WorldWideScience

Sample records for atacama cosmology telescope

  1. The Atacama Cosmology Telescope: The Receiver and Instrumentation

    Science.gov (United States)

    Swetz, D. S.; Ade, P. A. R.; Amiri, M.; Appel, J. W.; Burger, B.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Essinger-Hileman, T.; Fisher, R. P.; hide

    2010-01-01

    The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the Cosmic Microwave Background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Taco in the Atacama Desert, at an altitude of 5190 meters. A six-met.er off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three WOO-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space mm-wave optics. Each frequency band has a field of view of approximately 22' x 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.

  2. Far Sidelobes Measurement of the Atacama Cosmology Telescope

    Science.gov (United States)

    Duenner, Rolando; Gallardo, Patricio; Wollack, Ed; Henriquez, Fernando; Jerez-Hanckes, Carlos

    2012-01-01

    The Atacama Cosmology Telescope (ACT) is a 6m telescope designed to map the Cosmic Microwave Background (CMB) simultaneously at 145GHz, 220 GHz and 280 GHz. Its off-axis Gregorian design is intended to minimize and control the off-axis sidelobe response, which is critical for scientific purposes. The expected sidelobe level for this kind of design is less than -50 dB and can be challenging to measure. Here we present a measurement of the 145 GHz far sidelobes of ACT done on the near-field of the telescope. We used a 1 mW microwave source placed 13 meters away from the telescope and a chopper wheel to produce a varying signal that could be detected by the camera for different orientations of the telescope. The source feed was designed to produce a wide beam profile. Given that the coupling is expected to be dominated by diffraction over the telescope shielding structure, when combined with a measurements of the main beam far field response, these measurement can be used to validate elements of optical design and constrain the level of spurious coupling at large angles. Our results show that the diffractive coupling beyond the ground screen is consistently below -75 dB, satisfying the design expectations.

  3. The Atacama Cosmology Telescope: cross correlation with Planck maps

    Energy Technology Data Exchange (ETDEWEB)

    Louis, Thibaut; Calabrese, Erminia; Dunkley, Joanna; Næss, Sigurd [Department of Astrophysics, Oxford University, Oxford OX1 3RH (United Kingdom); Addison, Graeme E.; Hincks, Adam D. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Hasselfield, Matthew; Hlozek, Renée [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Bond, J. Richard; Hajian, Amir [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Das, Sudeep [Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL 60439 (United States); Devlin, Mark J. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, U.S.A (United States); Dünner, Rolando; Infante, Leopoldo [Departamento de Astronomía y Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Gralla, Megan; Marriage, Tobias A. [Dept. of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Huffenberger, Kevin [Department of Physics, Florida State University, Keen Physics Building, 77 Chieftan Way, Tallahassee, Florida (United States); Kosowsky, Arthur [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, 15260 (United States); Moodley, Kavilan [Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Durban, 4041 (South Africa); Niemack, Michael D., E-mail: Thibaut.Louis@astro.ox.ac.uk [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); and others

    2014-07-01

    We present the temperature power spectrum of the Cosmic Microwave Background obtained by cross-correlating maps from the Atacama Cosmology Telescope (ACT) at 148 and 218 GHz with maps from the Planck satellite at 143 and 217 GHz, in two overlapping regions covering 592 square degrees. We find excellent agreement between the two datasets at both frequencies, quantified using the variance of the residuals between the ACT power spectra and the ACT × Planck cross-spectra. We use these cross-correlations to measure the calibration of the ACT data at 148 and 218 GHz relative to Planck, to 0.7% and 2% precision respectively. We find no evidence for anisotropy in the calibration parameter. We compare the Planck 353 GHz power spectrum with the measured amplitudes of dust and cosmic infrared background (CIB) of ACT data at 148 and 218 GHz. We also compare planet and point source measurements from the two experiments.

  4. Two-Season Atacama Cosmology Telescope Polarimeter Lensing Power Spectrum

    Science.gov (United States)

    Shewin, Blake D.; van Engelen, Alexander; Sehgal, Neelima; Madhavacheril, Mathew; Addison, Graeme E.; Aiola, Simone; Allison, Rupert; Battaglia, Nicholas; Becker, Daniel T.; Beall, James A.; hide

    2017-01-01

    We report a measurement of the power spectrum of cosmic microwave background (CMB) lensing from two seasons of Atacama Cosmology Telescope polarimeter (ACTPol) CMB data. The CMB lensing power spectrum is extracted from both temperature and polarization data using quadratic estimators. We obtain results that are consistent with the expectation from the best-fit Planck CDM model over a range of multipoles L 80-2100, with an amplitude of lensing A(sub lens) = 1.06 +/- 0.15 stat +/- 0.06 sys relative to Planck. Our measurement of the CMB lensing power spectrum gives sigma 8 omega m(sup 0.25) = 0.643 +/- 0.054; including baryon acoustic oscillation scale data, we constrain the amplitude of density fluctuations to be sigma 8 = 0.831 +/- 0.053. We also update constraints on the neutrino mass sum. We verify our lensing measurement with a number of null tests and systematic checks, finding no evidence of significant systematic errors. This measurement relies on a small fraction of the ACTPol data already taken; more precise lensing results can therefore be expected from the full ACTPol data set.

  5. The Atacama Cosmology Telescope: The Polarization-Sensitive ACTPol Instrument

    Science.gov (United States)

    Thornton, R. J.; Ade, P. A. R.; Aiola, S.; Angile, F. E.; Amiri, M.; Beall, J. A.; Becker, D. T.; Cho, H.-M.; Choi, S. K.; Corlies, P.; hide

    2016-01-01

    The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3deg field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermal Sunyaev-Zel'dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.

  6. The Atacama Cosmology Telescope: Data Characterization and Map Making

    Science.gov (United States)

    Duenner, Rolando; Hasselfield, Matthew; Marriage, Tobias A.; Sievers, Jon; Acquaviva, Viviana; Addison, Graeme E.; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John William; hide

    2012-01-01

    We present a description of the data reduction and mapmaking pipeline used for the 2008 observing season of the Atacama Cosmology Telescope (ACT). The data presented here at 148 GHz represent 12% or the 90 TB collected by ACT from 2007 to 2010. In 2008 we observed for 136 days, producing a total of 142h of data (11 TB for the 148 GHz band only), with a daily average of 10.5 h of observation. From these, 108.5 h were devoted to 850 sq deg stripe (11.2 h by 9 deg.1) centered on a declination of -52 deg.7, while 175 h were devoted to a 280 square deg stripe (4.5 h by 4 deg.8) centered at the celestial equator. We discuss sources of statistical and systematic noise, calibration, telescope pointing and data selection. Out of 1260 survey hours and 1024 detectors per array, 816 h and 593 effective detectors remain after data selection for this frequency band, yielding a 38 % survey efficiency. The total sensitivity in 2008, determined from the noise level between 5 Hz and 20 Hz in the time-ordered data stream (TOD), is 32 muK square root of s in CMB units. Atmospheric brightness fluctuations constitute the main contaminant in the data and dominate the detector and noise covariance at low frequencies in the TOD. The maps were made by solving the lease squares problem using the Preconditioned Conjugate Gradient method, incorporating the details of the detector and noise correlations. Cross-correlation with WMAP sky maps as well as analysis from simulations reveal the our maps are unbiased at l > 300. This paper accompanies the public release of the 148 GHz southern stripe maps from 2008. The techniques described here will be applied to future maps and data releases.

  7. Mirror Illumination and Spillover Measurements of the Atacama Cosmology Telescope

    Science.gov (United States)

    Gallardo, Patricio; Dunner, Rolando; Wollack, Ed; Jerez-Hanckes, Carlos

    2012-01-01

    The Atacama Cosmology Telescope (ACT) is a 6 m telescope designed to map the Cosmic Microwave Background (CMB) simultaneously at 145 GHz, 220GHz and 280GHz, The receiver in ACT, the Millimeter Bolometer Array Camera, features 1000 TES bolometers in each band, The detector performance depends critically on the total optical loading, requiring the spmover contributions from the optics to be minimal. This inspired the use of a cold Lyot stop to limit the illumination of the primary and the use of guard rings surrounding the primary and secondary reflectors. Here, we present a direct measurement of the illumination aperture for both reflectors and of the attenuation level outside the main optical path. We used a 145 GHz, 1 m W source and a chopper wheel to produce a time-varying signal with a broad heam proflle, We sampled the response of the camera for different locations of the source, placed in front and beside the primary and secondary mirrors. The aperture of the primary was measured to be 5,72 plus or minus 0,17m in diameter (95 plus or minus 3% of its geometrical size), while the aperture of the secondary yielded 2 plus or minus 0.12m in diameter. Both apertures are consistent with the optical design. Comparing to previous measurements of the beam solid angle from planet observations, we estimate an optical efficiency of 72.3 plus or minus 4,8%. We found that the attenuation outside the primary aperture was -16 plus or minus 2dB, which is below the theoretical expectations, and -22 plus or minus 1 dB outside the secondary aperture, which is consistent with simulations. These results motivated the extension of the baffles surrounding the secondary mirror, with the following reduction in detector optical loading from 2,24 pW to 188pW.

  8. Survey Strategy Optimization for the Atacama Cosmology Telescope

    Science.gov (United States)

    De Bernardis, F.; Stevens, J. R.; Hasselfield, M.; Alonso, D.; Bond, J. R.; Calabrese, E.; Choi, S. K.; Crowley, K. T.; Devlin, M.; Wollack, E. J.

    2016-01-01

    In recent years there have been significant improvements in the sensitivity and the angular resolution of the instruments dedicated to the observation of the Cosmic Microwave Background (CMB). ACTPol is the first polarization receiver for the Atacama Cosmology Telescope (ACT) and is observing the CMB sky with arcmin resolution over approximately 2000 square degrees. Its upgrade, Advanced ACTPol (AdvACT), will observe the CMB in five frequency bands and over a larger area of the sky. We describe the optimization and implementation of the ACTPol and AdvACT surveys. The selection of the observed fields is driven mainly by the science goals, that is, small angular scale CMB measurements, B-mode measurements and cross-correlation studies. For the ACTPol survey we have observed patches of the southern galactic sky with low galactic foreground emissions which were also chosen to maximize the overlap with several galaxy surveys to allow unique cross-correlation studies. A wider field in the northern galactic cap ensured significant additional overlap with the BOSS spectroscopic survey. The exact shapes and footprints of the fields were optimized to achieve uniform coverage and to obtain cross-linked maps by observing the fields with different scan directions. We have maximized the efficiency of the survey by implementing a close to 24-hour observing strategy, switching between daytime and nighttime observing plans and minimizing the telescope idle time. We describe the challenges represented by the survey optimization for the significantly wider area observed by AdvACT, which will observe roughly half of the low-foreground sky. The survey strategies described here may prove useful for planning future ground-based CMB surveys, such as the Simons Observatory and CMB Stage IV surveys.

  9. The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected Via the Sunyaev-Zel'dovich Effect

    Science.gov (United States)

    Sehgal, Neelima; Trac, Hy; Acquaviva, Viviana; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, J. Richard; hide

    2010-01-01

    We present constraints on cosmological parameters based on a sample of Sunyaev-Zel'dovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148 GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives (sigma)8 = 0.851 +/- 0.115 and w = -1.14 +/- 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find (sigma)8 + 0.821 +/- 0.044 and w = -1.05 +/- 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernova which give (sigma)8 = 0.802 +/- 0.038 and w = -0.98 +/- 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.

  10. The Atacama Cosmology Telescope: Cosmological Parameters from the 2008 Power Spectrum

    Science.gov (United States)

    Dunkley, J.; Hlozek, R.; Sievers, J.; Acquaviva, V.; Ade, P. A. R.; Aguirre, P.; Amiri, M.; Appel, J. W.; Barrientos, L. F.; Battistelli, E. S.; hide

    2011-01-01

    We present cosmological parameters derived from the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz and 218 GHz over 296 deg(exp 2) with the Atacama Cosmology Telescope (ACT) during its 2008 season. ACT measures fluctuations at scales 500 cosmological parameters from the less contaminated 148 GHz spectrum, marginalizing over SZ and source power. The ACDM cosmological model is a good fit to the data (chi square/dof = 29/46), and ACDM parameters estimated from ACT+Wilkinson Microwave Anisotropy Probe (WMAP) are consistent with the seven-year WMAP limits, with scale invariant n(sub s) = 1 excluded at 99.7% confidence level (CL) (3 sigma). A model with no CMB lensing is disfavored at 2.8 sigma. By measuring the third to seventh acoustic peaks, and probing the Silk damping regime, the ACT data improve limits on cosmological parameters that affect the small-scale CMB power. The ACT data combined with WMAP give a 6 sigma detection of primordial helium, with Y(sub p) = 0.313 +/- 0.044, and a 4 sigma detection of relativistic species, assumed to be neutrinos, with N(sub eff) = 5.3 +/- 1.3 (4.6 +/- 0.8 with BAO+H(sub 0) data). From the CMB alone the running of the spectral index is constrained to be d(sub s) / d ln k = -0,034 +/- 0,018, the limit on the tensor-to-scalar ratio is r < 0,25 (95% CL), and the possible contribution of Nambu cosmic strings to the power spectrum is constrained to string tension G(sub mu) < 1.6 x 10(exp -7) (95% CL),

  11. The Atacama Cosmology Telescope: Calibration with the Wilkinson Microwave Anisotropy Probe Using Cross-Correlations

    Science.gov (United States)

    Hajian, Amir; Acquaviva, Viviana; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John William; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, John R.; Brown, Ben; hide

    2011-01-01

    We present a new calibration method based on cross-correlations with the Wilkinson Microwave Anisotropy Probe (WMAP) and apply it to data from the Atacama Cosmology Telescope (ACT). ACT's observing strategy and mapmaking procedure allows an unbiased reconstruction of the modes in the maps over a wide range of multipoles. By directly matching the ACT maps to WMAP observations in the multipole range of 400 cosmological parameters estimated from the ACT power spectra. We also present a combined map based on ACT and WMAP data that has a high signal-to-noise ratio over a wide range of multipoles.

  12. The Atacama Cosmology Telescope: Two-Season ACTPol Spectra and Parameters

    OpenAIRE

    Louis, Thibaut; Grace, Emily; Hasselfield, Matthew; Lungu, Marius; Maurin, Loïc; Addison, Graeme E.; Ade, Peter; Aiola, Simone; Allison, Rupert; Amiri, Mandana; Angile, Elio; Battaglia, Nicholas; Beall, James A.; de Bernardis, Francesco; Bond, J. Richard

    2016-01-01

    We present the temperature and polarization angular power spectra measured by the Atacama Cosmology\\ud Telescope Polarimeter (ACTPol). We analyze night-time data collected during 2013{14 using\\ud two detector arrays at 149 GHz, from 548 deg2 of sky on the celestial equator. We use these spectra,\\ud and the spectra measured with the MBAC camera on ACT from 2008{10, in combination with\\ud Planck and WMAP data to estimate cosmological parameters from the temperature, polarization,\\ud and tempera...

  13. The Atacama Cosmology Telescope: Cosmological Parameters from Three Seasons of Data

    Science.gov (United States)

    Seivers, Jonathan L.; Hlozek, Renee A.; Nolta, Michael R.; Acquaviva, Viviana; Addison, Graeme E.; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L. Felipe; hide

    2013-01-01

    We present constraints on cosmological and astrophysical parameters from highresolution microwave background maps at 148 GHz and 218 GHz made by the Atacama Cosmology Telescope (ACT) in three seasons of observations from 2008 to 2010. A model of primary cosmological and secondary foreground parameters is fit to the map power spectra and lensing deflection power spectrum, including contributions from both the thermal Sunyaev-Zeldovich (tSZ) effect and the kinematic Sunyaev-Zeldovich (kSZ) effect, Poisson and correlated anisotropy from unresolved infrared sources, radio sources, and the correlation between the tSZ effect and infrared sources. The power l(sup 2)C(sub l)/2pi of the thermal SZ power spectrum at 148 GHz is measured to be 3.4 +/- 1.4 micro-K(sup 2) at l = 3000, while the corresponding amplitude of the kinematic SZ power spectrum has a 95% confidence level upper limit of 8.6 micro-K(sup 2). Combining ACT power spectra with the WMAP 7-year temperature and polarization power spectra, we find excellent consistency with the LCDM model. We constrain the number of effective relativistic degrees of freedom in the early universe to be N(sub eff) = 2.79 +/- 0.56, in agreement with the canonical value of N(sub eff) = 3.046 for three massless neutrinos. We constrain the sum of the neutrino masses to be sigma(m?) is less than 0.39 eV at 95% confidence when combining ACT and WMAP 7-year data with BAO and Hubble constant measurements. We constrain the amount of primordial helium to be Y(sub p) = 0.225 +/- 0.034, and measure no variation in the fine structure constant alpha since recombination, with alpha/alpha(sub 0) = 1.004 +/- 0.005. We also find no evidence for any running of the scalar spectral index, derivative(n(sub s))/derivative(ln k) = -0.004 +/- 0.012.

  14. The Atacama Cosmology Telescope: Likelihood for Small-Scale CMB Data

    Science.gov (United States)

    Dunkley, J.; Calabrese, E.; Sievers, J.; Addison, G. E.; Battaglia, N.; Battistelli, E. S.; Bond, J. R.; Das, S.; Devlin, M. J.; Dunner, R.; hide

    2013-01-01

    The Atacama Cosmology Telescope has measured the angular power spectra of microwave fluctuations to arcminute scales at frequencies of 148 and 218 GHz, from three seasons of data. At small scales the fluctuations in the primordial Cosmic Microwave Background (CMB) become increasingly obscured by extragalactic foregounds and secondary CMB signals. We present results from a nine-parameter model describing these secondary effects, including the thermal and kinematic Sunyaev-Zel'dovich (tSZ and kSZ) power; the clustered and Poisson-like power from Cosmic Infrared Background (CIB) sources, and their frequency scaling; the tSZ-CIB correlation coefficient; the extragalactic radio source power; and thermal dust emission from Galactic cirrus in two different regions of the sky. In order to extract cosmological parameters, we describe a likelihood function for the ACT data, fitting this model to the multi-frequency spectra in the multipole range 500 cosmological parameter estimation

  15. The First Multichroic Polarimeter Array on the Atacama Cosmology Telescope: Characterization and Performance

    Science.gov (United States)

    Ho, S. P.; Pappas, C. G.; Austermann, J.; Beall, J. A.; Becker, D.; Choi, S. K.; Datta, R.; Duff, S. M.; Gallardo, P. A.; Grace, E.; hide

    2016-01-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive receiver for the 6-meter Atacama Cosmology Telescope (ACT) and measures the small angular scale polarization anisotropies in the cosmic microwave background (CMB). The full focal plane is composed of three detector arrays, containing over 3000 transition edge sensors (TES detectors) in total. The first two detector arrays, observing at 146 gigahertz, were deployed in 2013 and 2014, respectively. The third and final array is composed of multichroic pixels sensitive to both 90 and 146 gigahertz and saw first light in February 2015. Fabricated at NIST, this dichroic array consists of 255 pixels, with a total of 1020 polarization sensitive bolometers and is coupled to the telescope with a monolithic array of broad-band silicon feedhorns. The detectors are read out using time-division SQUID multiplexing and cooled by a dilution refrigerator at 110 meter Kelvins. We present an overview of the assembly and characterization of this multichroic array in the lab, and the initial detector performance in Chile. The detector array has a TES detector electrical yield of 85 percent, a total array sensitivity of less than 10 microns Kelvin root mean square speed, and detector time constants and saturation powers suitable for ACT CMB observations.

  16. Detection of the power spectrum of cosmic microwave background lensing by the Atacama Cosmology Telescope.

    Science.gov (United States)

    Das, Sudeep; Sherwin, Blake D; Aguirre, Paula; Appel, John W; Bond, J Richard; Carvalho, C Sofia; Devlin, Mark J; Dunkley, Joanna; Dünner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hincks, Adam D; Hlozek, Renée; Huffenberger, Kevin M; Hughes, John P; Irwin, Kent D; Klein, Jeff; Kosowsky, Arthur; Lupton, Robert H; Marriage, Tobias A; Marsden, Danica; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Parker, Lucas; Reese, Erik D; Schmitt, Benjamin L; Sehgal, Neelima; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Visnjic, Katerina; Wollack, Ed

    2011-07-08

    We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by calculating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2° angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The measured amplitude of the signal agrees with Lambda cold dark matter cosmology predictions. Since the amplitude of the convergence power spectrum scales as the square of the amplitude of the density fluctuations, the 4σ detection of the lensing signal measures the amplitude of density fluctuations to 12%.

  17. Design and Deployment of a Multichroic Polarimeter Array on the Atacama Cosmology Telescope

    Science.gov (United States)

    Datta, R.; Austermann, J.; Beall, J. A.; Becker, D.; Coughlin, K. P.; Duff, S. M.; Gallardo, P.A.; Grace, E.; Hasselfield, M.; Henderson, S. W.; hide

    2016-01-01

    We present the design and the preliminary on-sky performance with respect to beams and pass bands of a multichroic polarimeter array covering the 90 and 146 GHz cosmic microwave background bands and its enabling broad-band optical system recently deployed on the Atacama Cosmology Telescope (ACT). The constituent pixels are feedhorn-coupled multichroic polarimeters fabricated at NIST. This array is coupled to the ACT telescope via a set of three silicon lenses incorporating novel broad-band metamaterial anti-reflection coatings. This receiver represents the first multichroic detector array deployed for a CMB experiment and paves the way for the extensive use of multichroic detectors and broad-band optical systems in the next generation of CMB experiments.

  18. Assembly and Integration Process of the First High Density Detector Array for the Atacama Cosmology Telescope

    Science.gov (United States)

    Li, Yaqiong; Choi, Steve; Ho, Shuay-Pwu; Crowley, Kevin T.; Salatino, Maria; Simon, Sara M.; Staggs, Suzanne T.; Nati, Federico; Wollack, Edward J.

    2016-01-01

    The Advanced ACTPol (AdvACT) upgrade on the Atacama Cosmology Telescope (ACT) consists of multichroicTransition Edge Sensor (TES) detector arrays to measure the Cosmic Microwave Background (CMB) polarization anisotropies in multiple frequency bands. The first AdvACT detector array, sensitive to both 150 and 230 GHz, is fabricated on a 150 mm diameter wafer and read out with a completely different scheme compared to ACTPol. Approximately 2000 TES bolometers are packed into the wafer leading to both a much denser detector density and readout circuitry. The demonstration of the assembly and integration of the AdvACT arrays is important for the next generation CMB experiments, which will continue to increase the pixel number and density. We present the detailed assembly process of the first AdvACT detector array.

  19. Evidence for Dark Energy from the Cosmic Microwave Background Alone Using the Atacama Cosmology Telescope Lensing Measurements

    Science.gov (United States)

    Sherwin, Blake D.; Dunkley, Joanna; Das, Sudeep; Appel, John W.; Bond, J. Richard; Carvalho, C. Sofia; Devlin, Mark J.; Duenner, Rolando; Essinger-Hileman, Thomas; Fowler, Joesph J.; hide

    2011-01-01

    For the first time, measurements of the cosmic microwave background radiation (CMB) alone favor cosmologies with w = -1 dark energy over models without dark energy at a 3.2-sigma level. We demonstrate this by combining the CMB lensing deflection power spectrum from the Atacama Cosmology Telescope with temperature and polarization power spectra from the "Wilkinson Microwave Anisotropy Probe. The lensing data break the geometric degeneracy of different cosmological models with similar CMB temperature power spectra. Our CMB-only measurement of the dark energy density Omega(delta) confirms other measurements from supernovae, galaxy clusters and baryon acoustic oscillations, and demonstrates the power of CMB lensing as a new cosmological tool.

  20. The Atacama Cosmology Telescope: Temperature and Gravitational Lensing Power Spectrum Measurements from Three Seasons of Data

    Science.gov (United States)

    Das, Sudeep; Louis, Thibaut; Nolta, Michael R.; Addison, Graeme E.; Battisetti, Elia S.; Bond, J. Richard; Calabrese, Erminia; Crichton, Devin; Devlin, Mark J.; Dicker, Simon; hide

    2014-01-01

    We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the ?CDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6s detection significance.

  1. The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected via the Sunyaev-Zel'dovich Effect

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, Neelima; Trac, Hy; Acquaviva, Viviana; Ade, Peter A.R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L.Felipe; Battistelli, Elia S.; Bond, J.Richard; Brown, Ben; Burger, Bryce; Chervenak, Jay; Das, Sudeep; Devlin, Mark J.; Dicker, Simon R.; Doriese, W.Bertrand; Dunkley, Joanna; Dunner, Rolando; Essinger-Hileman, Thomas; Fisher, Ryan P.

    2011-08-18

    We present constraints on cosmological parameters based on a sample of Sunyaev-Zeldovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives {sigma}{sub 8} = 0.851 {+-} 0.115 and w = -1.14 {+-} 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find {sigma}{sub 8} = 0.821 {+-} 0.044 and w = -1.05 {+-} 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernoava which give {sigma}{sub 8} = 0.802 {+-} 0.038 and w = -0.98 {+-} 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.

  2. The Atacama Cosmology Telescope: Two-Season ACTPol Spectra and Parameters

    Science.gov (United States)

    Louis, Thibaut; Grace, Emily; Hasselfield, Matthew; Lungu, Marius; Maurin, Loic; Addison, Graeme E.; Adem Peter A. R.; Aiola, Simone; Allison, Rupert; Amiri, Mandana; hide

    2017-01-01

    We present the temperature and polarization angular power spectra measuredby the Atacama Cosmology Telescope Polarimeter (ACTPol). We analyze night-time datacollected during 2013-14 using two detector arrays at 149 GHz, from 548 deg(exp. 2) of sky onthe celestial equator. We use these spectra, and the spectra measured with the MBAC camera on ACT from 2008-10, in combination with Planck and WMAP data to estimate cosmological parameters from the temperature, polarization, and temperature-polarization cross-correlations. We find the new ACTPol data to be consistent with the CDM model. The ACTPol temperature-polarization cross-spectrum now provides stronger constraints on multiple parameters than the ACTPol temperature spectrum, including the baryon density, the acoustic peak angular scale, and the derived Hubble constant. The new ACTPol dataprovide information on damping tail parameters. The joint uncertainty on the number of neutrino species and the primordial helium fraction is reduced by 20% when adding ACTPol to Planck temperature data alone.

  3. The Atacama Cosmology Telescope: Beam Measurements and the Microwave Brightness Temperatures of Uranus and Saturn

    Science.gov (United States)

    Hasselfield, Matthew; Moodley, Kavilan; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Dunner, Rolando; Fowler, Joseph W.; Gallardo, Patricio; Gralla, Megan B.; hide

    2013-01-01

    We describe the measurement of the beam profiles and window functions for the Atacama Cosmology Telescope (ACT), which operated from 2007 to 2010 with kilopixel bolometer arrays centered at 148, 218, and 277 GHz. Maps of Saturn are used to measure the beam shape in each array and for each season of observations. Radial profiles are transformed to Fourier space in a way that preserves the spatial correlations in the beam uncertainty to derive window functions relevant for angular power spectrum analysis. Several corrections are applied to the resulting beam transforms, including an empirical correction measured from the final cosmic microwave background (CMB) survey maps to account for the effects of mild pointing variation and alignment errors. Observations of Uranus made regularly throughout each observing season are used to measure the effects of atmospheric opacity and to monitor deviations in telescope focus over the season. Using the WMAP-based calibration of the ACT maps to the CMB blackbody, we obtain precise measurements of the brightness temperatures of the Uranus and Saturn disks at effective frequencies of 149 and 219 GHz. For Uranus we obtain thermodynamic brightness temperatures T(149/U) = 106.7 +/- 2.2 K and T(219/U) = 100.1 +/- 3.1 K. For Saturn, we model the effects of the ring opacity and emission using a simple model and obtain resulting (unobscured) disk temperatures of T(149/S) = 137.3 +/- 3.2 K and T(219/S) = 137.3 +/- 4.7 K.

  4. Far Sidelobe Effects from Panel Gaps of the Atacama Cosmology Telescope

    Science.gov (United States)

    Fluxa, Pedro R.; Duenner, Rolando; Maurin, Loiec; Choi, Steve K.; Devlin, Mark J.; Gallardo, Patricio A.; Shuay-Pwu, P. Ho; Koopman, Brian J.; Louis, Thibaut; Wollack, Edward J.

    2016-01-01

    The Atacama Cosmology Telescope is a 6 meter diameter CMB telescope located at 5200 meters in the Chilean desert. ACT has made arc-minute scale maps of the sky at 90 and 150 GHz which have led to precise measurements of the fine angular power spectrum of the CMB fluctuations in temperature and polarization. One of the goals of ACT is to search for the B-mode polarization signal from primordial gravity waves, and thus extending ACT's data analysis to larger angular scales. This goal introduces new challenges in the control of systematic effects, including better understanding of far sidelobe effects that might enter the power spectrum at degree angular scales. Here we study the effects of the gaps between panels of the ACT primary and secondary reflectors in the worst case scenario in which the gaps remain open. We produced numerical simulations of the optics using GRASP up to 8 degrees away from the main beam and simulated timestreams for observations with this beam using real pointing information from ACT data. Maps from these simulated timestreams showed leakage from the sidelobes, indicating that this effect must be taken into consideration at large angular scales.

  5. The Atacama Cosmology Telescope: A Measurement of the Primordial Power Spectrum

    Science.gov (United States)

    Hlozek, Renee; Dunkley, Joanna; Addison, Graeme; Appel, John William; Bond, J. Richard; Carvalho, C. Sofia; Das, Sudeep; Devlin, Mark J.; Duenner, Rolando; Essinger-Hileman, Thomas; hide

    2011-01-01

    We present constraints on the primordial power spectrum of adiabatic fluctuations using data from the 2008 Southern Survey of the Atacama Cosmology Telescope (ACT). The angular resolution of ACT provides sensitivity to scales beyond l = 1000 for resolution of multiple peaks in the primordial temperature power spectrum, which enables us to probe the primordial power spectrum of adiabatic scalar perturbations with wavenumbers up to k approx. = 0.2 Mp/c. We find no evidence for deviation from power-law fluctuations over two decades in scale. Matter fluctuations inferred from the primordial temperature power spectrum evolve over cosmic time and can be used to predict the matter power spectrum at late times; we illustrate the overlap of the matter power inferred from CMB measurements (which probe the power spectrum in thc linear regime) with existing probes of galaxy clustering, cluster abundances and weak lensing constraints on the primordial power. This highlights the range of scales probed by current measurement.s of the matter power spectrum.

  6. The Atacama Cosmology Telescope: Cross-Correlation of Cosmic Microwave Background Lensing and Quasars

    Science.gov (United States)

    Sherwin, Blake D; Das, Sudeep; Haijian, Amir; Addison, Graeme; Bond, Richard; Crichton, Devin; Devlin, Mark J.; Dunkley, Joanna; Gralla, Megan B.; Halpern, Mark; hide

    2012-01-01

    We measure the cross-correlation of Atacama cosmology telescope cosmic microwave background (CMB) lensing convergence maps with quasar maps made from the Sloan Digital Sky Survey DR8 SDSS-XDQSO photometric catalog. The CMB lensing quasar cross-power spectrum is detected for the first time at a significance of 3.8 sigma, which directly confirms that the quasar distribution traces the mass distribution at high redshifts z > 1. Our detection passes a number of null tests and systematic checks. Using this cross-power spectrum, we measure the amplitude of the linear quasar bias assuming a template for its redshift dependence, and find the amplitude to be consistent with an earlier measurement from clustering; at redshift z ap 1.4, the peak of the distribution of quasars in our maps, our measurement corresponds to a bias of b = 2.5 +/- 0.6. With the signal-to-noise ratio on CMB lensing measurements likely to improve by an order of magnitude over the next few years, our results demonstrate the potential of CMB lensing crosscorrelations to probe astrophysics at high redshifts.

  7. The Atacama Cosmology Telescope (ACT): Beam Profiles and First SZ Cluster Maps

    Science.gov (United States)

    Hincks, A. D.; Acquaviva, V.; Ade, P. A.; Aguirre, P.; Amiri, M.; Appel, J. W.; Barrientos, L. F.; Battistelli, E. S.; Bond, J. R.; Brown, B.; hide

    2010-01-01

    The Atacama Cosmology Telescope (ACT) is currently observing the cosmic microwave background with arcminute resolution at 148 GHz, 218 GHz, and 277 GHz, In this paper, we present ACT's first results. Data have been analyzed using a maximum-likelihood map-making method which uses B-splines to model and remove the atmospheric signal. It has been used to make high-precision beam maps from which we determine the experiment's window functions, This beam information directly impacts all subsequent analyses of the data. We also used the method to map a sample of galaxy clusters via the Sunyaev-Ze1'dovich (SZ) effect, and show five clusters previously detected with X-ray or SZ observations, We provide integrated Compton-y measurements for each cluster. Of particular interest is our detection of the z = 0.44 component of A3128 and our current non-detection of the low-redshift part, providing strong evidence that the further cluster is more massive as suggested by X-ray measurements. This is a compelling example of the redshift-independent mass selection of the SZ effect.

  8. The Atacama Cosmology Telescope: Extragalactic Sources at 148 GHz in the 2008 Survey

    Science.gov (United States)

    Marriage, T. A.; Juin, J. B.; Lin, Y. T.; Marsden, D.; Nolta, M. R.; Partridge, B.; Ade, P. A. R.; Aguirre, P.; Amiri, M.; Appel, J. W.; hide

    2011-01-01

    We report on extragalactic sources detected in a 455 square-degree map of the southern sky made with data at a frequency of 148 GHz from the Atacama Cosmology Telescope 2008 observing season. We provide a catalog of 157 sources with flux densities spanning two orders of magnitude: from 15 mJy to 1500 mJy. Comparison to other catalogs shows that 98% of the ACT detections correspond to sources detected at lower radio frequencies. Three of the sources appear to be associated with the brightest cluster galaxies of low redshift X-ray selected galaxy clusters. Estimates of the radio to mm-wave spectral indices and differential counts of the sources further bolster the hypothesis that they are nearly all radio sources, and that their emission is not dominated by re-emission from warm dust. In a bright (> 50 mJy) 148 GHz-selected sample with complete cross-identifications from the Australia Telescope 20 GHz survey, we observe an average steepening of the spectra between .5, 20, and 148 GHz with median spectral indices of alp[ha (sub 5-20) = -0.07 +/- 0.06, alpha (sub 20-148) -0.39 +/- 0.04, and alpha (sub 5-148) = -0.20 +/- 0.03. When the measured spectral indices are taken into account, the 148 GHz differential source counts are consistent with previous measurements at 30 GHz in the context of a source count model dominated by radio sources. Extrapolating with an appropriately rescaled model for the radio source counts, the Poisson contribution to the spatial power spectrum from synchrotron-dominated sources with flux density less than 20 mJy is C(sup Sync) = (2.8 +/- 0.3) x 1O (exp-6) micro K(exp 2).

  9. THE ATACAMA COSMOLOGY TELESCOPE: BEAM MEASUREMENTS AND THE MICROWAVE BRIGHTNESS TEMPERATURES OF URANUS AND SATURN

    Energy Technology Data Exchange (ETDEWEB)

    Hasselfield, Matthew [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Moodley, Kavilan [Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, Durban 4041 (South Africa); Bond, J. Richard; Hajian, Amir; Hincks, Adam D.; Nolta, Michael R. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Das, Sudeep [High Energy Physics Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Devlin, Mark J.; Marsden, Danica; Schmitt, Benjamin L. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Dunkley, Joanna [Department of Astrophysics, Oxford University, Oxford OX1 3RH (United Kingdom); Dünner, Rolando; Gallardo, Patricio [Departamento de Astronomía y Astrofísica, Facultad de Física, Pontificía Universidad Católica, Casilla 306, Santiago 22 (Chile); Fowler, Joseph W.; Niemack, Michael D. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); Gralla, Megan B.; Marriage, Tobias A. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686 (United States); Halpern, Mark [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Page, Lyman A. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Partridge, Bruce [Department of Physics and Astronomy, Haverford College, Haverford, PA 19041 (United States); and others

    2013-11-01

    We describe the measurement of the beam profiles and window functions for the Atacama Cosmology Telescope (ACT), which operated from 2007 to 2010 with kilopixel bolometer arrays centered at 148, 218, and 277 GHz. Maps of Saturn are used to measure the beam shape in each array and for each season of observations. Radial profiles are transformed to Fourier space in a way that preserves the spatial correlations in the beam uncertainty to derive window functions relevant for angular power spectrum analysis. Several corrections are applied to the resulting beam transforms, including an empirical correction measured from the final cosmic microwave background (CMB) survey maps to account for the effects of mild pointing variation and alignment errors. Observations of Uranus made regularly throughout each observing season are used to measure the effects of atmospheric opacity and to monitor deviations in telescope focus over the season. Using the WMAP-based calibration of the ACT maps to the CMB blackbody, we obtain precise measurements of the brightness temperatures of the Uranus and Saturn disks at effective frequencies of 149 and 219 GHz. For Uranus we obtain thermodynamic brightness temperatures T{sub U}{sup 149}= 106.7 ± 2.2 K and T{sub U}{sup 219}= 100.1 ± 3.1 K. For Saturn, we model the effects of the ring opacity and emission using a simple model and obtain resulting (unobscured) disk temperatures of T{sub S}{sup 149}= 137.3 ± 3.2 K and T{sub S}{sup 219}= 137.3 ± 4.7 K.

  10. The Atacama Cosmology Telescope: Relation Between Galaxy Cluster Optical Richness and Sunyaev-Zel'dovich Effect

    Science.gov (United States)

    Sehgal, Neelima; Addison, Graeme; Battaglia, Nick; Battistelli, Elia S.; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Duenner, Rolando; Gralla, Megan; hide

    2012-01-01

    We present the measured Sunyaev-Zel'dovich (SZ) flux from 474 optically-selected MaxBCG clusters that fall within the Atacama Cosmology Telescope (ACT) Equatorial survey region. The ACT Equatorial region used in this analysis covers 510 square degrees and overlaps Stripe 82 of the Sloan Digital Sky Survey. We also present the measured SZ flux stacked on 52 X-ray-selected MCXC clusters that fall within the ACT Equatorial region and an ACT Southern survey region covering 455 square degrees. We find that the measured SZ flux from the X-ray-selected clusters is consistent with expectations. However, we find that the measured SZ flux from the optically-selected clusters is both significantly lower than expectations and lower than the recovered SZ flux measured by the Planck satellite. Since we find a lower recovered SZ signal than Planck, we investigate the possibility that there is a significant offset between the optically-selected brightest cluster galaxies (BCGs) and the SZ centers, to which ACT is more sensitive due to its finer resolution. Such offsets can arise due to either an intrinsic physical separation between the BCG and the center of the gas concentration or from misidentification of the cluster BCG. We find that the entire discrepancy for both ACT and Planck can be explained by assuming that the BCGs are offset from the SZ maxima with a uniform random distribution between 0 and 1.5 Mpc. In contrast, the physical separation between BCGs and X-ray peaks for an X-ray-selected subsample of MaxBCG clusters shows a much narrower distribution that peaks within 0.2 Mpc. We conclude that while offsets between BCGs and SZ peaks may be an important component in explaining the discrepancy, it is likely that a combination of factors is responsible for the ACT and Planck measurements. Several effects that can lower the SZ signal equally for both ACT and Planck, but not explain the difference in measured signals, include a larger percentage of false detections in the

  11. The Atacama Cosmology Telescope: Detection or Sunyaev-Zel'Dovich Decrement in Groups and Clusters Associated with Luminous Red Galaxies

    Science.gov (United States)

    Hand, Nick; Appel, John William; Battaglia, Nick; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Dunner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W.; hide

    2010-01-01

    We present a detection of the Sunyaev-Zel'dovich (SZ) decrement associated with the Luminous Red Galaxy (LRG) sample of the Sloan Digital Sky Survey. The SZ data come from 148 GHz maps of the equatorial region made by the Atacama Cosmology Telescope (ACT). The LRG sample is divided by luminosity into four bins, and estimates for the central Sunyaev-Zel'dovich temperature decrement are calculated through a stacking process. We detect and account for a bias of the SZ signal due to weak radio sources. We use numerical simulations to relate the observed decrement to Y(sub 200) and clustering properties to relate the galaxy luminosity bins to mass. We also use a relation between BCG luminosity and cluster mass based on stacked gravitational lensing measurements to estimate the characteristic halo masses. The masses are found to be in the range approx.10(exp 13) - 10(exp 14)/h Stellar Mass, a lower range than has been previously probed.

  12. The Atacama Cosmology Telescope: Dusty Star-Forming Galaxies and Active Galactic Nuclei in the Southern Survey

    Science.gov (United States)

    Marsden, Danica; Gralla, Megan; Marriage, Tobias A.; Switzer, Eric R.; Partridge, Bruce; Massardi, Marcella; Morales, Gustavo; Addison, Graeme; Bond, J. Richard; Crighton, Devin; hide

    2014-01-01

    We present a catalogue of 191 extragalactic sources detected by the Atacama Cosmology Telescope (ACT) at 148 and/or 218 GHz in the 2008 Southern survey. Flux densities span 14 -1700 mJy, and we use source spectral indices derived using ACT-only data to divide our sources into two subpopulations: 167 radio galaxies powered by central active galactic nuclei (AGN) and 24 dusty star-forming galaxies (DSFGs). We cross-identify 97 per cent of our sources (166 of the AGN and 19 of the DSFGs) with those in currently available catalogues. When combined with flux densities from the Australia Telescope 20 GHz survey and follow-up observations with the Australia Telescope Compact Array, the synchrotron-dominated population is seen to exhibit a steepening of the slope of the spectral energy distribution from 20 to 148 GHz, with the trend continuing to 218 GHz. The ACT dust-dominated source population has a median spectral index, A(sub 148-218), of 3.7 (+0.62 or -0.86), and includes both local galaxies and sources with redshift around 6. Dusty sources with no counterpart in existing catalogues likely belong to a recently discovered subpopulation of DSFGs lensed by foreground galaxies or galaxy groups.

  13. The Atacama Cosmology Telescope: Dusty Star-Forming Galaxies and Active Galactic Nuclei in the Southern Survey

    Science.gov (United States)

    Marsden, Danica; Gralla, Megan; Marriage, Tobias A.; Switzer, Eric R.; Partridge, Bruce; Massardi, Marcella; Morales, Gustavo; Addison, Graeme; Bond, J. Richard; Crichton, Devin; hide

    2013-01-01

    We present a catalog of 191 extragalactic sources detected by the Atacama Cosmology Telescope (ACT) at 148 GHz and/or 218GHz in the 2008 Southern survey. Flux densities span 14-1700mJy, and we use source spectral indices derived using ACT-only data to divide our sources into two sub-populations: 167 radio galaxies powered by central active galactic nuclei (AGN), and 24 dusty star-forming galaxies (DSFGs). We cross-identify 97% of our sources (166 of the AGN and 19 of the DSFGs) with those in currently available catalogs. When combined with flux densities from the Australian Telescope 20 GHz survey and follow-up observations with the Australia Telescope Compact Array, the synchrotron-dominated population is seen to exhibit a steepening of the slope of the spectral energy distribution from 20 to 148GHz, with the trend continuing to 218GHz. The ACT dust-dominated source population has a median spectral index, alpha(sub 148-218), of 3.7+0.62 or -0.86, and includes both local galaxies and sources with redshifts as great as 5.6. Dusty sources with no counterpart in existing catalogs likely belong to a recently discovered subpopulation of DSFGs lensed by foreground galaxies or galaxy groups.

  14. The Atacama Cosmology Telescope: Sunyaev-Zel'dovich-Selected Galaxy Clusters AT 148 GHz in the 2008 Survey

    Science.gov (United States)

    Marriage, Tobias A.; Acquaviva, Viviana; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John William; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, J. Richard; Brown, Ben; hide

    2011-01-01

    We report on 23 clusters detected blindly as Sunyaev-Zel'dovich (SZ) decrements in a 148 GHz, 455 deg (exp 2) map of the southern sky made with data from the Atacama Cosmology Telescope 2008 observing season. All SZ detections announced in this work have confirmed optical counterparts. Ten of the clusters are new discoveries. One newly discovered cluster, ACT-CL 10102-4915, with a redshift of 0.75 (photometric), has an SZ decrement comparable to the most massive systems at lower redshifts. Simulations of the cluster recovery method reproduce the sample purity measured by optical follow-up. In particular, for clusters detected with a signal-to-noise ratio greater than six, simulations are consistent with optical follow-up that demonstrated this subsample is 100% pure, The simulations further imply that the total sample is 80% complete for clusters with mass in excess of 6 x 10(exp 14) solar masses referenced to the cluster volume characterized by 500 times the critical density. The Compton gamma-X-ray luminosity mass comparison for the 11 best-detected clusters visually agrees with both self-similar and non-adiabatic, simulation-derived scaling laws,

  15. Detection of the Pairwise Kinematic Sunyaev-Zel'dovich Effect with BOSS DR11 and the Atacama Cosmology Telescope

    Science.gov (United States)

    De Bernardis, F.; Aiola, S.; Vavagiakis, E. M.; Battaglia, N.; Niemack, M. D.; Beall, J.; Becker, D. T.; Bond, J. R.; Calabrese, E.; Cho, H.; hide

    2017-01-01

    We present a new measurement of the kinematic Sunyaev-Zel'dovich effect using data from the Atacama Cosmology Telescope (ACT) and the Baryon Oscillation Spectroscopic Survey (BOSS). Using 600 square degrees of overlapping sky area, we evaluate the mean pairwise baryon momentum associated with the positions of 50,000 bright galaxies in the BOSS DR11 Large Scale Structure catalog. A non-zero signal arises from the large-scale motions of halos containing the sample galaxies. The data fits an analytical signal model well, with the optical depth to microwave photon scattering as a free parameter determining the overall signal amplitude. We estimate the covariance matrix of the mean pairwise momentum as a function of galaxy separation, using microwave sky simulations, jackknife evaluation, and bootstrap estimates. The most conservative simulation-based errors give signal-to-noise estimates between 3.6 and 4.1 for varying galaxy luminosity cuts. We discuss how the other error determinations can lead to higher signal-to-noise values, and consider the impact of several possible systematic errors. Estimates of the optical depth from the average thermal Sunyaev-Zel'dovich signal at the sample galaxy positions are broadly consistent with those obtained from the mean pairwise momentum signal.

  16. The Atacama Cosmology Telescope: Dynamical Masses for 44 SZ-Selected Galaxy Clusters over 755 Square Degrees

    Science.gov (United States)

    Sifon, Cristobal; Battaglia, Nick; Hasselfield, Matthew; Menanteau, Felipe; Barrientos, L. Felipe; Bond, J. Richard; Crichton, Devin; Devlin, Mark J.; Dunner, Rolando; Hilton, Matt; hide

    2016-01-01

    We present galaxy velocity dispersions and dynamical mass estimates for 44 galaxy clusters selected via the Sunyaev-Zeldovich (SZ) effect by the Atacama Cosmology Telescope. Dynamical masses for 18 clusters are reported here for the first time. Using N-body simulations, we model the different observing strategies used to measure the velocity dispersions and account for systematic effects resulting from these strategies. We find that the galaxy velocity distributions may be treated as isotropic, and that an aperture correction of up to 7 per cent in the velocity dispersion is required if the spectroscopic galaxy sample is sufficiently concentrated towards the cluster centre. Accounting for the radial profile of the velocity dispersion in simulations enables consistent dynamical mass estimates regardless of the observing strategy. Cluster masses M200 are in the range (1 - 15) times 10 (sup 14) Solar Masses. Comparing with masses estimated from the SZ distortion assuming a gas pressure profile derived from X-ray observations gives a mean SZ-to-dynamical mass ratio of 1:10 plus or minus 0:13, but there is an additional 0.14 systematic uncertainty due to the unknown velocity bias; the statistical uncertainty is dominated by the scatter in the mass-velocity dispersion scaling relation. This ratio is consistent with previous determinations at these mass scales.

  17. Weak-Lensing Mass Calibration of the Atacama Cosmology Telescope Equatorial Sunyaev-Zeldovich Cluster Sample with the Canada-France-Hawaii Telescope Stripe 82 Survey

    Science.gov (United States)

    Battaglia, N.; Leauthaud, A.; Miyatake, H.; Hasseleld, M.; Gralla, M. B.; Allison, R.; Bond, J. R.; Calabrese, E.; Crichton, D.; Devlin, M. J.; hide

    2016-01-01

    Mass calibration uncertainty is the largest systematic effect for using clustersof galaxies to constrain cosmological parameters. We present weak lensing mass measurements from the Canada-France-Hawaii Telescope Stripe 82 Survey for galaxy clusters selected through their high signal-to-noise thermal Sunyaev-Zeldovich (tSZ) signal measured with the Atacama Cosmology Telescope (ACT). For a sample of 9 ACT clusters with a tSZ signal-to-noise greater than five, the average weak lensing mass is (4.8 plus or minus 0.8) times 10 (sup 14) solar mass, consistent with the tSZ mass estimate of (4.7 plus or minus 1.0) times 10 (sup 14) solar mass, which assumes a universal pressure profile for the cluster gas. Our results are consistent with previous weak-lensing measurements of tSZ-detected clusters from the Planck satellite. When comparing our results, we estimate the Eddington bias correction for the sample intersection of Planck and weak-lensing clusters which was previously excluded.

  18. The Atacama Cosmology Telescope: the stellar content of galaxy clusters selected using the Sunyaev-Zel'dovich effect

    Science.gov (United States)

    Hilton, Matt; Hasselfield, Matthew; Sifón, Cristóbal; Baker, Andrew J.; Barrientos, L. Felipe; Battaglia, Nicholas; Bond, J. Richard; Crichton, Devin; Das, Sudeep; Devlin, Mark J.; Gralla, Megan; Hajian, Amir; Hincks, Adam D.; Hughes, John P.; Infante, Leopoldo; Irwin, Kent D.; Kosowsky, Arthur; Lin, Yen-Ting; Marriage, Tobias A.; Marsden, Danica; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael D.; Nolta, Mike R.; Page, Lyman A.; Reese, Erik D.; Sievers, Jon; Spergel, David N.; Wollack, Edward J.

    2013-11-01

    We present a first measurement of the stellar mass component of galaxy clusters selected via the Sunyaev-Zel'dovich (SZ) effect, using 3.6 and 4.5 μm photometry from the Spitzer Space Telescope. Our sample consists of 14 clusters detected by the Atacama Cosmology Telescope (ACT), which span the redshift range 0.27 < z < 1.07 (median z = 0.50) and have dynamical mass measurements, accurate to about 30 per cent, with median M500 = 6.9 × 1014 M⊙. We measure the 3.6 and 4.5 μm galaxy luminosity functions, finding the characteristic magnitude (m*) and faint-end slope (α) to be similar to those for infrared-selected cluster samples. We perform the first measurements of the scaling of SZ observables (Y500 and y0) with both brightest cluster galaxy (BCG) stellar mass and total cluster stellar mass (M_{500}^star). We find a significant correlation between BCG stellar mass and Y500 (E(z)^{-2/3} D_A^2 Y_{500} ∝ M_*^{1.2 ± 0.6}), although we are not able to obtain a strong constraint on the slope of the relation due to the small sample size. Additionally, we obtain E(z)^{-2/3} D_A^2 Y_{500} ∝ M_{500}^star ^{1.0 ± 0.6} for the scaling with total stellar mass. The mass fraction in stars spans the range 0.006-0.034, with the second ranked cluster in terms of dynamical mass (ACT-CL J0237-4939) having an unusually low total stellar mass and the lowest stellar mass fraction. For the five clusters with gas mass measurements available in the literature, we see no evidence for a shortfall of baryons relative to the cosmic mean value.

  19. The Atacama Cosmology Telescope: Sunyaev-Zel'dovich selected galaxy clusters at 148 GHz from three seasons of data

    Energy Technology Data Exchange (ETDEWEB)

    Hasselfield, Matthew; Hlozek, Renée [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Hilton, Matt [Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, 4041 (South Africa); Marriage, Tobias A.; Crichton, Devin; Gralla, Megan B. [Dept. of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Addison, Graeme E.; Halpern, Mark [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z4 (Canada); Barrientos, L. Felipe; Dünner, Rolando [Departamento de Astronomía y Astrofísica, Facultad de Física, Pontificía Universidad Católica, Casilla 306, Santiago 22 (Chile); Battaglia, Nicholas [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Battistelli, Elia S. [Department of Physics, University of Rome ' ' La Sapienza' ' , Piazzale Aldo Moro 5, I-00185 Rome (Italy); Bond, J. Richard; Hajian, Amir; Hincks, Adam D. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON, M5S 3H8 (Canada); Das, Sudeep [High Energy Physics Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, IL 60439 (United States); Devlin, Mark J.; Dicker, Simon R. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Dunkley, Joanna [Department of Astrophysics, Oxford University, Oxford, OX1 3RH (United Kingdom); Fowler, Joseph W., E-mail: mhasse@astro.princeton.edu, E-mail: hiltonm@ukzn.ac.za, E-mail: marriage@pha.jhu.edu [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); and others

    2013-07-01

    We present a catalog of 68 galaxy clusters, of which 19 are new discoveries, detected via the Sunyaev-Zel'dovich effect (SZ) at 148 GHz in the Atacama Cosmology Telescope (ACT) survey on the celestial equator. With this addition, the ACT collaboration has reported a total of 91 optically confirmed, SZ detected clusters. The 504 square degree survey region includes 270 square degrees of overlap with SDSS Stripe 82, permitting the confirmation of SZ cluster candidates in deep archival optical data. The subsample of 48 clusters within Stripe 82 is estimated to be 90% complete for M{sub 500c} > 4.5 × 10{sup 14}M{sub s}un and redshifts 0.15 < z < 0.8. While a full suite of matched filters is used to detect the clusters, the sample is studied further through a ''Profile Based Amplitude Analysis'' using a statistic derived from a single filter at a fixed θ{sub 500} = 5.'9 angular scale. This new approach incorporates the cluster redshift along with prior information on the cluster pressure profile to fix the relationship between the cluster characteristic size (R{sub 500}) and the integrated Compton parameter (Y{sub 500}). We adopt a one-parameter family of ''Universal Pressure Profiles'' (UPP) with associated scaling laws, derived from X-ray measurements of nearby clusters, as a baseline model. Three additional models of cluster physics are used to investigate a range of scaling relations beyond the UPP prescription. Assuming a concordance cosmology, the UPP scalings are found to be nearly identical to an adiabatic model, while a model incorporating non-thermal pressure better matches dynamical mass measurements and masses from the South Pole Telescope. A high signal to noise ratio subsample of 15 ACT clusters with complete optical follow-up is used to obtain cosmological constraints. We demonstrate, using fixed scaling relations, how the constraints depend on the assumed gas model if only SZ measurements are used, and

  20. The Atacama Cosmology Telescope: A Measurement of the Cosmic Microwave Background Power Spectrum at 148 AND 218 GHz from the 2008 Southern Survey

    Science.gov (United States)

    Das, Sudeep; Marriage, Tobias A.; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L. Felipe; Battistelli, Elia A.; Bond, J. Richard; Brown, Ben; hide

    2010-01-01

    We present measurements of the cosmic microwave background (CMB) power spectrum made by the Atacama Cosmology Telescope at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. Our results dearly show the second through the seventh acoustic peaks in the CMB power spectrum. The measurements of these higher-order peaks provide an additional test of the ACDM cosmological model. At l > 3000, we detect power in excess of the primary anisotropy spectrum of the CMB. At lower multipoles 500 < l < 3000, we find evidence for gravitational lensing of the CMB in the power spectrum at the 2.8(sigma) level. We also detect a low level of Galactic dust in our maps, which demonstrates that we can recover known faint, diffuse signals.

  1. The Atacama Cosmology Telescope: A Measurement of the Thermal Sunyaev-Zel'dovich Effect Using the Skewness of the CMB Temperature Distribution

    Science.gov (United States)

    Wilson, Michael J.; Sherwin, Blake D.; Hill, J. Collin; Addison, Graeme; Battaglia, Nick; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Duenner, Rolando; hide

    2012-01-01

    We present a detection of the unnormalized skewness (T(sup )(sup 2)(n(circumflex)) induced by the thermal Sunyaev-Zel'dovich (tSZ) effect in filtered Atacama Cosmology Telescope (ACT) 148 GHz cosmic microwave background temperature maps. Contamination due to infrared and radio sources is minimized by template subtraction of resolved sources and by constructing a mask using outlying values in the 218 GHz (tSZ-null) ACT maps. We measure (T(sup )(sup 3) (n(circumflex)) = -31 plus or minus 6 micro-K(sup 3) (measurement error only) or plus or minus 14 micro-K(sup 3) (including cosmic variance error) in the filtered ACT data, a 5sigma detection. We show that the skewness is a sensitive probe of sigma(sub 8), and use analytic calculations and tSZ simulations to obtain cosmological constraints from this measurement. From this signal alone we infer a value of sigma(sub 8) = 0.78 sup +0.03 sub -0.04 (68% C.L.) sup +0.05 sub -0.16. Our results demonstrate that measurements of nonGaussianity can be a useful method for characterizing the tSZ effect and extracting the underlying cosmological information.

  2. The Atacama Cosmology Telescope: Physical Properties and Purity of a Galaxy Cluster Sample Selected Via the Sunyaev-Zel'Dovich Effect

    Science.gov (United States)

    Menanteau, Felipe; Gonzalez, Jorge; Juin, Jean-Baptiste; Marriage, Tobias; Reese, Erik D.; Acquaviva, Viviana; Aguirre, Paula; Appel, John Willam; Baker, Andrew J.; Barrientos, L. Felipe; hide

    2010-01-01

    We present optical and X-ray properties for the first confirmed galaxy cluster sample selected by the Sunyaev-Zel'dovich Effect from 148 GHz maps over 455 square degrees of sky made with the Atacama Cosmology Telescope. These maps. coupled with multi-band imaging on 4-meter-class optical telescopes, have yielded a sample of 23 galaxy clusters with redshifts between 0.118 and 1.066. Of these 23 clusters, 10 are newly discovered. The selection of this sample is approximately mass limited and essentially independent of redshift. We provide optical positions, images, redshifts and X-ray fluxes and luminosities for the full sample, and X-ray temperatures of an important subset. The mass limit of the full sample is around 8.0 x 10(exp 14) Stellar Mass. with a number distribution that peaks around a redshift of 0.4. For the 10 highest significance SZE-selected cluster candidates, all of which are optically confirmed, the mass threshold is 1 x 10(exp 15) Stellar Mass and the redshift range is 0.167 to 1.066. Archival observations from Chandra, XMM-Newton. and ROSAT provide X-ray luminosities and temperatures that are broadly consistent with this mass threshold. Our optical follow-up procedure also allowed us to assess the purity of the ACT cluster sample. Eighty (one hundred) percent of the 148 GHz candidates with signal-to-noise ratios greater than 5.1 (5.7) are confirmed as massive clusters. The reported sample represents one of the largest SZE-selected sample of massive clusters over all redshifts within a cosmologically-significant survey volume, which will enable cosmological studies as well as future studies on the evolution, morphology, and stellar populations in the most massive clusters in the Universe.

