WorldWideScience

Sample records for asynchronous protein metabolism

  1. Regulation of intermediary metabolism by protein acetylation

    OpenAIRE

    Guan, Kun-Liang; Xiong, Yue

    2010-01-01

    Extensive studies during the past four decades have identified important roles for lysine acetylation in the regulation of nuclear transcription. Recent proteomic analyses on protein acetylation uncovered a large number of acetylated proteins in the cytoplasm and mitochondria, including most enzymes involved in intermediate metabolism. Acetylation regulates metabolic enzymes by multiple mechanisms, including via enzymatic activation or inhibition, and by influencing protein stability. Convers...

  2. Tissue protein metabolism in parasitized animals

    International Nuclear Information System (INIS)

    The effects of gastrointestinal nematode infection of mammals, particularly of the small intestine of the sheep, on protein metabolism of skeletal muscle, liver, the gastrointestinal tract and wool are described. These changes have been integrated to explain poor growth and production in the sheep heavily infected with Trichostrongylus colubriformis. The rates of both synthesis and catabolism of muscle protein are depressed, but nitrogen is lost from this tissue because the depression of synthesis exceeds that of catabolism. Anorexia is the major cause of these changes. Although the effect on liver protein synthesis is unclear, it is probable that the leakage of plasma proteins into the gastrointestinal tract stimulates an early increase in the rate of synthesis of these proteins, but this eventually declines and is insufficient to correct developing hypoalbuminaemia. Changes in the intestinal tract are complex. Exogenous nitrogen is reduced by anorexia, but the flow of nitrogen through the tract from abomasum to faeces is above normal because of the increase of endogenous protein from leakage of plasma protein and, presumably, from exfoliated epithelial cells. There is evidence that protein metabolism of intestinal tissue, particularly in the uninfected distal two-thirds, is increased. Synthesis of wool protein is decreased. As the result of anorexia, intestinal loss of endogenous protein and an increased rate of intestinal protein metabolism there is a net movement of amino nitrogen from muscle, liver and possibly skin to the intestine of the heavily infected sheep. Thus, the availability of amino nitrogen for growth and wool production is reduced. (author)

  3. Cytokines: muscle protein and amino acid metabolism

    DEFF Research Database (Denmark)

    van Hall, Gerrit

    2012-01-01

    raises TNF-α and IL-6 to moderate levels, has only identified IL-6 as a potent cytokine, decreasing systemic amino acid levels and muscle protein metabolism. The marked decrease in circulatory and muscle amino acid concentrations was observed with a concomitant reduction in both the rates of muscle...... IL-6 on the regulation of muscle protein metabolism but indirectly via IL-6 reducing amino acid availability. SUMMARY: Recent studies suggest that the best described cytokines TNF-α and IL-6 are unlikely to be the major direct mediators of muscle protein loss in inflammatory diseases. However, these...

  4. Protein,carbohydrate and lipid metabolism

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    950255 Effects of TPN and indomethacin on stressresponse and protein metabolism after surgery.QUANZhufu(全竹富),et al.General Hosp,Nanjing Com-mand,Nanjing,210002.Med J Chin PLA 1995;20(1):24-26.The study was planned to evaluate effects of TPNand indomethacin on stress response after trauma,andprotein metabolism in patients who had received totalgastrectomy for cardiac cancer of stomach.19 caseswere divided into control,TPN,and indomethacin

  5. Influence of secretagogues on asynchronous secretion of newly synthesized pancreatic proteins in the conscious rat

    International Nuclear Information System (INIS)

    The secretion of newly synthesized pancreatic enzymes was studied in pancreatic duct cannulated rats after intravenous injection of 100 microCi of [35S]methionine. Secretion rate was stimulated by intravenous infusion of either cerulein (0.2 microgram/kg h) or carbachol (10 nmol/kg h) starting simultaneously with or 180 min before the injection of the labeled methionine. Secretory proteins were analyzed by sodium dodecyl sulfate (SDS) gel electrophoresis or by nondenaturing gel electrophoresis followed by determination of the radioactivity associated with the individual proteins. Similar to unstimulated controls in all experiments, an early secretion of newly synthesized trypsinogen and chymotrypsinogen was found, whereas amylase and lipase were secreted only after a certain lag period. The results suggest that the intracellular transit of endoproteases is faster than that of other enzymes, irrespective of whether or not secretagogues were applied

  6. Mitochondrial uncoupling proteins and energy metabolism

    Directory of Open Access Journals (Sweden)

    Rosa Anna Busiello

    2015-02-01

    Full Text Available Understanding the metabolic factors that contribute to energy metabolism (EM is critical for the development of new treatments for obesity and related diseases. Mitochondrial oxidative phosphorylation is not perfectly coupled to ATP synthesis, and the process of proton-leak plays a crucial role. Proton-leak accounts for a significant part of the resting metabolic rate and therefore enhancement of this process represents a potential target for obesity treatment. Since their discovery, uncoupling proteins have stimulated great interest due to their involvement in mitochondrial-inducible proton-leak. Despite the widely accepted uncoupling/thermogenic effect of uncoupling protein one (UCP1, which was the first in this family to be discovered, the reactions catalyzed by its homologue UCP3 and the physiological role remain under debate.This review provides an overview of the role played by UCP1 and UCP3 in mitochondrial uncoupling/functionality as well as EM and suggests that they are a potential therapeutic target for treating obesity and its related diseases such as type II diabetes mellitus.

  7. Aging, exercise, and muscle protein metabolism.

    Science.gov (United States)

    Koopman, René; van Loon, Luc J C

    2009-06-01

    Aging is accompanied by a progressive loss of skeletal muscle mass and strength, leading to the loss of functional capacity and an increased risk of developing chronic metabolic disease. The age-related loss of skeletal muscle mass is attributed to a disruption in the regulation of skeletal muscle protein turnover, resulting in an imbalance between muscle protein synthesis and degradation. As basal (fasting) muscle protein synthesis rates do not seem to differ substantially between the young and elderly, many research groups have started to focus on the muscle protein synthetic response to the main anabolic stimuli, i.e., food intake and physical activity. Recent studies suggest that the muscle protein synthetic response to food intake is blunted in the elderly. The latter is now believed to represent a key factor responsible for the age-related decline in skeletal muscle mass. Physical activity and/or exercise stimulate postexercise muscle protein accretion in both the young and elderly. However, the latter largely depends on the timed administration of amino acids and/or protein before, during, and/or after exercise. Prolonged resistance type exercise training represents an effective therapeutic strategy to augment skeletal muscle mass and improve functional performance in the elderly. The latter shows that the ability of the muscle protein synthetic machinery to respond to anabolic stimuli is preserved up to very old age. Research is warranted to elucidate the interaction between nutrition, exercise, and the skeletal muscle adaptive response. The latter is needed to define more effective strategies that will maximize the therapeutic benefits of lifestyle intervention in the elderly. PMID:19131471

  8. VOLTAGE REGULATORS ASYNCHRONOUS GENERATORS

    OpenAIRE

    Grigorash O. V.; Bogatyrev N. I.; Hitskova A. O.

    2015-01-01

    A promising is currently the use of asynchronous generators with capacitive excitation as a source of electricity in stand-alone power systems. Drive asynchronous generators may exercise as a thermal engine and wind wheel wind power plant or turbines of small hydropower plants. The article discusses the structural and schematics of voltage stabilizers and frequency of asynchronous generators with improved operational and technical specifications. Technical novelty of design solutions of the m...

  9. Metabolic effects of milk protein intake strongly depend on pre-existing metabolic and exercise status.

    Science.gov (United States)

    Melnik, Bodo C; Schmitz, Gerd; John, Swen; Carrera-Bastos, Pedro; Lindeberg, Staffan; Cordain, Loren

    2013-01-01

    Milk protein intake has recently been suggested to improve metabolic health. This Perspective provides evidence that metabolic effects of milk protein intake have to be regarded in the context of the individual's pre-existing metabolic and exercise status. Milk proteins provide abundant branched-chain amino acids (BCAAs) and glutamine. Plasma BCAAs and glutamine are increased in obesity and insulin resistance, but decrease after gastric bypass surgery resulting in weight loss and improved insulin sensitivity. Milk protein consumption results in postprandial hyperinsulinemia in obese subjects, increases body weight of overweight adolescents and may thus deteriorate pre-existing metabolic disturbances of obese, insulin resistant individuals. PMID:24225036

  10. Compositional asynchronous membrane systems

    Institute of Scientific and Technical Information of China (English)

    Cosmin Bonchis; Cornel Izbasa; Gabriel Ciobanu

    2007-01-01

    This paper presents an algorithmic way of building complex membrane systems by coupling elementary membranes. Its application seems particularly valuable in the case of asynchronous membrane systems, since the resulting membrane system remains asynchronous. The composition method is based on a handshake mechanism implemented by using antiport rules and promoters.

  11. BCL-2 family proteins as regulators of mitochondria metabolism.

    Science.gov (United States)

    Gross, Atan

    2016-08-01

    The BCL-2 family proteins are major regulators of apoptosis, and one of their major sites of action are the mitochondria. Mitochondria are the cellular hubs for metabolism and indeed selected BCL-2 family proteins also possess roles related to mitochondria metabolism and dynamics. Here we discuss the link between mitochondrial metabolism/dynamics and the fate of stem cells, with an emphasis on the role of the BID-MTCH2 pair in regulating this link. We also discuss the possibility that BCL-2 family proteins act as metabolic sensors/messengers coming on and off of mitochondria to "sample" the cytosol and provide the mitochondria with up-to-date metabolic information. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:26827940

  12. Expression data on liver metabolic pathway genes and proteins

    OpenAIRE

    Mooli Raja Gopal Reddy; Chodisetti Pavan Kumar; Malleswarapu Mahesh; Manchiryala Sravan Kumar; Jeyakumar, Shanmugam M

    2016-01-01

    Here, we present the expression data on various metabolic pathways of liver with special emphasize on lipid and carbohydrate metabolism and long chain polyunsaturated fatty acid (PUFA) synthesis, both at gene and protein levels. The data were obtained to understand the effect of vitamin A deficiency on the expression status (both gene and protein levels) of some of the key factors involved in lipogenesis, fatty acid oxidation, triglyceride secretion, long chain PUFA, resolvin D1 synthesis, gl...

  13. Liver and muscle protein metabolism in cachexia

    OpenAIRE

    Peters, J.A.C.

    2009-01-01

    Up to 50% of cancer patients suffer from progressive weight loss (cachexia). Cachexia is induced by proinflammatory mediators (cytokines), induced by the tumor’s presence. These cytokines induce so-called acute phase protein synthesis by the liver, followed by skeletal muscle protein breakdown. Skeletal muscle protein breakdown seems to serve for providing amino acids (AA) for acute phase protein synthesis in the liver. The net effect of cytokines is a negative protein balance in the skeletal...

  14. VOLTAGE REGULATORS ASYNCHRONOUS GENERATORS

    Directory of Open Access Journals (Sweden)

    Grigorash O. V.

    2015-06-01

    Full Text Available A promising is currently the use of asynchronous generators with capacitive excitation as a source of electricity in stand-alone power systems. Drive asynchronous generators may exercise as a thermal engine and wind wheel wind power plant or turbines of small hydropower plants. The article discusses the structural and schematics of voltage stabilizers and frequency of asynchronous generators with improved operational and technical specifications. Technical novelty of design solutions of the magnetic system and stabilizers asynchronous generator of electricity parameters confirmed by the patents for the invention of the Russian Federation. The proposed technical solution voltage stabilizer asynchronous generators, can reduce the weight of the block capacitors excitation and reactive power compensation, as well as to simplify the control system power circuit which has less power electronic devices. For wind power plants it is an important issue not only to stabilize the voltage of the generator, but also the frequency of the current. Recommend functionality stabilizer schemes parameters of electric power made for direct frequency converters with artificial and natural switching power electronic devices. It is also proposed as part of stabilization systems use single-phase voltage, three-phase transformers with rotating magnetic field, reduce the level of electromagnetic interference generated by power electronic devices for switching, enhance the efficiency and reliability of the stabilizer.

  15. Studies of protein metabolism with labelled proteins and protein-like substances in nutritional disorders

    International Nuclear Information System (INIS)

    Adult human volunteers were studied using I131-labelled albumin and I131-labelled gamma-globulin under standardized metabolic conditions; while on a normal diet; after 3-6 weeks of isocaloric low-protein intake; and after a similar period of high-protein intake. The results were analysed by the 'equilibrium time' method, which was developed in 1957. Synthesis and transfer rates were derived according to methods developed in 1961 by C.M.E. Matthews. 2 figs, 6 tabs

  16. Radioactive Lysine in Protein Metabolism Studies

    Science.gov (United States)

    Miller, L. L.; Bale, W. F.; Yuile, C. L.; Masters, R. E.; Tishkoff, G. H.; Whipple,, G. H.

    1950-01-09

    Studies of incorporation of DL-lysine in various body proteins of the dog; the time course of labeled blood proteins; and apparent rate of disappearance of labeled plasma proteins for comparison of behavior of the plasma albumin and globulin fractions; shows more rapid turn over of globulin fraction.

  17. Metabolic behavior of cell surface biotinylated proteins

    International Nuclear Information System (INIS)

    The turnover of proteins on the surface of cultured mammalian cells was measured by a new approach. Reactive free amino or sulfhydryl groups on surface-accessible proteins were derivatized with biotinyl reagents and the proteins solubilized from culture dishes with detergent. Solubilized, biotinylated proteins were then adsorbed onto streptavidin-agarose, released with sodium dodecyl sulfate and mercaptoethanol, and separated on polyacrylamide gels. Biotin-epsilon-aminocaproic acid N-hydroxysuccinimide ester (BNHS) or N-biotinoyl-N'-(maleimidohexanoyl)hydrazine (BM) were the derivatizing agents. Only 10-12 bands were adsorbed onto streptavidin-agarose from undervatized cells or from derivatized cells treated with free avidin at 4 degrees C. Two-dimensional isoelectric focusing-sodium dodecyl sulfate gel electrophoresis resolved greater than 100 BNHS-derivatized proteins and greater than 40 BM-derivatized proteins. There appeared to be little overlap between the two groups of derivatized proteins. Short-term pulse-chase studies showed an accumulation of label into both groups of biotinylated proteins up until 1-2 h of chase and a rapid decrease over the next 1-5 h. Delayed appearance of labeled protein at the cell surface was attributed to transit time from site of synthesis. The unexpected and unexplained rapid disappearance of pulse-labeled proteins from the cell surface was invariant for all two-dimensionally resolved proteins and was sensitive to temperature reduction to 18 degrees C. Long-term pulse-chase experiments beginning 4-8 h after the initiation of chase showed the disappearance of derivatized proteins to be a simple first-order process having a half-life of 115 h in the case of BNHS-derivatized proteins and 30 h in the case of BM-derivatized proteins

  18. Asynchronized synchronous machines

    CERN Document Server

    Botvinnik, M M

    1964-01-01

    Asynchronized Synchronous Machines focuses on the theoretical research on asynchronized synchronous (AS) machines, which are "hybrids” of synchronous and induction machines that can operate with slip. Topics covered in this book include the initial equations; vector diagram of an AS machine; regulation in cases of deviation from the law of full compensation; parameters of the excitation system; and schematic diagram of an excitation regulator. The possible applications of AS machines and its calculations in certain cases are also discussed. This publication is beneficial for students and indiv

  19. Asynchronous Variational Contact Mechanics

    CERN Document Server

    Vouga, Etienne; Tamstorf, Rasmus; Grinspun, Eitan

    2010-01-01

    An asynchronous, variational method for simulating elastica in complex contact and impact scenarios is developed. Asynchronous Variational Integrators (AVIs) are extended to handle contact forces by associating different time steps to forces instead of to spatial elements. By discretizing a barrier potential by an infinite sum of nested quadratic potentials, these extended AVIs are used to resolve contact while obeying momentum- and energy-conservation laws. A series of two- and three-dimensional examples illustrate the robustness and good energy behavior of the method.

