The Atacama Cosmology Telescope: The Receiver and Instrumentation
Swetz, D. S.; Ade, P. A. R.; Amiri, M.; Appel, J. W.; Burger, B.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Essinger-Hileman, T.; Fisher, R. P.; Fowler, J. W.; Halpern, M.; Hasselfield, M.; Hilton, G. C.; Hincks, A. D.; Irwin, K. D.; Jarosik, N.; Kaul, M.; Klein, J.; Marsden, D.; Thornton, R.; Mauskopf, P.; Niemack, M. D.; Page, L. A.; Parker, L.
2010-01-01
The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the Cosmic Microwave Background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Taco in the Atacama Desert, at an altitude of 5190 meters. A six-met.er off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three WOO-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space mm-wave optics. Each frequency band has a field of view of approximately 22' x 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.
The Atacama Cosmology Telescope: Two-season spectrum and parameters
Hlozek, Renée; Louis, Thibaut; Grace, Emily; Hasselfield, Matthew; Lungu, Marius; Maurin, Loic; Atacama Cosmology Telescope
2017-01-01
We present the temperature and polarization angular power spectra measured by the Atacama Cosmology Telescope polarimeter (ACTPol) over 548 deg^2 of sky on the celestial Equator, from nighttime data collected during 2013-14 using two kilo-detector arrays at 146 GHz. We use these spectra, and the spectra measured with the MBAC camera on ACT from 2008-10, in combination with Planck and WMAP satellite data to estimate cosmological parameters from the temperature, polarization, and temperature-polarization cross-correlations. We find the new ACTPol data to be consistent with the ΛCDM model. The ACTPol temperature-polarization cross-spectrum now provides stronger constraints on multiple parameters than the ACTPol temperature power spectrum, including the baryon density and the acoustic peak position angle, and the derived Hubble constant. Adding the new data to Planck temperature data tightens the limits on damping tail parameters, which we present here.
The Atacama Cosmology Telescope: cross correlation with Planck maps
Energy Technology Data Exchange (ETDEWEB)
Louis, Thibaut; Calabrese, Erminia; Dunkley, Joanna; Næss, Sigurd [Department of Astrophysics, Oxford University, Oxford OX1 3RH (United Kingdom); Addison, Graeme E.; Hincks, Adam D. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Hasselfield, Matthew; Hlozek, Renée [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Bond, J. Richard; Hajian, Amir [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Das, Sudeep [Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL 60439 (United States); Devlin, Mark J. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, U.S.A (United States); Dünner, Rolando; Infante, Leopoldo [Departamento de Astronomía y Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Gralla, Megan; Marriage, Tobias A. [Dept. of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Huffenberger, Kevin [Department of Physics, Florida State University, Keen Physics Building, 77 Chieftan Way, Tallahassee, Florida (United States); Kosowsky, Arthur [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, 15260 (United States); Moodley, Kavilan [Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Durban, 4041 (South Africa); Niemack, Michael D., E-mail: Thibaut.Louis@astro.ox.ac.uk [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); and others
2014-07-01
We present the temperature power spectrum of the Cosmic Microwave Background obtained by cross-correlating maps from the Atacama Cosmology Telescope (ACT) at 148 and 218 GHz with maps from the Planck satellite at 143 and 217 GHz, in two overlapping regions covering 592 square degrees. We find excellent agreement between the two datasets at both frequencies, quantified using the variance of the residuals between the ACT power spectra and the ACT × Planck cross-spectra. We use these cross-correlations to measure the calibration of the ACT data at 148 and 218 GHz relative to Planck, to 0.7% and 2% precision respectively. We find no evidence for anisotropy in the calibration parameter. We compare the Planck 353 GHz power spectrum with the measured amplitudes of dust and cosmic infrared background (CIB) of ACT data at 148 and 218 GHz. We also compare planet and point source measurements from the two experiments.
The Atacama Cosmology Telescope: Cross Correlation with Planck maps
Louis, Thibaut; Hasselfield, Matthew; Bond, J Richard; Calabrese, Erminia; Das, Sudeep; Devlin, Mark J; Dunkley, Joanna; Dünner, Rolando; Gralla, Megan; Hajian, Amir; Hincks, Adam D; Hlozek, Renée; Huffenberger, Kevin; Infante, Leopoldo; Kosowsky, Arthur; Marriage, Tobias A; Moodley, Kavilan; Næss, Sigurd; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Partridge, Bruce; Sehgal, Neelima; Sievers, Jonathan L; Spergel, David N; Staggs, Suzanne T; Walter, Benjamin Z; Wollack, Edward J
2014-01-01
We present the temperature power spectrum of the Cosmic Microwave Background obtained by cross-correlating maps from the Atacama Cosmology Telescope (ACT) at 148 and 218 GHz with maps from the Planck satellite at 143 and 217 GHz, in two overlapping regions covering 592 square degrees. We find excellent agreement between the two datasets at both frequencies, quantified using the variance of the residuals between the ACT power spectra and the ACTxPlanck cross-spectra. We use these cross-correlations to calibrate the ACT data at 148 and 218 GHz, to 0.7% and 2% precision respectively. We find no evidence for anisotropy in the calibration parameter. We compare the Planck 353 GHz power spectrum with the measured amplitudes of dust and cosmic infrared background (CIB) of ACT data at 148 and 218 GHz. We also compare planet and point source measurements from the two experiments.
The Atacama Cosmology Telescope: CMB Polarization at $200<\\ell<9000$
Naess, Sigurd; McMahon, Jeff; Niemack, Michael D; Addison, Graeme E; Ade, Peter A R; Allison, Rupert; Amiri, Mandana; Baker, Andrew; Battaglia, Nick; Beall, James A; de Bernardis, Francesco; Bond, J Richard; Britton, Joe; Calabrese, Erminia; Cho, Hsiao-mei; Coughlin, Kevin; Crichton, Devin; Das, Sudeep; Datta, Rahul; Devlin, Mark J; Dicker, Simon R; Dunkley, Joanna; Dünner, Rolando; Fowler, Joseph W; Fox, Anna E; Gallardo, Patricio; Grace, Emily; Gralla, Megan; Hajian, Amir; Halpern, Mark; Henderson, Shawn; Hill, J Colin; Hilton, Gene C; Hilton, Matt; Hincks, Adam D; Hlozek, Renée; Ho, Patty; Hubmayr, Johannes; Huffenberger, Kevin M; Hughes, John P; Infante, Leopoldo; Irwin, Kent; Jackson, Rebecca; Klein, Jeff; Koopman, Brian; Kosowsky, Arthur; Li, Dale; Louis, Thibaut; Lungu, Marius; Madhavacheril, Mathew; Marriage, Tobias A; Maurin, Loïc; Menanteau, Felipe; Moodley, Kavilan; Munson, Charles; Newburgh, Laura; Nibarger, John; Nolta, Michael R; Page, Lyman A; Pappas, Christine; Partridge, Bruce; Rojas, Felipe; Schmitt, Benjamin; Sehgal, Neelima; Sherwin, Blake D; Sievers, Jon; Simon, Sara; Spergel, David N; Staggs, Suzanne T; Switzer, Eric R; Thornton, Robert; Trac, Hy; Tucker, Carole; Van Engelen, Alexander; Ward, Jon; Wollack, Edward J
2014-01-01
We report on measurements of the cosmic microwave background (CMB) and celestial polarization at 146 GHz made with the Atacama Cosmology Telescope Polarimeter (ACTPol) in its first three months of observing. Four regions of sky covering a total of 270 square degrees were mapped with an angular resolution of $1.3'$. The map noise levels in the four regions are between 11 and 17 $\\mu$K-arcmin. We present TT, TE, EE, TB, EB, and BB power spectra from three of these regions. The observed E-mode polarization power spectrum, displaying six acoustic peaks in the range $200<\\ell<3000$, is an excellent fit to the prediction of the best-fit cosmological models from WMAP9+ACT and Planck data. The polarization power spectrum, which mainly reflects primordial plasma velocity perturbations, provides an independent determination of cosmological parameters consistent with those based on the temperature power spectrum, which results mostly from primordial density perturbations. We find that without masking any point sou...
The Atacama Cosmology Telescope: Data Characterization and Map Making
Dünner, Rolando; Marriage, Tobias A; Sievers, Jon; Acquaviva, Viviana; Addison, Graeme E; Ade, Peter A R; Aguirre, Paula; Amiri, Mandana; Appel, John William; Barrientos, L Felipe; Battistelli, Elia S; Bond, J Richard; Brown, Ben; Burger, Bryce; Calabarese, Erminia; Chervenak, Jay; Das, Sudeep; Devlin, Mark J; Dicker, Simon R; Doriese, W Bertrand; Dunkley, Joanna; Essinger-Hileman, Thomas; Fisher, Ryan P; Gralla, Megan B; Fowler, Joseph W; Hajian, Amir; Halpern, Mark; Hernández-Monteagudo, Carlos; Hilton, Gene C; Hilton, Matt; Hincks, Adam D; Hlozek, Renée; Huffenberger, Kevin M; Hughes, David H; Hughes, John P; Infante, Leopoldo; Irwin, Kent D; Juin, Jean Baptiste; Kaul, Madhuri; Klein, Jeff; Kosowsky, Arthur; Lau, Judy M; Limon, Michele; Lin, Yen-Ting; Louis, Thibaut; Lupton, Robert H; Marsden, Danica; Martocci, Krista; Mauskopf, Phil; Menanteau, Felipe; Moodley, Kavilan; Moseley, Harvey; Netterfield, Calvin B; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Parker, Lucas; Partridge, Bruce; Quintana, Hernán; Reid, Beth; Sehgal, Neelima; Sherwin, Blake D; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Trac, Hy; Tucker, Carole; Warne, Ryan; Wilson, Grant; Wollack, Ed; Zhao, Yue
2012-01-01
We present a description of the data reduction and mapmaking pipeline used for the 2008 observing season of the Atacama Cosmology Telescope (ACT). The data presented here at 148 GHz represent 12% of the 90 TB collected by ACT from 2007 to 2010. In 2008 we observed for 136 days, producing a total of 1423 hours of data (11 TB for the 148 GHz band only), with a daily average of 10.5 hours of observation. From these, 1085 hours were devoted to a 850 deg^2 stripe (11.2 hours by 9.1 deg) centered on a declination of -52.7 deg, while 175 hours were devoted to a 280 deg^2 stripe (4.5 hours by 4.8 deg) centered at the celestial equator. We discuss sources of statistical and systematic noise, calibration, telescope pointing, and data selection. Out of 1260 survey hours and 1024 detectors per array, 816 hours and 593 effective detectors remain after data selection for this frequency band, yielding a 38% survey efficiency. The total sensitivity in 2008, determined from the noise level between 5 Hz and 20 Hz in the time-o...
Survey strategy optimization for the Atacama Cosmology Telescope
De Bernardis, F; Hasselfield, M; Alonso, D; Bond, J R; Calabrese, E; Choi, S K; Crowley, K T; Devlin, M; Dunkley, J; Gallardo, P A; Henderson, S W; Hilton, M; Hlozek, R; Ho, S P; Huffenberger, K; Koopman, B J; Kosowsky, A; Louis, T; Madhavacheril, M S; McMahon, J; Naess, S; Nati, F; Newburgh, L; Niemack, M D; Page, L A; Salatino, M; Schillaci, A; Schmitt, B L; Sehgal, N; Sievers, J L; Simon, S M; Spergel, D N; Staggs, S T; van Engelen, A; Vavagiakis, E M; Wollack, E J
2016-01-01
In recent years there have been significant improvements in the sensitivity and the angular resolution of the instruments dedicated to the observation of the Cosmic Microwave Background (CMB). ACTPol is the first polarization receiver for the Atacama Cosmology Telescope (ACT) and is observing the CMB sky with arcmin resolution over about 2000 sq. deg. Its upgrade, Advanced ACTPol (AdvACT), will observe the CMB in five frequency bands and over a larger area of the sky. We describe the optimization and implementation of the ACTPol and AdvACT surveys. The selection of the observed fields is driven mainly by the science goals, that is, small angular scale CMB measurements, B-mode measurements and cross-correlation studies. For the ACTPol survey we have observed patches of the southern galactic sky with low galactic foreground emissions which were also chosen to maximize the overlap with several galaxy surveys to allow unique cross-correlation studies. A wider field in the northern galactic cap ensured significant...
The Atacama Cosmology Telescope: The polarization-sensitive ACTPol instrument
Thornton, R J; Aiola, S; Angile, F E; Amiri, M; Beall, J A; Becker, D T; Cho, H-M; Choi, S K; Corlies, P; Coughlin, K P; Datta, R; Devlin, M J; Dicker, S R; Dunner, R; Fowler, J W; Fox, A E; Gallardo, P A; Gao, J; Grace, E; Halpern, M; Hasselfield, M; Henderson, S W; Hilton, G C; Hincks, A D; Ho, S P; Hubmayr, J; Irwin, K D; Klein, J; Koopman, B; Li, Dale; Louis, T; Lungu, M; Maurin, L; McMahon, J; Munson, C D; Naess, S; Nati, F; Newburgh, L; Nibarger, J; Niemack, M D; Niraula, P; Nolta, M R; Page, L A; Pappas, C G; Schillaci, A; Schmitt, B L; Sehgal, N; Sievers, J L; Simon, S M; Staggs, S T; Tucker, C; Uehara, M; van Lanen, J; Ward, J T; Wollack, E J
2016-01-01
The Atacama Cosmology Telescope (ACT) is designed to make high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3 degree field of view, 100 mK cryogenics with continuous cooling, and meta material anti-reflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermal Sunyaev-Zel'dovich and kinetic Sunyaev-Zel'dovich signals, and CMB lensing due to large scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the f...
THE ATACAMA COSMOLOGY TELESCOPE: DATA CHARACTERIZATION AND MAPMAKING
Energy Technology Data Exchange (ETDEWEB)
Duenner, Rolando; Aguirre, Paula; Barrientos, L. Felipe [Departamento de Astronomia y Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Hasselfield, Matthew; Amiri, Mandana; Battistelli, Elia S.; Burger, Bryce [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Marriage, Tobias A.; Acquaviva, Viviana; Das, Sudeep [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Sievers, Jon; Appel, John William [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Addison, Graeme E.; Calabrese, Erminia [Department of Astrophysics, Oxford University, Oxford OX1 3RH (United Kingdom); Ade, Peter A. R. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA (United Kingdom); Bond, J. Richard [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Brown, Ben [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Chervenak, Jay [Code 553/665, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Devlin, Mark J.; Dicker, Simon R. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); and others
2013-01-01
We present a description of the data reduction and mapmaking pipeline used for the 2008 observing season of the Atacama Cosmology Telescope (ACT). The data presented here at 148 GHz represent 12% of the 90 TB collected by ACT from 2007 to 2010. In 2008 we observed for 136 days, producing a total of 1423 hr of data (11 TB for the 148 GHz band only), with a daily average of 10.5 hr of observation. From these, 1085 hr were devoted to an 850 deg{sup 2} stripe (11.2 hr by 9. Degree-Sign 1) centered on a declination of -52. Degree-Sign 7, while 175 hr were devoted to a 280 deg{sup 2} stripe (4.5 hr by 4. Degree-Sign 8) centered at the celestial equator. The remaining 163 hr correspond to calibration runs. We discuss sources of statistical and systematic noise, calibration, telescope pointing, and data selection. For the 148 GHz band, out of 1260 survey hours and 1024 detectors in the array, 816 hr and 593 effective detectors remain after data selection, yielding a 38% survey efficiency. The total sensitivity in 2008, determined from the noise level between 5 Hz and 20 Hz in the time-ordered data stream (TOD), is 32 {mu}K{radical}s in cosmic microwave background units. Atmospheric brightness fluctuations constitute the main contaminant in the data and dominate the detector noise covariance at low frequencies in the TOD. The maps were made by solving the least-squares problem using the Preconditioned Conjugate Gradient method, incorporating the details of the detector and noise correlations. Simulations, as well as cross-correlations with Wilkinson Microwave Anisotropy Probe sky maps on large angular scales, reveal that our maps are unbiased at multipoles l > 300. This paper accompanies the public release of the 148 GHz southern stripe maps from 2008. The techniques described here will be applied to future maps and data releases.
Survey strategy optimization for the Atacama Cosmology Telescope
De Bernardis, F.; Stevens, J. R.; Hasselfield, M.; Alonso, D.; Bond, J. R.; Calabrese, E.; Choi, S. K.; Crowley, K. T.; Devlin, M.; Dunkley, J.; Gallardo, P. A.; Henderson, S. W.; Hilton, M.; Hlozek, R.; Ho, S. P.; Huffenberger, K.; Koopman, B. J.; Kosowsky, A.; Louis, T.; Madhavacheril, M. S.; McMahon, J.; Næss, S.; Nati, F.; Newburgh, L.; Niemack, M. D.; Page, L. A.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Sehgal, N.; Sievers, J. L.; Simon, S. M.; Spergel, D. N.; Staggs, S. T.; van Engelen, A.; Vavagiakis, E. M.; Wollack, E. J.
2016-07-01
In recent years there have been significant improvements in the sensitivity and the angular resolution of the instruments dedicated to the observation of the Cosmic Microwave Background (CMB). ACTPol is the first polarization receiver for the Atacama Cosmology Telescope (ACT) and is observing the CMB sky with arcmin resolution over 2000 sq. deg. Its upgrade, Advanced ACTPol (AdvACT), will observe the CMB in five frequency bands and over a larger area of the sky. We describe the optimization and implementation of the ACTPol and AdvACT surveys. The selection of the observed fields is driven mainly by the science goals, that is, small angular scale CMB measurements, B-mode measurements and cross-correlation studies. For the ACTPol survey we have observed patches of the southern galactic sky with low galactic foreground emissions which were also chosen to maximize the overlap with several galaxy surveys to allow unique cross-correlation studies. A wider field in the northern galactic cap ensured significant additional overlap with the BOSS spectroscopic survey. The exact shapes and footprints of the fields were optimized to achieve uniform coverage and to obtain cross-linked maps by observing the fields with different scan directions. We have maximized the efficiency of the survey by implementing a close to 24 hour observing strategy, switching between daytime and nighttime observing plans and minimizing the telescope idle time. We describe the challenges represented by the survey optimization for the significantly wider area observed by AdvACT, which will observe roughly half of the low-foreground sky. The survey strategies described here may prove useful for planning future ground-based CMB surveys, such as the Simons Observatory and CMB Stage IV surveys.
Mirror Illumination and Spillover Measurements of the Atacama Cosmology Telescope
Gallardo, Patricio; Dunner, Rolando; Wollack, Ed; Jerez-Hanckes, Carlos
2012-01-01
The Atacama Cosmology Telescope (ACT) is a 6 m telescope designed to map the Cosmic Microwave Background (CMB) simultaneously at 145 GHz, 220GHz and 280GHz, The receiver in ACT, the Millimeter Bolometer Array Camera, features 1000 TES bolometers in each band, The detector performance depends critically on the total optical loading, requiring the spmover contributions from the optics to be minimal. This inspired the use of a cold Lyot stop to limit the illumination of the primary and the use of guard rings surrounding the primary and secondary reflectors. Here, we present a direct measurement of the illumination aperture for both reflectors and of the attenuation level outside the main optical path. We used a 145 GHz, 1 m W source and a chopper wheel to produce a time-varying signal with a broad heam proflle, We sampled the response of the camera for different locations of the source, placed in front and beside the primary and secondary mirrors. The aperture of the primary was measured to be 5,72 plus or minus 0,17m in diameter (95 plus or minus 3% of its geometrical size), while the aperture of the secondary yielded 2 plus or minus 0.12m in diameter. Both apertures are consistent with the optical design. Comparing to previous measurements of the beam solid angle from planet observations, we estimate an optical efficiency of 72.3 plus or minus 4,8%. We found that the attenuation outside the primary aperture was -16 plus or minus 2dB, which is below the theoretical expectations, and -22 plus or minus 1 dB outside the secondary aperture, which is consistent with simulations. These results motivated the extension of the baffles surrounding the secondary mirror, with the following reduction in detector optical loading from 2,24 pW to 188pW.
Sehgal, Neelima; Trac, Hy; Acquaviva, Viviana; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, J Richard; Brown, Ben; Burger, Bryce; Chervenak, Jay; Das, Sudeep; Devlin, Mark J.
2010-01-01
We present constraints on cosmological parameters based on a sample of Sunyaev-Zel'dovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148 GHz. We focus on the most massive systems to reduce the degeneracy between unknown...
Sehgal, Neelima; Acquaviva, Viviana; Ade, Peter A R; Aguirre, Paula; Amiri, Mandana; Appel, John W; Barrientos, L Felipe; Battistelli, Elia S; Bond, J Richard; Brown, Ben; Burger, Bryce; Chervenak, Jay; Das, Sudeep; Devlin, Mark J; Dicker, Simon R; Doriese, W Bertrand; Dunkley, Joanna; Dünner, Rolando; Essinger-Hileman, Thomas; Fisher, Ryan P; Fowler, Joseph W; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hernández-Monteagudo, Carlos; Hilton, Gene C; Hilton, Matt; Hincks, Adam D; Hlozek, Renée; Holtz, David; Huffenberger, Kevin M; Hughes, David H; Hughes, John P; Infante, Leopoldo; Irwin, Kent D; Jones, Andrew; Juin, Jean Baptiste; Klein, Jeff; Kosowsky, Arthur; Lau, Judy M; Limon, Michele; Lin, Yen-Ting; Lupton, Robert H; Marriage, Tobias A; Marsden, Danica; Martocci, Krista; Mauskopf, Phil; Menanteau, Felipe; Moodley, Kavilan; Moseley, Harvey; Netterfield, Calvin B; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Parker, Lucas; Partridge, Bruce; Reid, Beth; Sherwin, Blake D; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Tucker, Carole; Warne, Ryan; Wollack, Ed; Zhao, Yue
2010-01-01
We present constraints on cosmological parameters based on a sample of Sunyaev-Zel'dovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148 GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives sigma_8 = 0.851 +/- 0.115 and w = -1.14 +/- 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluste...
The Atacama Cosmology Telescope: Cosmological Parameters from the 2008 Power Spectra
Dunkley, J; Sievers, J; Acquaviva, V; Ade, P A R; Aguirre, P; Amiri, M; Appel, J W; Barrientos, L F; Battistelli, E S; Bond, J R; Brown, B; Burger, B; Chervenak, J; Das, S; Devlin, M J; Dicker, S R; Doriese, W Bertrand; Dunner, R; Essinger-Hileman, T; Fisher, R P; Fowler, J W; Hajian, A; Halpern, M; Hasselfield, M; Hernandez-Monteagudo, C; Hilton, G C; Hilton, M; Hincks, A D; Huffenberger, K M; Hughes, D H; Hughes, J P; Infante, L; Irwin, K D; Juin, J B; Kaul, M; Klein, J; Kosowsky, A; Lau, J M; Limon, M; Lin, Y-T; Lupton, R H; Marriage, T A; Marsden, D; Mauskopf, P; Menanteau, F; Moodley, K; Moseley, H; Netterfield, C B; Niemack, M D; Nolta, M R; Page, L A; Parker, L; Partridge, B; Reid, B; Sehgal, N; Sherwin, B; Spergel, D N; Staggs, S T; Swetz, D S; Switzer, E R; Thornton, R; Trac, H; Tucker, C; Warne, R; Wollack, E; Zhao, Y
2010-01-01
We present cosmological parameters derived from the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz and 218 GHz over 296 deg^2 with the Atacama Cosmology Telescope (ACT) during its 2008 season. ACT measures fluctuations at scales 500
The Atacama Cosmology Telescope: Cosmological parameters from three seasons of data
Sievers, Jonathan L; Nolta, Michael R; Acquaviva, Viviana; Addison, Graeme E; Ade, Peter A R; Aguirre, Paula; Amiri, Mandana; Appel, John William; Barrientos, L Felipe; Battistelli, Elia S; Battaglia, Nick; Bond, J Richard; Brown, Ben; Burger, Bryce; Calabrese, Erminia; Chervenak, Jay; Crichton, Devin; Das, Sudeep; Devlin, Mark J; Dicker, Simon R; Doriese, W Bertrand; Dunkley, Joanna; Dünner, Rolando; Essinger-Hileman, Thomas; Faber, David; Fisher, Ryan P; Fowler, Joseph W; Gallardo, Patricio; Gordon, Michael S; Gralla, Megan B; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hernández-Monteagudo, Carlos; Hill, J Colin; Hilton, Gene C; Hilton, Matt; Hincks, Adam D; Holtz, Dave; Huffenberger, Kevin M; Hughes, David H; Hughes, John P; Infante, Leopoldo; Irwin, Kent D; Jacobson, David R; Johnstone, Brittany; Juin, Jean Baptiste; Kaul, Madhuri; Klein, Jeff; Kosowsky, Arthur; Lau, Judy M; Limon, Michele; Lin, Yen-Ting; Louis, Thibaut; Lupton, Robert H; Marriage, Tobias A; Marsden, Danica; Martocci, Krista; Mauskopf, Phil; McLaren, Michael; Menanteau, Felipe; Moodley, Kavilan; Moseley, Harvey; Netterfield, Calvin B; Niemack, Michael D; Page, Lyman A; Page, William A; Parker, Lucas; Partridge, Bruce; Plimpton, Reed; Quintana, Hernan; Reese, Erik D; Reid, Beth; Rojas, Felipe; Sehgal, Neelima; Sherwin, Blake D; Schmitt, Benjamin L; Spergel, David N; Staggs, Suzanne T; Stryzak, Omelan; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Trac, Hy; Tucker, Carole; Uehara, Masao; Visnjic, Katerina; Warne, Ryan; Wilson, Grant; Wollack, Ed; Zhao, Yue; Zuncke, Caroline
2013-01-01
We present constraints on cosmological and astrophysical parameters from high-resolution microwave background maps at 148 GHz and 218 GHz made by the Atacama Cosmology Telescope (ACT) in three seasons of observations from 2008 to 2010. A model of primary cosmological and secondary foreground parameters is fit to the map power spectra and lensing deflection power spectrum, including contributions from both the thermal and kinematic Sunyaev-Zeldovich (SZ) effect, Poisson and correlated anisotropy from unresolved infrared sources, radio sources, and the correlation between the thermal SZ effect and infrared sources. The power ell^2 C_ell/2pi of the thermal SZ power spectrum at 148 GHz is measured to be 3.4 +/-1.4 muK^2 at ell=3000, while the corresponding amplitude of the kinematic SZ power spectrum has a 95 percent confidence level upper limit of 8.6 muK^2. Combining ACT power spectra with the WMAP 7-year temperature and polarization power spectra, we find excellent consistency with the LCDM model. We constrain...
The Atacama Cosmology Telescope: cosmological parameters from three seasons of data
Energy Technology Data Exchange (ETDEWEB)
Sievers, Jonathan L.; Appel, John William [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Hlozek, Renée A. [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Nolta, Michael R.; Battaglia, Nick; Bond, J. Richard [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Acquaviva, Viviana [New York City College of Technology, 300 Jay Street, Brooklyn, NY 11201 (United States); Addison, Graeme E.; Amiri, Mandana; Battistelli, Elia S.; Burger, Bryce [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Ade, Peter A. R. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, Wales CF24 3AA (United Kingdom); Aguirre, Paula; Barrientos, L. Felipe [Departamento de Astronomía y Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Brown, Ben [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Calabrese, Erminia [Department of Astrophysics, Oxford University, Oxford OX1 3RH (United Kingdom); Chervenak, Jay [Code 553/665, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Crichton, Devin [Department of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Das, Sudeep [High Energy Physics Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont IL 60439 (United States); Devlin, Mark J., E-mail: renee.hlozek@gmail.com [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); and others
2013-10-01
We present constraints on cosmological and astrophysical parameters from high-resolution microwave background maps at 148 GHz and 218 GHz made by the Atacama Cosmology Telescope (ACT) in three seasons of observations from 2008 to 2010. A model of primary cosmological and secondary foreground parameters is fit to the map power spectra and lensing deflection power spectrum, including contributions from both the thermal Sunyaev-Zeldovich (tSZ) effect and the kinematic Sunyaev-Zeldovich (kSZ) effect, Poisson and correlated anisotropy from unresolved infrared sources, radio sources, and the correlation between the tSZ effect and infrared sources. The power ℓ{sup 2}C{sub ℓ}/2π of the thermal SZ power spectrum at 148 GHz is measured to be 3.4±1.4 μK{sup 2} at ℓ = 3000, while the corresponding amplitude of the kinematic SZ power spectrum has a 95% confidence level upper limit of 8.6 μK{sup 2}. Combining ACT power spectra with the WMAP 7-year temperature and polarization power spectra, we find excellent consistency with the LCDM model. We constrain the number of effective relativistic degrees of freedom in the early universe to be N{sub eff} = 2.79±0.56, in agreement with the canonical value of N{sub eff} = 3.046 for three massless neutrinos. We constrain the sum of the neutrino masses to be Σm{sub ν} < 0.39 eV at 95% confidence when combining ACT and WMAP 7-year data with BAO and Hubble constant measurements. We constrain the amount of primordial helium to be Y{sub p} = 0.225±0.034, and measure no variation in the fine structure constant α since recombination, with α/α{sub 0} = 1.004±0.005. We also find no evidence for any running of the scalar spectral index, dn{sub s}/dln k = −0.004±0.012.
The Atacama Cosmology Telescope: Two-Season ACTPol Spectra and Parameters
Louis, Thibaut; Hasselfield, Matthew; Lungu, Marius; Maurin, Loïc; Addison, Graeme E; Ade, Peter A R; Aiola, Simone; Allison, Rupert; Amiri, Mandana; Angile, Elio; Battaglia, Nicholas; Beall, James A; de Bernardis, Francesco; Bond, J Richard; Britton, Joe; Calabrese, Erminia; Cho, Hsiao-mei; Choi, Steve K; Coughlin, Kevin; Crichton, Devin; Crowley, Kevin; Datta, Rahul; Devlin, Mark J; Dicker, Simon R; Dunkley, Joanna; Dünner, Rolando; Ferraro, Simone; Fox, Anna E; Gallardo, Patricio; Gralla, Megan; Halpern, Mark; Henderson, Shawn; Hill, J Colin; Hilton, Gene C; Hilton, Matt; Hincks, Adam D; Hlozek, Renée; Ho, S P Patty; Huang, Zhiqi; Hubmayr, Johannes; Huffenberger, Kevin M; Hughes, John P; Infante, Leopoldo; Irwin, Kent; Kasanda, Simon Muya; Klein, Jeff; Koopman, Brian; Kosowsky, Arthur; Li, Dale; Madhavacheril, Mathew; Marriage, Tobias A; McMahon, Jeff; Menanteau, Felipe; Moodley, Kavilan; Munson, Charles; Naess, Sigurd; Nati, Federico; Newburgh, Laura; Nibarger, John; Niemack, Michael D; Nolta, Michael R; Nuñez, Carolina; Page, Lyman A; Pappas, Christine; Partridge, Bruce; Rojas, Felipe; Schaan, Emmanuel; Schmitt, Benjamin L; Sehgal, Neelima; Sherwin, Blake D; Sievers, Jon; Simon, Sara; Spergel, David N; Staggs, Suzanne T; Switzer, Eric R; Thornton, Robert; Trac, Hy; Treu, Jesse; Tucker, Carole; Van Engelen, Alexander; Ward, Jonathan T; Wollack, Edward J
2016-01-01
We present the temperature and polarization angular power spectra measured by the Atacama Cosmology Telescope Polarimeter (ACTPol). We analyze night-time data collected during 2013-14 using two detector arrays at 149 GHz, from 548 deg$^2$ of sky on the celestial equator. We use these spectra, and the spectra measured with the MBAC camera on ACT from 2008-10, in combination with Planck and WMAP data to estimate cosmological parameters from the temperature, polarization, and temperature-polarization cross-correlations. We find the new ACTPol data to be consistent with the LCDM model. The ACTPol temperature-polarization cross-spectrum now provides stronger constraints on multiple parameters than the ACTPol temperature spectrum, including the baryon density, the acoustic peak angular scale, and the derived Hubble constant. Adding the new data to planck temperature data tightens the limits on damping tail parameters, for example reducing the joint uncertainty on the number of neutrino species and the primordial he...
The Atacama Cosmology Telescope: Calibration with WMAP Using Cross-Correlations
Hajian, Amir; Ade, Peter A R; Aguirre, Paula; Amiri, Mandana; Appel, John William; Barrientos, L Felipe; Battistelli, Elia S; Bond, J Richard; Brown, Ben; Burger, Bryce; Chervenak, Jay; Das, Sudeep; Devlin, Mark J; Dicker, Simon R; Doriese, W Bertrand; Dunkley, Joanna; Dunner, Rolando; Essinger-Hileman, Thomas; Fisher, Ryan P; Fowler, Joseph W; Halpern, Mark; Hasselfield, Matthew; Hernandez-Monteagudo, Carlos; Hilton, Gene C; Hilton, Matt; Hincks, Adam D; Hlozek, Renee; Huffenberger, Kevin M; Hughes, David H; Hughes, John P; Infante, Leopoldo; Irwin, Kent D; Juin, Jean Baptiste; Kaul, Madhuri; Klein, Jeff; Kosowsky, Arthur; Lau, Judy M; Limon, Michele; Lin, Yen-Ting; Lupton, Robert H; Marriage, Tobias A; Marsden, Danica; Mauskopf, Phil; Menanteau, Felipe; Moodley, Kavilan; Moseley, Harvey; Netterfield, Calvin B; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Parker, Lucas; Partridge, Bruce; Reid, Beth; Sehgal, Neelima; Sherwin, Blake D; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Trac, Hy; Tucker, Carole; Warne, Ryan; Wollack, Ed; Zhao, Yue
2010-01-01
We present a new calibration method based on cross-correlations with WMAP and apply it to data from the Atacama Cosmology Telescope (ACT). ACT's observing strategy and map making procedure allows an unbiased reconstruction of the modes in the maps over a wide range of multipoles. By directly matching the ACT maps to WMAP observations in the multipole range of 400 < ell < 1000, we determine the absolute calibration with an uncertainty of 2% in temperature. The precise measurement of the calibration error directly impacts the uncertainties in the cosmological parameters estimated from the ACT power spectra. We also present a combined map based on ACT and WMAP data that has high signal-to-noise over a wide range of multipoles.
The Atacama Cosmology Telescope: The LABOCA/ACT Survey of Clusters at All Redshifts
Lindner, Robert R; Baker, Andrew J; Bond, J Richard; Crichton, Devin; Devlin, Mark J; Essinger-Hileman, Thomas; Hilton, Matt; Hincks, Adam D; Huffenberger, Kevin M; Hughes, John P; Infante, Leopoldo; Lima, Marcos; Marriage, Tobias A; Menanteau, Felipe; Niemack, Michael D; Page, Lyman A; Schmitt, Benjamin L; Sehgal, Neelima; Sievers, J L; Sifón, Cristóbal; Staggs, Suzanne T; Swetz, Daniel; Weiß, Axel; Wollack, Edward J
2014-01-01
We present a multi-wavelength analysis of eleven Sunyaev Zel'dovich effect (SZE)-selected galaxy clusters (ten with new data) from the Atacama Cosmology Telescope (ACT) southern survey. We have obtained new imaging from the Large APEX Bolometer Camera (345GHz; LABOCA) on the Atacama Pathfinder EXperiment (APEX) telescope, the Australia Telescope Compact Array (2.1GHz; ATCA), and the Spectral and Photometric Imaging Receiver (250, 350, and $500\\,\\rm\\mu m$; SPIRE) on the Herschel Space Observatory. Spatially-resolved 345GHz SZE increments with integrated S/N > 5 are found in six clusters. We compute 2.1GHz number counts as a function of cluster-centric radius and find significant enhancements in the counts of bright sources at projected radii $\\theta < \\theta_{2500}$. By extrapolating in frequency, we predict that the combined signals from 2.1GHz-selected radio sources and 345GHz-selected SMGs contaminate the 148GHz SZE decrement signal by ~5% and the 345GHz SZE increment by ~18%. After removing radio source...
The Atacama Cosmology Telescope Sunyaev-Zel'dovich Equatorial Galaxy Cluster Sample
Menanteau, Felipe; Cosmology Telescope, Atacama
2012-05-01
We have reached the era where microwave surveys such as the Atacama Cosmology Telescope (ACT), the South Pole Telescope (SPT) and Planck are reporting the first samples of massive galaxy clusters through the Sunyaev-Zel'dovich (SZ) effect. Here I will introduce a new mass-selected and redshift-independent sample of optically-confirmed galaxy clusters detected by ACT over approximately 300 square-degrees along the celestial equator overlapping the deep optical u,g,r,i and z imaging from SDSS Stripe 82. This work was supported by the U.S. National Science Foundation through awards AST- 0408698 for the ACT project and PHY-0355328, AST-0707731, and PIRE-0507768 (award number OISE-0530095).
ACTPol: A polarization-sensitive receiver for the Atacama Cosmology Telescope
Niemack, M D; Aguirre, J; Barrientos, F; Beall, J A; Bond, J R; Britton, J; Cho, H M; Das, S; Devlin, M J; Dicker, S; Dunkley, J; Dunner, R; Fowler, J W; Hajian, A; Halpern, M; Hasselfield, M; Hilton, G C; Hilton, M; Hubmayr, J; Hughes, J P; Infante, L; Irwin, K D; Jarosik, N; Klein, J; Kosowsky, A; Marriage, T A; McMahon, J; Menanteau, F; Moodley, K; Nibarger, J P; Nolta, M R; Page, L A; Partridge, B; Reese, E D; Sievers, J; Spergel, D N; Staggs, S T; Thornton, R; Tucker, C; Wollack, E; Yoon, K W
2010-01-01
The six-meter Atacama Cosmology Telescope (ACT) in Chile was built to measure the cosmic microwave background (CMB) at arcminute angular scales. We are building a new polarization sensitive receiver for ACT (ACTPol). ACTPol will characterize the gravitational lensing of the CMB and aims to constrain the sum of the neutrino masses with ~0.05 eV precision, the running of the spectral index of inflation-induced fluctuations, and the primordial helium abundance to better than 1%. Our observing fields will overlap with the SDSS BOSS survey at optical wavelengths, enabling a variety of cross-correlation science, including studies of the growth of cosmic structure from Sunyaev-Zel'dovich observations of clusters of galaxies as well as independent constraints on the sum of the neutrino masses. We describe the science objectives and the initial receiver design.
Sherwin, Blake D.; Dunkley, Joanna; Das, Sudeep; Appel, John W.; Bond, J. Richard; Carvalho, C. Sofia; Devlin, Mark J.; Duenner, Rolando; Essinger-Hileman, Thomas; Fowler, Joesph J.; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hincks, Adam D.; Hlozek, Renee; Hughes, John P.; Irwin, Kent D.; Klein, Jeff; Kosowsky, Arthur; Marriage, Tobias A.; Marsden, Danica; Moodley, Kavilan; Menanteau, Felipe; Niemack, Michael D.; Wollack, Ed.
2011-01-01
For the first time, measurements of the cosmic microwave background radiation (CMB) alone favor cosmologies with w = -1 dark energy over models without dark energy at a 3.2-sigma level. We demonstrate this by combining the CMB lensing deflection power spectrum from the Atacama Cosmology Telescope with temperature and polarization power spectra from the "Wilkinson Microwave Anisotropy Probe. The lensing data break the geometric degeneracy of different cosmological models with similar CMB temperature power spectra. Our CMB-only measurement of the dark energy density Omega(delta) confirms other measurements from supernovae, galaxy clusters and baryon acoustic oscillations, and demonstrates the power of CMB lensing as a new cosmological tool.
The Atacama Cosmology Telescope: measuring radio galaxy bias through cross-correlation with lensing
Allison, Rupert; Sherwin, Blake D; de Bernardis, Francesco; Bond, J Richard; Calabrese, Erminia; Devlin, Mark J; Dunkley, Joanna; Gallardo, Patricio; Henderson, Shawn; Hincks, Adam D; Hlozek, Renee; Jarvis, Matt; Kosowsky, Arthur; Louis, Thibaut; Madhavacheril, Mathew; McMahon, Jeff; Moodley, Kavilan; Naess, Sigurd; Newburgh, Laura; Niemack, Michael D; Page, Lyman A; Partridge, Bruce; Sehgal, Neelima; Spergel, David N; Staggs, Suzanne T; van Engelen, Alexander; Wollack, Edward J
2015-01-01
We correlate the positions of radio galaxies in the FIRST survey with the CMB lensing convergence estimated from the Atacama Cosmology Telescope over 470 square degrees to determine the bias of these galaxies. We remove optically cross-matched sources below redshift $z=0.2$ to preferentially select Active Galactic Nuclei (AGN). We measure the angular cross-power spectrum $C_l^{\\kappa g}$ at $4.4\\sigma$ significance in the multipole range $100
Das, Sudeep; Nolta, Michael R; Addison, Graeme E; Battistelli, Elia S; Bond, J Richard; Calabrese, Erminia; Devlin, Devin Crichton Mark J; Dicker, Simon; Dunkley, Joanna; Dünner, Rolando; Fowler, Joseph W; Gralla, Megan; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hilton, Matt; Hincks, Adam D; Hlozek, Renée; Huffenberger, Kevin M; Hughes, John P; Irwin, Kent D; Kosowsky, Arthur; Lupton, Robert H; Marriage, Tobias A; Marsden, Danica; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael D; Page, Lyman A; Partridge, Bruce; Reese, Erik D; Schmitt, Benjamin L; Sehgal, Neelima; Sherwin, Blake D; Sievers, Jonathan L; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Trac, Hy; Wollack, Ed
2013-01-01
We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the Lambda CDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing conver...
Energy Technology Data Exchange (ETDEWEB)
Das, Sudeep [Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL 60439 (United States); Louis, Thibaut; Calabrese, Erminia; Dunkley, Joanna [Sub-department of Astrophysics, University of Oxford, Keble Road, Oxford, OX1 3RH (United Kingdom); Nolta, Michael R.; Bond, J Richard; Hajian, Amir; Hincks, Adam D. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON, M5S 3H8 Canada (Canada); Addison, Graeme E.; Halpern, Mark [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada (Canada); Battistelli, Elia S. [Department of Physics, University of Rome ' ' La Sapienza' ' , Piazzale Aldo Moro 5, I-00185 Rome (Italy); Crichton, Devin; Gralla, Megan [Dept. of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Devlin, Mark J.; Dicker, Simon [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA, 19104 (United States); Dünner, Rolando [Departamento de Astronomía y Astrofísica, Facultad de Física, Pontificía Universidad Católica, Casilla 306, Santiago 22 (Chile); Fowler, Joseph W. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO, 80305 (United States); Hasselfield, Matthew; Hlozek, Renée [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Hilton, Matt, E-mail: sudeepphys@gmail.com [Centre for Astronomy and Particle Theory, School of Physics and Astronomy, University of Nottingham, NG7 2RD (United Kingdom); and others
2014-04-01
We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the ΛCDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6σ detection significance.
The Atacama Cosmology Telescope: likelihood for small-scale CMB data
Energy Technology Data Exchange (ETDEWEB)
Dunkley, J.; Calabrese, E. [Sub-department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Sievers, J. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Addison, G.E.; Halpern, M. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 (Canada); Battaglia, N. [McWilliams Center for Cosmology, Wean Hall, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh PA 15213 (United States); Battistelli, E.S. [Department of Physics, University of Rome ' La Sapienza' , Piazzale Aldo Moro 5, I-00185 Rome (Italy); Bond, J.R.; Hajian, A.; Hincks, A.D. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON, Canada M5S 3H8 (Canada); Das, S. [High Energy Physics Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont IL 60439 (United States); Devlin, M.J. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Dünner, R. [Departamento de Astronomía y Astrofísica, Pontificía Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Fowler, J.W.; Irwin, K.D. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); Gralla, M. [Dept. of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Hasselfield, M.; Hlozek, R. [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Hughes, J.P. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8019 (United States); Kosowsky, A., E-mail: j.dunkley@physics.ox.ac.uk [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); and others
2013-07-01
The Atacama Cosmology Telescope has measured the angular power spectra of microwave fluctuations to arcminute scales at frequencies of 148 and 218 GHz, from three seasons of data. At small scales the fluctuations in the primordial Cosmic Microwave Background (CMB) become increasingly obscured by extragalactic foregounds and secondary CMB signals. We present results from a nine-parameter model describing these secondary effects, including the thermal and kinematic Sunyaev-Zel'dovich (tSZ and kSZ) power; the clustered and Poisson-like power from Cosmic Infrared Background (CIB) sources, and their frequency scaling; the tSZ-CIB correlation coefficient; the extragalactic radio source power; and thermal dust emission from Galactic cirrus in two different regions of the sky. In order to extract cosmological parameters, we describe a likelihood function for the ACT data, fitting this model to the multi-frequency spectra in the multipole range 500 < l < 10000. We extend the likelihood to include spectra from the South Pole Telescope at frequencies of 95, 150, and 220 GHz. Accounting for different radio source levels and Galactic cirrus emission, the same model provides an excellent fit to both datasets simultaneously, with χ{sup 2}/dof= 675/697 for ACT, and 96/107 for SPT. We then use the multi-frequency likelihood to estimate the CMB power spectrum from ACT in bandpowers, marginalizing over the secondary parameters. This provides a simplified 'CMB-only' likelihood in the range 500 < l < 3500 for use in cosmological parameter estimation.
Hasselfield, Matthew; Bond, J Richard; Das, Sudeep; Devlin, Mark J; Dunkley, Joanna; Dunner, Rolando; Fowler, Joseph W; Gallardo, Patricio; Gralla, Megan B; Hajian, Amir; Halpern, Mark; Hincks, Adam D; Marriage, Tobias A; Marsden, Danica; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Partridge, Bruce; Schmitt, Benjamin L; Sehgal, Neelima; Sievers, Jon; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Wollack, Edward J
2013-01-01
We describe the measurement of the beam profiles and window functions for the Atacama Cosmology Telescope (ACT), which operated from 2007 to 2010 with kilo-pixel bolometer arrays centered at 148, 218, and 277 GHz. Maps of Saturn are used to measure the beam shape in each array and for each season of observations. Radial profiles are transformed to Fourier space in a way that preserves the spatial correlations in the beam uncertainty, to derive window functions relevant for angular power spectrum analysis. Several corrections are applied to the resulting beam transforms, including an empirical correction measured from the final CMB survey maps to account for the effects of mild pointing variation and alignment errors. Observations of Uranus made regularly throughout each observing season are used to measure the effects of atmospheric opacity and to monitor deviations in telescope focus over the season. Using the WMAP-based calibration of the ACT maps to the CMB blackbody, we obtain precise measurements of the ...
Hasselfield, Matthew; Moodley, Kavilan; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Dunner, Rolando; Fowler, Joseph W.; Gallardo, Patricio; Gralla, Megan B.; Hajian, Amir; Halpern, Mark; Hincks, Adam D.; Marriage, Tobias A.; Marsden, Danica; Niemack, Michael D.; Nolta, Michael R.; Page, Lyman A.; Partridge, Bruce; Schmitt, Benjamin L.; Sehgal, Neelima; Sievers, Jon; Staggs, Suzanne T.; Swetz, Daniel S.; Switzer, Eric R.; Wollack, Edward J.
2013-01-01
We describe the measurement of the beam profiles and window functions for the Atacama Cosmology Telescope (ACT), which operated from 2007 to 2010 with kilopixel bolometer arrays centered at 148, 218, and 277 GHz. Maps of Saturn are used to measure the beam shape in each array and for each season of observations. Radial profiles are transformed to Fourier space in a way that preserves the spatial correlations in the beam uncertainty to derive window functions relevant for angular power spectrum analysis. Several corrections are applied to the resulting beam transforms, including an empirical correction measured from the final cosmic microwave background (CMB) survey maps to account for the effects of mild pointing variation and alignment errors. Observations of Uranus made regularly throughout each observing season are used to measure the effects of atmospheric opacity and to monitor deviations in telescope focus over the season. Using the WMAP-based calibration of the ACT maps to the CMB blackbody, we obtain precise measurements of the brightness temperatures of the Uranus and Saturn disks at effective frequencies of 149 and 219 GHz. For Uranus we obtain thermodynamic brightness temperatures T(149/U) = 106.7 +/- 2.2 K and T(219/U) = 100.1 +/- 3.1 K. For Saturn, we model the effects of the ring opacity and emission using a simple model and obtain resulting (unobscured) disk temperatures of T(149/S) = 137.3 +/- 3.2 K and T(219/S) = 137.3 +/- 4.7 K.
Atacama Cosmology Telescope: Extragalactic Sources at 148 GHz in the 2008 Survey
Marriage, T A; Lin, Y -T; Marsden, D; Nolta, M R; Partridge, B; Ade, P A R; Aguirre, P; Amiri, M; Appel, J W; Barrientos, L F; Battistelli, E S; Bond, J R; Brown, B; Burger, B; Chervenak, J; Das, S; Devlin, M J; Dicker, S R; Doriese, W B; Dunkley, J; Dunner, R; Essinger-Hileman, T; Fisher, R P; Fowler, J W; Hajian, A; Halpern, M; Hasselfield, M; Hernandez-Monteagudo, C; Hilton, G C; Hilton, M; Hincks, A D; Hlozek, R; Huffenberger, K M; Hughes, D H; Hughes, J P; Infante, L; Irwin, K D; Kaul, M; Klein, J; Kosowsky, A; Lau, J M; Limon, M; Lupton, R H; Martocci, K; Mauskopf, P; Menanteau, F; Moodley, K; Moseley, H; Netterfield, C B; Niemack, M D; Page, L A; Parker, L; Quintana, H; Reid, B; Sehgal, N; Sherwin, B D; Sievers, J; Spergel, D N; Staggs, S T; Swetz, D S; Switzer, E R; Thornton, R; Trac, H; Tucker, C; Warne, R; Wilson, G; Wollack, E; Zhao, Y
2010-01-01
We report on extragalactic sources detected in a 455 square-degree map of the southern sky made with data at a frequency of 148 GHz from the Atacama Cosmology Telescope 2008 observing season. We provide a catalog of 157 sources with flux densities spanning two orders of magnitude: from 15 to 1500 mJy. Comparison to other catalogs shows that 98% of the ACT detections correspond to sources detected at lower radio frequencies. Three of the sources appear to be associated with the brightest cluster galaxies of low redshift X-ray selected galaxy clusters. Estimates of the radio to mm-wave spectral indices and differential counts of the sources further bolster the hypothesis that they are nearly all radio sources, and that their emission is not dominated by re-emission from warm dust. In a bright (>50 mJy) 148 GHz-selected sample with complete cross-identifications from the Australia Telescope 20 GHz survey, we observe an average steepening of the spectra between 5, 20, and 148 GHz with median spectral indices of $...
Energy Technology Data Exchange (ETDEWEB)
Sehgal, Neelima; Trac, Hy; Acquaviva, Viviana; Ade, Peter A.R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L.Felipe; Battistelli, Elia S.; Bond, J.Richard; Brown, Ben; Burger, Bryce; Chervenak, Jay; Das, Sudeep; Devlin, Mark J.; Dicker, Simon R.; Doriese, W.Bertrand; Dunkley, Joanna; Dunner, Rolando; Essinger-Hileman, Thomas; Fisher, Ryan P.
2011-08-18
We present constraints on cosmological parameters based on a sample of Sunyaev-Zeldovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives {sigma}{sub 8} = 0.851 {+-} 0.115 and w = -1.14 {+-} 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find {sigma}{sub 8} = 0.821 {+-} 0.044 and w = -1.05 {+-} 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernoava which give {sigma}{sub 8} = 0.802 {+-} 0.038 and w = -0.98 {+-} 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.
The Atacama Cosmology Telescope: CMB polarization at 200 < ℓ < 9000
Energy Technology Data Exchange (ETDEWEB)
Naess, Sigurd; Allison, Rupert; Calabrese, Erminia [Sub-Department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Hasselfield, Matthew [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); McMahon, Jeff; Coughlin, Kevin; Datta, Rahul [Department of Physics, University of Michigan, Ann Arbor 48103 (United States); Niemack, Michael D.; De Bernardis, Francesco [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Addison, Graeme E.; Amiri, Mandana [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Ade, Peter A. R. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, Wales CF24 3AA (United Kingdom); Battaglia, Nick [McWilliams Center for Cosmology, Carnegie Mellon University, Department of Physics, 5000 Forbes Ave., Pittsburgh PA 15213 (United States); Beall, James A.; Britton, Joe; Cho, Hsiao-mei [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); Bond, J Richard [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Crichton, Devin [Dept. of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Das, Sudeep [Department of High Energy Physics, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439 (United States); Devlin, Mark J., E-mail: sigurd.naess@astro.ox.ac.uk [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); and others
2014-10-01
We report on measurements of the cosmic microwave background (CMB) and celestial polarization at 146 GHz made with the Atacama Cosmology Telescope Polarimeter (ACTPol) in its first three months of observing. Four regions of sky covering a total of 270 square degrees were mapped with an angular resolution of 1.3'. The map noise levels in the four regions are between 11 and 17 μK-arcmin. We present TT, TE, EE, TB, EB, and BB power spectra from three of these regions. The observed E-mode polarization power spectrum, displaying six acoustic peaks in the range 200 < ℓ < 3000, is an excellent fit to the prediction of the best-fit cosmological models from WMAP9+ACT and Planck data. The polarization power spectrum, which mainly reflects primordial plasma velocity perturbations, provides an independent determination of cosmological parameters consistent with those based on the temperature power spectrum, which results mostly from primordial density perturbations. We find that without masking any point sources in the EE data at ℓ < 9000, the Poisson tail of the EE power spectrum due to polarized point sources has an amplitude less than 2.4 μ {sup 2} at ℓ = 3000 at 95% confidence. Finally, we report that the Crab Nebula, an important polarization calibration source at microwave frequencies, has 8.7% polarization with an angle of 150.7{sup o} ± 0.6{sup o} when smoothed with a 5' Gaussian beam.
Kilopixel Pop-Up Bolometer Arrays for the Atacama Cosmology Telescope
Chervenak, J. A.; Wollack, E.; Henry, R.; Moseley, S. H.; Niemack, M.; Staggs, S.; Page, L.; Doriese, R.; Hilton, G. c.; Irwin, K. D.
2007-01-01
The recently deployed Atacama Cosmology Telescope (ACT) anticipates first light on its kilopixel array of close-packed transition-edge-sensor bolometers in November of 2007. The instrument will represent a full implementation of the next-generation, large format arrays for millimeter wave astronomy that use superconducting electronics and detectors. Achieving the practical construction of such an array is a significant step toward producing advanced detector arrays for future SOFIA instruments. We review the design considerations for the detector array produced for the ACT instrument. The first light imager consists of 32 separately instrumented 32-channel pop-up bolometer arrays (to create a 32x32 filled array of mm-wave sensors). Each array is instrumented with a 32-channel bias resistor array, Nyquist filter array, and time-division SQUID multiplexer. Each component needed to be produced in relatively large quantities with suitable uniformity to meet tolerances for array operation. An optical design was chosen to maximize absorption at the focal plane while mitigating reflections and stray light. The pop-up geometry (previously implemented with semiconducting detectors and readout on the SHARC II and HAWC instruments) enabled straightforward interface of the superconducting bias and readout circuit with the 2D array of superconducting bolometers. The array construction program balanced fabrication challenges with assembly challenges to deliver the instrument in a timely fashion. We present some of the results of the array build and characterization of its performance.
The Atacama Cosmology Telescope (ACT): Beam Profiles and First SZ Cluster Maps
Hincks, A D; Ade, P; Aguirre, P; Amiri, M; Appel, J W; Barrientos, L F; Battistelli, E S; Bond, J R; Brown, B; Burger, B; Chervenak, J; Das, S; Devlin, M J; Dicker, S; Doriese, W B; Dunkley, J; Dünner, R; Essinger-Hileman, T; Fisher, R P; Fowler, J W; Hajian, A; Halpern, M; Hasselfield, M; Hernández-Monteagudo, C; Hilton, G C; Hilton, M; Hlozek, R; Huffenberger, K; Hughes, D; Hughes, J P; Infante, L; Irwin, K D; Jiménez, R; Juin, J B; Kaul, M; Klein, J; Kosowsky, A; Lau, J M; Limon, M; Lin, Y -T; Lupton, R H; Marriage, T; Marsden, D; Martocci, K; Mauskopf, P; Menanteau, F; Moodley, K; Moseley, H; Netterfield, C B; Niemack, M D; Nolta, M R; Page, L A; Parker, L; Partridge, B; Quintana, H; Reid, B; Sehgal, N; Sievers, J; Spergel, D N; Staggs, S T; Stryzak, O; Swetz, D; Switzer, E; Thornton, R; Trac, H; Tucker, C; Verde, L; Warne, R; Wilson, G; Wollack, E; Zhao, Y
2009-01-01
The Atacama Cosmology Telescope (ACT) is currently observing the cosmic microwave background with arcminute resolution at 148 GHz, 218 GHz, and 277 GHz. In this paper, we present ACT's first results. Data have been analyzed using a maximum-likelihood map-making method which uses B-splines to model and remove the atmospheric signal. It has been used to make high-precision beam maps from which we determine the experiment's window functions. This beam information directly impacts all subsequent analyses of the data. We also used the method to map a sample of galaxy clusters via the Sunyaev-Zel'dovich (SZ) effect, and show eight clusters previously detected in the X-ray or SZ and two new cluster candidates. We provide integrated Compton-y measurements for each cluster. Of particular interest is our detection of the z = 0.44 component of Abell 3128 and our current non-detection of the low-redshift part, providing strong evidence that the further cluster is more massive as suggested by X-ray measurements. This is a...
The Atacama Cosmology Telescope: Two-Season ACTPol Lensing Power Spectrum
Sherwin, Blake D; Sehgal, Neelima; Madhavacheril, Mathew; Addison, Graeme E; Aiola, Simone; Allison, Rupert; Battaglia, Nicholas; Beall, James A; Becker, Daniel T; Bond, J Richard; Calabrese, Erminia; Datta, Rahul; Devlin, Mark J; Dunner, Rolando; Dunkley, Joanna; Fox, Anna E; Gallardo, Patricio; Halpern, Mark; Hasselfield, Matthew; Henderson, Shawn; Hill, J Colin; Hilton, Gene C; Hubmayr, Johannes; Hughes, John P; Hincks, Adam D; Hlozek, Renee; Huffenberger, Kevin M; Koopman, Brian; Kosowsky, Arthur; Louis, Thibaut; Maurin, Loic; McMahon, Jeff; Moodley, Kavilan; Naess, Sigurd; Nati, Federico; Newburgh, Laura; Niemack, Michael D; Page, Lyman A; Sievers, Jonathan; Spergel, David N; Staggs, Suzanne T; Thornton, Robert J; Van Lanen, Jeff; Vavagiakis, Eve; Wollack, Edward J
2016-01-01
We report a measurement of the power spectrum of cosmic microwave background (CMB) lensing from two seasons of Atacama Cosmology Telescope Polarimeter (ACTPol) CMB data. The CMB lensing power spectrum is extracted from both temperature and polarization data using quadratic estimators. We obtain results that are consistent with the expectation from the best-fit Planck LCDM model over a range of multipoles L=80-2100, with an amplitude of lensing A_lens = 1.06 +/- 0.15 (stat.) +/- 0.06 (sys.) relative to Planck. Our measurement of the CMB lensing power spectrum gives sigma_8 Omega_m^0.25 = 0.643 +/- 0.054; including baryon acoustic oscillation scale data, we constrain the amplitude of density fluctuations to be sigma_8 = 0.831 +/- 0.053. We also update constraints on the neutrino mass sum. We verify our lensing measurement with a number of null tests and systematic checks, finding no evidence of significant systematic errors. This measurement relies on a small fraction of the ACTPol data already taken; more prec...
