cancer-related death, and 85% of HCC is caused by chronic HBV infection, the prognosis of patients and the reduction of HBV DNA levels remain unsatisfactory. JS-K, a nitric oxide-releasing diazeniumdiolates, is effective against various tumors, but little is known on its effects on HBV positive HCC. We found that JS-K reduced the expression of HBsAg and HBeAg in HBV-positive HepG2.2.15 cells. This study aimed to further examine anti-tumor effects of JS-K on HepG2.2.15 cells. The MTT assay and colony forming assay were used to study the cell growth inhibition of JS-K; scratch assay and transwell assay were performed to detect cell migration. The cell cycle was detected by flow cytometry. The immunofluorescence, flow cytometry analysis, and western blot were used to study DNA damage and cell apoptosis. JS-K inhibited HepG2.2.15 cell growth in a dose-dependent manner, suppressed cell colony formation and migration, arrested cells gather in the G2 phase. JS-K (1-20μM) increased the expression of DNA damage-associated protein phosphorylation H 2 AX (γH 2 AX), phosphorylation of checkpoint kinase 1 (p-Chk1), phosphorylation of checkpoint kinase 2 (p-Chk2), ataxia-telangiectasia mutated (ATM), phosphorylation of ataxia-telangiectasia mutated rad3-related (p-ATR) and apoptotic-associated proteins cleaved caspase-3, cleaved caspase-7, cleaved poly ADP-ribose polymerase (cleaved PARP). The study demonstrated JS-K is effective against HBV-positive HepG2.2.15 cells, the mechanisms are not only related to inhibition of HBsAg and HBeAg secretion, but also related with induction of DNA damage and apoptosis. JS-K is a promising anti-cancer candidate against HBV-positive HCC. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. From Mild Ataxia to Huntington Disease Phenocopy: The Multiple Faces of Spinocerebellar Ataxia 17

    Directory of Open Access Journals (Sweden)

    Georgios Koutsis

    2014-01-01

    Full Text Available Introduction. Spinocerebellar ataxia 17 (SCA 17 is a rare autosomal dominant cerebellar ataxia (ADCA caused by a CAG/CAA expansion in the TBP gene, reported from a limited number of countries. It is a very heterogeneous ADCA characterized by ataxia, cognitive decline, psychiatric symptoms, and involuntary movements, with some patients presenting with Huntington disease (HD phenocopies. The SCA 17 expansion is stable during parent-child transmission and intrafamilial phenotypic homogeneity has been reported. However, significant phenotypic variability within families has also been observed. Report of the Family. We presently report a Greek family with a pathological expansion of 54 repeats at the SCA 17 locus that displayed remarkable phenotypic variability. Among 3 affected members, one presented with HD phenocopy; one with progressive ataxia, dementia, chorea, dystonia, and seizures, and one with mild slowly progressive ataxia with minor cognitive and affective symptoms. Conclusions. This is the first family with SCA 17 identified in Greece and highlights the multiple faces of this rare disorder, even within the same family.

  16. Kaempferol induces DNA damage and inhibits DNA repair associated protein expressions in human promyelocytic leukemia HL-60 cells.

    Science.gov (United States)

    Wu, Lung-Yuan; Lu, Hsu-Feng; Chou, Yu-Cheng; Shih, Yung-Luen; Bau, Da-Tian; Chen, Jaw-Chyun; Hsu, Shu-Chun; Chung, Jing-Gung

    2015-01-01

    Numerous evidences have shown that plant flavonoids (naturally occurring substances) have been reported to have chemopreventive activities and protect against experimental carcinogenesis. Kaempferol, one of the flavonoids, is widely distributed in fruits and vegetables, and may have cancer chemopreventive properties. However, the precise underlying mechanism regarding induced DNA damage and suppressed DNA repair system are poorly understood. In this study, we investigated whether kaempferol induced DNA damage and affected DNA repair associated protein expression in human leukemia HL-60 cells in vitro. Percentages of viable cells were measured via a flow cytometry assay. DNA damage was examined by Comet assay and DAPI staining. DNA fragmentation (ladder) was examined by DNA gel electrophoresis. The changes of protein levels associated with DNA repair were examined by Western blotting. Results showed that kaempferol dose-dependently decreased the viable cells. Comet assay indicated that kaempferol induced DNA damage (Comet tail) in a dose-dependent manner and DAPI staining also showed increased doses of kaempferol which led to increased DNA condensation, these effects are all of dose-dependent manners. Western blotting indicated that kaempferol-decreased protein expression associated with DNA repair system, such as phosphate-ataxia-telangiectasia mutated (p-ATM), phosphate-ataxia-telangiectasia and Rad3-related (p-ATR), 14-3-3 proteins sigma (14-3-3σ), DNA-dependent serine/threonine protein kinase (DNA-PK), O(6)-methylguanine-DNA methyltransferase (MGMT), p53 and MDC1 protein expressions, but increased the protein expression of p-p53 and p-H2AX. Protein translocation was examined by confocal laser microscopy, and we found that kaempferol increased the levels of p-H2AX and p-p53 in HL-60 cells. Taken together, in the present study, we found that kaempferol induced DNA damage and suppressed DNA repair and inhibited DNA repair associated protein expression in HL-60

  17. Frontal ataxia in childhood.

    NARCIS (Netherlands)

    Erasmus, C.E.; Beems, T.; Rotteveel, J.J.

    2004-01-01

    Frontal ataxia may be the result of a unilateral frontal lesion. In this report three cases are presented with ataxia due to right frontal lesions. One case concerns a boy presenting with an unsteady gait and titubation of the trunk, mimicking developmental disequilibrium and with complex partial

  18. Speech in spinocerebellar ataxia.

    Science.gov (United States)

    Schalling, Ellika; Hartelius, Lena

    2013-12-01

    Spinocerebellar ataxias (SCAs) are a heterogeneous group of autosomal dominant cerebellar ataxias clinically characterized by progressive ataxia, dysarthria and a range of other concomitant neurological symptoms. Only a few studies include detailed characterization of speech symptoms in SCA. Speech symptoms in SCA resemble ataxic dysarthria but symptoms related to phonation may be more prominent. One study to date has shown an association between differences in speech and voice symptoms related to genotype. More studies of speech and voice phenotypes are motivated, to possibly aid in clinical diagnosis. In addition, instrumental speech analysis has been demonstrated to be a reliable measure that may be used to monitor disease progression or therapy outcomes in possible future pharmacological treatments. Intervention by speech and language pathologists should go beyond assessment. Clinical guidelines for management of speech, communication and swallowing need to be developed for individuals with progressive cerebellar ataxia. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Radiosensitivity in cultured human fibroblasts

    International Nuclear Information System (INIS)

    Cox, R.; Masson, W.K.

    1980-01-01

    Caution is urged in the use of freshly isolated cultures of human diploid fibroblasts for quantitative studies of radiosensitivity. The distribution of x ray sensitivities of 'normal' human fibroblast cultures of foetal origin (10 subjects, skin or lung biopsy) and post-foetal origin (34 subjects, skin biopsy) are compared with the distribution in 12 patients with ataxia telangiectasia (probability of including any one of these in a normal post-foetal distribution is 0.01%). Cultures from nominally normal subjects showed a broad distribution of D 0 range of 98 +- 160 rad and assuming normal distribution, a mean +- one standard deviation of 122 +- 17 rad. Mean D 0 values for foetal origin cultures were 117 +- 12; values for post-foetal cultures D 0 were 124 +- 18. No systematic variation in D 0 was observed for age of donor, number of cell divisions in culture or for cloning efficiency. For ataxia telangiectasia D 0 values were 46 +- 7 rad. (U.K.)

  20. Autosomal dominant hereditary ataxia in Sri Lanka

    OpenAIRE

    Sumathipala, Dulika S; Abeysekera, Gayan S; Jayasekara, Rohan W; Tallaksen, Chantal ME; Dissanayake, Vajira HW

    2013-01-01

    Background Spinocerebellar ataxias (SCA) are a group of hereditary neurodegenerative disorders. Prevalence of SCA subtypes differ worldwide. Autosomal dominant ataxias are the commonest types of inherited ataxias seen in Sri Lanka. The aim of the study is to determine the genetic etiology of patients with autosomal dominant ataxia in Sri Lanka and to describe the clinical features of each genetic subtype. Methods ...

  1. Diode laser for the treatment of telangiectasias following hemangioma involution.

    Science.gov (United States)

    Cerrati, Eric W; O, Teresa M; Chung, Hoyun; Waner, Milton

    2015-02-01

    Infantile hemangiomas are well known for their rapid growth during the first 6 to 9 months of life, followed by a spontaneous but slow involution. The standard of care is to treat these lesions at an early age with propranolol to expedite the involution process; however, surgery still remains an active component in the management. Medical treatment with propranolol or natural involution will often result in residual telangiectasias. We evaluated the efficacy of using a diode laser as a treatment for telangiectasias following cervicofacial infantile hemangioma involution. Case series with chart review. Tertiary care hospital and practice specializing in the care of vascular anomalies. Twenty patients, aged 4 months to 11 years (average 2.69 years), underwent treatment with a 532-nm diode laser to treat the residual telangiectasias following hemangioma involution. All procedures were performed in the operating room. To assess the efficacy, we independently evaluated pre- and posttreatment digital photographs and ranked them on a 0- to 4-point scale (0 = no change and 4 = complete response). Adverse reactions were also recorded. The telangiectasias showed considerable improvement following treatment. In more than half of the patients treated, the affected area demonstrated a complete response. No adverse reactions were noted. A 532-nm diode laser effectively treats the remaining telangiectasias following hemangioma involution. Whether used independently or in conjunction with other treatment modalities, the diode laser should be part of the surgical armamentarium when treating infantile hemangiomas. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  2. Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy

    DEFF Research Database (Denmark)

    Winkelmann, Juliane; Lin, Ling; Schormair, Barbara

    2012-01-01

    to HDAC2. It is also highly expressed in immune cells and required for the differentiation of CD4+ into T regulatory cells. Mutations in exon 20 of this gene were recently reported to cause hereditary sensory neuropathy with dementia and hearing loss (HSAN1). Our mutations are all located in exon 21......Autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN) is characterized by late onset (30-40 years old) cerebellar ataxia, sensory neuronal deafness, narcolepsy-cataplexy and dementia. We performed exome sequencing in five individuals from three ADCA-DN kindreds and identified DNMT...

  3. Friedreich's ataxia and other hereditary ataxias in Greece: an 18-year perspective.

    Science.gov (United States)

    Koutsis, Georgios; Kladi, Athina; Karadima, Georgia; Houlden, Henry; Wood, Nicholas W; Christodoulou, Kyproula; Panas, Marios

    2014-01-15

    Limited data exist on the spectrum of heredoataxias in Greece, including the prevalence and phenotype of Friedreich's ataxia (FRDA) and the prevalence and subtypes of dominant spinocerebellar ataxias (SCAs). We analyzed clinically and investigated genetically for FRDA and triplet-repeat expansion SCAs a consecutive series of 186 patients with suspected heredoataxia referred to Athens over 18 years. For prevalence estimates we included patients with molecular diagnosis from Cyprus that were absent from the Athens cohort. The minimum prevalence of FRDA was ~0.9/100,000, with clusters of high prevalence in Aegean islands. FRDA was diagnosed in 73 probands. The genotypic and phenotypic spectrum of FRDA was similar to other populations, with one patient compound heterozygote for a known point mutation in FXN (Asn146Lys). Undiagnosed recessive ataxias included FRDA-like and spastic ataxias. The minimum prevalence of dominant SCAs was ~0.7/100,000. SCA1 (4), SCA7 (4), SCA2, SCA6, and SCA17 (1 each) probands were identified. A molecular diagnosis was reached in 31% of dominant cases. Undiagnosed dominant patients included a majority of type III autosomal dominant cerebellar ataxias. FRDA is the commonest heredoataxia in the Greek population with prevalence towards the lower end of other European populations. Dominant SCAs are almost as prevalent. SCA1, SCA2, SCA6, SCA7 and SCA17 patients complete the spectrum of cases with a specific molecular diagnosis. © 2013.

  4. Study of ATM Phosphorylation by Cdk5 in Neuronal Cells.

    Science.gov (United States)

    She, Hua; Mao, Zixu

    2017-01-01

    The phosphatidylinositol-3-kinase-like kinase ATM (ataxia-telangiectasia mutated) plays a central role in coordinating the DNA damage responses including cell cycle checkpoint control, DNA repair, and apoptosis. Mutations of ATM cause a spectrum of defects ranging from neurodegeneration to cancer predisposition. We previously showed that Cdk5 (cyclin-dependent kinase 5) is activated by DNA damage and directly phosphorylates ATM at serine 794 in postmitotic neurons. Phosphorylation at serine 794 precedes and is required for ATM autophosphorylation at serine 1981, and activates ATM kinase activity. Cdk5-ATM pathway plays a crucial role in DNA damage-induced neuronal injury. This chapter describes protocols used in analyzing ATM phosphorylation by Cdk5 in CGNs (cerebellar granule neurons) and its effects on neuronal survival.

  5. Complementation of radiation-sensitive Ataxia telangiectasia cells after transfection of cDNA expression libraries and cosmid clones from wildtype cells

    International Nuclear Information System (INIS)

    Fritz, E.

    1994-06-01

    In this Ph.D.-thesis, phenotypic complementation of AT-cells (AT5BIVA) by transfection of cDNA-expression-libraries was adressed: After stable transfection of cDNA-expression-libraries G418 resistant clones were selected for enhanced radioresistance by a fractionated X-ray selection. One surviving transfectant clone (clone 514) exhibited enhanced radiation resistance in dose-response experiments and further X-ray selections. Cell cycle analysis revealed complementation of untreated and irradiated 514-cells in cell cycle progression. The rate of DNA synthesis, however, is not diminished after irradiation but shows the reverse effect. A transfected cDNA-fragment (AT500-cDNA) was isolated from the genomic DNA of 514-cells and proved to be an unknown DNA sequence. A homologous sequence could be detected in genomic DNA from human cell lines, but not in DNA from other species. The cDNA-sequence could be localized to human chromosome 11. In human cells the cDNA sequence is part of two large mRNAs. 4 different cosmid clones containing high molecular genomic DNA from normal human cells could be isolated from a library, each hybridizing to the AT500-cDNA. After stable transfection into AT-cells, one cosmid-clone was able to confer enhanced radiation resistance both in X-ray selections and dose-response experiments. The results indicate that the cloned cDNA-fragment is based on an unknown gene from human chromosome 11 which partially complements the radiosensitivity and the defective cell cycle progression in AT5BIVA cells. (orig.) [de

  6. Clinical characteristics of patients with cerebellar ataxia associated with anti-GAD antibodies

    Directory of Open Access Journals (Sweden)

    Tiago Silva Aguiar

    Full Text Available ABSTRACT The enzyme glutamic acid decarboxylase (GAD, present in GABAergic neurons and in pancreatic beta cells, catalyzes the conversion of gamma-aminobutyric acid (GABA. The cerebellum is highly susceptible to immune-mediated mechanisms, with the potentially treatable autoimmune cerebellar ataxia associated with the GAD antibody (CA-GAD-ab being a rare, albeit increasingly detected condition. Few cases of CA-GAD-ab have been described. Methods This retrospective and descriptive study evaluated the clinical characteristics and outcomes of patients with CA-GAD-ab. Result Three patients with cerebellar ataxia, high GAD-ab titers and autoimmune endocrine disease were identified. Patients 1 and 2 had classic stiff person syndrome and insidious-onset cerebellar ataxia, while Patient 3 had pure cerebellar ataxia with subacute onset. Patients received intravenous immunoglobulin therapy with no response in Patients 1 and 3 and partial recovery in Patient 2. Conclusion CA-GAD-ab is rare and its clinical presentation may hamper diagnosis. Clinicians should be able to recognize this potentially treatable autoimmune cerebellar ataxia.

  7. ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion.

    Science.gov (United States)

    Chen, Wei-Ta; Ebelt, Nancy D; Stracker, Travis H; Xhemalce, Blerta; Van Den Berg, Carla L; Miller, Kyle M

    2015-06-01

    Ataxia-telangiectasia mutated (ATM) protein kinase regulates the DNA damage response (DDR) and is associated with cancer suppression. Here we report a cancer-promoting role for ATM. ATM depletion in metastatic cancer cells reduced cell migration and invasion. Transcription analyses identified a gene network, including the chemokine IL-8, regulated by ATM. IL-8 expression required ATM and was regulated by oxidative stress. IL-8 was validated as an ATM target by its ability to rescue cell migration and invasion defects in ATM-depleted cells. Finally, ATM-depletion in human breast cancer cells reduced lung tumors in a mouse xenograft model and clinical data validated IL-8 in lung metastasis. These findings provide insights into how ATM activation by oxidative stress regulates IL-8 to sustain cell migration and invasion in cancer cells to promote metastatic potential. Thus, in addition to well-established roles in tumor suppression, these findings identify a role for ATM in tumor progression.

  8. Targeting Ongoing DNA Damage in Multiple Myeloma: Effects of DNA Damage Response Inhibitors on Plasma Cell Survival

    Directory of Open Access Journals (Sweden)

    Ana Belén Herrero

    2017-05-01

    Full Text Available Human myeloma cell lines (HMCLs and a subset of myeloma patients with poor prognosis exhibit high levels of replication stress (RS, leading to DNA damage. In this study, we confirmed the presence of DNA double-strand breaks (DSBs in several HMCLs by measuring γH2AX and RAD51 foci and analyzed the effect of various inhibitors of the DNA damage response on MM cell survival. Inhibition of ataxia telangiectasia and Rad3-related protein (ATR, the main kinase mediating the response to RS, using the specific inhibitor VE-821 induced more cell death in HMCLs than in control lymphoblastoid cells and U266, an HMCL with a low level of DNA damage. The absence of ATR was partially compensated by ataxia telangiectasia-mutated protein (ATM, since chemical inhibition of both kinases using VE-821 and KU-55933 significantly increased the death of MM cells with DNA damage. We found that ATM and ATR are involved in DSB repair by homologous recombination (HR in MM. Inhibition of both kinases resulted in a stronger inhibition that may underlie cell death induction, since abolition of HR using two different inhibitors severely reduced survival of HMCLs that exhibit DNA damage. On the other hand, inhibition of the other route involved in DSB repair, non-homologous end joining (NHEJ, using the DNA-PK inhibitor NU7441, did not affect MM cell viability. Interestingly, we found that NHEJ inhibition did not increase cell death when HR was simultaneously inhibited with the RAD51 inhibitor B02, but it clearly increased the level of cell death when HR was inhibited with the MRE11 inhibitor mirin, which interferes with recombination before DNA resection takes place. Taken together, our results demonstrate for the first time that MM cells with ongoing DNA damage rely on an intact HR pathway, which thereby suggests therapeutic opportunities. We also show that inhibition of HR after the initial step of end resection might be more appropriate for inducing MM cell death, since it

  9. ATM-Dependent Phosphorylation of MEF2D Promotes Neuronal Survival after DNA Damage

    Science.gov (United States)

    Chan, Shing Fai; Sances, Sam; Brill, Laurence M.; Okamoto, Shu-ichi; Zaidi, Rameez; McKercher, Scott R.; Akhtar, Mohd W.; Nakanishi, Nobuki

    2014-01-01

    Mutations in the ataxia telangiectasia mutated (ATM) gene, which encodes a kinase critical for the normal DNA damage response, cause the neurodegenerative disorder ataxia-telangiectasia (AT). The substrates of ATM in the brain are poorly understood. Here we demonstrate that ATM phosphorylates and activates the transcription factor myocyte enhancer factor 2D (MEF2D), which plays a critical role in promoting survival of cerebellar granule cells. ATM associates with MEF2D after DNA damage and phosphorylates the transcription factor at four ATM consensus sites. Knockdown of endogenous MEF2D with a short-hairpin RNA (shRNA) increases sensitivity to etoposide-induced DNA damage and neuronal cell death. Interestingly, substitution of endogenous MEF2D with an shRNA-resistant phosphomimetic MEF2D mutant protects cerebellar granule cells from cell death after DNA damage, whereas an shRNA-resistant nonphosphorylatable MEF2D mutant does not. In vivo, cerebella in Mef2d knock-out mice manifest increased susceptibility to DNA damage. Together, our results show that MEF2D is a substrate for phosphorylation by ATM, thus promoting survival in response to DNA damage. Moreover, dysregulation of the ATM–MEF2D pathway may contribute to neurodegeneration in AT. PMID:24672010

  10. Current concepts in the treatment of hereditary ataxias

    Directory of Open Access Journals (Sweden)

    Pedro Braga Neto

    2016-03-01

    Full Text Available ABSTRACT Hereditary ataxias (HA represents an extensive group of clinically and genetically heterogeneous neurodegenerative diseases, characterized by progressive ataxia combined with extra-cerebellar and multi-systemic involvements, including peripheral neuropathy, pyramidal signs, movement disorders, seizures, and cognitive dysfunction. There is no effective treatment for HA, and management remains supportive and symptomatic. In this review, we will focus on the symptomatic treatment of the main autosomal recessive ataxias, autosomal dominant ataxias, X-linked cerebellar ataxias and mitochondrial ataxias. We describe management for different clinical symptoms, mechanism-based approaches, rehabilitation therapy, disease modifying therapy, future clinical trials and perspectives, genetic counseling and preimplantation genetic diagnosis.

  11. Clinical spectrum of early onset cerebellar ataxia with retained tendon reflexes: an autosomal recessive ataxia not to be missed Espectro clínico da ataxia cerebelar de início precoce com reflexos mantidos: uma ataxia autossômica recessiva para não ser esquecida

    Directory of Open Access Journals (Sweden)

    José Luiz Pedroso

    2013-06-01

    Full Text Available Autosomal recessive cerebellar ataxias are a heterogeneous group of neurological disorders. In 1981, a neurological entity comprised by early onset progressive cerebellar ataxia, dysarthria, pyramidal weakness of the limbs and retained or increased upper limb reflexes and knee jerks was described. This disorder is known as early onset cerebellar ataxia with retained tendon reflexes. In this article, we aimed to call attention for the diagnosis of early onset cerebellar ataxia with retained tendon reflexes as the second most common cause of autosomal recessive cerebellar ataxias, after Friedreich ataxia, and also to perform a clinical spectrum study of this syndrome. In this data, 12 patients from different families met all clinical features for early onset cerebellar ataxia with retained tendon reflexes. Dysarthria and cerebellar atrophy were the most common features in our sample. It is uncertain, however, whether early onset cerebellar ataxia with retained tendon reflexes is a homogeneous disease or a group of phenotypically similar syndromes represented by different genetic entities. Further molecular studies are required to provide definitive answers to the questions that remain regarding early onset cerebellar ataxia with retained tendon reflexes.As ataxias cerebelares autossômicas recessivas são um grupo heterogêneo de doenças neurológicas. Em 1981, foi descrita uma entidade neurológica incluindo ataxia cerebelar progressiva de início precoce, disartria, liberação piramidal e manutenção ou aumento dos reflexos tendíneos nos membros superiores e inferiores. Essa síndrome é conhecida como ataxia cerebelar de início precoce com reflexos mantidos. Neste artigo, o objetivo foi chamar a atenção para o diagnóstico de ataxia cerebelar de início precoce com reflexos mantidos como a segunda causa mais comum de ataxia cerebelar autossômica recessiva, após a ataxia de Friedreich, e também realizar um estudo do espectro cl

  12. [Hereditary hemorrhagic telangiectasia presenting with hematuria and severe anemia].

    Science.gov (United States)

    Paz, A; Goren, E; Segal, M

    1995-07-01

    A patient with hereditary hemorrhagic telangiectasia was admitted with hematuria and severe anemia after mild recurrent episodes of epistaxis. Telangiectasias were found in the skin and buccal and nasal mucosa. No defect in the coagulation mechanism was found; thrombocyte count and function were normal. On cystoscopy, tortuous engorged vessels, some actively bleeding, were seen in the trigonal mucosa. Biopsy showed enlarged vessels in the lamina propria. Electrocoagulation of the bleeding vessels stopped hematuria, but 6 months later it recurred. This time Nd-YAG laser was used to stop the bleeding after electrocoagulation was ineffective.

  13. Genetics Home Reference: hereditary hemorrhagic telangiectasia

    Science.gov (United States)

    ... Central OMIM: JUVENILE POLYPOSIS/HEREDITARY HEMORRHAGIC TELANGIECTASIA SYNDROME McDonald J, Bayrak-Toydemir P, Pyeritz RE. Hereditary hemorrhagic ... 10.1097/GIM.0b013e3182136d32. Review. Citation on PubMed McDonald J, Wooderchak-Donahue W, VanSant Webb C, Whitehead ...

  14. DNA synthesis in irradiated mammalian cells

    International Nuclear Information System (INIS)

    Painter, R.B.; California Univ., San Francisco; Young, B.R.

    1987-01-01

    One of the first responses observed in S phase mammalian cells that have suffered DNA damage is the inhibition of initiation of DNA replicons. In cells exposed to ionizing radiation, a single-strand break appears to be the stimulus for this effect, whereby the initiation of many adjacent replicons (a replicon cluster) is blocked by a single-strand break in any one of them. In cells exposed to ultraviolet light (u.v.), replicon initiation is blocked at fluences that induce about one pyrimidine dimer per replicon. The inhibition of replicon initiation by u.v. in Chinese hamster cells that are incapable of excising pyrimidine dimers from their DNA is virtually the same as in cells that are proficient in dimer excision. Therefore, a single-strand break formed during excision repair of pyrimidine dimers is not the stimulus for inhibition of replicon initiation in u.v.-irradiated cells. Considering this fact, as well as the comparative insensitivity of human ataxia telangiectasia cells to u.v.-induced inhibition of replicon initiation, we propose that a relatively rare lesion is the stimulus for u.v. -induced inhibition of replicon initiation. (author

  15. Differential responses of neuronal and spermatogenic cells to the doppel cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Kefeng Qin

    Full Text Available Although structurally and biochemically similar to the cellular prion (PrP(C, doppel (Dpl is unique in its biological functions. There are no reports about any neurodegenerative diseases induced by Dpl. However the artificial expression of Dpl in the PrP-deficient mouse brain causes ataxia with Purkinje cell death. Abundant Dpl proteins have been found in testis and depletion of the Dpl gene (Prnd causes male infertility. Therefore, we hypothesize different regulations of Prnd in the nerve and male productive systems. In this study, by electrophoretic mobility shift assays we have determined that two different sets of transcription factors are involved in regulation of the Prnd promoter in mouse neuronal N2a and GC-1 spermatogenic (spg cells, i.e., upstream stimulatory factors (USF in both cells, Brn-3 and Sp1 in GC-1 spg cells, and Sp3 in N2a cells, leading to the expression of Dpl in GC-1 spg but not in N2a cells. We have further defined that, in N2a cells, Dpl induces oxidative stress and apoptosis, which stimulate ataxia-telangiectasia mutated (ATM-modulating bindings of transcription factors, p53 and p21, to Prnp promoter, resulting the PrP(C elevation for counteraction of the Dpl cytotoxicity; in contrast, in GC-1 spg cells, phosphorylation of p21 and N-terminal truncated PrP may play roles in the control of Dpl-induced apoptosis, which may benefit the physiological function of Dpl in the male reproduction system.

  16. Inhibition of DNA-PKcs enhances radiosensitivity and increases the levels of ATM and ATR in NSCLC cells exposed to carbon ion irradiation.

    Science.gov (United States)

    Yang, Lina; Liu, Yuanyuan; Sun, Chao; Yang, Xinrui; Yang, Zhen; Ran, Juntao; Zhang, Qiuning; Zhang, Hong; Wang, Xinyu; Wang, Xiaohu

    2015-11-01

    Non-small cell lung cancer (NSCLC) exhibits radioresistance to conventional rays, due to its DNA damage repair systems. NSCLC may potentially be sensitized to radiation treatment by reducing those factors that continuously enhance the repair of damaged DNA. In the present study, normal lung fibroblast MRC-5 and lung cancer A549 cells were treated with NU7026 and CGK733, which are inhibitors of the DNA-dependent protein kinase catalytic subunit (PKcs) and ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR), respectively, followed by exposure to X-rays and carbon ion irradiation. The cytotoxic activity, cell survival rate, DNA damage repair ability, cell cycle arrest and apoptosis rate of the treated cells were analyzed with MTT assay, colony formation assay, immunofluorescence and flow cytometry, respectively. The transcription and translation levels of the ATM, ATR and DNA-PKcs genes were detected by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. The results indicated that the radiosensitivity and DNA repair ability of A549 cells were reduced, and the percentages of apoptotic cells and those arrested at the G 2 /M phase of the cell cycle were significantly increased, following ionizing radiation with inhibitor-pretreatment. The expression levels of ATM, ATR, DNA-PKcs and phosphorylated histone H2AX, a biomarker for DNA double-strand breaks, were all upregulated at the transcriptional or translational level in A549 cells treated with carbon ion irradiation, compared with the control and X-rays-treated cells. In addition, the treatment with 5-50 µM NU7026 or CGK733 did not produce any obvious cytotoxicity in MRC-5 cells, and the effect of the DNA-PKcs-inhibitor on enhancing the radiosensitivity of A549 cells was stronger than that observed for the ATM and ATR-inhibitor. These findings demonstrated a minor role for ATM and ATR in radiation-induced cell death, since the upregulation of

  17. Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Yubin Wang

    2016-06-01

    Full Text Available A CAPN1 missense mutation in Parson Russell Terrier dogs is associated with spinocerebellar ataxia. We now report that homozygous or heterozygous CAPN1-null mutations in humans result in cerebellar ataxia and limb spasticity in four independent pedigrees. Calpain-1 knockout (KO mice also exhibit a mild form of ataxia due to abnormal cerebellar development, including enhanced neuronal apoptosis, decreased number of cerebellar granule cells, and altered synaptic transmission. Enhanced apoptosis is due to absence of calpain-1-mediated cleavage of PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1, which results in inhibition of the Akt pro-survival pathway in developing granule cells. Injection of neonatal mice with the indirect Akt activator, bisperoxovanadium, or crossing calpain-1 KO mice with PHLPP1 KO mice prevented increased postnatal cerebellar granule cell apoptosis and restored granule cell density and motor coordination in adult mice. Thus, mutations in CAPN1 are an additional cause of ataxia in mammals, including humans.

  18. Phenotype variability and early onset ataxia symptoms in spinocerebellar ataxia type 7: comparison and correlation with other spinocerebellar ataxias

    Directory of Open Access Journals (Sweden)

    Marcus Vinicius Cristino de Albuquerque

    2015-01-01

    Full Text Available The spinocerebellar ataxias (SCA are a group of neurodegenerative disorders characterized by heterogeneous clinical presentation. Spinocerebellar ataxia type 7 (SCA7 is caused by an abnormal CAG repeat expansion and includes cerebellar signs associated with visual loss and ophthalmoplegia. Marked anticipation and dynamic mutation is observed in SCA7. Moreover, phenotype variability and very early onset of symptoms may occur. In this article, a large series of Brazilian patients with different SCA subtypes was evaluated, and we compared the age of onset of SCA7 with other SCA. From the 26 patients with SCA7, 4 manifested their symptoms before 10-year-old. Also, occasionally the parents may have the onset of symptoms after their children. In conclusion, our study highlights the genetic anticipation phenomenon that occurs in SCA7 families. Patients with very early onset ataxia in the context of a remarkable family history, must be considered and tested for SCA7.

  19. Frontal ataxia in childhood.

    Science.gov (United States)

    Erasmus, C E; Beems, T; Rotteveel, J J

    2004-12-01

    Frontal ataxia may be the result of a unilateral frontal lesion. In this report three cases are presented with ataxia due to right frontal lesions. One case concerns a boy presenting with an unsteady gait and titubation of the trunk, mimicking developmental disequilibrium and with complex partial seizures. It proved to be caused by a small right-sided cavernoma in the middle frontal gyrus. After surgical intervention the symptoms and the seizures disappeared. Two subsequent cases concern teenage patients presenting with headache after an ENT infection and on physical examination mild dysmetric function of the upper limbs and slight disequilibrium, due to right-sided frontal lobe abscesses. After neurosurgical and antibiotic therapy the symptoms were relieved. The frontal origin of ataxia should be considered in children presenting with a "cerebellar syndrome". Frontal gait disorders consist of a clinical pattern of different gait disorders. The syndrome has been mentioned in the literature under different names. Our patients show signs compatible with the term frontal disequilibrium, a clinical pattern of frontal gait disorder. This assumes walking problems characterized by loss of control of motor planning, leading to imbalance. Remarkably, frontal ataxia may mimic developmental delay as demonstrated in the first case and may be the leading mild symptom in extensive frontal lobe damage as demonstrated by the two other cases. We suppose that frontal ataxia is the result of a disturbance in the cerebellar-frontal circuitries and an impairment of executive and planning functions of the basal ganglia-frontal lobe circuitry.

  20. Genetics Home Reference: autosomal dominant cerebellar ataxia, deafness, and narcolepsy

    Science.gov (United States)

    ... may help regulate nerve cell (neuron) maturation and specialization (differentiation), the ability of neurons to move (migrate) ... Ataxia Foundation National Sleep Foundation University of Kansas Medical Center Resource List: Deafness and Hard of Hearing ...

  1. Ataxias and Cerebellar or Spinocerebellar Degeneration

    Science.gov (United States)

    ... and conducts a broad range of basic and clinical research on cerebellar and spinocerebellar degeneration, including work aimed at finding the cause(s) of ataxias and ways to ... Publications Definition Ataxia ...

  2. Hereditary haemorrhagic telangiectasia: a cause of preventable morbidity and mortality.

    LENUS (Irish Health Repository)

    Brady, A P

    2012-01-31

    Hereditary haemorrhagic telangiectasia (HHT) is an autosomal dominant condition whose effects are mediated through deficient blood vessel formation and regeneration, with multisystem involvement. Patients are usually aware of resulting skin telangiectasia and epistaxis, but are also exposed to dangers posed by occult vascular malformations in other organs. About 15-35% of HHT patients have pulmonary AVMs (PAVMs), 10% have cerebral AVMs (CAVMs), 25-33% suffer significant GI blood loss from GI tract telangiectasia, and an unknown but high percentage have liver involvement. In total, 10% of affected individuals die prematurely or suffer major disability from HHT, largely because of bleeding from CAVMs and PAVMs, or paradoxical embolization through PAVMs. Screening for and early intervention to treat occult PAVMs and CAVMs can largely eliminate these risks, and should be undertaken in a specialist centre. The National HHT Center in The Mercy University Hospital in Cork is the referral centre for HHT screening in Ireland.

  3. Genetics Home Reference: ataxia with vitamin E deficiency

    Science.gov (United States)

    ... Conditions Ataxia with vitamin E deficiency Ataxia with vitamin E deficiency Printable PDF Open All Close All Enable ... view the expand/collapse boxes. Description Ataxia with vitamin E deficiency is a disorder that impairs the body's ...

  4. Hereditary hemorrhagic telangiectasia: genetics and molecular diagnostics in a new era

    Directory of Open Access Journals (Sweden)

    Jamie eMcDonald

    2015-01-01

    Full Text Available Hereditary hemorrhagic telangiectasia (HHT is a vascular dysplasia characterized by telangiectases and arteriovenous malformations (AVMs in particular locations described in consensus clinical diagnostic criteria published in 2000. Two genes in the transforming growth factor-beta (TGF-β signaling pathway, ENG and ACVRL1, were discovered almost two decades ago, and mutations in these genes have been reported to cause up to 85% of HHT. In our experience, approximately 96% of individuals with HHT have a mutation in these two genes, when published (Curaçao diagnostic criteria for HHT are strictly applied. More recently, two additional genes in the same pathway, SMAD4 and GDF2, have been identified in a much smaller number of patients with a similar or overlapping phenotype to HHT. Yet families still exist with compelling evidence of a hereditary telangiectasia disorder, but no identifiable mutation in a known gene. Recent availability of whole exome and genome testing has created new opportunities to facilitate gene discovery, identify genetic modifiers to explain clinical variability, and potentially define an increased spectrum of hereditary telangiectasia disorders. An expanded approach to molecular diagnostics for inherited telangiectasia disorders that incorporates a multi-gene next generation sequencing (NGS HHT panel is proposed.

  5. Hereditary hemorrhagic telangiectasia clinical and molecular genetics

    NARCIS (Netherlands)

    Letteboer, T.G.W.

    2010-01-01

    Hereditary hemorrhagic telangiectasia (HHT) or Rendu-Osler-Weber (ROW) syndrome is an autosomal dominant disease characterized by vascular malformations in multiple organ systems. HHT has an age-related penetrance and variable clinical expression. The clinical symptoms are caused by direct

  6. Cerebellar Ataxia and Coenzyme Q Deficiency Through Loss of Unorthodox Kinase Activity

    OpenAIRE

    Stefely, Jonathan A.; Licitra, Floriana; Laredj, Leila; Reidenbach, Andrew G.; Kemmerer, Zachary A.; Grangeray, Anais; Jaeg-Ehret, Tiphaine; Minogue, Catherine E.; Ulbrich, Arne; Hutchins, Paul D.; Wilkerson, Emily M.; Ruan, Zheng; Aydin, Deniz; Hebert, Alexander S.; Guo, Xiao

    2016-01-01

    The UbiB protein kinase-like (PKL) family is widespread—comprising one-quarter of microbial PKLs and five human homologs—yet its biochemical activities remain obscure. COQ8A (ADCK3) is a mammalian UbiB protein associated with ubiquinone (CoQ) biosynthesis and an ataxia (ARCA2) through unclear means. We show that mice lacking COQ8A develop a slowly progressive cerebellar ataxia linked to Purkinje cell dysfunction and mild exercise intolerance, recapitulating ARCA2. Interspecies biochemical ana...

  7. Radiation-induced gene amplification in rodent and human cells

    International Nuclear Information System (INIS)

    Luecke-Huhle, C.; Gloss, B.; Herrlich, P.

    1990-01-01

    Ionizing and UV radiations induce amplification of SV40 DNA sequences integrated in the genome of Chinese hamster cells and increase amplification of the dihydrofolate reductase (DHFR) gene during methotrexate selection in human skin fibroblasts of a patient with ataxia telangiectasia. Various types of external (60-Co-γ-rays, 241-Am-α-particles, UV) or internal radiation (caused by the decay of 125 I incorporated into DNA in form of I-UdR) were applied. By cell fusion experiments it could be shown that SV40 gene amplification is mediated by one or several diffusible trans-acting factors induced or activated in a dose dependent manner by all types of radiation. One of these factors binds to a 10 bp sequence within the minimal origin of replication of SV40. In vivo competition with an excess of a synthetic oligonucleotide comprising this sequence blocks radiation-induced amplification. (author) 25 refs.; 8 figs

  8. Frontal ataxia in childhood.

    OpenAIRE

    Erasmus, C.E.; Beems, T.; Rotteveel, J.J.

    2004-01-01

    Frontal ataxia may be the result of a unilateral frontal lesion. In this report three cases are presented with ataxia due to right frontal lesions. One case concerns a boy presenting with an unsteady gait and titubation of the trunk, mimicking developmental disequilibrium and with complex partial seizures. It proved to be caused by a small right-sided cavernoma in the middle frontal gyrus. After surgical intervention the symptoms and the seizures disappeared. Two subsequent cases concern teen...

  9. Increased protein kinase C gamma activity induces Purkinje cell pathology in a mouse model of spinocerebellar ataxia 14.

    Science.gov (United States)

    Ji, Jingmin; Hassler, Melanie L; Shimobayashi, Etsuko; Paka, Nagendher; Streit, Raphael; Kapfhammer, Josef P

    2014-10-01

    Spinocerebellar ataxias (SCAs) are hereditary diseases leading to Purkinje cell degeneration and cerebellar dysfunction. Most forms of SCA are caused by expansion of CAG repeats similar to other polyglutamine disorders such as Huntington's disease. In contrast, in the autosomal dominant SCA-14 the disease is caused by mutations in the protein kinase C gamma (PKCγ) gene which is a well characterized signaling molecule in cerebellar Purkinje cells. The study of SCA-14, therefore, offers the unique opportunity to reveal the molecular and pathological mechanism eventually leading to Purkinje cell dysfunction and degeneration. We have created a mouse model of SCA-14 in which PKCγ protein with a mutation found in SCA-14 is specifically expressed in cerebellar Purkinje cells. We find that in mice expressing the mutated PKCγ protein the morphology of Purkinje cells in cerebellar slice cultures is drastically altered and mimics closely the morphology seen after pharmacological PKC activation. Similar morphological abnormalities were seen in localized areas of the cerebellum of juvenile transgenic mice in vivo. In adult transgenic mice there is evidence for some localized loss of Purkinje cells but there is no overall cerebellar atrophy. Transgenic mice show a mild cerebellar ataxia revealed by testing on the rotarod and on the walking beam. Our findings provide evidence for both an increased PKCγ activity in Purkinje cells in vivo and for pathological changes typical for cerebellar disease thus linking the increased and dysregulated activity of PKCγ tightly to the development of cerebellar disease in SCA-14 and possibly also in other forms of SCA. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Spontaneous loss and alteration of antigen receptor expression in mature CD4+ T cells

    International Nuclear Information System (INIS)

    Kyoizumi, Seishi; Akiyama, Mitoshi; Hirai, Yuko; Kusunoki; Yoichiro; Tanabe, Kazumi; Umeki, Shigeko; Nakamura, Nori; Yamakido, Michio; Hamamoto, Kazuko.

    1990-04-01

    The T-cell receptor CD3 (TCR/CD3) complex plays a central role in antigen recognition and activation of mature T cells, and therefore abnormalities in the expression of the complex should induce unresponsiveness of T cells to antigen stimulus. Using flow cytometry, we detected and enumerated variant cells with loss or alteration of surface TCR/CD3 expression among human mature CD4 + T cells. The presence of variant CD4 + T cells was demonstrated by isolating and cloning them from peripheral blood, and their abnormalities can be accounted for by alterations in TCR expression such as defects of protein expression and partial protein deletion. The variant frequency in peripheral blood increased with aging in normal donors and was highly elevated in patients with ataxia telangiectasia, an autosomal recessive inherited disease with defective DNA repair and variable T-cell immunodeficiency. These findings suggest that such alterations in TCR expression are induced by somatic mutagenesis of TCR genes and can be important factors related to age-dependent and genetic disease-associated T-cell dysfunction. (author)

  11. Maculopathy and spinocerebellar ataxia type 1

    DEFF Research Database (Denmark)

    Lebranchu, Pierre; Le Meur, Guylène; Magot, Armelle

    2013-01-01

    Autosomal dominant cerebellar ataxia is a rare heterogeneous group of diseases characterized by cerebellar symptoms, often associated with other multisystemic signs. Mild optic neuropathy has been associated with spinocerebellar ataxia type 1 (SCA1), but macular dysfunction has been reported...

  12. Small-molecule inhibitors of Ataxia Telangiectasia and Rad3 related kinase (ATR) sensitize lymphoma cells to UVA radiation

    DEFF Research Database (Denmark)

    Biskup, Edyta; Naym, David Gram; Gniadecki, Robert

    2016-01-01

    inhibited by small molecule antagonists VE-821, VE-822 or Chir-124, or by small interfering RNAs (siRNAs). Cell cycle and viability were assessed by flow cytometry. RESULTS: Small molecule inhibitors of ATR and Chk1 potently sensitized all cell lines to PUVA and, importantly, also to UVA, which by itself...... did not cause apoptotic response. VE-821/2 blocked ATR pathway activation and released the cells from the G2/M block caused by UVA and PUVA, but did not affect apoptosis caused by other chemotherapeutics (etoposide, gemcitabine, doxorubicine) or by hydrogen peroxide. Knockdown of ATR and Chk1 with si......RNA also blocked the ATR pathway and released the cells from G2/M block but did not sensitize the cells to UVA as observed with the small molecule inhibitors. The latter suggested that the synergism between VE-821/2 or Chir-124 and UVA was not solely caused by specific blocking of ATR kinase but also ATR...

  13. Preliminary Study of Intravenous Amantadine Treatment for Ataxia Management in Patients with Probable Multiple System Atrophy with Predominant Cerebellar Ataxia

    Directory of Open Access Journals (Sweden)

    Jinyoung Youn

    2012-05-01

    Full Text Available Background and Purpose: Multiple system atrophy with predominant cerebellar ataxia is a disabling neurologic disease. However, effective management has not yet been established. We conducted a short-term, open-label preliminary study to assess the benefits of intravenous amantadine treatment in patients with probable multiple system atrophy with predominant cerebellar ataxia. Methods: Twenty patients (10 male, 10 female with probable multiple system atrophy with predominant cerebellar ataxia received 400 mg of amantadine by intravenous per day for 5 days. Ataxia severity was evaluated by the International Cooperative Ataxia Rating Scale before and after intravenous amantadine therapy and all subjects reported subjective improvement after intravenous amantadine treatment using a patient global impression scale. We analyzed the total and subscale scores by the ataxia scale and patient global impression scale. Results: The mean age was 57.4 years (range: 47–72 and the mean disease duration was 30.8 months (range: 11–79. The ataxia severity significantly decreased after intravenous amantadine therapy from 42.5 to 37.3 (p < 0.001. The mean patient global impression scale for improvement was 2.9 and there were no side effects of intravenous amantadine treatment observed. When we assessed responders, the duration of intravenous amantadine effect was more than 1 month in 4 subjects of 7 responders. Conclusions: Our findings suggest that intravenous amantadine treatment can be a safe management option in cerebellar ataxia, although the mechanism is unclear. Thus, further double-blind, long-term studies with a larger sample size are needed.

  14. Host cell reactivation of uv- and X-ray-damaged herpes simplex virus by Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines

    International Nuclear Information System (INIS)

    Henderson, E.E.; Long, W.K.

    1981-01-01

    The efficacy of using an infected centers assay, employing herpes simplex virus-infected, Epstein-Barr virus-transformed lymphoblastoid cell lines (LCLs) as components, to study host cell reactivation has been explored. Herpes simplex virus type 1 (HSV-1) was shown through the infected centers assay to have detectable but varying ability to lytically infect LCLs established from chromosomal breakage syndromes or closely related genetic disorders. The rate of HSV inactivation by ultraviolet (uv) irradiation was faster in LCLs established from Cockaynes's syndrome than in normal LCLs, and faster still in LCLs established from xeroderma pigmentosum. These results indicate that Cockayne's syndrome, while having what appears to be quantitatively normal levels of uv-induced DNA repair replication, shows decreased ability to host cell reactivated uv-damaged HSV. In direct contrast, X-irradiated HSV showed identical survival when assayed on normal LCLs or LCLs established from ataxia telangiectasia showing increased sensitivity to X irradiation as measured by colony formation. Through the infected centers assay, it has also been possible to demonstrate low levels of multiplicity reactivation of mutagen-damaged HSV in permanently proliferating LCLs

  15. [Advances in Neurological Therapeutics for Friedreich Ataxia and Machado-Joseph Disease].

    Science.gov (United States)

    Yabe, Ichiro; Sasaki, Hidenao

    2017-08-01

    We reviewed advances in therapeutics for both Friedreich ataxia and Machado-Joseph disease. Various clinical trials have been carried out, mainly for Friedreich ataxia; however, the therapeutic reports from these trials have not provided much evidence for success. Some interesting clinical trials have been reported, and further developments are expected. Regenerative therapy using umbilical cord mesenchymal stem cells and a therapeutic study investigating a new pathomechanism in animal and/or cell culture studies were reported. We expect that these results will translate to therapeutic strategies for patients with these disorders. In addition, biomarkers play an important role when novel treatments are discovered and clinical trials are performed: hence at present, a number of biomarkers such as gait analysis by triaxial accelerometers and prism adaptation of hand-reaching movements, are being examined.

  16. Genetics Home Reference: X-linked sideroblastic anemia and ataxia

    Science.gov (United States)

    ... linked sideroblastic anemia and ataxia X-linked sideroblastic anemia and ataxia Printable PDF Open All Close All ... the expand/collapse boxes. Description X-linked sideroblastic anemia and ataxia is a rare condition characterized by ...

  17. Radiotherapy induces cell cycle arrest and cell apoptosis in nasopharyngeal carcinoma via the ATM and Smad pathways.

    Science.gov (United States)

    Li, Ming-Yi; Liu, Jin-Quan; Chen, Dong-Ping; Li, Zhou-Yu; Qi, Bin; He, Lu; Yu, Yi; Yin, Wen-Jin; Wang, Meng-Yao; Lin, Ling

    2017-09-02

    Nasopharyngeal carcinoma (NPC) is a common malignant neoplasm of the head and neck which is harmful to human's health. Radiotherapy is commonly used in the treatment of NPC and it induces immediate cell cycle arrest and cell apoptosis. However, the mechanism remains unknown. Evidences suggested the activation of Ataxia telangiectasia mutated (ATM) pathway and Smad pathway are 2 of the important crucial mediators in the function of radiotherapy. In this study, we performed in vitro assays with human nasopharyngeal carcinoma CNE-2 cells and in vivo assays with nude mice to investigate the role of the ATM and Smad pathways in the treatment of nasopharyngeal carcinoma with radiotherapy. The results suggested that radiation induced activation of ATM pathway by inducing expression of p-ATM, p-CHK1, p-CHK2, p15 and inhibiting expression of p-Smad3. In addition, Caspase3 expression was increased while CDC25A was decreased, leading to cell cycle arrest and cell apoptosis. On the other hand, activation of Smad3 can inhibited the ATM pathway and attenuated the efficacy of radiation. In summary, we suggest that both ATM and Smad pathways contribute to the cell cycle arrest and cell apoptosis during nasopharyngeal carcinoma cells treated with radiation.