  20. Leucine and protein metabolism in obese zucker rats

    Science.gov (United States)

    Branched-chain amino acids (BCAAs) are circulating nutrient signals for protein accretion, however they increase in obesity and appear to prognosticate diabetes onset. To understand the mechanisms whereby obesity affects BCAAs and protein metabolism, we employed metabolomics and measured rates of [1...

  1. Study of protein metabolism and cell proliferation using 15N

    International Nuclear Information System (INIS)

    Investigations of nitrogen and protein metabolism with the stable isotope 15N were carried out in 11 patients with arteriosclerosis and 7 healthy controls. After oral application of 3 g 15NH4Cl (95 At% 15N) per 70 kg body weight the incorporation of the isotope 15N in plasma proteins and blood cells and the 15N elimination in urine were followed up. Retardations of 15N elimination, an accelerated incorporation of 15N in fibrin and a retarded 15N incorporation in platelet protein were observed in patients with arteriosclerosis. The described method enables complex assertions about protein metabolism of the whole body and so represents a possibility to evaluate objectively the influence of an intervention on metabolism. (author)

  2. Effects of metabolic rate on protein evolution

    OpenAIRE

    James F Gillooly; Michael W. McCoy; Allen, Andrew P.

    2007-01-01

    Since the modern evolutionary synthesis was first proposed early in the twentieth century, attention has focused on assessing the relative contribution of mutation versus natural selection on protein evolution. Here we test a model that yields general quantitative predictions on rates of protein evolution by combining principles of individual energetics with Kimura's neutral theory. The model successfully predicts much of the heterogeneity in rates of protein evolution for diverse eukaryotes ...

  3. Liver and muscle protein metabolism in cachexia

    NARCIS (Netherlands)

    Peters, J.A.C.

    2009-01-01

    Up to 50% of cancer patients suffer from progressive weight loss (cachexia). Cachexia is induced by proinflammatory mediators (cytokines), induced by the tumor’s presence. These cytokines induce so-called acute phase protein synthesis by the liver, followed by skeletal muscle protein breakdown. Skel

  4. Redundant Asynchronous Microprocessor System

    Science.gov (United States)

    Meyer, G.; Johnston, J. O.; Dunn, W. R.

    1985-01-01

    Fault-tolerant computer structure called RAMPS (for redundant asynchronous microprocessor system) has simplicity of static redundancy but offers intermittent-fault handling ability of complex, dynamically redundant systems. New structure useful wherever several microprocessors are employed for control - in aircraft, industrial processes, robotics, and automatic machining, for example.

  5. Asynchronous P300 BCI

    DEFF Research Database (Denmark)

    Panicker, Rajesh; Puthusserypady, Sadasivan; Sun, Ying

    2010-01-01

    An asynchronous hybrid brain-computer interface (BCI) system combining the P300 and steady-state visually evoked potentials (SSVEP) paradigms is introduced. A P300 base system is used for information transfer, and is augmented to include SSVEP for control state detection. The proposed system has...

  6. Asynchronous through-bond homonuclear isotropic mixing: application to carbon–carbon transfer in perdeuterated proteins under MAS

    Energy Technology Data Exchange (ETDEWEB)

    Kulminskaya, Natalia; Vasa, Suresh Kumar; Giller, Karin; Becker, Stefan; Linser, Rasmus, E-mail: rali@nmr.mpibpc.mpg.de [Max Planck Institute for Biophysical Chemistry, Department of NMR-based Structural Biology (Germany)

    2015-11-15

    Multiple-bond carbon–carbon homonuclear mixing is a hurdle in extensively deuterated proteins and under fast MAS due to the absence of an effective proton dipolar-coupling network. Such conditions are now commonly employed in solid-state NMR spectroscopy. Here, we introduce an isotropic homonuclear {sup 13}C–{sup 13}C through-bond mixing sequence, MOCCA, for the solid state. Even though applied under MAS, this scheme performs without rotor synchronization and thus does not pose the usual hurdles in terms of power dissipation for fast spinning. We compare its performance with existing homonuclear {sup 13}C–{sup 13}C mixing schemes using a perdeuterated and partially proton-backexchanged protein. Based on the analysis of side chain carbon–carbon correlations, we show that particularly MOCCA with standard 180-degree pulses and delays leading to non-rotor-synchronized spacing performs exceptionally well. This method provides high magnetization transfer efficiency for multiple-bond transfer in the aliphatic region compared with other tested mixing sequences. In addition, we show that this sequence can also be tailor-made for recoupling within a selected spectral region using band-selective pulses.

  7. Asynchronous through-bond homonuclear isotropic mixing: application to carbon–carbon transfer in perdeuterated proteins under MAS

    International Nuclear Information System (INIS)

    Multiple-bond carbon–carbon homonuclear mixing is a hurdle in extensively deuterated proteins and under fast MAS due to the absence of an effective proton dipolar-coupling network. Such conditions are now commonly employed in solid-state NMR spectroscopy. Here, we introduce an isotropic homonuclear 13C–13C through-bond mixing sequence, MOCCA, for the solid state. Even though applied under MAS, this scheme performs without rotor synchronization and thus does not pose the usual hurdles in terms of power dissipation for fast spinning. We compare its performance with existing homonuclear 13C–13C mixing schemes using a perdeuterated and partially proton-backexchanged protein. Based on the analysis of side chain carbon–carbon correlations, we show that particularly MOCCA with standard 180-degree pulses and delays leading to non-rotor-synchronized spacing performs exceptionally well. This method provides high magnetization transfer efficiency for multiple-bond transfer in the aliphatic region compared with other tested mixing sequences. In addition, we show that this sequence can also be tailor-made for recoupling within a selected spectral region using band-selective pulses

  8. Intersection of the unfolded protein response and hepatic lipid metabolism

    OpenAIRE

    Lee, Ann-Hwee; Glimcher, Laurie H.

    2009-01-01

    The liver plays a central role in whole-body lipid metabolism by governing the synthesis, oxidization, transport and excretion of lipids. The unfolded protein response (UPR) was identified as a signal transduction system that is activated by ER stress. Recent studies revealed a critical role of the UPR in hepatic lipid metabolism. The IRE1/XBP1 branch of the UPR is activated by high dietary carbohydrates and controls the expression of genes involved in fatty acid and cholesterol biosynthesis....

  9. Postexercise recovery period: carbohydrate and protein metabolism.

    Science.gov (United States)

    Viru, A

    1996-02-01

    The essence of the postexercise recovery period is normalization of function and homeostatic equilibrium, and replenishment of energy resources and accomplishment of the reconstructive function. The repletion of energy stores is actualized in a certain sequence and followed by a transitory supercompensation. The main substrate for repletion of the muscle glycogen store is blood glucose derived from hepatic glucose output as well as from consumption of carbohydrates during the postexercise period. The repletion of liver glycogen is realized less rapidly. It depends to a certain extent on hepatic gluconeogenesis but mainly on supply with exogenous carbohydrates. The constructive function is founded on elevated protein turnover and adaptive protein synthesis. Whereas during and shortly after endurance exercise intensive protein breakdown was found in less active fast-twitch glycolytic fibers, during the later course of the recovery period the protein degradation rate increased together with intensification of protein synthesis rate in more active fast-twitch glycolytic oxidative and slow-twitch oxidative fibers. PMID:8680938

  10. Insulin resistance of muscle protein metabolism in aging

    OpenAIRE

    Rasmussen, Blake B.; Fujita, Satoshi; Wolfe, Robert R.; Mittendorfer, Bettina; Roy, Mona; Rowe, Vincent L.; Volpi, Elena

    2006-01-01

    A reduced response of older skeletal muscle to anabolic stimuli may contribute to the development of sarcopenia. We hypothesized that muscle proteins are resistant to the anabolic action of insulin in the elderly. We examined the effects of hyperinsulinemia on muscle protein metabolism in young (25±2 year) and older (68±1 year) healthy subjects using stable isotope tracer techniques. Leg blood flow was higher in the young at baseline and increased during hyperinsulinemia, whereas it did not c...

  11. Dysregulation of skeletal muscle protein metabolism by alcohol

    OpenAIRE

    Steiner, Jennifer L.; Lang, Charles H.

    2015-01-01

    Alcohol abuse, either by acute intoxication or prolonged excessive consumption, leads to pathological changes in many organs and tissues including skeletal muscle. As muscle protein serves not only a contractile function but also as a metabolic reserve for amino acids, which are used to support the energy needs of other tissues, its content is tightly regulated and dynamic. This review focuses on the etiology by which alcohol perturbs skeletal muscle protein balance and thereby over time prod...

  12. Text Mining: (Asynchronous Sequences

    Directory of Open Access Journals (Sweden)

    Sheema Khan

    2014-12-01

    Full Text Available In this paper we tried to correlate text sequences those provides common topics for semantic clues. We propose a two step method for asynchronous text mining. Step one check for the common topics in the sequences and isolates these with their timestamps. Step two takes the topic and tries to give the timestamp of the text document. After multiple repetitions of step two, we could give optimum result.

  13. Asynchronous Multiparty Computation

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Geisler, Martin; Krøigaard, Mikkel;

    2009-01-01

    We propose an asynchronous protocol for general multiparty computation. The protocol has perfect security and communication complexity  where n is the number of parties, |C| is the size of the arithmetic circuit being computed, and k is the size of elements in the underlying field. The protocol...... multithreading. Benchmarking of a VIFF implementation of our protocol confirms that it is applicable to practical non-trivial secure computations....

  14. Asynchronous Variational Integrators

    OpenAIRE

    Lew, A.; Marsden, J. E.; Ortiz, M.; West, M

    2003-01-01

    We describe a new class of asynchronous variational integrators (AVI) for nonlinear elastodynamics. The AVIs are distinguished by the following attributes: (i) The algorithms permit the selection of independent time steps in each element, and the local time steps need not bear an integral relation to each other; (ii) the algorithms derive from a spacetime form of a discrete version of Hamilton’s variational principle. As a consequence of this variational structure, the algorith...

  15. Regulation of lipid metabolism by angiopoietin-like proteins

    NARCIS (Netherlands)

    Dijk, Wieneke; Kersten, Sander

    2016-01-01

    PURPOSE OF REVIEW: The angiopoietin-like proteins (ANGPTLs) 3, 4 and 8 have emerged as key regulators of plasma lipid metabolism by serving as potent inhibitors of the enzyme lipoprotein lipase (LPL). In this review, we provide an integrated picture of the role of ANGPTL3, ANGPTL4 and ANGPTL8 in

  16. Asynchronous Bounded Expected Delay Networks

    OpenAIRE

    Bakhshi, Rena; Endrullis, Jörg; Fokkink, Wan; Pang, Jun

    2010-01-01

    The commonly used asynchronous bounded delay (ABD) network models assume a fixed bound on message delay. We propose a probabilistic network model, called asynchronous bounded expected delay (ABE) model. Instead of a strict bound, the ABE model requires only a bound on the expected message delay. While the conditions of ABD networks restrict the set of possible executions, in ABE networks all asynchronous executions are possible, but executions with extremely long delays are less probable. In ...

  17. Exploring abiotic stress on asynchronous protein metabolism in single kernels of wheat studied by NMR spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Winning, H.; Viereck, N.; Wollenweber, B.;

    2009-01-01

    Extreme climate events are being recognized as important factors in the effects on crop growth and yield. Increased climatic variability leads to more frequent extreme conditions which may result in crops being exposed to more than one extreme event within a growing season. The aim of this study ...

  18. Perilipin-related protein regulates lipid metabolism in C. elegans

    OpenAIRE

    Chughtai, Ahmed Ali; Kaššák, Filip; Kostrouchová, Markéta; Novotný, Jan Philipp; Krause, Michael W.; Saudek, Vladimír; Kostrouch, Zdenek; Kostrouchová, Marta

    2015-01-01

    Perilipins are lipid droplet surface proteins that contribute to fat metabolism by controlling the access of lipids to lipolytic enzymes. Perilipins have been identified in organisms as diverse as metazoa, fungi, and amoebas but strikingly not in nematodes. Here we identify the protein encoded by the W01A8.1 gene in Caenorhabditis elegans as the closest homologue and likely orthologue of metazoan perilipin. We demonstrate that nematode W01A8.1 is a cytoplasmic protein residing on lipid drople...

  19. Proteomic detection of proteins involved in perchlorate and chlorate metabolism.

    Science.gov (United States)

    Bansal, Reema; Deobald, Lee A; Crawford, Ronald L; Paszczynski, Andrzej J

    2009-09-01

    Mass spectrometry and a time-course cell lysis method were used to study proteins involved in perchlorate and chlorate metabolism in pure bacterial cultures and environmental samples. The bacterial cultures used included Dechlorosoma sp. KJ, Dechloromonas hortensis, Pseudomonas chloritidismutans ASK-1, and Pseudomonas stutzeri. The environmental samples included an anaerobic sludge enrichment culture from a sewage treatment plant, a sample of a biomass-covered activated carbon matrix from a bioreactor used for treating perchlorate-contaminated drinking water, and a waste water effluent sample from a paper mill. The approach focused on detection of perchlorate (and chlorate) reductase and chlorite dismutase proteins, which are the two central enzymes in the perchlorate (or chlorate) reduction pathways. In addition, acetate-metabolizing enzymes in pure bacterial samples and housekeeping proteins from perchlorate (or chlorate)-reducing microorganisms in environmental samples were also identified. PMID:19199051

  20. Metabolic adaptation in transplastomic plants massively accumulating recombinant proteins.

    Directory of Open Access Journals (Sweden)

    Julia Bally

    Full Text Available BACKGROUND: Recombinant chloroplasts are endowed with an astonishing capacity to accumulate foreign proteins. However, knowledge about the impact on resident proteins of such high levels of recombinant protein accumulation is lacking. METHODOLOGY/PRINCIPAL FINDINGS: Here we used proteomics to characterize tobacco (Nicotiana tabacum plastid transformants massively accumulating a p-hydroxyphenyl pyruvate dioxygenase (HPPD or a green fluorescent protein (GFP. While under the conditions used no obvious modifications in plant phenotype could be observed, these proteins accumulated to even higher levels than ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco, the most abundant protein on the planet. This accumulation occurred at the expense of a limited number of leaf proteins including Rubisco. In particular, enzymes involved in CO(2 metabolism such as nuclear-encoded plastidial Calvin cycle enzymes and mitochondrial glycine decarboxylase were found to adjust their accumulation level to these novel physiological conditions. CONCLUSIONS/SIGNIFICANCE: The results document how protein synthetic capacity is limited in plant cells. They may provide new avenues to evaluate possible bottlenecks in recombinant protein technology and to maintain plant fitness in future studies aiming at producing recombinant proteins of interest through chloroplast transformation.