Energy Technology Data Exchange (ETDEWEB)
Hasselfield, Matthew [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Moodley, Kavilan [Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, Durban 4041 (South Africa); Bond, J. Richard; Hajian, Amir; Hincks, Adam D.; Nolta, Michael R. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Das, Sudeep [High Energy Physics Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Devlin, Mark J.; Marsden, Danica; Schmitt, Benjamin L. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Dunkley, Joanna [Department of Astrophysics, Oxford University, Oxford OX1 3RH (United Kingdom); Dünner, Rolando; Gallardo, Patricio [Departamento de Astronomía y Astrofísica, Facultad de Física, Pontificía Universidad Católica, Casilla 306, Santiago 22 (Chile); Fowler, Joseph W.; Niemack, Michael D. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); Gralla, Megan B.; Marriage, Tobias A. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686 (United States); Halpern, Mark [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Page, Lyman A. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Partridge, Bruce [Department of Physics and Astronomy, Haverford College, Haverford, PA 19041 (United States); and others
2013-11-01
We describe the measurement of the beam profiles and window functions for the Atacama Cosmology Telescope (ACT), which operated from 2007 to 2010 with kilopixel bolometer arrays centered at 148, 218, and 277 GHz. Maps of Saturn are used to measure the beam shape in each array and for each season of observations. Radial profiles are transformed to Fourier space in a way that preserves the spatial correlations in the beam uncertainty to derive window functions relevant for angular power spectrum analysis. Several corrections are applied to the resulting beam transforms, including an empirical correction measured from the final cosmic microwave background (CMB) survey maps to account for the effects of mild pointing variation and alignment errors. Observations of Uranus made regularly throughout each observing season are used to measure the effects of atmospheric opacity and to monitor deviations in telescope focus over the season. Using the WMAP-based calibration of the ACT maps to the CMB blackbody, we obtain precise measurements of the brightness temperatures of the Uranus and Saturn disks at effective frequencies of 149 and 219 GHz. For Uranus we obtain thermodynamic brightness temperatures T{sub U}{sup 149}= 106.7 ± 2.2 K and T{sub U}{sup 219}= 100.1 ± 3.1 K. For Saturn, we model the effects of the ring opacity and emission using a simple model and obtain resulting (unobscured) disk temperatures of T{sub S}{sup 149}= 137.3 ± 3.2 K and T{sub S}{sup 219}= 137.3 ± 4.7 K.
Hand, Nick; Appel, John William; Battaglia, Nick; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Dunner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hilton, Matt; Hincks, Adam D.; Hlozek, Renee; Hughes, John P.; Irwin, Kent D.; Klein, Jeff; Kosowsky, Arthur; Lin, Yen-Ting; Marriage, Tobias A.; Marsden, Danica; McLaren, Mike; Wollack, Ed
2010-01-01
We present a detection of the Sunyaev-Zel'dovich (SZ) decrement associated with the Luminous Red Galaxy (LRG) sample of the Sloan Digital Sky Survey. The SZ data come from 148 GHz maps of the equatorial region made by the Atacama Cosmology Telescope (ACT). The LRG sample is divided by luminosity into four bins, and estimates for the central Sunyaev-Zel'dovich temperature decrement are calculated through a stacking process. We detect and account for a bias of the SZ signal due to weak radio sources. We use numerical simulations to relate the observed decrement to Y(sub 200) and clustering properties to relate the galaxy luminosity bins to mass. We also use a relation between BCG luminosity and cluster mass based on stacked gravitational lensing measurements to estimate the characteristic halo masses. The masses are found to be in the range approx.10(exp 13) - 10(exp 14)/h Stellar Mass, a lower range than has been previously probed.
Marsden, Danica; Marriage, Tobias A; Switzer, Eric R; Partridge, Bruce; Massardi, Marcella; Morales, Gustavo; Addison, Graeme; Bond, J Richard; Crichton, Devin; Das, Sudeep; Devlin, Mark; Dunner, Rolando; Hajian, Amir; Hilton, Matt; Hincks, Adam; Hughes, John P; Irwin, Kent; Kosowsky, Arthur; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael; Page, Lyman; Reese, Erik D; Schmitt, Benjamin; Sehgal, Neelima; Sievers, Jonathan; Staggs, Suzanne; Swetz, Daniel; Thornton, Robert; Wollack, Edward
2013-01-01
We present a catalog of 191 extragalactic sources detected by the Atacama Cosmology Telescope (ACT) at 148 GHz and/or 218 GHz in the 2008 Southern survey. Flux densities span 14-1700 mJy, and we use source spectral indices derived using ACT-only data to divide our sources into two sub-populations: 167 radio galaxies powered by central active galactic nuclei (AGN), and 24 dusty star-forming galaxies (DSFGs). We cross-identify 97% of our sources (166 of the AGN and 19 of the DSFGs) with those in currently available catalogs. When combined with flux densities from the Australian Telescope 20 GHz survey and follow-up observations with the Australia Telescope Compact Array, the synchrotron-dominated population is seen to exhibit a steepening of the slope of the spectral energy distribution from 20 to 148 GHz, with the trend continuing to 218 GHz. The ACT dust-dominated source population has a median spectral index of 3.7+0.62-0.86, and includes both local galaxies and sources with redshifts as great as 5.6. Dusty ...
Marsden, Danica; Gralla, Megan; Marriage, Tobias A.; Switzer, Eric R.; Partridge, Bruce; Massardi, Marcella; Morales, Gustavo; Addison, Graeme; Bond, J. Richard; Crighton, Devin; Das, Sudeep; Devlin, Mark; Dunner, Rolando; Hajian, Amir; Hilton, Matt; Hincks, Adam; Hughes, John P.; Irwin, Kent; Kosowsky, Arthur; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael; Page, Lyman; Reese, Erik D.; Schmitt, Benjamin; Sehgal, Neelima; Sievers, Johnathan; Staggs, Suzanne; Swetz, Daniel; Thornton, Robert; Wollack, Edward
2014-01-01
We present a catalogue of 191 extragalactic sources detected by the Atacama Cosmology Telescope (ACT) at 148 and/or 218 GHz in the 2008 Southern survey. Flux densities span 14 -1700 mJy, and we use source spectral indices derived using ACT-only data to divide our sources into two subpopulations: 167 radio galaxies powered by central active galactic nuclei (AGN) and 24 dusty star-forming galaxies (DSFGs). We cross-identify 97 per cent of our sources (166 of the AGN and 19 of the DSFGs) with those in currently available catalogues. When combined with flux densities from the Australia Telescope 20 GHz survey and follow-up observations with the Australia Telescope Compact Array, the synchrotron-dominated population is seen to exhibit a steepening of the slope of the spectral energy distribution from 20 to 148 GHz, with the trend continuing to 218 GHz. The ACT dust-dominated source population has a median spectral index, A(sub 148-218), of 3.7 (+0.62 or -0.86), and includes both local galaxies and sources with redshift around 6. Dusty sources with no counterpart in existing catalogues likely belong to a recently discovered subpopulation of DSFGs lensed by foreground galaxies or galaxy groups.
Hasselfield, Matthew; Marriage, Tobias A; Addison, Graeme E; Barrientos, L Felipe; Battaglia, Nick; Battistelli, Elia S; Bond, J Richard; Crichton, Devin; Das, Sudeep; Devlin, Mark J; Dicker, Simon R; Dunkley, Joanna; Dunner, Rolando; Fowler, Joseph W; Gralla, Megan B; Hajian, Amir; Halpern, Mark; Hincks, Adam D; Hlozek, Renée; Hughes, John P; Infante, Leopoldo; Irwin, Kent D; Kosowsky, Arthur; Marsden, Danica; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Partridge, Bruce; Reese, Erik D; Schmitt, Benjamin L; Sehgal, Neelima; Sherwin, Blake D; Sievers, Jon; Sifón, Cristóbal; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Trac, Hy; Wollack, Edward J
2013-01-01
[Abridged] We present a catalog of 68 galaxy clusters, of which 19 are new discoveries, detected via the Sunyaev-Zel'dovich effect (SZ) at 148 GHz in the Atacama Cosmology Telescope (ACT) survey of 504 square degrees on the celestial equator. A subsample of 48 clusters within the 270 square degree region overlapping SDSS Stripe 82 is estimated to be 90% complete for M_500c > 4.5e14 Msun and 0.15 < z < 0.8. While matched filters are used to detect the clusters, the sample is studied further through a "Profile Based Amplitude Analysis" using a single filter at a fixed \\theta_500 = 5.9' angular scale. This new approach takes advantage of the "Universal Pressure Profile" (UPP) to break the degeneracy between the cluster extent (R_500) and the integrated Compton parameter (Y_500). The UPP scalings are found to be nearly identical to an adiabatic model, while a model incorporating non-thermal pressure better matches dynamical mass measurements and masses from the South Pole Telescope. A complete, high signal ...
Menanteau, Felipe; Barrientos, L Felipe; Battaglia, Nicholas; Bond, J Richard; Crichton, Devin; Das, Sudeep; Devlin, Mark J; Dünner, Rolando; Gralla, Megan; Hajian, Amir; Hasselfield, Matthew; Hilton, Matt; Hincks, Adam D; Hughes, John P; Infante, Leopoldo; Kosowsky, Arthur; Marriage, Tobias A; Marsden, Danica; Moodley, Kavilan; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Partridge, Bruce; Reese, Erik D; Schmitt, Benjamin L; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Switzer, Eric; Wollack, Edward J
2012-01-01
We present the optical and X-ray properties of 68 galaxy clusters selected via the Sunyaev-Zel'dovich Effect at 148 GHz by the Atacama Cosmology Telescope (ACT). Our sample, from an area of 504 square degrees centered on the celestial equator, is divided into two regions. The main region uses 270 square degrees of the ACT survey that overlaps with the co-added ugriz imaging from the Sloan Digital Sky Survey (SDSS) over Stripe 82 plus additional near-infrared pointed observations with the Apache Point Observatory 3.5-meter telescope. We confirm a total of 49 clusters to z~1.3, of which 22 (all at z>0.55) are new discoveries. For the second region the regular-depth SDSS imaging allows us to confirm 19 more clusters up to z~0.7, of which 10 systems are new. We present the optical richness, photometric redshifts, and separation between the SZ position and the brightest cluster galaxy (BCG). We find no significant offset between the cluster SZ centroid and BCG location and a weak correlation between optical richne...
Hilton, Matt; Sifón, Cristóbal; Baker, Andrew J; Barrientos, L Felipe; Battaglia, Nicholas; Bond, J Richard; Crichton, Devin; Das, Sudeep; Devlin, Mark J; Gralla, Megan; Hajian, Amir; Hincks, Adam D; Hughes, John P; Infante, Leopoldo; Irwin, Kent D; Kosowsky, Arthur; Lin, Yen-Ting; Marriage, Tobias A; Marsden, Danica; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael D; Nolta, Mike R; Page, Lyman A; Reese, Erik D; Sievers, Jon; Spergel, David N; Wollack, Edward J
2013-01-01
We present a first measurement of the stellar mass component of galaxy clusters selected via the Sunyaev-Zel'dovich (SZ) effect, using 3.6 um and 4.5 um photometry from the Spitzer Space Telescope. Our sample consists of 14 clusters detected by the Atacama Cosmology Telescope (ACT), which span the redshift range 0.27 < z < 1.07 (median z = 0.50), and have dynamical mass measurements, accurate to about 30 per cent, with median M500 = 6.9 x 10^{14} MSun. We measure the 3.6 um and 4.5 um galaxy luminosity functions, finding the characteristic magnitude (m*) and faint-end slope (alpha) to be similar to those for IR-selected cluster samples. We perform the first measurements of the scaling of SZ-observables (Y500 and y0) with both brightest cluster galaxy (BCG) stellar mass and total cluster stellar mass (M500star). We find a significant correlation between BCG stellar mass and Y500 (E(z)^{-2/3} DA^2 Y500 ~ M*^{1.2 +/- 0.6}), although we are not able to obtain a strong constraint on the slope of the relation...
Sifón, Cristóbal; Menanteau, Felipe; Hasselfield, Matthew; Barrientos, L Felipe; Bond, J Richard; Crichton, Devin; Devlin, Mark J; Dünner, Rolando; Hilton, Matt; Hincks, Adam D; Hlozek, Renée; Huffenberger, Kevin M; Hughes, John P; Infante, Leopoldo; Kosowsky, Arthur; Marsden, Danica; Marriage, Tobias A; Moodley, Kavilan; Niemack, Michael D; Page, Lyman A; Spergel, David N; Staggs, Suzanne T; Trac, Hy; Wollack, Edward J
2015-01-01
We present galaxy velocity dispersions and dynamical mass estimates for 44 galaxy clusters selected via the Sunyaev-Zel'dovich (SZ) effect by the Atacama Cosmology Telescope. Dynamical masses for 18 clusters are reported here for the first time. Using N-body simulations, we model the different observing strategies used to measure the velocity dispersions and account for systematic effects resulting from these strategies. We find that the galaxy velocity distributions may be treated as isotropic, and that an aperture correction of up to 7 per cent in the velocity dispersion is required if the spectroscopic galaxy sample is sufficiently concentrated towards the cluster centre. Accounting for the radial profile of the velocity dispersion in simulations enables consistent dynamical mass estimates regardless of the observing strategy. Cluster masses $M_{200}$ are in the range $(1-15)\\times10^{14}M_\\odot$. Comparing with masses estimated from the SZ distortion assuming a gas pressure profile derived from X-ray obse...
Marriage, T A; Ade, P A R; Aguirre, P; Amiri, M; Appel, J W; Barrientos, L F; Battistelli, E S; Bond, J R; Brown, B; Burger, B; Chervenak, J; Das, S; Devlin, M J; Dicker, S R; Doriese, W B; Dunkley, J; Dunner, R; Essinger-Hileman, T; Fisher, R P; Fowler, J W; Hajian, A; Halpern, M; Hasselfield, M; Hern'andez-Monteagudo, C; Hilton, G C; Hilton, M; Hincks, A D; Hlozek, R; Huffenberger, K M; Hughes, D H; Hughes, J P; Infante, L; Irwin, K D; Juin, J B; Kaul, M; Klein, J; Kosowsky, A; Lau, J M; Limon, M; Lin, Y -T; Lupton, R H; Marsden, D; Martocci, K; Mauskopf, P; Menanteau, F; Moodley, K; Moseley, H; Netterfield, C B; Niemack, M D; Nolta, M R; Page, L A; Parker, L; Partridge, B; Quintana, H; Reese, E D; Reid, B; Sehgal, N; Sherwin, B D; Sievers, J; Spergel, D N; Staggs, S T; Swetz, D S; Switzer, E R; Thornton, R; Trac, H; Tucker, C; Warne, R; Wilson, G; Wollack, E; Zhao, Y
2010-01-01
We report on twenty-three clusters detected blindly as Sunyaev-Zel'dovich (SZ) decrements in a 148 GHz, 455 square-degree map of the southern sky made with data from the Atacama Cosmology Telescope 2008 observing season. All SZ detections have confirmed optical counterparts. Ten of the clusters are new discoveries. One newly discovered cluster, ACT-CL J0102-4915, with a redshift of 0.75 (photometric), has an SZ decrement comparable to the most massive systems at lower redshifts. Simulations of the cluster recovery method reproduce the sample purity measured by optical follow-up. In particular, for clusters detected with a signal-to-noise ratio greater than six, simulations are consistent with optical follow-up that demonstrated this subsample is 100% pure. The simulations further imply that the total sample is 80% complete for clusters with mass in excess of 6x10^14 solar masses referenced to the cluster volume characterized by five hundred times the critical density. The Compton y -- X-ray luminosity mass co...
Fowler, J W; Ade, P A R; Aguirre, P; Amiri, M; Appel, J W; Barrientos, L F; Battistelli, E S; Bond, J R; Brown, B; Burger, B; Chervenak, J; Das, S; Devlin, M J; Dicker, S R; Doriese, W B; Dunkley, J; Dünner, R; Essinger-Hileman, T; Fisher, R P; Hajian, A; Halpern, M; Hasselfield, M; Hernández-Monteagudo, C; Hilton, G C; Hilton, M; Hincks, A D; Hlozek, R; Huffenberger, K M; Hughes, D H; Hughes, J P; Infante, L; Irwin, K D; Jimenez, R; Juin, J B; Kaul, M; Klein, J; Kosowsky, A; Lau, J M; Limon, M; Lin, Y -T; Lupton, R H; Marriage, T A; Marsden, D; Martocci, K; Mauskopf, P; Menanteau, F; Moodley, K; Moseley, H; Netterfield, C B; Niemack, M D; Nolta, M R; Page, L A; Parker, L; Partridge, B; Quintana, H; Reid, B; Sehgal, N; Sievers, J; Spergel, D N; Staggs, S T; Swetz, D S; Switzer, E R; Thornton, R; Trac, H; Tucker, C; Verde, L; Warne, R; Wilson, G; Wollack, E; Zhao, Y
2010-01-01
We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz. The measurement uses maps with 1.4' angular resolution made with data from the Atacama Cosmology Telescope (ACT). The observations cover 228 square degrees of the southern sky, in a 4.2-degree-wide strip centered on declination 53 degrees South. The CMB at arcminute angular scales is particularly sensitive to the Silk damping scale, to the Sunyaev-Zel'dovich (SZ) effect from galaxy clusters, and to emission by radio sources and dusty galaxies. After masking the 108 brightest point sources in our maps, we estimate the power spectrum between 600 < \\ell < 8000 using the adaptive multi-taper method to minimize spectral leakage and maximize use of the full data set. Our absolute calibration is based on observations of Uranus. To verify the calibration and test the fidelity of our map at large angular scales, we cross-correlate the ACT map to the WMAP map and recover the WMAP power sp...
De Bernardis, F.; Aiola, S.; Vavagiakis, E. M.; Battaglia, N.; Niemack, M. D.; Beall, J.; Becker, D. T.; Bond, J. R.; Calabrese, E.; Cho, H.; Coughlin, K.; Datta, R.; Devlin, M.; Dunkley, J.; Dunner, R.; Ferraro, S.; Fox, A.; Gallardo, P. A.; Halpern, M.; Hand, N.; Hasselfield, M.; Henderson, S. W.; Hill, J. C.; Hilton, G. C.; Hilton, M.; Hincks, A. D.; Hlozek, R.; Hubmayr, J.; Huffenberger, K.; Hughes, J. P.; Irwin, K. D.; Koopman, B. J.; Kosowsky, A.; Li, D.; Louis, T.; Lungu, M.; Madhavacheril, M. S.; Maurin, L.; McMahon, J.; Moodley, K.; Naess, S.; Nati, F.; Newburgh, L.; Nibarger, J. P.; Page, L. A.; Partridge, B.; Schaan, E.; Schmitt, B. L.; Sehgal, N.; Sievers, J.; Simon, S. M.; Spergel, D. N.; Staggs, S. T.; Stevens, J. R.; Thornton, R. J.; van Engelen, A.; Van Lanen, J.; Wollack, E. J.
2017-03-01
We present a new measurement of the kinematic Sunyaev-Zel'dovich effect using data from the Atacama Cosmology Telescope (ACT) and the Baryon Oscillation Spectroscopic Survey (BOSS). Using 600 square degrees of overlapping sky area, we evaluate the mean pairwise baryon momentum associated with the positions of 50,000 bright galaxies in the BOSS DR11 Large Scale Structure catalog. A non-zero signal arises from the large-scale motions of halos containing the sample galaxies. The data fits an analytical signal model well, with the optical depth to microwave photon scattering as a free parameter determining the overall signal amplitude. We estimate the covariance matrix of the mean pairwise momentum as a function of galaxy separation, using microwave sky simulations, jackknife evaluation, and bootstrap estimates. The most conservative simulation-based errors give signal-to-noise estimates between 3.6 and 4.1 for varying galaxy luminosity cuts. We discuss how the other error determinations can lead to higher signal-to-noise values, and consider the impact of several possible systematic errors. Estimates of the optical depth from the average thermal Sunyaev-Zel'dovich signal at the sample galaxy positions are broadly consistent with those obtained from the mean pairwise momentum signal.
De Bernardis, F; Vavagiakis, E M; Niemack, M D; Battaglia, N; Beall, J; Becker, D T; Bond, J R; Calabrese, E; Cho, H; Coughlin, K; Datta, R; Devlin, M; Dunkley, J; Dunner, R; Ferraro, S; Fox, A; Gallardo, P A; Halpern, M; Hand, N; Hasselfield, M; Henderson, S W; Hill, J C; Hilton, G C; Hilton, M; Hincks, A D; Hlozek, R; Hubmayr, J; Huffenberger, K; Hughes, J P; Irwin, K D; Koopman, B J; Kosowsky, A; Li, D; Louis, T; Lungu, M; Madhavacheril, M S; Maurin, L; McMahon, J; Moodley, K; Naess, S; Nati, F; Newburgh, L; Nibarger, J P; Page, L A; Partridge, B; Schaan, E; Schmitt, B L; Sehgal, N; Sievers, J; Simon, S M; Spergel, D N; Staggs, S T; Stevens, J R; Thornton, R J; van Engelen, A; Van Lanen, J; Wollack, E J
2016-01-01
We present a new measurement of the kinematic Sunyaev-Zeldovich effect using data from the Atacama Cosmology Telescope (ACT) and the Baryon Oscillation Spectroscopic Survey (BOSS). Using 600 square degrees of overlapping sky area, we evaluate the mean pairwise baryon momentum associated with the positions of 50,000 bright galaxies in the BOSS DR11 Large Scale Structure catalog. A non-zero signal arises from the large-scale motions of halos containing the sample galaxies. The data fits an analytical signal model well, with the optical depth to microwave photon scattering as a free parameter determining the overall signal amplitude. We estimate the covariance matrix of the mean pairwise momentum as a function of galaxy separation, using microwave sky simulations, jackknife evaluation, and bootstrap estimates. The most conservative simulation-based errors give signal-to-noise estimates between 3.6 and 4.1 for varying galaxy luminosity cuts. We discuss how the other error determinations can lead to higher signal-...
Battaglia, N; Miyatake, H; Hasselfield, M; Gralla, M B; Allison, R; Bond, J R; Calabrese, E; Crichton, D; Devlin, M J; Dunkley, J; Dünner, R; Erben, T; Ferrara, S; Halpern, M; Hilton, M; Hill, J C; Hincks, A D; Hložek, R; Huffenberger, K M; Hughes, J P; Kneib, J P; Kosowsky, A; Makler, M; Marriage, T A; Menanteau, F; Miller, L; Moodley, K; Moraes, B; Niemack, M D; Page, L; Shan, H; Sehgal, N; Sherwin, B D; Sievers, J L; Sifón, C; Spergel, D N; Staggs, S T; Taylor, J; Thornton, R; van Waerbeke, L; Wollack, E J
2015-01-01
Mass calibration uncertainty is the largest systematic effect for using clusters of galaxies to constrain cosmological parameters. We present weak lensing mass measurements from the Canada-France-Hawaii Telescope Stripe 82 Survey for galaxy clusters selected through their high signal-to-noise thermal Sunyaev-Zeldovich (tSZ) signal measured with the Atacama Cosmology Telescope (ACT). The average weak lensing mass is $\\left(4.8\\pm0.8\\right)\\,\\times10^{14}\\,\\mathrm{M}_\\odot$, consistent with the tSZ mass estimate of $\\left(4.70\\pm1.0\\right)\\,\\times10^{14}\\,\\mathrm{M}_\\odot$ which assumes a universal pressure profile for the cluster gas. Our results are consistent with previous weak-lensing measurements of tSZ-detected clusters from the Planck satellite. When comparing our results, we estimate the Eddington bias correction for the sample intersection of Planck and weak-lensing clusters which was previously neglected.
Battaglia, N.; Leauthaud, A.; Miyatake, H.; Hasselfield, M.; Gralla, M. B.; Allison, R.; Bond, J. R.; Calabrese, E.; Crichton, D.; Devlin, M. J.; Dunkley, J.; Dünner, R.; Erben, T.; Ferrara, S.; Halpern, M.; Hilton, M.; Hill, J. C.; Hincks, A. D.; Hložek, R.; Huffenberger, K. M.; Hughes, J. P.; Kneib, J. P.; Kosowsky, A.; Makler, M.; Marriage, T. A.; Menanteau, F.; Miller, L.; Moodley, K.; Moraes, B.; Niemack, M. D.; Page, L.; Shan, H.; Sehgal, N.; Sherwin, B. D.; Sievers, J. L.; Sifón, C.; Spergel, D. N.; Staggs, S. T.; Taylor, J. E.; Thornton, R.; van Waerbeke, L.; Wollack, E. J.
2016-08-01
Mass calibration uncertainty is the largest systematic effect for using clusters of galaxies to constrain cosmological parameters. We present weak lensing mass measurements from the Canada-France-Hawaii Telescope Stripe 82 Survey for galaxy clusters selected through their high signal-to-noise thermal Sunyaev-Zeldovich (tSZ) signal measured with the Atacama Cosmology Telescope (ACT). For a sample of 9 ACT clusters with a tSZ signal-to-noise greater than five the average weak lensing mass is (4.8±0.8) ×1014 Msolar, consistent with the tSZ mass estimate of (4.70±1.0) ×1014 Msolar which assumes a universal pressure profile for the cluster gas. Our results are consistent with previous weak-lensing measurements of tSZ-detected clusters from the Planck satellite. When comparing our results, we estimate the Eddington bias correction for the sample intersection of Planck and weak-lensing clusters which was previously excluded.
Energy Technology Data Exchange (ETDEWEB)
Hasselfield, Matthew; Hlozek, Renée [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Hilton, Matt [Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, 4041 (South Africa); Marriage, Tobias A.; Crichton, Devin; Gralla, Megan B. [Dept. of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Addison, Graeme E.; Halpern, Mark [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z4 (Canada); Barrientos, L. Felipe; Dünner, Rolando [Departamento de Astronomía y Astrofísica, Facultad de Física, Pontificía Universidad Católica, Casilla 306, Santiago 22 (Chile); Battaglia, Nicholas [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Battistelli, Elia S. [Department of Physics, University of Rome ' ' La Sapienza' ' , Piazzale Aldo Moro 5, I-00185 Rome (Italy); Bond, J. Richard; Hajian, Amir; Hincks, Adam D. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON, M5S 3H8 (Canada); Das, Sudeep [High Energy Physics Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, IL 60439 (United States); Devlin, Mark J.; Dicker, Simon R. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Dunkley, Joanna [Department of Astrophysics, Oxford University, Oxford, OX1 3RH (United Kingdom); Fowler, Joseph W., E-mail: mhasse@astro.princeton.edu, E-mail: hiltonm@ukzn.ac.za, E-mail: marriage@pha.jhu.edu [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); and others
2013-07-01
We present a catalog of 68 galaxy clusters, of which 19 are new discoveries, detected via the Sunyaev-Zel'dovich effect (SZ) at 148 GHz in the Atacama Cosmology Telescope (ACT) survey on the celestial equator. With this addition, the ACT collaboration has reported a total of 91 optically confirmed, SZ detected clusters. The 504 square degree survey region includes 270 square degrees of overlap with SDSS Stripe 82, permitting the confirmation of SZ cluster candidates in deep archival optical data. The subsample of 48 clusters within Stripe 82 is estimated to be 90% complete for M{sub 500c} > 4.5 × 10{sup 14}M{sub s}un and redshifts 0.15 < z < 0.8. While a full suite of matched filters is used to detect the clusters, the sample is studied further through a ''Profile Based Amplitude Analysis'' using a statistic derived from a single filter at a fixed θ{sub 500} = 5.'9 angular scale. This new approach incorporates the cluster redshift along with prior information on the cluster pressure profile to fix the relationship between the cluster characteristic size (R{sub 500}) and the integrated Compton parameter (Y{sub 500}). We adopt a one-parameter family of ''Universal Pressure Profiles'' (UPP) with associated scaling laws, derived from X-ray measurements of nearby clusters, as a baseline model. Three additional models of cluster physics are used to investigate a range of scaling relations beyond the UPP prescription. Assuming a concordance cosmology, the UPP scalings are found to be nearly identical to an adiabatic model, while a model incorporating non-thermal pressure better matches dynamical mass measurements and masses from the South Pole Telescope. A high signal to noise ratio subsample of 15 ACT clusters with complete optical follow-up is used to obtain cosmological constraints. We demonstrate, using fixed scaling relations, how the constraints depend on the assumed gas model if only SZ measurements are used, and
Energy Technology Data Exchange (ETDEWEB)
Menanteau, Felipe; Hughes, John P. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Sifon, Cristobal; Barrientos, L. Felipe; Duenner, Rolando; Infante, Leopoldo [Departamento de Astronomia y Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Battaglia, Nicholas [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Bond, J. Richard; Hajian, Amir; Hincks, Adam D. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Crichton, Devin; Gralla, Megan; Marriage, Tobias A. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218-2686 (United States); Das, Sudeep [High Energy Physics Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, IL 60439 (United States); Devlin, Mark J.; Dicker, Simon [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Hasselfield, Matthew [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Hilton, Matt [Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban (South Africa); Kosowsky, Arthur [Physics and Astronomy Department, University of Pittsburgh, 100 Allen Hall, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); Marsden, Danica [Department of Physics, University of California Santa Barbara, CA 93106 (United States); and others
2013-03-01
We present the optical and X-ray properties of 68 galaxy clusters selected via the Sunyaev-Zel'dovich (SZ) effect at 148 GHz by the Atacama Cosmology Telescope (ACT). Our sample, from an area of 504 deg{sup 2} centered on the celestial equator, is divided into two regions. The main region uses 270 deg{sup 2} of the ACT survey that overlaps with the co-added ugriz imaging from the Sloan Digital Sky Survey (SDSS) over Stripe 82 plus additional near-infrared pointed observations with the Apache Point Observatory 3.5 m telescope. We confirm a total of 49 clusters to z Almost-Equal-To 1.3, of which 22 (all at z > 0.55) are new discoveries. For the second region, the regular-depth SDSS imaging allows us to confirm 19 more clusters up to z Almost-Equal-To 0.7, of which 10 systems are new. We present the optical richness, photometric redshifts, and separation between the SZ position and the brightest cluster galaxy (BCG). We find no significant offset between the cluster SZ centroid and BCG location and a weak correlation between optical richness and SZ-derived mass. We also present X-ray fluxes and luminosities from the ROSAT All Sky Survey which confirm that this is a massive sample. One of the newly discovered clusters, ACT-CL J0044.4+0113 at z = 1.1 (photometric), has an integrated XMM-Newton X-ray temperature of kT{sub X} = 7.9 {+-} 1.0 keV and combined mass of M {sub 200a} = 8.2{sup +3.3} {sub -2.5} Multiplication-Sign 10{sup 14} h {sup -1} {sub 70} M {sub Sun }, placing it among the most massive and X-ray-hot clusters known at redshifts beyond z = 1. We also highlight the optically rich cluster ACT-CL J2327.4-0204 (RCS2 2327) at z = 0.705 (spectroscopic) as the most significant detection of the whole equatorial sample with a Chandra-derived mass of M {sub 200a} = 1.9{sup +0.6} {sub -0.4} Multiplication-Sign 10{sup 15} h {sup -1} {sub 70} M {sub Sun }, placing it in the ranks of the most massive known clusters like El Gordo and the Bullet Cluster.
Das, Sudeep; Ade, Peter A R; Aguirre, Paula; Amir, Mandana; Appel, John W; Barrientos, L Felipe; Battistelli, Elia S; Bond, J Richard; Brown, Ben; Burger, Bryce; Chervenak, Jay; Devlin, Mark J; Dicker, Simon R; Doriese, W Bertrand; Dunkley, Joanna; Dünner, Rolando; Essinger-Hileman, Thomas; Fisher, Ryan P; Fowler, Joseph W; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hernández-Monteagudo, Carlos; Hilton, Gene C; Hilton, Matt; Hincks, Adam D; Hlozek, Renée; Huffenberger, Kevin M; Hughes, David H; Hughes, John P; Infante, Leopoldo; Irwin, Kent D; Juin, Jean Baptiste; Kaul, Madhuri; Klein, Jeff; Kosowsky, Arthur; Lau, Judy M; Limon, Michele; Lin, Yen-Ting; Lupton, Robert H; Marsden, Danica; Martocci, Krista; Mauskopf, Phil; Menanteau, Felipe; Moodley, Kavilan; Moseley, Harvey; Netterfield, Calvin B; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Parker, Lucas; Partridge, Bruce; Reid, Beth; Sehgal, Neelima; Sherwin, Blake D; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Trac, Hy; Tucker, Carole; Warne, Ryan; Wollack, Ed; Zhao, Yue
2010-01-01
We present measurements of the cosmic microwave background (CMB) power spectrum made by the Atacama Cosmology Telescope at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. Our results clearly show the second through the seventh acoustic peaks in the CMB power spectrum. The measurements of these higher-order peaks provide an additional test of the {\\Lambda}CDM cosmological model. At l > 3000, we detect power in excess of the primary anisotropy spectrum of the CMB. At lower multipoles 500 < l < 3000, we find evidence for gravitational lensing of the CMB in the power spectrum at the 2.8{\\sigma} level. We also detect a low level of Galactic dust in our maps, which demonstrates that we can recover known faint, diffuse signals.
Menanteau, Felipe; Juin, Jean-Baptiste; Marriage, Tobias A; Reese, Erik; Acquaviva, Viviana; Aguirre, Paula; Appel, John William; Baker, Andrew J; Barrientos, L Felipe; Battistelli, Elia S; Bond, J Richard; Das, Sudeep; Devlin, Mark J; Dicker, Simon; Deshpande, Amruta J; Dunkley, Joanna; Dunner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hernandez-Monteagudo, Carlos; Hilton, Matt; Hincks, Adam D; Hlozek, Renee; Hughes, John P; Huffenberger, Kevin M; Infante, Leopoldo; Irwin, Kent D; Klein, Jeff; Kosowsky, Arthur; Lin, Yen-Ting; Marsden, Danica; Moodley, Kavilan; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Parker, Lucas; Partridge, Bruce; Sievers, Jon; Sehgal, Neelima; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel; Switzer, Eric; Thornton, Robert; Trac, Hy; Warne, Ryan; Wollack, Ed
2010-01-01
We present optical and X-ray properties for the first confirmed galaxy cluster sample selected by the Sunyaev-Zel'dovich Effect from 148 GHz maps over 455 square degrees of sky made with the Atacama Cosmology Telescope. These maps, coupled with multi-band imaging on 4-meter-class optical telescopes, have yielded a sample of 23 galaxy clusters with redshifts between 0.118 and 1.066. Of these 23 clusters, 10 are newly discovered. The selection of this sample is approximately mass limited and essentially independent of redshift. We provide optical positions, images, redshifts and X-ray fluxes and luminosities for the full sample, and X-ray temperatures of an important subset. The mass limit of the full sample is around 8e14 Msun, with a number distribution that peaks around a redshift of 0.4. For the 10 highest significance SZE-selected cluster candidates, all of which are optically confirmed, the mass threshold is 1e15 Msun and the redshift range is 0.167 to 1.066. Archival observations from Chandra, XMM-Newton...
Sifon, Cristobal; Hasselfield, Matthew; Marriage, Tobias A; Hughes, John P; Barrientos, L Felipe; Gonzalez, Jorge; Infante, Leopoldo; Addison, Graeme E; Baker, Andrew J; Battaglia, Nick; Bond, J Richard; Das, Sudeep; Devlin, Mark J; Dunkley, Joanna; Dunner, Rolando; Gralla, Megan B; Hajian, Amir; Hilton, Matt; Hincks, Adam D; Kosowsky, Arthur B; Marsden, Danica; Moodley, Kavilan; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Partridge, Bruce; Reese, Erik D; Sehgal, Neelima; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Thornton, Robert J; Trac, Hy; Wollack, Edward
2012-01-01
We present the first dynamical mass estimates and scaling relations for a sample of Sunyaev-Zel'dovich effect (SZE) selected galaxy clusters. The sample consists of 16 massive clusters detected with the Atacama Cosmology Telescope (ACT) over a 455 sq deg. area of the southern sky. Deep multi-object spectroscopic observations were taken to secure intermediate-resolution (R~700-800) spectra and redshifts for ~60 member galaxies on average per cluster. The dynamical masses M_200c of the clusters have been calculated using simulation-based scaling relations between velocity dispersion and mass. The sample has a median redshift z=0.50 and a median mass M_200c=11x10^14 Msun/h_70 with a lower limit M_200c ~ 5x10^14 Msun/h_70, consistent with the expectations for the ACT southern sky survey. These masses are compared to the ACT SZE properties of the sample, specifically, the central SZE amplitude y0, the Compton signal within a 0.5' pixel y_0.5', and the integrated Compton signal Y_200c, which we use to derive SZE-Ma...
Menanteau, Felipe; Sifon, Cristobal; Hilton, Matt; Gonzalez, Jorge; Infante, Leopoldo; Barrientos, L Felipe; Baker, Andrew J; Das, Sudeep; Devlin, Mark J; Dunkley, Joanna; Hincks, Adam D; Kosowsky, Arthur; Mardsen, Danica; Marriage, Tobias A; Moodley, Kavilan; Niemack, Michael D; Page, Lyman A; Reese, Erik D; Sehgal, Neelima; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Wollack, Edward
2011-01-01
We present a detailed analysis from new multi-wavelength observations of the exceptional galaxy cluster ACT-CL J0102-4915, likely the most massive, hottest, most X-ray luminous and brightest Sunyaev-Zel'dovich(SZ) effect cluster known at redshifts greater than 0.6. The Atacama Cosmology Telescope collaboration discovered it as the most significant SZ decrement in a sky survey area of 755 square degrees. Our VLT/FORS2 spectra of 89 member galaxies yield a cluster redshift, z=0.870, and velocity dispersion, sigma=1321+/-106 km/s. Our Chandra observations reveal a hot and X-ray luminous system with an integrated temperature of Tx=14.5+/-0.1 keV and 0.5-2.0 keV band luminosity of Lx=(2.19+/-0.11) x 10^45 h_70^-2 erg/s. We obtain several statistically consistent cluster mass estimates; using empirical mass scaling relations with velocity dispersion, X-ray Yx, and integrated SZ distortion, we estimate a cluster mass of M_200=(2.16+/-0.32)x10^15 M_sun/h_70. The Chandra and VLT/FORS2 optical data also reveal that ACT...
Energy Technology Data Exchange (ETDEWEB)
Reese, Erik D.; Mroczkowski, Tony; Devlin, Mark J.; Dicker, Simon R. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Menanteau, Felipe; Baker, Andrew J. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8019 (United States); Hilton, Matt [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Sievers, Jonathan; Bond, J. Richard; Hajian, Amir [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Aguirre, Paula; Duenner, Rolando [Departamento de Astronomia y Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Appel, John William; Das, Sudeep; Essinger-Hileman, Thomas; Hincks, Adam D. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Fowler, Joseph W.; Hill, J. Colin [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Halpern, Mark; Hasselfield, Matthew [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); and others
2012-05-20
We present follow-up observations with the Sunyaev-Zel'dovich Array (SZA) of optically confirmed galaxy clusters found in the equatorial survey region of the Atacama Cosmology Telescope (ACT): ACT-CL J0022-0036, ACT-CL J2051+0057, and ACT-CL J2337+0016. ACT-CL J0022-0036 is a newly discovered, massive ({approx_equal} 10{sup 15} M{sub Sun }), high-redshift (z = 0.81) cluster revealed by ACT through the Sunyaev-Zel'dovich effect (SZE). Deep, targeted observations with the SZA allow us to probe a broader range of cluster spatial scales, better disentangle cluster decrements from radio point-source emission, and derive more robust integrated SZE flux and mass estimates than we can with ACT data alone. For the two clusters we detect with the SZA we compute integrated SZE signal and derive masses from the SZA data only. ACT-CL J2337+0016, also known as A2631, has archival Chandra data that allow an additional X-ray-based mass estimate. Optical richness is also used to estimate cluster masses and shows good agreement with the SZE and X-ray-based estimates. Based on the point sources detected by the SZA in these three cluster fields and an extrapolation to ACT's frequency, we estimate that point sources could be contaminating the SZE decrement at the {approx}< 20% level for some fraction of clusters.
Spacek, Alexander; Cohen, Seth; Joshi, Bhavin; Mauskopf, Philip
2016-01-01
We directly measure the thermal energy of the gas surrounding galaxies through the thermal Sunyaev-Zel'dovich (tSZ) effect. We perform a stacking analysis of microwave background images from the Atacama Cosmology Telescope (ACT), around 1179 massive quiescent elliptical galaxies at 0.5 <= z <= 1.0 ('low-z') and 3274 galaxies at 1.0 <= z <= 1.5 ('high-z'), selected using data from the Wide-Field Infrared Survey Explorer (WISE) All-Sky Survey and the Sloan Digital Sky Survey (SDSS) within the SDSS Stripe-82 field. The gas surrounding these galaxies is expected to contain energy from past episodes of AGN feedback, and after using modeling to subtract undetected contaminants, we detect a tSZ signal at a significance of 0.9-sigma for our low-z galaxies and 1.8-sigma for our high-z galaxies. We then include data from the high-frequency Planck bands for a subset of 227 low-z galaxies and 529 high-z galaxies and find low-z and high-z tSZ detections of 1.0-sigma and 1.5-sigma, respectively. These results i...
Menanteau, Felipe; Hughes, John Pl; Baker, Andrew J.; Sifon, Cristobal; Gonzalez, Jorge; Infante, Leopoldo; Barrientos, L. Felipe; Hilton, Matt; Das, Sudeep; Spergel, David N.; Hincks, Adam D.; Page, Lyman A.; Staggs, Suzanne T.; Mardsen, Danica; Reese, Erik D.; Dunkley, Joanna; Kosowsky, Arthur; Marriage, Tobias A.; Moodley, Kavilan; Niemack, Michael D.; Sehgal, Neelima; Sievers, Jon
2011-01-01
We present a detailed analysis from new multi-wavelength observations of the exceptional galaxy cluster ACT-CL J0102-4915, likely the most massive, hottest, most X-ray luminous and brightest Sunyaev-Zel'dovich (SZ) effect cluster known at redshifts greater than 0.6. The Atacama Cosmology Telescope (ACT) collaboration discovered ACT-CL J0102-4915 as the most significant Sunyaev-Zeldovich (SZ) decrement in a sky survey area of 755 square degrees. Our VLT/FORS2 spectra of 89 member galaxies yield a cluster redshift, z = 0.870, and velocity dispersion, sigma(gal) +/- 1321 106 km s-1. Our Chandra observations reveal a hot and X-ray luminous system with an integrated temperature of T(X) = 14:5 +/- 0:1 keV and 0.5 2.0 keV band luminosity of L(X) = (2:19 0:11) 1045 h(exp -2)70erg s-1. We obtain several statistically consistent cluster mass estimates; using empirical mass scaling relations with velocity dispersion, X-ray Y(X) , and integrated SZ distortion, we estimate a cluster mass of M(200) = (2:16 +/- 0:32) 10(exp 15) h(exp-1) 70M compared to the Sun. We constrain the stellar content of the cluster to be less than 1% of the total mass, using Spitzer IRAC and optical imaging. The Chandra and VLT/FORS2 optical data also reveal that ACT-CL J0102-4915 is undergoing a major merger between components with a mass ratio of approximately 2 to 1. The X-ray data show significant temperature variations from a low of 6:6 +/- 0:7 keV at the merging low-entropy, high-metallicity, cool core to a high of 22 +/- 6 keV. We also see a wake in the X-ray surface brightness and deprojected gas density caused by the passage of one cluster through the other from which we estimate a merger speed of around 1300 km s(exp -1) for an assumed merger timescale of 1 Gyr. ACTCL J0102-4915 is possibly a high-redshift analog of the famous Bullet Cluster. Such a massive cluster at this redshift is rare, although consistent with the standard CDM cosmology in the lower part of its allowed mass range. Massive
Spacek, Alexander; Scannapieco, Evan; Cohen, Seth; Joshi, Bhavin; Mauskopf, Philip
2017-01-01
We directly measure the thermal energy of the gas surrounding galaxies through the thermal Sunyaev–Zel’dovich (tSZ) effect. We perform a stacking analysis of microwave background images from the Atacama Cosmology Telescope, around 1179 massive quiescent elliptical galaxies at 0.5 ≤ z ≤ 1.0 (“low-z”) and 3274 galaxies at 1.0 ≤ z ≤ 1.5 (“high-z”), selected using data from the Wide-field Infrared Survey Explorer All-Sky Survey and the Sloan Digital Sky Survey (SDSS) within the SDSS Stripe-82 field. The gas surrounding these galaxies is expected to contain energy from past episodes of active galactic nucleus (AGN) feedback, and after using modeling to subtract undetected contaminants, we detect a tSZ signal at a significance of 0.9σ for our low-z galaxies and 1.8σ for our high-z galaxies. We then include data from the high-frequency Planck bands for a subset of 227 low-z galaxies and 529 high-z galaxies and find low-z and high-z tSZ detections of 1.0σ and 1.5σ , respectively. These results indicate an average thermal heating around these galaxies of ({5.6}-5.6+5.9)× {10}60 erg for our low-z galaxies and ({7.0}-4.4+4.7)× {10}60 erg for our high-z galaxies. Based on simple heating models, these results are consistent with gravitational heating without additional heating due to AGN feedback.
Schaan, Emmanuel; Ferraro, Simone; Vargas-Magaña, Mariana; Smith, Kendrick M.; Ho, Shirley; Aiola, Simone; Battaglia, Nicholas; Bond, J. Richard; De Bernardis, Francesco; Calabrese, Erminia; Cho, Hsiao-Mei; Devlin, Mark J.; Dunkley, Joanna; Gallardo, Patricio A.; Hasselfield, Matthew; Henderson, Shawn; Hill, J. Colin; Hincks, Adam D.; Hlozek, Renée; Hubmayr, Johannes; Hughes, John P.; Irwin, Kent D.; Koopman, Brian; Kosowsky, Arthur; Li, Dale; Louis, Thibaut; Lungu, Marius; Madhavacheril, Mathew; Maurin, Loïc; McMahon, Jeffrey John; Moodley, Kavilan; Naess, Sigurd; Nati, Federico; Newburgh, Laura; Niemack, Michael D.; Page, Lyman A.; Pappas, Christine G.; Partridge, Bruce; Schmitt, Benjamin L.; Sehgal, Neelima; Sherwin, Blake D.; Sievers, Jonathan L.; Spergel, David N.; Staggs, Suzanne T.; van Engelen, Alexander; Wollack, Edward J.; ACTPol Collaboration
2016-04-01
We use microwave temperature maps from two seasons of data from the Atacama Cosmology Telescope at 146 GHz, together with the "Constant Mass" CMASS galaxy sample from the Baryon Oscillation Spectroscopic Survey to measure the kinematic Sunyaev-Zel'dovich (kSZ) effect over the redshift range z =0.4 - 0.7 . We use galaxy positions and the continuity equation to obtain a reconstruction of the line-of-sight velocity field. We stack the microwave temperature at the location of each halo, weighted by the corresponding reconstructed velocity. We vary the size of the aperture photometry filter used, thus probing the free electron profile of these halos from within the virial radius out to three virial radii, on the scales relevant for investigating the missing baryons problem. The resulting best fit kSZ model is preferred over the no-kSZ hypothesis at 3.3 and 2.9 σ for two independent velocity reconstruction methods, using 25,537 galaxies over 660 square degrees. The data suggest that the baryon profile is shallower than the dark matter in the inner regions of the halos probed here, potentially due to energy injection from active galactic nucleus or supernovae. Thus, by constraining the gas profile on a wide range of scales, this technique will be useful for understanding the role of feedback in galaxy groups and clusters. The effect of foregrounds that are uncorrelated with the galaxy velocities is expected to be well below our signal, and residual thermal Sunyaev-Zel'dovich contamination is controlled by masking the most massive clusters. Finally, we discuss the systematics involved in converting our measurement of the kSZ amplitude into the mean free electron fraction of the halos in our sample.
Energy Technology Data Exchange (ETDEWEB)
Menanteau, Felipe; Hughes, John P.; Baker, Andrew J. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Rd, Piscataway, NJ 08854 (United States); Sifon, Cristobal; Gonzalez, Jorge; Infante, Leopoldo; Felipe Barrientos, L. [Departamento de Astronomia y Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Hilton, Matt [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Bond, John R.; Hajian, Amir; Nolta, Michael R. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Das, Sudeep [Berkeley Center for Cosmological Physics, LBL and Department of Physics, University of California, Berkeley, CA 94720 (United States); Devlin, Mark J.; Marsden, Danica [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Dunkley, Joanna [Department of Astrophysics, Oxford University, Oxford, OX1 3RH (United Kingdom); Hincks, Adam D. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Kosowsky, Arthur [Physics and Astronomy Department, University of Pittsburgh, 100 Allen Hall, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); Marriage, Tobias A. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218-2686 (United States); Moodley, Kavilan [Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Durban 4041 (South Africa); Niemack, Michael D. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); and others
2012-03-20
We present a detailed analysis from new multi-wavelength observations of the exceptional galaxy cluster ACT-CL J0102-4915, likely the most massive, hottest, most X-ray luminous and brightest Sunyaev-Zel'dovich (SZ) effect cluster known at redshifts greater than 0.6. The Atacama Cosmology Telescope (ACT) collaboration discovered ACT-CL J0102-4915 as the most significant SZ decrement in a sky survey area of 755 deg{sup 2}. Our Very Large Telescope (VLT)/FORS2 spectra of 89 member galaxies yield a cluster redshift, z = 0.870, and velocity dispersion, {sigma}{sub gal} = 1321 {+-} 106 km s{sup -1}. Our Chandra observations reveal a hot and X-ray luminous system with an integrated temperature of T{sub X} = 14.5 {+-} 0.1 keV and 0.5-2.0 keV band luminosity of L{sub X} = (2.19 {+-} 0.11) Multiplication-Sign 10{sup 45} h{sup -2}{sub 70} erg s{sup -1}. We obtain several statistically consistent cluster mass estimates; using empirical mass scaling relations with velocity dispersion, X-ray Y{sub X}, and integrated SZ distortion, we estimate a cluster mass of M{sub 200a} = (2.16 {+-} 0.32) Multiplication-Sign 10{sup 15} h{sup -1}{sub 70} M{sub Sun }. We constrain the stellar content of the cluster to be less than 1% of the total mass, using Spitzer IRAC and optical imaging. The Chandra and VLT/FORS2 optical data also reveal that ACT-CL J0102-4915 is undergoing a major merger between components with a mass ratio of approximately 2 to 1. The X-ray data show significant temperature variations from a low of 6.6 {+-} 0.7 keV at the merging low-entropy, high-metallicity, cool core to a high of 22 {+-} 6 keV. We also see a wake in the X-ray surface brightness and deprojected gas density caused by the passage of one cluster through the other. Archival radio data at 843 MHz reveal diffuse radio emission that, if associated with the cluster, indicates the presence of an intense double radio relic, hosted by the highest redshift cluster yet. ACT-CL J0102-4915 is possibly a high
Menanteau, Felipe; Hughes, John P.; Sifon, Cristobal; Hilton, Matt; Gonzalez, Jorge; Infante, Leopoldo; Barrientos, L. Felipe; Baker, Andrew J.; Bond, John R.; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Hajian, Amir; Hincks, Adam D.; Kosowsky, Arthur; Marsden, Danica; Marriage, Tobias A.; Moodley, Kavilan; Niemack, Michael D.; Nolta, Michael R.; Page, Lyman A.; Reese, Erik D.; Sehgal, Neelima; Seivers, Jon; Spergel, David N.; Staggs, Suzanne T.; Wollack, Edward
2012-01-01
We present a detailed analysis from new multi-wavelength observations of the exceptional galaxy cluster ACT-CL J0102-4915, likely the most massive, hottest, most X-ray luminous and brightest Sunyaev-Zel'dovich (SZ) effect cluster known at redshifts greater than 0.6. The Atacama Cosmology Telescope (ACT) collaboration discovered ACT-CL J0102-4915 as the most significant Sunyaev-Zeldovich (SZ) decrement in a sky survey area of 755 square degrees. Our VLT/FORS2 spectra of 89 member galaxies yield a cluster redshift, z = 0.870, and velocity dispersion, sigma(sub gal) = 1321+/-106 km s-1. Our Chandra observations reveal a hot and X-ray luminous system with an integrated temperature of T(sub X) = 14.5+/-1.0 keV and 0.5-2.0 keV band luminosity of L(sub X) = (2.19+/-0.11)×10(sup 45) h(sup -2)(sub 70) erg s-1. We obtain several statistically consistent cluster mass estimates; using empirical mass scaling relations with velocity dispersion, X-ray Y(sub X), and integrated SZ distortion, we estimate a cluster mass of M(sub 200a) = (2.16+/-0.32)×1015 h(sup -1)(sub 70) solar mass. We constrain the stellar content of the cluster to be less than 1% of the total mass, using Spitzer IRAC and optical imaging. The Chandra and VLT/FORS2 optical data also reveal that ACT-CL J0102-4915 is undergoing a major merger between components with a mass ratio of approximately 2 to 1. The X-ray data show significant temperature variations from a low of 6.6+/-0.7 keV at the merging low-entropy, high-metallicity, cool core to a high of 22+/-6 keV. We also see a wake in the X-ray surface brightness and deprojected gas density caused by the passage of one cluster through the other. Archival radio data at 843 MHz reveal diffuse radio emission that, if associated with the cluster, indicates the presence of an intense double radio relic, hosted by the highest redshift cluster yet. ACT-CL J0102-4915 is possibly a high-redshift analog of the famous Bullet Cluster. Such a massive cluster at this redshift
Energy Technology Data Exchange (ETDEWEB)
Sifon, Cristobal; Barrientos, L. Felipe; Gonzalez, Jorge; Infante, Leopoldo; Duenner, Rolando [Departamento de Astronomia y Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Menanteau, Felipe; Hughes, John P.; Baker, Andrew J. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Hasselfield, Matthew [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Marriage, Tobias A.; Crichton, Devin; Gralla, Megan B. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218-2686 (United States); Addison, Graeme E.; Dunkley, Joanna [Sub-department of Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Battaglia, Nick; Bond, J. Richard; Hajian, Amir [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Das, Sudeep [Berkeley Center for Cosmological Physics, LBL and Department of Physics, University of California, Berkeley, CA 94720 (United States); Devlin, Mark J. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Hilton, Matt [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); and others
2013-07-20
We present the first dynamical mass estimates and scaling relations for a sample of Sunyaev-Zel'dovich effect (SZE) selected galaxy clusters. The sample consists of 16 massive clusters detected with the Atacama Cosmology Telescope (ACT) over a 455 deg{sup 2} area of the southern sky. Deep multi-object spectroscopic observations were taken to secure intermediate-resolution (R {approx} 700-800) spectra and redshifts for Almost-Equal-To 60 member galaxies on average per cluster. The dynamical masses M{sub 200c} of the clusters have been calculated using simulation-based scaling relations between velocity dispersion and mass. The sample has a median redshift z = 0.50 and a median mass M{sub 200c}{approx_equal}12 Multiplication-Sign 10{sup 14} h{sub 70}{sup -1} M{sub sun} with a lower limit M{sub 200c}{approx_equal}6 Multiplication-Sign 10{sup 14} h{sub 70}{sup -1} M{sub sun}, consistent with the expectations for the ACT southern sky survey. These masses are compared to the ACT SZE properties of the sample, specifically, the match-filtered central SZE amplitude y{sub 0}-tilde, the central Compton parameter y{sub 0}, and the integrated Compton signal Y{sub 200c}, which we use to derive SZE-mass scaling relations. All SZE estimators correlate with dynamical mass with low intrinsic scatter ({approx}< 20%), in agreement with numerical simulations. We explore the effects of various systematic effects on these scaling relations, including the correlation between observables and the influence of dynamically disturbed clusters. Using the three-dimensional information available, we divide the sample into relaxed and disturbed clusters and find that {approx}50% of the clusters are disturbed. There are hints that disturbed systems might bias the scaling relations, but given the current sample sizes, these differences are not significant; further studies including more clusters are required to assess the impact of these clusters on the scaling relations.
Cornell Caltech Atacama Telescope (CCAT): a 25 m aperture telescope above 5000 m altitude
Sebring, T A; Radford, S; Zmuidzinas, J; Sebring, Thomas A.; Giovanelli, Riccardo; Radford, Simon; Zmuidzinas, Jonas
2006-01-01
Cornell, California Institute of Technology (Caltech), and Jet Propulsion Lab (JPL) have joined together to study development of a 25 meter sub-millimeter telescope (CCAT) on a high peak in the Atacama region of northern Chile, where the atmosphere is so dry as to permit observation at wavelengths as short as 200 micron. The telescope is designed to deliver high efficiency images at that wavelength with a total 1/2 wavefront error of about 10 microns. With a 20 arc min field of view, CCAT will be able to accommodate large format bolometer arrays and will excel at carrying out surveys as well as resolving structures to the 2 arc sec. resolution level. The telescope will be an ideal complement to ALMA. Initial instrumentation will include both a wide field bolometer camera and a medium resolution spectrograph. Studies of the major telescope subsystems have been performed as part of an initial Feasibility Concept Study. Novel aspects of the telescope design include kinematic mounting and active positioning of pr...
Probing Inflationary Cosmology: The Atacama B-Mode Search (ABS)
Essinger-Hileman, Thomas
Observations of the Cosmic Microwave Background (CMB) have provided compelling evidence for the Standard Model of Cosmology and have led to the most precise estimates of cosmological parameters to date. Through its sensitivity to gravitational waves, the CMB provides a glimpse into the state of the universe just 10-35 seconds after the Big Bang and of physics on grand-unification-theory (GUT) energy scales around 1016 GeV, some 13 orders of magnitude above the energies achievable by current terrestrial particle accelerators. A gravitational-wave background (GWB) in the early universe would leave a unique, odd-parity pattern of polarization in the CMB called B modes, the magnitude of which is characterized by the tensor-to-scalar ratio, r. A GWB is generically predicted to exist by inflationary theories, and the current generation of CMB polarization experiments will probe the interesting parameter space of r coupled, transition-edge-sensor, bolometric polarimeters; and, a continuously-rotating, warm, sapphire half-wave plate (HWP) that will provide modulation of the incoming polarization of light. In this thesis, I describe the optical, mechanical, and cryogenic design of the receiver, including the reflector design, focal-plane layout, HWP design, and free-space lowpass filters. I describe physical-optics modeling of the reflector and feedhorn to validate the optical design. A matrix model that allows the calculation of the Mueller matrix of the anti-reflection-coated HWP for arbitrary frequency and angle of incidence is outlined. This will provide a framework for characterizing the ABS HWP in the field. Finally, the development of metal-mesh free space filters for ABS is described. ABS is anticipated to measure or place an upper limit on the tensor-to-scalar ratio at a level of r ˜ 0.03.
The University of Tokyo Atacama Observatory 6.5m telescope: project overview and current status
Yoshii, Y.; Doi, M.; Kohno, K.; Miyata, T.; Motohara, K.; Kawara, K.; Tanaka, M.; Minezaki, T.; Sako, S.; Morokuma, T.; Tamura, Y.; Tanabe, T.; Takahashi, H.; Konishi, M.; Kamizuka, T.; Kato, N.; Aoki, T.; Soyano, T.; Tarusawa, K.; Handa, T.; Koshida, S.; Bronfman, L.; Ruiz, M. T.; Hamuy, M.; Garay, G.
2016-07-01
The University of Tokyo Atacama Observatory Project is to construct a 6.5m infrared telescope at the summit of Co. Chajnantor (5640m altitude) in northern Chile, promoted by the University of Tokyo. Thanks to the dry climate (PWV 0.5mm) and the high altitude, it will achieve excellent performance in the NIR to MIR wavelengths. The telescope has two Nasmyth foci where the facility instruments are installed and two folded-Cassegrain foci for carry-in instruments. All these four foci can be switched by rotating a tertiary mirror. The final focal ratio is 12.2 and the telescope foci have large field-of-view of 25° in diameter. We adopted the 6.5m light-weighted borosilicate honeycomb primary mirror and its support system that are developed by Steward Observatory Richard F. Caris Mirror Lab. The dome enclosure has the shape of carousel, and large ventilation windows with shutters control the wind to flush heat inside the dome. The operation building with control room, aluminizing chamber and maintenance facilities is located at the side of the dome. Two cameras, SWIMS for spectroscopy and imaging in the near-infrared and MIMIZUKU in the mid-infrared, are being developed as the first-generation facility instruments. The operation of the telescope will be remotely carried out from a base facility at San Pedro de Atacama, 50km away from the summit. The construction of the telescope is now underway. Fabrication of the telescope mount has almost finished, and the pre-assembly has been carried out in Japan. The primary, secondary, and tertiary mirrors and their cells have been also fabricated, as well as their cells and support systems. Fabrication of the enclosure is now underway, and their pre-assembly in Japan will be carried out in 2016. Construction of the base facility at San Pedro de Atacama has been already completed in 2014, and operated for the activities in Atacama. The telescope is now scheduled to see the first light at the beginning of 2018.