  3. The Atacama Cosmology Telescope: High-Resolution Sunyaev-Zeldovich Array Observations of ACT SZE-Selected Clusters from the Equatorial Strip

    Science.gov (United States)

    Reese, Erik; Mroczkowski, Tony; Menateau, Felipe; Hilton, Matt; Sievers, Jonathan; Aguirre, Paula; Appel, John William; Baker, Andrew J.; Bond, J. Richard; Das, Sudeep; hide

    2011-01-01

    We present follow-up observations with the Sunyaev-Zel'dovich Array (SZA) of optically-confirmed galaxy clusters found in the equatorial survey region of the Atacama Cosmology Telescope (ACT): ACT-CL J0022-0036, ACT-CL J2051+0057, and ACT-CL J2337+0016. ACT-CL J0022-0036 is a newly-discovered, massive ( approximately equals 10(exp 15) Solar M), high-redshift (z = 0.81) cluster revealed by ACT through the Sunyaev-Zeldovich effect (SZE). Deep, targeted observations with the SZA allow us to probe a broader range of cluster spatial scales, better disentangle cluster decrements from radio point source emission, and derive more robust integrated SZE flux and mass estimates than we can with ACT data alone. For the two clusters we detect with the SZA we compute integrated SZE signal and derive masses from the SZA data only. ACT-CL J2337+0016, also known as Abell 2631, has archival Chandra data that allow an additional X-ray-based mass estimate. Optical richness is also used to estimate cluster masses and shows good agreement with the SZE and X-ray-based estimates. Based on the point sources detected by the SZA in these three cluster fields and an extrapolation to ACT's frequency, we estimate that point sources could be contaminating the SZE decrement at the approx < 20% level for some fraction of clusters.

  4. The Atacama Cosmology Telescope: High-Resolution Sunyaev-Zel'dovich Array Observations of ACT SZE-Selected Clusters from the Equatorial Strip

    Science.gov (United States)

    Reese, Erik D.; Mroczkowski, Tony; Menanteau, Felipe; Hilton, Matt; Sievers, Jonathan; Aguirre, Paula; Appel, John William; Baker, Andrew J.; Bond, J. Richard; Das, Sudeep; hide

    2011-01-01

    We present follow-up observations with the Sunyaev-Zel'dovich Array (SZA) of optically-confirmed galaxy clusters found in the equatorial survey region of the Atacama Cosmology Telescope (ACT): ACT-CL J0022-0036, ACT-CL J2051+0057, and ACT-CL J2337+0016. ACT-CL J0022-0036 is a newly-discovered, massive (10(exp 15) Msun), high-redshift (z=0.81) cluster revealed by ACT through the Sunyaev-Zel'dovich effect (SZE). Deep, targeted observations with the SZA allow us to probe a broader range of cluster spatial scales, better disentangle cluster decrements from radio point source emission, and derive more robust integrated SZE flux and mass estimates than we can with ACT data alone. For the two clusters we detect with the SZA we compute integrated SZE signal and derive masses from the SZA data only. ACT-CL J2337+0016, also known as Abell 2631, has archival Chandra data that allow an additional X-ray-based mass estimate. Optical richness is also used to estimate cluster masses and shows good agreement with the SZE and X-ray-based estimates. Based on the point sources detected by the SZA in these three cluster fields and an extrapolation to ACT's frequency, we estimate that point sources could be contaminating the SZE decrement at the less than = 20% level for some fraction of clusters.

  5. The Atacama Cosmology Telescope: ACT-CL J0102-4215 "El Gordo," a Massive Merging Cluster at Redshift 0.87

    Science.gov (United States)

    Menanteau, Felipe; Hughes, John Pl; Baker, Andrew J.; Sifon, Cristobal; Gonzalez, Jorge; Infante, Leopoldo; Barrientos, L. Felipe; Hilton, Matt; Das, Sudeep; Spergel, David N.; hide

    2011-01-01

    We present a detailed analysis from new multi-wavelength observations of the exceptional galaxy cluster ACT-CL J0102-4915, likely the most massive, hottest, most X-ray luminous and brightest Sunyaev-Zel'dovich (SZ) effect cluster known at redshifts greater than 0.6. The Atacama Cosmology Telescope (ACT) collaboration discovered ACT-CL J0102-4915 as the most significant Sunyaev-Zeldovich (SZ) decrement in a sky survey area of 755 square degrees. Our VLT/FORS2 spectra of 89 member galaxies yield a cluster redshift, z = 0.870, and velocity dispersion, sigma(gal) +/- 1321 106 km s-1. Our Chandra observations reveal a hot and X-ray luminous system with an integrated temperature of T(X) = 14:5 +/- 0:1 keV and 0.5 2.0 keV band luminosity of L(X) = (2:19 0:11) 1045 h(exp -2)70erg s-1. We obtain several statistically consistent cluster mass estimates; using empirical mass scaling relations with velocity dispersion, X-ray Y(X) , and integrated SZ distortion, we estimate a cluster mass of M(200) = (2:16 +/- 0:32) 10(exp 15) h(exp-1) 70M compared to the Sun. We constrain the stellar content of the cluster to be less than 1% of the total mass, using Spitzer IRAC and optical imaging. The Chandra and VLT/FORS2 optical data also reveal that ACT-CL J0102-4915 is undergoing a major merger between components with a mass ratio of approximately 2 to 1. The X-ray data show significant temperature variations from a low of 6:6 +/- 0:7 keV at the merging low-entropy, high-metallicity, cool core to a high of 22 +/- 6 keV. We also see a wake in the X-ray surface brightness and deprojected gas density caused by the passage of one cluster through the other from which we estimate a merger speed of around 1300 km s(exp -1) for an assumed merger timescale of 1 Gyr. ACTCL J0102-4915 is possibly a high-redshift analog of the famous Bullet Cluster. Such a massive cluster at this redshift is rare, although consistent with the standard CDM cosmology in the lower part of its allowed mass range. Massive

  6. Evidence for the Kinematic Sunyaev-Zel'dovich Effect with the Atacama Cosmology Telescope and Velocity Reconstruction from the Baryon Oscillation Spectroscopic Survey

    Science.gov (United States)

    Schaan, Emmanuel S.; Ferraro, Simone; Vargas-Magana, Mariana; Smith, Kendrick M.; Ho, Shirley; Aiola, Simone; Battaglia, Nicholas; Bond, J. Richard; De Bernardis, Francesco; Calabrese, Erminia; hide

    2016-01-01

    We use microwave temperature maps from two seasons of data from the Atacama Cosmology Telescope at 146 GHz, together with the "Constant Mass" CMASS galaxy sample from the Baryon Oscillation Spectroscopic Survey to measure the kinematic Sunyaev-Zel'dovich (kSZ) effect over the redshift range z1/4 0.4-0.7. We use galaxy positions and the continuity equation to obtain a reconstruction of the line-of-sight velocity field. We stack the microwave temperature at the location of each halo, weighted by the corresponding reconstructed velocity. We vary the size of the aperture photometry filter used, thus probing the free electron profile of these halos from within the virial radius out to three virial radii, on the scales relevant for investigating the missing baryons problem. The resulting best fit kSZ model is preferred over the no-kSZ hypothesis at 3.3 and 2.9 sigma for two independent velocity reconstruction methods, using 25,537 galaxies over 660 square degrees. The data suggest that the baryon profile is shallower than the dark matter in the inner regions of the halos probed here, potentially due to energy injection from active galactic nucleus or supernovae. Thus, by constraining the gas profile on a wide range of scales, this technique will be useful for understanding the role of feedback in galaxy groups and clusters. The effect of foregrounds that are uncorrelated with the galaxy velocities is expected to be well below our signal, and residual thermal Sunyaev-Zel'dovich contamination is controlled by masking the most massive clusters. Finally, we discuss the systematics involved in converting our measurement of the kSZ amplitude into the mean free electron fraction of the halos in our sample.

  7. The Atacama Cosmology Telescope: A Measurement of the 600 less than l less than 8000 Cosmic Microwave Background Power Spectrum at 148 GHz

    Science.gov (United States)

    Fowler, J. W.; Acquaviva, V.; Ade, P. A. R.; Aguirre, P.; Amiri, M.; Appel, J. W.; Barrientos, L. F.; Bassistelli, E. S.; Bond, J. R.; Brown, B.; hide

    2010-01-01

    We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz. The measurement uses maps with 1.4' angular resolution made with data from the Atacama Cosmology Telescope (ACT). The observations cover 228 deg(sup 2) of the southern sky, in a 4 deg. 2-wide strip centered on declination 53 deg. South. The CMB at arc minute angular scales is particularly sensitive to the Silk damping scale, to the Sunyaev-Zel'dovich (SZ) effect from galaxy dusters, and to emission by radio sources and dusty galaxies. After masking the 108 brightest point sources in our maps, we estimate the power spectrum between 600 less than l less than 8000 using the adaptive multi-taper method to minimize spectral leakage and maximize use of the full data set. Our absolute calibration is based on observations of Uranus. To verify the calibration and test the fidelity of our map at large angular scales, we cross-correlate the ACT map to the WMAP map and recover the WMAP power spectrum from 250 less than l less than 1150. The power beyond the Silk damping tail of the CMB (l approximately 5000) is consistent with models of the emission from point sources. We quantify the contribution of SZ clusters to the power spectrum by fitting to a model normalized to sigma 8 = 0.8. We constrain the model's amplitude A(sub sz) less than 1.63 (95% CL). If interpreted as a measurement of as, this implies sigma (sup SZ) (sub 8) less than 0.86 (95% CL) given our SZ model. A fit of ACT and WMAP five-year data jointly to a 6-parameter ACDM model plus point sources and the SZ effect is consistent with these results.

  8. The Atacama Cosmology Telescope: ACT-CL J0102-4915 'EL GORDO', A Massive Merging Cluster at Redshift 0.87

    Science.gov (United States)

    Menanteau, Felipe; Hughes, John P.; Sifon, Cristobal; Hilton, Matt; Gonzalez, Jorge; Infante, Leopoldo; Barrientos, L. Felipe; Baker, Andrew J.; Bond, John R.; Das, Sudeep; hide

    2012-01-01

    We present a detailed analysis from new multi-wavelength observations of the exceptional galaxy cluster ACT-CL J0102-4915, likely the most massive, hottest, most X-ray luminous and brightest Sunyaev-Zel'dovich (SZ) effect cluster known at redshifts greater than 0.6. The Atacama Cosmology Telescope (ACT) collaboration discovered ACT-CL J0102-4915 as the most significant Sunyaev-Zeldovich (SZ) decrement in a sky survey area of 755 square degrees. Our VLT/FORS2 spectra of 89 member galaxies yield a cluster redshift, z = 0.870, and velocity dispersion, sigma(sub gal) = 1321+/-106 km s-1. Our Chandra observations reveal a hot and X-ray luminous system with an integrated temperature of T(sub X) = 14.5+/-1.0 keV and 0.5-2.0 keV band luminosity of L(sub X) = (2.19+/-0.11)×10(sup 45) h(sup -2)(sub 70) erg s-1. We obtain several statistically consistent cluster mass estimates; using empirical mass scaling relations with velocity dispersion, X-ray Y(sub X), and integrated SZ distortion, we estimate a cluster mass of M(sub 200a) = (2.16+/-0.32)×1015 h(sup -1)(sub 70) solar mass. We constrain the stellar content of the cluster to be less than 1% of the total mass, using Spitzer IRAC and optical imaging. The Chandra and VLT/FORS2 optical data also reveal that ACT-CL J0102-4915 is undergoing a major merger between components with a mass ratio of approximately 2 to 1. The X-ray data show significant temperature variations from a low of 6.6+/-0.7 keV at the merging low-entropy, high-metallicity, cool core to a high of 22+/-6 keV. We also see a wake in the X-ray surface brightness and deprojected gas density caused by the passage of one cluster through the other. Archival radio data at 843 MHz reveal diffuse radio emission that, if associated with the cluster, indicates the presence of an intense double radio relic, hosted by the highest redshift cluster yet. ACT-CL J0102-4915 is possibly a high-redshift analog of the famous Bullet Cluster. Such a massive cluster at this redshift

  9. THE ATACAMA COSMOLOGY TELESCOPE: DYNAMICAL MASSES AND SCALING RELATIONS FOR A SAMPLE OF MASSIVE SUNYAEV-ZEL'DOVICH EFFECT SELECTED GALAXY CLUSTERS {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Sifon, Cristobal; Barrientos, L. Felipe; Gonzalez, Jorge; Infante, Leopoldo; Duenner, Rolando [Departamento de Astronomia y Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Menanteau, Felipe; Hughes, John P.; Baker, Andrew J. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Hasselfield, Matthew [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Marriage, Tobias A.; Crichton, Devin; Gralla, Megan B. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218-2686 (United States); Addison, Graeme E.; Dunkley, Joanna [Sub-department of Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Battaglia, Nick; Bond, J. Richard; Hajian, Amir [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Das, Sudeep [Berkeley Center for Cosmological Physics, LBL and Department of Physics, University of California, Berkeley, CA 94720 (United States); Devlin, Mark J. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Hilton, Matt [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); and others

    2013-07-20

    We present the first dynamical mass estimates and scaling relations for a sample of Sunyaev-Zel'dovich effect (SZE) selected galaxy clusters. The sample consists of 16 massive clusters detected with the Atacama Cosmology Telescope (ACT) over a 455 deg{sup 2} area of the southern sky. Deep multi-object spectroscopic observations were taken to secure intermediate-resolution (R {approx} 700-800) spectra and redshifts for Almost-Equal-To 60 member galaxies on average per cluster. The dynamical masses M{sub 200c} of the clusters have been calculated using simulation-based scaling relations between velocity dispersion and mass. The sample has a median redshift z = 0.50 and a median mass M{sub 200c}{approx_equal}12 Multiplication-Sign 10{sup 14} h{sub 70}{sup -1} M{sub sun} with a lower limit M{sub 200c}{approx_equal}6 Multiplication-Sign 10{sup 14} h{sub 70}{sup -1} M{sub sun}, consistent with the expectations for the ACT southern sky survey. These masses are compared to the ACT SZE properties of the sample, specifically, the match-filtered central SZE amplitude y{sub 0}-tilde, the central Compton parameter y{sub 0}, and the integrated Compton signal Y{sub 200c}, which we use to derive SZE-mass scaling relations. All SZE estimators correlate with dynamical mass with low intrinsic scatter ({approx}< 20%), in agreement with numerical simulations. We explore the effects of various systematic effects on these scaling relations, including the correlation between observables and the influence of dynamically disturbed clusters. Using the three-dimensional information available, we divide the sample into relaxed and disturbed clusters and find that {approx}50% of the clusters are disturbed. There are hints that disturbed systems might bias the scaling relations, but given the current sample sizes, these differences are not significant; further studies including more clusters are required to assess the impact of these clusters on the scaling relations.

  10. Cosmology with liquid mirror telescopes

    Science.gov (United States)

    Hogg, David W.; Gibson, Brad K.; Hickson, Paul

    1993-01-01

    Liquid mirrors provide an exciting means to obtain large optical telescopes for substantially lower costs than conventional technologies. The liquid mirror concept has been demonstrated in the lab with the construction of a diffraction limited 1.5 m mirror. The mirror surface, using liquid mercury, forms a perfect parabolic shape when the mirror cell is rotated at a uniform velocity. A liquid mirror must be able to support a heavy mercury load with minimal flexure and have a fundamental resonant frequency that is as high as possible, to suppress the amplitude of surface waves caused by small vibrations transmitted to the mirror. To minimize the transmission of vibrations to the liquid surface, the entire mirror rests on an air bearing. This necessitates the mirror cell being lightweight, due to the limited load capabilities of the air bearing. The mirror components must also have physical characteristics which minimize the effects of thermal expansion with ambient temperature fluctuations in the observatory. In addition, the 2.7 m mirror construction is designed so that the techniques used may be readily extended to the construction of large mirrors. To attain the goals of a lightweight, rigid mirror, a composite laminant construction was used. The mirror consists of a foam core cut to the desired parabolic shape, with an accuracy of a few mm. An aluminum hub serves as an anchor for the foam and skin, and allows precise centering of the mirror on the air bearing and drive system. Several plys of Kevlar, covered in an epoxy matrix, are then applied to the foam. A final layer of pure epoxy is formed by spin casting. This final layer is parabolic to within a fraction of a mm. An aluminum ring bonded to the circumference of the mirror retains the mercury, and incorporates stainless-steel hard-points for the attachment of balance weights.

  11. The University of Tokyo Atacama Observatory 6.5m telescope: project overview and current status

    Science.gov (United States)

    Yoshii, Y.; Doi, M.; Kohno, K.; Miyata, T.; Motohara, K.; Kawara, K.; Tanaka, M.; Minezaki, T.; Sako, S.; Morokuma, T.; Tamura, Y.; Tanabe, T.; Takahashi, H.; Konishi, M.; Kamizuka, T.; Kato, N.; Aoki, T.; Soyano, T.; Tarusawa, K.; Handa, T.; Koshida, S.; Bronfman, L.; Ruiz, M. T.; Hamuy, M.; Garay, G.

    2016-07-01

    The University of Tokyo Atacama Observatory Project is to construct a 6.5m infrared telescope at the summit of Co. Chajnantor (5640m altitude) in northern Chile, promoted by the University of Tokyo. Thanks to the dry climate (PWV 0.5mm) and the high altitude, it will achieve excellent performance in the NIR to MIR wavelengths. The telescope has two Nasmyth foci where the facility instruments are installed and two folded-Cassegrain foci for carry-in instruments. All these four foci can be switched by rotating a tertiary mirror. The final focal ratio is 12.2 and the telescope foci have large field-of-view of 25° in diameter. We adopted the 6.5m light-weighted borosilicate honeycomb primary mirror and its support system that are developed by Steward Observatory Richard F. Caris Mirror Lab. The dome enclosure has the shape of carousel, and large ventilation windows with shutters control the wind to flush heat inside the dome. The operation building with control room, aluminizing chamber and maintenance facilities is located at the side of the dome. Two cameras, SWIMS for spectroscopy and imaging in the near-infrared and MIMIZUKU in the mid-infrared, are being developed as the first-generation facility instruments. The operation of the telescope will be remotely carried out from a base facility at San Pedro de Atacama, 50km away from the summit. The construction of the telescope is now underway. Fabrication of the telescope mount has almost finished, and the pre-assembly has been carried out in Japan. The primary, secondary, and tertiary mirrors and their cells have been also fabricated, as well as their cells and support systems. Fabrication of the enclosure is now underway, and their pre-assembly in Japan will be carried out in 2016. Construction of the base facility at San Pedro de Atacama has been already completed in 2014, and operated for the activities in Atacama. The telescope is now scheduled to see the first light at the beginning of 2018.

  12. Origins Space Telescope: Cosmology and Reionization

    Science.gov (United States)

    Vieira, Joaquin Daniel; Origins Space Telescope

    2018-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.A core science goal of the OST mission is to study the the cosmological history of star, galaxy, and structure formation into the epoch of reionization (EoR). OST will probe the birth of galaxies through warm molecular hydrogen emission during the cosmic dark ages. Utilizing the unique power of the infrared fine-structure emission lines, OST will trace the rise of metals from the first galaxies until today. It will quantify the dust enrichment history of the Universe, uncover its composition and physical conditions, reveal the first cosmic sources of dust, and probe the properties of the earliest star formation. OST will provide a detailed astrophysical probe into the condition of the intergalactic medium at z > 6 and the galaxies which dominate the epoch of reionization.

  13. The Atacama Large Aperture Submm/mm Telescope (AtLAST) Project

    Science.gov (United States)

    Bertoldi, Frank

    2018-01-01

    In the past decade a strong case has been made for the construction of a next generation, 25 to 40-meter large submillimeter telescope, most notably through the CCAT and the Japanese LST projects. Although much effort had been spent on detailed science cases and technological studies, none of these projects have yet secured funding to advance to construction. We invite the interested community to join a study of the scientific merit, technical implementation, and financial path toward what we coin the "Atacama Large Submillimeter Telescope" (AtLAST). Through this community workshop, working groups, and a final report to be released in early 2019, we hope to motivate the global astronomy community to value and support the realization of such a facility.

  14. Design and development status of the University of Tokyo Atacama Observatory 6.5m telescope

    Science.gov (United States)

    Morokuma, Tomoki; Aoki, Tsutomu; Doi, Mamoru; Handa, Toshihiro; Kamizuka, Takafumi; Kato, Natsuko; Kawara, Kimiaki; Kohno, Kotaro; Konishi, Masahiro; Koshida, Shintaro; Minezaki, Takeo; Miyata, Takashi; Motohara, Kentaro; Sako, Shigeyuki; Soyano, Takao; Takahashi, Hidenori; Tamura, Yoichi; Tanabe, Toshihiko; Tanaka, Masuo; Tarusawa, Ken'ichi; Yoshii, Yuzuru

    2014-07-01

    We here summarize the design and the current fabrication status for the University of Tokyo Atacama Observatory (TAO) 6.5-m telescope. The TAO telescope is operated at one of the best sites for infrared observations, at the summit of Co. Chajnantor in Chile, and is optimized for infrared observations. The telescope mount, mirrors, and mirror support systems are now at the final design phase. The mechanical and optical designs are done by following and referring to those of the Magellan telescopes, MMT, and Large Binocular Telescope. The final focal ratio is 12.2. The field-of-view is as wide as 25 arcmin in diameter and the plate scale is 2.75 arcsec mm-1. The F/1.25 light-weighted borosilicate (Ohara E6) honeycomb primary mirror is adopted and being fabricated by the Steward Observatory Mirror Laboratory. The primary mirror is supported by 104 loadspreaders bonded to the back surface of the mirror and 6 adjustable hardpoints. The mirror is actively controlled by adjusting the actuator forces based on the realtime wavefront measurement. The actuators are optimized for operation at high altitude of the site, 5640-m above the sea level, by considering the low temperature and low air pressure. The mirror is held in the primary mirror cell which is used as a part of the vacuum chamber when the mirror surface is aluminized without being detached from the cell. The pupil is set at the secondary mirror to minimize infrared radiation into instruments. The telescope has two Nasmyth foci for near-infrared and mid-infrared facility instruments (SWIMS and MIMIZUKU, respectively) and one folded-Caseggrain focus for carry-in instruments. At each focus, autoguider and wavefront measurement systems are attached to achieve seeing-limited image quality. The telescope mount is designed as a tripod-disk type alt-azimuth mount. Both the azimuthal and elevation axes are supported by and run on the hydrostatic bearings. Friction drives are selected for these axis drives. The telescope

  15. Galaxy Evolution Studies with the SPace IR Telescope for Cosmology and Astrophysics (SPICA): The Power of IR Spectroscopy

    Science.gov (United States)

    Spinoglio, L.; Alonso-Herrero, A.; Armus, L.; Baes, M.; Bernard-Salas, J.; Bianchi, S.; Bocchio, M.; Bolatto, A.; Bradford, C.; Braine, J.; Carrera, F. J.; Ciesla, L.; Clements, D. L.; Dannerbauer, H.; Doi, Y.; Efstathiou, A.; Egami, E.; Fernández-Ontiveros, J. A.; Ferrara, A.; Fischer, J.; Franceschini, A.; Gallerani, S.; Giard, M.; González-Alfonso, E.; Gruppioni, C.; Guillard, P.; Hatziminaoglou, E.; Imanishi, M.; Ishihara, D.; Isobe, N.; Kaneda, H.; Kawada, M.; Kohno, K.; Kwon, J.; Madden, S.; Malkan, M. A.; Marassi, S.; Matsuhara, H.; Matsuura, M.; Miniutti, G.; Nagamine, K.; Nagao, T.; Najarro, F.; Nakagawa, T.; Onaka, T.; Oyabu, S.; Pallottini, A.; Piro, L.; Pozzi, F.; Rodighiero, G.; Roelfsema, P.; Sakon, I.; Santini, P.; Schaerer, D.; Schneider, R.; Scott, D.; Serjeant, S.; Shibai, H.; Smith, J.-D. T.; Sobacchi, E.; Sturm, E.; Suzuki, T.; Vallini, L.; van der Tak, F.; Vignali, C.; Yamada, T.; Wada, T.; Wang, L.

    2017-11-01

    IR spectroscopy in the range 12-230 μm with the SPace IR telescope for Cosmology and Astrophysics (SPICA) will reveal the physical processes governing the formation and evolution of galaxies and black holes through cosmic time, bridging the gap between the James Webb Space Telescope and the upcoming Extremely Large Telescopes at shorter wavelengths and the Atacama Large Millimeter Array at longer wavelengths. The SPICA, with its 2.5-m telescope actively cooled to below 8 K, will obtain the first spectroscopic determination, in the mid-IR rest-frame, of both the star-formation rate and black hole accretion rate histories of galaxies, reaching lookback times of 12 Gyr, for large statistically significant samples. Densities, temperatures, radiation fields, and gas-phase metallicities will be measured in dust-obscured galaxies and active galactic nuclei, sampling a large range in mass and luminosity, from faint local dwarf galaxies to luminous quasars in the distant Universe. Active galactic nuclei and starburst feedback and feeding mechanisms in distant galaxies will be uncovered through detailed measurements of molecular and atomic line profiles. The SPICA's large-area deep spectrophotometric surveys will provide mid-IR spectra and continuum fluxes for unbiased samples of tens of thousands of galaxies, out to redshifts of z 6.

  16. The space infrared telescope for cosmology and astrophysics : SPICA A joint mission between JAXA and ESA

    NARCIS (Netherlands)

    Swinyard, Bruce; Nakagawa, Takao; Wild, Wolfgang

    The Space Infrared telescope for Cosmology and Astrophysics (SPICA) is planned to be the next space astronomy mission observing in the infrared. The mission is planned to be launched in 2017 and will feature a 3.5 m telescope cooled to <5 K through the use of mechanical coolers. These coolers will

  17. Lunar Radio Telescopes: A Staged Approach for Lunar Science, Heliophysics, Astrobiology, Cosmology, and Exploration

    Science.gov (United States)

    Lazio, Joseph; Bowman, Judd D.; Burns, Jack O.; Farrell, W. M.; Jones, D. L.; Kasper, J. C.; MacDowall, R. J.; Stewart, K. P.; Weiler, K.

    2012-01-01

    Observations with radio telescopes address key problems in cosmology, astrobiology, heliophysics, and planetary science including the first light in the Universe (Cosmic Dawn), magnetic fields of extrasolar planets, particle acceleration mechanisms, and the lunar ionosphere. The Moon is a unique science platform because it allows access to radio frequencies that do not penetrate the Earth's ionosphere and because its far side is shielded from intense terrestrial emissions. The instrument packages and infrastructure needed for radio telescopes can be transported and deployed as part of Exploration activities, and the resulting science measurements may inform Exploration (e.g., measurements of lunar surface charging). An illustrative roadmap for the staged deployment of lunar radio telescopes

  18. Status Report on CASTOR (The Cosmological Advanced Survey Telescope for Optical and uv Research)

    Science.gov (United States)

    Cote, Patrick

    The Cosmological Advanced Survey Telescope for Optical and uv Research (CASTOR) is a proposed wide-field optical/UV imaging telescope concept that is currently being investigated by the Canadian Space Agency (CSA). The nearly diffraction-limited 1m CASTOR telescope would perform deep, panoramic imaging in three filters covering the ultra-violet and blue-optical spectral regions at a spatial resolution comparable to the Hubble Space Telescope but with a 200x gain in field of view. In this talk, I summarize the status of the proposed mission, concentrating on ongoing technical work on the focal plane array, optical design and scientific planning. I also review the main science drivers for the facility, which range from the study of dark energy to the nature of small bodies in the outer solar system.

  19. Estimating cosmological parameters by the simulated data of gravitational waves from the Einstein Telescope

    Science.gov (United States)

    Cai, Rong-Gen; Yang, Tao

    2017-02-01

    We investigate the constraint ability of the gravitational wave (GW) as the standard siren on the cosmological parameters by using the third-generation gravitational wave detector: the Einstein Telescope. The binary merger of a neutron with either a neutron or black hole is hypothesized to be the progenitor of a short and intense burst of γ rays; some fraction of those binary mergers could be detected both through electromagnetic radiation and gravitational waves. Thus we can determine both the luminosity distance and redshift of the source separately. We simulate the luminosity distances and redshift measurements from 100 to 1000 GW events. We use two different algorithms to constrain the cosmological parameters. For the Hubble constant H0 and dark matter density parameter Ωm, we adopt the Markov chain Monte Carlo approach. We find that with about 500-600 GW events we can constrain the Hubble constant with an accuracy comparable to Planck temperature data and Planck lensing combined results, while for the dark matter density, GWs alone seem not able to provide the constraints as good as for the Hubble constant; the sensitivity of 1000 GW events is a little lower than that of Planck data. It should require more than 1000 events to match the Planck sensitivity. Yet, for analyzing the more complex dynamical property of dark energy, i.e., the equation of state w , we adopt a new powerful nonparametric method: the Gaussian process. We can reconstruct w directly from the observational luminosity distance at every redshift. In the low redshift region, we find that about 700 GW events can give the constraints of w (z ) comparable to the constraints of a constant w by Planck data with type-Ia supernovae. Those results show that GWs as the standard sirens to probe the cosmological parameters can provide an independent and complementary alternative to current experiments.

  20. Cosmology

    CERN Document Server

    Rubakov, V.A.

    2014-04-10

    In these lectures we first concentrate on the cosmological problems which, hopefully, have to do with the new physics to be probed at the LHC: the nature and origin of dark matter and generation of matter-antimatter asymmetry. We give several examples showing the LHC cosmological potential. These are WIMPs as cold dark matter, gravitinos as warm dark matter, and electroweak baryogenesis as a mechanism for generating matter-antimatter asymmetry. In the remaining part of the lectures we discuss the cosmological perturbations as a tool for studying the epoch preceeding the conventional hot stage of the cosmological evolution.

  1. Cosmology

    CERN Document Server

    García-Bellido, J

    2015-01-01

    In these lectures I review the present status of the so-called Standard Cosmological Model, based on the hot Big Bang Theory and the Inflationary Paradigm. I will make special emphasis on the recent developments in observational cosmology, mainly the acceleration of the universe, the precise measurements of the microwave background anisotropies, and the formation of structure like galaxies and clusters of galaxies from tiny primordial fluctuations generated during inflation.

  2. Cosmology

    CERN Document Server

    Vittorio, Nicola

    2018-01-01

    Modern cosmology has changed significantly over the years, from the discovery to the precision measurement era. The data now available provide a wealth of information, mostly consistent with a model where dark matter and dark energy are in a rough proportion of 3:7. The time is right for a fresh new textbook which captures the state-of-the art in cosmology. Written by one of the world's leading cosmologists, this brand new, thoroughly class-tested textbook provides graduate and undergraduate students with coverage of the very latest developments and experimental results in the field. Prof. Nicola Vittorio shows what is meant by precision cosmology, from both theoretical and observational perspectives.

  3. Cosmology with the lights off: Standard sirens in the Einstein Telescope era

    Science.gov (United States)

    Taylor, Stephen R.; Gair, Jonathan R.

    2012-07-01

    We explore the prospects for constraining cosmology using gravitational-wave (GW) observations of neutron-star binaries by the proposed Einstein Telescope (ET), exploiting the narrowness of the neutron-star mass function. This builds on our previous work in the context of advanced-era GW detectors. Double neutron-star (DNS) binaries are expected to be one of the first sources detected after “first-light” of Advanced LIGO. DNS systems are expected to be detected at a rate of a few tens per year in the advanced era, but the proposed ET could catalog tens, if not hundreds, of thousands per year. Combining the measured source redshift distributions with GW-network distance determinations will permit not only the precision measurement of background cosmological parameters, but will provide an insight into the astrophysical properties of these DNS systems. Of particular interest will be to probe the distribution of delay times between DNS-binary creation and subsequent merger, as well as the evolution of the star-formation rate density within ET’s detection horizon. Keeping H0, Ωm,0 and ΩΛ,0 fixed and investigating the precision with which the dark-energy equation-of-state parameters could be recovered, we found that with 105 detected DNS binaries, we could constrain these parameters to an accuracy similar to forecasted constraints from future CMB+BAO+SNIa measurements. Furthermore, modeling the merger delay-time distribution as a power-law (∝tα) and the star-formation rate density as a parametrized version of the Porciani and Madau SF2 model, we find that the associated astrophysical parameters are constrained to within ˜10%. All parameter precisions scaled as 1/N, where N is the number of cataloged detections. We also investigated how parameter precisions varied with the intrinsic underlying properties of the Universe and with the distance reach of the network (which is affected, for instance, by the low-frequency cutoff of the detector). We also consider

  4. Simultaneous seeing measurements at Atacama

    Science.gov (United States)

    Uraguchi, Fumihiro; Motohara, Kentaro; Doi, Mamoru; Takato, Naruhisa; Miyashita, Akihiko; Tanabe, Toshihiko; Oyabu, Shinki; Soyano, Takao

    2004-10-01

    Institute of Astronomy, University of Tokyo is now planning to build a 6.5-m optical-infrared telescope in Atacama, Chile. This project is called "Univ. Tokyo Atacama Observatory (TAO)", and the site evaluation is now under way. As a part of this evaluation process, we started an investigation to compare the astronomical seeing at Atacama with that at Mauna Kea. Here, we report preliminary results of seeing measurements at several sites in Atacama, carried out on October 2003. In order to separate the temporal and site-to-site variation of the seeing, we used two sets of Differential Image Motion Monitors (DIMMs), each of which has two pairs of 7.4 cm sub-apertures with 20.5 cm separation. Three sites were investigated; the point near the TAO weather station (4,950m), the summit of Cello Chico (5,150m) and the point at 5,430m altitude on Cello Toco. Simultaneous measurements were carried out for three half nights out of four half nights measurements. Although the amount of our data is very limited, the results suggest following: 1) Seeing becomes better and more stable as time passing to midnight (eg. From 0."7 to 0."4 at V-band). 2) Higher altitude sites show better seeing than lower altitude sites.

  5. Subaru Telescope limits on cosmological variations in the fine-structure constant

    Science.gov (United States)

    Murphy, Michael T.; Cooksey, Kathy L.

    2017-11-01

    Previous, large samples of quasar absorption spectra have indicated some evidence for relative variations in the fine-structure constant (Δα/α) across the sky. However, they were likely affected by long-range distortions of the wavelength calibration, so it is important to establish a statistical sample of more reliable results from multiple telescopes. Here we triple the sample of Δα/α measurements from the Subaru Telescope which have been `supercalibrated' to correct for long-range distortions. A blinded analysis of the metallic ions in six intervening absorption systems in two Subaru quasar spectra provides no evidence for α variation, with a weighted mean of Δα/α = 3.0 ± 2.8stat ± 2.0sys parts per million (1σ statistical and systematic uncertainties). The main remaining systematic effects are uncertainties in the long-range distortion corrections, absorption profile models, and errors from redispersing multiple quasar exposures on to a common wavelength grid. The results also assume that terrestrial isotopic abundances prevail in the absorbers; assuming only the dominant terrestrial isotope is present significantly lowers Δα/α, though it is still consistent with zero. Given the location of the two quasars on the sky, our results do not support the evidence for spatial α variation, especially when combined with the 21 other recent measurements which were corrected for, or resistant to, long-range distortions. Our spectra and absorption profile fits are publicly available.

  6. The Space Infrared Telescope for Cosmology and Astrophysics and Pending US Contribution

    Science.gov (United States)

    Bradford, Charles; SPICA Consortium; SAFARI Consortium

    2017-01-01

    SPICA is a cryogenic space-borne observatory designed for optimal sensitivity in the mid-infrared through submillimeter range: 17-250 microns. The mission is an ESA / JAXA collaboration, now under review in the ESA Cosmic Visions M5 opportunity, which has final approval in 2019, and launch in the late 2020 decade. SPICA will feature a 2.5-meter telescope cooled to below 8K, this offers the potential for 100-1000-fold advances in sensitivity beyond that obtained with Herschel and SOFIA in the far-IR. With a line sensitivity of ~5x10^-20 W/m^2 (1 h, 5 sigma), SPICA will be a complement to JWST and ALMA for deep spectroscopic observations. Integrated over cosmic history, star formation has occurred predominantly in dust-obscured regions which are inaccessible in the rest-frame UV and optical. Both the luminosity history and the detailed physics that govern it can only be directly measured in the mid-IR-submillimeter. Similarly, forming stars and planetary systems cool primarily through the far-IR. By taking advantage of the low-background platform, the SPICA instruments are designed for these investigations. The SPICA mid-IR instrument (SMI) will provide R~50 imaging spectroscopy and R~1,000 full-band slit-fed spectroscopy from 17 to 36 microns, with a high-resolution (R=25,000) capability from 12-18 microns. The SPICA far-IR instrument (SAFARI) will cover 34 to at least 250 microns with multiple R~300 wide-band grating spectrometer modules coupling to high-sensitivity far-IR detectors. A R~3,000 scanned-etalon module will also be available for Galactic targets with bright continua and/or dense line spectra. In the current SPICA division of responsibilities, ESA will take the lead role, provide the telescope, the fine-attitude sensor, and the spacecraft bus. JAXA will provide the cryogenic system, the SMI instrument, integrate the telescope and instruments, and provide the launch vehicle. The SAFARI instrument will be provided by a consortium funded by the European

  7. A Comparison of Cosmological Parameters Determined from CMB Temperature Power Spectra from the South Pole Telescope and the Planck Satellite

    Science.gov (United States)

    Aylor, K.; Hou, Z.; Knox, L.; Story, K. T.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H.-M.; Chown, R.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Dobbs, M. A.; Everett, W. B.; George, E. M.; Halverson, N. W.; Harrington, N. L.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Keisler, R.; Lee, A. T.; Leitch, E. M.; Luong-Van, D.; Marrone, D. P.; McMahon, J. J.; Meyer, S. S.; Millea, M.; Mocanu, L. M.; Mohr, J. J.; Natoli, T.; Omori, Y.; Padin, S.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Staniszewski, Z.; Stark, A. A.; Vanderlinde, K.; Vieira, J. D.; Williamson, R.

    2017-11-01

    The Planck cosmic microwave background temperature data are best fit with a ΛCDM model that mildly contradicts constraints from other cosmological probes. The South Pole Telescope (SPT) 2540 {\\deg }2 SPT-SZ survey offers measurements on sub-degree angular scales (multipoles 650≤slant {\\ell }≤slant 2500) with sufficient precision to use as an independent check of the Planck data. Here we build on the recent joint analysis of the SPT-SZ and Planck data in Hou et al. by comparing ΛCDM parameter estimates using the temperature power spectrum from both data sets in the SPT-SZ survey region. We also restrict the multipole range used in parameter fitting to focus on modes measured well by both SPT and Planck, thereby greatly reducing sample variance as a driver of parameter differences and creating a stringent test for systematic errors. We find no evidence of systematic errors from these tests. When we expand the maximum multipole of SPT data used, we see low-significance shifts in the angular scale of the sound horizon and the physical baryon and cold dark matter densities, with a resulting trend to higher Hubble constant. When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky data but keep the multipole range restricted, we find differences in the parameters n s and {A}s{e}-2τ . We perform further checks, investigating instrumental effects and modeling assumptions, and we find no evidence that the effects investigated are responsible for any of the parameter shifts. Taken together, these tests reveal no evidence for systematic errors in SPT or Planck data in the overlapping sky coverage and multipole range and at most weak evidence for a breakdown of ΛCDM or systematic errors influencing either the Planck data outside the SPT-SZ survey area or the SPT data at {\\ell }> 2000.

  8. Comparación de las predicciones de cosmologías alternativas al modelo estándar con datos del fondo cósmico de radiación

    Science.gov (United States)

    Piccirilli, M. P.; Landau, S. J.; León, G.

    2016-08-01

    The cosmic microwave background radiation is one of the most powerful tools to study the early Universe and its evolution, providing also a method to test different cosmological scenarios. We consider alternative inflationary models where the emergence of the seeds of cosmic structure from a perfect isotropic and homogeneous universe can be explained by the self-induced collapse of the inflaton wave function. Some of these alternative models may result indistinguishable from the standard model, while others require to be compared with observational data through statistical analysis. In this article we show results concerning the first Planck release, the Atacama Cosmology Telescope, the South Pole Telescope, the WMAP and Sloan Digital Sky Survey datasets, reaching good agreement between data and theoretical predictions. For future works, we aim to achieve better limits in the cosmological parameters using the last Planck release.

  9. The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Harrington, Kathleen; Marriage, Tobias; Ali, Aamir; Appel, John; Bennett, Charles; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; hide

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  10. The Cosmology Large Angular Scale Surveyor (CLASS)

    Science.gov (United States)

    Harrington, Kathleen; Marriange, Tobias; Aamir, Ali; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; hide

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  11. Cosmological data and indications for new physics

    Energy Technology Data Exchange (ETDEWEB)

    Benetti, Micol [Physics Department and ICRA, Università di Roma ' ' La Sapienza' ' , Ple. Aldo Moro 2, 00185, Rome (Italy); Gerbino, Martina; Melchiorri, Alessandro; Pagano, Luca [Physics Department and INFN, Università di Roma ' ' La Sapienza' ' , Ple Aldo Moro 2, 00185, Rome (Italy); Kinney, William H. [Department of Physics, University at Buffalo, the State University of New York, Buffalo, NY 14260-1500 (United States); Kolb, Edward W. [Department of Astronomy and Astrophysics, Enrico Fermi Institute, and Kavli Institute for Cosmological Physics, University of Chicago, Chicago, Illinois 60637-1433 (United States); Lattanzi, Massimiliano [Dipartimento di Fisica e Science della Terra, Università di Ferrara and INFN, sezione di Ferrara, Polo Scientifico e Tecnologico - Edificio C Via Saragat, 1, I-44122 Ferrara Italy (Italy); Riotto, Antonio, E-mail: micol.benetti@roma1.infn.it, E-mail: martina.gerbino@roma1.infn.it, E-mail: whkinney@buffalo.edu, E-mail: Rocky.Kolb@uchicago.edu, E-mail: lattanzi@fe.infn.it, E-mail: alessandro.melchiorri@roma1.infn.it, E-mail: luca.pagano@roma1.infn.it, E-mail: antonio.riotto@unige.ch [Department of Theoretical Physics and Center for Astroparticle Physics (CAP) 24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland)

    2013-10-01

    Data from the Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT), combined with the nine-year data release from the WMAP satellite, provide very precise measurements of the cosmic microwave background (CMB) angular anisotropies down to very small angular scales. Augmented with measurements from Baryonic Acoustic Oscillations surveys and determinations of the Hubble constant, we investigate whether there are indications for new physics beyond a Harrison-Zel'dovich model for primordial perturbations and the standard number of relativistic degrees of freedom at primordial recombination. All combinations of datasets point to physics beyond the minimal Harrison-Zel'dovich model in the form of either a scalar spectral index different from unity or additional relativistic degrees of freedom at recombination (e.g., additional light neutrinos). Beyond that, the extended datasets including either ACT or SPT provide very different indications: while the extended-ACT (eACT) dataset is perfectly consistent with the predictions of standard slow-roll inflation, the extended-SPT (eSPT) dataset prefers a non-power-law scalar spectral index with a very large variation with scale of the spectral index. Both eACT and eSPT favor additional light degrees of freedom on top of the Harrison-Zel'dovich model. eACT is consistent with zero neutrino masses, while eSPT favors nonzero neutrino masses at more than 95% confidence.

  12. Nonlinear growth of structure in cosmological simulations

    Science.gov (United States)

    Lukic, Zarija

    2008-06-01

    Upcoming cosmological observations (South Pole Telescope, Atacama Cosmology Telescope, Baryon Oscillation Spectroscopic Survey, and Planck) will allow for accurately probing structures and their growth, some into highly nonlinear regimes. These observations, in combination with already very accurate measurements of the expansion rate of the universe, will not only constrain cosmological parameters to a percent level, but will also answer what is the theory of gravity on the largest scales. In order to obtain theoretical predictions for different measurables (like the distribution of masses, spatial correlations), large numerical simulations have to be carried out. In this context, their main goal is to quantify how are such measurables affected by a change of cosmological parameters. The promised high accuracy of observations make the simulation task very demanding, as the theoretical predictions have to be at least as accurate as the observations. In this thesis, we study the formation and evolution of dark matter halos in ACDM models over a wide range of cosmological epochs, from redshift z=20 to the present. First, we focus on the halo mass function, likely a key probe of cosmological growth of structure. By performing a large suite (60 simulations) of nested- box N-body simulations with careful convergence and error controls, we determine the mass function and its evolution with excellent statistical and systematic errors, reaching a few percent over most of the considered redshift and mass range. Our results are consistent with a 'universal' form for the mass function, and are in a good agreement with the Warren et al. analytic fit. Next, we study the structure of halos and ramification of different halo mass definitions. This analysis is important for connecting structure formation theory with observations, and also impacts the widely used approaches of assigning visible galaxies to dark matter halos - the halo occupancy distribution models. We find that the

  13. The Blanco Cosmology Survey: Data Reduction, Calibration and Photometric Redshift Estimation to Four Distant Galaxy Clusters Discovered by the South Pole Telescope

    Science.gov (United States)

    Ngeow, Chow Choong; Mohr, J.; Zenteno, A.; Data Management, DES; BCS; SPT Collaborations

    2009-01-01

    The Blanco Cosmology Survey (BCS) is designed to enable a study of the cosmic acceleration using multiple techniques. To date, BCS has acquired Sloan griz band imaging data from 60 nights (15 nights per year from 2005 to 2008) using the Blanco 4m Telescope located at CTIO. The astronomical imaging data taken from this survey have been processed on high performance computer TeraGrid platforms at NCSA, using the automated Dark Energy Survey (DES) data management (DM) system. The DES DM system includes (1) middlewares for controlling and managing the processing jobs, and serve as an application container encapsulating the scientific codes; and (2) DES archive, which includes filesystem nodes, a relational database and a data access framework, to support the pipeline processing, data storage and scientific analyzes. Photometric solution module (PSM) were run on photometric nights to determine the zeropoints (ZP) and other photometric solutions. We remapped and coadded the images that lie within the pre-defined coadd tiles in the sky. When running the coaddition pipeline, we determined the ZP for each images using the photometric ZP from PSM, the magnitude offsets between overlapping images, and the sky brightness ratio for CCDs within a given exposure. We also applied aperture correction and color-term correction to the coadded catalogs. Satisfactory photometric and astrometric precision were achieved. These enabled initial estimation of photometric redshifts using ANNz codes, trained from 5000 galaxies with spectroscopic redshifts. RMS in the photometric redshifts ranges from 0.05 to 0.1 in sigma_z/(1+z) for redshift extended to z=1. We used the BCS data to optically confirm and estimate redshifts for four of the highest S/N galaxy clusters discovered with the South Pole Telescope using the Sunyaev-Zel'dovich Effect.

  14. Chemical cosmology

    CERN Document Server

    Boeyens, Jan CA

    2010-01-01

    The composition of the most remote objects brought into view by the Hubble telescope can no longer be reconciled with the nucleogenesis of standard cosmology and the alternative explanation, in terms of the LAMBDA-Cold-Dark-Matter model, has no recognizable chemical basis. A more rational scheme, based on the chemistry and periodicity of atomic matter, opens up an exciting new interpretation of the cosmos in terms of projective geometry and general relativity. The response of atomic structure to environmental pressure predicts non-Doppler cosmical redshifts and equilibrium nucleogenesis by alp

  15. A Comparison of Cosmological Parameters Determined from CMB Temperature Power Spectra from the South Pole Telescope and the Planck Satellite

    Energy Technology Data Exchange (ETDEWEB)

    Aylor, K.; Hou, Z.; Knox, L.; Story, K. T.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H-M.; Chown, R.; Crawford, T. M.; Crites, A. T.; Haan, T. de; Dobbs, M. A.; Everett, W. B.; George, E. M.; Halverson, N. W.; Harrington, N. L.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Keisler, R.; Lee, A. T.; Leitch, E. M.; Luong-Van, D.; Marrone, D. P.; McMahon, J. J.; Meyer, S. S.; Millea, M.; Mocanu, L. M.; Mohr, J. J.; Natoli, T.; Omori, Y.; Padin, S.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Staniszewski, Z.; Stark, A. A.; Vanderlinde, K.; Vieira, J. D.; Williamson, R.

    2017-11-20

    The Planck cosmic microwave background temperature data are best fit with a Lambda CDM model that mildly contradicts constraints from other cosmological probes. The South Pole Telescope (SPT) 2540 deg(2) SPT-SZ survey offers measurements on sub-degree angular scales (multipoles 650 <= l <= 2500) with sufficient precision to use as an independent check of the Planck data. Here we build on the recent joint analysis of the SPT-SZ and Planck data in Hou et al. by comparing Lambda CDM parameter estimates using the temperature power spectrum from both data sets in the SPT-SZ survey region. We also restrict the multipole range used in parameter fitting to focus on modes measured well by both SPT and Planck, thereby greatly reducing sample variance as a driver of parameter differences and creating a stringent test for systematic errors. We find no evidence of systematic errors from these tests. When we expand the maximum multipole of SPT data used, we see low-significance shifts in the angular scale of the sound horizon and the physical baryon and cold dark matter densities, with a resulting trend to higher Hubble constant. When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky data but keep the multipole range restricted, we find differences in the parameters n(s) and A(s)e(-2 tau). We perform further checks, investigating instrumental effects and modeling assumptions, and we find no evidence that the effects investigated are responsible for any of the parameter shifts. Taken together, these tests reveal no evidence for systematic errors in SPT or Planck data in the overlapping sky coverage and multipole range and at most weak evidence for a breakdown of Lambda CDM or systematic errors influencing either the Planck data outside the SPT-SZ survey area or the SPT data at l > 2000.

  16. CLASS: The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Essinger-Hileman, Thomas; Ali, Aamir; Amiri, Mandana; Appel, John W.; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; hide

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravitational wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low-length. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of r = 0:01 and make a cosmic-variance-limited measurement of the optical depth to the surface of last scattering, tau. (c) (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  17. The Cosmology Large Angular Scale Surveyor (CLASS)

    Science.gov (United States)

    Xu, Zhilei; CLASS Collaboration

    2018-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an array of telescopes that observe Cosmic Microwave Background (CMB) polarization over ~65% of the sky from the Atacama Desert, Chile in frequency bands at 40 GHz, 90 GHz, 150 GHz, and 220 GHz. Multi-frequency observation enables CLASS to distinguish CMB from galactic foregrounds. CLASS is making large angular scale CMB polarization measurements as part of a five-year survey that will constrain the tensor-to-scalar ratio at the 0.01 level by measuring both the reionization and recombination peaks. CLASS will measure the optical depth to last scattering to near the cosmic variance limit, significantly improving on current constraints. Combining the CLASS optical depth measurement with higher resolution data will improve constraints on the sum of neutrino masses. CLASS will also provide the deepest wide-sky-area Galactic microwave polarization maps for Galactic studies. CLASS has been observing for over one year at 40 GHz frequency band. In my talk, I will introduce the science, design, and current status of the CLASS experiment.

  18. Big Bang, inflation, standard Physics… and the potentialities of new Physics and alternative cosmologies. Present statuts of observational and experimental Cosmology. Open questions and potentialities of alternative cosmologies

    Science.gov (United States)

    Gonzalez-Mestres, Luis

    2016-11-01

    A year ago, we wrote [1] that the field of Cosmology was undergoing a positive and constructive crisis. The possible development of more direct links between the Mathematical Physics aspects of cosmological patterns and the interpretation of experimental and observational results was particularly emphasized. Controversies on inflation are not really new, but in any case inflation is not required in pre-Big Bang models and the validity of the standard Big Bang + inflation + ΛCDM pattern has not by now been demonstrated by data. Planck has even explicitly reported the existence of "anomalies". Remembering the far-reaching work of Yoichiro Nambu published in 1959-61, it seems legitimate to underline the need for a cross-disciplinary approach in the presence of deep, unsolved theoretical problems concerning new domains of matter properties and of the physical world. The physics of a possible preonic vacuum and the associated cosmology constitute one of these domains. If the vacuum is made of superluminal preons (superbradyons), and if standard particles are vacuum excitations, how to build a suitable theory to describe the internal structure of such a vacuum at both local and cosmic level? Experimental programs (South Pole, Atacama, AUGER, Telescope Array…) and observational ones (Planck, JEM-EUSO…) devoted to the study of cosmic microwave background radiation (CMB) and of ultra-high energy cosmic rays (UHECR) are crucial to elucidate such theoretical interrogations and guide new phenomenological developments. Together with a brief review of the observational and experimental situation, we also examine the main present theoretical and phenomenological problems and point out the role new physics and alternative cosmologies can potentially play. The need for data analyses less focused a priori on the standard models of Particle Physics and Cosmology is emphasized in this discussion. An example of a new approach to both fields is provided by the pre-Big Bang pattern

  19. Technology Development for Cosmic Microwave Background Cosmology

    Science.gov (United States)

    Munson, Charles D.

    2017-05-01

    The Cosmic Microwave Background (CMB) offers a unique window into the early universe by probing thermal radiation remaining from the big bang. Due to its low temperature and bright foregrounds, its thorough characterization requires technological advancement beyond the current state-of-the-art. In this thesis, I present the development and fabrication of novel metamaterial silicon optics to improve the sensitivity of current and future CMB telescopes. By machining subwavelength features into the silicon surfaces, traditional antireflection coatings can be replaced by all-silicon metamaterials that significantly reduce reflections over previous approaches. I discuss the design of these structured surfaces and the design and construction of a sophisticated fabrication facility necessary to implement this technology on large diameter (30+ cm) lenses for the Atacama Cosmology Telescope Polarization project (ACTPol). I then apply this metamaterial technology to the development of improved free-space filters for millimeter and sub-millimeter wavelength imaging (focusing specifically on blocking infrared radiation, necessary for current cryogenic detector systems). This produces a highly effective infrared-blocking filter, blocking over 99% of the incident power from a 300 K blackbody while maintaining transmission of better than 99% in a target CMB observing band (between 70 and 170 GHz). I conclude with a discussion of the development of a real-space simulation framework to assist in better understanding current CMB results and forecasting for future experiments. By taking a CMB realization and adding to it accurate real-space modeling of the Sunyaev-Zel'dovich effect and weak lensing distortions (introduced by galaxy clusters), a better understanding of the impacts of large scale structure on the CMB can be obtained.

  20. Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development

    Science.gov (United States)

    Chuss, D. T.; Ali, A.; Amiri, M.; Appel, J.; Bennett, C. L.; Colazo, F.; Denis, K. L.; Dunner, R.; Essinger-Hileman, T.; Eimer, J.; hide

    2015-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe approx.70% of the sky. A variable-delay polarization modulator provides modulation of the polarization at approx.10Hz to suppress the 1/f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.

  1. THE BLANCO COSMOLOGY SURVEY: DATA ACQUISITION, PROCESSING, CALIBRATION, QUALITY DIAGNOSTICS, AND DATA RELEASE

    Energy Technology Data Exchange (ETDEWEB)

    Desai, S.; Mohr, J. J.; Semler, D. R.; Liu, J.; Bazin, G.; Zenteno, A. [Department of Physics, Ludwig-Maximilians-Universitaet, Scheinerstr. 1, D-81679 Muenchen (Germany); Armstrong, R. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Bertin, E. [Institut d' Astrophysique de Paris, UMR 7095 CNRS, Universite Pierre et Marie Curie, 98 bis boulevard Arago, F-75014 Paris (France); Allam, S. S.; Buckley-Geer, E. J.; Lin, H.; Tucker, D. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Barkhouse, W. A. [Department of Physics and Astrophysics, University of North Dakota, Grand Forks, ND 58202 (United States); Cooper, M. C. [Department of Physics and Astronomy, Frederick Reines Hall, University of California, Irvine, CA 92697 (United States); Hansen, S. M. [University of California Observatories and Department of Astronomy, University of California, Santa Cruz, CA 95064 (United States); High, F. W. [University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Lin, Y.-T. [Institute for Physics and Mathematics of the Universe, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa-shi, Chiba 277- 8568 (Japan); Ngeow, C.-C. [Graduate Institute of Astronomy, National Central University, No. 300 Jhongda Road, Jhongli City 32001, Taiwan (China); Rest, A. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Song, J., E-mail: shantanu@usm.lmu.de [Department of Physics, University of Michigan, 450 Church St, Ann Arbor, MI 48109 (United States)

    2012-09-20

    The Blanco Cosmology Survey (BCS) is a 60 night imaging survey of {approx}80 deg{sup 2} of the southern sky located in two fields: ({alpha}, {delta}) = (5 hr, -55 Degree-Sign ) and (23 hr, -55 Degree-Sign ). The survey was carried out between 2005 and 2008 in griz bands with the Mosaic2 imager on the Blanco 4 m telescope. The primary aim of the BCS survey is to provide the data required to optically confirm and measure photometric redshifts for Sunyaev-Zel'dovich effect selected galaxy clusters from the South Pole Telescope and the Atacama Cosmology Telescope. We process and calibrate the BCS data, carrying out point-spread function-corrected model-fitting photometry for all detected objects. The median 10{sigma} galaxy (point-source) depths over the survey in griz are approximately 23.3 (23.9), 23.4 (24.0), 23.0 (23.6), and 21.3 (22.1), respectively. The astrometric accuracy relative to the USNO-B survey is {approx}45 mas. We calibrate our absolute photometry using the stellar locus in grizJ bands, and thus our absolute photometric scale derives from the Two Micron All Sky Survey, which has {approx}2% accuracy. The scatter of stars about the stellar locus indicates a systematic floor in the relative stellar photometric scatter in griz that is {approx}1.9%, {approx}2.2%, {approx}2.7%, and {approx}2.7%, respectively. A simple cut in the AstrOmatic star-galaxy classifier spread{sub m}odel produces a star sample with good spatial uniformity. We use the resulting photometric catalogs to calibrate photometric redshifts for the survey and demonstrate scatter {delta}z/(1 + z) = 0.054 with an outlier fraction {eta} < 5% to z {approx} 1. We highlight some selected science results to date and provide a full description of the released data products.

  2. The Blanco Cosmology Survey: Data Acquisition, Processing, Calibration, Quality Diagnostics and Data Release

    Energy Technology Data Exchange (ETDEWEB)

    Desai, S.; /Munich U. /Munich, Tech. U., Universe; Armstrong, R.; /Pennsylvania U.; Mohr, J.J.; /Munich U. /Munich, Tech. U., Universe /Munich, Tech. U.; Semler, D.R.; /Munich U. /Munich, Tech. U., Universe; Liu, J.; /Munich U. /Munich, Tech. U., Universe; Bertin, E.; /Paris, Inst. Astrophys.; Allam, S.S.; /Fermilab; Barkhouse, W.A.; /North Dakota U.; Bazin, G.; /Munich U. /Munich, Tech. U., Universe; Buckley-Geer, E.J.; /Fermilab; Cooper, M.C.; /UC, Irvine /Lick Observ. /UC, Santa Cruz

    2012-04-01

    The Blanco Cosmology Survey (BCS) is a 60 night imaging survey of {approx}80 deg{sup 2} of the southern sky located in two fields: ({alpha},{delta})= (5 hr, -55{sup circ} and 23 hr, -55{sup circ}). The survey was carried out between 2005 and 2008 in griz bands with the Mosaic2 imager on the Blanco 4m telescope. The primary aim of the BCS survey is to provide the data required to optically confirm and measure photometric redshifts for Sunyaev-Zel'dovich effect selected galaxy clusters from the South Pole Telescope and the Atacama Cosmology Telescope. We process and calibrate the BCS data, carrying out PSF corrected model fitting photometry for all detected objects. The median 10{sigma} galaxy (point source) depths over the survey in griz are approximately 23.3 (23.9), 23.4 (24.0), 23.0 (23.6) and 21.3 (22.1), respectively. The astrometric accuracy relative to the USNO-B survey is {approx}45 milli-arcsec. We calibrate our absolute photometry using the stellar locus in grizJ bands, and thus our absolute photometric scale derives from 2MASS which has {approx}2% accuracy. The scatter of stars about the stellar locus indicates a systematics floor in the relative stellar photometric scatter in griz that is {approx}1.9%, {approx}2.2%, {approx}2.7% and {approx}2.7%, respectively. A simple cut in the AstrOmatic star-galaxy classifier produces a star sample with good spatial uniformity. We use the resulting photometric catalogs to calibrate photometric redshifts for the survey and demonstrate scatter {delta} z/(1+z)=0.054 with an outlier fraction {eta}<5% to z{approx}1. We highlight some selected science results to date and provide a full description of the released data products.