  18. Generation of an isogenic, gene-corrected control cell line of the spinocerebellar ataxia type 2 patient-derived iPSC line H266

    DEFF Research Database (Denmark)

    Marthaler, Adele Gabriele; Tubsuwan, Alisa; Schmid, Benjamin

    2016-01-01

    Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease primarily affecting the cerebellum. Very little is known about the molecular mechanisms underlying the disease and, to date, no cure or treatment is available. We have successfully generated bona fide induced pluripotent stem cell...

  19. Generation of an isogenic, gene-corrected control cell line of the spinocerebellar ataxia type 2 patient-derived iPSC line H271

    DEFF Research Database (Denmark)

    Marthaler, Adele Gabriele; Schmid, Benjamin; Tubsuwan, Alisa

    2016-01-01

    Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease primarily affecting the cerebellum. Very little is known about the molecular mechanisms underlying the disease and, to date, no cure or treatment is available. We have successfully generated bona fide induced pluripotent stem cell...

  20. Generation of an isogenic, gene-corrected control cell line of the spinocerebellar ataxia type 2 patient-derived iPSC line H196

    DEFF Research Database (Denmark)

    Marthaler, Adele Gabriele; Schmid, Benjamin; Tubsuwan, Alisa

    2016-01-01

    Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease primarily affecting the cerebellum. Very little is known about the molecular mechanisms underlying the disease and, to date, no cure or treatment is available. We have successfully generated bona fide induced pluripotent stem cell...

  1. Genetic recombination of Herpes simplex virus, the role of the host cell and UV-irradiation of the virus

    International Nuclear Information System (INIS)

    Dasgupta, U.B.; Summers, W.C.; Yale Univ., New Haven, CT; Yale Univ., New Haven, CT

    1980-01-01

    Recombination frequencies for two sets of genetic markers of Herpes simplex virus were determined in various host cells with and without ultraviolet irradiation of the virus. UV irradiation increased the recombination frequency in all the cell types studied in direct proportion to the unrepaired lethal damage. In human skin fibroblasts derived from a patient with xeroderma pigmentosum (XP) of complementation group A, a given dose of UV stimulated recombination more than that in fibroblasts from normal individuals. On the other hand, UV stimulation of HSV recombination was slightly less than normal in fibroblasts derived from a patient with a variant form XP and from an ataxia telangiectasia patient. Caffeine, an agent known to inhibit repair of UV damage, reduced recombination in most of the cell types studied but did not suppress the UV-induced increase in recombination. These findings suggest that for virus DNA with the same number of unrepaired UV-lesions, each of the tested cell types promoted HSV-recombination to an equivalent extent. (orig.) [de

  2. Breast cancer stem cell-like cells are more sensitive to ionizing radiation than non-stem cells: role of ATM.

    Directory of Open Access Journals (Sweden)

    Seog-Young Kim

    Full Text Available There are contradictory observations about the different radiosensitivities of cancer stem cells and cancer non-stem cells. To resolve these contradictory observations, we studied radiosensitivities by employing breast cancer stem cell (CSC-like MDA-MB231 and MDA-MB453 cells as well as their corresponding non-stem cells. CSC-like cells proliferate without differentiating and have characteristics of tumor-initiating cells [1]. These cells were exposed to γ-rays (1.25-8.75 Gy and survival curves were determined by colony formation. A final slope, D(0, of the survival curve for each cell line was determined to measure radiosensitivity. The D(0 of CSC-like and non-stem MDA-MB-453 cells were 1.16 Gy and 1.55 Gy, respectively. Similar results were observed in MDA-MB-231 cells (0.94 Gy vs. 1.56 Gy. After determination of radiosensitivity, we investigated intrinsic cellular determinants which influence radiosensitivity including cell cycle distribution, free-radical scavengers and DNA repair. We observed that even though cell cycle status and antioxidant content may contribute to differential radiosensitivity, differential DNA repair capacity may be a greater determinant of radiosensitivity. Unlike non-stem cells, CSC-like cells have little/no sublethal damage repair, a low intracellular level of ataxia telangiectasia mutated (ATM and delay of γ-H2AX foci removal (DNA strand break repair. These results suggest that low DNA repair capacity is responsible for the high radiosensitivity of these CSC-like cells.

  3. ATM facilitates mouse gammaherpesvirus reactivation from myeloid cells during chronic infection.

    Science.gov (United States)

    Kulinski, Joseph M; Darrah, Eric J; Broniowska, Katarzyna A; Mboko, Wadzanai P; Mounce, Bryan C; Malherbe, Laurent P; Corbett, John A; Gauld, Stephen B; Tarakanova, Vera L

    2015-09-01

    Gammaherpesviruses are cancer-associated pathogens that establish life-long infection in most adults. Insufficiency of Ataxia-Telangiectasia mutated (ATM) kinase leads to a poor control of chronic gammaherpesvirus infection via an unknown mechanism that likely involves a suboptimal antiviral response. In contrast to the phenotype in the intact host, ATM facilitates gammaherpesvirus reactivation and replication in vitro. We hypothesized that ATM mediates both pro- and antiviral activities to regulate chronic gammaherpesvirus infection in an immunocompetent host. To test the proposed proviral activity of ATM in vivo, we generated mice with ATM deficiency limited to myeloid cells. Myeloid-specific ATM deficiency attenuated gammaherpesvirus infection during the establishment of viral latency. The results of our study uncover a proviral role of ATM in the context of gammaherpesvirus infection in vivo and support a model where ATM combines pro- and antiviral functions to facilitate both gammaherpesvirus-specific T cell immune response and viral reactivation in vivo. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Friedreich's ataxia cardiomyopathy: case based discussion and management issues.

    LENUS (Irish Health Repository)

    Hanley, A

    2010-04-01

    Cardiac involvement is common in Friedreich\\'s Ataxia and is a common cause of premature death. Evidence regarding treatment of congestive heart failure in patients with Friedreich\\'s Ataxia is lacking. The case of a 31-year-old male with advanced Friedreich\\'s Ataxia who presented with an acute diarrhoeal illness and features of acute heart failure is discussed. We then review the reported cardiac manifestations of Friedreich\\'s Ataxia and discuss management options.

  5. Multimodality imaging in macular telangiectasia 2: A clue to its pathogenesis

    Directory of Open Access Journals (Sweden)

    Lihteh Wu

    2015-01-01

    Full Text Available Macular telangiectasia type 2 also known as idiopathic perifoveal telangiectasia and juxtafoveolar retinal telangiectasis type 2A is an acquired bilateral neurodegenerative macular disease that manifests itself during the fifth or sixth decades of life. It is characterized by minimal dilatation of the parafoveal capillaries with graying of the retinal area involved, a lack of lipid exudation, right-angled retinal venules, refractile deposits in the superficial retina, hyperplasia of the retinal pigment epithelium, foveal atrophy, and subretinal neovascularization (SRNV. Our understanding of the disease has paralleled advances in multimodality imaging of the fundus. Optical coherence tomography (OCT images typically demonstrate the presence of intraretinal hyporeflective spaces that are usually not related to retinal thickening or fluorescein leakage. The typical fluorescein angiographic (FA finding is a deep intraretinal hyperfluorescent staining in the temporal parafoveal area. With time, the staining may involve the whole parafoveal area but does not extend to the center of the fovea. Long-term prognosis for central vision is poor, because of the development of SRNV or macular atrophy. Its pathogenesis remains unclear but multimodality imaging with FA, spectral domain OCT, adaptive optics, confocal blue reflectance and short wave fundus autofluorescence implicate Müller cells and macular pigment. Currently, there is no known treatment for this condition.

  6. Characterizing POLG ataxia: clinics, electrophysiology and imaging.

    Science.gov (United States)

    Synofzik, Matthis; Srulijes, Karin; Godau, Jana; Berg, Daniela; Schöls, Ludger

    2012-12-01

    Mutations in the mitochondrial DNA polymerase gamma (POLG) cause a highly pleomorphic disease spectrum, and reports about their frequencies in ataxia populations yield equivocal results. This leads to uncertainties about the role of POLG genetics in the workup of patients with unexplained ataxia. A comprehensive characterization of POLG-associated ataxia (POLG-A) will help guide genetic diagnostics and advance our understanding of the disease processes underlying POLG-A. Thirteen patients with POLG-A were assessed by standardized clinical investigation, nerve conduction studies, motor-evoked potentials, magnetic resonance imaging (MRI) and transcranial sonography (TCS). The findings were compared with 13 matched patients with Friedreich's ataxia (FA). In addition to the well-known POLG-associated features of chronic external ophthalmoplegia (100 %), areflexia to the lower extremity (100 %), impaired vibration sense (100 %), bilateral ptosis (69 %) and epilepsy (38 %), also hyperkinetic movement disorders were frequent in POLG-A patients, including chorea (31 %), dystonia (31 %) and myoclonus (23 %). Similar to FA, polyneuropathy was of sensory axonal type (100 %). In contrast to FA, none of the POLG-A patients showed impaired central motor conduction. TCS demonstrated less enlargement of the fourth ventricle and more diffuse cerebellar hyperechogenicity in POLG-A. Corresponding to TCS, MRI revealed no or only mild cerebellar atrophy in most POLG-A patients (85 %). POLG ataxia presents with the clinical characteristics of both afferent and cerebellar ataxia. Cerebellar alterations diffusely involve various parts of the cerebellum, yet cerebellar atrophy is generally mild. POLG-A presents with a high load of distinct non-ataxia features, namely, sensory neuropathy, external ophthalmoplegia, ptosis, epilepsy and/or hyperkinetic movement disorders. Involvement of the corticospinal tract, however, is rare.

  7. Acute Cerebellar Ataxia Induced by Nivolumab

    Science.gov (United States)

    Kawamura, Reina; Nagata, Eiichiro; Mukai, Masako; Ohnuki, Yoichi; Matsuzaki, Tomohiko; Ohiwa, Kana; Nakagawa, Tomoki; Kohno, Mitsutomo; Masuda, Ryota; Iwazaki, Masayuki; Takizawa, Shunya

    2017-01-01

    A 54-year-old woman with adenocarcinoma of the lung and lymph node metastasis experienced nystagmus and cerebellar ataxia 2 weeks after initiating nivolumab therapy. An evaluation for several autoimmune-related antibodies and paraneoplastic syndrome yielded negative results. We eventually diagnosed the patient with nivolumab-induced acute cerebellar ataxia, after excluding other potential conditions. Her ataxic gait and nystagmus resolved shortly after intravenous steroid pulse therapy followed by the administration of decreasing doses of oral steroids. Nivolumab, an immune checkpoint inhibitor, is known to induce various neurological adverse events. However, this is the first report of acute cerebellar ataxia associated with nivolumab treatment. PMID:29249765

  8. Alterations in cellular energy metabolism associated with the antiproliferative effects of the ATM inhibitor KU-55933 and with metformin.

    Directory of Open Access Journals (Sweden)

    Mahvash Zakikhani

    Full Text Available KU-55933 is a specific inhibitor of the kinase activity of the protein encoded by Ataxia telangiectasia mutated (ATM, an important tumor suppressor gene with key roles in DNA repair. Unexpectedly for an inhibitor of a tumor suppressor gene, KU-55933 reduces proliferation. In view of prior preliminary evidence suggesting defective mitochondrial function in cells of patients with Ataxia Telangiectasia (AT, we examined energy metabolism of cells treated with KU-55933. The compound increased AMPK activation, glucose uptake and lactate production while reducing mitochondrial membrane potential and coupled respiration. The stimulation of glycolysis by KU-55933 did not fully compensate for the reduction in mitochondrial functions, leading to decreased cellular ATP levels and energy stress. These actions are similar to those previously described for the biguanide metformin, a partial inhibitor of respiratory complex I. Both compounds decreased mitochondrial coupled respiration and reduced cellular concentrations of fumarate, malate, citrate, and alpha-ketogluterate. Succinate levels were increased by KU-55933 levels and decreased by metformin, indicating that the effects of ATM inhibition and metformin are not identical. These observations suggest a role for ATM in mitochondrial function and show that both KU-55933 and metformin perturb the TCA cycle as well as oxidative phosphorylation.

  9. Tumor germinal mixto con componentes de disgerminoma y coriocarcinoma de ovario en mujer adolescente con ataxiatelangiectasia

    Directory of Open Access Journals (Sweden)

    Eduardo Augusto Gálvez-Cuitiva

    2015-11-01

    días. Se suspendió la quimioterapia porque desarrolló choque séptico que puso en riesgo su vida. Por su enfermedad de base permaneció bajo vigilancia. Actualmente, 17 meses después, la paciente vive sin actividad tumoral.  Conclusión: existe asociación entre ataxia-telangiectasia, leucemia y linfomas. Se describe el caso clínico de una paciente con ataxia-telangiectasia y tumor germinal mixto con componente de disgerminoma y coriocarcinoma de ovario. Se propone establecer un tratamiento especial para estos pacientes inmunocomprometidos, con alto riesgo de cáncer pero, a la vez, de no tolerar los esquemas habituales.

  10. Spinocerebellar ataxia-10 with paranoid schizophrenia

    Directory of Open Access Journals (Sweden)

    Bhavesh Trikamji

    2015-01-01

    Full Text Available Spino-cerebellar ataxia type 10 (SCA10 is an autosomal dominant disorder that is characterized by cerebellar ataxia, seizures and nystagmus with a fragmented pursuit. Schizophrenia has been reported with SCAs 1 and 2 yet in SCA 10, psychiatric manifestations are uncommon. We report a Hispanic family involving a father and his four children with SCA10 genetic mutation. Two of his children, a 20-year-old female and a 23-year-old male, presented with gradually progressive spino-cerebellar ataxia and paranoid schizophrenia. Neurological examination revealed ocular dysmetria, dysdiadokinesia, impaired finger-to-nose exam, gait ataxia and hyperreflexia in both the cases. Additionally, they had a history of psychosis with destructive behavior, depression and paranoid delusions with auditory hallucinations. Serology and CSF studies were unremarkable and MRI brain revealed cerebellar volume loss. Ultimately, a test for ATAXIN-10 mutation was positive thus confirming the diagnosis of SCA10 in father and his four children. We now endeavor to investigate the association between schizophrenia and SCA10.

  11. Chromosomal radiosensitivity during the G2 cell-cycle period of skin fibroblasts from individuals with familial cancer

    International Nuclear Information System (INIS)

    Parshad, R.; Sanford, K.K.; Jones, G.M.

    1985-01-01

    The authors reported previously that human cells after neoplastic transformation in culture had acquired an increased susceptibility to chromatid damage induced by x-irradiation during the G2 phase of the cell cycle. Evidence suggested that this results from deficient DNA repair during G2 phase. Cells derived from human tumors also showed enhanced G2-phase chromosomal radiosensitivity. Furthermore, skin fibroblasts from individuals with genetic diseases predisposing to a high risk of cancer, including ataxia-telangiectasia, Bloom syndrome, Fanconi anemia, and xeroderma pigmentosum exhibited enhanced G2-phase chromosomal radiosensitivity. The present study shows that apparently normal skin fibroblasts from individuals with familial cancer--i.e., from families with a history of neoplastic disease--also exhibit enhanced G2-phase chromosomal radiosensitivity. This radiosensitivity appears, therefore, to be associated with both a genetic predisposition to cancer and a malignant neoplastic state. Furthermore, enhanced G2-phase chromosomal radiosensitivity may provide the basis for an assay to detect genetic susceptibility to cancer

  12. Gastrointestinal bleeding in patients with hereditary hemorrhagic telangiectasia

    DEFF Research Database (Denmark)

    Kjeldsen, A D; Kjeldsen, J

    2000-01-01

    Gastrointestinal bleeding occurs in a number of patients with hereditary hemorrhagic telangiectasia (HHT) and may lead to a high transfusion need. The aim of this study was to estimate the occurrence and severity of gastrointestinal bleeding in a geographically well defined HHT population....

  13. Aspectos moleculares das ataxias espinocerebelares autossomicas recessivas

    OpenAIRE

    Flavia Chagas Costa

    2000-01-01

    Resumo: As ataxias espinocerebelares (ABC) formam um grupo heterogêneo de doenças degenerativas que envolvem o sistema nervoso central. Esse grupo se caracteriza clinicamente por apresentar disfunção cerebelar manifestada por ataxia de marcha, incoordenação e disartria. Nos casos familiares, o padrão de herança é variável, podendo ser compatível com herança autossômica dominante (HAD) ou herança autossômica recessiva (HAR). Para as ataxias espinocerebelares com HAR existem três lócus identifi...

  14. Movement disorders in hereditary ataxias.

    Science.gov (United States)

    Garcia Ruiz, Pedro J; Mayo, David; Hernandez, Jaime; Cantarero, Susana; Ayuso, Carmen

    2002-10-15

    Movement disorders are well known features of some dominant hereditary ataxias (HA), specially SCA3/Machado-Joseph disease and dentatorubropallidolusyan atrophy. However, little is known about the existence and classification of movement disorders in other dominant and recessive ataxias. We prospectively studied the presence of movement disorders in patients referred for HA over the last 3 years. Only those patients with a confirmed family history of ataxia were included. We studied 84 cases of HA, including 46 cases of recessive and 38 cases of dominant HA. Thirty out of 46 cases of recessive HA could be classified as: Friedreich ataxia (FA), 29 cases; vitamin E deficiency, 1 case. Twenty-three out of 38 cases of dominant HA could be classified as: SCA 2, 4 cases; SCA 3, 8 cases; SCA 6, 4 cases; SCA 7, 6 cases and SCA 8, 1 case. We observed movement disorders in 20/38 (52%) patients with dominant HA and 25/46 (54%) cases with recessive HA, including 16 patients (16/29) with FA. In general, postural tremor was the most frequent observed movement disorder (27 cases), followed by dystonia (22 cases). Five patients had akinetic rigid syndrome, and in 13 cases, several movement disorders coexisted. Movement disorders are frequent findings in HA, not only in dominant HA but also in recessive HA. Copyright 2002 Elsevier Science B.V.

  15. Ataxia with Vitamin E Deficiency in Norway

    Directory of Open Access Journals (Sweden)

    Areej Elkamil

    2015-01-01

    Full Text Available Objective Ataxia with vitamin E deficiency (AVED is a rare autosomal recessive neurological disorder which usually starts in childhood. The clinical presentation is very similar to Friedreich ataxia, most patients have progressive truncal and extremity ataxia, areflexia, positive Babinski sign, dysarthria and sensory neuropathy. Methods We made an inquiry to our colleagues in Norway, we included information from a prevalence study published southern Norway and added data from our own known case. Results A newly published prevalence study of hereditary ataxias (total of 171 subjects found only one subject with AVED in Southeast Norway. We describe two more patients, one from the Central part and one from the Northern part of Norway. All 3 cases had age of onset in early childhood (age of 4–5 years and all experienced gait ataxia and dysarthria. The genetic testing confirmed that they had pathogenic mutations in the α-tocopherol transfer protein gene (TTPA. All were carriers of the non-sense c.400C > T mutation, one was homozygous for that mutation and the others were compound heterozygous, either with c.358G > A or c.513_514insTT. The homozygous carrier was by far the most severely affected case. Conclusions We estimate the occurrence of AVED in Norway to be at least 0.6 per million inhabitants. We emphasize that all patients who develop ataxia in childhood should be routinely tested for AVED to make an early diagnosis for initiating treatment with high dose vitamin E to avoid severe neurological deficits.

  16. Fragile X-associated tremor/ataxia syndrome.

    Science.gov (United States)

    Hoem, Gry; Koht, Jeanette

    2017-10-31

    Fragile X-associated tremor/ataxia syndrome (FXTAS) is a hereditary neurodegenerative disorder caused by a mutation on the X chromosome. The major signs and symptoms are tremor, ataxia and parkinsonism. Up to one in 2 000 persons over 50 years of age will develop the syndrome. There is reason to believe that too few individuals in Norway undergo testing for this condition.

  17. Activation of eNOS in endothelial cells exposed to ionizing radiation involves components of the DNA damage response pathway

    Energy Technology Data Exchange (ETDEWEB)

    Nagane, Masaki; Yasui, Hironobu; Sakai, Yuri; Yamamori, Tohru [Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan); Niwa, Koichi [Laboratory of Biochemistry, Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri 099-2493 (Japan); Hattori, Yuichi [Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan); Kondo, Takashi [Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan); Inanami, Osamu, E-mail: inanami@vetmed.hokudai.ac.jp [Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan)

    2015-01-02

    Highlights: • eNOS activity is increased in BAECs exposed to X-rays. • ATM is involved in this increased eNOS activity. • HSP90 modulates the radiation-induced activation of ATM and eNOS. - Abstract: In this study, the involvement of ataxia telangiectasia mutated (ATM) kinase and heat shock protein 90 (HSP90) in endothelial nitric oxide synthase (eNOS) activation was investigated in X-irradiated bovine aortic endothelial cells. The activity of nitric oxide synthase (NOS) and the phosphorylation of serine 1179 of eNOS (eNOS-Ser1179) were significantly increased in irradiated cells. The radiation-induced increases in NOS activity and eNOS-Ser1179 phosphorylation levels were significantly reduced by treatment with either an ATM inhibitor (Ku-60019) or an HSP90 inhibitor (geldanamycin). Geldanamycin was furthermore found to suppress the radiation-induced phosphorylation of ATM-Ser1181. Our results indicate that the radiation-induced eNOS activation in bovine aortic endothelial cells is regulated by ATM and HSP90.

  18. Genetic variations in DNA repair genes, radiosensitivity to cancer and susceptibility to acute tissue reactions in radiotherapy-treated cancer patients

    International Nuclear Information System (INIS)

    Chistiakov, Dimitry A.; Voronova, Natalia V.; Chistiakov, Pavel A.

    2008-01-01

    Ionizing radiation is a well established carcinogen for human cells. At low doses, radiation exposure mainly results in generation of double strand breaks (DSBs). Radiation-related DSBs could be directly linked to the formation of chromosomal rearrangements as has been proven for radiation-induced thyroid tumors. Repair of DSBs presumably involves two main pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). A number of known inherited syndromes, such as ataxia telangiectasia, ataxia-telangiectasia like-disorder, radiosensitive severe combined immunodeficiency, Nijmegen breakage syndrome, and LIG4 deficiency are associated with increased radiosensitivity and/or cancer risk. Many of them are caused by mutations in DNA repair genes. Recent studies also suggest that variations in the DNA repair capacity in the general population may influence cancer susceptibility. In this paper, we summarize the current status of DNA repair proteins as potential targets for radiation-induced cancer risk. We will focus on genetic alterations in genes involved in HR- and NHEJ-mediated repair of DSBs, which could influence predisposition to radiation-related cancer and thereby explain interindividual differences in radiosensitivity or radioresistance in a general population

  19. Genetic variations in DNA repair genes, radiosensitivity to cancer and susceptibility to acute tissue reactions in radiotherapy-treated cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Chistiakov, Dimitry A. (Dept. of Pathology, Univ. of Pittsburgh, Pittsburgh (US)); Voronova, Natalia V. (Dept. of Molecular Diagnostics, National Research Center GosNIIgenetika, Moscow (RU)); Chistiakov, Pavel A. (Dept. of Radiology, Cancer Research Center, Moscow (RU))

    2008-06-15

    Ionizing radiation is a well established carcinogen for human cells. At low doses, radiation exposure mainly results in generation of double strand breaks (DSBs). Radiation-related DSBs could be directly linked to the formation of chromosomal rearrangements as has been proven for radiation-induced thyroid tumors. Repair of DSBs presumably involves two main pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). A number of known inherited syndromes, such as ataxia telangiectasia, ataxia-telangiectasia like-disorder, radiosensitive severe combined immunodeficiency, Nijmegen breakage syndrome, and LIG4 deficiency are associated with increased radiosensitivity and/or cancer risk. Many of them are caused by mutations in DNA repair genes. Recent studies also suggest that variations in the DNA repair capacity in the general population may influence cancer susceptibility. In this paper, we summarize the current status of DNA repair proteins as potential targets for radiation-induced cancer risk. We will focus on genetic alterations in genes involved in HR- and NHEJ-mediated repair of DSBs, which could influence predisposition to radiation-related cancer and thereby explain interindividual differences in radiosensitivity or radioresistance in a general population

  20. Insights into the role of oxidative stress in the pathology of Friedreich ataxia using peroxidation resistant polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    M. Grazia Cotticelli

    2013-01-01

    Full Text Available Friedreich ataxia is an autosomal recessive, inherited neuro- and cardio-degenerative disorder characterized by progressive ataxia of all four limbs, dysarthria, areflexia, sensory loss, skeletal deformities, and hypertrophic cardiomyopathy. Most disease alleles have a trinucleotide repeat expansion in the first intron of the FXN gene, which decreases expression of the encoded protein frataxin. Frataxin is involved in iron–sulfur-cluster (ISC assembly in the mitochondrial matrix, and decreased frataxin is associated with ISC-enzyme and mitochondrial dysfunction, mitochondrial iron accumulation, and increased oxidative stress. To assess the role of oxidative stress in lipid peroxidation in Friedreich ataxia we used the novel approach of treating Friedreich ataxia cell models with polyunsaturated fatty acids (PUFAs deuterated at bis-allylic sites. In ROS-driven oxidation of PUFAs, the rate-limiting step is hydrogen abstraction from a bis-allylic site; isotopic reinforcement (deuteration of bis-allylic sites slows down their peroxidation. We show that linoleic and α-linolenic acids deuterated at the peroxidation-prone bis-allylic positions actively rescue oxidative-stress-challenged Friedreich ataxia cells. The protective effect of the deuterated PUFAs is additive in our models with the protective effect of the CoQ10 analog idebenone, which is thought to decrease the production of free radicals. Moreover, the administration of deuterated PUFAs resulted in decreased lipid peroxidation as measured by the fluorescence of the fatty acid analog C11-BODIPY (581/591 probe. Our results are consistent with a role for lipid peroxidation in Friedreich ataxia pathology, and suggest that the novel approach of oral delivery of isotope-reinforced PUFAs may have therapeutic potential in Friedreich ataxia and other disorders involving oxidative stress and lipid peroxidation.

  1. Acute Cerebellar Ataxia Induced by Nivolumab

    OpenAIRE

    Kawamura, Reina; Nagata, Eiichiro; Mukai, Masako; Ohnuki, Yoichi; Matsuzaki, Tomohiko; Ohiwa, Kana; Nakagawa, Tomoki; Kohno, Mitsutomo; Masuda, Ryota; Iwazaki, Masayuki; Takizawa, Shunya

    2017-01-01

    A 54-year-old woman with adenocarcinoma of the lung and lymph node metastasis experienced nystagmus and cerebellar ataxia 2 weeks after initiating nivolumab therapy. An evaluation for several autoimmune-related antibodies and paraneoplastic syndrome yielded negative results. We eventually diagnosed the patient with nivolumab-induced acute cerebellar ataxia, after excluding other potential conditions. Her ataxic gait and nystagmus resolved shortly after intravenous steroid pulse therapy follow...

  2. Genetic effect of low dose rate radiation on human cells immortalized with the hTERT gene

    International Nuclear Information System (INIS)

    Nakamura, Hideaki; Fukami, Hiroko; Hayashi, Yuko; Kiyono, Tohru; Ishizaki, Kanji; Tachibana, Akira; Nakatsugawa, Shigekazu; Hamaguchi, Michinari

    2003-01-01

    We established immortal human cells by introducing the hTERT gene into skin fibroblast cells obtained from normal (SuSa) and ataxia telangiectasia (AT: AT1OS) individuals of Japanese origin. These immortalized cells showed the same characteristics as the original cells except expanded life span. We irradiated SuSa/T-n and AT1OS/T-n cells with low-dose-rate (LDR; 0.3 mGy/min) irradiation at confluent state in low-serum medium. Then, survival rate and micronucleus frequency of each cell line were analyzed. In SuSa/T-n cells, frequency of HPRT mutation induction was also determined by 6TG selection. In SuSa/T-n cells, survival rate and micronucleus frequency showed higher resistance after irradiation with LDR than high-dose-rate (HDR; 2 Gy/min) irradiation. In contrast, no significant difference was observed in survival and micronucleus induction in AT1OS/T-n cells between HDR and LDR irradiation, suggesting that AT1OS/T-n cells may have some defect in DNA repair activity. In SuSa/T-n cells, the frequency of HPRT mutation after LDR irradiation decreased to approximately one eighth that after HDR irradiation. (author)

  3. Genetics Home Reference: neuropathy, ataxia, and retinitis pigmentosa

    Science.gov (United States)

    ... Twitter Home Health Conditions NARP Neuropathy, ataxia, and retinitis pigmentosa Printable PDF Open All Close All Enable Javascript ... the expand/collapse boxes. Description Neuropathy, ataxia, and retinitis pigmentosa ( NARP ) is a condition that causes a variety ...

  4. Dyspnea with anemia turned out to be a case of hereditary hemorrhagic telangiectasia

    Directory of Open Access Journals (Sweden)

    Amitabha Sengupta

    2013-01-01

    Full Text Available Hereditary hemorrhagic telangiectasia (HHT is a rare autosomal dominant inherited disorder of the vascular system. It can be asymptomatic but when symptomatic most common presentation being epistaxis. It can involve any organs of the body like lungs, skin, liver brain, GI mucosa etc. We are reporting a case of HHT presented to us with dyspnea and severe anemia. He had arteriovenous malformations of different visceral organs and telangiectasia of skin along with presence of similar history in first-degree relatives.

  5. Absence of Wip1 partially rescues Atm deficiency phenotypes in mice

    Science.gov (United States)

    Darlington, Yolanda; Nguyen, Thuy-Ai; Moon, Sung-Hwan; Herron, Alan; Rao, Pulivarthi; Zhu, Chengming; Lu, Xiongbin; Donehower, Lawrence A.

    2011-01-01

    Wildtype p53-Induced Phosphatase 1 (WIP1) is a serine/threonine phosphatase that dephosphorylates proteins in the ataxia telangiectasia mutated (ATM)-initiated DNA damage response pathway. WIP1 may play a homeostatic role in ATM signaling by returning the cell to a normal pre-stress state following completion of DNA repair. To better understand the effects of WIP1 on ATM signaling, we crossed Atm-deficient mice to Wip1-deficient mice and characterized phenotypes of the double knockout progeny. We hypothesized that the absence of Wip1 might rescue Atm deficiency phenotypes. Atm null mice, like ATM-deficient humans with the inherited syndrome ataxia telangiectasia, exhibit radiation sensitivity, fertility defects, and are T-cell lymphoma prone. Most double knockout mice were largely protected from lymphoma development and had a greatly extended lifespan compared to Atm null mice. Double knockout mice had increased p53 and H2AX phosphorylation and p21 expression compared to their Atm null counterparts, indicating enhanced p53 and DNA damage responses. Additionally, double knockout splenocytes displayed reduced chromosomal instability compared to Atm null mice. Finally, doubly null mice were partially rescued from infertility defects observed in Atm null mice. These results indicate that inhibition of WIP1 may represent a useful strategy for cancer treatment in general and A-T patients in particular. PMID:21765465

  6. Chromosomes, cancer and radiosensitivity

    International Nuclear Information System (INIS)

    Samouhos, E.

    1983-01-01

    Some specific chromosomal abnormalities are associated with certain cancers. The earliest description of such a specific association is the one of the Philadelphia chromosome and myelogenous leukemia (1960). Other congenital karyotype abnormalities are associated with specific cancers. Examples of these are Down's syndrome with leukemia and Klinefelter's syndrome with male breast cancer. Genetic diseases of increased chromosome breakage, or of defective chromosome repair, are associated with greatly increased cancer incidence. Three such diseases have been recognized: 1) Fanconi's anemia, associated with leukemias and lymphomas, 2) Bloom's syndrome, associated with acute leukemias and lymphosarcoma, and 3) ataxia telangiectasia, associated with Hodgkin's disease, leukemia, and lymphosarcomas. Ten percent of individuals with ataxia telangiectasia will develop one of these neoplasms. Individuals with certain of these syndromes display an unusually high radiosensitivity. Radiation therapy for cancers has been fatal in patients who received as low as 3000 rad. This remarkable radiosensitivity has been quantitated in cell cultures from such cases. Evidence suggests that the apparent sensitivity may reflect subnormal ability to repair radiation damage. The rapid proliferation of information in this field stems from the interdigitation of many disciplines and specialties, including cytogenetics, cell biology, molecular biology, epidemiology, radiobiology, and several others. This paper is intended for clinicians; it presents a structured analytic scheme for correlating and classifying this multidisciplinary information as it becomes available

  7. Recombinational DNA repair and human disease

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Larry H.; Schild, David

    2002-11-30

    We review the genes and proteins related to the homologous recombinational repair (HRR) pathway that are implicated in cancer through either genetic disorders that predispose to cancer through chromosome instability or the occurrence of somatic mutations that contribute to carcinogenesis. Ataxia telangiectasia (AT), Nijmegen breakage syndrome (NBS), and an ataxia-like disorder (ATLD), are chromosome instability disorders that are defective in the ataxia telangiectasia mutated (ATM), NBS, and Mre11 genes, respectively. These genes are critical in maintaining cellular resistance to ionizing radiation (IR), which kills largely by the production of double-strand breaks (DSBs). Bloom syndrome involves a defect in the BLM helicase, which seems to play a role in restarting DNA replication forks that are blocked at lesions, thereby promoting chromosome stability. The Werner syndrome gene (WRN) helicase, another member of the RecQ family like BLM, has very recently been found to help mediate homologous recombination. Fanconi anemia (FA) is a genetically complex chromosomal instability disorder involving seven or more genes, one of which is BRCA2. FA may be at least partially caused by the aberrant production of reactive oxidative species. The breast cancer-associated BRCA1 and BRCA2 proteins are strongly implicated in HRR; BRCA2 associates with Rad51 and appears to regulate its activity. We discuss in detail the phenotypes of the various mutant cell lines and the signaling pathways mediated by the ATM kinase. ATM's phosphorylation targets can be grouped into oxidative stress-mediated transcriptional changes, cell cycle checkpoints, and recombinational repair. We present the DNA damage response pathways by using the DSB as the prototype lesion, whose incorrect repair can initiate and augment karyotypic abnormalities.

  8. Recombinational DNA repair and human disease

    International Nuclear Information System (INIS)

    Thompson, Larry H.; Schild, David

    2002-01-01

    We review the genes and proteins related to the homologous recombinational repair (HRR) pathway that are implicated in cancer through either genetic disorders that predispose to cancer through chromosome instability or the occurrence of somatic mutations that contribute to carcinogenesis. Ataxia telangiectasia (AT), Nijmegen breakage syndrome (NBS), and an ataxia-like disorder (ATLD), are chromosome instability disorders that are defective in the ataxia telangiectasia mutated (ATM), NBS, and Mre11 genes, respectively. These genes are critical in maintaining cellular resistance to ionizing radiation (IR), which kills largely by the production of double-strand breaks (DSBs). Bloom syndrome involves a defect in the BLM helicase, which seems to play a role in restarting DNA replication forks that are blocked at lesions, thereby promoting chromosome stability. The Werner syndrome gene (WRN) helicase, another member of the RecQ family like BLM, has very recently been found to help mediate homologous recombination. Fanconi anemia (FA) is a genetically complex chromosomal instability disorder involving seven or more genes, one of which is BRCA2. FA may be at least partially caused by the aberrant production of reactive oxidative species. The breast cancer-associated BRCA1 and BRCA2 proteins are strongly implicated in HRR; BRCA2 associates with Rad51 and appears to regulate its activity. We discuss in detail the phenotypes of the various mutant cell lines and the signaling pathways mediated by the ATM kinase. ATM's phosphorylation targets can be grouped into oxidative stress-mediated transcriptional changes, cell cycle checkpoints, and recombinational repair. We present the DNA damage response pathways by using the DSB as the prototype lesion, whose incorrect repair can initiate and augment karyotypic abnormalities

  9. Ataxia cerebelar aguda na criança Acute cerebellar ataxia in children

    Directory of Open Access Journals (Sweden)

    Valeriana Moura Ribeiro

    1968-03-01

    Full Text Available São relatados os casos de 6 crianças com ataxia cerebelar aguda. Admitem os autores a presença de um fator etiológico de caráter viral comum a todos êles, discutindo os mecanismos patogênicos com base nos casos da literatura. A evolução foi favorável em todos os pacientes, com regressão completa da sintomatologia, dentro do período de 6 a 60 dias.Clinical observations of 6 children with acute cerebellar ataxia and respective laboratorial data are reported. Considerations are made in order to support the hypothesis of involving virus. The evolution of the disorder was a nonfatal one and the patients regained normal cerebellar function within a period of 6 to 60 days.

  10. Vascular Risk Factors and Clinical Progression in Spinocerebellar Ataxias

    Directory of Open Access Journals (Sweden)

    Raymond Y. Lo

    2015-02-01

    Full Text Available Background: The contributions of vascular risk factors to spinocerebellar ataxia (SCA are not known.Methods: We studied 319 participants with SCA 1, 2, 3, and 6 and repeatedly measured clinical severity using the Scale for Assessment and Rating of Ataxia (SARA for 2 years. Vascular risk factors were summarized by CHA2DS2-VASc scores as the vascular risk factor index. We employed regression models to study the effects of vascular risk factors on ataxia onset and progression after adjusting for age, sex, and pathological CAG repeats. Our secondary analyses took hyperlipidemia into account.Results: Nearly 60% of SCA participants were at low vascular risks with CHA2DS2-VASc = 0, and 31% scored 2 or greater. Higher CHA2DS2-VASc scores were not associated with either earlier onset or faster progression of ataxia. These findings were not altered after accounting for hyperlipidemia. Discussion: Vascular risks are not common in SCAs and are not associated with earlier onset or faster ataxia progression.

  11. Dose rate effect on low-dose hyper-radiosensitivity with cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Min; Kim, Eun-Hee [Seoul National University, Seoul (Korea, Republic of)

    2016-10-15

    Low-dose hyper-radiosensitivity (HRS) is the phenomenon that mammalian cells exhibit higher sensitivity to radiation at low doses (< 0.5 Gy) than expected by the linear-quadratic model. At doses above 0.5Gy, the cellular response is recovered to the level expected by the linear-quadratic model. This transition is called the increased radio-resistance (IRR). HRS was first verified using Chinese hamster V79 cells in vitro by Marples and has been confirmed in studies with other cell lines including human normal and tumor cells. HRS is known to be induced by inactivation of ataxia telangiectasia-mutated (ATM), which plays a key role in repairing DNA damages. Considering the connection between ATM and HRS, one can infer that dose rate may affect cellular response regarding HRS at low doses. In this study, we quantitated the effect of dose rate on HRS by clonogenic assay with normal and tumor cells. The HRS of cells at low dose exposures is a phenomenon already known. In this study, we observed HRS of rat normal diencephalon cells and rat gliosarcoma cells at doses below 1 Gy. In addition, we found that dose rate mattered. HRS occurred at low doses, but only when total dose was delivered at a rate below certain level.

  12. Functional link between DNA damage responses and transcriptional regulation by ATM in response to a histone deacetylase inhibitor TSA.

    Science.gov (United States)

    Lee, Jong-Soo

    2007-09-01

    Mutations in the ATM (ataxia-telangiectasia mutated) gene, which encodes a 370 kd protein with a kinase catalytic domain, predisposes people to cancers, and these mutations are also linked to ataxia-telangiectasia (A-T). The histone acetylaion/deacetylation- dependent chromatin remodeling can activate the ATM kinase-mediated DNA damage signal pathway (in an accompanying work, Lee, 2007). This has led us to study whether this modification can impinge on the ATM-mediated DNA damage response via transcriptional modulation in order to understand the function of ATM in the regulation of gene transcription. To identify the genes whose expression is regulated by ATM in response to histone deaceylase (HDAC) inhibition, we performed an analysis of oligonucleotide microarrays with using the appropriate cell lines, isogenic A-T (ATM(-)) and control (ATM(+)) cells, following treatment with a HDAC inhibitor TSA. Treatment with TSA reprograms the differential gene expression profile in response to HDAC inhibition in ATM(-) cells and ATM(+) cells. We analyzed the genes that are regulated by TSA in the ATM-dependent manner, and we classified these genes into different functional categories, including those involved in cell cycle/DNA replication, DNA repair, apoptosis, growth/differentiation, cell- cell adhesion, signal transduction, metabolism and transcription. We found that while some genes are regulated by TSA without regard to ATM, the patterns of gene regulation are differentially regulated in an ATM-dependent manner. Taken together, these finding indicate that ATM can regulate the transcription of genes that play critical roles in the molecular response to DNA damage, and this response is modulated through an altered HDAC inhibition-mediated gene expression.

  13. Treatment for speech disorder in Friedreich ataxia and other hereditary ataxia syndromes.

    Science.gov (United States)

    Vogel, Adam P; Folker, Joanne; Poole, Matthew L

    2014-10-28

    Hereditary ataxia syndromes can result in significant speech impairment, a symptom thought to be responsive to treatment. The type of speech impairment most commonly reported in hereditary ataxias is dysarthria. Dysarthria is a collective term referring to a group of movement disorders affecting the muscular control of speech. Dysarthria affects the ability of individuals to communicate and to participate in society. This in turn reduces quality of life. Given the harmful impact of speech disorder on a person's functioning, treatment of speech impairment in these conditions is important and evidence-based interventions are needed. To assess the effects of interventions for speech disorder in adults and children with Friedreich ataxia and other hereditary ataxias. On 14 October 2013, we searched the Cochrane Neuromuscular Disease Group Specialized Register, CENTRAL, MEDLINE, EMBASE, CINAHL Plus, PsycINFO, Education Resources Information Center (ERIC), Linguistics and Language Behavior Abstracts (LLBA), Dissertation Abstracts and trials registries. We checked all references in the identified trials to identify any additional published data. We considered for inclusion randomised controlled trials (RCTs) or quasi-RCTs that compared treatments for hereditary ataxias with no treatment, placebo or another treatment or combination of treatments, where investigators measured speech production. Two review authors independently selected trials for inclusion, extracted data and assessed the risk of bias of included studies using the standard methodological procedures expected by The Cochrane Collaboration. The review authors collected information on adverse effects from included studies. We did not conduct a meta-analysis as no two studies utilised the same assessment procedures within the same treatment. Fourteen clinical trials, involving 721 participants, met the criteria for inclusion in the review. Thirteen studies compared a pharmaceutical treatment with placebo (or a

  14. Exome Capture Reveals ZNF423 and CEP164 Mutations, Linking Renal Ciliopathies to DNA Damage Response Signaling

    Czech Academy of Sciences Publication Activity Database

    Chaki, M.; Airik, R.; Ghosh, A.K.; Giles, R.H.; Bryja, Vítězslav

    2012-01-01

    Roč. 150, č. 3 (2012), s. 533-548 ISSN 0092-8674 Institutional support: RVO:68081707 Keywords : MULTIPOINT LINKAGE ANALYSIS * POLYCYSTIC KIDNEY -DISEASE * ATAXIA-TELANGIECTASIA Subject RIV: BO - Biophysics Impact factor: 31.957, year: 2012

  15. Genetics Home Reference: fragile X-associated tremor/ataxia syndrome

    Science.gov (United States)

    ... Share: Email Facebook Twitter Home Health Conditions FXTAS Fragile X-associated tremor/ataxia syndrome Printable PDF Open All ... Javascript to view the expand/collapse boxes. Description Fragile X-associated tremor/ataxia syndrome ( FXTAS ) is characterized by ...

  16. Very Late-Onset Friedreich Ataxia with Laryngeal Dystonia

    Directory of Open Access Journals (Sweden)

    Silvia Rota

    2014-12-01

    Full Text Available Friedreich ataxia (FRDA is an autosomal recessive neurodegenerative disorder characterized by progressive gait and limb ataxia, cerebellar, pyramidal and dorsal column involvement, visual defects, scoliosis, pes cavus and cardiomyopathy. It is caused by a homozygous guanine-adenine-adenine (GAA trinucleotide repeat expansion in intron 1 of the frataxin gene (FXN on chromosome 9q13-q21.1. Onset is usually in the first or second decade of life; however, late-onset cases of Freidreich ataxia (LOFA, after the age of 25 years, and very late-onset cases of Freidreich ataxia (VLOFA, after the age of 40 years, have been reported. VLOFA is quite rare and usually presents a milder progression of the disease. We report the case of a 64-year-old woman affected with VLOFA whose first symptoms (balance and gait disturbances occurred at the age of 44 years. At the age of 62 years, she started complaining of a slowly progressive dysphonia showing the clinical aspects of laryngeal dystonia. Molecular analysis showed a 210- and 230-trinucleotide GAA repeat expansion in the two alleles of the FXN gene. Laryngeal dystonia has been reported only in very few cases of ataxia syndrome and never before in FRDA patients. It may represent a rare clinical manifestation of VLOFA thus confirming the high variability of the clinical spectrum of FRDA.

  17. Differences in replicon behavior between x-irradiation-sensitive L5178Y mouse lymphoma cells and A-T fibroblasts using DNA fiber autoradiography

    International Nuclear Information System (INIS)

    Ockey, C.H.

    1983-01-01

    Replicon behavior in radiosensitive Ataxia telangiectasia (A-T) fibroblasts and mouse lymphoma L5178Y (LS) cells was studied by DNA fiber autoradiography. LS cells, irradiated at 13 Gy, showed a similar reduction in rate of DNA chain growth and initiation of replicons as did resistant (LR) cells. A progressive increase in the intensity of [ 3 H]TdR labeling of many replicons was observed after irradition in the LS cells, but not in LR cells. This indicated a reduced or absent endogenous dTTP supply after irradiation in the LS cells, implicating a defect in nucleoside precursor production. Irradiated normal human and A-T cells did not show this effect. After 2 Gy, the frequency of initiation of replicons into synthesis was temporarily reduced in the normal human but not in the A-T cells. After 20 Gy, the rate of DNA chain growth was preferentially reduced in the normal human cells, but an increase was observed in the A-T cells. This increased rate could be explained in terms of a normal supply of complexes involved in chain elongation being distributed over a reduced number of initiated replicon clusters in the A-T cells

  18. Brain abscesses and hereditary hemorrhagic telangiectasia

    International Nuclear Information System (INIS)

    Vives, Daniel A.; Bauni, Carlos E.; Mendoza, Monica E.

    2003-01-01

    Rendu-Osler-Weber disease or Hereditary Hemorrhagic Telangiectasia (HHT) is a generalized familial angiodysplastic disorder. The neurological manifestations of this entity are due to Central Nervous System vascular lesions or to complications of other visceral lesions such as pulmonary arteriovenous fistulae. This report describes two patients (males, 40 and 61 years old), with brain abscesses associated with HHT. The CT, MRI and Angiographic findings as well as the therapeutic approach are analyzed. Patients with brain abscess of unknown origin must be evaluated for the presence of lung vascular malformation in association with HHT. (author)

  19. CT and MR imaging of acute cerebellar ataxia

    International Nuclear Information System (INIS)

    Shoji, H.; Hirai, S.; Ishikawa, K.; Aramaki, M.; Sato, Y.; Abe, T.; Kojima, K.

    1991-01-01

    An adult female showed mild cerebellar ataxia and CSF pleocytosis following an acute infection of the upper respiratory tract, and was diagnosed as having acute cerebellar ataxia (ACA). CT and MR appearances in the acute stage revealed moderate swelling of the cerebellum and bilaterally increased signal intensity in the cerebellar cortex. (orig.)

  20. Time-resolved functional analysis of acute impairment of frataxin expression in an inducible cell model of Friedreich ataxia

    Directory of Open Access Journals (Sweden)

    Dörte Poburski

    2016-05-01

    Full Text Available Friedreich ataxia is a neurodegenerative disease caused by a GAA triplet repeat expansion in the first intron of the frataxin gene, which results in reduced expression levels of the corresponding protein. Despite numerous animal and cellular models, therapeutic options that mechanistically address impaired frataxin expression are lacking. Here, we have developed a new mammalian cell model employing the Cre/loxP recombination system to induce a homozygous or heterozygous frataxin knockout in mouse embryonic fibroblasts. Induction of Cre-mediated disruption by tamoxifen was successfully tested on RNA and protein levels. After loss of frataxin protein, cell division, aconitase activity and oxygen consumption rates were found to be decreased, while ROS production was increased in the homozygous state. By contrast, in the heterozygous state no such changes were observed. A time-resolved analysis revealed the loss of aconitase activity as an initial event after induction of complete frataxin deficiency, followed by secondarily elevated ROS production and a late increase in iron content. Initial impairments of oxygen consumption and ATP production were found to be compensated in the late state and seemed to play a minor role in Friedreich ataxia pathophysiology. In conclusion and as predicted from its proposed role in iron sulfur cluster (ISC biosynthesis, disruption of frataxin primarily causes impaired function of ISC-containing enzymes, whereas other consequences, including elevated ROS production and iron accumulation, appear secondary. These parameters and the robustness of the newly established system may additionally be used for a time-resolved study of pharmacological candidates in a HTS manner.