ANIR : Atacama Near-Infrared Camera for the 1.0-m miniTAO Telescope
Konishi, Masahiro; Tateuchi, Ken; Takahashi, Hidenori; Kitagawa, Yutaro; Kato, Natsuko; Sako, Shigeyuki; Uchimoto, Yuka K; Toshikawa, Koji; Ohsawa, Ryou; Yamamuro, Tomoyasu; Asano, Kentaro; Ita, Yoshifusa; Kamizuka, Takafumi; Komugi, Shinya; Koshida, Shintaro; Manabe, Sho; Matsunaga, Noriyuki; Minezaki, Takeo; Morokuma, Tomoki; Nakashima, Asami; Takagi, Toshinobu; Tanabé, Toshihiko; Uchiyama, Mizuho; Aoki, Tsutomu; Doi, Mamoru; Handa, Toshihiro; Kato, Daisuke; Kawara, Kimiaki; Kohno, Kotaro; Miyata, Takashi; Nakamura, Tomohiko; Okada, Kazushi; Soyano, Takao; Tamura, Yoichi; Tanaka, Masuo; Tarusawa, Ken'ichi; Yoshii, Yuzuru
2015-01-01
We have developed a near-infrared camera called ANIR (Atacama Near-InfraRed camera) for the University of Tokyo Atacama Observatory 1.0m telescope (miniTAO) installed at the summit of Cerro Chajnantor (5640 m above sea level) in northern Chile. The camera provides a field of view of 5'.1 $\\times$ 5'.1 with a spatial resolution of 0".298 /pixel in the wavelength range of 0.95 to 2.4 $\\mu$m. Taking advantage of the dry site, the camera is capable of hydrogen Paschen-$\\alpha$ (Pa$\\alpha$, $\\lambda=$1.8751 $\\mu$m in air) narrow-band imaging observations, at which wavelength ground-based observations have been quite difficult due to deep atmospheric absorption mainly from water vapor. We have been successfully obtaining Pa$\\alpha$ images of Galactic objects and nearby galaxies since the first-light observation in 2009 with ANIR. The throughputs at the narrow-band filters ($N1875$, $N191$) including the atmospheric absorption show larger dispersion (~10%) than those at broad-band filters (a few %), indicating that ...
Origins Space Telescope: Cosmology and Reionization
Vieira, Joaquin D.; Origins Space Telescope Study Team
2017-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.A core science goal of the OST mission is to study the the cosmological history of star, galaxy, and structure formation into the epoch of reionization (EoR). OST will probe the birth of galaxies through warm molecular hydrogen emission during the cosmic dark ages. Utilizing the unique power of the infrared fine-structure emission lines, OST will trace the rise of metals from the first galaxies until today. It will quantify the dust enrichment history of the Universe, uncover its composition and physical conditions, reveal the first cosmic sources of dust, and probe the properties of the earliest star formation. OST will provide a detailed astrophysical probe into the condition of the intergalactic medium at z > 6 and the galaxies which dominate the epoch of reionization.
2003-11-01
Scientists and dignitaries from Europe, North America and Chile are breaking ground today (Thursday, November 6, 2003) on what will be the world's largest, most sensitive radio telescope operating at millimeter wavelengths . ALMA - the "Atacama Large Millimeter Array" - will be a single instrument composed of 64 high-precision antennas located in the II Region of Chile, in the District of San Pedro de Atacama, at the Chajnantor altiplano, 5,000 metres above sea level. ALMA 's primary function will be to observe and image with unprecedented clarity the enigmatic cold regions of the Universe, which are optically dark, yet shine brightly in the millimetre portion of the electromagnetic spectrum. The Atacama Large Millimeter Array (ALMA) is an international astronomy facility. ALMA is an equal partnership between Europe and North America, in cooperation with the Republic of Chile, and is funded in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC), and in Europe by the European Southern Observatory (ESO) and Spain. ALMA construction and operations are led on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI), and on behalf of Europe by ESO. " ALMA will be a giant leap forward for our studies of this relatively little explored spectral window towards the Universe" , said Dr. Catherine Cesarsky , Director General of ESO. "With ESO leading the European part of this ambitious and forward-looking project, the impact of ALMA will be felt in wide circles on our continent. Together with our partners in North America and Chile, we are all looking forward to the truly outstanding opportunities that will be offered by ALMA , also to young scientists and engineers" . " The U.S. National Science Foundation joins today with our North American partner, Canada, and with the European Southern Observatory, Spain, and Chile to prepare
SEPIA — A New Instrument for the Atacama Pathfinder Experiment (APEX) Telescope
Immer, K.; Belitsky, V.; Olberg, M.; De Breuck, C.; Conway, J.; Montenegro-Montes, F. M.; Perez-Beaupuits, J.-P.; Torstensson, K.; Billade, B.; De Beck, E.; Ermakov, A.; Ferm, S.-E.; Fredrixon, M.; Lapkin, I.; Meledin, D.; Pavolotsky, A.; Strandberg, M.; Sundin, E.; Arumugam, V.; Galametz, M.; Humphreys, E.; Klein, T.; Adema, J.; Barkhof, J.; Baryshev, A.; Boland, W.; Hesper, R.; Klapwijk, T. M.
2016-09-01
The Swedish-ESO PI receiver for APEX (SEPIA) was installed at the APEX telescope in 2015. This instrument currently contains ALMA Band 5 (157-212 GHz) and Band 9 (600-722 GHz) receivers. Commissioning and science verification for Band 5 have been successfully completed but are still ongoing for Band 9. The SEPIA instrument is briefly described and the commissioning of the Band 5 receiver and results from the first science observations are presented.
Swinyard, Bruce; Nakagawa, Takao; Wild, Wolfgang
2009-01-01
The Space Infrared telescope for Cosmology and Astrophysics (SPICA) is planned to be the next space astronomy mission observing in the infrared. The mission is planned to be launched in 2017 and will feature a 3.5 m telescope cooled to <5 K through the use of mechanical coolers. These coolers will a
2012-01-01
The Chalonge 15th Paris Cosmology Colloquium 2011 was held on 20-22 July in the historic Paris Observatory's Perrault building, in the Chalonge School spirit combining real cosmological/astrophysical data and hard theory predictive approach connected to them in the Warm Dark Matter Standard Model of the Universe: News and reviews from Herschel, QUIET, Atacama Cosmology Telescope (ACT), South Pole Telescole (SPT), Planck, PIXIE, the JWST, UFFO, KATRIN and MARE experiments; astrophysics, partic...
Keck telescope constraint on cosmological variation of the proton-to-electron mass ratio
Malec, A.L.; Buning, R.; Murphy, M.T.; Milutinovic, N.; Ellison, S.L.; Prochaska, J.X.; Kaper, L.; Tumlinson, J.; Carswell, R.F.; Ubachs, W.
2010-01-01
Molecular transitions recently discovered at redshift z(abs) = 2.059 towards the bright background quasar J2123-0050 are analysed to limit cosmological variation in the proton-to-electron mass ratio, mu equivalent to m(p)/m(e). Observed with the Keck telescope, the optical echelle spectrum has the h
Lazio, Joseph; Bowman, Judd D.; Burns, Jack O.; Farrell, W. M.; Jones, D. L.; Kasper, J. C.; MacDowall, R. J.; Stewart, K. P.; Weiler, K.
2012-01-01
Observations with radio telescopes address key problems in cosmology, astrobiology, heliophysics, and planetary science including the first light in the Universe (Cosmic Dawn), magnetic fields of extrasolar planets, particle acceleration mechanisms, and the lunar ionosphere. The Moon is a unique science platform because it allows access to radio frequencies that do not penetrate the Earth's ionosphere and because its far side is shielded from intense terrestrial emissions. The instrument packages and infrastructure needed for radio telescopes can be transported and deployed as part of Exploration activities, and the resulting science measurements may inform Exploration (e.g., measurements of lunar surface charging). An illustrative roadmap for the staged deployment of lunar radio telescopes
Hubble space telescope counts of elliptical galaxies constraints on cosmological models?
Driver, S P; Phillipps, S; Bristow, P D; Driver, Simon P; Windhorst, Rogier A; Phillipps, Steven; Bristow, Paul D
1995-01-01
The interpretation of galaxy number counts in terms of cosmological models is fraught with difficulty due to uncertainties in the overall galaxy population (mix of morphological types, luminosity functions etc.) and in the observations (loss of low surface brightness images, image blending etc.). Many of these can be overcome if we use deep high resolution imaging of a single class of high surface brightness galaxies, whose evolution is thought to be fairly well understood. This is now possible by selecting elliptical and S0 galaxies using Hubble Space Telescope images from the Medium Deep Survey and other ultradeep WFPC2 images. In the present paper, we examine whether such data can be used to discriminate between open and closed universes, or between conventional cosmological models and those dominated by a cosmological constant. We find, based on the currently available data, that unless elliptical galaxies undergo very strong merging since z \\sim 1 (and/or very large errors exist in the morphological clas...
Currie, Miles; Rubin, David; Aldering, Greg Scott; Baltay, Charles; Fagrelius, Parker; Law, David R.; Perlmutter, Saul; Pontoppidan, Klaus
2016-01-01
The proposed Wide-Field Infrared Survey Telescope (WFIRST) supernova survey will measure precision distances continuously in redshift to 1.7 with excellent systematics control. However, the Science Definition Team report presented a idealized version of the survey, and we now work to add realism. Using SNe from HST programs, we investigate the expected contamination from the host-galaxy light to estimate required exposure times. We also present estimates of purity and completeness, generated by degrading well-measured nearby SN spectra to WFIRST resolution and signal-to-noise. We conclude with a more accurate prediction of the cosmological constraints possible with WFIRST SNe.
Cai, Rong-Gen; Yang, Tao
2017-02-01
We investigate the constraint ability of the gravitational wave (GW) as the standard siren on the cosmological parameters by using the third-generation gravitational wave detector: the Einstein Telescope. The binary merger of a neutron with either a neutron or black hole is hypothesized to be the progenitor of a short and intense burst of γ rays; some fraction of those binary mergers could be detected both through electromagnetic radiation and gravitational waves. Thus we can determine both the luminosity distance and redshift of the source separately. We simulate the luminosity distances and redshift measurements from 100 to 1000 GW events. We use two different algorithms to constrain the cosmological parameters. For the Hubble constant H0 and dark matter density parameter Ωm, we adopt the Markov chain Monte Carlo approach. We find that with about 500-600 GW events we can constrain the Hubble constant with an accuracy comparable to Planck temperature data and Planck lensing combined results, while for the dark matter density, GWs alone seem not able to provide the constraints as good as for the Hubble constant; the sensitivity of 1000 GW events is a little lower than that of Planck data. It should require more than 1000 events to match the Planck sensitivity. Yet, for analyzing the more complex dynamical property of dark energy, i.e., the equation of state w , we adopt a new powerful nonparametric method: the Gaussian process. We can reconstruct w directly from the observational luminosity distance at every redshift. In the low redshift region, we find that about 700 GW events can give the constraints of w (z ) comparable to the constraints of a constant w by Planck data with type-Ia supernovae. Those results show that GWs as the standard sirens to probe the cosmological parameters can provide an independent and complementary alternative to current experiments.
Rubakov, V A
2014-01-01
In these lectures we first concentrate on the cosmological problems which, hopefully, have to do with the new physics to be probed at the LHC: the nature and origin of dark matter and generation of matter-antimatter asymmetry. We give several examples showing the LHC cosmological potential. These are WIMPs as cold dark matter, gravitinos as warm dark matter, and electroweak baryogenesis as a mechanism for generating matter-antimatter asymmetry. In the remaining part of the lectures we discuss the cosmological perturbations as a tool for studying the epoch preceeding the conventional hot stage of the cosmological evolution.
Cai, Rong-Gen
2016-01-01
We investigate the gravitational wave (GW) as the standard siren to estimate the constraint ability of cosmological parameters using the third-generation gravitational wave detector: Einstein Telescope. The binary merger of a neutron with either a neutron or black hole is hypothesized to be the progenitor of a short and intense burst of $\\gamma$-rays, some fraction of those binary mergers could be detected both through electromagnetic radiation and gravitational wave. Thus we can determine both the luminosity distance and redshift of the source separately. We simulate the luminosity distance and redshift measurements from 100 to 1000 GW events. We adopt Markov chain Monte Carlo method to constrain the Hubble constant and dark matter density parameter, we find that with about 500-600 GW events we can constrain the Hubble constant with an accuracy comparable to \\textit{Planck} temperature data and \\textit{Planck} lensing combined results, while for the dark matter density, it needs about 1000 GW events. Then we...
ALMA - the Atacama Large Millimeter Array
Wild, W.; Cunningham, C.
2002-01-01
The Atacama Large Millimeter Array (ALMA) is a major ground based project for millimeter and submillimeter astronomy to be realized during this decade. It comprises an array of 64 telescopes of 12 meter diameter, each equipped with 10 receivers bands covering the atmospheric windows from 30 GHz to 9
Vittorio, Nicola
2017-01-01
Modern cosmology has changed significantly over the years, from the discovery to the precision measurement era. The data now available provide a wealth of information, mostly consistent with a model where dark matter and dark energy are in a rough proportion of 3:7. The time is right for a fresh new textbook which captures the state-of-the art in cosmology. Written by one of the world's leading cosmologists, this brand new, thoroughly class-tested textbook provides graduate and undergraduate students with coverage of the very latest developments and experimental results in the field. Prof. Nicola Vittorio shows what is meant by precision cosmology, from both theoretical and observational perspectives.
Dillon, Joshua S
2015-01-01
21 cm cosmology, the statistical observation of the high redshift universe using the hyperfine transition of neutral hydrogen, has the potential to revolutionize our understanding of cosmology and the astrophysical processes that underlie the formation of the first stars, galaxies, and black holes during the "Cosmic Dawn." By making tomographic maps with low frequency radio interferometers, we can study the evolution of the 21 cm signal with time and spatial scale and use it to understand the density, temperature, and ionization evolution of the intergalactic medium over this dramatic period in the history of the universe. For my Ph.D. thesis, I explore a number of advancements toward detecting and characterizing the 21 cm signal from the Cosmic Dawn, especially during its final stage, the epoch of reionization. In seven different previously published papers, I explore new techniques for the statistical analysis of interferometric measurements, apply them to data from current generation telescopes like the Mu...
APECS - The Atacama Pathfinder Experiment Control System
Muders, D; Hafok, H; Hatchell, J; Koenig, C; Polehampton, E; Schaaf, R; Schuller, F; Tak, F; Wyrowski, F
2006-01-01
APECS is the distributed control system of the new Atacama Pathfinder EXperiment (APEX) telescope located on the Llano de Chajnantor at an altitude of 5107 m in the Atacama desert in northern Chile. APECS is based on Atacama Large Millimeter Array (ALMA) software and employs a modern, object-oriented design using the Common Object Request Broker Architecture (CORBA) as the middleware. New generic device interfaces simplify adding instruments to the control system. The Python based observer command scripting language allows using many existing software libraries and facilitates creating more complex observing modes. A new self-descriptive raw data format (Multi-Beam FITS or MBFITS) has been defined to store the multi-beam, multi-frequency data. APECS provides an online pipeline for initial calibration, observer feedback and a quick-look display. APECS is being used for regular science observations in local and remote mode since August 2005.
The Atacama Large Millimeter/submillimeter Array
Wootten, Alwyn
2009-01-01
The Atacama Large Millimeter/submillimeter Array (ALMA) is an international radio telescope under construction in the Atacama Desert of northern Chile. ALMA is situated on a dry site at 5000 m elevation, allowing excellent atmospheric transmission over the instrument wavelength range of 0.3 to 10 mm. ALMA will consist of two arrays of high-precision antennas. One, of up to 64 12-m diameter antennas, is reconfigurable in multiple patterns ranging in size from 150 meters up to ~15 km. A second array is comprised of a set of four 12-m and twelve 7-m antennas operating in one of two closely packed configurations ~50 m in diameter. The instrument will provide both interferometric and total-power astronomical information on atomic, molecular and ionized gas and dust in the solar system, our Galaxy, and the nearby to high-redshift universe. In this paper we outline the scientific drivers, technical challenges and planned progress of ALMA.
The Space Infrared Telescope for Cosmology and Astrophysics and Pending US Contribution
Bradford, Charles; SPICA Consortium; SAFARI Consortium
2017-01-01
SPICA is a cryogenic space-borne observatory designed for optimal sensitivity in the mid-infrared through submillimeter range: 17-250 microns. The mission is an ESA / JAXA collaboration, now under review in the ESA Cosmic Visions M5 opportunity, which has final approval in 2019, and launch in the late 2020 decade. SPICA will feature a 2.5-meter telescope cooled to below 8K, this offers the potential for 100-1000-fold advances in sensitivity beyond that obtained with Herschel and SOFIA in the far-IR. With a line sensitivity of ~5x10^-20 W/m^2 (1 h, 5 sigma), SPICA will be a complement to JWST and ALMA for deep spectroscopic observations. Integrated over cosmic history, star formation has occurred predominantly in dust-obscured regions which are inaccessible in the rest-frame UV and optical. Both the luminosity history and the detailed physics that govern it can only be directly measured in the mid-IR-submillimeter. Similarly, forming stars and planetary systems cool primarily through the far-IR. By taking advantage of the low-background platform, the SPICA instruments are designed for these investigations. The SPICA mid-IR instrument (SMI) will provide R~50 imaging spectroscopy and R~1,000 full-band slit-fed spectroscopy from 17 to 36 microns, with a high-resolution (R=25,000) capability from 12-18 microns. The SPICA far-IR instrument (SAFARI) will cover 34 to at least 250 microns with multiple R~300 wide-band grating spectrometer modules coupling to high-sensitivity far-IR detectors. A R~3,000 scanned-etalon module will also be available for Galactic targets with bright continua and/or dense line spectra. In the current SPICA division of responsibilities, ESA will take the lead role, provide the telescope, the fine-attitude sensor, and the spacecraft bus. JAXA will provide the cryogenic system, the SMI instrument, integrate the telescope and instruments, and provide the launch vehicle. The SAFARI instrument will be provided by a consortium funded by the European
Atacama Compact Array Antennas
Saito, Masao; Nakanishi, Kouichiro; Naoi, Takahiro; Yamada, Masumi; Saito, Hiro; Ikenoue, Bungo; Kato, Yoshihiro; Morita, Kou-ichiro; Mizuno, Norikazu; Iguchi, Satoru
2011-01-01
We report major performance test results of the Atacama Compact Array (ACA) 7-m and 12-m antennas of ALMA (Atacama Large Millimeter/submillimeter Array). The four major performances of the ACA antennas are all-sky pointing (to be not more than 2.0 arcsec), offset pointing (to be < 0.6 arcsec) surface accuracy (< 25(20) micrometer for 12(7)m-antenna), stability of path-length (15 micrometer over 3 min), and high servo capability (6 degrees/s for Azimuth and 3 degrees/s for Elevation). The high performance of the ACA antenna has been extensively evaluated at the Site Erection Facility area at an altitude of about 2900 meters. Test results of pointing performance, surface performance, and fast motion capability are demonstrated.
de Vega, H J; Sanchez, N G
2012-01-01
The Chalonge 15th Paris Cosmology Colloquium 2011 was held on 20-22 July in the historic Paris Observatory's Perrault building, in the Chalonge School spirit combining real cosmological/astrophysical data and hard theory predictive approach connected to them in the Warm Dark Matter Standard Model of the Universe: News and reviews from Herschel, QUIET, Atacama Cosmology Telescope (ACT), South Pole Telescole (SPT), Planck, PIXIE, the JWST, UFFO, KATRIN and MARE experiments; astrophysics, particle and nuclear physics warm dark matter (DM) searches and galactic observations, related theory and simulations, with the aim of synthesis, progress and clarification. Philippe Andre, Peter Biermann, Pasquale Blasi, Daniel Boyanovsky, Carlo Burigana, Hector de Vega, Joanna Dunkley, Gerry Gilmore, Alexander Kashlinsky, Alan Kogut, Anthony Lasenby, John Mather, Norma Sanchez, Alexei Smirnov, Sylvaine Turck-Chieze present here their highlights of the Colloquium. Ayuki Kamada and Sinziana Paduroiu present here their poster hi...
Menanteau, Felipe; Jimenez, Raul; Hernandez-Monteagudo, Carlos; Verde, Licia; Kosowsky, Arthur; Moodley, Kavilan; Roche, Nathan
2008-01-01
We present first results from the Southern Cosmology Survey, a new multiwavelength survey of the southern sky coordinated with the Atacama Cosmology Telescope (ACT), a recently commissioned ground-based mm-band Cosmic Microwave Background experiment. This article presents a full analysis of archival optical multi-band imaging data covering an 8 square degree region near right ascension 23 hours and declination -55 degrees, obtained by the Blanco 4-m telescope and Mosaic-II camera in late 2005. We describe the pipeline we have developed to process this large data volume, obtain accurate photometric redshifts, and detect optical clusters. Our cluster finding process uses the combination of a matched spatial filter, photometric redshift probability distributions and richness estimation. We present photometric redshifts, richness estimates, luminosities, and masses for 8 new optically-selected clusters with mass greater than $3\\times10^{14}M_{\\sun}$ at redshifts out to 0.7. We also present estimates for the expec...
Ye, Quan-Zhi; Li, Hong; Zhang, Xinmin
2015-01-01
The Ngari (Ali) prefecture of Tibet, one of the highest areas in the world, has recently emerged as a promising site for future astronomical observation. Here we use 31 years of reanalysis data from the Climate Forecast System Reanalysis (CFSR) to examine the astroclimatology of Ngari, using the recently-erected Ali Observatory at Shiquanhe (5~047~m above mean sea level) as the representative site. We find the percentage of photometric night, median atmospheric seeing and median precipitable water vapor (PWV) of the Shiquanhe site to be $57\\%$, $0.8"$ and 2.5~mm, comparable some of the world's best astronomical observatories. Additional calculation supports the Shiquanhe region as one of the better sites for astronomical observations over the Tibetan Plateau. Based on the studies taken at comparable environment at Atacama, extraordinary observing condition may be possible at the few vehicle-accessible 6~000~m heights in the Shiquanhe region. Such possibility should be thoroughly investigated in future.
Piccirilli, M. P.; Landau, S. J.; León, G.
2016-08-01
The cosmic microwave background radiation is one of the most powerful tools to study the early Universe and its evolution, providing also a method to test different cosmological scenarios. We consider alternative inflationary models where the emergence of the seeds of cosmic structure from a perfect isotropic and homogeneous universe can be explained by the self-induced collapse of the inflaton wave function. Some of these alternative models may result indistinguishable from the standard model, while others require to be compared with observational data through statistical analysis. In this article we show results concerning the first Planck release, the Atacama Cosmology Telescope, the South Pole Telescope, the WMAP and Sloan Digital Sky Survey datasets, reaching good agreement between data and theoretical predictions. For future works, we aim to achieve better limits in the cosmological parameters using the last Planck release.
Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development
Chuss, D T; Amiri, M; Appel, J; Bennett, C L; Colazo, F; Denis, K L; Dünner, R; Essinger-Hileman, T; Eimer, J; Fluxa, P; Gothe, D; Halpern, M; Harrington, K; Hilton, G; Hinshaw, G; Hubmayr, J; Iuliano, J; Marriage, T A; Miller, N; Moseley, S H; Mumby, G; Petroff, M; Reintsema, C; Rostem, K; U-Yen, K; Watts, D; Wagner, E; Wollack, E J; Xu, Z; Zeng, L
2015-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe $\\sim$70% of the sky. A variable-delay polarization modulator (VPM) modulates the polarization at $\\sim$10 Hz to suppress the 1/f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that span both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously d...
The Cosmology Large Angular Scale Surveyor
Harrington, Kathleen; Ali, Aamir; Appel, John W; Bennett, Charles L; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T; Colazo, Felipe; Dahal, Sumit; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Fluxa, Pedro; Halpern, Mark; Hilton, Gene; Hinshaw, Gary F; Hubmayr, Johannes; Iuliano, Jeffery; Karakla, John; McMahon, Jeff; Miller, Nathan T; Moseley, Samuel H; Palma, Gonzalo; Parker, Lucas; Petroff, Matthew; Pradenas, Bastián; Rostem, Karwan; Sagliocca, Marco; Valle, Deniz; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen
2016-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70\\% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad f...
The Cosmology Large Angular Scale Surveyor (CLASS)
Harrington, Kathleen; Marriange, Tobias; Aamir, Ali; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; Denis, Kevin; Moseley, Samuel H.; Rostem, Karwan; Wollack, Edward
2016-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).
Implications of Planck2015 for inflationary, ekpyrotic and anamorphic bouncing cosmologies
Ijjas, Anna; Steinhardt, Paul J.
2016-02-01
The results from Planck2015, when combined with earlier observations from the Wilkinson Microwave Anisotropy Probe, Atacama Cosmology Telescope, South Pole Telescope and other experiments, were the first observations to disfavor the ‘classic’ inflationary paradigm. To satisfy the observational constraints, inflationary theorists have been forced to consider plateau-like inflaton potentials that introduce more parameters and more fine-tuning, problematic initial conditions, multiverse-unpredictability issues, and a new ‘unlikeliness problem’. Some propose turning instead to a ‘postmodern’ inflationary paradigm in which the cosmological properties in our observable Universe are only locally valid and set randomly, with completely different properties (and perhaps even different physical laws) existing in most regions outside our horizon. By contrast, the new results are consistent with the simplest versions of ekpyrotic cyclic models in which the Universe is smoothed and flattened during a period of slow contraction followed by a bounce, and another promising bouncing theory, anamorphic cosmology, has been proposed that can produce distinctive predictions.
Plionis, M.
2004-07-01
The recent scientific efforts in Astrophysics & Cosmology have brought a revolution to our understanding of the Cosmos. Amazing results is the outcome of amazing experiments! The huge scientific, technological & financial effort that has gone into building the 10-m class telescopes as well as many space and balloon observatories, essential to observe the multitude of cosmic phenomena in their manifestations at different wavelengths, from gamma-rays to the millimetre and the radio, has given and is still giving its fruits of knowledge. These recent scientific achievements in Observational and Theoretical Cosmology were presented in the "Multiwavelength Cosmology" conference that took place on beautiful Mykonos island in the Aegean between 17 and 20 June 2003. More than 180 Cosmologists from all over the world gathered for a four-day intense meeting in which recent results from large ground based surveys (AAT/2-df, SLOAN) and space missions (WMAP, Chandra, XMM, ISO, HST) were presented and debated, providing a huge impetus to our knowledge of the Cosmos. The future of the subject (experiments, and directions of research) was also discussed. The conference was devoted mostly on the constraints on Cosmological models and galaxy formation theories that arise from the study of the high redshift Universe, from clusters of galaxies, and their evolution, from the cosmic microwave background, the large-scale structure and star-formation history. Link: http://www.wkap.nl/prod/b/1-4020-1971-8
Boeyens, Jan CA
2010-01-01
The composition of the most remote objects brought into view by the Hubble telescope can no longer be reconciled with the nucleogenesis of standard cosmology and the alternative explanation, in terms of the LAMBDA-Cold-Dark-Matter model, has no recognizable chemical basis. A more rational scheme, based on the chemistry and periodicity of atomic matter, opens up an exciting new interpretation of the cosmos in terms of projective geometry and general relativity. The response of atomic structure to environmental pressure predicts non-Doppler cosmical redshifts and equilibrium nucleogenesis by alp
CLASS: The Cosmology Large Angular Scale Surveyor
Essinger-Hileman, Thomas; Amiri, Mandana; Appel, John W; Araujo, Derek; Bennett, Charles L; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Hilton, Gene; Hinshaw, Gary F; Huang, Caroline; Irwin, Kent; Jones, Glenn; Karakla, John; Kogut, Alan J; Larson, David; Limon, Michele; Lowry, Lindsay; Marriage, Tobias; Mehrle, Nicholas; Miller, Amber D; Miller, Nathan; Moseley, Samuel H; Novak, Giles; Reintsema, Carl; Rostem, Karwan; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wagner, Emily; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen
2014-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravita-tional-wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70\\% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low $\\ell$. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of $r=0.01$ and make a cosmi...
CLASS: The Cosmology Large Angular Scale Surveyor
Essinger-Hileman, Thomas; Ali, Aamir; Amiri, Mandana; Appel, John W.; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dunner, Rolando; Eimer, Joseph; Gothe, Dominik; Halpern, Mark; Kogut, Alan J.; Miller, Nathan; Moseley, Samuel; Rostem, Karwan; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wollack, Edward
2014-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravitational wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low-length. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of r = 0:01 and make a cosmic-variance-limited measurement of the optical depth to the surface of last scattering, tau. (c) (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
The Cosmology Large Angular Scale Surveyor
Ali, Aamir; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; Dahal, Sumit; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Fluxa, Pedro; Halpern, Mark; Hilton, Gene; Hinshaw, Gary F.; Hubmayr, Johannes; Iuliano, Jeffrey; Karakla, John; Marriage, Tobias; McMahon, Jeff; Miller, Nathan; Moseley, Samuel H.; Palma, Gonzalo; Parker, Lucas; Petroff, Matthew; Pradenas, Bastián; Rostem, Karwan; Sagliocca, Marco; Valle, Deniz; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen
2017-01-01
The Cosmology Large Angular Scale Surveryor (CLASS) is a ground based telescope array designed to measure the large-angular scale polarization signal of the Cosmic Microwave Background (CMB). The large-angular scale CMB polarization measurement is essential for a precise determination of the optical depth to reionization (from the E-mode polarization) and a characterization of inflation from the predicted polarization pattern imprinted on the CMB by gravitational waves in the early universe (from the B-mode polarization). CLASS will characterize the primordial tensor-to-scalar ratio, r, to 0.01 (95% CL).CLASS is uniquely designed to be sensitive to the primordial B-mode signal across the entire range of angular scales where it could possibly dominate over the lensing signal that converts E-modes to B-modes while also making multi-frequency observations both high and low of the frequency where the CMB-to-foreground signal ratio is at its maximum. The design enables CLASS to make a definitive cosmic-variance-limited measurement of the optical depth to scattering from reionization.CLASS is an array of 4 telescopes operating at approximately 40, 90, 150, and 220 GHz. CLASS is located high in the Andes mountains in the Atacama Desert of northern Chile. The location of the CLASS site at high altitude near the equator minimizes atmospheric emission while allowing for daily mapping of ~70% of the sky.A rapid front end Variable-delay Polarization Modulator (VPM) and low noise Transition Edge Sensor (TES) detectors allow for a high sensitivity and low systematic error mapping of the CMB polarization at large angular scales. The VPM, detectors and their coupling structures were all uniquely designed and built for CLASS.We present here an overview of the CLASS scientific strategy, instrument design, and current progress. Particular attention is given to the development and status of the Q-band receiver currently surveying the sky from the Atacama Desert and the development of
Gonzalez-Mestres, Luis
2016-11-01
A year ago, we wrote [1] that the field of Cosmology was undergoing a positive and constructive crisis. The possible development of more direct links between the Mathematical Physics aspects of cosmological patterns and the interpretation of experimental and observational results was particularly emphasized. Controversies on inflation are not really new, but in any case inflation is not required in pre-Big Bang models and the validity of the standard Big Bang + inflation + ΛCDM pattern has not by now been demonstrated by data. Planck has even explicitly reported the existence of "anomalies". Remembering the far-reaching work of Yoichiro Nambu published in 1959-61, it seems legitimate to underline the need for a cross-disciplinary approach in the presence of deep, unsolved theoretical problems concerning new domains of matter properties and of the physical world. The physics of a possible preonic vacuum and the associated cosmology constitute one of these domains. If the vacuum is made of superluminal preons (superbradyons), and if standard particles are vacuum excitations, how to build a suitable theory to describe the internal structure of such a vacuum at both local and cosmic level? Experimental programs (South Pole, Atacama, AUGER, Telescope Array…) and observational ones (Planck, JEM-EUSO…) devoted to the study of cosmic microwave background radiation (CMB) and of ultra-high energy cosmic rays (UHECR) are crucial to elucidate such theoretical interrogations and guide new phenomenological developments. Together with a brief review of the observational and experimental situation, we also examine the main present theoretical and phenomenological problems and point out the role new physics and alternative cosmologies can potentially play. The need for data analyses less focused a priori on the standard models of Particle Physics and Cosmology is emphasized in this discussion. An example of a new approach to both fields is provided by the pre-Big Bang pattern
Liu, Jia; Sherwin, Blake D; Petri, Andrea; Böhm, Vanessa; Haiman, Zoltán
2016-01-01
Unprecedentedly precise cosmic microwave background (CMB) data are expected from ongoing and near-future CMB Stage-III and IV surveys, which will yield reconstructed CMB lensing maps with effective resolution approaching several arcminutes. The small-scale CMB lensing fluctuations receive non-negligible contributions from nonlinear structure in the late-time density field. These fluctuations are not fully characterized by traditional two-point statistics, such as the power spectrum. Here, we use $N$-body ray-tracing simulations of CMB lensing maps to examine two higher-order statistics: the lensing convergence one-point probability distribution function (PDF) and peak counts. We show that these statistics contain significant information not captured by the two-point function, and provide specific forecasts for the ongoing Stage-III Advanced Atacama Cosmology Telescope (AdvACT) experiment. Considering only the temperature-based reconstruction estimator, we forecast 30$\\sigma$ (PDF) and 10$\\sigma$ (peaks) detec...
The Atacama Large Millimeter Array (ALMA)
1999-06-01
The Atacama Large Millimeter Array (ALMA) is the new name [2] for a giant millimeter-wavelength telescope project. As described in the accompanying joint press release by ESO and the U.S. National Science Foundation , the present design and development phase is now a Europe-U.S. collaboration, and may soon include Japan. ALMA may become the largest ground-based astronomy project of the next decade after VLT/VLTI, and one of the major new facilities for world astronomy. ALMA will make it possible to study the origins of galaxies, stars and planets. As presently envisaged, ALMA will be comprised of up to 64 12-meter diameter antennas distributed over an area 10 km across. ESO PR Photo 24a/99 shows an artist's concept of a portion of the array in a compact configuration. ESO PR Video Clip 03/99 illustrates how all the antennas will move in unison to point to a single astronomical object and follow it as it traverses the sky. In this way the combined telescope will produce astronomical images of great sharpness and sensitivity [3]. An exceptional site For such observations to be possible the atmosphere above the telescope must be transparent at millimeter and submillimeter wavelengths. This requires a site that is high and dry, and a high plateau in the Atacama desert of Chile, probably the world's driest, is ideal - the next best thing to outer space for these observations. ESO PR Photo 24b/99 shows the location of the chosen site at Chajnantor, at 5000 meters altitude and 60 kilometers east of the village of San Pedro de Atacama, as seen from the Space Shuttle during a servicing mission of the Hubble Space Telescope. ESO PR Photo 24c/99 and ESO PR Photo 24d/99 show a satellite image of the immediate vicinity and the site marked on a map of northern Chile. ALMA will be the highest continuously operated observatory in the world. The stark nature of this extreme site is well illustrated by the panoramic view in ESO PR Photo 24e/99. High sensitivity and sharp images ALMA
Atacama Compact Array Correlator for Atacama Large Millimeter/submillimeter Array
Okumura, Sachiko K; Kamazaki, Takeshi; Okuda, Takeshi; Kurono, Yasutaka; Iguchi, Satoru
2011-01-01
We have developed a FX-architecture digital spectro-correlator, Atacama Compact Array Correlator for the Atacama Large Millimeter/submillimeter Array. The ACA Correlator processes four pairs of dual polarization signals, whose bandwidth is 2 GHz, from up to sixteen antennas, and calculates auto- and cross-correlation spectra including cross-polarization in all combinations of sixteen antennas. We report the detailed design of the correlator and the verification results of the correlator hardware.
The Cherenkov Telescope Array Large Size Telescope
Ambrosi, G; Baba, H; Bamba, A; Barceló, M; de Almeida, U Barres; Barrio, J A; Bigas, O Blanch; Boix, J; Brunetti, L; Carmona, E; Chabanne, E; Chikawa, M; Colin, P; Conteras, J L; Cortina, J; Dazzi, F; Deangelis, A; Deleglise, G; Delgado, C; Díaz, C; Dubois, F; Fiasson, A; Fink, D; Fouque, N; Freixas, L; Fruck, C; Gadola, A; García, R; Gascon, D; Geffroy, N; Giglietto, N; Giordano, F; Grañena, F; Gunji, S; Hagiwara, R; Hamer, N; Hanabata, Y; Hassan, T; Hatanaka, K; Haubold, T; Hayashida, M; Hermel, R; Herranz, D; Hirotani, K; Inoue, S; Inoue, Y; Ioka, K; Jablonski, C; Kagaya, M; Katagiri, H; Kishimoto, T; Kodani, K; Kohri, K; Konno, Y; Koyama, S; Kubo, H; Kushida, J; Lamanna, G; Flour, T Le; López-Moya, M; López, R; Lorenz, E; Majumdar, P; Manalaysay, A; Mariotti, M; Martínez, G; Martínez, M; Mazin, D; Miranda, J M; Mirzoyan, R; Monteiro, I; Moralejo, A; Murase, K; Nagataki, S; Nakajima, D; Nakamori, T; Nishijima, K; Noda, K; Nozato, A; Ohira, Y; Ohishi, M; Ohoka, H; Okumura, A; Orito, R; Panazol, J L; Paneque, D; Paoletti, R; Paredes, J M; Pauletta, G; Podkladkin, S; Prast, J; Rando, R; Reimann, O; Ribó, M; Rosier-Lees, S; Saito, K; Saito, T; Saito, Y; Sakaki, N; Sakonaka, R; Sanuy, A; Sasaki, H; Sawada, M; Scalzotto, V; Schultz, S; Schweizer, T; Shibata, T; Shu, S; Sieiro, J; Stamatescu, V; Steiner, S; Straumann, U; Sugawara, R; Tajima, H; Takami, H; Tanaka, S; Tanaka, M; Tejedor, L A; Terada, Y; Teshima, M; Totani, T; Ueno, H; Umehara, K; Vollhardt, A; Wagner, R; Wetteskind, H; Yamamoto, T; Yamazaki, R; Yoshida, A; Yoshida, T; Yoshikoshi, T
2013-01-01
The two arrays of the Very High Energy gamma-ray observatory Cherenkov Telescope Array (CTA) will include four Large Size Telescopes (LSTs) each with a 23 m diameter dish and 28 m focal distance. These telescopes will enable CTA to achieve a low-energy threshold of 20 GeV, which is critical for important studies in astrophysics, astroparticle physics and cosmology. This work presents the key specifications and performance of the current LST design in the light of the CTA scientific objectives.
Characterizing Atacama B-mode Search Detectors with a Half-Wave Plate
Simon, S. M.; Appel, J. W.; Campusano, L. E.; Choi, S. K.; Crowley, K. T.; Essinger-Hileman, T.; Gallardo, P.; Ho, S. P.; Kusaka, A.; Nati, F.; Palma, G. A.; Page, L. A.; Raghunathan, S.; Staggs, S. T.
2016-08-01
The Atacama B-Mode Search (ABS) instrument is a cryogenic (˜ 10 K) crossed-Dragone telescope located at an elevation of 5190 m in the Atacama Desert in Chile that observed for three seasons between February 2012 and October 2014. ABS observed the cosmic microwave background (CMB) at large angular scales (40ABS focal plane consists of 480 transition-edge sensor (TES) bolometers. They are coupled to orthogonal polarizations from a planar ortho-mode transducer and observe at 145 GHz. ABS employs an ambient-temperature, rapidly rotating half-wave plate (HWP) to mitigate systematic effects and move the signal band away from atmospheric 1 / f noise, allowing for the recovery of large angular scales. We discuss how the signal at the second harmonic of the HWP rotation frequency can be used for data selection and for monitoring the detector responsivities.
Variable-delay Polarization Modulators for the CLASS Telescopes
Harrington, Kathleen; CLASS Collaboration
2017-01-01
The search for primordial gravitational waves, imprinted on the polarization of the cosmic microwave background (CMB), has galvanized the development of polarization modulators for microwave wavelengths. Variable-delay Polarization Modulators (VPMs) are a scaleable, novel type of modulator that can be placed at the front end of a telescope. VPMs consist of a linear polarizer in front of a movable flat mirror which creates a changing phase delay between orthogonal polarization states and modulates between linear and circular polarizations. Rapid, front-end polarization modulation significantly increases instrument stability and facilitates rejection of systematic effects of due to instrument polarization.VPMs are integral to the design of the Cosmology Large Angular Scale Surveyor (CLASS) telescopes, with each of the four CLASS telescopes having a 60 cm aperture VPM as their first optical element. The CLASS VPM grids use 50 μm diameter copper plated tungsten wires spaced 150 μm apart across 62 cm. Behind the wire grid is a 60 cm flat honeycomb aluminum mirror. Rotational flexure hinges assembled into a four-bar linkage configuration allow mirror motion while constraining the parallelism with respect to the wire grid. Mirror motion is driven by a voice coil and the grid-mirror distance is measured using three 0.1 μm resolution encoders, read out synchronously with the detectors. A second, identical, reaction-canceling axis eliminates the vibrations induced by mirror motion. The 40 GHz CLASS telescope, including VPM, has been installed at the CLASS site in the Chilean Atacama Desert and production of the next three CLASS VPMs is ongoing.
Tyson, J A; Angel, J R P; Wittman, David
2001-01-01
Weak gravitational lensing enables direct reconstruction of dark matter maps over cosmologically significant volumes. This research is currently telescope-limited. The Dark Matter Telescope (DMT) is a proposed 8.4 m telescope with a 3 degree field of view, with an etendue of 260 $(m. degree)^2$, ten times greater than any other current or planned telescope. With its large etendue and dedicated observational mode, the DMT fills a nearly unexplored region of parameter space and enables projects that would take decades on current facilities. The DMT will be able to reach 10-sigma limiting magnitudes of 27-28 magnitude in the wavelength range .3 - 1 um over a 7 square degree field in 3 nights of dark time. Here we review its unique weak lensing cosmology capabilities and the design that enables those capabilities.
Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development
Chuss, D. T.; Ali, A.; Amiri, M.; Appel, J.; Bennett, C. L.; Colazo, F.; Denis, K. L.; Dünner, R.; Essinger-Hileman, T.; Eimer, J.; Fluxa, P.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G.; Hubmayr, J.; Iuliano, J.; Marriage, T. A.; Miller, N.; Moseley, S. H.; Mumby, G.; Petroff, M.; Reintsema, C.; Rostem, K.; U-Yen, K.; Watts, D.; Wagner, E.; Wollack, E. J.; Xu, Z.; Zeng, L.
2016-08-01
The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe ˜ 70 % of the sky. A variable-delay polarization modulator provides modulation of the polarization at ˜ 10 Hz to suppress the 1/ f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.
Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development
Chuss, D. T.; Ali, A.; Amiri, M.; Appel, J.; Bennett, C. L.; Colazo, F.; Denis, K. L.; Dunner, R.; Essinger-Hileman, T.; Eimer, J.; Fluxa, P.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G.; Hubmayr, J.; Iuliano, J.; Marriage, T. A.; Miller, N.; Moseley, S. H.; Mumby, G.; Petroff, M.; Reintsema, C.; Rostem, K.; U-yen, K.; Watts, D.; Wagner, E.; Wollack, E. J.; Xu, Z.; Zeng, L.
2015-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe approx.70% of the sky. A variable-delay polarization modulator provides modulation of the polarization at approx.10Hz to suppress the 1/f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.
Non-thermal WIMPs as "Dark Radiation" in Light of ATACAMA, SPT, WMAP9 and Planck
Kelso, Chris; Queiroz, Farinaldo S
2013-01-01
The Planck and WMAP9 satellites, as well as the ATACAMA and South Pole telescopes, have recently presented results on the angular power spectrum of the comic microwave background. Data tentatively point to the existence of an extra radiation component in the early universe. Here, we show that this extra component can be mimicked by ordinary WIMP dark matter particles whose majority is cold, but with a small fraction being non-thermally produced in a relativistic state. We present a few example theories where this scenario is explicitly realized, and explore the relevant parameter space consistent with BBN, CMB and Structure Formation bounds.
The Cosmology Large Angular Scale Surveyor (CLASS): 40 GHz Optical Design
Eimer, Joseph R.; Bennett, Charles L.; Chuss, David T.; Marriage, Tobias; Wollack, Edward J.; Zeng, Lingzhen
2012-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) instrument will measure the polarization of the cosmic microwave background at 40, 90, and 150 GHz from Cerro Toco in the Atacama desert of northern Chile. In this paper, we describe the optical design of the 40 GHz telescope system. The telescope is a diffraction limited catadioptric design consisting of a front-end Variable-delay Polarization Modulator (VPM), two ambient temperature mirrors, two cryogenic dielectric lenses, thermal blocking filters, and an array of 36 smooth-wall scalar feedhorn antennas. The feed horns guide the signal to antenna-coupled transition-edge sensor (TES) bolometers. Polarization diplexing and bandpass definition are handled on the same microchip as the TES. The feed horn beams are truncated with 10 dB edge taper by a 4 K Lyot-stop to limit detector loading from stray light and control the edge illumination of the front-end VPM. The field-of-view is 19 deg x 14 deg with a resolution for each beam on the sky of 1.5 deg. FWHM.
The Cosmology Large Angular Scale Surveyor (CLASS): 40 GHz optical design
Eimer, Joseph R; Chuss, David T; Marriage, Tobias A; Wollack, Edward J; Zeng, Lingzhen; 10.1117/12.925464
2012-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) instrument will measure the polarization of the cosmic microwave background at 40, 90, and 150 GHz from Cerro Toco in the Atacama desert of northern Chile. In this paper, we describe the optical design of the 40 GHz telescope system. The telescope is a diffraction limited catadioptric design consisting of a front-end Variable-delay Polarization Modulator (VPM), two ambient temperature mirrors, two cryogenic dielectric lenses, thermal blocking filters, and an array of 36 smooth-wall scalar feedhorn antennas. The feed horns guide the signal to antenna-coupled transition-edge sensor (TES) bolometers. Polarization diplexing and bandpass definition are handled on the same microchip as the TES. The feed horn beams are truncated with 10 dB edge taper by a 4 K Lyot-stop to limit detector loading from stray light and control the edge illumination of the front-end VPM. The field-of-view is 19deg x 14deg with a resolution for each beam on the sky of 1.5deg FWHM.
The cosmology large angular scale surveyor (CLASS): 40 GHz optical design
Eimer, Joseph R.; Bennett, Charles L.; Chuss, David T.; Marriage, Tobias; Wollack, Edward J.; Zeng, Lingzhen
2012-09-01
The Cosmology Large Angular Scale Surveyor (CLASS) instrument will measure the polarization of the cosmic microwave background at 40, 90, and 150 GHz from Cerro Toco in the Atacama desert of northern Chile. In this paper, we describe the optical design of the 40 GHz telescope system. The telescope is a diffraction limited catadioptric design consisting of a front-end Variable-delay Polarization Modulator (VPM), two ambient temperature mirrors, two cryogenic dielectric lenses, thermal blocking filters, and an array of 36 smooth-wall scalar feedhorn antennas. The feed horns guide the signal to antenna-coupled transition-edge sensor (TES) bolometers. Polarization diplexing and bandpass definition are handled on the same microchip as the TES. The feed horn beams are truncated with 10 dB edge taper by a 4 K Lyot-stop to limit detector loading from stray light and control the edge illumination of the front-end VPM. The field-of-view is 19° x 14° with a resolution for each beam on the sky of 1.5° FWHM.
The Solar Spectrum in the Atacama Desert
Cordero, R. R.; Damiani, A.; Seckmeyer, G.; Jorquera, J.; Caballero, M.; Rowe, P.; Ferrer, J.; Mubarak, R.; Carrasco, J.; Rondanelli, R.; Matus, M.; Laroze, D.
2016-03-01
The Atacama Desert has been pointed out as one of the places on earth where the highest surface irradiance may occur. This area is characterized by its high altitude, prevalent cloudless conditions and relatively low columns of ozone and water vapor. Aimed at the characterization of the solar spectrum in the Atacama Desert, we carried out in February-March 2015 ground-based measurements of the spectral irradiance (from the ultraviolet to the near infrared) at seven locations that ranged from the city of Antofagasta (on the southern pacific coastline) to the Chajnantor Plateau (5,100 m altitude). Our spectral measurements allowed us to retrieve the total ozone column, the precipitable water, and the aerosol properties at each location. We found that changes in these parameters, as well as the shorter optical path length at high-altitude locations, lead to significant increases in the surface irradiance with the altitude. Our measurements show that, in the range 0-5100 m altitude, surface irradiance increases with the altitude by about 27% in the infrared range, 6% in the visible range, and 20% in the ultraviolet range. Spectral measurements carried out at the Izaña Observatory (Tenerife, Spain), in Hannover (Germany) and in Santiago (Chile), were used for further comparisons.
Liu, Jia; Hill, J. Colin; Sherwin, Blake D.; Petri, Andrea; Böhm, Vanessa; Haiman, Zoltán
2016-11-01
Unprecedentedly precise cosmic microwave background (CMB) data are expected from ongoing and near-future CMB stage III and IV surveys, which will yield reconstructed CMB lensing maps with effective resolution approaching several arcminutes. The small-scale CMB lensing fluctuations receive non-negligible contributions from nonlinear structure in the late-time density field. These fluctuations are not fully characterized by traditional two-point statistics, such as the power spectrum. Here, we use N -body ray-tracing simulations of CMB lensing maps to examine two higher-order statistics: the lensing convergence one-point probability distribution function (PDF) and peak counts. We show that these statistics contain significant information not captured by the two-point function and provide specific forecasts for the ongoing stage III Advanced Atacama Cosmology Telescope (AdvACT) experiment. Considering only the temperature-based reconstruction estimator, we forecast 9 σ (PDF) and 6 σ (peaks) detections of these statistics with AdvACT. Our simulation pipeline fully accounts for the non-Gaussianity of the lensing reconstruction noise, which is significant and cannot be neglected. Combining the power spectrum, PDF, and peak counts for AdvACT will tighten cosmological constraints in the Ωm-σ8 plane by ≈30 %, compared to using the power spectrum alone.
Sanders, RH; Papantonopoulos, E
2005-01-01
I discuss the classical cosmological tests, i.e., angular size-redshift, flux-redshift, and galaxy number counts, in the light of the cosmology prescribed by the interpretation of the CMB anisotropies. The discussion is somewhat of a primer for physicists, with emphasis upon the possible systematic
Life through a lens: visitors to the space centre can see a giant telescope
Dawson, A
2002-01-01
The Particle Physics and Astronomy Research Council, Great Britain, decided in a meeting in December to join the European Southern Observatory. Membership will give UK astronomers access to the four 8.2-metre and several 1.8-metre telescopes which comprise the Very Large Telescope at Atacama in Chile.
Brandenberger, R H; Brandenberger, Robert H.; Magueijo, Joao
1999-01-01
We review a few off-the-beaten-track ideas in cosmology. They solve a variety of fundamental problems; also they are fun. We start with a description of non-singular dilaton cosmology. In these scenarios gravity is modified so that the Universe does not have a singular birth. We then present a variety of ideas mixing string theory and cosmology. These solve the cosmological problems usually solved by inflation, and furthermore shed light upon the issue of the number of dimensions of our Universe. We finally review several aspects of the varying speed of light theory. We show how the horizon, flatness, and cosmological constant problems may be solved in this scenario. We finally present a possible experimental test for a realization of this theory: a test in which the Supernovae results are to be combined with recent evidence for redshift dependence in the fine structure constant.
Expedition Atacama - project AMOS in Chile
Tóth, J.; Kaniansky, S.
2016-01-01
The Slovak Video Meteor Network operates since 2009 (Tóth et al., 2011). It currently consists of four semi-automated all-sky video cameras, developed at the Astronomical Observatory in Modra, Comenius University in Bratislava, Slovakia. Two new generations of AMOS (All-sky Meteor Orbit System) cameras operate fully automatically at the Canary Islands, Tenerife and La Palma, since March 2015 (Tóth et al., 2015). As a logical step, we plan to cover the southern hemisphere from Chile. We present observational experiences in meteor astronomy from the Atacama Desert and other astronomical sites in Chile. This summary of the observations lists meteor spectra records (26) between Nov.5-13, 2015 mostly Taurid meteors, single and double station meteors as well as the first light from the permanent AMOS stations in Chile.
Cryophenomena in the Cold Desert of Atacama
Buchroithner, Dr.; Trombotto, Dr.
2012-04-01
The study area of the Valle de Barrancas Blancas in the High Atacama Andes of Chile (68°39' W, 27°02' S), a kind of Patagonian "bajo sin salida", shows well preserved landforms resulting from a combination of slope, eolian, lacustrine/litoral, fluvial, glacial and periglacial regimes. They permit the reconstruction of geomorphological processes within this isolated catchment of approximately 160 km2. The mean annual air temperature varies between -2 and -4 °C and the precipitation is approximately 150 mm/a. Snowfall is frequent but the snow is quickly sublimated, redeposited and/or covered by cryosediments, i.e. mainly pumice pebbles. Water bodies present icings, even in summer. Regarding its climatic conditions the study area represents an extremely cold desertic region. Extremophile microfauna was also found. The area displays both in situ mountain permafrost and creeping permafrost. The active layer is 30 to 45 cm thick. It is a periglacial macro-environment where interdependent processes, and not only cryogenic processes but also erosion and eolian deposition and the action of fluvial washout mainly caused by precipitation, accumulation, retransportation/redeposition and melting of snow, play an important role. The cryogenic geomorphology of the Valle de Barrancas Blancas is varied and contains microforms such as patterned ground and microforms caused by cryoturbation, as well as mesoforms like rockglaciers and cryoplanation surfaces. Slopes are strongly affected by gelifluction. New cryoforms in South America and in the Southern Hemisphere like the Atacama Pingo (Pingo atacamensis) and Permafrosted Dunes ("Dunas heladas") were found. Intense niveo-eolian processes participate in the erosion of preexisting landforms, in the formation of subterraneous ice layers, and the retransportation/redeposition of snow and sediments. Studies of this periglacial environment are crucial for the understanding of Tundrean paleoenvironments and Martian conditions.
Henrot-Versillé, Sophie; Leroy, Nicolas; Plaszczynski, Stéphane; Arnaud, Nicolas; Bizouard, Marie-Anne; Cavalier, Fabien; Christensen, Nelson; Couchot, François; Franco, Samuel; Hello, Patrice; Huet, Dominique; Kasprzack, Marie; Perdereau, Olivier; Spinelli, Marta; Tristram, Matthieu
2014-01-01
The production of a primordial stochastic gravitational-wave background by processes occuring in the early Universe is expected in a broad range of models. Observing this background would open a unique window onto the Universe's evolutionary history. Probes like the Cosmic Microwave Background (CMB) or the Baryon Acoustic Oscillations (BAO) can be used to set upper limits on the stochastic gravitational-wave background energy density $\\Omega_{GW}$ for frequencies above $10^{-15}$ Hz. We perform a profile likelihood analysis of the Planck CMB temperature anisotropies and gravitational lensing data combined with WMAP low-$\\ell$ polarization, BAO, South Pole Telescope and Atacama Cosmology Telescope data. We find that $\\Omega_{GW}h_{0}^{2} < 3.8 \\times 10^{-6}$ at 95\\% confidence level for adiabatic initial conditions which improves over the previous limit by a factor 2.3. Assuming that the primordial gravitational waves have been produced by a network of cosmic strings, we have derived exclusion limits in th...
Ryan, M.
1972-01-01
The study of cosmological models by means of equations of motion in Hamiltonian form is considered. Hamiltonian methods applied to gravity seem to go back to Rosenfeld (1930), who constructed a quantum-mechanical Hamiltonian for linearized general relativity theory. The first to notice that cosmologies provided a simple model in which to demonstrate features of Hamiltonian formulation was DeWitt (1967). Applications of the ADM formalism to homogeneous cosmologies are discussed together with applications of the Hamiltonian formulation, giving attention also to Bianchi-type universes. Problems involving the concept of superspace and techniques of quantization are investigated.
Cosmology with the Square Kilometre Array by SKA-Japan
Yamauchi, Daisuke; Kohri, Kazunori; Namikawa, Toshiya; Oyama, Yoshihiko; Sekiguchi, Toyokazu; Shimabukuro, Hayato; Takahashi, Keitaro; Takahashi, Tomo; Yokoyama, Shuichiro; Yoshikawa, Kohji
2016-01-01
In the past several decades, the standard cosmological model has been established and its parameters have been measured to a high precision, while there are still many of the fundamental questions in cosmology; such as the physics in the very early Universe, the origin of the cosmic acceleration and the nature of the dark matter. The future world's largest radio telescope, Square Kilometre Array (SKA), will be able to open the new frontier of cosmology and will be one of the most powerful tools for cosmology in the next decade. The cosmological surveys conducted by the SKA would have the potential not only to answer these fundamental questions but also deliver the precision cosmology. In this article we briefly review the role of the SKA from the view point of the modern cosmology. The cosmology science led by the SKA-Japan Consortium (SKA-JP) Cosmology Science Working Group is also discussed.
Cosmology with the Square Kilometre Array by SKA-Japan
Yamauchi, Daisuke; Ichiki, Kiyotomo; Kohri, Kazunori; Namikawa, Toshiya; Oyama, Yoshihiko; Sekiguchi, Toyokazu; Shimabukuro, Hayato; Takahashi, Keitaro; Takahashi, Tomo; Yokoyama, Shuichiro; Yoshikawa, Kohji
2016-12-01
In the past several decades, the standard cosmological model has been established and its parameters have been measured to a high precision, while there are still many fundamental questions in cosmology; such as the physics in the very early universe, the origin of the cosmic acceleration, and the nature of dark matter. The forthcoming radio telescope, the Square Kilometre Array (SKA), which will be the world's largest, will be able to open a new frontier in cosmology and will be one of the most powerful tools for cosmology in the coming decade. The cosmological surveys conducted by the SKA would have the potential not only to answer these fundamental questions but also deliver precision cosmology. In this article we briefly review the role of the SKA from the viewpoint of modern cosmology. The cosmological science led by the SKA-Japan Consortium (SKA-JP) Cosmology Science Working Group is also discussed.
Cosmology with the Square Kilometre Array by SKA-Japan
Yamauchi, Daisuke; Ichiki, Kiyotomo; Kohri, Kazunori; Namikawa, Toshiya; Oyama, Yoshihiko; Sekiguchi, Toyokazu; Shimabukuro, Hayato; Takahashi, Keitaro; Takahashi, Tomo; Yokoyama, Shuichiro; Yoshikawa, Kohji
2016-10-01
In the past several decades, the standard cosmological model has been established and its parameters have been measured to a high precision, while there are still many fundamental questions in cosmology; such as the physics in the very early universe, the origin of the cosmic acceleration, and the nature of dark matter. The forthcoming radio telescope, the Square Kilometre Array (SKA), which will be the world's largest, will be able to open a new frontier in cosmology and will be one of the most powerful tools for cosmology in the coming decade. The cosmological surveys conducted by the SKA would have the potential not only to answer these fundamental questions but also deliver precision cosmology. In this article we briefly review the role of the SKA from the viewpoint of modern cosmology. The cosmological science led by the SKA-Japan Consortium (SKA-JP) Cosmology Science Working Group is also discussed.
The Cosmology Large Angular Scale Surveyor (CLASS): In search of the energy scale of inflation
Eimer, Joseph R.
The hypothesis that the early universe underwent a period of accelerating expansion, called inflation, has become an essential mechanism for explaining the flatness and homogeneity of the universe and explaining the fluctuations found in the cosmic microwave background (CMB). Inflation predicts the existence of primordial gravitational waves that would have produced a unique polarization pattern on the CMB. Measurement of the amplitude of these gravitational waves can be used to infer the energy scale of the potential driving the expansion. Detection of this signal would be a dramatic confirmation of the inflation paradigm and significantly tighten constraints on inflationary models. The Cosmology Large Angular Scale Surveyor (CLASS) is a new ground-based instrument designed to search for the inflationary B-mode signal from the Atacama Desert in northern Chile (elevation ~ 5200 m). The CLASS instrument will observe over 60% of the sky to target the large scale polarization signal (> 10 deg), and consist of four separate telescopes: one observing at 40 GHz, two observing at 90 GHz and one observing at 150 GHz. The detectors for each band will be background limited antenna-coupled transition edge sensor bolometers. A variable-delay polarization modulator (VPM) will be placed as the first optical element in each of the telescopes. The front-end polarization modulator will mitigate many systematic effects and provide a powerful means of distinguishing the instrument response from the input signal. This dissertation contains an overview of the CLASS instrument. Specific emphasis is placed on the connection between the science goals and the instrument architecture. A description of the optical design of the 40 GHz telescope is given, and the application of the VPM technology to the CLASS instrument is described. We end with an overview of the detectors.
VST telescope dynamic analisys and position control algorithms
Schipani, P
2001-01-01
The VST (VLT Survey Telescope) is a 2.6 m class Alt-Az telescope to be installed on Cerro Paranal in the Atacama desert, Northern Chile, in the European Southern Observatory (ESO) site. The VST is a wide-field imaging facility planned to supply databases for the ESO Very Large Telescope (VLT) science and carry out stand-alone observations in the UV to I spectral range. So far no telescope has been dedicated entirely to surveys; the VST will be the first survey telescope to start the operation, as a powerful survey facility for the VLT observatory. This paper will focus on the axes motion control system. The dynamic model of the telescope will be analyzed, as well as the effect of the wind disturbance on the telescope performance. Some algorithms for the telescope position control will be briefly discussed.
Belinski, V
2009-01-01
The talk at international conference in honor of Ya. B. Zeldovich 95th Anniversary, Minsk, Belarus, April 2009. The talk represents a review of the old results and contemporary development on the problem of cosmological singularity.