  1. Protein and leucine metabolism in maple syrup urine disease

    International Nuclear Information System (INIS)

    Constant infusions of [13C]leucine and [2H5]phenylalanine were used to trace leucine and protein kinetics, respectively, in seven children with maple syrup urine disease (MSUD) and eleven controls matched for age and dietary protein intake. Despite significant elevations of plasma leucine (mean 351 mumol/l, range 224-477) in MSUD subjects, mean whole body protein synthesis [3.78 +/- 0.42 (SD) g.kg-1. 24 h-1] and catabolism (4.07 +/- 0.46) were similar to control values (3.69 +/- 0.50 and 4.09 +/- 0.50, respectively). The relationship between phenylalanine and leucine fluxes was also similar in MSUD subjects (mean phenylalanine-leucine flux ratio 0.35 +/- 0.07) and previously reported adult controls (0.33 +/- 0.02). Leucine oxidation was undetectable in four of the MSUD subjects and very low in the other three (less than 4 mumol.kg-1.h-1; controls 13-20). These results show that persistent elevation in leucine concentration has no effect on protein synthesis. The marked disturbance in leucine metabolism in MSUD did not alter the relationship between rates of catabolism of protein to phenylalanine and leucine, which provides further support for the validity of the use of a single amino acid to trace whole body protein metabolism. The minimal leucine oxidation in MSUD differs from findings in other inborn metabolic errors and indicates that in patients with classical MSUD there is no significant route of leucine disposal other than through protein synthesis

  2. Radioisotope techniques in the study of protein metabolism

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) held a panel meeting on June 1-5, 1964. The purpose of the panel was to discuss the present status of radioactive tracer techniques for the study of protein metabolism and to suggest ways of extending an co-ordinating the Agency's research programme in this field. The meeting was attended by 13 invited experts from ten different countries, and three representatives of the World Health Organization (WHO). Sessions of the panel were devoted to methods of preparation of labelled proteins and protein-like substances, to techniques of measurement of gastro-intestinal protein absorption and loss and to the clinical applications of these techniques. At each session, working papers were presented by various participants and then discussed in detail. This report gives the full texts of the working papers together with extensive summaries of the discussions and provides a detailed picture of the present situation and likely future developments in this field of work. It is hoped that its publication will be of interest to all concerned with problems of protein metabolism, whether in clinical medicine or the basic medical sciences. 349 refs, figs and tabs

  3. Effect of diet and hormones on protein metabolism in muscle

    International Nuclear Information System (INIS)

    Muscle protein is in a state of continual flux. Protein is constantly being synthesized and degraded and it is the balance between these two processes which controls the rate of change in the protein content of muscle. The protein degradative rate and its rate of change is as important as the synthetic rate in controlling muscle protein mass. Generally, a change in synthetic rate is accompanied by a change in the same direction in the degradative rate, although the magnitude of the responses may differ. Postnatal muscle growth is by cross-sectional and longitudinal hypertrophy of existing muscle fibres. The ability of an animal to effect the net catabolism of muscle protein enables this tissue to provide amino acids for other tissues, e.g. the foetus and the brain. Individual muscles show different responses to their hormonal environment and this is reflected in their differing response to nutritional stress. The hormones insulin and cortisol have antagonistic effects on muscle protein metabolism; insulin tends to be anabolic, while cortisol tends to be catabolic. The ratio of these two hormones in the plasma can be correlated to responses seen in muscle both during dietary insufficiency and during growth. (author)

  4. Asynchronous Power Flow Controller

    Directory of Open Access Journals (Sweden)

    Rahul Juneja

    2014-04-01

    Full Text Available In the present system demand of electrical power increases so fast and transfer of electrical power is need of today‟s scenario. . The electrical power is transfer at same frequency through AC transmission line. However, power generation may be at different frequencies such as wind generation, sources at islanding or power generation in different countries. The proposed Asynchronous Power Flow Controller (APFC system essentially consists of two back-to-back voltage source converters as “Shunt Converter” and “Series Converter” which is coupled via a common dc link provided by a dc storage capacitor This paper suggests the power transfer and control between the sources operating at different or same frequencies.

  5. Pro asynchronous programming with .NET

    CERN Document Server

    Blewett, Richard; Ltd, Rock Solid Knowledge

    2014-01-01

    Pro Asynchronous Programming with .NET teaches the essential skill of asynchronous programming in .NET. It answers critical questions in .NET application development, such as: how do I keep my program responding at all times to keep my users happy how do I make the most of the available hardware how can I improve performanceIn the modern world, users expect more and more from their applications and devices, and multi-core hardware has the potential to provide it. But it takes carefully crafted code to turn that potential into responsive, scalable applications.With Pro Asynchronous Programming

  6. Effect of bacterial protein meal on protein and energy metabolism in growing chickens

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, Anders

    2006-01-01

    This experiment investigates the effect of increasing the dietary content of bacterial protein meal (BPM) on the protein and energy metabolism, and carcass chemical composition of growing chickens. Seventy-two Ross male chickens were allocated to four diets, each in three replicates with 0% (D0), 2......% (D2), 4% D4), and 6% BPM (D6), BPM providing up to 20% of total dietary N. Five balance experiments were conducted when the chickens were 3-7, 10-14, 17-21, 23-27, and 30-34 days old. During the same periods, 22-h respiration experiments (indirect calorimetry) were performed with troups of 6 chickens...... for protein and energy retention found in the balance and respiration experiments. It was concluded that the overall protein and energy metabolism as well as carcass composition were not influenced by a dietary content of up to 6% BPM corresponding to 20% of dietary N....

  7. Reducing energy with asynchronous circuits

    OpenAIRE

    Rivas Barragan, Daniel

    2012-01-01

    Reducing energy consumption using asynchronous circuits. The elastic clocks approach has been implemented along with a closed-feedback loop in order to achieve a lower energy consumption along with more reliability in integrated circuits.

  8. Topological Properties of Protein-Protein and Metabolic Interaction Networks of Drosophila melanogaster

    Institute of Scientific and Technical Information of China (English)

    Thanigaimani Rajarathinam; Yen-Han Lin

    2006-01-01

    The underlying principle governing the natural phenomena of life is one of the critical issues receiving due importance in recent years. A key feature of the scale-free architecture is the vitality of the most connected nodes (hubs). The major objective of this article was to analyze the protein-protein and metabolic interaction networks of Drosophila melanogaster by considering the architectural patterns and the consequence of removal of hubs on the topological parameter of the two interaction systems. Analysis showed that both interaction networks follow a scale-free model, establishing the fact that most real world networks,from varied situations, conform to the small world pattern. The average path length showed a two-fold and a three-fold increase (changing from 9.42 to 20.93 and from 5.29 to 17.75, respectively) for the protein-protein and metabolic interaction networks, respectively, due to the deletion of hubs. On the contrary, the arbitrary elimination of nodes did not show any remarkable disparity in the topological parameter of the protein-protein and metabolic interaction networks (average path length: 9.42±0.02 and 5.27±0.01, respectively). This aberrant behavior for the two cases underscores the significance of the most linked nodes to the natural topology of the networks.

  9. Effect of altitude on the protein metabolism of Bolivian children

    International Nuclear Information System (INIS)

    The malnutrition is prevalent and is a major problem among Bolivian children. It is caused by several interacting factors: (1) inadequate protein energy intake due to low socio-economic status; (ii) exposure to acute, repeated and chronic bacterial infections; (iii) exposure to multiple and chronic parasitic infections; (iv) high altitude of the capital, La Paz, 3600 m, with a numerous populations compared to the rest of the country. The research objectives in the first phase are: (i) determination of protein utilization with a non-invasive method using stable isotope tracer among children living at high and low altitude; (ii) determination of protein metabolism among eutrophic children without parasitic or acute bacterial infections at both altitudes; (iii) determination of protein requirement among these children. Two groups of 10 pubertal children, matched for age and sex, of same socio-economic status, eutrophic, without malnutrition, infections or intestinal parasites will be studied; the different status being arrived by anthropometric, nutritional intake, biochemical and pediatrical evaluation. For the metabolic study, stable isotopes L-[1-13C] leucine labelled casein will be used and 13CO2 excreted will be measured. All the basic nutritional assessment and VCO2 measurements will be performed in Bolivia, while the samples of expired gas will be stored in Vacutainers for further analysis by isotope radio mass spectrometer (IRMS), in Clermont-Ferrand, France. The plans for future work is based on the study of the effects of the different variables and their interactions. The following will be evaluated: (i) the socio-economic status; (ii) the bacterial infections: (iii) the parasitic infections; (iv) the altitude. As published by Obert, et al., the socio-economic variable is more connected with the nutritional status than with the altitude. 12 refs, 1 fig., 1 tab

  10. Human Skeletal Muscle Protein Metabolism Responses to Amino Acid Nutrition.

    Science.gov (United States)

    Mitchell, W Kyle; Wilkinson, Daniel J; Phillips, Bethan E; Lund, Jonathan N; Smith, Kenneth; Atherton, Philip J

    2016-07-01

    Healthy individuals maintain remarkably constant skeletal muscle mass across much of adult life, suggesting the existence of robust homeostatic mechanisms. Muscle exists in dynamic equilibrium whereby the influx of amino acids (AAs) and the resulting increases in muscle protein synthesis (MPS) associated with the intake of dietary proteins cancel out the efflux of AAs from muscle protein breakdown that occurs between meals. Dysregulated proteostasis is evident with aging, especially beyond the sixth decade of life. Women and men aged 75 y lose muscle mass at a rate of ∼0.7% and 1%/y, respectively (sarcopenia), and lose strength 2- to 5-fold faster (dynapenia) as muscle "quality" decreases. Factors contributing to the disruption of an otherwise robust proteostatic system represent targets for potential therapies that promote healthy aging. Understanding age-related impairments in anabolic responses to AAs and identifying strategies to mitigate these factors constitute major areas of interest. Numerous studies have aimed to identify 1) the influence of distinct protein sources on absorption kinetics and muscle anabolism, 2) the latency and time course of MPS responses to protein/AAs, 3) the impacts of protein/AA intake on muscle microvascular recruitment, and 4) the role of certain AAs (e.g., leucine) as signaling molecules, which are able to trigger anabolic pathways in tissues. This review aims to discuss these 4 issues listed, to provide historical and modern perspectives of AAs as modulators of human skeletal muscle protein metabolism, to describe how advances in stable isotope/mass spectrometric approaches and instrumentation have underpinned these advances, and to highlight relevant differences between young adults and older individuals. Whenever possible, observations are based on human studies, with additional consideration of relevant nonhuman studies. PMID:27422520

  11. Protein metabolism in malnourished children with acute lower respiratory infection

    International Nuclear Information System (INIS)

    We studied 19 subjects and 15 controls from November 1994 to February 1995. HIV infection is common among this population and HIV testing was done by ELISA of most subjects and controls in the course of their routine clinical care. To determine how HIV infection effects protein metabolism all HIV infected subjects and controls were grouped into a third category and compared to the subjects and controls. After the HIV subgrouping we were left with 13 subjects, 13 controls, and 8 HIV positive patients. KIC enrichments were used to calculate protein synthesis and breakdown, as KIC is believed to reflect intracellular leucine concentrations. Of note in Table 2 is the KIC/Leucine ratio is consistently greater than 1, averaging 1.3 over 16 samples. This is an unexpected finding as the KIC/Leucine ratio has been shown to be constant with a value of about 0.75 over a wide range of conditions. Samples for these eight patients have been evaluated under six different GCMS conditions to verify this unexpected observation. This ratio > 1.0 has been consistently found under all of these conditions. We are not certain what biological phenomenon can explain this, but it calls into question the validity of the four compartment model upon which these calculations are based. It is not unreasonable to expect that children with kwashiorkor metabolize ketoacids differently, and this difference could account for the increased KIC/Leucine ratio. 19 refs, 4 tabs

  12. Asynchronous Distributed Searchlight Scheduling

    CERN Document Server

    Obermeyer, Karl J; Bullo, Francesco

    2011-01-01

    This paper develops and compares two simple asynchronous distributed searchlight scheduling algorithms for multiple robotic agents in nonconvex polygonal environments. A searchlight is a ray emitted by an agent which cannot penetrate the boundary of the environment. A point is detected by a searchlight if and only if the point is on the ray at some instant. Targets are points which can move continuously with unbounded speed. The objective of the proposed algorithms is for the agents to coordinate the slewing (rotation about a point) of their searchlights in a distributed manner, i.e., using only local sensing and limited communication, such that any target will necessarily be detected in finite time. The first algorithm we develop, called the DOWSS (Distributed One Way Sweep Strategy), is a distributed version of a known algorithm described originally in 1990 by Sugihara et al \\cite{KS-IS-MY:90}, but it can be very slow in clearing the entire environment because only one searchlight may slew at a time. In an ...

  13. Asynchronous interactive control systems

    Science.gov (United States)

    Vuskovic, M. I.; Heer, E.

    1980-01-01

    A class of interactive control systems is derived by generalizing interactive manipulator control systems. The general structural properties of such systems are discussed and an appropriate general software implementation is proposed. This is based on the fact that tasks of interactive control systems can be represented as a network of a finite set of actions which have specific operational characteristics and specific resource requirements, and which are of limited duration. This has enabled the decomposition of the overall control algorithm into a set of subalgorithms, called subcontrollers, which can operate simultaneously and asynchronously. Coordinate transformations of sensor feedback data and actuator set-points have enabled the further simplification of the subcontrollers and have reduced their conflicting resource requirements. The modules of the decomposed control system are implemented as parallel processes with disjoint memory space communicating only by I/O. The synchronization mechanisms for dynamic resource allocation among subcontrollers and other synchronization mechanisms are also discussed in this paper. Such a software organization is suitable for the general form of multiprocessing using computer networks with distributed storage.