  1. Prevalence of spinocerebellar ataxia 36 in a US population.

    Science.gov (United States)

    Valera, Juliana M; Diaz, Tatyana; Petty, Lauren E; Quintáns, Beatriz; Yáñez, Zuleima; Boerwinkle, Eric; Muzny, Donna; Akhmedov, Dmitry; Berdeaux, Rebecca; Sobrido, Maria J; Gibbs, Richard; Lupski, James R; Geschwind, Daniel H; Perlman, Susan; Below, Jennifer E; Fogel, Brent L

    2017-08-01

    To assess the prevalence and clinical features of individuals affected by spinocerebellar ataxia 36 (SCA36) at a large tertiary referral center in the United States. A total of 577 patients with undiagnosed sporadic or familial cerebellar ataxia comprehensively evaluated at a tertiary referral ataxia center were molecularly evaluated for SCA36. Repeat primed PCR and fragment analysis were used to screen for the presence of a repeat expansion in the NOP56 gene. Fragment analysis of triplet repeat primed PCR products identified a GGCCTG hexanucleotide repeat expansion in intron 1 of NOP56 in 4 index cases. These 4 SCA36-positive families comprised 2 distinct ethnic groups: white (European) (2) and Asian (Japanese [1] and Vietnamese [1]). Individuals affected by SCA36 exhibited typical clinical features with gait ataxia and age at onset ranging between 35 and 50 years. Patients also suffered from ataxic or spastic limbs, altered reflexes, abnormal ocular movement, and cognitive impairment. In a US population, SCA36 was observed to be a rare disorder, accounting for 0.7% (4/577 index cases) of disease in a large undiagnosed ataxia cohort.

  2. A 70-year-old male with peripheral neuropathy, ataxia and antigliadin antibodies shows improvement in neuropathy, but not ataxia, after intravenous immunoglobulin and gluten-free diet

    Directory of Open Access Journals (Sweden)

    Dharshan Anandacoomaraswamy

    2008-10-01

    Full Text Available Dharshan Anandacoomaraswamy1, Jagdeesh Ullal2, Aaron I Vinik21Department of Internal Medicine, Coney Island Hospital, Brooklyn, NY, USA; 2Strelitz Diabetes Center, Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, USAAbstract: This is a case of a 70-year-old man with severe peripheral neuropathy, type 2 diabetes and progressively worsening cerebellar ataxia. He was found to have circulating antigliadin and antireticulin antibodies compatible with celiac disease in the absence of intestinal pathology. The peripheral neuropathy improved with a gluten-free diet, antioxidants and intravenous immunoglobulin, whereas the ataxia did not. This case illustrates the need to test for celiac disease in patients with idiopathic ataxia and peripheral neuropathy and the need for alternative therapies for ataxia. Keywords: celiac disease, peripheral neuropathy, autoimmune disease, cerebellar ataxia, type 2 diabetes

  3. Cisplatin resistance in non-small cell lung cancer cells is associated with an abrogation of cisplatin-induced G2/M cell cycle arrest.

    Directory of Open Access Journals (Sweden)

    Navin Sarin

    Full Text Available The efficacy of cisplatin-based chemotherapy in cancer is limited by the occurrence of innate and acquired drug resistance. In order to better understand the mechanisms underlying acquired cisplatin resistance, we have compared the adenocarcinoma-derived non-small cell lung cancer (NSCLC cell line A549 and its cisplatin-resistant sub-line A549rCDDP2000 with regard to cisplatin resistance mechanisms including cellular platinum accumulation, DNA-adduct formation, cell cycle alterations, apoptosis induction and activation of key players of DNA damage response. In A549rCDDP2000 cells, a cisplatin-induced G2/M cell cycle arrest was lacking and apoptosis was reduced compared to A549 cells, although equitoxic cisplatin concentrations resulted in comparable platinum-DNA adduct levels. These differences were accompanied by changes in the expression of proteins involved in DNA damage response. In A549 cells, cisplatin exposure led to a significantly higher expression of genes coding for proteins mediating G2/M arrest and apoptosis (mouse double minute 2 homolog (MDM2, xeroderma pigmentosum complementation group C (XPC, stress inducible protein (SIP and p21 compared to resistant cells. This was underlined by significantly higher protein levels of phosphorylated Ataxia telangiectasia mutated (pAtm and p53 in A549 cells compared to their respective untreated control. The results were compiled in a preliminary model of resistance-associated signaling alterations. In conclusion, these findings suggest that acquired resistance of NSCLC cells against cisplatin is the consequence of altered signaling leading to reduced G2/M cell cycle arrest and apoptosis.

  4. Host cell reactivation by fibroblasts from patients with pigmentary degeneration of the retina

    International Nuclear Information System (INIS)

    Lytle, C.D.; Tarone, R.E.; Barrett, S.F.; Robbins, J.H.; Wirtschafter, J.D.; Dupuy, J.-M.

    1983-01-01

    Cockayne syndrome (CS) is an autosomal recessive disease characterized by numerous clinical abnormalities including acute sun sensitivity and primary pigmentary degeneration of the retina. Cultured fibroblasts from CS patients are hypersensitive to ultraviolet radiation. Host cell reactivation of irradiated virus was studied in CS and in other diseases with retinal degeneration to evaluate repair. The survival of UV-irradiated Herpes simplex virus type 1 was determined in fibroblast lines from four normal donors, two patients with CS, one with both xeroderma pigmentosum (XP) and CS, and from several other patients with (Usher syndrome, olivopontocerebellar atrophy, retinitis pigmentosa) and without (XP, ataxia telangiectasia) primary pigmentary degeneration of the retina. The viral survival curves in all cell lines showed two components: a very sensitive initial component followed by an exponential, less sensitive component. The exponential component had greater sensitivity than normal in the case of the CS patients, the patient with both XP and CS, and the XP patient. It was proposed that patients with CS have defective repair of DNA which may be the cause of their retinal degeneration. (author)

  5. Host cell reactivation by fibroblasts from patients with pigmentary degeneration of the retina

    Energy Technology Data Exchange (ETDEWEB)

    Lytle, C.D. (Food and Drug Administration, Rockville, MD (USA)); Tarone, R.E.; Barrett, S.F.; Robbins, J.H. (National Cancer Inst., Bethesda, MD (USA)); Wirtschafter, J.D. (Minnesota Univ., Minneapolis (USA). Hospitals); Dupuy, J.M. (Quebec Univ., Laval-des-Rapides (Canada). Inst. Armand-Frappier)

    1983-05-01

    Cockayne syndrome (CS) is an autosomal recessive disease characterized by numerous clinical abnormalities including acute sun sensitivity and primary pigmentary degeneration of the retina. Cultured fibroblasts from CS patients are hypersensitive to ultraviolet radiation. Host cell reactivation of irradiated virus was studied in CS and in other diseases with retinal degeneration to evaluate repair. The survival of UV-irradiated Herpes simplex virus type 1 was determined in fibroblast lines from four normal donors, two patients with CS, one with both xeroderma pigmentosum (XP) and CS, and from several other patients with (Usher syndrome, olivopontocerebellar atrophy, retinitis pigmentosa) and without (XP, ataxia telangiectasia) primary pigmentary degeneration of the retina. The viral survival curves in all cell lines showed two components: a very sensitive initial component followed by an exponential, less sensitive component. The exponential component had greater sensitivity than normal in the case of the CS patients, the patient with both XP and CS, and the XP patient. It was proposed that patients with CS have defective repair of DNA which may be the cause of their retinal degeneration.

  6. Xeroderma Pigmentosum/De Sanctis-Cacchione Syndrome: Unusual Cause of Ataxia

    Directory of Open Access Journals (Sweden)

    Robert Fekete

    2014-03-01

    Full Text Available Introduction: Xeroderma pigmentosum (XP is a rare autosomal recessive disorder of DNA repair, with a prevalence of 1 in 1 million. It may also be a cause of neurological symptoms including sensorineural hearing loss, peripheral neuropathy, ataxia, and chorea. Severe neurological symptoms including mental retardation, short stature, and hypogonadism invoke De Sanctis-Cacchione syndrome (DCS. Case Report: The patient was a 55-year-old woman with a history of mental retardation who developed chorea at age 32 and ataxia at age 37. She had numerous facial scars from 10 prior basal cell carcinoma excisions as well as diminished deep tendon reflexes, bilateral hearing loss, dysphagia, and skin freckling. Brain MRI revealed severe cortical, cerebellar, and brainstem atrophy. Supportive treatment and prevention of further damage from UV light is the mainstay of treatment in XP and DCS. Conclusion: XP and related disorders should be considered in the setting of neurological disorder and multiple cutaneous cancers.

  7. Telangiectasia hemorrágica hereditária e malformações arteriovenosas pulmonares - Embolização com rolhão vascular Amplatzer Hereditary hemorrhagic telangiectasia and pulmonary arteriovenous malformations - Embolization with Amplatzer vascular plug

    Directory of Open Access Journals (Sweden)

    Cláudia Sofia Santos

    2009-03-01

    Full Text Available As malformações arteriovenosas pulmonares (MAVP estão associadas a telangiectasia hemorrágica hereditária em cerca de 70% dos casos, podendo cursar com complicações neurológicas graves decorrentes do embolismo paradoxal potencial. A terapêutica das malformações é realizada no sentido de prevenir estas complicações. Descreve-se o caso clínico de uma doente com duas MAVP, no contexto de telangiectasia hemorrágica hereditária,submetida a embolização com o rolhão vascular Amplatzer. Este novo dispositivo é cada vez mais utilizado nestas situações, salientando-se algumas das suas características e vantagens em relação a outras técnicas de embolização mais frequentemente utilizadas.Pulmonary arteriovenous malformations (PAVMs are associated to hereditary hemorrhagic telangiectasia in about 70% of the cases. PAVMs are associated to serious neurologic complications, secondary to inherent paradoxical embolisms. Treatment of the malformations is done to prevent these complications. The authors report a clinical case of a patient with two PAVMs, with hereditary hemorrhagic telangiectasia, who was treated by embolization with na Amplatzer vascular plug, a new device increasingly used in these situations. The authors emphasise some of its characteristics and advantages when compared with other embolization techniques most commonly used.

  8. Friedreich's ataxia mimicking hereditary motor and sensory neuropathy.

    Science.gov (United States)

    Panas, Marios; Kalfakis, Nikolaos; Karadima, Georgia; Davaki, Panagiota; Vassilopoulos, Demetris

    2002-11-01

    Four patients from three unrelated families, with clinical and electrophysiological findings compatible with the diagnosis of hereditary motor and sensory neuropathy, are presented. The molecular analysis showed that the affected individuals were homozygous for the mutation in the X25 gene, characteristic of Friedreich's ataxia. These patients seem to represent a form of Friedreich's ataxia mimicking Charcot-Marie-Tooth disease.

  9. Treatment of Hereditary Hemorrhagic Telangiectasia-Related Epistaxis.

    Science.gov (United States)

    Sautter, Nathan B; Smith, Timothy L

    2016-06-01

    Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disease with an incidence of 1:5000. Recurrent, spontaneous epistaxis is the most common presenting symptom. Severity of epistaxis varies widely, from mild, self-limited nosebleeds to severe, life-threatening nasal hemorrhage. Treatment of HHT-related epistaxis presents a challenge to the otolaryngologist due to the recurrent, persistent nature of epistaxis often requiring multiple treatments. Treatment modalities range from conservative topical therapies to more aggressive surgical treatments. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia

    Directory of Open Access Journals (Sweden)

    Huang Lijia

    2012-09-01

    Full Text Available Abstract Background Congenital nonprogressive spinocerebellar ataxia is characterized by early gross motor delay, hypotonia, gait ataxia, mild dysarthria and dysmetria. The clinical presentation remains fairly stable and may be associated with cerebellar atrophy. To date, only a few families with autosomal dominant congenital nonprogressive spinocerebellar ataxia have been reported. Linkage to 3pter was demonstrated in one large Australian family and this locus was designated spinocerebellar ataxia type 29. The objective of this study is to describe an unreported Canadian family with autosomal dominant congenital nonprogressive spinocerebellar ataxia and to identify the underlying genetic causes in this family and the original Australian family. Methods and Results Exome sequencing was performed for the Australian family, resulting in the identification of a heterozygous mutation in the ITPR1 gene. For the Canadian family, genotyping with microsatellite markers and Sanger sequencing of ITPR1 gene were performed; a heterozygous missense mutation in ITPR1 was identified. Conclusions ITPR1 encodes inositol 1,4,5-trisphosphate receptor, type 1, a ligand-gated ion channel that mediates calcium release from the endoplasmic reticulum. Deletions of ITPR1 are known to cause spinocerebellar ataxia type 15, a distinct and very slowly progressive form of cerebellar ataxia with onset in adulthood. Our study demonstrates for the first time that, in addition to spinocerebellar ataxia type 15, alteration of ITPR1 function can cause a distinct congenital nonprogressive ataxia; highlighting important clinical heterogeneity associated with the ITPR1 gene and a significant role of the ITPR1-related pathway in the development and maintenance of the normal functions of the cerebellum.

  11. Ataxia rating scales are age-dependent in healthy children

    NARCIS (Netherlands)

    Brandsma, Rick; Spits, Anne H.; Kuiper, Marieke J.; Lunsing, Roelinka J.; Burger, Huibert; Kremer, Hubertus P.; Sival, Deborah A.

    AIM: To investigate ataxia rating scales in children for reliability and the effect of age and sex. METHOD: Three independent neuropaediatric observers cross-sectionally scored a set of paediatric ataxia rating scales in a group of 52 healthy children (26 males, 26 females) aged 4 to 16 years (mean

  12. HMGA2 Inhibits Apoptosis through Interaction with ATR-CHK1 Signaling Complex in Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Suchitra Natarajan

    2013-03-01

    Full Text Available The non-histone chromatin binding protein high mobility group AT-hook 2 (HMGA2 is expressed in stem cells and many cancer cells, including tumor initiating cells, but not translated in normal human somatic cells. The presence of HMGA2 is correlated with advanced neoplastic disease and poor prognosis for patients. We had previously demonstrated a role of HMGA2 in DNA repair pathways. In the present study, we employed different human tumor cell models with endogenous and exogenous expression of HMGA2 and show that upon DNA damage, the presence of HMGA2 caused an increased and sustained phosphorylation of the ataxia telangiectasia and Rad3-related kinase (ATR and its downstream target checkpoint kinase 1 (CHK1. The presence of activated pCHK1Ser296 coincided with prolonged G2/M block and increased tumor cell survival, which was enhanced further in the presence of HMGA2. Our study, thus, identifies a novel relationship between the ATR-CHK1 DNA damage response pathway and HMGA2, which may support the DNA repair function of HMGA2 in cancer cells. Furthermore, our data provide a rationale for the use of inhibitors to ATR or CHK1 and HMGA2 in the treatment of HMGA2-positive human cancer cells.

  13. How Human Papillomavirus Replication and Immune Evasion Strategies Take Advantage of the Host DNA Damage Repair Machinery.

    Science.gov (United States)

    Bordignon, Valentina; Di Domenico, Enea Gino; Trento, Elisabetta; D'Agosto, Giovanna; Cavallo, Ilaria; Pontone, Martina; Pimpinelli, Fulvia; Mariani, Luciano; Ensoli, Fabrizio

    2017-12-19

    The DNA damage response (DDR) is a complex signalling network activated when DNA is altered by intrinsic or extrinsic agents. DDR plays important roles in genome stability and cell cycle regulation, as well as in tumour transformation. Viruses have evolved successful life cycle strategies in order to ensure a chronic persistence in the host, virtually avoiding systemic sequelae and death. This process promotes the periodic shedding of large amounts of infectious particles to maintain a virus reservoir in individual hosts, while allowing virus spreading within the community. To achieve such a successful lifestyle, the human papilloma virus (HPV) needs to escape the host defence systems. The key to understanding how this is achieved is in the virus replication process that provides by itself an evasion mechanism by inhibiting and delaying the host immune response against the viral infection. Numerous studies have demonstrated that HPV exploits both the ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia and rad3-related (ATR) DDR pathways to replicate its genome and maintain a persistent infection by downregulating the innate and cell-mediated immunity. This review outlines how HPV interacts with the ATM- and ATR-dependent DDR machinery during the viral life cycle to create an environment favourable to viral replication, and how the interaction with the signal transducers and activators of transcription (STAT) protein family and the deregulation of the Janus kinase (JAK)-STAT pathways may impact the expression of interferon-inducible genes and the innate immune responses.

  14. Methylglyoxal-bis(guanylhydrazone), a polyamine analogue, sensitized γ-radiation-induced cell death in HL-60 leukemia cells Sensitizing effect of MGBG on γ-radiation-induced cell death.

    Science.gov (United States)

    Kim, Jin Sik; Lee, Jin; Chung, Hai Won; Choi, Han; Paik, Sang Gi; Kim, In Gyu

    2006-09-01

    Methylglyoxal-bis(guanylhydrazone) (MGBG), a polyamine analogue, has been known to inhibit the biosynthesis of polyamines, which are important in cell proliferation. We showed that MGBG treatment significantly affected γ-radiation-induced cell cycle transition (G(1)/G(0)→S→G(2)/M) and thus γ-radiation-induced cell death. As determined by micronuclei and comet assay, we showed that it sensitized the cytotoxic effect induced by γ-radiation. One of the reasons is that polyamine depletion by MGBG treatment did not effectively protect against the chemical (OH) or physical damage to DNA caused by γ-radiation. Through in vitro experiment, we confirmed that DNA strand breaks induced by γ-radiation was prevented more effectively in the presence of polyamines (spermine and spermidine) than in the absence of polyamines. MGBG also blocks the cell cycle transition caused by γ-radiation (G(2) arrest), which helps protect cells by allowing time for DNA repair before entry into mitosis or apoptosis, via the down regulation of cyclin D1, which mediates the transition from G(1) to S phase of cell cycle, and ataxia telangiectasia mutated, which is involved in the DNA sensing, repair and cell cycle check point. Therefore, the abrogation of G(2) arrest sensitizes cells to the effect of γ-radiation. As a result, γ-radiation-induced cell death increased by about 2.5-3.0-fold in cells treated with MGBG. However, exogenous spermidine supplement partially relieved this γ-radiation-induced cytotoxicity and cell death. These findings suggest a potentially therapeutic strategy for increasing the cytotoxic efficacy of γ-radiation.

  15. Treatment for ataxia in multiple sclerosis.

    Science.gov (United States)

    Mills, R J; Yap, L; Young, C A

    2007-01-24

    Disabling tremor or ataxia is common in multiple sclerosis (MS) and up to 80% of patients experience tremor or ataxia at some point during their disease. A variety of treatments are available, ranging from pharmacotherapy or stereotactic neurosurgery to neurorehabilitation. To assess the efficacy and tolerability of both pharmacological and non-pharmacologic treatments of ataxia in patients with MS. The following electronic resources were searched: Cochrane MS Group trials register (June 2006), the Cochrane Central Register of Controlled Trials (CENTRAL) (Issue 2, 2006), National Health Service National Research Register (NRR) including the Medical Research Council Clinical Trials Directory (Issue 2, 2006), MEDLINE (January 1996 to June 2006), and EMBASE (Jan 1988 to June 2006). Manual searches of bibliographies of relevant articles, pertinent medical and neurology journals and abstract books of major neurology and MS conferences (2001-2006) were also performed. Direct communication with experts and drug companies was sought. Blinded, randomised trials which were either placebo-controlled or which compared two or more treatments were included. Trials testing pharmacological agents must have had both participant and assessor blinding. Trials testing surgical interventions or effects of physiotherapy, where participants could not have been blinded to the treatment, must have had independent assessors who were blinded to the treatment. Cross-over trials were included. Three independent reviewers extracted data and the findings of the trials were summarised. A meta-analysis was not performed due to the inadequacy of outcome measures and methodological problems with the studies reviewed. Ten randomised controlled trials met the inclusion criteria. Six placebo-controlled studies (pharmacotherapy) and four comparative studies (one stereotactic neurosurgery and three neurorehabilitation) were reviewed. No standardised outcome measures were used across the studies. In

  16. Fragile X-associated tremor/ataxia syndrome: An under-recognised cause of tremor and ataxia.

    Science.gov (United States)

    Kalus, Sarah; King, John; Lui, Elaine; Gaillard, Frank

    2016-01-01

    Fragile X-associated tremor/ataxia syndrome (FXTAS) is a progressive degenerative movement disorder resulting from a fragile X "premutation", defined as 55-200 CGG repeats in the 5'-untranslated region of the FMR1 gene. The FMR1 premutation occurs in 1/800 males and 1/250 females, with FXTAS affecting 40-45% of male and 8-16% of female premutation carriers over the age of 50. FXTAS typically presents with kinetic tremor and cerebellar ataxia. FXTAS has a classical imaging profile which, in concert with clinical manifestations and genetic testing, participates vitally in its diagnosis. The revised FXTAS diagnostic criteria include two major radiological features. The "MCP sign", referring to T2 hyperintensity in the middle cerebellar peduncle, has long been considered the radiological hallmark of FXTAS. Recently included as a major radiological criterion in the diagnosis of FXTAS is T2 hyperintensity in the splenium of the corpus callosum. Other imaging features of FXTAS include T2 hyperintensities in the pons, insula and periventricular white matter as well as generalised brain and cerebellar atrophy. FXTAS is an under-recognised and misdiagnosed entity. In patients with unexplained tremor, ataxia and cognitive decline, the presence of middle cerebellar peduncle and/or corpus callosum splenium hyperintensity should raise suspicion of FXTAS. Diagnosis of FXTAS has important implications not only for the patient but also, through genetic counselling and testing, for future generations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Ataxia rating scales are age-dependent in healthy children

    NARCIS (Netherlands)

    Brandsma, Rick; Spits, Anne H.; Kuiper, Marieke J.; Lunsing, Roelinka J.; Burger, Huibert; Kremer, Hubertus P.; Sival, Deborah A.; Barisic, N.; Baxter, P.; Brankovic-Sreckovic, V.; Calabrò, G. E.; Catsman-Berrevoets, C.; de Coo, Ifm; Craiu, D.; Dan, B.; Gburek-Augustat, J.; Kammoun-Feki, F.; Kennedy, C.; Mancini, F.; Mirabelli-Badenier, M.; Nemeth, A.; Newton, R.; Poll-The, B. T.; Steinlin, M.; Synofzik, M.; Topcu, M.; Triki, C.; Valente, E. M.

    2014-01-01

    To investigate ataxia rating scales in children for reliability and the effect of age and sex. Three independent neuropaediatric observers cross-sectionally scored a set of paediatric ataxia rating scales in a group of 52 healthy children (26 males, 26 females) aged 4 to 16 years (mean age 10y 5mo

  18. The history of spinocerebellar ataxia type 10 in Brazil: travels of a gene A história da ataxia espinocerebelar tipo 10 no Brasil: as viagens de um gene

    Directory of Open Access Journals (Sweden)

    Hélio A.G. Teive

    2007-12-01

    Full Text Available The authors report the history of spinocerebellar ataxia 10 (SCA10, since its first report in a large Portuguese-ancestry Family with autosomal dominant pure cerebellar ataxia, till the final identification of further families without Mexican ancestry. These families present a quite different phenotype from those SCA10 families described in Mexico.Os autores apresentam a história da descoberta da ataxia espinocerebelar tipo 10 (AEC10 no Brasil, desde o primeiro relato em uma família com ancestrais portugueses com ataxia cerebelar pura, autossômica dominante, até a identificação de famílias sem ancestrais mexicanos. Essas famílias apresentam um fenótipo de AEC10, com ataxia cerebelar "pura", distinta daquele descrito nas famílias no México.

  19. Ataxias agudas en la infancia

    Directory of Open Access Journals (Sweden)

    Yaline Betancourt Fursow

    2013-09-01

    Full Text Available La ataxia cerebelosa aguda infantil (ACAI es la forma más frecuente de complicación neurológica por el virus de la varicela.Descritas dentro del grupo de las cerebelitis agudas. Los objetivos de este estudio fueron: evaluar la presentación clínica, manejo y seguimiento de niños hospitalizados con ACAI en un hospital pediátrico terciario donde la inmunización para varicela no está disponible (parte I y describir los diagnósticos diferenciales de la cerebelitis aguda (parte II. Estudiamos 95 pacientes. Los criterios diagnósticos de ataxia aguda se basaron en: pérdida aguda de la coordinación o dificultad para la marcha con o sin nistagmo asociado y duración menor de 48 horas, en un niño previamente sano. Estos criterios se cumplían en todos los casos valorados, excepto en las ataxias secundarias a ingesta de tóxicos, en los que la duración debía ser menor de 24 horas para su inclusión en el estudio. Se registraron los datos en una historia clínica pediátrica y neurológica. Entre los pacientes inmunosuprimidos la incidencia mayor fue la complicación por varicela. La mayoría de los pacientes fueron varones. El rango de edad fue la preescolar, 5 años . El intervalo entre la presentación del rash y el ingreso fue de 1 a 3 días. El estudio de LCR se practicó en 59.5% de los casos. La TAC y la resonancia magnética cerebral (RM presentaron edema en el 33.3%. El aciclovir endovenoso fue utilizado en 23 pacientes; pero no hubo diferencias significativas en las manifestaciones clínicas y seguimiento entre tratados y no tratados. La ataxia fue la primera manifestación clínica. La estadía hospitalaria fue de 4 días (rango: 2-11 días.

  20. Radiosensitive Down syndrome lymphoblastoid lines have normal ionizing-radiation-induced inhibition of DNA synthesis

    International Nuclear Information System (INIS)

    Ganges, M.B.; Robbins, J.H.; Jiang, H.; Hauser, C.; Tarone, R.E.

    1988-01-01

    The extent of X-ray-induced inhibition of DNA synthesis was determined in radiosensitive lymphoblastoid lines from 3 patients with Down syndrome and 3 patients with ataxia telangiectasia (AT). Compared to 6 normal control lines, the 3 AT lines were abnormally resistant to X-ray-induced inhibition of DNA synthesis, while the 3 Down syndrome lines had normal inhibition. These results demonstrate that radiosensitive human cells can have normal X-ray-induced inhibition of DNA synthesis and provide new evidence for the dissociation of radioresistant DNA synthesis. (author). 27 refs.; 1 fig.; 1 tab

  1. Clinical neurogenetics: autosomal dominant spinocerebellar ataxia.

    Science.gov (United States)

    Shakkottai, Vikram G; Fogel, Brent L

    2013-11-01

    The autosomal dominant spinocerebellar ataxias are a diverse and clinically heterogeneous group of disorders characterized by degeneration and dysfunction of the cerebellum and its associated pathways. Clinical and diagnostic evaluation can be challenging because of phenotypic overlap among causes, and a stratified and systematic approach is essential. Recent advances include the identification of additional genes causing dominant genetic ataxia, a better understanding of cellular pathogenesis in several disorders, the generation of new disease models that may stimulate development of new therapies, and the use of new DNA sequencing technologies, including whole-exome sequencing, to improve diagnosis. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. NPRL-Z-1, as a new topoisomerase II poison, induces cell apoptosis and ROS generation in human renal carcinoma cells.

    Science.gov (United States)

    Wu, Szu-Ying; Pan, Shiow-Lin; Xiao, Zhi-Yan; Hsu, Jui-Ling; Chen, Mei-Chuan; Lee, Kuo-Hsiung; Teng, Che-Ming

    2014-01-01

    NPRL-Z-1 is a 4β-[(4"-benzamido)-amino]-4'-O-demethyl-epipodophyllotoxin derivative. Previous reports have shown that NPRL-Z-1 possesses anticancer activity. Here NPRL-Z-1 displayed cytotoxic effects against four human cancer cell lines (HCT 116, A549, ACHN, and A498) and exhibited potent activity in A498 human renal carcinoma cells, with an IC50 value of 2.38 µM via the MTT assay. We also found that NPRL-Z-1 induced cell cycle arrest in G1-phase and detected DNA double-strand breaks in A498 cells. NPRL-Z-1 induced ataxia telangiectasia-mutated (ATM) protein kinase phosphorylation at serine 1981, leading to the activation of DNA damage signaling pathways, including Chk2, histone H2AX, and p53/p21. By ICE assay, the data suggested that NPRL-Z-1 acted on and stabilized the topoisomerase II (TOP2)-DNA complex, leading to TOP2cc formation. NPRL-Z-1-induced DNA damage signaling and apoptotic death was also reversed by TOP2α or TOP2β knockdown. In addition, NPRL-Z-1 inhibited the Akt signaling pathway and induced reactive oxygen species (ROS) generation. These results demonstrated that NPRL-Z-1 appeared to be a novel TOP2 poison and ROS generator. Thus, NPRL-Z-1 may present a significant potential anticancer candidate against renal carcinoma.

  3. Macular telangiectasia type 2 (MacTel) in a 34-year-old patient.

    Science.gov (United States)

    Nicolai, Heleen; Wirix, Mieke; Spielberg, Leigh; Leys, Anita

    2014-09-23

    We report macular telangiectasia type 2 (MacTel) in a 34-year-old man, the youngest patient so far published with MacTel type 2. The patient presented with metamorphopsia and impaired reading ability. Diagnosis was based on bilateral abnormal macular autofluorescence, perifoveal telangiectasia with fluorescein angiographic hyperfluorescence without cystoid oedema, a small foveal avascular zone, asymmetric configuration of the foveal pit, disruptions in the inner segment/outer segment layer and hyper-reflective haze and spots in the outer nuclear layer. Although MacTel usually manifests with a slowly progressive decrease in visual acuity in the fifth to seventh decades of life, younger patients may occasionally be diagnosed with the disease. Awareness of subtle signs of the condition is essential for early diagnosis. 2014 BMJ Publishing Group Ltd.

  4. Non-homologous end joining pathway is the major route of protection against 4β-hydroxywithanolide E-induced DNA damage in MCF-7 cells.

    Science.gov (United States)

    You, B-J; Wu, Y-C; Lee, C-L; Lee, H-Z

    2014-03-01

    4β-Hydroxywithanolide E is a bioactive withanolide extracted from Physalis peruviana. 4β-Hydroxywithanolide E caused reactive oxygen species production and cell apoptosis in human breast cancer MCF-7 cells. We further found that 4β-hydroxywithanolide E induced DNA damage and regulated the DNA damage signaling in MCF-7 cells. The DNA damage sensors and repair proteins act promptly to remove DNA lesions by 4β-hydroxywithanolide E. The ataxia-telangiectasia mutated protein (ATM)-dependent DNA damage signaling pathway is involved in 4β-hydroxywithanolide E-induced apoptosis of MCF-7 cells. Non-homologous end joining pathway, but not homologous recombination, is the major route of protection of MCF-7 cells against 4β-hydroxywithanolide E-induced DNA damage. 4β-Hydroxywithanolide E had no significant impact on the base excision repair pathway. In this study, we examined the 4β-hydroxywithanolide E-induced DNA damage as a research tool in project investigating the DNA repair signaling in breast cancer cells. We also suggest that 4β-hydroxywithanolide E assert its anti-tumor activity in carcinogenic progression and develop into a dietary chemopreventive agent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Radiation adaptive response for the growth of cultured glial cells

    International Nuclear Information System (INIS)

    Suzuki, S.; Miura, Y.; Kano, M.; Toda, T.; Urano, S.

    2003-01-01

    Full text: To examine the molecular mechanism of radiation adaptive response (RAR) for the growth of cultured glial cells and to investigate the influence of aging on the response, glial cells were cultured from young and aged rats (1 month and 24 months old). RAR for the growth of glial cells conditioned with a low dose of X-rays and subsequently exposed to a high dose of X-rays was examined for cell number and BrdU incorporation. Involvement of the subcellular signaling pathway factors in RAR was investigated using their inhibitors, activators and mutated glial cells. RAR was observed in cells cultured from young rats, but was not in cells from aged rats. The inhibitors of protein kinase C (PKC) and DNA-dependent protein kinase (DNA-PK) or phosphatidylinositol 3-kinase (PI3K) suppressed RAR. The activators of PKC instead of low dose irradiation also caused RAR. Moreover, glial cells cultured from severe combined immunodeficiency (scid) mice (CB-17 scid) and ataxia-telangiectasia (AT) cells from AT patients showed no RAR. These results indicated that PKC, ATM, DNAPK and/or PI3K were involved in RAR for growth and BrdU incorporation of cultured glial cells and RAR decreased with aging. Proteomics data of glial cells exposed to severe stress of H 2 O 2 or X-rays also will be presented in the conference since little or no difference has not been observed with slight stress yet

  6. Response of human fibroblasts to low dose rate gamma irradiation

    International Nuclear Information System (INIS)

    Dritschilo, A.; Brennan, T.; Weichselbaum, R.R.; Mossman, K.L.

    1984-01-01

    Cells from 11 human strains, including fibroblasts from patients with the genetic diseases of ataxia telangiectasia (AT), xeroderma pigmentosum (XP), and Fanconi's anemia (FA), were exposed to γ radiation at high (1.6-2.2 Gy/min) and at low (0.03-0.07 Gy/min) dose rates. Survival curves reveal an increase inthe terminal slope (D 0 ) when cells are irradiated at low dose rates compared to high dose rates. This was true for all cell lines tested, although the AT, FA, and XP cells are reported or postulated to have radiation repair deficiencies. From the response of these cells, it is apparent that radiation sensitivities differ; however, at low dose rate, all tested human cells are able to repair injury

  7. Molecular and clinical study of a cohort of 110 Algerian patients with autosomal recessive ataxia.

    Science.gov (United States)

    Hamza, Wahiba; Ali Pacha, Lamia; Hamadouche, Tarik; Muller, Jean; Drouot, Nathalie; Ferrat, Farida; Makri, Samira; Chaouch, Malika; Tazir, Meriem; Koenig, Michel; Benhassine, Traki

    2015-06-12

    Autosomal recessive cerebellar ataxias (ARCA) are a complex group of neurodegenerative disorders with great genetic and phenotypic heterogeneity, over 30 genes/loci have been associated with more than 20 different clinical forms of ARCA. Genetic heterogeneity combined with highly variable clinical expression of the cerebellar symptoms and overlapping features complicate furthermore the etiological diagnosis of ARCA. The determination of the most frequent mutations and corresponding ataxias, as well as particular features specific to a population, are mandatory to facilitate and speed up the diagnosis process, especially when an appropriate treatment is available. We explored 166 patients (115 families) refered to the neurology units of Algiers central hospitals (Algeria) with a cerebellar ataxia phenotype segregating as an autosomal recessive pattern of inheritance. Genomic DNA was extracted from peripheral blood samples and mutational screening was performed by PCR and direct sequencing or by targeted genomic capture and massive parallel sequencing of 57 genes associated with inherited cerebellar ataxia phenotypes. In this work we report the clinical and molecular results obtained on a large cohort of Algerian patients (110 patients/76 families) with genetically determined autosomal recessive ataxia, representing 9 different types of ARCA and 23 different mutations, including 6 novel ones. The five most common ARCA in this cohort were Friedreich ataxia, ataxia with isolated vitamin E deficiency, ataxia with oculomotor apraxia type 2, autosomal recessive spastic ataxia of Charlevoix-Saguenay and ataxia with oculomotor apraxia type 1. We report here a large cohort of patients with genetically determined autosomal recessive ataxia and the first study of the genetic context of ARCA in Algeria. This study showed that in Algerian patients, the two most common types of ataxia (Friedreich ataxia and ataxia with isolated vitamin E deficiency) coexist with forms that may be

  8. Piperine causes G1 phase cell cycle arrest and apoptosis in melanoma cells through checkpoint kinase-1 activation.

    Directory of Open Access Journals (Sweden)

    Neel M Fofaria

    Full Text Available In this study, we determined the cytotoxic effects of piperine, a major constituent of black and long pepper in melanoma cells. Piperine treatment inhibited the growth of SK MEL 28 and B16 F0 cells in a dose and time-dependent manner. The growth inhibitory effects of piperine were mediated by cell cycle arrest of both the cell lines in G1 phase. The G1 arrest by piperine correlated with the down-regulation of cyclin D1 and induction of p21. Furthermore, this growth arrest by piperine treatment was associated with DNA damage as indicated by phosphorylation of H2AX at Ser139, activation of ataxia telangiectasia and rad3-related protein (ATR and checkpoint kinase 1 (Chk1. Pretreatment with AZD 7762, a Chk1 inhibitor not only abrogated the activation of Chk1 but also piperine mediated G1 arrest. Similarly, transfection of cells with Chk1 siRNA completely protected the cells from G1 arrest induced by piperine. Piperine treatment caused down-regulation of E2F1 and phosphorylation of retinoblastoma protein (Rb. Apoptosis induced by piperine was associated with down-regulation of XIAP, Bid (full length and cleavage of Caspase-3 and PARP. Furthermore, our results showed that piperine treatment generated ROS in melanoma cells. Blocking ROS by tiron protected the cells from piperine mediated cell cycle arrest and apoptosis. These results suggest that piperine mediated ROS played a critical role in inducing DNA damage and activation of Chk1 leading to G1 cell cycle arrest and apoptosis.

  9. [A sporadic case of episodic ataxia with nystagmus (EA-2)].

    Science.gov (United States)

    Namekawa, M; Takiyama, Y; Ueno, N; Nishizawa, M

    1998-05-01

    A 39-year-old man with episodic ataxia with nystagmus (EA-2) was reported. He showed intermittent cerebellar dysfunction, i.e., ataxia, nystagmus, dysarthria and vertigo, since he was 10 years old. Although this attack lasted for several hours, he was normal with exception of interictal nystagmus. His parents and sister showed no episodic ataxia. We ruled out the diseases, which may cause episodic ataxia, such as multiple sclerosis, vascular disorders, metabolic disorders and congenital anomalies. He was released from the attack by treatment with acetazolamide. EA-2 has been associated with mutations in the alpha 1A-voltage dependent calcium channel gene (CACNL1A4), which is also affected in familial hemiplegic migraine (FMH) and spinocerebellar ataxia type 6 (SCA6). In EA-2, frame-shift mutation leading to premature stop and splice-site mutation leading to truncated, non-functional channel protein have been reported. However, our patient did not have the mutations in the CACNL1A4 gene that were previously reported. In addition, our patient did not have an expanded CAG allele in the CACNL1A4 gene which is responsible for SCA6. Further examination is required to address whether a new mutation exists in the CACNL1A4 gene in our patient.

  10. Selective rescue of heightened anxiety but not gait ataxia in a premutation 90CGG mouse model of Fragile X-associated tremor/ataxia syndrome.

    Science.gov (United States)

    Castro, Hoanna; Kul, Emre; Buijsen, Ronald A M; Severijnen, Lies-Anne W F M; Willemsen, Rob; Hukema, Renate K; Stork, Oliver; Santos, Mónica

    2017-06-01

    A CGG-repeat expansion in the premutation range in the Fragile X mental retardation 1 gene (FMR1) has been identified as the genetic cause of Fragile X-associated tremor/ataxia syndrome (FXTAS), a late-onset neurodegenerative disorder that manifests with action tremor, gait ataxia and cognitive impairments. In this study, we used a bigenic mouse model, in which expression of a 90CGG premutation tract is activated in neural cells upon doxycycline administration-P90CGG mouse model. We, here, demonstrate the behavioural manifestation of clinically relevant features of FXTAS patients and premutation carrier individuals in this inducible mouse model. P90CGG mice display heightened anxiety, deficits in motor coordination and impaired gait and represent the first FXTAS model that exhibits an ataxia phenotype as observed in patients. The behavioural phenotype is accompanied by the formation of ubiquitin/FMRpolyglycine-positive intranuclear inclusions, as another hallmark of FXTAS, in the cerebellum, hippocampus and amygdala. Strikingly, upon cessation of transgene induction the anxiety phenotype of mice recovers along with a reduction of intranuclear inclusions in dentate gyrus and amygdala. In contrast, motor function deteriorates further and no reduction in intranuclear inclusions can be observed in the cerebellum. Our data thus demonstrate that expression of a 90CGG premutation expansion outside of the FMR1 context is sufficient to evoke an FXTAS-like behavioural phenotype. Brain region-specific neuropathology and (partial) behavioural reversibility make the inducible P90CGG a valuable mouse model for testing pathogenic mechanisms and therapeutic intervention methods. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. ATM signaling and genomic stability in response to DNA damage

    International Nuclear Information System (INIS)

    Lavin, Martin F.; Birrell, Geoff; Chen, Philip; Kozlov, Sergei; Scott, Shaun; Gueven, Nuri

    2005-01-01

    DNA double strand breaks represent the most threatening lesion to the integrity of the genome in cells exposed to ionizing radiation and radiomimetic chemicals. Those breaks are recognized, signaled to cell cycle checkpoints and repaired by protein complexes. The product of the gene (ATM) mutated in the human genetic disorder ataxia-telangiectasia (A-T) plays a central role in the recognition and signaling of DNA damage. ATM is one of an ever growing number of proteins which when mutated compromise the stability of the genome and predispose to tumour development. Mechanisms for recognising double strand breaks in DNA, maintaining genome stability and minimizing risk of cancer are discussed

  12. Repair of DNA damage induced by ionizing radiation and benzo[a]pyrene in mammalian cells

    International Nuclear Information System (INIS)

    Cerutti, P.; Shinohara, K.; Remsen, J.

    1977-01-01

    The biological effects of DNA-damaging agents are codetermined by the structural characteristics of the lesions, the quality and extent of the local distortion of DNA and chromatin structure, and the mode(s) of damage processing used by a given type of cell. Persistent damage (i.e., damage that is not removed before it is reached by DNA replication) may be mostly responsible for mutagenesis and carcinogenesis. To understand the effects of environmental physical and chemical DNA-damaging agents on human health, the mechanisms of damage processing used by human cells have to be elucidated. We report our studies of the excision of gamma-ray products of the 5,6-dihydroxydihydrothymine type (t 0 /sub 2//sup γ/) in normal human fibroblasts and in fibroblasts from patients with the hereditary diseases Fanconi's anemia (FA) and ataxia telangiectasia (AT). Both diseases are characterized by chromosomal instability and increased susceptibility for the development of cancer. Formation and repair of DNA-benzo[a]pyrene adducts were studied in baby hamster kidney cells, secondary mouse embryo cells, and human lymphoma. The relative persistence of DNA-B[a]P may explain the high mutagenicity of the 7,8-dihydroxy-9,10-epoxy-tetrahydrobenzo[a]pyrene metabolites in rodent cells that has been observed by several investigators

  13. Cerebrospinal fluid γδ T cell frequency is age-related: a case-control study of 435 children with inflammatory and non-inflammatory neurological disorders.

    Science.gov (United States)

    Pranzatelli, M R; Allison, T J; McGee, N R; Tate, E D

    2018-02-27

    Studies of cerebrospinal fluid (CSF) γδ T cells in children are limited, due especially to the lack of control data. In adults, gamma/delta T cells (TCR-γδ) residing in the intrathecal space are sometimes involved in neuroinflammation. To evaluate the possible role of γδ T cells in paediatric neuroinflammation, we immunophenotyped cerebrospinal fluid (CSF) and blood lymphocytes using flow cytometry in a case-control study of 100 children with non-inflammatory neurological disorders (NIND), 312 with opsoclonus-myoclonus (OMS) and 23 with other inflammatory neurological disorders (OIND). In NIND, the negative correlation between CSF γδ T cell frequency and patient age was striking: median frequency of 27% in infants and 3·3% in teens. Interindividual variations were largest in the youngest. There was no gender effect. In all OMS, after correcting for age, only a small effect of OMS severity remained. Measurement of markers for γδ T cell activation [human leucocyte antigen D-related (HLA-DR)], maturation (CD45RA, CD45RO) or intracellular cytokine staining [interleukin (IL)-4, interferon (IFN)-γ] failed to discriminate OMS and NIND groups. Of seven OMS immunotherapies/combinations, none altered the frequency of total CSF γδ T cells or subsets significantly. In OIND, the CSF γδ T cell frequency was disorders [anti-neuronal nuclear antibody (ANNA)-1, PCA-1, teratoma-associated syndrome], cerebellar ataxia (post-infectious, ataxia-telangiectasia), acute disseminated encephalomyelitis, neuroborreliosis and encephalitis. This study provides new insights into CSF γδ T cells in the paediatric population. Although their role in CSF remains elusive, the negative age correlation, resistance to immunotherapy and our age cut-off references for NIND are important findings for the design of future paediatric studies. © 2018 British Society for Immunology.

  14. Modulation of the DNA repair system and ATR-p53 mediated apoptosis is relevant for tributyltin-induced genotoxic effects in human hepatoma G2 cells.

    Science.gov (United States)

    Li, Bowen; Sun, Lingbin; Cai, Jiali; Wang, Chonggang; Wang, Mengmeng; Qiu, Huiling; Zuo, Zhenghong

    2015-01-01

    The toxic effects of tributyltin (TBT) have been extensively documented in several types of cells, but the molecular mechanisms related to the genotoxic effects of TBT have still not been fully elucidated. Our study showed that exposure of human hepatoma G2 cells to 1-4 μmol/L TBT for 3 hr caused severe DNA damage in a concentration-dependent manner. Moreover, the expression levels of key DNA damage sensor genes such as the replication factor C, proliferating cell nuclear antigen and poly (ADP-ribose) polymerase-1 were inhabited in a concentration-dependent manner. We further demonstrated that TBT induced cell apoptosis via the p53-mediated pathway, which was most likely activated by the ataxia telangiectasia mutated and rad-3 related (ATR) protein kinase. The results also showed that cytochrome c, caspase-3, caspase-8, caspase-9, and the B-cell lymphoma 2 were involved in this process. Taken together, we demonstrated for the first time that the inhibition of the DNA repair system might be more responsible for TBT-induced genotoxic effects in cells. Then the generated DNA damage induced by TBT initiated ATR-p53-mediated apoptosis. Copyright © 2014. Published by Elsevier B.V.

  15. DNA damage response in nephrotoxic and ischemic kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Mingjuan; Tang, Chengyuan [Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 (China); Ma, Zhengwei [Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA 30912 (United States); Huang, Shuang [Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL (United States); Dong, Zheng, E-mail: zdong@augusta.edu [Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 (China); Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA 30912 (United States)

    2016-12-15

    DNA damage activates specific cell signaling cascades for DNA repair, cell cycle arrest, senescence, and/or cell death. Recent studies have demonstrated DNA damage response (DDR) in experimental models of acute kidney injury (AKI). In cisplatin-induced AKI or nephrotoxicity, the DDR pathway of ATR/Chk2/p53 is activated and contributes to renal tubular cell apoptosis. In ischemic AKI, DDR seems more complex and involves at least the ataxia telangiectasia mutated (ATM), a member of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, and p53; however, while ATM may promote DNA repair, p53 may trigger cell death. Targeting DDR for kidney protection in AKI therefore relies on a thorough elucidation of the DDR pathways in various forms of AKI.

  16. Case report of novel CACNA1A gene mutation causing episodic ataxia type 2

    Directory of Open Access Journals (Sweden)

    David Alan Isaacs

    2017-05-01

    Full Text Available Background: Episodic ataxia type 2 (OMIM 108500 is an autosomal dominant channelopathy characterized by paroxysms of ataxia, vertigo, nausea, and other neurologic symptoms. More than 50 mutations of the CACNA1A gene have been discovered in families with episodic ataxia type 2, although 30%–50% of all patients with typical episodic ataxia type 2 phenotype have no detectable mutation of the CACNA1A gene. Case: A 46-year-old Caucasian man, with a long history of bouts of imbalance, vertigo, and nausea, presented to our hospital with 2 weeks of ataxia and headache. Subsequent evaluation revealed a novel mutation in the CACNA1A gene: c.1364 G > A Arg455Gln. Acetazolamide was initiated with symptomatic improvement. Conclusion: This case report expands the list of known CACNA1A mutations associated with episodic ataxia type 2.

  17. [Knockdown of DNA-PKcs inhibits cell cycle and its mechanism of drug-resistant Bel7402/5-Fu hepatocellular carcinoma cells].