Heavy Dust Obscuration of z = 7 Galaxies in a Cosmological Hydrodynamic Simulation
Kimm, Taysun; Cen, Renyue
2013-10-01
Hubble Space Telescope observations with the Wide Field Camera 3/Infrared reveal that galaxies at z ~ 7 have very blue ultraviolet (UV) colors, consistent with these systems being dominated by young stellar populations with moderate or little attenuation by dust. We investigate UV and optical properties of the high-z galaxies in the standard cold dark matter model using a high-resolution adaptive mesh refinement cosmological hydrodynamic simulation. For this purpose, we perform panchromatic three-dimensional dust radiative transfer calculations on 198 galaxies of stellar mass 5 × 108-3 × 1010 M ⊙ with three parameters: the dust-to-metal ratio, the extinction curve, and the fraction of directly escaped light from stars (f esc). Our stellar mass function is found to be in broad agreement with Gonzalez et al., independent of these parameters. We find that our heavily dust-attenuated galaxies (AV ~ 1.8) can also reasonably match modest UV-optical colors, blue UV slopes, as well as UV luminosity functions, provided that a significant fraction (~10%) of light directly escapes from them. The observed UV slope and scatter are better explained with a Small-Magellanic-Cloud-type extinction curve, whereas a Milky-Way-type curve also predicts blue UV colors due to the 2175 Å bump. We expect that upcoming observations by the Atacama Large Millimeter/submillimeter Array will be able to test this heavily obscured model.
Characterizing Atacama B-mode Search Detectors with a Half-Wave Plate
Simon, S M; Campusano, L E; Choi, S K; Crowley, K T; Essinger-Hileman, T; Gallardo, P; Ho, S P; Kusaka, A; Nati, F; Palma, G A; Page, L A; Raghunathan, S; Staggs, S T
2015-01-01
The Atacama B-Mode Search (ABS) instrument is a cryogenic ($\\sim$10 K) crossed-Dragone telescope located at an elevation of 5190 m in the Atacama Desert in Chile that observed for three seasons between February 2012 and October 2014. ABS observed the Cosmic Microwave Background (CMB) at large angular scales ($40<\\ell<500$) to limit the B-mode polarization spectrum around the primordial B-mode peak from inflationary gravity waves at $\\ell \\sim100$. The ABS focal plane consists of 480 transition-edge sensor (TES) bolometers. They are coupled to orthogonal polarizations from a planar ortho-mode transducer (OMT) and observe at 145 GHz. ABS employs an ambient-temperature, rapidly rotating half-wave plate (HWP) to mitigate systematic effects and move the signal band away from atmospheric $1/f$ noise, allowing for the recovery of large angular scales. We discuss how the signal at the second harmonic of the HWP rotation frequency can be used for data selection and for monitoring the detector responsivities.
Energy Technology Data Exchange (ETDEWEB)
Wesson, P.S.
1979-10-01
The Cosmological Principle states: the universe looks the same to all observers regardless of where they are located. To most astronomers today the Cosmological Principle means the universe looks the same to all observers because density of the galaxies is the same in all places. A new Cosmological Principle is proposed. It is called the Dimensional Cosmological Principle. It uses the properties of matter in the universe: density (rho), pressure (p), and mass (m) within some region of space of length (l). The laws of physics require incorporation of constants for gravity (G) and the speed of light (C). After combining the six parameters into dimensionless numbers, the best choices are: 8..pi..Gl/sup 2/ rho/c/sup 2/, 8..pi..Gl/sup 2/ rho/c/sup 4/, and 2 Gm/c/sup 2/l (the Schwarzchild factor). The Dimensional Cosmological Principal came about because old ideas conflicted with the rapidly-growing body of observational evidence indicating that galaxies in the universe have a clumpy rather than uniform distribution. (SC)
Narimani, Ali; Scott, Douglas
2011-01-01
Although it is possible that some fundamental physical constants could vary in time, it is important to only consider dimensionless combinations, such as the fine structure constant or the equivalent coupling constant for gravity. Once all such dimensionless numbers have been given, then we can be sure that our cosmological picture is governed by the same physical laws as that of another civilization with an entirely different set of units. An additional feature of the standard model of cosmology raises an extra complication, namely that the epoch at which we live is a crucial part of the model. This can be defined by giving the value of any one of the evolving cosmological parameters. It takes some care to avoid inconsistent results for constraints on variable constants, which could be caused by effectively fixing more than one parameter today. We show examples of this effect by considering in some detail the physics of Big Bang nucleosynthesis, recombination and microwave background anisotropies, being care...
Sanders, Robert H
2016-01-01
The advent of sensitive high-resolution observations of the cosmic microwave background radiation and their successful interpretation in terms of the standard cosmological model has led to great confidence in this model's reality. The prevailing attitude is that we now understand the Universe and need only work out the details. In this book, Sanders traces the development and successes of Lambda-CDM, and argues that this triumphalism may be premature. The model's two major components, dark energy and dark matter, have the character of the pre-twentieth-century luminiferous aether. While there is astronomical evidence for these hypothetical fluids, their enigmatic properties call into question our assumptions of the universality of locally determined physical law. Sanders explains how modified Newtonian dynamics (MOND) is a significant challenge for cold dark matter. Overall, the message is hopeful: the field of cosmology has not become frozen, and there is much fundamental work ahead for tomorrow's cosmologis...
BOOK REVIEW: Observational Cosmology Observational Cosmology
Howell, Dale Andrew
2013-04-01
Observational Cosmology by Stephen Serjeant fills a niche that was underserved in the textbook market: an up-to-date, thorough cosmology textbook focused on observations, aimed at advanced undergraduates. Not everything about the book is perfect - some subjects get short shrift, in some cases jargon dominates, and there are too few exercises. Still, on the whole, the book is a welcome addition. For decades, the classic textbooks of cosmology have focused on theory. But for every Sunyaev-Zel'dovich effect there is a Butcher-Oemler effect; there are as many cosmological phenomena established by observations, and only explained later by theory, as there were predicted by theory and confirmed by observations. In fact, in the last decade, there has been an explosion of new cosmological findings driven by observations. Some are so new that you won't find them mentioned in books just a few years old. So it is not just refreshing to see a book that reflects the new realities of cosmology, it is vital, if students are to truly stay up on a field that has widened in scope considerably. Observational Cosmology is filled with full-color images, and graphs from the latest experiments. How exciting it is that we live in an era where satellites and large experiments have gathered so much data to reveal astounding details about the origin of the universe and its evolution. To have all the latest data gathered together and explained in one book will be a revelation to students. In fact, at times it was to me. I've picked up modern cosmological knowledge through a patchwork of reading papers, going to colloquia, and serving on grant and telescope allocation panels. To go back and see them explained from square one, and summarized succinctly, filled in quite a few gaps in my own knowledge and corrected a few misconceptions I'd acquired along the way. To make room for all these graphs and observational details, a few things had to be left out. For one, there are few derivations
Cosmological Calculations on the GPU
Bard, Deborah; Allen, Mark T; Yepremyan, Hasmik; Kratochvil, Jan M
2012-01-01
Cosmological measurements require the calculation of nontrivial quantities over large datasets. The next generation of survey telescopes (such as DES, PanSTARRS, and LSST) will yield measurements of billions of galaxies. The scale of these datasets, and the nature of the calculations involved, make cosmological calculations ideal models for implementation on graphics processing units (GPUs). We consider two cosmological calculations, the two-point angular correlation function and the aperture mass statistic, and aim to improve the calculation time by constructing code for calculating them on the GPU. Using CUDA, we implement the two algorithms on the GPU and compare the calculation speeds to comparable code run on the CPU. We obtain a code speed-up of between 10 - 180x faster, compared to performing the same calculation on the CPU. The code has been made publicly available.
Science with the Atacama Large Millimeter Array A New Era for Astrophysics
Bachiller, Rafael
2008-01-01
Currently under construction in the Andean Altiplano, Northern Chile, the Atacama Large Millimeter Array (ALMA) is the most ambitious astronomy facility under construction. ALMA is a radio interferometer composed of 54 antennas of 12 m diameter, and twelve 7 m antennas with about 6600 square meters of total collecting area. Initially covering the most interesting spectral wavelength ranges from 3 to 0.3 mm, ALMA will be a revolutionary telescope aimed to unveil the details of star and planet formation and to provide astronomy with the first exhaustive view of the dark and youngest objects of the Universe. This book describes the enormous capabilities of ALMA, the state of the project, and most notably the scientific prospects with such a unique facility. The book includes comprehensive reviews and recent results on most hot topics of modern Astronomy (the formation and evolution of galaxies, the physics and chemistry of the interstellar medium, and the processes of star and planet formation) with prospects to...
Kiselev, V V
2012-01-01
A huge value of cosmological constant characteristic for the particle physics and the inflation of early Universe are inherently related to each other: one can construct a fine-tuned superpotential, which produces a flat potential of inflaton with a constant density of energy V=\\Lambda^4 after taking into account for leading effects due to the supergravity, so that an introduction of small quantum loop-corrections to parameters of this superpotential naturally results in the dynamical instability relaxing the primary cosmological constant by means of inflationary regime. The model phenomenologically agrees with observational data on the large scale structure of Universe at \\Lambda~10^{16} GeV.
National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.
This pamphlet describes the Space Telescope, an unmanned multi-purpose telescope observatory planned for launch into orbit by the Space Shuttle in the 1980s. The unique capabilities of this telescope are detailed, the major elements of the telescope are described, and its proposed mission operations are outlined. (CS)
Ancient photosynthetic eukaryote biofilms in an Atacama Desert coastal cave
Azua-Bustos, A.; Gonzalez-Silva, C.; Mancilla, R.A.; Salas, L.; Palma, R.E.; Wynne, J.J.; McKay, C.P.; Vicuna, R.
2009-01-01
Caves offer a stable and protected environment from harsh and changing outside prevailing conditions. Hence, they represent an interesting habitat for studying life in extreme environments. Here, we report the presence of a member of the ancient eukaryote red algae Cyanidium group in a coastal cave of the hyperarid Atacama Desert. This microorganism was found to form a seemingly monospecific biofilm growing under extremely low photon flux levels. Our work suggests that this species, Cyanidium sp. Atacama, is a new member of a recently proposed novel monophyletic lineage of mesophilic "cave" Cyanidium sp., distinct from the remaining three other lineages which are all thermo-acidophilic. The cave described in this work may represent an evolutionary island for life in the midst of the Atacama Desert. ?? Springer Science + Business Media, LLC 2009.
Marsh, David J E
2015-01-01
Axions comprise a broad class of particles that can play a major role in explaining the unknown aspects of cosmology. They are also extraordinarily well-motivated within high energy physics, and so axion cosmology offers us a unique view onto these theories. I present a comprehensive and pedagogical view on the cosmology and astrophysics of axion-like particles, starting from inflation and progressing via the CMB and structure formation up to the present-day Universe. I briefly review the motivation and models for axions in particle physics and string theory. The primary focus is on the population of ultralight axions created via vacuum realignment, and its role as a dark matter (DM) candidate with distinctive phenomenology. Cosmological observations place robust constraints on the axion mass and relic density in this scenario, and I review where such constraints come from. I next cover aspects of galaxy formation with axion DM, and ways this can be used to further search for evidence of axions. An absolute l...
The DataCapturer component for the Atacama Large Millimeter Array
Hafok, H.; Caillat, M.; McMullin, J.
2006-07-01
We describe the data capture process (DataCapturer) for the Atacama Large Millimeter Array (ALMA) control software. This is implemented as a JAVA-based CORBA-component running in the framework of the ALMA Common Software (ACS). During an observation, data (e.g., visibilities) and meta-data (e.g., information describing the state of the hardware, antennas, source, etc) flow through the control system and need to be recorded. All meta-data flows through the DataCapturer component where it is collected and organized as an ALMA Science Data model (ASDM) dataset and then written to the ALMA archive data base. DataCapturer is the interface between the telescope and the science domain. In the telescope domain it gets raw information from the control system and the correlator and produces science formated data for ALMA subsystems in the science domain. ASDM data is delivered to the Quicklook display sub-system and the telescope calibration sub-system of the ALMA Software. The final dataset is stored at the end of a sequence of observations (combined in an execution block) in the ALMA science archive.
Bothun, Greg
2011-10-01
Ever since Aristotle placed us, with certainty, in the Center of the Cosmos, Cosmological models have more or less operated from a position of known truths for some time. As early as 1963, for instance, it was ``known'' that the Universe had to be 15-17 billion years old due to the suspected ages of globular clusters. For many years, attempts to determine the expansion age of the Universe (the inverse of the Hubble constant) were done against this preconceived and biased notion. Not surprisingly when more precise observations indicated a Hubble expansion age of 11-13 billion years, stellar models suddenly changed to produce a new age for globular cluster stars, consistent with 11-13 billion years. Then in 1980, to solve a variety of standard big bang problems, inflation was introduced in a fairly ad hoc manner. Inflation makes the simple prediction that the net curvature of spacetime is zero (i.e. spacetime is flat). The consequence of introducing inflation is now the necessary existence of a dark matter dominated Universe since the known baryonic material could comprise no more than 1% of the necessary energy density to make spacetime flat. As a result of this new cosmological ``truth'' a significant world wide effort was launched to detect the dark matter (which obviously also has particle physics implications). To date, no such cosmological component has been detected. Moreover, all available dynamical inferences of the mass density of the Universe showed in to be about 20% of that required for closure. This again was inconsistent with the truth that the real density of the Universe was the closure density (e.g. Omega = 1), that the observations were biased, and that 99% of the mass density had to be in the form of dark matter. That is, we know the universe is two component -- baryons and dark matter. Another prevailing cosmological truth during this time was that all the baryonic matter was known to be in galaxies that populated our galaxy catalogs. Subsequent
Marsh, David J. E.
2016-07-01
Axions comprise a broad class of particles that can play a major role in explaining the unknown aspects of cosmology. They are also well-motivated within high energy physics, appearing in theories related to CP-violation in the standard model, supersymmetric theories, and theories with extra-dimensions, including string theory, and so axion cosmology offers us a unique view onto these theories. I review the motivation and models for axions in particle physics and string theory. I then present a comprehensive and pedagogical view on the cosmology and astrophysics of axion-like particles, starting from inflation and progressing via BBN, the CMB, reionization and structure formation, up to the present-day Universe. Topics covered include: axion dark matter (DM); direct and indirect detection of axions, reviewing existing and future experiments; axions as dark radiation; axions and the cosmological constant problem; decays of heavy axions; axions and stellar astrophysics; black hole superradiance; axions and astrophysical magnetic fields; axion inflation, and axion DM as an indirect probe of inflation. A major focus is on the population of ultralight axions created via vacuum realignment, and its role as a DM candidate with distinctive phenomenology. Cosmological observations place robust constraints on the axion mass and relic density in this scenario, and I review where such constraints come from. I next cover aspects of galaxy formation with axion DM, and ways this can be used to further search for evidence of axions. An absolute lower bound on DM particle mass is established. It is ma > 10-24eV from linear observables, extending to ma ≳ 10-22eV from non-linear observables, and has the potential to reach ma ≳ 10-18eV in the future. These bounds are weaker if the axion is not all of the DM, giving rise to limits on the relic density at low mass. This leads to the exciting possibility that the effects of axion DM on structure formation could one day be detected
Cosmography with the Einstein Telescope
Sathyaprakash, B S; Broeck, Chris Van Den
2009-01-01
Einstein Telescope (ET) is a 3rd generation gravitational-wave (GW) detector that is currently undergoing a design study. ET can detect millions of compact binary mergers up to redshifts 2-8. A small fraction of mergers might be observed in coincidence as gamma-ray bursts, helping to measure both the luminosity distance and red-shift to the source. By fitting these measured values to a cosmological model, it should be possible to accurately infer the dark energy equation-of-state, dark matter and dark energy density parameters. ET could, therefore, herald a new era in cosmology.
Alvarez, Enrique
1985-01-01
Some cosmological consequences of the assumption that superstrings are more fundamental objects than ordinary local quantum fields are examined. We study, in particular, the dependence of both the string tension and the temperature of the primordial string soup on cosmic time. A particular scenario is proposed in which the universe undergoes a contracting ``string phase'' before the ordinary ``big bang,'' which according to this picture is nothing but the outcome of the transition from nonlocal to local fundamental physics.
Neves, J C S
2015-01-01
In the Nietzschean philosophy, the concept of force from physics is important to build one of its main concepts: the will to power. The concept of force, which Nietzsche found out in the Classical Mechanics, almost disappears in the physics of the XX century with the Quantum Field Theory and General Relativity. Is the Nietzschean world as contending forces, a Dionysian cosmology, possible in the current science?
Brax, Philippe
2016-01-01
We investigate scalar-tensor theories where matter couples to the scalar field via a kinetically dependent conformal coupling. These models can be seen as the low-energy description of invariant field theories under a global Abelian symmetry. The scalar field is then identified with the Goldstone mode of the broken symmetry. It turns out that the properties of these models are very similar to the ones of ultralocal theories where the scalar-field value is directly determined by the local matter density. This leads to a complete screening of the fifth force in the Solar System and between compact objects, through the ultralocal screening mechanism. On the other hand, the fifth force can have large effects in extended structures with large-scale density gradients, such as galactic halos. Interestingly, it can either amplify or damp Newtonian gravity, depending on the model parameters. We also study the background cosmology and the linear cosmological perturbations. The background cosmology is hardly different f...
Menanteau, Felipe; Barrientos, L Felipe; Deshpande, Amruta J; Hilton, Matt; Infante, Leopoldo; Jimenez, Raul; Kosowsky, Arthur; Moodley, Kavilan; Spergel, David; Verde, Licia
2010-01-01
We present a catalog of 105 rich and massive ($M>3\\times10^{14}M_{\\sun}$) optically-selected clusters of galaxies extracted from 70 square-degrees of public archival griz imaging from the Blanco 4-m telescope acquired over 45 nights between 2005 and 2007. We use the clusters' optically-derived properties to estimate photometric redshifts, optical luminosities, richness, and masses. We complement the optical measurements with archival XMM-Newton and ROSAT X-ray data which provide additional luminosity and mass constraints on a modest fraction of the cluster sample. Two of our clusters show clear evidence for central lensing arcs; one of these has a spectacular large-diameter, nearly-complete Einstein Ring surrounding the brightest cluster galaxy. A strong motivation for this study is to identify the massive clusters that are expected to display prominent signals from the Sunyaev-Zeldovich Effect (SZE) and therefore be detected in the wide-area mm-band surveys being conducted by both the Atacama Cosmology Teles...
Atmospheric origins of perchlorate on Mars and in the Atacama
Catling, D. C.; Claire, M. W.; Zahnle, K. J.; Quinn, R. C.; Clark, B. C.; Hecht, M. H.; Kounaves, S.
2010-01-01
Isotopic studies indicate that natural perchlorate is produced on Earth in arid environments by the oxidation of chlorine species through pathways involving ozone or its photochemical products. With this analogy, we propose that the arid environment on Mars may have given rise to perchlorate through the action of atmospheric oxidants. A variety of hypothetical pathways can be proposed including photochemical reactions, electrostatic discharge, and gas-solid reactions. Because perchlorate-rich deposits in the Atacama desert are closest in abundance to perchlorate measured at NASA's Phoenix Lander site, we made a preliminary study of the means to produce Atacama perchlorate to help shed light on the origin of Martian perchlorate. We investigated gas phase pathways using a 1-D photochemical model. We found that perchlorate can be produced in sufficient quantities to explain the abundance of perchlorate in the Atacama from a proposed gas phase oxidation of chlorine volatiles to perchloric acid. The feasibility of gas phase production for the Atacama provides justification for future investigations of gas phase photochemistry as a possible source for Martian perchlorate.
Bagdonaite, J; Daprà, M; Jansen, P; Bethlem, H L; Ubachs, W; Muller, S; Henkel, C; Menten, K M
2013-12-06
A limit on a possible cosmological variation of the proton-to-electron mass ratio μ is derived from methanol (CH3OH) absorption lines in the benchmark PKS1830-211 lensing galaxy at redshift z=0.89 observed with the Effelsberg 100-m radio telescope, the Institute de Radio Astronomie Millimétrique 30-m telescope, and the Atacama Large Millimeter/submillimeter Array. Ten different absorption lines of CH3OH covering a wide range of sensitivity coefficients K(μ) are used to derive a purely statistical 1σ constraint of Δμ/μ=(1.5±1.5)×10(-7) for a lookback time of 7.5 billion years. Systematic effects of chemical segregation, excitation temperature, frequency dependence, and time variability of the background source are quantified. A multidimensional linear regression analysis leads to a robust constraint of Δμ/μ=(-1.0±0.8(stat)±1.0(sys))×10(-7).
Cosmology with Superluminous Supernovae
Scovacricchi, Dario; Bacon, David; Sullivan, Mark; Prajs, Szymon
2015-01-01
We predict cosmological constraints for forthcoming surveys using Superluminous Supernovae (SLSNe) as standardisable candles. Due to their high peak luminosity, these events can be observed to high redshift (z~3), opening up new possibilities to probe the Universe in the deceleration epoch. We describe our methodology for creating mock Hubble diagrams for the Dark Energy Survey (DES), the "Search Using DECam for Superluminous Supernovae" (SUDSS) and a sample of SLSNe possible from the Large Synoptic Survey Telescope (LSST), exploring a range of standardisation values for SLSNe. We include uncertainties due to gravitational lensing and marginalise over possible uncertainties in the magnitude scale of the observations (e.g. uncertain absolute peak magnitude, calibration errors). We find that the addition of only ~100 SLSNe from SUDSS to 3800 Type Ia Supernovae (SNe Ia) from DES can improve the constraints on w and Omega_m by at least 20% (assuming a flat wCDM universe). Moreover, the combination of DES SNe Ia a...
COSMOLOGY WITH GRAVITATIONAL LENSES
Directory of Open Access Journals (Sweden)
Emilio E. Falco
2009-01-01
Full Text Available Gravitational lenses yield a very high rate of return on observational investment. Given their scarcity, their impact on our knowledge of the universe is very signi cant. In the weak- eld limit, lensing studies are based on well-established physics and thus o er a straightforward approach to pursue many currently pressing problems of astrophysics. Examples of these are the signi cance of dark matter and the density, age and size of the universe. I present recent developments in cosmological applications of gravitational lenses, regarding estimates of the Hubble constant using strong lensing of quasars. I describe our recent measurements of time delays for the images of SDSS J1004+4112, and discuss prospects for the future utilizing synoptic telescopes, planned and under construction.
Adaptive Real Time Imaging Synthesis Telescopes
Wright, Melvyn
2012-01-01
The digital revolution is transforming astronomy from a data-starved to a data-submerged science. Instruments such as the Atacama Large Millimeter Array (ALMA), the Large Synoptic Survey Telescope (LSST), and the Square Kilometer Array (SKA) will measure their accumulated data in petabytes. The capacity to produce enormous volumes of data must be matched with the computing power to process that data and produce meaningful results. In addition to handling huge data rates, we need adaptive calibration and beamforming to handle atmospheric fluctuations and radio frequency interference, and to provide a user environment which makes the full power of large telescope arrays accessible to both expert and non-expert users. Delayed calibration and analysis limit the science which can be done. To make the best use of both telescope and human resources we must reduce the burden of data reduction. Our instrumentation comprises of a flexible correlator, beam former and imager with digital signal processing closely coupled...
Carr, J
2002-01-01
This review presents the scientific objectives and status of Neutrino Telescope Projects. The science program of these projects covers: neutrino astronomy, dark matter searches and measurements of neutrino oscillations. The two neutrino telescopes in operation: AMANDA and BAIKAL will be described together with the ANTARES neutrino telescope being built in the Mediterranean. (18 refs).
Cosmological Simulations using GCMHD+
Barnes, David J; Wu, Kinwah
2011-01-01
Radio observations of galaxy clusters show that the intra cluster medium is permeated by \\mu G magnetic fields. The origin and evolution of these cosmological magnetic fields is currently not well understood and so their impact on the dynamics of structure formation is not known. Numerical simulations are required to gain a greater understanding and produce predictions for the next generation of radio telescopes. We present the galactic chemodynamics smoothed particle magnetohydrodynamic (SPMHD) code (GCMHD+), which is an MHD implementation for the cosmological smoothed particle hydrodynamic code GCD+. The results of 1, 2 and 3 dimensional tests are presented and the performance of the code is shown relative to the ATHENA grid code. GCMHD+ shows good agreement with the reference solutions produced by ATHENA. The code is then used to simulate the formation of a galaxy cluster with a simple primordial magnetic field embedded in the gas. A homogeneous seed field of 10^-11 G is amplified by a factor of 10^3 durin...
Cosmological simulations using GCMHD+
Barnes, David J.; Kawata, Daisuke; Wu, Kinwah
2012-03-01
Radio observations of galaxy clusters show that the intracluster medium is permeated by ? magnetic fields. The origin and evolution of these cosmological magnetic fields is currently not well understood, and so their impact on the dynamics of structure formation is not known. Numerical simulations are required to gain a greater understanding and produce predictions for the next generation of radio telescopes. We present the galactic chemodynamics smoothed particle magnetohydrodynamics (SPMHD) code (GCMHD+), which is an MHD implementation for the cosmological smoothed particle hydrodynamics code GCD+. The results of 1D, 2D and 3D tests are presented and the performance of the code is shown relative to the ATHENA grid code. GCMHD+ shows good agreement with the reference solutions produced by ATHENA. The code is then used to simulate the formation of a galaxy cluster with a simple primordial magnetic field embedded in the gas. A homogeneous seed field of 3.5 × 10-11 G is amplified by a factor of 103 during the formation of the cluster. The results show good agreement with the profiles found in other magnetic cluster simulations of similar resolution.
Religion, theology and cosmology
Directory of Open Access Journals (Sweden)
John T. Fitzgerald
2013-10-01
Full Text Available Cosmology is one of the predominant research areas of the contemporary world. Advances in modern cosmology have prompted renewed interest in the intersections between religion, theology and cosmology. This article, which is intended as a brief introduction to the series of studies on theological cosmology in this journal, identifies three general areas of theological interest stemming from the modern scientific study of cosmology: contemporary theology and ethics; cosmology and world religions; and ancient cosmologies. These intersections raise important questions about the relationship of religion and cosmology, which has recently been addressed by William Scott Green and is the focus of the final portion of the article.
Bojowald, Martin
1999-01-01
A complete model of the universe needs at least three parts: (1) a complete set of physical variables and dynamical laws for them, (2) the correct solution of the dynamical laws, and (3) the connection with conscious experience. In quantum cosmology, item (2) is the quantum state of the cosmos. Hartle and Hawking have made the `no-boundary' proposal, that the wavefunction of the universe is given by a path integral over all compact Euclidean 4-dimensional geometries and matter fields that hav...
Fabris, J C; Rodrigues, D C; Batista, C E M; Daouda, M H
2012-01-01
We review the difficulties of the generalized Chaplygin gas model to fit observational data, due to the tension between background and perturbative tests. We argue that such issues may be circumvented by means of a self-interacting scalar field representation of the model. However, this proposal seems to be successful only if the self-interacting scalar field has a non-canonical form. The latter can be implemented in Rastall's theory of gravity, which is based on a modification of the usual matter conservation law. We show that, besides its application to the generalized Chaplygin gas model, other cosmological models based on Rastall's theory have many interesting and unexpected new features.
The Cosmology Large Angular Scale Surveyor (CLASS): 38 GHz detector array of bolometric polarimeters
Appel, John W; Amiri, Mandana; Araujo, Derek; Bennett, Charles L; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dunner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Hilton, Gene; Hinshaw, Gary F; Huang, Caroline; Irwin, Kent; Jones, Glenn; Karakla, John; Kogut, Alan J; Larson, David; Limon, Michele; Lowry, Lindsay; Marriage, Tobias; Mehrle, Nicholas; Miller, Amber D; Miller, Nathan; Moseleyb, Samuel H; Novakh, Giles; Reintsemad, Carl; Rostemab, Karwan; Stevensonb, Thomas; Towner, Deborah; U-Yen, Kongpop; Wagner, Emily; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen
2014-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.
The Cosmology Large Angular Scale Surveyor (CLASS): 38 GHz Detector Array of Bolometric Polarimeters
Appel, John W.; Ali, Aamir; Amiri, Mandana; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dunner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Kogut, Alan J..; Miller, Nathan; Moseley, Samuel H.; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wollack, Edward
2014-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.
Coasting cosmologies with time dependent cosmological constant
Pimentel, L O; Pimentel, Luis O.
1999-01-01
The effect of a time dependent cosmological constant is considered in a family of scalar tensor theories. Friedmann-Robertson-Walker cosmological models for vacumm and perfect fluid matter are found. They have a linear expansion factor, the so called coasting cosmology, the gravitational "constant" decreace inversely with time; this model satisfy the Dirac hipotesis. The cosmological "constant" decreace inversely with the square of time, therefore we can have a very small value for it at present time.
Energy Technology Data Exchange (ETDEWEB)
Chimento, L P; Forte, M [Physics Department, UBA, 1428 Buenos Aires (Argentina); Devecchi, F P; Kremer, G M; Ribas, M O; Samojeden, L L, E-mail: kremer@fisica.ufpr.br, E-mail: devecchi@fisica.ufpr.br, E-mail: chimento@df.uba.ar [Physics Department, UFPR, 81531-990 Curitiba (Brazil)
2011-07-08
In this work we review if fermionic sources could be responsible for accelerated periods during the evolution of a FRW universe. In a first attempt, besides the fermionic source, a matter constituent would answer for the decelerated periods. The coupled differential equations that emerge from the field equations are integrated numerically. The self-interaction potential of the fermionic field is considered as a function of the scalar and pseudo-scalar invariants. It is shown that the fermionic field could behave like an inflaton field in the early universe, giving place to a transition to a matter dominated (decelerated) period. In a second formulation we turn our attention to analytical results, specifically using the idea of form-invariance transformations. These transformations can be used for obtaining accelerated cosmologies starting with conventional cosmological models. Here we reconsider the scalar field case and extend the discussion to fermionic fields. Finally we investigate the role of a Dirac field in a Brans-Dicke (BD) context. The results show that this source, in combination with the BD scalar, promote a final eternal accelerated era, after a matter dominated period.
Hinterbichler, Kurt; Levy, Aaron; Matas, Andrew
2011-01-01
The symmetron is a scalar field associated with the dark sector whose coupling to matter depends on the ambient matter density. The symmetron is decoupled and screened in regions of high density, thereby satisfying local constraints from tests of gravity, but couples with gravitational strength in regions of low density, such as the cosmos. In this paper we derive the cosmological expansion history in the presence of a symmetron field, tracking the evolution through the inflationary, radiation- and matter-dominated epochs, using a combination of analytical approximations and numerical integration. For a broad range of initial conditions at the onset of inflation, the scalar field reaches its symmetry-breaking vacuum by the present epoch, as assumed in the local analysis of spherically-symmetric solutions and tests of gravity. For the simplest form of the potential, the energy scale is too small for the symmetron to act as dark energy, hence we must add a cosmological constant to drive late-time cosmic acceler...
Agarwal, Nishant; Khoury, Justin; Trodden, Mark
2009-01-01
We develop a fully covariant, well-posed 5D effective action for the 6D cascading gravity brane-world model, and use this to study cosmological solutions. We obtain this effective action through the 6D decoupling limit, in which an additional scalar degree mode, \\pi, called the brane-bending mode, determines the bulk-brane gravitational interaction. The 5D action obtained this way inherits from the sixth dimension an extra \\pi self-interaction kinetic term. We compute appropriate boundary terms, to supplement the 5D action, and hence derive fully covariant junction conditions and the 5D Einstein field equations. Using these, we derive the cosmological evolution induced on a 3-brane moving in a static bulk. We study the strong- and weak-coupling regimes analytically in this static ansatz, and perform a complete numerical analysis of our solution. Although the cascading model can generate an accelerating solution in which the \\pi field comes to dominate at late times, the presence of a critical singularity prev...
Newtonian cosmology - Problems of cosmological didactics
Energy Technology Data Exchange (ETDEWEB)
Skarzynski, E.
1983-03-01
The article presents different methods of model construction in Newtonian cosmology. Newtonian cosmology is very convenient for discussion of local problems, so the problems presented are of great didactic importance. The constant k receives a new interpretation in relativistic cosmology as the curvature of the space in consequence of the greater informational capacity of Riemann space in comparison to Euclidean space. 11 references.
Boguna, Marian; Krioukov, Dmitri
2013-01-01
Networks often represent systems that do not have a long history of studies in traditional fields of physics, albeit there are some notable exceptions such as energy landscapes and quantum gravity. Here we consider networks that naturally arise in cosmology. Nodes in these networks are stationary observers uniformly distributed in an expanding open FLRW universe with any scale factor, and two observers are connected if one can causally influence the other. We show that these networks are growing Lorentz-invariant graphs with power-law distributions of node degrees. New links in these networks not only connect new nodes to existing ones, but also appear at a certain rate between existing nodes, as they do in many complex networks.
Negative Energy Cosmology and the Cosmological Constant
Prokopec, Tomislav
2011-01-01
It is well known that string theories naturally compactify on anti-de Sitter spaces, and yet cosmological observations show no evidence of a negative cosmological constant in the early Universe's evolution. In this letter we present two simple nonlocal modifications of the standard Friedmann cosmology that can lead to observationally viable cosmologies with an initial (negative) cosmological constant. The nonlocal operators we include are toy models for the quantum cosmological backreaction. In Model I an initial quasiperiodic oscillatory epoch is followed by inflation and a late time matter era, representing a dark matter candidate. The backreaction in Model II quickly compensates the negative cosmological term such that the Ricci curvature scalar rapidly approaches zero, and the Universe ends up in a late time radiation era.
Vankov, A
1998-01-01
The suggested alternative cosmology is based on the idea of barion symmetric universe, in which our home universe is a representative of multitude of typical matter and antimatter universes. This alternative concept gives a physically reasonable explanation of all major problems of the Standard Cosmological Model. Classification Code MSC: Cosmology 524.8 Key words: standard cosmological model, alternative cosmology, barionic symmetry, typical universe, quasars, cosmic rays.
Kamazaki, T; Chikada, Y; Okuda, T; Kurono, Y; Iguchi, S; Mitsuishi, S; Murakami, Y; Nishimuta, N; Mita, H; Sano, R
2011-01-01
We have developed an FX-architecture digital spectro-correlator for the Atacama Compact Array (ACA) of the Atacama Large Millimeter/submillimeter Array. The correlator is able to simultaneously process four pairs of dual polarization signals with the bandwidth of 2 GHz, which are received by up to sixteen antennas. It can calculate auto- and cross-correlation spectra including cross-polarization in all combinations of all the antennas, and output correlation spectra with flexible spectral configuration such as multiple frequency ranges and multiple frequency resolutions. Its spectral dynamic range is estimated to be higher than 10^4 relative to Tsys from processing results of thermal noise for eight hours with a typical correlator configuration. The sensitivity loss is also confirmed to be 0.9 % with the same configuration. In this paper, we report the detailed design of the correlator and the verification results of the developed hardware.
EL IMAGINARIO PEDAGÓGICO EN LAS ESCUELAS SALITRERAS DEL DESIERTO DE ATACAMA
Directory of Open Access Journals (Sweden)
JOSÉ ANTONIO GONZÁLEZ
2011-05-01
Full Text Available RESUMEN El artículo analiza el funcionamiento del sistema escolar durante el ciclo salitrero en el desierto de Atacama, destacando las escuelas, las bibliotecas, el profesorado, el alumnado y las relaciones entre los normalistas y las empresas salitreras. Palabras claves: Escuelas, Oficinas salitreras, Desierto de Atacama, Antofagasta. ABSTRACT This paper analyzes the school system operation during the nitrate mine cycle in the Atacama Desert, pointing out schools, libraries, teachers, students and relations between primary school teachers and nitrate companies. Key words: Schools, Nitrate mines, Atacama Desert, Antofagasta.
Tipler, Frank J.
1996-09-01
I show that if Newtonian gravity is formulated in geometrical language, then Newtonian cosmology is as rigorous as relativistic cosmology. In homogeneous and isotropic universes, the geodesic deviation equation in Newtonian cosmology is proven to be exactly the same as the geodesic deviation equation in relativistic Friedmann cosmologies. This equation can be integrated to yield a constraint equation formally identical to the Friedmann equation. However, Newtonian cosmology is more general than Friedmann cosmology: by generalizing the flat-space Newtonian gravity force law to Riemannian metrics, I show that ever-expanding and recollapsing universes are allowed in any homogeneous and isotropic spatial geometry.
Energy Technology Data Exchange (ETDEWEB)
Lampton, Michael L.; Akerlof, C.W.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Bercovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers Jr., W.C.; Commins, E.D.; Day, C.; Deustua, S.E.; DiGennaro, R.; Ealet, A.; Ellis,R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar,A.; Groom, D.; Harris, S.E.; Harvey, P.R.; Heetderks, H.D.; Holland,S.E.; Huterer, D.; Karcher, A.; Kim, A.G.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Levi, M.E.; Levin, D.S.; Linder, E.V.; Loken,S.C.; Malina, R.; Massey, R.; McKay, T.; McKee, S.P.; Miquel, R.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi,H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto,E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tarle, G.; Tomasch,A.; von der Lippe, H.; Vincent, R.; Walder, J.-P.; Wang, G.; Wang, G.
2002-07-29
The SuperNova/Acceleration Probe (SNAP) mission will require a two-meter class telescope delivering diffraction limited images spanning a one degree field in the visible and near infrared wavelength regime. This requirement, equivalent to nearly one billion pixel resolution, places stringent demands on its optical system in terms of field flatness, image quality, and freedom from chromatic aberration. We discuss the advantages of annular-field three-mirror anastigmat (TMA) telescopes for applications such as SNAP, and describe the features of the specific optical configuration that we have baselined for the SNAP mission. We discuss the mechanical design and choice of materials for the telescope. Then we present detailed ray traces and diffraction calculations for our baseline optical design. We briefly discuss stray light and tolerance issues, and present a preliminary wavefront error budget for the SNAP Telescope. We conclude by describing some of tasks to be carried out during the upcoming SNAP research and development phase.
Lopez, Bernhard; Whyborn, Nicholas D.; Guniat, Serge; Hernandez, Octavio; Gairing, Stefan
2016-07-01
The Atacama Large Millimeter/submillimeter Array (ALMA) is a joint project between astronomical organizations in Europe, North America, and East Asia, in collaboration with the Republic of Chile. ALMA consists of 54 twelve-meter antennas and 12 seven-meter antennas operating as an aperture synthesis array in the (sub)millimeter wavelength range. Since the inauguration of the observatory back in March 2013 there has been a continuous effort to establish solid operations processes for effective and efficient management of technical and administrative tasks on site. Here a key aspect had been the centralized maintenance and operations planning: input is collected from science stakeholders, the computerized maintenance management system (CMMS) and from the technical teams spread around the world, then this information is analyzed and consolidated based on the established maintenance strategy, the observatory long-term plan and the short-term priorities definitions. This paper presents the high-level process that has been developed for the planning and scheduling of planned- and unplanned maintenance tasks, and for site operations like the telescope array reconfiguration campaigns. We focus on the centralized planning approach by presenting its genesis, its current implementation for the observatory operations including related planning products, and we explore the necessary next steps in order to fully achieve a comprehensive centralized planning approach for ALMA in steady-state operations.
Estacionalidad de las muertes en la puna de Atacama
Directory of Open Access Journals (Sweden)
Bejarano, Ignacio
2001-01-01
Full Text Available En distintas culturas y geografías la mortalidad se distribuye de acuerdo a un patrón estacional variable según las poblaciones. El objetivo de este trabajo fue analizar la estacionalidad de las muertes en un medio ambiente extremo como lo es la Puna de Atacama (PA. Los datos de defunciones (1890-1950 corresponden a dos localidades de la PA: Susques y San Pedro de Atacama. En el análisis se consideraron, por sexo, tres grupos de edad: a prerreproductiva (0-15 años (PRE, reproductiva (16-44 años (REP y postreproductiva (<45 años (POS. Se calculo el coeficiente de estacionalidad de Henry y para identificar estadísticamente variaciones estacionales se aplicó una prueba de homogeneidad. Se utilizó la prueba de Edwards para detectar ciclos armónicos en la distribución de muertes. Independientemente de la edad y el sexo se observó un patron estacional diferencial significativo que responde a un modelo de variación armónica simple, los coeficientes de Henry mas altos se presentaron en verano e invierno. Cuando se analiza la estacionalidad por grupo de edad y sexo el patrón previamente descripto se mantiene sólo en las edades REP y POS y en el sexo masculino. Este estudio proporciona un indicio del comportamiento de la estacionalidad de las muertes en la Puna de Atacama. Sin embargo no difiere del observado en poblaciones contemporáneas de países desarrollados, por lo que se concluye que el patrón observado no sería consecuencia directa de las condiciones climáticas, culturales, etc. de este ambiente extremo.
Robot Science Autonomy in the Atacama Desert and Beyond
Thompson, David R.; Wettergreen, David S.
2013-01-01
Science-guided autonomy augments rovers with reasoning to make observations and take actions related to the objectives of scientific exploration. When rovers can directly interpret instrument measurements then scientific goals can inform and adapt ongoing navigation decisions. These autonomous explorers will make better scientific observations and collect massive, accurate datasets. In current astrobiology studies in the Atacama Desert we are applying algorithms for science autonomy to choose effective observations and measurements. Rovers are able to decide when and where to take follow-up actions that deepen scientific understanding. These techniques apply to planetary rovers, which we can illustrate with algorithms now used by Mars rovers and by discussing future missions.
Nojiri, S; Oikonomou, V K
2016-01-01
We combine the unimodular gravity and mimetic gravity theories into a unified theoretical framework, which is proposed to solve the cosmological constant problem and the dark matter issue. After providing the formulation of the unimodular mimetic gravity and investigating all the new features that the vacuum unimodular gravity implies, by using the underlying reconstruction method, we realize some well known cosmological evolutions, with some of these being exotic for the ordinary Einstein-Hilbert gravity. Specifically we provide the vacuum unimodular mimetic gravity description of the de Sitter cosmology, of the perfect fluid with constant equation of state cosmology, of the Type IV singular cosmology and of the $R^2$ inflation cosmology. Moreover, we investigate how cosmologically viable cosmologies, which are compatible with the recent observational data, can be realized by the vacuum unimodular mimetic gravity. Since in some cases, the graceful exit from inflation problem might exist, we provide a qualita...
Kunze, Kerstin E
2016-01-01
Cosmology is becoming an important tool to test particle physics models. We provide an overview of the standard model of cosmology with an emphasis on the observations relevant for testing fundamental physics.
Cosmological constraints from 21cm surveys after reionization
Visbal, Eli; Loeb, Abraham; Wyithe, Stuart
2008-01-01
21cm emission from residual neutral hydrogen after the epoch of reionization can be used to trace the cosmological power spectrum of density fluctuations. Using a Fisher matrix formulation, we provide a detailed forecast of the constraints on cosmological parameters that are achievable with this probe. We consider two designs: a scaled-up version of the MWA observatory as well as a Fast Fourier Transform Telescope. We find that 21cm observations dedicated to post-reionization redshifts may yi...
The supernova cosmology cookbook: Bayesian numerical recipes
Karpenka, N V
2015-01-01
Theoretical and observational cosmology have enjoyed a number of significant successes over the last two decades. Cosmic microwave background measurements from the Wilkinson Microwave Anisotropy Probe and Planck, together with large-scale structure and supernova (SN) searches, have put very tight constraints on cosmological parameters. Type Ia supernovae (SNIa) played a central role in the discovery of the accelerated expansion of the Universe, recognised by the Nobel Prize in Physics in 2011. The last decade has seen an enormous increase in the amount of high quality SN observations, with SN catalogues now containing hundreds of objects. This number is expected to increase to thousands in the next few years, as data from next-generation missions, such as the Dark Energy Survey and Large Synoptic Survey Telescope become available. In order to exploit the vast amount of forthcoming high quality data, it is extremely important to develop robust and efficient statistical analysis methods to answer cosmological q...
Roos, Matts
2015-01-01
The Fourth Edition of Introduction to Cosmology provides a concise, authoritative study of cosmology at an introductory level. Starting from elementary principles and the early history of cosmology, the text carefully guides the student on to curved spacetimes, special and general relativity, gravitational lensing, the thermal history of the Universe, and cosmological models, including extended gravity models, black holes and Hawking's recent conjectures on the not-so-black holes.
Disney, M J
2000-01-01
It is argued that some of the recent claims for cosmology are grossly overblown. Cosmology rests on a very small database: it suffers from many fundamental difficulties as a science (if it is a science at all) whilst observations of distant phenomena are difficult to make and harder to interpret. It is suggested that cosmological inferences should be tentatively made and sceptically received.
Indian Academy of Sciences (India)
Tarun Sandeep
2004-10-01
Cosmology is passing through a golden phase of rapid advance. The cosmology workshop at ICGC-2004 attracted a large number of research contributions to diverse topics of cosmology. I attempt to classify and summarize the research work and results of the oral and poster presentations made at the meeting.
Bojowald, Martin
The universe, ultimately, is to be described by quantum theory. Quantum aspects of all there is, including space and time, may not be significant for many purposes, but are crucial for some. And so a quantum description of cosmology is required for a complete and consistent worldview. At any rate, even if we were not directly interested in regimes where quantum cosmology plays a role, a complete physical description could not stop at a stage before the whole universe is reached. Quantum theory is essential in the microphysics of particles, atoms, molecules, solids, white dwarfs and neutron stars. Why should one expect this ladder of scales to end at a certain size? If regimes are sufficiently violent and energetic, quantum effects are non-negligible even on scales of the whole cosmos; this is realized at least once in the history of the universe: at the big bang where the classical theory of general relativity would make energy densities diverge. 1.Lachieze-Rey, M., Luminet, J.P.: Phys. Rept. 254,135 (1995), gr-qc/9605010 2.BSDeWitt1967Phys. Rev.160511131967PhRv..160.1113D0158.4650410.1103/PhysRev.160.1113DeWitt, B.S.: Phys. Rev. 160(5), 1113 (1967) 3.Wiltshire, D.L.: In: Robson B., Visvanathan N., Woolcock W.S. (eds.) Cosmology: The Physics of the Universe, pp. 473-531. World Scientific, Singapore (1996). gr-qc/0101003 4.Isham C.J.: In: DeWitt, B.S., Stora, R. (eds.) Relativity, Groups and Topology II. Lectures Given at the 1983 Les Houches Summer School on Relativity, Groups and Topology, Elsevier Science Publishing Company (1986) 5.Klauder, J.: Int. J. Mod. Phys. D 12, 1769 (2003), gr-qc/0305067 6.Klauder, J.: Int. J. Geom. Meth. Mod. Phys. 3, 81 (2006), gr-qc/0507113 7.DGiulini1995Phys. Rev. D5110563013381161995PhRvD..51.5630G10.1103/PhysRevD.51.5630Giulini, D.: Phys. Rev. D 51(10), 5630 (1995) 8.Kiefer, C., Zeh, H.D.: Phys. Rev. D 51, 4145 (1995), gr-qc/9402036 9.WFBlythCJIsham1975Phys. Rev. D117684086991975PhRvD..11..768B10.1103/PhysRevD.11.768Blyth, W
Fog deposition to a Tillandsia carpet in the Atacama Desert
Directory of Open Access Journals (Sweden)
P. Osses
2009-09-01
Full Text Available In the Atacama Desert, one of the driest places on earth, fog deposition plays an important role for the water balance and for the survival of vulnerable ecosystems. The eddy covariance method, previously applied for the quantification of fog deposition to forests in various parts of the world, was used for the first time to measure deposition of fog water to a desert. In this exploratory study we estimate the amount of water available for the ecosystem by deposition and determine the relevant processes driving fog deposition. This is especially important for the species Tillandsia landbecki living in coastal Atacama at the limit of plant existence with fog and dew being the only sources of water. Between 31 July and 19 August 2008 approximately 2.5 L m−2 of water were made available through deposition. Whole-year deposition was estimated as 25 L m−2. Turbulent upward fluxes occurred several times during the evenings and are explained by the formation of radiation fog. In connection with that, underestimates of the deposition are assumed. More detailed studies covering various seasons and all parameters and fluxes contributing to the local energy balance are suggested. This will help to further develop understanding about the processes of (i deposition of water to the desert, and (ii intensification of advection fog through additional formation of radiation fog.
Neogene climate change and uplift in the Atacama Desert, Chile
Rech, Jason A.; Currie, Brian S.; Michalski, Greg; Cowan, Angela M.
2006-09-01
The relationship between Andean uplift and extreme desiccation of the west coast of South America is important for understanding the interplay between climate and tectonics in the Central Andes, yet it is poorly understood. Here we use soil morphological characteristics, salt chemistry, and mass independent fractionation anomalies (Δ17O values) in dated paleosols to reconstruct a middle Miocene climatic transition from semiaridity to extreme hyperaridity in the Atacama Desert. Paleosols along the southeastern margin of the Calama Basin change from calcic Vertisols with root traces, slickensides, and gleyed horizons to an extremely mature salic Gypsisol with pedogenic nitrate. We interpret this transition, which occurred between 19 and 13 Ma, to represent a change in precipitation from >200 mm/yr to 2 km; the uplift blocked moisture from the South American summer monsoon from entering the Atacama. The mid-Miocene Gypsisol with pedogenic nitrate is located at elevations between 2900 and 3400 m in the Calama Basin, significantly higher than modern nitrate soils, which occur below ˜2500 m. Modern and Quaternary soils in this elevation zone contain soil carbonate and lack pedogenic gypsum and nitrate. We infer that >900 m of local surface uplift over the past 10 m.y. displaced these nitrate paleosols relative to modern nitrate soils and caused a return to wetter conditions in the Calama Basin by decreasing local air temperatures and creating an orographic barrier to Pacific air masses.
Tipler, Frank J.
1996-10-01
It is generally believed that it is not possible to rigorously analyze a homogeneous and isotropic cosmological model in Newtonian mechanics. I show on the contrary that if Newtonian gravity theory is rewritten in geometrical language in the manner outlined in 1923-1924 by Élie Cartan [Ann. Ecole Norm. Sup. 40, 325-412 (1923); 41, 1-25 (1924)], then Newtonian cosmology is as rigorous as Friedmann cosmology. In particular, I show that the equation of geodesic deviation in Newtonian cosmology is exactly the same as equation of geodesic deviation in the Friedmann universe, and that this equation can be integrated to yield a constraint equation formally identical to the Friedmann equation. However, Newtonian cosmology is more general than Friedmann cosmology: Ever-expanding and recollapsing universes are allowed in any noncompact homogeneous and isotropic spatial topology. I shall give a brief history of attempts to do cosmology in the framework of Newtonian mechanics.
Selecting Your First Telescope.
Harrington, Sherwood
1982-01-01
Designed for first-time telescope purchasers, provides information on how a telescope works; major telescope types (refractors, reflectors, compound telescopes); tripod, pier, altazimuth, and equatorial mounts; selecting a telescope; visiting an astronomy club; applications/limitations of telescope use; and tips on buying a telescope. Includes a…
Scientific Potential of Einstein Telescope
Sathyaprakash, B; Acernese, F; Andersson, P Amaro-Seoane N; Arun, K; Barone, F; Barr, B; Barsuglia, M; Beveridge, M Beker N; Birindelli, S; Bose, S; Bosi, L; Braccini, S; Bradaschia, C; Bulik, T; Calloni, E; Cella, G; Mottin, E Chassande; Chelkowski, S; Chincarini, A; Clark, J; Coccia, E; Colacino, C; Colas, J; Cumming, A; Cunningham, L; Cuoco, E; Danilishin, S; Danzmann, K; Salvo, R De; Dent, T; Rosa, R De; Fiore, L Di; Virgilio, A Di; Doets, M; Fafone, V; Falferi, P; Flaminio, R; Franc, J; Frasconi, F; Freise, A; Friedrich, D; Fulda, P; Gair, J; Gemme, G; Genin, E; Gennai, A; Giazotto, A; Glampedakis, K; Gräf, C; Granata, M; Grote, H; Guidi, G; Gurkovsky, A; Hammond, G; Hannam, M; Harms, J; Heinert, D; Hendry, M; Heng, I; Hennes, E; Hild, S; Hough, J; Husa, S; Huttner, S; Jones, G; Khalili, F; Kokeyama, K; Kokkotas, K; Krishnan, B; Li, T G F; Lorenzini, M; Lück, H; Majorana, E; Mandel, I; Mandic, V; Mantovani, M; Martin, I; Michel, C; Minenkov, Y; Morgado, N; Mosca, S; Mours, B; Müller--Ebhardt, H; Murray, P; Nawrodt, R; Nelson, J; Oshaughnessy, R; Ott, C D; Palomba, C; Paoli, A; Parguez, G; Pasqualetti, A; Passaquieti, R; Passuello, D; Pinard, L; Plastino, W; Poggiani, R; Popolizio, P; Prato, M; Punturo, M; Puppo, P; Rabeling, D; Racz, I; Rapagnani, P; Read, J; Regimbau, T; Rehbein, H; Reid, S; Rezzolla, L; Ricci, F; Richard, F; Rocchi, A; Rowan, S; Rüdiger, A; Santamaría, L; Sassolas, B; Schnabe, R; Schwarz, C; Seidel, P; Sintes, A; Somiya, K; Speirits, F; Strain, K; Strigin, S; Sutton, P; Tarabrin, S; Thüring, A; Brand, J van den; Veggel, M van; Broeck, C van den; Vecchio, A; Veitch, J; Vetrano, F; Vicere, A; Vyatchanin, S; Willke, B; Woan, G; Yamamoto, K
2011-01-01
Einstein gravitational-wave Telescope (ET) is a design study funded by the European Commission to explore the technological challenges of and scientific benefits from building a third generation gravitational wave detector. The three-year study, which concluded earlier this year, has formulated the conceptual design of an observatory that can support the implementation of new technology for the next two to three decades. The goal of this talk is to introduce the audience to the overall aims and objectives of the project and to enumerate ET's potential to influence our understanding of fundamental physics, astrophysics and cosmology.
Andean uplift and Neogene climate change in the Atacama Desert
Rech, J. A.; Currie, B. S.; Jordan, T. E.
2006-12-01
Today the Andean Cordillera and Altiplano provide a major obstacle to atmospheric circulation over South America. The Altiplano Plateau prevents moist air masses from the Amazon Basin from reaching the Atacama Desert, causing the Atacama to be one of the driest places on Earth. Although Neogene sedimentary records from the western flank of the Andes should record the dramatic shift to hyperaridity that resulted from the growth of the Altiplano Plateau, the climatic implications of many sedimentary sequences have been difficult to decipher. The causes of the difficulties are complex, such as the relative influences of tectonics and active volcanism versus climate, and the roles of local as well as regional precipitation on groundwater and on the deposition of paludal sediments in basin centers. Over the last few years our research group has focused on using paleosols and the isotopic composition of palustrine carbonates in the Calama Basin (22°S) to try to identify a local precipitation signal and determine the onset of extreme hyperaridity as a consequence of the growth of the Altiplano. We have determined the soil morphological characteristics, salt chemistry, and mass independent fractionation anomalies (Δ17O values) in dated paleosols to reconstruct a Middle Miocene climatic transition from semi-aridity to extreme hyperaridity in the Atacama Desert. Paleosols along the southeastern margin of the Calama Basin change from calcic Vertisols with root traces, slickensides, and gleyed horizons to an extremely mature salic Gypsisol with pedogenic nitrate. We interpret this transition, which occurred between 19 and 13 Ma, to represent a change in precipitation from >200 mm/yr to Calama Basin also show a marked change during this time period. δ13C values of palustrine carbonates increase from -7 to +7? VPDB and δ18O values increases from -7 to +1? VPDB over the late to Middle Miocene time. This major trend towards more positive values is likely the result of several
Biotechnological Applications Derived from Microorganisms of the Atacama Desert
Directory of Open Access Journals (Sweden)
Armando Azua-Bustos
2014-01-01
Full Text Available The Atacama Desert in Chile is well known for being the driest and oldest desert on Earth. For these same reasons, it is also considered a good analog model of the planet Mars. Only a few decades ago, it was thought that this was a sterile place, but in the past years fascinating adaptations have been reported in the members of the three domains of life: low water availability, high UV radiation, high salinity, and other environmental stresses. However, the biotechnological applications derived from the basic understanding and characterization of these species, with the notable exception of copper bioleaching, are still in its infancy, thus offering an immense potential for future development.
ENSO effects on primary productivity in Southern Atacama desert
Directory of Open Access Journals (Sweden)
F. A. Squeo
2006-01-01
Full Text Available In the winter-rain southern Atacama Desert of the Coquimbo Region of Chile, El Niño - Southern Oscillation (ENSO events modulate primary productivity. In this region, there are important changes in water availability between La Niña (dry and El Niño (rainy years. Using inter-annual comparisons of LANDSAT images from 30° to 31° S latitude, we observed changes in primary productivity between dry and rainy years at the regional level. There were also significant, negative correlations between productivity and elevation, with changes occurring first at low elevation during rainy years. The limiting factors to dryland vegetation primary productivity is different in regard to elevation. Rain during an El Niño year is the main factor that explains the increase in primary productivity at low elevation, while lower temperatures reduce and delay the net primary productivity at mid elevation.
Spectral identification and quantification of salts in the Atacama Desert
Harris, J. K.; Cousins, C. R.; Claire, M. W.
2016-10-01
Salt minerals are an important natural resource. The ability to quickly and remotely identify and quantify salt deposits and salt contaminated soils and sands is therefore a priority goal for the various industries and agencies that utilise salts. The advent of global hyperspectral imagery from instruments such as Hyperion on NASA's Earth-Observing 1 satellite has opened up a new source of data that can potentially be used for just this task. This study aims to assess the ability of Visible and Near Infrared (VNIR) spectroscopy to identify and quantify salt minerals through the use of spectral mixture analysis. The surface and near-surface soils of the Atacama Desert in Chile contain a variety of well-studied salts, which together with low cloud coverage, and high aridity, makes this region an ideal testbed for this technique. Two forms of spectral data ranging 0.35 - 2.5 μm were collected: laboratory spectra acquired using an ASD FieldSpec Pro instrument on samples from four locations in the Atacama desert known to have surface concentrations of sulfates, nitrates, chlorides and perchlorates; and images from the EO-1 satellite's Hyperion instrument taken over the same four locations. Mineral identifications and abundances were confirmed using quantitative XRD of the physical samples. Spectral endmembers were extracted from within the laboratory and Hyperion spectral datasets and together with additional spectral library endmembers fed into a linear mixture model. The resulting identification and abundances from both dataset types were verified against the sample XRD values. Issues of spectral scale, SNR and how different mineral spectra interact are considered, and the utility of VNIR spectroscopy and Hyperion in particular for mapping specific salt concentrations in desert environments is established. Overall, SMA was successful at estimating abundances of sulfate minerals, particularly calcium sulfate, from both hyperspectral image and laboratory sample spectra
Subcritical Water Extraction of Amino Acids from Atacama Desert Soils
Amashukeli, Xenia; Pelletier, Christine C.; Kirby, James P.; Grunthaner, Frank J.
2007-01-01
Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.
Cosmology with superluminous supernovae
Scovacricchi, D.; Nichol, R. C.; Bacon, D.; Sullivan, M.; Prajs, S.
2016-02-01
We predict cosmological constraints for forthcoming surveys using superluminous supernovae (SLSNe) as standardizable candles. Due to their high peak luminosity, these events can be observed to high redshift (z ˜ 3), opening up new possibilities to probe the Universe in the deceleration epoch. We describe our methodology for creating mock Hubble diagrams for the Dark Energy Survey (DES), the `Search Using DECam for Superluminous Supernovae' (SUDSS) and a sample of SLSNe possible from the Large Synoptic Survey Telescope (LSST), exploring a range of standardization values for SLSNe. We include uncertainties due to gravitational lensing and marginalize over possible uncertainties in the magnitude scale of the observations (e.g. uncertain absolute peak magnitude, calibration errors). We find that the addition of only ≃100 SLSNe from SUDSS to 3800 Type Ia Supernovae (SNe Ia) from DES can improve the constraints on w and Ωm by at least 20 per cent (assuming a flat wCDM universe). Moreover, the combination of DES SNe Ia and 10 000 LSST-like SLSNe can measure Ωm and w to 2 and 4 per cent, respectively. The real power of SLSNe becomes evident when we consider possible temporal variations in w(a), giving possible uncertainties of only 2, 5 and 14 per cent on Ωm, w0 and wa, respectively, from the combination of DES SNe Ia, LSST-like SLSNe and Planck. These errors are competitive with predicted Euclid constraints, indicating a future role for SLSNe for probing the high-redshift Universe.
Supernovae and Cosmology with Future European Facilities
Hook, I M
2012-01-01
Prospects for future supernova surveys are discussed, focusing on the ESA Euclid mission and the European Extremely Large Telescope(E-ELT), both expected to be in operation around the turn of the decade. Euclid is a 1.2m space survey telescope that will operate at visible and near-infrared wavelengths, and has the potential to find and obtain multi-band lightcurves for thousands of distant supernovae. The E-ELT is a planned general-purpose ground-based 40m-class optical-IR telescope with adaptive optics built in, which will be capable of obtaining spectra of Type Ia supernovae to redshifts of at least four. The contribution to supernova cosmology with these facilities will be discussed in the context of other future supernova programs such as those proposed for DES, JWST, LSST and WFIRST.