  3. COSMOLOGICAL CONSTRAINTS FROM SUNYAEV-ZEL'DOVICH-SELECTED CLUSTERS WITH X-RAY OBSERVATIONS IN THE FIRST 178 deg{sup 2} OF THE SOUTH POLE TELESCOPE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); De Haan, T.; Dudley, J. P. [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8 (Canada); Reichardt, C. L. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Aird, K. A. [University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Andersson, K.; Bazin, G.; Desai, S. [Department of Physics, Ludwig-Maximilians-Universitaet, Scheinerstr. 1, D-81679 Muenchen (Germany); Armstrong, R. [National Center for Supercomputing Applications, University of Illinois, 1205 West Clark Street, Urbana, IL 61801 (United States); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bautz, M. [MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Bayliss, M. [Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138 (United States); Brodwin, M. [Department of Physics, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Cho, H. M. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); Clocchiatti, A., E-mail: bbenson@kicp.uchicago.edu [Departamento de Astronoma y Astrofsica, PUC Casilla 306, Santiago 22 (Chile); and others

    2013-02-15

    We use measurements from the South Pole Telescope (SPT) Sunyaev-Zel'dovich (SZ) cluster survey in combination with X-ray measurements to constrain cosmological parameters. We present a statistical method that fits for the scaling relations of the SZ and X-ray cluster observables with mass while jointly fitting for cosmology. The method is generalizable to multiple cluster observables, and self-consistently accounts for the effects of the cluster selection and uncertainties in cluster mass calibration on the derived cosmological constraints. We apply this method to a data set consisting of an SZ-selected catalog of 18 galaxy clusters at z > 0.3 from the first 178 deg{sup 2} of the 2500 deg{sup 2} SPT-SZ survey, with 14 clusters having X-ray observations from either Chandra or XMM-Newton. Assuming a spatially flat {Lambda}CDM cosmological model, we find the SPT cluster sample constrains {sigma}{sub 8}({Omega} {sub m}/0.25){sup 0.30} = 0.785 {+-} 0.037. In combination with measurements of the cosmic microwave background (CMB) power spectrum from the SPT and the seven-year Wilkinson Microwave Anisotropy Probe data, the SPT cluster sample constrains {sigma}{sub 8} = 0.795 {+-} 0.016 and {Omega} {sub m} = 0.255 {+-} 0.016, a factor of 1.5 improvement on each parameter over the CMB data alone. We consider several extensions beyond the {Lambda}CDM model by including the following as free parameters: the dark energy equation of state (w), the sum of the neutrino masses ({Sigma}m {sub {nu}}), the effective number of relativistic species (N {sub eff}), and a primordial non-Gaussianity (f {sub NL}). We find that adding the SPT cluster data significantly improves the constraints on w and {Sigma}m {sub {nu}} beyond those found when using measurements of the CMB, supernovae, baryon acoustic oscillations, and the Hubble constant. Considering each extension independently, we best constrain w = -0.973 {+-} 0.063 and the sum of neutrino masses {Sigma}m {sub {nu}} < 0.28 eV at 95

  4. The Cosmology Large Angular Scale Surveyor (CLASS): 40 GHz Optical Design

    Science.gov (United States)

    Eimer, Joseph R.; Bennett, Charles L.; Chuss, David T.; Marriage, Tobias; Wollack, Edward J.; Zeng, Lingzhen

    2012-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) instrument will measure the polarization of the cosmic microwave background at 40, 90, and 150 GHz from Cerro Toco in the Atacama desert of northern Chile. In this paper, we describe the optical design of the 40 GHz telescope system. The telescope is a diffraction limited catadioptric design consisting of a front-end Variable-delay Polarization Modulator (VPM), two ambient temperature mirrors, two cryogenic dielectric lenses, thermal blocking filters, and an array of 36 smooth-wall scalar feedhorn antennas. The feed horns guide the signal to antenna-coupled transition-edge sensor (TES) bolometers. Polarization diplexing and bandpass definition are handled on the same microchip as the TES. The feed horn beams are truncated with 10 dB edge taper by a 4 K Lyot-stop to limit detector loading from stray light and control the edge illumination of the front-end VPM. The field-of-view is 19 deg x 14 deg with a resolution for each beam on the sky of 1.5 deg. FWHM.

  5. Observational cosmology

    NARCIS (Netherlands)

    Sanders, RH; Papantonopoulos, E

    2005-01-01

    I discuss the classical cosmological tests, i.e., angular size-redshift, flux-redshift, and galaxy number counts, in the light of the cosmology prescribed by the interpretation of the CMB anisotropies. The discussion is somewhat of a primer for physicists, with emphasis upon the possible systematic

  6. Cosmology with the Square Kilometre Array by SKA-Japan

    Science.gov (United States)

    Yamauchi, Daisuke; Ichiki, Kiyotomo; Kohri, Kazunori; Namikawa, Toshiya; Oyama, Yoshihiko; Sekiguchi, Toyokazu; Shimabukuro, Hayato; Takahashi, Keitaro; Takahashi, Tomo; Yokoyama, Shuichiro; Yoshikawa, Kohji

    2016-12-01

    In the past several decades, the standard cosmological model has been established and its parameters have been measured to a high precision, while there are still many fundamental questions in cosmology; such as the physics in the very early universe, the origin of the cosmic acceleration, and the nature of dark matter. The forthcoming radio telescope, the Square Kilometre Array (SKA), which will be the world's largest, will be able to open a new frontier in cosmology and will be one of the most powerful tools for cosmology in the coming decade. The cosmological surveys conducted by the SKA would have the potential not only to answer these fundamental questions but also deliver precision cosmology. In this article we briefly review the role of the SKA from the viewpoint of modern cosmology. The cosmological science led by the SKA-Japan Consortium (SKA-JP) Cosmology Science Working Group is also discussed.

  7. Neutrino cosmology

    CERN Document Server

    Lesgourgues, Julien; Miele, Gennaro; Pastor, Sergio

    2013-01-01

    The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis, their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and the statistical mechanics in the expanding Universe, before discussing the history of neutrinos in chronological order from the very early stages until today. This timely book will interest graduate students and researchers in astrophysics, cosmology and particle physics, who work with either a theoretical or experimental focus.

  8. Particle cosmology

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    The understanding of the Universe at the largest and smallest scales traditionally has been the subject of cosmology and particle physics, respectively. Studying the evolution of the Universe connects today's large scales with the tiny scales in the very early Universe and provides the link between the physics of particles and of the cosmos. This series of five lectures aims at a modern and critical presentation of the basic ideas, methods, models and observations in today's particle cosmology.

  9. Geology and geochemistry of the Atacama Desert.

    Science.gov (United States)

    Tapia, J; González, R; Townley, B; Oliveros, V; Álvarez, F; Aguilar, G; Menzies, A; Calderón, M

    2018-02-14

    The Atacama Desert, the driest of its kind on Earth, hosts a number of unique geological and geochemical features that make it unlike any other environment on the planet. Considering its location on the western border of South America, between 17 and 28 °S, its climate has been characterized as arid to hyperarid for at least the past 10 million years. Notably dry climatic conditions of the Atacama Desert have been related to uplift of the Andes and are believed to have played an important role in the development of the most distinctive features of this desert, including: (i) nitrates and iodine deposits in the Central Depression, (ii) secondary enrichment in porphyry copper deposits in the Precordillera, (iii) Li enrichment in salt flats of the Altiplano, and (iv) life in extreme habitats. The geology and physiography of the Atacama Desert have been largely shaped by the convergent margin present since the Mesozoic era. The geochemistry of surface materials is related to rock geochemistry (Co, Cr, Fe, Mn, V, and Zn), salt flats, and evaporite compositions in endorheic basins (As, B, and Li), in addition to anthropogenic activities (Cu, Mo, and Pb). The composition of surface water is highly variable, nonetheless in general it presents a circumneutral pH with higher conductivity and total dissolved solids in brines. Major water constituents, with the exception of HCO 3 - , are generally related to the increase of salinity, and despite the fact that trace elements are not well-documented, surface waters of the Atacama Desert are enriched in As, B, and Li when compared to the average respective concentrations in rivers worldwide.

  10. Nonthermal WIMPs as ``dark radiation'' in light of ATACAMA, SPT, WMAP9, and Planck

    Science.gov (United States)

    Kelso, Chris; Profumo, Stefano; Queiroz, Farinaldo S.

    2013-07-01

    The Planck and WMAP9 satellites, as well as the ATACAMA and South Pole telescopes, have recently presented results on the angular power spectrum of the comic microwave background. Data tentatively point to the existence of an extra radiation component in the early Universe. Here, we show that this extra component can be mimicked by ordinary weakly interacting massive particle dark matter particles whose majority is cold, but with a small fraction being nonthermally produced in a relativistic state. We present a few example theories where this scenario is explicitly realized and explore the relevant parameter space consistent with big bang nucleosynthesis, cosmic microwave background, and structure formation bounds.

  11. The cosmological principles.

    Science.gov (United States)

    Rudnicki, K.

    The following topics were dealt with: the cosmological principles of Ancient India, Ancient Greece; the genuine Copernican and the generalized Copernican cosmological principles; the perfect, the anthropic and other cosmological principles; comparison of various cosmological principles; Goetheanism in science.

  12. Higgs cosmology.

    Science.gov (United States)

    Rajantie, Arttu

    2018-03-06

    The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).

  13. Higgs cosmology

    Science.gov (United States)

    Rajantie, Arttu

    2018-01-01

    The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.

  14. Deconstructing cosmology

    CERN Document Server

    Sanders, Robert H

    2016-01-01

    The advent of sensitive high-resolution observations of the cosmic microwave background radiation and their successful interpretation in terms of the standard cosmological model has led to great confidence in this model's reality. The prevailing attitude is that we now understand the Universe and need only work out the details. In this book, Sanders traces the development and successes of Lambda-CDM, and argues that this triumphalism may be premature. The model's two major components, dark energy and dark matter, have the character of the pre-twentieth-century luminiferous aether. While there is astronomical evidence for these hypothetical fluids, their enigmatic properties call into question our assumptions of the universality of locally determined physical law. Sanders explains how modified Newtonian dynamics (MOND) is a significant challenge for cold dark matter. Overall, the message is hopeful: the field of cosmology has not become frozen, and there is much fundamental work ahead for tomorrow's cosmologis...

  15. BOOK REVIEW: Observational Cosmology Observational Cosmology

    Science.gov (United States)

    Howell, Dale Andrew

    2013-04-01

    Observational Cosmology by Stephen Serjeant fills a niche that was underserved in the textbook market: an up-to-date, thorough cosmology textbook focused on observations, aimed at advanced undergraduates. Not everything about the book is perfect - some subjects get short shrift, in some cases jargon dominates, and there are too few exercises. Still, on the whole, the book is a welcome addition. For decades, the classic textbooks of cosmology have focused on theory. But for every Sunyaev-Zel'dovich effect there is a Butcher-Oemler effect; there are as many cosmological phenomena established by observations, and only explained later by theory, as there were predicted by theory and confirmed by observations. In fact, in the last decade, there has been an explosion of new cosmological findings driven by observations. Some are so new that you won't find them mentioned in books just a few years old. So it is not just refreshing to see a book that reflects the new realities of cosmology, it is vital, if students are to truly stay up on a field that has widened in scope considerably. Observational Cosmology is filled with full-color images, and graphs from the latest experiments. How exciting it is that we live in an era where satellites and large experiments have gathered so much data to reveal astounding details about the origin of the universe and its evolution. To have all the latest data gathered together and explained in one book will be a revelation to students. In fact, at times it was to me. I've picked up modern cosmological knowledge through a patchwork of reading papers, going to colloquia, and serving on grant and telescope allocation panels. To go back and see them explained from square one, and summarized succinctly, filled in quite a few gaps in my own knowledge and corrected a few misconceptions I'd acquired along the way. To make room for all these graphs and observational details, a few things had to be left out. For one, there are few derivations

  16. Cosmology and Particle Astrophysics at Kavli Ipmu

    Science.gov (United States)

    Aihara, Hiroaki

    2013-12-01

    Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) currently undertakes two large-scale projects in cosmology and particle astrophysics. One is Subaru Measurement of Images and Redshifts, the Sumire project. It observes images and redshifts of the galaxies using Subaru telescope to study cosmology and astronomy. The other is XMASS experiment aiming to detect the cold dark matter using liquid Xenon. We provide a brief introductory description of these projects.

  17. Holographic Cosmology

    OpenAIRE

    Banks, T.; Fischler, W.

    2004-01-01

    We describe a cosmology of the very early universe, based on the holographic principle of 't Hooft and Susskind. We have described the initial state as a dense black hole fluid. Here we present a mathematical model of this heuristic picture, as well as a non-rigorous discussion of how a more normal universe could evolve out of such a state. The gross features of the cosmology depend on a few parameters, which cannot yet be calculated from first principles. For some range of these parameters, ...

  18. Life through a lens: visitors to the space centre can see a giant telescope

    CERN Multimedia

    Dawson, A

    2002-01-01

    The Particle Physics and Astronomy Research Council, Great Britain, decided in a meeting in December to join the European Southern Observatory. Membership will give UK astronomers access to the four 8.2-metre and several 1.8-metre telescopes which comprise the Very Large Telescope at Atacama in Chile.

  19. Mathematical cosmology

    CERN Document Server

    Ellis, G F R

    1993-01-01

    Many topics were covered in the submitted papers, showing much life in this subject at present. They ranged from conventional calculations in specific cosmological models to provocatively speculative work. Space and time restrictions required selecting from them, for summarisation here; the book of Abstracts should be consulted for a full overview.

  20. Cosmological models

    Energy Technology Data Exchange (ETDEWEB)

    Hajj-Boutros, J. (Lebanese Univ., Mansourieh-El-Maten (Lebanon))

    1989-04-01

    An LRS Bianchi type II cosmological model is built with a state equation that is a function of the cosmic time t. The ratio p/{mu} is 1/3 when t {yields} 0 and is insignificant when t {yields} {infinity}. Thus, the matter content behaves like radiation for small t and like dust for large t.

  1. Axion cosmology

    Science.gov (United States)

    Marsh, David J. E.

    2016-07-01

    Axions comprise a broad class of particles that can play a major role in explaining the unknown aspects of cosmology. They are also well-motivated within high energy physics, appearing in theories related to CP-violation in the standard model, supersymmetric theories, and theories with extra-dimensions, including string theory, and so axion cosmology offers us a unique view onto these theories. I review the motivation and models for axions in particle physics and string theory. I then present a comprehensive and pedagogical view on the cosmology and astrophysics of axion-like particles, starting from inflation and progressing via BBN, the CMB, reionization and structure formation, up to the present-day Universe. Topics covered include: axion dark matter (DM); direct and indirect detection of axions, reviewing existing and future experiments; axions as dark radiation; axions and the cosmological constant problem; decays of heavy axions; axions and stellar astrophysics; black hole superradiance; axions and astrophysical magnetic fields; axion inflation, and axion DM as an indirect probe of inflation. A major focus is on the population of ultralight axions created via vacuum realignment, and its role as a DM candidate with distinctive phenomenology. Cosmological observations place robust constraints on the axion mass and relic density in this scenario, and I review where such constraints come from. I next cover aspects of galaxy formation with axion DM, and ways this can be used to further search for evidence of axions. An absolute lower bound on DM particle mass is established. It is ma > 10-24eV from linear observables, extending to ma ≳ 10-22eV from non-linear observables, and has the potential to reach ma ≳ 10-18eV in the future. These bounds are weaker if the axion is not all of the DM, giving rise to limits on the relic density at low mass. This leads to the exciting possibility that the effects of axion DM on structure formation could one day be detected

  2. The SCUBA-2 Cosmology Legacy Survey: ALMA Resolves the Bright-end of the Sub-millimeter Number Counts

    NARCIS (Netherlands)

    Simpson, J. M.; Smail, Ian; Swinbank, A. M.; Chapman, S. C.; Geach, J. E.; Ivison, R. J.; Thomson, A. P.; Aretxaga, I.; Blain, A. W.; Cowley, W. I.; Chen, Chian-Chou; Coppin, K. E. K.; Dunlop, J. S.; Edge, A. C.; Farrah, D.; Ibar, E.; Karim, A.; Knudsen, K. K.; Meijerink, R.; Michałowski, M. J.; Scott, D.; Spaans, M.; van der Werf, P. P.

    We present high-resolution 870 μm Atacama Large Millimeter/sub-millimeter Array (ALMA) continuum maps of 30 bright sub-millimeter sources in the UKIDSS UDS field. These sources are selected from deep, 1 degree2 850 μm maps from the SCUBA-2 Cosmology Legacy Survey, and are representative of the

  3. Galaxy clusters and cosmology

    CERN Document Server

    White, S

    1994-01-01

    Galaxy clusters are the largest coherent objects in Universe. It has been known since 1933 that their dynamical properties require either a modification of the theory of gravity, or the presence of a dominant component of unseen material of unknown nature. Clusters still provide the best laboratories for studying the amount and distribution of this dark matter relative to the material which can be observed directly -- the galaxies themselves and the hot,X-ray-emitting gas which lies between them.Imaging and spectroscopy of clusters by satellite-borne X -ray telescopes has greatly improved our knowledge of the structure and composition of this intergalactic medium. The results permit a number of new approaches to some fundamental cosmological questions,but current indications from the data are contradictory. The observed irregularity of real clusters seems to imply recent formation epochs which would require a universe with approximately the critical density. On the other hand, the large baryon fraction observ...

  4. Space Telescope.

    Science.gov (United States)

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    This pamphlet describes the Space Telescope, an unmanned multi-purpose telescope observatory planned for launch into orbit by the Space Shuttle in the 1980s. The unique capabilities of this telescope are detailed, the major elements of the telescope are described, and its proposed mission operations are outlined. (CS)

  5. String Gas Cosmology

    OpenAIRE

    Brandenberger, Robert H.

    2008-01-01

    String gas cosmology is a string theory-based approach to early universe cosmology which is based on making use of robust features of string theory such as the existence of new states and new symmetries. A first goal of string gas cosmology is to understand how string theory can effect the earliest moments of cosmology before the effective field theory approach which underlies standard and inflationary cosmology becomes valid. String gas cosmology may also provide an alternative to the curren...

  6. Religion, theology and cosmology

    Directory of Open Access Journals (Sweden)

    John T. Fitzgerald

    2013-10-01

    Full Text Available Cosmology is one of the predominant research areas of the contemporary world. Advances in modern cosmology have prompted renewed interest in the intersections between religion, theology and cosmology. This article, which is intended as a brief introduction to the series of studies on theological cosmology in this journal, identifies three general areas of theological interest stemming from the modern scientific study of cosmology: contemporary theology and ethics; cosmology and world religions; and ancient cosmologies. These intersections raise important questions about the relationship of religion and cosmology, which has recently been addressed by William Scott Green and is the focus of the final portion of the article.

  7. Superstring Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Estes, John; Kounnas, Costas [Laboratoire de Physique Theorique - LPT, Ecole Normale Superieure - ENS, 24 rue Lhomond, 75231 Paris Cedex 05 (France); Partouche, Herve; Bourliot, Francois [Centre de Physique Theorique - CPHT, UMR 7644, Ecole Polytechnique, Bat. 6, RDC, F91128 Palaiseau Cedex (France)

    2010-07-01

    In a string theory framework, one may unambiguously compute the free-energy density including the vacuum energy, in backgrounds with spontaneously broken supersymmetry. For certain classes of models, the resulting back-reaction induces a cosmological evolution which mimics a radiation dominated expansion. The supersymmetry breaking scale is attracted to the temperature scale and the internal moduli may be stabilized at points of enhanced symmetry. Finally the expansion may go through several higher dimensional phases, before the final attraction to a four dimensional evolution. (authors)

  8. Cosmological panspermia

    Science.gov (United States)

    Wickramasinghe, N. C.; Hoyle, Fred

    1998-07-01

    The central regions of galaxies could provide the most promising venues for the large-scale synthesis of prebiotic molecules by Miller-Urey type processes.Exploding supermassive stars would produce the basic chemical elements necessary to form molecules in high-density mass flows under near-thermodynamic conditions. Such molecules are then acted upon by X-rays in a manner that simulates the conditions required for Miller-Urey type processing. The Miller-Urey molecular products could initially lead to the origination and dispersal of microbial life on a cosmological scale. Thereafter the continuing production of such molecules would serve as the feedstock of life.

  9. Astrophysical cosmology

    Science.gov (United States)

    Bardeen, J. M.

    The last several years have seen a tremendous ferment of activity in astrophysical cosmology. Much of the theoretical impetus has come from particle physics theories of the early universe and candidates for dark matter, but what promise to be even more significant are improved direct observations of high z galaxies and intergalactic matter, deeper and more comprehensive redshift surveys, and the increasing power of computer simulations of the dynamical evolution of large scale structure. Upper limits on the anisotropy of the microwave background radiation are gradually getting tighter and constraining more severely theoretical scenarios for the evolution of the universe.

  10. Quantum Cosmology

    OpenAIRE

    Bojowald, Martin

    2006-01-01

    A complete model of the universe needs at least three parts: (1) a complete set of physical variables and dynamical laws for them, (2) the correct solution of the dynamical laws, and (3) the connection with conscious experience. In quantum cosmology, item (2) is the quantum state of the cosmos. Hartle and Hawking have made the `no-boundary' proposal, that the wavefunction of the universe is given by a path integral over all compact Euclidean 4-dimensional geometries and matter fields that hav...

  11. Cryophenomena in the Cold Desert of Atacama

    Science.gov (United States)

    Buchroithner, Dr.; Trombotto, Dr.

    2012-04-01

    The study area of the Valle de Barrancas Blancas in the High Atacama Andes of Chile (68°39' W, 27°02' S), a kind of Patagonian "bajo sin salida", shows well preserved landforms resulting from a combination of slope, eolian, lacustrine/litoral, fluvial, glacial and periglacial regimes. They permit the reconstruction of geomorphological processes within this isolated catchment of approximately 160 km2. The mean annual air temperature varies between -2 and -4 °C and the precipitation is approximately 150 mm/a. Snowfall is frequent but the snow is quickly sublimated, redeposited and/or covered by cryosediments, i.e. mainly pumice pebbles. Water bodies present icings, even in summer. Regarding its climatic conditions the study area represents an extremely cold desertic region. Extremophile microfauna was also found. The area displays both in situ mountain permafrost and creeping permafrost. The active layer is 30 to 45 cm thick. It is a periglacial macro-environment where interdependent processes, and not only cryogenic processes but also erosion and eolian deposition and the action of fluvial washout mainly caused by precipitation, accumulation, retransportation/redeposition and melting of snow, play an important role. The cryogenic geomorphology of the Valle de Barrancas Blancas is varied and contains microforms such as patterned ground and microforms caused by cryoturbation, as well as mesoforms like rockglaciers and cryoplanation surfaces. Slopes are strongly affected by gelifluction. New cryoforms in South America and in the Southern Hemisphere like the Atacama Pingo (Pingo atacamensis) and Permafrosted Dunes ("Dunas heladas") were found. Intense niveo-eolian processes participate in the erosion of preexisting landforms, in the formation of subterraneous ice layers, and the retransportation/redeposition of snow and sediments. Studies of this periglacial environment are crucial for the understanding of Tundrean paleoenvironments and Martian conditions.

  12. Solar Observations with the Atacama Large Millimeter/submillimeter Array

    Science.gov (United States)

    Wedemeyer, Sven

    2015-08-01

    The interferometric Atacama Large Millimeter/submillimeter Array (ALMA) has already demonstrated its impressive capabilities by observing a large variety of targets ranging from protoplanetary disks to galactic nuclei. ALMA is also capable of observing the Sun and has been used for five solar test campaigns so far. The technically challenging solar observing modes are currently under development and regular observations are expected to begin in late 2016.ALMA consists of 66 antennas located in the Chilean Andes at an altitude of 5000 m and is a true leap forward in terms of spatial resolution at millimeter wavelengths. The resolution of reconstructed interferometric images of the Sun is anticipated to be close to what current optical solar telescopes can achieve. In combination with the high temporal and spectral resolution, these new capabilities open up new parameter spaces for solar millimeter observations.The solar radiation at wavelengths observed by ALMA originates from the chromosphere, where the height of the sampled layer increases with selected wavelength. The continuum intensity is linearly correlated to the local gas temperature in the probed layer, which makes ALMA essentially a linear thermometer. During flares, ALMA can detect additional non-thermal emission contributions. Measurements of the polarization state facilitate the valuable determination of the chromospheric magnetic field. In addition, spectrally resolved observations of radio recombination and molecular lines may yield great diagnostic potential, which has yet to be investigated and developed.Many different scientific applications for a large range of targets from quiet Sun to active regions and prominences are possible, ranging from ultra-high cadence wave studies to flare observations. ALMA, in particular in combination with other ground-based and space-borne instruments, will certainly lead to fascinating new findings, which will advance our understanding of the atmosphere of our Sun

  13. Newtonian cosmology - Problems of cosmological didactics

    Energy Technology Data Exchange (ETDEWEB)

    Skarzynski, E.

    1983-03-01

    The article presents different methods of model construction in Newtonian cosmology. Newtonian cosmology is very convenient for discussion of local problems, so the problems presented are of great didactic importance. The constant k receives a new interpretation in relativistic cosmology as the curvature of the space in consequence of the greater informational capacity of Riemann space in comparison to Euclidean space. 11 references.

  14. Network cosmology.

    Science.gov (United States)

    Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S; Rideout, David; Meyer, David; Boguñá, Marián

    2012-01-01

    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.

  15. Network Cosmology

    Science.gov (United States)

    Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S.; Rideout, David; Meyer, David; Boguñá, Marián

    2012-01-01

    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology. PMID:23162688

  16. An introduction to cosmology

    CERN Document Server

    Narlikar, Jayant Vishnu

    2002-01-01

    The third edition of this successful textbook is fully updated and includes important recent developments in cosmology. It begins with an introduction to cosmology and general relativity, and goes on to cover the mathematical models of standard cosmology. The physical aspects of cosmology, including primordial nucleosynthesis, the astroparticle physics of inflation, and the current ideas on structure formation are discussed. Alternative models of cosmology are reviewed, including the model of Quasi-Steady State Cosmology, which has recently been proposed as an alternative to Big Bang Cosmology.

  17. The Cosmology Large Angular Scale Surveyor (CLASS): 38 GHz Detector Array of Bolometric Polarimeters

    Science.gov (United States)

    Appel, John W.; Ali, Aamir; Amiri, Mandana; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; hide

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.

  18. Science with the Atacama Large Millimeter Array A New Era for Astrophysics

    CERN Document Server

    Bachiller, Rafael

    2008-01-01

    Currently under construction in the Andean Altiplano, Northern Chile, the Atacama Large Millimeter Array (ALMA) is the most ambitious astronomy facility under construction. ALMA is a radio interferometer composed of 54 antennas of 12 m diameter, and twelve 7 m antennas with about 6600 square meters of total collecting area. Initially covering the most interesting spectral wavelength ranges from 3 to 0.3 mm, ALMA will be a revolutionary telescope aimed to unveil the details of star and planet formation and to provide astronomy with the first exhaustive view of the dark and youngest objects of the Universe. This book describes the enormous capabilities of ALMA, the state of the project, and most notably the scientific prospects with such a unique facility. The book includes comprehensive reviews and recent results on most hot topics of modern Astronomy (the formation and evolution of galaxies, the physics and chemistry of the interstellar medium, and the processes of star and planet formation) with prospects to...

  19. Ancient photosynthetic eukaryote biofilms in an Atacama Desert coastal cave

    Science.gov (United States)

    Azua-Bustos, A.; Gonzalez-Silva, C.; Mancilla, R.A.; Salas, L.; Palma, R.E.; Wynne, J.J.; McKay, C.P.; Vicuna, R.

    2009-01-01

    Caves offer a stable and protected environment from harsh and changing outside prevailing conditions. Hence, they represent an interesting habitat for studying life in extreme environments. Here, we report the presence of a member of the ancient eukaryote red algae Cyanidium group in a coastal cave of the hyperarid Atacama Desert. This microorganism was found to form a seemingly monospecific biofilm growing under extremely low photon flux levels. Our work suggests that this species, Cyanidium sp. Atacama, is a new member of a recently proposed novel monophyletic lineage of mesophilic "cave" Cyanidium sp., distinct from the remaining three other lineages which are all thermo-acidophilic. The cave described in this work may represent an evolutionary island for life in the midst of the Atacama Desert. ?? Springer Science + Business Media, LLC 2009.

  20. An introduction to cosmology

    CERN Document Server

    Kunze, Kerstin E.

    2016-12-20

    Cosmology is becoming an important tool to test particle physics models. We provide an overview of the standard model of cosmology with an emphasis on the observations relevant for testing fundamental physics.

  1. Introduction to cosmology

    CERN Document Server

    Roos, Matts

    2015-01-01

    The Fourth Edition of Introduction to Cosmology provides a concise, authoritative study of cosmology at an introductory level. Starting from elementary principles and the early history of cosmology, the text carefully guides the student on to curved spacetimes, special and general relativity, gravitational lensing, the thermal history of the Universe, and cosmological models, including extended gravity models, black holes and Hawking's recent conjectures on the not-so-black holes.

  2. New trends in cosmology

    Science.gov (United States)

    Canuto, V. M.

    1978-01-01

    A review of big-bang cosmology is presented, emphasizing the big-bang model, hypotheses on the origin of galaxies, observational tests of the big-bang model that may be possible with the Large Space Telescope, and the scale-covariant theory of gravitation. Detailed attention is given to the equations of general relativity, the redshift-distance relation for extragalactic objects, expansion of the universe, the initial singularity, the discovery of the 3-K blackbody radiation, and measurements of the amount of deuterium in the universe. The curvature of the expanding universe is examined along with the magnitude-redshift relation for quasars and galaxies. Several models for the origin of galaxies are evaluated, and it is suggested that a model of galaxy formation via the formation of black holes is consistent with the model of an expanding universe. Scale covariance is discussed, a scale-covariant theory is developed which contains invariance under scale transformation, and it is shown that Dirac's (1937) large-numbers hypothesis finds a natural role in this theory by relating the atomic and Einstein units.

  3. Summary of cosmology workshop

    Indian Academy of Sciences (India)

    Abstract. Cosmology is passing through a golden phase of rapid advance. The cosmology workshop at ICGC-2004 attracted a large number of research contributions to diverse topics of cosmology. I attempt to classify and summarize the research work and results of the oral and poster presentations made at the meeting.

  4. MOND and cosmology

    NARCIS (Netherlands)

    Sanders, R. H.; Mamon, GA; Combes, F; Deffayet, C; Fort, B

    2006-01-01

    I review various ideas on MOND cosmology and structure formation beginning with non-relativistic models in analogy with Newtonian cosmology. I discuss relativistic MOND cosmology in the context of Bekenstein's theory and propose an alternative biscalar effective theory of MOND in which the

  5. Introduction to cosmology

    CERN Multimedia

    CERN. Geneva

    1999-01-01

    Cosmology and particle physics have enjoyed a useful relationship over the entire histories of both subjects. Today, ideas and techniques in cosmology are frequently used to elucidate and constrain theories of elementary particles. These lectures give an elementary overview of the essential elements of cosmology, which is necessary to understand this relationship.

  6. Lectures on cosmology

    Science.gov (United States)

    Ellis, George F. R.

    2014-12-01

    This is the text of part of the Cosmology course at the Special Courses at the National Observatory of Rio de Janeiro - CCE. The first part summarises cosmology today, including issues where significant questions reman, and the second part is dedicated to the 1+3 covariant formalism for cosmology.

  7. Quantum Cosmology

    Science.gov (United States)

    Bojowald, Martin

    The universe, ultimately, is to be described by quantum theory. Quantum aspects of all there is, including space and time, may not be significant for many purposes, but are crucial for some. And so a quantum description of cosmology is required for a complete and consistent worldview. At any rate, even if we were not directly interested in regimes where quantum cosmology plays a role, a complete physical description could not stop at a stage before the whole universe is reached. Quantum theory is essential in the microphysics of particles, atoms, molecules, solids, white dwarfs and neutron stars. Why should one expect this ladder of scales to end at a certain size? If regimes are sufficiently violent and energetic, quantum effects are non-negligible even on scales of the whole cosmos; this is realized at least once in the history of the universe: at the big bang where the classical theory of general relativity would make energy densities diverge. 1.Lachieze-Rey, M., Luminet, J.P.: Phys. Rept. 254,135 (1995), gr-qc/9605010 2.BSDeWitt1967Phys. Rev.160511131967PhRv..160.1113D0158.4650410.1103/PhysRev.160.1113DeWitt, B.S.: Phys. Rev. 160(5), 1113 (1967) 3.Wiltshire, D.L.: In: Robson B., Visvanathan N., Woolcock W.S. (eds.) Cosmology: The Physics of the Universe, pp. 473-531. World Scientific, Singapore (1996). gr-qc/0101003 4.Isham C.J.: In: DeWitt, B.S., Stora, R. (eds.) Relativity, Groups and Topology II. Lectures Given at the 1983 Les Houches Summer School on Relativity, Groups and Topology, Elsevier Science Publishing Company (1986) 5.Klauder, J.: Int. J. Mod. Phys. D 12, 1769 (2003), gr-qc/0305067 6.Klauder, J.: Int. J. Geom. Meth. Mod. Phys. 3, 81 (2006), gr-qc/0507113 7.DGiulini1995Phys. Rev. D5110563013381161995PhRvD..51.5630G10.1103/PhysRevD.51.5630Giulini, D.: Phys. Rev. D 51(10), 5630 (1995) 8.Kiefer, C., Zeh, H.D.: Phys. Rev. D 51, 4145 (1995), gr-qc/9402036 9.WFBlythCJIsham1975Phys. Rev. D117684086991975PhRvD..11..768B10.1103/PhysRevD.11.768Blyth, W

  8. The Philosophy of Cosmology

    Science.gov (United States)

    Chamcham, Khalil; Silk, Joseph; Barrow, John D.; Saunders, Simon

    2017-04-01

    Part I. Issues in the Philosophy of Cosmology: 1. Cosmology, cosmologia and the testing of cosmological theories George F. R. Ellis; 2. Black holes, cosmology and the passage of time: three problems at the limits of science Bernard Carr; 3. Moving boundaries? - comments on the relationship between philosophy and cosmology Claus Beisbart; 4. On the question why there exists something rather than nothing Roderich Tumulka; Part II. Structures in the Universe and the Structure of Modern Cosmology: 5. Some generalities about generality John D. Barrow; 6. Emergent structures of effective field theories Jean-Philippe Uzan; 7. Cosmological structure formation Joel R. Primack; 8. Formation of galaxies Joseph Silk; Part III. Foundations of Cosmology: Gravity and the Quantum: 9. The observer strikes back James Hartle and Thomas Hertog; 10. Testing inflation Chris Smeenk; 11. Why Boltzmann brains do not fluctuate into existence from the de Sitter vacuum Kimberly K. Boddy, Sean M. Carroll and Jason Pollack; 12. Holographic inflation revised Tom Banks; 13. Progress and gravity: overcoming divisions between general relativity and particle physics and between physics and HPS J. Brian Pitts; Part IV. Quantum Foundations and Quantum Gravity: 14. Is time's arrow perspectival? Carlo Rovelli; 15. Relational quantum cosmology Francesca Vidotto; 16. Cosmological ontology and epistemology Don N. Page; 17. Quantum origin of cosmological structure and dynamical reduction theories Daniel Sudarsky; 18. Towards a novel approach to semi-classical gravity Ward Struyve; Part V. Methodological and Philosophical Issues: 19. Limits of time in cosmology Svend E. Rugh and Henrik Zinkernagel; 20. Self-locating priors and cosmological measures Cian Dorr and Frank Arntzenius; 21. On probability and cosmology: inference beyond data? Martin Sahlén; 22. Testing the multiverse: Bayes, fine-tuning and typicality Luke A. Barnes; 23. A new perspective on Einstein's philosophy of cosmology Cormac O

  9. Atmospheric origins of perchlorate on Mars and in the Atacama

    Science.gov (United States)

    Catling, D. C.; Claire, M. W.; Zahnle, K. J.; Quinn, R. C.; Clark, B. C.; Hecht, M. H.; Kounaves, S.

    2010-01-01

    Isotopic studies indicate that natural perchlorate is produced on Earth in arid environments by the oxidation of chlorine species through pathways involving ozone or its photochemical products. With this analogy, we propose that the arid environment on Mars may have given rise to perchlorate through the action of atmospheric oxidants. A variety of hypothetical pathways can be proposed including photochemical reactions, electrostatic discharge, and gas-solid reactions. Because perchlorate-rich deposits in the Atacama desert are closest in abundance to perchlorate measured at NASA's Phoenix Lander site, we made a preliminary study of the means to produce Atacama perchlorate to help shed light on the origin of Martian perchlorate. We investigated gas phase pathways using a 1-D photochemical model. We found that perchlorate can be produced in sufficient quantities to explain the abundance of perchlorate in the Atacama from a proposed gas phase oxidation of chlorine volatiles to perchloric acid. The feasibility of gas phase production for the Atacama provides justification for future investigations of gas phase photochemistry as a possible source for Martian perchlorate.

  10. Galaxies 800 million years after the Big Bang seen with the Atacama Large Millimetre Array

    Science.gov (United States)

    Smit, Renske

    2018-01-01

    The identification of galaxies in the first billion years after the Big Bang presents a challenge for even the largest optical telescopes. When the Atacama Large Millimetre Array (ALMA) started science operations in 2011 it presented a tantalising opportunity to identify and characterise these first sources of light in a new window of the electromagnetic spectrum. I will present new sources successfully identified at z=6.8 using ALMA; the first spectroscopic confirmations of typical star-forming galaxies during the Epoch or Reionization using a sub-millimetre telescope. Moreover, these observations reveal the gas kinematics of such distant sources for the first time. The velocity gradient in these galaxies indicate that these galaxies likely have similar dynamical properties as the turbulent, yet rotation-dominated disks that have been observed for Hα emitting galaxies 2 billion years later at cosmic noon. This novel approach for confirming galaxies during Reionization paves the way for larger studies of distant galaxies with spectroscopic redshifts. Particularly important, this opens up opportunities for the measurement of high angular-resolution dynamics in galaxies less than one billion years after the Big Bang.

  11. SNAP telescope

    Energy Technology Data Exchange (ETDEWEB)

    Lampton, Michael L.; Akerlof, C.W.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Bercovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers Jr., W.C.; Commins, E.D.; Day, C.; Deustua, S.E.; DiGennaro, R.; Ealet, A.; Ellis,R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar,A.; Groom, D.; Harris, S.E.; Harvey, P.R.; Heetderks, H.D.; Holland,S.E.; Huterer, D.; Karcher, A.; Kim, A.G.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Levi, M.E.; Levin, D.S.; Linder, E.V.; Loken,S.C.; Malina, R.; Massey, R.; McKay, T.; McKee, S.P.; Miquel, R.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi,H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto,E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tarle, G.; Tomasch,A.; von der Lippe, H.; Vincent, R.; Walder, J.-P.; Wang, G.; Wang, G.

    2002-07-29

    The SuperNova/Acceleration Probe (SNAP) mission will require a two-meter class telescope delivering diffraction limited images spanning a one degree field in the visible and near infrared wavelength regime. This requirement, equivalent to nearly one billion pixel resolution, places stringent demands on its optical system in terms of field flatness, image quality, and freedom from chromatic aberration. We discuss the advantages of annular-field three-mirror anastigmat (TMA) telescopes for applications such as SNAP, and describe the features of the specific optical configuration that we have baselined for the SNAP mission. We discuss the mechanical design and choice of materials for the telescope. Then we present detailed ray traces and diffraction calculations for our baseline optical design. We briefly discuss stray light and tolerance issues, and present a preliminary wavefront error budget for the SNAP Telescope. We conclude by describing some of tasks to be carried out during the upcoming SNAP research and development phase.

  12. Space Telescopes

    Science.gov (United States)

    Rigby, Jane R.

    2011-01-01

    The science of astronomy depends on modern-day temples called telescopes. Astronomers make pilgrimages to remote mountaintops where these large, intricate, precise machines gather light that rains down from the Universe. Bit, since Earth is a bright, turbulent planet, our finest telescopes are those that have been launched into the dark stillness of space. These space telescopes, named after heroes of astronomy (Hubble, Chandra, Spitzer, Herschel), are some of the best ideas our species has ever had. They show us, over 13 billion years of cosmic history, how galaxies and quasars evolve. They study planets orbiting other stars. They've helped us determine that 95% of the Universe is of unknown composition. In short, they tell us about our place in the Universe. The next step in this journey is the James Webb Space Telescope, being built by NASA, Europe, and Canada for a 2018 launch; Webb will reveal the first galaxies that ever formed.

  13. Space Telescopes

    Science.gov (United States)

    2010-01-01

    Proc 6317:OT1–OT9 Serlemitsos PJ, Jahota L, Soong Y (plus 14 authors) (1995) The X-ray telescope on board ASCA. Pub Astron Soc Jap 47:105–114...Serlemitsos PJ, Soong Y, Chan K-W (plus 31 authors) (2007) The X-ray telescope on board Suzaku. Pub Astron Soc Jap 59:9–21 Shimizu T (2004) Solar-B solar

  14. Extending cosmology: the metric approach

    OpenAIRE

    Mendoza, S.

    2012-01-01

    Comment: 2012, Extending Cosmology: The Metric Approach, Open Questions in Cosmology; Review article for an Intech "Open questions in cosmology" book chapter (19 pages, 3 figures). Available from: http://www.intechopen.com/books/open-questions-in-cosmology/extending-cosmology-the-metric-approach

  15. Cosmology and time

    Directory of Open Access Journals (Sweden)

    Balbi Amedeo

    2013-09-01

    Full Text Available Time has always played a crucial role in cosmology. I review some of the aspects of the present cosmological model which are more directly related to time, such as: the definition of a cosmic time; the existence of typical timescales and epochs in an expanding universe; the problem of the initial singularity and the origin of time; the cosmological arrow of time.

  16. Supernovae and cosmology with future European facilities.

    Science.gov (United States)

    Hook, I M

    2013-06-13

    Prospects for future supernova surveys are discussed, focusing on the European Space Agency's Euclid mission and the European Extremely Large Telescope (E-ELT), both expected to be in operation around the turn of the decade. Euclid is a 1.2 m space survey telescope that will operate at visible and near-infrared wavelengths, and has the potential to find and obtain multi-band lightcurves for thousands of distant supernovae. The E-ELT is a planned, general-purpose ground-based, 40-m-class optical-infrared telescope with adaptive optics built in, which will be capable of obtaining spectra of type Ia supernovae to redshifts of at least four. The contribution to supernova cosmology with these facilities will be discussed in the context of other future supernova programmes such as those proposed for DES, JWST, LSST and WFIRST.

  17. Sociology of Modern Cosmology

    Science.gov (United States)

    López-Corredoira, M.

    2009-08-01

    Certain results of observational cosmology cast critical doubt on the foundations of standard cosmology but leave most cosmologists untroubled. Alternative cosmological models that differ from the Big Bang have been published and defended by heterodox scientists; however, most cosmologists do not heed these. This may be because standard theory is correct and all other ideas and criticisms are incorrect, but it is also to a great extent due to sociological phenomena such as the ``snowball effect'' or ``groupthink''. We might wonder whether cosmology, the study of the Universe as a whole, is a science like other branches of physics or just a dominant ideology.

  18. Generalized holographic cosmology

    Science.gov (United States)

    Banerjee, Souvik; Bhowmick, Samrat; Sahay, Anurag; Siopsis, George

    2013-04-01

    We consider general black hole solutions in five-dimensional spacetime in the presence of a negative cosmological constant. We obtain a cosmological evolution via the gravity/gauge theory duality (holography) by defining appropriate boundary conditions on a four-dimensional boundary hypersurface. The standard counterterms are shown to renormalize the bare parameters of the system (the four-dimensional Newton's constant and cosmological constant). We discuss the thermodynamics of cosmological evolution and present various examples. The standard brane-world scenarios are shown to be special cases of our holographic construction.

  19. Introduction to cosmology

    CERN Document Server

    Roos, Matts

    2003-01-01

    The Third Edition of the hugely successful Introduction to Cosmology provides a concise, authoritative study of cosmology at an introductory level. Starting from elementary principles and the history of cosmology, the text carefully guides the student on to curved spacetimes, general relativity, black holes, cosmological models, particles and symmetries, and phase transitions. Extensively revised, this latest edition includes broader and updated coverage of distance measures, gravitational lensing and waves, dark energy and quintessence, the thermal history of the Universe, inflation,

  20. Summary of cosmology workshop

    Indian Academy of Sciences (India)

    Recent developments in cosmology have been largely driven by huge improvement in quality, quantity, and the scope of cosmological observations. While the ob- servations have constrained theoretical scenarios and models more precisely, some of these observations have thrown up new challenges to theoretical ...

  1. Wormholes and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Klebanov, I.; Susskind, L.

    1988-10-01

    We review Coleman's wormhole mechanism for the vanishing of the cosmological constant. We find a discouraging result that wormholes much bigger than the Planck size are generated. We also consider the implications of the wormhole theory for cosmology. 7 refs., 2 figs.

  2. String Cosmology: A Review

    Energy Technology Data Exchange (ETDEWEB)

    McAllister, Liam P.; Silverstein, Eva

    2007-10-22

    We give an overview of the status of string cosmology. We explain the motivation for the subject, outline the main problems, and assess some of the proposed solutions. Our focus is on those aspects of cosmology that benefit from the structure of an ultraviolet-complete theory.

  3. Classical and quantum cosmology

    CERN Document Server

    Calcagni, Gianluca

    2017-01-01

    This comprehensive textbook is devoted to classical and quantum cosmology, with particular emphasis on modern approaches to quantum gravity and string theory and on their observational imprint. It covers major challenges in theoretical physics such as the big bang and the cosmological constant problem. An extensive review of standard cosmology, the cosmic microwave background, inflation and dark energy sets the scene for the phenomenological application of all the main quantum-gravity and string-theory models of cosmology. Born of the author's teaching experience and commitment to bridging the gap between cosmologists and theoreticians working beyond the established laws of particle physics and general relativity, this is a unique text where quantum-gravity approaches and string theory are treated on an equal footing. As well as introducing cosmology to undergraduate and graduate students with its pedagogical presentation and the help of 45 solved exercises, this book, which includes an ambitious bibliography...

  4. Cosmology and particle physics

    Science.gov (United States)

    Turner, Michael S.

    1988-01-01

    The interplay between cosmology and elementary particle physics is discussed. The standard cosmology is reviewed, concentrating on primordial nucleosynthesis and discussing how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is discussed, showing how a scenario in which the B-, C-, and CP-violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and for the present baryon-to-photon ratio. It is shown how the very early dynamical evolution of a very weakly coupled scalar field which is initially displaced from the minimum of its potential may explain a handful of very fundamental cosmological facts which are not explained by the standard cosmology.

  5. Introduction to cosmology

    CERN Document Server

    Ryden, Barbara

    2002-01-01

    Introduction to Cosmology provides a rare combination of a solid foundation of the core physical concepts of cosmology and the most recent astronomical observations. The book is designed for advanced undergraduates or beginning graduate students and assumes no prior knowledge of general relativity. An emphasis is placed on developing the readers' physical insight rather than losing them with complex math. An approachable writing style and wealth of fresh and imaginative analogies from "everyday" physics are used to make the concepts of cosmology more accessible. The book is unique in that it not only includes recent major developments in cosmology, like the cosmological constant and accelerating universe, but also anticipates key developments expected in the next few years, such as detailed results on the cosmic microwave background.

  6. A Taste of Cosmology

    CERN Document Server

    Verde, L.

    2013-06-27

    This is the summary of two lectures that aim to give an overview of cosmology. I will not try to be too rigorous in derivations, nor to give a full historical overview. The idea is to provide a "taste" of cosmology and some of the interesting topics it covers. The standard cosmological model is presented and I highlight the successes of cosmology over the past decade or so. Keys to the development of the standard cosmological model are observations of the cosmic microwave background and of large-scale structure, which are introduced. Inflation and dark energy and the outlook for the future are also discussed. Slides from the lectures are available from the school website: physicschool.web.cern.ch/PhysicSchool/CLASHEP/CLASHEP2011/.

  7. Cosmological Constraints from Galaxy Clustering and Weak Lensing

    Science.gov (United States)

    Troxel, Michael; DES Collaboration

    2018-01-01

    The Dark Energy Survey (DES) is a five-year, 5000 sq. deg. observing program using the Dark Energy Camera on the 4m Blanco telescope at CTIO. I will describe the cosmological analysis of large-scale structure in the Universe using 1321 sq. deg. of data taken in the first year of DES operations. The analysis combines unprecedented measurements of weak gravitational lensing and the clustering of galaxies over the redshift range 0.2 to 1.3 to derive the most precise such cosmological constraints to date. These DES results from the low-redshift Universe are consistent with those from the cosmic microwave background (CMB) and support the standard cosmological model, LCDM. In the coming years, DES will produce significantly tighter constraints on cosmology through similar and additional analyses using observations over more than three times the sky-area and more than twice the integrated exposure time per object as these results.

  8. Methods in Computational Cosmology

    Science.gov (United States)

    Vakili, Mohammadjavad

    State of the inhomogeneous universe and its geometry throughout cosmic history can be studied by measuring the clustering of galaxies and the gravitational lensing of distant faint galaxies. Lensing and clustering measurements from large datasets provided by modern galaxy surveys will forever shape our understanding of the how the universe expands and how the structures grow. Interpretation of these rich datasets requires careful characterization of uncertainties at different stages of data analysis: estimation of the signal, estimation of the signal uncertainties, model predictions, and connecting the model to the signal through probabilistic means. In this thesis, we attempt to address some aspects of these challenges. The first step in cosmological weak lensing analyses is accurate estimation of the distortion of the light profiles of galaxies by large scale structure. These small distortions, known as the cosmic shear signal, are dominated by extra distortions due to telescope optics and atmosphere (in the case of ground-based imaging). This effect is captured by a kernel known as the Point Spread Function (PSF) that needs to be fully estimated and corrected for. We address two challenges a head of accurate PSF modeling for weak lensing studies. The first challenge is finding the centers of point sources that are used for empirical estimation of the PSF. We show that the approximate methods for centroiding stars in wide surveys are able to optimally saturate the information content that is retrievable from astronomical images in the presence of noise. The fist step in weak lensing studies is estimating the shear signal by accurately measuring the shapes of galaxies. Galaxy shape measurement involves modeling the light profile of galaxies convolved with the light profile of the PSF. Detectors of many space-based telescopes such as the Hubble Space Telescope (HST) sample the PSF with low resolution. Reliable weak lensing analysis of galaxies observed by the HST

  9. The Cosmology Large Angular Scale Surveyor (CLASS)

    Science.gov (United States)

    Cleary, Joseph

    2018-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an array of four telescopes designed to measure the polarization of the Cosmic Microwave Background. CLASS aims to detect the B-mode polarization from primordial gravitational waves predicted by cosmic inflation theory, as well as the imprint left by reionization upon the CMB E-mode polarization. This will be achieved through a combination of observing strategy and state-of-the-art instrumentation. CLASS is observing 70% of the sky to characterize the CMB at large angular scales, which will measure the entire CMB power spectrum from the reionization peak to the recombination peak. The four telescopes operate at frequencies of 38, 93, 145, and 217 GHz, in order to estimate Galactic synchrotron and dust foregrounds while avoiding atmospheric absorption. CLASS employs rapid polarization modulation to overcome atmospheric and instrumental noise. Polarization sensitive cryogenic detectors with low noise levels provide CLASS the sensitivity required to constrain the tensor-to-scalar ratio down to levels of r ~ 0.01 while also measuring the optical depth the reionization to sample-variance levels. These improved constraints on the optical depth to reionization are required to pin down the mass of neutrinos from complementary cosmological data. CLASS has completed a year of observations at 38 GHz and is in the process of deploying the rest of the telescope array. This poster provides an overview and update on the CLASS science, hardware and survey operations.

  10. Status of the GroundBIRD Telescope

    Science.gov (United States)

    Choi, J.; Génova-Santos, R.; Hattori, M.; Hazumi, M.; Ishitsuka, H.; Kanno, F.; Karatsu, K.; Kiuchi, K.; Koyano, R.; Kutsuma, H.; Lee, K.; Mima, S.; Minowa, M.; Nagai, M.; Nagasaki, T.; Naruse, M.; Oguri, S.; Okada, T.; Otani, C.; Rebolo, R.; Rubiño-Martín, J.; Sekimoto, Y.; Suzuki, J.; Taino, T.; Tajima, O.; Tomita, N.; Uchida, T.; Won, E.; Yoshida, M.

    2018-01-01

    Our understanding of physics at very early Universe, as early as 10-35 s after the Big Bang, relies on the scenario known as the inflationary cosmology. Inflation predicts a particular polarization pattern in the cosmic microwave background, known as the B-mode yet the strength of such polarization pattern is extremely weak. To search for the B-mode of the polarization in the cosmic microwave background, we are constructing an off-axis rotating telescope to mitigate systematic effects as well as to maximize the sky coverage of the observation. We will discuss the present status of the GroundBIRD telescope.

  11. Magnetogenesis in bouncing cosmology

    CERN Document Server

    Qian, Peng; Easson, Damien A; Guo, Zong-Kuan

    2016-01-01

    We consider the process of magnetogenesis in the context of nonsingular bounce cosmology. We show that large primordial magnetic fields can be generated during contraction without encountering strong coupling and backreaction issues. The fields may seed large-scale magnetic fields with observationally interesting strengths. This result leads to a theoretical constraint on the relation of the energy scale of the bounce cosmology to the number of effective e-folding of the contracting phase in the case of scale invariance for the power spectrum of primordial magnetic fields. We show that this constraint can be satisfied in a sizable region of the parameter space for the nonsingular bounce cosmology.

  12. Neutrino properties from cosmology

    DEFF Research Database (Denmark)

    Hannestad, S.

    2013-01-01

    In recent years precision cosmology has become an increasingly powerful probe of particle physics. Perhaps the prime example of this is the very stringent cosmological upper bound on the neutrino mass. However, other aspects of neutrino physics, such as their decoupling history and possible non......-standard interactions, can also be probed using observations of cosmic structure. Here, I review the current status of cosmological bounds on neutrino properties and discuss the potential of future observations, for example by the recently approved EUCLID mission, to precisely measure neutrino properties....

  13. Neutrino properties from cosmology

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Future, massive large-scale structure survey have been presented and approved.On the theory side, a significant effort has bene devoted to achieve better modeling of small scale clustering that is of cosmological non-linearities. As a result it has become clear that forthcoming cosmological data have enough statitsical power to detect the effect of non-zero neutrino mass (even at the lower mass scale limit imposed by oscillations) and to constrain the absolute neutrino mass scale.Cosmological data can also constrain the numb...

  14. Introduction to cosmology

    CERN Document Server

    Ryden, Barbara

    2017-01-01

    This second edition of Introduction to Cosmology is an exciting update of an award-winning textbook. It is aimed primarily at advanced undergraduate students in physics and astronomy, but is also useful as a supplementary text at higher levels. It explains modern cosmological concepts, such as dark energy, in the context of the Big Bang theory. Its clear, lucid writing style, with a wealth of useful everyday analogies, makes it exceptionally engaging. Emphasis is placed on the links between theoretical concepts of cosmology and the observable properties of the universe, building deeper physical insights in the reader. The second edition includes recent observational results, fuller descriptions of special and general relativity, expanded discussions of dark energy, and a new chapter on baryonic matter that makes up stars and galaxies. It is an ideal textbook for the era of precision cosmology in the accelerating universe.

  15. Cosmological Ontology and Epistemology

    CERN Document Server

    Page, Don N

    2014-01-01

    In cosmology, we would like to explain our observations and predict future observations from theories of the entire universe. Such cosmological theories make ontological assumptions of what entities exist and what their properties and relationships are. One must also make epistemological assumptions or metatheories of how one can test cosmological theories. Here I shall propose a Bayesian analysis in which the likelihood of a complete theory is given by the normalized measure it assigns to the observation used to test the theory. In this context, a discussion is given of the trade-off between prior probabilities and likelihoods, of the measure problem of cosmology, of the death of Born's rule, of the Boltzmann brain problem, of whether there is a better principle for prior probabilities than mathematical simplicity, and of an Optimal Argument for the Existence of God.

  16. Neutrino Astrophysics And Cosmology

    CERN Document Server

    Abazajian, Kevork N

    2001-01-01

    Although physical cosmology is becoming a field rich in data, the theoretical basis for several aspects of standard cosmological models are spectacularly devoid of firm foundations. On the other hand, the standard model of particle physics has successfully described an enormous quantity of experimental data, with one exception lying in the neutrino sector from observations of the atmospheric neutrino flux. This dissertation intersects both fields, as an interplay of the problems confronting theoretical cosmology and the tremendous success of the standard model of particle physics. And, in return, the successes of the standard cosmology may give insights into new particle physics, particularly neutrino physics. In this interplay, this dissertation studies the production of sterile neutrino dark matter in the early universe, constraints on this scenario, including radiative decays in galactic clusters. The effects of nonthermal neutrinos resulting from neutrino transformation on big bang nucleosynthesis are stu...

  17. Cosmological Probes for Supersymmetry

    Directory of Open Access Journals (Sweden)

    Maxim Khlopov

    2015-05-01

    Full Text Available The multi-parameter character of supersymmetric dark-matter models implies the combination of their experimental studies with astrophysical and cosmological probes. The physics of the early Universe provides nontrivial effects of non-equilibrium particles and primordial cosmological structures. Primordial black holes (PBHs are a profound signature of such structures that may arise as a cosmological consequence of supersymmetric (SUSY models. SUSY-based mechanisms of baryosynthesis can lead to the possibility of antimatter domains in a baryon asymmetric Universe. In the context of cosmoparticle physics, which studies the fundamental relationship of the micro- and macro-worlds, the development of SUSY illustrates the main principles of this approach, as the physical basis of the modern cosmology provides cross-disciplinary tests in physical and astronomical studies.