    Science.gov (United States)

    Li, Dayu; Liu, Yun; Yu, Chunbo; Liu, Xiping; Fan, Fang

    2017-12-01

    Objective To study the effect of the knock-down of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) on the cell cycle of the multidrug-resistant (MDR) Bel7402/5-Fu hepatocellular carcinoma cells and its MDR mechanism. Methods After cationic liposome-mediated siDNA-PKcs oligonucleotide transfection, the drug sensitivity of Bel7402/5-Fu cells to 5-fluorouracil (5-Fu) and adriamycin (ADM) was determined by MTT assay; the cell cycle were detected by flow cytometry; meanwhile, the protein expressions of cell cycle-related proteins P21, cell cycle protein B1 (cyclin B1), cell cycle division protein 2 (CDC2) were tested by Western blotting; the expressions of ataxia telangiectasia mutated (ATM) and p53 at both mRNA and protein levels were detected by real-time PCR and Western blot analysis. Results The MTT results showed siDNA-PKcs increased the chemotherapeutic sensitivity of Bel7402/5-Fu cells to 5-Fu and ADM. The flow cytometric analysis showed siDNA-PKcs decreased the percentage of S-phase cells but increased the percentage of G2/M phase cells. Western blotting showed siDNA-PKcs increased the protein expression of P21 but decreased cyclinB1 and CDC2 proteins. In addition, siDNA-PKcs also increased the expressions of ATM and p53. Conclusion DNA-PKcs silencing increases P21 while decreases cyclin B1 and CDC2 expressions, and finally induces G2/M phase arrest in Bel7402/5-Fu cells, which may be related to ATM-p53 signaling pathway.

  18. ATM haplotypes and cellular response to DNA damage: association with breast cancer risk and clinical radiosensitivity.

    NARCIS (Netherlands)

    Angele, S.; Romestaing, P.; Moullan, N.; Vuillaume, M.; Chapot, B.; Friesen, M.; Jongmans, W.; Cox, D.G.; Pisani, P.; Gerard, J.P.; Hall, J.

    2003-01-01

    The ATM gene, mutated in the cancer-prone and radiation-sensitive syndrome ataxia-telangiectasia (AT), could predispose to breast cancer (BC) development and adverse radiotherapy responses. Sixteen ATM variants were genotyped in 254 BC cases, 70 of whom were adverse radiotherapy responders (RS-BC),

  19. Persistence and dynamics of DNA damage signal amplification determined by microcolony formation and live-cell imaging

    International Nuclear Information System (INIS)

    Oka, Yasuyoshi; Yamauchi, Motohiro; Suzuki, Masatoshi; Yamashita, Shunichi; Suzuki, Keiji

    2011-01-01

    Cell cycle checkpoints are essential cellular process protecting the integrity of the genome from DNA damaging agents. In the present study, we developed a microcolony assay, in which normal human diploid fibroblast-like cells exposed to ionizing radiation, were plated onto coverslips at very low density (3 cells/cm 2 ). Cells were grown for up to 3 days, and phosphorylated ataxia-telangiectasia mutated (ATM) at Ser1981 and 53BP1 foci were analyzed as the markers for an amplified DNA damage signal. We observed a dose-dependent increase in the fraction of non-dividing cells, whose increase was compromised by knocking down p53 expression. While large persistent foci were predominantly formed in non-dividing cells, we observed some growing colonies that contained cells with large foci. As each microcolony was derived from a single cell, it appeared that some cells could proliferate with large foci. A live-imaging analysis using hTERT-immortalized normal human diploid cells transfected with the EGFP-tagged 53BP1 gene revealed that the formation of persistent large foci was highly dynamic. Delayed appearance and disappearance of large foci were frequently observed in exposed cells visualized 12-72 hours after X-irradiation. Thus, our results indicate that amplified DNA damage signal could be ignored, which may be explained in part by the dynamic nature of the amplification process. (author)

  20. No changes in heme synthesis in human Friedreich´s ataxia erythroid progenitor cells.

    Science.gov (United States)

    Steinkellner, Hannes; Singh, Himanshu Narayan; Muckenthaler, Martina U; Goldenberg, Hans; Moganty, Rajeswari R; Scheiber-Mojdehkar, Barbara; Sturm, Brigitte

    2017-07-20

    Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by reduced expression of the protein frataxin. Frataxin is thought to play a role in iron-sulfur cluster biogenesis and heme synthesis. In this study, we used erythroid progenitor stem cells obtained from FRDA patients and healthy donors to investigate the putative role, if any, of frataxin deficiency in heme synthesis. We used electrochemiluminescence and qRT-PCR for frataxin protein and mRNA quantification. We used atomic absorption spectrophotometry for iron levels and a photometric assay for hemoglobin levels. Protoporphyrin IX and Ferrochelatase were analyzed using auto-fluorescence. An "IronChip" microarray analysis followed by a protein-protein interaction analysis was performed. FRDA patient cells showed no significant changes in iron levels, hemoglobin synthesis, protoporphyrin IX levels, and ferrochelatase activity. Microarray analysis presented 11 genes that were significantly changed in all patients compared to controls. The genes are especially involved in oxidative stress, iron homeostasis and angiogenesis. The mystery about the involvement of frataxin on iron metabolism raises the question why frataxin deficiency in primary FRDA cells did not lead to changes in biochemical parameters of heme synthesis. It seems that alternative pathways can circumvent the impact of frataxin deficiency on heme synthesis. We show for the first time in primary FRDA patient cells that reduced frataxin levels are still sufficient for heme synthesis and possibly other mechanisms can overcome reduced frataxin levels in this process. Our data strongly support the fact that so far no anemia in FRDA patients was reported. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Using the ultra-long pulse width pulsed dye laser and elliptical spot to treat resistant nasal telangiectasia.

    Science.gov (United States)

    Madan, Vishal; Ferguson, Janice

    2010-01-01

    Thick linear telangiectasia on the ala nasi and nasolabial crease can be resistant to treatment with the potassium-titanyl-phosphate (KTP) laser and the traditional round spot on a pulsed dye laser (PDL). We evaluated the efficacy of a 3 mm x 10 mm elliptical spot using the ultra-long pulse width on a Candela Vbeam(R) PDL for treatment of PDL- and KTP laser-resistant nasal telangiectasia. Nasal telangiectasia resistant to PDL (12 patients) and KTP laser (12 patients) in 18 patients were treated with a 3 mm x 10 mm elliptical spot on the ultra-long pulse pulsed dye laser (ULPDL) utilising long pulse width [595 nm, 40 ms, double pulse, 30:20 dynamic cooling device (DCD)]. Six patients had previously received treatment with both PDL and KTP laser prior to ULPDL (40 treatments, range1-4, mean 2.2). Complete clearance was seen in ten patients, and eight patients displayed more than 80% improvement after ULPDL treatment. Self-limiting purpura occurred with round spot PDL and erythema with KTP laser and ULPDL. Subtle linear furrows along the treatment sites were seen in three patients treated with the KTP laser. ULPDL treatment delivered using a 3 mm x 10 mm elliptical spot was non-purpuric and highly effective in the treatment of nasal telangiectasia resistant to KTP laser and PDL.

  2. Colorectal choriocarcinoma in a patient with probable Lynch syndrome

    Directory of Open Access Journals (Sweden)

    Viktor Hendrik Koelzer

    2016-11-01

    Full Text Available Background: Personalized therapy of colorectal cancer (CRC is influenced by morphological, molecular and host-related factors. Here we report the comprehensive clinicopathological and molecular analysis of a pure extra-gestational colorectal choriocarcinoma in a patient with probable Lynch syndrome.Case presentation: A 61 year old female with history of gastric cancer at age 36 presented with a transmurally invasive tumor of the right hemicolon and liver metastasis. A right hemicolectomy was performed. Histopathological analysis showed a mixed trophoblastic and syncytiotrophoblastic differentiation, consistent with choriocarcinoma. Disease progression was rapid under oxaliplatin, capecitabine, irinotecan (XELOXIRI and bevacizumab. Molecular phenotyping identified loss of the mismatch-repair (MMR protein PMS2, microsatellite instability, a lack of MLH1 promoter methylation and lack of of BRAF mutation suggestive of Lynch-Syndrome. Targeted next generation sequencing revealed an Ataxia Telangiectasia Mutated (ATM p.P604S missense mutation. A bleomycin, etoposide and cisplatin (BEP treatment protocol targeting germ-cell neoplasia lead to disease remission and prolonged survival of 34 months.Conclusions: Comprehensive immunohistochemical and genetic testing is essential to identify uncommon cancers possibly related to Lynch syndrome. For rare tumors, personalized therapeutic approaches should take both molecular and morphological information into account.Key words: Colorectal cancer, choriocarcinoma, histopathology, prognostic factors, Lynch syndrome, microsatellite instability, ataxia telangiectasia mutated, molecular pathology, next generation sequencing, personalized medicine

  3. Further delineation of the Nijmegen breakage syndrome

    International Nuclear Information System (INIS)

    Taalman, R.D.; Hustinx, T.W.; Weemaes, C.M.; Seemanova, E.; Schmidt, A.; Passarge, E.; Scheres, J.M.

    1989-01-01

    We report on five independent families with a chromosome instability disorder that earlier had been called the Nijmegen breakage syndrome (NBS). These families, two from the Netherlands and three from Czechoslovakia, had a total of eight patients, five of whom are still alive. The main clinical manifestations were microcephaly, short stature, a ''bird-like'' face, immunological defects involving both the humoral and cellular system. In four of the five living patients it has been possible to study the chromosomes of cultured lymphocytes. The basic karyotype in these patients were normal, but in 17% to 35% of the metaphases rearrangements were found, preferentially involving chromosomes 7 and/or 14 at the sites 7p13, 7q34, and 14q11. The chromosomes of all five living patients were very sensitive to ionizing radiation. In addition, the DNA synthesis in their cultured lymphocytes and fibroblasts was more resistant to X-rays than in cells from controls. The NBS shares a number of important features with ataxia telangiectasia (AT). Both syndromes are characterized by the occurrence of typical rearrangements of chromosomes 7 and/or 14, cellular and chromosomal hypersensitivity to X-irradiation, radioresistance of DNA replication and immunodeficiency. However, there are also obvious differences: NBS patients have microcephaly but neither ataxia nor telangiectasia, and in contrast to the situation in AT the alpha-fetoprotein level in their serum is normal

  4. Research progress of spinocerebellar ataxia type 1

    Directory of Open Access Journals (Sweden)

    Lin-wei ZHANG

    2014-05-01

    Full Text Available Spinocerebellar ataxia type 1 (SCA1 is a kind of autosomal dominant genetic neurodegenerative disorder. To date, the pathogenesis of SCA1 remains unclear. Studies in numerous SCA1 experimental models, including transgenic mice, transgenic drosophila and induced pluripotent stem cells, have shown that phosphorylation of S776 in mutant ataxin-1, molecular chaperones, ubiquitin-proteasome system and down-regulation of several components of RAS-MAPK-MSK1 pathway may involve in the pathogenesis of SCA1. In this review, the clinical and pathological features of SCA1, and the latest advances of pathogenesis, model systems and therapeutic exploration will be briefly summarized. doi: 10.3969/j.issn.1672-6731.2014.05.017

  5. Hereditary spastic paraplegia with cerebellar ataxia

    DEFF Research Database (Denmark)

    Nielsen, J E; Johnsen, B; Koefoed, P

    2004-01-01

    Complex forms of hereditary spastic paraplegia (HSP) are rare and usually transmitted in an autosomal recessive pattern. A family of four generations with autosomal dominant hereditary spastic paraplegia (AD-HSP) and a complex phenotype with variably expressed co-existing ataxia, dysarthria......, unipolar depression, epilepsy, migraine, and cognitive impairment was investigated. Genetic linkage analysis and sequencing of the SPG4 gene was performed and electrophysiologic investigations were carried out in six individuals and positron emission tomography (PET) in one patient. The disease was linked...... in those individuals who were clinically affected by a complex phenotype consisting of HSP and cerebellar ataxia. Other features noted in this kindred including epilepsy, cognitive impairment, depression, and migraine did not segregate with the HSP phenotype or mutation, and therefore the significance...

  6. Spinocerebellar Ataxia Type 6 Protein Aggregates Cause Deficits in Motor Learning and Cerebellar Plasticity

    NARCIS (Netherlands)

    Mark, Melanie D; Krause, Martin; Boele, Henk-Jan; Kruse, Wolfgang; Pollok, Stefan; Kuner, Thomas; Dalkara, Deniz; Koekkoek, Sebastiaan; De Zeeuw, Chris I; Herlitze, Stefan

    2015-01-01

    Spinocerebellar ataxia type 6 (SCA6) is linked to poly-glutamine (polyQ) within the C terminus (CT) of the pore-forming subunits of P/Q-type Ca(2+) channels (Cav2.1) and is characterized by CT protein aggregates found in cerebellar Purkinje cells (PCs). One hypothesis regarding SCA6 disease is that

  7. Ataxia-telangiectasia mutated (ATM) silencing promotes neuroblastoma progression through a MYCN independent mechanism

    Science.gov (United States)

    Mandriota, Stefano J.; Valentijn, Linda J.; Lesne, Laurence; Betts, David R.; Marino, Denis; Boudal-Khoshbeen, Mary; London, Wendy B.; Rougemont, Anne-Laure; Attiyeh, Edward F.; Maris, John M.; Hogarty, Michael D.; Koster, Jan; Molenaar, Jan J.; Versteeg, Rogier

    2015-01-01

    Neuroblastoma, a childhood cancer with highly heterogeneous biology and clinical behavior, is characterized by genomic aberrations including amplification of MYCN. Hemizygous deletion of chromosome 11q is a well-established, independent marker of poor prognosis. While 11q22-q23 is the most frequently deleted region, the neuroblastoma tumor suppressor in this region remains to be identified. Chromosome bands 11q22-q23 contain ATM, a cell cycle checkpoint kinase and tumor suppressor playing a pivotal role in the DNA damage response. Here, we report that haploinsufficiency of ATM in neuroblastoma correlates with lower ATM expression, event-free survival, and overall survival. ATM loss occurs in high stage neuroblastoma without MYCN amplification. In SK-N-SH, CLB-Ga and GI-ME-N human neuroblastoma cells, stable ATM silencing promotes neuroblastoma progression in soft agar assays, and in subcutaneous xenografts in nude mice. This effect is dependent on the extent of ATM silencing and does not appear to involve MYCN. Our findings identify ATM as a potential haploinsufficient neuroblastoma tumor suppressor, whose inactivation mirrors the increased aggressiveness associated with 11q deletion in neuroblastoma. PMID:26053094

  8. Epidemiology of Cerebellar Ataxia on the Etiological Basis: A Cross Sectional Study

    Directory of Open Access Journals (Sweden)

    Simindokht Hosseini Seyede

    2009-12-01

    Full Text Available Cerebellar ataxias are a heterogenous group of disorders, clinically and etiologically, that result in considerable health burden. Finding out about the various etiologies, and their relative prevalences in the population suffering from cerebellar ataxia helps the clinician to perform a better management, in treatment process. This is a cross sectional study designed to estimate the relative prevalence of each etiologic factor. One-hundred and thirty-five patients ,in the range of 6 to 73 years from march 1993 to march1999, were classified in different groups on the basis of etiological findings. Relative prevalence of each of the etiological factors , common accompanying disorders besides ataxia in the patients,CT and MRI changes,and CSF alterations are studied and recorded. A widely spread age group, and the extended number of the cases under study, are the advantages of the current study over the previously reported case series. Among the etiologic groups, multiple sclerosis, cerebrovascular accidents and hereditary cerebellar ataxia, were the most common etiologic factors associated with cerebellar ataxia respectively.

  9. Terapia alternativa para microvarizes e telangiectasias com uso de agulha Alternative therapy for microvarices and telangiectasias with use of needle

    Directory of Open Access Journals (Sweden)

    Raimundo Rosendo de Oliveira

    2007-03-01

    Full Text Available CONTEXTO: O desenvolvimento de terapia alternativa à convencional para a destruição de microvarizes e telangiectasias sem o uso de produtos químicos tem como objetivo reduzir os efeitos colaterais, faz uso de agulha para lise mecânica dos vasos e tem como modelo experimental galinhas da linhagem Lohmann Brown. OBJETIVO: Elaborar uma nova técnica, desenvolvendo um tratamento alternativo, sem uso de produtos químicos, objetivando a redução dos efeitos colaterais. MÉTODOS: Foram utilizadas 30 galinhas da linhagem Lohmann Brown, sendo que 15 foram submetidas ao método convencional de tratamento de microvarizes e telangiectasias (grupo-controle e as outras 15 receberam o tratamento experimental proposto (grupo experimental. O grupo experimental foi tratado com agulha de lise vascular, percorrendo todo o trajeto dos vasos escolhidos em punções escalonadas até que todo o vaso ser atingido. O grupo-controle foi tratado com oleato de monoetanolamina e glicose a 50%, puncionando-se o vaso com agulha 13 x 3 mm e injetando-se, em média, 0,3 mL da solução em cada vaso. RESULTADOS: Dos 50 vasos tratados no grupo experimental, dois apresentaram recidiva total, cinco apresentaram recidiva parcial, e 43 apresentaram destruição (lise satisfatória; enquanto que, no grupo-controle, dos 51 vasos tratados, quatro apresentaram recidiva total, 12, recidiva parcial, 22, destruição satisfatória, e em 13 ocorreu endurecimento de trajeto. CONCLUSÃO: O presente estudo demonstrou que o método experimental proposto, com uso de agulha de lise vascular, possui mais eficiência no tratamento de microvarizes se comparado com o método convencional, devido à redução das recidivas e à ausência de hipercromia de trajeto endurecido.BACKGROUND: The development of an alternative to the conventional therapy for microvarices and telangiectasias without using chemical products aims at reducing side effects, using a needle for mechanical lysis of vessels. It

  10. Prolonged vertigo and ataxia after mandibular nerve block for treatment of trigeminal neuralgia.

    Science.gov (United States)

    Chaturvedi, Arvind; Dash, Hh

    2011-07-01

    Common complications of neurolytic mandibular nerve block are hypoesthesia, dysesthesia, and chemical neuritis. We report a rare complication, prolonged severe vertigo and ataxia, after neurolytic mandibular blockade in a patient suffering from trigeminal neuralgia. Coronoid approach was used for right sided mandibular block. After successful test injection with local anesthetic, absolute alcohol was given for neurolytic block. Immediately after alcohol injection, patient developed nausea and vomiting along with severe vertigo, ataxia and hypertension. Neurological evaluation was normal except for the presence of vertigo and ataxia. Computerised tomography scan brain was also normal. Patient was admitted for observation and symptomatic treatment was given. Vertigo and ataxia gradually improved over 24 hours.

  11. SACS gene-related autosomal recessive spastic ataxia of Charlevoix-Saguenay from South India

    Directory of Open Access Journals (Sweden)

    M Suraj Menon

    2016-01-01

    Full Text Available Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS is a neurodegenerative disorder characterized by late infantile onset spastic ataxia and other neurological features. Initially described in the Charlevoix-Saguenay region of Quebec, Canada, it is being increasingly reported from many other countries. Here, we present the case of a 20-year-old male from South India, who presented with progressive ataxia, spasticity, and peripheral neuropathy with imaging features and genetic testing suggestive of SACS gene-related ARSACS. The phenotypic variability from other cases and occurrence in a geographically distinct region is stressed upon to alert the clinicians to consider ARSACS in progressive ataxias.

  12. The use of muscle biopsy in the diagnosis of undefined ataxia with cerebellar atrophy in children.

    Science.gov (United States)

    Terracciano, Alessandra; Renaldo, Florence; Zanni, Ginevra; D'Amico, Adele; Pastore, Anna; Barresi, Sabina; Valente, Enza Maria; Piemonte, Fiorella; Tozzi, Giulia; Carrozzo, Rosalba; Valeriani, Massimiliano; Boldrini, Renata; Mercuri, Eugenio; Santorelli, Filippo Maria; Bertini, Enrico

    2012-05-01

    Childhood cerebellar ataxias, and particularly congenital ataxias, are heterogeneous disorders and several remain undefined. We performed a muscle biopsy in patients with congenital ataxia and children with later onset undefined ataxia having neuroimaging evidence of cerebellar atrophy. Significant reduced levels of Coenzyme Q10 (COQ10) were found in the skeletal muscle of 9 out of 34 patients that were consecutively screened. A mutation in the ADCK3/Coq8 gene (R347X) was identified in a female patient with ataxia, seizures and markedly reduced COQ10 levels. In a 2.5-years-old male patient with non syndromic congenital ataxia and autophagic vacuoles in the muscle biopsy we identified a homozygous nonsense mutation R111X mutation in SIL1 gene, leading to early diagnosis of Marinesco-Sjogren syndrome. We think that muscle biopsy is a valuable procedure to improve diagnostic assesement in children with congenital ataxia or other undefined forms of later onset childhood ataxia associated to cerebellar atrophy at MRI. Copyright © 2011 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  13. Cisplatin-mediated radiosensitization of non-small cell lung cancer cells is stimulated by ATM inhibition

    International Nuclear Information System (INIS)

    Toulany, Mahmoud; Mihatsch, Julia; Holler, Marina; Chaachouay, Hassan; Rodemann, H. Peter

    2014-01-01

    Background and purpose: Cisplatin activates ataxia-telangiectasia-mutated (ATM), a protein with roles in DNA repair, cell cycle progression and autophagy. We investigated the radiosensitizing effect of cisplatin with respect to its effect on ATM pathway activation. Material and methods: Non-small cell lung cancer cells (NSCLC) cell lines (A549, H460) and human fibroblast (ATM-deficient AT5, ATM-proficient 1BR3) cells were used. The effects of cisplatin combined with irradiation on ATM pathway activity, clonogenicity, DNA double-strand break (DNA-DSB) repair and cell cycle progression were analyzed with Western blotting, colony formation and γ-H2AX foci assays as well as FACS analysis, respectively. Results: Cisplatin radiosensitized H460 cells, but not A549 cells. Radiosensitization of H460 cells was not due to impaired DNA-DSB repair, increased apoptosis or cell cycle dysregulation. The lack of radiosensitization demonstrated for A549 cells was associated with cisplatin-mediated stimulation of ATM (S1981) and AMPKα (T172) phosphorylation and autophagy. However, in both cell lines inhibition of ATM and autophagy by KU-55933 and chloroquine diphosphate (CQ) respectively resulted in a significant radiosensitization. Combined treatment with the AMPK inhibitor compound-C led to radiosensitization of A549 but not of H460 cells. As compared to the treatment with KU-55933 alone, radiosensitivity of A549 cells was markedly stimulated by the combination of KU-55933 and cisplatin. However, the combination of CQ and cisplatin did not modulate the pattern of radiation sensitivity of A549 or H460 cells. In accordance with the results that cisplatin via stimulation of ATM activity can abrogate its radiosensitizing effect, ATM deficient cells were significantly sensitized to ionizing radiation by cisplatin. Conclusion: The results obtained indicate that ATM targeting can potentiate cisplatin-induced radiosensitization

  14. Mesenchymal Stem Cell-Derived Factors Restore Function to Human Frataxin-Deficient Cells.

    Science.gov (United States)

    Kemp, Kevin; Dey, Rimi; Cook, Amelia; Scolding, Neil; Wilkins, Alastair

    2017-08-01

    Friedreich's ataxia is an inherited neurological disorder characterised by mitochondrial dysfunction and increased susceptibility to oxidative stress. At present, no therapy has been shown to reduce disease progression. Strategies being trialled to treat Friedreich's ataxia include drugs that improve mitochondrial function and reduce oxidative injury. In addition, stem cells have been investigated as a potential therapeutic approach. We have used siRNA-induced knockdown of frataxin in SH-SY5Y cells as an in vitro cellular model for Friedreich's ataxia. Knockdown of frataxin protein expression to levels detected in patients with the disorder was achieved, leading to decreased cellular viability, increased susceptibility to hydrogen peroxide-induced oxidative stress, dysregulation of key anti-oxidant molecules and deficiencies in both cell proliferation and differentiation. Bone marrow stem cells are being investigated extensively as potential treatments for a wide range of neurological disorders, including Friedreich's ataxia. The potential neuroprotective effects of bone marrow-derived mesenchymal stem cells were therefore studied using our frataxin-deficient cell model. Soluble factors secreted by mesenchymal stem cells protected against cellular changes induced by frataxin deficiency, leading to restoration in frataxin levels and anti-oxidant defences, improved survival against oxidative stress and stimulated both cell proliferation and differentiation down the Schwann cell lineage. The demonstration that mesenchymal stem cell-derived factors can restore cellular homeostasis and function to frataxin-deficient cells further suggests that they may have potential therapeutic benefits for patients with Friedreich's ataxia.

  15. Language Impairment in Cerebellar Ataxia

    NARCIS (Netherlands)

    van Gaalen, Judith; de Swart, Bert J. M.; Oostveen, Judith; Knuijt, Simone; van de Warrenburg, Bart P. C.; Kremer, Berry (H. ) P. H.

    Background: Several studies have suggested that language impairment can be observed in patients with cerebellar pathology. The aim of this study was to investigate language performance in patients with spinocerebellar ataxia type 6 (SCA6). Methods: We assessed speech and language in 29 SCA6 patients

  16. Cardiopatía dilatada en ataxia de Friedreich: el punto sin retorno Dilated cardiomyopathy in Friedreich's ataxia: point of no return

    Directory of Open Access Journals (Sweden)

    Luis E Silva

    2012-04-01

    Full Text Available Las cardiopatías infiltrativas se caracterizan por el depósito de sustancias en el miocardio que causan un impacto negativo en la arquitectura de la pared ventricular. La ataxia espino-cerebelosa de Friedreich es una enfermedad degenerativa, heredada, con carácter autosómico recesivo. Clínicamente se caracteriza por ataxia de extremidades y tronco, hiporreflexia, neuropatía periférica, retinopatía y cardiopatía, entre otros. La afectación cardíaca es muy frecuente y se detectan alteraciones en estudios pos-mortem en 95% a 100% de los pacientes. La tasa de mortalidad es elevada y se considera una enfermedad incurable, a pesar de la existencia actual de múltiples medicamentos en estudio basados en los fundamentos fisiopatológicos de esta afección.Infiltrative heart diseases are characterized by deposit of substances in the myocardium that cause a negative impact on the architecture of the ventricular wall. Friedreich's spino-cerebellar ataxia is a degenerative disease, inherited in an autosomal recessive pattern. Clinically it is characterized by limb and trunk ataxia, hyporeflexia, peripheral neuropathy, retinopathy and heart disease among others. Cardiac involvement is common and on post-mortem studies cardiac abnormalities are found in 95% to 100% of patients. The mortality rate is high and it is considered an incurable disease, despite the current existence of multiple medications being studied, based on the pathophysiological basis of this condition.

  17. Comparative human cellular radiosensitivity: Pt. 1

    International Nuclear Information System (INIS)

    Arlett, C.F.; Green, M.H.L.; Priestley, A.; Harcourt, S.A.; Mayne, L.V.

    1988-01-01

    The authors compared cell killing following 60 Co gamma irradiation in 22 primary human fibroblast strains, nine SV40-immortalized human fibroblast lines and seven SV40-transformed pre-crisis human fibroblast cultures from normal individuals, from ataxia-telangiectasia (A-T) patients and from A-T heterozygotes. They confirmed the greater sensitivity of A-T derived cells to gamma radiation. The distinction between A-T and normal cells is maintained in cells immortalized by SV40-virus but immortal cells are more gamma radiation resistant than corresponding primary fibroblasts. Cells transformed by plasmids (pSV3gpt and pSV3neo) expressing SV40 T-antigen, both pre- and post-crisis, show this increased resistance, indicating that expression of SV40 T-antigen, rather than immortalization per se is responsible for the change. (author)

  18. Gerstmann's syndrome and unilateral optic ataxia in the emergency department

    Science.gov (United States)

    Barbosa, Breno José Alencar Pires; de Brito, Marcelo Houat; Rodrigues, Júlia Chartouni; Kubota, Gabriel Taricani; Parmera, Jacy Bezerra

    2017-01-01

    ABSTRACT. A 75-year-old right-handed woman presented to the emergency department with simultanagnosia and right unilateral optic ataxia. Moreover, the patient had agraphia, acalculia, digital agnosia and right-left disorientation, consistent with complete Gerstmann's syndrome. This case highlights the concurrence of Gerstmann's syndrome and unilateral optic ataxia in the acute phase of a left middle cerebral artery stroke. PMID:29354229

  19. Gerstmann's syndrome and unilateral optic ataxia in the emergency department

    Directory of Open Access Journals (Sweden)

    Breno José Alencar Pires Barbosa

    Full Text Available ABSTRACT. A 75-year-old right-handed woman presented to the emergency department with simultanagnosia and right unilateral optic ataxia. Moreover, the patient had agraphia, acalculia, digital agnosia and right-left disorientation, consistent with complete Gerstmann's syndrome. This case highlights the concurrence of Gerstmann's syndrome and unilateral optic ataxia in the acute phase of a left middle cerebral artery stroke.

  20. Speech Prosody in Cerebellar Ataxia

    Science.gov (United States)

    Casper, Maureen A.; Raphael, Lawrence J.; Harris, Katherine S.; Geibel, Jennifer M.

    2007-01-01

    Persons with cerebellar ataxia exhibit changes in physical coordination and speech and voice production. Previously, these alterations of speech and voice production were described primarily via perceptual coordinates. In this study, the spatial-temporal properties of syllable production were examined in 12 speakers, six of whom were healthy…

  1. Post-irradiation DNA synthesis inhibition and G2 phase delay in radiosensitive body cells from non-Hodgkin's lymphoma patients: An indication of cell cycle defects

    International Nuclear Information System (INIS)

    Hannan, Mohammed A.; Kunhi, Mohammed; Einspenner, Michael; Khan, Bashir A.; Al-Sedairy, Sultan

    1994-01-01

    In the present study, both post-irradiation DNA synthesis and G 2 phase accumulation were analyzed in lymphoblastoid cell lines (LCLs) and fibroblast cell strains derived from (Saudi) patients with non-Hodgkin's lymphoma (NHL), ataxia telangiectasia (AT), AT heterozygotes and normal subjects. A comparison of the percent DNA synthesis inhibition (assayed by 3 H-thymidine uptake 30 min after irradiation), and a 24 h post-irradiation G 2 phase accumulation determined by flow cytometry placed the AT heterozygotes and the NHL patients in an intermediate position between the normal subjects (with maximum DNA synthesis inhibition and minimum G 2 phase accumulation) and the AT homozygotes (with minimum DNA synthesis inhibition and maximum G 2 accumulation). The similarity between AT heterozygotes and the NHL patients with respect to the two parameters studied after irradiation was statistically significant. The data indicating a moderate abnormality in the control of cell cycle progression after irradiation in the LCLs and fibroblasts from NHL patients may explain the enhanced cellular and chromosomal radiosensitivity in these patients reported by us earlier. In addition to demonstrating a link between cell cycle abnormality and radiosensitivity as a possible basis for cancer susceptibility, particularly in the NHL patients, the present studies emphasized the usefulness of the assay for 24 h post-irradiation G 2 phase accumulation developed elsewhere in characterizing AT heterozygote-like cell cycle anomaly in cancer patients irrespective of whether they carried the AT gene or any other affecting the cell cycle

  2. Radiation 2006. In association with the Polymer Division, Royal Australian Chemical Institute. Incorporating the 21st AINSE Radiation Chemistry Conference and the 18th Radiation Biology Conference, conference handbook

    International Nuclear Information System (INIS)

    Lavin, M. F.; Luff, J.; Peng, Cheng; Chen, P.; Gueven, N.; Bottle, S.; Hosokawa, K.

    2006-01-01

    Full text: Ataxia-telangiectasia (A-T) is an autosomal recessive genetic disorder characterized by immunodeficiency, cancer predisposition and neurological degeneration. Cells from A-T patients are hypersensitive to radiation, display cell cycle checkpoint defects and genome instability. The gene product defective in this syndrome, ATM, is activated by double strand breaks in DNA and signals these to the DNA repair machinery and the cell cycle checkpoints via a series of phosphorylated intermediates including p53, Chk2, Nbs1 and SMC1. It has been suggested that the neurodegenerative phenotype in A-T patients arises as a consequence of oxidative stress. This is supported by observations that A-T patients have significantly reduced levels of total antioxidant capacity and that A-T cells in culture are more sensitive to oxidative stress that normal cells. We have demonstrated that in vitro survival of cerebellar Purkinje cells of Atm-mutant mice is significantly reduced compared to their wild-type littermates and most neurons from these animals have dramatically reduced dendritic branching. We also showed that in vitro administration of the antioxidant 5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl (CTMIO) to Atm-deficient mice reduced the rate of cell death of Purkinje cells and enhanced dendritogenesis to wild-type levels. Intraperitoneal administration of this antioxidant throughout pregnancy enhanced survival of Purkinje cell neurons from Atm-disrupted animals and protected against oxidative stress in older animals as determined by levels of nitro-tyrosinated proteins and amount of catalase activity in the cerebellum. This antioxidant, a member of the nitroxide group, is a stable, free radical, capable of scavenging reactive oxygen species and may also circumvent Fenton-derived pathways by oxidizing the metals involved. We have recently demonstrated that CTMIO correct neuro-behavioural deficits in these mice and reduces oxidative damage to Purkinje cells. We

  3. Ataxia espinocerebelosa 7: Investigación clínica y genética en una familia argentina Spinocerebellar ataxia 7: Clinical and genetic investigation in an Argentine family

    Directory of Open Access Journals (Sweden)

    Juan I. Rojas

    2007-04-01

    Full Text Available Las ataxias espino cerebelosas (AEC, constituyen un grupo de trastornos hereditarios neurodegenerativos de herencia autosómica dominante. Se caracterizan principalmente por la presencia clínica de ataxia cerebelosa asociada a oftalmoplejía, disartria, signos piramidales o extrapiramidales y pérdida de la sensibilidad profunda. La AEC 7 pertenece al grupo de las ataxias espinocerebelosas en la cual el trastorno es consecuencia de la expansión del triplete CAG localizado en el cromosoma 3 p12-p21. La característica clínica de dicha ataxia es la pérdida de la agudeza visual y posterior ceguera. Presentamos tres individuos de una familia con ataxia cerebelosa, pérdida de la agudeza visual y otros signos neurológicos. El diagnóstico fue confirmado por medio del análisis genético en el cual se observó la anormalidad característica de la AEC 7. Este es el primer caso de AEC 7 en Argentina confirmado por estudio genético. En la revisión de la literatura (hasta enero 2006 se hallaron sólo dos familias notificadas en América Latina. El objetivo del trabajo es el de enfocar la atención en el diagnóstico de esta enfermedad degenerativa en pacientes que se presentan con ataxia cerebelosa progresiva asociada con disminución de la agudeza visual e historia familiar positiva.Spino cerebellar ataxia (SCA are a complex group of hereditary neurodegenerative disturbances of autosomal dominant pattern. They are largely characterized by the clinical presence of cerebellar ataxia related to ophtalmoplegia, dysarthria, pyramidal and extra-pyramidal signs and loss of deep sensitivity. SCA 7 belongs to the SCA group in which the disturbance is a result of the expansion of CAG triplet repetition located in the 3p12-p21 chromosome. The characteristic clinical feature of SCA7 is the loss of visual acuity and blindness. We present here three cases of ataxia, from the same family, with loss of visual acuity and other neurological disorders. The diagnosis

  4. Prolonged vertigo and ataxia after mandibular nerve block for treatment of trigeminal neuralgia

    Directory of Open Access Journals (Sweden)

    Arvind Chaturvedi

    2011-01-01

    Full Text Available Common complications of neurolytic mandibular nerve block are hypoesthesia, dysesthesia, and chemical neuritis. We report a rare complication, prolonged severe vertigo and ataxia, after neurolytic mandibular blockade in a patient suffering from trigeminal neuralgia. Coronoid approach was used for right sided mandibular block. After successful test injection with local anesthetic, absolute alcohol was given for neurolytic block. Immediately after alcohol injection, patient developed nausea and vomiting along with severe vertigo, ataxia and hypertension. Neurological evaluation was normal except for the presence of vertigo and ataxia. Computerised tomography scan brain was also normal. Patient was admitted for observation and symptomatic treatment was given. Vertigo and ataxia gradually improved over 24 hours.

  5. Mitochondrial recessive ataxia syndrome mimicking dominant spinocerebellar ataxia.

    Science.gov (United States)

    Palin, Eino J H; Hakonen, Anna H; Korpela, Mari; Paetau, Anders; Suomalainen, Anu

    2012-04-15

    We studied the genetic background of a family with SCA, showing dominant inheritance and anticipation. Muscle histology, POLG1 gene sequence, neuropathology and mitochondrial DNA analyses in a mother and a son showed typical findings for a mitochondrial disorder, and both were shown to be homozygous for a recessive POLG1 mutation, underlying mitochondrial recessive ataxia syndrome, MIRAS. The healthy father was a heterozygous carrier for the same mutation. Recessively inherited MIRAS mutations should be tested in dominantly inherited SCAs cases of unknown cause, as the high carrier frequency of MIRAS may result in two independent introductions of the mutant allele in the family and thereby mimic dominant inheritance. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. White matter damage is related to ataxia severity in SCA3.

    Science.gov (United States)

    Kang, J-S; Klein, J C; Baudrexel, S; Deichmann, R; Nolte, D; Hilker, R

    2014-02-01

    Spinocerebellar ataxia type 3 (SCA3) is the most frequent inherited cerebellar ataxia in Europe, the US and Japan, leading to disability and death through motor complications. Although the affected protein ataxin-3 is found ubiquitously in the brain, grey matter atrophy is predominant in the cerebellum and the brainstem. White matter pathology is generally less severe and thought to occur in the brainstem, spinal cord, and cerebellar white matter. Here, we investigated both grey and white matter pathology in a group of 12 SCA3 patients and matched controls. We used voxel-based morphometry for analysis of tissue loss, and tract-based spatial statistics (TBSS) on diffusion magnetic resonance imaging to investigate microstructural pathology. We analysed correlations between microstructural properties of the brain and ataxia severity, as measured by the Scale for the Assessment and Rating of Ataxia (SARA) score. SCA3 patients exhibited significant loss of both grey and white matter in the cerebellar hemispheres, brainstem including pons and in lateral thalamus. On between-group analysis, TBSS detected widespread microstructural white matter pathology in the cerebellum, brainstem, and bilaterally in thalamus and the cerebral hemispheres. Furthermore, fractional anisotropy in a white matter network comprising frontal, thalamic, brainstem and left cerebellar white matter strongly and negatively correlated with SARA ataxia scores. Tractography identified the thalamic white matter thus implicated as belonging to ventrolateral thalamus. Disruption of white matter integrity in patients suffering from SCA3 is more widespread than previously thought. Moreover, our data provide evidence that microstructural white matter changes in SCA3 are strongly related to the clinical severity of ataxia symptoms.

  7. Tremor in neurodegenerative ataxias, Huntington disease and tic disorder.

    Science.gov (United States)

    Rudzińska, M; Krawczyk, M; Wójcik-Pędziwiatr, M; Szczudlik, A; Tomaszewski, T

    2013-01-01

    Tremor is the most prevalent movement disorder, defined as rhythmic oscillations of a body part, caused by alternating or synchronic contractions of agonistic or antagonistic muscles. The aim of the study was to assess prevalence and to characterize parameters of tremor accompanying de-generative ataxias, Huntington disease (HD) and tic disorders in comparison with a control group. Forty-three patients with degenerative ataxias, 28 with HD and 26 with tic disorders together with 51 healthy controls were included in the study. For each participant, clinical and instrumental assessment (accelerometer, electromyography [EMG], graphic tablet) of hand tremor was performed. Frequency and severity of tremor were assessed in three positions: at rest (rest tremor), with hands extended (postural tremor), during the 'finger-to-nose' test and during Archimedes spiral drawing (kinetic tremor). Based on the mass load test, the type of tremor was determined as essential tremor type or enhanced physiological tremor type. The incidence of tremor in the accelerometry in patients with degenerative ataxia (50%) significantly differs from controls (10%) (p = 0.001). The dominant tremor was postural, low-intense, with 7-Hz frequency, essential tremor (23%) or other tremor type (23%), while enhanced physiological tremor was the least frequent (2%). Tremor in patients with HD and tic disorders was found in 10% and 20% of patients, respectively, similarly to the control group. Tremor was mild, postural and of essential tremor type, less frequently of enhanced physiological tremor type. No correlation between severity of tremor and severity of disease was found. The prevalence of tremor is considerably higher among patients with degenerative ataxias compared with HD, tic disorder and the control group. The most common type of tremor accompanying ataxias, HD and tic disorders is essential tremor type.

  8. Inhibition and recovery of DNA synthesis in human cells after exposure to ultraviolet light

    International Nuclear Information System (INIS)

    Painter, R.B.

    1985-01-01

    The inhibition of DNA synthesis in normal human cells by UV is a complex function of fluence because it has several causes. At low fluences, inhibition of replicon initiation is most important. This is made clear by the fact that it occurs to a lesser degree in cells from patients with ataxia telangiectasia (AT). Assuming that only leading strand synthesis is blocked by UV-induced lesions, single lesions between replicons in parental strands for leading strand synthesis inhibit DNA synthesis by acting as temporary blocks until they are replicated by extension of the lagging strand of the adjacent replicon. A more severe inhibition occurs when two lesions are induced between adjacent growing replicons, because one in four possible configurations may result in a long-lived unreplicated region (LLUR). In the absence of excision repair, these may eventually be replicated by activation of an otherwise unused origin within the LLUR. The frequency of LLURs increases steeply with fluence. Activation of normally unused origins to replicate LLURs may facilitate recovery from inhibition of DNA synthesis, but repair of lesions is probably more important. In excision-repair-defective cells, an LLUR without an origin to initiate its replication may be a lethal lesion. (orig.)

  9. Imaging of Hereditary Hemorrhagic Telangiectasia

    International Nuclear Information System (INIS)

    Carette, Marie-France; Nedelcu, Cosmina; Tassart, Marc; Grange, Jean-Didier; Wislez, Marie; Khalil, Antoine

    2009-01-01

    This pictorial review is based on our experience of the follow-up of 120 patients at our multidisciplinary center for hereditary hemorrhagic telangiectasia (HHT). Rendu-Osler-Weber disease or HHT is a multiorgan autosomal dominant disorder with high penetrance, characterized by epistaxis, mucocutaneous telangiectasis, and visceral arteriovenous malformations (AVMs). The research on gene mutations is fundamental and family screening by clinical examination, chest X-ray, research of pulmonary shunting, and abdominal color Doppler sonography is absolutely necessary. The angioarchitecture of pulmonary AVMs can be studied by unenhanced multidetector computed tomography; however, all other explorations of liver, digestive bowels, or brain require administration of contrast media. Magnetic resonance angiography is helpful for central nervous system screening, in particular for the spinal cord, but also for pulmonary, hepatic, and pelvic AVMs. Knowledge of the multiorgan involvement of HHT, mechanism of complications, and radiologic findings is fundamental for the correct management of these patients.

  10. Rare Disease Patient Registry & Natural History Study - Coordination of Rare Diseases at Sanford

    Science.gov (United States)

    2017-09-28

    -epilepsy-intellectual Disability Syndrome Due to TUD Deficiency; Autosomal Recessive Cerebellar Ataxia-epilepsy-intellectual Disability Syndrome Due to KIAA0226 Deficiency; Autosomal Recessive Cerebellar Ataxia-epilepsy-intellectual Disability Syndrome; Autosomal Recessive Cerebellar Ataxia With Late-onset Spasticity; Autosomal Recessive Cerebellar Ataxia Due to STUB1 Deficiency; Autosomal Recessive Cerebellar Ataxia Due to a DNA Repair Defect; Autosomal Recessive Cerebellar Ataxia - Saccadic Intrusion; Autosomal Recessive Cerebellar Ataxia - Psychomotor Retardation; Autosomal Recessive Cerebellar Ataxia - Blindness - Deafness; Autosomal Recessive Cerebellar Ataxia; Autosomal Dominant Spinocerebellar Ataxia Due to a Polyglutamine Anomaly; Autosomal Dominant Spinocerebellar Ataxia Due to a Point Mutation; Autosomal Dominant Spinocerebellar Ataxia Due to a Channelopathy; Autosomal Dominant Spastic Ataxia Type 1; Autosomal Dominant Spastic Ataxia; Autosomal Dominant Optic Atrophy; Ataxia-telangiectasia Variant; Ataxia-telangiectasia; Autosomal Dominant Cerebellar Ataxia, Deafness and Narcolepsy; Autosomal Dominant Cerebellar Ataxia Type 4; Autosomal Dominant Cerebellar Ataxia Type 3; Autosomal Dominant Cerebellar Ataxia Type 2; Autosomal Dominant Cerebellar Ataxia Type 1; Autosomal Dominant Cerebellar Ataxia; Ataxia-telangiectasia-like Disorder; Ataxia-intellectual Disability-oculomotor Apraxia-cerebellar Cysts Syndrome; Ataxia-deafness-intellectual Disability Syndrome; Ataxia With Vitamin E Deficiency; Ataxia With Dementia; Ataxia Neuropathy Spectrum; Ataxia - Tapetoretinal Degeneration; Ataxia - Photosensitivity - Short Stature; Ataxia - Pancytopenia; Ataxia - Oculomotor Apraxia Type 1; Ataxia - Hypogonadism - Choroidal Dystrophy; Ataxia - Other; Ataxia - Genetic Diagnosis - Unknown; Acquired Ataxia; Adult-onset Autosomal Recessive Cerebellar Ataxia; Alcohol Related Ataxia; Multiple Endocrine Neoplasia; Multiple Endocrine Neoplasia Type II; Multiple Endocrine Neoplasia Type 1; Multiple Endocrine

  11. Ataxia with oculomotor apraxia type 2: a clinical and genetic study of 19 patients.

    Science.gov (United States)

    Tazir, M; Ali-Pacha, L; M'Zahem, A; Delaunoy, J P; Fritsch, M; Nouioua, S; Benhassine, T; Assami, S; Grid, D; Vallat, J M; Hamri, A; Koenig, M

    2009-03-15

    Ataxia with oculo-motor apraxia type 2 (AOA2) is a recently described autosomal recessive cerebellar ataxia (ARCA) caused by mutations in the senataxin gene (SETX). We analysed the phenotypic spectrum of 19 AOA2 patients with mutations in SETX, which seems to be the third most frequent form of ARCA in Algeria after Freidreich ataxia and Ataxia with vitamin E deficiency. In AOA2 patients, the mean age at onset for all families was in the second decade. Cerebellar ataxia was progressive, slowly leading to disability which was aggravated by axonal polyneuropathy present in almost all the patients. Mean disease duration until wheelchair was around 20 years. Oculo-motor apraxia (OMA) was present in 32% of the patients while convergent strabismus was present in 37%. Strabismus is therefore also very suggestive of AOA2 when associated with ataxia and polyneuropathy even in the absence of OMA. Cerebellar atrophy was more severe in the eldest patients; however it may also be an early sign since it was present in the youngest and paucisymptomatic patients. The initial sign was gait ataxia in all but two patients who presented with head tremor and writer cramp, respectively. Serum alpha-fetoprotein, which was elevated in all tested patients, was a good marker to suggest molecular studies of the SETX gene.

  12. Progression of Dysphagia in Spinocerebellar Ataxia Type 6.

    Science.gov (United States)

    Isono, Chiharu; Hirano, Makito; Sakamoto, Hikaru; Ueno, Shuichi; Kusunoki, Susumu; Nakamura, Yusaku

    2017-06-01

    Spinocerebellar ataxia type 6 (SCA6), an autosomal dominant triplet repeat disease, predominantly affects the cerebellum with a late onset and generally good prognosis. Dysphagia is commonly associated with the outcomes of neurodegenerative diseases such as SCA6. Although the characteristics of dysphagia have been rarely reported in SCA6, our previous study indicated that dysphagia is generally milder in SCA6 than in SCA3, another inherited ataxia with multisystem involvement. However, abnormalities in the pharyngeal phase in SCA6 were indistinguishable from those in SCA3, with no explainable reason. To determine the reason, we repeatedly performed videofluoroscopic examinations (VF) in 14 patients with SCA6. The results showed that the gross progression of dysphagia was apparently slow, but four patients had progressive dysphagia at an early disease stage; dysphagia began within 10 years from the onset of ataxia and rapidly progressed. A common clinical feature of the four patients was a significantly older age at the onset of ataxia (74.0 vs. 60.3 years), associated with significantly shorter triplet repeats. This finding surprisingly indicated that patients who had shorter repeats and thereby later onset and potentially better prognoses were at risk for dysphagia-associated problems. Ischemic changes, homozygous mutation, and diabetes mellitus as well as aging might have contributed to the observed progressive dysphagia. We found that conventionally monitored somatosensory evoked potentials at least partly reflected progressive dysphagia. Despite the small study group, our findings suggest that clinicians should carefully monitor dysphagia in patients with SCA6 who are older at disease onset (>60 years).

  13. Friedreich's ataxia: clinical and molecular study of 25 Brazilian cases

    Directory of Open Access Journals (Sweden)

    Albano Lilian M. J.