  14. Changes in contralateral protein metabolism following unilateral sciatic nerve section

    International Nuclear Information System (INIS)

    Changes in nerve biochemistry, anatomy, and function following injuries to the contralateral nerve have been repeatedly reported, though their significance is unknown. The most likely mechanisms for their development are either substances carried by axoplasmic flow or electrically transmitted signals. This study analyzes which mechanism underlies the development of a contralateral change in protein metabolism. The incorporation of labelled amino acids (AA) into proteins of both sciatic nerves was assessed by liquid scintillation after an unilateral section. AA were offered locally for 30 min to the distal stump of the sectioned nerves and at homologous levels of the intact contralateral nerves. At various times, from 1 to 24 h, both sciatic nerves were removed and the proteins extracted with trichloroacetic acid (TCA). An increase in incorporation was found in both nerves 14-24 h after section. No difference existed between sectioned and intact nerves, which is consistent with the contralateral effect. Lidocaine, but not colchicine, when applied previously to the nerves midway between the sectioning site and the spinal cord, inhibited the contralateral increase in AA incorporation. It is concluded that electrical signals, crossing through the spinal cord, are responsible for the development of the contralateral effect. Both the nature of the proteins and the significance of the contralateral effect are matters for speculation

  15. Acute responses of muscle protein metabolism to reduced blood flow reflect metabolic priorities for homeostasis.

    Science.gov (United States)

    Zhang, Xiao-Jun; Irtun, Oivind; Chinkes, David L; Wolfe, Robert R

    2008-03-01

    The present experiment was designed to measure the synthetic and breakdown rates of muscle protein in the hindlimb of rabbits with or without clamping the femoral artery. l-[ring-(13)C(6)]phenylalanine was infused as a tracer for measurement of muscle protein kinetics by means of an arteriovenous model, tracer incorporation, and tracee release methods. The ultrasonic flowmeter, dye dilution, and microsphere methods were used to determine the flow rates in the femoral artery, in the leg, and in muscle capillary, respectively. The femoral artery flow accounted for 65% of leg flow. A 50% reduction in the femoral artery flow reduced leg flow by 28% and nutritive flow by 26%, which did not change protein synthetic or breakdown rate in leg muscle. Full clamp of the femoral artery reduced leg flow by 42% and nutritive flow by 59%, which decreased (P < 0.05) both the fractional synthetic rate from 0.19 +/- 0.05 to 0.14 +/- 0.03%/day and fractional breakdown rate from 0.28 +/- 0.07 to 0.23 +/- 0.09%/day of muscle protein. Neither the partial nor full clamp reduced (P = 0.27-0.39) the intracellular phenylalanine concentration or net protein balance in leg muscle. We conclude that the flow threshold to cause a fall of protein turnover rate in leg muscle was a reduction of 30-40% of the leg flow. The acute responses of muscle protein kinetics to the reductions in blood flow reflected the metabolic priorities to maintain muscle homeostasis. These findings cannot be extrapolated to more chronic conditions without experimental validation. PMID:18089763

  16. Protein and amino acid metabolism in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guoyao.

    1989-01-01

    Isolated chick extensor digitorum communis (EDC) muscles and, in some experiments, rat skeletal muscles were used to study a number of aspects of protein and amino acid metabolism. (1) Chick EDC muscles synthesize and release large amounts of alanine and glutamine, which indirectly obtain their amino groups from branched-chain amino acids (BCAA). (2) Acetoacetate or DL-{beta}-hydroxybutyrate (4 mM) decrease (P < 0.01) alanine synthesis and BCAA transamination in EDC muscles from 24-h fasted chicks by decreasing (P < 0.01) intracellular concentrations of pyruvate due to inhibition of glycolysis. (3) Glutamine is extensively degraded in skeletal muscles from both chicks and rats, thus challenging the traditional view that glutamine oxidation is negligible in skeletal muscle. The cytosolic glutamine aminotransferases L and K in the rat and the mitochondrial phosphate-activated glutaminase in the chick play important roles in the conversion of glutamine to {alpha}-ketoglutarate for further oxidation. (4) Although methionine has been reported to be extensively transaminated in rat skeletal muscle preparations in the absence of other amino acids, transamination of methionine is absent or negligible in chick and rat skeletal muscles in the presence of physiological concentrations of amino acids. (5) Glutamine at 1.0-15 mM increases (P < 0.01) protein synthesis ({sup 3}H-phenylalanine incorporation), and at 10.0-15.0 mM decreases (P < 0.05) protein degradation ({sup 3}H-phenylalanine release from prelabelled protein in vivo) in EDC muscles from fed chicks as compared to muscles incubated in the absence of glutamine. (6) Acetoacetate or DL-{beta}-hydroxybutyrate (4 mM) has a small but significant inhibitory effect (P < 0.05) on the rate of protein synthesis, but has no effect (P > 0.05) on the rate of protein degradation in EDC muscles from fed chicks.

  17. Kinetic variation of protein metabolism in pregnant rats

    International Nuclear Information System (INIS)

    Kinetic variation of nitrogen metabolism in the skeletal muscle and liver of rats during the course of pregnancy was studied by the use of 15N-amino nitrogen during acclimatization on a protein-free diet. 15N from 15N-glycine given on day 1 of pregnancy decreased from the 1st to 2nd trimester in the liver, suggesting contribution to the N metabolic pool. In the muscle, the rate of 15N showed a marked decrease in the 2nd trimester, indicating, along with an increased accumulation of the total muscular N content, N accumulation in muscle protein in the 2nd trimester and promoted decomposition of mobiler muscular protein in the 2nd trimester. The marked decrease in the muscle 15N content from the 2nd trimester and the decrease in the total N content in the 3rd trimester support the serious involvement of muscular N in fetal growth. The level of 15N from 15N-ammonium during the course of pregnancy was significantly high in the 2nd trimester and low in the 3rd. The 2nd trimester showed amino N accumulation in the muscle, and the 3rd, a decrease in N accumulation and amino N release. In regard to the kinetics of 15N-lysine in the cell fraction, the muscular microsomes showed a high 15N accumulation in the 2nd trimester and a voluminous release in the 3rd trimester. In contrast, the liver microsomes showed a linear decrease of 15N up to 2nd trimester, followed by no change. (Chiba, N.)

  18. Non-Genomic Origins of Proteins and Metabolism

    Science.gov (United States)

    Pohorille, Andrew

    2003-01-01

    It is proposed that evolution of inanimate matter to cells endowed with a nucleic acid- based coding of genetic information was preceded by an evolutionary phase, in which peptides not coded by nucleic acids were able to self-organize into networks capable of evolution towards increasing metabolic complexity. Recent findings that truly different, simple peptides (Keefe and Szostak, 2001) can perform the same function (such as ATP binding) provide experimental support for this mechanism of early protobiological evolution. The central concept underlying this mechanism is that the reproduction of cellular functions alone was sufficient for self-maintenance of protocells, and that self- replication of macromolecules was not required at this stage of evolution. The precise transfer of information between successive generations of the earliest protocells was unnecessary and, possibly, undesirable. The key requirement in the initial stage of protocellular evolution was an ability to rapidly explore a large number of protein sequences in order to discover a set of molecules capable of supporting self- maintenance and growth of protocells. Undoubtedly, the essential protocellular functions were carried out by molecules not nearly as efficient or as specific as contemporary proteins. Many, potentially unrelated sequences could have performed each of these functions at an evolutionarily acceptable level. As evolution progressed, however proteins must have performed their functions with increasing efficiency and specificity. This, in turn, put additional constraints on protein sequences and the fraction of proteins capable of performing their functions at the required level decreased. At some point, the likelihood of generating a sufficiently efficient set of proteins through a non-coded synthesis was so small that further evolution was not possible without storing information about the sequences of these proteins. Beyond this point, further evolution required coupling between

  19. ASYNCHRONOUS ELECTRONIC DISCUSSION GROUP:

    Directory of Open Access Journals (Sweden)

    Tina Lim Swee KIM

    2007-01-01

    Full Text Available This paper examines the practice of online discussion in a course specially tailored for in-service teachers who are pursuing their basic degree qualification at a teacher training institute. Analyses of postings to the asynchronous electronic discussion group were made according to the type of postings as proposed by Poole (2000. Four focus areas were looked into, that is, content, technical, procedural, or non-academic. Analyses were done for each quarter of the 12 weeks of interaction. At the end of the learners’ participation in the EDG and before their end-of-course examination, the participants were then given a paper-based questionnaire asking their perceptions on the use of EDG as part of their coursework on the whole. Six aspects of EDG were examined, these are;Ø technical aspects, Ø motivation to use the EDG, Ø quality of interaction, Ø tutor’s response, Ø perceived learning, and Ø attitude towards EDG. Analyses on postings for the EDG showed that the bulk of the postings were made in the last quarter of the online discussions. Further, 97.8% of the postings were on content and the types of content posting registered were predominantly questions (41.19% and those that sought clarification/elaboration (37.48%. Findings from this study suggest that overall the participants were satisfied with the six aspects of EDG examined. The aspect that recorded the highest mean was ‘motivation to read tutor’s responses’ whilst the lowest mean (and the only one with negative perception was for ‘worthiness of time spent on online discussions’.

  20. Uncoupling proteins, dietary fat and the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Warden Craig H

    2006-09-01

    Full Text Available Abstract There has been intense interest in defining the functions of UCP2 and UCP3 during the nine years since the cloning of these UCP1 homologues. Current data suggest that both UCP2 and UCP3 proteins share some features with UCP1, such as the ability to reduce mitochondrial membrane potential, but they also have distinctly different physiological roles. Human genetic studies consistently demonstrate the effect of UCP2 alleles on type-2 diabetes. Less clear is whether UCP2 alleles influence body weight or body mass index (BMI with many studies showing a positive effect while others do not. There is strong evidence that both UCP2 and UCP3 protect against mitochondrial oxidative damage by reducing the production of reactive oxygen species. The evidence that UCP2 protein is a negative regulator of insulin secretion by pancreatic β-cells is also strong: increased UCP2 decreases glucose stimulated insulin secretion ultimately leading to β-cell dysfunction. UCP2 is also neuroprotective, reducing oxidative stress in neurons. UCP3 may also transport fatty acids out of mitochondria thereby protecting the mitochondria from fatty acid anions or peroxides. Current data suggest that UCP2 plays a role in the metabolic syndrome through down-regulation of insulin secretion and development of type-2 diabetes. However, UCP2 may protect against atherosclerosis through reduction of oxidative stress and both UCP2 and UCP3 may protect against obesity. Thus, these UCP1 homologues may both contribute to and protect from the markers of the metabolic syndrome.

  1. Study of protein and metabolic profile of sugarcane workers

    International Nuclear Information System (INIS)

    Full text: The National Alcohol Program (Proalcool) is a successful Brazilian renewable fuel initiative aiming to reduce the country's oil dependence. Producing ethanol from sugar cane, the program has shown positive results although accompanied by potential damage. The environmental impact mainly derives from the particulate matter emissions due to sugarcane burning, which is potentially harmful to human health. The physical activity of sugarcane workers is repetitive and exhaustive and is carried out in presence of dust, smoke and soot. The efforts by the sugarcane workers during the labor process result in increased risks of nervous, respiratory and cardiovascular system diseases and also in premature death. The aim of the present study was to investigate the effect of occupational stress on protein and metabolic profile of sugarcane workers. Forty serum samples were analyzed by 1-DE and LC MS/MS proteomic shotgun strategy and nuclear magnetic resonance (NMR). A set of proteins was found to be altered in workers after crops when compared with controls. The analysis of NMR spectra by Chenomx also showed differences in the expression of metabolites. For example, lactate displayed higher levels in control subjects than in sugarcane workers, and vice versa for the acetate. The concentrations of the two metabolites were lower after the crop, except in the case of acetate, which remained uniform in the control subjects before and after the crop. The present findings can have important application for rational designs of preventive measures and early disease detection in sugarcane workers. (author)

  2. Study of protein and metabolic profile of sugarcane workers

    Energy Technology Data Exchange (ETDEWEB)

    Polachini, G.M.; Tajara, E.H. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil); Santos, U.P. [Universidade de Sao Paulo (USP), SP (Brazil); Zeri, A.C.M.; Paes Leme, A.F. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)

    2012-07-01

    Full text: The National Alcohol Program (Proalcool) is a successful Brazilian renewable fuel initiative aiming to reduce the country's oil dependence. Producing ethanol from sugar cane, the program has shown positive results although accompanied by potential damage. The environmental impact mainly derives from the particulate matter emissions due to sugarcane burning, which is potentially harmful to human health. The physical activity of sugarcane workers is repetitive and exhaustive and is carried out in presence of dust, smoke and soot. The efforts by the sugarcane workers during the labor process result in increased risks of nervous, respiratory and cardiovascular system diseases and also in premature death. The aim of the present study was to investigate the effect of occupational stress on protein and metabolic profile of sugarcane workers. Forty serum samples were analyzed by 1-DE and LC MS/MS proteomic shotgun strategy and nuclear magnetic resonance (NMR). A set of proteins was found to be altered in workers after crops when compared with controls. The analysis of NMR spectra by Chenomx also showed differences in the expression of metabolites. For example, lactate displayed higher levels in control subjects than in sugarcane workers, and vice versa for the acetate. The concentrations of the two metabolites were lower after the crop, except in the case of acetate, which remained uniform in the control subjects before and after the crop. The present findings can have important application for rational designs of preventive measures and early disease detection in sugarcane workers. (author)

  3. Skeletal muscle metabolic flexibility : The roles of AMP-activated protein kinase and calcineurin

    OpenAIRE

    Long, Yun Chau

    2007-01-01

    Skeletal muscle fibers differ considerably in their metabolic and physiological properties. The metabolic properties of skeletal muscle display a high degree of flexibility which adapts to various physiological demands by shifting energy substrate metabolism. Studies were conducted to evaluate the roles of AMP-activated protein kinase (AMPK) and calcineurin in the regulation of skeletal muscle metabolism. Fasting elicited a coordinated expression of genes involved in lipid ...

  4. Metabolism of minor isoforms of prion proteins Cytosolic prion protein and transmembrane prion protein*

    Institute of Scientific and Technical Information of China (English)

    Zhiqi Song; Deming Zhao; Lifeng Yang

    2013-01-01

    Transmissible spongiform encephalopathy or prion disease is triggered by the conversion from cellular prion protein to pathogenic prion protein. Growing evidence has concentrated on prion protein configuration changes and their correlation with prion disease transmissibility and pathoge-nicity. In vivo and in vitro studies have shown that several cytosolic forms of prion protein with spe-cific topological structure can destroy intracellular stability and contribute to prion protein pathoge-nicity. In this study, the latest molecular chaperone system associated with endoplasmic reticu-lum-associated protein degradation, the endoplasmic reticulum resident protein quality-control system and the ubiquitination proteasome system, is outlined. The molecular chaperone system directly correlates with the prion protein degradation pathway. Understanding the molecular me-chanisms wil help provide a fascinating avenue for further investigations on prion disease treatment and prion protein-induced neurodegenerative diseases.

  5. Behavioral synthesis of asynchronous circuits

    DEFF Research Database (Denmark)

    Nielsen, Sune Fallgaard

    2005-01-01

    domain by introducing a computation model, which resembles the synchronous datapath and control architecture, but which is completely asynchronous. The model contains the possibility for isolating some or all of the functional units by locking their respective inputs and outputs while the functional unit...