  18. Tensors, relativity, and cosmology

    CERN Document Server

    Dalarsson, Mirjana

    2015-01-01

    Tensors, Relativity, and Cosmology, Second Edition, combines relativity, astrophysics, and cosmology in a single volume, providing a simplified introduction to each subject that is followed by detailed mathematical derivations. The book includes a section on general relativity that gives the case for a curved space-time, presents the mathematical background (tensor calculus, Riemannian geometry), discusses the Einstein equation and its solutions (including black holes and Penrose processes), and considers the energy-momentum tensor for various solutions. In addition, a section on relativistic astrophysics discusses stellar contraction and collapse, neutron stars and their equations of state, black holes, and accretion onto collapsed objects, with a final section on cosmology discussing cosmological models, observational tests, and scenarios for the early universe. This fully revised and updated second edition includes new material on relativistic effects, such as the behavior of clocks and measuring rods in m...

  19. Cosmology and Globalization

    Science.gov (United States)

    Perkins, K.

    2008-06-01

    Exploring cosmological concepts and the emergence of life at astronomical scales offers valuable insight on the human role in global evolution. New dimensions of research await cognitive psychology and consciousness.

  20. Estacionalidad de las muertes en la puna de Atacama

    Directory of Open Access Journals (Sweden)

    Bejarano, Ignacio

    2001-01-01

    Full Text Available En distintas culturas y geografías la mortalidad se distribuye de acuerdo a un patrón estacional variable según las poblaciones. El objetivo de este trabajo fue analizar la estacionalidad de las muertes en un medio ambiente extremo como lo es la Puna de Atacama (PA. Los datos de defunciones (1890-1950 corresponden a dos localidades de la PA: Susques y San Pedro de Atacama. En el análisis se consideraron, por sexo, tres grupos de edad: a prerreproductiva (0-15 años (PRE, reproductiva (16-44 años (REP y postreproductiva (<45 años (POS. Se calculo el coeficiente de estacionalidad de Henry y para identificar estadísticamente variaciones estacionales se aplicó una prueba de homogeneidad. Se utilizó la prueba de Edwards para detectar ciclos armónicos en la distribución de muertes. Independientemente de la edad y el sexo se observó un patron estacional diferencial significativo que responde a un modelo de variación armónica simple, los coeficientes de Henry mas altos se presentaron en verano e invierno. Cuando se analiza la estacionalidad por grupo de edad y sexo el patrón previamente descripto se mantiene sólo en las edades REP y POS y en el sexo masculino. Este estudio proporciona un indicio del comportamiento de la estacionalidad de las muertes en la Puna de Atacama. Sin embargo no difiere del observado en poblaciones contemporáneas de países desarrollados, por lo que se concluye que el patrón observado no sería consecuencia directa de las condiciones climáticas, culturales, etc. de este ambiente extremo.

  1. Deconstructing the Cosmological Constant

    CERN Document Server

    Jejjala, V; Minic, D; Jejjala, Vishnu; Leigh, Robert G.; Minic, Djordje

    2003-01-01

    Deconstruction provides a novel way of dealing with the notoriously difficult ultraviolet problems of four-dimensional gravity. This approach also naturally leads to a new perspective on the holographic principle, tying it to the fundamental requirements of unitarity and diffeomorphism invariance, as well as to a new viewpoint on the cosmological constant problem. The numerical smallness of the cosmological constant is implied by a unique combination of holography and supersymmetry, opening a new window into the fundamental physics of the vacuum.

  2. Cosmological phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, E.W. [Fermi National Accelerator Lab., Batavia, IL (United States)]|[Chicago Univ., IL (United States)

    1993-10-01

    If modern ideas about the role of spontaneous symmetry breaking in fundamental physics are correct, then the Universe should have undergone a series of phase transitions early in its history. The study of cosmological phase transitions has become an important aspect of early-Universe cosmology. In this lecture I review some very recent work on three aspects of phase transitions: the electroweak transition, texture, and axions.

  3. Quantum cosmology for pedestrians

    Science.gov (United States)

    Atkatz, David

    1994-07-01

    The application of quantum theory to the description of the universe as a whole is known as quantum cosmology. A brief, self-contained introduction to this field, accessible to an upper-level undergraduate physics student is presented. Perhaps the most remarkable quantum-cosmological idea-that the universe originated ex nihilo via a quantum-mechanical tunneling process-is discussed, and the probability for such a quantum cosmogenesis is calculated.

  4. Cosmology: A research briefing

    Science.gov (United States)

    1995-01-01

    As part of its effort to update topics dealt with in the 1986 decadal physics survey, the Board on Physics and Astronomy of the National Research Council (NRC) formed a Panel on Cosmology. The Panel produced this report, intended to be accessible to science policymakers and nonscientists. The chapters include an overview ('What Is Cosmology?'), a discussion of cosmic microwave background radiation, the large-scale structure of the universe, the distant universe, and physics of the early universe.

  5. A Planck Vacuum Cosmology

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2009-04-01

    Full Text Available Both the big-bang and the quasi-steady-state cosmologies originate in some type of Planck state. This paper presents a new cosmological theory based on the Planck- vacuum negative-energy state, a state consisting of a degenerate collection of negative- energy Planck particles. A heuristic look at the Einstein field equation provides a con- vincing argument that such a vacuum state could provide a theoretical explanation for the visible universe.

  6. Robot Science Autonomy in the Atacama Desert and Beyond

    Science.gov (United States)

    Thompson, David R.; Wettergreen, David S.

    2013-01-01

    Science-guided autonomy augments rovers with reasoning to make observations and take actions related to the objectives of scientific exploration. When rovers can directly interpret instrument measurements then scientific goals can inform and adapt ongoing navigation decisions. These autonomous explorers will make better scientific observations and collect massive, accurate datasets. In current astrobiology studies in the Atacama Desert we are applying algorithms for science autonomy to choose effective observations and measurements. Rovers are able to decide when and where to take follow-up actions that deepen scientific understanding. These techniques apply to planetary rovers, which we can illustrate with algorithms now used by Mars rovers and by discussing future missions.

  7. Building cosmological frozen stars

    Science.gov (United States)

    Kastor, David; Traschen, Jennie

    2017-02-01

    Janis-Newman-Winicour (JNW) solutions generalize Schwarzschild to include a massless scalar field. While they share the familiar infinite redshift feature of Schwarzschild, they suffer from the presence of naked singularities. Cosmological versions of JNW spacetimes were discovered some years ago, in the most general case, by Fonarev. Fonarev solutions are also plagued by naked singularities, but have the virtue, unlike e.g. Schwarzschild-deSitter, of being dynamical. Given that exact dynamical cosmological black hole solutions are scarce, Fonarev solutions merit further study. We show how Fonarev solutions can be obtained via generalized dimensional reduction from simpler static vacuum solutions. These results may lead towards constructions of actual dynamical cosmological black holes. In particular, we note that cosmological versions of extremal charged dilaton black holes are known. JNW spacetimes represent a different limiting case of the family of charged dilaton black holes, which have been important in the context of string theory, and better understanding their cosmological versions of JNW spacetimes thus provides a second data point towards finding cosmological versions of the entire family.

  8. Cosmological perturbations in teleparallel Loop Quantum Cosmology

    CERN Document Server

    Haro, Jaime

    2013-01-01

    Cosmological perturbations in Loop Quantum Cosmology (LQC) could be studied from two totally different ways. The first one, called holonomy corrected LQC, is performed in the Hamiltonian framework, where the Asthekar connection is replaced by a suitable sinus function (holonomy correction), in order to have a well-defined quantum analogue. The alternative approach is based in the fact that isotropic LQC could be also obtained as a particular case of teleparallel $F(T)$ gravity (teleparallel LQC). Then, working in the Lagrangian framework and using the well-know perturbation equations in $F(T)$ gravity, we have obtained, in teleparallel LQC, the equations for scalar and tensor perturbations, and the corresponding Mukhanov-Sasaki equations. For scalar perturbations, our equation only differs from the one obtained by holonomy corrections in the velocity of sound, leading both formulations, essentially to the same scale invariant power spectrum when a matter-dominated universe is considered. However for tensor pe...

  9. ASTRO-1 Space Telescope for Hubble-class Space Imaging

    Science.gov (United States)

    Morse, Jon A.

    2015-05-01

    The 1.8-meter ASTRO-1 space telescope is designed to provide UV-visible imaging and spectroscopy that will be lost when the Hubble Space Telescope is finally decommissioned, probably early next decade. This privately funded facility will impact a broad range of astronomical research topics, from exoplanets to cosmology. We describe the proposed facility and our plans to involve the amateur astronomy community in the observatory planning and on-orbit observing program.

  10. Fog deposition to a Tillandsia carpet in the Atacama Desert

    Directory of Open Access Journals (Sweden)

    A. Westbeld

    2009-09-01

    Full Text Available In the Atacama Desert, one of the driest places on earth, fog deposition plays an important role for the water balance and for the survival of vulnerable ecosystems. The eddy covariance method, previously applied for the quantification of fog deposition to forests in various parts of the world, was used for the first time to measure deposition of fog water to a desert. In this exploratory study we estimate the amount of water available for the ecosystem by deposition and determine the relevant processes driving fog deposition. This is especially important for the species Tillandsia landbecki living in coastal Atacama at the limit of plant existence with fog and dew being the only sources of water. Between 31 July and 19 August 2008 approximately 2.5 L m−2 of water were made available through deposition. Whole-year deposition was estimated as 25 L m−2. Turbulent upward fluxes occurred several times during the evenings and are explained by the formation of radiation fog. In connection with that, underestimates of the deposition are assumed. More detailed studies covering various seasons and all parameters and fluxes contributing to the local energy balance are suggested. This will help to further develop understanding about the processes of (i deposition of water to the desert, and (ii intensification of advection fog through additional formation of radiation fog.

  11. Modern Cosmology: Assumptions and Limits

    Science.gov (United States)

    Hwang, Jai-Chan

    2012-06-01

    Physical cosmology tries to understand the Universe at large with its origin and evolution. Observational and experimental situations in cosmology do not allow us to proceed purely based on the empirical means. We examine in which sense our cosmological assumptions in fact have shaped our current cosmological worldview with consequent inevitable limits. Cosmology, as other branches of science and knowledge, is a construct of human imagination reflecting the popular belief system of the era. The question at issue deserves further philosophic discussions. In Whitehead's words, ``philosophy, in one of its functions, is the critic of cosmologies.'' (Whitehead 1925).

  12. Investigation of Life in the Atacama Desert by Astrobiology Rover

    Science.gov (United States)

    Wettergreen, D.; Cabrol, N.

    2005-12-01

    The Atacama Desert is the most arid region on Earth and in several ways analogous to Mars. It has been suggested that the interior of the desert is the most lifeless place on Earth, yet it is known that microorganisms exist on rocks and in soils where the desert meets the coastal range. The Life in the Atacama (LITA) project is investigating the distribution and diversity of life and habitats in the desert using an rover guided by a remote science team. The Atacama Desert presents an excellent analogue to Mars because it is extremely dry, but also, like Mars it experiences high levels of ultraviolet radiation due to its altitude and atmospheric transparency. The soils in the Atacama have been found to be particularly high in oxidants, which lead to the rapid breakdown of organic material. The result is that in some regions of desert almost no biogenic material can be found on the surface. To the benefit of analogue studies for Mars exploration, the desert visually resembles Mars as seen through rover cameras. For these reasons: aridity, ultraviolet radiation and soil composition we believe the Atacama is analogous to Mars and an excellent location for rover field experiments. To support our astrobiologic investigation, we have created a mobile robot, Zo, that makes the measurement of the distribution and diversity of microorganisms possible. Mobility is crucial as habitats are hypothesized to depend on locally variable conditions including moisture, solar flux, and rock/soil composition. The ability to traverse tens to hundreds of kilometers while deploying sensors is a fundamental requirement because only by visiting many sites will the few in which organisms exist be found. Many observations provide the basis for statistically valid analysis of distribution. Zo's instrument payload combines complementary elements, some directed towards remote sensing of the environment (geology, morphology, mineralogy, climate) for the detection of conditions favorable to

  13. Holographic telescope

    Science.gov (United States)

    Odhner, Jefferson E.

    2016-07-01

    Holographic optical elements (HOEs) work on the principal of diffraction and can in some cases replace conventional optical elements that work on the principal of refraction. An HOE can be thinner, lighter, can have more functionality, and can be lower cost than conventional optics. An HOE can serve as a beam splitter, spectral filter, mirror, and lens all at the same time. For a single wavelength system, an HOE can be an ideal solution but they have not been widely accepted for multispectral systems because they suffer from severe chromatic aberration. A refractive optical system also suffers from chromatic aberration but it is generally not as severe. To color correct a conventional refractive optical system, a flint glass and a crown glass are placed together such that the color dispersion of the flint and the crown cancel each other out making an achromatic lens (achromat) and the wavelengths all focus to the same point. The color dispersion of refractive lenses and holographic lenses are opposite from each other. In a diffractive optical system, long wavelengths focus closer (remember for HOEs: RBM "red bends more") than nominal focus while shorter wavelengths focus further out. In a refractive optical system, it is just the opposite. For this reason, diffractives can be incorporated into a refractive system to do the color correction and often cut down on the number of optical elements used [1.]. Color correction can also be achieved with an all-diffractive system by combining a holographic optical element with its conjugate. In this way the color dispersion of the first holographic optical element can be cancelled by the color dispersion of the second holographic optic. It is this technique that will be exploited in this paper to design a telescope made entirely of holographic optical elements. This telescope could be more portable (for field operations) the same technique could be used to make optics light enough for incorporation into a UAV.

  14. BOOK REVIEW: Cosmology

    Science.gov (United States)

    Silk, Joseph

    2008-11-01

    The field of cosmology has been transformed since the glorious decades of the 1920's and 1930's when theory and observation converged to develop the current model of the expanding universe. It was a triumph of the theory of general relativity and astronomy. The first revolution came when the nuclear physicists entered the fray. This marked the debut of the hot big bang, in which the light elements were synthesized in the first three minutes. It was soon realised that elements like carbon and iron were synthesized in exploding stars. However helium, as well as deuterium and lithium, remain as George Gamow envisaged, the detritus of the big bang. The climax arrived with one of the most remarkable discoveries of the twentieth century, the cosmic microwave background radiation, in 1964. The fossil glow turned out to have the spectrum of an ideal black body. One could not imagine a stronger confirmation of the hot and dense origin of the universe. This discovery set the scene for the next major advance. It was now the turn of the particle physicists, who realized that the energies attained near the beginning of the universe, and unachievable in any conceivable terrestrial accelerator, provided a unique testing ground for theories of grand unification of the fundamental forces. This led Alan Guth and Andrei Linde in 1980 to propose the theory of inflation, which solved outstanding puzzles of the big bang. One could now understand why the universe is so large and homogeneous, and the origin of the seed fluctuations that gave rise to large-scale structure. A key prediction was that the universe should have Euclidean geometry, now verified to a precision of a few percent. Modern cosmology is firmly embedded in particle physics. It merits a text written by a particle physicist who can however appreciate the contributions of astronomy that provide the foundation and infrastructure for the theory of the expanding universe. There are now several such texts available. The most

  15. Fossil Groups as Cosmological Labs

    Science.gov (United States)

    D'Onghia, Elena

    Optical and X-ray measurements of fossil groups (FGs) suggest that they are old and relaxed systems. If FGs are assembled at higher redshift, there is enough time for intermediate-luminosity galaxies to merge, resulting in the formation of the brightest group galaxy (BGG). We carry out the first, systematic study of a large sample of FGs, the "FOssil Group Origins'' (FOGO) based on an International Time Project at the Roque de los Muchachos Observatory. For ten FOGO FGs we have been awarded time at SUZAKU Telescope to measure the temperature of the hot intragroup gas (IGM). For these systems we plan to evaluate and correlate their X-ray luminosity and X-ray temperature, Lx-Tx, optical luminosity and X-ray temperature, Lopt-Tx, and group velocity dispersion with their X-ray temperature, sigma V-Tx, as compared to the non fossil systems. By combining these observations with state-of-art cosmological hydrodynamical simulations we will open a new window into the study of the IGM and the nature of fossil systems. Our proposed work will be of direct relevance for the understanding and interpretation of data from several NASA science missions. Specifically, the scaling relations obtained from these data combined with our predictions obtained using state-of-the-art hydrodynamical simulation numerical adopting a new hydrodynamical scheme will motivate new proposal on CHANDRA X-ray telescope for fossil groups and clusters. We will additionally create a public Online Planetarium Show. This will be an educational site, containing an interactive program called: "A Voyage to our Universe''. In the show we will provide observed images of fossil groups and similar images and movies obtained from the numerical simulations showing their evolution. The online planetarium show will be a useful reference and an interactive educational tool for both students and the public.

  16. Cosmological Constraints from Gravitational Lens Time Delays

    Science.gov (United States)

    Coe, Dan; Moustakas, Leonidas A.

    2009-11-01

    Future large ensembles of time delay (TD) lenses have the potential to provide interesting cosmological constraints complementary to those of other methods. In a flat universe with constant w including a Planck prior, The Large Synoptic Survey Telescope TD measurements for ~4000 lenses should constrain the local Hubble constant h to ~0.007 (~1%), Ω de to ~0.005, and w to ~0.026 (all 1σ precisions). Similar constraints could be obtained by a dedicated gravitational lens observatory (OMEGA) which would obtain precise TD and mass model measurements for ~100 well-studied lenses. We compare these constraints (as well as those for a more general cosmology) to the "optimistic Stage IV" constraints expected from weak lensing, supernovae, baryon acoustic oscillations, and cluster counts, as calculated by the Dark Energy Task Force. TDs yield a modest constraint on a time-varying w(z), with the best constraint on w(z) at the "pivot redshift" of z ≈ 0.31. Our Fisher matrix calculation is provided to allow TD constraints to be easily compared to and combined with constraints from other experiments. We also show how cosmological constraining power varies as a function of numbers of lenses, lens model uncertainty, TD precision, redshift precision, and the ratio of four-image to two-image lenses.

  17. Thermal tachyacoustic cosmology

    Science.gov (United States)

    Agarwal, Abhineet; Afshordi, Niayesh

    2014-08-01

    An intriguing possibility that can address pathologies in both early Universe cosmology (i.e. the horizon problem) and quantum gravity (i.e. nonrenormalizability), is that particles at very high energies and/or temperatures could propagate arbitrarily fast. A concrete realization of this possibility for the early Universe is the tachyacoustic (or speedy sound) cosmology, which could also produce a scale-invariant spectrum for scalar cosmological perturbations. Here, we study thermal tachyacoustic cosmology (TTC), i.e. this scenario with thermal initial conditions. We find that a phase transition in the early Universe, around the scale of the grand unified theory (GUT scale; T ˜1015 GeV), during which the speed of sound drops by 25 orders of magnitude within a Hubble time, can fit current CMB observations. We further discuss how production of primordial black holes constrains the cosmological acoustic history, while coupling TTC to Horava-Lifshitz gravity leads to a lower limit on the amplitude of tensor modes (r≳10-3), that are detectable by CMBpol (and might have already been seen by the BICEP-Keck Collaboration).

  18. Inhomogeneous anisotropic cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Kleban, Matthew [Center for Cosmology and Particle Physics, New York University,4 Washington Place, New York, NY 10003 (United States); Senatore, Leonardo [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,382 Via Pueblo Mall, Stanford, CA 94306 (United States); Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,2575 Sand Hill Road, M/S 29, Menlo Park, CA 94025 (United States)

    2016-10-12

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.

  19. 4MOST: 4-metre Multi-Object Spectroscopic Telescope

    NARCIS (Netherlands)

    de Jong, Roelof S.; Barden, Sam; Bellido-Tirado, Olga; Brynnel, Joar; Chiappini, Cristina; Depagne, Éric; Haynes, Roger; Johl, Diana; Phillips, Daniel P.; Schnurr, Olivier; Schwope, Axel D.; Walcher, Jakob; Bauer, Svend M.; Cescutti, Gabriele; Cioni, Maria-Rosa L.; Dionies, Frank; Enke, Harry; Haynes, Dionne M.; Kelz, Andreas; Kitaura, Francisco S.; Lamer, Georg; Minchev, Ivan; Müller, Volker; Nuza, Sebastián. E.; Olaya, Jean-Christophe; Piffl, Tilmann; Popow, Emil; Saviauk, Allar; Steinmetz, Matthias; Ural, Uǧur; Valentini, Monica; Winkler, Roland; Wisotzki, Lutz; Ansorge, Wolfgang R.; Banerji, Manda; Gonzalez Solares, Eduardo; Irwin, Mike; Kennicutt, Robert C.; King, David M. P.; McMahon, Richard; Koposov, Sergey; Parry, Ian R.; Sun, Xiaowei; Walton, Nicholas A.; Finger, Gert; Iwert, Olaf; Krumpe, Mirko; Lizon, Jean-Louis; Mainieri, Vincenzo; Amans, Jean-Philippe; Bonifacio, Piercarlo; Cohen, Matthieu; François, Patrick; Jagourel, Pascal; Mignot, Shan B.; Royer, Frédéric; Sartoretti, Paola; Bender, Ralf; Hess, Hans-Joachim; Lang-Bardl, Florian; Muschielok, Bernard; Schlichter, Jörg; Böhringer, Hans; Boller, Thomas; Bongiorno, Angela; Brusa, Marcella; Dwelly, Tom; Merloni, Andrea; Nandra, Kirpal; Salvato, Mara; Pragt, Johannes H.; Navarro, Ramón; Gerlofsma, Gerrit; Roelfsema, Ronald; Dalton, Gavin B.; Middleton, Kevin F.; Tosh, Ian A.; Boeche, Corrado; Caffau, Elisabetta; Christlieb, Norbert; Grebel, Eva K.; Hansen, Camilla J.; Koch, Andreas; Ludwig, Hans-G.; Mandel, Holger; Quirrenbach, Andreas; Sbordone, Luca; Seifert, Walter; Thimm, Guido; Helmi, Amina; trager, Scott C.; Bensby, Thomas; Feltzing, Sofia; Ruchti, Gregory; Edvardsson, Bengt; Korn, Andreas; Lind, Karin; Boland, Wilfried; Colless, Matthew; Frost, Gabriella; Gilbert, James; Gillingham, Peter; Lawrence, Jon; Legg, Neville; Saunders, Will; Sheinis, Andrew; Driver, Simon; Robotham, Aaron; Bacon, Roland; Caillier, Patrick; Kosmalski, Johan; Laurent, Florence; Richard, Johan

    4MOST is a wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of the European Southern Observatory (ESO). Its main science drivers are in the fields of galactic archeology, high-energy physics, galaxy evolution and cosmology. 4MOST will in particular

  20. The philosophy of cosmology

    CERN Document Server

    Silk, Joseph; Barrow, John D; Saunders, Simon

    2017-01-01

    Following a long-term international collaboration between leaders in cosmology and the philosophy of science, this volume addresses foundational questions at the limit of science across these disciplines, questions raised by observational and theoretical progress in modern cosmology. Space missions have mapped the Universe up to its early instants, opening up questions on what came before the Big Bang, the nature of space and time, and the quantum origin of the Universe. As the foundational volume of an emerging academic discipline, experts from relevant fields lay out the fundamental problems of contemporary cosmology and explore the routes toward finding possible solutions. Written for graduates and researchers in physics and philosophy, particular efforts are made to inform academics from other fields, as well as the educated public, who wish to understand our modern vision of the Universe, related philosophical questions, and the significant impacts on scientific methodology.

  1. The strained state cosmology

    CERN Document Server

    Tartaglia, Angelo

    2015-01-01

    Starting from some relevant facts concerning the behaviour of the universe over large scale and time span, the analogy between the geometric approach of General Relativ- ity and the classical description of an elastic strained material continuum is discussed. Extending the elastic deformation approach to four dimensions it is shown that the accelerated expansion of the universe is recovered. The strain field of space-time repro- duces properties similar to the ones ascribed to the dark energy currently called in to explain the accelerated expansion. The strain field in the primordial universe behaves as radiation, but asymptotically it reproduces the cosmological constant. Subjecting the theory to a number of cosmological tests confirms the soundness of the approach and gives an optimal value for the one parameter of the model, i.e. the bulk modulus of the space-time continuum. Finally various aspects of the Strained State Cosmology (SSC) are discussed and contrasted with some non-linear massive gravity theor...

  2. Panel Discussion Vi: Cosmology

    Science.gov (United States)

    Anderson, E.; Dolgov, A.; Crothers, S.; Mitra, A.; Rubakov, V.; Zakharov, A.

    2014-03-01

    Questions to discuss: * To what extent are Dark Matter and Dark Energy necessary to explain the observed properties of the Universe? * Why are the Dark matter profiles so universal at the galactic scales? * Are there viable candidates of modified gravitational dynamics to exclude the dark components of Universe? * Do we have any perspectives to distinguish the Dark Energy from the cosmological constant? * Are there any certain indications for sterile neutrinos in the cosmos? * How does the Planck data change the view of inflation in the early Universe? What could be the origin of the inflaton plateau? So far, what else is interesting about the Planck data? * What are the nearest crucial points in cosmological observations? * Can we be more decisive discriminating between the anthropic principle, the superstringy landscape, fine tuning or dynamics as reasons for the cosmological coincidences?

  3. Notes on Hadza cosmology

    DEFF Research Database (Denmark)

    Skaanes, Thea

    2015-01-01

    Abstract: This article concerns Hadza cosmology examined through objects, rituals and the Hadza concept of epeme. A brief background to the Hadza and the eldwork that informs this study is followed by a close analysis of three key objects that are central to the argument presented. The objects...... are intimately linked to women and to aspects of the social and cosmological identity of the individual makers. one object is a materi- alisation of the woman’s name and it leads to an examination by interview of naming practices more generally. Naming a child gives it a spirit and places the child in a strong...... of ethnographic research indicating the potential and need for further examination of the power and role of objects in Hadza society. Keywords: Hadza, epeme, ritual, cosmology, power objects...

  4. The cosmological singularity

    CERN Document Server

    Belinski, Vladimir

    2018-01-01

    Written for researchers focusing on general relativity, supergravity, and cosmology, this is a self-contained exposition of the structure of the cosmological singularity in generic solutions of the Einstein equations, and an up-to-date mathematical derivation of the theory underlying the Belinski–Khalatnikov–Lifshitz (BKL) conjecture on this field. Part I provides a comprehensive review of the theory underlying the BKL conjecture. The generic asymptotic behavior near the cosmological singularity of the gravitational field, and fields describing other kinds of matter, is explained in detail. Part II focuses on the billiard reformulation of the BKL behavior. Taking a general approach, this section does not assume any simplifying symmetry conditions and applies to theories involving a range of matter fields and space-time dimensions, including supergravities. Overall, this book will equip theoretical and mathematical physicists with the theoretical fundamentals of the Big Bang, Big Crunch, Black Hole singula...

  5. Charged cosmological black hole

    Science.gov (United States)

    Moradi, Rahim; Stahl, Clément; Firouzjaee, Javad T.; Xue, She-Sheng

    2017-11-01

    The cosmological black holes are black holes living not in an asymptotically flat universe but in an expanding spacetime. They have a rich dynamics especially for their mass and horizon. In this article, we perform a natural step in investigating this new type of black hole: we consider the possibility of a charged cosmological black hole. We derive the general equations of motion governing its dynamics and report a new analytic solution for the special case of the charged Lematre-Tolman-Bondi equations of motion that describe a charged cosmological black hole. We then study various relevant quantities for the characterization of the black hole, such as the C-function, the effect of the charge on the black hole flux, and the nature of the singularity. We also perform numerical investigations to strengthen our results. Finally, we challenge a model of gamma ray burst within our framework.

  6. Cosmology and Dark Matter

    CERN Document Server

    Tkachev, Igor

    2017-01-01

    This lecture course covers cosmology from the particle physicist perspective. Therefore, the emphasis will be on the evidence for the new physics in cosmological and astrophysical data together with minimal theoretical frameworks needed to understand and appreciate the evidence. I review the case for non-baryonic dark matter and describe popular models which incorporate it. In parallel, the story of dark energy will be developed, which includes accelerated expansion of the Universe today, the Universe origin in the Big Bang, and support for the Inflationary theory in CMBR data.

  7. Relativistic Cosmology Revisited

    Directory of Open Access Journals (Sweden)

    Crothers S. J.

    2007-04-01

    Full Text Available In a previous paper the writer treated of particular classes of cosmological solutions for certain Einstein spaces and claimed that no such solutions exist in relation thereto. In that paper the assumption that the proper radius is zero when the line-element is singular was generally applied. This general assumption is unjustified and must be dropped. Consequently, solutions do exist in relation to the aforementioned types, and are explored herein. The concept of the Big Bang cosmology is found to be inconsistent with General Relativity

  8. Exploring Cosmology with Supernovae

    DEFF Research Database (Denmark)

    Li, Xue

    distribution of strong gravitational lensing is developed. For Type Ia supernova (SNe Ia), the rate is lower than core-collapse supernovae (CC SNe). The rate of SNe Ia declines beyond z 1:5. Based on these reasons, we investigate a potential candidate to measure cosmological distance: GRB......-SNe. They are a subclass of CC SNe. Light curves of GRB-SNe are obtained and their properties are studied. We ascertain that the properties of GRB-SNe make them another candidate for standardizable candles in measuring the cosmic distance. Cosmological parameters M and are constrained with the help of GRB-SNe. The first...

  9. Cosmology without a beginning

    CERN Multimedia

    CERN. Geneva

    2000-01-01

    Most of the puzzles with standard big bang cosmology can be avoided if the big bang is NOT identified with the beginning of time. The short-distance cutoff and duality symmetries of superstring theory suggest a new (so-called pre-big bang) cosmology in which the birth of our Universe is the result of a long classical evolution characterized by a gravitational instability. I will motivate and describe this heretical scenario and compare its phenomenological implications with those of ortodox (post-big bang) inflation.

  10. Nonlinear backreaction in cosmology

    Science.gov (United States)

    Green, Stephen Roland

    This thesis, based on two papers by Green and Wald, investigates the problem of nonlinear backreaction in cosmology. We first analyze the problem in a general context by developing a new, mathematically precise framework for treating the effects of nonlinear phenomena occurring on small scales in general relativity. Our framework requires the metric to be close to a background metric (not necessarily a cosmological metric), but allows arbitrarily large stress-energy fluctuations on small scales. We prove that, within our framework, if the matter stress-energy tensor satisfies the weak energy condition (i.e., positivity of energy density in all frames), then the only effect that small-scale inhomogeneities can have on the background metric is to provide an effective stress-energy tensor that is traceless and satisfies the weak energy condition itself—corresponding to the presence of gravitational radiation. In particular, nonlinear effects produced by small-scale inhomogeneities cannot mimic the effects of dark energy. We also develop perturbation theory off of the background metric. We derive an equation for the long-wavelength part of the leading order deviation of the metric from the background metric, which contains the usual terms occurring in linearized perturbation theory plus additional contributions from the small-scale inhomogeneities. Next, we apply our framework to the cosmological context, specializing our background metric to be of the Friedmann-Lemaitre-Robertson-Walker form. We demonstrate that, in the case of dust matter, a cosmological constant, and vanishing spatial curvature (i.e., our universe today), Newtonian gravity alone provides a good global description of an inhomogeneous general relativistic cosmology, even when there is significant nonlinear dynamical behavior at small scales. Namely, we find a relatively straightforward dictionary—which is exact at the linearized level—that maps Newtonian dust cosmologies into general

  11. Advances in modern cosmology

    CERN Document Server

    2011-01-01

    The twentieth century elevated our understanding of the Universe from its early stages to what it is today and what is to become of it. Cosmology is the weapon that utilizes all the scientific tools that we have created to feel less lost in the immensity of our Universe. The standard model is the theory that explains the best what we observe. Even with all the successes that this theory had, two main questions are still to be answered: What is the nature of dark matter and dark energy? This book attempts to understand these questions while giving some of the most promising advances in modern cosmology.

  12. Horizons of cosmology

    CERN Document Server

    Silk, Joseph

    2011-01-01

    Horizons of Cosmology: Exploring Worlds Seen and Unseen is the fourth title published in the Templeton Science and Religion Series, in which scientists from a wide range of fields distill their experience and knowledge into brief tours of their respective specialties. In this volume, highly esteemed astrophysicist Joseph Silk explores the vast mysteries and speculations of the field of cosmology in a way that balances an accessible style for the general reader and enough technical detail for advanced students and professionals. Indeed, while the p

  13. Adventures in cosmology

    CERN Document Server

    2012-01-01

    This volume tells of the quest for cosmology as seen by some of the finest cosmologists in the world. It starts with "Galaxy Formation from Start to Finish" and ends with "The First Supermassive Black Holes in the Universe," exploring in between the grand themes of galaxies, the early universe, expansion of the universe, dark matter and dark energy. This up-to-date collection of review articles offers a general introduction to cosmology and is intended for all probing into the profound questions on where we came from and where we are going.

  14. Conformal symmetry and holographic cosmology

    NARCIS (Netherlands)

    Bzowski, A.W.

    2013-01-01

    This thesis presents a novel approach to cosmology using gauge/gravity duality. Analysis of the implications of conformal invariance in field theories leads to quantitative cosmological predictions which are in agreement with current data. Furthermore, holographic cosmology extends the theory of

  15. On Hamiltonian formulation of cosmologies

    Indian Academy of Sciences (India)

    matter era for some cosmological models. It is argued that these solutions appear to hint at their possible relevance in the early phase of cosmological evolution. Keywords. Hamiltonian formulation; some cosmologies. PACS No. 98.80. Hw. It has been shown by Novelloet al [1,2] that it is possible to study perturbations in the ...

  16. Biotechnological Applications Derived from Microorganisms of the Atacama Desert

    Directory of Open Access Journals (Sweden)

    Armando Azua-Bustos

    2014-01-01

    Full Text Available The Atacama Desert in Chile is well known for being the driest and oldest desert on Earth. For these same reasons, it is also considered a good analog model of the planet Mars. Only a few decades ago, it was thought that this was a sterile place, but in the past years fascinating adaptations have been reported in the members of the three domains of life: low water availability, high UV radiation, high salinity, and other environmental stresses. However, the biotechnological applications derived from the basic understanding and characterization of these species, with the notable exception of copper bioleaching, are still in its infancy, thus offering an immense potential for future development.

  17. The Cosmology Large Angular Scale Surveyor (CLASS) Telescope Architecture

    Science.gov (United States)

    Chuss, David T.; Ali, Aamir; Amiri, Mandana; Appel, John W.; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Colazo, Felipe; hide

    2014-01-01

    We describe the instrument architecture of the Johns Hopkins University-led CLASS instrument, a groundbased cosmic microwave background (CMB) polarimeter that will measure the large-scale polarization of the CMB in several frequency bands to search for evidence of inflation.

  18. Discrete Newtonian cosmology

    Science.gov (United States)

    Ellis, George F. R.; Gibbons, Gary W.

    2014-01-01

    In this paper we lay down the foundations for a purely Newtonian theory of cosmology, valid at scales small compared with the Hubble radius, using only Newtonian point particles acted on by gravity and a possible cosmological term. We describe the cosmological background which is given by an exact solution of the equations of motion in which the particles expand homothetically with their comoving positions constituting a central configuration. We point out, using previous work, that an important class of central configurations are homogeneous and isotropic, thus justifying the usual assumptions of elementary treatments. The scale factor is shown to satisfy the standard Raychaudhuri and Friedmann equations without making any fluid dynamic or continuum approximations. Since we make no commitment as to the identity of the point particles, our results are valid for cold dark matter, galaxies, or clusters of galaxies. In future publications we plan to discuss perturbations of our cosmological background from the point particle viewpoint laid down in this paper and show consistency with much standard theory usually obtained by more complicated and conceptually less clear continuum methods. Apart from its potential use in large scale structure studies, we believe that our approach has great pedagogic advantages over existing elementary treatments of the expanding universe, since it requires no use of general relativity or continuum mechanics but concentrates on the basic physics: Newton’s laws for gravitationally interacting particles.

  19. Culture and Children's Cosmology

    Science.gov (United States)

    Siegal, Michael; Butterworth, George; Newcombe, Peter A.

    2004-01-01

    In this investigation, we examined children's knowledge of cosmology in relation to the shape of the earth and the day-night cycle. Using explicit questioning involving a choice of alternative answers and 3D models, we carried out a comparison of children aged 4-9 years living in Australia and England. Though Australia and England have a close…

  20. Cosmology versus holography

    Science.gov (United States)

    Kaloper, Nemanja; Linde, Andrei

    1999-11-01

    The most radical version of the holographic principle asserts that all information about physical processes in the world can be stored on its surface. This formulation is at odds with inflationary cosmology, which implies that physical processes in our part of the universe do not depend on the boundary conditions. Also, there are some indications that the radical version of the holographic theory in the context of cosmology may have problems with unitarity and causality. Another formulation of the holographic principle, due to Fischler and Susskind, implies that the entropy of matter inside the post-inflationary particle horizon must be smaller than the area of the horizon. Their conjecture was very successful for a wide class of open and flat universes, but it did not apply to closed universes. Bak and Rey proposed a different holographic bound on entropy which was valid for closed universes of a certain type. However, as we will show, neither proposal applies to open, flat, and closed universes with matter and a small negative cosmological constant. We will argue, in agreement with Easther, Lowe, and Veneziano, that whenever the holographic constraint on the entropy inside the horizon is valid, it follows from the Bekenstein-Hawking bound on the black hole entropy. These constraints do not allow one to rule out closed universes and other universes which may experience gravitational collapse, and do not impose any constraints on inflationary cosmology.

  1. Tachyon field in cosmology

    Indian Academy of Sciences (India)

    requirements. For a viable model we require fine tuning of parameters comparable to that in ACDM or in quintessence models. For the exponential potential, the accelerated phase is followed by a phase with a(t) o t2/3 thus eliminating a future horizon. Keywords. Cosmology; tachyon field; dark energy; structure formation.

  2. Cosmological magnetic fields

    Indian Academy of Sciences (India)

    Magnetic fields are observed not only in stars, but in galaxies, clusters, and even high redshift Lyman- systems. In principle, these fields could play an important role in structure formation and also affect the anisotropies in the cosmic microwave background radiation (CMB). The study of cosmological magnetic fields aims ...

  3. Cosmology with cluster surveys

    Indian Academy of Sciences (India)

    Cosmology with cluster surveys. SUBHABRATA MAJUMDAR. CITA, University of Toronto, Toronto, ON, M5S 3H8, Canada. E-mail: subha@cita.utoronto.ca. Abstract. Surveys of clusters of galaxies provide us with a powerful probe of the den- sity and nature of the dark energy. The red-shift distribution of detected clusters is.

  4. Excessive extrapolations in cosmology

    Czech Academy of Sciences Publication Activity Database

    Křížek, Michal; Somer, L.

    2016-01-01

    Roč. 22, č. 3 (2016), s. 270-280 ISSN 0202-2893 Institutional support: RVO:67985840 Keywords : cosmology * friedmann equation Subject RIV: BA - General Mathematics Impact factor: 0.734, year: 2016 http://link.springer.com/article/10.1134%2FS0202289316030105

  5. Anisotropic Lyra cosmology

    Indian Academy of Sciences (India)

    Anisotropic Bianchi Type-I cosmological models have been studied on the basis of Lyra's geometry. Two types of models, one with constant deceleration parameter and the other with variable deceleration parameter have been derived by considering a time-dependent displacement field.

  6. Cosmological dynamical systems

    CERN Document Server

    Leon, Genly

    2011-01-01

    In this book are studied, from the perspective of the dynamical systems, several Universe models. In chapter 1 we give a bird's eye view on cosmology and cosmological problems. Chapter 2 is devoted to a brief review on some results and useful tools from the qualitative theory of dynamical systems. They provide the theoretical basis for the qualitative study of concrete cosmological models. Chapters 1 and 2 are a review of well-known results. Chapters 3, 4, 5 and 6 are devoted to our main results. In these chapters are extended and settled in a substantially different, more strict mathematical language, several results obtained by one of us in arXiv:0812.1013 [gr-qc]; arXiv:1009.0689 [gr-qc]; arXiv:0904.1577[gr-qc]; and arXiv:0909.3571 [hep-th]. In chapter 6, we provide a different approach to the subject discussed in astro-ph/0503478. Additionally, we perform a Poincar\\'e compactification process allowing to construct a global phase space containing all the cosmological information in both finite and infinite...

  7. Early Universe Cosmology

    Science.gov (United States)

    Chung, D. J. H.

    2013-12-01

    Three introductory lectures covering inflationary cosmology, leptogenesis, and electroweak baryogenesis are presented. Most of the focus will be on electroweak baryogenesis due to its natural verifiability in terascale experiments. Some limitations in the testability of other topics through terascale experiments will be explained.

  8. Cosmology and the Bispectrum

    Energy Technology Data Exchange (ETDEWEB)

    Sefusatti, Emiliano; /Fermilab /CCPP, New York; Crocce, Martin; Pueblas, Sebastian; Scoccimarro, Roman; /CCPP, New York

    2006-04-01

    The present spatial distribution of galaxies in the Universe is non-Gaussian, with 40% skewness in 50 h{sup -1} Mpc spheres, and remarkably little is known about the information encoded in it about cosmological parameters beyond the power spectrum. In this work they present an attempt to bridge this gap by studying the bispectrum, paying particular attention to a joint analysis with the power spectrum and their combination with CMB data. They address the covariance properties of the power spectrum and bispectrum including the effects of beat coupling that lead to interesting cross-correlations, and discuss how baryon acoustic oscillations break degeneracies. They show that the bispectrum has significant information on cosmological parameters well beyond its power in constraining galaxy bias, and when combined with the power spectrum is more complementary than combining power spectra of different samples of galaxies, since non-Gaussianity provides a somewhat different direction in parameter space. In the framework of flat cosmological models they show that most of the improvement of adding bispectrum information corresponds to parameters related to the amplitude and effective spectral index of perturbations, which can be improved by almost a factor of two. Moreover, they demonstrate that the expected statistical uncertainties in {sigma}s of a few percent are robust to relaxing the dark energy beyond a cosmological constant.

  9. An ancient revisits cosmology.

    Science.gov (United States)

    Greenstein, J L

    1993-01-01

    In this after-dinner speech, a somewhat light-hearted attempt is made to view the observational side of physical cosmology as a subdiscipline of astrophysics, still in an early stage of sophistication and in need of more theoretical understanding. The theoretical side of cosmology, in contrast, has its deep base in general relativity. A major result of observational cosmology is that an expansion of the Universe arose from a singularity some 15 billion years ago. This has had an enormous impact on the public's view of both astronomy and theology. It places on cosmologists an extra responsibility for clear thinking and interpretation. Recently, gravitational physics caused another crisis from an unexpected observational result that nonbaryonic matter appears to dominate. Will obtaining information about this massive nonbaryonic component require that astronomers cease to rely on measurement of photons? But 40 years ago after radio astronomical techniques uncovered the high-energy universe, we happily introduced new subfields, with techniques from physics and engineering still tied to photon detection. Another historical example shows how a subfield of cosmology, big bang nucleosynthesis, grew in complexity from its spectroscopic astrophysics beginning 40 years ago. Determination of primordial abundances of lighter nuclei does illuminate conditions in the Big Bang, but the observational results faced and overcame many hurdles on the way. PMID:11607403

  10. Prosopis tamarugo Phil.: a native tree from the Atacama Desert groundwater table depth thresholds for conservation

    National Research Council Canada - National Science Library

    Calderon, Gabriela; Garrido, Marco; Acevedo, Edmundo

    2015-01-01

    Prosopis tamarugo Phil. is a legume tree native to the Atacama Desert, Chile. Tamarugo has physiological characteristics that are highly adapted to extreme life conditions in the Pampa del Tamarugal...

  11. First star formation in ultralight particle dark matter cosmology

    Science.gov (United States)

    Hirano, Shingo; Sullivan, James M.; Bromm, Volker

    2018-01-01

    The formation of the first stars in the high-redshift Universe is a sensitive probe of the small-scale, particle physics nature of dark matter (DM). We carry out cosmological simulations of primordial star formation in ultralight, axion-like particle DM cosmology, with masses of 10-22 and 10-21 eV, with de Broglie wavelengths approaching galactic scales (∼ kpc). The onset of star formation is delayed, and shifted to more massive host structures. For the lightest DM particle mass explored here, first stars form at z ∼ 7 in structures with ∼109 M⊙, compared to the standard minihalo environment within the Λ cold dark matter (ΛCDM) cosmology, where z ∼ 20-30 and ∼105-106 M⊙. Despite this greatly altered DM host environment, the thermodynamic behaviour of the metal-free gas as it collapses into the DM potential well asymptotically approaches a very similar evolutionary track. Thus, the fragmentation properties are predicted to remain the same as in ΛCDM cosmology, implying a similar mass scale for the first stars. These results predict intense starbursts in the axion cosmologies, which may be amenable to observations with the James Webb Space Telescope.

  12. Deep Sky Diving with the ESO New Technology Telescope

    Science.gov (United States)

    1998-01-01

    Preparations for future cosmological observations with the VLT Within a few months, the first 8.2-meter Unit Telescope of the ESO Very Large Telescope (VLT) array will open its eye towards the sky above the Atacama desert. As documented by recent Press Photos from ESO, the construction work at the Paranal VLT Observatory is proceeding rapidly. Virtually all of the telescope components, including the giant Zerodur mirror (cf. ESO PR Photos 35a-l/97 ), are now on the mountain. While the integration of the telescope and its many optical, mechanical and electronic components continues, astronomers in the ESO member countries and at ESO are now busy defining the observing programmes that will be carried out with the new telescope, soon after it enters into operation. In this context, new and exciting observations have recently been obtained with the 3.5-m New Technology Telescope at the ESO La Silla Observatory, 600 km to the south of Paranal. How to record the faintest and most remote astronomical objects With its very large mirror surface (and correspondingly great light collecting power), as well as an unsurpassed optical quality, the VLT will be able to look exceedingly far out into the Universe, well beyond current horizons. The best technique to record the faintest possible light and thus the most remote celestial objects, is to combine large numbers of exposures of the same field with slightly different telescope pointing. This increases the total number of photons recorded and by imaging the stars and galaxies on different areas (pixels) of the detector, the signal-to-noise ratio and hence the visibility of the faintest objects is improved. The famous Hubble Deep Field Images were obtained in this way by combining over 300 single exposures and they show myriads of faint galaxies in the distant realms of the Universe. The NTT as test bench for the VLT ESO is in the fortunate situation of possessing a `prototype' model of the Very Large Telescope, the 3.5-m New

  13. Nonlocal teleparallel cosmology.

    Science.gov (United States)

    Bahamonde, Sebastian; Capozziello, Salvatore; Faizal, Mir; Nunes, Rafael C

    2017-01-01

    Even though it is not possible to differentiate general relativity from teleparallel gravity using classical experiments, it could be possible to discriminate between them by quantum gravitational effects. These effects have motivated the introduction of nonlocal deformations of general relativity, and similar effects are also expected to occur in teleparallel gravity. Here, we study nonlocal deformations of teleparallel gravity along with its cosmological solutions. We observe that nonlocal teleparallel gravity (like nonlocal general relativity) is consistent with the present cosmological data obtained by SNe Ia + BAO + CC + [Formula: see text] observations. Along this track, future experiments probing nonlocal effects could be used to test whether general relativity or teleparallel gravity gives the most consistent picture of gravitational interaction.

  14. Quantum cosmology: a review.

    Science.gov (United States)

    Bojowald, Martin

    2015-02-01

    In quantum cosmology, one applies quantum physics to the whole universe. While no unique version and no completely well-defined theory is available yet, the framework gives rise to interesting conceptual, mathematical and physical questions. This review presents quantum cosmology in a new picture that tries to incorporate the importance of inhomogeneity. De-emphasizing the traditional minisuperspace view, the dynamics is rather formulated in terms of the interplay of many interacting 'microscopic' degrees of freedom that describe the space-time geometry. There is thus a close relationship with more-established systems in condensed-matter and particle physics even while the large set of space-time symmetries (general covariance) requires some adaptations and new developments. These extensions of standard methods are needed both at the fundamental level and at the stage of evaluating the theory by effective descriptions.

  15. Nonlocal teleparallel cosmology

    Science.gov (United States)

    Bahamonde, Sebastian; Capozziello, Salvatore; Faizal, Mir; Nunes, Rafael C.

    2017-09-01

    Even though it is not possible to differentiate general relativity from teleparallel gravity using classical experiments, it could be possible to discriminate between them by quantum gravitational effects. These effects have motivated the introduction of nonlocal deformations of general relativity, and similar effects are also expected to occur in teleparallel gravity. Here, we study nonlocal deformations of teleparallel gravity along with its cosmological solutions. We observe that nonlocal teleparallel gravity (like nonlocal general relativity) is consistent with the present cosmological data obtained by SNe Ia + BAO + CC + H_0 observations. Along this track, future experiments probing nonlocal effects could be used to test whether general relativity or teleparallel gravity gives the most consistent picture of gravitational interaction.

  16. Wormholes in viscous cosmology

    CERN Document Server

    Wang, Deng

    2016-01-01

    We study the wormhole spacetime configurations in bulk viscosity cosmology. Considering three classes of viscous models, i.e., bulk viscosity as a function of Hubble parameter $H$, temperature $T$ and dark energy density $\\rho$, respectively, we obtain nine wormhole solutions. Through the analysis for the anisotropic solutions, we conclude that, to some extent, these three classes of viscous models have very high degeneracy with each other. Subsequently, without the loss of generality, to investigate the traversabilities, energy conditions and stability for the wormhole solution, we study the wormhole solution of the constant redshift function of the viscous $\\omega$CDM model with a constant bulk viscosity coefficient. We obtain the following conclusions: the value of traversal velocity decreases for decreasing bulk viscosity, and the traversal velocity for a traveler depends on not only the wormhole geometry but also the effects of cosmological background evolution; the null energy condition will be violated...

  17. Inflationary f (R Cosmologies

    Directory of Open Access Journals (Sweden)

    Heba Sami

    2017-10-01

    Full Text Available This paper discusses a simple procedure to reconstruct f ( R -gravity models from exact cosmological solutions of the Einstein field equations with a non-interacting classical scalar field-and-radiation background. From the type of inflationary scenario we are interested in, we show how the potential functions can be obtained. We then show how an f ( R gravitational Lagrangian density that mimics the same cosmological expansion as the scalar field-driven inflation of general relativity (GR can be reconstructed. As a demonstration, we calculate the slow-roll parameters (the spectral index n s and the tensor-to-scalar ratio r and compare these to the Planck data.

  18. Cosmological extrapolation of MOND

    CERN Document Server

    Kiselev, V V

    2011-01-01

    Regime of MOND, which is used in astronomy to describe the gravitating systems of island type without the need to postulate the existence of a hypothetical dark matter, is generalized to the case of homogeneous distribution of usual matter by introducing a linear dependence of the critical acceleration on the size of region under consideration. We show that such the extrapolation of MOND in cosmology is consistent with both the observed dependence of brightness on the redshift for type Ia supernovae and the parameters of large-scale structure of Universe in the evolution, that is determined by the presence of a cosmological constant, the ordinary matter of baryons and electrons as well as the photon and neutrino radiation without any dark matter.

  19. Cosmology and Convention

    Science.gov (United States)

    Merritt, David

    2017-02-01

    I argue that some important elements of the current cosmological model are "conventionalist" in the sense defined by Karl Popper. These elements include dark matter and dark energy; both are auxiliary hypotheses that were invoked in response to observations that falsified the standard model as it existed at the time. The use of conventionalist stratagems in response to unexpected observations implies that the field of cosmology is in a state of 'degenerating problemshift' in the language of Imre Lakatos. I show that the 'concordance' argument, often put forward by cosmologists in support of the current paradigm, is weaker than the convergence arguments that were made in the past in support of the atomic theory of matter or the quantization of energy.

  20. Fundamentals of cosmology

    CERN Document Server

    Rich, James

    2009-01-01

    The book is aimed at astrophysics students and professional physicists who wish to understand the basics of cosmology and general relativity as well as the observational foundations of the LambdaCDM model of the Universe. The book provides a self-contained introduction to general relativity that is based on the homogeneity and isotropy of the local universe. The simplicity of this space allows general relativity to be presented in a very elementary manner while laying the foundation for the treatment of more complicated problems. The new edition presents the most recent observations, including those of CMB anisotropies by WMAP and of Baryon Acoustic Oscillations by SDSS. Future observational and theoretical challenges for the understanding of dark energy and dark matter are discussed. From 1st edition reviews: "The book provides a comprehensive and thorough explication of current cosmology at a level appropriate for a beginning graduate student or an advanced and motivated undergraduate. ... This is an extrem...

  1. Sterile neutrinos in cosmology

    Science.gov (United States)

    Abazajian, Kevork N.

    2017-11-01

    Sterile neutrinos are natural extensions to the standard model of particle physics in neutrino mass generation mechanisms. If they are relatively light, less than approximately 10 keV, they can alter cosmology significantly, from the early Universe to the matter and radiation energy density today. Here, we review the cosmological role such light sterile neutrinos can play from the early Universe, including production of keV-scale sterile neutrinos as dark matter candidates, and dynamics of light eV-scale sterile neutrinos during the weakly-coupled active neutrino era. We review proposed signatures of light sterile neutrinos in cosmic microwave background and large scale structure data. We also discuss keV-scale sterile neutrino dark matter decay signatures in X-ray observations, including recent candidate ∼3.5 keV X-ray line detections consistent with the decay of a ∼7 keV sterile neutrino dark matter particle.

  2. Cosmological Tests of Gravity

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Extensions of Einstein’s theory of General Relativity are under investigation as a potential explanation of the accelerating expansion rate of the universe. I’ll present a cosmologist’s overview of attempts to test these ideas in an efficient and unbiased manner. I’ll start by introducing the bestiary of alternative gravity theories that have been put forwards. This proliferation of models motivates us to develop model-independent, agnostic tools for comparing the theory space to cosmological data. I’ll introduce the effective field theory for cosmological perturbations, a framework designed to unify modified gravity theories in terms of a manageable set of parameters. Having outlined the formalism, I’ll talk about the current constraints on this framework, and the improvements expected from the next generation of large galaxy clustering, weak lensing and intensity mapping experiments.

  3. Nonlocal teleparallel cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom); Capozziello, Salvatore [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Compl. Univ. di Monte S. Angelo, Naples (Italy); INFN, Napoli (Italy); Faizal, Mir [University of British Columbia - Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Nunes, Rafael C. [Universidade Federal de Juiz de Fora, Departamento de Fisica, Juiz de Fora, MG (Brazil)

    2017-09-15

    Even though it is not possible to differentiate general relativity from teleparallel gravity using classical experiments, it could be possible to discriminate between them by quantum gravitational effects. These effects have motivated the introduction of nonlocal deformations of general relativity, and similar effects are also expected to occur in teleparallel gravity. Here, we study nonlocal deformations of teleparallel gravity along with its cosmological solutions. We observe that nonlocal teleparallel gravity (like nonlocal general relativity) is consistent with the present cosmological data obtained by SNe Ia + BAO + CC + H{sub 0} observations. Along this track, future experiments probing nonlocal effects could be used to test whether general relativity or teleparallel gravity gives the most consistent picture of gravitational interaction. (orig.)

  4. Multiverses and physical cosmology

    OpenAIRE

    Ellis, G. F. R.; Kirchner, U.; Stoeger, W. R.

    2003-01-01

    The idea of a multiverse -- an ensemble of universes -- has received increasing attention in cosmology, both as the outcome of the originating process that generated our own universe, and as an explanation for why our universe appears to be fine-tuned for life and consciousness. Here we carefully consider how multiverses should be defined, stressing the distinction between the collection of all possible universes, and ensembles of really existing universes that are essential for an anthropic ...

  5. Greek Cosmology and Cosmogony

    Science.gov (United States)

    Jones, Alexander

    The structure, composition, and long-term history of the cosmos were prominent topics in many ancient Greek philosophical systems. Philosophers and philosophically informed astronomers differed over whether the cosmos was finite or infinite, eternal or transient, and composed of discrete particles or continuous, homogeneous elements. The Aristotelian cosmology preferred by astronomers following Ptolemy assumed a finite, spherical shell of eternally unalterable matter enclosing a terrestrial globe composed of earth, water, air, and fire.

  6. Cosmology, Clusters and Calorimeters

    Science.gov (United States)

    Figueroa-Feliciano, Enectali

    2005-01-01

    I will review the current state of Cosmology with Clusters and discuss the application of microcalorimeter arrays to this field. With the launch of Astro-E2 this summer and a slew of new missions being developed, microcalorimeters are the next big thing in x-ray astronomy. I will cover the basics and not-so-basic concepts of microcalorimeter designs and look at the future to see where this technology will go.

  7. Topics in inflationary cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Mahajan, S.

    1986-04-01

    Several aspects of inflationary cosmologies are discussed. An introduction to the standard hot big bang cosmological model is reviewed, and some of the problems associated with it are presented. A short review of the proposals for solving the cosmological conundrums of the big bang model is presented. Old and the new inflationary scenarios are discussed and shown to be unacceptable. Some alternative scenarios especially those using supersymmetry are reviewed briefly. A study is given of inflationary models where the same set of fields that breaks supersymmetry is also responsible for inflation. In these models, the scale of supersymmetry breaking is related to the slope of the potential near the origin and can thus be kept low. It is found that a supersymmetry breaking scale of the order of the weak breaking scale. The cosmology obtained from the simplest of such models is discussed in detail and it is shown that there are no particular problems except a low reheating temperature and a violation of the thermal constraint. A possible solution to the thermal constraint problem is given by introducing a second field, and the role played by this second field in the scenario is discussed. An alternative mechanism for the generation of baryon number within the framework of supergravity inflationary models is studied using the gravitational couplings of the heavy fields with the hidden sector (the sector which breaks supersymmetry). This mechanism is applied to two specific models - one with and one without supersymmetry breaking. The baryon to entropy ratio is found to be dependent on parameters which are model dependent. Finally, the effect of direct coupling between the two sectors on results is related, 88 refs., 6 figs.

  8. Cosmological perturbations in antigravity

    Science.gov (United States)

    Oltean, Marius; Brandenberger, Robert

    2014-10-01

    We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.

  9. A green observatory in the Chilean Atacama desert

    Science.gov (United States)

    Ramolla, Michael; Westhues, Christian; Hackstein, Moritz; Haas, Martin; Hodapp, Klaus; Lemke, Roland; Barr Domínguez, Angie; Chini, Rolf; Murphy, Miguel

    2016-08-01

    Since 2007, the Ruhr-Universität Bochum (RUB) in Germany and Universidad Católica del Norte (UCN) in Chile jointly operate the Universitätssternwarte der Ruhr-Universität Bochum (USB), which is located in direct neighborhood of the future E-ELT of ESO. It is the only observatory powered exclusively by solar panels and wind turbines. Excess power is stored in batteries that allow uninterrupted operation even in windless nights. The scientific equipment consists of three robotic optical telescopes with apertures ranging from 15 cm (RoBoTT) over 25 cm (BESTII) to 40 cm (BMT) and one 80 cm (IRIS) infra-red telescope. The optical telescopes are equipped with Johnson and Sloan broad band filters together with a large number of narrow and intermediate bands. In the infrared, J,H and K filters are available, accompanied by several narrow bands near the K band wavelength. The second Nasmyth focus in the 80 cm telescope feeds a high resolution echelle spectrograph similar to the FEROS instrument of ESO. This variety of instruments has evolved from different collaborations, i.e. with the University of Hawaii (IfA) in the USA, which provided the near-infrared-camera of the IRIS telescope, or with the Deutsches Zentrum für Luft- und Raumfahrt (DLR) in Germany, which provided the BESTII telescope. The highly automatized processes on all telescopes enable a single person to run the whole facility, providing the high cost efficiency required for an university observatory. The excellent site conditions allow projects that require daily observations of astronomical objects over epochs of several months or years. Here we report on such studies of young stellar objects from the Bochum Galactic Disk Survey, the multiplicity of stars, quasar variability or the hunt for exo-planets.