Zentner, A R
2003-01-01
Improvements in observational techniques have transformed cosmology into a field inundated with ever-expanding, high-quality data sets and driven cosmology toward a standard model where the classic cosmological parameters are accurately measured. I briefly discuss some of the methods used to determine cosmological parameters, particularly primordial nucleosynthesis, the magnitude- redshift relation of supernovae, and cosmic microwave background anisotropy. I demonstrate how cosmological data can be used to complement particle physics and constrain extensions to the Standard Model. Specifically, I present bounds on light particle species and the properties of unstable, weakly-interacting, massive particles. Despite the myriad successes of the emerging standard cosmological model, unanswered questions linger. Numerical simulations of structure formation predict galactic central densities that are considerably higher than observed. They also reveal hundreds of satellites orbiting Milky Way-like galaxies while th...
Directory of Open Access Journals (Sweden)
Balbi Amedeo
2013-09-01
Full Text Available Time has always played a crucial role in cosmology. I review some of the aspects of the present cosmological model which are more directly related to time, such as: the definition of a cosmic time; the existence of typical timescales and epochs in an expanding universe; the problem of the initial singularity and the origin of time; the cosmological arrow of time.
Integrated modeling of submillimeter radio telescopes
Moraru, Dan; Andersen, Torben
2002-07-01
Integrated models are inherently complex and often obscure to any but those who write them. Their usefulness can be greatly enhanced through well-structured, object-oriented design. A robust and computationally efficient Simulink/C++ library of optics, control, finite-element, and visualization routines for modeling radio telescope performance under various operating conditions is being developed and is described. The library is being developed in conjunction with an end-to-end model of the Atacama Large Millimeter Array (ALMA) antennas. The model includes the mechanical structure, optics, servos, and potential laser gyros, and can be used to investigate such issues as tracking performance, compliance with error budgets, wind sensitivity, and effectiveness of an internal metrology system. It will also be a good tool for comparison of different antenna designs.
López-Corredoira, M.
2009-08-01
Certain results of observational cosmology cast critical doubt on the foundations of standard cosmology but leave most cosmologists untroubled. Alternative cosmological models that differ from the Big Bang have been published and defended by heterodox scientists; however, most cosmologists do not heed these. This may be because standard theory is correct and all other ideas and criticisms are incorrect, but it is also to a great extent due to sociological phenomena such as the ``snowball effect'' or ``groupthink''. We might wonder whether cosmology, the study of the Universe as a whole, is a science like other branches of physics or just a dominant ideology.
Inhomogeneous Big Bang Cosmology
Wagh, S M
2002-01-01
In this letter, we outline an inhomogeneous model of the Big Bang cosmology. For the inhomogeneous spacetime used here, the universe originates in the infinite past as the one dominated by vacuum energy and ends in the infinite future as the one consisting of "hot and relativistic" matter. The spatial distribution of matter in the considered inhomogeneous spacetime is {\\em arbitrary}. Hence, observed structures can arise in this cosmology from suitable "initial" density contrast. Different problems of the standard model of Big Bang cosmology are also resolved in the present inhomogeneous model. This inhomogeneous model of the Big Bang Cosmology predicts "hot death" for the universe.
The Atacama Desert: Technical Resources and the Growing Importance of Novel Microbial Diversity.
Bull, Alan T; Asenjo, Juan A; Goodfellow, Michael; Gómez-Silva, Benito
2016-09-08
The Atacama Desert of northern Chile is the oldest and most arid nonpolar environment on Earth. It is a coastal desert covering approximately 180,000 km(2), and together with the greater Atacama region it comprises a dramatically wide range of ecological niches. Long known and exploited for its mineral resources, the Atacama Desert harbors a rich microbial diversity that has only recently been discovered; the great majority of it has not yet been recovered in culture or even taxonomically identified. This review traces the progress of microbiology research in the Atacama and dispels the popular view that this region is virtually devoid of life. We examine reasons for such research activity and demonstrate that microbial life is the latest recognized and least explored resource in this inspiring biome.
Jee, M James; Menanteau, Felipe; Sifon, Cristobal; Mandelbaum, Rachel; Barrientos, L Felipe; Infante, Leopoldo; Ng, Karen Y
2013-01-01
(Abridged) We present a HST weak-lensing study of the merging galaxy cluster "El Gordo" (ACT-CL J0102-4915) at z=0.87 discovered by the Atacama Cosmology Telescope collaboration as the strongest SZ decrement in its ~1000 sq. deg survey. Our weak-lensing analysis confirms that ACT-CL J0102-4915 is indeed an extreme system consisting of two massive (~10^15 Msun each) subclusters with a projected separation of ~0.7 Mpc. This binary mass structure revealed by our lensing study is consistent with the cluster galaxy distribution and the dynamical study carried out with 89 spectroscopic members. We estimate the mass of ACT-CL J0102-4915 by simultaneously fitting two axisymmetric NFW profiles allowing their centers to vary. Our MCMC analysis shows that the masses of the northwestern (NW) and the southeastern (SE) components are M200c=(1.40+-0.31) x 10^15 Msun and (0.75+-0.17) x 10^15 Msun, respectively. The lensing-based velocity dispersions are consistent with their spectroscopic measurements. The centroids of both ...
Energy Technology Data Exchange (ETDEWEB)
McAllister, Liam P.; Silverstein, Eva
2007-10-22
We give an overview of the status of string cosmology. We explain the motivation for the subject, outline the main problems, and assess some of the proposed solutions. Our focus is on those aspects of cosmology that benefit from the structure of an ultraviolet-complete theory.
Schulte-Ladbeck, Regina; Brinks, Elias; Kravtsov, Andrey
2010-01-01
Dwarf galaxies provide opportunities for drawing inferences about the processes in the early universe by observing our "cosmological backyard"-the Local Group and its vicinity. This special issue of the open-access journal Advances in Astronomy is a snapshot of the current state of the art of dwarf-galaxy cosmology.
Phantom cosmologies and fermions
Chimento, Luis P; Forte, Monica; Kremer, Gilberto M
2007-01-01
Form invariance transformations can be used for constructing phantom cosmologies starting with conventional cosmological models. In this work we reconsider the scalar field case and extend the discussion to fermionic fields, where the "phantomization" process exhibits a new class of possible accelerated regimes.
Energy Technology Data Exchange (ETDEWEB)
Vilenkin, Alexander, E-mail: vilenkin@cosmos.phy.tufts.ed [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)
2010-01-01
The 'new standard cosmology', based on the theory of inflation, has very impressive observational support. I review some outstanding problems of the new cosmology and the global view of the universe - the multiverse - that it suggests. I focus in particular on prospects for further observational tests of inflation and of the multiverse.
Ryden, Barbara
2002-01-01
Introduction to Cosmology provides a rare combination of a solid foundation of the core physical concepts of cosmology and the most recent astronomical observations. The book is designed for advanced undergraduates or beginning graduate students and assumes no prior knowledge of general relativity. An emphasis is placed on developing the readers' physical insight rather than losing them with complex math. An approachable writing style and wealth of fresh and imaginative analogies from "everyday" physics are used to make the concepts of cosmology more accessible. The book is unique in that it not only includes recent major developments in cosmology, like the cosmological constant and accelerating universe, but also anticipates key developments expected in the next few years, such as detailed results on the cosmic microwave background.
Kehagias, Alex
2016-01-01
Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to both scalar and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic d...
Zhao, Wen
2016-01-01
The foundation of modern cosmology relies on the so-called cosmological principle which states an homogeneous and isotropic distribution of matter in the universe on large scales. However, recent observations, such as the temperature anisotropy of the cosmic microwave background (CMB) radiation, the motion of galaxies in the universe, the polarization of quasars and the acceleration of the cosmic expansion, indicate preferred directions in the sky. If these directions have a cosmological origin, the cosmological principle would be violated, and modern cosmology should be reconsidered. In this paper, by considering the preferred axis in the CMB parity violation, we find that it coincides with the preferred axes in CMB quadrupole and CMB octopole, and they all align with the direction of the CMB kinematic dipole. In addition, the preferred directions in the velocity flows, quasar alignment, anisotropy of the cosmic acceleration, the handedness of spiral galaxies, and the angular distribution of the fine-structu...
Classical and quantum cosmology
Calcagni, Gianluca
2017-01-01
This comprehensive textbook is devoted to classical and quantum cosmology, with particular emphasis on modern approaches to quantum gravity and string theory and on their observational imprint. It covers major challenges in theoretical physics such as the big bang and the cosmological constant problem. An extensive review of standard cosmology, the cosmic microwave background, inflation and dark energy sets the scene for the phenomenological application of all the main quantum-gravity and string-theory models of cosmology. Born of the author's teaching experience and commitment to bridging the gap between cosmologists and theoreticians working beyond the established laws of particle physics and general relativity, this is a unique text where quantum-gravity approaches and string theory are treated on an equal footing. As well as introducing cosmology to undergraduate and graduate students with its pedagogical presentation and the help of 45 solved exercises, this book, which includes an ambitious bibliography...
Cosmology and particle physics
Turner, Michael S.
1988-01-01
The interplay between cosmology and elementary particle physics is discussed. The standard cosmology is reviewed, concentrating on primordial nucleosynthesis and discussing how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is discussed, showing how a scenario in which the B-, C-, and CP-violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and for the present baryon-to-photon ratio. It is shown how the very early dynamical evolution of a very weakly coupled scalar field which is initially displaced from the minimum of its potential may explain a handful of very fundamental cosmological facts which are not explained by the standard cosmology.
Verde, L
2013-01-01
This is the summary of two lectures that aim to give an overview of cosmology. I will not try to be too rigorous in derivations, nor to give a full historical overview. The idea is to provide a "taste" of cosmology and some of the interesting topics it covers. The standard cosmological model is presented and I highlight the successes of cosmology over the past decade or so. Keys to the development of the standard cosmological model are observations of the cosmic microwave background and of large-scale structure, which are introduced. Inflation and dark energy and the outlook for the future are also discussed. Slides from the lectures are available from the school website: physicschool.web.cern.ch/PhysicSchool/CLASHEP/CLASHEP2011/.
Coatings on Atacama Desert Basalt: A Possible Analog for Coatings on Gusev Plains Basalt
Sutter, B.; Golden, D. C.; Amundson, R.; Chong-Diaz, G.; Ming, D. W.
2007-01-01
Surface coatings on Gusev Plains basalt have been observed and may contain hematite and nanophase Fe-oxides along with enrichments in P, S, Cl, and K relative to the underlying rock. The Gusev coatings may be derived from the dissolution of adhering soil and/or parent rock along with the addition of S and Cl from outside sources. Transient water for dissolution could be sourced from melting snow during periods of high obliquity, acid fog, and/or ground water (Haskin et al., 2005). Coatings on basalt in the hyper-arid (less than 2mm y(sup -1)) Atacama Desert may assist in understanding the chemistry, mineralogy and formation mechanisms of the Gusev basalt coatings. The Atacama Desert climate is proposed to be analogous to a paleo-Mars climate that was characterized by limited aqueous activity when the Gusev coatings could have formed. The objectives of this work are to (i) determine the chemical nature and extent of surface coatings on Atacama Desert basalt, and (ii) assess coating formation mechanisms in the Atacama Desert. Preliminary backscattered electron imaging of Atacama basalt thin-sections indicated that the coatings are as thick as 20 m. The boundary between the coating and the basalt labradorite, ilmenite, and augite grains was abrupt indicating that the basalt minerals underwent no chemical dissolution. The Atacama coatings have been added to the basalt instead of being derived from basalt chemical weathering. Semi-quantitative energy dispersive spectroscopy shows the coatings to be chemically homogeneous. The coating is depleted in Ca (0.9 wt% CaO) and enriched in K (1.3 wt.% K2O) and Si (69.1 wt.% SiO2) relative to the augite and labradorite grains. A dust source enriched in Si (e.g., poorly crystalline silica) and K and depleted in Ca appears to have been added to the basalt surface. Unlike the Gusev coatings, no P, S, and Cl enrichment was observed. However, Fe (3.2 wt.% FeO) was present in the Atacama coatings suggesting the present of Fe
CHIPS: The Cosmological HI Power Spectrum Estimator
Trott, Cathryn M; Procopio, Pietro; Wayth, Randall B; Mitchell, Daniel A; McKinley, Benjamin; Tingay, Steven J; Barry, N; Beardsley, A P; Bernardi, G; Bowman, Judd D; Briggs, F; Cappallo, R J; Carroll, P; de Oliveira-Costa, A; Dillon, Joshua S; Ewall-Wice, A; Feng, L; Greenhill, L J; Hazelton, B J; Hewitt, J N; Hurley-Walker, N; Johnston-Hollitt, M; Jacobs, Daniel C; Kaplan, D L; Kim, HS; Lenc, E; Line, J; Loeb, A; Lonsdale, C J; Morales, M F; Morgan, E; Neben, A R; Thyagarajan, Nithyanandan; Oberoi, D; Offringa, A R; Ord, S M; Paul, S; Pober, J C; Prabu, T; Riding, J; Shankar, N Udaya; Sethi, Shiv K; Srivani, K S; Subrahmanyan, R; Sullivan, I S; Tegmark, M; Webster, R L; Williams, A; Williams, C L; Wu, C; Wyithe, J S B
2016-01-01
Detection of the cosmological neutral hydrogen signal from the Epoch of Reionization, and estimation of its basic physical parameters, is the principal scientific aim of many current low-frequency radio telescopes. Here we describe the Cosmological HI Power Spectrum Estimator (CHIPS), an algorithm developed and implemented with data from the Murchison Widefield Array (MWA), to compute the two-dimensional and spherically-averaged power spectrum of brightness temperature fluctuations. The principal motivations for CHIPS are the application of realistic instrumental and foreground models to form the optimal estimator, thereby maximising the likelihood of unbiased signal estimation, and allowing a full covariant understanding of the outputs. CHIPS employs an inverse-covariance weighting of the data through the maximum likelihood estimator, thereby allowing use of the full parameter space for signal estimation ("foreground suppression"). We describe the motivation for the algorithm, implementation, application to ...
Odhner, Jefferson E.
2016-07-01
Holographic optical elements (HOEs) work on the principal of diffraction and can in some cases replace conventional optical elements that work on the principal of refraction. An HOE can be thinner, lighter, can have more functionality, and can be lower cost than conventional optics. An HOE can serve as a beam splitter, spectral filter, mirror, and lens all at the same time. For a single wavelength system, an HOE can be an ideal solution but they have not been widely accepted for multispectral systems because they suffer from severe chromatic aberration. A refractive optical system also suffers from chromatic aberration but it is generally not as severe. To color correct a conventional refractive optical system, a flint glass and a crown glass are placed together such that the color dispersion of the flint and the crown cancel each other out making an achromatic lens (achromat) and the wavelengths all focus to the same point. The color dispersion of refractive lenses and holographic lenses are opposite from each other. In a diffractive optical system, long wavelengths focus closer (remember for HOEs: RBM "red bends more") than nominal focus while shorter wavelengths focus further out. In a refractive optical system, it is just the opposite. For this reason, diffractives can be incorporated into a refractive system to do the color correction and often cut down on the number of optical elements used [1.]. Color correction can also be achieved with an all-diffractive system by combining a holographic optical element with its conjugate. In this way the color dispersion of the first holographic optical element can be cancelled by the color dispersion of the second holographic optic. It is this technique that will be exploited in this paper to design a telescope made entirely of holographic optical elements. This telescope could be more portable (for field operations) the same technique could be used to make optics light enough for incorporation into a UAV.
Precision cosmology with time delay lenses: high resolution imaging requirements
Meng, Xiao-Lei; Agnello, Adriano; Auger, Matthew W; Liao, Kai; Marshall, Philip J
2015-01-01
Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as "Einstein Rings" in high resolution images. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope $\\gamma'$ of the...
A green observatory in the Chilean Atacama desert
Ramolla, Michael; Westhues, Christian; Hackstein, Moritz; Haas, Martin; Hodapp, Klaus; Lemke, Roland; Barr Domínguez, Angie; Chini, Rolf; Murphy, Miguel
2016-08-01
Since 2007, the Ruhr-Universität Bochum (RUB) in Germany and Universidad Católica del Norte (UCN) in Chile jointly operate the Universitätssternwarte der Ruhr-Universität Bochum (USB), which is located in direct neighborhood of the future E-ELT of ESO. It is the only observatory powered exclusively by solar panels and wind turbines. Excess power is stored in batteries that allow uninterrupted operation even in windless nights. The scientific equipment consists of three robotic optical telescopes with apertures ranging from 15 cm (RoBoTT) over 25 cm (BESTII) to 40 cm (BMT) and one 80 cm (IRIS) infra-red telescope. The optical telescopes are equipped with Johnson and Sloan broad band filters together with a large number of narrow and intermediate bands. In the infrared, J,H and K filters are available, accompanied by several narrow bands near the K band wavelength. The second Nasmyth focus in the 80 cm telescope feeds a high resolution echelle spectrograph similar to the FEROS instrument of ESO. This variety of instruments has evolved from different collaborations, i.e. with the University of Hawaii (IfA) in the USA, which provided the near-infrared-camera of the IRIS telescope, or with the Deutsches Zentrum für Luft- und Raumfahrt (DLR) in Germany, which provided the BESTII telescope. The highly automatized processes on all telescopes enable a single person to run the whole facility, providing the high cost efficiency required for an university observatory. The excellent site conditions allow projects that require daily observations of astronomical objects over epochs of several months or years. Here we report on such studies of young stellar objects from the Bochum Galactic Disk Survey, the multiplicity of stars, quasar variability or the hunt for exo-planets.
Kehagias, A.; Riotto, A.
2016-05-01
Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.
Energy Technology Data Exchange (ETDEWEB)
Kehagias, A. [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece); Riotto, A. [Department of Theoretical Physics,24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland); Center for Astroparticle Physics (CAP),24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland)
2016-05-25
Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.
Nojiri, S.; Odintsov, S. D.; Oikonomou, V. K.
2016-06-01
We combine the unimodular gravity and mimetic gravity theories into a unified theoretical framework, which is proposed to provide a suggestive proposal for a framework that may assist in the discussion and search for a solution to the cosmological constant problem and the dark matter issue. After providing the formulation of the unimodular mimetic gravity and investigating all the new features that the vacuum unimodular gravity implies, by using the underlying reconstruction method, we realize some well known cosmological evolutions, with some of these being exotic for the ordinary Einstein-Hilbert gravity. Specifically we provide the vacuum unimodular mimetic gravity description of the de Sitter cosmology and of the perfect fluid with constant equation of state cosmology. As we demonstrate, these cosmologies can be realized by vacuum mimetic unimodular gravity, without the existence of any matter fluid source. Moreover, we investigate how cosmologically viable cosmologies, which are compatible with the recent observational data, can be realized by the vacuum unimodular mimetic gravity. Since in some cases, a graceful exit from inflation problem might exist, we provide a qualitative description of the mechanism that can potentially generate the graceful exit from inflation in these theories, by searching for the unstable de Sitter solutions in the context of unimodular mimetic theories of gravity.
ALMA telescope reaches new heights
2009-09-01
the electromagnetic spectrum. Light at these wavelengths comes from some of the coldest, but also from some of the most distant objects in the cosmos. These include cold clouds of gas and dust where new stars are being born and remote galaxies towards the edge of the observable universe. The Universe is relatively unexplored at submillimetre wavelengths, as the telescopes need extremely dry atmospheric conditions, such as those at Chajnantor, and advanced detector technology. More information The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ESO is the European partner in ALMA. ALMA, the largest astronomical project in existence, is a revolutionary telescope, comprising an array of 66 giant 12-metre and 7-metre diameter antennas observing at millimetre and submillimetre wavelengths. ALMA will start scientific observations in 2011. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a
Magnetogenesis in bouncing cosmology
Qian, Peng; Cai, Yi-Fu; Easson, Damien A.; Guo, Zong-Kuan
2016-10-01
We consider the process of magnetogenesis in the context of nonsingular bounce cosmology. We show that large primordial magnetic fields can be generated during contraction without encountering strong coupling and backreaction issues. The fields may seed large-scale magnetic fields with observationally interesting strengths. This result leads to a theoretical constraint on the relation of the energy scale of the bounce cosmology to the number of effective e -foldings of the contracting phase in the case of scale invariance for the power spectrum of primordial magnetic fields. We show that this constraint can be satisfied in a sizable region of the parameter space for the nonsingular bounce cosmology.
Magnetogenesis in bouncing cosmology
Qian, Peng; Easson, Damien A; Guo, Zong-Kuan
2016-01-01
We consider the process of magnetogenesis in the context of nonsingular bounce cosmology. We show that large primordial magnetic fields can be generated during contraction without encountering strong coupling and backreaction issues. The fields may seed large-scale magnetic fields with observationally interesting strengths. This result leads to a theoretical constraint on the relation of the energy scale of the bounce cosmology to the number of effective e-folding of the contracting phase in the case of scale invariance for the power spectrum of primordial magnetic fields. We show that this constraint can be satisfied in a sizable region of the parameter space for the nonsingular bounce cosmology.
Cosmology, Epistemology and Chaos
Unno, Wasaburo
1992-03-01
We may consider the following three fundamental epistemological questions concerning cosmology. Can cosmology at last understand the origin of the universe? Can computers at last create? Can life be formed at last synthetically? These questions are in some sense related to the liar paradox containing the self-reference and, therefore, may not be answered by recursive processes in finite time. There are, however, various implications such that the chaos may break the trap of the self- reference paradox. In other words, Goedel's incompleteness theorem would not apply to chaos, even if the chaos can be generated by recursive processes. Internal relations among cosmology, epistemology and chaos must be investigated in greater detail
Cosmology Theory and Observations
Dolgov, A D
1998-01-01
The comparison of the Standard Cosmological Model (SCM) with astronomical observations, i.e. theory versus experiment, and with the Minimal Standard Model (MSM) in particle physics, i.e. theory versus theory, is discussed. The main issue of this talk is whether cosmology indicates new physics beyond the standard $SU(3)\\times SU(2)\\times U(1)$ model with minimal particle content. The answer to this question is strongly and definitely "YES". New, yet unknown, physics exists and cosmology presents very weighty arguments in its favor.
Neutrino properties from cosmology
DEFF Research Database (Denmark)
Hannestad, S.
2013-01-01
In recent years precision cosmology has become an increasingly powerful probe of particle physics. Perhaps the prime example of this is the very stringent cosmological upper bound on the neutrino mass. However, other aspects of neutrino physics, such as their decoupling history and possible non......-standard interactions, can also be probed using observations of cosmic structure. Here, I review the current status of cosmological bounds on neutrino properties and discuss the potential of future observations, for example by the recently approved EUCLID mission, to precisely measure neutrino properties....
The Cosmology Large Angular Scale Surveyor (CLASS)
Eimer, Joseph; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Marriage, T.; Mehrle, N.; Miller, A. D.; Miller, N.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.
2014-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is an array of telescopes designed to search for the signature of inflation in the polarization of the Cosmic Microwave Background (CMB). By combining the strategy of targeting large scales (>2 deg) with novel front-end polarization modulation and novel detectors at multiple frequencies, CLASS will pioneer a new frontier in ground-based CMB polarization surveys. In this talk, I give an overview of the CLASS instrument, survey, and outlook on setting important new limits on the energy scale of inflation.
Cosmological Ontology and Epistemology
Page, Don N
2014-01-01
In cosmology, we would like to explain our observations and predict future observations from theories of the entire universe. Such cosmological theories make ontological assumptions of what entities exist and what their properties and relationships are. One must also make epistemological assumptions or metatheories of how one can test cosmological theories. Here I shall propose a Bayesian analysis in which the likelihood of a complete theory is given by the normalized measure it assigns to the observation used to test the theory. In this context, a discussion is given of the trade-off between prior probabilities and likelihoods, of the measure problem of cosmology, of the death of Born's rule, of the Boltzmann brain problem, of whether there is a better principle for prior probabilities than mathematical simplicity, and of an Optimal Argument for the Existence of God.
Gibbons, Gary W
2013-01-01
In this paper we lay down the foundations for a purely Newtonian theory of cosmology, valid at scales small compared with the Hubble radius, using only Newtonian point particles acted on by gravity and a possible cosmological term. We describe the cosmological background which is given by an exact solution of the equations of motion in which the particles expand homothetically with their comoving positions constituting a central configuration. We point out, using previous work, that an important class of central configurations are homogeneous and isotropic, thus justifying the usual assumptions of elementary treatments. The scale factor is shown to satisfy the standard Raychaudhuri and Friedmann equations without making any fluid dynamic or continuum approximations. Since we make no commitment as to the identity of the point particles, our results are valid for cold dark matter, galaxies, or clusters of galaxies. In future publications we plan to discuss perturbations of our cosmological background from the p...
Ryden, Barbara
2017-01-01
This second edition of Introduction to Cosmology is an exciting update of an award-winning textbook. It is aimed primarily at advanced undergraduate students in physics and astronomy, but is also useful as a supplementary text at higher levels. It explains modern cosmological concepts, such as dark energy, in the context of the Big Bang theory. Its clear, lucid writing style, with a wealth of useful everyday analogies, makes it exceptionally engaging. Emphasis is placed on the links between theoretical concepts of cosmology and the observable properties of the universe, building deeper physical insights in the reader. The second edition includes recent observational results, fuller descriptions of special and general relativity, expanded discussions of dark energy, and a new chapter on baryonic matter that makes up stars and galaxies. It is an ideal textbook for the era of precision cosmology in the accelerating universe.
Tensors, relativity, and cosmology
Dalarsson, Mirjana
2015-01-01
Tensors, Relativity, and Cosmology, Second Edition, combines relativity, astrophysics, and cosmology in a single volume, providing a simplified introduction to each subject that is followed by detailed mathematical derivations. The book includes a section on general relativity that gives the case for a curved space-time, presents the mathematical background (tensor calculus, Riemannian geometry), discusses the Einstein equation and its solutions (including black holes and Penrose processes), and considers the energy-momentum tensor for various solutions. In addition, a section on relativistic astrophysics discusses stellar contraction and collapse, neutron stars and their equations of state, black holes, and accretion onto collapsed objects, with a final section on cosmology discussing cosmological models, observational tests, and scenarios for the early universe. This fully revised and updated second edition includes new material on relativistic effects, such as the behavior of clocks and measuring rods in m...
Testing Fractional Action Cosmology
Shchigolev, V K
2015-01-01
The present work deals with a combined test of the so-called Fractional Action Cosmology (FAC) on the example of a specific model obtained by the author earlier. In this model, the effective cosmological term is proportional to the Hubble parameter squared through the so-called kinematic induction. The reason of studying this cosmological model could be explained by its ability to describe two periods of accelerated expansion, that is in agreement with the recent observations and the cosmological inflation paradigm. First of all, we put our model through the theoretical tests that gives a general conception of the influence of the model parameters on its behavior. Then, we obtain some restrictions on the principal parameters of the model, including the fractional index, by means of the observational data. Finally, the cosmography parameters and the observational data compared to the theoretical predictions are presented both analytically and graphically.
Testing fractional action cosmology
Shchigolev, V. K.
2016-08-01
The present work deals with a combined test of the so-called Fractional Action Cosmology (FAC) on the example of a specific model obtained by the author earlier. In this model, the effective cosmological term is proportional to the Hubble parameter squared through the so-called kinematic induction. The reason of studying this cosmological model could be explained by its ability to describe two periods of accelerated expansion, that is in agreement with the recent observations and the cosmological inflation paradigm. First of all, we put our model through the theoretical tests, which gives a general conception of the influence of the model parameters on its behavior. Then, we obtain some restrictions on the principal parameters of the model, including the fractional index, by means of the observational data. Finally, the cosmography parameters and the observational data compared to the theoretical predictions are presented both analytically and graphically.
Cosmological diagrammatic rules
Giddings, Steven B
2010-01-01
A simple set of diagrammatic rules is formulated for perturbative evaluation of ``in-in" correlators, as is needed in cosmology and other nonequilibrium problems. These rules are both intuitive, and efficient for calculational purposes.
Cosmological diagrammatic rules
Energy Technology Data Exchange (ETDEWEB)
Giddings, Steven B. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Sloth, Martin S., E-mail: giddings@physics.ucsb.edu, E-mail: sloth@cern.ch [CERN, Physics Department, Theory Unit, CH-1211 Geneva 23 (Switzerland)
2010-07-01
A simple set of diagrammatic rules is formulated for perturbative evaluation of ''in-in'' correlators, as is needed in cosmology and other nonequilibrium problems. These rules are both intuitive, and efficient for calculational purposes.
Cosmological Probes for Supersymmetry
Directory of Open Access Journals (Sweden)
Maxim Khlopov
2015-05-01
Full Text Available The multi-parameter character of supersymmetric dark-matter models implies the combination of their experimental studies with astrophysical and cosmological probes. The physics of the early Universe provides nontrivial effects of non-equilibrium particles and primordial cosmological structures. Primordial black holes (PBHs are a profound signature of such structures that may arise as a cosmological consequence of supersymmetric (SUSY models. SUSY-based mechanisms of baryosynthesis can lead to the possibility of antimatter domains in a baryon asymmetric Universe. In the context of cosmoparticle physics, which studies the fundamental relationship of the micro- and macro-worlds, the development of SUSY illustrates the main principles of this approach, as the physical basis of the modern cosmology provides cross-disciplinary tests in physical and astronomical studies.
Energy Technology Data Exchange (ETDEWEB)
Townsend, Paul K [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Wohlfarth, Mattias N R [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2004-12-07
For gravity coupled to N scalar fields, with arbitrary potential V, it is shown that all flat (homogeneous and isotropic) cosmologies correspond to geodesics in an (N + 1)-dimensional 'augmented' target space of Lorentzian signature (1, N), timelike if V > 0, null if V = 0 and spacelike if V < 0. Accelerating cosmologies correspond to timelike geodesics that lie within an 'acceleration subcone' of the 'lightcone'. Non-flat (k = {+-}1) cosmologies are shown to evolve as projections of geodesic motion in a space of dimension N + 2, of signature (1, N + 1) for k = -1 and signature (2, N) for k = +1. This formalism is illustrated by cosmological solutions of models with an exponential potential, which are comprehensively analysed; the late-time behaviour for other potentials of current interest is deduced by comparison.
Holland, Jonathan
2014-01-01
A new approach to cosmology and space-time is developed, which emphasizes the description of the matter degrees of freedom of Einstein's theory of gravity by a family of K\\"ahler-Einstein Fano manifolds.
Cosmological Probes for Supersymmetry
Khlopov, Maxim
2015-01-01
The multi-parameter character of supersymmetric dark-matter models implies the combination of their experimental studies with astrophysical and cosmological probes. The physics of the early Universe provides nontrivial effects of non-equilibrium particles and primordial cosmological structures. Primordial black holes (PBHs) are a profound signature of such structures that may arise as a cosmological consequence of supersymmetric (SUSY) models. SUSY-based mechanisms of baryosynthesis can lead to the possibility of antimatter domains in a baryon asymmetric Universe. In the context of cosmoparticle physics, which studies the fundamental relationship of the micro- and macro-worlds, the development of SUSY illustrates the main principles of this approach, as the physical basis of the modern cosmology provides cross-disciplinary tests in physical and astronomical studies.
Solomon, Adam R
2015-01-01
The accelerating expansion of the Universe poses a major challenge to our understanding of fundamental physics. One promising avenue is to modify general relativity and obtain a new description of the gravitational force. Because gravitation dominates the other forces mostly on large scales, cosmological probes provide an ideal testing ground for theories of gravity. In this thesis, we describe two complementary approaches to the problem of testing gravity using cosmology. In the first part, we discuss the cosmological solutions of massive gravity and its generalisation to a bimetric theory. These theories describe a graviton with a small mass, and can potentially explain the late-time acceleration in a technically-natural way. We describe these self-accelerating solutions and investigate the cosmological perturbations in depth, beginning with an investigation of their linear stability, followed by the construction of a method for solving these perturbations in the quasistatic limit. This allows the predictio...
Building Cosmological Frozen Stars
Kastor, David
2016-01-01
Janis-Newman-Winicour (JNW) spacetimes generalize the Schwarzschild solution to include a massless scalar field. Although suffering from naked singularities, they share the `frozen star' features of Schwarzschild black holes. Cosmological versions of the JNW spacetimes were discovered some time ago by Husain, Martinez and Nunez and by Fonarev. Unlike Schwarzschild-deSitter black holes, these solutions are dynamical, and the scarcity of exact solutions for dynamical black holes in cosmological backgrounds motivates their further study. Here we show how the cosmological JNW spacetimes can be built, starting from simpler, static, higher dimensional, vacuum `JNW brane' solutions via two different generalized dimensional reduction schemes that together cover the full range of JNW parameter space. Cosmological versions of a BPS limit of charged dilaton black holes are also known. JNW spacetimes represent a different limiting case of the charged, dilaton black hole family. We expect that understanding this second da...
4MOST: 4-metre Multi-Object Spectroscopic Telescope
de Jong, Roelof S.; Barden, Sam; Bellido-Tirado, Olga; Brynnel, Joar; Chiappini, Cristina; Depagne, Éric; Haynes, Roger; Johl, Diana; Phillips, Daniel P.; Schnurr, Olivier; Schwope, Axel D.; Walcher, Jakob; Bauer, Svend M.; Cescutti, Gabriele; Cioni, Maria-Rosa L.; Dionies, Frank; Enke, Harry; Haynes, Dionne M.; Kelz, Andreas; Kitaura, Francisco S.; Lamer, Georg; Minchev, Ivan; Müller, Volker; Nuza, Sebastián. E.; Olaya, Jean-Christophe; Piffl, Tilmann; Popow, Emil; Saviauk, Allar; Steinmetz, Matthias; Ural, Uǧur; Valentini, Monica; Winkler, Roland; Wisotzki, Lutz; Ansorge, Wolfgang R.; Banerji, Manda; Gonzalez Solares, Eduardo; Irwin, Mike; Kennicutt, Robert C.; King, David M. P.; McMahon, Richard; Koposov, Sergey; Parry, Ian R.; Sun, Xiaowei; Walton, Nicholas A.; Finger, Gert; Iwert, Olaf; Krumpe, Mirko; Lizon, Jean-Louis; Mainieri, Vincenzo; Amans, Jean-Philippe; Bonifacio, Piercarlo; Cohen, Matthieu; François, Patrick; Jagourel, Pascal; Mignot, Shan B.; Royer, Frédéric; Sartoretti, Paola; Bender, Ralf; Hess, Hans-Joachim; Lang-Bardl, Florian; Muschielok, Bernard; Schlichter, Jörg; Böhringer, Hans; Boller, Thomas; Bongiorno, Angela; Brusa, Marcella; Dwelly, Tom; Merloni, Andrea; Nandra, Kirpal; Salvato, Mara; Pragt, Johannes H.; Navarro, Ramón; Gerlofsma, Gerrit; Roelfsema, Ronald; Dalton, Gavin B.; Middleton, Kevin F.; Tosh, Ian A.; Boeche, Corrado; Caffau, Elisabetta; Christlieb, Norbert; Grebel, Eva K.; Hansen, Camilla J.; Koch, Andreas; Ludwig, Hans-G.; Mandel, Holger; Quirrenbach, Andreas; Sbordone, Luca; Seifert, Walter; Thimm, Guido; Helmi, Amina; trager, Scott C.; Bensby, Thomas; Feltzing, Sofia; Ruchti, Gregory; Edvardsson, Bengt; Korn, Andreas; Lind, Karin; Boland, Wilfried; Colless, Matthew; Frost, Gabriella; Gilbert, James; Gillingham, Peter; Lawrence, Jon; Legg, Neville; Saunders, Will; Sheinis, Andrew; Driver, Simon; Robotham, Aaron; Bacon, Roland; Caillier, Patrick; Kosmalski, Johan; Laurent, Florence; Richard, Johan
2014-01-01
4MOST is a wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of the European Southern Observatory (ESO). Its main science drivers are in the fields of galactic archeology, high-energy physics, galaxy evolution and cosmology. 4MOST will in particular p
Accelerating Cosmologies from Compactification
Townsend, P K; Townsend, Paul K.; Wohlfarth, Mattias N.R.
2003-01-01
A solution of the (4+n)-dimensional vacuum Einstein equations is found for which spacetime is compactified on a compact hyperbolic manifold of time-varying volume to a flat four-dimensional FLRW cosmology undergoing accelerated expansion in Einstein conformal frame. This shows that the `no-go' theorem forbidding acceleration in `standard' (time-independent) compactifications of string/M-theory does not apply to `cosmological' (time-dependent) hyperbolic compactifications.
Classification of cosmological milestones
Fernández-Jambrina, L
2006-01-01
In this paper causal geodesic completeness of FLRW cosmological models is analysed in terms of generalised power expansions of the scale factor in coordinate time. The strength of the found singularities is discussed following the usual definitions due to Tipler and Krolak. It is shown that while classical cosmological models are both timelike and lightlike geodesically incomplete, certain observationally alllowed models which have been proposed recently are lightlike geodesically complete.
Directory of Open Access Journals (Sweden)
Daywitt W. C.
2009-04-01
Full Text Available Both the big-bang and the quasi-steady-state cosmologies originate in some type of Planck state. This paper presents a new cosmological theory based on the Planck- vacuum negative-energy state, a state consisting of a degenerate collection of negative- energy Planck particles. A heuristic look at the Einstein field equation provides a con- vincing argument that such a vacuum state could provide a theoretical explanation for the visible universe.
Relativistic cosmological hydrodynamics
Hwang, J
1997-01-01
We investigate the relativistic cosmological hydrodynamic perturbations. We present the general large scale solutions of the perturbation variables valid for the general sign of three space curvature, the cosmological constant, and generally evolving background equation of state. The large scale evolution is characterized by a conserved gauge invariant quantity which is the same as a perturbed potential (or three-space curvature) in the comoving gauge.
Redundant Array Configurations for 21 cm Cosmology
Dillon, Joshua S
2016-01-01
Realizing the potential of 21 cm tomography to statistically probe the intergalactic medium before and during the Epoch of Reionization requires large telescopes and precise control of systematics. Next-generation telescopes are now being designed and built to meet these challenges, drawing lessons from first-generation experiments that showed the benefits of densely packed, highly redundant arrays--in which the same mode on the sky is sampled by many antenna pairs--for achieving high sensitivity, precise calibration, and robust foreground mitigation. In this work, we focus on the Hydrogen Epoch of Reionization Array (HERA) as an interferometer with a dense, redundant core designed following these lessons to be optimized for 21 cm cosmology. We show how modestly supplementing or modifying a compact design like HERA's can still deliver high sensitivity while enhancing strategies for calibration and foreground mitigation. In particular, we compare the imaging capability of several array configurations, both ins...
Cosmological inference using gravitational wave observations alone
Del Pozzo, Walter; Messenger, Chris
2015-01-01
Gravitational waves emitted during the coalescence of binary neutron star systems are self-calibrating signals. As such they can provide a direct measurement of the luminosity distance to a source without the need for a cosmic distance scale ladder. In general, however, the corresponding redshift measurement needs to be obtained electromagnetically since it is totally degenerate with the total mass of the system. Nevertheless, recent Fisher matrix studies has shown that if information about the equation of state of the neutron stars is available, it is indeed possible to extract redshift information from the gravitational wave signal alone. Therefore, measuring the cosmological parameters in pure gravitational wave fashion is possible. Furthermore, the huge number of sources potentially observable by the Einstein Telescope has led to speculations that the gravitational wave measurement is potentially competitive with traditional methods. The Einstein telescope is a conceptual study for a third generation grav...
Building cosmological frozen stars
Kastor, David; Traschen, Jennie
2017-02-01
Janis–Newman–Winicour (JNW) solutions generalize Schwarzschild to include a massless scalar field. While they share the familiar infinite redshift feature of Schwarzschild, they suffer from the presence of naked singularities. Cosmological versions of JNW spacetimes were discovered some years ago, in the most general case, by Fonarev. Fonarev solutions are also plagued by naked singularities, but have the virtue, unlike e.g. Schwarzschild–deSitter, of being dynamical. Given that exact dynamical cosmological black hole solutions are scarce, Fonarev solutions merit further study. We show how Fonarev solutions can be obtained via generalized dimensional reduction from simpler static vacuum solutions. These results may lead towards constructions of actual dynamical cosmological black holes. In particular, we note that cosmological versions of extremal charged dilaton black holes are known. JNW spacetimes represent a different limiting case of the family of charged dilaton black holes, which have been important in the context of string theory, and better understanding their cosmological versions of JNW spacetimes thus provides a second data point towards finding cosmological versions of the entire family.
Cosmological perturbations in teleparallel Loop Quantum Cosmology
Haro, Jaime
2013-01-01
Cosmological perturbations in Loop Quantum Cosmology (LQC) could be studied from two totally different ways. The first one, called holonomy corrected LQC, is performed in the Hamiltonian framework, where the Asthekar connection is replaced by a suitable sinus function (holonomy correction), in order to have a well-defined quantum analogue. The alternative approach is based in the fact that isotropic LQC could be also obtained as a particular case of teleparallel $F(T)$ gravity (teleparallel LQC). Then, working in the Lagrangian framework and using the well-know perturbation equations in $F(T)$ gravity, we have obtained, in teleparallel LQC, the equations for scalar and tensor perturbations, and the corresponding Mukhanov-Sasaki equations. For scalar perturbations, our equation only differs from the one obtained by holonomy corrections in the velocity of sound, leading both formulations, essentially to the same scale invariant power spectrum when a matter-dominated universe is considered. However for tensor pe...
String cosmology versus standard and inflationary cosmology
Gasperini, M
2000-01-01
This paper presents a review of the basic, model-independent differences between the pre-big bang scenario, arising naturally in a string cosmology context, and the standard inflationary scenario. We use an unconventional approach in which the introduction of technical details is avoided as much as possible, trying to focus the reader's attention on the main conceptual aspects of both scenarios. The aim of the paper is not to conclude in favour either of one or of the other scenario, but to raise questions that are left to the reader's meditation. Warnings: the paper does not contain equations, and is not intended as a complete review of all aspects of string cosmology.
Exploring Bouncing Cosmologies with Cosmological Surveys
Cai, Yi-Fu
2014-01-01
In light of the recent observational data coming from the sky we have two significant directions in the field of theoretical cosmology recently. First, we are now able to make use of present observations, such as the Planck and BICEP2 data, to examine theoretical predictions from the standard inflationary $\\Lambda$CDM which were made decades of years ago. Second, we can search for new cosmological signatures as a way to explore physics beyond the standard cosmic paradigm. In particular, a subset of early universe models admit a nonsingular bouncing solution that attempts to address the issue of the big bang singularity. These models have achieved a series of considerable developments in recent years, in particular in their perturbative frameworks, which made brand-new predictions of cosmological signatures that could be visible in current and forthcoming observations. In this article we present two representative paradigms of very early universe physics. The first is the so-called new matter (or matter-ekpyro...
Modern Cosmology: Assumptions and Limits
Hwang, Jai-chan
2012-01-01
Physical cosmology tries to understand the Universe at large with its origin and evolution. Observational and experimental situations in cosmology do not allow us to proceed purely based on the empirical means. We examine in which sense our cosmological assumptions in fact have shaped our current cosmological worldview with consequent inevitable limits. Cosmology, as other branches of science and knowledge, is a construct of human imagination reflecting the popular belief system of the era. The question at issue deserves further philosophic discussions. In Whitehead's words, "philosophy, in one of its functions, is the critic of cosmologies". (Whitehead 1925)
Modern Cosmology: Assumptions and Limits
Hwang, Jai-Chan
2012-06-01
Physical cosmology tries to understand the Universe at large with its origin and evolution. Observational and experimental situations in cosmology do not allow us to proceed purely based on the empirical means. We examine in which sense our cosmological assumptions in fact have shaped our current cosmological worldview with consequent inevitable limits. Cosmology, as other branches of science and knowledge, is a construct of human imagination reflecting the popular belief system of the era. The question at issue deserves further philosophic discussions. In Whitehead's words, ``philosophy, in one of its functions, is the critic of cosmologies.'' (Whitehead 1925).
Hacia una fitogeografía histórica del Desierto de Atacama
2011-01-01
El concepto de elemento florístico es fundamental en biogeografía histórica. En este trabajo se revisan los límites que han sido planteados para el Desierto de Atacama en términos florísticos, así como las relaciones fitogeográficas que diferentes autores han propuesto para el área. En un intento por identificar elementos florís-ticos en el Desierto de Atacama, Ia literatura filogenética es revisada e integrada con el conocimiento sobre la distribución de linajes presentes en el Desierto de A...
Silk, Joseph
2008-11-01
The field of cosmology has been transformed since the glorious decades of the 1920's and 1930's when theory and observation converged to develop the current model of the expanding universe. It was a triumph of the theory of general relativity and astronomy. The first revolution came when the nuclear physicists entered the fray. This marked the debut of the hot big bang, in which the light elements were synthesized in the first three minutes. It was soon realised that elements like carbon and iron were synthesized in exploding stars. However helium, as well as deuterium and lithium, remain as George Gamow envisaged, the detritus of the big bang. The climax arrived with one of the most remarkable discoveries of the twentieth century, the cosmic microwave background radiation, in 1964. The fossil glow turned out to have the spectrum of an ideal black body. One could not imagine a stronger confirmation of the hot and dense origin of the universe. This discovery set the scene for the next major advance. It was now the turn of the particle physicists, who realized that the energies attained near the beginning of the universe, and unachievable in any conceivable terrestrial accelerator, provided a unique testing ground for theories of grand unification of the fundamental forces. This led Alan Guth and Andrei Linde in 1980 to propose the theory of inflation, which solved outstanding puzzles of the big bang. One could now understand why the universe is so large and homogeneous, and the origin of the seed fluctuations that gave rise to large-scale structure. A key prediction was that the universe should have Euclidean geometry, now verified to a precision of a few percent. Modern cosmology is firmly embedded in particle physics. It merits a text written by a particle physicist who can however appreciate the contributions of astronomy that provide the foundation and infrastructure for the theory of the expanding universe. There are now several such texts available. The most
The Cosmology Large Angular Scale Surveyor (CLASS) Telescope Architecture
Chuss, David T.; Ali, Aamir; Amiri, Mandana; Appel, John W.; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Colazo, Felipe; Crowe, Erik; Denis, Kevin L.; Dunner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Hilton, Gene; Hinshaw, Gary F.; Huang, Caroline; Irwin, Kent; Jones, Glenn; Karakla, John; Kogut, Alan J.; Larson, David; Limon, Michele; Lowry, Lindsay; Marriage, Tobias; Mehrle, Nicholas; Stevenson, Thomas; Miller, Nathan J.; Moseley, Samuel H.; U-Yen, Kongpop; Wollack, Edward
2014-01-01
We describe the instrument architecture of the Johns Hopkins University-led CLASS instrument, a groundbased cosmic microwave background (CMB) polarimeter that will measure the large-scale polarization of the CMB in several frequency bands to search for evidence of inflation.
Inhomogeneous anisotropic cosmology
Kleban, Matthew; Senatore, Leonardo
2016-10-01
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with ``flat'' (including toroidal) and ``open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are ``flat'' or ``open''. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with ``flat'' or ``open'' topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.
Conceptual Problems in Cosmology
Vieira, F J Amaral
2011-01-01
In this essay a critical review of present conceptual problems in current cosmology is provided from a more philosophical point of view. In essence, a digression on how could philosophy help cosmologists in what is strictly their fundamental endeavor is presented. We start by recalling some examples of enduring confrontations among philosophers and physicists on what could be contributed by the formers to the day-time striving of the second ones. Then, a short review of the standard model Friedmann-Lema\\^itre-Robertson-Walter (FLRW) of cosmology is given. It seems apparent that cosmology is living a golden age with the advent of observations of high precision. Nonetheless, a critical revisiting of the direction in which it should go on appears also needed, for misconcepts like "quantum backgrounds for cosmological classical settings" and "quantum gravity unification" have not been properly constructed up-to-date. Thus, knowledge-building in cosmology, more than in any other field, should begin with visions of...
Thermal Tachyacoustic Cosmology
Agarwal, Abhineet
2014-01-01
An intriguing possibility that can address pathologies in both early universe cosmology (i.e. the horizon problem) and quantum gravity (i.e. non-renormalizability), is that particles at very high energies and/or temperatures could propagate arbitrarily fast. A concrete realization of this possibility for the early universe is the Tachyacoustic (or Speedy Sound) cosmology, which could also produce a scale-invariant spectrum for scalar cosmological perturbations. Here, we study Thermal Tachyacoustic Cosmology (TTC), i.e. this scenario with thermal initial conditions. We find that a phase transition in the early universe, around the scale of Grand Unified Theories (GUT scale; $T\\sim 10^{15}$ GeV), during which the speed of sound drops by $25$ orders of magnitude within a Hubble time, can fit current CMB observations. We further discuss how production of primordial black holes constrains the cosmological acoustic history, while coupling TTC to Horava-Lifshitz gravity leads to a lower limit on the amplitude of ten...
Thermal tachyacoustic cosmology
Agarwal, Abhineet; Afshordi, Niayesh
2014-08-01
An intriguing possibility that can address pathologies in both early Universe cosmology (i.e. the horizon problem) and quantum gravity (i.e. nonrenormalizability), is that particles at very high energies and/or temperatures could propagate arbitrarily fast. A concrete realization of this possibility for the early Universe is the tachyacoustic (or speedy sound) cosmology, which could also produce a scale-invariant spectrum for scalar cosmological perturbations. Here, we study thermal tachyacoustic cosmology (TTC), i.e. this scenario with thermal initial conditions. We find that a phase transition in the early Universe, around the scale of the grand unified theory (GUT scale; T ˜1015 GeV), during which the speed of sound drops by 25 orders of magnitude within a Hubble time, can fit current CMB observations. We further discuss how production of primordial black holes constrains the cosmological acoustic history, while coupling TTC to Horava-Lifshitz gravity leads to a lower limit on the amplitude of tensor modes (r≳10-3), that are detectable by CMBpol (and might have already been seen by the BICEP-Keck Collaboration).
Inhomogeneous anisotropic cosmology
Energy Technology Data Exchange (ETDEWEB)
Kleban, Matthew [Center for Cosmology and Particle Physics, New York University,4 Washington Place, New York, NY 10003 (United States); Senatore, Leonardo [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,382 Via Pueblo Mall, Stanford, CA 94306 (United States); Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,2575 Sand Hill Road, M/S 29, Menlo Park, CA 94025 (United States)
2016-10-12
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.
El Qhapaqñan entre Atacama y Lípez The Qhapaqñan between Atacama and Lípez
Directory of Open Access Journals (Sweden)
Axel E. Nielsen
2006-12-01
Full Text Available Este trabajo describe tramos de dos ramales del Qhapaqñan que comunican el desierto de Atacama (Región de Antofagasta, Chile con el Altiplano de Lípez (Departamento Potosí, Bolivia. El primero de ellos, que se extiende entre Licancabur y Laguna Chojllas, formaba parte de una vía que vinculaba el nodo inkaico de San Pedro de Atacama con los valles chichas y la Puna argentina. El segundo ingresa a Bolivia por el Portezuelo del Inca procedente de la cuenca del río Salado y se dirige directamente hacia la zona de Chiguana-Colcha K, que parece haber operado como eje del dominio Inka sobre el Altiplano de Lípez. Partiendo de estos datos, se discuten aspectos relacionados con la circulación de bienes, el aprovisionamiento de los contingentes en tránsito y las prácticas rituales asociadas a los pasos montañosos que atraviesa el camino.This paper describes segments of two branches of the Inka road that communicate the Atacama Desert (Antofagasta Region, Chile and the Lípez Altiplano (Department of Potosi, Bolivia. The first, which extends between Licancabur and Laguna Chojllas, was part of a road that connected the Inka node of San Pedro de Atacama with the Chicha Valleys and the Argentine Puna. The second enters Bolivia through Portezuelo del Inca, coming from the Salado River basin, and heads directly toward Chiguana-Colcha K, an area that apparently served as the axis of Inka rule in the Lipez Altiplano. On the basis of these data, we discuss issues related to the circulation of goods, the supply of groups using the tampu system, and the ritual practices associated with the mountain passes along the road.
Axions : Theory and Cosmological Role
Kawasaki, Masahiro; Nakayama, Kazunori
2013-01-01
We review recent developments on axion cosmology. Topics include : axion cold dark matter, axions from topological defects, axion isocurvature perturbation and its non-Gaussianity and axino/saxion cosmology in supersymmetric axion model.
Cosmological Constraints From Weak Lensing Peak Statistics With CFHT Stripe-82 Survey
Liu, Xiangkun; Li, Ran; Shan, Huanyuan; Wang, Qiao; Fu, Liping; Fan, Zuhui; Kneib, Jean-Paul; Leauthaud, Alexie; Van Waerbeke, Ludovic; Makler, Martin; Moraes, Bruno; Erben, Thomas; Charbonnier, Aldée
2014-01-01
We derived constraints on cosmological parameters using weak lensing peak statistics measured on the $\\sim130~\\rm{deg}^2$ of the Canada-France-Hawaii Telescope Stripe82 Survey (CS82). This analysis, based on a fast GPU code, demonstrates the feasibility of using peak statistics in cosmological studies. For our measurements, we considered peaks with signal-to-noise ratio in the range of $\
Interacting dark energy models in Cosmology and large-scale structure observational tests
Rafael José França Marcondes
2016-01-01
Modern Cosmology offers us a great understanding of the universe with striking precision, made possible by the modern technologies of the newest generations of telescopes. The standard cosmological model, however, is not absent of theoretical problems and open questions. One possibility that has been put forward is the existence of a coupling between dark sectors. The idea of an interaction between the dark components could help physicists understand why we live in an epoch of the universe wh...
Cosmological Perturbations in Antigravity
Oltean, Marius
2014-01-01
We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely-signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the Standard Model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically-complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity", during each successive transition from a Big Crunch to a Big Bang. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, its cosmological solutions are stable at the perturbative level.
General relativity and cosmology
Bucher, Martin
2015-01-01
This year marks the hundredth anniversary of Einstein's 1915 landmark paper "Die Feldgleichungen der Gravitation" in which the field equations of general relativity were correctly formulated for the first time, thus rendering general relativity a complete theory. Over the subsequent hundred years physicists and astronomers have struggled with uncovering the consequences and applications of these equations. This contribution, which was written as an introduction to six chapters dealing with the connection between general relativity and cosmology that will appear in the two-volume book "One Hundred Years of General Relativity: From Genesis and Empirical Foundations to Gravitational Waves, Cosmology and Quantum Gravity," endeavors to provide a historical overview of the connection between general relativity and cosmology, two areas whose development has been closely intertwined.
Bojowald, Martin
2016-01-01
A cosmological model with two global internal times shows that time reparameterization invariance, and therefore covariance, is not guaranteed by deparameterization. In particular, it is impossible to derive proper-time effective equations from a single deparameterized model if quantum corrections from fluctuations and higher moments are included. The framework of effective constraints shows how proper-time evolution can consistently be defined in quantum cosmological systems, such that it is time reparameterization invariant when compared with other choices of coordinate time. At the same time, it allows transformations of moment corrections in different deparameterizations of the same model, indicating partial time reparameterization of internal-time evolution. However, in addition to corrections from moments such as quantum fluctuations, also factor ordering corrections may appear. The latter generically break covariance in internal-time formulations. Fluctuation effects in quantum cosmology are therefore ...
Stornaiolo, C
2002-01-01
In this letter we propose the existence of low density black holes and discuss its compatibility with the cosmological observations. The origin of these black holes can be traced back to the collapse of long wavelength cosmological perturbations during the matter dominated era, when the densities are low enough to neglect any internal and thermal pressure. By introducing a threshold density $\\hat{\\rho}$ above which pressure and non-gravitational interactions become effective, we find the highest wavelength for the perturbations that can reach an equilibrium state instead of collapsing to a black hole. The low density black holes introduced here, if they exist, can be observed through weak and strong gravitational lensing effects. Finally we observe that we obtained here a cosmological model which is capable to explain in a qualitative way the void formation together with the value $\\Omega=1$. But we remark that it needs to be improved by considering non spherical symmetric black holes.
Townsend, P K; Townsend, Paul K.; Wohlfarth, Mattias N.R.
2004-01-01
For gravity coupled to N scalar fields with arbitrary potential V, it is shown that all flat (homogeneous and isotropic) cosmologies correspond to geodesics in an (N+1)-dimensional `extended target space' of Lorentzian signature (1,N), timelike if V>0 and spacelike if V<0. Accelerating cosmologies correspond to timelike geodesics that lie within an `acceleration subcone' of the `lightcone'. Non-flat (k=-1,+1) cosmologies are shown to evolve as projections of geodesic motion in a space of dimension N+2, of signature (1,N+1) for k=-1 and signature (2,N) for k=+1. We illustrate these results for various potentials of current interest, including exponential and inverse power potentials.
Bonometto, S A; Musco, I; Mainini, R; Maccio', A V
2014-01-01
Models including an energy transfer from CDM to DE are widely considered in the literature, namely to allow DE a significant high-z density. Strongly Coupled cosmologies assume a much larger coupling between DE and CDM, together with the presence of an uncoupled warm DM component, as the role of CDM is mostly restricted to radiative eras. This allows us to preserve small scale fluctuations even if the warm particle, possibly a sterile neutrino, is quite light, O(100 eV). Linear theory and numerical simulations show that these cosmologies agree with LCDM on supergalactic scales; e.g., CMB spectra are substantially identical. Simultaneously, simulations show that they significantly ease problems related to the properties of MW satellites and cores in dwarfs. SC cosmologies also open new perspectives on early black hole formation, and possibly lead towards unificating DE and inflationary scalar fields.
Tartaglia, Angelo
2015-01-01
Starting from some relevant facts concerning the behaviour of the universe over large scale and time span, the analogy between the geometric approach of General Relativ- ity and the classical description of an elastic strained material continuum is discussed. Extending the elastic deformation approach to four dimensions it is shown that the accelerated expansion of the universe is recovered. The strain field of space-time repro- duces properties similar to the ones ascribed to the dark energy currently called in to explain the accelerated expansion. The strain field in the primordial universe behaves as radiation, but asymptotically it reproduces the cosmological constant. Subjecting the theory to a number of cosmological tests confirms the soundness of the approach and gives an optimal value for the one parameter of the model, i.e. the bulk modulus of the space-time continuum. Finally various aspects of the Strained State Cosmology (SSC) are discussed and contrasted with some non-linear massive gravity theor...
X-ray Clusters of Galaxies as Cosmological Tools
Gioia, Isabella Maria
2009-01-01
This paper was written as part of a book entitled: "Questions of Modern Cosmology - Galileo's Legacy" which is a celebrative book dedicated to Galileo Galilei. The book is published in 2009, the International Year of Astronomy, since it is intended to be a modern tribute to the astronomer who, 400 years ago, first pointed a telescope towards the night sky. The book is written in the form of interviews between the editors and many physicists, astrophysicists and cosmologists from all over the world. The editors engaged in several discussions on the formation and evolution of the Universe with the aim of summarizing the most important and significative advances made by cosmology over the past century and at the beginning of the new millennium. This paper deals with X-ray clusters of galaxies and how they can be used to constrain fundamental cosmological parameters.
Cosmological Reflection of Particle Symmetry
Maxim Khlopov
2016-01-01
The standard model involves particle symmetry and the mechanism of its breaking. Modern cosmology is based on inflationary models with baryosynthesis and dark matter/energy, which involves physics beyond the standard model. Studies of the physical basis of modern cosmology combine direct searches for new physics at accelerators with its indirect non-accelerator probes, in which cosmological consequences of particle models play an important role. The cosmological reflection of particle symmetr...
Brane cosmology in teleparallel gravity
Atazadeh, K
2014-01-01
We consider cosmology of brane-world scenario in the frame work of teleparallel gravity in that way matter is localized on the brane. We show that the cosmology of such branes is different from the standard cosmology in teleparallelism. In particular, we obtain a class of new solutions with a constant five-dimensional radius and cosmologically evolving brane in the context of constant torsion $f(T)$ gravity.
Cervantes-Cota, Jorge L
2014-01-01
We review the role of fluids in cosmology by first introducing them in General Relativity and then applied to a FRW Universe's model. We describe how relativistic and non-relativistic components evolve in the background dynamics. We also introduce scalar fields to show that they are able to yield an inflationary dynamics at very early times (inflation) and late times (quintessence). Then, we proceed to study the thermodynamical properties of the fluids and, lastly, its perturbed kinematics. We make emphasis in the constrictions of parameters by recent cosmological probes.