  6. Acquiring Knowledge from Asynchronous Discussion

    Science.gov (United States)

    Teo, Yiong Hwee; Webster, Len

    2008-01-01

    This article discusses a study which was designed to explore how online scaffolding can be incorporated to support knowledge acquisition in asynchronous discussion. A group of Singapore preservice teachers engaged in collaborative critiquing of videos before they embarked on their video projects to illustrate what constitutes good and bad video…

  7. Asynchronous sequential machine design and analysis

    CERN Document Server

    Tinder, Richard

    2009-01-01

    Asynchronous Sequential Machine Design and Analysis provides a lucid, in-depth treatment of asynchronous state machine design and analysis presented in two parts: Part I on the background fundamentals related to asynchronous sequential logic circuits generally, and Part II on self-timed systems, high-performance asynchronous programmable sequencers, and arbiters.Part I provides a detailed review of the background fundamentals for the design and analysis of asynchronous finite state machines (FSMs). Included are the basic models, use of fully documented state diagrams, and the design and charac

  8. Impact of Dietary Carbohydrate and Protein Levels on Carbohydrate Metabolism

    Science.gov (United States)

    Lasker, Denise Ann

    2009-01-01

    The goal of this dissertation was to investigate the impact of changing dietary carbohydrate (CARB) intakes within recommended dietary guidelines on metabolic outcomes specifically associated with glycemic regulations and carbohydrate metabolism. This research utilized both human and animal studies to examine changes in metabolism across a wide…

  9. Casein and soy protein meals differentially affect whole-body and splanchnic protein metabolism in healthy humans.

    Science.gov (United States)

    Luiking, Yvette C; Deutz, Nicolaas E P; Jäkel, Martin; Soeters, Peter B

    2005-05-01

    Dietary protein quality is considered to be dependent on the degree and velocity with which protein is digested, absorbed as amino acids, and retained in the gut as newly synthesized protein. Metabolic animal studies suggest that the quality of soy protein is inferior to that of casein protein, but confirmatory studies in humans are lacking. The study objective was to assess the quality of casein and soy protein by comparing their metabolic effects in healthy human subjects. Whole-body protein kinetics, splanchnic leucine extraction, and urea production rates were measured in the postabsorptive state and during 8-h enteral intakes of isonitrogenous [0.42 g protein/(kg body weight . 8 h)] protein-based test meals, which contained either casein (CAPM; n = 12) or soy protein (SOPM; n = 10) in 2 separate groups. Stable isotope techniques were used to study metabolic effects. With enteral food intake, protein metabolism changed from net protein breakdown to net protein synthesis. Net protein synthesis was greater in the CAPM group than in the SOPM group [52 +/- 14 and 17 +/- 14 nmol/(kg fat-free mass (FFM) . min), respectively; P CAPM (P = 0.07). Absolute splanchnic extraction of leucine was higher in the subjects that consumed CAPM [306 +/- 31 nmol/(kg FFM . min)] vs. those that consumed SOPM [235 +/- 29 nmol/(kg FFM . min); P < 0.01]. In conclusion, a significantly larger portion of soy protein is degraded to urea, whereas casein protein likely contributes to splanchnic utilization (probably protein synthesis) to a greater extent. The biological value of soy protein must be considered inferior to that of casein protein in humans. PMID:15867285

  10. The integrated analysis of metabolic and protein interaction networks reveals novel molecular organizing principles

    Directory of Open Access Journals (Sweden)

    Walther Dirk

    2008-11-01

    Full Text Available Abstract Background The study of biological interaction networks is a central theme of systems biology. Here, we investigate the relationships between two distinct types of interaction networks: the metabolic pathway map and the protein-protein interaction network (PIN. It has long been established that successive enzymatic steps are often catalyzed by physically interacting proteins forming permanent or transient multi-enzymes complexes. Inspecting high-throughput PIN data, it was shown recently that, indeed, enzymes involved in successive reactions are generally more likely to interact than other protein pairs. In our study, we expanded this line of research to include comparisons of the underlying respective network topologies as well as to investigate whether the spatial organization of enzyme interactions correlates with metabolic efficiency. Results Analyzing yeast data, we detected long-range correlations between shortest paths between proteins in both network types suggesting a mutual correspondence of both network architectures. We discovered that the organizing principles of physical interactions between metabolic enzymes differ from the general PIN of all proteins. While physical interactions between proteins are generally dissortative, enzyme interactions were observed to be assortative. Thus, enzymes frequently interact with other enzymes of similar rather than different degree. Enzymes carrying high flux loads are more likely to physically interact than enzymes with lower metabolic throughput. In particular, enzymes associated with catabolic pathways as well as enzymes involved in the biosynthesis of complex molecules were found to exhibit high degrees of physical clustering. Single proteins were identified that connect major components of the cellular metabolism and may thus be essential for the structural integrity of several biosynthetic systems. Conclusion Our results reveal topological equivalences between the protein

  11. Protein engineering for metabolic engineering: Current and next-generation tools

    Energy Technology Data Exchange (ETDEWEB)

    Marcheschi, RJ; Gronenberg, LS; Liao, JC

    2013-04-16

    Protein engineering in the context of metabolic engineering is increasingly important to the field of industrial biotechnology. As the demand for biologically produced food, fuels, chemicals, food additives, and pharmaceuticals continues to grow, the ability to design and modify proteins to accomplish new functions will be required to meet the high productivity demands for the metabolism of engineered organisms. We review advances in selecting, modeling, and engineering proteins to improve or alter their activity. Some of the methods have only recently been developed for general use and are just beginning to find greater application in the metabolic engineering community. We also discuss methods of generating random and targeted diversity in proteins to generate mutant libraries for analysis. Recent uses of these techniques to alter cofactor use; produce non-natural amino acids, alcohols, and carboxylic acids; and alter organism phenotypes are presented and discussed as examples of the successful engineering of proteins for metabolic engineering purposes.

  12. Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors*

    Science.gov (United States)

    Deshmukh, Atul S.; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T.; Cox, Jürgen; Mann, Matthias

    2015-01-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. PMID:25616865

  13. Asynchronous control for networked systems

    CERN Document Server

    Rubio, Francisco; Bencomo, Sebastián

    2015-01-01

    This book sheds light on networked control systems; it describes different techniques for asynchronous control, moving away from the periodic actions of classical control, replacing them with state-based decisions and reducing the frequency with which communication between subsystems is required. The text focuses specially on event-based control. Split into two parts, Asynchronous Control for Networked Systems begins by addressing the problems of single-loop networked control systems, laying out various solutions which include two alternative model-based control schemes (anticipatory and predictive) and the use of H2/H∞ robust control to deal with network delays and packet losses. Results on self-triggering and send-on-delta sampling are presented to reduce the need for feedback in the loop. In Part II, the authors present solutions for distributed estimation and control. They deal first with reliable networks and then extend their results to scenarios in which delays and packet losses may occur. The novel ...

  14. Asynchronous Anytime Sequential Monte Carlo

    OpenAIRE

    Paige, Brooks; Wood, Frank; Doucet, Arnaud; Teh, Yee Whye

    2014-01-01

    We introduce a new sequential Monte Carlo algorithm we call the particle cascade. The particle cascade is an asynchronous, anytime alternative to traditional particle filtering algorithms. It uses no barrier synchronizations which leads to improved particle throughput and memory efficiency. It is an anytime algorithm in the sense that it can be run forever to emit an unbounded number of particles while keeping within a fixed memory budget. We prove that the particle cascade is an unbiased mar...

  15. Asynchronous MPI for the Masses

    OpenAIRE

    Wittmann, Markus; Hager, Georg; Zeiser, Thomas; Wellein, Gerhard

    2013-01-01

    We present a simple library which equips MPI implementations with truly asynchronous non-blocking point-to-point operations, and which is independent of the underlying communication infrastructure. It utilizes the MPI profiling interface (PMPI) and the MPI_THREAD_MULTIPLE thread compatibility level, and works with current versions of Intel MPI, Open MPI, MPICH2, MVAPICH2, Cray MPI, and IBM MPI. We show performance comparisons on a commodity InfiniBand cluster and two tier-1 systems in Germany...

  16. GAMIFICATION IN ASYNCHRONOUS EDUCATION PROCESS

    Directory of Open Access Journals (Sweden)

    B. P. Dyakonov

    2016-03-01

    Full Text Available The author of the paper discourses on the prospects of education in the context of the global tendency towards informatization and virtualization of the modern world, influence of these processes on personalized senses of education and educational values and related problems of methodological and technological education in relation to the personalized meanings and educational values. Educational individualization is defined by the author as the most expected way of educational evolution. Distance learning is studied as the main example of the modern transformative educational model. Asynchronous education is explored and characterized as one of the distance learning examples. While defining what asynchronous distance learning is, the author explores its role in the specifics of forming a subject to subject educational approach, while forecasting difficulties in creating holistic asynchronous educational environment. Gamification techniques in the educational process are studied with their respective opportunities and threats, examples in grad and post grad professional studies are provided, including but not limited to foreign language studies. Addictiveness as the goal and means of a build in gamification process is explored as the way to bridge the gap between students and the educators. The author studies gamification in the context of minimizing negative connotations from the educational process, while controversies between pain and game approaches of getting knowledge are brought into light.

  17. Effect of long-term refeeding on protein metabolism in patients with cirrhosis of the liver

    DEFF Research Database (Denmark)

    Kondrup, J; Nielsen, K; Juul, A

    1997-01-01

    studies. Initial and final whole-body protein metabolism was measured in the fed state by primed continuous [15N]glycine infusion. Refeeding caused a statistically significant increase of about 30% in protein synthesis in both studies while protein degradation was only slightly affected. The increase in...

  18. Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins

    OpenAIRE

    Bayram, Ozgur; Braus, Gerhard H

    2012-01-01

    Filamentous fungi produce a number of small bioactive molecules as part of their secondary metabolism ranging from benign antibiotics such as penicillin to threatening mycotoxins such as aflatoxin. Secondary metabolism can be linked to fungal developmental programs in response to various abiotic or biotic external triggers. The velvet family of regulatory proteins plays a key role in coordinating secondary metabolism and differentiation processes such as asexual or sexual sporulation and scle...

  19. Hitting Families of Schedules for Asynchronous Programs

    OpenAIRE

    Chistikov, Dmitry; Majumdar, Rupak; Niksic, Filip

    2016-01-01

    Asynchronous programming is a ubiquitous idiom for concurrent programming, where sequential units of code, called events, are scheduled and run atomically by a scheduler. While running, an event can post additional events for future execution by the scheduler. Asynchronous programs can have subtle bugs due to the non-deterministic scheduling of events, and a lot of recent research has focused on systematic testing of these programs. Empirically, many bugs in asynchronous programs have small b...

  20. A method for designing asynchronous probabilistic processes

    OpenAIRE

    Abbes, Samy

    2013-01-01

    We present a method for constructing asynchronous probabilistic processes. The asynchronous probabilistic processes thus obtained are called invariant. They generalize the familiar independent and identically distributed sequences of random variables to an asynchronous framework. Invariant processes are shown to be characterised by a finite family of real numbers, their characteristic numbers. Our method provides first a way to obtaining necessary and sufficient normalization conditions for a...

  1. Asynchronous Methods for Deep Reinforcement Learning

    OpenAIRE

    Mnih, Volodymyr; Badia, Adrià Puigdomènech; Mirza, Mehdi; Graves, Alex; Lillicrap, Timothy P.; Harley, Tim; Silver, David; Kavukcuoglu, Koray

    2016-01-01

    We propose a conceptually simple and lightweight framework for deep reinforcement learning that uses asynchronous gradient descent for optimization of deep neural network controllers. We present asynchronous variants of four standard reinforcement learning algorithms and show that parallel actor-learners have a stabilizing effect on training allowing all four methods to successfully train neural network controllers. The best performing method, an asynchronous variant of actor-critic, surpasse...

  2. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways and transcription factors

    DEFF Research Database (Denmark)

    Deshmukh, Atul S; Murgia, Marta; Nagaraja, Nagarjuna;

    2015-01-01

    spectrometric (MS) workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins......Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging due to highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art mass...... expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compare to tissue. This revealed unexpectedly...

  3. Sphingolipid metabolism and interorganellar transport: localization of sphingolipid enzymes and lipid transfer proteins.

    Science.gov (United States)

    Yamaji, Toshiyuki; Hanada, Kentaro

    2015-02-01

    In recent decades, many sphingolipid enzymes, sphingolipid-metabolism regulators and sphingolipid transfer proteins have been isolated and characterized. This review will provide an overview of the intracellular localization and topology of sphingolipid enzymes in mammalian cells to highlight the locations where respective sphingolipid species are produced. Interestingly, three sphingolipids that reside or are synthesized in cytosolic leaflets of membranes (ceramide, glucosylceramide and ceramide-1-phosphate) all have cytosolic lipid transfer proteins (LTPs). These LTPs consist of ceramide transfer protein (CERT), four-phosphate adaptor protein 2 (FAPP2) and ceramide-1-phosphate transfer protein (CPTP), respectively. These LTPs execute functions that affect both the location and metabolism of the lipids they bind. Molecular details describing the mechanisms of regulation of LTPs continue to emerge and reveal a number of critical processes, including competing phosphorylation and dephosphorylation reactions and binding interactions with regulatory proteins and lipids that influence the transport, organelle distribution and metabolism of sphingolipids. PMID:25382749

  4. Angiopoietin-Like Protein 4 and Postprandial Skeletal Muscle Lipid Metabolism in Overweight and Obese Prediabetics

    NARCIS (Netherlands)

    Kolk, van der Birgitta W.; Goossens, Gijs H.; Jocken, Johan W.; Kersten, Sander; Blaak, Ellen E.

    2016-01-01

    Context: Angiopoietin-like protein 4 (ANGPTL4) decreases plasma triacylglycerol (TAG) clearance by inhibiting lipoprotein lipase (LPL) and may contribute to impairments in lipid metabolism under compromised metabolic conditions. Objectives: To investigate the effects of a high-saturated fatty acid (

  5. Synaptotagmin-7 Is an Asynchronous Calcium Sensor for Synaptic Transmission in Neurons Expressing SNAP-23

    DEFF Research Database (Denmark)

    Weber, Jens P; Toft-Bertelsen, Trine L; Mohrmann, Ralf;

    2014-01-01

    Synchronization of neurotransmitter release with the presynaptic action potential is essential for maintaining fidelity of information transfer in the central nervous system. However, synchronous release is frequently accompanied by an asynchronous release component that builds up during repetitive......-7 acts to synchronize release and suppress spontaneous release. However, compared to synaptotagmin-1, synaptotagmin-7 is a both leaky and asynchronous calcium sensor. In the presence of SNAP-25, consequences of the elimination of synaptotagmin-7 were small or absent, indicating that the protein...

  6. Evaluation of the protein metabolism during hepatic coma evidenced by 15N tracer data

    International Nuclear Information System (INIS)

    In patients in coma hepaticum as well as in pigs with experimental hepatic coma the protein metabolism was studied under conditions of parenteral application of an amino acid diet using 15N-glycine as tracer

  7. Study of Stationary Phase Metabolism Via Isotopomer Analysis of Amino Acids from an Isolated Protein

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, AfshanS.; Tang, YinjieJ.; Mukhopadhyay, Aindrila; Martin, Hector Garcia; Gin, Jennifer; Benke, Peter; Keasling, Jay D.

    2009-09-14

    Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully 13C-labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase.

  8. Exercise ameliorates chronic kidney disease–induced defects in muscle protein metabolism and progenitor cell function

    OpenAIRE

    Wang, Xiaonan H.; Du, Jie; Klein, Janet D.; Bailey, James L; Mitch, William E.