    2001-01-01

    Full Text Available INTRODUCTION: Friedreich's ataxia is a neurodegenerative disorder whose clinical diagnostic criteria for typical cases basically include: a early age of onset (< 20 or 25 years, b autosomal recessive inheritance, c progressive ataxia of limbs and gait, and d absence of lower limb tendon reflexes. METHODS: We studied the frequency and the size of expanded GAA and their influence on neurologic findings, age at onset, and disease progression in 25 Brazilian patients with clinical diagnosis of Friedreich's ataxia - 19 typical and 6 atypical - using a long-range PCR test. RESULTS: Abnormalities in cerebellar signs, in electrocardiography, and pes cavus occurred more frequently in typical cases; however, plantar response and speech were more frequently normal in this group when the both typical and atypical cases were compared. Homozygous GAA expansion repeats were detected in 17 cases (68% - all typical cases. In 8 patients (32% (6 atypical and 2 typical, no expansion was observed, ruling out the diagnosis of Friedreich's ataxia. In cases with GAA expansions, foot deformity, cardiac abnormalities, and some neurologic findings occurred more frequently; however, abnormalities in cranial nerves and in tomographic findings were detected less frequently than in patients without GAA expansions. DISCUSSION: Molecular analysis was imperative for the diagnosis of Friedreich's ataxia, not only for typical cases but also for atypical ones. There was no genotype-phenotype correlation. Diagnosis based only on clinical findings is limited; however, it aids in better screening for suspected cases that should be tested. Evaluation for vitamin E deficiency is recommended, especially in cases without GAA expansion.

  14. An ATM-independent S-phase checkpoint response involves CHK1 pathway

    Science.gov (United States)

    Zhou, Xiang-Yang; Wang, Xiang; Hu, Baocheng; Guan, Jun; Iliakis, George; Wang, Ya

    2002-01-01

    After exposure to genotoxic stress, proliferating cells actively slow down the DNA replication through a S-phase checkpoint to provide time for repair. We report that in addition to the ataxia-telangiectasia mutated (ATM)-dependent pathway that controls the fast response, there is an ATM-independent pathway that controls the slow response to regulate the S-phase checkpoint after ionizing radiation in mammalian cells. The slow response of S-phase checkpoint, which is resistant to wortmannin, sensitive to caffeine and UCN-01, and related to cyclin-dependent kinase phosphorylation, is much stronger in CHK1 overexpressed cells, and it could be abolished by Chk1 antisense oligonucleotides. These results provide evidence that the ATM-independent slow response of S-phase checkpoint involves CHK1 pathway.

  15. Tyrosyl-DNA Phosphodiesterase I a critical survival factor for neuronal development and homeostasis.

    Science.gov (United States)

    van Waardenburg, Robert C A M

    2016-01-01

    Tyrosyl-DNA phosphodiesterase I (TDP1), like most DNA repair associated proteins, is not essential for cell viability. However, dysfunctioning TDP1 or ATM (ataxia telangiectasia mutated) results in autosomal recessive neuropathology with similar phenotypes, including cerebellar atrophy. Dual inactivation of TDP1 and ATM causes synthetic lethality. A TDP1H 493 R catalytic mutant is associated with spinocerebellar ataxia with axonal neuropathy (SCAN1), and stabilizes the TDP1 catalytic obligatory enzyme-DNA covalent complex. The ATM kinase activates proteins early on in response to DNA damage. Tdp1-/- and Atm-/- mice exhibit accumulation of DNA topoisomerase I-DNA covalent complexes (TOPO1-cc) explicitly in neuronal tissue during development. TDP1 resolves 3'- and 5'-DNA adducts including trapped TOPO1-cc and TOPO1 protease resistant peptide-DNA complex. ATM appears to regulate the response to TOPO1-cc via a noncanonical function by regulating SUMO/ubiquitin-mediated TOPO1 degradation. In conclusion, TDP1 and ATM are critical factors for neuronal cell viability via two independent but cooperative pathways.

  16. Low ATM protein expression and depletion of p53 correlates with olaparib sensitivity in gastric cancer cell lines

    Science.gov (United States)

    Kubota, Eiji; Williamson, Christopher T; Ye, Ruiqiong; Elegbede, Anifat; Peterson, Lars; Lees-Miller, Susan P; Bebb, D Gwyn

    2014-01-01

    Small-molecule inhibitors of poly (ADP-ribose) polymerase (PARP) have shown considerable promise in the treatment of homologous recombination (HR)-defective tumors, such as BRCA1- and BRCA2-deficient breast and ovarian cancers. We previously reported that mantle cell lymphoma cells with deficiency in ataxia telangiectasia mutated (ATM) are sensitive to PARP-1 inhibitors in vitro and in vivo. Here, we report that PARP inhibitors can potentially target ATM deficiency arising in a solid malignancy. We show that ATM protein expression varies between gastric cancer cell lines, with NUGC4 having significantly reduced protein levels. Significant correlation was found between ATM protein expression and sensitivity to the PARP inhibitor olaparib, with NUGC4 being the most sensitive. Moreover, reducing ATM kinase activity using a small-molecule inhibitor (KU55933) or shRNA-mediated depletion of ATM protein enhanced olaparib sensitivity in gastric cancer cell lines with depletion or inactivation of p53. Our results demonstrate that ATM is a potential predictive biomarker for PARP-1 inhibitor activity in gastric cancer harboring disruption of p53, and that combined inhibition of ATM and PARP-1 is a rational strategy for expanding the utility of PARP-1 inhibitors to gastric cancer with p53 disruption. PMID:24841718

  17. [Hereditary haemorrhagic telangiectasia diagnosed in connection with a traffic accident].

    Science.gov (United States)

    Sivapalan, Pradeesh; Demény, Ann Kathrin; Almind, Merete; Kjeldsen, Anette Drøhse

    2014-02-17

    Hereditary haemorrhagic telangiectasia (HHT) is an autosomal dominant disorder characterized by vascular dysplasia and haemorrhage. It is manifested by mucocutaneous telangiec-tases and arteriovenous malformations in organs such as lungs, liver and brain. We present a case of HHT. A 16-year-old patient with a history of recurrent epistaxis was admitted to the local hospital with chest pain and desaturation. A CT scan revealed pulmonary arteriovenous malformations.

  18. Spinocerebellar ataxia type 6: MRI of three Japanese patients

    International Nuclear Information System (INIS)

    Satoh, J.I.; Tokumoto, H.; Yukitake, M.; Matsui, M.; Kuroda, Y.; Matsuyama, Z.; Kawakami, H.; Nakamura, S.

    1998-01-01

    We describe the MRI findings in three Japanese patients with spinocerebellar ataxia type 6 (SCA6) in which a polymorphic CAG repeat was identified in the gene encoding the α 1A voltage-dependent P/Q-type Ca 2+ channel subunit (CACNL1A4). All showed slowly progressive cerebellar ataxia and mild pyramidal signs. Neuroradiologically, they had moderate cerebellar atrophy, most prominently in the superior vermis, whereas the brain stem appeared to be spared. No abnormal signal intensity was identified. (orig.)

  19. Integrating Gene Correction in the Reprogramming and Transdifferentiation Processes: A One-Step Strategy to Overcome Stem Cell-Based Gene Therapy Limitations

    Directory of Open Access Journals (Sweden)

    Seo-Young Lee

    2016-01-01

    Full Text Available The recent advent of induced pluripotent stem cells (iPSCs and gene therapy tools has raised the possibility of autologous cell therapy for rare genetic diseases. However, cellular reprogramming is inefficient in certain diseases such as ataxia telangiectasia, Fanconi anemia, LIG4 syndrome, and fibrodysplasia ossificans progressiva syndrome, owing to interference of the disease-related genes. To overcome these therapeutic limitations, it is necessary to fundamentally correct the abnormal gene during or prior to the reprogramming process. In addition, as genetic etiology of Parkinson’s disease, it has been well known that induced neural stem cells (iNSCs were progressively depleted by LRRK2 gene mutation, LRRK2 (G2019S. Thus, to maintain the induced NSCs directly derived from PD patient cells harboring LRRK2 (G2019S, it would be ideal to simultaneously treat the LRRK2 (G2019S fibroblast during the process of TD. Therefore, simultaneous reprogramming (or TD and gene therapy would provide the solution for therapeutic limitation caused by vulnerability of reprogramming or TD, in addition to being suitable for general application to the generation of autologous cell-therapy products for patients with genetic defects, thereby obviating the need for the arduous processes currently required.

  20. Nuclear and cytoplasmic signalling in the cellular response to ionising radiation

    International Nuclear Information System (INIS)

    Szumiel, Irena

    2001-01-01

    DNA is the universal primary target for ionising radiation; however, the cellular response is highly diversified not only by differential DNA repair ability. The monitoring system for the ionising radiation-inflicted DNA damage consists of 3 apparently independently acting enzymes which are activated by DNA breaks: two protein kinases, ATM (ataxia telangiectasia mutated) and DNA-PK (DNA-dependent protein kinase) and a poly(ADP-ribose) polymerase, PARP-1. These 3 enzymes are the source of alarm signals, which affect to various extents DNA repair, progression through the cell cycle and eventually the pathway to cell death. Their functions probably are partly overlapping. On the side of DNA repair their role consists in recruiting and/or activating the repair enzymes, as well as preventing illegitimate recombination of the damaged sites. A large part of the nuclear signalling pathway, including the integrating role of TP53 has been revealed. Two main signalling pathways start at the plasma membrane: the MAPK/ERK (mitogen and extracellular signal regulated protein kinase family) 'survival pathway' and the SAPK/JNK (stress-activated protein kinase/c-Jun N-terminal kinase) 'cell death pathway'. The balance between them is likely to determine the cell's fate. An additional important 'survival pathway' starts at the insulin-like growth factor type I receptor (IGF-IR), involves phosphoinositide- 3 kinase and Akt kinase and is targeted at inactivation of the pro-apoptotic BAD protein. Interestingly, over-expression of IGF-IR almost entirely abrogates the extreme radiation sensitivity of ataxia telangiectasia cells. When DNA break rejoining is impaired, the cell is unconditionally radiation sensitive. The fate of a repair-competent cell is determined by the time factor: the cell cycle arrest should be long enough to ensure the completion of repair. Incomplete repair or misrepair may be tolerated, when generation of the death signal is prevented. So, the character and timing

  1. A SEL1L mutation links a canine progressive early-onset cerebellar ataxia to the endoplasmic reticulum-associated protein degradation (ERAD machinery.

    Directory of Open Access Journals (Sweden)

    Kaisa Kyöstilä

    Full Text Available Inherited ataxias are characterized by degeneration of the cerebellar structures, which results in progressive motor incoordination. Hereditary ataxias occur in many species, including humans and dogs. Several mutations have been found in humans, but the genetic background has remained elusive in dogs. The Finnish Hound suffers from an early-onset progressive cerebellar ataxia. We have performed clinical, pathological, and genetic studies to describe the disease phenotype and to identify its genetic cause. Neurological examinations on ten affected dogs revealed rapidly progressing generalized cerebellar ataxia, tremors, and failure to thrive. Clinical signs were present by the age of 3 months, and cerebellar shrinkage was detectable through MRI. Pathological and histological examinations indicated cerebellum-restricted neurodegeneration. Marked loss of Purkinje cells was detected in the cerebellar cortex with secondary changes in other cortical layers. A genome-wide association study in a cohort of 31 dogs mapped the ataxia gene to a 1.5 Mb locus on canine chromosome 8 (p(raw = 1.1x10(-7, p(genome = 7.5x10(-4. Sequencing of a functional candidate gene, sel-1 suppressor of lin-12-like (SEL1L, revealed a homozygous missense mutation, c.1972T>C; p.Ser658Pro, in a highly conserved protein domain. The mutation segregated fully in the recessive pedigree, and a 10% carrier frequency was indicated in a population cohort. SEL1L is a component of the endoplasmic reticulum (ER-associated protein degradation (ERAD machinery and has not been previously associated to inherited ataxias. Dysfunctional protein degradation is known to cause ER stress, and we found a significant increase in expression of nine ER stress responsive genes in the cerebellar cortex of affected dogs, supporting the pathogenicity of the mutation. Our study describes the first early-onset neurodegenerative ataxia mutation in dogs, establishes an ERAD-mediated neurodegenerative

  2. Cerebellar Ataxia and Coenzyme Q Deficiency through Loss of Unorthodox Kinase Activity.

    Science.gov (United States)

    Stefely, Jonathan A; Licitra, Floriana; Laredj, Leila; Reidenbach, Andrew G; Kemmerer, Zachary A; Grangeray, Anais; Jaeg-Ehret, Tiphaine; Minogue, Catherine E; Ulbrich, Arne; Hutchins, Paul D; Wilkerson, Emily M; Ruan, Zheng; Aydin, Deniz; Hebert, Alexander S; Guo, Xiao; Freiberger, Elyse C; Reutenauer, Laurence; Jochem, Adam; Chergova, Maya; Johnson, Isabel E; Lohman, Danielle C; Rush, Matthew J P; Kwiecien, Nicholas W; Singh, Pankaj K; Schlagowski, Anna I; Floyd, Brendan J; Forsman, Ulrika; Sindelar, Pavel J; Westphall, Michael S; Pierrel, Fabien; Zoll, Joffrey; Dal Peraro, Matteo; Kannan, Natarajan; Bingman, Craig A; Coon, Joshua J; Isope, Philippe; Puccio, Hélène; Pagliarini, David J

    2016-08-18

    The UbiB protein kinase-like (PKL) family is widespread, comprising one-quarter of microbial PKLs and five human homologs, yet its biochemical activities remain obscure. COQ8A (ADCK3) is a mammalian UbiB protein associated with ubiquinone (CoQ) biosynthesis and an ataxia (ARCA2) through unclear means. We show that mice lacking COQ8A develop a slowly progressive cerebellar ataxia linked to Purkinje cell dysfunction and mild exercise intolerance, recapitulating ARCA2. Interspecies biochemical analyses show that COQ8A and yeast Coq8p specifically stabilize a CoQ biosynthesis complex through unorthodox PKL functions. Although COQ8 was predicted to be a protein kinase, we demonstrate that it lacks canonical protein kinase activity in trans. Instead, COQ8 has ATPase activity and interacts with lipid CoQ intermediates, functions that are likely conserved across all domains of life. Collectively, our results lend insight into the molecular activities of the ancient UbiB family and elucidate the biochemical underpinnings of a human disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Deep Brain Stimulation for Tremor Associated with Underlying Ataxia Syndromes: A Case Series and Discussion of Issues

    Directory of Open Access Journals (Sweden)

    Genko Oyama

    2014-07-01

    Full Text Available Background: Deep brain stimulation (DBS has been utilized to treat various symptoms in patients suffering from movement disorders such as Parkinson's disease, dystonia, and essential tremor. Though ataxia syndromes have not been formally or frequently addressed with DBS, there are patients with ataxia and associated medication refractory tremor or dystonia who may potentially benefit from therapy.Methods: A retrospective database review was performed, searching for cases of ataxia where tremor and/or dystonia were addressed by utilizing DBS at the University of Florida Center for Movement Disorders and Neurorestoration between 2008 and 2011. Five patients were found who had DBS implantation to address either medication refractory tremor or dystonia. The patient's underlying diagnoses included spinocerebellar ataxia type 2 (SCA2, fragile X associated tremor ataxia syndrome (FXTAS, a case of idiopathic ataxia (ataxia not otherwise specified [NOS], spinocerebellar ataxia type 17 (SCA17, and a senataxin mutation (SETX.Results: DBS improved medication refractory tremor in the SCA2 and the ataxia NOS patients. The outcome for the FXTAS patient was poor. DBS improved dystonia in the SCA17 and SETX patients, although dystonia did not improve in the lower extremities of the SCA17 patient. All patients reported a transient gait dysfunction postoperatively, and there were no reports of improvement in ataxia‐related symptoms.Discussion: DBS may be an option to treat tremor, inclusive of dystonic tremor in patients with underlying ataxia; however, gait and other symptoms may possibly be worsened.Erratum published on July 27, 2016

  4. The Diagnostic Accuracy of Truncal Ataxia and HINTS as Cardinal Signs for Acute Vestibular Syndrome

    Directory of Open Access Journals (Sweden)

    Sergio Carmona

    2016-08-01

    Full Text Available The head impulse, nystagmus type, test of skew (HINTS protocol set a new paradigm to differentiate peripheral vestibular disease from stroke in patients with acute vestibular syndrome (AVS. The relationship between degree of truncal ataxia and stroke has not been systematically studied in patients with AVS. We studied a group of 114 patients who were admitted to a General Hospital due to AVS, 72 of them with vestibular neuritis (based on positive head impulse, abnormal caloric tests and negative MRI, and the rest with Stroke: 32 in the PICA territory (positive HINTS findings, positive MRI and 10 in the AICA territory (variable findings and grade 3 Ataxia, positive MRI. Truncal ataxia was measured by independent observers as grade 1, mild to moderate imbalance with walking independently; grade 2, severe imbalance with standing, but cannot walk without support; and grade 3, falling at upright posture.When we applied the HINTS protocol to our sample, we obtained 100% sensitivity and 94.4% specificity, similar to previously published findings. Only those patients with stroke presented with grade 3 ataxia. Of those with grade 2 ataxia (n = 38, 11 had cerebellar stroke and 28 had vestibular neuritis, not related to the patient's age. Grade 2-3 ataxia was 92.9% sensitive and 61.1% specific to detect AICA/PICA stroke in patients with AVS, with 100% sensitivity to detect AICA stroke. In turn, two signs (nystagmus of central origin and grade 2-3 Ataxia had 100% sensitivity and 61.1% specificity. Ataxia is less sensitive than HINTS but much easier to evaluate.

  5. Cerebellar Ataxia from Multiple Potential Causes: Hypothyroidism, Hashimoto's Thyroiditis, Thalamic Stimulation, and Essential Tremor

    Directory of Open Access Journals (Sweden)

    Natalya V. Shneyder

    2012-04-01

    Full Text Available Background: Both hypothyroidism and Hashimoto's thyroiditis (HT can rarely be associated with cerebellar ataxia. Severe essential tremor (ET as well as bilateral thalamic deep brain stimulation (DBS may lead to subtle cerebellar signs. Case Report: We report a 74-year-old male with hypothyroidism and a 20-year history of ET who developed cerebellar ataxia after bilateral thalamic DBS. Extensive workup revealed elevated thyroid stimulating hormone and thyroperoxidase antibody titers confirming the diagnosis of HT. Discussion: Our case demonstrates multiple possible causes of cerebellar ataxia in a patient, including hypothyroidism, HT, chronic ET, and bilateral thalamic DBS. Counseling of patients may be appropriate when multiple risk factors for cerebellar ataxia coexist in one individual.

  6. Genetic testing for clinically suspected spinocerebellar ataxias ...

    Indian Academy of Sciences (India)

    Mahesh

    Research Article. Genetic ... Melbourne, Australia and Department of Animal Science, School of Life .... The patients were assessed according to the International Cooperative Ataxia Rating ..... The Indian Journal of Medical Research 126(5):.

  7. The Colibactin Genotoxin Generates DNA Interstrand Cross-Links in Infected Cells

    Directory of Open Access Journals (Sweden)

    Nadège Bossuet-Greif

    2018-03-01

    Full Text Available Colibactins are hybrid polyketide-nonribosomal peptides produced by Escherichia coli, Klebsiella pneumoniae, and other Enterobacteriaceae harboring the pks genomic island. These genotoxic metabolites are produced by pks-encoded peptide-polyketide synthases as inactive prodrugs called precolibactins, which are then converted to colibactins by deacylation for DNA-damaging effects. Colibactins are bona fide virulence factors and are suspected of promoting colorectal carcinogenesis when produced by intestinal E. coli. Natural active colibactins have not been isolated, and how they induce DNA damage in the eukaryotic host cell is poorly characterized. Here, we show that DNA strands are cross-linked covalently when exposed to enterobacteria producing colibactins. DNA cross-linking is abrogated in a clbP mutant unable to deacetylate precolibactins or by adding the colibactin self-resistance protein ClbS, confirming the involvement of the mature forms of colibactins. A similar DNA-damaging mechanism is observed in cellulo, where interstrand cross-links are detected in the genomic DNA of cultured human cells exposed to colibactin-producing bacteria. The intoxicated cells exhibit replication stress, activation of ataxia-telangiectasia and Rad3-related kinase (ATR, and recruitment of the DNA cross-link repair Fanconi anemia protein D2 (FANCD2 protein. In contrast, inhibition of ATR or knockdown of FANCD2 reduces the survival of cells exposed to colibactin-producing bacteria. These findings demonstrate that DNA interstrand cross-linking is the critical mechanism of colibactin-induced DNA damage in infected cells.

  8. Clinical neurogenetics: fragile x-associated tremor/ataxia syndrome.

    Science.gov (United States)

    Hall, Deborah A; O'Keefe, Joan A

    2013-11-01

    This article summarizes the clinical findings, genetics, pathophysiology, and treatment of fragile X-associated tremor ataxia syndrome. The disorder occurs from a CGG repeat (55-200) expansion in the fragile X mental retardation 1 gene. It manifests clinically in kinetic tremor, gait ataxia, and executive dysfunction, usually in older men who carry the genetic abnormality. The disorder has distinct radiographic and pathologic findings. Symptomatic treatment is beneficial in some patients. The inheritance is X-linked and family members may be at risk for other fragile X-associated disorders. This information is useful to neurologists, general practitioners, and geneticists. Copyright © 2013. Published by Elsevier Inc.

  9. Germline variants in the ATM gene and breast cancer susceptibility ...

    African Journals Online (AJOL)

    Chaymaa Marouf

    2017-03-06

    Mar 6, 2017 ... Results: We did not detect the ATM c.7271T > G and c.1066–6T > G (IVS10–6T > G) ..... [8] Lavin MF, Shiloh Y. The genetic defect in ataxia-telangiectasia. .... [36] Inskip HM, Kinlen LJ, Taylor AM, Woods CG, Arlett CF. Risk of ...

  10. Downregulated Ku70 and ATM associated to poor prognosis in colorectal cancer among Chinese patients

    Directory of Open Access Journals (Sweden)

    Lu YF

    2014-10-01

    Full Text Available Yuanfang Lu,1,2 Jingyan Gao,1,3 Yuanming Lu,1 1Department of Toxicology, School of Public Health, Guilin Medical University, Guangxi, People's Republic of China; 2Department of Clinical Research Center, Affiliated 2nd Hospital of Nanjing Medical University, Nanjing, People's Republic of China; 3Department of Human Anatomy and Histo-Embryology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China Background: Double-strand DNA breaks (DSBs are a key factor in carcinogenesis. The necessary repair of DSBs is pivotal in maintaining normal cell division. To address the relationship between altered expression of DSB repair of proteins Ku70 and ataxia-telangiectasia mutated (ATM in colorectal cancer (CRC, we examined the expression levels and patterns of Ku70 and ATM in CRC samples. Methods: Expression and coexpression of Ku70 and ATM were investigated by using real-time quantitative polymerase chain reaction assays and confirmed further with fluorescent immunohistochemistry in CRC and pericancerous samples from 112 Chinese patients. Results: Downexpression patterns for both Ku70 and ATM were found in the CRC samples and were significantly associated with advanced tumor node metastasis stage and decreased 5-year overall survival rate. Conclusion: Downregulated Ku70 and ATM were associated with poor disease-free survival. Loss of Ku70 and ATM expression might act as a biomarker to predict poor prognosis in patients with CRC. Keywords: DNA double-strand breaks, ataxia-telangiectasia mutated, Ku70, colorectal cancer

  11. Treatment of Laryngeal Telangiectatic Lesions in a Patient Diagnosed with Hereditary Haemorrhagic Telangiectasia

    DEFF Research Database (Denmark)

    Kjeldsen, Anette Drøhse; Printz, Trine; Slot Mehlum, Camilla

    2015-01-01

    Abstract We here present a case concerning a 69 year old female patient with Hereditary Haemorrhagic Telangiectasia (HHT). She was suffering from hoarseness due to a telangiectatic lesion on the right vocal cord. The lesion was treated with laser and the voice improved markedly, which is document...

  12. Global Gene Expression Profiling of Telangiectasial Tissue from Patients with Hereditary Haemorrhagic Telangiectasia

    DEFF Research Database (Denmark)

    Tørring, Pernille M; Larsen, Martin Jakob; Kjeldsen, Anette D

    2015-01-01

    and arteriovenous malformations in visceral organs, primarily the lungs, brain and liver. The most common symptom in HHT is epistaxis originating from nasal telangiectasia, which can be difficult to prevent and can lead to severe anaemia. The clinical manifestations of HHT are extremely variable, even within family...

  13. Establishment and Maintenance of Primary Fibroblast Repositories for Rare Diseases-Friedreich's Ataxia Example.

    Science.gov (United States)

    Li, Yanjie; Polak, Urszula; Clark, Amanda D; Bhalla, Angela D; Chen, Yu-Yun; Li, Jixue; Farmer, Jennifer; Seyer, Lauren; Lynch, David; Butler, Jill S; Napierala, Marek

    2016-08-01

    Friedreich's ataxia (FRDA) represents a rare neurodegenerative disease caused by expansion of GAA trinucleotide repeats in the first intron of the FXN gene. The number of GAA repeats in FRDA patients varies from approximately 60 to repositories, especially in the context of rare and heterogeneous disorders, are presented. Although the economic aspect of creating and maintaining such repositories is important, the benefits of easy access to a collection of well-characterized cell lines for the purpose of drug discovery or disease mechanism studies overshadow the associated costs. Importantly, all FRDA fibroblast cell lines collected in our repository are available to the scientific community.

  14. Dominant KCNA2 mutation causes episodic ataxia and pharmacoresponsive epilepsy.

    Science.gov (United States)

    Corbett, Mark A; Bellows, Susannah T; Li, Melody; Carroll, Renée; Micallef, Silvana; Carvill, Gemma L; Myers, Candace T; Howell, Katherine B; Maljevic, Snezana; Lerche, Holger; Gazina, Elena V; Mefford, Heather C; Bahlo, Melanie; Berkovic, Samuel F; Petrou, Steven; Scheffer, Ingrid E; Gecz, Jozef

    2016-11-08

    To identify the genetic basis of a family segregating episodic ataxia, infantile seizures, and heterogeneous epilepsies and to study the phenotypic spectrum of KCNA2 mutations. A family with 7 affected individuals over 3 generations underwent detailed phenotyping. Whole genome sequencing was performed on a mildly affected grandmother and her grandson with epileptic encephalopathy (EE). Segregating variants were filtered and prioritized based on functional annotations. The effects of the mutation on channel function were analyzed in vitro by voltage clamp assay and in silico by molecular modeling. KCNA2 was sequenced in 35 probands with heterogeneous phenotypes. The 7 family members had episodic ataxia (5), self-limited infantile seizures (5), evolving to genetic generalized epilepsy (4), focal seizures (2), and EE (1). They had a segregating novel mutation in the shaker type voltage-gated potassium channel KCNA2 (CCDS_827.1: c.765_773del; p.255_257del). A rare missense SCN2A (rs200884216) variant was also found in 2 affected siblings and their unaffected mother. The p.255_257del mutation caused dominant negative loss of channel function. Molecular modeling predicted repositioning of critical arginine residues in the voltage-sensing domain. KCNA2 sequencing revealed 1 de novo mutation (CCDS_827.1: c.890G>A; p.Arg297Gln) in a girl with EE, ataxia, and tremor. A KCNA2 mutation caused dominantly inherited episodic ataxia, mild infantile-onset seizures, and later generalized and focal epilepsies in the setting of normal intellect. This observation expands the KCNA2 phenotypic spectrum from EE often associated with chronic ataxia, reflecting the marked variation in severity observed in many ion channel disorders. © 2016 American Academy of Neurology.

  15. Requirement of ATR for maintenance of intestinal stem cells in aging Drosophila.

    Science.gov (United States)

    Park, Joung-Sun; Na, Hyun-Jin; Pyo, Jung-Hoon; Jeon, Ho-Jun; Kim, Young-Shin; Yoo, Mi-Ae

    2015-05-01

    The stem cell genomic stability forms the basis for robust tissue homeostasis, particularly in high-turnover tissues. For the genomic stability, DNA damage response (DDR) is essential. This study was focused on the role of two major DDR-related factors, ataxia telangiectasia-mutated (ATM) and ATM- and RAD3-related (ATR) kinases, in the maintenance of intestinal stem cells (ISCs) in the adultDrosophila midgut. We explored the role of ATM and ATR, utilizing immunostaining with an anti-pS/TQ antibody as an indicator of ATM/ATR activation, γ-irradiation as a DNA damage inducer, and the UAS/GAL4 system for cell type-specific knockdown of ATM, ATR, or both during adulthood. The results showed that the pS/TQ signals got stronger with age and after oxidative stress. The pS/TQ signals were found to be more dependent on ATR rather than on ATM in ISCs/enteroblasts (EBs). Furthermore, an ISC/EB-specific knockdown of ATR, ATM, or both decreased the number of ISCs and oxidative stress-induced ISC proliferation. The phenotypic changes that were caused by the ATR knockdown were more pronounced than those caused by the ATM knockdown; however, our data indicate that ATR and ATM are both needed for ISC maintenance and proliferation; ATR seems to play a bigger role than does ATM.

  16. Mesenchymal stem cells restore frataxin expression and increase hydrogen peroxide scavenging enzymes in Friedreich ataxia fibroblasts.

    Directory of Open Access Journals (Sweden)

    Kevin Kemp

    Full Text Available Dramatic advances in recent decades in understanding the genetics of Friedreich ataxia (FRDA--a GAA triplet expansion causing greatly reduced expression of the mitochondrial protein frataxin--have thus far yielded no therapeutic dividend, since there remain no effective treatments that prevent or even slow the inevitable progressive disability in affected individuals. Clinical interventions that restore frataxin expression are attractive therapeutic approaches, as, in theory, it may be possible to re-establish normal function in frataxin deficient cells if frataxin levels are increased above a specific threshold. With this in mind several drugs and cytokines have been tested for their ability to increase frataxin levels. Cell transplantation strategies may provide an alternative approach to this therapeutic aim, and may also offer more widespread cellular protective roles in FRDA. Here we show a direct link between frataxin expression in fibroblasts derived from FRDA patients with both decreased expression of hydrogen peroxide scavenging enzymes and increased sensitivity to hydrogen peroxide-mediated toxicity. We demonstrate that normal human mesenchymal stem cells (MSCs induce both an increase in frataxin gene and protein expression in FRDA fibroblasts via secretion of soluble factors. Finally, we show that exposure to factors produced by human MSCs increases resistance to hydrogen peroxide-mediated toxicity in FRDA fibroblasts through, at least in part, restoring the expression of the hydrogen peroxide scavenging enzymes catalase and glutathione peroxidase 1. These findings suggest, for the first time, that stem cells may increase frataxin levels in FRDA and transplantation of MSCs may offer an effective treatment for these patients.

  17. A panel study on patients with dominant cerebellar ataxia highlights the frequency of channelopathies.

    Science.gov (United States)

    Coutelier, Marie; Coarelli, Giulia; Monin, Marie-Lorraine; Konop, Juliette; Davoine, Claire-Sophie; Tesson, Christelle; Valter, Rémi; Anheim, Mathieu; Behin, Anthony; Castelnovo, Giovanni; Charles, Perrine; David, Albert; Ewenczyk, Claire; Fradin, Mélanie; Goizet, Cyril; Hannequin, Didier; Labauge, Pierre; Riant, Florence; Sarda, Pierre; Sznajer, Yves; Tison, François; Ullmann, Urielle; Van Maldergem, Lionel; Mochel, Fanny; Brice, Alexis; Stevanin, Giovanni; Durr, Alexandra

    2017-06-01

    Autosomal dominant cerebellar ataxias have a marked heterogeneous genetic background, with mutations in 34 genes identified so far. This large amount of implicated genes accounts for heterogeneous clinical presentations, making genotype-phenotype correlations a major challenge in the field. While polyglutamine ataxias, linked to CAG repeat expansions in genes such as ATXN1, ATXN2, ATXN3, ATXN7, CACNA1A and TBP, have been extensively characterized in large cohorts, there is a need for comprehensive assessment of frequency and phenotype of more 'conventional' ataxias. After exclusion of CAG/polyglutamine expansions in spinocerebellar ataxia genes in 412 index cases with dominantly inherited cerebellar ataxias, we aimed to establish the relative frequencies of mutations in other genes, with an approach combining panel sequencing and TaqMan® polymerase chain reaction assay. We found relevant genetic variants in 59 patients (14.3%). The most frequently mutated were channel genes [CACNA1A (n = 16), KCND3 (n = 4), KCNC3 (n = 2) and KCNA1 (n = 2)]. Deletions in ITPR1 (n = 11) were followed by biallelic variants in SPG7 (n = 9). Variants in AFG3L2 (n = 7) came next in frequency, and variants were rarely found in STBN2 (n = 2), ELOVL5, FGF14, STUB1 and TTBK2 (n = 1 each). Interestingly, possible risk factor variants were detected in SPG7 and POLG. Clinical comparisons showed that ataxias due to channelopathies had a significantly earlier age at onset with an average of 24.6 years, versus 40.9 years for polyglutamine expansion spinocerebellar ataxias and 37.8 years for SPG7-related forms (P = 0.001). In contrast, disease duration was significantly longer in the former (20.5 years versus 9.3 and 13.7, P=0.001), though for similar functional stages, indicating slower progression of the disease. Of interest, intellectual deficiency was more frequent in channel spinocerebellar ataxias, while cognitive impairment in adulthood was similar among the three groups. Similar

  18. Red Dot Basal Cell Carcinoma: An Unusual Variant of a Common Malignancy.

    Science.gov (United States)

    Loh, Tiffany Y; Cohen, Philip R

    2016-05-01

    Red dot basal cell carcinoma is a distinct but rare subtype of basal cell carcinoma (BCC). It presents as a red macule or papule; therefore, in most cases, it may easily be mistaken for a benign vascular lesion, such as a telangiectasia or angioma. A red dot BCC in an older woman is described. Clinical and histological differences between red dot BCCs and telangiectasias are described. A 72-year-old woman initially presented with a painless red macule on her nose. Biopsy of the lesion established the diagnosis of a red dot BCC. Pubmed was searched for the following terms: angioma, basal cell carcinoma, dermoscope, diascopy, red dot, non-melanoma skin cancer, telangiectasia, and vascular. The papers were reviewed for cases of red dot basal cell carcinoma. Clinical and histological characteristics of red dot basal cell carcinoma and telangiectasias were compared. Red dot BCC is an extremely rare variant of BCC that may be confused with benign vascular lesions. Although BCCs rarely metastasize and are associated with low mortality, they have the potential to become locally invasive and destructive if left untreated. Thus, a high index of suspicion for red dot BCC is necessary. J Drugs Dermatol. 2016;15(5):645-647.

  19. Reactive Oxygen Species (ROS)-Activated ATM-Dependent Phosphorylation of Cytoplasmic Substrates Identified by Large-Scale Phosphoproteomics Screen*

    Science.gov (United States)

    Kozlov, Sergei V.; Waardenberg, Ashley J.; Engholm-Keller, Kasper; Arthur, Jonathan W.; Graham, Mark E.; Lavin, Martin

    2016-01-01

    Ataxia-telangiectasia, mutated (ATM) protein plays a central role in phosphorylating a network of proteins in response to DNA damage. These proteins function in signaling pathways designed to maintain the stability of the genome and minimize the risk of disease by controlling cell cycle checkpoints, initiating DNA repair, and regulating gene expression. ATM kinase can be activated by a variety of stimuli, including oxidative stress. Here, we confirmed activation of cytoplasmic ATM by autophosphorylation at multiple sites. Then we employed a global quantitative phosphoproteomics approach to identify cytoplasmic proteins altered in their phosphorylation state in control and ataxia-telangiectasia (A-T) cells in response to oxidative damage. We demonstrated that ATM was activated by oxidative damage in the cytoplasm as well as in the nucleus and identified a total of 9,833 phosphorylation sites, including 6,686 high-confidence sites mapping to 2,536 unique proteins. A total of 62 differentially phosphorylated peptides were identified; of these, 43 were phosphorylated in control but not in A-T cells, and 19 varied in their level of phosphorylation. Motif enrichment analysis of phosphopeptides revealed that consensus ATM serine glutamine sites were overrepresented. When considering phosphorylation events, only observed in control cells (not observed in A-T cells), with predicted ATM sites phosphoSerine/phosphoThreonine glutamine, we narrowed this list to 11 candidate ATM-dependent cytoplasmic proteins. Two of these 11 were previously described as ATM substrates (HMGA1 and UIMCI/RAP80), another five were identified in a whole cell extract phosphoproteomic screens, and the remaining four proteins had not been identified previously in DNA damage response screens. We validated the phosphorylation of three of these proteins (oxidative stress responsive 1 (OSR1), HDGF, and ccdc82) as ATM dependent after H2O2 exposure, and another protein (S100A11) demonstrated ATM

  20. A Survey on 100 Children with Acute Ataxia in Mofid Children Hospital Tehran, Iran

    Directory of Open Access Journals (Sweden)

    Parvaneh Karim-Zadeh

    2003-04-01

    Full Text Available Objective: The term “Ataxia” is used to denote disturbances of the body posture and its movement that are normally controlled by the cerebellum. frontal lobes and the posterior columns of the spinal cord. The initial symptom and the most prominent feature of ataxia is abnormal gait which is characterized by lurching and wide base walking. Knowing that, the acute ataxia is among those problems that brings very soon the child to pediatrics neurology department and in view of lack of any survey in this neid in our country, we decided to investigate the etiology of acute ataxia in Islamic Republic of Iran. Materials & Methods: Our patients were recruited from 100 children who were brought to neurology service of Mofid children hospital with the chief complaint of acute ataxia over 2 years period. (sep 2001 to sep 2003. All of those 100 patients were admitted and required investigations were performed. Results: Results of our workup revealed that the most common cause of acute ataxia is acute cerebellar one, which all of them preceded by viral febrile illness. The second frequent cause of acute. Ataxia is due to drug intoxication, which commonly was observed between 2 – 4 years period. Conclusion: The remaining etiologies in descending frequency were as follow, Infectious polyneuropathy, Migraine, Opsoclonus – Myoclonus, Brain tumor, ADEM,MS and Epilepsy.

  1. Cerebellar transcranial direct current stimulation in patients with ataxia: A double-blind, randomized, sham-controlled study.

    Science.gov (United States)

    Benussi, Alberto; Koch, Giacomo; Cotelli, Maria; Padovani, Alessandro; Borroni, Barbara

    2015-10-01

    Numerous studies have highlighted the possibility of modulating the excitability of cerebellar circuits using transcranial direct current stimulation. The present study investigated whether a single session of cerebellar anodal transcranial direct current stimulation could improve symptoms in patients with ataxia. Nineteen patients with ataxia underwent a clinical and functional evaluation pre- and post-double-blind, randomized, sham, or anodal transcranial direct current stimulation. There was a significant interaction between treatment and time on the Scale for the Assessment and Rating of Ataxia, on the International Cooperative Ataxia Rating Scale, on the 9-Hole Peg Test, and on the 8-Meter Walking Time (P transcranial direct current stimulation can transiently improve symptoms in patients with ataxia and might represent a promising tool for future rehabilitative approaches. © 2015 International Parkinson and Movement Disorder Society.

  2. Low dose ionizing radiation responses and knockdown of ATM kinase activity in glioma stem cells

    International Nuclear Information System (INIS)

    Lim, Y.C.; Roberts, T.; Day, B.; Kozlov, S.; Walker, D.; Lavin, M.; Harding, A.

    2009-01-01

    Genesis of new cells in the mammalian brain has previously been regarded as a negligible event; an assumption that long limited our understanding in the development of neoplasias. The recent discovery of perpetual lineages derived from neural stem cells has resulted in a new approach to studying the cellular behaviour of potential cancer stem cells in the brain. Glioblastoma multiforme (GBM), the most aggressive and lethal brain tumour is derived from a group of cancerous stem cells known as glioma stem cells. GBM cells are impervious to conventional therapies such as surgical resection and ionizing radiation because of their pluripotent and radioresistant properties. Thus in our study, we aim to investigate whether a combination of chemo- and radio- therapies is an effective treatment for glioma stem cells. The study utilizes a specific kinase inhibitor (ATMi) of the ATM (Ataxia-telangiectasia mutated) protein which is an essential protein in DNA-damage responses. In the presence of both low dose radiation and ATMi, glioma stem cells have rapid onset of cell death and reduction in growth. Since DNA damage can be inherited through cell division, accumulated DNA breaks in later generations may also lead to cell death. The limitation of conventional radiation therapy is that administration of fractionated (low) doses to reduce any potential harm to the surrounding healthy cells in the brain outweighs the benefits of high radiation doses to induce actual arrest in the propagation of malignant cells. Our study demonstrates a benefit in using low dose radiation combined with chemotherapy resulting in a reduction in malignancy of glioma stem cells. (author)

  3. Clinical symptoms according to genotype amongst patients with hereditary haemorrhagic telangiectasia

    DEFF Research Database (Denmark)

    Kjeldsen, A D; Møller, T R; Brusgaard, K

    2005-01-01

    BACKGROUND: Hereditary haemorrhagic telangiectasia (HHT) is a dominantly inherited disease, characterized by a wide variety of clinical manifestations, including epistaxis, gastrointestinal (GI) bleeding, pulmonary arteriovenous malformations (PAVMs) and neurological symptoms. HHT is a genetically...... patients had experienced more severe GI bleeding than HHT2 patients. There was no significant difference in severity of epistaxis or age at debut. Finally the mortality over a 90-month observation period was not significantly increased....

  4. Deep Brain Stimulation for the Treatment of Tremor and Ataxia Associated with Abetalipoproteinemia

    Directory of Open Access Journals (Sweden)

    Antonios Mammis

    2012-07-01

    Full Text Available Background: Abetalipoproteinemia is a rare disorder of fat absorption, characterized by vitamin deficiency, acanthocytosis, and neurologic symptoms including ataxia and tremor.Case Report: A 41-year-old male with abetalipoproteinemia is presented. He underwent staged bilateral thalamic deep brain stimulation (DBS for the treatment of his tremors. After DBS, the patient achieved significant improvements in his tremors, ataxia, and quality of life.Discussion: Thalamic DBS proved to be both safe and efficacious in the management of ataxia and tremors in a patient with abetalipoproteinemia. This is the first report of DBS in abetalipoproteinemia in the literature. 

  5. The inherited basis of human radiosensitivity

    International Nuclear Information System (INIS)

    Gatti, R.A.

    2001-01-01

    Certain individuals cannot tolerate 'conventional' doses of radiation therapy. This is known to be true of patients with ataxia-telangiectasia and ligase IV deficiency. Although in vitro testing may not correlate completely with clinical radiosensitivity, fibroblasts and lymphoblasts from patients with both of these disorders have been clearly shown to be radiosensitive. Using a colony survival assay (CSA) to test lymphoblastoid cells after irradiation with 1 Gy, a variety of other genetic disorders have been identified as strong candidates for clinical radiosensitivity, such as Nijmegen breakage syndrome, Mre11 deficiency, and Fanconi's anemia. These data are presented and considered as a starting-point for the inherited basis of human radiosensitivity

  6. ATM signaling and 53BP1

    International Nuclear Information System (INIS)

    Zgheib, Omar; Huyen, Yentram; DiTullio, Richard A.; Snyder, Andrew; Venere, Monica; Stavridi, Elena S.; Halazonetis, Thanos D.

    2005-01-01

    The ATM (mutated in Ataxia-Telangiectasia) protein kinase is an important player in signaling the presence of DNA double strand breaks (DSBs) in higher eukaryotes. Recent studies suggest that ATM monitors the presence of DNA DSBs indirectly, through DNA DSB-induced changes in chromatin structure. One of the proteins that sense these chromatin structure changes is 53BP1, a DNA damage checkpoint protein conserved in all eukaryotes and the putative ortholog of the S. cerevisiae RAD9 protein. We review here the mechanisms by which ATM is activated in response to DNA DSBs, as well as key ATM substrates that control cell cycle progression, apoptosis and DNA repair

  7. Distinctive features of single nucleotide alterations in induced pluripotent stem cells with different types of DNA repair deficiency disorders

    Science.gov (United States)

    Okamura, Kohji; Sakaguchi, Hironari; Sakamoto-Abutani, Rie; Nakanishi, Mahito; Nishimura, Ken; Yamazaki-Inoue, Mayu; Ohtaka, Manami; Periasamy, Vaiyapuri Subbarayan; Alshatwi, Ali Abdullah; Higuchi, Akon; Hanaoka, Kazunori; Nakabayashi, Kazuhiko; Takada, Shuji; Hata, Kenichiro; Toyoda, Masashi; Umezawa, Akihiro

    2016-01-01

    Disease-specific induced pluripotent stem cells (iPSCs) have been used as a model to analyze pathogenesis of disease. In this study, we generated iPSCs derived from a fibroblastic cell line of xeroderma pigmentosum (XP) group A (XPA-iPSCs), a rare autosomal recessive hereditary disease in which patients develop skin cancer in the areas of skin exposed to sunlight. XPA-iPSCs exhibited hypersensitivity to ultraviolet exposure and accumulation of single-nucleotide substitutions when compared with ataxia telangiectasia-derived iPSCs that were established in a previous study. However, XPA-iPSCs did not show any chromosomal instability in vitro, i.e. intact chromosomes were maintained. The results were mutually compensating for examining two major sources of mutations, nucleotide excision repair deficiency and double-strand break repair deficiency. Like XP patients, XPA-iPSCs accumulated single-nucleotide substitutions that are associated with malignant melanoma, a manifestation of XP. These results indicate that XPA-iPSCs may serve a monitoring tool (analogous to the Ames test but using mammalian cells) to measure single-nucleotide alterations, and may be a good model to clarify pathogenesis of XP. In addition, XPA-iPSCs may allow us to facilitate development of drugs that delay genetic alteration and decrease hypersensitivity to ultraviolet for therapeutic applications. PMID:27197874

  8. Telangiectasia hemorrágica hereditária: ácido tranexâmico no tratamento de úlcera plantar Hereditary hemorrhagic telangiectasia: tranexamic acid for plantar ulcer

    Directory of Open Access Journals (Sweden)

    Gabriella Corrêa de Albuquerque

    2005-12-01

    Full Text Available Relato de um caso de úlcera plantar por fístula arteriovenosa em paciente portador de telangiectasia hemorrágica hereditária ou doença de Rendu-Osler-Weber tratado com ácido tranexâmico. Este fármaco é utilizado para tratamento de epistaxe, referindo-se o principal achado deste artigo ao uso eficaz desse medicamento na terapia de úlceras plantares hemorrágicas. São descritos os aspectos fisiopatológicos e clínicos da doença e as propriedades antifibrinolíticas do ácido tranexâmico. Este foi bem tolerado e apresentou evidências de eficácia na utilização para controle do sangramento e cicatrização da úlcera.Case report of one patient with Hereditary Hemorrhagic Telangiectasia, also known as Rendu-Osler-Weber syndrome, treated with Tranexamic Acid for arteriovenous plantar ulcer. This drug has proved effective in controlling epistaxis, but the main point of this report is to expose the success use of this medication in the therapy of skin bleeding ulcer. The pathophysiologic and clinical features of the disease are reviewed and also the pharmacological aspects of the antifibrinolytic drugs. This drug was well tolerated by the patient and show evidence of good activity in the bleeding and healed the ulcer.