  10. Testing cosmology with galaxy clusters

    DEFF Research Database (Denmark)

    Rapetti Serra, David Angelo

    2011-01-01

    PASCOS 2011 will be held in Cambridge UK. The conference will be hosted by the Centre for Theoretical Cosmology (DAMTP) at the Mathematical Sciences site in the University of Cambridge. The aim of the conference is to explore and develop synergies between particle physics, string theory and cosmo......PASCOS 2011 will be held in Cambridge UK. The conference will be hosted by the Centre for Theoretical Cosmology (DAMTP) at the Mathematical Sciences site in the University of Cambridge. The aim of the conference is to explore and develop synergies between particle physics, string theory...... and cosmology. There will be an emphasis on timely interdisciplinary topics: • critical tests of inflationary cosmology • advances in fundamental cosmology • applications of string theory (AdS/CMT) • particle and string phenomenology • new experimental particle physics results • and cosmological probes...

  11. The Dirac-Milne cosmology

    Science.gov (United States)

    Benoit-Lévy, Aurélien; Chardin, Gabriel

    2014-05-01

    We study an unconventional cosmology, in which we investigate the consequences that antigravity would pose to cosmology. We present the main characteristics of the Dirac-Milne Universe, a cosmological model where antimatter has a negative active gravitational mass. In this non-standard Universe, separate domains of matter and antimatter coexist at our epoch without annihilation, separated by a gravitationally induced depletion zone. We show that this cosmology does not require a priori the Dark Matter and Dark Energy components of the standard model of cosmology. Additionally, inflation becomes an unnecessary ingredient. Investigating this model, we show that the classical cosmological tests such as primordial nucleosynthesis, Type Ia supernovæ and Cosmic Microwave Background are surprisingly concordant.

  12. Design Concepts for the Cherenkov Telescope Array

    OpenAIRE

    Actis, M.; Agnetta, G.; Aharonian, F.; Akhperjanian, A.; Aleksić, J.; Aliu, E.; ALLAN, D.; Allekotte, I.; Antico, F.; Antonelli, L. A.; Antoranz, P.; Aravantinos, A.; Arlen, T.; Arnaldi, H.; Artmann, S.

    2010-01-01

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV to 10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will con...

  13. An Intriguing Cosmological Model

    Science.gov (United States)

    Kulick, John

    2018-01-01

    The proposed model provides: 1 A predicted cosmological distribution of galaxies that requires no Dark Energy; 2 An observationally confirmed prediction that the historical location for the peak number of quasars, star formation rate, and Gamma Ray Bursts will occur at a red shift factor of z =2; 3 And other predictions. The “Galactic Horizon Model” is described by geometrically defined sets of interacting spatial relationships. 1 “Observable Space” is the reference structure from which we measure the Universe. 2 Observable Space is expanding relative to an “Absolute Space”. 3 The expansion of Observable Space does not stop at the “boundary of galaxies” but occurs incrementally at the atomic scale of observation. “Running the clock backwards”, never has all the galaxies in the Universe compressed into a singularity. 4 Initially, the streams of matter that form galaxies are extremely dense and very close to each other. 5 Gravitational interaction between the new galaxies causes randomized “peculiar” motions that results in randomized Doppler Effects that are added or subtracted to the Cosmological Red Shift. 6 The intensity of gravitational interaction and the kinetic velocity of galaxies diminish over Cosmological time. 7 A model predicted temporal delay defines with the entrance of galaxies into the universe, introduces a “Galactic Horizon” and establishes the location of the Cosmic Background Radiation 8 An additional spatial frame of reference called “Inertial Space” contains the kinematically averaged position of the galaxies. It is from our perspective of Inertial Space that gives the appearance of an expanding Universe. 9 The model results from combining the spatial-temporal field relationships defined in two previous papers (“A Multidimensional Geometric Expansion of Spacetime” [1] and “Could the Inertia and Energy Content of Matter Diminish Over Cosmological Time?” [2]). The apparent spatial location of a galaxy over

  14. ALMA Telescope Reaches New Heights

    Science.gov (United States)

    2009-09-01

    ball at a distance of nine miles, and to keep their smooth reflecting surfaces accurate to less than the thickness of a human hair. Once the transporter reached the high plateau it carried the antenna to a concrete pad -- a docking station with connections for power and fiber optics -- and positioned it with an accuracy of a small fraction of an inch. The transporter is guided by a laser steering system and, just like some cars, also has ultrasonic collision detectors. These sensors ensure the safety of the state-of-the-art antennas as the transporter drives them across what will soon be a rather crowded plateau. Ultimately, ALMA will have at least 66 antennas distributed over about 200 pads, spread over distances of up to 11.5 miles and operating as a single, giant telescope. Even when ALMA is fully operational, the transporters will be used to move the antennas between pads to reconfigure the telescope for different kinds of observations. This first ALMA antenna at the high site will soon be joined by others, and the ALMA team looks forward to making their first observations from the Chajnantor plateau. They plan to link three antennas by early 2010, and to make the first scientific observations with ALMA in the second half of 2011. ALMA will help astronomers answer important questions about our cosmic origins. The telescope will observe the Universe using light with millimeter and submillimeter wavelengths, between infrared light and radio waves in the electromagnetic spectrum. Light at these wavelengths comes from some of the coldest, and from some of the most distant objects in the cosmos. These include cold clouds of gas and dust where new stars are being born, or remote galaxies towards the edge of the observable universe. The Universe is relatively unexplored at submillimeter wavelengths, as the telescopes need extremely dry atmospheric conditions, such as those at Chajnantor, and advanced detector technology. The Atacama Large Millimeter/submillimeter Array

  15. FISICA: The Florida image slicer for infrared cosmology and astrophysics

    Science.gov (United States)

    Eikenberry, Stephen S.; Elston, Richard; Guzman, Rafael; Raines, S. Nicholas; Julian, J.; Gruel, N.; Boreman, Glenn; Hoffmann, Jeff; Rodgers, Michael; Glenn, Paul; Hull-Allen, Greg; Myrick, Bruce; Flint, Scott; Comstock, Lovell

    2006-06-01

    We report on the design and status of the Florida Image Slicer for Infrared Cosmology and Astrophysics (FISICA) - a fully-cryogenic all-reflective image-slicing integral field unit for the FLAMINGOS near-infrared spectrograph. Designed to accept input beams near f/15, FISICA with FLAMINGOS provides R ˜ 1300 spectra over a 16 × 33″ field-of-view on the Cassegrain f/15 focus of the KPNO 4-m telescope, or a 6 × 12″ field-of-view on the Nasmyth or Bent Cassegrain foci of the Gran Telescopio Canarias 10.4-m telescope. FISICA accomplishes this using three sets of "monolithic" powered mirror arrays, each with 22 mirrored surfaces cut into a single piece of aluminum. We review the optical and opto-mechanical design, fabrication, laboratory test results, and on-telescope performance for FISICA.

  16. Philosophical aspects of modern cosmology

    Science.gov (United States)

    Zinkernagel, Henrik

    2014-05-01

    Cosmology is the attempt to understand in scientific terms the structure and evolution of the universe as a whole. This ambition has been with us since the ancient Greeks, even if the developments in modern cosmology have provided a picture of the universe dramatically different from that of Pythagoras, Plato and Aristotle. The cosmological thinking of these figures, e.g. the belief in uniform circular motion of the heavens, was closely related to their philosophical ideas, and it shaped the field of cosmology at least up to the times of Copernicus and Kepler.

  17. Neutrino physics and precision cosmology

    DEFF Research Database (Denmark)

    Hannestad, Steen

    2016-01-01

    I review the current status of structure formation bounds on neutrino properties such as mass and energy density. I also discuss future cosmological bounds as well as a variety of different scenarios for reconciling cosmology with the presence of light sterile neutrinos.......I review the current status of structure formation bounds on neutrino properties such as mass and energy density. I also discuss future cosmological bounds as well as a variety of different scenarios for reconciling cosmology with the presence of light sterile neutrinos....

  18. An introduction to modern cosmology

    CERN Document Server

    Liddle, Andrew

    2015-01-01

    An Introduction to Modern Cosmology Third Edition is an accessible account of modern cosmological ideas. The Big Bang Cosmology is explored, looking at its observational successes in explaining the expansion of the Universe, the existence and properties of the cosmic microwave background, and the origin of light elements in the universe. Properties of the very early Universe are also covered, including the motivation for a rapid period of expansion known as cosmological inflation. The third edition brings this established undergraduate textbook up-to-date with the rapidly evolving observation

  19. Cosmological Reflection of Particle Symmetry

    Directory of Open Access Journals (Sweden)

    Maxim Khlopov

    2016-08-01

    Full Text Available The standard model involves particle symmetry and the mechanism of its breaking. Modern cosmology is based on inflationary models with baryosynthesis and dark matter/energy, which involves physics beyond the standard model. Studies of the physical basis of modern cosmology combine direct searches for new physics at accelerators with its indirect non-accelerator probes, in which cosmological consequences of particle models play an important role. The cosmological reflection of particle symmetry and the mechanisms of its breaking are the subject of the present review.

  20. Holocene environmental changes in the Atacama altiplano and paleoclimatic implications

    Directory of Open Access Journals (Sweden)

    1995-01-01

    Full Text Available CHANGEMENTS DANS L’ENVIRONNEMENT HOLOCÈNE DE L’ALTIPLANO D’ATACAMA ET IMPLICATIONS PALÉOCLIMATIQUES. Une mousson renforcée a transporté l’humidité continentale vers l’Altiplano chilien pendant le Tardiglaciaire et le début de l’Holocène. Les précipitations étaient de l’ordre de 500 mm par an, valeur à comparer aux moins de 200 mm actuels. Les conditions climatiques ont été plus arides que de nos jours entre 8 400 et 3 000 ans BP environ. À partir de cette dernière date, le climat moderne, caractérisé par une réintensification des pluies tropicales, s’est établi. Les raisons des changements du climat pendant l’Holocène sur l’Altiplano ne sont pas connues. Divers facteurs peuvent expliquer ces changements paléoclimatiques : des variations de la circulation dans l’Océan Pacifique, des téléconnexions avec l’hémisphère Nord ou bien avec les basses terres du Continent Américain, ou bien des changements dans le bilan radiatif sur l’Altiplano. CAMBIOS MEDIOAMBIENTALES DURANTE EL HOLOCENO EN EL ALTIPLANO DE ATACAMA E IMPLICACIONES PALEOCLIMÁTICAS. Estudios pluridisciplinarios han permitido reconstruir los cambios extremos en el balance hídrico experimentados en el Altiplano de Atacama durante el Holoceno. La intensificación del monzón de verano (invierno boliviano aumentó la precipitación de origen continental en la región hasta los 25° S durante el Tardiglacial/Holoceno temprano. La precipitación en la región de los Andes occidentales (24° S se incrementó hasta 500 mm por año en comparación con los 200 mm anuales de la actualidad. Durante el período entre 8 400 y 3 000 BP aproximadamente, la extrema aridez y la escasa precipitación dominada por tormentas muy intensas pero esporádicas fueron responsables de un descenso dramático del nivel de los lagos. A partir de los 3 000 a BP, el cinturón de lluvia tropical volvió a desplazarse hacia el norte en varias fases hasta su posición actual (isoyeta

  1. Precision cosmological parameter estimation

    Science.gov (United States)

    Fendt, William Ashton, Jr.

    2009-09-01

    Experimental efforts of the last few decades have brought. a golden age to mankind's endeavor to understand tine physical properties of the Universe throughout its history. Recent measurements of the cosmic microwave background (CMB) provide strong confirmation of the standard big bang paradigm, as well as introducing new mysteries, to unexplained by current physical models. In the following decades. even more ambitious scientific endeavours will begin to shed light on the new physics by looking at the detailed structure of the Universe both at very early and recent times. Modern data has allowed us to begins to test inflationary models of the early Universe, and the near future will bring higher precision data and much stronger tests. Cracking the codes hidden in these cosmological observables is a difficult and computationally intensive problem. The challenges will continue to increase as future experiments bring larger and more precise data sets. Because of the complexity of the problem, we are forced to use approximate techniques and make simplifying assumptions to ease the computational workload. While this has been reasonably sufficient until now, hints of the limitations of our techniques have begun to come to light. For example, the likelihood approximation used for analysis of CMB data from the Wilkinson Microwave Anistropy Probe (WMAP) satellite was shown to have short falls, leading to pre-emptive conclusions drawn about current cosmological theories. Also it can he shown that an approximate method used by all current analysis codes to describe the recombination history of the Universe will not be sufficiently accurate for future experiments. With a new CMB satellite scheduled for launch in the coming months, it is vital that we develop techniques to improve the analysis of cosmological data. This work develops a novel technique of both avoiding the use of approximate computational codes as well as allowing the application of new, more precise analysis

  2. Loop Quantum Cosmology.

    Science.gov (United States)

    Bojowald, Martin

    2008-01-01

    Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time. Supplementary material is available for this article at 10.12942/lrr-2008-4.

  3. The screening Horndeski cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Starobinsky, Alexei A. [L.D. Landau Institute for Theoretical Physics RAS,Moscow 119334 (Russian Federation); Department of General Relativity and Gravitation, Institute of Physics,Kazan Federal University,Kremlevskaya street 18, 420008 Kazan (Russian Federation); Sushkov, Sergey V. [Department of General Relativity and Gravitation, Institute of Physics,Kazan Federal University,Kremlevskaya street 18, 420008 Kazan (Russian Federation); Volkov, Mikhail S. [Laboratoire de Mathématiques et Physique Théorique CNRS-UMR 7350,Université de Tours,Parc de Grandmont, 37200 Tours (France); Department of General Relativity and Gravitation, Institute of Physics,Kazan Federal University,Kremlevskaya street 18, 420008 Kazan (Russian Federation)

    2016-06-06

    We present a systematic analysis of homogeneous and isotropic cosmologies in a particular Horndeski model with Galileon shift symmetry, containing also a Λ-term and a matter. The model, sometimes called Fab Five, admits a rich spectrum of solutions. Some of them describe the standard late time cosmological dynamic dominated by the Λ-term and matter, while at the early times the universe expands with a constant Hubble rate determined by the value of the scalar kinetic coupling. For other solutions the Λ-term and matter are screened at all times but there are nevertheless the early and late accelerating phases. The model also admits bounces, as well as peculiar solutions describing “the emergence of time”. Most of these solutions contain ghosts in the scalar and tensor sectors. However, a careful analysis reveals three different branches of ghost-free solutions, all showing a late time acceleration phase. We analyse the dynamical stability of these solutions and find that all of them are stable in the future, since all their perturbations stay bounded at late times. However, they all turn out to be unstable in the past, as their perturbations grow violently when one approaches the initial spacetime singularity. We therefore conclude that the model has no viable solutions describing the whole of the cosmological history, although it may describe the current acceleration phase. We also check that the flat space solution is ghost-free in the model, but it may acquire ghost in more general versions of the Horndeski theory.

  4. Nonlinear field space cosmology

    Science.gov (United States)

    Mielczarek, Jakub; Trześniewski, Tomasz

    2017-08-01

    We consider the FRW cosmological model in which the matter content of the Universe (playing the role of an inflaton or quintessence) is given by a novel generalization of the massive scalar field. The latter is a scalar version of the recently introduced nonlinear field space theory, where the physical phase space of a given field is assumed to be compactified at large energies. For our analysis, we choose the simple case of a field with the spherical phase space and endow it with the generalized Hamiltonian analogous to the XXZ Heisenberg model, normally describing a system of spins in condensed matter physics. Subsequently, we study both the homogenous cosmological sector and linear perturbations of such a test field. In the homogenous sector, we find that nonlinearity of the field phase space is becoming relevant for large volumes of the Universe and can lead to a recollapse, and possibly also at very high energies, leading to the phase of a bounce. Quantization of the field is performed in the limit where the nontrivial nature of its phase space can be neglected, while there is a nonvanishing contribution from the Lorentz symmetry breaking term of the Hamiltonian. As a result, in the leading order of the XXZ anisotropy parameter, we find that the inflationary spectral index remains unmodified with respect to the standard case but the total amplitude of perturbations is subject to a correction. The Bunch-Davies vacuum state also becomes appropriately corrected. The proposed new approach is bringing cosmology and condensed matter physics closer together, which may turn out to be beneficial for both disciplines.

  5. Loop Quantum Cosmology

    Directory of Open Access Journals (Sweden)

    Bojowald Martin

    2008-07-01

    Full Text Available Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time.

  6. Loop Quantum Cosmology

    Directory of Open Access Journals (Sweden)

    Bojowald Martin

    2005-12-01

    Full Text Available Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding space-time is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend space-time beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of space-time arising in loop quantum gravity and its application to cosmology sheds new light on more general issues such as time.

  7. Inflationary Axion Cosmology

    Science.gov (United States)

    Wilczek, Frank; Turner, Michael S.

    1990-09-01

    If Peccei-Quinn (PQ) symmetry is broken after inflation, the initial axion angle is a random variable on cosmological scales; based on this fact, estimates of the relic-axion mass density give too large a value if the axion mass is less than about 10-6 eV. This bound can be evaded if the Universe underwent inflation after PQ symmetry breaking and if the observable Universe happens to be a region where the initial axion angle was atypically small, .1 . (ma/10-6eV)0.59. We show consideration of fluctuations induced during inflation severely constrains the latter alternative.

  8. Cosmology in antiquity

    CERN Document Server

    Wright, Rosemary

    1995-01-01

    The popularity of Stephen Hawking's work has put cosmology back in the public eye. The question of how the universe began, and why it hangs together, still puzzles scientists. Their puzzlement began two and a half thousand years ago when Greek philosophers first 'looked up at the sky and formed a theory of everything.' Though their solutions are little credited today, the questions remain fresh.The early Greek thinkers struggled to come to terms with and explain the totality of their surroundings; to identitify an original substance from which the universe was compounded; and to reconcil

  9. Bianchi type I string cosmologies

    Indian Academy of Sciences (India)

    if a proper initial condition, viz., inflation is imposed on the very early universe. Various types of inflationary cosmologies are being considered and the string cosmology is one. It is generally believed that the very early universe underwent phase transitions, which gave rise to topologically stable structures; of particular ...

  10. Vignettes in Gravitation and Cosmology

    CERN Document Server

    Sriramkumar, L

    2012-01-01

    This book comprises expository articles on different aspects of gravitation and cosmology that are aimed at graduate students. The topics discussed are of contemporary interest assuming only an elementary introduction to gravitation and cosmology. The presentations are to a certain extent pedagogical in nature, and the material developed is not usually found in sufficient detail in recent textbooks in these areas.

  11. Cosmological solutions with massive gravitons

    Energy Technology Data Exchange (ETDEWEB)

    Chamseddine, Ali H. [Physics Department, American University of Beirut (Lebanon); Laboratoire de Mathematiques et Physique Theorique CNRS-UMR 6083, Universite de Tours, Parc de Grandmont, 37200 Tours (France); LE STUDIUM, Loire Valley Institute for Advanced Studies, Tours and Orleans (France); I.H.E.S., F-91440 Bures-sur-Yvette (France); Volkov, Mikhail S., E-mail: volkov@lmpt.univ-tours.fr [Laboratoire de Mathematiques et Physique Theorique CNRS-UMR 6083, Universite de Tours, Parc de Grandmont, 37200 Tours (France)

    2011-10-25

    We present solutions describing spatially closed, open, or flat cosmologies in the massive gravity theory within the recently proposed tetrad formulation. We find that the effect of the graviton mass is equivalent to introducing to the Einstein equations a matter source that can consist of several different matter types - a cosmological term, quintessence, gas of cosmic strings, and non-relativistic cold matter.

  12. Radio Relics in Cosmological Simulations

    Indian Academy of Sciences (India)

    Radio relics have been discovered in many galaxy clusters. They are believed to trace shock fronts induced by cluster mergers. Cosmological simulations allow us to study merger shocks in detail since the intra-cluster medium is heated by shock dissipation. Using high resolution cosmological simulations, identifying shock ...

  13. Quantum Gravity Effects in Cosmology

    Science.gov (United States)

    Gu, Je-An; Pyo Kim, Sang; Shen, Che-Min

    2018-01-01

    Within the geometrodynamic approach to quantum cosmology, we studied the quantum gravity effects in cosmology. The Gibbons-Hawking temperature is corrected by quantum gravity due to spacetime fluctuations and the power spectrum as well as any probe field will experience the effective temperature, a quantum gravity effect.

  14. Cosmology: From Hubble to HST

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Michael S.

    1997-03-01

    The Hubble constant sets the size and age of the Universe, and, together with independent determinations of the age, provides a consistency check of the standard cosmology. The Hubble constant also provides an important test of our most attractive paradigm for extending the standard cosmology, inflation and cold dark matter.

  15. Quantum Gravity Effects in Cosmology

    Directory of Open Access Journals (Sweden)

    Gu Je-An

    2018-01-01

    Full Text Available Within the geometrodynamic approach to quantum cosmology, we studied the quantum gravity effects in cosmology. The Gibbons-Hawking temperature is corrected by quantum gravity due to spacetime fluctuations and the power spectrum as well as any probe field will experience the effective temperature, a quantum gravity effect.

  16. ATST telescope mount: telescope of machine tool

    Science.gov (United States)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  17. Cosmology with MATLAB

    CERN Document Server

    Green, Dan

    2016-01-01

    This volume makes explicit use of the synergy between cosmology and high energy physics, for example, supersymmetry and dark matter, or nucleosynthesis and the baryon-to-photon ratio. In particular the exciting possible connection between the recently discovered Higgs scalar and the scalar field responsible for inflation is explored.The recent great advances in the accuracy of the basic cosmological parameters is exploited in that no free scale parameters such as h appear, rather the basic calculations are done numerically using all sources of energy density simultaneously. Scripts are provided that allow the reader to calculate exact results for the basic parameters. Throughout MATLAB tools such as symbolic math, numerical solutions, plots and 'movies' of the dynamical evolution of systems are used. The GUI package is also shown as an example of the real time manipulation of parameters which is available to the reader.All the MATLAB scripts are made available to the reader to explore examples of the uses of ...

  18. FLRW viscous cosmological models

    CERN Document Server

    Khadekar, G S; Meng, X -H

    2016-01-01

    In this paper we solve Friedmann equations by considering a universal media as a non-perfect fluid with bulk viscosity and is described by a general "gamma law" equation of state of the form $p= (\\gamma -1) \\rho + \\Lambda(t)$, where the adiabatic parameter $\\gamma$ varies with scale factor $R$ of the metric and $\\Lambda$ is the time dependent cosmological constant. A unified description of the early evolution of the universe is presented by assuming the bulk viscosity and cosmological parameter in a linear combination of two terms of the form: $\\Lambda(t)=\\Lambda_{0} + \\Lambda_{1}\\frac{\\dot{R}}{R}$ and $\\zeta = \\zeta_{0} + \\zeta_{1} \\frac{\\dot{R}}{R}$, where $\\Lambda_{0},\\;\\Lambda_{1},\\, \\zeta_{0}$ and $ \\zeta_{1}$ are constants, in which an inflationary phase is followed by the radiation dominated phase. For this general gamma law equation of state, an entirely integrable dynamical equation to the scale factor $R$ is obtained along with its exact solutions. In this framework we demonstrate that the model can...

  19. Indian cosmogonies and cosmologies

    Directory of Open Access Journals (Sweden)

    Pajin Dušan

    2011-01-01

    Full Text Available Various ideas on how the universe appeared and develops, were in Indian tradition related to mythic, religious, or philosophical ideas and contexts, and developed during some 3.000 years - from the time of Vedas, to Puranas. Conserning its appeareance, two main ideas were presented. In one concept it appeared out of itself (auto-generated, and gods were among the first to appear in the cosmic sequences. In the other, it was a kind of divine creation, with hard work (like the dismembering of the primal Purusha, or as emanation of divine dance. Indian tradition had also various critiques of mythic and religious concepts (from the 8th c. BC, to the 6c., who favoured naturalistic and materialistic explanations, and concepts, in their cosmogony and cosmology. One the peculiarities was that indian cosmogony and cosmology includes great time spans, since they used a digit system which was later (in the 13th c. introduced to Europe by Fibonacci (Leonardo of Pisa, 1170-1240.

  20. cosmolike - cosmological likelihood analyses for photometric galaxy surveys

    Science.gov (United States)

    Krause, Elisabeth; Eifler, Tim

    2017-09-01

    We explore strategies to extract cosmological constraints from a joint analysis of cosmic shear, galaxy-galaxy lensing, galaxy clustering, cluster number counts and cluster weak lensing. We utilize the cosmolike software to simulate results from a Large Synoptic Survey Telescope (LSST) like data set, specifically, we (1) compare individual and joint analyses of the different probes, (2) vary the selection criteria for lens and source galaxies, (3) investigate the impact of blending, (4) investigate the impact of the assumed cosmological model in multiprobe covariances, (6) quantify information content as a function of scales and (7) explore the impact of intrinsic galaxy alignment in a multiprobe context. Our analyses account for all cross-correlations within and across probes and include the higher-order (non-Gaussian) terms in the multiprobe covariance matrix. We simultaneously model cosmological parameters and a variety of systematics, e.g. uncertainties arising from shear and photo-z calibration, cluster mass-observable relation, galaxy intrinsic alignment and galaxy bias (up to 54 parameters altogether). We highlight two results: first, increasing the number density of source galaxies by ˜30 per cent, which corresponds to solving blending for LSST, only gains little information. Secondly, including small scales in clustering and galaxy-galaxy lensing, by utilizing halo occupation distribution models, can substantially boost cosmological constraining power.

  1. Redundant Array Configurations for 21 cm Cosmology

    Science.gov (United States)

    Dillon, Joshua S.; Parsons, Aaron R.

    2016-08-01

    Realizing the potential of 21 cm tomography to statistically probe the intergalactic medium before and during the Epoch of Reionization requires large telescopes and precise control of systematics. Next-generation telescopes are now being designed and built to meet these challenges, drawing lessons from first-generation experiments that showed the benefits of densely packed, highly redundant arrays—in which the same mode on the sky is sampled by many antenna pairs—for achieving high sensitivity, precise calibration, and robust foreground mitigation. In this work, we focus on the Hydrogen Epoch of Reionization Array (HERA) as an interferometer with a dense, redundant core designed following these lessons to be optimized for 21 cm cosmology. We show how modestly supplementing or modifying a compact design like HERA’s can still deliver high sensitivity while enhancing strategies for calibration and foreground mitigation. In particular, we compare the imaging capability of several array configurations, both instantaneously (to address instrumental and ionospheric effects) and with rotation synthesis (for foreground removal). We also examine the effects that configuration has on calibratability using instantaneous redundancy. We find that improved imaging with sub-aperture sampling via “off-grid” antennas and increased angular resolution via far-flung “outrigger” antennas is possible with a redundantly calibratable array configuration.

  2. Anisotropies of Gravitational-Wave Standard Sirens as a New Cosmological Probe without Redshift Information

    Science.gov (United States)

    Namikawa, Toshiya; Nishizawa, Atsushi; Taruya, Atsushi

    2016-03-01

    Gravitational waves (GWs) from compact binary stars at cosmological distances are promising and powerful cosmological probes, referred to as the GW standard sirens. With future GW detectors, we will be able to precisely measure source luminosity distances out to a redshift z ˜5 . To extract cosmological information, previously proposed cosmological studies using the GW standard sirens rely on source redshift information obtained through an extensive electromagnetic follow-up campaign. However, the redshift identification is typically time consuming and rather challenging. Here, we propose a novel method for cosmology with the GW standard sirens free from the redshift measurements. Utilizing the anisotropies of the number density and luminosity distances of compact binaries originated from the large-scale structure, we show that, once GW observations will be well established in the future, (i) these anisotropies can be measured even at very high redshifts (z ≥2 ), where the identification of the electromagnetic counterpart is difficult, (ii) the expected constraints on the primordial non-Gaussianity with the Einstein Telescope would be comparable to or even better than the other large-scale structure probes at the same epoch, and (iii) the cross-correlation with other cosmological observations is found to have high-statistical significance, providing additional cosmological information at very high redshifts.

  3. Constraining viscous dark energy models with the latest cosmological data

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Deng [Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Yan, Yang-Jie; Meng, Xin-He [Nankai University, Department of Physics, Tianjin (China)

    2017-10-15

    Based on the assumption that the dark energy possessing bulk viscosity is homogeneously and isotropically permeated in the universe, we propose three new viscous dark energy (VDE) models to characterize the accelerating universe. By constraining these three models with the latest cosmological observations, we find that they just deviate very slightly from the standard cosmological model and can alleviate effectively the current H{sub 0} tension between the local observation by the Hubble Space Telescope and the global measurement by the Planck Satellite. Interestingly, we conclude that a spatially flat universe in our VDE model with cosmic curvature is still supported by current data, and the scale invariant primordial power spectrum is strongly excluded at least at the 5.5σ confidence level in the three VDE models as the Planck result. We also give the 95% upper limits of the typical bulk viscosity parameter η in the three VDE scenarios. (orig.)

  4. Status of Cosmological Parameters

    Science.gov (United States)

    Primack, Joel R.

    The cosmological parameters that I will discuss are the Hubble parameter H0 ≡ 100/h roman>km sroman>-1 roman>Mpcroman>-1, the age of the universe t0, the average density Ω0, and the cosmological constant Λ. The most important recent developments are the new analyses based on Hipparchos data indicating that the oldest Globular Clusters in our Galaxy have ages of ˜ 11 Gyr, the measurements of H0 using gravitational lensing time delays giving h ≈ 0.6, and the measurement of Ω0 - ΩΛ using high-redshift supernovae. The evidence would favor small Ω0 ≈ 0.3 if (1) the Hubble parameter actually has the high value h ≈ 0.7 still favored by some observers, and the age of the universe t0 ≥ 13 roman>Gyroman>, despite the new Hipparchos results; (2) the baryonic/total mass ratio in clusters of galaxies is actually ˜ 20%, about twice as large as expected for standard BBN in an Ω = 1 universe with the Tytler et al. value D/H ≈ 2 × 10-5; or (3) the comoving number density of clusters does not decrease much with increasing redshift. The evidence would favor Ω ˜ 1 if (1) the POTENT analysis of galaxy peculiar velocity data is right, in particular regarding outflows from voids or the inability to obtain the present-epoch non-Gaussian density distribution from Gaussian initial fluctuations in a low-Ω universe; or (2) the preliminary results from high-redshift Type la supernovae (SNeIa), which suggest that Ω0 ˜ 1 and ΩΛ is small, are confirmed. However, the latest SNeIa results suggest Ω0 ˜ 0.3 - 0.6 for the flat case Ω0 + ΩΛ = 1, and favor ΩΛ > 0. The latest small-angle CMB anisotropy data favor cosmologies in which Ω0 + ΩΛ ≳ 0.5. Statistics of gravitational lensing of quasars provide an independent upper limit on Λ, and statistics of arcs produced by gravitational lensing of galaxies by clusters favors Ω ≈ 0.3 with ΩΛ = 0. Although Ω = 1 is still allowed at about the 2σ level, the data taken together appears to favor a lower value

  5. Cosmology for physicists

    CERN Document Server

    Lyth, David

    2016-01-01

    Written by an award-winning cosmologist, this brand new textbook provides advanced undergraduate and graduate students with coverage of the very latest developments in the observational science of cosmology. The book is separated into three parts; part I covers particle physics and general relativity, part II explores an account of the known history of the universe, and part III studies inflation. Full treatment of the origin of structure, scalar fields, the cosmic microwave background and the early universe are provided. Problems are included in the book with solutions provided in a separate solutions manual. More advanced extension material is offered in the Appendix, ensuring the book is fully accessible to students with a wide variety of background experience.

  6. Cosmological Origins of Water

    Science.gov (United States)

    Gagliano, Alexander; Taylor, Morgan; Black, William; Smidt, Joseph; Wiggins, Brandon K.

    2018-01-01

    Recent models indicate that the sun's protoplanetary disk provided insufficient pathways for water formation, as evidenced by [D/H]H2O measurements in asteroids and Earth's oceans. It is therefore likely that the early universe contained sites conducive to water chemistry. This research tracks the timeline and abundance rates of water using cosmological simulations in Enzo. A 64 Mpc cube of space is evolved from z = 200 to z = 2. Simulations are then centered on a massive halo, and a 26-species reaction network is applied using operator split to track water formation rates. Density projection plots with metallicity contours predict regions of water formation, which are then compared to simulated abundances at both galactic and extragalactic scales. Observational signatures of formation sites are further discussed, and allow for additional validation of the simulations used.

  7. LHC, Astrophysics and Cosmology

    Directory of Open Access Journals (Sweden)

    Giulio Auriemma

    2014-12-01

    Full Text Available In this paper we discuss the impact on cosmology of recent results obtained by the LHC (Large Hadron Collider experiments in the 2011-2012 runs, respectively at √s = 7 and 8 TeV. The capital achievement of LHC in this period has been the discovery of a spin-0 particle with mass 126 GeV/c2, very similar to the Higgs boson of the Standard Model of Particle Physics. Less exciting, but not less important, negative results of searches for Supersymmetric particles or other exotica in direct production or rare decays are discussed in connection with particles and V.H.E. astronomy searches for Dark Matter.

  8. Cosmological magnetic fields

    Science.gov (United States)

    Kunze, Kerstin E.

    2013-12-01

    Magnetic fields are observed on nearly all scales in the Universe, from stars and galaxies up to galaxy clusters and even beyond. The origin of cosmic magnetic fields is still an open question, however a large class of models puts its origin in the very early Universe. A magnetic dynamo amplifying an initial seed magnetic field could explain the present day strength of the galactic magnetic field. However, it is still an open problem how and when this initial magnetic field was created. Observations of the cosmic microwave background (CMB) provide a window to the early Universe and might therefore be able to tell us whether cosmic magnetic fields are of a primordial cosmological origin and at the same time constrain its parameters. We will give an overview of the observational evidence of large-scale magnetic fields, describe generation mechanisms of primordial magnetic fields and possible imprints in the CMB.

  9. Peculiar Relations in Cosmology

    Directory of Open Access Journals (Sweden)

    Seshavatharam U.V.S.

    2013-04-01

    Full Text Available Within the expanding cosmic Hubble volume, the Hubble length can be considered as the gravitational or electromagnetic interaction range. T he product of ‘Hubble volume’ and ‘cosmic critical density’ can be called the ‘Hubble mass ’. Based on this cosmic mass unit, the authors noticed three peculiar semi empirical applications. With these applications it is possible to say that in atomic and nuclear physics, there exists a cos- mological physical variable. By observing its rate of change, the future cosmic accel- eration can be verified, time to time Hubble’s constant can be estimated and finally a unified model of the four cosmological interactions can be developed.

  10. Quantum Weyl invariance and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Dabholkar, Atish, E-mail: atish@ictp.it [International Centre for Theoretical Physics, ICTP-UNESCO, Strada Costiera 11, Trieste 34151 (Italy); Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7589, LPTHE, F-75005, Paris (France)

    2016-09-10

    Equations for cosmological evolution are formulated in a Weyl invariant formalism to take into account possible Weyl anomalies. Near two dimensions, the renormalized cosmological term leads to a nonlocal energy-momentum tensor and a slowly decaying vacuum energy. A natural generalization to four dimensions implies a quantum modification of Einstein field equations at long distances. It offers a new perspective on time-dependence of couplings and naturalness with potentially far-reaching consequences for the cosmological constant problem, inflation, and dark energy.

  11. Cosmology and the weak interaction

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N. (Fermi National Accelerator Lab., Batavia, IL (USA)):(Chicago Univ., IL (USA))

    1989-12-01

    The weak interaction plays a critical role in modern Big Bang cosmology. This review will emphasize two of its most publicized cosmological connections: Big Bang nucleosynthesis and Dark Matter. The first of these is connected to the cosmological prediction of Neutrino Flavours, N{sub {nu}} {approximately} 3 which is now being confirmed at SLC and LEP. The second is interrelated to the whole problem of galaxy and structure formation in the universe. This review will demonstrate the role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure. 87 refs., 3 figs., 5 tabs.

  12. String inspired brane world cosmology.

    Science.gov (United States)

    Germani, Cristiano; Sopuerta, Carlos F

    2002-06-10

    We consider brane world scenarios including the leading correction to the Einstein-Hilbert action suggested by superstring theory, the Gauss-Bonnet term. We obtain and study the complete set of equations governing the cosmological dynamics. We find they have the same form as those in Randall-Sundrum scenarios but with time-varying four-dimensional gravitational and cosmological constants. By studying the bulk geometry we show that this variation is produced by bulk curvature terms parametrized by the mass of a black hole. Finally, we show there is a coupling between these curvature terms and matter that can be relevant for early universe cosmology.

  13. Oparin and the origin of life - Cosmological considerations

    Science.gov (United States)

    Young, R. S.

    1974-01-01

    The question of the origin of life is examined on a cosmological scale from early observations made by Oparin. Even by a comparison of the amount of data presently available from telescopic and spacecraft observations Oparin's conclusions have been confirmed. The concept of panspermia is rejected and details of the role of carbon on earth are presented. Formation of C2, CN and CH is explained and various aspects of the atmospheres of planets are considered. Finally, the origin of amides, amines and other nitrogenous derivatives from hydrocarbons is discussed.

  14. The Florida Image Slicer for Infrared Astrophysics and Cosmology

    Science.gov (United States)

    Raines, S. N.; Eikenberry, S. S.; Guzmán, R.; Gruel, N.; Julian, J.; Boreman, G.; Hoffman, J.; Rodgers, M.; Glenn, P.; Hull-Allen, G.; Myrick, B.; Flint, S.; Comstock, L.

    2007-06-01

    We report on the design, manufacture, and scientific performance of the Florida Image Slicer for Infrared Astrophysics and Cosmology (FISICA), a fully cryogenic all-reflective image slicing integral field unit (IFU) for the FLAMINGOS near-infrared spectrograph (Elston et al.003). We find that FISICA is capable of delivering excellent scientific results. It now operates as a turnkey instrument at the KPNO 4-m telescope via collaboration with the instrument team, who can assist with the proposal preparation and observations, as well as provide the data reduction tools for integral field spectroscopy.

  15. Modernism and cosmology absurd lights

    CERN Document Server

    Ebury, Katherine

    2014-01-01

    Through examining the work of W. B. Yeats, James Joyce, and Samuel Beckett, Katherine Ebury shows cosmology had a considerable impact on modernist creative strategies, developing alternative reading models of difficult texts such as Finnegans Wake and 'The Trilogy'.

  16. Introduction. Cosmology meets condensed matter.

    Science.gov (United States)

    Kibble, T W B; Pickett, G R

    2008-08-28

    At first sight, low-temperature condensed-matter physics and early Universe cosmology seem worlds apart. Yet, in the last few years a remarkable synergy has developed between the two. It has emerged that, in terms of their mathematical description, there are surprisingly close parallels between them. This interplay has been the subject of a very successful European Science Foundation (ESF) programme entitled COSLAB ('Cosmology in the Laboratory') that ran from 2001 to 2006, itself built on an earlier ESF network called TOPDEF ('Topological Defects: Non-equilibrium Field Theory in Particle Physics, Condensed Matter and Cosmology'). The articles presented in this issue of Philosophical Transactions A are based on talks given at the Royal Society Discussion Meeting 'Cosmology meets condensed matter', held on 28 and 29 January 2008. Many of the speakers had participated earlier in the COSLAB programme, but the strength of the field is illustrated by the presence also of quite a few new participants.

  17. Bimetric gravity is cosmologically viable

    Directory of Open Access Journals (Sweden)

    Yashar Akrami

    2015-09-01

    Full Text Available Bimetric theory describes gravitational interactions in the presence of an extra spin-2 field. Previous work has suggested that its cosmological solutions are generically plagued by instabilities. We show that by taking the Planck mass for the second metric, Mf, to be small, these instabilities can be pushed back to unobservably early times. In this limit, the theory approaches general relativity with an effective cosmological constant which is, remarkably, determined by the spin-2 interaction scale. This provides a late-time expansion history which is extremely close to ΛCDM, but with a technically-natural value for the cosmological constant. We find Mf should be no larger than the electroweak scale in order for cosmological perturbations to be stable by big-bang nucleosynthesis. We further show that in this limit the helicity-0 mode is no longer strongly-coupled at low energy scales.

  18. Precision cosmology and the landscape

    Energy Technology Data Exchange (ETDEWEB)

    Bousso, Raphael; Bousso, Raphael

    2006-10-01

    After reviewing the cosmological constant problem -- why is Lambda not huge? -- I outline the two basic approaches that had emerged by the late 1980s, and note that each made a clear prediction. Precision cosmological experiments now indicate that the cosmological constant is nonzero. This result strongly favors the environmental approach, in which vacuum energy can vary discretely among widely separated regions in the universe. The need to explain this variation from first principles constitutes an observational constraint on fundamental theory. I review arguments that string theory satisfies this constraint, as it contains a dense discretuum of metastable vacua. The enormous landscape of vacua calls for novel, statistical methods of deriving predictions, and it prompts us to reexamine our description of spacetime on the largest scales. I discuss the effects of cosmological dynamics, and I speculate that weighting vacua by their entropy production may allow for prior-free predictions that do not resort to explicitly anthropic arguments.

  19. A new cosmological constant model

    CERN Document Server

    López, J L; Lopez, J; Nanopoulos, D

    1996-01-01

    We propose a new cosmological model with a time-dependent cosmological constant (\\Lambda\\propto 1/t^2), which starting at the Planck time as \\Lambda_{Pl}\\sim M^2_{Pl}, evolves to the present-day allowed value of \\Lambda_0\\sim10^{-120}M^2_{Pl}. This scenario is supported by non-critical string theory considerations. We compute the age of the Universe and the time-dependence of the scale factor in this model, and find general agreement with recent determinations of the Hubble parameter for substantial values of \\Omega_{\\rm \\Lambda}. This effectively low-density open Universe model differs from the traditional cosmological constant model, and has observable implications for particle physics and cosmology.

  20. Three Studies in Epicurean Cosmology

    NARCIS (Netherlands)

    Bakker, F.A.|info:eu-repo/dai/nl/167255460

    2010-01-01

    This dissertation consists of three studies dealing with various aspects of Epicurean cosmology. The first study discusses the Epicurean practice of explaining astronomical and meteorological phenomena by multiple alternative theories. The second study compares the meteorological accounts of

  1. Physical and Relativistic Numerical Cosmology

    Directory of Open Access Journals (Sweden)

    Peter Anninos

    1998-01-01

    Full Text Available In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark--hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  2. Cosmological Inflation: A Personal Perspective

    Science.gov (United States)

    Kazanas, Demos

    2008-01-01

    We present a brief review of Cosmological Inflation from the personal perspective of the speaker who almost 30 years ago proposed a way of resolving the problem of Cosmological Horizon by employing certain notions and developments from the field of High Energy Physics. Along with a brief introduction of the Horizon and Flatness problems of standard cosmology, this lecture concentrates on personal reminiscing of the notions and ideas that prevailed and influenced the author's thinking at the time. The lecture then touches upon some more recent developments related to the subject including exact solutions to conformal gravity that provide a first principles emergence of a characteristic acceleration in the universe and concludes with some personal views concerning the direction that the cosmology field has taken in the past couple of decades and certain speculations some notions that may indicate future directions of research.

  3. Physical and Relativistic Numerical Cosmology.

    Science.gov (United States)

    Anninos, Peter

    1998-01-01

    In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  4. Quantum cosmology on the worldsheet

    Science.gov (United States)

    Cooper, A. R.; Susskind, L.; Thorlacius, L.

    1991-08-01

    Two-dimensional quantum gravity coupled to conformally invariant matter central c greater than 25 provides a toy model for quantum gravity in four dimensions. Two-dimensional quantum cosmology can thus be studied in terms of string theory in background fields. The large scale cosmological constant depends on non-linear dynamics in the string theory target space and does not appear to be suppressed by wormhole effects.

  5. Quantum cosmology on the worldsheet

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, A.R.; Susskind, L.; Thorlacius, L.

    1991-08-01

    Two-dimensional quantum gravity coupled to conformally invariant matter central c > 25 provides a toy model for quantum gravity in four dimensions. Two-dimensional quantum cosmology can thus be studied in terms of string theory in background fields. The large scale cosmological constant depends on non-linear dynamics in the string theory target space and does not appear to be suppressed by wormhole effects. 13 refs.

  6. Cosmology with strong lensing systems

    Science.gov (United States)

    Biesiada, Marek

    2017-08-01

    Strong gravitational lensing has now developed into a mature tool for investigating galactic structure and dynamics as well as cosmological models. In this lecture the phenomenon of strong gravitational lensing, its history and applications are reviewed with an emphasis on the recent ideas developed by the author. Expected massive discoveries of strong lensing galactic scale systems in forthcoming projects like Euclid or LSST herald the bright future of gravitational lensing in cosmology.

  7. Microbiology of hyper-arid environments: recent insights from the Atacama Desert, Chile.

    Science.gov (United States)

    Bull, Alan T; Asenjo, Juan A

    2013-06-01

    Interests in the Atacama Desert of northern Chile until very recently were founded on its mineral resources, notably nitrate, copper, lithium and boron. Now this vast desert, the oldest and most arid on Earth, is revealing a microbial diversity that was unimagined even a decade or so ago; indeed the extreme hyper-arid core of the Desert was considered previously to be completely devoid of life. In this Perspective article we highlight pioneering research that, to the contrary, establishes the Atacama as a combination of rich microbial habitats including bacteria that influence biogeochemical transformations in the desert and others that are propitious sources of novel natural products. Many of the Atacama's habitats are especially rich in actinobacteria, not necessarily as dense populations but extensive in taxonomic diversity and capacities to synthesize novel secondary metabolites. Among the latter, compounds have been characterized that express a range of antibiotic, anti-cancer and anti- inflammatory properties to which a variety of bioinformatics and metabolic engineering tools are being applied in order to enhance potencies and productivities. Unquestionably the Atacama Desert is a living desert with regard to which future microbiology and biotechnology research presents exciting opportunities.

  8. Tree establishment along an ENSO experimental gradient in the Atacama desert

    NARCIS (Netherlands)

    Squeo, F.A.; Holmgren, M.; Jimenez, L.; Alban, L.; Reyes, J.; Gutierrez, J.R.

    2007-01-01

    Questions: (1) What are the roles of regional climate and plant growth rate for seedling establishment during ENSO rainy pulses along the western coast of South America? (2) What is the water threshold for tree seedling establishment in these arid ecosystems? Location: Atacama Desert, western South

  9. Higgs Physics and Cosmology

    Science.gov (United States)

    Roberts, Alex

    2016-08-01

    Recently, a new framework for describing the multiverse has been proposed which is based on the principles of quantum mechanics. The framework allows for well-defined predictions, both regarding global properties of the universe and outcomes of particular experiments, according to a single probability formula. This provides complete unification of the eternally inflating multiverse and many worlds in quantum mechanics. We elucidate how cosmological parameters can be calculated in this framework, and study the probability distribution for the value of the cosmological constant. We consider both positive and negative values, and find that the observed value is consistent with the calculated distribution at an order of magnitude level. In particular, in contrast to the case of earlier measure proposals, our framework prefers a positive cosmological constant over a negative one. These results depend only moderately on how we model galaxy formation and life evolution therein. We explore supersymmetric theories in which the Higgs mass is boosted by the non-decoupling D-terms of an extended U(1) X gauge symmetry, defined here to be a general linear combination of hypercharge, baryon number, and lepton number. Crucially, the gauge coupling, gX, is bounded from below to accommodate the Higgs mass, while the quarks and leptons are required by gauge invariance to carry non-zero charge under U(1)X. This induces an irreducible rate, sigmaBR, for pp → X → ll relevant to existing and future resonance searches, and gives rise to higher dimension operators that are stringently constrained by precision electroweak measurements. Combined, these bounds define a maximally allowed region in the space of observables, (sigmaBR, mX), outside of which is excluded by naturalness and experimental limits. If natural supersymmetry utilizes non-decoupling D-terms, then the associated X boson can only be observed within this window, providing a model independent 'litmus test' for this broad

  10. Double Compact Objects. II. Cosmological Merger Rates

    Science.gov (United States)

    Dominik, Michal; Belczynski, Krzysztof; Fryer, Christopher; Holz, Daniel E.; Berti, Emanuele; Bulik, Tomasz; Mandel, Ilya; O'Shaughnessy, Richard

    2013-12-01

    The development of advanced gravitational wave (GW) observatories, such as Advanced LIGO and Advanced Virgo, provides impetus to refine theoretical predictions for what these instruments might detect. In particular, with the range increasing by an order of magnitude, the search for GW sources is extending beyond the "local" universe and out to cosmological distances. Double compact objects (neutron star-neutron star (NS-NS), black hole-neutron star (BH-NS), and black hole-black hole (BH-BH) systems) are considered to be the most promising GW sources. In addition, NS-NS and/or BH-NS systems are thought to be the progenitors of gamma-ray bursts and may also be associated with kilonovae. In this paper, we present the merger event rates of these objects as a function of cosmological redshift. We provide the results for four cases, each one investigating a different important evolution parameter of binary stars. Each case is also presented for two metallicity evolution scenarios. We find that (1) in most cases NS-NS systems dominate the merger rates in the local universe, while BH-BH mergers dominate at high redshift, (2) BH-NS mergers are less frequent than other sources per unit volume, for all time, and (3) natal kicks may alter the observable properties of populations in a significant way, allowing the underlying models of binary evolution and compact object formation to be easily distinguished. This is the second paper in a series of three. The third paper will focus on calculating the detection rates of mergers by GW telescopes.

  11. Particle Theory & Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Shafi, Qaisar [Univ. of Delaware, Newark, DE (United States); Barr, Steven [Univ. of Delaware, Newark, DE (United States); Gaisser, Thomas [Univ. of Delaware, Newark, DE (United States); Stanev, Todor [Univ. of Delaware, Newark, DE (United States)

    2015-03-31

    1. Executive Summary (April 1, 2012 - March 31, 2015) Title: Particle Theory, Particle Astrophysics and Cosmology Qaisar Shafi University of Delaware (Principal Investigator) Stephen M. Barr, University of Delaware (Co-Principal Investigator) Thomas K. Gaisser, University of Delaware (Co-Principal Investigator) Todor Stanev, University of Delaware (Co-Principal Investigator) The proposed research was carried out at the Bartol Research included Professors Qaisar Shafi Stephen Barr, Thomas K. Gaisser, and Todor Stanev, two postdoctoral fellows (Ilia Gogoladze and Liucheng Wang), and several graduate students. Five students of Qaisar Shafi completed their PhD during the period August 2011 - August 2014. Measures of the group’s high caliber performance during the 2012-2015 funding cycle included pub- lications in excellent refereed journals, contributions to working groups as well as white papers, and conference activities, which together provide an exceptional record of both individual performance as well as overall strength. Another important indicator of success is the outstanding quality of the past and current cohort of graduate students. The PhD students under our supervision regularly win the top departmental and university awards, and their publications records show excellence both in terms of quality and quantity. The topics covered under this grant cover the frontline research areas in today’s High Energy Theory & Phenomenology. For Professors Shafi and Barr they include LHC related topics including supersymmetry, collider physics, fl vor physics, dark matter physics, Higgs boson and seesaw physics, grand unifi and neutrino physics. The LHC two years ago discovered the Standard Model Higgs boson, thereby at least partially unlocking the secrets behind electroweak symmetry breaking. We remain optimistic that new and exciting physics will be found at LHC 14, which explain our focus on physics beyond the Standard Model. Professors Shafi continued his

  12. Precision cosmology with time delay lenses: High resolution imaging requirements

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiao -Lei [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Treu, Tommaso [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Agnello, Adriano [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Auger, Matthew W. [Univ. of Cambridge, Cambridge (United Kingdom); Liao, Kai [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Marshall, Philip J. [Stanford Univ., Stanford, CA (United States)

    2015-09-28

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtot∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive

  13. Athermal laser launch telescopes

    NARCIS (Netherlands)

    Kamphues, F.G.; Henselmans, R.; Rijnveld, N.; Lemmen, M.H.J.; Doelman, N.J.; Nijkerk, M.D.

    2011-01-01

    ESO has developed a concept for a compact laser guide star unit for use in future Adaptive Optics (AO) systems. A small powerful laser is combined with a telescope that launches the beam, creating a single modular unit that can be mounted directly on a large telescope. This approach solves several

  14. Multiverses and physical cosmology

    Science.gov (United States)

    Ellis, G. F. R.; Kirchner, U.; Stoeger, W. R.

    2004-01-01

    The idea of a multiverse - an ensemble of universes - has received increasing attention in cosmology, both as the outcome of the originating process that generated our own Universe, and as an explanation for why our Universe appears to be fine-tuned for life and consciousness. Here we carefully consider how multiverses should be defined, stressing the distinction between the collection of all possible universes, and ensembles of really existing universes that are essential for an anthropic argument. We show that such realized multiverses are by no means unique. A proper measure on the space of all really existing universes or universe domains is needed, so that probabilities can be calculated, and major problems arise in terms of realized infinities. As an illustration we examine these issues in the case of the set of Friedmann-Lemaître-Robertson-Walker universes. Then we briefly summarize scenarios such as chaotic inflation, which suggest how ensembles of universe domains may be generated, and we point out that the regularities which must underlie any systematic description of truly disjoint multiverses must imply some kind of common generating mechanism. Finally, we discuss the issue of testability, which underlies the question of whether multiverse proposals are really scientific propositions.

  15. Cosmology for the curious

    CERN Document Server

    Perlov, Delia

    2017-01-01

    This book is an introductory text for all those wishing to learn about modern views of the cosmos. Our universe originated in a great explosion – the big bang. For nearly a century cosmologists have studied the aftermath of this explosion: how the universe expanded and cooled down, and how galaxies were gradually assembled by gravity. The nature of the bang itself has come into focus only relatively recently. It is the subject of the theory of cosmic inflation, which was developed in the last few decades and has led to a radically new global view of the universe. Students and other interested readers will find here a non-technical but conceptually rigorous account of modern cosmological ideas - describing what we know, and how we know it. One of the book's central themes is the scientific quest to find answers to the ultimate cosmic questions: Is the universe finite or infinite? Has it existed forever? If not, when and how did it come into being? Will it ever end? The book is based on the undergraduate cour...

  16. Nuclear physics and cosmology

    Science.gov (United States)

    Schramm, David N.

    1989-01-01

    Nuclear physics has provided one of two critical observational tests of all Big Bang cosmology, namely Big Bang Nucleosynthesis. Furthermore, this same nuclear physics input enables a prediction to be made about one of the most fundamental physics questions of all, the number of elementary particle families. The standard Big Bang Nucleosynthesis arguments are reviewed. The primordial He abundance is inferred from He-C and He-N and He-O correlations. The strengthened Li constraint as well as D-2 plus He-3 are used to limit the baryon density. This limit is the key argument behind the need for non-baryonic dark matter. The allowed number of neutrino families, N(nu), is delineated using the new neutron lifetime value of tau(n) = 890 + or - 4s (tau(1/2) = 10.3 min). The formal statistical result is N(nu) = 2.6 + or - 0.3 (1 sigma), providing a reasonable fit (1.3 sigma) to three families but making a fourth light (m(nu) less than or equal to 10 MeV) neutrino family exceedly unlikely (approx. greater than 4.7 sigma). It is also shown that uncertainties induced by postulating a first-order quark-baryon phase transition do not seriously affect the conclusions.

  17. Entropy, matter, and cosmology.

    Science.gov (United States)

    Prigogine, I; Géhéniau, J

    1986-09-01

    The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary "C" field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production.

  18. Kalam cosmological argument

    Directory of Open Access Journals (Sweden)

    Đurić Drago

    2011-01-01

    Full Text Available In this paper it will be presented polemics about kalam cosmological argument developed in medieval islamic theology and philosophy. Main moments of that polemics was presented for a centuries earlier in Philoponus criticism of Aristotle’s thesis that the world is eternal, and of impossibilty of actual infinity. Philoponus accepts the thesis that actual infinity is impossible, but he thinks that, exactly because of that, world cannot be eternal. Namely, according to Philoponus, something can­not come into being if its existence requires the preexistence of an infinite number of other things, one arising out of the other. Philoponus and his fellowers in medieval islamic theology (Al-Kindi and Al-Ghazali, called kalam theologians, have offered arguments against the conception of a temporally infinite universe, under­stood as a succesive causal chain. On other side, medieval islamic thinkers, called falasifah /philosophers/ or aristotelians (Al-Farabi, Avicenna, and Averroës, have offered arguments in favor of Aristotele’s conception of the eternity of the universe. Decisive problem in disccusion between kalam i falsafa medieval muslim thinkers was the problem of infinity. They have offered very interesting arguments and counterarguments about concept of infinity. In this paper it will be presented some of the crucial moments of that arguments.

  19. Dark matter and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  20. Dark matter and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  1. Japanese radio telescopes

    Science.gov (United States)

    Kawaguchi, Noriyuki

    Japanese principal radio telescopes available for Very Long Baseline Interferometry (VLBI) observations are overviewed, and their characteristics and performances are summarized. Three fixed stations, Usuda, Nobeyama, and Kashima, and one 5-m mobile station use a hydrogen master-frequency standard, while other stations use an ultrastable X'tal oscillator locked to a cesium frequency standard. The 64-m telescope in Usuda developed for tracking satellites of deep-space missions is outlined, as well as the Kashima 34-m telescope covering a frequency range from 300 MHz to 49 GHz with 11 receivers. Attention is given to the Nobeyama 45-m telescope as a major telescope in Japan working in an international mm-VLBI network.

  2. Observing the Sun with Coronado telescopes telescopes

    CERN Document Server

    Pugh, Philip

    2007-01-01

    The Sun provides amateur astronomers with one of the few opportunities for daytime astronomy. In order to see the major features of our nearest star, special telescopes that have a very narrow visible bandwidth are essential. The bandwidth has to be as narrow as 1 A- 10-10 m (1 Angstrom) and centred on the absorption line of neutral hydrogen. This makes many major features of the Suna (TM)s chromosphere visible to the observer. Such narrow-band "Fabry-Perot etalon filters" are high technology, and until the introduction of the Coronado range of solar telescopes, were too expensive for amateur use. The entry-level Coronado telescope, the PST (Personal Solar Telescope) costs under 500. Solar prominences (vast columns of plasma, best seen at the edge of the solar disk), filaments, flares, sunspots, plage and active regions are all visible and can be imaged to produce spectacular solar photographs. Philip Pugh has assembled a team of contributors who show just how much solar work can be done with Coronado telesco...

  3. Cosmological tests of modified gravity.

    Science.gov (United States)

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.