    2009-01-01

    Chronic kidney disease (CKD) impairs muscle protein metabolism leading to muscle atrophy, and exercise can counteract this muscle wasting. Here we evaluated how resistance exercise (muscle overload) and endurance training (treadmill running) affect CKD-induced abnormalities in muscle protein metabolism and progenitor cell function using mouse plantaris muscle. Both exercise models blunted the increase in disease-induced muscle proteolysis and improved phosphorylation of Akt and the forkhead t...

  9. Hepatic autophagy contributes to the metabolic response to dietary protein restriction.

    Science.gov (United States)

    Henagan, Tara M; Laeger, Thomas; Navard, Alexandra M; Albarado, Diana; Noland, Robert C; Stadler, Krisztian; Elks, Carrie M; Burk, David; Morrison, Christopher D

    2016-06-01

    Autophagy is an essential cellular response which acts to release stored cellular substrates during nutrient restriction, and particularly plays a key role in the cellular response to amino acid restriction. However, there has been limited work testing whether the induction of autophagy is required for adaptive metabolic responses to dietary protein restriction in the whole animal. Here, we found that moderate dietary protein restriction led to a series of metabolic changes in rats, including increases in food intake and energy expenditure, the downregulation of hepatic fatty acid synthesis gene expression and reduced markers of hepatic mitochondrial number. Importantly, these effects were also associated with an induction of hepatic autophagy. To determine if the induction of autophagy contributes to these metabolic effects, we tested the metabolic response to dietary protein restriction in BCL2-AAA mice, which bear a genetic mutation that impairs autophagy induction. Interestingly, BCL2-AAA mice exhibit exaggerated responses in terms of both food intake and energy expenditure, whereas the effects of protein restriction on hepatic metabolism were significantly blunted. These data demonstrate that restriction of dietary protein is sufficient to trigger hepatic autophagy, and that disruption of autophagy significantly alters both hepatic and whole animal metabolic response to dietary protein restriction. PMID:27173459

  10. Reconstruction of the yeast protein-protein interaction network involved in nutrient sensing and global metabolic regulation

    DEFF Research Database (Denmark)

    Nandy, Subir Kumar; Jouhten, Paula; Nielsen, Jens

    2010-01-01

    BACKGROUND: Several protein-protein interaction studies have been performed for the yeast Saccharomyces cerevisiae using different high-throughput experimental techniques. All these results are collected in the BioGRID database and the SGD database provide detailed annotation of the different...... proteins. Despite the value of BioGRID for studying protein-protein interactions, there is a need for manual curation of these interactions in order to remove false positives. RESULTS: Here we describe an annotated reconstruction of the protein-protein interactions around four key nutrient-sensing and...... metabolic regulatory signal transduction pathways (STP) operating in Saccharomyces cerevisiae. The reconstructed STP network includes a full protein-protein interaction network including the key nodes Snf1, Tor1, Hog1 and Pka1. The network includes a total of 623 structural open reading frames (ORFs) and...

  11. Synergizing metabolic flux analysis and nucleotide sugar metabolism to understand the control of glycosylation of recombinant protein in CHO cells

    LENUS (Irish Health Repository)

    Burleigh, Susan C

    2011-10-18

    Abstract Background The glycosylation of recombinant proteins can be altered by a range of parameters including cellular metabolism, metabolic flux and the efficiency of the glycosylation process. We present an experimental set-up that allows determination of these key processes associated with the control of N-linked glycosylation of recombinant proteins. Results Chinese hamster ovary cells (CHO) were cultivated in shake flasks at 0 mM glutamine and displayed a reduced growth rate, glucose metabolism and a slower decrease in pH, when compared to other glutamine-supplemented cultures. The N-linked glycosylation of recombinant human chorionic gonadotrophin (HCG) was also altered under these conditions; the sialylation, fucosylation and antennarity decreased, while the proportion of neutral structures increased. A continuous culture set-up was subsequently used to understand the control of HCG glycosylation in the presence of varied glutamine concentrations; when glycolytic flux was reduced in the absence of glutamine, the glycosylation changes that were observed in shake flask culture were similarly detected. The intracellular content of UDP-GlcNAc was also reduced, which correlated with a decrease in sialylation and antennarity of the N-linked glycans attached to HCG. Conclusions The use of metabolic flux analysis illustrated a case of steady state multiplicity, where use of the same operating conditions at each steady state resulted in altered flux through glycolysis and the TCA cycle. This study clearly demonstrated that the control of glycoprotein microheterogeneity may be examined by use of a continuous culture system, metabolic flux analysis and assay of intracellular nucleotides. This system advances our knowledge of the relationship between metabolic flux and the glycosylation of biotherapeutics in CHO cells and will be of benefit to the bioprocessing industry.

  12. Protein metabolism and utilization during undernutrition in ruminants

    International Nuclear Information System (INIS)

    Recent advances made in the understanding of protein nutrition in ruminants are discussed, with particular emphasis placed on the implications for low-level feeding systems. It is shown that protein supplements normally given when the rumen outflow rate is low are virtually completely degraded, leaving a very constant protein:energy ratio to be absorbed by the animals even if the dietary crude protein is varied, since the microbial protein produced is directly related to the energy fermented. When ruminants are given a maintenance energy diet the microbial protein produced is insufficient to meet the protein demand for tissue maintenance in young ruminants; consequently, they will lose protein and live weight. If the animals are given less than energy maintenance they will lose still more protein. The consequences for subsequent compensatory growth are discussed in detail. Using the intragastric nutrition technique it has been shown that ruminants can attain a protein balance by being given only the protein required for maintenance when body fat is available as a source of energy. The ability to manipulate fat stores as an energy source by use of protein is discussed in detail for both growth and feed conservation. (author)

  13. Emergence of Complexity in Protein Functions and Metabolic Networks

    Science.gov (United States)

    Pohorille, Andzej

    2009-01-01

    In modern organisms proteins perform a majority of cellular functions, such as chemical catalysis, energy transduction and transport of material across cell walls. Although great strides have been made towards understanding protein evolution, a meaningful extrapolation from contemporary proteins to their earliest ancestors is virtually impossible. In an alternative approach, the origin of water-soluble proteins was probed through the synthesis of very large libraries of random amino acid sequences and subsequently subjecting them to in vitro evolution. In combination with computer modeling and simulations, these experiments allow us to address a number of fundamental questions about the origins of proteins. Can functionality emerge from random sequences of proteins? How did the initial repertoire of functional proteins diversify to facilitate new functions? Did this diversification proceed primarily through drawing novel functionalities from random sequences or through evolution of already existing proto-enzymes? Did protein evolution start from a pool of proteins defined by a frozen accident and other collections of proteins could start a different evolutionary pathway? Although we do not have definitive answers to these questions, important clues have been uncovered. Considerable progress has been also achieved in understanding the origins of membrane proteins. We will address this issue in the example of ion channels - proteins that mediate transport of ions across cell walls. Remarkably, despite overall complexity of these proteins in contemporary cells, their structural motifs are quite simple, with -helices being most common. By combining results of experimental and computer simulation studies on synthetic models and simple, natural channels, I will show that, even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during

  14. Effect of altitude on protein metabolism in Bolivian children

    International Nuclear Information System (INIS)

    Protein utilization during feeding is difficult to assess by classical tracer methodology, particularly under field conditions. We propose a new approach using the measurement of tracer recovery (expired 13CO2) after the ingestion of a single oral dose of a 13C-leucine labelled milk protein. Protein will be obtained by infusing a cow with 13C-leucine. The difference between the amounts of tracer given and recovered should be an index of protein utilization. Since altitude might influence protein absorption, this non-invasive method will be used in Bolivian children, living either at 3600 m (La Paz) or at sea level. (author). 14 refs

  15. Effect of protein provision via milk replacer or solid feed on protein metabolism in veal calves.

    Science.gov (United States)

    Berends, H; van den Borne, J J G C; Røjen, B A; Hendriks, W H; Gerrits, W J J

    2015-02-01

    The current study evaluated the effects of protein provision to calves fed a combination of solid feed (SF) and milk replacer (MR) at equal total N intake on urea recycling and N retention. Nitrogen balance traits and [(15)N2]urea kinetics were measured in 30 calves (23 wk of age, 180±3.7kg of body weight), after being exposed to the following experimental treatments for 11 wk: a low level of SF with a low N content (SF providing 12% of total N intake), a high level of SF with a low N content (SF providing 22% of total N intake), or a high level of SF with a high N content (SF providing 36% of total N intake). The SF mixture consisted of 50% concentrates, 25% corn silage, and 25% straw on a dry matter basis. Total N intake was equalized to 1.8g of N·kg of BW(-0.75)·d(-1) by adjusting N intake via MR. All calves were housed individually on metabolic cages to allow for quantification of a N balance of calves for 5 d, and for the assessment of urea recycling from [(15)N2]urea kinetics. Increasing low-N SF intake at equal total N intake resulted in a shift from urinary to fecal N excretion but did not affect protein retention (0.71g of N·kg of BW(-0.75)·d(-1)). Increasing low-N SF intake increased urea recycling but urea reused for anabolism remained unaffected. Total-tract neutral detergent fiber digestibility decreased (-9%) with increasing low-N SF intake, indicating reduced rumen fermentation. Increasing the N content of SF at equal total N intake resulted in decreased urea production, excretion, and return to ornithine cycle, and increased protein retention by 17%. This increase was likely related to an effect of energy availability on protein retention due to an increase in total-tract neutral detergent fiber digestion (>10%) and due to an increased energy supply via the MR. In conclusion, increasing low-N SF intake at the expense of N intake from MR, did not affect protein retention efficiency in calves. Increasing the N content of SF at equal total N

  16. Asynchronous Discussions and Assessment in Online Learning

    Science.gov (United States)

    Vonderwell, Selma; Liang, Xin; Alderman, Kay

    2007-01-01

    This case study explored asynchronous online discussions, assessment processes, and the meaning students derived from their experiences in five online graduate courses at the Colleges of Education of two Midwestern higher education institutions. The findings suggest that asynchronous online discussions facilitate a multidimensional process of…

  17. Genome-scale metabolic model of Pichia pastoris with native and humanized glycosylation of recombinant proteins.

    Science.gov (United States)

    Irani, Zahra Azimzadeh; Kerkhoven, Eduard J; Shojaosadati, Seyed Abbas; Nielsen, Jens

    2016-05-01

    Pichia pastoris is used for commercial production of human therapeutic proteins, and genome-scale models of P. pastoris metabolism have been generated in the past to study the metabolism and associated protein production by this yeast. A major challenge with clinical usage of recombinant proteins produced by P. pastoris is the difference in N-glycosylation of proteins produced by humans and this yeast. However, through metabolic engineering, a P. pastoris strain capable of producing humanized N-glycosylated proteins was constructed. The current genome-scale models of P. pastoris do not address native nor humanized N-glycosylation, and we therefore developed ihGlycopastoris, an extension to the iLC915 model with both native and humanized N-glycosylation for recombinant protein production, but also an estimation of N-glycosylation of P. pastoris native proteins. This new model gives a better prediction of protein yield, demonstrates the effect of the different types of N-glycosylation of protein yield, and can be used to predict potential targets for strain improvement. The model represents a step towards a more complete description of protein production in P. pastoris, which is required for using these models to understand and optimize protein production processes. Biotechnol. Bioeng. 2016;113: 961-969. © 2015 Wiley Periodicals, Inc. PMID:26480251

  18. Approaches to Optimizing Animal Cell Culture Process: Substrate Metabolism Regulation and Protein Expression Improvement

    Science.gov (United States)

    Zhang, Yuanxing

    Some high value proteins and vaccines for medical and veterinary applications by animal cell culture have an increasing market in China. In order to meet the demands of large-scale productions of proteins and vaccines, animal cell culture technology has been widely developed. In general, an animal cell culture process can be divided into two stages in a batch culture. In cell growth stage a high specific growth rate is expected to achieve a high cell density. In production stage a high specific production rate is stressed for the expression and secretion of qualified protein or replication of virus. It is always critical to maintain high cell viability in fed-batch and perfusion cultures. More concern has been focused on two points by the researchers in China. First, the cell metabolism of substrates is analyzed and the accumulation of toxic by-products is decreased through regulating cell metabolism in the culture process. Second, some important factors effecting protein expression are understood at the molecular level and the production ability of protein is improved. In pace with the rapid development of large-scale cell culture for the production of vaccines, antibodies and other recombinant proteins in China, the medium design and process optimization based on cell metabolism regulation and protein expression improvement will play an important role. The chapter outlines the main advances in metabolic regulation of cell and expression improvement of protein in animal cell culture in recent years.

  19. Cytosolic fatty acid-binding proteins: subjects and tools in metabolic research

    International Nuclear Information System (INIS)

    Fatty acid-binding proteins (FABPs) are major targets for specific binding of fatty acids in vivo. They constitute a widely expressed family of genetically related, small cytosolic proteins which very likely mediate intracellular transport of free long chain fatty acids. Genetic inhibition of FABP expression in vivo should therefore provide a useful tool to investigate and engineer fatty acid metabolism. (orig.)

  20. Asynchronous Parallelization of a CFD Solver

    Directory of Open Access Journals (Sweden)

    Daniel S. Abdi

    2015-01-01

    Full Text Available A Navier-Stokes equations solver is parallelized to run on a cluster of computers using the domain decomposition method. Two approaches of communication and computation are investigated, namely, synchronous and asynchronous methods. Asynchronous communication between subdomains is not commonly used in CFD codes; however, it has a potential to alleviate scaling bottlenecks incurred due to processors having to wait for each other at designated synchronization points. A common way to avoid this idle time is to overlap asynchronous communication with computation. For this to work, however, there must be something useful and independent a processor can do while waiting for messages to arrive. We investigate an alternative approach of computation, namely, conducting asynchronous iterations to improve local subdomain solution while communication is in progress. An in-house CFD code is parallelized using message passing interface (MPI, and scalability tests are conducted that suggest asynchronous iterations are a viable way of parallelizing CFD code.

  1. A comparative study protein metabolism in various tissues by autoradiography

    International Nuclear Information System (INIS)

    By the use of autoradiographic technique, the incorporation of 35S-methionine in tissue protein has been utilized as an index of tissue protein synthesis. It was found that 35S-methionine incorporates rapidly in immature cells of bone marrow, liver, kidney and spleen. In spite of their important physiological functions, heart, lung and skeletal muscle have their proteins synthesized at low speed

  2. Reconstruction of the yeast protein-protein interaction network involved in nutrient sensing and global metabolic regulation

    Directory of Open Access Journals (Sweden)

    Nielsen Jens

    2010-05-01

    Full Text Available Abstract Background Several protein-protein interaction studies have been performed for the yeast Saccharomyces cerevisiae using different high-throughput experimental techniques. All these results are collected in the BioGRID database and the SGD database provide detailed annotation of the different proteins. Despite the value of BioGRID for studying protein-protein interactions, there is a need for manual curation of these interactions in order to remove false positives. Results Here we describe an annotated reconstruction of the protein-protein interactions around four key nutrient-sensing and metabolic regulatory signal transduction pathways (STP operating in Saccharomyces cerevisiae. The reconstructed STP network includes a full protein-protein interaction network including the key nodes Snf1, Tor1, Hog1 and Pka1. The network includes a total of 623 structural open reading frames (ORFs and 779 protein-protein interactions. A number of proteins were identified having interactions with more than one of the protein kinases. The fully reconstructed interaction network includes all the information available in separate databases for all the proteins included in the network (nodes and for all the interactions between them (edges. The annotated information is readily available utilizing the functionalities of network modelling tools such as Cytoscape and CellDesigner. Conclusions The reported fully annotated interaction model serves as a platform for integrated systems biology studies of nutrient sensing and regulation in S. cerevisiae. Furthermore, we propose this annotated reconstruction as a first step towards generation of an extensive annotated protein-protein interaction network of signal transduction and metabolic regulation in this yeast.