  9. Pim-3 contributes to radioresistance through regulation of the cell cycle and DNA damage repair in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang-Yuan; Wang, Zhen [Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Li, Bei [Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Zhang, Ying-Jian, E-mail: yjzhang111@aliyun.com [Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Li, Ying-Yi, E-mail: liyingyi@fudan.edu.cn [Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China)

    2016-04-22

    Resistance of cancer cells to chemoradiotherapy is a major clinical problem in pancreatic cancer treatment. Therefore, understanding the molecular basis of cellular resistance and identifying novel targets are essential for improving treatment efficacy for pancreatic cancer patients. Previous studies have demonstrated a significant role for Pim-3 in pancreatic cancer survival against gemcitabine-induced genotoxic stress. Here, we observed that radiation treatment enhanced Pim-3 expression in human pancreatic cancer cells in vitro. Stable overexpression of Pim-3 in pancreatic cancer cells significantly protected cells against radiation treatment by attenuating G2/M phase cell cycle arrest and DNA damage response. Silencing of Pim-3 expression significantly elevated the phosphorylation of histone variant H2AX, a marker of DNA double strand breaks, and decreased the activation of ataxia-telangiectasia-mutated (ATM) kinase, along with its downstream targets, eventually enhancing the radiosensitivity of human pancreatic cancer cells in vitro and in vivo. Hence, we demonstrated a novel function for Pim-3 in human pancreatic cancer cell survival against radiation. Targeting Pim-3 may be a promising way to improve treatment efficacy in combination with radiotherapy in human pancreatic cancer. - Highlights: • This is first study to demonstrate that Pim-3 is endogenously induced by ionizing radiation in pancreatic cancer cells, and Pim-3 overexpression enhanced radioresistance of pancreatic cancer cells both in vitro and in vivo. • This is first study to provide evidence that radioresistance induced by Pim-3 is mainly attributed to Pim-3 induces activation of ATM, which subsequently activates checkpoint 1, leading to amplification of DNA repair through cell cycle arrest and DNA repair pathways. • This is first study to indicate that targeting Pim-3 may be a promising strategy to provide better treatment efficacy in combination with radiotherapy in human pancreatic

  10. Pim-3 contributes to radioresistance through regulation of the cell cycle and DNA damage repair in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Chen, Xiang-Yuan; Wang, Zhen; Li, Bei; Zhang, Ying-Jian; Li, Ying-Yi

    2016-01-01

    Resistance of cancer cells to chemoradiotherapy is a major clinical problem in pancreatic cancer treatment. Therefore, understanding the molecular basis of cellular resistance and identifying novel targets are essential for improving treatment efficacy for pancreatic cancer patients. Previous studies have demonstrated a significant role for Pim-3 in pancreatic cancer survival against gemcitabine-induced genotoxic stress. Here, we observed that radiation treatment enhanced Pim-3 expression in human pancreatic cancer cells in vitro. Stable overexpression of Pim-3 in pancreatic cancer cells significantly protected cells against radiation treatment by attenuating G2/M phase cell cycle arrest and DNA damage response. Silencing of Pim-3 expression significantly elevated the phosphorylation of histone variant H2AX, a marker of DNA double strand breaks, and decreased the activation of ataxia-telangiectasia-mutated (ATM) kinase, along with its downstream targets, eventually enhancing the radiosensitivity of human pancreatic cancer cells in vitro and in vivo. Hence, we demonstrated a novel function for Pim-3 in human pancreatic cancer cell survival against radiation. Targeting Pim-3 may be a promising way to improve treatment efficacy in combination with radiotherapy in human pancreatic cancer. - Highlights: • This is first study to demonstrate that Pim-3 is endogenously induced by ionizing radiation in pancreatic cancer cells, and Pim-3 overexpression enhanced radioresistance of pancreatic cancer cells both in vitro and in vivo. • This is first study to provide evidence that radioresistance induced by Pim-3 is mainly attributed to Pim-3 induces activation of ATM, which subsequently activates checkpoint 1, leading to amplification of DNA repair through cell cycle arrest and DNA repair pathways. • This is first study to indicate that targeting Pim-3 may be a promising strategy to provide better treatment efficacy in combination with radiotherapy in human pancreatic

  11. ATM status of the clinically radio-hypersensitive

    International Nuclear Information System (INIS)

    Clarke, R. A.; Hasnain, H.; Goozee, G.; Alvandi, R.; Miller, A.; Kearsley, J.H.; Farrell, A.; Bittell, G.; Chen, P.; Lavin, M.

    1996-01-01

    The aim of this study was to characterise the response to ionising radiation of normal tissues from patients that display early and acute hypersensitivity to radiotherapy. Methods include cell proliferation assay using MTT, induced chromosomal aberration testing, cell cycle response to radiation via FACs, mutation analysis of Ataxia Telangiectasia (AT) gene, p53 and AT Western analysis. It is now well appreciated that standard clinical doses (1.8-2 Gy per fraction per day) produce predictable acute and late toxicity in most patients. Occasionally, however, the standard clinical dose produces acute and late toxicity which can exceed the norm both in their extent and timing. The study confirmed the innate cellular radiosensitivity of the clinically radio-hypersensitive patients. No indication of AT gene mutations was found

  12. Effect of space flight on the frequency of micronuclei and expression of stress-responsive proteins in cultured mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Ikenaga, Mituo; Hirayama, Jun; Kato, Tomohisa [Kyoto Univ. (Japan). Radiation Biology Center] [and others

    2002-12-01

    Results of past space experiments suggest that the biological effect of space radiation could been hanced under microgravity in some cases, especially ininsects. To examine if such a synergistic effect of radiation and microgravity also exists in human cells, frequencies of chromosome instability and cellular levels of several stress-responsive proteins were analyzed incultured human and rodent cells afterspace flight. Human (MCF7 and ataxia telangiectasia(AT)2KY), mouse (m5S) and hamster (Syrian hamster embryo (SHE)) cell lines were loaded on the Space Shuttle Discovery (STS-95 mission) and grown during a 9-daymission. After landing, the micronuclei resulting from abnormal nuclear division and accumulationof stress-responsive proteins such as p53 and mitogen-activated protein kinases (MAPKs), which are involved in radiation-induced signal transduction cascades, were analyzed. The frequencies of micronucleiin all the four mammalian cell strains tested were not significantly different between flight and ground control samples. Also, the cellular amounts of p53, p21 (WAF1/SDI1/CIP1) and activated (phosphorylated) forms of three distinct MAPKs in MCF7 and m5S cells of flight samples were similar to those of ground control samples. These results indicated that anyeffect of space radiation, microgravity, or combination of both were not detectable, at least under thepresent experimental conditions. (author)

  13. 53BP1 loss suppresses the radiosensitizing effect of icotinib hydrochloride in colorectal cancer cells.

    Science.gov (United States)

    Huang, Ai; Yao, Jing; Liu, Tao; Lin, Zhenyu; Zhang, Sheng; Zhang, Tao; Ma, Hong

    2018-04-01

    This study aimed to investigate the influence of the expression of P53-binding protein 1 (53BP1), a key component in DNA damage repair pathways, on the radiosensitizing effect of icotinib hydrochloride in colorectal cancer and to elucidate the mechanisms underlying this influence. Real-time RT-PCR and Western blotting were performed to verify the gene-knockout effect of 53BP1 small hairpin RNA (ShRNA), and colony formation assay was employed to investigate the influence of 53BP1 downregulation on the radiosensitizing effect of icotinib hydrochloride in HCT116 cells. Cell apoptosis, cell cycle distributions, and histone H2AX (γ-H2AX) fluorescence foci after 53BP1 knockdown were evaluated. Relative protein expression in the ataxia telangiectasia mutated kinase (ATM)-checkpoint kinase-2 (CHK2)-P53 pathway was measured by Western blot analysis to unravel the molecular mechanisms linking the pathway to the above phenomena. Icotinib hydrochloride increased the radiosensitivity of HCT116 cells; however, this effect was suppressed by the downregulation of 53BP1 expression, a change that inhibited cell apoptosis, increased the percentage of HCT116 cells arrested in S-phase and inhibited the protein expression of key molecules in the ATM-CHK2-P53 apoptotic pathway. Our studies confirmed that the loss of 53BP1 serves as a negative regulator of the radiosensitizing effect of icotinib in part by suppressing the ATM-CHK2-P53 apoptotic pathway.

  14. A TAD closer to ATM.

    Science.gov (United States)

    Aymard, Francois; Legube, Gaëlle

    2016-05-01

    Ataxia telangiectasia mutated (ATM) has been known for decades as the main kinase mediating the DNA double-strand break response. Our recent findings suggest that its major role at the sites of breaks likely resides in its ability to modify both the local chromatin landscape and the global chromosome organization in order to promote repair accuracy.

  15. The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo.

    Science.gov (United States)

    Vendetti, Frank P; Lau, Alan; Schamus, Sandra; Conrads, Thomas P; O'Connor, Mark J; Bakkenist, Christopher J

    2015-12-29

    ATR and ATM are DNA damage signaling kinases that phosphorylate several thousand substrates. ATR kinase activity is increased at damaged replication forks and resected DNA double-strand breaks (DSBs). ATM kinase activity is increased at DSBs. ATM has been widely studied since ataxia telangiectasia individuals who express no ATM protein are the most radiosensitive patients identified. Since ATM is not an essential protein, it is widely believed that ATM kinase inhibitors will be well-tolerated in the clinic. ATR has been widely studied, but advances have been complicated by the finding that ATR is an essential protein and it is widely believed that ATR kinase inhibitors will be toxic in the clinic. We describe AZD6738, an orally active and bioavailable ATR kinase inhibitor. AZD6738 induces cell death and senescence in non-small cell lung cancer (NSCLC) cell lines. AZD6738 potentiates the cytotoxicity of cisplatin and gemcitabine in NSCLC cell lines with intact ATM kinase signaling, and potently synergizes with cisplatin in ATM-deficient NSCLC cells. In contrast to expectations, daily administration of AZD6738 and ATR kinase inhibition for 14 consecutive days is tolerated in mice and enhances the therapeutic efficacy of cisplatin in xenograft models. Remarkably, the combination of cisplatin and AZD6738 resolves ATM-deficient lung cancer xenografts.

  16. MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN

    International Nuclear Information System (INIS)

    Tan, Guangyun; Shi, Yuling; Wu, Zhao-Hui

    2012-01-01

    Highlights: ► miR-22 is induced in cells treated with UV radiation. ► ATM is required for miR-22 induction in response to UV. ► miR-22 targets 3′-UTR of PTEN to repress its expression in UV-treated cells. ► Upregulated miR-22 inhibits apoptosis in cells exposed to UV. -- Abstract: DNA damage response upon UV radiation involves a complex network of cellular events required for maintaining the homeostasis and restoring genomic stability of the cells. As a new class of players involved in DNA damage response, the regulation and function of microRNAs in response to UV remain poorly understood. Here we show that UV radiation induces a significant increase of miR-22 expression, which appears to be dependent on the activation of DNA damage responding kinase ATM (ataxia telangiectasia mutated). Increased miR-22 expression may result from enhanced miR-22 maturation in cells exposed to UV. We further found that tumor suppressor gene phosphatase and tensin homolog (PTEN) expression was inversely correlated with miR-22 induction and UV-induced PTEN repression was attenuated by overexpression of a miR-22 inhibitor. Moreover, increased miR-22 expression significantly inhibited the activation of caspase signaling cascade, leading to enhanced cell survival upon UV radiation. Collectively, these results indicate that miR-22 is an important player in the cellular stress response upon UV radiation, which may promote cell survival via the repression of PTEN expression.

  17. The ATM and ATR inhibitors CGK733 and caffeine suppress cyclin D1 levels and inhibit cell proliferation

    International Nuclear Information System (INIS)

    Alao, John P; Sunnerhagen, Per

    2009-01-01

    The ataxia telangiectasia mutated (ATM) and the ATM- related (ATR) kinases play a central role in facilitating the resistance of cancer cells to genotoxic treatment regimens. The components of the ATM and ATR regulated signaling pathways thus provide attractive pharmacological targets, since their inhibition enhances cellular sensitivity to chemo- and radiotherapy. Caffeine as well as more specific inhibitors of ATM (KU55933) or ATM and ATR (CGK733) have recently been shown to induce cell death in drug-induced senescent tumor cells. Addition of these agents to cancer cells previously rendered senescent by exposure to genotoxins suppressed the ATM mediated p21 expression required for the survival of these cells. The precise molecular pharmacology of these agents however, is not well characterized. Herein, we report that caffeine, CGK733, and to a lesser extent KU55933, inhibit the proliferation of otherwise untreated human cancer and non-transformed mouse fibroblast cell lines. Exposure of human cancer cell lines to caffeine and CGK733 was associated with a rapid decline in cyclin D1 protein levels and a reduction in the levels of both phosphorylated and total retinoblastoma protein (RB). Our studies suggest that observations based on the effects of these compounds on cell proliferation and survival must be interpreted with caution. The differential effects of caffeine/CGK733 and KU55933 on cyclin D1 protein levels suggest that these agents will exhibit dissimilar molecular pharmacological profiles

  18. Long term clinical and neurophysiological effects of cerebellar transcranial direct current stimulation in patients with neurodegenerative ataxia.

    Science.gov (United States)

    Benussi, Alberto; Dell'Era, Valentina; Cotelli, Maria Sofia; Turla, Marinella; Casali, Carlo; Padovani, Alessandro; Borroni, Barbara

    Neurodegenerative cerebellar ataxias represent a group of disabling disorders for which we currently lack effective therapies. Cerebellar transcranial direct current stimulation (tDCS) is a non-invasive technique, which has been demonstrated to modulate cerebellar excitability and improve symptoms in patients with cerebellar ataxias. The present study investigated whether a two-weeks' treatment with cerebellar anodal tDCS could improve symptoms in patients with neurodegenerative cerebellar ataxia and could modulate cerebello-motor connectivity, at short and long term. We performed a double-blind, randomized, sham controlled trial with cerebellar tDCS (5 days/week for 2 weeks) in twenty patients with ataxia. Each patient underwent a clinical evaluation pre- and post-anodal tDCS or sham stimulation. A follow-up evaluation was performed at one and three months. Cerebello-motor connectivity was evaluated using transcranial magnetic stimulation (TMS) at baseline and at follow-up. Patients who underwent anodal tDCS showed a significant improvement in all performance scores (scale for the assessment and rating of ataxia, international cooperative ataxia rating scale, 9-hole peg test, 8-m walking time) and in cerebellar brain inhibition compared to patients who underwent sham stimulation. A two-weeks' treatment with anodal cerebellar tDCS improves symptoms in patients with ataxia and restores physiological cerebellar brain inhibition pathways. Cerebellar tDCS might represent a promising future therapeutic and rehabilitative approach in patients with neurodegenerative ataxia. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Establishment and Maintenance of Primary Fibroblast Repositories for Rare Diseases—Friedreich's Ataxia Example

    Science.gov (United States)

    Li, Yanjie; Polak, Urszula; Clark, Amanda D.; Bhalla, Angela D.; Chen, Yu-Yun; Li, Jixue; Farmer, Jennifer; Seyer, Lauren; Lynch, David

    2016-01-01

    Friedreich's ataxia (FRDA) represents a rare neurodegenerative disease caused by expansion of GAA trinucleotide repeats in the first intron of the FXN gene. The number of GAA repeats in FRDA patients varies from approximately 60 to repositories, especially in the context of rare and heterogeneous disorders, are presented. Although the economic aspect of creating and maintaining such repositories is important, the benefits of easy access to a collection of well-characterized cell lines for the purpose of drug discovery or disease mechanism studies overshadow the associated costs. Importantly, all FRDA fibroblast cell lines collected in our repository are available to the scientific community. PMID:27002638

  20. Chromosomal Aberrations in Normal and AT Cells Exposed to High Dose of Low Dose Rate Irradiation

    Science.gov (United States)

    Kawata, T.; Shigematsu, N.; Kawaguchi, O.; Liu, C.; Furusawa, Y.; Hirayama, R.; George, K.; Cucinotta, F.

    2011-01-01

    Ataxia telangiectasia (A-T) is a human autosomally recessive syndrome characterized by cerebellar ataxia, telangiectases, immune dysfunction, and genomic instability, and high rate of cancer incidence. A-T cell lines are abnormally sensitive to agents that induce DNA double strand breaks, including ionizing radiation. The diverse clinical features in individuals affected by A-T and the complex cellular phenotypes are all linked to the functional inactivation of a single gene (AT mutated). It is well known that cells deficient in ATM show increased yields of both simple and complex chromosomal aberrations after high-dose-rate irradiation, but, less is known on how cells respond to low-dose-rate irradiation. It has been shown that AT cells contain a large number of unrejoined breaks after both low-dose-rate irradiation and high-dose-rate irradiation, however sensitivity for chromosomal aberrations at low-dose-rate are less often studied. To study how AT cells respond to low-dose-rate irradiation, we exposed confluent normal and AT fibroblast cells to up to 3 Gy of gamma-irradiation at a dose rate of 0.5 Gy/day and analyzed chromosomal aberrations in G0 using fusion PCC (Premature Chromosomal Condensation) technique. Giemsa staining showed that 1 Gy induces around 0.36 unrejoined fragments per cell in normal cells and around 1.35 fragments in AT cells, whereas 3Gy induces around 0.65 fragments in normal cells and around 3.3 fragments in AT cells. This result indicates that AT cells can rejoin breaks less effectively in G0 phase of the cell cycle? compared to normal cells. We also analyzed chromosomal exchanges in normal and AT cells after exposure to 3 Gy of low-dose-rate rays using a combination of G0 PCC and FISH techniques. Misrejoining was detected in the AT cells only? When cells irradiated with 3 Gy were subcultured and G2 chromosomal aberrations were analyzed using calyculin-A induced PCC technique, the yield of unrejoined breaks decreased in both normal and AT

  1. MutLα heterodimers modify the molecular phenotype of Friedreich ataxia.

    Directory of Open Access Journals (Sweden)

    Vahid Ezzatizadeh

    Full Text Available Friedreich ataxia (FRDA, the most common autosomal recessive ataxia disorder, is caused by a dynamic GAA repeat expansion mutation within intron 1 of FXN gene, resulting in down-regulation of frataxin expression. Studies of cell and mouse models have revealed a role for the mismatch repair (MMR MutS-heterodimer complexes and the PMS2 component of the MutLα complex in the dynamics of intergenerational and somatic GAA repeat expansions: MSH2, MSH3 and MSH6 promote GAA repeat expansions, while PMS2 inhibits GAA repeat expansions.To determine the potential role of the other component of the MutLα complex, MLH1, in GAA repeat instability in FRDA, we have analyzed intergenerational and somatic GAA repeat expansions from FXN transgenic mice that have been crossed with Mlh1 deficient mice. We find that loss of Mlh1 activity reduces both intergenerational and somatic GAA repeat expansions. However, we also find that loss of either Mlh1 or Pms2 reduces FXN transcription, suggesting different mechanisms of action for Mlh1 and Pms2 on GAA repeat expansion dynamics and regulation of FXN transcription.Both MutLα components, PMS2 and MLH1, have now been shown to modify the molecular phenotype of FRDA. We propose that upregulation of MLH1 or PMS2 could be potential FRDA therapeutic approaches to increase FXN transcription.

  2. Risk for Sporadic Breast Cancer in Ataxia Telangiectasia Heterozygotes

    Science.gov (United States)

    2001-08-01

    cervix , kidney and colon cancer ) and 1 large benign ovarian tumour (serous cystadenoma), DNp73 was specifically upregulated 3 to 78-fold in 10...solos, alliances and feuds among family members. This article is in press in Biochimica and Biophysica Acta Reviews on Cancer . Appendix: manuscript...role in carcinogenesis, no related genes were known for HPV -mediated cancers (23). However, the adenovirus E4orf6 20 years. In 1997, two novel family

  3. Enfermedad cardiovascular en pacientes cubanos afectados por Ataxia de Friedreich.

    OpenAIRE

    Tania Cruz Mariño; Ana Luz Portelles Caminero; William Áreas Zalazar; Luís Velázquez Pérez

    2010-01-01

    Al describir la ataxia de Friedreich, Nicholaus hizo referencia a la patología cardiaca. Esta enfermedad autosómica recesiva se debe a una mutación dinámica en el gen FRDA, codificándose deficientemente la proteína Frataxina, conduciendo a estrés oxidativo y muerte celular cardiaca. La presente investigación se desarrolló con el objetivo de describir las anomalías cardiovasculares presentes en los pacientes cubanos afectados por ataxia de Friedreich. A los individuos con diagnóstico molecular...

  4. Abnormal brain MRI in a case of acute ataxia as the only sign of abdominal neuroblastoma

    International Nuclear Information System (INIS)

    Molla Mohammadi, M.; Karimzadeh, P.; Khatami, A.; Jadali, F.

    2010-01-01

    Ataxia is a movement disorder that may manifest an acute, intermittent, non progressive or chronic progressive course. Ataxia alone is rare as a para neoplastic sign, especially if it is due to neuroblastoma (abdominal or chest). We report an abdominal neuroblastoma in a two-year-old girl presenting with only acute ataxia and abnormal neuroimaging. Brain MRI showed abnormal signal finding in the medulla, pons, cortico spinal tract and the periventricular space. In the abdominal CT, a mass was detected in the right adrenal gland with calcification and the histopathologic examination re-vealed neuroblastoma. We suggest in children with acute ataxia, with or without opalescence-myoclonus, neuroblastoma should be considered.

  5. Magnetic resonance imaging findings in patients presenting with (sub)acute cerebellar ataxia

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Tanja [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Neuroradiology, Hamburg (Germany); The Johns Hopkins Hospital School of Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, Division of Neuroradiology, Baltimore, MD (United States); Thomalla, Goetz [University Medical Center Hamburg-Eppendorf, Department of Neurology, Hamburg (Germany); Goebell, Einar [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Neuroradiology, Hamburg (Germany); Piotrowski, Anna [The Johns Hopkins University School of Medicine, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD (United States); Yousem, David Mark [The Johns Hopkins Hospital School of Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, Division of Neuroradiology, Baltimore, MD (United States)

    2015-02-17

    Acute or subacute cerebellar inflammation is mainly caused by postinfectious, toxic, neoplastic, vascular, or idiopathic processes and can result in cerebellar ataxia. Previous magnetic resonance (MR) studies in single patients who developed acute or subacute ataxia showed varying imaging features. Eighteen patients presenting with acute and subacute onset of ataxia were included in this study. Cases of chronic-progressive/hereditary and noncerebellar causes (ischemia, multiple sclerosis lesions, metastasis, bleedings) were excluded. MR imaging findings were then matched with the clinical history of the patient. An underlying etiology for ataxic symptoms were found in 14/18 patients (postinfectious/infectious, paraneoplastic, autoimmune, drug-induced). In two of five patients without MR imaging findings and three of eight patients with minimal imaging features (cerebellar atrophy, slight signal alterations, and small areas of restricted diffusion), adverse clinical outcomes were documented. Of the five patients with prominent MR findings (cerebellar swelling, contrast enhancement, or broad signal abnormalities), two were lost to follow-up and two showed long-term sequelae. No correlation was found between the presence of initial MRI findings in subacute or acute ataxia patients and their long-term clinical outcome. MR imaging was more flagrantly positive in cases due to encephalitis. (orig.)

  6. Magnetic resonance imaging findings in patients presenting with (sub)acute cerebellar ataxia.

    Science.gov (United States)

    Schneider, Tanja; Thomalla, Götz; Goebell, Einar; Piotrowski, Anna; Yousem, David Mark

    2015-06-01

    Acute or subacute cerebellar inflammation is mainly caused by postinfectious, toxic, neoplastic, vascular, or idiopathic processes and can result in cerebellar ataxia. Previous magnetic resonance (MR) studies in single patients who developed acute or subacute ataxia showed varying imaging features. Eighteen patients presenting with acute and subacute onset of ataxia were included in this study. Cases of chronic-progressive/hereditary and noncerebellar causes (ischemia, multiple sclerosis lesions, metastasis, bleedings) were excluded. MR imaging findings were then matched with the clinical history of the patient. An underlying etiology for ataxic symptoms were found in 14/18 patients (postinfectious/infectious, paraneoplastic, autoimmune, drug-induced). In two of five patients without MR imaging findings and three of eight patients with minimal imaging features (cerebellar atrophy, slight signal alterations, and small areas of restricted diffusion), adverse clinical outcomes were documented. Of the five patients with prominent MR findings (cerebellar swelling, contrast enhancement, or broad signal abnormalities), two were lost to follow-up and two showed long-term sequelae. No correlation was found between the presence of initial MRI findings in subacute or acute ataxia patients and their long-term clinical outcome. MR imaging was more flagrantly positive in cases due to encephalitis.

  7. Impact of Mobility Device Use on Quality of Life in Children With Friedreich Ataxia.

    Science.gov (United States)

    Ejaz, Resham; Chen, Shiyi; Isaacs, Charles J; Carnevale, Amanda; Wilson, Judith; George, Kristen; Delatycki, Martin B; Perlman, Susan L; Mathews, Katherine D; Wilmot, George R; Hoyle, J Chad; Subramony, Sub H; Zesiewicz, Theresa; Farmer, Jennifer M; Lynch, David R; Yoon, Grace

    2018-05-01

    To determine how mobility device use impacts quality of life in children with Friedreich ataxia. Data from 111 pediatric patients with genetically confirmed Friedreich ataxia were collected from a prospective natural history study utilizing standardized clinical evaluations, including health-related quality of life using the Pediatric Quality of Life Inventory (PedsQL) 4.0 Generic Core Module. Mobility device use was associated with worse mean PedsQL total, physical, emotional, social, and academic subscores, after adjusting for gender, age of disease onset, and Friedreich Ataxia Rating Scale score. The magnitude of the difference was greatest for the physical subscore (-19.5 points, 95% CI = -30.00, -8.99, P mobility devices trended toward worse physical subscore (-16.20 points, 95% CI = -32.07, -0.33, P = .05). Mobility device use is associated with significant worsening of all domains of quality of life in children with Friedreich ataxia.

  8. Cerebellar ataxia of early onset

    International Nuclear Information System (INIS)

    Yamashita, Sumimasa; Miyake, Shota; Yamada, Michiko; Iwamoto, Hiroko; Yamada, Kazuhiko.

    1989-01-01

    Eight cases of childhood cerebellar ataxia were reported. All these cases showed chronic cerebellar ataxia with early onset, and the other diseases of cerebellum such as infections, neoplasms and storage diseases were excluded by clinical symptoms and laboratory findings including blood counts, blood chemistry, lactate, pyruvate, ceruloplasmine, urinalysis, serum immunoglobulins, amino acid analysis in blood and urine, CSF analysis, leukocyte lysosomal enzymes, MCV, EMG, EEG and brain X-CT. Two pairs of siblings were included in this study. The clinical diagnosis were cerebellar type (5), spinocerebellar type (1), one Marinesco-Sjoegren syndrome and undetermined type (1). The age of onset was 1 to 5 years. The chief complaint was motor developmental delay in 6 cases; among them 5 patients could walk alone at the ages of 2 to 3 years'. Mental retardation was observed in 7 cases and epilepsy in 2. TRH was effective in 5 cases. The MRI study revealed that the area of medial sagittal slice of the cerebellum was reduced significantly in all cases and also that of pons was reduced in 5 cases. Different from typical adult onset spinocerebellar degenerations, most of the present cases have achieved slow developmental milestones and the clinical course was not progressive. Genetic factors are suspected in the pathogenesis of this disease in some cases. (author)

  9. AT cells are not radiosensitive for simple chromosomal exchanges at low dose

    International Nuclear Information System (INIS)

    Hada, Megumi; Huff, Janice L.; Patel, Zarana S.; Kawata, Tetsuya; Pluth, Janice M.; George, Kerry A.; Cucinotta, Francis A.

    2011-01-01

    Cells deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome) show increased yields of both simple and complex chromosomal aberrations after high doses (>0.5 Gy) of ionizing radiation (X-rays or γ-rays), however less is known on how these cells respond at low dose. Previously we had shown that the increased chromosome aberrations in ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex exchanges. The linear dose-response term for simple exchanges was significantly higher in NBS cells compared to wild type cells, but not for AT cells. However, AT cells have a high background level of exchanges compared to wild type or NBS cells that confounds the understanding of low dose responses. To understand the sensitivity differences for high to low doses, chromosomal aberration analysis was first performed at low dose-rates (0.5 Gy/d), and results provided further evidence for the lack of sensitivity for exchanges in AT cells below doses of 1 Gy. Normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, showed increased numbers of exchanges at a dose of 1 Gy and higher, but were similar to wild type cells at 0.5 Gy or below. These results were confirmed using siRNA knockdown of ATM. The present study provides evidence that the increased radiation sensitivity of AT cells for chromosomal exchanges found at high dose does not occur at low dose.

  10. Nuclear Magnetic Resonance skull in Cuban families first diagnosed with Friedreich's ataxia

    International Nuclear Information System (INIS)

    Cruz Marinno, Tania; Alvarez Cuesta, Jose Alberto; Aguilera Rodriguez, Raul; Velazquez Perez, Luis

    2011-01-01

    Friedreich's ataxia is characterized by age of onset before 25 years, progressive ataxia, dysarthria, absent deep tendon reflexes and impaired vibration sense. This research was conducted in order to describe the imaging features of central nervous system structures in the early Cuban families diagnosed with the disease. A team of 0.23 Tesla-PANORAMA-Phylips Medical Systems, with a standard head coil, axial slices were obtained using 5mm thick FLAIR sequences, T1 and T2, and sagittal T1 and T2 in three individuals with confirmatory molecular diagnosis of Friedreich's ataxia and six healthy controls matched by age and sex. The morphological structures most affected are the cervical spinal cord, cerebellum and pons, which provides in vivo evidence that the disease leads to atrophy of these structures

  11. GAD Antibody-Associated Late-Onset Cerebellar Ataxia in Two Female Siblings

    Directory of Open Access Journals (Sweden)

    Joseph Kuchling

    2014-11-01

    Full Text Available Background: Anti-glutamic acid decarboxylase antibody (GAD-ab-associated cerebellar ataxia is a rare neurological disorder characterized by cerebellar symptoms concomitant with high GAD-ab levels in serum and cerebrospinal fluid (CSF. Case Report: We report on 2 female siblings (aged 74 and 76 years presenting with gradual progression of rotational vertigo, gait ataxia and vertical diplopia, continuously progressing for 6 months and 6 years, respectively. Autoimmune laboratory examinations showed remarkably increased serum and CSF GAD-ab levels. Their medical histories revealed late-onset type 1 diabetes mellitus (T1DM and other concomitant autoimmune disorders (Grave's disease, Hashimoto's thyroiditis. Cerebral MRI and laboratory examinations were unremarkable. The diagnosis of GAD-ab-associated cerebellar ataxia with particular brainstem involvement was established in both women. After the exclusion of an underlying malignancy, immunosuppressive therapy has been initiated in both patients, which resulted in stabilization in one and in clinical improvement in the other patient. Discussion: The unique association of autoantibody-mediated cerebellar ataxia and late-onset T1DM in 2 siblings with similar clinical and paraclinical phenotypes strengthens the concept that hereditary factors might play a relevant role also in autoimmune diseases so far considered to be sporadic. Moreover, the occurrence of continuous vertical diplopia broadens the clinical spectrum of GAD-ab-associated neurological syndromes.

  12. Analysis of Chromosomal Aberrations after Low and High Dose Rate Gamma Irradiation in ATM or NBS Suppressed Human Fibroblast Cells

    Science.gov (United States)

    Hada, M.; Huff, J. L.; Patel, Z.; Pluth, J. M.; George, K. A.; Cucinotta, F. A.

    2009-01-01

    A detailed understanding of the biological effects of heavy nuclei is needed for space radiation protection and for cancer therapy. High-LET radiation produces more complex DNA lesions that may be non-repairable or that may require additional processing steps compared to endogenous DSBs, increasing the possibility of misrepair. Interplay between radiation sensitivity, dose, and radiation quality has not been studied extensively. Previously we studied chromosome aberrations induced by low- and high- LET radiation in several cell lines deficient in ATM (ataxia telangactasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. We found that the yields of both simple and complex chromosomal aberrations were significantly increased in the DSB repair defective cells compared to normal cells. The increased aberrations observed for the ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex aberrations, while the linear dose-response term was significantly higher in NBS cells only for simple exchanges. These results point to the importance of the functions of ATM and NBS in chromatin modifications that function to facilitate correct DSB repair and minimize aberration formation. To further understand the sensitivity differences that were observed in ATM and NBS deficient cells, in this study, chromosomal aberration analysis was performed in normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, or Mirin, an MRN complex inhibitor involved in activation of ATM. We are also testing siRNA knockdown of these proteins. Normal and ATM or NBS suppressed cells were irradiated with gamma-rays and chromosomes were collected with a premature chromosome

  13. Rejoining of x-ray induced chromosome breaks in human cells and its relationship to cellular repair

    International Nuclear Information System (INIS)

    Cornforth, M.N.

    1985-01-01

    A method was developed to improve the resolution for measuring breaks produced in interphase chromosomes by X-rays following the induction of premature chromosome condensation (PCC). It is based on the principle of 5-BrdU incorporation into the DNA of HeLa mitotic cells, which act as inducers of PCC when they are fused to diploid human fibroblasts. After a modified Fluorescence Plus Giemsa (FPG) protocol, the PCC stain intensely, while the mitotic inducer chromosomes stain faintly. The dose response for density inhibited (G 0 ) human cells was linear from 10.9 to 600 rad, with a slope of 0.06 breaks per cell per rad. Upon incubation at 37 0 C, half of the breaks disappeared in 2 hours. Following a dose of 600 rad the initial rate of break rejoining mirrored the rate of increase in survival from post-irradiation incubation, due to the repair of potentially lethal damage (PLD). The X-ray induced PCC rejoining characteristics from two ataxia telangiectasia (A-T) cell lines were compared to profiles obtained with normal cells. Both normal and A-T cells apparently sustained the same initial level of radiation damage, and both cell types rejoined breaks at the same rate. However, while normal cells eventually rejoined all but about 5% of the breaks produced by 600 rad, the A-T lines were left with 5-6 times the level of residual damage. These experiments demonstrate that progression of cells into S phase is not a necessary condition for the measured frequency of chromosome fragments observed in X-irradiated A-T cells

  14. Aqueous Extract of Paeonia lactiflora and Paeoniflorin as Aggregation Reducers Targeting Chaperones in Cell Models of Spinocerebellar Ataxia 3

    Directory of Open Access Journals (Sweden)

    Kuo-Hsuan Chang

    2013-01-01

    Full Text Available Spinocerebellar ataxia (SCA types 1, 2, 3, 6, 7, and 17 as well as Huntington’s disease are a group of neurodegenerative disorders caused by expanded CAG repeats encoding a long polyglutamine (polyQ tract in the respective proteins. Evidence has shown that the accumulation of intranuclear and cytoplasmic misfolded polyQ proteins leads to apoptosis and cell death. Thus suppression of aggregate formation is expected to inhibit a wide range of downstream pathogenic events in polyQ diseases. In this study, we established a high-throughput aggregation screening system using 293 ATXN3/Q75-GFP cells and applied this system to test the aqueous extract of Paeonia lactiflora (P. lactiflora and its constituents. We found that the aggregation can be significantly prohibited by P. lactiflora and its active compound paeoniflorin. Meanwhile, P. lactiflora and paeoniflorin upregulated HSF1 and HSP70 chaperones in the same cell models. Both of them further reduced the aggregation in neuronal differentiated SH-SY5Y ATXN3/Q75-GFP cells. Our results demonstrate how P. lactiflora and paeoniflorin are likely to work on polyQ-aggregation reduction and provide insight into the possible working mechanism of P. lactiflora in SCA3. We anticipate our paper to be a starting point for screening more potential herbs for the treatment of SCA3 and other polyQ diseases.

  15. Low levels of endogenous or X-ray-induced DNA double-strand breaks activate apoptosis in adult neural stem cells.

    Science.gov (United States)

    Barazzuol, Lara; Rickett, Nicole; Ju, Limei; Jeggo, Penny A

    2015-10-01

    The embryonic neural stem cell compartment is characterised by rapid proliferation from embryonic day (E)11 to E16.5, high endogenous DNA double-strand break (DSB) formation and sensitive activation of apoptosis. Here, we ask whether DSBs arise in the adult neural stem cell compartments, the sub-ventricular zone (SVZ) of the lateral ventricles and the sub-granular zone (SGZ) of the hippocampal dentate gyrus, and whether they activate apoptosis. We used mice with a hypomorphic mutation in DNA ligase IV (Lig4(Y288C)), ataxia telangiectasia mutated (Atm(-/-)) and double mutant Atm(-/-)/Lig4(Y288C) mice. We demonstrate that, although DSBs do not arise at a high frequency in adult neural stem cells, the low numbers of DSBs that persist endogenously in Lig4(Y288C) mice or that are induced by low radiation doses can activate apoptosis. A temporal analysis shows that DSB levels in Lig4(Y288C) mice diminish gradually from the embryo to a steady state level in adult mice. The neonatal SVZ compartment of Lig4(Y288C) mice harbours diminished DSBs compared to its differentiated counterpart, suggesting a process selecting against unfit stem cells. Finally, we reveal high endogenous apoptosis in the developing SVZ of wild-type newborn mice. © 2015. Published by The Company of Biologists Ltd.

  16. Efficiency of laser treatment in patients with hereditary hemorrhagic telangiectasia

    DEFF Research Database (Denmark)

    Jørgensen, Gita; Lange, Bibi; Wanscher, Jens Højberg

    2011-01-01

    Earlier studies have shown the effect of laser treatment on epistaxis in patients with hereditary hemorrhagic telangiectasia (HHT). At the present time, only very few prospective trials have been performed, and many studies are based on patients' subjective assessment of the severity of epistaxis....... This prospective study measures the objective effect of laser treatment in HHT patients with mild to moderate epistaxis. We introduce an objective measure to assess the severity of epistaxis: the bleeding time (BT). Before and after treatment, the quality of life, as measured by the patient, was assessed...

  17. Efavirenz as a cause of ataxia in children

    African Journals Online (AJOL)

    more side-effects of these drugs. We report ... negative; however, a CT scan of her brain was suggestive of possible ... posterior fossa structures revealed a normal brain. .... reported dizziness, ataxia, insomnia, bad dreams and hallucinations.

  18. The cardiomyopathy in Friedreich's ataxia: isotopic ventriculography and myocardial imaging with thallium-201

    International Nuclear Information System (INIS)

    Therriault, L.; Lamoureux, G.; Cote, M.; Plourde, G.; Lemieux, B.

    1984-01-01

    Myocardial scanning after the intravenous administration of Thallium 201 was used to evaluate regional myocardial perfusion in 14 patients with Friedreich's ataxia. Isotopic ventriculography was also used to assess left ventricular contractility. Myocardial images in patients with Friedreich's ataxia were found to be precociously abnormal irrespective of the degree of neurological impairment or of the severity of myocardial hypertrophy

  19. Capacity of ultraviolet-induced DNA repair in human glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Hiroji

    1987-04-01

    A DNA repair abnormality is likely related to an increased incidence of neoplasms in several autosomal recessive diseases such as xeroderma pigmentosum, Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. In human glioma cells, however, there are only a few reports on DNA repair. In this study, an ultraviolet (UV)-induced DNA repair was examined systematically in many human glioma cells. Two human malignant glioma cell lines (MMG-851, U-251-MG) and 7 human glioma cell strains (4, benign; 3, malignant) of short term culture, in which glial fibrillary acidic protein (GFAP) staining were positive, were used. To investigate the capacity of DNA repair, UV sensitivity was determined by colony formation; excision repair by autoradiography and Cytosine Arabinoside (Ara-C) assay; and post-replication repair by the joining rate of newly synthesized DNA. As a result, the colony-forming abilities of malignant glioma cell lines were lower than those of normal human fibroblasts, but no difference was found between two malignant glioma cell lines. The excision repair of the malignant group (2 cell lines and 3 cell strains) was apparently lower than that of the benign group (4 cell strains). In two malignant glioma cell lines, the excision repair of MMG-851 was lower than that of U-251-MG, and the post-replication repair of MMG-851 was higher than that of U-251-MG. These results were considered to correspond well with colony-forming ability. The results indicate that there are some differences in each human malignant glioma cell in its UV-induced DNA repair mechanism, and that the excision repair of the malignant glioma cells is apparently lower than that of the benign glioma cells. These findings may be useful for diagnosis and treatment.

  20. Neurologic Manifestation as Initial Presentation in a Case of Hereditary Haemorrhagic Telangiectasia

    Directory of Open Access Journals (Sweden)

    Yeow Kwan Teo

    2010-01-01

    Full Text Available Hereditary Haemorrhagic Telangiectasia (HHT, or Osler-Weber-Rendu syndrome is an uncommon autosomal dominant multi-organ condition of vascular dysplasias. We describe a 19 year old Indian female who presented with cerebral abscess secondary to paradoxical emboli from pulmonary arteriovenous malformations (PAVMs associated with HHT. Cerebral, pulmonary, hepatic and gastrointestinal involvement can be life-threatening and it is important to have lifelong follow-ups on these patients.

  1. Fragile X-Associated Tremor Ataxia Syndrome: The Expanding Clinical Picture, Pathophysiology, Epidemiology, and Update on Treatment

    Directory of Open Access Journals (Sweden)

    Deborah A. Hall

    2012-05-01

    Full Text Available Fragile X-associated tremor/ataxia syndrome (FXTAS is a progressive degenerative movement disorder characterized by kinetic tremor, cerebellar gait ataxia, parkinsonism, and cognitive decline. This disorder occurs in both males and females, frequently in families with children who have fragile X syndrome. The clinical features of this disorder, both classic and newly described, are summarized in this paper. In screening studies, fragile X mental retardation 1 (FMR1 gene premutation (55–200 CGG expansions are most frequently seen in men with ataxia who have tested negative for spinocerebellar ataxias. Since the original description, the classic FXTAS phenotype has now been reported in females and in carriers of smaller (45–54 CGG and larger (>200 CGG expansions in FMR1. Premutation carriers may present with a Parkinson disease phenotype or hypotension, rather than with tremor and/or ataxia. Parkinsonism and gait ataxia may also be seen in individuals with gray zone (41–54 CGG expansions. Studies regarding medication to treat the symptoms in FXTAS are few in number and suggest that medications targeted to specific symptoms, such as kinetic tremor or gait ataxia, may be most beneficial. Great progress has been made in regards to FXTAS research, likely given the readily available gene test and the screening of multiple family members, including parents and grandparents, of fragile X syndrome children. Expansion of genotypes and phenotypes in the disorder may suggest that a broader disease definition might be necessary in the future.

  2. ATM kinase sustains breast cancer stem-like cells by promoting ATG4C expression and autophagy.

    Science.gov (United States)

    Antonelli, Martina; Strappazzon, Flavie; Arisi, Ivan; Brandi, Rossella; D'Onofrio, Mara; Sambucci, Manolo; Manic, Gwenola; Vitale, Ilio; Barilà, Daniela; Stagni, Venturina

    2017-03-28

    The efficacy of Ataxia-Telangiectasia Mutated (ATM) kinase signalling inhibition in cancer therapy is tempered by the identification of new emerging functions of ATM, which suggests that the role of this protein in cancer progression is complex. We recently demonstrated that this tumor suppressor gene could act as tumor promoting factor in HER2 (Human Epidermal Growth Factor Receptor 2) positive breast cancer. Herein we put in evidence that ATM expression sustains the proportion of cells with a stem-like phenotype, measured as the capability to form mammospheres, independently of HER2 expression levels. Transcriptomic analyses revealed that, in mammospheres, ATM modulates the expression of cell cycle-, DNA repair- and autophagy-related genes. Among these, the silencing of the autophagic gene, autophagy related 4C cysteine peptidase (ATG4C), impairs mammosphere formation similarly to ATM depletion. Conversely, ATG4C ectopic expression in cells silenced for ATM expression, rescues mammospheres growth. Finally, tumor array analyses, performed using public data, identify a significant correlation between ATM and ATG4C expression levels in all human breast cancer subtypes, except for the basal-like one.Overall, we uncover a new connection between ATM kinase and autophagy regulation in breast cancer. We demonstrate that, in breast cancer cells, ATM and ATG4C are essential drivers of mammosphere formation, suggesting that their targeting may improve current approaches to eradicate breast cancer cells with a stem-like phenotype.

  3. Optic ataxia and the function of the dorsal stream: contributions to perception and action.

    Science.gov (United States)

    Pisella, Laure; Sergio, Lauren; Blangero, Annabelle; Torchin, Héloïse; Vighetto, Alain; Rossetti, Yves

    2009-12-01

    Optic ataxia (OA) is one of the symptoms pertaining to Bálint's Syndrome. It has been described clinically for nearly 80 years before it became a cornerstone of the most popular dual stream theory of the visual brain. Over the last 10 years a regain of interest for this neurological condition lead to a number of precise analyses of the deficits found in optic ataxia, giving rise to a renewed outline of its very definition and hence of the function(s) of the occipito-parietal (dorsal) stream. In absence of concomitant clinical symptoms, we review evidence that misreaching errors in central vision result from the "hand effect": an erroneous dynamic spatial processing of proprioceptive information from the hand. When visual feedback of the hand is provided (closed-loop condition), pure optic ataxia is restricted to peripheral vision. This central versus peripheral vision distinction is repeatedly used to argue that action and perception are not unique and dissociated systems. New assessments of optic ataxia patients are provided, confirming on one hand that their visuomotor deficit is specific to peripheral vision (i.e. when the gaze and the hand goals are dissociated), on the other hand that they disclose perceptual deficits in peripheral vision. These results are coherent with the recent demonstration that optic ataxia patients exhibit a general contralesional deficit for dynamic visuo-spatial processing, affecting both hand and eye movements [Gaveau, V., Pélisson, D., Blangero, A., Urquizar, C., Prablanc, C.,Vighetto, A., et al. (2008). A common parietal module for saccade and reach: Eye-hand coordination and saccadic control in optic ataxia. Neuropsychologia, 46, 475-486]. Such module(s) within the dorsal stream could be used for both action and perception in the periphery. It is concluded that optic ataxia cannot be considered as a unitary and specific visuo-manual deficit, and that the modular organisation of the dorsal stream allows for numerous dorsal

  4. ATM splicing variants as biomarkers for low dose dexamethasone treatment of A-T.

    Science.gov (United States)

    Menotta, Michele; Biagiotti, Sara; Spapperi, Chiara; Orazi, Sara; Rossi, Luigia; Chessa, Luciana; Leuzzi, Vincenzo; D'Agnano, Daniela; Soresina, Annarosa; Micheli, Roberto; Magnani, Mauro

    2017-07-05

    Ataxia Telangiectasia (AT) is a rare incurable genetic disease, caused by biallelic mutations in the Ataxia Telangiectasia-Mutated (ATM) gene. Treatment with glucocorticoid analogues has been shown to improve the neurological symptoms that characterize this syndrome. Nevertheless, the molecular mechanism underlying the glucocorticoid action in AT patients is not yet understood. Recently, we have demonstrated that Dexamethasone treatment may partly restore ATM activity in AT lymphoblastoid cells by a new ATM transcript, namely ATMdexa1. In the present study, the new ATMdexa1 transcript was also identified in vivo, specifically in the PMBCs of AT patients treated with intra-erythrocyte Dexamethasone (EryDex). In these patients it was also possible to isolate new "ATMdexa1 variants" originating from canonical and non-canonical splicing, each containing the coding sequence for the ATM kinase domain. The expression of the ATMdexa1 transcript family was directly related to treatment and higher expression levels of the transcript in patients' blood correlated with a positive response to Dexamethasone therapy. Neither untreated AT patients nor untreated healthy volunteers possessed detectable levels of the transcripts. ATMdexa1 transcript expression was found to be elevated 8 days after the drug infusion, while it decreased 21 days after treatment. For the first time, the expression of ATM splicing variants, similar to those previously observed in vitro, has been found in the PBMCs of patients treated with EryDex. These findings show a correlation between the expression of ATMdexa1 transcripts and the clinical response to low dose dexamethasone administration.

  5. Splenic arteriovenous malformation manifested by thrombocytopenia in hereditary hemorrhagic telangiectasia: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hee Jin; Choi, Jong Cheol; Oh, Jong Yeong; Cho, Jin Han; Kang, Myong Jin; Lee, Jin Hwa; Yoon, Seong Kuk; Nam, Kyeong Jin [College of Medicine, Dong-A University, Busan (Korea, Republic of)

    2008-09-15

    Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant inherited disease characterized by epistaxis, telangiectases and visceral arteriovenous malformations (AVMs). The involvement of the gastrointestinal tract, liver, lung and cerebrum for HHT has been described, whereas little is known about AVMs of the spleen. We report here the radiological findings of a case of a splenic AVM manifested by thrombocytopenia in HHT.

  6. Splenic arteriovenous malformation manifested by thrombocytopenia in hereditary hemorrhagic telangiectasia: a case report

    International Nuclear Information System (INIS)

    Kwon, Hee Jin; Choi, Jong Cheol; Oh, Jong Yeong; Cho, Jin Han; Kang, Myong Jin; Lee, Jin Hwa; Yoon, Seong Kuk; Nam, Kyeong Jin

    2008-01-01

    Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant inherited disease characterized by epistaxis, telangiectases and visceral arteriovenous malformations (AVMs). The involvement of the gastrointestinal tract, liver, lung and cerebrum for HHT has been described, whereas little is known about AVMs of the spleen. We report here the radiological findings of a case of a splenic AVM manifested by thrombocytopenia in HHT

  7. Radiation Induced G2 Chromatic Break and Repairs Kinetics in Human Lymphoblastoid Cells

    International Nuclear Information System (INIS)

    Seong, Jin Sil

    1993-01-01

    In understanding radiosensitivity a new concept of inherent radiosensitivity based on individuality and heterogeneity within a population has recently beer explored. There has been some discussion of possible mechanism underlying differences in radiosensitivity between cells. Ataxia telangiectasia(AT), a rare autosomal recessive genetic disorder, is characterized by hypersensitivity to lonizing radiation and other DNA damaging agents at the cellular level. There have been a lot of efforts to describe the cause of this hypersensitivity to radiation. At the cellular level, chromosome repair kinetics study would be an appropriate approach. The purpose of this study was to better understand radiosensitivity in an approach to investigate kinetics of induction and repair of G2 chromatic breaks using normal, AT heterozygous(ATH), and AT homozygous lymphoblastoid cell lines. In an attempt to estimate initial damage, 9-β-D-arabinosyl-2-fluoroadenine, an inhibitor of DNA synthesis and repair, was used in this study. It was found from this study that radiation induces higher chromatid breaks in AT than in normal and ATH cells. There was no significant differences of initial chromatid breaks between normal and ATH cells. Repair kinetics was the same for all. So the higher level of breaks in AT G2 cells is thought to be a reflection of the increased initial damage. The amount of initial damage correlated well with survival fraction at 2 Gy of cell survival curve following radiation. Therefore, the difference of radiosensitivity in terms of G2 chromosomal sensitivity is thought to result from the difference of initial damage

  8. Hepatic telangiectasia in Osler's disease treated with arterial embolization

    Energy Technology Data Exchange (ETDEWEB)

    Goethlin, J H; Nordgard, K; Jonsson, K; Nyman, U

    1982-02-01

    Hepatic hereditary telangiectasia in 2 females was treated with hepatic artery embolization. In one patient both peripheral and central arterial occlusion was performed; the patient died of massive gastro-intestinal bleeding 2 months later. Autopsy showed extensive regions with necrosis in the right liver lobe. In the next patient only central occlusion of the right hepatic artery was performed and the arterio-venous shunting in the left liver lobe left remaining. After a long reconvalescence period the patient recovered completely. It is advocated to centrally occlude only that hepatic artery supplying the most affected parts of the liver in Osler's disease. Thus extensive necrosis with possible ensuing death may be avoided.