  4. Observing the Sun with the Atacama Large Millimeter/submillimeter Array (ALMA): Fast-Scan Single-Dish Mapping

    Science.gov (United States)

    White, S. M.; Iwai, K.; Phillips, N. M.; Hills, R. E.; Hirota, A.; Yagoubov, P.; Siringo, G.; Shimojo, M.; Bastian, T. S.; Hales, A. S.; Sawada, T.; Asayama, S.; Sugimoto, M.; Marson, R. G.; Kawasaki, W.; Muller, E.; Nakazato, T.; Sugimoto, K.; Brajša, R.; Skokić, I.; Bárta, M.; Kim, S.; Remijan, A. J.; de Gregorio, I.; Corder, S. A.; Hudson, H. S.; Loukitcheva, M.; Chen, B.; De Pontieu, B.; Fleishmann, G. D.; Gary, D. E.; Kobelski, A.; Wedemeyer, S.; Yan, Y.

    2017-07-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) radio telescope has commenced science observations of the Sun starting in late 2016. Since the Sun is much larger than the field of view of individual ALMA dishes, the ALMA interferometer is unable to measure the background level of solar emission when observing the solar disk. The absolute temperature scale is a critical measurement for much of ALMA solar science, including the understanding of energy transfer through the solar atmosphere, the properties of prominences, and the study of shock heating in the chromosphere. In order to provide an absolute temperature scale, ALMA solar observing will take advantage of the remarkable fast-scanning capabilities of the ALMA 12 m dishes to make single-dish maps of the full Sun. This article reports on the results of an extensive commissioning effort to optimize the mapping procedure, and it describes the nature of the resulting data. Amplitude calibration is discussed in detail: a path that uses the two loads in the ALMA calibration system as well as sky measurements is described and applied to commissioning data. Inspection of a large number of single-dish datasets shows significant variation in the resulting temperatures, and based on the temperature distributions, we derive quiet-Sun values at disk center of 7300 K at λ = 3 mm and 5900 K at λ = 1.3 mm. These values have statistical uncertainties of about 100 K, but systematic uncertainties in the temperature scale that may be significantly larger. Example images are presented from two periods with very different levels of solar activity. At a resolution of about 25'', the 1.3 mm wavelength images show temperatures on the disk that vary over about a 2000 K range. Active regions and plages are among the hotter features, while a large sunspot umbra shows up as a depression, and filament channels are relatively cool. Prominences above the solar limb are a common feature of the single-dish images.

  5. FISICA: the Florida imager slicer for infrared cosmology and astrophysics

    Science.gov (United States)

    Eikenberry, Stephen; Raines, S. Nicholas; Gruel, Nicolas; Elston, Richard; Guzman, Rafael; Julian, Jeff; Boreman, Glenn; Glenn, Paul; Hull-Allen, Gregory; Hoffman, Jeffrey; Rodgers, Michael; Thompson, Kevin; Flint, Scott; Comstock, Lovell; Myrick, Bruce

    2006-06-01

    We report on the design, fabrication, and on-sky performance of the Florida Image Slicer for Infrared Cosmology and Astrophysics (FISICA) - a fully-cryogenic all-reflective image-slicing integral field unit for the FLAMINGOS near-infrared spectrograph. Designed to accept input beams near f/15, FISICA with FLAMINGOS provides R~1300 spectra over a 16x33-arcsec field-of-view on the Cassegrain f/15 focus of the KPNO 4-meter telescope, or a 6x12-arcsec field-of-view on the Nasmyth or Bent Cassegrain foci of the Gran Telescopio Canarias 10.4-meter telescope. FISICA accomplishes this using three sets of "monolithic" powered mirror arrays, each with 22 mirrored surfaces cut into a single piece of aluminum. We review the optical and opto-mechanical design and fabrication of FISICA, as well as laboratory test results for FISICA integrated with the FLAMINGOS instrument. Finally, we present performance results from observations with FISICA at the KPNO 4-m telescope and comparisons of FISICA performance to other available IFUs on 4-m to 8-m-class telescopes.

  6. Entropy and cosmology.

    Science.gov (United States)

    Zucker, M. H.

    This paper is a critical analysis and reassessment of entropic functioning as it applies to the question of whether the ultimate fate of the universe will be determined in the future to be "open" (expanding forever to expire in a big chill), "closed" (collapsing to a big crunch), or "flat" (balanced forever between the two). The second law of thermodynamics declares that entropy can only increase and that this principle extends, inevitably, to the universe as a whole. This paper takes the position that this extension is an unwarranted projection based neither on experience nonfact - an extrapolation that ignores the powerful effect of a gravitational force acting within a closed system. Since it was originally presented by Clausius, the thermodynamic concept of entropy has been redefined in terms of "order" and "disorder" - order being equated with a low degree of entropy and disorder with a high degree. This revised terminology more subjective than precise, has generated considerable confusion in cosmology in several critical instances. For example - the chaotic fireball of the big bang, interpreted by Stephen Hawking as a state of disorder (high entropy), is infinitely hot and, thermally, represents zero entropy (order). Hawking, apparently focusing on the disorderly "chaotic" aspect, equated it with a high degree of entropy - overlooking the fact that the universe is a thermodynamic system and that the key factor in evaluating the big-bang phenomenon is the infinitely high temperature at the early universe, which can only be equated with zero entropy. This analysis resolves this confusion and reestablishes entropy as a cosmological function integrally linked to temperature. The paper goes on to show that, while all subsystems contained within the universe require external sources of energization to have their temperatures raised, this requirement does not apply to the universe as a whole. The universe is the only system that, by itself can raise its own

  7. Parameterized Post-Newtonian Cosmology

    CERN Document Server

    Sanghai, Viraj A A

    2016-01-01

    Einstein's theory of gravity has been extensively tested on solar system scales, and for isolated astrophysical systems, using the perturbative framework known as the parameterized post-Newtonian (PPN) formalism. This framework is designed for use in the weak-field and slow-motion limit of gravity, and can be used to constrain a large class of metric theories of gravity with data collected from the aforementioned systems. Given the potential of future surveys to probe cosmological scales to high precision, it is a topic of much contemporary interest to construct a similar framework to link Einstein's theory of gravity and its alternatives to observations on cosmological scales. Our approach to this problem is to adapt and extend the existing PPN formalism for use in cosmology. We derive a set of equations that use the same parameters to consistently model both weak fields and cosmology. This allows us to parameterize a large class of modified theories of gravity and dark energy models on cosmological scales, ...

  8. Cosmological tests of coupled Galileons

    Science.gov (United States)

    Brax, Philippe; Burrage, Clare; Davis, Anne-Christine; Gubitosi, Giulia

    2015-03-01

    We investigate the cosmological properties of Galileon models which admit Minkowski space as a stable solution in vacuum. This is motivated by stable, positive tension brane world constructions that give rise to Galileons. We include both conformal and disformal couplings to matter and focus on constraints on the theory that arise because of these couplings. The disformal coupling to baryonic matter is extremely constrained by astrophysical and particle physics effects. The disformal coupling to photons induces a cosmological variation of the speed of light and therefore distorsions of the Cosmic Microwave Background spectrum which are known to be very small. The conformal coupling to baryons leads to a variation of particle masses since Big Bang Nucleosynthesis which is also tightly constrained. We consider the background cosmology of Galileon models coupled to Cold Dark Matter (CDM), photons and baryons and impose that the speed of light and particle masses respect the observational bounds on cosmological time scales. We find that requiring that the equation of state for the Galileon models must be close to -1 now restricts severely their parameter space and can only be achieved with a combination of the conformal and disformal couplings. This leads to large variations of particle masses and the speed of light which are not compatible with observations. As a result, we find that cosmological Galileon models are viable dark energy theories coupled to dark matter but their couplings, both disformal and conformal, to baryons and photons must be heavily suppressed making them only sensitive to CDM.

  9. Gemini telescope structure design

    Science.gov (United States)

    Raybould, Keith; Gillett, Paul E.; Hatton, Peter; Pentland, Gordon; Sheehan, Mike; Warner, Mark

    1994-06-01

    The Gemini project is an international collaboration to design, fabricate, and assemble two 8 M telescopes, one on Mauna Kea in Hawaii, the other on Cerro Pachon in Chile. The telescopes will be national facilities designed to meet the Gemini Science Requirements (GSR), a document developed by the Gemini Science Committee (GSC) and the national project scientists. The Gemini telescope group, based on Tucson, has developed a telescope structure to meet the GSR. This paper describes the science requirements that have technically driven the design, and the features that have been incorporated to meet these requirements. This is followed by a brief description of the telescope design. Finally, analyses that have been performed and development programs that have been undertaken are described briefly. Only the designs that have been performed by the Gemini Telescope Structure, Building and Enclosure Group are presented here; control, optical systems, acquisition and guiding, active and adaptive optics, Cassegrain rotator and instrumentation issues are designed and managed by others and will not be discussed here, except for a brief description of the telescope configurations to aid subsequent discussions.

  10. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert

    National Research Council Canada - National Science Library

    Wierzchos, Jacek; DiRuggiero, Jocelyne; Vítek, Petr; Artieda, Octavio; Souza-Egipsy, Virginia; Škaloud, Pavel; Tisza, Michel; Davila, Alfonso F; Vílchez, Carlos; Garbayo, Inés; Ascaso, Carmen

    2015-01-01

    The Atacama Desert, northern Chile, is one of the driest deserts on Earth and, as such, a natural laboratory to explore the limits of life and the strategies evolved by microorganisms to adapt to extreme environments...

  11. Telescopic vision contact lens

    Science.gov (United States)

    Tremblay, Eric J.; Beer, R. Dirk; Arianpour, Ashkan; Ford, Joseph E.

    2011-03-01

    We present the concept, optical design, and first proof of principle experimental results for a telescopic contact lens intended to become a visual aid for age-related macular degeneration (AMD), providing magnification to the user without surgery or external head-mounted optics. Our contact lens optical system can provide a combination of telescopic and non-magnified vision through two independent optical paths through the contact lens. The magnified optical path incorporates a telescopic arrangement of positive and negative annular concentric reflectors to achieve 2.8x - 3x magnification on the eye, while light passing through a central clear aperture provides unmagnified vision.

  12. Hubble Space Telescope

    Science.gov (United States)

    1990-01-01

    An overview of the mission of the Hubble Space Telescope, a joint project between NASA and the European Space Agency which will be used to study deep space, as well as our solar system is presented. The video contains animations depicting the Hubble Space Telescope in orbit, as well as footage of scientists at the Space Telescope Science Institute making real time observations. The images Hubble acquires will be downloaded into a database that contains images of over 19,000,000 celestial objects called the Star Catalog.

  13. Ritchey-Chretien Telescope

    Science.gov (United States)

    Rosin, S.; Amon, M. (Inventor)

    1973-01-01

    A Ritchey-Chretien telescope is described which was designed to respond to images located off the optical axis by using two transparent flat plates positioned in the ray path of the image. The flat plates have a tilt angle relative to the ray path to compensate for astigmatism introduced by the telescope. The tilt angle of the plates is directly proportional to the off axis angle of the image. The plates have opposite inclination angles relative to the ray paths. A detector which is responsive to the optical image as transmitted through the plates is positioned approximately on the sagittal focus of the telescope.

  14. Quantum gravity and quantum cosmology

    CERN Document Server

    Papantonopoulos, Lefteris; Siopsis, George; Tsamis, Nikos

    2013-01-01

    Quantum gravity has developed into a fast-growing subject in physics and it is expected that probing the high-energy and high-curvature regimes of gravitating systems will shed some light on how to eventually achieve an ultraviolet complete quantum theory of gravity. Such a theory would provide the much needed information about fundamental problems of classical gravity, such as the initial big-bang singularity, the cosmological constant problem, Planck scale physics and the early-time inflationary evolution of our Universe.   While in the first part of this book concepts of quantum gravity are introduced and approached from different angles, the second part discusses these theories in connection with cosmological models and observations, thereby exploring which types of signatures of modern and mathematically rigorous frameworks can be detected by experiments. The third and final part briefly reviews the observational status of dark matter and dark energy, and introduces alternative cosmological models.   ...

  15. Wormholes and the cosmological constant

    Science.gov (United States)

    Klebanov, Igor; Susskind, Leonard; Banks, Tom

    1989-05-01

    We review Coleman's wormhole mechanism for the vanishing of the cosmological constant. We show that in a minisuperspace model wormhole-connected universes dominate the path integral. We also provide evidence that the euclidean path integral over geometries with spherical topology is unstable with respect to formation of infinitely many wormhole-connected 4-spheres. Consistency is restored by summing over all topologies, which leads to Coleman's result. Coleman's argument for determination of other parameters is reviewed and applied to the mass of the pion. A discouraging result is found that the pion mass is driven to zero. We also consider qualitatively the implications of the wormhole theory for cosmology. We argue that a small number of universes containing matter and energy may exist in contact with infinitely many cold and empty universe. Contact with the cold universe insures that the cosmological constant in the warm ones in zero.

  16. Wormholes and the cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Klebanov, I.; Susskind, L.; Banks, T.

    1989-05-08

    We review Coleman's wormhole mechanism for the vanishing of the cosmological constant. We show that in a minisuperspace model wormhole-connected universes dominate the path integral. We also provide evidence that the euclidean path integral over geometries with spherical topology is unstable with respect to formation of infinitely many wormhole-connected 4-spheres. Consistency is restored by summing over all topologies, which leads to Coleman's result. Coleman's argument for determination of other parameters is reviewed and applied to the mass of the pion. A discouraging result is found that the pion mass is driven to zero. We also consider qualitatively the implications of the wormhole theory for cosmology. We argue that a small number of universes containing matter and energy may exist in contact with infinitely many cold and empty universes. Contact with the cold universes insures that the cosmological constant in the warm ones is zero.

  17. Cosmological AMR MHD with Enzo

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hao [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory; Li, Shengtai [Los Alamos National Laboratory

    2009-01-01

    In this work, we present EnzoMHD, the extension of the cosmological code Enzoto include magnetic fields. We use the hyperbolic solver of Li et al. (2008) for the computation of interface fluxes. We use constrained transport methods of Balsara & Spicer (1999) and Gardiner & Stone (2005) to advance the induction equation, the reconstruction technique of Balsara (2001) to extend the Adaptive Mesh Refinement of Berger & Colella (1989) already used in Enzo, though formulated in a slightly different way for ease of implementation. This combination of methods preserves the divergence of the magnetic field to machine precision. We use operator splitting to include gravity and cosmological expansion. We then present a series of cosmological and non cosmologjcal tests problems to demonstrate the quality of solution resulting from this combination of solvers.

  18. Classically Stable Nonsingular Cosmological Bounces

    Science.gov (United States)

    Ijjas, Anna; Steinhardt, Paul J.

    2016-09-01

    One of the fundamental questions of theoretical cosmology is whether the Universe can undergo a nonsingular bounce, i.e., smoothly transit from a period of contraction to a period of expansion through violation of the null energy condition (NEC) at energies well below the Planck scale and at finite values of the scale factor such that the entire evolution remains classical. A common claim has been that a nonsingular bounce either leads to ghost or gradient instabilities or a cosmological singularity. In this Letter, we consider a well-motivated class of theories based on the cubic Galileon action and present a procedure for explicitly constructing examples of a nonsingular cosmological bounce without encountering any pathologies and maintaining a subluminal sound speed for comoving curvature modes throughout the NEC violating phase. We also discuss the relation between our procedure and earlier work.

  19. Mirror QCD and Cosmological Constant

    Directory of Open Access Journals (Sweden)

    Roman Pasechnik

    2017-05-01

    Full Text Available An analog of Quantum Chromo Dynamics (QCD sector known as mirror QCD (mQCD can affect the cosmological evolution due to a non-trivial contribution to the Cosmological Constant analogous to that induced by the ground state in non-perturbative QCD. In this work, we explore a plausible hypothesis for trace anomalies cancellation between the usual QCD and mQCD. Such an anomaly cancellation between the two gauge theories, if it exists in Nature, would lead to a suppression or even elimination of their contributions to the Cosmological Constant. The trace anomaly compensation condition and the form of the non-perturbative mQCD coupling constant in the infrared limit have been proposed by analysing a partial non-perturbative solution of the Einstein–Yang-Mills equations of motion.

  20. Can Radio Telescopes Find Axions?

    Science.gov (United States)

    Kohler, Susanna

    2017-08-01

    In the search for dark matter, the most commonly accepted candidates are invisible, massive particles commonly referred to as WIMPs. But as time passes and we still havent detected WIMPs, alternative scenarios are becoming more and more appealing. Prime among these is the idea of axions.A Bizarre ParticleThe Italian PVLAS is an example of a laboratory experiment that attempted to confirm the existence of axions. [PVLAS]Axions are a type of particle first proposed in the late 1970s. These theorized particles arose from a new symmetry introduced to solve ongoing problems with the standard model for particle physics, and they were initially predicted to have more than a keV in mass. For this reason, their existence was expected to be quickly confirmed by particle-detector experiments yet no detections were made.Today, after many unsuccessful searches, experiments and theory tell us that if axions exist, their masses must lie between 10-610-3 eV. This is minuscule an electrons mass is around 500,000 eV, and even neutrinos are on the scale of a tenth of an eV!But enough of anything, even something very low-mass, can weigh a lot. If they are real, then axions were likely created in abundance during the Big Bang and unlike heavier particles, they cant decay into anything lighter, so we would expect them all to still be around today. Our universe could therefore be filled with invisible axions, potentially providing an explanation for dark matter in the form of many, many tiny particles.Artists impression of the central core of proposed Square Kilometer Array antennas. [SKA/Swinburne Astronomy Productions]How Do We Find Them?Axions barely interact with ordinary matter and they have no electric charge. One of the few ways we can detect them is with magnetic fields: magnetic fields can change axions to and from photons.While many studies have focused on attempting to detect axions in laboratory experiments, astronomy provides an alternative: we can search for cosmological

  1. Neutrinos in particle physics, astronomy, and cosmology

    CERN Document Server

    Xing, Zhi-Zhong

    2011-01-01

    ""Neutrinos in Particle Physics, Astronomy and Cosmology"" provides a comprehensive and up-to-date introduction to neutrino physics, neutrino astronomy and neutrino cosmology. The intrinsic properties and fundamental interactions of neutrinos are described, as is the phenomenology of lepton flavor mixing, seesaw mechanisms and neutrino oscillations. The cosmic neutrino background, stellar neutrinos, supernova neutrinos and ultrahigh-energy cosmic neutrinos, together with the cosmological matter-antimatter asymmetry and other roles of massive neutrinos in cosmology, are discussed in detail. Thi

  2. Cosmological dark energy effects from entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Capozziello, Salvatore, E-mail: capozziello@na.infn.it [Dipartimento di Fisica, Università di Napoli “Federico II”, Via Cinthia, 80126 Napoli (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sez. di Napoli, Via Cinthia, 80126 Napoli (Italy); Luongo, Orlando [Dipartimento di Fisica, Università di Napoli “Federico II”, Via Cinthia, 80126 Napoli (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sez. di Napoli, Via Cinthia, 80126 Napoli (Italy); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de México (UNAM) (Mexico); Mancini, Stefano [Scuola di Scienze and Tecnologie, Università di Camerino, 62032 Camerino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sez. di Perugia, Via Pascoli, 06123 Perugia (Italy)

    2013-06-03

    The thorny issue of relating information theory to cosmology is here addressed by assuming a possible connection between quantum entanglement measures and observable universe. In particular, we propose a cosmological toy model, where the equation of state of the cosmological fluid, which drives the today observed cosmic acceleration, can be inferred from quantum entanglement between different cosmological epochs. In such a way the dynamical dark energy results as byproduct of quantum entanglement.

  3. Singularities in loop quantum cosmology.

    Science.gov (United States)

    Cailleteau, Thomas; Cardoso, Antonio; Vandersloot, Kevin; Wands, David

    2008-12-19

    We show that simple scalar field models can give rise to curvature singularities in the effective Friedmann dynamics of loop quantum cosmology (LQC). We find singular solutions for spatially flat Friedmann-Robertson-Walker cosmologies with a canonical scalar field and a negative exponential potential, or with a phantom scalar field and a positive potential. While LQC avoids big bang or big rip type singularities, we find sudden singularities where the Hubble rate is bounded, but the Ricci curvature scalar diverges. We conclude that the effective equations of LQC are not in themselves sufficient to avoid the occurrence of curvature singularities.

  4. Fischler Susskind holographic cosmology revisited

    Science.gov (United States)

    Diaz, Pablo; Per, M. A.; Segui, Antonio

    2007-11-01

    When Fischler and Susskind proposed a holographic prescription based on the particle horizon, they found that spatially closed cosmological models do not verify it due to the apparently unavoidable recontraction of the particle horizon area. In this paper, after a short review of their original work, we expose graphically and analytically that spatially closed cosmological models can avoid this problem if they expand fast enough. It has also been shown that the holographic principle is saturated for a codimension one-brane dominated universe. The Fischler Susskind prescription is used to obtain the maximum number of degrees of freedom per Planck volume at the Planck era compatible with the holographic principle.

  5. Bianchi-type string cosmology

    CERN Document Server

    Batakis, N A

    1995-01-01

    Bianchi-type string cosmology involves generalizations of the FRW backgrounds with three transitive spacelike Killing symmetries, but without any a priori assumption of isotropy in the 3D sections of homogeneity. With emphasis on those cases with diagonal metrics and vanishing cosmological constant which which have not been previously examined in the literature, the present findings allow an overview and the classification of all Bianchi-type backgrounds. These string solutions (at least to lowest order in alpha prime) offer prototypes for the study of spatial anisotropy and its impact on the dynamics of the early universe.

  6. The Higgs Portal and Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Assamagan, Ketevi [Brookhaven National Lab. (BNL), Upton, NY (United States); Chen, Chien-Yi [Perimeter Inst. for Theoretical Physics, Waterloo, ON (Canada); Univ. of Victoria, BC (Canada); Chou, John Paul [Rutgers Univ., Piscataway, NJ (United States); Curtin, David [Univ. of Maryland, College Park, MD (United States); Fedderke, Michael A. [Univ. of Chicago, IL (United States); Gershtein, Yuri [Rutgers Univ., Piscataway, NJ (United States); He, Xiao-Gang [Shanghai Jiao Tong Univ. (China); Klute, Markus [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kozaczuk, Jonathon [TRIUMF, Vancouver, BC (Canada); Kotwal, Ashutosh [Duke Univ., Durham, NC (United States); Lowette, Steven [Vrije Univ., Brussels (Belgium); No, Jose Miguel [Univ. of Sussex, Brighton (United Kingdom); Plehn, Tilman [Heidelberg Univ. (Germany); Qian, Jianming [Univ. of Michigan, Ann Arbor, MI (United States); Ramsey-Musolf, Michael [Univ. of Massachusetts, Amherst, MA (United States); Safonov, Alexei [Texas A & M Univ., College Station, TX (United States); Shelton, Jessie [Univ. of Illinois, Urbana-Champaign, IL (United States); Spannowsky, Michael [Durham Univ. (United Kingdom); Su, Shufang [Univ. of Arizona, Tucson, AZ (United States); Walker, Devin G. E. [Univ. of Washington, Seattle, WA (United States); Willocq, Stephane [Univ. of Massachusetts, Amherst, MA (United States); Winslow, Peter [Univ. of Massachusetts, Amherst, MA (United States)

    2016-04-18

    Higgs portal interactions provide a simple mechanism for addressing two open problems in cosmology: dark matter and the baryon asymmetry. In the latter instance, Higgs portal interactions may contain the ingredients for a strong first-order electroweak phase transition as well as new CP-violating interactions as needed for electroweak baryogenesis. These interactions may also allow for a viable dark matter candidate. We survey the opportunities for probing the Higgs portal as it relates to these questions in cosmology at the LHC and possible future colliders.

  7. On Backreaction in Newtonian cosmology

    Science.gov (United States)

    Buchert, Thomas

    2018-01-01

    We clarify that a result recently stated by Kaiser is contained in a theorem of Buchert and Ehlers that is widely known for its main result: that there is no global kinematical backreaction in Newtonian cosmology. Kaiser cites this paper, re-derives parts of the theorem, but incompletely restates its content. He makes further claims, which cannot be proven beyond the limited context of Newtonian cosmology. We also discuss recent papers of Rácz et al. and Roukema, who claim the existence of global backreaction within the Newtonian framework.

  8. Cosmology in the plasma universe

    Energy Technology Data Exchange (ETDEWEB)

    Alfven, Hannes (Royal Inst. of Tech., Stockholm (Sweden). Dept. of Plasma Physics)

    1988-08-01

    Space observations have opened the spectral regions of X-rays and {gamma}-ray, which are produced by plasma processes. The Plasma Universe derived from observations in these regions is drastically different from the now generally accepted 'Visual Light Universe' based on visual light observations alone. Historically this transition can be compared only to the transition from the geocentric to the heliocentric cosmology. The criteria a cosmological theory must satisfy in order to be acceptable in the Plasma Universe, is discussed. (author).

  9. Goddard Robotic Telescope (GRT)

    Data.gov (United States)

    National Aeronautics and Space Administration — Since it is not possible to predict when a Gamma-Ray Burst (GRB) occurs, the follow-up ground telescopes must be distributed as uniform as possible all over the...

  10. The Case for a Hierarchical Cosmology

    Science.gov (United States)

    Vaucouleurs, G. de

    1970-01-01

    The development of modern theoretical cosmology is presented and some questionable assumptions of orthodox cosmology are pointed out. Suggests that recent observations indicate that hierarchical clustering is a basic factor in cosmology. The implications of hierarchical models of the universe are considered. Bibliography. (LC)

  11. Minimally coupled scalar field cosmology in anisotropic ...

    Indian Academy of Sciences (India)

    2017-01-03

    Jan 3, 2017 ... modern cosmology to explain the early inflation and the late-time acceleration. The recent discovery of cosmic acceleration [3–7] has stimulated the interest to study cosmological models based on scalar fields. The cosmological models based on scalar fields have been discussed by many researchers for ...

  12. LISA Telescope Sensitivity Analysis

    Science.gov (United States)

    Waluschka, Eugene; Krebs, Carolyn (Technical Monitor)

    2002-01-01

    The Laser Interferometer Space Antenna (LISA) for the detection of Gravitational Waves is a very long baseline interferometer which will measure the changes in the distance of a five million kilometer arm to picometer accuracies. As with any optical system, even one with such very large separations between the transmitting and receiving, telescopes, a sensitivity analysis should be performed to see how, in this case, the far field phase varies when the telescope parameters change as a result of small temperature changes.

  13. Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints

    DEFF Research Database (Denmark)

    Vikhlinin, A.; Kravtsov, A. V.; Burenin, R. A.

    2009-01-01

    function evolution to be used as a useful growth of a structure-based dark energy probe. In this paper, we present cosmological parameter constraints obtained from Chandra observations of 37 clusters with langzrang = 0.55 derived from 400 deg2 ROSAT serendipitous survey and 49 brightest z ≈ 0.05 clusters...

  14. Viscous cosmological models with a variable cosmological term ...

    African Journals Online (AJOL)

    Einstein's field equations for a Friedmann-Lamaitre Robertson-Walker universe filled with a dissipative fluid with a variable cosmological term L described by full Israel-Stewart theory are considered. General solutions to the field equations for the flat case have been obtained. The solution corresponds to the dust free model ...

  15. VEGETATIVE GROWTH AND EARLY PRODUCTION OF SIX OLIVE CULTIVARS, IN SOUTHERN ATACAMA DESERT, CHILE

    Directory of Open Access Journals (Sweden)

    Freddy MORA

    2007-12-01

    Full Text Available Tree survival, early fruit production, vegetative growth and alternate bearing were examined in six different olive cultivars (Barnea, Biancolilla, Coratina, Empeltre, Koroneiki and Leccino under intensive agronomic conditions i southern Atacama Desert, in the Coquimbo Region of Chile. The cultivars were evaluated over four successive years and had a high survival rate (93% confi rming their potential for these dry-lands. Fruit production (recorded over the growing seasons 2002-2003, vegetative growth (2000-2003 and alternate bearing differed signifi cantly among cultivars. Olive selection in intensively managed planting at the southern part of the Atacama Desert depends on matching specifi c cultivars to sites on which they perform the best.

  16. Mid-Holocene Climate and Culture Change in the Atacama Desert, Northern Chile

    Science.gov (United States)

    Grosjean, Martin; Núñez, Lautaro; Cartajena, Isabel; Messerli, Bruno

    1997-09-01

    Twenty archaeological campsites intercalated between more than 30 debris flows caused by heavy rainfall events between 6200 and 3100 14C yr B.P. have recently been discovered at Quebrada Puripica in the Atacama Desert of northern Chile. This record provides detailed information about extreme, short-lived climatic events during the hyperarid mid-Holocene period. For the first time, we found evidence of continuous human occupation in this area, filling the regional hiatus in the Atacama basin ("Silencio Arqueologico") between 8000 and 4800 14C yr B.P. The transformation of Early Archaic hunters into the complex Late Archaic cultural tradition was an adaptive process. During this time, the site was a local ecological refuge with abundant resources in a generally hostile environment.

  17. Eclipse telescope design factors

    Science.gov (United States)

    Hull, Tony; Trauger, John T.; Macenka, Steven A.; Moody, Dwight; Olarte, Guillermo; Sepulveda, Cesar; Tsuha, Walter; Cohen, David

    2003-02-01

    Very high contrast imagery, required for exoplanet image acquisition, imposes significantly different criteria upon telescope architecture than do the requirements imposed upon most spaceborne telescopes. For the Eclipse Mission, the fundamental figure-of-merit is a stellar contrast, or brightness reduction ratio, reaching a factor of 10-9 or better at star-planet distances as close as the 4th Airy ring. Factors necessary to achieve such contrast ratios are both irrelevant and largely ignored in contemporary telescope design. Although contemporary telescoeps now meet Hubble Space Telescope performance at substantially lower mass and cost than HST, control of mid-spatial-frequency (MSF) errors, crucial to coronagraphy, has not been emphasized. Accordingly, roughness at MSF has advanced little since HST. Fortunately, HST primary mirror smoothness would nearly satisfy Eclipse requirements, although other aspects of HST are undesirable for stellar coronagraphy. Conversely, the narrow field required for Eclipse eases other drivers of traditional telescope design. A systematic approach to telescope definition, with primary and sub-tier figures-of-merit, will be discussed in the context of the Eclipse Mission.

  18. Cosmology from CMB Polarization with POLARBEAR and the Simons Array

    Science.gov (United States)

    Barron, Darcy; POLARBEAR Collaboration

    2018-01-01

    POLARBEAR is a cosmic microwave background (CMB) polarization experiment located in the Atacama desert in Chile. The science goals of the POLARBEAR project are to do a deep search for CMB B-mode polarization created by inflationary gravitational waves, as well as characterize the CMB B-mode signal from gravitational lensing. POLARBEAR-1 started observations in 2012, and the POLARBEAR team has published a series of results from its first season of observations, including the first measurement of a non-zero B-mode polarization angular power spectrum, measured at sub-degree scales where the dominant signal is gravitational lensing of the CMB. Recently, we released an improved measurement of the B-mode polarization power spectrum, improving our band-power uncertainties by a factor of two, by adding new data from our second observing season and re-analyzing the combined data set.To further improve on these measurements, POLARBEAR is expanding to include an additional two telescopes with multi-chroic receivers observing at 95, 150, 220, and 270 GHz, known as the Simons Array. With high sensitivity and large sky coverage, the Simons Array will create a detailed survey of B-mode polarization, and its spectral information will be used to extract the CMB signal from astrophysical foregrounds. We will present the latest POLARBEAR results, as well as the status of development of the Simons Array and its expected capabilities.

  19. Biodiversity of soil cyanobacteria in the hyper-arid Atacama Desert, Chile.

    Science.gov (United States)

    Patzelt, Dominik J; Hodač, Ladislav; Friedl, Thomas; Pietrasiak, Nicole; Johansen, Jeffrey R

    2014-08-01

    The cyanobacterial diversity of soils of the Atacama Desert (Chile) was investigated using 16S rRNA gene cloning/sequencing directly from soil samples and 16S rRNA gene sequencing from unialgal cultures. Within the hyper-arid Atacama Desert, one of the driest parts of the world, 10 sites with differing altitude and distance to the shore were sampled along a total air-line distance (from south to north) of ~1,100 km. Filamentous cyanobacteria belonging to Nostocophycideae and Synechococcophycideae were present. Oscillatoriophycideae exhibited the highest species richness among the subclasses of cyanobacteria, and included mostly filamentous species along with some coccoids (e.g., Chroococcidiopsis). Thirty species-level phylotypes could be recognized using a cut-off of 99% 16S rRNA sequence similarity within the 22 genera defined at 97% 16S rRNA sequence similarity. Eight of the 30 taxa could be detected by both clonal and culture sequences. Five taxa were observed only in cultures, whereas the cloning approach revealed 17 additional taxa, which might be in the collection but unsequenced, hard-to-cultivate, or entirely unculturable species using standard cultivation media. The Atacama Desert soils have a high diversity of phylotypes, among which are likely both new genera and new species awaiting characterization and description. © 2014 Phycological Society of America.

  20. La restauración en comunidad de la iglesia de San Pedro de Atacama

    Directory of Open Access Journals (Sweden)

    Beatriz Yuste Miguel

    2017-12-01

    Full Text Available En medio del gran desierto de Atacama caracterizado por una gran aridez y amplitud térmica, se ubica en un fértil oasis, la iglesia de San Pedro de Atacama. Su construcción original dataría del siglo XVI, la actual, del siglo XVIII, conserva el estilo arquitectónico barroco del ámbito sur andino. La obra está sorprendentemente adecuada a la ecología, sismicidad y materialidad del desierto. Destacan sus muros de adobe, techumbre de par y nudillo de chañar y entablado de cactus. La iglesia ha sufrido sucesivos incendios, sismos, inundaciones y sobrecargas en el techo que han ido provocando daños acumulativos graves en su estructura. El proyecto de restauración ejecutado por Fundación Altiplano buscó ajustarse a los criterios y técnicas vigentes para la conservación patrimonial de construcciones en tierra, como también a los de preservación del patrimonio y desarrollo sostenible, a través del fortalecimiento de la comunidad de San Pedro de Atacama.

  1. A review of the non-bulimulid terrestrial Mollusca from the Region of Atacama, northern Chile

    Science.gov (United States)

    Araya, Juan Francisco; Catalán, Ricardo

    2014-01-01

    Abstract Terrestrial mollusca are sparsely studied in Chile and, for the first time, a formal record of the diversity of land snails in northern Chile is reported. Coastal and desertic areas in the Region of Atacama, in the border of the Atacama desert and the Pacific Ocean, were surveyed with the aim to describe the presence and distribution of this poorly known fauna. Of the fourteen species recorded, the geographic distribution records for nine species are extended, and some taxa are recorded for the first time since their original descriptions. All, except one, of the fourteen terrestrial molluscan species occurring in the area are endemic to Chile; they are all terrestrial species, most of them have a restricted geographic distribution, and none of them is currently protected by law. The results reveal that the region of Atacama has one of the most diverse terrestrial snail biodiversity in Chile, ranking only after the Juan Fernandez Archipelago. Distribution records of all the studied species and a taxonomic key are also provided. PMID:24715800

  2. ALMA Partners Break Ground on World's Largest Millimeter Wavelength Telescope

    Science.gov (United States)

    2003-11-01

    Scientists and dignitaries from North America, Europe, and Chile broke ground today (Thursday, November 6, 2003) on what will be the world's largest, most sensitive radio telescope operating at millimeter wavelengths. ALMA - the Atacama Large Millimeter Array - will be a single instrument composed of 64 high-precision antennas located on the Chajnantor plain of the Chilean Andes in the District of San Pedro de Atacama, 16,500 feet (5,000 meters) above sea level. ALMA's primary function will be to observe and image with unprecedented clarity the enigmatic cold regions of the Universe, which are optically dark, yet shine brightly in the millimeter portion of the electromagnetic spectrum. ALMA Array Artist's Conception of ALMA Array in Compact Configuration (Click on Image for Larger Version) Other Images Available: Artist's conception of the antennas for the Atacama Large Millimeter Array Moonrise over ALMA test equipment near Cerro Chajnantor, Chile VertexRSI antenna at the VLA test site The Atacama Large Millimeter Array is an international astronomy facility. ALMA is an equal partnership between Europe and North America, in cooperation with the Republic of Chile, and is funded in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC), and in Europe by the European Southern Observatory (ESO) and Spain. ALMA construction and operations are led on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI), and on behalf of Europe by ESO. "The U.S. National Science Foundation joins today with our North American partner, Canada, and with the European Southern Observatory, Spain, and Chile to prepare for a spectacular new instrument," said Dr. Rita Colwell, director of the U.S. National Science Foundation. "The Atacama Large Millimeter Array will expand our vision of the Universe with "eyes" that pierce the shrouded mantles of

  3. LHC/ILC/cosmology interplay

    Indian Academy of Sciences (India)

    There is a strong and growing interplay between particle physics and cosmology. In this talk, I discuss some aspects of this interplay concerning dark matter candidates put forth by theories beyond the standard model. In explaining the requirements for collider tests of such dark matter candidates, I focus in particular on the ...

  4. The Higgs boson and cosmology.

    Science.gov (United States)

    Shaposhnikov, Mikhail

    2015-01-13

    I will discuss how the Higgs field of the Standard Model may have played an important role in cosmology, leading to the homogeneity, isotropy and flatness of the Universe; producing the quantum fluctuations that seed structure formation; triggering the radiation-dominated era of the hot Big Bang; and contributing to the processes of baryogenesis and dark matter production.

  5. Loop quantum cosmology and singularities.

    Science.gov (United States)

    Struyve, Ward

    2017-08-15

    Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.

  6. Nikolay Lossky’s Cosmology

    Directory of Open Access Journals (Sweden)

    Gennadii Aliaiev

    2018-02-01

    Full Text Available The paper focuses on cosmological ideas of a twentieth-century Russian philosopher Nikolay Lossky (1870-1965. It specifies the place of these ideas within the entire framework of his philosophical views, as well as in the context of his topology of philosophical systems, in particular ― the discrimination between organic and non-organic worldview. A historico-philosophical analysis of Lossky’s cosmology allows revealing the interaction of gnoseological and ontological principles of his system, e.g. explicating the difference of Lossky’s intuitionism from the one of Bergson. The key section of the organic worldview is the doctrine of the hierarchy of substantival agents: the hierarchical personalism, as well as the notions of transcreation, dynamic understanding of matter, and the doctrine of free will closely related to it. The paper specifies the peculiarities of Lossky’s interpretations of panvitalism and panpsychism, as well as the doctrine of reincarnation, which has a particular place in his system. The final stage of Lossky’s cosmological ideas development is his ontological aesthetics: on this stage he understands the world as an embodiment of beauty. The conclusion is drawn that Lossky’s cosmological doctrine is Christian and metaphysical in its nature.

  7. Loop quantum cosmology: Recent progress

    Indian Academy of Sciences (India)

    Aspects of the full theory of loop quantum gravity can be studied in a simpler context by reducing to symmetric models like cosmological ones. This leads to several applications where loop effects play a significant role when one is sensitive to the quantum regime. As a consequence, the structure of and the approach to ...

  8. Loop quantum cosmology: Recent progress

    Indian Academy of Sciences (India)

    els) the absence of cosmological singularities can be shown along the same general scheme as in the isotropic case [25,26]. The quantum dynamics is given by a dif- ference equation which does not break down at the classical singularity but instead extends to a branch beyond the classical singularity. The new branch is ...

  9. Baryogenesis and the new cosmology

    Indian Academy of Sciences (India)

    I begin this talk with a brief review of the status of approaches to understanding the origin of the baryon asymmetry of the Universe (BAU). I then describe a recent model unifying three seemingly distinct problems facing particle cosmology: the origin of inflation, the generation of the BAU and the nature of dark energy.

  10. Rip Cosmology via Inhomogeneous Fluid

    Directory of Open Access Journals (Sweden)

    Alexander V. Timoshkin

    2013-08-01

    Full Text Available The conditions for the appearance of the Little Rip, Pseudo Rip and Quasi Rip universes in the terms of the parameters in the equation of state of some dark fluid are investigated. Several examples of the Rip cosmologies are investigated.

  11. Eternal inflation with Liouville cosmology

    National Research Council Canada - National Science Library

    Nakayama, Yu

    2011-01-01

    ... cosmology, in particular eternal inflation, the effects of the quantum gravity might be important. These effects on the vacuum decay of the universe has been largely unknown partly due to the lack of well-defined off-shell formulation of the quantum gravity. At the level of the semiclassical Einstein gravity, the Coleman–De Luccia (CDL) in...

  12. How Cosmology Became a Science.

    Science.gov (United States)

    Brush, Stephen G.

    1992-01-01

    Describes the origin of the science of cosmology and the competing theories to explain the beginning of the universe. The big bang theory for the creation of the universe is contrasted with the steady state theory. The author details discoveries that led to the demise of the steady state theory. (PR)

  13. Asymptotic Safety, Fractals, and Cosmology

    Science.gov (United States)

    Reuter, Martin; Saueressig, Frank

    These lecture notes introduce the basic ideas of the asymptotic safety approach to quantum Einstein gravity (QEG). In particular they provide the background for recent work on the possibly multi-fractal structure of the QEG space-times. Implications of asymptotic safety for the cosmology of the early Universe are also discussed.

  14. Concordance cosmology without dark energy

    Science.gov (United States)

    Rácz, Gábor; Dobos, László; Beck, Róbert; Szapudi, István; Csabai, István

    2017-07-01

    According to the separate universe conjecture, spherically symmetric sub-regions in an isotropic universe behave like mini-universes with their own cosmological parameters. This is an excellent approximation in both Newtonian and general relativistic theories. We estimate local expansion rates for a large number of such regions, and use a scale parameter calculated from the volume-averaged increments of local scale parameters at each time step in an otherwise standard cosmological N-body simulation. The particle mass, corresponding to a coarse graining scale, is an adjustable parameter. This mean field approximation neglects tidal forces and boundary effects, but it is the first step towards a non-perturbative statistical estimation of the effect of non-linear evolution of structure on the expansion rate. Using our algorithm, a simulation with an initial Ωm = 1 Einstein-de Sitter setting closely tracks the expansion and structure growth history of the Λ cold dark matter (ΛCDM) cosmology. Due to small but characteristic differences, our model can be distinguished from the ΛCDM model by future precision observations. Moreover, our model can resolve the emerging tension between local Hubble constant measurements and the Planck best-fitting cosmology. Further improvements to the simulation are necessary to investigate light propagation and confirm full consistency with cosmic microwave background observations.

  15. Cosmology and the Higgs mechanism

    NARCIS (Netherlands)

    Veltman, M.J.G.

    It is noted that spontaneous symmetry treaking implies a finite cosmological term in the Einstein equation for gravity. The present theories of weak and e.m. interactions disagree violently with the experimental limit on such a term unless an ad-hoc counter curvature is introduced.

  16. Unity of Cosmological Inflation Attractors

    NARCIS (Netherlands)

    Galante, Mario; Kallosh, Renata; Linde, Andrei; Roest, Diederik

    2015-01-01

    Recently, several broad classes of inflationary models have been discovered whose cosmological predictions, in excellent agreement with Planck, are stable with respect to significant modifications of the inflaton potential. Some classes of models are based on a nonminimal coupling to gravity. These

  17. Sterile neutrino constraints from cosmology

    DEFF Research Database (Denmark)

    Hamann, Jan; Hannestad, Steen; Raffelt, Georg G.

    2012-01-01

    The presence of light particles beyond the standard model's three neutrino species can profoundly impact the physics of decoupling and primordial nucleosynthesis. I review the observational signatures of extra light species, present constraints from recent data, and discuss the implications of po...... of possible sterile neutrinos with O(eV)-masses for cosmology....

  18. Cosmology with the cosmic web

    Science.gov (United States)

    Forero-Romero, J. E.

    2017-07-01

    This talk summarizes different algorithms that can be used to trace the cosmic web both in simulations and observations. We present different applications in galaxy formation and cosmology. To finalize, we show how the Dark Energy Spectroscopic Instrument (DESI) could be a good place to apply these techniques.

  19. The Higgs boson and cosmology

    CERN Document Server

    Shaposhnikov, Mikhail

    2015-01-01

    I will discuss how the Higgs field of the Standard Model may have played an important role in cosmology, leading to the homogeneity, isotropy and flatness of the Universe; producing the quantum fluctuations that seed structure formation; triggering the radiation-dominated era of the hot Big Bang; and contributing to the processes of baryogenesis and dark matter production.

  20. Thermodynamics of cosmological matter creation

    Science.gov (United States)

    Prigogine, I.; Geheniau, J.; Gunzig, E.; Nardone, P.

    1988-01-01

    A type of cosmological history that includes large-scale entropy production is proposed. These cosmologies are based on reinterpretation of the matter-energy stress tensor in Einstein's equations. This modifies the usual adiabatic energy conservation laws, thereby including irreversible matter creation. This creation corresponds to an irreversible energy flow from the gravitational field to the created matter constituents. This point of view results from consideration of the thermodynamics of open systems in the framework of cosmology. It is shown that the second law of thermodynamics requires that space-time transforms into matter, while the inverse transformation is forbidden. It appears that the usual initial singularity associated with the big bang is structurally unstable with respect to irreversible matter creation. The corresponding cosmological history therefore starts from an instability of the vacuum rather than from a singularity. This is exemplified in the framework of a simple phenomenological model that leads to a three-stage cosmology: the first drives the cosmological system from the initial instability to a de Sitter regime, and the last connects with the usual matter-radiation Robertson-Walker universe. Matter as well as entropy creation occurs during the first two stages, while the third involves the traditional cosmological evolution. A remarkable fact is that the de Sitter stage appears to be an attractor independent of the initial fluctuation. This is also the case for all the physical predictions involving the present Robertson-Walker universe. Most results obtained previously, in the framework of quantum field theory, can now be obtained on a macroscopic basis. It is shown that this description leads quite naturally to the introduction of primeval black holes as the intermediate stage between the Minkowski vacuum and the present matter-radiation universe. The instability at the origin of the universe is the result of fluctuations of the

  1. Thermodynamics of cosmological matter creation.

    Science.gov (United States)

    Prigogine, I; Geheniau, J; Gunzig, E; Nardone, P

    1988-10-01

    A type of cosmological history that includes large-scale entropy production is proposed. These cosmologies are based on reinterpretation of the matter-energy stress tensor in Einstein's equations. This modifies the usual adiabatic energy conservation laws, thereby including irreversible matter creation. This creation corresponds to an irreversible energy flow from the gravitational field to the created matter constituents. This point of view results from consideration of the thermodynamics of open systems in the framework of cosmology. It is shown that the second law of thermodynamics requires that space-time transforms into matter, while the inverse transformation is forbidden. It appears that the usual initial singularity associated with the big bang is structurally unstable with respect to irreversible matter creation. The corresponding cosmological history therefore starts from an instability of the vacuum rather than from a singularity. This is exemplified in the framework of a simple phenomenological model that leads to a three-stage cosmology: the first drives the cosmological system from the initial instability to a de Sitter regime, and the last connects with the usual matter-radiation Robertson-Walker universe. Matter as well as entropy creation occurs during the first two stages, while the third involves the traditional cosmological evolution. A remarkable fact is that the de Sitter stage appears to be an attractor independent of the initial fluctuation. This is also the case for all the physical predictions involving the present Robertson-Walker universe. Most results obtained previously, in the framework of quantum field theory, can now be obtained on a macroscopic basis. It is shown that this description leads quite naturally to the introduction of primeval black holes as the intermediate stage between the Minkowski vacuum and the present matter-radiation universe. The instability at the origin of the universe is the result of fluctuations of the

  2. Telescopes in education

    Science.gov (United States)

    Yessayian, Rick

    Imagine sitting in your classroom with your students and controlling a Research Grade 24 inch telescope. You control where it points, you control the duration of the exposure of a high grade CCD camera, and you control all of this within your school day, on a camera half way around the globe, in real time. You can hear the telescope moving, talk to the operator sitting atop historic Mt. Wilson Observatory in California. You might be looking at comets, asteroids, galaxies, nebulas or a host of other interesting celestial objects. Perhaps you have students that are up to a real challenge -- doing real science! Students in our program have contributed the discovery of a new variable star, to the Pluto Express project, to the search for supernovas, and the collection of images of intersecting galaxies. These are among the many possible projects you might choose from. The age and ability of your students are taken into account when you choose your project. Students from Kindergarten through Grade 12 have participated in this free program. A new robotic telescope was added at Mount Wilson in 1999. The telescope is a Celestron 14" SCT mounted on a Bisque Paramount GT-1100 with an Apogee AP-7 CCD camera (512X512 pixels). In the Spring of 2001, we duplicated the 14" robotic telescope configuration and placed it at the Las Campanas Observatory, Chile (operated by the Carnegie Observatories). I installed the system in late September, 2001, and we began testing. The system requires one more upgrade and some hardware adjustments, which I will complete in June, 2002. We duplicated another 14" robotic telescope, and sent it to Brisbane Australia in January, 2002. The grand opening of the telescope will be in August 2002.

  3. iCosmo: an interactive cosmology package

    Science.gov (United States)

    Refregier, A.; Amara, A.; Kitching, T. D.; Rassat, A.

    2011-04-01

    Aims: The interactive software package iCosmo, designed to perform cosmological calculations is described. Methods: iCosmo is a software package to perfom interactive cosmological calculations for the low-redshift universe. Computing distance measures, the matter power spectrum, and the growth factor is supported for any values of the cosmological parameters. It also computes derived observed quantities for several cosmological probes such as cosmic shear, baryon acoustic oscillations, and type Ia supernovae. The associated errors for these observable quantities can be derived for customised surveys, or for pre-set values corresponding to current or planned instruments. The code also allows for calculation of cosmological forecasts with Fisher matrices, which can be manipulated to combine different surveys and cosmological probes. The code is written in the IDL language and thus benefits from the convenient interactive features and scientific libraries available in this language. iCosmo can also be used as an engine to perform cosmological calculations in batch mode, and forms a convenient adaptive platform for the development of further cosmological modules. With its extensive documentation, it may also serve as a useful resource for teaching and for newcomers to the field of cosmology. Results: The iCosmo package is described with a number of examples and command sequences. The code is freely available with documentation at http://www.icosmo.org, along with an interactive web interface and is part of the Initiative for Cosmology, a common archive for cosmological resources.

  4. Graviton fluctuations erase the cosmological constant

    Science.gov (United States)

    Wetterich, C.

    2017-10-01

    Graviton fluctuations induce strong non-perturbative infrared renormalization effects for the cosmological constant. The functional renormalization flow drives a positive cosmological constant towards zero, solving the cosmological constant problem without the need to tune parameters. We propose a simple computation of the graviton contribution to the flow of the effective potential for scalar fields. Within variable gravity, with effective Planck mass proportional to the scalar field, we find that the potential increases asymptotically at most quadratically with the scalar field. The solutions of the derived cosmological equations lead to an asymptotically vanishing cosmological ;constant; in the infinite future, providing for dynamical dark energy in the present cosmological epoch. Beyond a solution of the cosmological constant problem, our simplified computation also entails a sizeable positive graviton-induced anomalous dimension for the quartic Higgs coupling in the ultraviolet regime, substantiating the successful prediction of the Higgs boson mass within the asymptotic safety scenario for quantum gravity.

  5. Graviton fluctuations erase the cosmological constant

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2017-10-01

    Full Text Available Graviton fluctuations induce strong non-perturbative infrared renormalization effects for the cosmological constant. The functional renormalization flow drives a positive cosmological constant towards zero, solving the cosmological constant problem without the need to tune parameters. We propose a simple computation of the graviton contribution to the flow of the effective potential for scalar fields. Within variable gravity, with effective Planck mass proportional to the scalar field, we find that the potential increases asymptotically at most quadratically with the scalar field. The solutions of the derived cosmological equations lead to an asymptotically vanishing cosmological “constant” in the infinite future, providing for dynamical dark energy in the present cosmological epoch. Beyond a solution of the cosmological constant problem, our simplified computation also entails a sizeable positive graviton-induced anomalous dimension for the quartic Higgs coupling in the ultraviolet regime, substantiating the successful prediction of the Higgs boson mass within the asymptotic safety scenario for quantum gravity.

  6. Robotic and Survey Telescopes

    Science.gov (United States)

    Woźniak, Przemysław

    Robotic telescopes are revolutionizing the way astronomers collect their dataand conduct sky surveys. This chapter begins with a discussion of principles thatguide the process of designing, constructing, and operating telescopes andobservatories that offer a varying degree of automation, from instruments remotelycontrolled by observers to fully autonomous systems requiring no humansupervision during their normal operations. Emphasis is placed on designtrade-offs involved in building end-to-end systems intended for a wide range ofscience applications. The second part of the chapter contains descriptions ofseveral projects and instruments, both existing and currently under development.It is an attempt to provide a representative selection of actual systems thatillustrates state of the art in technology, as well as important ideas and milestonesin the development of the field. The list of presented instruments spans the fullrange in size starting from small all-sky monitors, through midrange robotic andsurvey telescopes, and finishing with large robotic instruments and surveys.Explosive growth of telescope networking is enabling entirely new modesof interaction between the survey and follow-up observing. Increasingimportance of standardized communication protocols and software is stressed.These developments are driven by the fusion of robotic telescope hardware,massive storage and databases, real-time knowledge extraction, and datacross-correlation on a global scale. The chapter concludes with examplesof major science results enabled by these new technologies and futureprospects.

  7. The Travelling Telescope

    Science.gov (United States)

    Murabona Oduori, Susan

    2015-08-01

    The telescope has been around for more than 400 years, and through good use of it scientists have made many astonishing discoveries and begun to understand our place in the universe. Most people, however, have never looked through one. Yet it is a great tool for cool science and observation especially in a continent and country with beautifully dark skies. The Travelling Telescope project aims to invite people outside under the stars to learn about those curious lights in the sky.The Travelling Telescope aims to promote science learning to a wide range of Kenyan schools in various locations exchanging knowledge about the sky through direct observations of celestial bodies using state of the art telescopes. In addition to direct observing we also teach science using various hands-on activities and astronomy software, ideal for explaining concepts which are hard to understand, and for a better grasp of the sights visible through the telescope. We are dedicated to promoting science using astronomy especially in schools, targeting children from as young as 3 years to the youth, teachers, their parents and members of the public. Our presentation focuses on the OAD funded project in rural coastal Kenya.

  8. Radio Telescope Reflectors

    Science.gov (United States)

    Baars, Jacob W. M.; Kärcher, Hans J.

    2017-11-01

    This book demonstrates how progress in radio astronomy is intimately linked to the development of reflector antennas of increasing size and precision. The authors describe the design and construction of major radio telescopes as those in Dwingeloo, Jodrell Bank, Parkes, Effelsberg and Green Bank since 1950 up to the present as well as millimeter wavelength telescopes as the 30m MRT of IRAM in Spain, the 50m LMT in Mexico and the ALMA submillimeter instrument. The advances in methods of structural design and coping with environmental influences (wind, temperature, gravity) as well as application of new materials are explained in a non-mathematical, descriptive and graphical way along with the story of the telescopes. Emphasis is placed on the interplay between astronomical and electromagnetic requirements and structural, mechanical and control solutions. A chapter on management aspects of large telescope projects closes the book. The authors address a readership with interest in the progress of engineering solutions applied to the development of radio telescope reflectors and ground station antennas for satellite communication and space research. The book will also be of interest to historians of science and engineering with an inclination to astronomy.

  9. The South Pole Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ruhl, J.E.; Ade, P.A.R.; Carlstrom, J.E.; Cho, H.M.; Crawford,T.; Dobbs, M.; Greer, C.H.; Halverson, N.W.; Holzapfel, W.L.; Lanting,T.M.; Lee, A.T.; Leitch, E.M.; Leong, J.; Lu, W.; Lueker, M.; Mehl, J.; Meyer, S.S.; Mohr, J.J.; Padin, S.; Plagge, T.; Pryke, C.; Runyan, M.C.; Schwan, D.; Sharp, M.K.; Spieler, H.; Staniszewski, Z.; Stark, A.A.

    2004-11-04

    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10 m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over 4000 degrees for galaxy clusters using the Sunyaev-Zeldovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.

  10. Atacama perchlorate as an agricultural contaminant in groundwater: Isotopic and chronologic evidence from Long Island, New York

    Science.gov (United States)

    Böhlke, J.K.; Hatzinger, P.B.; Sturchio, N.C.; Gu, B.; Abbene, I.; Mroczkowski, S.J.

    2009-01-01

    Perchlorate (ClO4-) is a common groundwater constituent with both synthetic and natural sources. A potentially important source of ClO4- is past agricultural application of ClO4--bearing natural NO3- fertilizer imported from the Atacama Desert, Chile, but evidence for this hasbeenlargely circumstantial. Here we report ClO4- stable isotope data (??37Cl, ??18O, and ??17O), along with other supporting chemical and isotopic environmental tracer data, to document groundwater ClO4- contamination sources and history in parts of Long Island, New York. Sampled groundwaters were oxic and ClO4- apparently was not affected by biodegradation within the aquifers. Synthetic ClO4- was indicated by the isotopic method in groundwater near a fireworks disposal site at a former missile base. Atacama ClO4- was indicated in agricultural and urbanizing areas in groundwaters with apparent ages >20 years. In an agricultural area, ClO4- concentrations and ClO4-/NO3- ratios increased withgroundwaterage, possiblybecauseof decreasing application rates of Atacama NO3- fertilizers and/or decreasing ClO4- concentrations in Atacama NO 3- fertilizers in recent years. Because ClO 4-/NO3- ratios of Atacama NO 3- fertilizers imported in the past (???2 ?? 10-3 mol mol-1) were much higher than the ClO 4-/NO3- ratio of recommended drinking-water limits (7 ?? 10-5 mol mol-1 in New York), ClO4- could exceed drinkingwater limits even where NO3- does not, and where Atacama NO3- was only a minor source of N. Groundwater ClO4- with distinctive isotopic composition was a sensitive indicator of past Atacama NO3- fertilizer use on Long Island and may be common in other areas that received NO3- fertilizers from the late 19th century through the 20th century. ?? 2009 American Chemical Society.