  3. Effect of dietary protein on lipid and glucose metabolism: implications for metabolic health

    NARCIS (Netherlands)

    Rietman, A.

    2015-01-01

    Abstract Background: Diet is an important factor in the development of the Metabolic Syndrome (Mets) and type 2 Diabetes Mellitus. Accumulation of intra hepatic lipid (IHL) can result in non-alcoholic fatty liver disease (NAFLD), which is sometimes considered the he

  4. Influence of dietary proteins on cholesterol metabolism and nephrocalcinosis.

    NARCIS (Netherlands)

    Zhang, X.

    1992-01-01

    This thesis consists of two parts. The first part deals with the effects of type and amount of various animal proteins on plasma and liver cholesterol concentrations in female, weanling rats. The second part focusses on the nephrocalcinogenic effects of dietary proteins in female rats.Chapter 1 pres

  5. Dietary Proteins as Determinants of Metabolic and Physiologic Functions of the Gastrointestinal Tract

    Directory of Open Access Journals (Sweden)

    G. Harvey Anderson

    2011-05-01

    Full Text Available Dietary proteins elicit a wide range of nutritional and biological functions. Beyond their nutritional role as the source of amino acids for protein synthesis, they are instrumental in the regulation of food intake, glucose and lipid metabolism, blood pressure, bone metabolism and immune function. The interaction of dietary proteins and their products of digestion with the regulatory functions of the gastrointestinal (GI tract plays a dominant role in determining the physiological properties of proteins. The site of interaction is widespread, from the oral cavity to the colon. The characteristics of proteins that influence their interaction with the GI tract in a source-dependent manner include their physico-chemical properties, their amino acid composition and sequence, their bioactive peptides, their digestion kinetics and also the non-protein bioactive components conjugated with them. Within the GI tract, these products affect several regulatory functions by interacting with receptors releasing hormones, affecting stomach emptying and GI transport and absorption, transmitting neural signals to the brain, and modifying the microflora. This review discusses the interaction of dietary proteins during digestion and absorption with the physiological and metabolic functions of the GI tract, and illustrates the importance of this interaction in the regulation of amino acid, glucose, lipid metabolism, and food intake.

  6. Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors*

    OpenAIRE

    A Deshmukh; Murgia, M.; Nagaraj, N; Treebak, J.; Cox, J; Mann, M

    2015-01-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and...

  7. Aerobic fitness does not modulate protein metabolism in response to increased exercise: a controlled trial

    OpenAIRE

    Byerley Lauri O; Castaneda-Sceppa Carmen; Grediagin Ann; Pikosky Matthew A; Smith Tracey J; Glickman Ellen L; Young Andrew J

    2009-01-01

    Abstract Background A sudden increase in exercise and energy expenditure is associated with an increase in protein turnover and nitrogen excretion. This study examined how a sudden increase in exercise-induced energy expenditure affected whole body protein metabolism and nitrogen balance in people of differing levels of aerobic fitness. We hypothesized that alterations in whole-body protein turnover would be attenuated, and nitrogen balance would be preserved, in individual with higher levels...

  8. Genome-scale metabolic model of Pichia pastoris with native and humanized glycosylation of recombinant proteins

    DEFF Research Database (Denmark)

    Irani, Zahra Azimzadeh; Kerkhoven, Eduard J.; Shojaosadati, Seyed Abbas;

    2016-01-01

    Pichia pastoris is used for commercial production of human therapeutic proteins, and genome-scale models of P. pastoris metabolism have been generated in the past to study the metabolism and associated protein production by this yeast. A major challenge with clinical usage of recombinant proteins...

  9. Changes of protein metabolism after X-irradiation. Pt. 3

    International Nuclear Information System (INIS)

    The protease activity against externally added haemoglobin as a substrate and the autolytic activity against the proteins of the organism were decreased in most of the organs and in the total organism on the 3rd day after irradiation. This contradicts the explanation of the protein loss by an increased protein degradation. The free amino acids in the organs and in the whole organism are unchanged or diminished. An increase would be expected if an increased protein degradation had occured because the free amino acids are the end product of the protein degradation. The conclusion of this investigation is that other mechanisms than protein degradation are responsible for the protein loss of the organism 3-6 days after X-irradiation. The increase of the protease activity and of the free amino acids in the blood plasma from day 1-3 coincides with the end of the destruction phase in the organism between day 1-2 after irradiation. The changes of the protease activity in the erythrocytes between day 1-30 after irradiation are probably not caused by a direct effect of the radiation on the erythrocytes of the peripheral blood. They are rather the result of a transient suppression of the hematopoetic differentiation. (orig.)

  10. YEAST A SINGLE CELL PROTEIN: CHARACTERISTICS and METABOLISM

    Directory of Open Access Journals (Sweden)

    AMATA, I.A

    2013-02-01

    Full Text Available Most of the developing countries of the world are facing a major problem of malnutrition. Due to rapid growth in the population, food and feed scarcity are prevalent leading to a deficiency of protein and essential nutrients amongst human beings and livestock. It is therefore important to take necessary measures to stem this trend by increasing protein production and making it available and more affordable to the population by utilizing methods available for the production of alternative sources of nutrients. The increased world demand for food and in particular protein has engineered the search for non-conventional protein sources to supplement the available protein sources. Since the early fifties, intense efforts have been made to explore these alternate and non-conventional protein sources. In 1996, new sources mainly yeast, fungi, bacteria and algae have been used to ferment biomass in the form of biological waste to produce single cell proteins. Microbial biomass has been considered an alternative to conventional sources of food and feed. Large scale production processes for SCP production reveal interesting features.

  11. Metabolism

    Science.gov (United States)

    ... also influenced by body composition — people with more muscle and less fat generally have higher BMRs. previous continue Things That Can Go Wrong With Metabolism Most of the time your metabolism works effectively ...

  12. Metabolism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008255 Serum adiponectin level declines in the elderly with metabolic syndrome.WU Xiaoyan(吴晓琰),et al.Dept Geriatr,Huashan Hosp,Fudan UnivShanghai200040.Chin J Geriatr2008;27(3):164-167.Objective To investigate the correlation between ser-um adiponectin level and metabolic syndrome in the elderly·Methods Sixty-one subjects with metabolic syndrome and140age matched subjects without metabolic

  13. Abstracting Asynchronous Multi-Valued Networks

    Directory of Open Access Journals (Sweden)

    J. Steggles

    2011-01-01

    Full Text Available Multi-valued networks (MVNs provide a simple yet expressive qualitative state based modelling approach for biological systems. In this paper we develop an abstraction theory for asynchronous MVNs that allows the state space of a model to be reduced while preserving key properties. The abstraction theory therefore provides a mechanism for coping with the state space explosion problem and supports the analysis and comparison of MVNs. We take as our starting point the abstraction theory for synchronous MVNs which uses the under- approximation approach of trace set inclusion. We show this definition of asynchronous abstraction allows the sound inference of analysis properties and preserves other interesting model properties. One problem that arises in the asynchronous case is that the trace set of an MVN can be infinite making a simple trace set inclusion check infeasible. To address this we develop a decision procedure for checking asynchronous abstractions based on using the finite state graph of an asynchronous MVN to reason about its trace semantics and formally show that this decision procedure is correct. We illustrate the abstraction techniques developed by considering two detailed case studies in which asynchronous abstractions are identified and validated for existing asynchronous MVN models taken from the literature.

  14. Role of insulin-like growth factor binding protein-3 in glucose and lipid metabolism

    OpenAIRE

    Kim, Ho-Seong

    2013-01-01

    Insulin-like growth factor binding protein (IGFBP)-3 has roles in modulating the effect of IGFs by binding to IGFs and inhibiting cell proliferation in an IGF-independent manner. Although recent studies have been reported that IGFBP-3 has also roles in metabolic regulation, their exact roles in adipose tissue are poorly understood. In this review, we summarized the studies about the biological roles in glucose and lipid metabolism. IGFBP-3 overexpression in transgenic mice suggested that IGFB...

  15. Carnosine: can understanding its actions on energy metabolism and protein homeostasis inform its therapeutic potential?

    OpenAIRE

    Hipkiss, Alan R; Cartwright, Stephanie P.; Bromley, Clare; Gross, Stephane R.; Bill, Roslyn M.

    2013-01-01

    The dipeptide carnosine (β-alanyl-L-histidine) has contrasting but beneficial effects on cellular activity. It delays cellular senescence and rejuvenates cultured senescent mammalian cells. However, it also inhibits the growth of cultured tumour cells. Based on studies in several organisms, we speculate that carnosine exerts these apparently opposing actions by affecting energy metabolism and/or protein homeostasis (proteostasis). Specific effects on energy metabolism include the dipeptide’s ...

  16. Effect of Prolonged Simulated Microgravity on Metabolic Proteins in Rat Hippocampus: Steps toward Safe Space Travel.

    Science.gov (United States)

    Wang, Yun; Javed, Iqbal; Liu, Yahui; Lu, Song; Peng, Guang; Zhang, Yongqian; Qing, Hong; Deng, Yulin

    2016-01-01

    Mitochondria are not only the main source of energy in cells but also produce reactive oxygen species (ROS), which result in oxidative stress when in space. This oxidative stress is responsible for energy imbalances and cellular damage. In this study, a rat tail suspension model was used in individual experiments for 7 and 21 days to explore the effect of simulated microgravity (SM) on metabolic proteins in the hippocampus, a vital brain region involved in learning, memory, and navigation. A comparative (18)O-labeled quantitative proteomic strategy was used to observe the differential expression of metabolic proteins. Forty-two and sixty-seven mitochondrial metabolic proteins were differentially expressed after 21 and 7 days of SM, respectively. Mitochondrial Complex I, III, and IV, isocitrate dehydrogenase and malate dehydrogenase were down-regulated. Moreover, DJ-1 and peroxiredoxin 6, which defend against oxidative damage, were up-regulated in the hippocampus. Western blot analysis of proteins DJ-1 and COX 5A confirmed the mass spectrometry results. Despite these changes in mitochondrial protein expression, no obvious cell apoptosis was observed after 21 days of SM. The results of this study indicate that the oxidative stress induced by SM has profound effects on metabolic proteins. PMID:26523826

  17. Association between C-reactive protein and features of the metabolic syndrome

    DEFF Research Database (Denmark)

    Fröhlich, M; Imhof, A; Berg, Gabriele;

    2000-01-01

    OBJECTIVE: To assess the association of circulating levels of C-reactive protein, a sensitive systemic marker of inflammation, with different components of the metabolic syndrome. RESEARCH DESIGN AND METHODS: Total cholesterol (TC), HDL cholesterol, triglycerides, uric acid, BMI , and prevalence of...... concentrations in subjects grouped according to the presence of 0-1, 2-3, and > or =4 features of the metabolic syndrome were 1.11, 1.27, and 2.16 mg/l, respectively, with a statistically highly significant trend (P < 0.0001). CONCLUSIONS: The data suggest that a variety of features of the metabolic syndrome are...

  18. Role of Heme and Heme-Proteins in Trypanosomatid Essential Metabolic Pathways

    Directory of Open Access Journals (Sweden)

    Karina E. J. Tripodi

    2011-01-01

    Full Text Available Around the world, trypanosomatids are known for being etiological agents of several highly disabling and often fatal diseases like Chagas disease (Trypanosoma cruzi, leishmaniasis (Leishmania spp., and African trypanosomiasis (Trypanosoma brucei. Throughout their life cycle, they must cope with diverse environmental conditions, and the mechanisms involved in these processes are crucial for their survival. In this review, we describe the role of heme in several essential metabolic pathways of these protozoans. Notwithstanding trypanosomatids lack of the complete heme biosynthetic pathway, we focus our discussion in the metabolic role played for important heme-proteins, like cytochromes. Although several genes for different types of cytochromes, involved in mitochondrial respiration, polyunsaturated fatty acid metabolism, and sterol biosynthesis, are annotated at the Tritryp Genome Project, the encoded proteins have not yet been deeply studied. We pointed our attention into relevant aspects of these protein functions that are amenable to be considered for rational design of trypanocidal agents.

  19. Burst-Mode Asynchronous Controllers on FPGA

    Directory of Open Access Journals (Sweden)

    Duarte L. Oliveira

    2008-01-01

    Full Text Available FPGAs have been mainly used to design synchronous circuits. Asynchronous design on FPGAs is difficult because the resulting circuit may suffer from hazard problems. We propose a method that implements a popular class of asynchronous circuits, known as burst mode, on FPGAs based on look-up table architectures. We present two conditions that, if satisfied, guarantee essential hazard-free implementation on any LUT-based FPGA. By doing that, besides all the intrinsic advantages of asynchronous over synchronous circuits, they also take advantage of the shorter design time and lower cost associated with FPGA designs.

  20. Carrying Synchronous Voice Data On Asynchronous Networks

    Science.gov (United States)

    Bergman, Larry A.

    1990-01-01

    Buffers restore synchronism for internal use and permit asynchronism in external transmission. Proposed asynchronous local-area digital communication network (LAN) carries synchronous voice, data, or video signals, or non-real-time asynchronous data signals. Network uses double buffering scheme that reestablishes phase and frequency references at each node in network. Concept demonstrated in token-ring network operating at 80 Mb/s, pending development of equipment operating at planned data rate of 200 Mb/s. Technique generic and used with any LAN as long as protocol offers deterministic (or bonded) access delays and sufficient capacity.