The Cosmological Mass Function
Monaco, P
1997-01-01
This thesis aims to review the cosmological mass function problem, both from the theoretical and the observational point of view, and to present a new mass function theory, based on realistic approximations for the dynamics of gravitational collapse. Chapter 1 gives a general introduction on gravitational dynamics in cosmological models. Chapter 2 gives a complete review of the mass function theory. Chapters 3 and 4 present the ``dynamical'' mass function theory, based on truncated Lagrangian dynamics and on the excursion set approach. Chapter 5 reviews the observational state-of-the-art and the main applications of the mass function theories described before. Finally, Chapter 6 gives conclusions and future prospects.
2011-01-01
The twentieth century elevated our understanding of the Universe from its early stages to what it is today and what is to become of it. Cosmology is the weapon that utilizes all the scientific tools that we have created to feel less lost in the immensity of our Universe. The standard model is the theory that explains the best what we observe. Even with all the successes that this theory had, two main questions are still to be answered: What is the nature of dark matter and dark energy? This book attempts to understand these questions while giving some of the most promising advances in modern cosmology.
Silk, Joseph
2011-01-01
Horizons of Cosmology: Exploring Worlds Seen and Unseen is the fourth title published in the Templeton Science and Religion Series, in which scientists from a wide range of fields distill their experience and knowledge into brief tours of their respective specialties. In this volume, highly esteemed astrophysicist Joseph Silk explores the vast mysteries and speculations of the field of cosmology in a way that balances an accessible style for the general reader and enough technical detail for advanced students and professionals. Indeed, while the p
Relativistic Cosmology Revisited
Directory of Open Access Journals (Sweden)
Crothers S. J.
2007-04-01
Full Text Available In a previous paper the writer treated of particular classes of cosmological solutions for certain Einstein spaces and claimed that no such solutions exist in relation thereto. In that paper the assumption that the proper radius is zero when the line-element is singular was generally applied. This general assumption is unjustified and must be dropped. Consequently, solutions do exist in relation to the aforementioned types, and are explored herein. The concept of the Big Bang cosmology is found to be inconsistent with General Relativity
2012-01-01
This volume tells of the quest for cosmology as seen by some of the finest cosmologists in the world. It starts with "Galaxy Formation from Start to Finish" and ends with "The First Supermassive Black Holes in the Universe," exploring in between the grand themes of galaxies, the early universe, expansion of the universe, dark matter and dark energy. This up-to-date collection of review articles offers a general introduction to cosmology and is intended for all probing into the profound questions on where we came from and where we are going.
Far Ultraviolot Space Telescope (FAUST)
Bowyer, S.
1988-01-01
The Far Ultraviolet Space Telescope is a compact, wide field-of-view, far ultraviolet instrument designed for observations of extended and point sources of astronomical interest. It was originally used in sounding rocket work by both French and American investigators. The instrument was modified for flight on the space shuttle and flew on the Spacelab 1 mission as a joint effort between the Laboratoire d'Astronomie Spatiale and the University of California, Berkeley. The prime experiment objective of this telescope on the Atmospheric Laboratory Applications and Science (ATLAS 1) NASA mission is to observe faint astronomical sources in the far ultraviolet with sensitivities far higher than previously available. The experiment will cover the 1300 to 1800 A band, which is inaccessible to observers on earth. The observing program during the mission consists of obtaining deep sky images during spacecraft nighttime. The targets will include hot stars and nebulae in our own galaxy, faint diffuse galactic features similar to the cirrus clouds seen by the Infrared Astronomical Satellite (IRAS), large nearby galaxies, nearby clusters of galaxies, and objects of cosmological interest such as quasars and the diffuse far ultraviolet background.
Tree establishment along an ENSO experimental gradient in the Atacama desert
Squeo, F.A.; Holmgren, M.; Jimenez, L.; Alban, L.; Reyes, J.; Gutierrez, J.R.
2007-01-01
Questions: (1) What are the roles of regional climate and plant growth rate for seedling establishment during ENSO rainy pulses along the western coast of South America? (2) What is the water threshold for tree seedling establishment in these arid ecosystems? Location: Atacama Desert, western South
Cosmological dynamical systems
Leon, Genly
2014-01-01
In this book are studied, from the perspective of the dynamical systems, several Universe models. In chapter 1 we give a bird's eye view on cosmology and cosmological problems. Chapter 2 is devoted to a brief review on some results and useful tools from the qualitative theory of dynamical systems. They provide the theoretical basis for the qualitative study of concrete cosmological models. Chapters 1 and 2 are a review of well-known results. Chapters 3, 4, 5 and 6 are devoted to our main results. In these chapters are extended and settled in a substantially different, more strict mathematical language, several results obtained by one of us in arXiv:0812.1013 [gr-qc]; arXiv:1009.0689 [gr-qc]; arXiv:0904.1577[gr-qc]; and arXiv:0909.3571 [hep-th]. In chapter 6, we provide a different approach to the subject discussed in astro-ph/0503478. Additionally, we perform a Poincar\\'e compactification process allowing to construct a global phase space containing all the cosmological information in both finite and infinite...
Indian Academy of Sciences (India)
B B Bhowmik; A Rajput
2004-06-01
Anisotropic Bianchi Type-I cosmological models have been studied on the basis of Lyra's geometry. Two types of models, one with constant deceleration parameter and the other with variable deceleration parameter have been derived by considering a time-dependent displacement field.
Relativistic cosmology; Cosmologia Relativista
Energy Technology Data Exchange (ETDEWEB)
Bastero-Gil, M.
2015-07-01
Relativistic cosmology is nothing but the study of the evolution of our universe expanding from the General Theory of Relativity, which describes the gravitational interaction at any scale and given its character far-reaching is the force that dominate the evolution of the universe. (Author)
Ekpyrotic and Cyclic Cosmology
Lehners, Jean-Luc
2008-01-01
Ekpyrotic and cyclic cosmologies provide theories of the very early and of the very late universe. In these models, the big bang is described as a collision of branes - and thus the big bang is not the beginning of time. Before the big bang, there is an ekpyrotic phase with equation of state w=P/rho >> 1 (where P is the average pressure and rho the average energy density) during which the universe slowly contracts. This phase resolves the standard cosmological puzzles and generates a nearly scale-invariant spectrum of cosmological perturbations containing a significant non-gaussian component. At the same time it produces small-amplitude gravitational waves with a blue spectrum. The dark energy dominating the present-day cosmological evolution is reinterpreted as a small attractive force between our brane and a parallel one. This force eventually induces a new ekpyrotic phase and a new brane collision, leading to the idea of a cyclic universe. This review discusses the detailed properties of these models, thei...
Energy Technology Data Exchange (ETDEWEB)
Sefusatti, Emiliano; /Fermilab /CCPP, New York; Crocce, Martin; Pueblas, Sebastian; Scoccimarro, Roman; /CCPP, New York
2006-04-01
The present spatial distribution of galaxies in the Universe is non-Gaussian, with 40% skewness in 50 h{sup -1} Mpc spheres, and remarkably little is known about the information encoded in it about cosmological parameters beyond the power spectrum. In this work they present an attempt to bridge this gap by studying the bispectrum, paying particular attention to a joint analysis with the power spectrum and their combination with CMB data. They address the covariance properties of the power spectrum and bispectrum including the effects of beat coupling that lead to interesting cross-correlations, and discuss how baryon acoustic oscillations break degeneracies. They show that the bispectrum has significant information on cosmological parameters well beyond its power in constraining galaxy bias, and when combined with the power spectrum is more complementary than combining power spectra of different samples of galaxies, since non-Gaussianity provides a somewhat different direction in parameter space. In the framework of flat cosmological models they show that most of the improvement of adding bispectrum information corresponds to parameters related to the amplitude and effective spectral index of perturbations, which can be improved by almost a factor of two. Moreover, they demonstrate that the expected statistical uncertainties in {sigma}s of a few percent are robust to relaxing the dark energy beyond a cosmological constant.
DEFF Research Database (Denmark)
Skaanes, Thea
2015-01-01
Abstract: This article concerns Hadza cosmology examined through objects, rituals and the Hadza concept of epeme. A brief background to the Hadza and the eldwork that informs this study is followed by a close analysis of three key objects that are central to the argument presented. The objects ar...
Some epistemic questions of cosmology
Grujic, Petar V
2007-01-01
We discuss a number of fundamental aspects of modern cosmological concepts, from the phenomenological, observational, theoretical and epistemic points of view. We argue that the modern cosmology, despite a great advent, in particular in the observational sector, is yet to solve important problems, posed already by the classical times. In particular the stress is put on discerning the scientific features of modern cosmological paradigms from the more speculative ones, with the latter immersed in some aspects deeply into mythological world picture. We finally discuss the principal paradigms, which are present in the modern cosmological studies and evaluate their epistemic merits. KEY WORDS: cosmology, epistemology, methodology, mythology, philosophy of science
Krabbe, A
2000-01-01
The SOFIA telescope as the heart of the observatory is a major technological challenge. I present an overview on the astro-nomical and scientific requirements for such a big airborne observatory and demonstrate the impact of these requirements on the layout of SOFIA, in particular on the telescope design as it is now. Selected components of the telescope will be de-scribed in their context and functionality. The current status of the telescope is presented.
Thirty Meter Telescope Detailed Science Case: 2015
Skidmore, Warren; Fukugawa, Misato; Goswami, Aruna; Hao, Lei; Jewitt, David; Laughlin, Greg; Steidel, Charles; Hickson, Paul; Simard, Luc; Schöck, Matthias; Treu, Tommaso; Cohen, Judith; Anupama, G C; Dickinson, Mark; Harrison, Fiona; Kodama, Tadayuki; Lu, Jessica R; Macintosh, Bruce; Malkan, Matt; Mao, Shude; Narita, Norio; Sekiguchi, Tomohiko; Subramaniam, Annapurni; Tanaka, Masaomi; Tian, Feng; A'Hearn, Michael; Akiyama, Masayuki; Ali, Babar; Aoki, Wako; Bagchi, Manjari; Barth, Aaron; Bhalerao, Varun; Bradac, Marusa; Bullock, James; Burgasser, Adam J; Chapman, Scott; Chary, Ranga-Ram; Chiba, Masashi; Cooray, Asantha; Crossfield, Ian; Currie, Thayne; Das, Mousumi; Dewangan, G C; de Grijs, Richard; Do, Tuan; Dong, Subo; Evslin, Jarah; Fang, Taotao; Fang, Xuan; Fassnacht, Christopher; Fletcher, Leigh; Gaidos, Eric; Gal, Roy; Ghez, Andrea; Giavalisco, Mauro; Grady, Carol A; Greathouse, Thomas; Gogoi, Rupjyoti; Guhathakurta, Puragra; Ho, Luis; Hasan, Priya; Herczeg, Gregory J; Honda, Mitsuhiko; Imanishi, Masa; Inanmi, Hanae; Iye, Masanori; Kamath, U S; Kane, Stephen; Kashikawa, Nobunari; Kasliwal, Mansi; Kirby, Vishal KasliwalEvan; Konopacky, Quinn M; Lepine, Sebastien; Li, Di; Li, Jianyang; Liu, Junjun; Liu, Michael C; Lopez-Rodriguez, Enrigue; Lotz, Jennifer; Lubin, Philip; Macri, Lucas; Maeda, Keiichi; Marchis, Franck; Marois, Christian; Marscher, Alan; Martin, Crystal; Matsuo, Taro; Max, Claire; McConnachie, Alan; McGough, Stacy; Melis, Carl; Meyer, Leo; Mumma, Michael; Muto, Takayuki; Nagao, Tohru; Najita, Joan R; Navarro, Julio; Pierce, Michael; Prochaska, Jason X; Oguri, Masamune; Ojha, Devendra K; Okamoto, Yoshiko K; Orton, Glenn; Otarola, Angel; Ouchi, Masami; Packham, Chris; Padgett, Deborah L; Pandey, Shashi Bhushan; Pilachowsky, Catherine; Pontoppidan, Klaus M; Primack, Joel; Puthiyaveettil, Shalima; Ramirez-Ruiz, Enrico; Reddy, Naveen; Rich, Michael; Richter, Matthew J; Schombert, James; Sen, Anjan Ananda; Shi, Jianrong; Sheth, Kartik; Srianand, R; Tan, Jonathan C; Tanaka, Masayuki; Tanner, Angelle; Tominaga, Nozomu; Tytler, David; U, Vivian; Wang, Lingzhi; Wang, Xiaofeng; Wang, Yiping; Wilson, Gillian; Wright, Shelley; Wu, Chao; Wu, Xufeng; Xu, Renxin; Yamada, Toru; Yang, Bin; Zhao, Gongbo; Zhao, Hongsheng
2015-01-01
The TMT Detailed Science Case describes the transformational science that the Thirty Meter Telescope will enable. Planned to begin science operations in 2024, TMT will open up opportunities for revolutionary discoveries in essentially every field of astronomy, astrophysics and cosmology, seeing much fainter objects much more clearly than existing telescopes. Per this capability, TMT's science agenda fills all of space and time, from nearby comets and asteroids, to exoplanets, to the most distant galaxies, and all the way back to the very first sources of light in the Universe. More than 150 astronomers from within the TMT partnership and beyond offered input in compiling the new 2015 Detailed Science Case. The contributing astronomers represent the entire TMT partnership, including the California Institute of Technology (Caltech), the Indian Institute of Astrophysics (IIA), the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), the National Astronomical Observatory of Japan (NAOJ),...
Auto Adjusting Astronomical Telescope
Directory of Open Access Journals (Sweden)
Rohit R. Ghalsasi
2014-04-01
Full Text Available Astronomical telescope is powerful and basic tool for star or celestial observation. Here we proposed integrated system using Raspberry Pi for auto adjusting astronomical telescope. This integrated circuit helps to control stellar monitoring, stellar targeting, and tracking functions of telescope. Astro compass gives the direction of the celestial objects.
Institute of Scientific and Technical Information of China (English)
1995-01-01
Scientists at the Space Telescope Science Institute,which operates the Hubble Space Telescope,have proposed a new telescope that would have twice the resolution of Hubble at about one-tenth the cost. It would hover seven miles above Earth,dangling below a football-field-size helium balloon
ATST telescope mount: telescope of machine tool
Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans
2012-09-01
The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.
Relativistic Fractal Cosmologies
Ribeiro, Marcelo B
2009-01-01
This article reviews an approach for constructing a simple relativistic fractal cosmology whose main aim is to model the observed inhomogeneities of the distribution of galaxies by means of the Lemaitre-Tolman solution of Einstein's field equations for spherically symmetric dust in comoving coordinates. This model is based on earlier works developed by L. Pietronero and J.R. Wertz on Newtonian cosmology, whose main points are discussed. Observational relations in this spacetime are presented, together with a strategy for finding numerical solutions which approximate an averaged and smoothed out single fractal structure in the past light cone. Such fractal solutions are shown, with one of them being in agreement with some basic observational constraints, including the decay of the average density with the distance as a power law (the de Vaucouleurs' density power law) and the fractal dimension in the range 1 <= D <= 2. The spatially homogeneous Friedmann model is discussed as a special case of the Lemait...
Tsamis, N. C.; Woodard, R. P.
2016-08-01
We study a class of nonlocal, action-based, and purely gravitational models. These models seek to describe a cosmology in which inflation is driven by a large, bare cosmological constant that is screened by the self-gravitation between the soft gravitons that inflation rips from the vacuum. Inflation ends with the Universe poised on the verge of gravitational collapse, in an oscillating phase of expansion and contraction that should lead to rapid reheating when matter is included. After the attainment of a hot, dense Universe the nonlocal screening terms become constant as the Universe evolves through a conventional phase of radiation domination. The onset of matter domination triggers a much smaller antiscreening effect that could explain the current phase of acceleration.
Cosmological extrapolation of MOND
Kiselev, V V
2011-01-01
Regime of MOND, which is used in astronomy to describe the gravitating systems of island type without the need to postulate the existence of a hypothetical dark matter, is generalized to the case of homogeneous distribution of usual matter by introducing a linear dependence of the critical acceleration on the size of region under consideration. We show that such the extrapolation of MOND in cosmology is consistent with both the observed dependence of brightness on the redshift for type Ia supernovae and the parameters of large-scale structure of Universe in the evolution, that is determined by the presence of a cosmological constant, the ordinary matter of baryons and electrons as well as the photon and neutrino radiation without any dark matter.
An Improved Cosmological Model
Tsamis, N C
2016-01-01
We study a class of non-local, action-based, and purely gravitational models. These models seek to describe a cosmology in which inflation is driven by a large, bare cosmological constant that is screened by the self-gravitation between the soft gravitons that inflation rips from the vacuum. Inflation ends with the universe poised on the verge of gravitational collapse, in an oscillating phase of expansion and contraction that should lead to rapid reheating when matter is included. After the attainment of a hot, dense universe the nonlocal screening terms become constant as the universe evolves through a conventional phase of radiation domination. The onset of matter domination triggers a much smaller anti-screening effect that could explain the current phase of acceleration.
Steinhardt, Paul Joseph
1995-01-01
Observational tests during the next decade may determine if the evolution of the Universe can be understood from fundamental physical principles, or if special initial conditions, coincidences, and new, untestable physical laws must be invoked. The inflationary model of the Universe is an important example of a predictive cosmological theory based on physical principles. In this talk, we discuss the distinctive fingerprint that inflation leaves on the cosmic microwave background anisotropy. We then suggest a series of five milestone experimental tests of the microwave background which could determine the validity of the inflationary hypothesis within the next decade. The paper is a Review based on a Plenary talk given at the Snowmass Workshop on Particle Astrophysics and Cosmology, 1995 It will appear in the Proceedings edited by E. Kolb and R.Peccei. Software package for computing filter functions and band power estimates available thru world-wide-web at http://dept.physics.upenn.edu/~www/as tro-cosmo/ .
Tolish, Alexander; Wald, Robert M.
2016-08-01
The "memory effect" is the permanent change in the relative separation of test particles resulting from the passage of gravitational radiation. We investigate the memory effect for a general, spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology by considering the radiation associated with emission events involving particle-like sources. We find that if the resulting perturbation is decomposed into scalar, vector, and tensor parts, only the tensor part contributes to memory. Furthermore, the tensor contribution to memory depends only on the cosmological scale factor at the source and observation events, not on the detailed expansion history of the universe. In particular, for sources at the same luminosity distance, the memory effect in a spatially flat FLRW spacetime is enhanced over the Minkowski case by a factor of (1 +z ).
The Cosmological Memory Effect
Tolish, Alexander
2016-01-01
The "memory effect" is the permanent change in the relative separation of test particles resulting from the passage of gravitational radiation. We investigate the memory effect for a general, spatially flat FLRW cosmology by considering the radiation associated with emission events involving particle-like sources. We find that if the resulting perturbation is decomposed into scalar, vector, and tensor parts, only the tensor part contributes to memory. Furthermore, the tensor contribution to memory depends only on the cosmological scale factor at the source and observation events, not on the detailed expansion history of the universe. In particular, for sources at the same luminosity distance, the memory effect in a spatially flat FLRW spacetime is enhanced over the Minkowski case by a factor of $(1 + z)$.
Domènech, Guillem
2016-01-01
From higher dimensional theories, e.g. string theory, one expects the presence of non-minimally coupled scalar fields. We review the notion of conformal frames in cosmology and emphasize their physical equivalence, which holds at least at a classical level. Furthermore, if there is a field, or fields, which dominates the universe, as it is often the case in cosmology, we can use such notion of frames to treat our system, matter and gravity, as two different sectors. On one hand, the gravity sector which describes the dynamics of the geometry and on the other hand the matter sector which has such geometry as a playground. We use this interpretation to build a model where the fact that a curvaton couples to a particular frame metric could leave an imprint in the CMB.
Wormholes in viscous cosmology
Wang, Deng
2016-01-01
We study the wormhole spacetime configurations in bulk viscosity cosmology. Considering three classes of viscous models, i.e., bulk viscosity as a function of Hubble parameter $H$, temperature $T$ and dark energy density $\\rho$, respectively, we obtain nine wormhole solutions. Through the analysis for the anisotropic solutions, we conclude that, to some extent, these three classes of viscous models have very high degeneracy with each other. Subsequently, without the loss of generality, to investigate the traversabilities, energy conditions and stability for the wormhole solution, we study the wormhole solution of the constant redshift function of the viscous $\\omega$CDM model with a constant bulk viscosity coefficient. We obtain the following conclusions: the value of traversal velocity decreases for decreasing bulk viscosity, and the traversal velocity for a traveler depends on not only the wormhole geometry but also the effects of cosmological background evolution; the null energy condition will be violated...
Kadota, K; Kadota, Kenji; Stewart, Ewan D.
2003-01-01
We present a modular cosmology scenario where the difficulties encountered in conventional modular cosmology are solved in a self-consistent manner, with definite predictions to be tested by observation. Notably, the difficulty of the dilaton finding its way to a precarious weak coupling minimum is made irrelevant by having eternal modular inflation at the vacuum supersymmetry breaking scale after the dilaton is stabilised. Neither this eternal inflation nor the subsequent non-slow-roll modular inflation destabilise the dilaton from its precarious minimum due to the low energy scale of the inflation and consequent small back reaction on the dilaton potential. The observed flat CMB spectrum is obtained from fluctuations in the angular component of a modulus near a symmetric point, which are hugely magnified by the roll down of the modulus to Planckian values, allowing them to dominate the final curvature perturbation. We also give precise calculations of the spectral index and its running.
Integrable Cosmological Potentials
Sokolov, V V
2016-01-01
The problem of classification of the Einstein--Friedman cosmological Hamiltonians $H$ with a single scalar inflaton field $\\varphi$ that possess an additional integral of motion polynomial in momenta on the shell of the Friedman constraint $H=0$ is considered. Necessary and sufficient conditions for the existence of first, second, and third degree integrals are derived. These conditions have the form of ODEs for the cosmological potential $V(\\varphi)$. In the case of linear and quadratic integrals we find general solutions of the ODEs and construct the corresponding integrals explicitly. A new wide class of Hamiltonians that possess a cubic integral is derived. The corresponding potentials are represented in a parametric form in terms of the associated Legendre functions. Six families of special elementary solutions are described and sporadic superintegrable cases are discussed.
Rich, James
2009-01-01
The book is aimed at astrophysics students and professional physicists who wish to understand the basics of cosmology and general relativity as well as the observational foundations of the LambdaCDM model of the Universe. The book provides a self-contained introduction to general relativity that is based on the homogeneity and isotropy of the local universe. The simplicity of this space allows general relativity to be presented in a very elementary manner while laying the foundation for the treatment of more complicated problems. The new edition presents the most recent observations, including those of CMB anisotropies by WMAP and of Baryon Acoustic Oscillations by SDSS. Future observational and theoretical challenges for the understanding of dark energy and dark matter are discussed. From 1st edition reviews: "The book provides a comprehensive and thorough explication of current cosmology at a level appropriate for a beginning graduate student or an advanced and motivated undergraduate. ... This is an extrem...
Cosmology with the WFIRST High Latitude Survey
Dore, Olivier
Cosmic acceleration is the most surprising cosmological discovery in many decades. Testing and distinguishing among possible explanations requires cosmological measurements of extremely high precision that probe the full history of cosmic expansion and structure growth. The WFIRST-AFTA mission, as described in the Science Definition Team (SDT) reports (Spergel 2013, 2015), has the ability to improve these measurements by 1-2 orders of magnitude compared to the current state of the art, while simultaneously extending their redshift grasp, greatly improving control of systematic effects, and taking a unified approach to multiple probes that provide complementary physical information and cross-checks of cosmological results. We have assembled a team with the expertise and commitment needed to address the stringent challenges of the WFIRST dark energy program through the Project's formulation phase. After careful consideration, we have elected to address investigations A (Galaxy Redshift Survey) and C (Weak Lensing and Cluster Growth) of the WFIRST SIT NRA with a unified team, because the two investigations are tightly linked at both the technical level and the theoretical modeling level. The imaging and spectroscopic elements of the High Latitude Survey (HLS) will be realized as an integrated observing program, and they jointly impose requirements on instrument and telescope performance, operations, and data transfer. The methods for simulating and interpreting weak lensing and galaxy clustering observations largely overlap, and many members of our team have expertise in both areas. The team PI, Olivier Dore, is a cosmologist with a broad expertise in cosmic microwave background and large scale structures. Yun Wang and Chris Hirata will serve as Lead Co-Investigators for topics A and C, respectively. Many members of our team have been involved with the design and requirements of a dark energy space mission for a decade or more, including the Co-Chair and three
The Cosmological Memory Effect
Tolish, Alexander; Wald, Robert M.
2016-01-01
The "memory effect" is the permanent change in the relative separation of test particles resulting from the passage of gravitational radiation. We investigate the memory effect for a general, spatially flat FLRW cosmology by considering the radiation associated with emission events involving particle-like sources. We find that if the resulting perturbation is decomposed into scalar, vector, and tensor parts, only the tensor part contributes to memory. Furthermore, the tensor contribution to m...
Cosmology and astrophysics 1992
Krauss, L M
1992-01-01
I review recent developments in cosmology and astrophysics relevant to particle physics, focussing on the following questions: What's new in 1992? What have we learned since the last ICHEP meeting in 1990? and What are the prospects for the future? AMong the topics explicitly discussed are: COBE, Large Scale Structure, and Dark Matter; Bib Bang Nucleosynthesis; the Solar Neutrino Problem; and High Energy Gamma Ray PHysics.
Vidotto, Francesca
2015-01-01
The application of quantum theory to cosmology raises a number of conceptual questions, such as the role of the quantum-mechanical notion of "observer" or the absence of a time variable in the Wheeler-DeWitt equation. I point out that a relational formulation of quantum mechanics, and more in general the observation that evolution is always relational, provides a coherent solution to this tangle of problems.
String Scale Cosmological Constant
Chalmers, Gordon
2006-01-01
The cosmological constant is an unexplained until now phenomena of nature that requires an explanation through string effects. The apparent discrepancy between theory and experiment is enourmous and has already been explained several times by the author including mechanisms. In this work the string theory theory of abolished string modes is documented and given perturbatively to all loop orders. The holographic underpinning is also exposed. The matching with the data of the LIGO and D0 experi...
Cosmological perturbations in antigravity
Oltean, Marius; Brandenberger, Robert
2014-10-01
We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.
Gelmini, Graciela B
1996-01-01
Talks given at the V Taller de Particulas y Campos (V-TPyC) and V Taller Latinoam. de Fenomenologia de las Interac. Fundam. (V-TLFIF), Puebla, Mexico, 10/30 - 11/3 1995. These lectures are devoted to elementary particle physicists and assume the reader has very little or no knowledge of cosmology and astrophysics. After a brief historical introduction to the development of modern cosmology and astro-particles in which the Hot Big Bang model is defined, the Robertson-Walker metric and the dynamics of the Friedmann-Robertson-Walker cosmology are discussed in section 2. In section 3 the main observational features of the Universe are reviewed, including a description of our neighbourhood, homogeneity and isotropy, the cosmic background radiation, the expansion, the age and the matter content of the Universe. A brief account of the thermal history of the Universe follows in section 4, and relic abundances are discussed in section 5. Section 6 is devoted to primordial nucleosynthesis, section 7 to structure format...
Revisiting Cosmological parameter estimation
Prasad, Jayanti
2014-01-01
Constraining theoretical models with measuring the parameters of those from cosmic microwave background (CMB) anisotropy data is one of the most active areas in cosmology. WMAP, Planck and other recent experiments have shown that the six parameters standard $\\Lambda$CDM cosmological model still best fits the data. Bayesian methods based on Markov-Chain Monte Carlo (MCMC) sampling have been playing leading role in parameter estimation from CMB data. In one of the recent studies \\cite{2012PhRvD..85l3008P} we have shown that particle swarm optimization (PSO) which is a population based search procedure can also be effectively used to find the cosmological parameters which are best fit to the WMAP seven year data. In the present work we show that PSO not only can find the best-fit point, it can also sample the parameter space quite effectively, to the extent that we can use the same analysis pipeline to process PSO sampled points which is used to process the points sampled by Markov Chains, and get consistent res...
Magueijo, Joao; Kibble, T W B
2013-01-01
Using the chiral representation for spinors we present a particularly transparent way to generate the most general spinor dynamics in a theory where gravity is ruled by the Einstein-Cartan-Holst action. In such theories torsion need not vanish, but it can be re-interpreted as a 4-fermion self-interaction within a torsion-free theory. The self-interaction may or may not break parity invariance, and may contribute positively or negatively to the energy density, depending on the couplings considered. We then examine cosmological models ruled by a spinorial field within this theory. We find that while there are cases for which no significant cosmological novelties emerge, the self-interaction can also turn a mass potential into an upside-down Mexican hat potential. Then, as a general rule, the model leads to cosmologies with a bounce, for which there is a maximal energy density, and where the cosmic singularity has been removed. These solutions are stable, and range from the very simple to the very complex.
Einstein's cosmological considerations
Janzen, Daryl
2014-01-01
The objective of this paper is not simply to present an historical overview of Einstein's cosmological considerations, but to discuss the central role they played in shaping the paradigm of relativistic cosmology. This, we'll show, was a result of both his actions and, perhaps more importantly, his inactions. Accordingly, discussion won't simply be restricted to Einstein's considerations, as we'll analyse relevant contributions to the relativistic expansion paradigm during the approximately twenty years following Slipher's first redshift measurements in 1912. Our aim is to shed some light on why we think some of the things we do, with the idea that a better understanding of the reasoning that fundamentally influenced the common idea of our expanding universe might help to resolve some of the significant problems that modern cosmology now faces; and we eventually use this knowledge to probe the foundations of the standard model. Much of the information we present, including many of the historical details, we e...
The screening Horndeski cosmologies
Starobinsky, Alexei A.; Sushkov, Sergey V.; Volkov, Mikhail S.
2016-06-01
We present a systematic analysis of homogeneous and isotropic cosmologies in a particular Horndeski model with Galileon shift symmetry, containing also a Λ-term and a matter. The model, sometimes called Fab Five, admits a rich spectrum of solutions. Some of them describe the standard late time cosmological dynamic dominated by the Λ-term and matter, while at the early times the universe expands with a constant Hubble rate determined by the value of the scalar kinetic coupling. For other solutions the Λ-term and matter are screened at all times but there are nevertheless the early and late accelerating phases. The model also admits bounces, as well as peculiar solutions describing ``the emergence of time''. Most of these solutions contain ghosts in the scalar and tensor sectors. However, a careful analysis reveals three different branches of ghost-free solutions, all showing a late time acceleration phase. We analyse the dynamical stability of these solutions and find that all of them are stable in the future, since all their perturbations stay bounded at late times. However, they all turn out to be unstable in the past, as their perturbations grow violently when one approaches the initial spacetime singularity. We therefore conclude that the model has no viable solutions describing the whole of the cosmological history, although it may describe the current acceleration phase. We also check that the flat space solution is ghost-free in the model, but it may acquire ghost in more general versions of the Horndeski theory.
Symmetries of homogeneous cosmologies
Cotsakis, S; Pantazi, H; Cotsakis, Spiros; Leach, Peter; Pantazi, Hara
1998-01-01
We reformulate the dynamics of homogeneous cosmologies with a scalar field matter source with an arbitrary self-interaction potential in the language of jet bundles and extensions of vector fields. In this framework, the Bianchi-scalar field equations become subsets of the second Bianchi jet bundle, $J^2$, and every Bianchi cosmology is naturally extended to live on a variety of $J^2$. We are interested in the existence and behaviour of extensions of arbitrary Bianchi-Lie and variational vector fields acting on the Bianchi variety and accordingly we classify all such vector fields corresponding to both Bianchi classes $A$ and $B$. We give examples of functions defined on Bianchi jet bundles which are constant along some Bianchi models (first integrals) and use these to find particular solutions in the Bianchi total space. We discuss how our approach could be used to shed new light to questions like isotropization and the nature of singularities of homogeneous cosmologies by examining the behaviour of the vari...
Liverpool Telescope and Liverpool Telescope 2
Copperwheat, C. M.; Steele, I. A.; Barnsley, R. M.; Bates, S. D.; Clay, N. R.; Jermak, H.; Marchant, J. M.; Mottram, C. J.; Piascik, A.; Smith, R. J.
2016-12-01
The Liverpool Telescope is a fully robotic optical/near-infrared telescope with a 2-metre clear aperture, located at the Observatorio del Roque de los Muchachos on the Canary Island of La Palma. The telescope is owned and operated by Liverpool John Moores University, with financial support from the UK's Science and Technology Facilities Council. The telescope began routine science operations in 2004 and is a common-user facility with time available through a variety of committees via an open, peer reviewed process. Seven simultaneously mounted instruments support a broad science programme, with a focus on transient follow-up and other time domain topics well suited to the characteristics of robotic observing. Development has also begun on a successor facility, with the working title `Liverpool Telescope 2', to capitalise on the new era of time domain astronomy which will be brought about by the next generation of survey facilities such as LSST. The fully robotic Liverpool Telescope 2 will have a 4-metre aperture and an improved response time. In this paper we provide an overview of the current status of both facilities.
Benoit-Lévy, Aurélien; Chardin, Gabriel
2014-05-01
We study an unconventional cosmology, in which we investigate the consequences that antigravity would pose to cosmology. We present the main characteristics of the Dirac-Milne Universe, a cosmological model where antimatter has a negative active gravitational mass. In this non-standard Universe, separate domains of matter and antimatter coexist at our epoch without annihilation, separated by a gravitationally induced depletion zone. We show that this cosmology does not require a priori the Dark Matter and Dark Energy components of the standard model of cosmology. Additionally, inflation becomes an unnecessary ingredient. Investigating this model, we show that the classical cosmological tests such as primordial nucleosynthesis, Type Ia supernovæ and Cosmic Microwave Background are surprisingly concordant.
Loop Quantum Cosmology Gravitational Baryogenesis
Odintsov, S D
2016-01-01
Loop Quantum Cosmology is an appealing quantum completion of classical cosmology, which brings along various theoretical features which in many cases offer remedy or modify various classical cosmology aspects. In this paper we address the gravitational baryogenesis mechanism in the context of Loop Quantum Cosmology. As we demonstrate, when Loop Quantum Cosmology effects are taken into account in the resulting Friedmann equations for a flat Friedmann-Robertson-Walker Universe, then even for a radiation dominated Universe, the predicted baryon-to-entropy ratio from the gravitational baryogenesis mechanism is non-zero, in contrast to the Einstein-Hilbert case, in which case the baryon-to-entropy ratio is zero. We also discuss various other cases apart from the radiation domination case, and we discuss how the baryon-to-entropy ratio is affected from the parameters of the quantum theory. In addition, we use illustrative exact solutions of Loop Quantum Cosmology and we investigate under which circumstances the bar...
Scientific Realism and Primordial Cosmology
Azhar, Feraz
2016-01-01
We discuss scientific realism from the perspective of modern cosmology, especially primordial cosmology: i.e. the cosmological investigation of the very early universe. We first (Section 2) state our allegiance to scientific realism, and discuss what insights about it cosmology might yield, as against "just" supplying scientific claims that philosophers can then evaluate. In particular, we discuss: the idea of laws of cosmology, and limitations on ascertaining the global structure of spacetime. Then we review some of what is now known about the early universe (Section 3): meaning, roughly, from a thousandth of a second after the Big Bang onwards(!). The rest of the paper takes up two issues about primordial cosmology, i.e. the very early universe, where "very early" means, roughly, much earlier (logarithmically) than one second after the Big Bang: say, less than $10^{-11}$ seconds. Both issues illustrate that familiar philosophical threat to scientific realism, the under-determination of theory by data---on a...
Type II Supernovae as Probes of Cosmology
Poznanski, Dovi; Blondin, Stephane; Bloom, Joshua S; D'Andrea, Christopher B; Della Valle, Massimo; Dessart, Luc; Ellis, Richard S; Gal-Yam, Avishay; Goobar, Ariel; Hamuy, Mario; Hicken, Malcolm; Kasen, Daniel N; Krisciunas, Kevin L; Leonard, Douglas C; Li, Weidong; Livio, Mario; Marion, Howie; Matheson, Thomas; Neill, James D; Nomoto, Ken'ichi; Nugent, Peter E; Quimby, Robert; Sako, Masao; Sullivan, Mark; Thomas, Rollin C; Turatto, Massimo; Van Dyk, Schuyler D; Wood-Vasey, W Michael
2009-01-01
- Constraining the cosmological parameters and understanding Dark Energy have tremendous implications for the nature of the Universe and its physical laws. - The pervasive limit of systematic uncertainties reached by cosmography based on Cepheids and Type Ia supernovae (SNe Ia) warrants a search for complementary approaches. - Type II SNe have been shown to offer such a path. Their distances can be well constrained by luminosity-based or geometric methods. Competing, complementary, and concerted efforts are underway, to explore and exploit those objects that are extremely well matched to next generation facilities. Spectroscopic follow-up will be enabled by space- based and 20-40 meter class telescopes. - Some systematic uncertainties of Type II SNe, such as reddening by dust and metallicity effects, are bound to be different from those of SNe Ia. Their stellar progenitors are known, promising better leverage on cosmic evolution. In addition, their rate - which closely tracks the ongoing star formation rate -...
Exploring Cosmic Origins with CORE: Cosmological Parameters
Di Valentino, Eleonora; Gerbino, Martina; Poulin, Vivian; Bouchet, François R; Lesgourgues, Julien; Melchiorri, Alessandro; Chluba, Jens; Clesse, Sebastien; Delabrouille, Jacques; Dvorkin, Cora; Forastieri, Francesco; Galli, Silvia; Hooper, Deanna C; Lattanzi, Massimiliano; Martins, Carlos J A P; Salvati, Laura; Cabass, Giovanni; Caputo, Andrea; Giusarma, Elena; Hivon, Eric; Natoli, Paolo; Pagano, Luca; Paradiso, Simone; Rubino-Martin, Jose Alberto; Achucarro, Ana; Ballardini, Mario; Bartolo, Nicola; Baumann, Daniel; Bartlett, James G; de Bernardis, Paolo; Bonaldi, Anna; Bucher, Martin; Cai, Zhen-Yi; De Zotti, Gianfranco; Diego, Josè Maria; Errard, Josquin; Ferraro, Simone; Finelli, Fabio; Genova-Santos, Ricardo T; Gonzalez-Nuevo, Joaquin; Grandis, Sebastian; Greenslade, Josh; Hagstotz, Steffen; Handley, Will; Hindmarsh, Mark; Hernandez-Monteagudo, Carlos; Kiiveri, Kimmo; Kunz, Martin; Lasenby, Anthony; Liguori, Michele; Lopez-Caniego, Marcos; Luzzi, Gemma; Melin, Jean-Baptiste; Mohr, Joseph J; Negrello, Mattia; Paoletti, Daniela; Remazeilles, Mathieu; Ringeval, Christophe; Valiviita, Jussi; Van Tent, Bartjan; Vennin, Vincent; Vittorio, Nicola
2016-01-01
We forecast the main cosmological parameter constraints achievable with the CORE space mission which is dedicated to mapping the polarisation of the Cosmic Microwave Background (CMB). CORE was recently submitted in response to ESA's fifth call for medium-sized mission proposals (M5). Here we report the results from our pre-submission study of the impact of various instrumental options, in particular the telescope size and sensitivity level, and review the great, transformative potential of the mission as proposed. Specifically, we assess the impact on a broad range of fundamental parameters of our Universe as a function of the expected CMB characteristics, with other papers in the series focusing on controlling astrophysical and instrumental residual systematics. In this paper, we assume that only a few central CORE frequency channels are usable for our purpose, all others being devoted to the cleaning of astrophysical contaminants. On the theoretical side, we assume LCDM as our general framework and quantify...
The Cosmology Large Angular Scale Surveyor
Marriage, Tobias; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Eimer, J.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Mehrle, N.; Miller, A. D.; Miller, N.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.
2014-01-01
Some of the most compelling inflation models predict a background of primordial gravitational waves (PGW) detectable by their imprint of a curl-like "B-mode" pattern in the polarization of the Cosmic Microwave Background (CMB). The Cosmology Large Angular Scale Surveyor (CLASS) is a novel array of telescopes to measure the B-mode signature of the PGW. By targeting the largest angular scales (>2°) with a multifrequency array, novel polarization modulation and detectors optimized for both control of systematics and sensitivity, CLASS sets itself apart in the field of CMB polarization surveys and opens an exciting new discovery space for the PGW and inflation. This poster presents an overview of the CLASS project.
Inflation and the cosmological constant
Directory of Open Access Journals (Sweden)
FENG Chaojun
2014-08-01
Full Text Available By assuming the cosmological “constant” is no longer a constant during the inflation epoch,it is found that the cosmological constant fine-tuning problem is solved.In the meanwhile,inflation models could predict a large tensor-to-scalar ratio,correct power spectral index and a larger running of it.Furthermore,the e-folding number is large enough to overcome the horizon,flatness problems in the Big Bang cosmology.
Quintessential Maldacena-Maoz Cosmologies
McInnes, Brett
2004-01-01
Maldacena and Maoz have proposed a new approach to holographic cosmology based on Euclidean manifolds with disconnected boundaries. This approach appears, however, to be in conflict with the known geometric results [the Witten-Yau theorem and its extensions] on spaces with boundaries of non-negative scalar curvature. We show precisely how the Maldacena-Maoz approach evades these theorems. We also exhibit Maldacena-Maoz cosmologies with [cosmologically] more natural matter content, namely quin...
Brane and Nonisotropic Bianchi Cosmology
Naboulsi, R
2003-01-01
In this letter, we use Einstein field equations in the presence of gravitino cosmological density derived in a previous paper [1] to study a spatially honogenous, nonisotropic cosmological model, in particular the Bianchi IV model. We find a axisymmetric Universe, free of singularity in the past, asymptotically flat as time grows, and admit the presence of gravitino mass as missing energy and positive cosmological constant as Lambda > 3m^2.
Mid-Holocene Climate and Culture Change in the Atacama Desert, Northern Chile
Grosjean, Martin; Núñez, Lautaro; Cartajena, Isabel; Messerli, Bruno
1997-09-01
Twenty archaeological campsites intercalated between more than 30 debris flows caused by heavy rainfall events between 6200 and 3100 14C yr B.P. have recently been discovered at Quebrada Puripica in the Atacama Desert of northern Chile. This record provides detailed information about extreme, short-lived climatic events during the hyperarid mid-Holocene period. For the first time, we found evidence of continuous human occupation in this area, filling the regional hiatus in the Atacama basin ("Silencio Arqueologico") between 8000 and 4800 14C yr B.P. The transformation of Early Archaic hunters into the complex Late Archaic cultural tradition was an adaptive process. During this time, the site was a local ecological refuge with abundant resources in a generally hostile environment.
Moving mesh cosmology: tracing cosmological gas accretion
Nelson, Dylan; Genel, Shy; Sijacki, Debora; Keres, Dusan; Springel, Volker; Hernquist, Lars; 10.1093/mnras/sts595
2013-01-01
We investigate the nature of gas accretion onto haloes and galaxies at z=2 using cosmological hydrodynamic simulations run with the moving mesh code AREPO. Implementing a Monte Carlo tracer particle scheme to determine the origin and thermodynamic history of accreting gas, we make quantitative comparisons to an otherwise identical simulation run with the smoothed particle hydrodynamics (SPH) code GADGET-3. Contrasting these two numerical approaches, we find significant physical differences in the thermodynamic history of accreted gas in haloes above 10^10.5 solar masses. In agreement with previous work, GADGET simulations show a cold fraction near unity for galaxies forming in massive haloes, implying that only a small percentage of accreted gas heats to an appreciable fraction of the virial temperature during accretion. The same galaxies in AREPO show a much lower cold fraction, <20% in haloes above 10^11 solar masses. This results from a hot gas accretion rate which, at this same halo mass, is an order o...
$\\Psi$-Epistemic Quantum Cosmology?
Evans, Peter W; Thébault, Karim P Y
2016-01-01
This paper provides a prospectus for a new way of thinking about the wavefunction of the universe: a $\\Psi$-epistemic quantum cosmology. We present a proposal that, if successfully implemented, would resolve the cosmological measurement problem and simultaneously allow us to think sensibly about probability and evolution in quantum cosmology. Our analysis draws upon recent work on the problem of time in quantum gravity, upon causally-symmetric local hidden variable theories, and upon a dynamical origin for the cosmological arrow of time. Our conclusion weighs the strengths and weaknesses of the approach and points towards paths for future development.
Cosmological Reflection of Particle Symmetry
Directory of Open Access Journals (Sweden)
Maxim Khlopov
2016-08-01
Full Text Available The standard model involves particle symmetry and the mechanism of its breaking. Modern cosmology is based on inflationary models with baryosynthesis and dark matter/energy, which involves physics beyond the standard model. Studies of the physical basis of modern cosmology combine direct searches for new physics at accelerators with its indirect non-accelerator probes, in which cosmological consequences of particle models play an important role. The cosmological reflection of particle symmetry and the mechanisms of its breaking are the subject of the present review.
An introduction to modern cosmology
Liddle, Andrew
2015-01-01
An Introduction to Modern Cosmology Third Edition is an accessible account of modern cosmological ideas. The Big Bang Cosmology is explored, looking at its observational successes in explaining the expansion of the Universe, the existence and properties of the cosmic microwave background, and the origin of light elements in the universe. Properties of the very early Universe are also covered, including the motivation for a rapid period of expansion known as cosmological inflation. The third edition brings this established undergraduate textbook up-to-date with the rapidly evolving observation
Observational Cosmology With Semi-Relativistic Stars
Loeb, Abraham
2014-01-01
Galaxy mergers lead to the formation of massive black hole binaries which can accelerate background stars close to the speed of light. We estimate the comoving density of ejected stars with a peculiar velocity in excess of $0.1c$ or $0.5c$ to be $\\sim 10^{10}$ and $10^5$ Gpc$^{-3}$ respectively, in the present-day Universe. Semi-relativistic giant stars will be detectable with forthcoming telescopes out to a distance of a few Mpc, where their proper motion, radial velocity, and age, can be spectroscopically measured. In difference from traditional cosmological messengers, such as photons, neutrinos, or cosmic-rays, these stars shine and so their trajectories need not be directed at the observer for them to be detected. Tracing the stars to their parent galaxies as a function of speed and age will provide a novel test of the equivalence principle and the standard cosmological parameters. Semi-relativistic stars could also flag black hole binaries as gravitational wave sources for the future eLISA observatory.
A review of the non-bulimulid terrestrial Mollusca from the Region of Atacama, northern Chile
Araya, Juan Francisco; Catalán, Ricardo
2014-01-01
Abstract Terrestrial mollusca are sparsely studied in Chile and, for the first time, a formal record of the diversity of land snails in northern Chile is reported. Coastal and desertic areas in the Region of Atacama, in the border of the Atacama desert and the Pacific Ocean, were surveyed with the aim to describe the presence and distribution of this poorly known fauna. Of the fourteen species recorded, the geographic distribution records for nine species are extended, and some taxa are recorded for the first time since their original descriptions. All, except one, of the fourteen terrestrial molluscan species occurring in the area are endemic to Chile; they are all terrestrial species, most of them have a restricted geographic distribution, and none of them is currently protected by law. The results reveal that the region of Atacama has one of the most diverse terrestrial snail biodiversity in Chile, ranking only after the Juan Fernandez Archipelago. Distribution records of all the studied species and a taxonomic key are also provided. PMID:24715800
Oral health in prehistoric San Pedro de Atacama oases, Northern Chile.
Oliveira, R E; Neves, W A
2015-12-01
After almost 2000 years of local development, including limited trading with neighboring ethnic groups, the societies that occupied the oases of San Pedro de Atacama, Northern Chile, became part of the trade web of the Tiwanaku empire, between 500 and 1000 CE. Archaeological evidence tends to support the idea that the period under the influence of the altiplano (high plane) empire was very affluent. Here we investigate the possibility that this affluence had a positive impact on the health status of the Atacameneans, using the oral health as an indirect indicator of quality of life. Dental decay, dental abscess, dental wear, linear enamel hypoplasia, periodontal disease and dental calculus were analyzed on 371 skeletons from 12 sites from San Pedro de Atacama oases. We believe that if, indeed, there were better biological conditions during the altiplano influence, this could have been caused by the access to a more diversified food intake promoted by the intensification of the trading network established by Tiwanaku in the central-south Andes, of which San Pedro de Atacama became an important node.
JWST Pathfinder Telescope Integration
Matthews, Gary W.; Kennard, Scott H.; Broccolo, Ronald T.; Ellis, James M.; Daly, Elizabeth A.; Hahn, Walter G.; Amon, John N.; Mt. Pleasant, Stephen M.; Texter, Scott; Atkinson, Charles B.; McKay, Andrew; Levi, Joshua; Keski-Kuha, Ritva; Feinberg, Lee
2015-01-01
The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. In 2014, a major risk reduction effort related to the Alignment, Integration, and Test (AI&T) of the segmented telescope was completed. The Pathfinder telescope includes two Primary Mirror Segment Assemblies (PMSA's) and the Secondary Mirror Assembly (SMA) onto a flight-like composite telescope backplane. This pathfinder allowed the JWST team to assess the alignment process and to better understand the various error sources that need to be accommodated in the flight build. The successful completion of the Pathfinder Telescope provides a final integration roadmap for the flight operations that will start in August 2015.
Volkmer, R.
2008-09-01
During the last years the new 1.5m solar telescope GREGOR was assembled at Izania on Tenerife, Spain. The telescope is designed for high-precision measurements of the magnetic field in the solar photosphere and chromosphere with a resolution of 70km on the Sun. The telescope concept offers also high resolution stellar spectroscopy. The telescope is build by a consortium of the Kiepenheuer-Institut für Sonnenphysik, the Astrophysikalische Institut Potsdam, the Institut für Astrophysik Göttingen, Max-Plank-Institut für Sonnensystemforschung and additional international Partners. The telescope is a complete open structure with active cooled main mirror. High performance post-focus instruments in the visible and near IR wavelength acquire high resolution spectra with 2 dimensional spatial resolution and polarimetric information. The commissioning of the telescope will start in 2008 to allow first science observations at the end of 2009.
Gillespie, Richard
2011-01-01
Erected at Melbourne Observatory in 1869, the telescope was the second largest in the world, designed to explore the nature of the nebulae in the southern skies. Richard Gillespie, head of the History and Technology department at the Melbourne museum has written an entertaining account of the telescope's extraordinary history and tells the story through an amazing cast of characters whose lives intersected with the telescope.
Wallace, Patrick
2016-07-01
As far as pointing is concerned, a solar telescope is merely an ordinary astronomical telescope but with enhancements for observing solar and coronal features. The paper discusses the additional coordinate systems that need to be supported, shows how to generate the required solar ephemerides (both orbital and physical), and sets out a suitable application programming interface for the telescope control system to use when making solar observations.
Holder, J; Badran, H M; Blaylock, G; Bradbury, S M; Buckley, J H; Byrum, K L; Carter-Lewis, D A; Celik, O; Chow, Y C K; Cogan, P; Cui, W; Daniel, M K; De la Calle-Perez, I; Dowdall, C; Dowkontt, P; Duke, C; Falcone, A D; Fegan, S J; Finley, J P; Fortin, P; Fortson, L F; Gibbs, K; Gillanders, G; Glidewell, O J; Grube, J; Gutíerrez, K J; Gyuk, G; Hall, J; Hanna, D; Hays, E; Horan, D; Hughes, S B; Humensky, T B; Imran, A; Jung, I; Kaaret, Philip; Kenny, G E; Kieda, D; Kildea, J; Knapp, J; Krawczynski, H; Krennrich, F; Lang, M J; Le Bohec, S; Linton, E; Little, E K; Maier, G; Manseri, H; Milovanovic, A; Moriarty, P; Mukherjee, R; Ogden, P A; Ong, R A; Perkins, J S; Pizlo, F; Pohl, M; Quinn, J; Ragan, K; Reynolds, P T; Roache, E T; Rose, H J; Schroedter, M; Sembroski, G H; Sleege, G A; Steele, D; Swordy, S P; Syson, A; Toner, J A; Valcarcel, L; Vasilev, V V; Wagner, R; Wakely, S P; Weekes, T C; White, R J; Williams, D A
2006-01-01
The first atmospheric Cherenkov telescope of VERITAS (the Very Energetic Radiation Imaging Telescope Array System) has been in operation since February 2005. We present here a technical description of the instrument and a summary of its performance. The calibration methods are described, along with the results of Monte Carlo simulations of the telescope and comparisons between real and simulated data. The analysis of TeV $\\gamma$-ray observations of the Crab Nebula, including the reconstructed energy spectrum, is shown to give results consistent with earlier measurements. The telescope is operating as expected and has met or exceeded all design specifications.
The screening Horndeski cosmologies
Energy Technology Data Exchange (ETDEWEB)
Starobinsky, Alexei A. [L.D. Landau Institute for Theoretical Physics RAS,Moscow 119334 (Russian Federation); Department of General Relativity and Gravitation, Institute of Physics,Kazan Federal University,Kremlevskaya street 18, 420008 Kazan (Russian Federation); Sushkov, Sergey V. [Department of General Relativity and Gravitation, Institute of Physics,Kazan Federal University,Kremlevskaya street 18, 420008 Kazan (Russian Federation); Volkov, Mikhail S. [Laboratoire de Mathématiques et Physique Théorique CNRS-UMR 7350,Université de Tours,Parc de Grandmont, 37200 Tours (France); Department of General Relativity and Gravitation, Institute of Physics,Kazan Federal University,Kremlevskaya street 18, 420008 Kazan (Russian Federation)
2016-06-06
We present a systematic analysis of homogeneous and isotropic cosmologies in a particular Horndeski model with Galileon shift symmetry, containing also a Λ-term and a matter. The model, sometimes called Fab Five, admits a rich spectrum of solutions. Some of them describe the standard late time cosmological dynamic dominated by the Λ-term and matter, while at the early times the universe expands with a constant Hubble rate determined by the value of the scalar kinetic coupling. For other solutions the Λ-term and matter are screened at all times but there are nevertheless the early and late accelerating phases. The model also admits bounces, as well as peculiar solutions describing “the emergence of time”. Most of these solutions contain ghosts in the scalar and tensor sectors. However, a careful analysis reveals three different branches of ghost-free solutions, all showing a late time acceleration phase. We analyse the dynamical stability of these solutions and find that all of them are stable in the future, since all their perturbations stay bounded at late times. However, they all turn out to be unstable in the past, as their perturbations grow violently when one approaches the initial spacetime singularity. We therefore conclude that the model has no viable solutions describing the whole of the cosmological history, although it may describe the current acceleration phase. We also check that the flat space solution is ghost-free in the model, but it may acquire ghost in more general versions of the Horndeski theory.
Directory of Open Access Journals (Sweden)
Bojowald Martin
2008-07-01
Full Text Available Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time.
Directory of Open Access Journals (Sweden)
Bojowald Martin
2005-12-01
Full Text Available Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding space-time is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend space-time beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of space-time arising in loop quantum gravity and its application to cosmology sheds new light on more general issues such as time.
The ALMA Telescope Control System
Farris, A.; Marson, Ralph; Kern, Jeff
2005-10-01
The Atacama Large Millimeter Array (ALMA) is a joint project between North America, Europe and Japan. ALMA is an aperture synthesis radio telescope consisting of 50 12-meter antennas located at an elevation of 5,000 meters in Llano de Chajnantor, Chile. These antennas will operate at frequencies ranging from 31.3 GHz to 950 GHz. The antennas can be moved and placed in different configurations, with baselines between the antennas varying from 150 meters to 20 km. The 50 antennas are supplemented by sixteen additional ones, known as the ALMA Compact Array (ACA): 12 7-meter antennas and 4 12-meter antennas. The ALMA control system will consist of over 70 computers separated by distances of over 20 km. Two aspects of the system are apparent: its distributed nature and its need to accurately synchronize events across many computers separated by large distances. In this paper we describe key features of the architecture of the ALMA Control System, focusing on its properties as a distributed system and on the mechanisms employed to achieve its time synchronization goals. This control system is a distributed system that uses the ALMA Common Software (ACS) as a middleware system layered on top of CORBA. The architecture of the control system extensively employs the component/container model in ACS. In addition, the use of CORBA allows us to employ Java in the higher levels of the control system, leaving C++ to the lower time-critical levels. Python as a scripting language is used by astronomers, to craft standard observing programs, and engineers, in a testing and debugging mode. Key to the concept of an aperture synthesis telescope is a special purpose hardware system known as a correlator, responsible for making various delay model corrections and correlating the signals from the antennas. There are two correlators in ALMA, one for the array of 50 antennas and one for the ACA. This entire system operates under a control system that must synchronize events across the
Anistropic Invariant FRW Cosmology
Chagoya, J F
2015-01-01
In this paper we study the effects of including anisotropic scaling invariance in the minisuperspace Lagrangian for a universe modelled by the Friedman-Robertson-Walker metric, a massless scalar field and cosmological constant. We find that canonical quantization of this system leads to a Schroedinger type equation, thus avoiding the frozen time problem of the usual Wheeler-DeWitt equation. Furthermore, we find numerical solutions for the classical equations of motion, and we also find evidence that under some conditions the big bang singularity is avoided in this model.
Gill, S P D; Gibson, B K; Flynn, C; Ibata, R A; Lewis, G F; Gill, Stuart P.D.; Knebe, Alexander; Gibson, Brad K.; Flynn, Chris; Ibata, Rodrigo A.; Lewis, Geraint F.
2002-01-01
An adaptive multi grid approach to simulating the formation of structure from collisionless dark matter is described. MLAPM (Multi-Level Adaptive Particle Mesh) is one of the most efficient serial codes available on the cosmological 'market' today. As part of Swinburne University's role in the development of the Square Kilometer Array, we are implementing hydrodynamics, feedback, and radiative transfer within the MLAPM adaptive mesh, in order to simulate baryonic processes relevant to the interstellar and intergalactic media at high redshift. We will outline our progress to date in applying the existing MLAPM to a study of the decay of satellite galaxies within massive host potentials.
Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza
1999-04-01
Global symmetries of the string effective action are employed to generate tilted, homogeneous Bianchi type VIh string cosmologies from a previously known stiff perfect fluid solution to Einstein gravity. The dilaton field is not constant on the surfaces of homogeneity. The future asymptotic state of the models is interpreted as a plane wave and is itself an exact solution to the string equations of motion to all orders in the inverse string tension. An inhomogeneous generalization of the Bianchi type III model is also found.
Wright, Rosemary
1995-01-01
The popularity of Stephen Hawking's work has put cosmology back in the public eye. The question of how the universe began, and why it hangs together, still puzzles scientists. Their puzzlement began two and a half thousand years ago when Greek philosophers first 'looked up at the sky and formed a theory of everything.' Though their solutions are little credited today, the questions remain fresh.The early Greek thinkers struggled to come to terms with and explain the totality of their surroundings; to identitify an original substance from which the universe was compounded; and to reconcil
Wilczek, Frank; Turner, Michael S.
1990-09-01
If Peccei-Quinn (PQ) symmetry is broken after inflation, the initial axion angle is a random variable on cosmological scales; based on this fact, estimates of the relic-axion mass density give too large a value if the axion mass is less than about 10-6 eV. This bound can be evaded if the Universe underwent inflation after PQ symmetry breaking and if the observable Universe happens to be a region where the initial axion angle was atypically small, .1 . (ma/10-6eV)0.59. We show consideration of fluctuations induced during inflation severely constrains the latter alternative.
Constraining entropic cosmology
Energy Technology Data Exchange (ETDEWEB)
Koivisto, Tomi S. [Institute for Theoretical Physics and the Spinoza Institute, Utrecht University, Leuvenlaan 4, Postbus 80.195, 3508 TD Utrecht (Netherlands); Mota, David F. [Institute of Theoretical Astrophysics, University of Oslo, 0315 Oslo (Norway); Zumalacárregui, Miguel, E-mail: t.s.koivisto@uu.nl, E-mail: d.f.mota@astro.uio.no, E-mail: miguelzuma@icc.ub.edu [Institute of Cosmos Sciences (ICC-IEEC), University of Barcelona, Marti i Franques 1, E-08028 Barcelona (Spain)
2011-02-01
It has been recently proposed that the interpretation of gravity as an emergent, entropic phenomenon might have nontrivial implications to cosmology. Here several such approaches are investigated and the underlying assumptions that must be made in order to constrain them by the BBN, SneIa, BAO and CMB data are clarified. Present models of inflation or dark energy are ruled out by the data. Constraints are derived on phenomenological parameterizations of modified Friedmann equations and some features of entropic scenarios regarding the growth of perturbations, the no-go theorem for entropic inflation and the possible violation of the Bekenstein bound for the entropy of the Universe are discussed and clarified.
Solar gravitation and cosmology
Energy Technology Data Exchange (ETDEWEB)
Ferrari, J.A. (Departamento de Fisica, Facultad de Humanidades y Ciencias, Montevideo (Uruguay))
1984-08-11
The objective of this paper is to discuss some implications of a scalar of gravitation developed in a previous paper. At the beginning we shall show that, on the basis of a scalar theory of gravitation, it is possible to predict a gravitational light drag. The remainder of this paper is devoted to cosmology. We shall prove that Hubble's red shift, the existence of an age and an ''effective radius'' of the Universe can be deduced from a model of the universe that is Euclidean, infinite and nonexpanding. Finally, we discuss briefly Olbers' paradox and the thermal evolution of the universe.