  11. Sources, sinks and long-term cycling of iodine in the hyperarid Atacama continental margin

    Science.gov (United States)

    Álvarez, Fernanda; Reich, Martin; Pérez-Fodich, Alida; Snyder, Glen; Muramatsu, Yasuyuki; Vargas, Gabriel; Fehn, Udo

    2015-07-01

    The Atacama region in northern Chile hosts the driest desert on Earth and is the world's premier iodine production province. The origin of iodine enrichment in Atacama is controversial and fundamentally different processes have been invoked over the years that involve marine, eolian and more recently deep sedimentary fluid and groundwater sources. As a result of the very limited geochemical iodine data in Atacama and the western South American margin, the origin of iodine enrichment in this region still remains elusive. In this study, we present a comprehensive survey of iodine concentrations and isotopic ratios (129I/I) of different reservoirs in the Atacama Desert of northern Chile, including nitrate soils, supergene copper deposits, marine sedimentary rocks, geothermal fluids, groundwater and meteoric water. Nitrate soils along the eastern slope of the Coastal Cordillera are found to have mean iodine concentrations of at least three orders of magnitude higher than the mean crustal abundances of ∼0.12 ppm, with a mean concentration of ∼700 ppm. Soils above giant copper deposits in the Central Depression are also highly enriched in iodine (100's of ppm range), and Cu-iodide and iodate minerals occur in the supergene enrichment zones of some of these deposits. Further east in the Precordillera, Jurassic sedimentary shales and limestones show above-background iodine concentrations, the latter averaging ∼50 ppm in the southern portion of the study area. The highest iodine concentrations in fluids were measured in groundwater below nitrate soils in the Coastal Range (∼3.5-10 ppm) and in geothermal waters (1-3 ppm) along the volcanic arc. Although highly variable, the iodine isotopic ratios (129I/I) of Jurassic marine sedimentary rocks (∼300-600 × 10-15), nitrate soils (∼150-1500 × 10-15) and waters (∼215 × 10-15) are consistently low (<1500 × 10-15), indicating that recent anthropogenic additions are almost negligible in most surficial and deeper

  12. Telescopes and Techniques

    CERN Document Server

    Kitchin, C R

    2013-01-01

    Telescopes and Techniques has proved itself in its first two editions, having become probably one of the most widely used astronomy texts, both for amateur astronomers and astronomy and astrophysics undergraduates. Both earlier editions of the book were widely used for introductory practical astronomy courses in many universities. In this Third Edition the author guides the reader through the mathematics, physics and practical techniques needed to use today's telescopes (from the smaller models to the larger instruments installed in many colleges) and how to find objects in the sky. Most of the physics and engineering involved is described fully and requires little prior knowledge or experience. Both visual and electronic imaging techniques are covered, together with an introduction to how data (measurements) should be processed and analyzed. A simple introduction to radio telescopes is also included. Brief coverage of the more advanced topics of photometry and spectroscopy are included, but mainly to enable ...

  13. Corot telescope (COROTEL)

    Science.gov (United States)

    Viard, Thierry; Mathieu, Jean-Claude; Fer, Yann; Bouzou, Nathalie; Spalinger, Etienne; Chataigner, Bruno; Bodin, Pierre; Magnan, Alain; Baglin, Annie

    2017-11-01

    COROTEL is the telescope of the COROT Satellite which aims at measuring stellar flux variations very accurately. To perform this mission, COROTEL has to be very well protected against straylight (from Sun and Earth) and must be very stable with time. Thanks to its high experience in this field, Alcatel Alenia Space has proposed, manufactured and tested an original telescope concept associated with a high baffling performance. Since its delivery to LAM (Laboratoire d'Astrophysique de Marseille, CNRS) the telescope has passed successfully the qualification tests at instrument level performed by CNES. Now, the instrument is mounted on a Proteus platform and should be launched end of 2006. The satellite should bring to scientific community for the first time precious data coming from stars and their possible companions.

  14. Configurable Aperture Space Telescope

    Science.gov (United States)

    Ennico, Kimberly; Vassigh, Kenny; Bendek, Selman; Young, Zion W; Lynch, Dana H.

    2015-01-01

    In December 2014, we were awarded Center Innovation Fund to evaluate an optical and mechanical concept for a novel implementation of a segmented telescope based on modular, interconnected small sats (satlets). The concept is called CAST, a Configurable Aperture Space Telescope. With a current TRL is 2 we will aim to reach TLR 3 in Sept 2015 by demonstrating a 2x2 mirror system to validate our optical model and error budget, provide strawman mechanical architecture and structural damping analyses, and derive future satlet-based observatory performance requirements. CAST provides an alternative access to visible andor UV wavelength space telescope with 1-meter or larger aperture for NASA SMD Astrophysics and Planetary Science community after the retirement of HST.

  15. Partially acoustic dark matter cosmology and cosmological constraints

    Science.gov (United States)

    Raveri, Marco; Hu, Wayne; Hoffman, Timothy; Wang, Lian-Tao

    2017-11-01

    Observations of the cosmic microwave background (CMB) together with weak lensing measurements of the clustering of large scale cosmological structures and local measurements of the Hubble constant pose a challenge to the standard Λ CDM cosmological model. On one side CMB observations imply a Hubble constant that is lower than local measurements and an amplitude of the lensing signal that is higher than direct measurements from weak lensing surveys. We investigate a way of relieving these tensions by adding dark radiation tightly coupled to an acoustic part of the dark matter sector and compare it to massive neutrino solutions. While these models offer a way of separately relieving the Hubble and weak lensing tensions they are prevented from fully accommodating both at the same time since the CMB requires additional cold dark matter when adding acoustic dark matter or massive neutrinos to preserve the same sharpness of the acoustic peaks which counteracts the desired growth suppression.

  16. Cosmological constraints from applying SHAM to rescaled cosmological simulations

    Science.gov (United States)

    Simha, Vimal; Cole, Shaun

    2013-12-01

    We place constraints on the matter density of the Universe and the amplitude of clustering using measurements of the galaxy two-point correlation function from the Sloan Digital Sky Survey (SDSS). We generate model predictions for different cosmologies by populating rescaled N-body simulations with galaxies using the subhalo abundance matching (SHAM) technique. We find ΩM = 0.29 ± 0.03 and σ8 = 0.86 ± 0.04 at 68 per cent confidence by fitting the observed two-point galaxy correlation function of galaxies brighter than Mr = -18 in a volume-limited sample of galaxies obtained by the SDSS. We discuss and quantify potential sources of systematic error and conclude that while there is scope for improving its robustness, the technique presented in this paper provides a powerful low-redshift constraint on the cosmological parameters that is complementary to other commonly used methods.

  17. A FLRW cosmological model with running cosmological constant

    CERN Document Server

    Shapiro, I L; Shapiro, Ilya L; Sola, Joan

    2003-01-01

    The idea of a variable dark energy has been entertained many times in the literature and from many different points of view. Quintessence is just a popular way to implement this idea in recent times, but so far with little success. Another possibility is to think of the cosmological term, Lambda, as a ``running quantity'' much in the same way as the electromagnetic coupling constant. However, the fact that Lambda is a dimension-four parameter implies that it may obey a peculiar renormalization group equation, which at low energies could be dominated by ``soft decoupling'' contributions of the form Lambda ~ H^2 M_P^2 stemming from physics near the Planck scale. This value lies in the ballpark of the measurements from CMB and high-z supernovae. A ``renormalized'' FLRW cosmology of this kind may reveal itself as a sound, and testable, proposal for a variable Lambda model within quantum field theory in curved space time.

  18. Cosmological analysis of pilgrim dark energy in loop quantum cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan)

    2015-05-15

    The proposal of pilgrim dark energy is based on the speculation that phantom-like dark energy (with strong enough resistive force) can prevent black hole formation in the universe. We explore this phenomenon in the loop quantum cosmology framework by taking pilgrim dark energy with a Hubble horizon.We evaluate the cosmological parameters such as the Hubble parameter, the equation of state parameter, the squared speed of sound, and also cosmological planes like ω{sub θ}-ω{sub θ}{sup '} and r-s on the basis of the pilgrim dark energy parameter (u) and the interacting parameter (d{sup 2}). It is found that the values of the Hubble parameter lie in the range 74{sub -0.005}{sup +0.005}. It is mentioned here that the equation of state parameter lies within the ranges -1 -+ 0.00005 for u = 2, 1 and (-1.12,-1), (-5,-1) for u = -1,-2, respectively. Also, the ω{sub θ}-ω{sub θ}{sup '} planes provide a ΛCDM limit, and freezing and thawing regions for all cases of u. It is also interesting to mention here that the ω{sub θ}-ω{sub θ}{sup '} planes lie in the range (ω{sub θ} = 1.13{sub -0.25}{sup +0.24}, ω{sub θ}{sup '} < 1.32). In addition, the r-s planes also correspond to ΛCDM for all cases of u. Finally, it is remarked that all the above constraints of the cosmological parameters (corresponding to u = @±2,±1 and d{sup 2} = 0.2{sub -1}{sup +1}) show consistency with different observational data like Planck, WP, BAO, H{sub 0}, SNLS, and nine-year WMAP. (orig.)

  19. BRS structure of simple model of cosmological constant and cosmology

    Science.gov (United States)

    Mori, Taisaku; Nitta, Daisuke; Nojiri, Shin'ichi

    2017-07-01

    In Mod. Phys. Lett. A 31, 1650213 (2016, 10.1142/S0217732316502138), Nojiri proposed a simple model in order to solve one of the problems related to the cosmological constant. The model is induced from a topological field theory, and the model has an infinite number of BRS symmetries. The BRS symmetries are, in general, spontaneously broken, however. We investigate the BRS symmetry in detail and show that there is one and only one BRS symmetry which is not broken, and the unitarity can be guaranteed. In the model, the quantum problem of the vacuum energy, which may be identified with the cosmological constant, reduces to the classical problem of the initial condition. We investigate the cosmology given by the model and specify the region of the initial conditions, which could be consistent with the evolution of the Universe. We also show that there is a stable solution describing the de Sitter space-time, which may explain the accelerating expansion in the current Universe.

  20. Two-dimensional quantum cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, A. (Stanford Linear Accelerator Center, CA (USA)); Susskind, L.; Thorlacius, L. (Standford Univ., CA (USA). Dept. of Physics)

    1991-09-30

    Two-dimensional quantum gravity coupled to conformally invariant matter with central charge c > 25 has been proposed as a toy model for quantum gravity in higher dimensions. The associated 'Wheeler-DeWitt equation' is non-linear and unstable to forming a condensate of baby universes. This will occur even in the classical c {yields} {infinity} limit. Small fluctuations about this background describe the propagation of single universes and satisfy a more conventional linear Wheeler-DeWitt equation. The resulting two-dimensional cosmology depends on details of the non-linear dynamics. In particular the existence of a large-scale cosmological constant is determined by the behavior of a string theoretic tachyon potential near its minimum. (orig.).

  1. Two-dimensional quantum cosmology.

    Science.gov (United States)

    Cooper, A.; Susskind, L.; Thorlacius, L.

    1991-09-01

    Two-dimensional quantum gravity coupled to conformally invariant matter with central charge c > 25 has been proposed as a toy model for quantum gravity in higher dimensions. The associated 'Wheeler-DeWitt equation' is non-linear and unstable to forming a condensate of baby universes. This will occur even in the classical c→∞ limit. Small fluctuations about this background describe the propagation of single universes and satisfy a more conventional linear Wheeler-DeWitt equation. The resulting two-dimensional cosmology depends on details of the non-linear dynamics. In particular the existence of a large-scale cosmological constant is determined by the behavior of a string theoretic tachyon potential near its minimum.

  2. Craig and Kalam Cosmological Argument

    Directory of Open Access Journals (Sweden)

    Tavacoli, Gh

    2011-01-01

    Full Text Available Among different arguments for the existence of God the Kalam cosmological argument is a very famous one which is elaborated by Professor William lane Craig. Craig claims that the universe began to exist, then he continues to say: everything that begins to exist has a cause and therefore the universe has a cause. But how do we know that the universe began to exist? This premise forms the most important part of Craig’s contention, and he bolsters it by four arguments, the first two are driven from philosophy and the other two, which he prefers to name them “confirmations from sciences” are driven from sciences; the first one evokes to big bang theory and the seconds to the second principle of thermodynamic which are respectively adopted from cosmology and physics.In this essay we are going to survey Craig’s arguments and estimate their value and weight.

  3. Craig and Kalam Cosmological Argument

    Directory of Open Access Journals (Sweden)

    Gholamhosein Tavacoly

    2011-08-01

    Full Text Available Among different arguments for the existence of God the Kalam cosmological argument is a very famous one which is elaborated by Professor William lane Craig. Craig claims that the universe began to exist , then he continues to say: everything that begins to exist has a cause and therefore the universe has a cause. But how do we know that the universe began to exist? This premise forms the most important part of Craig’s contention, and he bolsters it by four arguments, the first two are driven from philosophy and the other two, which he prefers to name them “confirmations from sciences” are driven from sciences the first one evokes to big bang theory and the seconds to the second principle of thermodynamic which are respectively adopted from cosmology and physics.   In this essay we are going to survey Craig’s arguments and estimate their value and weight.

  4. Cosmological Perturbations in Conformal Gravity

    CERN Document Server

    Mannheim, Philip D

    2011-01-01

    We present the first steps needed for an analysis of the perturbations that occur in the cosmology associated with the conformal gravity theory. We discuss the implications of conformal invariance for perturbative coordinate gauge choices, and show that in the conformal theory the trace of the metric fluctuation kinematically decouples from the first-order gravitational fluctuation equations. We determine the equations that describe first-order metric fluctuations around the illustrative conformally flat de Sitter background. Via a conformal transformation we show that such fluctuations can be constructed from fluctuations around a flat background, even though the fluctuations themselves are associated with a perturbative geometry that is not itself conformal to flat. We extend the analysis to fluctuations around other cosmologically relevant backgrounds, such as the conformally-flat Robertson-Walker background, and find tensor fluctuations that grow far more rapidly than those that occur in the analogous sta...

  5. Quantum coherence of cosmological perturbations

    Science.gov (United States)

    Giovannini, Massimo

    2017-11-01

    In this paper, the degrees of quantum coherence of cosmological perturbations of different spins are computed in the large-scale limit and compared with the standard results holding for a single mode of the electromagnetic field in an optical cavity. The degree of second-order coherence of curvature inhomogeneities (and, more generally, of the scalar modes of the geometry) reproduces faithfully the optical limit. For the vector and tensor fluctuations, the numerical values of the normalized degrees of second-order coherence in the zero time-delay limit are always larger than unity (which is the Poisson benchmark value) but differ from the corresponding expressions obtainable in the framework of the single-mode approximation. General lessons are drawn on the quantum coherence of large-scale cosmological fluctuations.

  6. Dilaton production in string cosmology

    CERN Document Server

    Gasperini, M

    1994-01-01

    We consider the coupled evolution of density, (scalar) metric and dilaton perturbations in the transition from a "stringy" phase of growing curvature and gravitational coupling to the standard radiation-dominated cosmology. We show that dilaton production, with a spectrum tilted towards large frequencies, emerges as a general property of this scenario. We discuss the frame-independence of the dilaton spectrum and of the inflationary properties of the metric background by using, as model of source, a pressureless gas of weakly interacting strings, which is shown to provide an approximate but consistent solution to the full system of background equations and string equations of motion. We combine various cosmological bounds on a growing dilaton spectrum with the bound on the dilaton mass obtained from tests of the equivalence principle, and we find allowed windows compatible with a universe presently dominated by a relic background of dilatonic dark matter.

  7. Analytic methods for cosmological likelihoods

    Science.gov (United States)

    Taylor, A. N.; Kitching, T. D.

    2010-10-01

    We present general, analytic methods for cosmological likelihood analysis and solve the `many parameters' problem in cosmology. Maxima are found by Newton's method, while marginalization over nuisance parameters, and parameter errors and covariances are estimated by analytic marginalization of an arbitrary likelihood function, expanding the log-likelihood to second order, with flat or Gaussian priors. We show that information about remaining parameters is preserved by marginalization. Marginalizing over all parameters, we find an analytic expression for the Bayesian evidence for model selection. We apply these methods to data described by Gaussian likelihoods with parameters in the mean and covariance. These methods can speed up conventional likelihood analysis by orders of magnitude when combined with Markov chain Monte Carlo methods, while Bayesian model selection becomes effectively instantaneous.

  8. Graviton spectra in string cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Galluccio, Massimo [Osservatorio Astronomico di Roma (Roma-IT); Litterio, Marco [Istituto Astronomico dell' Universita (Roma-IT); Occhionero, Franco [Osservatorio Astronomico di Roma (Roma-IT)

    1996-08-01

    We propose to uncover the signature of a stringy era in the primordial Universe by searching for a prominent peak in the relic graviton spectrum. This feature, which in our specific model terminates an ω³ increase and initiates an ω⁻⁷ decrease, is induced during the so far overlooked bounce of the scale factor between the collapsing deflationary era (or pre-Big Bang) and the expanding inflationary era (or post-Big Bang). We evaluate both analytically and numerically the frequency and the intensity of the peak and we show that they may likely fall in the realm of the new generation of interferometric detectors. The existence of a peak is at variance with ordinarily monotonic (either increasing or decreasing) graviton spectra of canonical cosmologies; its detection would therefore offer strong support to string cosmology.

  9. Effective perfect fluids in cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, Guillermo [Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Piazza del Viminale 1, I-00184 Rome (Italy); Bellazzini, Brando, E-mail: guillermo.ballesteros@unige.ch, E-mail: brando.bellazzini@pd.infn.it [Dipartimento di Fisica, Università di Padova and INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy)

    2013-04-01

    We describe the cosmological dynamics of perfect fluids within the framework of effective field theories. The effective action is a derivative expansion whose terms are selected by the symmetry requirements on the relevant long-distance degrees of freedom, which are identified with comoving coordinates. The perfect fluid is defined by requiring invariance of the action under internal volume-preserving diffeomorphisms and general covariance. At lowest order in derivatives, the dynamics is encoded in a single function of the entropy density that characterizes the properties of the fluid, such as the equation of state and the speed of sound. This framework allows a neat simultaneous description of fluid and metric perturbations. Longitudinal fluid perturbations are closely related to the adiabatic modes, while the transverse modes mix with vector metric perturbations as a consequence of vorticity conservation. This formalism features a large flexibility which can be of practical use for higher order perturbation theory and cosmological parameter estimation.

  10. Craig and Kalam Cosmological Argument

    Directory of Open Access Journals (Sweden)

    Gholamhosein Tavacoly

    2011-09-01

    Full Text Available   Among different arguments for the existence of God the Kalam cosmological argument is a very famous one which is elaborated by Professor William lane Craig. Craig claims that the universe began to exist , then he continues to say: everything that begins to exist has a cause and therefore the universe has a cause. But how do we know that the universe began to exist? This premise forms the most important part of Craig’s contention, and he bolsters it by four arguments, the first two are driven from philosophy and the other two, which he prefers to name them “confirmations from sciences” are driven from sciences the first one evokes to big bang theory and the seconds to the second principle of thermodynamic which are respectively adopted from cosmology and physics.   In this essay we are going to survey Craig’s arguments and estimate their value and weight.

  11. Exact cosmological solutions for MOG

    Energy Technology Data Exchange (ETDEWEB)

    Roshan, Mahmood [Ferdowsi University of Mashhad, Department of Physics, P.O. Box 1436, Mashhad (Iran, Islamic Republic of)

    2015-09-15

    We find some new exact cosmological solutions for the covariant scalar-tensor-vector gravity theory, the so-called modified gravity (MOG). The exact solution of the vacuum field equations has been derived. Also, for non-vacuum cases we have found some exact solutions with the aid of the Noether symmetry approach. More specifically, the symmetry vector and also the Noether conserved quantity associated to the point-like Lagrangian of the theory have been found. Also we find the exact form of the generic vector field potential of this theory by considering the behavior of the relevant point-like Lagrangian under the infinitesimal generator of the Noether symmetry. Finally, we discuss the cosmological implications of the solutions. (orig.)

  12. Cosmological Constant and Local Gravity

    CERN Document Server

    Bernabeu, Jose; Mavromatos, Nick E

    2010-01-01

    We discuss the linearization of Einstein equations in the presence of a cosmological constant, by expanding the solution for the metric around a flat Minkowski space-time. We demonstrate that one can find consistent solutions to the linearized set of equations for the metric perturbations, in the Lorentz gauge, which are not spherically symmetric, but they rather exhibit a cylindrical symmetry. We find that the components of the gravitational field satisfying the appropriate Poisson equations have the property of ensuring that a scalar potential can be constructed, in which both contributions, from ordinary matter and $\\Lambda > 0$, are attractive. In addition, there is a novel tensor potential, induced by the pressure density, in which the effect of the cosmological constant is repulsive. We also linearize the Schwarzschild-de Sitter exact solution of Einstein's equations (due to a generalization of Birkhoff's theorem) in the domain between the two horizons. We manage to transform it first to a gauge in whic...

  13. Axions in astrophysics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Sikivie, P.

    1984-07-01

    Axion models often have a spontaneously broken exact discrete symmetry. In that case, they have discretely degenerate vacua and hence domain walls. The properties of the domain walls, the cosmological catastrophe they produce and the ways in which this catastrophe may be avoided are explained. Cosmology and astrophysics provide arguments that imply the axion decay constant should lie in the range 10/sup 8/ GeV less than or equal to f/sub a/ less than or equal to 10/sup 12/ GeV. Reasons are given why axions are an excellent candidate to constitute the dark matter of galactic halos. Using the coupling of the axions to the electromagnetic field, detectors are described to look for axions floating about in the halo of our galaxy and for axions emitted by the sun. (LEW)

  14. Biases on cosmological parameter estimators from galaxy cluster number counts

    Science.gov (United States)

    Penna-Lima, M.; Makler, M.; Wuensche, C. A.

    2014-05-01

    Sunyaev-Zel'dovich (SZ) surveys are promising probes of cosmology — in particular for Dark Energy (DE) —, given their ability to find distant clusters and provide estimates for their mass. However, current SZ catalogs contain tens to hundreds of objects and maximum likelihood estimators may present biases for such sample sizes. In this work we study estimators from cluster abundance for some cosmological parameters, in particular the DE equation of state parameter w0, the amplitude of density fluctuations σ8, and the Dark Matter density parameter Ωc. We begin by deriving an unbinned likelihood for cluster number counts, showing that it is equivalent to the one commonly used in the literature. We use the Monte Carlo approach to determine the presence of bias using this likelihood and study its behavior with both the area and depth of the survey, and the number of cosmological parameters fitted. Our fiducial models are based on the South Pole Telescope (SPT) SZ survey. Assuming perfect knowledge of mass and redshift some estimators have non-negligible biases. For example, the bias of σ8 corresponds to about 40% of its statistical error bar when fitted together with Ωc and w0. Including a SZ mass-observable relation decreases the relevance of the bias, for the typical sizes of current SZ surveys. Considering a joint likelihood for cluster abundance and the so-called ``distance priors'', we obtain that the biases are negligible compared to the statistical errors. However, we show that the biases from SZ estimators do not go away with increasing sample sizes and they may become the dominant source of error for an all sky survey at the SPT sensitivity. Finally, we compute the confidence regions for the cosmological parameters using Fisher matrix and profile likelihood approaches, showing that they are compatible with the Monte Carlo ones. The results of this work validate the use of the current maximum likelihood methods for present SZ surveys, but highlight the

  15. Non-local cosmological evolutions

    Science.gov (United States)

    Carreras, M. Sanfrutos; Cembranos, J. A. R.

    2012-07-01

    The cosmological evolution of a non-local model is investigated. As it is standard in the early Universe, we assume the thermalization of the source of the Friedmann equation. In such a case, the non-local correction to the classic Einstein-Hilbert action can be locally represented by a non-standard thermal fluid. We give a particular realization of this idea by using the p-adic string model.

  16. Newtonian M(atrix) cosmology

    Science.gov (United States)

    Álvarez, Enrique; Meessen, Patrick

    1998-05-01

    A Newtonian matrix cosmology, corresponding to the Banks, Fischler, Shenker and Susskind model of eleven-dimensional M-theory in the infinite momentum frame as a supersymmetric (0+1) M(atrix) model is constructed. Interesting new results are obtained, such as the existence of (much sought for in the past) static solutions. The possible interpretation of the off-diagonal entries as a background geometry is also briefly discussed.

  17. Multiverses and Cosmology: Philosophical Issues

    OpenAIRE

    Stoeger, W. R.; Ellis, G. F. R.; Kirchner, U.

    2004-01-01

    The idea of a multiverse -- an ensemble of universes or universe domains -- has received increasing attention in cosmology, both as the outcome of the originating process that generated our own universe, and as an explanation for why our universe appears to be fine-tuned for life and consciousness. Here we carefully consider how multiverses should be defined, stressing the distinction between the collection of all possible universes, and ensembles of really existing universes, which are essen...

  18. The Liverpool Telescope

    Science.gov (United States)

    Smith, Robert J.; Bates, S. D.; Clay, Neil R.; Fraser, Stephen N.; Marchant, J. M.; Mottram, C. J.; Steele, I. A.; Tomlinson, M. D.

    2011-03-01

    The Liverpool Telescope (LT) is a fully robotic 2m optical telescope at a world-class observatory site. It runs autonomously without direct human control either on site or remotely. It is not operated primarily for a single science project, but rather is a common-user facility, time allocated by an open, peer-review process and conducting a variety of optical and IR imaging, spectroscopic and polarimetric programs. This paper describes some of aspects of the site infrastructure and instrument suite designed specifically to support robust and reliable unsupervised operations. Aside from the telescope hardware, the other aspect of robotic operations is the mechanisms whereby users interact with the telescope and its automated scheduler. We describe how these have been implemented for the LT. Observing routinely since 2004, the LT has demonstrated it is possible to operate a large, common-user robotic observatory. Making the most of the flexibility afforded by fully robotic operations, development continues in collaboration with both observers and other observatories to develop observing modes to enable new science across the broad discipline of time-domain astrophysics.

  19. Exploring Galileo's Telescope

    Science.gov (United States)

    Straulino, Samuele; Terzuoli, Alessandra

    2010-01-01

    In the first months of 2009, the International Year of Astronomy, the authors developed an educational project for middle-level students connected with the first astronomical discoveries that Galileo Galilei (1564-1642) made 400 years ago. The project included the construction of a basic telescope and the observation of the Moon. The project, if…

  20. Taiwan Automated Telescope Network

    Directory of Open Access Journals (Sweden)

    Dean-Yi Chou

    2010-01-01

    can be operated either interactively or fully automatically. In the interactive mode, it can be controlled through the Internet. In the fully automatic mode, the telescope operates with preset parameters without any human care, including taking dark frames and flat frames. The network can also be used for studies that require continuous observations for selected objects.

  1. The Age of Precision Cosmology

    Science.gov (United States)

    Chuss, David T.

    2012-01-01

    In the past two decades, our understanding of the evolution and fate of the universe has increased dramatically. This "Age of Precision Cosmology" has been ushered in by measurements that have both elucidated the details of the Big Bang cosmology and set the direction for future lines of inquiry. Our universe appears to consist of 5% baryonic matter; 23% of the universe's energy content is dark matter which is responsible for the observed structure in the universe; and 72% of the energy density is so-called "dark energy" that is currently accelerating the expansion of the universe. In addition, our universe has been measured to be geometrically flat to 1 %. These observations and related details of the Big Bang paradigm have hinted that the universe underwent an epoch of accelerated expansion known as Uinflation" early in its history. In this talk, I will review the highlights of modern cosmology, focusing on the contributions made by measurements of the cosmic microwave background, the faint afterglow of the Big Bang. I will also describe new instruments designed to measure the polarization of the cosmic microwave background in order to search for evidence of cosmic inflation.

  2. Quantum propagation across cosmological singularities

    Science.gov (United States)

    Gielen, Steffen; Turok, Neil

    2017-05-01

    The initial singularity is the most troubling feature of the standard cosmology, which quantum effects are hoped to resolve. In this paper, we study quantum cosmology with conformal (Weyl) invariant matter. We show that it is natural to extend the scale factor to negative values, allowing a large, collapsing universe to evolve across a quantum "bounce" into an expanding universe like ours. We compute the Feynman propagator for Friedmann-Robertson-Walker backgrounds exactly, identifying curious pathologies in the case of curved (open or closed) universes. We then include anisotropies, fixing the operator ordering of the quantum Hamiltonian by imposing covariance under field redefinitions and again finding exact solutions. We show how complex classical solutions allow one to circumvent the singularity while maintaining the validity of the semiclassical approximation. The simplest isotropic universes sit on a critical boundary, beyond which there is qualitatively different behavior, with potential for instability. Additional scalars improve the theory's stability. Finally, we study the semiclassical propagation of inhomogeneous perturbations about the flat, isotropic case, at linear and nonlinear order, showing that, at least at this level, there is no particle production across the bounce. These results form the basis for a promising new approach to quantum cosmology and the resolution of the big bang singularity.

  3. Quantum gravity and quantum cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Calcagni, Gianluca [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Estructura de la Materia; Papantonopoulos, Lefteris [National Technical Univ. of Athens (Greece). Dept. of Physics; Siopsis, George [Tennessee Univ., Knoxville, TN (United States). Dept. of Physics and Astronomy; Tsamis, Nikos (eds.) [Crete Univ, Heraklion (Greece). Dept. of Physics

    2013-02-01

    With contributions by leading researcher in the field. Chapters written as both tutorial and state-of-the-art surveys. Can be used both as advanced course material and for self study. Quantum gravity has developed into a fast-growing subject in physics and it is expected that probing the high-energy and high-curvature regimes of gravitating systems will shed some light on how to eventually achieve an ultraviolet complete quantum theory of gravity. Such a theory would provide the much needed information about fundamental problems of classical gravity, such as the initial big-bang singularity, the cosmological constant problem, Planck scale physics and the early-time inflationary evolution of our Universe. While in the first part of this book concepts of quantum gravity are introduced and approached from different angles, the second part discusses these theories in connection with cosmological models and observations, thereby exploring which types of signatures of modern and mathematically rigorous frameworks can be detected by experiments. The third and final part briefly reviews the observational status of dark matter and dark energy, and introduces alternative cosmological models.

  4. Inflation and cosmological parameter estimation

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, J.

    2007-05-15

    In this work, we focus on two aspects of cosmological data analysis: inference of parameter values and the search for new effects in the inflationary sector. Constraints on cosmological parameters are commonly derived under the assumption of a minimal model. We point out that this procedure systematically underestimates errors and possibly biases estimates, due to overly restrictive assumptions. In a more conservative approach, we analyse cosmological data using a more general eleven-parameter model. We find that regions of the parameter space that were previously thought ruled out are still compatible with the data; the bounds on individual parameters are relaxed by up to a factor of two, compared to the results for the minimal six-parameter model. Moreover, we analyse a class of inflation models, in which the slow roll conditions are briefly violated, due to a step in the potential. We show that the presence of a step generically leads to an oscillating spectrum and perform a fit to CMB and galaxy clustering data. We do not find conclusive evidence for a step in the potential and derive strong bounds on quantities that parameterise the step. (orig.)

  5. The Einstein Telescope: a third-generation gravitational wave observatory

    Energy Technology Data Exchange (ETDEWEB)

    Punturo, M; Bosi, L [INFN, Sezione di Perugia, I-6123 Perugia (Italy); Abernathy, M; Barr, B; Beveridge, N [Department of Physics and Astronomy, The University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Acernese, F; Barone, F; Calloni, E [INFN, Sezione di Napoli (Italy); Allen, B [Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany); Andersson, N [University of Southampton, Southampton SO17 1BJ (United Kingdom); Arun, K [LAL, Universite Paris-Sud, IN2P3/CNRS, F-91898 Orsay (France); Barsuglia, M; Mottin, E Chassande [AstroParticule et Cosmologie (APC), CNRS, Observatoire de Paris-Universite Denis Diderot-Paris VII (France); Beker, M [VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam (Netherlands); Birindelli, S [Universite Nice ' Sophia-Antipolis' , CNRS, Observatoire de la Cote d' Azur, F-06304 Nice (France); Bose, S [Washington State University, Pullman, WA 99164 (United States); Braccini, S; Bradaschia, C; Cella, G [INFN, Sezione di Pisa (Italy); Bulik, T, E-mail: michele.punturo@pg.infn.i [Astro. Obs. Warsaw Univ. 00-478, CAMK-PAM 00-716 Warsaw, Bialystok Univ. 15-424, IPJ 05-400 Swierk-Otwock, Inst. of Astronomy 65-265 Zielona Gora (Poland)

    2010-10-07

    Advanced gravitational wave interferometers, currently under realization, will soon permit the detection of gravitational waves from astronomical sources. To open the era of precision gravitational wave astronomy, a further substantial improvement in sensitivity is required. The future space-based Laser Interferometer Space Antenna and the third-generation ground-based observatory Einstein Telescope (ET) promise to achieve the required sensitivity improvements in frequency ranges. The vastly improved sensitivity of the third generation of gravitational wave observatories could permit detailed measurements of the sources' physical parameters and could complement, in a multi-messenger approach, the observation of signals emitted by cosmological sources obtained through other kinds of telescopes. This paper describes the progress of the ET project which is currently in its design study phase.

  6. Giant Magellan Telescope: overview

    Science.gov (United States)

    Johns, Matt; McCarthy, Patrick; Raybould, Keith; Bouchez, Antonin; Farahani, Arash; Filgueira, Jose; Jacoby, George; Shectman, Steve; Sheehan, Michael

    2012-09-01

    The Giant Magellan Telescope (GMT) is a 25-meter optical/infrared extremely large telescope that is being built by an international consortium of universities and research institutions. It will be located at the Las Campanas Observatory, Chile. The GMT primary mirror consists of seven 8.4-m borosilicate honeycomb mirror segments made at the Steward Observatory Mirror Lab (SOML). Six identical off-axis segments and one on-axis segment are arranged on a single nearly-paraboloidal parent surface having an overall focal ratio of f/0.7. The fabrication, testing and verification procedures required to produce the closely-matched off-axis mirror segments were developed during the production of the first mirror. Production of the second and third off-axis segments is underway. GMT incorporates a seven-segment Gregorian adaptive secondary to implement three modes of adaptive-optics operation: natural-guide star AO, laser-tomography AO, and ground-layer AO. A wide-field corrector/ADC is available for use in seeing-limited mode over a 20-arcmin diameter field of view. Up to seven instruments can be mounted simultaneously on the telescope in a large Gregorian Instrument Rotator. Conceptual design studies were completed for six AO and seeing-limited instruments, plus a multi-object fiber feed, and a roadmap for phased deployment of the GMT instrument suite is being developed. The partner institutions have made firm commitments for approximately 45% of the funds required to build the telescope. Project Office efforts are currently focused on advancing the telescope and enclosure design in preparation for subsystem- and system-level preliminary design reviews which are scheduled to be completed in the first half of 2013.

  7. Isotopic characterization of late Neogene travertine deposits at Barrancas Blancas in the eastern Atacama Desert, Chile

    Science.gov (United States)

    Quade, J.; Rasbury, E.T.; Huntington, K.W.; Hudson, Adam; Vonhof, H.; Anchukaitis, K.; Betancourt, Julio L.; Latorre, C.; Pepper, M.

    2017-01-01

    Here we explore the potential of spring-related, surface and subsurface carbonates as an archive of paleoenvironmental change at Barrancas Blancas, located in the broadest and driest sector of the Atacama Desert at 24.5°S. From these deposits we present a new stable isotopic record of paleoenvironmental conditions over portions of the past ~ 11.5 Ma. U-Pb dates from the carbonates, both surface and subsurface, demonstrate that springs have discharged at this location over much of the last 11.5 Ma, attesting to the exceptional geomorphic stability of the central Atacama. Many of the sampled vein systems line vertical fissures, and formed within the aquifer before groundwater discharged at the surface. Carbonates in such circumstances should not undergo off-gassing and kinetic fractionation prior to formation, simplifying the interpretation of their isotopic composition. Oxygen isotopic compositions of carbonates are generally high (>− 5‰VPDB), and using paleospring water temperatures of 3–13 °C reconstructed from clumped isotopes, point to strongly (up to 50%) evaporated water isotope values, like those associated with the hyperarid core of the Atacama Desert today. Carbon isotopic compositions are also high (≥+3‰ PDB), reflecting a recharge area essentially devoid of plants and dominated by volcanic CO2, as is the case today. Our isotopic results are very similar to those from the Calama Basin to the north, suggesting that the western face of the Andes between 21 and 25°S has been highly evaporative and nearly plantless when these springs discharged over the last 11.5 Ma. The spring carbonates at Barrancas Blancas strongly resemble those found at Devils Hole and Furnace Creek in Death Valley, USA, and as such warrant further exploration as potential archives of climate change.

  8. Entropy and initial conditions in cosmology

    OpenAIRE

    Banks, T.

    2007-01-01

    I discuss the Boltzmann-Penrose question of why the initial conditions for cosmology have low entropy. The modern version of Boltzmann's answer to this question, due to Dyson, Kleban and Susskind, seems to imply that the typical intelligent observer arises through thermal fluctuation, rather than cosmology and evolution. I investigate whether this can be resolved within the string landscape. I end with a review of the suggestion that Holographic Cosmology provides a simpler answer to the prob...

  9. New exact cosmologies on the brane

    Science.gov (United States)

    Astashenok, Artyom V.; Yurov, Artyom V.; Chervon, Sergey V.; Shabanov, Evgeniy V.; Sami, Mohammad

    2014-10-01

    We develop a method for constructing exact cosmological solutions in brane world cosmology. New classes of cosmological solutions on Randall-Sandrum brane are obtained. The superpotential and Hubble parameter are represented in quadratures. These solutions have inflationary phases under general assumptions and also describe an exit from the inflationary phase without a fine tuning of the parameters. Another class solutions can describe the current phase of accelerated expansion with or without possible exit from it.

  10. Optical Space Telescope Assembly Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Optical Space Telescope Assembly (OSTA) task is to demonstrate the technology readiness of assembling large space telescopes on orbit in 2015. This task is an...

  11. GLOEOCAPSOPSIS AAB1, A CYANOBACTERIUM HIGHL Y TOLERANT TO DESICCATION ISOLATED FROM THE ATACAMA DESERT

    OpenAIRE

    AZUA BUSTOS, ARMANDO JAVIER; AZUA BUSTOS, ARMANDO JAVIER

    2013-01-01

    El acabado estudio de los microorganismos que han evolucionado en el Desierto de Atacama, el más seco y antiguo del mundo, permitirían entender el rol clave del agua para la vida en general. Para aproximarse a este fin, primero caracterizamos el microambiente que permite la colonización de cuarzos de la Cordillera de la Costa de este desierto por microorganismos hipolíticos. A continuación describimos la composición de la biodiversidad microbiana de estos biofilms, aislando posterior...

  12. SELECCION FENOTIPICA Y VARIABILIDAD GENETICA ESPACIO-TEMPORAL EN POBLACIONES LIMNOCITHERE ATACAMAE (OSTRACODA: LIMNOCYTHERE)

    OpenAIRE

    SCHEIHING AGUILA; RODRIGO ARMANDO

    2011-01-01

    En un sistema poblacional cerrado compuesto por lagunas endorreicas en el Salar de Surire, se estudió la distribución de la variación genética y la forma y magnitud de la selección natural en un ectotermo capaz de sobrevivir en ambientes contrastantes. Se estableció la estructura de la comunidad, el gradiente de selección natural que opera sobre el tamaño corporal, así como también, la diversidad y estructuración genética del ostrácodo, Limnocythere atacamae en el "Monumento na...

  13. Precision cosmology from future lensed gravitational wave and electromagnetic signals.

    Science.gov (United States)

    Liao, Kai; Fan, Xi-Long; Ding, Xuheng; Biesiada, Marek; Zhu, Zong-Hong

    2017-10-27

    The standard siren approach of gravitational wave cosmology appeals to the direct luminosity distance estimation through the waveform signals from inspiralling double compact binaries, especially those with electromagnetic counterparts providing redshifts. It is limited by the calibration uncertainties in strain amplitude and relies on the fine details of the waveform. The Einstein telescope is expected to produce 10 4 -10 5 gravitational wave detections per year, 50-100 of which will be lensed. Here, we report a waveform-independent strategy to achieve precise cosmography by combining the accurately measured time delays from strongly lensed gravitational wave signals with the images and redshifts observed in the electromagnetic domain. We demonstrate that just 10 such systems can provide a Hubble constant uncertainty of 0.68% for a flat lambda cold dark matter universe in the era of third-generation ground-based detectors.

  14. 21 cm cosmology in the 21st century.

    Science.gov (United States)

    Pritchard, Jonathan R; Loeb, Abraham

    2012-08-01

    Imaging the Universe during the first hundreds of millions of years remains one of the exciting challenges facing modern cosmology. Observations of the redshifted 21 cm line of atomic hydrogen offer the potential of opening a new window into this epoch. This will transform our understanding of the formation of the first stars and galaxies and of the thermal history of the Universe. A new generation of radio telescopes is being constructed for this purpose with the first results starting to trickle in. In this review, we detail the physics that governs the 21 cm signal and describe what might be learnt from upcoming observations. We also generalize our discussion to intensity mapping of other atomic and molecular lines.

  15. Redshift drift in varying speed of light cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Balcerzak, Adam, E-mail: abalcerz@wmf.univ.szczecin.pl [Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin (Poland); Copernicus Center for Interdisciplinary Studies, Sławkowska 17, 31-016 Kraków (Poland); Dabrowski, Mariusz P., E-mail: mpdabfz@wmf.univ.szczecin.pl [Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin (Poland); Copernicus Center for Interdisciplinary Studies, Sławkowska 17, 31-016 Kraków (Poland)

    2014-01-20

    We derive a redshift drift formula within the framework of varying speed of light (VSL) theory using the specific ansatz for the variability of c(t)=c{sub 0}a{sup n}(t). We show that negative values of the parameter n, which correspond to diminishing value of the speed of light during the evolution of the universe, effectively rescale dust matter to become little negative pressure matter, and the cosmological constant to became phantom. Positive values of n (growing c(t)) make VSL model to become more like Cold Dark Matter (CDM) model. Observationally, there is a distinction between the VSL model and the ΛCDM model for the admissible values of the parameter n∼−10{sup −5}, though it will be rather difficult to detect by planned extremely large telescopes (EELT, TMT, GMT) within their accuracy.

  16. Uzaybimer Radio Telescope Control System

    Science.gov (United States)

    Balbay, R.; Öz, G. K.; Arslan, Ö.; Özeren, F. F.; Küçük, İ.

    2016-12-01

    A 13 meters former NATO radar is being converted into a radio telescope. The radio telescope is controlled by a system which has been developed at UZAYBİMER. The Telescope Control System(TCS) has been designed using modern industrial systems. TCS has been developed in LabView platform in which works Windows embedded OS. The position feedback used on radio telescopes is an industrial EtherCAT standard. ASCOM library is used for astronomical calculations.

  17. FISICA: The Florida Image Slicer for Infrared Astrophysics and Cosmology

    Science.gov (United States)

    Raines, S. N.; Eikenberry, S. S.; Elston, R.; Guzman, R.; Gruel, N.; Julian, J.; Boreman, G.; Hoffman, J.; Rodgers, M.; Glenn, P.; Hull-Allen, G.; Myrick, B.; Flint, S.; Comstock, L.

    2005-12-01

    We report on the design, manufacture, and scientific performance of the Florida Image Slicer for Infrared Astrophysics and Cosmology (FISICA) - a fully cryogenic all-reflective image slicing integral field unit for the FLAMINGOS near-infrared spectrograph. Originally conceived as a bench-top demonstration proof-of-concept instrument, after three productive engineering runs at the KPNO 4-m telescope (as of 15 Oct 2005) we find that FISICA is capable of delivering excellent scientific results. It now operates as a 'turnkey' instrument at the KPNO 4-m telescope. FISICA is now open for community access as a visitor instrument on the KPNO 4-m telescope via collaboration with the instrument team, who can assist with the proposal preparation and observations, as well as provide the data reduction tools for integral field spectroscopy. We review the optical and opto-mechanical design, fabrication, laboratory test results, and on-telescope performance for FISICA. Designed to accept input beams near f/15, FISICA with FLAMINGOS slices a 16x33 arcsec field of view into 22 parallel elements using three sets of monolithic powered mirror arrays, each with 22 mirrored surfaces cut into a single piece of aluminum. However, slight vignetting for some field positions limits the effective field of view to 15x32 arcsec. The effective spatial sampling of 0.70 arcsec delivers 960 spatial resolution elements. Combined with the FLAMINGOS spectrograph, R 1300 spectroscopy over the 1-2.4 micron wavelength range is possible, in either the J+H combined bandpass or the H+K combined bandpass. FISICA was funded by the UCF-UF Space Research Initiative; FLAMINGOS was designed and was constructed by the IR Instrumentation Group (PI: R. Elston) at the University of Florida, Department of Astronomy, with support from NSF grant AST97-31180 and Kitt Peak National Observatory.

  18. Beyond the Standard Model of Cosmology

    CERN Document Server

    Ellis, Jonathan Richard; Ellis, John

    2004-01-01

    Recent cosmological observations of unprecented accuracy, by WMAP in particular, have established a `Standard Model' of cosmology, just as LEP established the Standard Model of particle physics. Both Standard Models raise open questions whose answers are likely to be linked. The most fundamental problems in both particle physics and cosmology will be resolved only within a framework for Quantum Gravity, for which the only game in town is string theory. We discuss novel ways to model cosmological inflation and late acceleration in a non-critical string approach, and discuss possible astrophysical tests.

  19. Quantum Gravity and Cosmology: an intimate interplay

    Science.gov (United States)

    Sakellariadou, Mairi

    2017-08-01

    I will briefly discuss three cosmological models built upon three distinct quantum gravity proposals. I will first highlight the cosmological rôle of a vector field in the framework of a string/brane cosmological model. I will then present the resolution of the big bang singularity and the occurrence of an early era of accelerated expansion of a geometric origin, in the framework of group field theory condensate cosmology. I will then summarise results from an extended gravitational model based on non-commutative spectral geometry, a model that offers a purely geometric explanation for the standard model of particle physics.

  20. The Effective Field Theory of nonsingular cosmology

    CERN Document Server

    Cai, Yong; Li, Hai-Guang; Qiu, Taotao; Piao, Yun-Song

    2016-01-01

    In this paper, we explore the nonsingular cosmology within the framework of the Effective Field Theory(EFT) of cosmological perturbations. Due to the recently proved no-go theorem, any nonsingular cosmological models based on the cubic Galileon suffer from pathologies. We show how the EFT could help us clarify the origin of the no-go theorem, and offer us solutions to break the no-go. Particularly, we point out that the gradient instability can be removed by using some spatial derivative operators in EFT. Based on the EFT description, we obtain a realistic healthy nonsingular cosmological model, and show the perturbation spectrum can be consistent with the observations.

  1. Southern Fireworks above ESO Telescopes

    Science.gov (United States)

    1999-05-01

    New Insights from Observations of Mysterious Gamma-Ray Burst International teams of astronomers are now busy working on new and exciting data obtained during the last week with telescopes at the European Southern Observatory (ESO). Their object of study is the remnant of a mysterious cosmic explosion far out in space, first detected as a gigantic outburst of gamma rays on May 10. Gamma-Ray Bursters (GRBs) are brief flashes of very energetic radiation - they represent by far the most powerful type of explosion known in the Universe and their afterglow in optical light can be 10 million times brighter than the brightest supernovae [1]. The May 10 event ranks among the brightest one hundred of the over 2500 GRB's detected in the last decade. The new observations include detailed images and spectra from the VLT 8.2-m ANTU (UT1) telescope at Paranal, obtained at short notice during a special Target of Opportunity programme. This happened just over one month after that powerful telescope entered into regular service and demonstrates its great potential for exciting science. In particular, in an observational first, the VLT measured linear polarization of the light from the optical counterpart, indicating for the first time that synchrotron radiation is involved . It also determined a staggering distance of more than 7,000 million light-years to this GRB . The astronomers are optimistic that the extensive observations will help them to better understand the true nature of such a dramatic event and thus to bring them nearer to the solution of one of the greatest riddles of modern astrophysics. A prime example of international collaboration The present story is about important new results at the front-line of current research. At the same time, it is also a fine illustration of a successful collaboration among several international teams of astronomers and the very effective way modern science functions. It began on May 10, at 08:49 hrs Universal Time (UT), when the Burst

  2. Cosmological constraints on the radiation released during structure formation

    Energy Technology Data Exchange (ETDEWEB)

    Camarena, David; Marra, Valerio [Universidade Federal do Espirito Santo, Departamento de Fisica, Vitoria, ES (Brazil)

    2016-11-15

    During the process of structure formation in the universe matter is converted into radiation through a variety of processes such as light from stars, infrared radiation from cosmic dust, and gravitational waves from binary black holes/neutron stars and supernova explosions. The production of this astrophysical radiation background (ARB) could affect the expansion rate of the universe and the growth of perturbations. Here, we aim at understanding to which level one can constraint the ARB using future cosmological observations. We model the energy transfer from matter to radiation through an effective interaction between matter and astrophysical radiation. Using future supernova data from large synoptic survey telescope and growth-rate data from Euclid we find that the ARB density parameter is constrained, at the 95% confidence level, to be Ω{sub ar{sub 0}} < 0.008. Estimates of the energy density produced by well-known astrophysical processes give roughly Ω{sub ar{sub 0}} ∝ 10{sup -5}. Therefore, we conclude that cosmological observations will only be able to constrain exotic or not-well understood sources of radiation. (orig.)

  3. Galileo's wondrous telescope

    Science.gov (United States)

    Cartlidge, Edwin

    2008-06-01

    If you need reminding of just how wrong the great and the good can be, take a trip to the Museum of the History of Science in Florence, Italy. The museum is staging an exhibition entitled "Galileo's telescope - the instrument that changed the world" to mark the 400th anniversary this year of Galileo Galilei's revolutionary astronomical discoveries, which were made possible by the invention of the telescope. At the start of the 17th century, astronomers assumed that all the planets and the stars in the heavens had been identified and that there was nothing new for them to discover, as the exhibition's curator, Giorgio Strano, points out. "No-one could have imagined what wondrous new things were about to be revealed by an instrument created by inserting two eyeglass lenses into the ends of a tube," he adds.

  4. The Bionic Telescope

    Science.gov (United States)

    Woolf, Neville

    2009-05-01

    Four hundred years after children in a spectacle makers workshop accidentally discovered the telescope, the development of this device has been a continuous replacement of the ``natural'' by the deliberate. The human eye is gone. The lens is gone. The tube is gone. The dome is on the verge of going. The size of the optics are ceasing to be set by transportation limits. Adaptive optics are preferred to stable optics. We deliberately break the Lagrange invariant. We focus on lasers instead of stars, and natural observing environments are being replaced by adaptive environments. The goals for the new ground based telescope encompass the oldest and newest ideas, to find signs of life elsewhere, and to find how all the universe developed.

  5. Calibrating the Athena telescope

    Science.gov (United States)

    de Bruijne, J.; Guainazzi, M.; den Herder, J.; Bavdaz, M.; Burwitz, V.; Ferrando, P.; Lumb, D.; Natalucci, L.; Pajot, F.; Pareschi, G.

    2017-10-01

    Athena is ESA's upcoming X-ray mission, currently set for launch in 2028. With two nationally-funded, state-of-the-art instruments (a high-resolution spectrograph named X-IFU and a wide-field imager named WFI), and a telescope collecting area of 1.4-2 m^2 at 1 keV, the calibration of the spacecraft is a challenge in itself. This poster presents the current (spring 2017) plan of how to calibrate the Athena telescope. It is based on a hybrid approach, using bulk manufacturing and integration data as well as dedicated calibration measurements combined with a refined software model to simulate the full response of the optics.

  6. Everyday Radio Telescope

    CERN Document Server

    Mandal, Pranshu; Kumar, Pratik; Yelikar, Anjali; Soni, Kanchan; T, Vineeth Krishna

    2016-01-01

    We have developed an affordable, portable college level radio telescope for amateur radio astronomy which can be used to provide hands-on experience with the fundamentals of a radio telescope and an insight into the realm of radio astronomy. With our set-up one can measure brightness temperature and flux of the Sun at 11.2 GHz and calculate the beam width of the antenna. The set-up uses commercially available satellite television receiving system and parabolic dish antenna. We report the detection of point sources like Saturn and extended sources like the galactic arm of the Milky way. We have also developed python pipeline, which are available for free download, for data acquisition and visualization.

  7. [Galileo and his telescope].

    Science.gov (United States)

    Strebel, Christoph

    2006-01-01

    Galileo's publication of observations made with his newly reinvented telescope provoked a fierce debate. In April 1610 Martinus Horky, a young Bohemian astronomer, had an opportunity to make his own observations with Galileo's telescope in the presence of Antonio Magini and other astronomers. Horky and the other witnesses denied the adequacy of Galileo's telescope and therefore the bona fides of his discoveries. Kepler conjectured Horky as well as all his witnesses to be myopic. But Kepler's objection could not stop the publication of Horky's Peregrinatio contra nuncium sidereum (Modena, 1610), the first printed refutation of Galileo's Sidereus nuncius. In his treatise, Horky adresses four questions: 1) Do the four newly observed heavenly bodies actually exist? Horky denies their existence on various grounds: a) God, as every astronomer teaches, has created only seven moveable heavenly bodies and astronomical knowledge originates in God, too. b) Heavenly bodies are either stars or planets. Galileo's moveable heavenly bodies fit into neither category. c) If they do exist, why have they not already been observed by other scholars? Horky concludes that there are no such heavenly bodies. 2) What are these phenomena? They are purely artefactual, and produced by Galileo's telescope. 3) How are they like? Galileo's "stars" are so small as to be almost invisible. Galileo claims that he has measured their distances from each other. This however is impossible due to their diminutive size and other observational problems. Hence, Galileo's claim is a further proof that he is a fraud. 4) Why are they? For Galileo they are a chance to earn money but for astronomers like Horky they are a reason to offer thanks and honour to God. Horky's treatise was favourably received by the enemies of Galileo. But Kepler's critique was devastating. After calling on Kepler in Prague, Horky had to revoke the contents of his book.

  8. THEIA: Telescope for Habitable Exoplanets and Interstellar/Intergalactic Astronomy

    Science.gov (United States)

    Spergel, David N.; Kasdin, J.; Belikov, R.; Atcheson, P.; Beasley, M.; Calzetti, D.; Cameron, B.; Copi, C.; Desch, S.; Dressler, A.; Ebbets, D.; Egerman, R.; Fullerton, A.; Gallagher, J.; Green, J.; Guyon, O.; Heap, S.; Jansen, R.; Jenkins, E.; Kasting, J.; Keski-Kuha, R.; Kuchner, M.; Lee, R.; Lindler, D.; Linfield, R.; Lisman, D.; Lyon, R.; Malhotra, S.; Mathews, G.; McCaughrean, M.; Mentzel, J.; Mountain, M.; NIkzad, S.; O'Connell, R.; Oey, S.; Padgett, D.; Parvin, B.; Procashka, J.; Reeve, W.; Reid, I. N.; Rhoads, J.; Roberge, A.; Saif, B.; Scowen, P.; Seager, S.; Seigmund, O.; Sembach, K.; Shaklan, S.; Shull, M.; Soummer, R.

    2009-01-01

    By combining an occultor with a 4-meter optical/ultraviolet telescope, THEIA (Telescope for Habiatable Earths and Interstellar/Intergalactic Astronomy) will conduct an observational program that address many of the most exciting questions in astrophysics. The telescope is an on-axis telescope with a MgF-coated primary and a LiF-coated secondary. This hybrid approach allows reasonable through-put in the UV without the need to coat a large piimary with LiF. The coronagraph/occultor system is also a hybrid that aims to reduce the requirements on each approach. The telescope feeds a rich instrument complement. The eXtrasolar Planet Characterizer (XPC) baseline instruments are three narrow-field cameras for the UV (0.25-4.0 microns), blue (0.4-0.7 microns) and red (0.7-1.0 microns) with filters, and an integral field spectrograph (IFS) operating in the red. A wide-field high-resolution camera (Star Formation Camera) operating with a blue (190--517nm) and a red (517--1075nm) channel will conduct a comprehensive and systematic study of the astrophysical processes and environments relevant for the births and life cycles of stars and their planetary systems. A UV high-resolution spectrograph (UVS) with R=30,000-100,000 in the far-UV (1000-1700 A) and near-UV (1700-3000 A) will strengthen the foundations of observational cosmology by examining the cosmic web (IGM), its interactions with galaxies, and its enrichment with the products of stellar and galactic evolution. This mission has two basic opseration modes. While the occultor is moving from target star to target star, the telescope carries out an exciting program of general astrophysics. While the occultor is on target, it will characterize the key properties of a detected planet and deeply image adjacent fields in parallel mode.

  9. Actinobacterial Rare Biospheres and Dark Matter Revealed in Habitats of the Chilean Atacama Desert.

    Science.gov (United States)

    Idris, Hamidah; Goodfellow, Michael; Sanderson, Roy; Asenjo, Juan A; Bull, Alan T

    2017-08-21

    The Atacama Desert is the most extreme non-polar biome on Earth, the core region of which is considered to represent the dry limit for life and to be an analogue for Martian soils. This study focused on actinobacteria because they are keystone species in terrestrial ecosystems and are acknowledged as an unrivalled source of bioactive compounds. Metagenomic analyses of hyper-arid and extreme hyper-arid soils in this desert revealed a remarkable degree of actinobacterial 'dark matter', evidenced by a detected increase of 34% in families against those that are validly published. Rank-abundance analyses indicated that these soils were high-diversity habitats and that the great majority of designated 'rare' genera (up to 60% of all phylotypes) were always rare. These studies have enabled a core actinobacterial microbiome common to both habitats to be defined. The great majority of detected taxa have not been recovered by culture dependent methods, neither, with very few exceptions, has their functional ecology been explored. A microbial seed bank of this magnitude has significance not just for Atacama soil ecosystem resilience but represents an enormous untapped resource for biotechnology discovery programmes in an era where resistance to existing antibiotics is rapidly becoming a major threat to global health.

  10. Surface vitrification caused by natural fires in Late Pleistocene wetlands of the Atacama Desert

    Science.gov (United States)

    Roperch, Pierrick; Gattacceca, Jérôme; Valenzuela, Millarca; Devouard, Bertrand; Lorand, Jean-Pierre; Arriagada, Cesar; Rochette, Pierre; Latorre, Claudio; Beck, Pierre

    2017-07-01

    We describe extended occurrences of unusual silicate glass surface layers from the Atacama Desert (Chile). These glasses, found near the town of Pica at four localities separated by up to 70 km, are neither fulgurites, nor volcanic glasses, nor metallurgical slags related to anthropic activity, but show close similarities to other glasses that have been previously attributed to large airbursts created by meteoroids entering the Earth's atmosphere. The glasses are restricted to specific Late Pleistocene terrains: paleo-wetlands and soils rich in organic matter with SiO2-rich plant remains, salts and carbonates. 14C dating and paleomagnetic data indicate that the glasses were formed during at least two distinct periods. This rules out the hypothesis of a single large airburst as the cause of surface melting. Instead, burning of organic-rich soils in dried-out grassy wetlands during climate oscillations between wet and dry periods can account for the formation of the Pica glasses. Large oases did indeed form in the hyperarid Atacama Desert due to elevated groundwater tables and increased surface discharge during the Central Andean Pluvial Event (roughly coeval with the Mystery interval and Younger Dryas). Finally, we discuss the implications of our results for the other surface glasses previously attributed to extraterrestrial events.

  11. The Bulimulidae (Mollusca: Pulmonata from the Región de Atacama, northern Chile

    Directory of Open Access Journals (Sweden)

    Juan Francisco Araya

    2015-11-01

    Full Text Available The bulimulid genus Bostryx Troschel, 1847 is the most species-rich genus of land snails found in Chile, with the majority of its species found only in the northern part of the country, usually in arid coastal zones. This genus has been sparsely studied in Chile and there is little information on their distribution, diversity or ecology. Here, for the first time, a formal analysis of the diversity of bulimulids in the Región de Atacama, northern Chile, is reported. Of the seventeen species recorded for the area, most of them were efectively found in the field collections and one record was based on literature. Five taxa are described as new: Bostryx ancavilorum sp. nov., Bostryx breurei sp. nov., Bostryx calderaensis sp. nov., Bostryx ireneae sp. nov. and Bostryx valdovinosi sp. nov., and the known geographic distribution of seven species is extended. Results reveal that the Región de Atacama is the richest region in terrestrial snails in Chile, after the Juan Fernández Archipelago. All of the terrestrial molluscan species occurring in the area are endemic to Chile, most of them with restricted geographic distributions along the coastal zones, and none of them are currently protected by law. Further sampling in northern Chile will probably reveal more snail species to be discovered and described.