  9. Characteristics of Handwriting of People With Cerebellar Ataxia: Three-Dimensional Movement Analysis of the Pen Tip, Finger, and Wrist.

    Science.gov (United States)

    Fujisawa, Yuhki; Okajima, Yasutomo

    2015-11-01

    There are several functional tests for evaluating manual performance; however, quantitative manual tests for ataxia, especially those for evaluating handwriting, are limited. This study aimed to investigate the characteristics of cerebellar ataxia by analyzing handwriting, with a special emphasis on correlation between the movement of the pen tip and the movement of the finger or wrist. This was an observational study. Eleven people who were right-handed and had cerebellar ataxia and 17 people to serve as controls were recruited. The Scale for the Assessment and Rating of Ataxia was used to grade the severity of ataxia. Handwriting movements of both hands were analyzed. The time required for writing a character, the variability of individual handwriting, and the correlation between the movement of the pen tip and the movement of the finger or wrist were evaluated for participants with ataxia and control participants. The writing time was longer and the velocity profile and shape of the track of movement of the pen tip were more variable in participants with ataxia than in control participants. For participants with ataxia, the direction of movement of the pen tip deviated more from that of the finger or wrist, and the shape of the track of movement of the pen tip differed more from that of the finger or wrist. The severity of upper extremity ataxia measured with the Scale for the Assessment and Rating of Ataxia was mostly correlated with the variability parameters. Furthermore, it was correlated with the directional deviation of the trajectory of movement of the pen tip from that of the finger and with increased dissimilarity of the shapes of the tracks. The results may have been influenced by the scale and parameters used to measure movement. Ataxic handwriting with increased movement noise is characterized by irregular pen tip movements unconstrained by the finger or wrist. The severity of ataxia is correlated with these unconstrained movements. © 2015 American

  10. SNP Analysis and Whole Exome Sequencing: Their Application in the Analysis of a Consanguineous Pedigree Segregating Ataxia

    Directory of Open Access Journals (Sweden)

    Sarah L. Nickerson

    2015-10-01

    Full Text Available Autosomal recessive cerebellar ataxia encompasses a large and heterogeneous group of neurodegenerative disorders. We employed single nucleotide polymorphism (SNP analysis and whole exome sequencing to investigate a consanguineous Maori pedigree segregating ataxia. We identified a novel mutation in exon 10 of the SACS gene: c.7962T>G p.(Tyr2654*, establishing the diagnosis of autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS. Our findings expand both the genetic and phenotypic spectrum of this rare disorder, and highlight the value of high-density SNP analysis and whole exome sequencing as powerful and cost-effective tools in the diagnosis of genetically heterogeneous disorders such as the hereditary ataxias.

  11. Phenotypic Analysis of ATM Protein Kinase in DNA Double-Strand Break Formation and Repair.

    Science.gov (United States)

    Mian, Elisabeth; Wiesmüller, Lisa

    2017-01-01

    Ataxia telangiectasia mutated (ATM) encodes a serine/threonine protein kinase, which is involved in various regulatory processes in mammalian cells. Its best-known role is apical activation of the DNA damage response following generation of DNA double-strand breaks (DSBs). When DSBs appear, sensor and mediator proteins are recruited, activating transducers such as ATM, which in turn relay a widespread signal to a multitude of downstream effectors. ATM mutation causes Ataxia telangiectasia (AT), whereby the disease phenotype shows differing characteristics depending on the underlying ATM mutation. However, all phenotypes share progressive neurodegeneration and marked predisposition to malignancies at the organismal level and sensitivity to ionizing radiation and chromosome aberrations at the cellular level. Expression and localization of the ATM protein can be determined via western blotting and immunofluorescence microscopy; however, detection of subtle alterations such as resulting from amino acid exchanges rather than truncating mutations requires functional testing. Previous studies on the role of ATM in DSB repair, which connects with radiosensitivity and chromosomal stability, gave at first sight contradictory results. To systematically explore the effects of clinically relevant ATM mutations on DSB repair, we engaged a series of lymphoblastoid cell lines (LCLs) derived from AT patients and controls. To examine DSB repair both in a quantitative and qualitative manners, we used an EGFP-based assay comprising different substrates for distinct DSB repair mechanisms. In this way, we demonstrated that particular signaling defects caused by individual ATM mutations led to specific DSB repair phenotypes. To explore the impact of ATM on carcinogenic chromosomal aberrations, we monitored chromosomal breakage at a breakpoint cluster region hotspot within the MLL gene that has been associated with therapy-related leukemia. PCR-based MLL-breakage analysis of HeLa cells

  12. Recent studies on the ATM gene

    International Nuclear Information System (INIS)

    Lavin, M.F.; Khanna, K.K.; Waters, D.

    1996-01-01

    Full text: Radiosensitivity is a universal characteristic of ataxia-telangiectasia (A-T), observed after exposure of patients and of cells in culture to radiation. This sensitivity is manifested as higher levels of radiation-induced chromosomal aberrations and reduced survival compared to controls. The gene for A-T was mapped to chromosome 11q 22-23 seven years ago and more recently we have been involved in the cloning of a single gene, ATM (ataxia-telangiectasia mutated), mutated in this syndrome. ATM is a large gene, approximately 150 kb in size, composed of 66 exons and codes for a major mRNA of 13 kb with a predicted open reading frame of 9.135 kb. It is not yet known what activity the ATM gene product possesses, but the ralatedness of this gene sequence to the phosphatidylinositol 3-kinase gene family supports a role for ATM in intracellular signalling. Considerable information is already available on defective signalling through the p53 damage-inducible pathway in A-T. This includes failure to arrest at either the G1/S or G2/M checkpoints as well as radioresistant DNA synthesis. A reduced and/or delayed response in the induction of p53 after exposure of A-T cells to ionizing radiation can account for the defective G1/S checkpoint. More recently we have demonstrated that the ATM gene product is involved in the control of multiple cell cycle checkpoints. Antibodies prepared against ATM peptides demonstrate the presence of a protein 350 kDa in size, which is the predicted size for this protein based on open reading frame of 9 kb. This protein is present both in the nucleus and in the cytoplasm where it is present in vesicular structures. As expected from mutation data the ATM protein is absent in cells from some patients with A-T. The cloning of the ATM gene will allow for screening of radiosensitive patients for mutations in this gene and will provide a means of identifying interacting proteins and thus an understanding of how it functions

  13. Far-infrared radiation protects viability in a cell model of Spinocerebellar Ataxia by preventing polyQ protein accumulation and improving mitochondrial function.

    Science.gov (United States)

    Chang, Jui-Chih; Wu, Shey-Lin; Hoel, Fredrik; Cheng, Yu-Shan; Liu, Ko-Hung; Hsieh, Mingli; Hoel, August; Tronstad, Karl Johan; Yan, Kuo-Chia; Hsieh, Ching-Liang; Lin, Wei-Yong; Kuo, Shou-Jen; Su, Shih-Li; Liu, Chin-San

    2016-07-29

    Far infrared radiation (FIR) is currently investigated as a potential therapeutic strategy in various diseases though the mechanism is unknown. Presently, we tested if FIR mediates beneficial effects in a cell model of the neurodegenerative disease spinocerebellar ataxia type 3 (SCA3). SCA3 is caused by a mutation leading to an abnormal polyglutamine expansion (PolyQ) in ataxin-3 protein. The consequent aggregation of mutant ataxin-3 results in disruption of vital cell functions. In this study, neuroblastoma cells (SK-N-SH) was transduced to express either non-pathogenic ataxin-3-26Q or pathogenic ataxin-3-78Q proteins. The cells expressing ataxin-3-78Q demonstrated decreased viability, and increased sensitivity to metabolic stress in the presence rotenone, an inhibitor of mitochondrial respiration. FIR exposure was found to protect against these effects. Moreover, FIR improved mitochondrial respiratory function, which was significantly compromised in ataxin-3-78Q and ataxin-3-26Q expressing cells. This was accompanied by decreased levels of mitochondrial fragmentation in FIR treated cells, as observed by fluorescence microscopy and protein expression analysis. Finally, the expression profile LC3-II, Beclin-1 and p62 suggested that FIR prevent the autophagy inhibiting effects observed in ataxin-3-78Q expressing cells. In summary, our results suggest that FIR have rescuing effects in cells expressing mutated pathogenic ataxin-3, through recovery of mitochondrial function and autophagy.

  14. MutLα Heterodimers Modify the Molecular Phenotype of Friedreich Ataxia

    Science.gov (United States)

    Ezzatizadeh, Vahid; Sandi, Chiranjeevi; Sandi, Madhavi; Anjomani-Virmouni, Sara; Al-Mahdawi, Sahar; Pook, Mark A.

    2014-01-01

    Background Friedreich ataxia (FRDA), the most common autosomal recessive ataxia disorder, is caused by a dynamic GAA repeat expansion mutation within intron 1 of FXN gene, resulting in down-regulation of frataxin expression. Studies of cell and mouse models have revealed a role for the mismatch repair (MMR) MutS-heterodimer complexes and the PMS2 component of the MutLα complex in the dynamics of intergenerational and somatic GAA repeat expansions: MSH2, MSH3 and MSH6 promote GAA repeat expansions, while PMS2 inhibits GAA repeat expansions. Methodology/Principal Findings To determine the potential role of the other component of the MutLα complex, MLH1, in GAA repeat instability in FRDA, we have analyzed intergenerational and somatic GAA repeat expansions from FXN transgenic mice that have been crossed with Mlh1 deficient mice. We find that loss of Mlh1 activity reduces both intergenerational and somatic GAA repeat expansions. However, we also find that loss of either Mlh1 or Pms2 reduces FXN transcription, suggesting different mechanisms of action for Mlh1 and Pms2 on GAA repeat expansion dynamics and regulation of FXN transcription. Conclusions/Significance Both MutLα components, PMS2 and MLH1, have now been shown to modify the molecular phenotype of FRDA. We propose that upregulation of MLH1 or PMS2 could be potential FRDA therapeutic approaches to increase FXN transcription. PMID:24971578

  15. Modulation of proteostasis counteracts oxidative stress and affects DNA base excision repair capacity in ATM-deficient cells.

    Science.gov (United States)

    Poletto, Mattia; Yang, Di; Fletcher, Sally C; Vendrell, Iolanda; Fischer, Roman; Legrand, Arnaud J; Dianov, Grigory L

    2017-09-29

    Ataxia telangiectasia (A-T) is a syndrome associated with loss of ATM protein function. Neurodegeneration and cancer predisposition, both hallmarks of A-T, are likely to emerge as a consequence of the persistent oxidative stress and DNA damage observed in this disease. Surprisingly however, despite these severe features, a lack of functional ATM is still compatible with early life, suggesting that adaptation mechanisms contributing to cell survival must be in place. Here we address this gap in our knowledge by analysing the process of human fibroblast adaptation to the lack of ATM. We identify profound rearrangement in cellular proteostasis occurring very early on after loss of ATM in order to counter protein damage originating from oxidative stress. Change in proteostasis, however, is not without repercussions. Modulating protein turnover in ATM-depleted cells also has an adverse effect on the DNA base excision repair pathway, the major DNA repair system that deals with oxidative DNA damage. As a consequence, the burden of unrepaired endogenous DNA lesions intensifies, progressively leading to genomic instability. Our study provides a glimpse at the cellular consequences of loss of ATM and highlights a previously overlooked role for proteostasis in maintaining cell survival in the absence of ATM function. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer.

    Science.gov (United States)

    Staquicini, Fernanda I; Qian, Ming D; Salameh, Ahmad; Dobroff, Andrey S; Edwards, Julianna K; Cimino, Daniel F; Moeller, Benjamin J; Kelly, Patrick; Nunez, Maria I; Tang, Ximing; Liu, Diane D; Lee, J Jack; Hong, Waun Ki; Ferrara, Fortunato; Bradbury, Andrew R M; Lobb, Roy R; Edelman, Martin J; Sidman, Richard L; Wistuba, Ignacio I; Arap, Wadih; Pasqualini, Renata

    2015-03-20

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. Finally, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lung cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Effects of exogenous ATM gene on mRNA expression of human telomerase reverse transcriptase in AT cells induced by irradiation

    International Nuclear Information System (INIS)

    Sheng Fangjun; Cao Jianping; Luo Jialin; Zhu Wei; Liu Fenju; Feng Shuang; Song Jianyuan; Li Chong

    2005-01-01

    The study is to observe effects of exogenous ATM gene on mRNA expression of hTERT (human telomerase reverse transcriptase) in fibroblast cells (AT5BIVA cells) from skin of Ataxia-telangiectasia (AT) patients and to study the regulation of ATM to hTERT. Using reverse transcription polymerase chain reaction (RT-PCR), mRNA expression of hTERT in AT, PEBS7-AT, ATM + -AT and GM cells irradiated with 0 and 3 Gy of 60 Co γ-rays were examined respectively. The difference of the mRNA expression of hTERT among AT, PEBS7-AT, ATM + -AT and GM cells were analyzed. Difference of the mRNA expression of hTERT between 0 Gy and 3 Gy groups was analyzed, too. The results showed that the mRNA expression of hTERT in GM cells was negative, but positive mRNA expression of hTERT in AT cells. The mRNA expression of hTERT in ATM + -AT cells decreased significantly (p 60 Co γ-rays, the mRNA expression of hTERT in GM cells was positive, and that in AT, PEBS7-AT, ATM + -AT cells was increased (p + -AT cells was lower than that in AT and PEBS7-AT cells respectively (p<0.05). It is postulated that exogenous ATM is able to downregulate the mRNA expression of hTERT in AT cells, ionizing radiation can induce the mRNA expression of hTERT in cells and telomerase anticipates the repair of damaged DNA. (authors)

  18. Germ-line CAG repeat instability causes extreme CAG repeat expansion with infantile-onset spinocerebellar ataxia type 2

    DEFF Research Database (Denmark)

    Vinther-Jensen, Tua; Ek, Jakob; Duno, Morten

    2013-01-01

    The spinocerebellar ataxias (SCA) are a genetically and clinically heterogeneous group of diseases, characterized by dominant inheritance, progressive cerebellar ataxia and diverse extracerebellar symptoms. A subgroup of the ataxias is caused by unstable CAG-repeat expansions in their respective ...... of paternal germ-line repeat sequence instability of the expanded SCA2 locus.European Journal of Human Genetics advance online publication, 10 October 2012; doi:10.1038/ejhg.2012.231....

  19. Spinocerebellar ataxia type 7: Report of an Indian family

    Directory of Open Access Journals (Sweden)

    Gurusidheshwar M Wali

    2013-01-01

    Full Text Available Spinocerebellar ataxia type 7 (SCA7 is a form of autosomal dominant cerebellar ataxia which is associated with pigmentary retinal degeneration. It is known for its world-wide rarity except in the Scandinavian countries. It is very rarely reported from India and the neighbouring Asian countries . The present report describes the neurogenetic findings of a family of SCA7, from the northern part of Karnataka in South India. It documents the wide intrafamilial phenotypic variability, which could be correlated with the CAG repeat counts and phenomenon of anticipation. Genotype phenotype correlation highlighted certain disparities in comparison with the previous studies. The report highlights the need for multiethnic population studies and the role of genetic counseling and prenatal testing in SCA7 patients.

  20. Clinical implications of heterogeneity of tumor response to radiation therapy

    International Nuclear Information System (INIS)

    Suit, H.; Skates, S.; Taghian, A.; Okunieff, P.; Efird, J.T.

    1992-01-01

    Heterogeneity of response of tumor tissue to radiation clearly exists. Major parameters include histopathologic type, size (number of tumor rescue units (TRUs)), hemoglobin concentration, cell proliferation kinetics and immune rejection reaction by host. Further, normal and presumably tumor tissue response is altered in certain genetic diseases, e.g. ataxia telangiectasia. Any assessment of response of tumor tissue to a new treatment method or the testing of a new clinical response predictor is optimally based upon a narrow strata, viz., uniform with respect to known parameters of response, e.g. size, histological type. Even among tumors of such a clinical defined narrow strata, there will be residual heterogeneity with respect to inherent cellular radiation sensitivity, distributions of pO 2 , (SH), cell proliferation, etc. (author). 39 refs., 7 figs., 3 tabs

  1. Redox homeostasis: the linchpin in stem cell self-renewal and differentiation.

    Science.gov (United States)

    Wang, Kui; Zhang, Tao; Dong, Qiang; Nice, Edouard Collins; Huang, Canhua; Wei, Yuquan

    2013-03-14

    Stem cells are characterized by their unique ability of self-renewal to maintain the so-called stem cell pool. Over the past decades, reactive oxygen species (ROS) have been recognized as toxic aerobic metabolism byproducts that are harmful to stem cells, leading to DNA damage, senescence or cell death. Recently, a growing body of literature has shown that stem cells reside in redox niches with low ROS levels. The balance of Redox homeostasis facilitates stem cell self-renewal by an intricate network. Thus, to fully decipher the underlying molecular mechanisms involved in the maintenance of stem cell self-renewal, it is critical to address the important role of redox homeostasis in the regulation of self-renewal and differentiation of stem cells. In this regard, we will discuss the regulatory mechanisms involved in the subtly orchestrated balance of redox status in stem cells by scavenger antioxidant enzyme systems that are well monitored by the hypoxia niches and crucial redox regulators including forkhead homeobox type O family (FoxOs), apurinic/apyrimidinic (AP) endonuclease1/redox factor-1 (APE1/Ref-1), nuclear factor erythroid-2-related factor 2 (Nrf2) and ataxia telangiectasia mutated (ATM). We will also introduce several pivotal ROS-sensitive molecules, such as hypoxia-inducible factors, p38 mitogen-activated protein kinase (p38) and p53, involved in the redox-regulated stem cell self-renewal. Specifically, all the aforementioned molecules can act as 'redox sensors' by virtue of redox modifications of their cysteine residues, which are critically important in the control of protein function. Given the importance of redox homeostasis in the regulation of stem cell self-renewal, understanding the underlying molecular mechanisms involved will provide important new insights into stem cell biology.

  2. An HTRF® Assay for the Protein Kinase ATM.

    Science.gov (United States)

    Adams, Phillip; Clark, Jonathan; Hawdon, Simon; Hill, Jennifer; Plater, Andrew

    2017-01-01

    Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase that plays a key role in the regulation of DNA damage pathways and checkpoint arrest. In recent years, there has been growing interest in ATM as a therapeutic target due to its association with cancer cell survival following genotoxic stress such as radio- and chemotherapy. Large-scale targeted drug screening campaigns have been hampered, however, by technical issues associated with the production of sufficient quantities of purified ATM and the availability of a suitable high-throughput assay. Using a purified, functionally active recombinant ATM and one of its physiological substrates, p53, we have developed an in vitro FRET-based activity assay that is suitable for high-throughput drug screening.

  3. The inherited basis of human radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Gatti, R.A. [Univ. of California, School of Medicine, Los Angeles, CA (United States). Experimental Pathology

    2001-11-01

    Certain individuals cannot tolerate 'conventional' doses of radiation therapy. This is known to be true of patients with ataxia-telangiectasia and ligase IV deficiency. Although in vitro testing may not correlate completely with clinical radiosensitivity, fibroblasts and lymphoblasts from patients with both of these disorders have been clearly shown to be radiosensitive. Using a colony survival assay (CSA) to test lymphoblastoid cells after irradiation with 1 Gy, a variety of other genetic disorders have been identified as strong candidates for clinical radiosensitivity, such as Nijmegen breakage syndrome, Mre11 deficiency, and Fanconi's anemia. These data are presented and considered as a starting-point for the inherited basis of human radiosensitivity.

  4. Ataxia and peripheral nerve hypomyelination in ADAM22-deficient mice

    Directory of Open Access Journals (Sweden)

    Ino Mitsuhiro

    2005-05-01

    Full Text Available Abstract Background ADAM22 is a member of the ADAM gene family, but the fact that it is expressed only in the nervous systems makes it unique. ADAM22's sequence similarity to other ADAMs suggests it to be an integrin binder and thus to have a role in cell-cell or cell-matrix interactions. To elucidate the physiological functions of ADAM22, we employed gene targeting to generate ADAM22 knockout mice. Results ADAM22-deficient mice were produced in a good accordance with the Mendelian ratio and appeared normal at birth. After one week, severe ataxia was observed, and all homozygotes died before weaning, probably due to convulsions. No major histological abnormalities were detected in the cerebral cortex or cerebellum of the homozygous mutants; however, marked hypomyelination of the peripheral nerves was observed. Conclusion The results of our study demonstrate that ADAM22 is closely involved in the correct functioning of the nervous system. Further analysis of ADAM22 will provide clues to understanding the mechanisms of human diseases such as epileptic seizures and peripheral neuropathy.

  5. Structural and Functional Magnetic Resonance Imaging of the Cerebellum: Considerations for Assessing Cerebellar Ataxias.

    Science.gov (United States)

    Deistung, Andreas; Stefanescu, Maria R; Ernst, Thomas M; Schlamann, Marc; Ladd, Mark E; Reichenbach, Jürgen R; Timmann, Dagmar

    2016-02-01

    Magnetic resonance imaging (MRI) of the brain is of high interest for diagnosing and understanding degenerative ataxias. Here, we present state-of-the-art MRI methods to characterize structural alterations of the cerebellum and introduce initial experiments to show abnormalities in the cerebellar nuclei. Clinically, T1-weighted MR images are used to assess atrophy of the cerebellar cortex, the brainstem, and the spinal cord, whereas T2-weighted and PD-weighted images are typically employed to depict potential white matter lesions that may be associated with certain types of ataxias. More recently, attention has also focused on the characterization of the cerebellar nuclei, which are discernible on spatially highly resolved iron-sensitive MR images due to their relatively high iron content, including T2 (*)-weighted images, susceptibility-weighted images (SWI), effective transverse relaxation rate (R2 (*)) maps, and quantitative susceptibility maps (QSM). Among these iron-sensitive techniques, QSM reveals the best contrast between cerebellar nuclei and their surroundings. In particular, the gyrification of the dentate nuclei is prominently depicted, even at the clinically widely available field strength of 3 T. The linear relationship between magnetic susceptibility and local iron content allows for determination of iron deposition in cerebellar nuclei non-invasively. The increased signal-to-noise ratio of ultrahigh-field MRI (B0 ≥ 7 T) and advances in spatial normalization methods enable functional MRI (fMRI) at the level of the cerebellar cortex and cerebellar nuclei. Data from initial fMRI studies are presented in three common forms of hereditary ataxias (Friedreich's ataxia, spinocerebellar ataxia type 3, and spinocerebellar ataxia type 6). Characteristic changes in the fMRI signal are discussed in the light of histopathological data and current knowledge of the underlying physiology of the fMRI signal in the cerebellum.

  6. Automatic telangiectasia analysis in dermoscopy images using adaptive critic design.

    Science.gov (United States)

    Cheng, B; Stanley, R J; Stoecker, W V; Hinton, K

    2012-11-01

    Telangiectasia, tiny skin vessels, are important dermoscopy structures used to discriminate basal cell carcinoma (BCC) from benign skin lesions. This research builds off of previously developed image analysis techniques to identify vessels automatically to discriminate benign lesions from BCCs. A biologically inspired reinforcement learning approach is investigated in an adaptive critic design framework to apply action-dependent heuristic dynamic programming (ADHDP) for discrimination based on computed features using different skin lesion contrast variations to promote the discrimination process. Lesion discrimination results for ADHDP are compared with multilayer perception backpropagation artificial neural networks. This study uses a data set of 498 dermoscopy skin lesion images of 263 BCCs and 226 competitive benign images as the input sets. This data set is extended from previous research [Cheng et al., Skin Research and Technology, 2011, 17: 278]. Experimental results yielded a diagnostic accuracy as high as 84.6% using the ADHDP approach, providing an 8.03% improvement over a standard multilayer perception method. We have chosen BCC detection rather than vessel detection as the endpoint. Although vessel detection is inherently easier, BCC detection has potential direct clinical applications. Small BCCs are detectable early by dermoscopy and potentially detectable by the automated methods described in this research. © 2011 John Wiley & Sons A/S.

  7. Clinical Radiation Sensitivity With DNA Repair Disorders: An Overview

    International Nuclear Information System (INIS)

    Pollard, Julianne M.; Gatti, Richard A.

    2009-01-01

    Adverse reactions to radiotherapy represent a confounding phenomenon in radiation oncology. These reactions are rare, and many have been associated with individuals with DNA repair disorders such as ataxia-telangiectasia and Nijmegen Breakage syndrome. A paucity of published data is available detailing such circumstances. This overview describes four exemplary situations, a comprehensive list of 32 additional cases, and some insights gleaned from this overall experience. Fanconi anemia was associated with more than one-half of the reports. The lowest dose given to a patient that resulted in a reaction was 3 Gy, given to an ataxia-telangiectasia patient. Most patients died within months of exposure. It is clear that the patients discussed in this report had complicated illnesses, in addition to cancer, and the radiotherapy administered was most likely their best option. However, the underlying DNA repair defects make conventional radiation doses dangerous. Our findings support previous wisdom that radiotherapy should either be avoided or the doses should be selected with great care in the case of these radiosensitive genotypes, which must be recognized by their characteristic phenotypes, until more rapid, reliable, and functional assays of DNA repair become available.

  8. Two in one: report of a patient with spinocerebellar ataxia types 2 and 10.

    Science.gov (United States)

    Kapur, Sachin S; Goldman, Jennifer G

    2012-09-01

    To report a rare case of the coexistence of 2 spinocerebellar ataxia (SCA) mutations in a single patient. Case report. University hospital, Movement Disorders Center. A 54-year-old man of Mexican, American Indian, and French descent with an 11-year history of gait and limb ataxia. Findings of clinical examination, magnetic resonance imaging, and video electroencephalographic monitoring. Neurologic history revealed a gradually progressive gait and limb ataxia along with muscle cramps and sensory symptoms in his distal extremities; examination revealed executive dysfunction, dysarthria, ataxia, and sensory neuronopathy. Episodes of loss of awareness were reported, but electroencephalograms were negative. Brain imaging demonstrated severe cerebellar and brainstem atrophy. Genetic evaluation of the case revealed mutations in both the SCA2 and SCA10 genes. Our patient has a unique combination of genetic mutations for 2 different SCAs, types 2 and 10, which to our knowledge, has not been previously reported. His clinical phenotype is largely consistent with SCA2, but his possible seizures and Mexican heritage suggest influences of SCA10.

  9. Treatment of epistaxis in hereditary hemorrhagic telangiectasia with tranexamic acid - a double-blind placebo-controlled cross-over phase IIIB study.

    Science.gov (United States)

    Geisthoff, Urban W; Seyfert, Ulrich T; Kübler, Marcus; Bieg, Birgitt; Plinkert, Peter K; König, Jochem

    2014-09-01

    Epistaxis is the most frequent manifestation in hereditary hemorrhagic telangiectasia, in which no optimal treatment exists. It can lead to severe anemia and reduced quality of life. Positive effects of tranexamic acid, an antifibrinolytic drug, have been reported on epistaxis related to this disorder. We sought to evaluate the efficacy of treating nosebleeds in hereditary hemorrhagic telangiectasia with tranexamic acid. In a randomized, double-blind, placebo controlled, cross-over phase IIIB study, 1 gram of tranexamic acid or placebo was given orally 3 times daily for 3 months for a total of 6 months. 22 patients were included in the intention-to-treat analysis. Hemoglobin levels, the primary outcome measure, did not change significantly (p=0.33). The secondary outcome measure was epistaxis score and patients reported a statistically significant reduction in nosebleeds, equaling a clinically relevant 54% diminution (p=0.0031), as compared to the placebo period. No severe side effects were observed. Tranexamic acid reduces epistaxis in patients with hereditary hemorrhagic telangiectasia. (Clinical trial registration numbers: BfArM 141 CHC 9008-001 and ClinicalTrials.gov NCT01031992). Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Delayed expression of enhanced reactivation and decreased mutagenesis of UV-irradiated adenovirus in UV-irradiated ataxia telangiectasia fibroblasts

    International Nuclear Information System (INIS)

    Bennett, C.B.; Rainbow, A.J.

    1988-01-01

    In this study the authors examined UV-enhanced reactivation (UVER) and UV-enhanced mutagenesis (UVEM) of UV-irradiated adenovirus in AT fibroblasts. UVER factors for Ad V antigen expression were significantly less than normal in AT strains tested when infection occurred immediately after UV-irradiation of cells. However, UVER factors were >1 and similar to those found for normal strains when cells were infected 24 h after UV-irradiation, indicating delay in the expression of UVER for Ad V antigen in AT cells. UV-irradiation of both normal and AT cells 24 h prior to infection also resulted in a significant increase in progeny survival for UV-irradiated Ad. In normal cells, this progeny UVER was concomitant with a significant increase in the mutation frequency for UV-irradiated virus (increase in targeted mutagenesis) suggesting existence of an inducible error-prone DNA repair mode in normal human cells. In contrast, pre-UV-irradiation of AT cells resulted in a significant decrease in the mutation frequency for UV-irradiated virus. (author)

  11. [Spinocerebellar ataxia type 2 associated to pigmentary retinitis].

    Science.gov (United States)

    Jiménez-Caballero, Pedro Enrique; Serviá, Mónica

    2010-07-01

    Ocular disorders are useful in the characterisation of the different types of spinocerebellar ataxias (SCA); pigmentary retinitis is an alteration that is specifically associated to SCA type 7 and is characterised by night blindness, sensitivity to glare and progressive narrowing of the visual field. A 34-year-old woman with clinical symptoms of progressive ataxia and visual impairment secondary to pigmentary retinitis. The patient had a personal history with an autosomal dominant pattern of a similar disorder in her father and paternal grandmother. In the genetic study she presented a triplet expansion in the SCA type 2 gene. CONCLUSIONS; Although pigmentary retinitis belongs to the SCA type 7 phenotype, our patient presented this retinal disorder, as in other cases of SCA type 2. A genetic study for SCA type 2 must therefore be conducted in patients with a degenerative ataxic clinical picture and who present evidence of pigmentary retinitis.

  12. There May Be More to Reaching than Meets the Eye: Re-Thinking Optic Ataxia

    Science.gov (United States)

    Jackson, Stephen R.; Newport, Roger; Husain, Masud; Fowlie, Jane E.; O'Donoghue, Michael; Bajaj, Nin

    2009-01-01

    Optic ataxia (OA) is generally thought of as a disorder of visually guided reaching movements that cannot be explained by any simple deficit in visual or motor processing. In this paper we offer a new perspective on optic ataxia; we argue that the popular characterisation of this disorder is misleading and is unrepresentative of the pattern of…

  13. Ataxia espinocerebelar tipo 6: relato de caso

    Directory of Open Access Journals (Sweden)

    Bianca Simone Zeigelboim

    2014-10-01

    Full Text Available O objetivo deste estudo foi verificar as alterações vestibulococleares observadas em um caso de ataxia espinocerebelar tipo 6. O caso foi encaminhado do Hospital de Clínicas para o Laboratório de Otoneurologia de uma Instituição de Ensino e foi submetido aos seguintes procedimentos: anamnese, inspeção otológica, avaliações audiológica e vestibular. O caso retrata uma paciente com diagnóstico genético de ataxia espinocerebelar tipo 6, do sexo feminino, com 57 anos de idade, que referiu desequilíbrio à marcha com tendência a queda para a esquerda, disartria e disfonia. Na avaliação audiológica apresentou configuração audiométrica descendente a partir da frequência de 4kHz e curva timpanométrica do tipo "A" com presença dos reflexos estapedianos bilateralmente. No exame vestibular observou-se na pesquisa da vertigem posicional presença de nistagmo vertical inferior e oblíquo, espontâneo e semiespontâneo múltiplo com características centrais (ausência de latência, paroxismo, fatigabilidade e vertigem, nistagmooptocinético abolido e hiporreflexia à prova calórica. Constataram-se alterações labirínticas que indicaram afecção do sistema vestibular central evidenciando-se a importância dessa avaliação. A existência da possível relação entre os achados com os sintomas vestibulares apresentados pela paciente apontou a relevância do exame labiríntico neste tipo de ataxia uma vez que a presença do nistagmo vertical inferior demonstrou ser frequente neste tipo de patologia.

  14. Treatment of nonneovascular idiopathic macular telangiectasia type 2 with intravitreal ranibizumab: results of a phase II clinical trial.

    Science.gov (United States)

    Toy, Brian C; Koo, Euna; Cukras, Catherine; Meyerle, Catherine B; Chew, Emily Y; Wong, Wai T

    2012-05-01

    To evaluate the safety and preliminary efficacy of intravitreal ranibizumab for nonneovascular idiopathic macular telangiectasia Type 2. Single-center, open-label Phase II clinical trial enrolling five participants with bilateral nonneovascular idiopathic macular telangiectasia Type 2. Intravitreal ranibizumab (0.5 mg) was administered every 4 weeks in the study eye for 12 months with the contralateral eye observed. Outcome measures included changes in best-corrected visual acuity, area of late-phase leakage on fluorescein angiography, and retinal thickness on optical coherence tomography. The study treatment was well tolerated and associated with few adverse events. Change in best-corrected visual acuity at 12 months was not significantly different between treated study eyes (0.0 ± 7.5 letters) and control fellow eyes (+2.2 ± 1.9 letters). However, decreases in the area of late-phase fluorescein angiography leakage (-33 ± 20% for study eyes, +1 ± 8% for fellow eyes) and in optical coherence tomography central subfield retinal thickness (-11.7 ± 7.0% for study eyes and -2.9 ± 3.5% for fellow eyes) were greater in study eyes compared with fellow eyes. Despite significant anatomical responses to treatment, functional improvement in visual acuity was not detected. Intravitreal ranibizumab administered monthly over a time course of 12 months is unlikely to provide a general and significant benefit to patients with nonneovascular idiopathic macular telangiectasia Type 2.

  15. Hereditary hemorrhagic telangiectasia with bilateral pulmonary vascular malformations: A case report

    Directory of Open Access Journals (Sweden)

    Lončarević Olivera

    2016-01-01

    Full Text Available Introduction. Hereditary hemorrhagic telangiectasia (HHT also known as Osler-Weber-Rendu syndrome is an autosomal dominant disease that occurs due to vascular dysplasia associated with the disorder in the signaling pathway of transforming growth factor β (TGF-β. The clinical consequence is a disorder of blood vessels in multiple organ systems with the existence of telangiectasia which causes dilation of capillaries and veins, are present from birth and are localized on the skin and mucosa of the mouth, respiratory, gastrointestinal and urinary tract. They can make a rupture with consequent serious bleeding that can end up with fatal outcome. Since there is a disruption of blood vessels of more than one organic system, the diagnosis is very complex and requires a multidisciplinary approach. Case report. We reported a 40-year-old female patient with a long-time evolution of problems, who was diagnosed and treated at the Clinic for Lung Diseases of the Military Medical Academy in Belgrade, Serbia, because of bilaterally pulmonary arteriovenous malformations associated with HHT. Embolization was performed in two acts, followed with normalization of clinical, radiological and functional findings with the cessation of hemoptysis, effort intolerance with a significant improvement of the quality of life. Conclusion. HHT is a rare dominant inherited multisystem disease that requires multidisciplinary approach to diagnosis and treatment. Embolization is the method of choice in the treatment of arteriovenous malformations with minor adverse effects and very satisfying therapeutic effect.

  16. The Roles of 4β-Hydroxywithanolide E from Physalis peruviana on the Nrf2-Anti-Oxidant System and the Cell Cycle in Breast Cancer Cells.

    Science.gov (United States)

    Peng, Chieh Yu; You, Bang Jau; Lee, Chia Lin; Wu, Yang Chang; Lin, Wen Hsin; Lu, Te Ling; Chang, Fei-Ching; Lee, Hong Zin

    2016-01-01

    4[Formula: see text]-Hydroxywithanolide E is an active component of the extract of Physalis peruviana that has been reported to exhibit antitumor effects. Although the involvement of reactive oxygen species (ROS) production and the ataxia-telangiectasia mutated protein (ATM)-dependent DNA damage signaling pathway in 4[Formula: see text]-hydroxywithanolide E-induced apoptosis of breast cancer MCF-7 cells was demonstrated in our previous study, the relationship between ROS production and the cellular defense system response in 4[Formula: see text]-hydroxywithanolide E-induced cell death requires further verification. The present study suggests that ROS play an important role in 4[Formula: see text]-hydroxywithanolide E-induced MCF-7 cell death in which anti-oxidants, such as glutathione or N-acetylcysteine, can resist the 4[Formula: see text]-hydroxywithanolide E-induced accumulation of ROS and cell death. Furthermore, N-acetylcysteine or glutathione can reverse the 4[Formula: see text]-hydroxywithanolide E-induced changes in the cell cycle distribution and the expression of cell cycle regulators. We found that the 4[Formula: see text]-hydroxywithanolide E-induced ROS accumulation was correlated with the upregulation of Nrf2 and Nrf2-downstream genes, such as antioxidative defense enzymes. In general, the activity of Nrf2 is regulated by the Ras signalling pathway. However, we demonstrated that Nrf2 was activated during 4[Formula: see text]-hydroxywithanolide E-induced MCF-7 cell death in spite of the 4[Formula: see text]-hydroxywithanolide E-induced inhibition of the Ras/Raf/ERK pathway. The activity and protein expression of superoxide dismutase and catalase were involved in the 4[Formula: see text]-hydroxywithanolide E-induced ROS production in MCF-7 cells. Furthermore, 4[Formula: see text]-hydroxywithanolide E was demonstrated to significantly reduce the sizes of the tumor nodules in the human breast cancer MDA-MB231 xenograft tumor model.

  17. miR-181a promotes G1/S transition and cell proliferation in pediatric acute myeloid leukemia by targeting ATM.

    Science.gov (United States)

    Liu, Xiaodan; Liao, Wang; Peng, Hongxia; Luo, Xuequn; Luo, Ziyan; Jiang, Hua; Xu, Ling

    2016-01-01

    Abnormal expression of miRNAs is intimately related to a variety of human cancers. The purpose of this study is to confirm the expression of miR-181a and elucidate its physiological function and mechanism in pediatric acute myeloid leukemia (AML). Pediatric AML patients and healthy controls were enrolled, and the expression of miR-181a and ataxia telangiectasia mutated (ATM) in tissues were examined using quantitative PCR. Moreover, cell proliferation and cell cycle were evaluated in several cell lines (HL60, NB4 and K562) by using flow cytometry after transfected with miR-181a mimics and inhibitors, or ATM siRNA and control siRNA. Finally, ATM as the potential target protein of miR-181a was examined. We found that miR-181a was significantly increased in pediatric AML, which showed an inverse association with ATM expression. Overexpressed miR-181a in cell lines significantly enhanced cell proliferation, as well as increased the ratio of S-phase cells by miR-181a mimics transfection in vitro. Luciferase activity of the reporter construct identified ATM as the direct molecular target of miR-181a. ATM siRNA transfection significantly enhanced cell proliferation and increased the ratio of S-phase cells in vitro. The results revealed novel mechanism through which miR-181a regulates G1/S transition and cell proliferation in pediatric AML by regulating the tumor suppressor ATM, providing insights into the molecular mechanism in pediatric AML.

  18. Seasonal ataxia: a case report of a disappearing disease

    African Journals Online (AJOL)

    Seasonal ataxia: a case report of a disappearing disease. Adebiyi Ayoade ... ological profiles of the disease. ... low serum albumin levels [8] act as a potentiating factor to trigger the ... 65% neutrophils, 25% lymphocytes,eosinophils 5% and.

  19. ATP1A3 Mutation in Adult Rapid-Onset Ataxia.

    Directory of Open Access Journals (Sweden)

    Kathleen J Sweadner

    Full Text Available A 21-year old male presented with ataxia and dysarthria that had appeared over a period of months. Exome sequencing identified a de novo missense variant in ATP1A3, the gene encoding the α3 subunit of Na,K-ATPase. Several lines of evidence suggest that the variant is causative. ATP1A3 mutations can cause rapid-onset dystonia-parkinsonism (RDP with a similar age and speed of onset, as well as severe diseases of infancy. The patient's ATP1A3 p.Gly316Ser mutation was validated in the laboratory by the impaired ability of the expressed protein to support the growth of cultured cells. In a crystal structure of Na,K-ATPase, the mutated amino acid was directly apposed to a different amino acid mutated in RDP. Clinical evaluation showed that the patient had many characteristics of RDP, however he had minimal fixed dystonia, a defining symptom of RDP. Successive magnetic resonance imaging (MRI revealed progressive cerebellar atrophy, explaining the ataxia. The absence of dystonia in the presence of other RDP symptoms corroborates other evidence that the cerebellum contributes importantly to dystonia pathophysiology. We discuss the possibility that a second de novo variant, in ubiquilin 4 (UBQLN4, a ubiquitin pathway component, contributed to the cerebellar neurodegenerative phenotype and differentiated the disease from other manifestations of ATP1A3 mutations. We also show that a homozygous variant in GPRIN1 (G protein-regulated inducer of neurite outgrowth 1 deletes a motif with multiple copies and is unlikely to be causative.

  20. Attenuation of the DNA Damage Response by Transforming Growth Factor-Beta Inhibitors Enhances Radiation Sensitivity of Non–Small-Cell Lung Cancer Cells In Vitro and In Vivo

    Energy Technology Data Exchange (ETDEWEB)

    Du, Shisuo; Bouquet, Sophie; Lo, Chen-Hao; Pellicciotta, Ilenia; Bolourchi, Shiva [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States); Parry, Renate [Varian Medical Systems, Palo Alto, California (United States); Barcellos-Hoff, Mary Helen, E-mail: mhbarcellos-hoff@nyumc.org [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States)

    2015-01-01

    Purpose: To determine whether transforming growth factor (TGF)-β inhibition increases the response to radiation therapy in human and mouse non–small-cell lung carcinoma (NSCLC) cells in vitro and in vivo. Methods and Materials: TGF-β–mediated growth response and pathway activation were examined in human NSCLC NCI-H1299, NCI-H292, and A549 cell lines and murine Lewis lung cancer (LLC) cells. Cells were treated in vitro with LY364947, a small-molecule inhibitor of the TGF-β type 1 receptor kinase, or with the pan-isoform TGF-β neutralizing monoclonal antibody 1D11 before radiation exposure. The DNA damage response was assessed by ataxia telangiectasia mutated (ATM) or Trp53 protein phosphorylation, γH2AX foci formation, or comet assay in irradiated cells. Radiation sensitivity was determined by clonogenic assay. Mice bearing syngeneic subcutaneous LLC tumors were treated with 5 fractions of 6 Gy and/or neutralizing or control antibody. Results: The NCI-H1299, A549, and LLC NSCLC cell lines pretreated with LY364947 before radiation exposure exhibited compromised DNA damage response, indicated by decreased ATM and p53 phosphorylation, reduced γH2AX foci, and increased radiosensitivity. The NCI-H292 cells were unresponsive. Transforming growth factor-β signaling inhibition in irradiated LLC cells resulted in unresolved DNA damage. Subcutaneous LLC tumors in mice treated with TGF-β neutralizing antibody exhibited fewer γH2AX foci after irradiation and significantly greater tumor growth delay in combination with fractionated radiation. Conclusions: Inhibition of TGF-β before radiation attenuated DNA damage recognition and increased radiosensitivity in most NSCLC cells in vitro and promoted radiation-induced tumor control in vivo. These data support the rationale for concurrent TGF-β inhibition and RT to provide therapeutic benefit in NSCLC.

  1. Friedreich's Ataxia: a review from a cardiology perspective.

    LENUS (Irish Health Repository)

    Bourke, T

    2011-12-01

    Neuromuscular disorders are not among the common causes of cardiomyopathy in the general population; however, cardiomyopathy is known to occur in several neuromuscular disorders including Friedreich\\'s Ataxia (FA). In patients with neuromuscular disorders, concomitant cardiac involvement contributes significantly to morbidity and mortality and often leads to premature death.

  2. A double-blind, randomized study comparing pure chromated glycerin with chromated glycerin with 1% lidocaine and epinephrine for sclerotherapy of telangiectasias and reticular veins.

    Science.gov (United States)

    Kern, Philippe; Ramelet, Albert-Adrien; Wutschert, Robert; Mazzolai, Lucia

    2011-11-01

    Chromated glycerin (CG) is an effective, although painful, sclerosing agent for telangiectasias and reticular leg veins treatment. To determine pain level and relative efficacy of pure or one-third lidocaine-epinephrine 1% mixed chromated glycerin in a prospective randomized double-blind trial. Patients presenting with telangiectasias and reticular leg veins on the lateral aspect of the thigh (C(1A) or (S) E(P) A(S) P(N1) ) were randomized to receive pure CG or CG mixed with one-third lidocaine-epinephrine 1% (CGX) treatment. Lower limb photographs were taken before and after treatment and analyzed by blinded expert reviewers for efficacy assessment (visual vein disappearance). Patients' pain and satisfaction were assessed using visual analogue scales. Data from 102 of 110 randomized patients could be evaluated. Patient pain scores were significantly higher when pure CG was used than with CGX (psclerotherapy pain without affecting efficacy when treating telangiectasias and reticular leg veins. © 2011 by the American Society for Dermatologic Surgery, Inc.

  3. Increased cerebellar PET glucose metabolism corresponds to ataxia in Wernicke-Korsakoff syndrome.

    Science.gov (United States)

    Fellgiebel, Andreas; Siessmeier, Thomas; Winterer, Georg; Lüddens, Hartmut; Mann, Klaus; Schmidt, Lutz G; Bartenstein, Peter

    2004-01-01

    To investigate a possible relationship between cerebellar glucose metabolism and recovery from ataxia in the first months of acute Wernicke-Korsakoff syndrome. Two cases of alcoholic Wernicke-Korsakoff syndrome were followed up with the clinical status and cerebral glucose metabolism over a 4- and 9-month period. Initially both patients showed severe ataxia and elevated cerebellar glucose metabolism that decreased corresponding to the restitution of stance and gait. Increased cerebellar glucose metabolism at the onset of the illness may reflect the reorganization process of disturbed motor skills and may indicate cerebellar plasticity.

  4. [Anaesthesia for correction of scoliosis in pediatric patient with Friedreich's ataxia].

    Science.gov (United States)

    Agámez Medina, G L; Pantin, E J; Lorthé, J; Therrien, P J

    2015-01-01

    Friedreich ataxia (FA) is an inherited autosomal recessive disease characterized by a neurological degenerative process of the cerebellum, spinal cord, and peripheral nerves. FA is associated with ataxia, dysarthria, motor and sensory impairment, scoliosis, cardiomyopathy, and diabetes. There is a significant risk of perioperative major complications during the anesthetic management of these patients. We present the case of a fourteen-year-old patient with FA, who had a posterior spinal fusion and instrumentation underwent to total intravenous anesthesia. Copyright © 2013 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. The fragile x-associated tremor and ataxia syndrome (FXTAS A síndrome de tremor e ataxia associada ao X frágil (FXTAS

    Directory of Open Access Journals (Sweden)

    Leonardo Pires Capelli

    2010-10-01

    Full Text Available FXTAS (Fragile X-associated tremor and ataxia syndrome is a late- onset neurodegenerative disorder affecting mainly men, over 50 years of age, who are carriers of the FMR1 gene premutation. The full mutation of this gene causes the fragile X syndrome (FXS, the most common cause of inherited mental retardation. Individuals affected by FXTAS generally present intention tremor and gait ataxia that might be associated to specific radiological and/or neuropathological signs. Other features commonly observed are parkinsonism, cognitive decline, peripheral neuropathy and autonomic dysfunction. Nearly a decade after its clinical characterization, FXTAS is poorly recognized in Brazil. Here we present a review of the current knowledge on the clinical, genetic and diagnostic aspects of the disease.A FXTAS (síndrome de tremor e ataxia associada ao X frágil é uma doença neurodegenerativa de início tardio que afeta principalmente homens acima dos 50 anos de idade, portadores de pré-mutação do gene FMR1. A mutação completa desse gene é responsável pela síndrome do cromossomo X frágil (SXF, a causa mais comum de deficiência mental herdada. Indivíduos afetados pela FXTAS geralmente apresentam tremor de intenção e ataxia de marcha que podem estar associados a sinais radiológicos ou neuropatológicos específicos. Outras características comumente observadas são parkinsonismo, declínio cognitivo, neuropatia periférica e disfunções autonômicas. Quase uma década após sua caracterização clínica, a FXTAS é mal conhecida por médicos no Brasil. Esta revisão apresenta o conhecimento atual sobre os aspectos clínicos, genéticos e diagnósticos da síndrome.