Cosmology from quantum potential
Energy Technology Data Exchange (ETDEWEB)
Farag Ali, Ahmed, E-mail: ahmed.ali@fsc.bu.edu.eg [Center for Fundamental Physics, Zewail City of Science and Technology, Giza, 12588 (Egypt); Dept. of Physics, Faculty of Sciences, Benha University, Benha, 13518 (Egypt); Das, Saurya, E-mail: saurya.das@uleth.c [Department of Physics and Astronomy, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, T1K 3M4 (Canada)
2015-02-04
It was shown recently that replacing classical geodesics with quantal (Bohmian) trajectories gives rise to a quantum corrected Raychaudhuri equation (QRE). In this article we derive the second order Friedmann equations from the QRE, and show that this also contains a couple of quantum correction terms, the first of which can be interpreted as cosmological constant (and gives a correct estimate of its observed value), while the second as a radiation term in the early universe, which gets rid of the big-bang singularity and predicts an infinite age of our universe.
Turner, Michael S.; Wilczek, Frank
1991-01-01
If Peccei-Quinn (PQ) symmetry is broken after inflation, the initial axion angle is a random variable on cosmological scales; based on this fact, estimates of the relic-axion mass density give too large a value if the axion mass is less than about 10 to the -6th eV. This bound can be evaded if the universe underwent inflation after PQ-symmetry breaking and if the observable universe happens to be a region where the initial axion angle was atypically small. Consideration of fluctuations induced during inflation severely constrains the latter alternative is shown.
Cosmological solutions with massive gravitons
Energy Technology Data Exchange (ETDEWEB)
Chamseddine, Ali H. [Physics Department, American University of Beirut (Lebanon); Laboratoire de Mathematiques et Physique Theorique CNRS-UMR 6083, Universite de Tours, Parc de Grandmont, 37200 Tours (France); LE STUDIUM, Loire Valley Institute for Advanced Studies, Tours and Orleans (France); I.H.E.S., F-91440 Bures-sur-Yvette (France); Volkov, Mikhail S., E-mail: volkov@lmpt.univ-tours.fr [Laboratoire de Mathematiques et Physique Theorique CNRS-UMR 6083, Universite de Tours, Parc de Grandmont, 37200 Tours (France)
2011-10-25
We present solutions describing spatially closed, open, or flat cosmologies in the massive gravity theory within the recently proposed tetrad formulation. We find that the effect of the graviton mass is equivalent to introducing to the Einstein equations a matter source that can consist of several different matter types - a cosmological term, quintessence, gas of cosmic strings, and non-relativistic cold matter.
Neutrino physics and precision cosmology
DEFF Research Database (Denmark)
Hannestad, Steen
2016-01-01
I review the current status of structure formation bounds on neutrino properties such as mass and energy density. I also discuss future cosmological bounds as well as a variety of different scenarios for reconciling cosmology with the presence of light sterile neutrinos....
Cosmological effects of nonlinear electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Novello, M [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Goulart, E [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Salim, J M [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Bergliaffa, S E Perez [Departamento de Fisica Teorica, Universidade do Estado do Rio de Janeiro, R. Sao Francisco Xavier, 524, Maracana, CEP 20559-900, Rio de Janeiro (Brazil)
2007-06-07
It will be shown that a given realization of nonlinear electrodynamics, used as a source of Einstein's equations, generates a cosmological model with interesting features, namely a phase of current cosmic acceleration, and the absence of an initial singularity, thus pointing to a way of solving two important problems in cosmology.
Energy Technology Data Exchange (ETDEWEB)
Turner, Michael S.
1997-03-01
The Hubble constant sets the size and age of the Universe, and, together with independent determinations of the age, provides a consistency check of the standard cosmology. The Hubble constant also provides an important test of our most attractive paradigm for extending the standard cosmology, inflation and cold dark matter.
Phenomenology of loop quantum cosmology
Sakellariadou, Mairi
2010-01-01
After introducing the basic ingredients of Loop Quantum Cosmology, I will briefly discuss some of its phenomenological aspects. Those can give some useful insight about the full Loop Quantum Gravity theory and provide an answer to some long-standing questions in early universe cosmology.
Bard, D; Chang, C; May, M; Kahn, S M; AlSayyad, Y; Ahmad, Z; Bankert, J; Connolly, A; Gibson, R R; Gilmore, K; Grace, E; Haiman, Z; Hannel, M; Huffenberger, K M; Jernigan, J G; Jones, L; Krughoff, S; Lorenz, S; Marshall, S; Meert, A; Nagarajan, S; Peng, E; Peterson, J; Rasmussen, A P; Shmakova, M; Sylvestre, N; Todd, N; Young, M
2013-01-01
The statistics of peak counts in reconstructed shear maps contain information beyond the power spectrum, and can improve cosmological constraints from measurements of the power spectrum alone if systematic errors can be controlled. We study the effect of galaxy shape measurement errors on predicted cosmological constraints from the statistics of shear peak counts with the Large Synoptic Survey Telescope (LSST). We use the LSST image simulator in combination with cosmological N-body simulations to model realistic shear maps for different cosmological models. We include both galaxy shape noise and, for the first time, measurement errors on galaxy shapes. We find that the measurement errors considered have relatively little impact on the constraining power of shear peak counts for LSST.
March, M C; Feroz, F; Hobson, M P
2012-01-01
We present a comparison of two methods for cosmological parameter inference from supernovae Ia lightcurves fitted with the SALT2 technique. The standard chi-square methodology and the recently proposed Bayesian hierarchical method (BHM) are each applied to identical sets of simulations based on the 3-year data release from the Supernova Legacy Survey (SNLS3), and also data from the Sloan Digital Sky Survey (SDSS), the Low Redshift sample and the Hubble Space Telescope (HST), assuming a concordance LCDM cosmology. For both methods, we find that the recovered values of the cosmological parameters, and the global nuisance parameters controlling the stretch and colour corrections to the supernovae lightcurves, suffer from small biasses. The magnitude of the biasses is similar in both cases, with the BHM yielding slightly more accurate results, in particular for cosmological parameters when applied to just the SNLS3 single survey data sets. Most notably, in this case, the biasses in the recovered matter density $\\...
LUTE telescope structural design
Ruthven, Gregory
1993-01-01
The major objective of the Lunar Ultraviolet Transit Experiment (LUTE) Telescope Structural Design Study was to investigate the feasibility of designing an ultralightweight 1-m aperture system within optical performance requirements and mass budget constraints. This study uses the results from our previous studies on LUTE as a basis for further developing the LUTE structural architecture. After summarizing our results in Section 2, Section 3 begins with the overall logic we used to determine which telescope 'structural form' should be adopted for further analysis and weight estimates. Specific telescope component analysis showing calculated fundamental frequencies and how they compare with our derived requirements are included. 'First-order' component stress analyses to ensure telescope optical and structural component (i.e. mirrors & main bulkhead) weights are realistic are presented. Layouts of both the primary and tertiary mirrors showing dimensions that are consistent with both our weight and frequency calculations also form part of Section 3. Section 4 presents our calculated values for the predicted thermally induced primary-to-secondary mirror despace motion due to the large temperature range over which LUTE must operate. Two different telescope design approaches (one which utilizes fused quartz metering rods and one which assumes the entire telescope is fabricated from beryllium) are considered in this analysis. We bound the secondary mirror focus mechanism range (in despace) based on these two telescope configurations. In Section 5 we show our overall design of the UVTA (Ultraviolet Telescope Assembly) via an 'exploded view' of the sub-system. The 'exploded view' is annotated to help aid in the understanding of each sub-assembly. We also include a two view layout of the UVTA from which telescope and telescope component dimensions can be measured. We conclude our study with a set of recommendations not only with respect to the LUTE structural architecture
Physical Models of Galaxy Formation in a Cosmological Framework
Somerville, Rachel S.; Davé, Romeel
2015-08-01
Modeling galaxy formation in a cosmological context presents one of the greatest challenges in astrophysics today due to the vast range of scales and numerous physical processes involved. Here we review the current status of models that employ two leading techniques to simulate the physics of galaxy formation: semianalytic models and numerical hydrodynamic simulations. We focus on a set of observational targets that describe the evolution of the global and structural properties of galaxies from roughly cosmic high noon (z â¼ 2-3) to the present. Although minor discrepancies remain, overall, models show remarkable convergence among different methods and make predictions that are in qualitative agreement with observations. Modelers have converged on a core set of physical processes that are critical for shaping galaxy properties. This core set includes cosmological accretion, strong stellar-driven winds that are more efficient at low masses, black hole feedback that preferentially suppresses star formation at high masses, and structural and morphological evolution through merging and environmental processes. However, all cosmological models currently adopt phenomenological implementations of many of these core processes, which must be tuned to observations. Many details of how these diverse processes interact within a hierarchical structure formation setting remain poorly understood. Emerging multiscale simulations are helping to bridge the gap between stellar and cosmological scales, placing models on a firmer, more physically grounded footing. Concurrently, upcoming telescope facilities will provide new challenges and constraints for models, particularly by directly constraining inflows and outflows through observations of gas in and around galaxies.
On Hamiltonian formulation of cosmologies
Indian Academy of Sciences (India)
K D Krori; S Dutta
2000-03-01
Novello et al [1,2] have shown that it is possible to ﬁnd a pair of canonically conjugate variables (written in terms of gauge-invariant variables) so as to obtain a Hamiltonian that describes the dynamics of a cosmological system. This opens up the way to the usual technique of quantization. Elbaz et al [4] have applied this method to the Hamiltonian formulation of FRW cosmological equations. This note presents a generalization of this approach to a variety of cosmologies. A general Schrödinger wave equation has been derived and exact solutions have been worked out for the stiff matter era for some cosmological models. It is argued that these solutions appear to hint at their possible relevance in the early phase of cosmological evolution.
More problems for Newtonian cosmology
Wallace, David
2016-01-01
I point out a radical indeterminism in potential-based formulations of Newtonian gravity once we drop the condition that the potential vanishes at infinity (as is necessary, and indeed celebrated, in cosmological applications). This indeterminism, which is well known in theoretical cosmology but has received little attention in foundational discussions, can be removed only by specifying boundary conditions at all instants of time, which undermines the theory's claim to be fully cosmological, i.e., to apply to the Universe as a whole. A recent alternative formulation of Newtonian gravity due to Saunders (Philosophy of Science 80 (2013) pp.22-48) provides a conceptually satisfactory cosmology but fails to reproduce the Newtonian limit of general relativity in homogenous but anisotropic universes. I conclude that Newtonian gravity lacks a fully satisfactory cosmological formulation.
Higher dimensional loop quantum cosmology
Zhang, Xiangdong
2016-07-01
Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n+1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n+1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n+1 dimensional model and the 3+1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology.
MOND cosmology from holographic principle
Zhang, Hongsheng
2011-01-01
We derive the MOND cosmology which is uniquely corresponding to the original MOND in galaxies via holographic approach of gravity. It inherits the key merit of MOND, that is, it reduces the byronic matter and mysterious non-byronic dark matter (dark matter for short) in the standard cosmology into byronic matter only. For the first time we derive the critical parameter in MOND, i.e., the transition acceleration $a_c$ on cosmological scale. We thus solve the long-standing coincidence problem $a_c\\sim cH_{0}$. More interestingly, a term like age-graphic dark energy emerges naturally. In the frame of this MOND cosmology, we only need byronic matter to describe both dark matter and dark energy in standard cosmology.
Cosmology With Negative Potentials
Felder, G; Kofman, L A; Linde, Andrei D; Felder, Gary; Frolov, Andrei; Kofman, Lev; Linde, Andrei
2002-01-01
We investigate cosmological evolution in models where the effective potential V(\\phi) may become negative for some values of the field \\phi. Phase portraits of such theories in space of variables (\\phi,\\dot\\phi,H) have several qualitatively new features as compared with phase portraits in the theories with V(\\phi) > 0. Cosmological evolution in models with potentials with a "stable" minimum at V(\\phi)<0 is similar in some respects to the evolution in models with potentials unbounded from below. Instead of reaching an AdS regime dominated by the negative vacuum energy, the universe reaches a turning point where its energy density vanishes, and then it contracts to a singularity with properties that are practically independent of V(\\phi). We apply our methods to investigation of the recently proposed cyclic universe scenario. We show that in addition to the singularity problem there are other problems that need to be resolved in order to realize a cyclic regime in this scenario. We propose several modificati...
Cosmology with matter diffusion
Calogero, Simone
2013-01-01
We construct a viable cosmological model based on velocity diffusion of matter particles. In order to ensure the conservation of the total energy-momentum tensor in the presence of diffusion, we include a cosmological scalar field $\\phi$ which we identify with the dark energy component of the Universe. The model is characterized by only one new degree of freedom, the diffusion parameter $\\sigma$. The standard $\\Lambda$CDM model can be recovered by setting $\\sigma=0$. If diffusion takes place ($\\sigma >0$) the dynamics of the matter and of the dark energy fields are coupled. We argue that the existence of a diffusion mechanism in the Universe can serve as a theoretical motivation for interacting models. We constrain the background dynamics of the diffusion model with Supernovae, H(z) and BAO data. We also perform a perturbative analysis of this model in order to understand structure formation in the Universe. We calculate the impact of diffusion both on the CMB spectrum, with particular attention to the integr...
Indian cosmogonies and cosmologies
Directory of Open Access Journals (Sweden)
Pajin Dušan
2011-01-01
Full Text Available Various ideas on how the universe appeared and develops, were in Indian tradition related to mythic, religious, or philosophical ideas and contexts, and developed during some 3.000 years - from the time of Vedas, to Puranas. Conserning its appeareance, two main ideas were presented. In one concept it appeared out of itself (auto-generated, and gods were among the first to appear in the cosmic sequences. In the other, it was a kind of divine creation, with hard work (like the dismembering of the primal Purusha, or as emanation of divine dance. Indian tradition had also various critiques of mythic and religious concepts (from the 8th c. BC, to the 6c., who favoured naturalistic and materialistic explanations, and concepts, in their cosmogony and cosmology. One the peculiarities was that indian cosmogony and cosmology includes great time spans, since they used a digit system which was later (in the 13th c. introduced to Europe by Fibonacci (Leonardo of Pisa, 1170-1240.
Particle physics and cosmology
Energy Technology Data Exchange (ETDEWEB)
Kolb, E.W.
1986-10-01
This series of lectures is about the role of particle physics in physical processes that occurred in the very early stages of the bug gang. Of particular interest is the role of particle physics in determining the evolution of the early Universe, and the effect of particle physics on the present structure of the Universe. The use of the big bang as a laboratory for placing limits on new particle physics theories will also be discussed. Section 1 reviews the standard cosmology, including primordial nucleosynthesis. Section 2 reviews the decoupling of weakly interacting particles in the early Universe, and discusses neutrino cosmology and the resulting limits that may be placed on the mass and lifetime of massive neutrinos. Section 3 discusses the evolution of the vacuum through phase transitions in the early Universe and the formation of topological defects in the transitions. Section 4 covers recent work on the generation of the baryon asymmetry by baryon-number violating reactions in Grand Unified Theories, and mentions some recent work on baryon number violation effects at the electroweak transition. Section 5 is devoted to theories of cosmic inflation. Finally, Section 6 is a discussion of the role of extra spatial dimensions in the evolution of the early Universe. 78 refs., 32 figs., 6 tabs.
Szydlowski, Marek; Borowiec, Andrzej; Wojnar, Aneta
2015-01-01
We investigate modified gravity cosmological model $f(R)=R+\\gamma R^2$ in Palatini formalism. We consider the universe filled with the Chaplygin gas and baryonic matter. The dynamics is reduced to the 2D sewn dynamical system of a Newtonian type. For this aim we use dynamical system theory. We classify all evolutional paths in the model as well as trajectories in the phase space. We demonstrate that the presence of a degenerate freeze singularity (glued freeze type singularities) is a generic feature of early evolution of the universe. We point out that a degenerate type III of singularity can be considered as an endogenous model of inflation between the matter dominating epoch and the dark energy phase. We also investigate cosmological models with negative $\\gamma$. It is demonstrated that $\\gamma$ equal zero is a bifurcation parameter and dynamics qualitatively changes in comparison to positive $\\gamma$. Instead of the big bang the sudden singularity appears and there is a generic class of bouncing solution...
The screening Horndeski cosmologies
Starobinsky, Alexei A; Volkov, Mikhail S
2016-01-01
We present a systematic analysis of homogeneous and isotropic cosmologies in a particular Horndeski model with Galileon shift symmetry, containing also a $\\Lambda$-term and a matter. The model, sometimes called Fab Five, admits a rich spectrum of solutions. Some of them describe the standard late time cosmological dynamic dominated by the $\\Lambda$-term and matter, while at the early times the universe expands with a constant Hubble rate determined by the value of the scalar kinetic coupling. For other solutions the $\\Lambda$-term and matter are screened at all times but there are nevertheless the early and late accelerating phases. The model also admits bounces, as well as peculiar solutions describing "the emergence of time". Most of these solutions contain ghosts in the scalar and tensor sectors. However, a careful analysis reveals three different branches of ghost-free solutions, all showing a late time acceleration phase. We analyze the dynamical stability of these solutions and find that all of them are...
Moffat, J W
2016-01-01
An alternative to the postulate of dark energy required to explain the accelerated expansion of the universe is to adopt an inhomogeneous cosmological model to explain the supernovae data without dark energy. We adopt a void cosmology model, based on the inhomogeneous Lema\\^{i}tre-Tolman-Bondi solution of Einstein's field equations. The model can resolve observational anomalies in the $\\Lambda CDM$ model, such as the discrepancy between the locally measured value of the Hubble constant, $H_0=73.24\\pm 1.74\\,{\\rm km}\\,{\\rm s}^{-1}\\,{\\rm Mpc}^{-1}$, and the $H_0=66.93\\pm 0.62\\,{\\rm km}\\,{\\rm s}^{-1}\\,{\\rm Mpc}^{-1}$ determined by the Planck satellite data and the $\\Lambda CDM$ model, and the lithium $^{7}{\\rm Li}$ problem, which is a $5\\sigma$ mismatch between the theoretical prediction for the $^{7}{\\rm Li}$ from big bang nucleosynthesis and the value that we observe locally today at $z=0$. The void model can also resolve the tension between the number of massive clusters derived from the Sunyaev-Zel'dovich eff...
FLRW viscous cosmological models
Khadekar, G S; Meng, X -H
2016-01-01
In this paper we solve Friedmann equations by considering a universal media as a non-perfect fluid with bulk viscosity and is described by a general "gamma law" equation of state of the form $p= (\\gamma -1) \\rho + \\Lambda(t)$, where the adiabatic parameter $\\gamma$ varies with scale factor $R$ of the metric and $\\Lambda$ is the time dependent cosmological constant. A unified description of the early evolution of the universe is presented by assuming the bulk viscosity and cosmological parameter in a linear combination of two terms of the form: $\\Lambda(t)=\\Lambda_{0} + \\Lambda_{1}\\frac{\\dot{R}}{R}$ and $\\zeta = \\zeta_{0} + \\zeta_{1} \\frac{\\dot{R}}{R}$, where $\\Lambda_{0},\\;\\Lambda_{1},\\, \\zeta_{0}$ and $ \\zeta_{1}$ are constants, in which an inflationary phase is followed by the radiation dominated phase. For this general gamma law equation of state, an entirely integrable dynamical equation to the scale factor $R$ is obtained along with its exact solutions. In this framework we demonstrate that the model can...
Athermal laser launch telescopes
Kamphues, F.G.; Henselmans, R.; Rijnveld, N.; Lemmen, M.H.J.; Doelman, N.J.; Nijkerk, M.D.
2011-01-01
ESO has developed a concept for a compact laser guide star unit for use in future Adaptive Optics (AO) systems. A small powerful laser is combined with a telescope that launches the beam, creating a single modular unit that can be mounted directly on a large telescope. This approach solves several o
Namikawa, Toshiya; Nishizawa, Atsushi; Taruya, Atsushi
2016-03-25
Gravitational waves (GWs) from compact binary stars at cosmological distances are promising and powerful cosmological probes, referred to as the GW standard sirens. With future GW detectors, we will be able to precisely measure source luminosity distances out to a redshift z∼5. To extract cosmological information, previously proposed cosmological studies using the GW standard sirens rely on source redshift information obtained through an extensive electromagnetic follow-up campaign. However, the redshift identification is typically time consuming and rather challenging. Here, we propose a novel method for cosmology with the GW standard sirens free from the redshift measurements. Utilizing the anisotropies of the number density and luminosity distances of compact binaries originated from the large-scale structure, we show that, once GW observations will be well established in the future, (i) these anisotropies can be measured even at very high redshifts (z≥2), where the identification of the electromagnetic counterpart is difficult, (ii) the expected constraints on the primordial non-Gaussianity with the Einstein Telescope would be comparable to or even better than the other large-scale structure probes at the same epoch, and (iii) the cross-correlation with other cosmological observations is found to have high-statistical significance, providing additional cosmological information at very high redshifts.
Tunneling in $\\Lambda$ Decaying Cosmologies and the Cosmological Constant Problem
Jafarizadeh, M A; Rezaei-Aghdam, A; Rastegar, A R
1999-01-01
The tunneling rate, with exact prefactor, is calculated to first order in decaying cosmological constant \\Lambda \\sim R^{-m} (R is the scale factor and m is a parameter 0\\leq m \\leq 2). The calculations are performed by applying the dilute-instanton approximation on the corresponding Duru-Kleinert path integral. It is shown that the highest tunneling rate occurs for m \\to 2. Thus, the obtained most probable value of the cosmological constant, like one obtained by Strominger, accounts for a possible solution to the cosmological constant problem.
Cosmological Physics Ground Rules and How to Evaluate Cosmologies
Dilworth, D. J.
2009-12-01
This paper is a simple reminder for cosmology enthusiasts of the bright line separating the laws of physics from science fiction. It provides some tools: rules, guidelines and a definition of space useful for examining cosmology science claims and concepts. It explains the stringent thresholds for an idea before it can accurately be called a scientific theory or hypothesis; and who bears the burden of proof for a theory. These simple tools provide solid ground so you may more easily examine cosmology claims to help make up your own mind which side of the science/science fiction line a specific claim belongs on.
Energy Technology Data Exchange (ETDEWEB)
Barbour, J B [Department of Physics and Astronomy, University of Rochester (United States)
2007-02-07
These colloquium proceedings will be valuable, the blurb says, for graduate students and researchers in cosmology and theoretical astrophysics. Specifically, the book 'looks at both the strengths and weaknesses of the current big bang model in explaining certain puzzling data' and gives a 'comprehensive coverage of the expanding field of cosmology'. The reality is rather different. Conference proceedings rarely compare in value with a solid monograph or good review articles, and Current Issues in Cosmology is no exception. The colloquium was convened by the two editors, who have both long harboured doubts about the big bang, and was held in Paris in June 2004. The proceedings contain 19 presented papers and relatively brief summary comments by four panel speakers. The questions and answers at the end of each talk and a general discussion at the end were recorded and transcribed but contain little of interest. The nature of the colloquium is indicated by panellist Francesco Bertola's comment: 'While in the 1950s it was possible to speak of rival theories in cosmology, now the big-bang picture has no strong rivals. This is confirmed by the fact that out of 1500 members of the IAU Division VIII (Galaxies and the Universe) only a dozen, although bright people, devote their time to the heterodox views.' This was largely a platform for them to give their views. At least half of the dozen, all the 'usual suspects', were present: Geoffery and Margaret Burbidge, Jayant Narlikar, Halton Arp, Chandra Wickramasinghe and, in spirit only but playing a role somewhat like the ghost of Hamlet's father, the late Fred Hoyle. Doubters presented 12 of the 19 papers. Orthodoxy should certainly be challenged and the sociology of science questioned, but I found two main problems with this book. The papers putting the orthodox view are too short, even perfunctory. The most that a serious graduate student would get out of them is a reference
Cosmological constant and curved 5D geometry
Ito, M
2002-01-01
We study the value of cosmological constant in de Sitter brane embedded in five dimensions with positive, vanishing and negative bulk cosmological constant. In the case of negative bulk cosmological constant, we show that not zero but tiny four-dimensional cosmological constant can be realized by tiny deviation from bulk curvature of the Randall-Sundrum model.
Two Easily Made Astronomical Telescopes.
Hill, M.; Jacobs, D. J.
1991-01-01
The directions and diagrams for making a reflecting telescope and a refracting telescope are presented. These telescopes can be made by students out of plumbing parts and easily obtainable, inexpensive, optical components. (KR)
Kunze, Kerstin E
2013-01-01
Magnetic fields are observed on nearly all scales in the universe, from stars and galaxies upto galaxy clusters and even beyond. The origin of cosmic magnetic fields is still an open question, however a large class of models puts its origin in the very early universe. A magnetic dynamo amplifying an initial seed magnetic field could explain the present day strength of the galactic magnetic field. However, it is still an open problem how and when this initial magnetic field was created. Observations of the cosmic microwave background (CMB) provide a window to the early universe and might therefore be able to tell us whether cosmic magnetic fields are of primordial, cosmological origin and at the same time constrain its parameters. We will give an overview of the observational evidence of large scale magnetic fields, describe generation mechanisms of primordial magnetic fields and possible imprints in the CMB.
Peculiar Relations in Cosmology
Directory of Open Access Journals (Sweden)
Seshavatharam U.V.S.
2013-04-01
Full Text Available Within the expanding cosmic Hubble volume, the Hubble length can be considered as the gravitational or electromagnetic interaction range. T he product of ‘Hubble volume’ and ‘cosmic critical density’ can be called the ‘Hubble mass ’. Based on this cosmic mass unit, the authors noticed three peculiar semi empirical applications. With these applications it is possible to say that in atomic and nuclear physics, there exists a cos- mological physical variable. By observing its rate of change, the future cosmic accel- eration can be verified, time to time Hubble’s constant can be estimated and finally a unified model of the four cosmological interactions can be developed.
Ferrara, S; Sagnotti, A
2016-01-01
Abdus Salam was a true master of 20th Century Theoretical Physics. Not only was he a pioneer of the Standard Model (for which he shared the Nobel Prize with S. Glashow and S.Weinberg), but he also (co)authored many other outstanding contributions to the field of Fundamental Interactions and their unification. In particular, he was a major contributor to the development of supersymmetric theories, where he also coined the word "Supersymmetry" (replacing the earlier "Supergauges" drawn from String Theory). He also introduced the basic concept of "Superspace" and the notion of "Goldstone Fermion"(Goldstino). These concepts proved instrumental for the exploration of the ultraviolet properties and for the study of spontaneously broken phases of super Yang-Mills theories and Supergravity. They continue to play a key role in current developments in Early-Universe Cosmology. In this contribution we review models of inflation based on Supergravity with spontaneously broken local supersymmetry, with emphasis on the rol...
Fractional Derivative Cosmology
Roberts, Mark D
2009-01-01
The degree by which a function can be differentiated need not be restricted to integer values. Usually most of the field equations of physics are taken to be second order, curiosity asks what happens if this is only approximately the case and the field equations are nearly second order. For Robertson-Walker cosmology there is a simple fractional modification of the Friedman and conservation equations. In general fractional gravitational equations similar to Einstein's are hard to define as this requires fractional derivative geometry. What fractional derivative geometry might entail is briefly looked at and it turns out that even asking very simple questions in two dimensions leads to ambiguous or intractable results. A two dimensional line element which depends on the Gamma-function is looked at.
Splotch: Visualizing Cosmological Simulations
Dolag, K; Gheller, C; Imboden, S
2008-01-01
We present a light and fast, public available, ray-tracer {\\tt Splotch} software tool which supports the effective visualization of cosmological simulations data. We describe the algorithm it relies on, which is designed in order to deal with point-like data, optimizing the ray-tracing calculation by ordering the particles as a function of their ``depth'' defined as a function of one of the coordinates or other associated parameter. Realistic three-dimensional impressions are reached through a composition of the final color in each pixel properly calculating emission and absorption of individual volume elements. We describe several scientific as well as public applications realized with {\\tt Splotch}. We emphasize how different datasets and configurations lead to remarkable different results in terms of the images and animations. A few of these results are available online.
Quercellini, Claudia; Balbi, Amedeo; Cabella, Paolo; Quartin, Miguel
2010-01-01
In recent years the possibility of measuring the temporal change of radial and transverse position of sources in the sky in real time have become conceivable thanks to the thoroughly improved technique applied to new astrometric and spectroscopic experiments, leading to the research domain we call Real-time cosmology. We review for the first time great part of the work done in this field, analysing both the theoretical framework and some endeavor to foresee the observational strategies and their capability to constrain models. We firstly focus on real time measurements of the overall redshift drift and angular separation shift in distant source, able to trace background cosmic expansion and large scale anisotropy, respectively. We then examine the possibility of employing the same kind of observations to probe peculiar and proper acceleration in clustered systems and therefore the gravitational potential. The last two sections are devoted to the short time future change of the cosmic microwave background, as ...
Inflationary Cosmologies from Compactification?
Wohlfarth, M N R
2004-01-01
We consider the compactification of (d+n)-dimensional pure gravity and of superstring/M-theory on an n-dimensional internal space to a d-dimensional FLRW cosmology, with spatial curvature k=-1,0,+1, in Einstein conformal frame. The internal space is taken to be a product of Einstein spaces, each of which is allowed to have arbitrary curvature and a time-dependent volume. By investigating the effective d-dimensional scalar potential, which is a sum of exponentials, it is shown that such compactifications, in the k=0,+1 cases, do not lead to large amounts of accelerating expansion of the scale factor of the resulting FLRW universe, and, in particular, not to inflation. The case k=-1 admits solutions with eternal accelerating expansion for which the acceleration, however, tends to zero at late times.
The Standard Cosmological Model
Scott, D
2005-01-01
The Standard Model of Particle Physics (SMPP) is an enormously successful description of high energy physics, driving ever more precise measurements to find "physics beyond the standard model", as well as providing motivation for developing more fundamental ideas that might explain the values of its parameters. Simultaneously, a description of the entire 3-dimensional structure of the present-day Universe is being built up painstakingly. Most of the structure is stochastic in nature, being merely the result of the particular realisation of the "initial conditions" within our observable Universe patch. However, governing this structure is the Standard Model of Cosmology (SMC), which appears to require only about a dozen parameters. Cosmologists are now determining the values of these quantities with increasing precision in order to search for "physics beyond the standard model", as well as trying to develop an understanding of the more fundamental ideas which might explain the values of its parameters. Althoug...
Noncommutative quantum cosmology
Energy Technology Data Exchange (ETDEWEB)
Bastos, C; Bertolami, O [Departamento de Fisica, Institute Superior Teico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Dias, N C; Prata, J N, E-mail: cbastos@fisica.ist.utl.p, E-mail: orfeu@cosmos.ist.utl.p, E-mail: ncdias@mail.telepac.p, E-mail: joao.prata@mail.telepac.p [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Avenida Campo Grande, 376, 1749-024 Lisboa (Portugal)
2009-06-01
We present a phase-space noncommutative extension of Quantum Cosmology in the context of a Kantowski-Sachs (KS) minisuperspace model. We obtain the Wheeler-DeWitt (WDW) equation for the noncommutative system through the ADM formalism and a suitable Seiberg-Witten map. The resulting WDW equation explicitly depends on the phase-space noncommutative parameters, theta and eta. Numerical solutions of the noncommutative WDW equation are found and, interestingly, also bounds on the values of the nonommutative parameters. Moreover, we conclude that the noncommutativity in the momenta sector lead to a damped wave function implying that this type of noncommutativity can be relevant for a selection of possible initial states for the universe.
Cosmological quantum entanglement
Martin-Martinez, Eduardo
2012-01-01
We review recent literature on the connection between quantum entanglement and cosmology, with an emphasis on the context of expanding universes. We discuss recent theoretical results reporting on the production of entanglement in quantum fields due to the expansion of the underlying spacetime. We explore how these results are affected by the statistics of the field (bosonic or fermionic), the type of expansion (de Sitter or asymptotically stationary), and the coupling to spacetime curvature (conformal or minimal). We then consider the extraction of entanglement from a quantum field by coupling to local detectors and how this procedure can be used to distinguish curvature from heating by their entanglement signature. We review the role played by quantum fluctuations in the early universe in nucleating the formation of galaxies and other cosmic structures through their conversion into classical density anisotropies during and after inflation. We report on current literature attempting to account for this trans...
Davydov, Evgeny
2011-01-01
Vector fields can arise in the cosmological context in different ways, and we discuss both abelian and nonabelian sector. In the abelian sector vector fields of the geometrical origin (from dimensional reduction and Einstein-Eddington modification of gravity) can provide a very non-trivial dynamics, which can be expressed in terms of the effective dilaton-scalar gravity with the specific potential. In the non-abelian sector we investigate the Yang-Mills SU(2) theory which admits isotropic and homogeneous configuration. Provided the non-linear dependence of the lagrangian on the invariant F*F(dual), one can obtain the inflationary regime with the exponential growth of the scale factor. The effective amplitudes of the 'electric' and 'magnetic' components behave like slowly varying scalars at this regime, what allows the consideration of some realistic models with non-linear terms in the Yang-Mills lagrangian.
Developments in inflationary cosmology
Indian Academy of Sciences (India)
Arjun Berera
2009-01-01
This talk presents some recent work that has been done in inflationary cosmology. First a brief review is given of the inflation scenario and its basic models. After that, one of the main problems in developing inflationary models has been the requirement of a very flat inflation potential. In solving this problem, supersymmetry has played a major role, and the reasons will be discussed and a specific example of the SUSY hybrid model will be examined. Some problems introduced by SUSY such as the and gravitino problems will then be discussed. Then in a different direction, the quintessential inflation model will be examined as a proposal where a single scalar field plays the role of both the inflaton at early time and the dark energy field later. The final topic covered is developments in understanding dissipation and particle production processes during the inflationary phase.
Estimating Cosmological Parameter Covariance
Taylor, Andy
2014-01-01
We investigate the bias and error in estimates of the cosmological parameter covariance matrix, due to sampling or modelling the data covariance matrix, for likelihood width and peak scatter estimators. We show that these estimators do not coincide unless the data covariance is exactly known. For sampled data covariances, with Gaussian distributed data and parameters, the parameter covariance matrix estimated from the width of the likelihood has a Wishart distribution, from which we derive the mean and covariance. This mean is biased and we propose an unbiased estimator of the parameter covariance matrix. Comparing our analytic results to a numerical Wishart sampler of the data covariance matrix we find excellent agreement. An accurate ansatz for the mean parameter covariance for the peak scatter estimator is found, and we fit its covariance to our numerical analysis. The mean is again biased and we propose an unbiased estimator for the peak parameter covariance. For sampled data covariances the width estimat...
Cosmology With Extra Dimensions
Martín, J
2005-01-01
We review several properties of models that include extra dimensions, focusing on aspects related to cosmology and particle physics phenomenology. The properties of effective four dimensional inflationary geometry are studied in two distinct frameworks: (i) in Kaluza- Klein (KK) compactifications and (ii) in braneworld scenarios. From numerical simulations we find that inflationary braneworlds are unstable if the scale of inflation is too large in comparison with the stabilization scale of the interbrane distance. The analysis of perturbations confirms the existence of a tachyon associated with the volume modulus of the extra dimensions both in braneworlds and KK compactifications. With the numerical program BRANECODE non- perturbative properties of braneworlds are studied. We fully understand the non-perturbative consequences of this instability. Generic attractors are (i) an increase of the interbrane distance and the formation of a naked singularity, (ii) the brane colli...
Chew, Geoffrey F
2008-01-01
Arrowed-time divergence-free rules or cosmological quantum dynamics are formulated through stepped Feynman paths across macroscopic slices of Milne spacetime. Slice boundaries house totally-relativistic rays representing elementary entities--preons. Total relativity and the associated preon Fock space, despite distinction from special relativity (which lacks time arrow), are based on the Lorentz group. Each path is a set of cubic vertices connected by straight, directed and stepped arcs that carry inertial, electromagnetic and gravitational action. The action of an arc step comprises increments each bounded by Planck's constant. Action from extremely-distant sources is determined by universe mean energy density. Identifying the arc-step energy that determines inertial action with that determining gravitational action establishes both arc-step length and universe density. Special relativity is accurate for physics at laboratory spacetime scales far below that of Hubble and far above that of Planck.
Wilson, Robert W
2008-01-01
Observation of the CMB is central to observational cosmology, and the Antarctic Plateau is an exceptionally good site for this work. The first attempt at CMB observations from the Plateau was an expedition to the South Pole in December 1986 by the Radio Physics Research group at Bell Laboratories. Sky noise and opacity were measured. The results were sufficiently encouraging that in the Austral summer of 1988-1989, three CMB groups participated in the "Cucumber" campaign, where a temporary site dedicated to CMB anisotropy measurements was set up 2 km from South Pole Station. Winter-time observations became possible with the establishment in 1990 of the Center for Astrophysical Research in Antarctica (CARA), a National Science Foundation Science and Technology Center. CARA developed year-round observing facilities in the "Dark Sector", a section of Amundsen-Scott South Pole Station dedicated to astronomical observations. CARA scientists fielded several astronomical instruments: AST/RO, SPIREX, White Dish, Pyth...
Arkani-Hamed, Nima
2015-01-01
We study the imprint of new particles on the primordial cosmological fluctuations. New particles with masses comparable to the Hubble scale produce a distinctive signature on the non-gaussianities. This feature arises in the squeezed limit of the correlation functions of primordial fluctuations. It consists of particular power law, or oscillatory, behavior that contains information about the masses of new particles. There is an angular dependence that gives information about the spin. We also have a relative phase that crucially depends on the quantum mechanical nature of the fluctuations and can be viewed as arising from the interference between two processes. While some of these features were noted before in the context of specific inflationary scenarios, here we give a general description emphasizing the role of symmetries in determining the final result.
Lyth, David
2016-01-01
Written by an award-winning cosmologist, this brand new textbook provides advanced undergraduate and graduate students with coverage of the very latest developments in the observational science of cosmology. The book is separated into three parts; part I covers particle physics and general relativity, part II explores an account of the known history of the universe, and part III studies inflation. Full treatment of the origin of structure, scalar fields, the cosmic microwave background and the early universe are provided. Problems are included in the book with solutions provided in a separate solutions manual. More advanced extension material is offered in the Appendix, ensuring the book is fully accessible to students with a wide variety of background experience.
Cosmological Structure Formation
Primack, Joel R
2015-01-01
LCDM is remarkably successful in predicting the cosmic microwave background and large-scale structure, and LCDM parameters have been determined with only mild tensions between different types of observations. Hydrodynamical simulations starting from cosmological initial conditions are increasingly able to capture the complex interactions between dark matter and baryonic matter in galaxy formation. Simulations with relatively low resolution now succeed in describing the overall galaxy population. For example, the EAGLE simulation in volumes up to 100 cubic Mpc reproduces the observed local galaxy mass function nearly as well as semi-analytic models. It once seemed that galaxies are pretty smooth, that they generally grow in size as they evolve, and that they are a combination of disks and spheroids. But recent HST observations combined with high-resolution hydrodynamic simulations are showing that most star-forming galaxies are very clumpy; that galaxies often undergo compaction which reduces their radius and ...
Cosmological disformal invariance
Domènech, Guillem; Sasaki, Misao
2015-01-01
The invariance of physical observables under disformal transformations is considered. It is known that conformal transformations leave physical observables invariant. However, whether it is true for disformal transformations is still an open question. In this paper, it is shown that a pure disformal transformation without any conformal factor is equivalent to rescaling the time coordinate. Since this rescaling applies equally to all the physical quantities, physics must be invariant under a disformal transformation, that is, neither causal structure, propagation speed nor any other property of the fields are affected by a disformal transformation itself. This fact is presented at the action level for gravitational and matter fields and it is illustrated with some examples of observable quantities. We also find the physical invariance for cosmological perturbations at linear and high orders in perturbation, extending previous studies. Finally, a comparison with Horndeski and beyond Horndeski theories under a d...
Cosmological and supernova neutrinos
Energy Technology Data Exchange (ETDEWEB)
Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Balantekin, A. B. [Department of Physics, University of Wisconsin - Madison, Wisconsin 53706 (United States); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Kusakabe, M. [School of Liberal Arts and Science, Korea Aerospace University, Goyang 412-791 (Korea, Republic of); Mathews, G. J. [Department of Physics, University of Notre Dame, IN 46556 (United States); Nakamura, K. [Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Pehlivan, Y. [Mimar Sinan GSÜ, Department of Physics, Şişli, İstanbul 34380 (Turkey); Suzuki, T. [Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)
2014-06-24
The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.
Quantum Weyl invariance and cosmology
Directory of Open Access Journals (Sweden)
Atish Dabholkar
2016-09-01
Full Text Available Equations for cosmological evolution are formulated in a Weyl invariant formalism to take into account possible Weyl anomalies. Near two dimensions, the renormalized cosmological term leads to a nonlocal energy-momentum tensor and a slowly decaying vacuum energy. A natural generalization to four dimensions implies a quantum modification of Einstein field equations at long distances. It offers a new perspective on time-dependence of couplings and naturalness with potentially far-reaching consequences for the cosmological constant problem, inflation, and dark energy.
Quantum cosmology near two dimensions
Bautista, Teresa; Dabholkar, Atish
2016-08-01
We consider a Weyl-invariant formulation of gravity with a cosmological constant in d -dimensional spacetime and show that near two dimensions the classical action reduces to the timelike Liouville action. We show that the renormalized cosmological term leads to a nonlocal quantum momentum tensor which satisfies the Ward identities in a nontrivial way. The resulting evolution equations for an isotropic, homogeneous universe lead to slowly decaying vacuum energy and power-law expansion. We outline the implications for the cosmological constant problem, inflation, and dark energy.
Cosmology from start to finish.
Bennett, Charles L
2006-04-27
Cosmology is undergoing a revolution. With recent precise measurements of the cosmic microwave background radiation, large galaxy redshift surveys, better measurements of the expansion rate of the Universe and a host of other astrophysical observations, there is now a standard, highly constrained cosmological model. It is not a cosmology that was predicted. Unidentified dark particles dominate the matter content of our Universe, and mysteries surround the processes responsible for the accelerated expansion at its earliest moments (inflation?) and for its recent acceleration (dark energy?). New measurements must address the fundamental questions: what happened at the birth of the Universe, and what is its ultimate fate?
Quantum Weyl invariance and cosmology
Dabholkar, Atish
2016-09-01
Equations for cosmological evolution are formulated in a Weyl invariant formalism to take into account possible Weyl anomalies. Near two dimensions, the renormalized cosmological term leads to a nonlocal energy-momentum tensor and a slowly decaying vacuum energy. A natural generalization to four dimensions implies a quantum modification of Einstein field equations at long distances. It offers a new perspective on time-dependence of couplings and naturalness with potentially far-reaching consequences for the cosmological constant problem, inflation, and dark energy.
Time-varying cosmological term
Socorro, J.; D'oleire, M.; Pimentel, Luis O.
2015-11-01
We present the case of time-varying cosmological term using the Lagrangian formalism characterized by a scalar field ϕ with standard kinetic energy and arbitrary potential V(ϕ). This model is applied to Friedmann-Robertson-Walker (FRW)cosmology. Exact solutions of the field equations are obtained by a special ansats to solve the Einstein-Klein-Gordon equation and a particular potential for the scalar field and barotropic perfect fluid. We present the evolution on this cosmological term with different scenarios.
Cosmology and the weak interaction
Energy Technology Data Exchange (ETDEWEB)
Schramm, D.N. (Fermi National Accelerator Lab., Batavia, IL (USA)):(Chicago Univ., IL (USA))
1989-12-01
The weak interaction plays a critical role in modern Big Bang cosmology. This review will emphasize two of its most publicized cosmological connections: Big Bang nucleosynthesis and Dark Matter. The first of these is connected to the cosmological prediction of Neutrino Flavours, N{sub {nu}} {approximately} 3 which is now being confirmed at SLC and LEP. The second is interrelated to the whole problem of galaxy and structure formation in the universe. This review will demonstrate the role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure. 87 refs., 3 figs., 5 tabs.
Philosophical aspects of modern cosmology
Zinkernagel, Henrik
2014-01-01
This paper is a short introduction to a special issue on philosophy of cosmology, published in the May 2014 issue of Studies in History and Philosophy of Modern Physics. I briefly introduce the philosophy of cosmology, and then provide a short outline of the contents of the papers in the special issue. The contributors are George Ellis, Dominico Giulini, Marc Lachi\\`eze-Rey, Helge Kragh, Jeremy Butterfield, Jean-Christophe Hamilton, Mart\\'in L\\'opez-Corredoira, Brigitte Falkenburg, Robert Brandenberger and Chris Smeenk. I conclude with a few remarks on the relationship between aesthetics and cosmology.
Mixmaster Horava-Witten Cosmology
Dabrowski, M P
2001-01-01
We discuss various superstring effective actions and, in particular, their common sector which leads to the so-called pre-big-bang cosmology (cosmology in a weak coupling limit of heterotic superstring). Then, we review the main ideas of the Horava-Witten theory which is a strong coupling limit of heterotic superstring theory. Using the conformal relationship between these two theories we present Kasner asymptotic solutions of Bianchi type IX geometries within these theories and make predictions about possible emergence of chaos. Finally, we present a possible method of generating Horava-Witten cosmological solutions out of the well-known general relativistic pre-big-bang solutions.
Cosmological perturbations in massive bigravity
Energy Technology Data Exchange (ETDEWEB)
Lagos, Macarena; Ferreira, Pedro G., E-mail: m.lagos13@imperial.ac.uk, E-mail: p.ferreira1@physics.ox.ac.uk [Astrophysics, University of Oxford, DWB, Keble road, Oxford OX1 3RH (United Kingdom)
2014-12-01
We present a comprehensive analysis of classical scalar, vector and tensor cosmological perturbations in ghost-free massive bigravity. In particular, we find the full evolution equations and analytical solutions in a wide range of regimes. We show that there are viable cosmological backgrounds but, as has been found in the literature, these models generally have exponential instabilities in linear perturbation theory. However, it is possible to find stable scalar cosmological perturbations for a very particular choice of parameters. For this stable subclass of models we find that vector and tensor perturbations have growing solutions. We argue that special initial conditions are needed for tensor modes in order to have a viable model.
Robotic ecological mapping: Habitats and the search for life in the Atacama Desert
Warren-Rhodes, K.; Weinstein, S.; Piatek, J. L.; Dohm, J.; Hock, A.; Minkley, E.; Pane, D.; Ernst, L. A.; Fisher, G.; Emani, S.; Waggoner, A. S.; Cabrol, N. A.; Wettergreen, D. S.; Grin, E.; Coppin, P.; Diaz, Chong; Moersch, J.; Oril, G. G.; Smith, T.; Stubbs, K.; Thomas, G.; Wagner, M.; Wyatt, M.; Boyle, L. Ng
2007-12-01
As part of the three-year `Life in the Atacama' (LITA) project, plant and microbial abundance were mapped within three sites in the Atacama Desert, Chile, using an automated robotic rover. On-board fluorescence imaging of six biological signatures (e.g., chlorophyll, DNA, proteins) was used to assess abundance, based on a percent positive sample rating system and standardized robotic ecological transects. The percent positive rating system scored each sample based on the measured signal strength (0 for no signal to 2 for strong signal) for each biological signature relative to the total rating possible. The 2005 field experiment results show that percent positive ratings varied significantly across Site D (coastal site with fog), with patchy zones of high abundance correlated with orbital and microscale habitat types (heaved surface crust and gravel bars); alluvial fan habitats generally had lower abundance. Non-random multi-scale biological patchiness also characterized interior desert Sites E and F, with relatively high abundance associated with (paleo)aqueous habitats such as playas. Localized variables, including topography, played an important, albeit complex, role in microbial spatial distribution. Site D biosignature trends correlated with culturable soil bacteria, with MPN ranging from 10-1000 CFU/g-soil, and chlorophyll ratings accurately mapped lichen/moss abundance (Site D) and higher plant (Site F) distributions. Climate also affected biological patchiness, with significant correlation shown between abundance and (rover) air relative humidity, while lichen patterns were linked to the presence of fog. Rover biological mapping results across sites parallel longitudinal W-E wet/dry/wet Atacama climate trends. Overall, the study highlights the success of targeting of aqueous-associated habitats identifiable from orbital geology and mineralogy. The LITA experience also suggests the terrestrial study of life and its distribution, particularly the fields of
Longair, M. S.; Warner, J. W.
1979-01-01
The application of the space telescope for extragalactic astronomy, planetary research, and stellar, interstellar, and galactic structural problems is discussed. Topics include investigations of small solar system objects, the physical characteristics of ionized gaseous nebulae, the central regions of active galaxies and quasars, problems of cosmology, and the distribution and composition of interstellar matter.
Modular assembled space telescope
Feinberg, Lee D.; Budinoff, Jason; MacEwen, Howard; Matthews, Gary; Postman, Marc
2013-09-01
We present a new approach to building a modular segmented space telescope that greatly leverages the heritage of the Hubble Space Telescope and the James Webb Space Telescope. The modular design in which mirror segments are assembled into identical panels allows for economies of scale and for efficient space assembly that make a 20-m aperture approach cost effective. This assembly approach can leverage NASA's future capabilities and has the power to excite the public's imagination. We discuss the science drivers, basic architecture, technology, and leveraged NASA infrastructure, concluding with a proposed plan for going forward.
Oparin and the origin of life - Cosmological considerations
Young, R. S.
1974-01-01
The question of the origin of life is examined on a cosmological scale from early observations made by Oparin. Even by a comparison of the amount of data presently available from telescopic and spacecraft observations Oparin's conclusions have been confirmed. The concept of panspermia is rejected and details of the role of carbon on earth are presented. Formation of C2, CN and CH is explained and various aspects of the atmospheres of planets are considered. Finally, the origin of amides, amines and other nitrogenous derivatives from hydrocarbons is discussed.
Geomorfología del AMCP – MU Isla Grande Atacama.
Castro, Consuelo; Zúñiga, Álvaro
2007-01-01
En el territorio del Área Marina Costera Protegida de Múltiples Usos (AMCP-MU), Isla Grande de Atacama, el relieve se compone de formas heredadas de condiciones paleogeográficas glaciales e interglaciales características de zonas costeras del último millón de años y de formas actuales, relacionadas con la erosión litoral y continental a escala humana . Ambos tipos de formas están modeladas en rocas y sedimentos que poseen características particulares y una variada composición. Tanto el modela...
A new freshwater snail (Caenogastropoda: Cochliopidae) from the Atacama Desert, northern Chile.
Collado, Gonzalo A
2015-03-02
In the family Cochliopidae, Heleobia Stimpson, 1865 is the most speciose genus in South America, with about 90 species (Hershler & Thompson 1992; Cazzaniga 2011). A recent molecular and morphological analysis performed in northern Chile (Atacama Desert) showed that the previously undescribed springsnails from Aguada de Chorrillos belong to Heleobia (Collado et al. 2013). In this study I formally describe this new species. Although this paper does not treat morphology in detail, the anatomical characters, in combination with the previously published molecular data provides a strong basis for recognizing this population as a distinct species.
OSTEOFITOSIS VERTEBRAL EN POBLACIONES PREHISPÁNICAS DE SAN PEDRO DE ATACAMA, NORTE DE CHILE
2015-01-01
Se estudió la osteofitosis vertebral como indicador de estrés físico en grupos humanos prehistóricos de San Pedro de Atacama, durante los períodos Medio (400 DC - 1000 DC) e Intermedio Tardío (1000 DC - 1450 DC). Se registró el grado promedio de osteofitosis vertebral de cada segmento vertebral en 154 individuos adultos de cuatro sitios: Solcor 3, Coyo 3, Quitor 6 y Toconao Oriente. Se comprobó el carácter degenerativo de la osteofitosis vertebral, ya que el grado promedio de osteofitosis fue...
Com sobreviuen els microorganismes fotosintètics al desert d'Atacama?
Roldán, Mònica
2014-01-01
Amb un índex d'aridesa del 0,0005, el desert d'Atacama (Xile) és el lloc més sec de la Terra. Investigadors del Servei de Microscòpia de la UAB i del Museu Nacional de Ciències Naturals de Madrid han publicat un estudi en el qual es demostren les diferents estratègies que els microorganismes fotosintètics han desenvolupat en aquest ambient d'extrema sequedat per sobreviure a l'interior de les halites, roques compostes de sal comuna (NaCl), on han de fer front a condicions de salinitat extrema...
Are There High Meteorite Concentrations in the Atacama Desert/Chile?
Scherer, P.; Delisle, G.
1992-07-01
We have visited numerous regions of the Atacama desert between Copiapo (27 degrees, 15'S) and Calama (22 degrees, 25'S) to assess their potential as a high-yield meteorite concentration surface, easily exploitable by search efforts within a reasonable time frame. According to our observations, this desert is characterized by the following features: a) A high percentage of the desert consists of sloping surfaces on which soil movement occurs, presumably by very infrequent, though heavy rain. b) Vast areas of the desert are covered by a dm-thick sand layer of dark colour. Since the sand is too coarse-grained to be transported by wind it presumably resulted from in-situ weathering of rock debris derived from nearby mountains. We suspect that impacting smaller objects can easily penetrate the sand layer. c) The sand layer is typically dotted by rocks, fist-size or smaller, that are covered by a thick layer of desert paint (reddish-brown to black colour). Most country rocks are of volcanic origin (rhyolite, andesite, basalt) and are typically of grey to black colour. A noticeable colour contrast in particular to potential stony meteorites is almost nonexistent. d) Soil salts with a potential to speed up weathering processes are ubiquitous near the surface. e) The Pampa de Mejillones, 45 km north of Antofagasta, is one of the few light-coloured areas in the Atacama desert. The surface, being of Mio-Pliocene age, consists of an almost continuous layer of light-brown fossil shells (bivalves and gastropodes). Fluvially transported dark rocks from adjacent outcrops rest on top. The latter material is covered again by desert paint. Few meteorite discoveries have been reported from this area (Pampa (a),(b),(c)). f) Numerous old tire tracks, in particular around mines in operation, crisscross most areas of the Atacama. Undetected objects such as large masses of iron bodies are not likely to have remained undiscovered in great numbers any more. We conclude that the potential of
Cosmological applications in Kaluza-Klein theory
Institute of Scientific and Technical Information of China (English)
M. I. Wanas; Gamal G. L. Nashed; A. A. Nowaya
2012-01-01
The field equations of Kaluza-Klein (KK) theory have been applied in the domain of cosmology.These equations are solved for a flat universe by taking the gravitational and the cosmological constants as a function of time t.We use Taylor's expansion of cosmological function,△(t),up to the first order of the time t.The cosmological parameters are calculated and some cosmological problems are discussed.
Cosmological applications in Kaluza-Klein theory
Wanas, M I; Nowaya, A A
2011-01-01
The field equations of Kaluza-Klein (KK) theory have been applied in the domain of cosmology. These equations are solved for a flat universe by taking the gravitational and the cosmological constants as a function of time t. We use Taylor's expansion of cosmological function, $\\Lambda(t)$, up to the first order of the time $t$. The cosmological parameters are calculated and some cosmological problems are discussed.
ALMA Partners Break Ground on World's Largest Millimeter Wavelength Telescope
2003-11-01
Scientists and dignitaries from North America, Europe, and Chile broke ground today (Thursday, November 6, 2003) on what will be the world's largest, most sensitive radio telescope operating at millimeter wavelengths. ALMA - the Atacama Large Millimeter Array - will be a single instrument composed of 64 high-precision antennas located on the Chajnantor plain of the Chilean Andes in the District of San Pedro de Atacama, 16,500 feet (5,000 meters) above sea level. ALMA's primary function will be to observe and image with unprecedented clarity the enigmatic cold regions of the Universe, which are optically dark, yet shine brightly in the millimeter portion of the electromagnetic spectrum. ALMA Array Artist's Conception of ALMA Array in Compact Configuration (Click on Image for Larger Version) Other Images Available: Artist's conception of the antennas for the Atacama Large Millimeter Array Moonrise over ALMA test equipment near Cerro Chajnantor, Chile VertexRSI antenna at the VLA test site The Atacama Large Millimeter Array is an international astronomy facility. ALMA is an equal partnership between Europe and North America, in cooperation with the Republic of Chile, and is funded in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC), and in Europe by the European Southern Observatory (ESO) and Spain. ALMA construction and operations are led on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI), and on behalf of Europe by ESO. "The U.S. National Science Foundation joins today with our North American partner, Canada, and with the European Southern Observatory, Spain, and Chile to prepare for a spectacular new instrument," said Dr. Rita Colwell, director of the U.S. National Science Foundation. "The Atacama Large Millimeter Array will expand our vision of the Universe with "eyes" that pierce the shrouded mantles of
Applications of Cosmological Perturbation Theory
Christopherson, Adam J
2011-01-01
Cosmological perturbation theory is crucial for our understanding of the universe. The linear theory has been well understood for some time, however developing and applying the theory beyond linear order is currently at the forefront of research in theoretical cosmology. This thesis studies the applications of perturbation theory to cosmology and, specifically, to the early universe. Starting with some background material introducing the well-tested 'standard model' of cosmology, we move on to develop the formalism for perturbation theory up to second order giving evolution equations for all types of scalar, vector and tensor perturbations, both in gauge dependent and gauge invariant form. We then move on to the main result of the thesis, showing that, at second order in perturbation theory, vorticity is sourced by a coupling term quadratic in energy density and entropy perturbations. This source term implies a qualitative difference to linear order. Thus, while at linear order vorticity decays with the expan...
Three Studies in Epicurean Cosmology
Bakker, F.A.
2010-01-01
This dissertation consists of three studies dealing with various aspects of Epicurean cosmology. The first study discusses the Epicurean practice of explaining astronomical and meteorological phenomena by multiple alternative theories. The second study compares the meteorological accounts of Epicuru
Cosmological Inflation: A Personal Perspective
Kazanas, Demos
2008-01-01
We present a brief review of Cosmological Inflation from the personal perspective of the speaker who almost 30 years ago proposed a way of resolving the problem of Cosmological Horizon by employing certain notions and developments from the field of High Energy Physics. Along with a brief introduction of the Horizon and Flatness problems of standard cosmology, this lecture concentrates on personal reminiscing of the notions and ideas that prevailed and influenced the author's thinking at the time. The lecture then touches upon some more recent developments related to the subject including exact solutions to conformal gravity that provide a first principles emergence of a characteristic acceleration in the universe and concludes with some personal views concerning the direction that the cosmology field has taken in the past couple of decades and certain speculations some notions that may indicate future directions of research.
Precision cosmology and the landscape
Energy Technology Data Exchange (ETDEWEB)
Bousso, Raphael; Bousso, Raphael
2006-10-01
After reviewing the cosmological constant problem -- why is Lambda not huge? -- I outline the two basic approaches that had emerged by the late 1980s, and note that each made a clear prediction. Precision cosmological experiments now indicate that the cosmological constant is nonzero. This result strongly favors the environmental approach, in which vacuum energy can vary discretely among widely separated regions in the universe. The need to explain this variation from first principles constitutes an observational constraint on fundamental theory. I review arguments that string theory satisfies this constraint, as it contains a dense discretuum of metastable vacua. The enormous landscape of vacua calls for novel, statistical methods of deriving predictions, and it prompts us to reexamine our description of spacetime on the largest scales. I discuss the effects of cosmological dynamics, and I speculate that weighting vacua by their entropy production may allow for prior-free predictions that do not resort to explicitly anthropic arguments.
Physical and Relativistic Numerical Cosmology
Directory of Open Access Journals (Sweden)
Peter Anninos
1998-01-01
Full Text Available In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark--hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.
Bimetric gravity is cosmologically viable
Directory of Open Access Journals (Sweden)
Yashar Akrami
2015-09-01
Full Text Available Bimetric theory describes gravitational interactions in the presence of an extra spin-2 field. Previous work has suggested that its cosmological solutions are generically plagued by instabilities. We show that by taking the Planck mass for the second metric, Mf, to be small, these instabilities can be pushed back to unobservably early times. In this limit, the theory approaches general relativity with an effective cosmological constant which is, remarkably, determined by the spin-2 interaction scale. This provides a late-time expansion history which is extremely close to ΛCDM, but with a technically-natural value for the cosmological constant. We find Mf should be no larger than the electroweak scale in order for cosmological perturbations to be stable by big-bang nucleosynthesis. We further show that in this limit the helicity-0 mode is no longer strongly-coupled at low energy scales.
Naturally Time Dependent Cosmological Constant
Gregori, A
2004-01-01
In the light of the proposal of hep-th/0207195, we discuss in detail the issue of the cosmological constant, explaining how can string theory naturally predict the value which is experimentally observed, without low-energy supersymmetry.
Goddard Robotic Telescope (GRT)
National Aeronautics and Space Administration — Since it is not possible to predict when a Gamma-Ray Burst (GRB) occurs, the follow-up ground telescopes must be distributed as uniform as possible all over the...