  12. Extreme environments as potential drivers of convergent evolution by exaptation: the Atacama Desert Coastal Range case.

    Directory of Open Access Journals (Sweden)

    Armando eAzua-Bustos

    2012-12-01

    Full Text Available We have recently discovered a variety of unrelated phototrophic microorganisms (two microalgae and one cyanobacteria in specialized terrestrial habitats at The Coastal Range of the Atacama Desert. Interestingly, morphological and molecular evidence suggest that these three species are all recent colonists that came from aquatic habitats. The first case is Cyanidiales inhabiting coastal caves. Cyanidiales are microalgae that are commonly found in warm acid springs, but have also been recently discovered as cave flora in Italy. The case is Dunaliella biofilms colonizing spider webs in coastal caves; Dunaliella are microalgae typically found in hypersaline habitats. The third case is Chroococcidiopsis, a genus of Cyanobacteria commonly found in deserts around the world that has also been described in warm springs. Thus, we show that the traits found in the closest ancestors of the aforementioned species (which inhabited other unrelated extreme environments seem to be now useful for the described species in their current subaerial habitats, and may likely correspond to cases of exaptations. Altogether, the Coastal Range of the Atacama Desert may be considered as a place where key steps on the colonization of land by phototrophic organisms seem to be being repeated by convergent evolution of extant microalgae and Cyanobacteria.

  13. Contrasting Imaginaries: The Atacama Desert Perceived from the Region and Observed from the Nation

    Directory of Open Access Journals (Sweden)

    González Pizarro, José Antonio

    2009-12-01

    Full Text Available The author draws on Cornelius Castoriadis’ categories to examine the social imaginaries on the Atacama Desert from the 16th to the 20th centuries. He emphasizes the manner in which different imaginaries came to be constructed historically over time to the point of bringing about a contrast between the imaginary of the country —centered on adversity, sterility and desolation, thereby projecting a textual negativity about Atacama— and that of the region, full of varying symbolisms signifying challenge, occupation and the potentiality of nature. The latter imaginary strengthened the empathy of the northern literature toward the human epic of peopling the desert.

    Basándose en las categorías de Cornelius Castoriadis, el autor examina los imaginarios sociales sobre el desierto de Atacama desde el siglo XVI hasta el XX. Pone de relieve cómo se fueron construyendo en la historia los distintos imaginarios para situarse en la contraposición entre el establecido en la nación chilena —centrado en los elementos de adversidad, esterilidad y lo inhóspito, todo lo cual proyectó una negatividad textual— y el construido en la región, repleto de variados simbolismos en torno al desafío, la ocupación y la potencialidad de la naturaleza, que afianzó la empatía de la literatura nortina con la épica humana del asentamiento en el desierto.

  14. Cosmological perturbations beyond linear order

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Cosmological perturbation theory is the standard tool to understand the formation of the large scale structure in the Universe. However, its degree of applicability is limited by the growth of the amplitude of the matter perturbations with time. This problem can be tackled with by using N-body simulations or analytical techniques that go beyond the linear calculation. In my talk, I'll summarise some recent efforts in the latter that ameliorate the bad convergence of the standard perturbative expansion. The new techniques allow better analytical control on observables (as the matter power spectrum) over scales very relevant to understand the expansion history and formation of structure in the Universe.

  15. Particle propagation in cosmological backgrounds

    CERN Document Server

    Arteaga, Daniel

    2007-01-01

    We study the quantum propagation of particles in cosmological backgrounds, by considering a doublet of massive scalar fields propagating in an expanding universe, possibly filled with radiation. We focus on the dissipative effects related to the expansion rate. At first order, we recover the expected result that the decay rate is determined by the local temperature. Beyond linear order, the decay rate has an additional contribution governed by the expansion parameter. This latter contribution is present even for stable particles in the vacuum. Finally, we analyze the long time behaviour of the propagator and briefly discuss applications to the trans-Planckian question.

  16. Spin precession in anisotropic cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Kamenshchik, A.Yu. [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); L. D. Landau Institute for Theoretical Physics, Moscow (Russian Federation); INFN, Bologna (Italy); Teryaev, O.V. [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Lomonosov Moscow State University, Moscow (Russian Federation)

    2016-05-15

    We consider the precession of a Dirac particle spin in some anisotropic Bianchi universes. This effect is present already in the Bianchi-I universe. We discuss in some detail the geodesics and the spin precession for both the Kasner and the Heckmann-Schucking solutions. In the Bianchi-IX universe the spin precession acquires the chaotic character due to the stochasticity of the oscillatory approach to the cosmological singularity. The related helicity flip of fermions in the very early universe may produce the sterile particles contributing to dark matter. (orig.)

  17. Cosmology in (R) Exponential Gravity

    Science.gov (United States)

    Jaime, Luisa; Salgado, Marcelo; Patiño, Leonardo

    Using an approach that treats the Ricci scalar itself as a degree of freedom, we analyze the cosmological evolution within an f(R) model that has been proposed recently (exponential gravity) and that can be viable for explaining the accelerated expansion and other features of the Universe. This approach differs from the usual scalar-tensor method and, among other things, it spares us from dealing with unnecessary discussions about frames. It also leads to a simple system of equations which is particularly suited for a numerical analysis.

  18. The zen in modern cosmology

    CERN Document Server

    Lam, Chi-Sing

    2008-01-01

    According to Modern Cosmology, our Universe came from a primordial state 13.7 billion years ago, with no matter and very little energy. In other words, it was almost empty. Where do the stars and galaxies, and everything else in the present universe come from then?. This captivating book provides an answer to this question, and explains the observations and evidence behind the assertion of an almost empty primordial universe. Aimed at a general audience, it assumes no prior knowledge of astronomy or physics. The emptiness of the primordial universe is reminiscent of the emptiness in Zen Buddhi

  19. Cosmology of Dilatonic Brane World

    OpenAIRE

    Youm, Donam

    2000-01-01

    We study cosmological solutions in the dilatonic brane world models. The effective four-dimensional equations on the brane are analyzed for the models with one positive tension brane and two branes with tensions of opposite signs. Just as in the non-dilatonic brane case, the conventional Friedmann equations of the four-dimensional universe are reproduced to the leading order in matter energy density for the model with one brane and the introduction of a radion potential is required in order t...

  20. SOAR Telescope Progress Report

    Science.gov (United States)

    Sebring, T.; Cecil, G.; Krabbendam, V.

    1999-12-01

    The 4.3m SOAR telescope is fully funded and under construction. A partnership between the country of Brazil, NOAO, Michigan State University, and the University of North Carolina at Chapel Hill, SOAR is being designed for high-quality imaging and imaging spectroscopy in the optical and near-IR over a field of view up to 12' diameter. US astronomers outside MSU and UNC will access 30% of the observing time through the standard NOAO TAC process. The telescope is being designed to support remote and synoptic observations. First light is scheduled for July 2002 at Cerro Pachon in Chile, a site with median seeing of 2/3" at 500 nm. The telescope will be operated by CTIO. Corning Inc. has fused the mirror blanks from boules of ULE glass. RSI in Richardson, Texas and Raytheon Optical Systems Inc. in Danbury, Conn. are designing and will fabricate the mount and active optics systems, respectively. The mount supports an instrument payload in excess of 5000 kg, at 2 Nasmyth locations and 3 bent Cass. ports. The mount and facility building have space for a laser to generate an artificial AO guide star. LabVIEW running under the Linux OS on compactPCI hardware has been adopted to control all telescope, detector, and instrument systems. The primary mirror is 10 cm thick and will be mounted on 120 electro-mechanical actuators to maintain its ideal optical figure at all elevations. The position of the light-weighted secondary mirror is adjusted to maintain collimation through use of a Shack-Hartmann wavefront sensor. The tertiary mirror feeds instruments and also jitters at up to 50 Hz to compensate for telescope shake and atmosphere wavefront tilt. The dome is a steel framework, with fiberglass panels. Air in the observing volume will be exchanged with that outside every few minutes by using large fans under computer control. All systems will be assembled and checked at the manufacturer's facility, then shipped to Chile. A short integration period is planned, and limited science

  1. VISTA: Pioneering New Survey Telescope Starts Work

    Science.gov (United States)

    2009-12-01

    A new telescope - VISTA (the Visible and Infrared Survey Telescope for Astronomy) - has just started work at ESO's Paranal Observatory and has made its first release of pictures. VISTA is a survey telescope working at infrared wavelengths and is the world's largest telescope dedicated to mapping the sky. Its large mirror, wide field of view and very sensitive detectors will reveal a completely new view of the southern sky. Spectacular new images of the Flame Nebula, the centre of our Milky Way galaxy and the Fornax Galaxy Cluster show that it is working extremely well. VISTA is the latest telescope to be added to ESO's Paranal Observatory in the Atacama Desert of northern Chile. It is housed on the peak adjacent to the one hosting the ESO Very Large Telescope (VLT) and shares the same exceptional observing conditions. VISTA's main mirror is 4.1 metres across and is the most highly curved mirror of this size and quality ever made - its deviations from a perfect surface are less than a few thousandths of the thickness of a human hair - and its construction and polishing presented formidable challenges. VISTA was conceived and developed by a consortium of 18 universities in the United Kingdom [1] led by Queen Mary, University of London and became an in-kind contribution to ESO as part of the UK's accession agreement. The telescope design and construction were project-managed by the Science and Technology Facilities Council's UK Astronomy Technology Centre (STFC, UK ATC). Provisional acceptance of VISTA was formally granted by ESO at a ceremony at ESO's Headquarters in Garching, Germany, attended by representatives of Queen Mary, University of London and STFC, on 10 December 2009 and the telescope will now be operated by ESO. "VISTA is a unique addition to ESO's observatory on Cerro Paranal. It will play a pioneering role in surveying the southern sky at infrared wavelengths and will find many interesting targets for further study by the Very Large Telescope, ALMA and

  2. Origins Space Telescope: Tracing Dark Molecular Gas in the Milky Way

    Science.gov (United States)

    Narayanan, Desika; Li, Qi; Krumholz, Mark; Dave, Romeel; Origins Space Telescope Science and Technology Definition Team

    2018-01-01

    We present theoretical models for quantifying the fraction of CO-dark molecular gas in galaxies. To do this, we combine novel thermal, chemical, and radiative equilibrium calculations with high-resolution cosmological zoom galaxy formation models. We discuss how this dark molecular gas will be uncovered by the Origins Space Telescope, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey.

  3. FRW Cosmological Perturbations in Massive Bigravity

    CERN Document Server

    Comelli, D; Pilo, L

    2014-01-01

    Cosmological perturbations of FRW solutions in ghost free massive bigravity, including also a second matter sector, are studied in detail. At early time, we find that sub horizon exponential instabilities are unavoidable and they lead to a premature departure from the perturbative regime of cosmological perturbations.

  4. Observational constraints on extended Chaplygin gas cosmologies

    Indian Academy of Sciences (India)

    We investigate cosmological models with extended Chaplygin gas (ECG) as a candidate for dark energy and determine the equation of state parameters using observed data namely, observed Hubble data, baryon acousticoscillation data and cosmic microwave background shift data. Cosmological models are investigated ...

  5. The case for the cosmological constant

    Indian Academy of Sciences (India)

    I present a short overview of current observational results and theoretical models for a cosmological constant. The main motivation for invoking a small cosmological constant (or -term) at the present epoch has to do with observations of high redshift Type Ia supernovae which suggest an accelerating universe.

  6. Van Inwagen on the Cosmological Argument | Brueckner ...

    African Journals Online (AJOL)

    In his book Metaphysics, Peter van Inwagen constructs a version of the Cosmological Argument which does not depend on the Principle of Sufficient Reason. He goes on to reject the argument. In this paper, I construct an alternative version of the Cosmological Argument that uses some of van Inwagen's insights and yet is ...

  7. Studying the cosmological apparent horizon with quasistatic ...

    Indian Academy of Sciences (India)

    the cosmological apparent horizon. So in §4 we shall employ them to study the unified first law on the apparent horizon. In cosmology, scalar-type perturbations are of particu- lar interest, especially on the apparent horizon. The equation of motion for scalar fields will be discussed in §5 with the quasistatic coordinates, which ...

  8. The case for the cosmological constant

    Indian Academy of Sciences (India)

    Abstract. I present a short overview of current observational results and theoretical models for a cosmological constant. The main motivation for invoking a small cosmological constant (orA-term) at the present epoch has to do with observations of high redshift Type Ia supernovae which suggest an accelerating universe.

  9. The current status of observational cosmology

    Indian Academy of Sciences (India)

    The emergent concordance cosmological model does face challenges from future observations. For example, the detection of the inflationary gravity wave in B- mode of CMB polarization would be needed to clinch the case for inflation. The current observations have also revealed potential cracks in the cosmological model.

  10. Early reionization and its cosmological implications

    Indian Academy of Sciences (India)

    E-mail: kaplinghat@ucdavis.edu. Abstract. We discuss how future CMB polarization measurements will provide detailed information about the reionization history and the implications of early reionization for cosmology. Keywords. Cosmology; reionization; inflation. PACS Nos 98.80.Bp; 98.80.Cq; 98.80.Es. 1. Introduction.

  11. Hypersurface-homogeneous cosmological models with anisotropic ...

    Indian Academy of Sciences (India)

    2016-12-05

    Dec 5, 2016 ... the beginning of the inflationary epoch or before. The cosmological models based on scalar fields have a long history for exploring possible inflationary scenario and for describing dark energy. In recent years, cosmolog- ical model with a scalar field is the most natural basis for inflationary models.

  12. Cosmological D-instantons and cyclic universes

    NARCIS (Netherlands)

    Bergshoeff, EA; Collinucci, A; Roest, D; Russo, JG; Townsend, PK

    2005-01-01

    For models of gravity coupled to hyperbolic sigma models, such as the metric-scalar sector of IIB supergravity, we show how smooth trajectories in the 'augmented target space' connect FLRW cosmologies to non-extremal D-instantons through a cosmological singularity. In particular, we find closed

  13. The dialogue between particle physics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Sadoulet, B.

    1988-04-01

    In the last decade, a very close relationship has developed between particle physics and cosmology. The purpose of these lectures is to introduce particle physicists to the many scientific connections between the two fields. Before entering into the discussion of specific topics, it will first be shown that particle physics and cosmology are completely interdependent. 173 refs., 35 figs., 5 tabs.

  14. Christian Nurture and the New Cosmology

    Science.gov (United States)

    Price, Elizabeth Box

    2008-01-01

    Christian Religious Education recognizes the crisis in perception caused by eroding cosmologies and engages persons in the reformulating of Christian stories that negate a limiting materialism perpetuating consumerism destructive to life. A course is developed for theological students in which they may become aware of cosmology and its New Story,…

  15. A few cosmological implications of tensor nonlocalities

    Science.gov (United States)

    Ferreira, Pedro G.; Maroto, Antonio L.

    2013-12-01

    We consider nonlocal gravity theories that include tensor nonlocalities. We show that in the cosmological context, the tensor nonlocalities, unlike scalar ones, generically give rise to growing modes. An explicit example with quadratic curvature terms is studied in detail. Possible consequences for recent nonlocal cosmological models proposed in the literature are also discussed.

  16. Classical resolution of singularities in dilaton cosmologies

    NARCIS (Netherlands)

    Bergshoeff, EA; Collinucci, A; Roest, D; Russo, JG; Townsend, PK

    2005-01-01

    For models of dilaton gravity with a possible exponential potential, such as the tensor-scalar sector of ITA supergravity, we show how cosmological solutions correspond to trajectories in a 2D Milne space (parametrized by the dilaton and the scale factor). Cosmological singularities correspond to

  17. X-ray Galaxy Clusters & Cosmology

    Science.gov (United States)

    Ettori, Stefano

    2011-09-01

    I present a summary of the four lectures given on these topics: (i) Galaxy Clusters in a cosmological context: an introduction; (ii) Galaxy Clusters in X-ray: how and what we observe, limits and prospects; (iii) X-ray Galaxy Clusters and Cosmology: total mass, gas mass & systematics; (iv) Properties of the ICM: scaling laws and metallicity.

  18. The current status of observational cosmology

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 63; Issue 4. The current status of observational cosmology. Jeremiah P ... The ability to quantify the universe has largely improved due to observational constraints coming from structure formation. The transition to precision cosmology has been spearheaded by ...

  19. Density contrast indicators in cosmological dust models

    Indian Academy of Sciences (India)

    Density contrast indicators in cosmological dust models. FILIPE C MENA and REZA TAVAKOL. Astronomy Unit, School of Mathematical Sciences, Queen Mary and Westfield College, Mile End. Road, London E1 4NS, UK. Abstract. We discuss ways of quantifying structuration in relativistic cosmological settings, by em-.

  20. On under-determination in cosmology

    Science.gov (United States)

    Butterfield, Jeremy

    2014-05-01

    I discuss how modern cosmology illustrates under-determination of theoretical hypotheses by data, in ways that are different from most philosophical discussions. I emphasise cosmology's concern with what data could in principle be collected by a single observer (Section 2); and I give a broadly sceptical discussion of cosmology's appeal to the cosmological principle as a way of breaking the under-determination (Section 3). I confine most of the discussion to the history of the observable universe from about one second after the Big Bang, as described by the mainstream cosmological model: in effect, what cosmologists in the early 1970s dubbed the 'standard model', as elaborated since then. But in the closing Section 4, I broach some questions about times earlier than one second.

  1. Cosmic curvature from de Sitter equilibrium cosmology.

    Science.gov (United States)

    Albrecht, Andreas

    2011-10-07

    I show that the de Sitter equilibrium cosmology generically predicts observable levels of curvature in the Universe today. The predicted value of the curvature, Ω(k), depends only on the ratio of the density of nonrelativistic matter to cosmological constant density ρ(m)(0)/ρ(Λ) and the value of the curvature from the initial bubble that starts the inflation, Ω(k)(B). The result is independent of the scale of inflation, the shape of the potential during inflation, and many other details of the cosmology. Future cosmological measurements of ρ(m)(0)/ρ(Λ) and Ω(k) will open up a window on the very beginning of our Universe and offer an opportunity to support or falsify the de Sitter equilibrium cosmology.

  2. Arrow of time in dissipationless cosmology

    CERN Document Server

    Sahni, Varun; Toporensky, Aleksey

    2015-01-01

    It is generally believed that a cosmological arrow of time must be associated with entropy production. Indeed, in his seminal work on cyclic cosmology, Tolman introduced a viscous fluid in order to make successive expansion/contraction cycles larger than previous ones, thereby generating an arrow of time. However, as we demonstrate in this letter, the production of entropy is not the only means by which a cosmological arrow of time may emerge. Remarkably, systems which are dissipationless may nevertheless demonstrate a preferred direction of time provided they possess attractors. An example is provided by a homogeneous scalar-field driven cyclic cosmology where the presence of cosmological hysteresis causes an arrow of time to emerge in a system which is formally dissipationless.

  3. Cosmological parameter estimation using Particle Swarm Optimization

    Science.gov (United States)

    Prasad, J.; Souradeep, T.

    2014-03-01

    Constraining parameters of a theoretical model from observational data is an important exercise in cosmology. There are many theoretically motivated models, which demand greater number of cosmological parameters than the standard model of cosmology uses, and make the problem of parameter estimation challenging. It is a common practice to employ Bayesian formalism for parameter estimation for which, in general, likelihood surface is probed. For the standard cosmological model with six parameters, likelihood surface is quite smooth and does not have local maxima, and sampling based methods like Markov Chain Monte Carlo (MCMC) method are quite successful. However, when there are a large number of parameters or the likelihood surface is not smooth, other methods may be more effective. In this paper, we have demonstrated application of another method inspired from artificial intelligence, called Particle Swarm Optimization (PSO) for estimating cosmological parameters from Cosmic Microwave Background (CMB) data taken from the WMAP satellite.

  4. Holographic cosmology from BIonic solutions

    Science.gov (United States)

    Sepehri, Alireza; Faizal, Mir; Setare, Mohammad Reza; Ali, Ahmed Farag

    2017-02-01

    In this paper, we will use a BIonic solution for analyzing the holographic cosmology. A BIonic solution is a configuration of a D3-brane and an anti-D3-brane connected by a wormhole, and holographic cosmology is a recent proposal to explain cosmic expansion by using the holographic principle. In our model, a BIonic configuration will be produced by the transition of fundamental black strings. The formation of a BIonic configuration will cause inflation. As the D3-brane moves away from the anti-D3-brane, the wormhole will get annihilated, and the inflation will end with the annihilation of this wormhole. However, it is possible for a D3-brane to collide with an anti-D3-brane. Such a collision will occur if the distance between the D3-brane and the anti-D3-brane reduces, and this will create tachyonic states. We will demonstrate that these tachyonic states will lead to the formation of a new wormhole, and this will cause acceleration of the universe before such a collision.

  5. On the philosophy of cosmology

    Science.gov (United States)

    Ellis, George Francis Rayner

    2014-05-01

    This paper gives an overview of significant issues in the philosophy of cosmology, starting off by emphasizing the uniqueness of the universe and the way models are used in description and explanation. It then considers, basic limits on observations; the need to test alternatives; ways to test consistency; and implications of the uniqueness of the universe as regards distinguishing laws of physics from contingent conditions. It goes on to look at the idea of a multiverse as a scientific explanation of facts about fine-tuning, in particular considering criteria for a scientific theory and for justifying unseen entities. It considers the relation between physical laws and the natures of existence, and emphasizes limits on our knowledge of the physics relevant to the early universe (the physics horizon), and the non-physical nature of some claimed infinities. The final section looks briefly at deeper issues, commenting on the scope of enquiry of cosmological theory and the limits of science in relation to the creation of the universe.

  6. Particle physics and inflationary cosmology

    CERN Document Server

    Linde, Andrei D

    1990-01-01

    This is the LaTeX version of my book "Particle Physics and Inflationary Cosmology'' (Harwood, Chur, Switzerland, 1990). I decided to put it to hep-th, to make it easily available. Many things happened during the 15 years since the time when it was written. In particular, we have learned a lot about the high temperature behavior in the electroweak theory and about baryogenesis. A discovery of the acceleration of the universe has changed the way we are thinking about the problem of the vacuum energy: Instead of trying to explain why it is zero, we are trying to understand why it is anomalously small. Recent cosmological observations have shown that the universe is flat, or almost exactly flat, and confirmed many other predictions of inflationary theory. Many new versions of this theory have been developed, including hybrid inflation and inflationary models based on string theory. There was a substantial progress in the theory of reheating of the universe after inflation, and in the theory of eternal inflation. ...

  7. Arguments concerning Relativity and Cosmology.

    Science.gov (United States)

    Klein, O

    1971-01-29

    In the first place I have reviewed the true foundation of Einstein's theory of general relativity, the so-called principle of equivalence, according to which there is no essential difference between "genuine" gravitation and inertial forces, well known from accelerated vehicles. By means of a comparison with Gaussian geometry of curved surfaces-the background of Riemannian geometry, the tool used by Einstein for the mathematical formulation of his theory-it is made clear that this principle is incompatible with the idea proposed by Mach and accepted by Einstein as an incitement to his attempt to describe the main situation in the universe as an analogy in three dimensions to the closed surface of a sphere. In the later attempts toward a mathematical description of the universe, where Einstein's cosmology was adapted to the discovery by Hubble that its observed part is expanding, the socalled cosmological postulate has been used as a kind of axiomatic background which, when analyzed, makes it probable that this expansion is shared by a very big, but still bounded system. This implies that our expanding metagalaxy is probably just one of a type of stellar objects in different phases of evolution, some expanding and some contracting. Some attempts toward the description of this evolution are sketched in the article with the hope that further investigation, theoretical and observational, may lead to an interesting advance in this part of astrophysics.

  8. Floral orientation in Eulychnia acida, an arborescent cactus of the Atacama Desert, and implications for cacti globally

    Science.gov (United States)

    Steven D. Warren; Lorgio E. Aguilera; L. Scott Baggett; Mauricio Zuniga

    2017-01-01

    The hyperarid Atacama Desert of northern Chile may be the driest place on Earth. Plants surviving there have adapted a number of unique strategies to cope with the harsh conditions. Many cacti in arid areas tend to produce reproductive organs in positions that maximize incidence of solar radiation. We sought to determine whether Eulychnia acida, an endemic cactus with...

  9. A multi-scale approach to assess the effect of groundwater extraction on Prosopis tamarugo in the Atacama Desert

    NARCIS (Netherlands)

    Decuyper, M.; Chávez Oyanadel, R.O.; Copini, P.; Sass-Klaassen, U.G.W.

    2016-01-01

    Groundwater-dependent ecosystems occur in arid and semi-arid areas worldwide and are sensitive to changes in groundwater availability. Prosopis tamarugo Phil, endemic to the Atacama Desert, is threatened by groundwater overexploitation due to mining and urban consumption. The effect of groundwater

  10. The Planck Telescope reflectors

    Science.gov (United States)

    Stute, Thomas

    2004-09-01

    The mechanical division of EADS-Astrium GmbH, Friedrichshafen is currently engaged with the development, manufacturing and testing of the advanced dimensionally stable composite reflectors for the ESA satellite borne telescope Planck. The objective of the ESA mission Planck is to analyse the first light that filled the universe, the cosmic microwave background radiation. Under contract of the Danish Space Research Institute and ESA EADS-Astrium GmbH is developing the all CFRP primary and secondary reflectors for the 1.5-metre telescope which is the main instrument of the Planck satellite. The operational frequency ranges from to 25 GHz to 1000 GHz. The demanding high contour accuracy and surface roughness requirements are met. The design provides the extreme dimensional stability required by the cryogenic operational environment at around 40 K. The elliptical off-axis reflectors display a classical lightweight sandwich design with CFRP core and facesheets. Isostatic mounts provide the interfaces to the telescope structure. Protected VDA provides the reflecting surface. The manufacturing is performed at the Friedrichshafen premises of EADS-Space Transportation GmbH, the former Dornier composite workshops. Advanced manufacturing technologies like true angle lay-up by CNC fibre placement and filament winding are utilized. The protected coating is applied at the CAHA facilities at the Calar Alto Observatory, Spain. The exhaustive environmental testing is performed at the facilities of IABG, Munich (mechanical testing) and for the cryo-optical tests at CSL Liege. The project is in advanced state with both Qualification Models being under environmental testing. The flight models will be delivered in 2004. The paper gives an overview over the requirements and the main structural features how these requirements are met. Special production aspects and available test results are reported.

  11. Is Your Telescope Tweeting?

    Science.gov (United States)

    Atkinson, Nancy

    2009-05-01

    Half of the world's population today was born after the Apollo Moon landings. The best way to reach this generation and get them excited about today's space exploration and astronomy news and events is through online social media, which are technologies that allow anyone to communicate with everyone. Twitter is a growing popular social media tool that uses short, 140 character "Tweets" to quickly and concisely convey updates on what you "are doing." With the right combination of information, personality and fun, telescopes and spacecraft are using Twitter for public outreach, providing important status updates while making the public feel like they are part of the mission.

  12. Atacama perchlorate as an agricultural contaminant in groundwater: Isotopic and chronologic evidence from Long Island, New York

    Energy Technology Data Exchange (ETDEWEB)

    Bohlke, J. K. [U.S. Geological Survey, Reston, VA; Hatzinger, Paul B. [Shaw Environmental, Inc., Lawrenceville, NJ; Sturchio, N. C. [University of Illinois, Chicago; Gu, Baohua [ORNL; Abbene, I. [U.S. Geological Survey; Mroczkowki, S. J. [U.S. Geological Survey

    2009-01-01

    Perchlorate (ClO{sub 4}{sup -}) is a common groundwater constituent with both synthetic and natural sources. A potentially important source of ClO{sub 4}{sup -} is past agricultural application of ClO{sub 4}{sup -}-bearing natural NO{sub 3}{sup -} fertilizer imported from the Atacama Desert, Chile, but evidence for this has been largely circumstantial. Here we report ClO{sub 4}{sup -} stable isotope data ({delta}{sup 37}Cl, {delta}{sup 18}O, and {Delta}{sup 17}O), along with other supporting chemical and isotopic environmental tracer data, to document groundwater ClO{sub 4}{sup -} contamination sources and history in parts of Long Island, New York. Sampled groundwaters were oxic and ClO{sub 4}{sup -} apparently was not affected by biodegradation within the aquifers. Synthetic ClO{sub 4}{sup -} was indicated by the isotopic method in groundwater near a fireworks disposal site at a former missile base. Atacama ClO{sub 4}{sup -} was indicated in agricultural and urbanizing areas in groundwaters with apparent ages >20 years. In an agricultural area, ClO{sub 4}{sup -} concentrations and ClO{sub 4}{sup -}/NO{sub 3}{sup -} ratios increased with groundwater age, possibly because of decreasing application rates of Atacama NO{sub 3}{sup -} fertilizers and/or decreasing ClO{sub 4}{sup -} concentrations in Atacama NO{sub 3}{sup -} fertilizers in recent years. Because ClO{sub 4}{sup -}/NO{sub 3}{sup -} ratios of Atacama NO{sub 3}{sup -} fertilizers imported in the past (2 x 10{sup -3} mol mol{sup -1}) were much higher than the ClO{sub 4}{sup -}/NO{sub 3}{sup -} ratio of recommended drinking-water limits (7 x 10{sup -5} mol mol{sup -1} in New York), ClO{sub 4}{sup -} could exceed drinking-water limits even where NO{sub 3}{sup -} does not, and where Atacama NO{sub 3}{sup -} was only a minor source of N. Groundwater ClO{sub 4}{sup -} with distinctive isotopic composition was a sensitive indicator of past Atacama NO{sub 3}{sup -} fertilizer use on Long Island and may be common in

  13. Hydrogeology of the lacustrine system of the eastern margin of the Salar the Atacama (Chile); Hidrogeologia del sistema lagunar del margen este del Salar de Atacama (Chile)

    Energy Technology Data Exchange (ETDEWEB)

    Salas, J.; Guimera, J.; Cornella, O.; Aravena, R.; Guzman, E.; Tore, C.; von Igel, W.; Moreno, R.

    2010-07-01

    A hydrogeological conceptual model of the Eastern margin of the Salar de Atacama (Chile) is proposed taking into account climatic, geological, geomorphological, piezometric, chemical and isotopic data. The study establishes the processes that explain the hydrochemical evolution of waters from salty groundwater in the alluvial aquifer located in eastern part of basin until brines at the saline aquifer of the Salar. The main processes associated with this hydrochemical evolution are evaporation and mixing, but water-crust interaction in the discharge areas of the alluvial aquifer associated with the saline wedge also modifies groundwater composition, and plays a role in the dynamics of the evaporitic crusts in the Salar. The existence of low permeability materials near the surface explains the existence of the permanent surface water bodies in the study area. Based on the data collected in the study three different mechanisms are proposed regarding the main sources of water to the lagoons: (1) discharge of saline groundwater from the detrital and volcanic aquifers of the E margin, (2) discharge of surface waters associated to the N area (Burro Muerto channel), and (3) a combination of both previous mechanisms. (Author).

  14. Loop quantum cosmology and the fate of cosmological singularities

    CERN Document Server

    Singh, Parampreet

    2015-01-01

    Singularities in general relativity such as the big bang and big crunch, and exotic singularities such as the big rip are the boundaries of the classical spacetimes. These events are marked by a divergence in the curvature invariants and the breakdown of the geodesic evolution. Recent progress on implementing techniques of loop quantum gravity to cosmological models reveals that such singularities may be generically resolved because of the quantum gravitational effects. Due to the quantum geometry, which replaces the classical differential geometry at the Planck scale, the big bang is replaced by a big bounce without any assumptions on the matter content or any fine tuning. In this manuscript, we discuss some of the main features of this approach and the results on the generic resolution of singularities for the isotropic as well as anisotropic models. Using effective spacetime description of the quantum theory, we show the way quantum gravitational effects lead to the universal bounds on the energy density, ...

  15. Cosmological Consequences of a Variable Cosmological Constant Model

    CERN Document Server

    Azri, Hemza

    2014-01-01

    We derive a model of dark energy which evolves with time via the scale factor. The equation of state $\\omega=(1-2\\alpha)/(1+2\\alpha)$ is studied as a function of a parameter $\\alpha$ introduced in this model. In addition to the recent accelerated expansion, the model predicts another decelerated phase. The age of the universe is found to be almost consistent with observation. In the limiting case, the cosmological constant model, we find that vacuum energy gravitates with a tiny gravitational constant which evolves with the scale factor, rather than with Newton's constant. This enables degravitation of the vacuum energy which in turn produces the tiny observed curvature, rather than a 120 orders of magnitude larger value.

  16. Software and Space: Investigating How a Cosmology Research Group Enacts Infrastructure by Producing Software

    Science.gov (United States)

    Paine, Drew

    2016-08-01

    Software is a pervasive element of twenty-first century life and an integral element of scientific research. Research in Computer Supported Cooperative Work (CSCW) in recent decades investigates how distributed, collaborative scientific projects take place across different geographical and temporal scales through the enactment of research infrastructures. This dissertation expands upon existing CSCW research with a qualitative, episodic study of a group of cosmologists who are themselves enacting and working among multiple research infrastructures by producing data analysis software as part of a multinational radio telescope project. I describe this cosmology group's software production practices to explain how software is a material for expressing their scientific method. Software operationalizes and encapsulates their cosmology theory, a model of the telescope, observation data, and ongoing analysis decisions. I demonstrate how by using plots (visualizations of observation data, their software, and the physical telescope) they engage in rigorous and thoughtful testing and analysis of infrastructural components in their work. Doing this data-intensive scientific work requires that they collectively develop a deep understanding of multiple infrastructures to isolate and remove flaws in their data and do a high-precision scientific analysis, interrogating the many embedded relations among conventions of practice that make up their work. My dissertation offers a novel perspective on the production, use, and work of software in science that emphasizes that software in scientific research is not some static product to simply be sustained but a perpetually mutable expression of method to be iterated upon and improved through unfolding research work.

  17. Cosmological models with running cosmological term and decaying dark matter

    Science.gov (United States)

    Szydłowski, Marek; Stachowski, Aleksander

    2017-03-01

    We investigate the dynamics of the generalized ΛCDM model, which the Λ term is running with the cosmological time. On the example of the model Λ(t) =Λbare + α2/t2 we show the existence of a mechanism of the modification of the scaling law for energy density of dark matter: ρdm ∝a - 3 + λ(t). We use an approach developed by Urbanowski in which properties of unstable vacuum states are analyzed from the point of view of the quantum theory of unstable states. We discuss the evolution of Λ(t) term and pointed out that during the cosmic evolution there is a long phase in which this term is approximately constant. We also present the statistical analysis of both the Λ(t) CDM model with dark energy and decaying dark matter and the ΛCDM standard cosmological model. We use data such as Planck, SNIa, BAO, H(z) and AP test. While for the former we find the best fit value of the parameter Ωα2,0 is negative (energy transfer is from the dark matter to dark energy sector) and the parameter Ωα2,0 belongs to the interval (- 0 . 000040 , - 0 . 000383) at 2- σ level. The decaying dark matter causes to lowering a mass of dark matter particles which are lighter than CDM particles and remain relativistic. The rate of the process of decaying matter is estimated. Our model is consistent with the decaying mechanism producing unstable particles (e.g. sterile neutrinos) for which α2 is negative.

  18. Preservation of Lipid Biomarkers Under Prolonged and Extreme Hyperaridity in Atacama Desert Soils

    Science.gov (United States)

    Wilhelm, Mary Beth

    2015-01-01

    Molecular biomarkers are the most direct biosignatures of life on early Earth and a key target in the search for life on Mars. Lipid biomarkers are of particular interest given their ability to survive oxidative degradation and record microbial presence and activity of microorganisms that occurred billions of years ago (Eigenbrode, 2008). Environmental conditions that suspend biotic and abiotic degradative processes prior to lithification can lead to enhanced biomolecular preservation over geological time-scales. The hyperarid core of the Atacama Desert in northern Chile offers a unique environment to investigate lipid biomarker taphonomy under extreme and prolonged dryness. We investigated the accumulation and degree of preservation of lipid biomarkers in million-year-old hyperarid soils where primarily abiotic conditions influence their taphonomy. Soils were extracted and free and membrane bound lipids were analyzed across a vertical profile of 2.5 meters in the Yungay hyper-arid core of the Atacama Desert. Due to the extremely low inventory of biomass in Atacama soils, samples were collected by scientists wearing cleanroom suits to minimize anthropogenic contamination during sampling. Fatty acids were found to be well preserved in Yungay soils, and were most abundant in the clay-rich soils at approx.2 m depth (approx.750 ng of fatty acid methyl ester/g of soil). These buried clays layers were fluvially deposited approximately 2 million years ago, and have been excluded from exposure to rainwater and modern surficial processes since their emplacement (Ewing et al., 2008). Monocarboxylic fatty acid, monohydroxy fatty acid, glycerol tetraether, and n-alkane hydrocarbon content was found to change with depth. Lipid biomarker content in deeper soil layers is suggestive of soils having been formed at a time when environmental conditions were capable of supporting active microbial communities and plants. In short, total lipid extracts reveal a remarkable degree of

  19. Distribution of Hopanoids and Steroids Along a Precipitation Gradient of the Atacama Desert, Chile

    Science.gov (United States)

    Iñiguez, Enrique; Navarro-Gonzalez, Rafael; McKay, Chris

    The Atacama Desert in northern Chile is one of the oldest and dries regions on the planet that extends across 1000 km from 20° S to 30° S along the Pacific coast of South America. In recent years this area has received more attention by the astrobiology community after the discovery of Mars-like soils in the Yungay area, the hyperarid coreof the Atacama Desert (Navarro-Gonźlez, a et al., 2003). In this area, the levels of organics in the soil are undetectable by Pyr-GC-MS using the Viking temperature protocol (200-500o C) but detectable at higher temperatures (750o C). In addition the levels of culturable bacteria are extremely low and there is no recoverable DNA in the soil. Furthermore there is the presence of non-chirally specific oxidants in the soil (Navarro-Gonźlez, et al., 2003). The levels of organics and culturable bacteria increase a with precipitation a long a moisture gradient from the driest parts (24° S) to the less arid zones (28° S) along a transect at about 70° W. NMR spectroscopic analyses of extracted organic matter from the Yungay region indicate the presence of different organic fuctional groups like polycyclic aromatic hydrocarbons, cyclic aliphatic chains, and different carboxylic and amino groups (Ĩiguez E. et al., 2005) which are not detectable by Pyr-GC-MS at 750o C. Recently n we have re-examined surface soil samples (first 5 cm layer) from this precipitation gradient in the search for organic biomarkers that would reveal the limits of life for prokaryotic as well as for eukaryotic cells under desiccation. The organics from the Atacama soil have been extracted by a reflux solution of methanol/dichloromethane (1:2) (Soxhlet extraction) for 48 hrs, then they were concentrated by evaporation using a nitrogen flux, and finally chemically derivatized using N-tert butyldimethylsilyl-N-methyltrifluoroacetamide in dimethylformamide or tetramethylamonium hydroxide at 25 Navarro-Gonźlez, R., et al., 2003, Science 302, 1018-1021 Ĩiguez E

  20. Paleohydrology of Late Quaternary floods in the Atacama Desert and their paleoclimate implications

    Science.gov (United States)

    Izquierdo, Tatiana; Abad, Manuel; Larrondo, Lidisy

    2017-04-01

    The Quaternary fluvial succession in the Copiapó Valley (northern Chile) have not been deeply studied even though they record a large amount of palaeoenvironmental and paleoclimate information in an area of great interest as the Atacama Desert. The city of Copiapó is located at the confluence between Quebrada Paipote (the most important tributary of the middle course) and Copiapó River which has been dry during the last decades due to the surface and groundwater exploitation for agricultural and mining activity purposes upstream. Despite that, historical chronicles describe numerous flooding events in the city during the last 400 years due to snowmelt during the summer months or unusually intense rains during any time of the year. The most recent event occurred on March 25, 2015 when 70% of the city flooded and more than 2.2 million m3 of sediment accumulated, mostly coming from Quebrada Paipote. The sedimentological analysis of the lower fluvial terrace of the Copiapó River has allowed us to identify a fluvial system that abruptly changes upward to paleoflood and aeolian deposits. The latter constitute the top of the lower fluvial terraces on which the city of Copiapó is built. The fluvial facies are mainly formed by imbricated to massive conglomerates and poorly sorted pebble and cobble sized conglomerates with laminated sandstones that probably were deposited in a braided gravel-bed river. The overlying deposits are constituted by several levels of massive sandy siltstones and well sorted fine sands of aeolian origin that are interpreted as overbank flood events linked to flooding episodes that alternate with long episodes of eolian dunes and sand sheets development that buried almost the entire alluvial plain. This sharp change in the facies association record an abrupt climate change in the southern Atacama Desert during the recent Quaternary towards more arid conditions, with a dominance of floods and aeolian morphogenesis over the typical fluvial system

  1. Polaris Tracking Telescope

    Science.gov (United States)

    Ritchie, Justin; Castelaz, M.; Cline, D. J.

    2009-01-01

    Pisgah Astronomical Research Institute (PARI) in Rosman, NC has been imaging 5 degrees of the sky surrounding Polaris since 2004 using a wide-angle lens and CCD camera. The images are used for differential photometry and to measure the variation in brightness of the Polaris itself. To enhance the quality of the measurements of Polaris a special robotic telescope mount was built to accommodate a narrow field-of-view telescope that focuses on Polaris alone. The movement of Polaris is a circle about 1 degree in radius every 24 hours which is 1 arcsecond every 8 seconds of clock time. The design team had to consider that the polar axis is on a 19-year cycle due to the changing lunar gravitational attractions upon the earth's equatorial bulge. There are several components to this effect. The lunar component amplitude is +/-9 arcseconds towards the ecliptic pole with a period of 18.6 years. The solar component is +/- 1.2 arcseconds over 0.5 years; there is a 'fortnightly nutation' of +/- 0.1 arcseconds per 5 days; there is also a seasonal variation caused by the movement of airm asses of +/- 0.18 arcseconds per year. Utilizing two CCD cameras, the SBIG STV and the SBIG ST7 we can capture the image of Polaris by following the path of the star in the sky with linear actuators set to the coordinates of its circular path.

  2. Magellan Telescopes operations 2008

    Science.gov (United States)

    Osip, David J.; Phillips, Mark M.; Palunas, Povilas; Perez, Frank; Leroy, M.

    2008-07-01

    The twin 6.5m Magellan Telescopes have been in routine operations at the Las Campanas Observatory in the Chilean Andes since 2001 and 2002 respectively. The telescopes are owned and operated by Carnegie for the benefit of the Magellan consortium members (Carnegie Institution of Washington, Harvard University, the University of Arizona, Massachusetts Institute of Technology, and the University of Michigan). This paper provides an up to date review of the scientific, technical, and administrative structure of the 'Magellan Model' for observatory operations. With a modest operations budget and a reasonably small staff, the observatory is operated in the "classical" mode, wherein the visiting observer is a key member of the operations team. Under this model, all instrumentation is supplied entirely by the consortium members and the various instrument teams continue to play a critical support role beyond initial deployment and commissioning activities. Here, we present a critical analysis of the Magellan operations model and suggest lessons learned and changes implemented as we continue to evolve an organizational structure that can efficiently deliver a high scientific return for the investment of the partners.

  3. Origins Space Telescope

    Science.gov (United States)

    Cooray, Asantha; Origins Space Telescope Study Team

    2018-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. This presentation will provide a summary of the OST STDT, our completed first mission concept and an introduction to the second concept that will be studied at the study center in 2018. This presentation will also summarize key science drivers and the key study milestones between 2018 and 2020.

  4. Deep space telescopes

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    The short series of seminars will address results and aims of current and future space astrophysics as the cultural framework for the development of deep space telescopes. It will then present such new tools, as they are currently available to, or imagined by, the scientific community, in the context of the science plans of ESA and of all major world space agencies. Ground-based astronomy, in the 400 years since Galileo’s telescope, has given us a profound phenomenological comprehension of our Universe, but has traditionally been limited to the narrow band(s) to which our terrestrial atmosphere is transparent. Celestial objects, however, do not care about our limitations, and distribute most of the information about their physics throughout the complete electromagnetic spectrum. Such information is there for the taking, from millimiter wavelengths to gamma rays. Forty years astronomy from space, covering now most of the e.m. spectrum, have thus given us a better understanding of our physical Universe then t...

  5. Revisiting the Cosmological Principle in a Cellular Framework L ...

    Indian Academy of Sciences (India)

    Voronoi Tessellation (PVT) and the luminosity function for galaxies allow building a new version of the local cosmological principle. Key words. Cosmology: Miscellaneous cosmology—observations cosmology—theory. 1. Introduction. All the various theories which belong to cosmology are based on the “cosmologi-.

  6. Why Space Telescopes Are Amazing

    Science.gov (United States)

    Rigby, Jane R.

    2012-01-01

    One of humanity's best ideas has been to put telescopes in space. The dark stillness of space allows telescopes to perform much better than they can on even the darkest and clearest of Earth's mountaintops. In addition, from space we can detect colors of light, like X-rays and gamma rays, that are blocked by the Earth's atmosphere I'll talk about NASA's team of great observatories: the Hubble Space Telescope, Spitzer Space Telescope, and Chandra X-ray Observatory} and how they've worked together to answer key questions: When did the stars form? Is there really dark matter? Is the universe really expanding ever faster and faster?

  7. Combination and interpretation of observables in Cosmology

    Directory of Open Access Journals (Sweden)

    Virey Jean-Marc

    2010-04-01

    Full Text Available The standard cosmological model has deep theoretical foundations but need the introduction of two major unknown components, dark matter and dark energy, to be in agreement with various observations. Dark matter describes a non-relativistic collisionless fluid of (non baryonic matter which amount to 25% of the total density of the universe. Dark energy is a new kind of fluid not of matter type, representing 70% of the total density which should explain the recent acceleration of the expansion of the universe. Alternatively, one can reject this idea of adding one or two new components but argue that the equations used to make the interpretation should be modified consmological scales. Instead of dark matter one can invoke a failure of Newton's laws. Instead of dark energy, two approaches are proposed : general relativity (in term of the Einstein equation should be modified, or the cosmological principle which fixes the metric used for cosmology should be abandonned. One of the main objective of the community is to find the path of the relevant interpretations thanks to the next generation of experiments which should provide large statistics of observationnal data. Unfortunately, cosmological in formations are difficult to pin down directly fromt he measurements, and it is mandatory to combine the various observables to get the cosmological parameters. This is not problematic from the statistical point of view, but assumptions and approximations made for the analysis may bias our interprettion of the data. Consequently, a strong attention should be paied to the statistical methods used to make parameters estimation and for model testing. After a review of the basics of cosmology where the cosmological parameters are introduced, we discuss the various cosmological probes and their associated observables used to extract cosmological informations. We present the results obtained from several statistical analyses combining data of diferent nature but

  8. Next-generation Event Horizon Telescope developments: new stations for enhanced imaging

    Science.gov (United States)

    Palumbo, Daniel; Johnson, Michael; Doeleman, Sheperd; Chael, Andrew; Bouman, Katherine

    2018-01-01

    The Event Horizon Telescope (EHT) is a multinational Very Long Baseline Interferometry (VLBI) network of dishes joined to resolve general relativistic behavior near a supermassive black hole. The imaging quality of the EHT is largely dependent upon the sensitivity and spatial frequency coverage of the many baselines between its constituent telescopes. The EHT already contains many highly sensitive dishes, including the crucial Atacama Large Millimeter/Submillimeter Array (ALMA), making it viable to add smaller, cheaper telescopes to the array, greatly improving future capabilities of the EHT. We develop tools for optimizing the positions of new dishes in planned arrays. We also explore the feasibility of adding small orbiting dishes to the EHT, and develop orbital optimization tools for space-based VLBI imaging. Unlike the Millimetron mission planned to be at L2, we specifically treat near-earth orbiters, and find rapid filling of spatial frequency coverage across a large range of baseline lengths. Finally, we demonstrate significant improvement in image quality when adding small dishes to planned arrays in simulated observations.

  9. Classical Cosmology Through Animation Stories

    Science.gov (United States)

    Mijic, Milan; Kang, E. Y. E.; Longson, T.; State LA SciVi Project, Cal

    2010-05-01

    Computer animations are a powerful tool for explanation and communication of ideas, especially to a younger generation. Our team completed a three part sequence of short, computer animated stories about the insight and discoveries that lead to the understanding of the overall structure of the universe. Our principal characters are Immanuel Kant, Henrietta Leavitt, and Edwin Hubble. We utilized animations to model and visualize the physical concepts behind each discovery and to recreate the characters, locations, and flavor of the time. The animations vary in length from 6 to 11 minutes. The instructors or presenters may wish to utilize them separately or together. The animations may be used for learning classical cosmology in a visual way in GE astronomy courses, in pre-college science classes, or in public science education setting.

  10. Initial conditions for cosmological perturbations

    Science.gov (United States)

    Ashtekar, Abhay; Gupt, Brajesh

    2017-02-01

    Penrose proposed that the big bang singularity should be constrained by requiring that the Weyl curvature vanishes there. The idea behind this past hypothesis is attractive because it constrains the initial conditions for the universe in geometric terms and is not confined to a specific early universe paradigm. However, the precise statement of Penrose’s hypothesis is tied to classical space-times and furthermore restricts only the gravitational degrees of freedom. These are encapsulated only in the tensor modes of the commonly used cosmological perturbation theory. Drawing inspiration from the underlying idea, we propose a quantum generalization of Penrose’s hypothesis using the Planck regime in place of the big bang, and simultaneously incorporating tensor as well as scalar modes. Initial conditions selected by this generalization constrain the universe to be as homogeneous and isotropic in the Planck regime as permitted by the Heisenberg uncertainty relations.

  11. The cosmological lithium problem revisited

    Energy Technology Data Exchange (ETDEWEB)

    Bertulani, C. A., E-mail: carlos.bertulani@tamuc.edu [Department of Physics and Astronomy, Texas A& M University-Commerce, Commerce, TX 75429 (United States); Department of Physics and Astronomy, Texas A& M University, College Station, TX 75429 (United States); Mukhamedzhanov, A. M., E-mail: akram@comp.tamu.edu [Department of Physics and Astronomy, Texas A& M University, College Station, TX 75429 (United States); Shubhchintak, E-mail: shub.shubhchintak@tamuc.edu [Department of Physics and Astronomy, Texas A& M University-Commerce, Commerce, TX 75429 (United States)

    2016-07-07

    After a brief review of the cosmological lithium problem, we report a few recent attempts to find theoretical solutions by our group at Texas A&M University (Commerce & College Station). We will discuss our studies on the theoretical description of electron screening, the possible existence of parallel universes of dark matter, and the use of non-extensive statistics during the Big Bang nucleosynthesis epoch. Last but not least, we discuss possible solutions within nuclear physics realm. The impact of recent measurements of relevant nuclear reaction cross sections for the Big Bang nucleosynthesis based on indirect methods is also assessed. Although our attempts may not able to explain the observed discrepancies between theory and observations, they suggest theoretical developments that can be useful also for stellar nucleosynthesis.

  12. The cosmological lithium problem revisited

    Science.gov (United States)

    Bertulani, C. A.; Mukhamedzhanov, A. M.; Shubhchintak

    2016-07-01

    After a brief review of the cosmological lithium problem, we report a few recent attempts to find theoretical solutions by our group at Texas A&M University (Commerce & College Station). We will discuss our studies on the theoretical description of electron screening, the possible existence of parallel universes of dark matter, and the use of non-extensive statistics during the Big Bang nucleosynthesis epoch. Last but not least, we discuss possible solutions within nuclear physics realm. The impact of recent measurements of relevant nuclear reaction cross sections for the Big Bang nucleosynthesis based on indirect methods is also assessed. Although our attempts may not able to explain the observed discrepancies between theory and observations, they suggest theoretical developments that can be useful also for stellar nucleosynthesis.

  13. BRST quantization of cosmological perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Armendariz-Picon, Cristian [Physics Department, St. Lawrence University,Canton, NY 13617 (United States); Şengör, Gizem [Department of Physics, Syracuse University,Syracuse, NY 13244 (United States)

    2016-11-08

    BRST quantization is an elegant and powerful method to quantize theories with local symmetries. In this article we study the Hamiltonian BRST quantization of cosmological perturbations in a universe dominated by a scalar field, along with the closely related quantization method of Dirac. We describe how both formalisms apply to perturbations in a time-dependent background, and how expectation values of gauge-invariant operators can be calculated in the in-in formalism. Our analysis focuses mostly on the free theory. By appropriate canonical transformations we simplify and diagonalize the free Hamiltonian. BRST quantization in derivative gauges allows us to dramatically simplify the structure of the propagators, whereas Dirac quantization, which amounts to quantization in synchronous gauge, dispenses with the need to introduce ghosts and preserves the locality of the gauge-fixed action.

  14. Cosmological implications of Heisenberg's principle

    CERN Document Server

    Gonzalo, Julio A

    2015-01-01

    The aim of this book is to analyze the all important implications of Heisenberg's Uncertainty Principle for a finite universe with very large mass-energy content such as ours. The earlier and main contributors to the formulation of Quantum Mechanics are briefly reviewed regarding the formulation of Heisenberg's Principle. After discussing “indeterminacy” versus ”uncertainty”, the universal constants of physics are reviewed and Planck's units are given. Next, a novel set of units, Heisenberg–Lemaitre units, are defined in terms of the large finite mass of the universe. With the help of Heisenberg's principle, the time evolution of the finite zero-point energy for the universe is investigated quantitatively. Next, taking advantage of the rigorous solutions of Einstein's cosmological equation for a flat, open and mixed universe of finite mass, the most recent and accurate data on the “age” (to) and the expansion rate (Ho) of the universe and their implications are reconsidered.

  15. Stability of geodesically complete cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Creminelli, Paolo [Abdus Salam International Centre for Theoretical Physics (ICTP),Strada Costiera 11, Trieste, 34151 (Italy); Pirtskhalava, David [Institute of Physics, École Polytechnique Fédérale de Lausanne,Lausanne, CH-1015 (Switzerland); Santoni, Luca; Trincherini, Enrico [Scuola Normale Superiore,Piazza dei Cavalieri 7, Pisa, 56126 (Italy); INFN - Sezione di Pisa,Largo B. Pontecorvo 3, Pisa, 56100 (Italy)

    2016-11-22

    We study the stability of spatially flat FRW solutions which are geodesically complete, i.e. for which one can follow null (graviton) geodesics both in the past and in the future without ever encountering singularities. This is the case of NEC-violating cosmologies such as smooth bounces or solutions which approach Minkowski in the past. We study the EFT of linear perturbations around a solution of this kind, including the possibility of multiple fields and fluids. One generally faces a gradient instability which can be avoided only if the operator {sup (3)} RδN is present and its coefficient changes sign along the evolution. This operator (typical of beyond-Horndeski theories) does not lead to extra degrees of freedom, but cannot arise starting from any theory with second-order equations of motion. The change of sign of this operator prevents to set it to zero with a generalised disformal transformation.

  16. Bell Violation in Primordial Cosmology

    Directory of Open Access Journals (Sweden)

    Sayantan Choudhury

    2017-02-01

    Full Text Available In this paper, we have worked on the possibility of setting up an Bell’s inequality violating experiment in the context of primordial cosmology following the fundamental principles of quantum mechanics. To set up this proposal, we have introduced a model-independent theoretical framework using which we have studied the creation of new massive particles for the scalar fluctuations in the presence of an additional time-dependent mass parameter. Next we explicitly computed the one-point and two-point correlation functions from this setup. Then, we comment on the measurement techniques of isospin breaking interactions of newly introduced massive particles and its further prospects. After that, we give an example of the string theory-originated axion monodromy model in this context. Finally, we provide a bound on the heavy particle mass parameter for any arbitrary spin field.

  17. Cosmological attractors in massive gravity

    CERN Document Server

    Dubovsky, S; Tkachev, I I

    2005-01-01

    We study Lorentz-violating models of massive gravity which preserve rotations and are invariant under time-dependent shifts of the spatial coordinates. In the linear approximation the Newtonian potential in these models has an extra ``confining'' term proportional to the distance from the source. We argue that during cosmological expansion the Universe may be driven to an attractor point with larger symmetry which includes particular simultaneous dilatations of time and space coordinates. The confining term in the potential vanishes as one approaches the attractor. In the vicinity of the attractor the extra contribution is present in the Friedmann equation which, in a certain range of parameters, gives rise to the cosmic acceleration.

  18. Cosmological perturbations for imperfect fluids

    CERN Document Server

    Giovannini, Massimo

    2005-01-01

    Interacting fluids, endowed with bulk viscous stresses, are discussed in a unified perspective with the aim of generalizing the treatment of cosmological perturbation theory to the case where both fluctuating decay rates and fluctuating bulk viscosity coefficients are simultaneously present in the relativistic plasma. A gauge-invariant treatment of the qualitatively new phenomena arising in this context is provided. In a complementary approach, faithful gauge-fixed descriptions of the gravitational and hydrodynamical fluctuations are developed and exploited. To deepen the interplay between bulk viscous stresses and fluctuating decay rates, illustrative examples are proposed and discussed both analytically and numerically. Particular attention is paid to the coupled evolution of curvature and entropy fluctuations when, in the relativistic plasma, at least one of the interacting fluids possesses a fluctuating bulk viscosity coefficient. It is argued that this class of models may be usefully employed as an effec...

  19. Initial conditions for cosmological perturbations

    CERN Document Server

    Ashtekar, Abhay

    2016-01-01

    Penrose proposed that the big bang singularity should be constrained by requiring that the Weyl curvature vanishes there. The idea behind this past hypothesis is attractive because it constrains the initial conditions for the universe in geometric terms and is not confined to a specific early universe paradigm. However, the precise statement of Penrose's hypothesis is tied to classical space-times and furthermore restricts only the gravitational degrees of freedom. These are encapsulated only in the tensor modes of the commonly used cosmological perturbation theory. Drawing inspiration from the underlying idea, we propose a quantum generalization of Penrose's hypothesis using the Planck regime in place of the big bang, and simultaneously incorporating tensor as well as scalar modes. Initial conditions selected by this generalization constrain the universe to be as homogeneous and isotropic in the Planck regime \\emph{as permitted by the Heisenberg uncertainty relations}.

  20. Quasars as Cosmological Standard Candles

    Directory of Open Access Journals (Sweden)

    C. Alenka Negrete

    2017-12-01

    Full Text Available We propose the use of quasars with accretion rate near the Eddington ratio (extreme quasars as standard candles. The selection criteria are based on the Eigenvector 1 (E1 formalism. Our first sample is a selection of 334 optical quasar spectra from the SDSS DR7 database with a S/N > 20. Using the E1, we define primary and secondary selection criteria in the optical spectral range. We show that it is possible to derive a redshift-independent estimate of luminosity for extreme Eddington ratio sources. Our results are consistent with concordance cosmology but we need to work with other spectral ranges to take into account the quasar orientation, among other constrains.