  6. Spinocerebellar ataxia type 29 due to mutations in ITPR1: a case series and review of this emerging congenital ataxia.

    Science.gov (United States)

    Zambonin, Jessica L; Bellomo, Allison; Ben-Pazi, Hilla; Everman, David B; Frazer, Lee M; Geraghty, Michael T; Harper, Amy D; Jones, Julie R; Kamien, Benjamin; Kernohan, Kristin; Koenig, Mary Kay; Lines, Matthew; Palmer, Elizabeth Emma; Richardson, Randal; Segel, Reeval; Tarnopolsky, Mark; Vanstone, Jason R; Gibbons, Melissa; Collins, Abigail; Fogel, Brent L; Dudding-Byth, Tracy; Boycott, Kym M

    2017-06-28

    Spinocerebellar ataxia type 29 (SCA29) is an autosomal dominant, non-progressive cerebellar ataxia characterized by infantile-onset hypotonia, gross motor delay and cognitive impairment. Affected individuals exhibit cerebellar dysfunction and often have cerebellar atrophy on neuroimaging. Recently, missense mutations in ITPR1 were determined to be responsible. Clinical information on 21 individuals from 15 unrelated families with ITPR1 mutations was retrospectively collected using standardized questionnaires, including 11 previously unreported singletons and 2 new patients from a previously reported family. We describe the genetic, clinical and neuroimaging features of these patients to further characterize the clinical features of this rare condition and assess for any genotype-phenotype correlation for this disorder. Our cohort consisted of 9 males and 12 females, with ages ranging from 28 months to 49 years. Disease course was non-progressive with infantile-onset hypotonia and delays in motor and speech development. Gait ataxia was present in all individuals and 10 (48%) were not ambulating independently between the ages of 3-12 years of age. Mild-to-moderate cognitive impairment was present in 17 individuals (85%). Cerebellar atrophy developed after initial symptom presentation in 13 individuals (72%) and was not associated with disease progression or worsening functional impairment. We identified 12 different mutations including 6 novel mutations; 10 mutations were missense (with 4 present in >1 individual), 1 a splice site mutation leading to an in-frame insertion and 1 an in-frame deletion. No specific genotype-phenotype correlations were observed within our cohort. Our findings document significant clinical heterogeneity between individuals with SCA29 in a large cohort of molecularly confirmed cases. Based on the retrospective observed clinical features and disease course, we provide recommendations for management. Further research into the natural

  7. ATM-deficient human fibroblast cells are resistant to low levels of DNA double-strand break induced apoptosis and subsequently undergo drug-induced premature senescence

    International Nuclear Information System (INIS)

    Park, Jun; Jo, Yong Hwa; Cho, Chang Hoon; Choe, Wonchae; Kang, Insug; Baik, Hyung Hwan; Yoon, Kyung-Sik

    2013-01-01

    Highlights: ► A-T cells were not hypersensitive to low levels of DNA DSBs. ► A-T cells have enhanced Akt but defect in activation of p53 and apoptotic proteins. ► A-T cells underwent premature senescence after DNA damage accumulated. ► Chemotherapeutic effect in cancer therapy may be associated with premature senescence. -- Abstract: DNA DSBs are induced by IR or radiomimetic drugs such as doxorubicin. It has been indicated that cells from ataxia-telangiectasia patients are highly sensitive to radiation due to defects in DNA repair, but whether they have impairment in apoptosis has not been fully elucidated. A-T cells showed increased sensitivity to high levels of DNA damage, however, they were more resistant to low doses. Normal cells treated with combination of KU55933, a specific ATM kinase inhibitor, and doxorubicin showed increased resistance as they do in a similar manner to A-T cells. A-T cells have higher viability but more DNA breaks, in addition, the activations of p53 and apoptotic proteins (Bax and caspase-3) were deficient, but Akt expression was enhanced. A-T cells subsequently underwent premature senescence after treatment with a low dose of doxorubicin, which was confirmed by G2 accumulation, senescent morphology, and SA-β-gal positive until 15 days repair incubation. Finally, A-T cells are radio-resistant at low doses due to its defectiveness in detecting DNA damage and apoptosis, but the accumulation of DNA damage leads cells to premature senescence.

  8. Coordinate to Guard: Crosstalk of Phosphorylation, Sumoylation, and Ubiquitylation in DNA Damage Response

    International Nuclear Information System (INIS)

    Kuo, Ching-Ying; Shieh, Christine; Cai, Fei; Ann, David Kong

    2012-01-01

    Small ubiquitin-like modifier-1/2/3 (SUMO-1/2/3) and ubiquitin share similar structure and utilize analogous machinery for protein lysine conjugation. Although sumoylation and ubiquitylation have distinct functions, they are often tightly associated with each other to fine-tune protein fate in transducing signals to regulate a wide variety of cellular functions, including DNA damage response, cell proliferation, DNA replication, embryonic development, and cell differentiation. In this Perspective, we specifically highlight the role of sumoylation and ubiquitylation in ataxia-telangiectasia mutated (ATM) signaling in response to DNA double-strand breaks and hypothesize that ATM-induced phosphorylation is a unique node in regulating SUMO-targeted ubiquitylation in mammalian cells to combat DNA damage and to maintain genome integrity. A potential role for the coordination of three types of post-translational modification in dictating the tempo and extent of cellular response to genotoxic stress is speculated.

  9. Coordinate to Guard: Crosstalk of Phosphorylation, Sumoylation, and Ubiquitylation in DNA Damage Response

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Ching-Ying [Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA (United States); Department of Molecular Pharmacology, Beckman Research Institute of City of Hope, Duarte, CA (United States); Shieh, Christine; Cai, Fei [Eugene and Ruth Roberts Summer Student Academy, Beckman Research Institute of City of Hope, Duarte, CA (United States); Ann, David Kong, E-mail: dann@coh.org [Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA (United States); Department of Molecular Pharmacology, Beckman Research Institute of City of Hope, Duarte, CA (United States); Eugene and Ruth Roberts Summer Student Academy, Beckman Research Institute of City of Hope, Duarte, CA (United States)

    2012-01-19

    Small ubiquitin-like modifier-1/2/3 (SUMO-1/2/3) and ubiquitin share similar structure and utilize analogous machinery for protein lysine conjugation. Although sumoylation and ubiquitylation have distinct functions, they are often tightly associated with each other to fine-tune protein fate in transducing signals to regulate a wide variety of cellular functions, including DNA damage response, cell proliferation, DNA replication, embryonic development, and cell differentiation. In this Perspective, we specifically highlight the role of sumoylation and ubiquitylation in ataxia-telangiectasia mutated (ATM) signaling in response to DNA double-strand breaks and hypothesize that ATM-induced phosphorylation is a unique node in regulating SUMO-targeted ubiquitylation in mammalian cells to combat DNA damage and to maintain genome integrity. A potential role for the coordination of three types of post-translational modification in dictating the tempo and extent of cellular response to genotoxic stress is speculated.

  10. Cerebellar Ataxia from Multiple Potential Causes: Hypothyroidism, Hashimoto's Thyroiditis, Thalamic Stimulation, and Essential Tremor

    OpenAIRE

    Shneyder, Natalya; Lyons, Mark K.; Driver-dunckley, Erika; Evidente, Virgilio Gerald H.

    2012-01-01

    Background: Both hypothyroidism and Hashimoto's thyroiditis (HT) can rarely be associated with cerebellar ataxia. Severe essential tremor (ET) as well as bilateral thalamic deep brain stimulation (DBS) may lead to subtle cerebellar signs. Case Report: We report a 74-year-old male with hypothyroidism and a 20-year history of ET who developed cerebellar ataxia after bilateral thalamic DBS. Extensive workup revealed elevated thyroid stimulating hormone and thyroperoxidase antibody titers c...

  11. ATM-Dependent Hyper-Radiosensitivity in Mammalian Cells Irradiated by Heavy Ions

    International Nuclear Information System (INIS)

    Xue Lian; Yu Dong; Furusawa, Yoshiya; Cao Jianping; Okayasu, Ryuichi; Fan Saijun

    2009-01-01

    Purpose: Low-dose hyper-radiosensitivity (HRS) and the later appearing radioresistance (termed induced radioresistance [IRR]) was mainly studied in low linear energy transfer (LET) radiation with survival observation. The aim of this study was to find out whether equivalent hypersensitivity occurred in high LET radiation, and the roles of ataxia telangiectasia mutated (ATM) kinase. Methods and Materials: Survival and mutation were measured by clonogenic assay and HPRT mutation assay. ATM Ser1981 activation was detected by Western blotting and immunofluorescent staining. Pretreatment of specific ATM inhibitor (10 μM KU55933) and activator (20 μg/mL chloroquine) before carbon radiation were adopted to explore the involvement of ATM. The roles of ATM were also investigated in its G2/M checkpoint function with histone H3 phosphorylation analysis and flow cytometric assay, and DNA double strand break (DSB) repair function measured using γ-H2AX foci assay. Results: HRS/IRR was observed with survival and mutation in normal human skin fibroblast cells by carbon ions, while impaired in cells with intrinsic ATM deficiency or normal cells modified with specific ATM activator or inhibitor before irradiation. The dose-response pattern of ATM kinase activation was concordant with the transition from HRS to IRR. The ATM-dependent 'early' G2 checkpoint arrest and DNA DSB repair efficiency could explain the difference between HRS and IRR. Conclusions: These data demonstrate that the HRS/IRR by carbon ion radiation is an ATM-dependent phenomenon in the cellular response to DNA damage.

  12. Hereditary hemorrhagic telangiectasia: progress of diagnostic imaging and vascular therapeutic embolization

    International Nuclear Information System (INIS)

    Lu Chuan; Liu Zuoqin

    2008-01-01

    Hereditary haemorrhagic telangiectasia (HHT) is a genetic autosomal-dominant disorder characterized by the presence of epistaxis, vascular telangiectasis in mucosal and cutaneous tissues, with visceral lesions and family history. However, many specialists or radiologists are still in lack of appreciation concerning the full range of consequences in diagnosis and their family relationship resulting the poor recognition of the disease. Understanding the diagnostic imaging and therapeutic measure for HHT will be critical, because of the continuous growth and risk existance of these arteriovenous malformations arousing early diagnosis, proper treatment, adequate follow-up and screening of the family. (authors)

  13. Drosophila atm/telomere fusion is required for telomeric localization of HP1 and telomere position effect

    OpenAIRE

    Oikemus, Sarah R.; McGinnis, Nadine; Queiroz-Machado, Joana; Tukachinsky, Hanna; Takada, Saeko; Sunkel, Claudio E.; Brodsky, Michael H.

    2004-01-01

    Terminal deletions of Drosophila chromosomes can be stably protected from end-to-end fusion despite the absence of all telomere-associated sequences. The sequence-independent protection of these telomeres suggests that recognition of chromosome ends might contribute to the epigenetic protection of telomeres. In mammals, Ataxia Telangiectasia Mutated (ATM) is activated by DNA damage and acts through an unknown, telomerase-independent mechanism to regulate telomere length and protection. We dem...

  14. Involvement of DNA-PK and ATM in radiation- and heat-induced DNA damage recognition and apoptotic cell death

    International Nuclear Information System (INIS)

    Tomita, Masanori

    2010-01-01

    Exposure to ionizing radiation and hyperthermia results in important biological consequences, e.g. cell death, chromosomal aberrations, mutations, and DNA strand breaks. There is good evidence that the nucleus, specifically cellular DNA, is the principal target for radiation-induced cell lethality. DNA double-strand breaks (DSBs) are considered to be the most serious type of DNA damage induced by ionizing radiation. On the other hand, verifiable mechanisms which can lead to heat-induced cell death are damage to the plasma membrane and/or inactivation of heat-labile proteins caused by protein denaturation and subsequent aggregation. Recently, several reports have suggested that DSBs can be induced after hyperthermia because heat-induced phosphorylated histone H2AX (γ-H2AX) foci formation can be observed in several mammalian cell lines. In mammalian cells, DSBs are repaired primarily through two distinct and complementary mechanisms: non-homologous end joining (NHEJ), and homologous recombination (HR) or homology-directed repair (HDR). DNA-dependent protein kinase (DNA-PK) and ataxia-telangiectasia mutated (ATM) are key players in the initiation of DSB repair and phosphorylate and/or activate many substrates, including themselves. These phosphorylated substrates have important roles in the functioning of cell cycle checkpoints and in cell death, as well as in DSB repair. Apoptotic cell death is a crucial cell suicide mechanism during development and in the defense of homeostasis. If DSBs are unrepaired or misrepaired, apoptosis is a very important system which can protect an organism against carcinogenesis. This paper reviews recently obtained results and current topics concerning the role of DNA-PK and ATM in heat- or radiation-induced apoptotic cell death. (author)

  15. CLINICAL APPROACH TO HEREDITARY HEMORRHAGIC TELANGIECTASIA

    Directory of Open Access Journals (Sweden)

    Mary Hachmeriyan

    2013-11-01

    Full Text Available Background: Hereditary hemorrhagic telangiectasia (HHT or Rendu-Osler-Weber disease is a rare syndrome, inherited as an autosomal dominant trait with incidence of 1/10000. The clinical manifestations are due to vascular malformations and predisposition to hemorrhages in different organs, the leading symptom being recurrent epistaxis. If diagnosed with HHT, the patient and his relatives and especially children have to be screened for occult vascular malformations.Case report: A 30 years old woman was treated for cerebral stroke, epistaxis, anemia, arterio-venous malformations for over 6 months. Only at this point she was diagnosed with HHT, after noticing the typical mucosal changes. Focused family history revealed symptoms of HHT in her only child, her father, aunt and two cousins The child was screened for occult vascular malformations – attainment of the nasal mucosa, lungs, gastrointestinal system, liver and brain. Pulmonary and gastrointestinal arterio-venous malformations were proven.Conclusion: Any case of recurrent epistaxis should be evaluated for HHT. After confirmation of the diagnosis every patient and close relatives have to be screened for attainment of other organs and followed up in order to prevent severe life threatening complications.

  16. A longitudinal study of the Friedreich Ataxia Impact Scale.

    Science.gov (United States)

    Tai, Geneieve; Yiu, Eppie M; Corben, Louise A; Delatycki, Martin B

    2015-05-15

    Quality of life in Friedreich ataxia (FRDA) has been explored using various generic health status measurement tools, most commonly the Short Form Health Survey Version 2 (SF-36v2). The tool did not address many specific issues related to disease impact in people with FRDA. The Friedreich Ataxia Impact Scale (FAIS) was developed to examine clinically relevant areas in FRDA. The aims of the current study were to assess the relationship between the FAIS and clinical characteristics of FRDA, as well as to determine the responsiveness of the FAIS to change over one and two years. One hundred and four individuals with FRDA, homozygous for the GAA expansion in intron 1 of FXN, completed the FAIS at baseline. Seventy individuals completed the FAIS again 12 months later and 49 completed the FAIS at 24 months. Clinical parameters and neurologic scales (Friedreich Ataxia Rating Scale (FARS)) were also recorded. The total FARS score, onset age and disease duration correlated significantly with FAIS subscales measuring symptoms and physical functioning. The physical and mental summary measures of the SF-36 V2 also correlated well with the FAIS subscales. Speech was the only subscale that demonstrated significant change over one and two years. The FAIS provides valuable insight into the perspective of individuals with FRDA on their health status, and is an important measure of morbidity. It has, however, limited responsiveness to change and its use in intervention studies is questionable. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Hypersensitivity to DNA-damaging agents in primary degenerations of excitable tissue

    International Nuclear Information System (INIS)

    Robbins, J.H.

    1983-01-01

    Defects in DNA-repair mechanisms render xeroderma pigmentosum cells hypersensitive to killing by the uv-type of DNA-damaging agent. Some xeroderma pigmentosum patients develop a primary neuronal degeneration, and cell lines from patients with the earliest onset of neurodegeneration are the most sensitive to killing by uv radiation. These findings led to the neuronal DNA integrity theory which holds that when the integrity of neuronal DNA is destroyed by the accumulation of unrepaired DNA damaged spontaneously or by endogenous metabolites, the neurons will undergo a primary degeneration. Cells from patients with Cockayne syndrome, a demyelinating disorder with a primary retinal degeneration, are also hypersensitive to the uv-type of DNA-damaging agent. Cells from patients with the primary neuronal degeneration of ataxia telangiectasia are hypersensitive to the x-ray-type of DNA-damaging agent. Cells from other patients with primary degeneration of excitable tissue also have hypersensitivity to the x-ray-type of DNA-damaging agent. These disorders include (1) primary neuronal degenerations which are either genetic (e.g., Huntington disease, familial dysautonomia, Friedreich ataxia) or sporadic (e.g., Alzheimer disease, Parkinson disease), (2) primary muscle degenerations (e.g., Duchenne muscular dystrophy), and (3) a primary retinal degeneration (Usher syndrome). Death of excitable tissue in vivo in these radiosensitive diseases may result from unrepaired DNA. This hypersensitivity provides the basis for developing suitable presymptomatic and prenatal tests for these diseases, for elucidating their pathogenesis, and for developing future therapies. 119 references, 3 figures, 3 tables

  18. Dementia in Fragile X-associated Tremor/Ataxia Syndrome

    Directory of Open Access Journals (Sweden)

    Ricardo Nitrini

    Full Text Available Abstract Fragile X-associated tremor/ataxia syndrome (FXTAS is a cause of movement disorders and cognitive decline which has probably been underdiagnosed, especially if its prevalence proves similar to those of progressive supranuclear palsy and amyotrophic lateral sclerosis. We report a case of a 74-year-old man who presented with action tremor, gait ataxia and forgetfulness. There was a family history of tremor and dementia, and one of the patient's grandsons was mentally deficient. Neuropsychological evaluation disclosed a frontal network syndrome. MRI showed hyperintensity of both middle cerebellar peduncles, a major diagnostic hallmark of FXTAS. Genetic testing revealed premutation of the FMR1 gene with an expanded (CGG90 repeat. The diagnosis of FXTAS is important for genetic counseling because the daughters of the affected individuals are at high risk of having offspring with fragile X syndrome. Tremors and cognitive decline should raise the diagnostic hypothesis of FXTAS, which MRI may subsequently reinforce, while the detection of the FMR1 premutation can confirm the condition.

  19. Early intranuclear replication of African swine fever virus genome modifies the landscape of the host cell nucleus.

    Science.gov (United States)

    Simões, Margarida; Martins, Carlos; Ferreira, Fernando

    2015-12-02

    Although African swine fever virus (ASFV) replicates in viral cytoplasmic factories, the presence of viral DNA within the host cell nucleus has been previously reported to be essential for productive infection. Herein, we described, for the first time, the intranuclear distribution patterns of viral DNA replication events, preceding those that occur in the cytoplasmic compartment. Using BrdU pulse-labelling experiments, newly synthesized ASFV genomes were exclusively detected inside the host cell nucleus at the early phase of infection, both in swine monocyte-derived macrophages (MDMs) and Vero cells. From 8hpi onwards, BrdU labelling was only observed in ASFV cytoplasmic factories. Our results also show that ASFV specifically activates the Ataxia Telangiectasia Mutated Rad-3 related (ATR) pathway in ASFV-infected swine MDMs from the early phase of infection, most probably because ASFV genome is recognized as foreign DNA. Morphological changes of promyelocytic leukaemia nuclear bodies (PML-NBs), nuclear speckles and Cajal bodies were also found in ASFV-infected swine MDMs, strongly suggesting the viral modulation of cellular antiviral responses and cellular transcription, respectively. As described for other viral infections, the nuclear reorganization that takes place during ASFV infection may also provide an environment that favours its intranuclear replication events. Altogether, our results contribute for a better understanding of ASFV replication strategies, starting with an essential intranuclear DNA replication phase which induces host nucleus changes towards a successful viral infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Autosomal dominant cerebellar ataxia type I: A review of the phenotypic and genotypic characteristics

    Directory of Open Access Journals (Sweden)

    Fujioka Shinsuke

    2011-05-01

    Full Text Available Abstract Type I autosomal dominant cerebellar ataxia (ADCA is a type of spinocerebellar ataxia (SCA characterized by ataxia with other neurological signs, including oculomotor disturbances, cognitive deficits, pyramidal and extrapyramidal dysfunction, bulbar, spinal and peripheral nervous system involvement. The global prevalence of this disease is not known. The most common type I ADCA is SCA3 followed by SCA2, SCA1, and SCA8, in descending order. Founder effects no doubt contribute to the variable prevalence between populations. Onset is usually in adulthood but cases of presentation in childhood have been reported. Clinical features vary depending on the SCA subtype but by definition include ataxia associated with other neurological manifestations. The clinical spectrum ranges from pure cerebellar signs to constellations including spinal cord and peripheral nerve disease, cognitive impairment, cerebellar or supranuclear ophthalmologic signs, psychiatric problems, and seizures. Cerebellar ataxia can affect virtually any body part causing movement abnormalities. Gait, truncal, and limb ataxia are often the most obvious cerebellar findings though nystagmus, saccadic abnormalities, and dysarthria are usually associated. To date, 21 subtypes have been identified: SCA1-SCA4, SCA8, SCA10, SCA12-SCA14, SCA15/16, SCA17-SCA23, SCA25, SCA27, SCA28 and dentatorubral pallidoluysian atrophy (DRPLA. Type I ADCA can be further divided based on the proposed pathogenetic mechanism into 3 subclasses: subclass 1 includes type I ADCA caused by CAG repeat expansions such as SCA1-SCA3, SCA17, and DRPLA, subclass 2 includes trinucleotide repeat expansions that fall outside of the protein-coding regions of the disease gene including SCA8, SCA10 and SCA12. Subclass 3 contains disorders caused by specific gene deletions, missense mutation, and nonsense mutation and includes SCA13, SCA14, SCA15/16, SCA27 and SCA28. Diagnosis is based on clinical history, physical

  1. Motor Decline in Clinically Presymptomatic Spinocerebellar Ataxia Type 2 Gene Carriers

    Science.gov (United States)

    Velázquez-Perez, Luis; Díaz, Rosalinda; Pérez-González, Ruth; Canales, Nalia; Rodríguez-Labrada, Roberto; Medrano, Jacquelín; Sánchez, Gilberto; Almaguer-Mederos, Luis; Torres, Cira; Fernandez-Ruiz, Juan

    2009-01-01

    Background Motor deficits are a critical component of the clinical characteristics of patients with spinocerebellar ataxia type 2. However, there is no current information on the preclinical manifestation of those motor deficits in presymptomatic gene carriers. To further understand and characterize the onset of the clinical manifestation in this disease, we tested presymptomatic spinocerebellar ataxia type 2 gene carriers, and volunteers, in a task that evaluates their motor performance and their motor learning capabilities. Methods and Findings 28 presymptomatic spinocerebellar ataxia type 2 gene carriers and an equal number of control volunteers matched for age and gender participated in the study. Both groups were tested in a prism adaptation task known to be sensible to both motor performance and visuomotor learning deficits. Our results clearly show that although motor learning capabilities are intact, motor performance deficits are present even years before the clinical manifestation of the disease start. Conclusions The results show a clear deficit in motor performance that can be detected years before the clinical onset of the disease. This motor performance deficit appears before any motor learning or clinical manifestations of the disease. These observations identify the performance coefficient as an objective and quantitative physiological biomarker that could be useful to assess the efficiency of different therapeutic agents. PMID:19401771

  2. Low-Dose Irradiation Enhances Gene Targeting in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Hatada, Seigo; Subramanian, Aparna; Mandefro, Berhan; Ren, Songyang; Kim, Ho Won; Tang, Jie; Funari, Vincent; Baloh, Robert H; Sareen, Dhruv; Arumugaswami, Vaithilingaraja; Svendsen, Clive N

    2015-09-01

    Human pluripotent stem cells (hPSCs) are now being used for both disease modeling and cell therapy; however, efficient homologous recombination (HR) is often crucial to develop isogenic control or reporter lines. We showed that limited low-dose irradiation (LDI) using either γ-ray or x-ray exposure (0.4 Gy) significantly enhanced HR frequency, possibly through induction of DNA repair/recombination machinery including ataxia-telangiectasia mutated, histone H2A.X and RAD51 proteins. LDI could also increase HR efficiency by more than 30-fold when combined with the targeting tools zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Whole-exome sequencing confirmed that the LDI administered to hPSCs did not induce gross genomic alterations or affect cellular viability. Irradiated and targeted lines were karyotypically normal and made all differentiated lineages that continued to express green fluorescent protein targeted at the AAVS1 locus. This simple method allows higher throughput of new, targeted hPSC lines that are crucial to expand the use of disease modeling and to develop novel avenues of cell therapy. The simple and relevant technique described in this report uses a low level of radiation to increase desired gene modifications in human pluripotent stem cells by an order of magnitude. This higher efficiency permits greater throughput with reduced time and cost. The low level of radiation also greatly increased the recombination frequency when combined with developed engineered nucleases. Critically, the radiation did not lead to increases in DNA mutations or to reductions in overall cellular viability. This novel technique enables not only the rapid production of disease models using human stem cells but also the possibility of treating genetically based diseases by correcting patient-derived cells. ©AlphaMed Press.

  3. Endoplasmic reticulum quality control is involved in the mechanism of endoglin-mediated hereditary haemorrhagic telangiectasia.

    Directory of Open Access Journals (Sweden)

    Bassam R Ali

    Full Text Available Hereditary haemorrhagic telangiectasia (HHT is an autosomal dominant genetic condition affecting the vascular system and is characterised by epistaxis, arteriovenous malformations and mucocutaneous and gastrointestinal telangiectases. This disorder affects approximately 1 in 8,000 people worldwide. Significant morbidity is associated with this condition in affected individuals, and anaemia can be a consequence of repeated haemorrhages from telangiectasia in the gut and nose. In the majority of the cases reported, the condition is caused by mutations in either ACVRL1 or endoglin genes, which encode components of the TGF-beta signalling pathway. Numerous missense mutations in endoglin have been reported as causative defects for HHT but the exact underlying cellular mechanisms caused by these mutations have not been fully established despite data supporting a role for the endoplasmic reticulum (ER quality control machinery. For this reason, we examined the subcellular trafficking of twenty-five endoglin disease-causing missense mutations. The mutant proteins were expressed in HeLa and HEK293 cell lines, and their subcellular localizations were established by confocal fluorescence microscopy alongside the analysis of their N-glycosylation profiles. ER quality control was found to be responsible in eight (L32R, V49F, C53R, V125D, A160D, P165L, I271N and A308D out of eleven mutants located on the orphan extracellular domain in addition to two (C363Y and C382W out of thirteen mutants in the Zona Pellucida (ZP domain. In addition, a single intracellular domain missense mutant was examined and found to traffic predominantly to the plasma membrane. These findings support the notion of the involvement of the ER's quality control in the mechanism of a significant number, but not all, missense endoglin mutants found in HHT type 1 patients. Other mechanisms including loss of interactions with signalling partners as well as adverse effects on functional

  4. Cerebellar Expression of the Neurotrophin Receptor p75 in Naked-Ataxia Mutant Mouse

    Directory of Open Access Journals (Sweden)

    Maryam Rahimi Balaei

    2016-01-01

    Full Text Available Spontaneous mutation in the lysosomal acid phosphatase 2 (Acp2 mouse (nax—naked-ataxia mutant mouse correlates with severe cerebellar defects including ataxia, reduced size and abnormal lobulation as well as Purkinje cell (Pc degeneration. Loss of Pcs in the nax cerebellum is compartmentalized and harmonized to the classic pattern of gene expression of the cerebellum in the wild type mouse. Usually, degeneration starts in the anterior and posterior zones and continues to the central and nodular zones of cerebellum. Studies have suggested that the p75 neurotrophin receptor (NTR plays a role in Pc degeneration; thus, in this study, we investigated the p75NTR pattern and protein expression in the cerebellum of the nax mutant mouse. Despite massive Pc degeneration that was observed in the nax mouse cerebellum, p75NTR pattern expression was similar to the HSP25 pattern in nax mice and comparable with wild type sibling cerebellum. In addition, immunoblot analysis of p75NTR protein expression did not show any significant difference between nax and wild type sibling (p > 0.5. In comparison with wild type counterparts, p75NTR pattern expression is aligned with the fundamental cytoarchitecture organization of the cerebellum and is unchanged in the nax mouse cerebellum despite the severe neurodevelopmental disorder accompanied with Pc degeneration.

  5. The dynamic regulation of cortical excitability is altered in episodic ataxia type 2

    DEFF Research Database (Denmark)

    Helmich, Rick C; Siebner, Hartwig R; Giffin, Nicola

    2010-01-01

    -pulse transcranial magnetic stimulation at an interstimulus interval of 2 and 10 ms to assess intracortical inhibition and facilitation, respectively. The time course of burst-induced excitability changes differed between groups. Healthy controls showed a short-lived increase in excitability that was only present 50...... different from either controls or patients with episodic ataxia type 2. Together, these findings indicate that patients with episodic ataxia type 2 have an excessive increase in motor cortex excitability following a strong facilitatory input. We argue that this deficient control of cortical excitability may...

  6. Impact of Dual Task on Parkinson's Disease, Stroke and Ataxia Patients' Gait: A Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Michelly Arjona Maciel

    2014-01-01

    Full Text Available Introduction: Performing dual task for neurological patients is complex and it can be influenced by the localization of the neurological lesion. Objective: Comparing the impact of dual task on gait in patients with Parkinson's disease, stroke and ataxia. Method: Subjects with Parkinson's disease (PD in initial phase, stroke and ataxia, with independent gait, were evaluated while doing simple gait, with cognitive, motor and cognitive-motor gait demand, assessing average speed and number of steps. Results: Ataxia and stroke patients, compared with PD, showed an increase in the number of steps and decrease the average speed on the march with cognitive demand. Subjects with PD performed better on tasks when compared to others. Conclusion: In this study the impact of dual task was lower in Parkinson's disease patients.

  7. Combination therapy of hyaluronic acid mesotherapic injections and sclerotherapy for treatment of lower leg telangiectasia without major venous insufficiency: a preliminary clinical study.

    Science.gov (United States)

    Iannitti, Tommaso; Rottigni, Valentina; Torricelli, Federica; Palmieri, Beniamino

    2014-04-01

    Telangiectasia is the dilation of dermal capillaries mainly due to hypertension and vein insufficiency. Treatments of choice for this condition are sclerotherapy with foam liquid or intradermal fiber optic laser energy delivery. The aim of this study was to assess the efficacy of a new therapeutic approach consisting in the use of polymerized hyaluronic acid mesotherapic injections following sclerotherapy in the areas of the skin affected by telangiectasia in patients without major vein insufficiency. A total of 20 women, aged between 19 and 64 years, affected by recurrent lower leg telangiectasia, were included in this study. Patients were preliminarily submitted to echo color Doppler sonography to rule out severe saphenofemoral valve and lower limb major vein insufficiency. All patients underwent 3 sessions a month of polidocanol 1% capillary injections for 2 months. This was followed by 0.1 ml cross-linked hyaluronic acid introduction in the polidocanol 1% needle track. A total of 50 mesotherapic injections (0.05 ml each) were performed on the skin surface where an ice pack was previously applied for 4 to 5 minutes. A follow-up visit was performed at 3 months. The results, based on photographic examination, were rated as follows: poor improvement (0%-50%), good improvement (51%-75%), and very good improvement (76%-100%). The side effects of the clinical procedure, in terms of pain, itching, paresthesia, ecchymosis, and relapse of telangiectasia over the treated skin surface, as well as a persisting pigmentation in the injection spots and induced benefits related to leg heaviness and comfort, were recorded. In total, 6 patients displayed a slight venous insufficiency, 3 patients displayed patent venous insufficiency, and 11 patients did not show any venous insufficiency. Before treatment, itching was present in 18 out of 20 patients, paresthesia in 15 out of 20 patients, ecchymosis in 16 out of 20 patients, and leg heaviness in 15 out of 20 patients. At the 3

  8. Hereditary Hemorrhagic Telangiectasia Presenting as High Output Cardiac Failure during Pregnancy

    Directory of Open Access Journals (Sweden)

    Tareq Goussous

    2009-01-01

    Full Text Available High-output cardiac failure secondary to hepatic involvement is a rare complication of hereditary hemorrhagic telangiectasia (HHT. Here we report a 43-year-old woman who presented at 29 weeks gestation of her second pregnancy with complications of right-sided heart failure and preterm labor. After delivery via cesarean section, the patient was found to have intrahepatic arteriovenous malformations through non-invasive imaging. Subsequently, a family history of vascular malformations and epistaxis was elucidated and a diagnosis of HHT was made. This case is presented, along with a review of the literature and discussion of hepatic involvement in HHT with particular focus on the pregnant patient.

  9. Xeroderma pigmentosum complementation group F: A rare cause of cerebellar ataxia with chorea.

    Science.gov (United States)

    Carré, G; Marelli, C; Anheim, M; Geny, C; Renaud, M; Rezvani, H R; Koenig, M; Guissart, C; Tranchant, C

    2017-05-15

    The complementation group F of Xeroderma pigmentosum (XP-F) is rare in the Caucasian population, and usually devoid of neurological symptoms. We report two cases, both Caucasian, who exhibited progressive cerebellar ataxia, chorea, a mild subcortical frontal cognitive impairment, and in one case severe polyneuropathy. Brain MRI demonstrated cerebellar (2/2) and cortical (1/2) atrophy. Both patients had only mild sunburn sensitivity and no skin cancer. Mini-exome sequencing approach revealed in ERCC4, two heterozygous mutations, one of which was never described (c.580-584+1delCCAAGG, exon 3), in the first case, and an already reported homozygous mutation, in the second case. These cases emphasize that XP-F is a rare cause of recessive cerebellar ataxia and can in some cases clinically mimic Huntington's disease due to chorea and executive impairment. The association of ataxia, chorea, and sun hypersensitivity are major guidance for the diagnosis, which should not be missed, in order to prevent skin neoplastic complications. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Ultrastructural and clinical evidence of subretinal debris accumulation in type 2 macular telangiectasia.

    Science.gov (United States)

    Cherepanoff, Svetlana; Killingsworth, Murray C; Zhu, Meidong; Nolan, Timothy; Hunyor, Alex P; Young, Stephanie H; Hageman, Gregory S; Gillies, Mark C

    2012-11-01

    To describe subretinal debris found on ultrastructural examination in an eye with macular telangiectasia (MacTel) type 2 and on optical coherence tomography (OCT) in a subset of patients with MacTel type 2. Blocks from the mid-periphery and temporal perifovea of an eye with clinically documented MacTel type 2 were examined with electron microscopy (EM). Cases came from the Sydney centre of the MacTel project and the practices of the authors. On EM examination, subretinal debris was found in the perifovea with accumulation of degenerate photoreceptor elements in the subretinal space. Despite the substantial subretinal debris, there was minimal retinal pigment epithelial (RPE) reaction. Focal defects were seen in the inner limiting membrane in the perifovea. Of the 65 Sydney MacTel project participants, three (5%) had prominent yellow material at the fovea. OCT revealed smooth mounds between the RPE and the ellipsoid region. The material was hyperautofluorescent. This study suggests that subretinal accumulation of photoreceptor debris may be a feature of MacTel type 2. Ultrastructural and OCT evidence of disease beyond the vasculature, involving photoreceptors and Muller cells, is presented.

  11. Cranial CT and MRI in diseases with DNA repair defects

    International Nuclear Information System (INIS)

    Demaerel, P.; Kendall, B.E.; Kingsley, D.

    1992-01-01

    The CT and MRI appearances of 5 patients with Cockayne's syndrome, 5 with ataxia telangiectasia and 1 with Fanconi's anaemia are reported. These conditions, together with Bloom's syndrome and xeroderma pigmentosum are regarded as disorders of DNA repair. Characteristic CT and MRI features of Cockayne's syndrome include generalised atrophy, calcification in basal ganglia and dentate nuclei and white matter low density. Neuroradiological findings in the other DNA repair disorders are nonspecific. (orig.)

  12. Live longer on MARS: a yeast paradigm of mitochondrial adaptive ROS signaling in aging

    Directory of Open Access Journals (Sweden)

    Gerald S. Shadel

    2014-04-01

    Full Text Available Adaptive responses to stress, including hormesis, have been implicated in longevity, but their mechanisms and out comes are not fully understood. Here, I briefly summarize a longevity mechanism elucidated in the budding yeast chronological lifespan model by which Mitochondrial Adaptive ROS Signaling (MARS promotes beneficial epigenetic and metabolic remodeling. The potential relevance of MARS to the human disease Ataxia-Telangiectasia and as a potential anti-aging target is discussed.

  13. Intrinsic factors that can affect sensitivity to chromosome-aberration induction

    International Nuclear Information System (INIS)

    Preston, R.J.

    1982-01-01

    The paper addresses the question, are there individuals who are hypersensitive, or are more likely to be hypersensitive, to the induction of chromosome aberrations by radiation and chemicals. Lymphocytes of persons heterozygous for xeroderma pigmentosum, ataxia telangiectasia, and Fauconi's anemia were subjected to chemical and/or ionizing radiations to determine their sensitivity to chromosome aberration induction. In the majority of cases the sensitivity was intermediate between that of normal individuals and homozygotes for these genes

  14. Malformações arteriovenosas pulmonares – Associação a telangiectasia hemorrágica hereditária. Casos clínicos e rastreio familiar

    Directory of Open Access Journals (Sweden)

    Diva Ferreira

    2006-07-01

    Full Text Available Resumo: As malformações arteriovenosas pulmonares são raras e mais de metade dos casos surgem em associação a telangiectasia hemorrágica hereditária.Faz-se uma revisão teórica sobre a apresentação clínica, abordagem diagnóstica, terapêutica e prognóstico destas malformações vasculares. Estão associadas a morbilidade e mortalidade consideráveis, pelo que se preconiza o seu tratamento, assim como o rastreio dos familiares directos quando se identificam malformações arteriovenosas pulmonares num doente com telangiectasia hemorrágica hereditária. Ainda não existem estudos prospectivos que estabeleçam o melhor plano de estudo do doente e seus familiares.Descrevem-se dois casos clínicos de malformações arteriovenosas pulmonares no contexto familiar de telangiectasia hemorrágica hereditária. A identificação das doentes implicou o rastreio familiar que permitiu detectar malformações arteriovenosas pulmonares em dois familiares e excluir o envolvimento pulmonar em quatro familiares com a doença.Rev Port Pneumol 2006; XII (4: 383-399 Abstract: Pulmonary arteriovenous malformations are a rare disorder associated to hereditary hemorrhagic telangiectasia in over50 % of the cases.Clinical presentation, diagnostic work-up, therapeutic options and prognosis are reviewed by the authors. Pulmonary arteriovenous malformations are known to have considerable morbidity and mortality, their treatment being advisable as well as their screening among family members, especially if the index case is diagnosed with both pulmonary arteriovenous malformations and hereditary hemorrhagic telangiectasia. To this moment prospective studies establishing the best diagnostic work-up for the patients and their families are lacking.The authors report two pulmonary arteriovenous malformations cases in a family with hereditary hemorrhagic telangiectasia. Patient’s diagnosis led

  15. Experience of the Irish National Centre for hereditary haemorrhagic telangiectasia 2003-2008.

    LENUS (Irish Health Repository)

    Ni Bhuachalla, C F

    2012-01-31

    Hereditary haemorrhagic telangiectasia (HHT) is a group of autosomal dominant disorders of vascular structure. The Irish National Centre for HHT at the Mercy University Hospital, Cork, Ireland was founded in 2003. From 2003 to 2008, screening of 164 patients with contrast echocardiography, thoracic computerised tomography (CT) and cerebral magnetic resonance imaging (MRI) has identified 88 patients with definite HHT, 72 (82%) of whom had epistaxis, 70 (80%) had telangiectasia and 81 (92%) had a first-degree relative with HHT. We sought to describe the manifestations of HHT in an Irish population and to determine differences between internationally reported data. The HHT patient database was analysed to describe demographics, clinical manifestations and interventional procedures performed in all referred patients. Contrast echocardiography and\\/or CT were performed in 86 patients with definite HHT, identifying 27 patients (31%) with pulmonary arteriovenous malformations (pAVMs). Nineteen patients with single or multiple pAVMs had 28 embolisation procedures performed, with 1-6 pAVMs embolised per procedure. Cerebral MRI was performed in 78 (89%) patients and 2 (2.3%) had cerebral arteriovenous malformations (cAVMs). HHT prevalence is thought to be 1 in 2500-8000, suggesting that there are many undiagnosed cases in Irish patients. Internationally published data suggest a prevalence of 15-35% for pAVMs and 10-23% for cAVMs in patients with HHT. While the prevalence of pAVMs in our group is consistent with these data, the prevalence of cAVMs is considerably lower, suggesting that Irish patients with HHT may differ genotypically and phenotypically from those in other countries.

  16. Novel brain arteriovenous malformation mouse models for type 1 hereditary hemorrhagic telangiectasia.

    Directory of Open Access Journals (Sweden)

    Eun-Jung Choi

    Full Text Available Endoglin (ENG is a causative gene of type 1 hereditary hemorrhagic telangiectasia (HHT1. HHT1 patients have a higher prevalence of brain arteriovenous malformation (AVM than the general population and patients with other HHT subtypes. The pathogenesis of brain AVM in HHT1 patients is currently unknown and no specific medical therapy is available to treat patients. Proper animal models are crucial for identifying the underlying mechanisms for brain AVM development and for testing new therapies. However, creating HHT1 brain AVM models has been quite challenging because of difficulties related to deleting Eng-floxed sequence in Eng(2fl/2fl mice. To create an HHT1 brain AVM mouse model, we used several Cre transgenic mouse lines to delete Eng in different cell-types in Eng(2fl/2fl mice: R26CreER (all cell types after tamoxifen treatment, SM22α-Cre (smooth muscle and endothelial cell and LysM-Cre (lysozyme M-positive macrophage. An adeno-associated viral vector expressing vascular endothelial growth factor (AAV-VEGF was injected into the brain to induce focal angiogenesis. We found that SM22α-Cre-mediated Eng deletion in the embryo caused AVMs in the postnatal brain, spinal cord, and intestines. Induction of Eng deletion in adult mice using R26CreER plus local VEGF stimulation induced the brain AVM phenotype. In both models, Eng-null endothelial cells were detected in the brain AVM lesions, and formed mosaicism with wildtype endothelial cells. However, LysM-Cre-mediated Eng deletion in the embryo did not cause AVM in the postnatal brain even after VEGF stimulation. In this study, we report two novel HHT1 brain AVM models that mimic many phenotypes of human brain AVM and can thus be used for studying brain AVM pathogenesis and testing new therapies. Further, our data indicate that macrophage Eng deletion is insufficient and that endothelial Eng homozygous deletion is required for HHT1 brain AVM development.

  17. Myoclonus epilepsy and ataxia due to KCNC1 mutation

    DEFF Research Database (Denmark)

    Oliver, Karen L.; Franceschetti, Silvana; Milligan, Carol J.

    2017-01-01

    generalized spike and polyspike wave discharges, with documented photosensitivity in most. Polygraphic EEG–electromyographic studies demonstrated a cortical origin for myoclonus and striking coactivation of agonist and antagonist muscles. Magnetic resonance imaging revealed symmetrical cerebellar atrophy...... data for 20 patients with MEAK due to recurrent KCNC1 p.R320H mutation. In vitro electrophysiological studies were conducted using whole cell patch-clamp to explore biophysical properties of wild-type and mutant KV3.1 channels. Results: Symptoms began at between 3 and 15 years of age (median = 9.......5), with progressively severe myoclonus and rare tonic–clonic seizures. Ataxia was present early, but quickly became overshadowed by myoclonus; 10 patients were wheelchair-bound by their late teenage years. Mild cognitive decline occurred in half. Early death was not observed. Electroencephalogram (EEG) showed...

  18. Impact of lysosomal storage disorders on biology of mesenchymal stem cells: Evidences from in vitro silencing of glucocerebrosidase (GBA) and alpha-galactosidase A (GLA) enzymes.

    Science.gov (United States)

    Squillaro, Tiziana; Antonucci, Ivana; Alessio, Nicola; Esposito, Anna; Cipollaro, Marilena; Melone, Mariarosa Anna Beatrice; Peluso, Gianfranco; Stuppia, Liborio; Galderisi, Umberto

    2017-12-01

    Lysosomal storage disorders (LDS) comprise a group of rare multisystemic diseases resulting from inherited gene mutations that impair lysosomal homeostasis. The most common LSDs, Gaucher disease (GD), and Fabry disease (FD) are caused by deficiencies in the lysosomal glucocerebrosidase (GBA) and alpha-galactosidase A (GLA) enzymes, respectively. Given the systemic nature of enzyme deficiency, we hypothesized that the stem cell compartment of GD and FD patients might be also affected. Among stem cells, mesenchymal stem cells (MSCs) are a commonly investigated population given their role in hematopoiesis and the homeostatic maintenance of many organs and tissues. Since the impairment of MSC functions could pose profound consequences on body physiology, we evaluated whether GBA and GLA silencing could affect the biology of MSCs isolated from bone marrow and amniotic fluid. Those cell populations were chosen given the former's key role in organ physiology and the latter's intriguing potential as an alternative stem cell model for human genetic disease. Our results revealed that GBA and GLA deficiencies prompted cell cycle arrest along with the impairment of autophagic flux and an increase of apoptotic and senescent cell percentages. Moreover, an increase in ataxia-telangiectasia-mutated staining 1 hr after oxidative stress induction and a return to basal level at 48 hr, along with persistent gamma-H2AX staining, indicated that MSCs properly activated DNA repair signaling, though some damages remained unrepaired. Our data therefore suggest that MSCs with reduced GBA or GLA activity are prone to apoptosis and senescence due to impaired autophagy and DNA repair capacity. © 2017 Wiley Periodicals, Inc.

  19. γ-ray hypersensitivity and faulty DNA repair in cultured cells from humans exhibiting familial cancer proneness

    International Nuclear Information System (INIS)

    Paterson, M.C.; Smith, P.J.; Bech-Hansen, N.T.; Smith, B.P.; Sell, B.M.

    1979-01-01

    The most significant danger to irradiated individuals is the induction of cancer. Ataxia telangiectasia (AT) is known as a disorder linking radiosensitivity with cancer proneness, and AT is a rare inherited disorder. This is the degenerative multisystem affliction that is transmitted as a simple autosomal recessive trait. Cell culture studies disclosed the relationship between the cellular hypersensitivity to γ-ray inactivation in vitro and the propensity to develop cancer in vivo. The molecular evidence for the defects in the repair of radiogenic DNA damage has as yet been obtained only for AT, and it seems likely that anomalous DNA repair may not be the key causal factor in the development of some of the clinical abnormalities associated with the disease, including the tendency to develop lymphoproliferative cancer. Nevertheless, AT, Rothmund-Thomson syndrome (RTS), and acute myelogenous leukemia (AML) family show promise as the models for elucidating the importance of cellular radiosensitivity and imperfect DNA repair in the induction of cancer by radiation and radiomimetic carcinogens in the biosphere. Expanded efforts are required to identify heterozygosity for the AT genes in general population and to assess the role of the interaction between this genetic make-up and environmental carcinogens in the occurrence of common cancers. (Yamashita, S.)

  20. Study on effects of ATM gene on expression of hTERT in AT cells exposed to 60Co γ-rays

    International Nuclear Information System (INIS)

    Cao Jianping; Sheng Fangjun; Zhu Wei; Feng Shuang; Eckardt-Schupp, F.; Luo Jialin

    2005-01-01

    Objective: To study the effects of exogenous ATM gene on mRNA and protein expression of hTERT (human telomerase reverse transcriptase, hTERT) of a fibroblast cell line (AT5BIVA cells, At cells for short) established from skin of the ataxia telangiectasia (AT) patients. Methods: After the following cells had been exposed to 0, 1, 3, 5 Gy of 60 Co γ-rays, RT-PCR and Western blotting were used to observe the mRNA and protein expressions of hTERT in AT, PEBS7(blank vector)-AT, ATM + (AT gene mutated)-AT and GM cells, respectively. The GM(GM0639) cells were used as the normal control in this experiment. Results: Except for GM cells, there were mRNA and protein expressions of hTERT in all AT, PEBS7-AT and ATM + -AT cells before exposure to ionizing radiation. However, the mRNA and protein expressions of hTERT in ATM + -AT cells were significantly lower than those in AT cells, but still higher than those in GM cells (P + -AT and GM cells were increased dose-dependently from 1 Gy to 5 Gy. At the same dose point, the mRNA expression of hTERT in ATM + -AT cells was significantly lower than that of AT cells. Conclusion: Exogenous ATM gene can down-regulate mRNA and protein expressions of hTERT in AT cells no matter where the latter have been exposed to ionizing radiation or not. The mRNA and protein expressions of hTERT in cells can be induced by ionizing radiation in a dose- dependent manner. Telomerase is speculated on to participate in the repair of DNA damaged induced by ionizing radiation. (authors)