Chadzitaskos, Goce
2013-01-01
We present a proposal of a new type of telescopes using a rotating parabolic strip as the primary mirror. It is the most principal modification of the design of telescopes from the times of Galileo and Newton. In order to demonstrate the basic idea, the image of an artificial constellation observed by this kind of telescope was reconstructed using the techniques described in this article. As a working model of this new telescope, we have used an assembly of the primary mirror---a strip of acrylic glass parabolic mirror 40 cm long and 10 cm wid shaped as a parabolic cylinder of focal length 1 m---and an artificial constellation, a set of 5 apertures in a distance of 5 m illuminated from behind. In order to reconstruct the image, we made a series of snaps, each after a rotation of the constellation by 15 degrees. Using Matlab we reconstructed the image of the artificial constellation.
Large Binocular Telescope Project
Hill, John M.
1997-03-01
The large binocular telescope (LBT) project have evolved from concepts first proposed in 1985. The present partners involved in the design and construction of this 2 by 8.4 meter binocular telescope are the University of Arizona, Italy represented by the Osservatorio Astrofisico di Arcetri and the Research Corporation based in Tucson, Arizona. These three partners have committed sufficient funds to build the enclosure and the telescope populated with a single 8.4 meter optical train -- approximately 40 million dollars (1989). Based on this commitment, design and construction activities are now moving forward. Additional partners are being sought. The next mirror to be cast at the Steward Observatory Mirror Lab in the fall of 1996 will be the first borosilicate honeycomb primary for LBT. The baseline optical configuration of LBT includes wide field Cassegrain secondaries with optical foci above the primaries to provide a corrected one degree field at F/4. The infrared F/15 secondaries are a Gregorian design to allow maximum flexibility for adaptive optics. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4 arcminute diameter field-of-view. The interferometric focus combining the light from the two 8.4 meter primaries will reimage two folded Gregorian focal planes to a central location. The telescope elevation structure accommodates swing arms which allow rapid interchange of the various secondary and tertiary mirrors. Maximum stiffness and minimal thermal disturbance continue to be important drivers for the detailed design of the telescope. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The detailed design of the telescope structure will be completed in 1996 by ADS Italia (Lecco) and European Industrial Engineering (Mestre). The final enclosure design is now in progress at M3 Engineering (Tucson), EIE and ADS Italia
Analytic Methods for Cosmological Likelihoods
Taylor, A. N.; Kitching, T. D.
2010-01-01
We present general, analytic methods for Cosmological likelihood analysis and solve the "many-parameters" problem in Cosmology. Maxima are found by Newton's Method, while marginalization over nuisance parameters, and parameter errors and covariances are estimated by analytic marginalization of an arbitrary likelihood function with flat or Gaussian priors. We show that information about remaining parameters is preserved by marginalization. Marginalizing over all parameters, we find an analytic...
Neutrinos in Astrophysics and Cosmology
Balantekin, A B
2016-01-01
Neutrinos play a crucial role in many aspects of astrophysics and cosmology. Since they control the electron fraction, or equivalently neutron-to-proton ratio, neutrino properties impact yields of r-process nucleosynthesis. Similarly the weak decoupling temperature in the Big Bang Nucleosynthesis epoch is exponentially dependent on the neutron-to-proton ratio. In these conference proceedings, I briefly summarize some of the recent work exploring the role of neutrinos in astrophysics and cosmology.
The Cosmology - Particle Physics Connection
Trodden, Mark(Center for Particle Cosmology, Department of Physics & Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, United States)
2006-01-01
Modern cosmology poses deep and unavoidable questions for fundamental physics. In this plenary talk, delivered in slightly different forms at the {\\it Particles and Nuclei International Conference} (PANIC05) in Santa Fe, in October 2005, and at the {\\it CMB and Physics of the Early Universe International Conference}, on the island of Ischia, Italy, in April 2006, I discuss the broad connections between cosmology and particle physics, focusing on physics at the TeV scale, accessible at the nex...
Einstein-Kalb-Ramond cosmology
Energy Technology Data Exchange (ETDEWEB)
Stein-Schabes, J.A.; Gleiser, M.
1986-11-15
We study possible cosmological solutions to a higher-dimensional model of gravity with a three-form taking values in the physical space, and show that it is possible to integrate Einstein's equations exactly for flat physical and internal spaces. We then present a detailed analysis of the possible trajectories in the phase plane of the Hubble factors and find the allowed regions for a physically acceptable cosmology. These turn out to be rather small.
Parameterized post-Newtonian cosmology
Sanghai, Viraj A. A.; Clifton, Timothy
2017-03-01
Einstein’s theory of gravity has been extensively tested on solar system scales, and for isolated astrophysical systems, using the perturbative framework known as the parameterized post-Newtonian (PPN) formalism. This framework is designed for use in the weak-field and slow-motion limit of gravity, and can be used to constrain a large class of metric theories of gravity with data collected from the aforementioned systems. Given the potential of future surveys to probe cosmological scales to high precision, it is a topic of much contemporary interest to construct a similar framework to link Einstein’s theory of gravity and its alternatives to observations on cosmological scales. Our approach to this problem is to adapt and extend the existing PPN formalism for use in cosmology. We derive a set of equations that use the same parameters to consistently model both weak fields and cosmology. This allows us to parameterize a large class of modified theories of gravity and dark energy models on cosmological scales, using just four functions of time. These four functions can be directly linked to the background expansion of the universe, first-order cosmological perturbations, and the weak-field limit of the theory. They also reduce to the standard PPN parameters on solar system scales. We illustrate how dark energy models and scalar-tensor and vector-tensor theories of gravity fit into this framework, which we refer to as ‘parameterized post-Newtonian cosmology’ (PPNC).
Roberts, Alex
2016-08-01
Recently, a new framework for describing the multiverse has been proposed which is based on the principles of quantum mechanics. The framework allows for well-defined predictions, both regarding global properties of the universe and outcomes of particular experiments, according to a single probability formula. This provides complete unification of the eternally inflating multiverse and many worlds in quantum mechanics. We elucidate how cosmological parameters can be calculated in this framework, and study the probability distribution for the value of the cosmological constant. We consider both positive and negative values, and find that the observed value is consistent with the calculated distribution at an order of magnitude level. In particular, in contrast to the case of earlier measure proposals, our framework prefers a positive cosmological constant over a negative one. These results depend only moderately on how we model galaxy formation and life evolution therein. We explore supersymmetric theories in which the Higgs mass is boosted by the non-decoupling D-terms of an extended U(1) X gauge symmetry, defined here to be a general linear combination of hypercharge, baryon number, and lepton number. Crucially, the gauge coupling, gX, is bounded from below to accommodate the Higgs mass, while the quarks and leptons are required by gauge invariance to carry non-zero charge under U(1)X. This induces an irreducible rate, sigmaBR, for pp → X → ll relevant to existing and future resonance searches, and gives rise to higher dimension operators that are stringently constrained by precision electroweak measurements. Combined, these bounds define a maximally allowed region in the space of observables, (sigmaBR, mX), outside of which is excluded by naturalness and experimental limits. If natural supersymmetry utilizes non-decoupling D-terms, then the associated X boson can only be observed within this window, providing a model independent 'litmus test' for this broad
Precision cosmology with time delay lenses: High resolution imaging requirements
Energy Technology Data Exchange (ETDEWEB)
Meng, Xiao -Lei [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Treu, Tommaso [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Agnello, Adriano [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Auger, Matthew W. [Univ. of Cambridge, Cambridge (United Kingdom); Liao, Kai [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Marshall, Philip J. [Stanford Univ., Stanford, CA (United States)
2015-09-28
Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρ_{tot}∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive
Energy Technology Data Exchange (ETDEWEB)
Shafi, Qaisar [Univ. of Delaware, Newark, DE (United States); Barr, Steven [Univ. of Delaware, Newark, DE (United States); Gaisser, Thomas [Univ. of Delaware, Newark, DE (United States); Stanev, Todor [Univ. of Delaware, Newark, DE (United States)
2015-03-31
1. Executive Summary (April 1, 2012 - March 31, 2015) Title: Particle Theory, Particle Astrophysics and Cosmology Qaisar Shafi University of Delaware (Principal Investigator) Stephen M. Barr, University of Delaware (Co-Principal Investigator) Thomas K. Gaisser, University of Delaware (Co-Principal Investigator) Todor Stanev, University of Delaware (Co-Principal Investigator) The proposed research was carried out at the Bartol Research included Professors Qaisar Shafi Stephen Barr, Thomas K. Gaisser, and Todor Stanev, two postdoctoral fellows (Ilia Gogoladze and Liucheng Wang), and several graduate students. Five students of Qaisar Shafi completed their PhD during the period August 2011 - August 2014. Measures of the group’s high caliber performance during the 2012-2015 funding cycle included pub- lications in excellent refereed journals, contributions to working groups as well as white papers, and conference activities, which together provide an exceptional record of both individual performance as well as overall strength. Another important indicator of success is the outstanding quality of the past and current cohort of graduate students. The PhD students under our supervision regularly win the top departmental and university awards, and their publications records show excellence both in terms of quality and quantity. The topics covered under this grant cover the frontline research areas in today’s High Energy Theory & Phenomenology. For Professors Shafi and Barr they include LHC related topics including supersymmetry, collider physics, fl vor physics, dark matter physics, Higgs boson and seesaw physics, grand unifi and neutrino physics. The LHC two years ago discovered the Standard Model Higgs boson, thereby at least partially unlocking the secrets behind electroweak symmetry breaking. We remain optimistic that new and exciting physics will be found at LHC 14, which explain our focus on physics beyond the Standard Model. Professors Shafi continued his
Late Pleistocene human occupation of the hyperarid core in the Atacama Desert, northern Chile
Latorre, Claudio; Santoro, Calogero M.; Ugalde, Paula C.; Gayo, Eugenia M.; Osorio, Daniela; Salas-Egaña, Carolina; De Pol-Holz, Ricardo; Joly, Delphine; Rech, Jason A.
2013-10-01
Few archeological sites in South America contain uncontroversial evidence for when the first peopling of the continent occurred. Largely ignored in this debate, extreme environments are assumed either as barriers to this early wave of migration or without potential for past habitability. Here, we report on a rare 12-13 ka human occupation from Quebrada Maní (site QM12), a plantless, near rainless landscape (1240 m asl and 85 km from the Pacific Ocean) located in the hyperarid core of the Atacama Desert. This location harbored wetlands and riparian woodlands that were fed by increased rainfall further east in the central Andes during the latest Pleistocene. Excavations at QM12 yielded a diverse cultural assemblage of lithics, burned and cut bones, marine gastropods, pigments, plant fibers, and wooden artifacts alongside a prepared fireplace. Sixteen radiocarbon dates from site QM12 on charcoal, marine shells, animal dung, plant remains and wood reveal that the occupation took place between 12.8 and 11.7 ka. These results demonstrate that the Atacama Desert was not a barrier to early American settlement and dispersal, and provide new clues for understanding the cultural complexity and diversity of the peopling of South America during the Last Glacial-interglacial transition.
Contrasting Imaginaries: The Atacama Desert Perceived from the Region and Observed from the Nation
Directory of Open Access Journals (Sweden)
González Pizarro, José Antonio
2009-12-01
Full Text Available The author draws on Cornelius Castoriadis’ categories to examine the social imaginaries on the Atacama Desert from the 16th to the 20th centuries. He emphasizes the manner in which different imaginaries came to be constructed historically over time to the point of bringing about a contrast between the imaginary of the country —centered on adversity, sterility and desolation, thereby projecting a textual negativity about Atacama— and that of the region, full of varying symbolisms signifying challenge, occupation and the potentiality of nature. The latter imaginary strengthened the empathy of the northern literature toward the human epic of peopling the desert.
Basándose en las categorías de Cornelius Castoriadis, el autor examina los imaginarios sociales sobre el desierto de Atacama desde el siglo XVI hasta el XX. Pone de relieve cómo se fueron construyendo en la historia los distintos imaginarios para situarse en la contraposición entre el establecido en la nación chilena —centrado en los elementos de adversidad, esterilidad y lo inhóspito, todo lo cual proyectó una negatividad textual— y el construido en la región, repleto de variados simbolismos en torno al desafío, la ocupación y la potencialidad de la naturaleza, que afianzó la empatía de la literatura nortina con la épica humana del asentamiento en el desierto.
The Atacama B-Mode Search: CMB Polarimetry with Transition-Edge-Sensor Bolometers
Essinger-Hileman, T; Beall, J A; Cho, H M; Fowler, J; Halpern, M; Hasselfield, M; Irwin, K D; Marriage, T A; Niemack, M D; Page, L; Parker, L P; Pufu, S; Staggs, S T; Stryzak, O; Visnjic, C; Yoon, K W; Zhao, Y
2010-01-01
The Atacama B-mode Search (ABS) experiment is a 145 GHz polarimeter designed to measure the B-mode polarization of the Cosmic Microwave Background (CMB) at large angular scales. The ABS instrument will ship to the Atacama Desert of Chile fully tested and ready to observe in 2010. ABS will image large-angular-scale CMB polarization anisotropies onto a focal plane of 240 feedhorn-coupled, transition-edge sensor (TES) polarimeters, using a cryogenic crossed-Dragone design. The ABS detectors, which are fabricated at NIST, use orthomode transducers to couple orthogonal polarizations of incoming radiation onto separate TES bolometers. The incoming radiation is modulated by an ambient-temperature half-wave plate in front of the vacuum window at an aperture stop. Preliminary detector characterization indicates that the ABS detectors can achieve a sensitivity of 300 $\\mu K \\sqrt{s}$ in the field. This paper describes the ABS optical design and detector readout scheme, including feedhorn design and performance, magneti...
The Bulimulidae (Mollusca: Pulmonata) from the Región de Atacama, northern Chile
2015-01-01
The bulimulid genus Bostryx Troschel, 1847 is the most species-rich genus of land snails found in Chile, with the majority of its species found only in the northern part of the country, usually in arid coastal zones. This genus has been sparsely studied in Chile and there is little information on their distribution, diversity or ecology. Here, for the first time, a formal analysis of the diversity of bulimulids in the Región de Atacama, northern Chile, is reported. Of the seventeen species recorded for the area, most of them were efectively found in the field collections and one record was based on literature. Five taxa are described as new: Bostryx ancavilorum sp. nov., Bostryx breurei sp. nov., Bostryx calderaensis sp. nov., Bostryx ireneae sp. nov. and Bostryx valdovinosi sp. nov., and the known geographic distribution of seven species is extended. Results reveal that the Región de Atacama is the richest region in terrestrial snails in Chile, after the Juan Fernández Archipelago. All of the terrestrial molluscan species occurring in the area are endemic to Chile, most of them with restricted geographic distributions along the coastal zones, and none of them are currently protected by law. Further sampling in northern Chile will probably reveal more snail species to be discovered and described. PMID:26587346
The stratigraphic record of changing hyperaridity in the Atacama desert over the last 10 Ma
Sáez, Alberto; Cabrera, Lluís; Garcés, Miguel; Bogaard, Paul van den; Jensen, Arturo; Gimeno, Domingo
2012-11-01
New radiometric and magnetostratigraphic data from Quillagua and Calama basins (Atacama desert) indicate that the stratigraphic record over the last 10 Ma includes two hiatuses, lasting approximately 2 and 4 million years respectively. These sedimentary gaps are thought to represent prolonged periods of hyperaridity in the region, with absence of sediment production and accumulation in the central depressions. Their remarkable synchrony with Antarctic and Patagonian glacial stages, Humboldt cold current enhancement and cold upwelling waters lead us to suggest long-term climate forcing. Higher frequency climate (orbital precession and eccentricity) forcing is thought to control the sequential arrangement of the lacustrine units deposited at times of lower aridity. Hyperaridity trends appear to be modulated by the activity of the South American Summer Monsoon, which drives precipitation along the high altitude areas to the east of Atacama. This precipitation increase combined with the eastward enlargement of the regional drainage during the late Pleistocene enabled water transfer from these high altitude areas to the low lying closed Quillagua basin and resulted in the deposition of the last widespread saline lacustrine deposits in this depression, before its drainage was open to the Pacific Ocean.
Carleton, Nathaniel P.; Hoffmann, William F.
1978-01-01
Describes the basic design and principle of operating an optical-infrared telescope, the MMT. This third largest telescope in the world represents a new stage in telescope design; it uses a cluster of six reflecting telescopes, and relies on an automatic sensing and control system. (GA)
Cosmological perturbations without inflation
Melia, Fulvio
2017-01-01
A particularly attractive feature of inflation is that quantum fluctuations in the inflaton field may have seeded inhomogeneities in the cosmic microwave background (CMB) and the formation of large-scale structure. In this paper, we demonstrate that a scalar field with zero active mass, i.e. with an equation of state ρ +3p=0 , where ρ and p are its energy density and pressure, respectively, could also have produced an essentially scale-free fluctuation spectrum, though without inflation. This alternative mechanism is based on the Hollands–Wald concept of a minimum wavelength for the emergence of quantum fluctuations into the semi-classical universe. A cosmology with zero active mass does not have a horizon problem, so it does not need inflation to solve this particular (non) issue. In this picture, the {{1}\\circ}{ {--}}{{10}\\circ} fluctuations in the CMB correspond almost exactly to the Planck length at the Planck time, firmly supporting the view that CMB observations may already be probing trans-Planckian physics.
Ferrara, S.; Kehagias, A.; Sagnotti, A.
2016-09-01
Abdus Salam was a true master of 20th Century Theoretical Physics. Not only was he a pioneer of the Standard Model (for which he shared the Nobel Prize with S. Glashow and S. Weinberg), but he also (co)authored many other outstanding contributions to the field of Fundamental Interactions and their unification. In particular, he was a major contributor to the development of supersymmetric theories, where he also coined the word “Supersymmetry” (replacing the earlier “Supergauges” drawn from String Theory). He also introduced the basic concept of “Superspace” and the notion of “Goldstone Fermion” (Goldstino). These concepts proved instrumental for the exploration of the ultraviolet properties and for the study of spontaneously broken phases of super Yang-Mills theories and Supergravity. They continue to play a key role in current developments in Early-Universe Cosmology. In this contribution we review models of inflation based on Supergravity with spontaneously broken local supersymmetry, with emphasis on the role of nilpotent superfields to describe a de Sitter phase of our Universe.
Brynjolfsson, Ari
2011-04-01
The newly discovered plasma redshift cross section explains a long range of phenomena; including the cosmological redshift, and the intrinsic redshift of Sun, stars, galaxies and quasars. It explains the beautiful black body spectrum of the CMB, and it predicts correctly: a) the observed XRB, b) the magnitude redshift relation for supernovae, and c) the surface- brightness-redshift relation for galaxies. There is no need for Big Bang, Inflation, Dark Energy, Dark Matter, Accelerated Expansion, and Black Holes. The universe is quasi-static and can renew itself forever (for details, see: http://www.plasmaredshift.org). There is no cosmic time dilation. In intergalactic space, the average electron temperature is T = 2.7 million K, and the average electron density is N = 0.0002 per cubic cm. Plasma redshift is derived theoretically from conventional axioms of physics by using more accurate methods than those conventionally used. The main difference is: 1) the proper inclusion of the dielectric constant, 2) more exact calculations of imaginary part of the dielectric constant, and as required 3) a quantum mechanical treatment of the interactions.
Cosmological Perturbations without Inflation
Melia, Fulvio
2016-01-01
A particularly attractive feature of inflation is that quantum fluctuations in the inflaton field may have seeded inhomogeneities in the cosmic microwave background (CMB) and the formation of large-scale structure. In this paper, we demonstrate that a scalar field with zero active mass, i.e., with an equation of state rho+3p=0, where rho and p are its energy density and pressure, respectively, could also have produced an essentially scale-free fluctuation spectrum, though without inflation. This alternative mechanism is based on the Hollands-Wald concept of a minimum wavelength for the emergence of quantum fluctuations into the semi-classical universe. A cosmology with zero active mass does not have a horizon problem, so it does not need inflation to solve this particular (non) issue. In this picture, the 1-10 degree fluctuations in the CMB correspond almost exactly to the Planck length at the time these modes were produced, firmly supporting the view that CMB observations may already be probing trans-Plancki...
Anomaly Mediation and Cosmology
Basboll, A; Jones, D R T
2011-01-01
We consider an extension of the MSSM wherein anomaly mediation is the source of supersymmetry-breaking, and the tachyonic slepton problem is solved by a Fayet-Iliopoulos (FI) $D$-term associated with an additional $U(1)$ symmetry, which also facilitates the see-saw mechanism for neutrino masses and a natural source for the Higgs $\\mu$-term. We explore the cosmological consequences of the model, showing that the model naturally produces a period of hybrid inflation, terminating in the production of cosmic strings. In spite of the presence of a $U(1)$ with an FI term, inflation is effected by the $F$-term, with a $D$-flat tree potential (the FI term being cancelled by non-zero squark and slepton fields). Calculating the 1-loop corrections to the inflaton potential, we estimate the constraints on the parameters of the model from Cosmic Microwave Background data. We briefly discuss the mechanisms for baryogenesis via conventional leptogenesis, the out-of-equilibrium production of neutrinos from the cosmic strings...
Quantum cosmological metroland model
Energy Technology Data Exchange (ETDEWEB)
Anderson, Edward [DAMTP, Cambridge (United Kingdom); Franzen, Anne, E-mail: ea212@cam.ac.u, E-mail: a.t.franzen@uu.n [Spinoza Institute, Utrecht (Netherlands)
2010-02-21
Relational particle mechanics is useful for modelling whole-universe issues such as quantum cosmology or the problem of time in quantum gravity, including some aspects outside the reach of comparably complex mini-superspace models. In this paper, we consider the mechanics of pure shape and not scale of four particles on a line, so that the only physically significant quantities are ratios of relative separations between the constituents' physical objects. Many of our ideas and workings extend to the N-particle case. As such models' configurations resemble depictions of metro lines in public transport maps, we term them 'N-stop metrolands'. This 4-stop model's configuration space is a 2-sphere, from which our metroland mechanics interpretation is via the 'cubic' tessellation. This model yields conserved quantities which are mathematically SO(3) objects like angular momenta but are physically relative dilational momenta (i.e. coordinates dotted with momenta). We provide and interpret various exact and approximate classical and quantum solutions for 4-stop metroland; from these results one can construct expectations and spreads of shape operators that admit interpretations as relative sizes and the 'homogeneity of the model universe's contents', and also objects of significance for the problem of time in quantum gravity (e.g. in the naive Schroedinger and records theory timeless approaches).
Barrow, John D; Barrow, John D.; Dabrowski, Mariusz P.
1998-01-01
We investigate Bianchi type IX ''Mixmaster'' universes within the framework of the low-energy tree-level effective action for string theory, which (when the ''stringy'' 2-form axion potential vanishes) is formally the same as the Brans-Dicke action with $\\omega =-1$. We show that, unlike the case of general relativity in vacuum, there is no Mixmaster chaos in these string cosmologies. In the Einstein frame an infinite sequence of chaotic oscillations of the scale factors on approach to the initial singularity is impossible, as it was in general relativistic Mixmaster universes in the presence of stiff -fluid matter (or a massless scalar field). A finite sequence of oscillations of the scale factors approximated by Kasner metrics is possible, but it always ceases when all expansion rates become positive. In the string frame the evolution through Kasner epochs changes to a new form which reflects the duality symmetry of the theory. Again, we show that chaotic oscillations must end after a finite time. The need ...
Verde, Licia; Pigozzo, Cassio; Heavens, Alan F; Jimenez, Raul
2016-01-01
We investigate our knowledge of early universe cosmology by exploring how much additional energy density can be placed in different components beyond those in the $\\Lambda$CDM model. To do this we use a method to separate early- and late-universe information enclosed in observational data, thus markedly reducing the model-dependency of the conclusions. We find that the 95\\% credibility regions for extra energy components of the early universe at recombination are: non-accelerating additional fluid density parameter $\\Omega_{\\rm MR} < 0.006$ and extra radiation parameterised as extra effective neutrino species $2.3 < N_{\\rm eff} < 3.2$ when imposing flatness. Our constraints thus show that even when analyzing the data in this largely model-independent way, the possibility of hiding extra energy components beyond $\\Lambda$CDM in the early universe is seriously constrained by current observations. We also find that the standard ruler, the sound horizon at radiation drag, can be well determined in a way ...
Energy Technology Data Exchange (ETDEWEB)
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
Energy Technology Data Exchange (ETDEWEB)
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
Mannelli, L
2005-01-01
The main theme of this Thesis is the connection between Quantum Gravity and Cosmology. In the First Part (Chapters 1 to 5) I give an introduction to the Holographic Principle. The Second Part is a collection of my research work and it is articulated as follows. Chapter 7 is to an analysis of the renormalization properties of quantum field theories in de Sitter space. It is shown that only two of the maximally invariant vacuum states of free fields lead to consistent perturbation expansions. In Chapter 8 I first present a complete quantum mechanical description of a flat FRW universe with equation of state p = ρ. Then I show a detailed correspondence with an heuristic picture of such a universe as a dense black hole fluid. In the end it is explained how features of the geometry are derived from purely quantum input. Chapter 9 studies the problem of infrared renormalization of particle masses in de Sitter space. It is shown, in a toy model in which the graviton is replaced with a minimally coupled massl...
Cosmology from CMB polarization with POLARBEAR and the Simons Array
Barron, Darcy; POLARBEAR Collaboration
2016-01-01
POLARBEAR is a cosmic microwave background (CMB) polarization experiment located in the Atacama desert in Chile. The science goals of the POLARBEAR project are to do a deep search for CMB B-mode polarization created by inflationary gravitational waves, as well as characterize the CMB B-mode signal from gravitational lensing. POLARBEAR-1 started observations in 2012. The POLARBEAR team has published results from its first season of observations on a small fraction of the sky, including a measurement of a non-zero B-mode polarization angular power spectrum at sub-degree scales, where the dominant signal is gravitational lensing of the CMB. Improving these measurements requires precision characterization of the CMB polarization signal over large fractions of the sky, at multiple frequencies. To achieve these goals, POLARBEAR has begun expanding to include an additional two 3.5 meter telescopes with multi-chroic receivers, known as the Simons Array. With high sensitivity and large sky coverage, the Simons Array will create a detailed survey of B-mode polarization, and its spectral information will be used to extract the CMB signal from astrophysical foregrounds. The Simons Array data will place strong constraints on the sum of the neutrino masses, when combined with data from the next generation of baryon acoustic oscillation measurements. We present the status of this funded instrument and its expected capabilities.
Cosmological investigations from SIRTF
Werner, M.
An overview is presented of the Space Infrared Telescope Facility (SIRTF), a one-meter-class cryogenically-cooled observatory for IR astronomy from space that will be the IR component of NASA's family of Great Observatories. SIRTF will operate at an altitude of 100,000 km and achieve its five year lifetime without the complication of on-orbit cryogenic replenishment and have twice the on-target efficiency that could be realized in LEO. The observations will permit the development of a direct empirical picture of the time evolution of cosmic phenomena, such as evolution of the chemical and stellar content of galaxies and the growth and decay of the quasar population.
Cosmological tests of modified gravity
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein’s theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard Λ CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.
Ruhl, J E; Carlstrom, J E; Cho, H M; Crawford, T; Dobbs, M; Greer, C H; Halverson, W; Holzapfel, W L; Lanting, T M; Lee, A T; Leong, J; Leitch, E M; Lu, W; Lueker, M; Mehl, J; Meyer, S S; Mohr, J J; Padin, S; Plagge, T; Pryke, C L; Schwan, D; Sharp, M K; Runyan, M C; Spieler, H; Staniszewski, Z; Stark, A A
2004-01-01
A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency...
Woźniak, Przemysław
Robotic telescopes are revolutionizing the way astronomers collect their dataand conduct sky surveys. This chapter begins with a discussion of principles thatguide the process of designing, constructing, and operating telescopes andobservatories that offer a varying degree of automation, from instruments remotelycontrolled by observers to fully autonomous systems requiring no humansupervision during their normal operations. Emphasis is placed on designtrade-offs involved in building end-to-end systems intended for a wide range ofscience applications. The second part of the chapter contains descriptions ofseveral projects and instruments, both existing and currently under development.It is an attempt to provide a representative selection of actual systems thatillustrates state of the art in technology, as well as important ideas and milestonesin the development of the field. The list of presented instruments spans the fullrange in size starting from small all-sky monitors, through midrange robotic andsurvey telescopes, and finishing with large robotic instruments and surveys.Explosive growth of telescope networking is enabling entirely new modesof interaction between the survey and follow-up observing. Increasingimportance of standardized communication protocols and software is stressed.These developments are driven by the fusion of robotic telescope hardware,massive storage and databases, real-time knowledge extraction, and datacross-correlation on a global scale. The chapter concludes with examplesof major science results enabled by these new technologies and futureprospects.
Murabona Oduori, Susan
2015-08-01
The telescope has been around for more than 400 years, and through good use of it scientists have made many astonishing discoveries and begun to understand our place in the universe. Most people, however, have never looked through one. Yet it is a great tool for cool science and observation especially in a continent and country with beautifully dark skies. The Travelling Telescope project aims to invite people outside under the stars to learn about those curious lights in the sky.The Travelling Telescope aims to promote science learning to a wide range of Kenyan schools in various locations exchanging knowledge about the sky through direct observations of celestial bodies using state of the art telescopes. In addition to direct observing we also teach science using various hands-on activities and astronomy software, ideal for explaining concepts which are hard to understand, and for a better grasp of the sights visible through the telescope. We are dedicated to promoting science using astronomy especially in schools, targeting children from as young as 3 years to the youth, teachers, their parents and members of the public. Our presentation focuses on the OAD funded project in rural coastal Kenya.
Energy Technology Data Exchange (ETDEWEB)
Ruhl, J.E.; Ade, P.A.R.; Carlstrom, J.E.; Cho, H.M.; Crawford,T.; Dobbs, M.; Greer, C.H.; Halverson, N.W.; Holzapfel, W.L.; Lanting,T.M.; Lee, A.T.; Leitch, E.M.; Leong, J.; Lu, W.; Lueker, M.; Mehl, J.; Meyer, S.S.; Mohr, J.J.; Padin, S.; Plagge, T.; Pryke, C.; Runyan, M.C.; Schwan, D.; Sharp, M.K.; Spieler, H.; Staniszewski, Z.; Stark, A.A.
2004-11-04
A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10 m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over 4000 degrees for galaxy clusters using the Sunyaev-Zeldovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.
Group field cosmology: a cosmological field theory of quantum geometry
Calcagni, Gianluca; Oriti, Daniele
2012-01-01
Following the idea of a field quantization of gravity as realized in group field theory, we construct a minisuperspace model where the wavefunction of canonical quantum cosmology (either Wheeler-DeWitt or loop quantum cosmology) is promoted to a field, the coordinates are minisuperspace variables, the kinetic operator is the Hamiltonian constraint operator, and the action features a nonlinear and possibly nonlocal interaction term. We discuss free-field classical solutions, the quantum propagator, and a mean-field approximation linearizing the equation of motion and augmenting the Hamiltonian constraint by an effective term mixing gravitational and matter variables. Depending on the choice of interaction, this can reproduce, for example, a cosmological constant, a scalar-field potential, or a curvature contribution.
This study assessed the diversity of fungi living in rocks from different altitudes in the Atacama Desert, Chile. Eighty-one fungal isolates obtained were identified as 21 species of 12 genera from Ascomycota using molecular techniques. Cladosporium halotolerans, Penicillium chrysogenum and Penicill...
Decuyper, M.; Chávez Oyanadel, R.O.; Copini, P.; Sass-Klaassen, U.G.W.
2016-01-01
Groundwater-dependent ecosystems occur in arid and semi-arid areas worldwide and are sensitive to changes in groundwater availability. Prosopis tamarugo Phil, endemic to the Atacama Desert, is threatened by groundwater overexploitation due to mining and urban consumption. The effect of groundwater d
Energy Technology Data Exchange (ETDEWEB)
Salas, J.; Guimera, J.; Cornella, O.; Aravena, R.; Guzman, E.; Tore, C.; von Igel, W.; Moreno, R.
2010-07-01
A hydrogeological conceptual model of the Eastern margin of the Salar de Atacama (Chile) is proposed taking into account climatic, geological, geomorphological, piezometric, chemical and isotopic data. The study establishes the processes that explain the hydrochemical evolution of waters from salty groundwater in the alluvial aquifer located in eastern part of basin until brines at the saline aquifer of the Salar. The main processes associated with this hydrochemical evolution are evaporation and mixing, but water-crust interaction in the discharge areas of the alluvial aquifer associated with the saline wedge also modifies groundwater composition, and plays a role in the dynamics of the evaporitic crusts in the Salar. The existence of low permeability materials near the surface explains the existence of the permanent surface water bodies in the study area. Based on the data collected in the study three different mechanisms are proposed regarding the main sources of water to the lagoons: (1) discharge of saline groundwater from the detrital and volcanic aquifers of the E margin, (2) discharge of surface waters associated to the N area (Burro Muerto channel), and (3) a combination of both previous mechanisms. (Author).
Zucker, M. H.
This paper is a critical analysis and reassessment of entropic functioning as it applies to the question of whether the ultimate fate of the universe will be determined in the future to be "open" (expanding forever to expire in a big chill), "closed" (collapsing to a big crunch), or "flat" (balanced forever between the two). The second law of thermodynamics declares that entropy can only increase and that this principle extends, inevitably, to the universe as a whole. This paper takes the position that this extension is an unwarranted projection based neither on experience nonfact - an extrapolation that ignores the powerful effect of a gravitational force acting within a closed system. Since it was originally presented by Clausius, the thermodynamic concept of entropy has been redefined in terms of "order" and "disorder" - order being equated with a low degree of entropy and disorder with a high degree. This revised terminology more subjective than precise, has generated considerable confusion in cosmology in several critical instances. For example - the chaotic fireball of the big bang, interpreted by Stephen Hawking as a state of disorder (high entropy), is infinitely hot and, thermally, represents zero entropy (order). Hawking, apparently focusing on the disorderly "chaotic" aspect, equated it with a high degree of entropy - overlooking the fact that the universe is a thermodynamic system and that the key factor in evaluating the big-bang phenomenon is the infinitely high temperature at the early universe, which can only be equated with zero entropy. This analysis resolves this confusion and reestablishes entropy as a cosmological function integrally linked to temperature. The paper goes on to show that, while all subsystems contained within the universe require external sources of energization to have their temperatures raised, this requirement does not apply to the universe as a whole. The universe is the only system that, by itself can raise its own
LSST telescope modeling overview
Sebag, J.; Andrew, J.; Angeli, G.; Araujo, C.; Barr, J.; Callahan, S.; Cho, M.; Claver, C.; Daruich, F.; Gressler, W.; Hileman, E.; Liang, M.; Muller, G.; Neill, D.; Schoening, W.; Warner, M.; Wiecha, O.; Xin, B.; Orden Martinez, Alfredo; Perezagua Aguado, Manuel; García Marchena, Luis; Ruiz de Argandoña, Ismael
2016-08-01
During this early stage of construction of the Large Synoptic Survey Telescope (LSST), modeling has become a crucial system engineering process to ensure that the final detailed design of all the sub-systems that compose the telescope meet requirements and interfaces. Modeling includes multiple tools and types of analyses that are performed to address specific technical issues. Three-dimensional (3D) Computeraided Design (CAD) modeling has become central for controlling interfaces between subsystems and identifying potential interferences. The LSST Telescope dynamic requirements are challenging because of the nature of the LSST survey which requires a high cadence of rapid slews and short settling times. The combination of finite element methods (FEM), coupled with control system dynamic analysis, provides a method to validate these specifications. An overview of these modeling activities is reported in this paper including specific cases that illustrate its impact.
Kitchin, C R
2013-01-01
Telescopes and Techniques has proved itself in its first two editions, having become probably one of the most widely used astronomy texts, both for amateur astronomers and astronomy and astrophysics undergraduates. Both earlier editions of the book were widely used for introductory practical astronomy courses in many universities. In this Third Edition the author guides the reader through the mathematics, physics and practical techniques needed to use today's telescopes (from the smaller models to the larger instruments installed in many colleges) and how to find objects in the sky. Most of the physics and engineering involved is described fully and requires little prior knowledge or experience. Both visual and electronic imaging techniques are covered, together with an introduction to how data (measurements) should be processed and analyzed. A simple introduction to radio telescopes is also included. Brief coverage of the more advanced topics of photometry and spectroscopy are included, but mainly to enable ...
Aspects of braneworld cosmology
Vinet, Jeremie
What is essential is invisible to the eye. Antoine de Saint-Exupery Of course, Saint-Exupery didn't have extra dimensions in mind when he wrote this famous line. Nevertheless, the recent realisation that standard model degrees of freedom can naturally be restricted to a submanifold embedded in a higher dimensional Universe means that an ingredient essential to our description of nature might quite literally be "invisible to the eye". Exploring the consequences of such braneworld scenarios has occupied a large part of the theoretical physics community over the last seven years, and this thesis is a collection of contributions to this endeavour. After reviewing the motivations for and early successes of braneworld scenarios, we examine rho2 corrections to the Hubble rate in the stabilized Randall-Sundrum I model, where the hierarchy problem is solved in a natural way, in order to ascertain whether such corrections might be of help in addressing some issues with inflation and baryogenesis. The three following chapters are concerned with six-dimensional models that have been advertised as possibly leading to a self-tuning solution to the cosmological constant problem. We examine this claim thoroughly, through the study of thick codimension-two braneworlds. This allows us to provide a generalization of the relationship between the deficit angle and the brane matter content. We also present the first derivation of the Friedmann equations on a codimension-two brane containing matter with an arbitrary equation of state, first in the context of Einstein-Hilbert gravity and then in six dimensional supergravity.
Cosmology with Clusters of Galaxies
Borgani, Stefano
I reviewed in my talk recent results on the cosmological constraints that can be obtained by following the evolution of the population of galaxy clusters. Using extended samples of X-ray selected clusters, I have shown how they can be used to trace this evolution out to redshift z ~ 1. This evolution can be compared to model predictions and, therefore, to constrain cosmological parameters, such as the density parameter Omega_m and the shape and amplitude of the power spectrum of density perturbations. I have emphasized that the robustness of such constraints is quite sensitive to the relation between cluster collapsed mass and X-ray luminosity and temperature. This demonstrates that our ability to place significant constraints on cosmology using clusters of galaxies relies on our capability to understand the physical processes, which determine the properties of the intra-cluster medium (ICM). In this context, I have discussed how numerical simulations of cluster formation in cosmological context can play an important role in uderstanding the ICM physics. I have presented results from a very large cosmological simulation, which also includes the hydrodynamical description of the cosmic baryons, the processes of star formation and feedback from the stellar populations. The results from this simulation represent a unique baseline to describe the processes of formation and evolution of clusters of galaxies.
Parameterized Post-Newtonian Cosmology
Sanghai, Viraj A A
2016-01-01
Einstein's theory of gravity has been extensively tested on solar system scales, and for isolated astrophysical systems, using the perturbative framework known as the parameterized post-Newtonian (PPN) formalism. This framework is designed for use in the weak-field and slow-motion limit of gravity, and can be used to constrain a large class of metric theories of gravity with data collected from the aforementioned systems. Given the potential of future surveys to probe cosmological scales to high precision, it is a topic of much contemporary interest to construct a similar framework to link Einstein's theory of gravity and its alternatives to observations on cosmological scales. Our approach to this problem is to adapt and extend the existing PPN formalism for use in cosmology. We derive a set of equations that use the same parameters to consistently model both weak fields and cosmology. This allows us to parameterize a large class of modified theories of gravity and dark energy models on cosmological scales, ...
Cosmology in Mr. Tompkins' Lifetime
Lindner, Rudi Paul
2016-01-01
Mr. Tompkins, the hero of George Gamow's most famous book, was born in the first decade of the twentieth century and lived until its end. A bank clerk by day, Mr. Tompkins had wide-ranging interests, and his curiosity led him to popular scientific presentations, and these in turn brought him a long and happy marriage to Maud, the daughter of a professor of physics. His lifetime offers an appropriate framework for a meditation on the history of cosmology during the century in which cosmology became a scientific enterprise. As it happens, Mr. Tompkins' first exposure to cosmology, in which he observed both the expansion and contraction of an oscillating universe in 1939, happened during the long night of relativity, the generation in which relativity specialists became few and, like the galaxies, far between. This talk will consider the heyday of early relativistic cosmology from 1917 to 1935, the causes and consequences of the "long night" from 1935 until 1963, and the renaissance of cosmology, which, occurring as it did upon the retirement of Mr. Tompkins, afforded him great pleasure in his later years.
Rugh, Svend E
2016-01-01
We provide a discussion of some main ideas in our project about the physical foundation of the time concept in cosmology. It is standard to point to the Planck scale (located at $\\sim 10^{-43}$ seconds after a fictitious "Big Bang" point) as a limit for how far back we may extrapolate the standard cosmological model. In our work we have suggested that there are several other (physically motivated) interesting limits -- located at least thirty orders of magnitude before the Planck time -- where the physical basis of the cosmological model and its time concept is progressively weakened. Some of these limits are connected to phase transitions in the early universe which gradually undermine the notion of 'standard clocks' widely employed in cosmology. Such considerations lead to a 'scale problem' for time which becomes particularly acute above the electroweak phase transition (before $\\sim 10^{-11}$ seconds). Other limits are due to problems of building up a cosmological reference frame, or even contemplating a s...
Thirty Meter Telescope Detailed Science Case: 2015
Skidmore, Warren; TMT International Science Development Teams; Science Advisory Committee, TMT
2015-12-01
The TMT Detailed Science Case describes the transformational science that the Thirty Meter Telescope will enable. Planned to begin science operations in 2024, TMT will open up opportunities for revolutionary discoveries in essentially every field of astronomy, astrophysics and cosmology, seeing much fainter objects much more clearly than existing telescopes. Per this capability, TMT's science agenda fills all of space and time, from nearby comets and asteroids, to exoplanets, to the most distant galaxies, and all the way back to the very first sources of light in the universe. More than 150 astronomers from within the TMT partnership and beyond offered input in compiling the new 2015 Detailed Science Case. The contributing astronomers represent the entire TMT partnership, including the California Institute of Technology (Caltech), the Indian Institute of Astrophysics (IIA), the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), the National Astronomical Observatory of Japan (NAOJ), the University of California, the Association of Canadian Universities for Research in Astronomy (ACURA) and US associate partner, the Association of Universities for Research in Astronomy (AURA). Cover image: artist's rendition of the TMT International Observatory on Mauna Kea opening in the late evening before beginning operations.
Beam Calibration of Radio Telescopes with Drones
Chang, Chihway; Monstein, Christian; Refregier, Alexandre; Amara, Adam; Glauser, Adrian; Casura, Sarah
2015-11-01
We present a multi-frequency far-field beam map for the 5m dish telescope at the Bleien Observatory measured using a commercially available drone. We describe the hexacopter drone used in this experiment, the design of the flight pattern, and the data analysis scheme. This is the first application of this calibration method to a single dish radio telescope in the far-field. The high signal-to-noise data allows us to characterise the beam pattern with high accuracy out to at least the 4th side-lobe. The resulting 2D beam pattern is compared with that derived from a more traditional calibration approach using an astronomical calibration source. We discuss the advantages of this method compared to other beam calibration methods. Our results show that this drone-based technique is very promising for ongoing and future radio experiments, where the knowledge of the beam pattern is key to obtaining high-accuracy cosmological and astronomical measurements.
Status of the Cherenkov Telescope Array Project
de Almeida, Ulisses Barres
2016-01-01
Gamma-ray astronomy holds a great potential for Astrophysics, Particle Physics and Cosmology. The CTA is an inter- national initiative to build the next generation of ground-based gamma-ray observatories, which will represent a factor of 5-10 times improvement in the sensitivity of observations in the range 100 GeV - 10 TeV, as well as an extension of the observational capabilities down to energies below 100 GeV and beyond 100 TeV. The array will consist of two telescope networks (one in the Northern Hemisphere and another in the South) so to achieve a full-sky coverage, and will be com- posed by a hybrid system of 4 different telescope types. It will operate as an observatory, granting open access to the community through calls for submission of proposals competing for observation time. The CTA will give us access to the non-thermal and high-energy universe at an unprecedented level, and will be one of the main instruments for high-energy astrophysics and astroparticle physics of the next 30 years. CTA has n...
Beam calibration of radio telescopes with drones
Chang, Chihway; Refregier, Alexandre; Amara, Adam; Glauser, Adrian; Casura, Sarah
2015-01-01
We present a multi-frequency far-field beam map for the 5m dish telescope at the Bleien Observatory measured using a commercially available drone. We describe the hexacopter drone used in this experiment, the design of the flight pattern, and the data analysis scheme. This is the first application of this calibration method to a single dish radio telescope in the far-field. The high signal-to-noise data allows us to characterise the beam pattern with high accuracy out to at least the 4th side-lobe. The resulting 2D beam pattern is compared with that derived from a more traditional calibration approach using an astronomical calibration source. We discuss the advantages of this method compared to other beam calibration methods. Our results show that this drone-based technique is very promising for ongoing and future radio experiments, where the knowledge of the beam pattern is key to obtaining high-accuracy cosmological and astronomical measurements.
Wilson, Raymond N
2004-01-01
R.N. Wilson's two-volume treatise on reflecting telescope optics has become a classic in its own right. It is intended to give a complete treatment of the subject, addressing professionals in research and industry as well as students of astronomy and amateur astronomers. This first volume, Basic Design Theory and its Historical Development, is devoted to the theory of reflecting telescope optics and systematically recounts the historical progress. The author's approach is morphological, with strong emphasis on the historical development. The book is richly illustrated including spot-diagrams a
Institute of Scientific and Technical Information of China (English)
2011-01-01
With its pure aperture up to 985mm, the New Vacuum Solar Telescope of China （NVST） has become the world＇s biggest vacuum solar telescope. The main science task of NVST is the high-resolution observation of photosphere and chromosphere including their fine structure of magnetic field on the sun. The NVST was equipped with many new technologies and powerful instruments, such as an adaptive optical system, a polarization analyzer, two vertical spectrographs, a high-resolution image system and a very narrow Ha filter （0.125A）.
Gross, Michael A K; Moore, Elizabeth M
2010-01-01
SOFIA is an airborne, gyroscopically stabilized 2.5m infrared telescope, mounted to a spherical bearing. Unlike its predecessors, SOFIA will work in absolute coordinates, despite its continually changing position and attitude. In order to manage this, SOFIA must relate equatorial and telescope coordinates using a combination of avionics data and star identification, manage field rotation and track sky images. We describe the algorithms and systems required to acquire and maintain the equatorial reference frame, relate it to tracking imagers and the science instrument, set up the oscillating secondary mirror, and aggregate pointings into relocatable nods and dithers.
Preservation of Lipid Biomarkers Under Prolonged and Extreme Hyperaridity in Atacama Desert Soils
Wilhelm, Mary Beth
2015-01-01
Molecular biomarkers are the most direct biosignatures of life on early Earth and a key target in the search for life on Mars. Lipid biomarkers are of particular interest given their ability to survive oxidative degradation and record microbial presence and activity of microorganisms that occurred billions of years ago (Eigenbrode, 2008). Environmental conditions that suspend biotic and abiotic degradative processes prior to lithification can lead to enhanced biomolecular preservation over geological time-scales. The hyperarid core of the Atacama Desert in northern Chile offers a unique environment to investigate lipid biomarker taphonomy under extreme and prolonged dryness. We investigated the accumulation and degree of preservation of lipid biomarkers in million-year-old hyperarid soils where primarily abiotic conditions influence their taphonomy. Soils were extracted and free and membrane bound lipids were analyzed across a vertical profile of 2.5 meters in the Yungay hyper-arid core of the Atacama Desert. Due to the extremely low inventory of biomass in Atacama soils, samples were collected by scientists wearing cleanroom suits to minimize anthropogenic contamination during sampling. Fatty acids were found to be well preserved in Yungay soils, and were most abundant in the clay-rich soils at approx.2 m depth (approx.750 ng of fatty acid methyl ester/g of soil). These buried clays layers were fluvially deposited approximately 2 million years ago, and have been excluded from exposure to rainwater and modern surficial processes since their emplacement (Ewing et al., 2008). Monocarboxylic fatty acid, monohydroxy fatty acid, glycerol tetraether, and n-alkane hydrocarbon content was found to change with depth. Lipid biomarker content in deeper soil layers is suggestive of soils having been formed at a time when environmental conditions were capable of supporting active microbial communities and plants. In short, total lipid extracts reveal a remarkable degree of
Distribution of Hopanoids and Steroids Along a Precipitation Gradient of the Atacama Desert, Chile
Iñiguez, Enrique; Navarro-Gonzalez, Rafael; McKay, Chris
The Atacama Desert in northern Chile is one of the oldest and dries regions on the planet that extends across 1000 km from 20° S to 30° S along the Pacific coast of South America. In recent years this area has received more attention by the astrobiology community after the discovery of Mars-like soils in the Yungay area, the hyperarid coreof the Atacama Desert (Navarro-Gonźlez, a et al., 2003). In this area, the levels of organics in the soil are undetectable by Pyr-GC-MS using the Viking temperature protocol (200-500o C) but detectable at higher temperatures (750o C). In addition the levels of culturable bacteria are extremely low and there is no recoverable DNA in the soil. Furthermore there is the presence of non-chirally specific oxidants in the soil (Navarro-Gonźlez, et al., 2003). The levels of organics and culturable bacteria increase a with precipitation a long a moisture gradient from the driest parts (24° S) to the less arid zones (28° S) along a transect at about 70° W. NMR spectroscopic analyses of extracted organic matter from the Yungay region indicate the presence of different organic fuctional groups like polycyclic aromatic hydrocarbons, cyclic aliphatic chains, and different carboxylic and amino groups (Ĩiguez E. et al., 2005) which are not detectable by Pyr-GC-MS at 750o C. Recently n we have re-examined surface soil samples (first 5 cm layer) from this precipitation gradient in the search for organic biomarkers that would reveal the limits of life for prokaryotic as well as for eukaryotic cells under desiccation. The organics from the Atacama soil have been extracted by a reflux solution of methanol/dichloromethane (1:2) (Soxhlet extraction) for 48 hrs, then they were concentrated by evaporation using a nitrogen flux, and finally chemically derivatized using N-tert butyldimethylsilyl-N-methyltrifluoroacetamide in dimethylformamide or tetramethylamonium hydroxide at 25 Navarro-Gonźlez, R., et al., 2003, Science 302, 1018-1021 Ĩiguez E
Preservation of Lipid Biomarkers Under Prolonged and Extreme Hyperaridity in Atacama Desert Soils
Wilhelm, M. B.; Davila, A. F.; Eigenbrode, J. L.; Parenteau, M. N.; Jahnke, L. L.; Summons, R. E.; Liu, X.; Wray, J. J.; Stamos, B.; O'Reilly, S. S.; Williams, A. J.
2015-12-01
Molecular biomarkers are the most direct biosignatures of life on early Earth and a key target in the search for life on Mars. Lipid biomarkers are of particular interest given their ability to survive oxidative degradation and record microbial presence and activity of microorganisms that occurred billions of years ago (Eigenbrode, 2008). Environmental conditions that suspend biotic and abiotic degradative processes prior to lithification can lead to enhanced biomolecular preservation over geological time-scales. The hyperarid core of the Atacama Desert in northern Chile offers a unique environment to investigate lipid biomarker taphonomy under extreme and prolonged dryness. We investigated the accumulation and degree of preservation of lipid biomarkers in million-year-old hyperarid soils where primarily abiotic conditions influence their taphonomy. Soils were extracted and free and membrane bound lipids were analyzed across a vertical profile of 2.5 meters in the Yungay hyper-arid core of the Atacama Desert. Due to the extremely low inventory of biomass in Atacama soils, samples were collected by scientists wearing cleanroom suits to minimize anthropogenic contamination during sampling. Fatty acids were found to be well preserved in Yungay soils, and were most abundant in the clay-rich soils at ~2 m depth (~750 ng of fatty acid methyl ester/g of soil). These buried clays layers were fluvially deposited approximately 2 million years ago, and have been excluded from exposure to rainwater and modern surficial processes since their emplacement (Ewing et al., 2008). Monocarboxylic fatty acid, monohydroxy fatty acid, glycerol tetraether, and n-alkane hydrocarbon content was found to change with depth. Lipid biomarker content in deeper soil layers is suggestive of soils having been formed at a time when environmental conditions were capable of supporting active microbial communities and plants. In short, total lipid extracts reveal a remarkable degree of lipid biomarker
Matrix Model Approach to Cosmology
Chaney, A; Stern, A
2015-01-01
We perform a systematic search for rotationally invariant cosmological solutions to matrix models, or more specifically the bosonic sector of Lorentzian IKKT-type matrix models, in dimensions $d$ less than ten, specifically $d=3$ and $d=5$. After taking a continuum (or commutative) limit they yield $d-1$ dimensional space-time surfaces, with an attached Poisson structure, which can be associated with closed, open or static cosmologies. For $d=3$, we obtain recursion relations from which it is possible to generate rotationally invariant matrix solutions which yield open universes in the continuum limit. Specific examples of matrix solutions have also been found which are associated with closed and static two-dimensional space-times in the continuum limit. The solutions provide for a matrix resolution of cosmological singularities. The commutative limit reveals other desirable features, such as a solution describing a smooth transition from an initial inflation to a noninflationary era. Many of the $d=3$ soluti...
Thermal fluctuations in loop cosmology
Magueijo, J; Magueijo, Joao; Singh, Parampreet
2007-01-01
Quantum gravitational effects in loop quantum cosmology lead to a resolution of the initial singularity and have the potential to solve the horizon problem and generate a quasi scale-invariant spectrum of density fluctuations. We consider loop modifications to the behavior of the inverse scale factor below a critical scale in closed models and assume a purely thermal origin for the fluctuations. We show that the no-go results for scale invariance in classical thermal models can be evaded even if we just consider modifications to the background (zeroth order) gravitational dynamics. Since a complete and systematic treatment of the perturbed Einstein equations in loop cosmology is still lacking, we simply parameterize their expected modifications. These change quantitatively, but not qualitatively, our conclusions. We thus urge the community to more fully work out this complex aspect of loop cosmology, since the full picture would not only fix the free parameters of the theory, but also provide a model for a no...
Concordance cosmology without dark energy
Rácz, Gábor; Beck, Róbert; Szapudi, István; Csabai, István
2016-01-01
According to the general relativistic Birkhoff's theorem, spherically symmetric regions in an isotropic universe behave like mini-universes with their own cosmological parameters. We estimate local expansion rates for a large number of such regions, and use the volume-averaged increment of the scale parameter at each time step in an otherwise standard cosmological $N$-body simulation. The particle mass, corresponding to a coarse graining scale, is an adjustable parameter. This mean field approximation neglects tidal forces and boundary effects, but it is the first step towards a non-perturbative statistical backreaction calculation. We show that a volume-averaged simulation with the $\\Omega_m=1$ Einstein--de~Sitter setting in each region closely tracks the expansion and structure growth history of a $\\Lambda$CDM cosmology, and confirm the numerical results with analytic calculations as well. The very similar expansion history guarantees consistency with the concordance model and, due to the small but characte...
Galtsov, D V
2003-01-01
We discuss isotropic and homogeneous D-brane-world cosmology with non-Abelian Born-Infeld (NBI) matter on the brane. In the usual Friedmann-Robertson-Walker (FRW) model the scale non-invariant NBI matter gives rise to an equation of state which asymptotes to the string gas equation $p=-\\epsilon/3$ and ensures a start-up of the cosmological expansion with zero acceleration. We show that the same state equation in the brane-world setup leads to the Tolman type evolution as if the conformal symmetry was effectively restored. This is not precisely so in the NBI model with symmetrized trace, but the leading term in the expansion law is still the same. A cosmological sphaleron solution on the D-brane is presented.
Cosmological AMR MHD with Enzo
Energy Technology Data Exchange (ETDEWEB)
Xu, Hao [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory; Li, Shengtai [Los Alamos National Laboratory
2009-01-01
In this work, we present EnzoMHD, the extension of the cosmological code Enzoto include magnetic fields. We use the hyperbolic solver of Li et al. (2008) for the computation of interface fluxes. We use constrained transport methods of Balsara & Spicer (1999) and Gardiner & Stone (2005) to advance the induction equation, the reconstruction technique of Balsara (2001) to extend the Adaptive Mesh Refinement of Berger & Colella (1989) already used in Enzo, though formulated in a slightly different way for ease of implementation. This combination of methods preserves the divergence of the magnetic field to machine precision. We use operator splitting to include gravity and cosmological expansion. We then present a series of cosmological and non cosmologjcal tests problems to demonstrate the quality of solution resulting from this combination of solvers.
Cosmological Aspects of Spontaneous Baryogenesis
De Simone, Andrea
2016-01-01
We investigate cosmological aspects of spontaneous baryogenesis driven by a scalar field, and present general constraints that are independent of the particle physics model. The relevant constraints are obtained by studying the backreaction of the produced baryons on the scalar field, the cosmological expansion history after baryogenesis, and the baryon isocurvature perturbations. We show that cosmological considerations alone provide powerful constraints, especially for the minimal scenario with a quadratic scalar potential. Intriguingly, we find that for a given inflation scale, the other parameters including the reheat temperature, decoupling temperature of the baryon violating interactions, and the mass and decay constant of the scalar are restricted to lie within ranges of at most a few orders of magnitude. We also discuss possible extensions to the minimal setup, and propose two ideas for evading constraints on isocurvature perturbations: one is to suppress the baryon isocurvature with nonquadratic scal...
Interacting galaxies and cosmological parameters
Reboul, H
2006-01-01
We propose a (physical)-geometrical method to measure the present rates of the density cosmological parameters for a Friedmann-Lemaitre universe. The distribution of linear separations between two interacting galaxies,when both of them undergo a first massive starburst, is used as a standard of length. Statistical properties of the linear separations of such pairs of ``interactivated'' galaxies are estimated from the data in the Two Degree Field Galaxy Redshift Survey. Synthetic samples of interactivated pairs are generated with random orientations and a likely distribution of redshifts. The resolution of the inverse problem provides the probability densities of the retrieved cosmological parameters. The accuracies that can be achieved by that method on matter and cosmological constant densities parameters are computed depending on the size of ongoing real samples. Observational prospects are investigated as the foreseeable surface densities on the sky and magnitudes of those objects.
Macroscopically-Discrete Quantum Cosmology
Chew, Geoffrey F
2008-01-01
To Milne's Lorentz-group-based spacetime and Gelfand-Naimark unitary representations of this group we associate a Fock space of 'cosmological preons'-quantum-theoretic universe constituents. Milne's 'cosmological principle' relies on Lorentz invariance of 'age'--global time. We divide Milne's spacetime into 'slices' of fixed macroscopic width in age, with 'cosmological rays' defined on (hyperbolic) slice boundaries-Fock space attaching only to these exceptional universe ages. Each (fixed-age) preon locates within a 6-dimensional manifold, one of whose 3 'extra' dimensions associates in Dirac sense to a self-adjoint operator that represents preon (continuous) local time, the operator canonically-conjugate thereto representing preon (total) energy. Self-adjoint-operator expectations at any spacetime-slice boundary prescribe throughout the following slice a non-fluctuating 'mundane reality'- electromagnetic and gravitational potentials 'tethered' to current densities of locally-conserved electric charge and ener...
Timelike information broadcasting in cosmology
Blasco, Ana; Martin-Benito, Mercedes; Martin-Martinez, Eduardo
2015-01-01
We study the transmission of information and correlations through quantum fields in cosmological backgrounds. With this aim, we make use of quantum information tools to quantify the classical and quantum correlations induced by a quantum massless scalar field in two particle detectors, one located in the early universe (Alice's) and the other located at a later time (Bob's). In particular, we focus on two phenomena: a) the consequences on the transmission of information of the violations of the strong Huygens principle for quantum fields, and b) the analysis of the field vacuum correlations via correlation harvesting from Alice to Bob. We will study a standard cosmological model first and then assess whether these results also hold if we use other than the general relativistic dynamics. As a particular example, we will study the transmission of information through the Big Bounce, that replaces the Big Bang, in the effective dynamics of Loop Quantum Cosmology.
Neutrinos in particle physics, astronomy, and cosmology
Xing, Zhi-Zhong
2011-01-01
""Neutrinos in Particle Physics, Astronomy and Cosmology"" provides a comprehensive and up-to-date introduction to neutrino physics, neutrino astronomy and neutrino cosmology. The intrinsic properties and fundamental interactions of neutrinos are described, as is the phenomenology of lepton flavor mixing, seesaw mechanisms and neutrino oscillations. The cosmic neutrino background, stellar neutrinos, supernova neutrinos and ultrahigh-energy cosmic neutrinos, together with the cosmological matter-antimatter asymmetry and other roles of massive neutrinos in cosmology, are discussed in detail. Thi