  1. A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution.

    Science.gov (United States)

    Maida, Adriano; Zota, Annika; Sjøberg, Kim A; Schumacher, Jonas; Sijmonsma, Tjeerd P; Pfenninger, Anja; Christensen, Marie M; Gantert, Thomas; Fuhrmeister, Jessica; Rothermel, Ulrike; Schmoll, Dieter; Heikenwälder, Mathias; Iovanna, Juan L; Stemmer, Kerstin; Kiens, Bente; Herzig, Stephan; Rose, Adam J

    2016-09-01

    Dietary protein intake is linked to an increased incidence of type 2 diabetes (T2D). Although dietary protein dilution (DPD) can slow the progression of some aging-related disorders, whether this strategy affects the development and risk for obesity-associated metabolic disease such as T2D is unclear. Here, we determined that DPD in mice and humans increases serum markers of metabolic health. In lean mice, DPD promoted metabolic inefficiency by increasing carbohydrate and fat oxidation. In nutritional and polygenic murine models of obesity, DPD prevented and curtailed the development of impaired glucose homeostasis independently of obesity and food intake. DPD-mediated metabolic inefficiency and improvement of glucose homeostasis were independent of uncoupling protein 1 (UCP1), but required expression of liver-derived fibroblast growth factor 21 (FGF21) in both lean and obese mice. FGF21 expression and secretion as well as the associated metabolic remodeling induced by DPD also required induction of liver-integrated stress response-driven nuclear protein 1 (NUPR1). Insufficiency of select nonessential amino acids (NEAAs) was necessary and adequate for NUPR1 and subsequent FGF21 induction and secretion in hepatocytes in vitro and in vivo. Taken together, these data indicate that DPD promotes improved glucose homeostasis through an NEAA insufficiency-induced liver NUPR1/FGF21 axis. PMID:27548521

  2. Metabolic responses to high protein diet in Korean elite bodybuilders with high-intensity resistance exercise

    Directory of Open Access Journals (Sweden)

    Choue Ryowon

    2011-07-01

    Full Text Available Abstract Background High protein diet has been known to cause metabolic acidosis, which is manifested by increased urinary excretion of nitrogen and calcium. Bodybuilders habitually consumed excessive dietary protein over the amounts recommended for them to promote muscle mass accretion. This study investigated the metabolic response to high protein consumption in the elite bodybuilders. Methods Eight elite Korean bodybuilders within the age from 18 to 25, mean age 21.5 ± 2.6. For data collection, anthropometry, blood and urinary analysis, and dietary assessment were conducted. Results They consumed large amounts of protein (4.3 ± 1.2 g/kg BW/day and calories (5,621.7 ± 1,354.7 kcal/day, as well as more than the recommended amounts of vitamins and minerals, including potassium and calcium. Serum creatinine (1.3 ± 0.1 mg/dl and potassium (5.9 ± 0.8 mmol/L, and urinary urea nitrogen (24.7 ± 9.5 mg/dl and creatinine (2.3 ± 0.7 mg/dl were observed to be higher than the normal reference ranges. Urinary calcium (0.3 ± 0.1 mg/dl, and phosphorus (1.3 ± 0.4 mg/dl were on the border of upper limit of the reference range and the urine pH was in normal range. Conclusions Increased urinary excretion of urea nitrogen and creatinine might be due to the high rates of protein metabolism that follow high protein intake and muscle turnover. The obvious evidence of metabolic acidosis in response to high protein diet in the subjects with high potassium intake and intensive resistance exercise were not shown in this study results. However, this study implied that resistance exercise with adequate mineral supplementation, such as potassium and calcium, could reduce or offset the negative effects of protein-generated metabolic changes. This study provides preliminary information of metabolic response to high protein intake in bodybuilders who engaged in high-intensity resistance exercise. Further studies will be needed to determine the effects of the intensity

  3. Protein and energy metabolism in two lines of chickens selected for growth on high or low protein diets

    DEFF Research Database (Denmark)

    Chwalibog, André; Eggum, B O; Sørensen, Peter

    1983-01-01

    Genetic adaptation was investigated in broilers selected for seven generations on a normal (A) or a low (B) protein diet. Protein and energy metabolism were studied in males from these selected lines fed on a diet of intermediate protein content. All selected birds retained more nitrogen than those...... studied 10 years previously. There was no difference in nitrogen retention between groups, although relative growth rate of group B birds was higher. Heat productions relative to gross energy intake were 0.38 (group B) and 0.45 (group A). Energy retentions relative to gross energy intake were 0.39 (group...

  4. Glucocorticoids and 11β-HSD1 are major regulators of intramyocellular protein metabolism.

    Science.gov (United States)

    Morgan, Stuart A; Hassan-Smith, Zaki K; Doig, Craig L; Sherlock, Mark; Stewart, Paul M; Lavery, Gareth G

    2016-06-01

    The adverse metabolic effects of prescribed and endogenous glucocorticoid excess, 'Cushing's syndrome', create a significant health burden. While skeletal muscle atrophy and resultant myopathy is a clinical feature, the molecular mechanisms underpinning these changes are not fully defined. We have characterized the impact of glucocorticoids upon key metabolic pathways and processes regulating muscle size and mass including: protein synthesis, protein degradation, and myoblast proliferation in both murine C2C12 and human primary myotube cultures. Furthermore, we have investigated the role of pre-receptor modulation of glucocorticoid availability by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in these processes. Corticosterone (CORT) decreased myotube area, decreased protein synthesis, and increased protein degradation in murine myotubes. This was supported by decreased mRNA expression of insulin-like growth factor (IGF1), decreased activating phosphorylation of mammalian target of rapamycin (mTOR), decreased phosphorylation of 4E binding protein 1 (4E-BP1), and increased mRNA expression of key atrophy markers including: atrogin-1, forkhead box O3a (FOXO3a), myostatin (MSTN), and muscle-ring finger protein-1 (MuRF1). These findings were endorsed in human primary myotubes, where cortisol also decreased protein synthesis and increased protein degradation. The effects of 11-dehydrocorticosterone (11DHC) (in murine myotubes) and cortisone (in human myotubes) on protein metabolism were indistinguishable from that of CORT/cortisol treatments. Selective 11β-HSD1 inhibition blocked the decrease in protein synthesis, increase in protein degradation, and reduction in myotube area induced by 11DHC/cortisone. Furthermore, CORT/cortisol, but not 11DHC/cortisone, decreased murine and human myoblast proliferative capacity. Glucocorticoids are potent regulators of skeletal muscle protein homeostasis and myoblast proliferation. Our data underscores the potential use of

  5. Myocardial Oxidative Metabolism and Protein Synthesis during Mechanical Circulatory Support by Extracorporeal Membrane Oxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Priddy, MD, Colleen M.; Kajimoto, Masaki; Ledee, Dolena; Bouchard, Bertrand; Isern, Nancy G.; Olson, Aaron; Des Rosiers, Christine; Portman, Michael A.

    2013-02-01

    Extracorporeal membrane oxygenation (ECMO) provides mechanical circulatory support essential for survival in infants and children with acute cardiac decompensation. However, ECMO also causes metabolic disturbances, which contribute to total body wasting and protein loss. Cardiac stunning can also occur which prevents ECMO weaning, and contributes to high mortality. The heart may specifically undergo metabolic impairments, which influence functional recovery. We tested the hypothesis that ECMO alters oxidative. We focused on the amino acid leucine, and integration with myocardial protein synthesis. We used a translational immature swine model in which we assessed in heart (i) the fractional contribution of leucine (FcLeucine) and pyruvate (FCpyruvate) to mitochondrial acetyl-CoA formation by nuclear magnetic resonance and (ii) global protein fractional synthesis (FSR) by gas chromatography-mass spectrometry. Immature mixed breed Yorkshire male piglets (n = 22) were divided into four groups based on loading status (8 hours of normal circulation or ECMO) and intracoronary infusion [13C6,15N]-L-leucine (3.7 mM) alone or with [2-13C]-pyruvate (7.4 mM). ECMO decreased pulse pressure and correspondingly lowered myocardial oxygen consumption (~ 40%, n = 5), indicating decreased overall mitochondrial oxidative metabolism. However, FcLeucine was maintained and myocardial protein FSR was marginally increased. Pyruvate addition decreased tissue leucine enrichment, FcLeucine, and Fc for endogenous substrates as well as protein FSR. Conclusion: The heart under ECMO shows reduced oxidative metabolism of substrates, including amino acids, while maintaining (i) metabolic flexibility indicated by ability to respond to pyruvate, and (ii) a normal or increased capacity for global protein synthesis, suggesting an improved protein balance.

  6. Effects of atorvastatin on human c reactive protein metabolism

    Science.gov (United States)

    Statins are known to reduce plasma C-reactive protein (CRP) concentrations. Our goals were to define the mechanisms by which CRP was reduced by maximal dose atorvastatin. Eight subjects with combined hyperlipidemia (5 men and 3 postmenopausal women) were enrolled in a randomized, placebo-controlled...

  7. Global Profiling of Protein Lysine Malonylation in Escherichia coli Reveals Its Role in Energy Metabolism.

    Science.gov (United States)

    Qian, Lili; Nie, Litong; Chen, Ming; Liu, Ping; Zhu, Jun; Zhai, Linhui; Tao, Sheng-Ce; Cheng, Zhongyi; Zhao, Yingming; Tan, Minjia

    2016-06-01

    Protein lysine malonylation is a recently identified post-translational modification (PTM), which is evolutionarily conserved from bacteria to mammals. Although analysis of lysine malonylome in mammalians suggested that this modification was related to energy metabolism, the substrates and biological roles of malonylation in prokaryotes are still poorly understood. In this study, we performed qualitative and quantitative analyses to globally identify lysine malonylation substrates in Escherichia coli. We identified 1745 malonylation sites in 594 proteins in E. coli, representing the first and largest malonylome data set in prokaryotes up to date. Bioinformatic analyses showed that lysine malonylation was significantly enriched in protein translation, energy metabolism pathways and fatty acid biosynthesis, implying the potential roles of protein malonylation in bacterial physiology. Quantitative proteomics by fatty acid synthase inhibition in both auxotrophic and prototrophic E. coli strains revealed that lysine malonylation is closely associated with E. coli fatty acid metabolism. Protein structural analysis and mutagenesis experiment suggested malonylation could impact enzymatic activity of citrate synthase, a key enzyme in citric acid (TCA) cycle. Further comparative analysis among lysine malonylome, succinylome and acetylome data showed that these three modifications could participate in some similar enriched metabolism pathways, but they could also possibly play distinct roles such as in fatty acid synthesis. These data expanded our knowledge of lysine malonylation in prokaryotes, providing a resource for functional study of lysine malonylation in bacteria. PMID:27183143

  8. Implementing LOTOS as asynchronously Communicating Processes

    OpenAIRE

    Sjödin, Peter

    1990-01-01

    A technique is presented for translating LOTOS specifications into implementations executing as asynchronously communicating processes. This generation of implementations is described as transformations of LOTOS expressions. A protocol for implementing LOTOS synchronisation is described.

  9. Nucleic Acids and Protein Metabolism of Bone Marrow Cells Studied by Means of Tritiumlabelled Precursors

    International Nuclear Information System (INIS)

    The advantages of the use of tritium-labelled compounds in radioautographic technique are discussed. Tritium electrons have a maximal energy of 0.018 MeV, corresponding to about 1μm range in a photographic emulsion, and consequently they allow the highest possible resolution at a cellular and subcellular level. This is particularly useful for studying metabolic phenomena of tissues which are composed, as in the case of bone marrow, of different cellular types at various stages of differentiation. This technique has been used for investigating nucleic acids and protein metabolism of normal and leukaemic bone marrow cells. DNA metabolism has been studied utilizing a specific precursor, H3-thymidine. Some significant differences of the percentages of labelled cells have been detected by comparing the normal and leukaemic elements belonging to the same stage of maturation. In acute leukaemia cells, particularly, a strikingly lower incorporation of thymidine was found and these results have been taken as evidence of a decreased proliferative capacity of these cells, as compared to normal myeloblasts. With the same technique, RNA and protein metabolism have been investigated utilizing H3- uridine, H3-leucine and H3-phenylalanine as precursors. The existence of a strict interrelationship between RNA and protein metabolism is now fully accepted in cellular biology. The existence of a constant ratio between uridine and amino acids incorporation has also been demonstrated in normal bone marrow cells. In acute leukaemia cells the incorporation of RNA and protein precursors, although different from case to case, is constantly and significantly lower. Furthermore, the ratio between uridine and amino acids incorporation is constantly altered in these cells. The lower RNA and protein metabolism and its dissociation in acute leukaemia cells is discussed in relation to the well-known maturation defect of these cells. (author)

  10. Asynchronous Data Fusion With Parallel Filtering Frame

    OpenAIRE

    Na Li; Junhui Liu

    2011-01-01

    This paper studies the design of data fusion algorithm for asynchronous system with integer times sampling. Firstly, the multisensor asynchronous samplings is mapped to the basic axis, accordingly a sampling sequence of single sensor can be taken. Secondly, aiming at the sensor with the densest sampling points, the modified parallel filtering is given. Afterwards, the sequential filtering fusion method is introduced to deal with the case that there are multiple mapped measurements at some sam...

  11. REACTIVE POWER COMPENSATION IN ASYNCHRONOUS ELECTRIC DRIVES

    Directory of Open Access Journals (Sweden)

    V.S. Malyar

    2013-10-01

    Full Text Available A problem of calculating capacity of cosine capacitors for individual compensation of reactive power in asynchronous electric drives in stationary and transient operation modes is considered. The algorithm introduced employs a high-adequacy mathematical model of asynchronous motor developed on the theory of representing vectors which takes into account both the magnetic core saturation and the current displacement in the rotor bars.

  12. Asynchronous communication in real space process algebra

    OpenAIRE

    Baeten, JCM Jos; Bergstra, JA Jan

    1992-01-01

    A version of classical real space process algebra is given in which messages travel with constant speed through a three-dimensional medium. It follows that communication is asynchronous and has a broadcasting character. A state operator is used to describe asynchronous message transfer and a priority mechanism allows to express the broadcasting mechanism. As an application, a protocol is specified in which the receiver moves with respect to the sender.

  13. Performance Analysis of Asynchronous Multicarrier Wireless Networks

    OpenAIRE

    Lin, Xingqin; Jiang, Libin; Andrews, Jeffrey G.

    2014-01-01

    This paper develops a novel analytical framework for asynchronous wireless networks deploying multicarrier transmission. Nodes in the network have different notions of timing, so from the viewpoint of a typical receiver, the received signals from different transmitters are asynchronous, leading to a loss of orthogonality between subcarriers. We first develop a detailed link-level analysis based on OFDM, based on which we propose a tractable system-level signal-to-interference-plus-noise ratio...

  14. The effect of BmNPV infection on protein metabolism in silkworm (Bombyx mori larva

    Directory of Open Access Journals (Sweden)

    K Etebari

    2007-02-01

    Full Text Available Grasseri is one of the most important diseases of silkworm with significant yield loss, which is caused by nuclear polyhedrosis viruses (NPV. In the present research the effect of this disease on changes of biochemical compounds which are related to protein metabolism in 5th instar larvae were studied. The larvae that showed the grasseri symptoms after contamination with 5.5×10-4 polyhedral/ml were assumed as infected treatment. The hemolymph of infected and uninfected larvae in 3 and 5 days after 4th molting were collected and its total protein, urea, alanine aminotransferase (ALT and aspartate aminotransferase (AST were measured. The results showed that the amount of all the compounds except urea were considerably different in both groups. Total protein had decreased in infected larvae but activity level of two aminotransferases significantly increased. Therefore, grasseri has a considerable effect on protein metabolism.

  15. SLOB, a SLOWPOKE channel binding protein, regulates insulin pathway signaling and metabolism in Drosophila.

    Directory of Open Access Journals (Sweden)

    Amanda L Sheldon

    Full Text Available There is ample evidence that ion channel modulation by accessory proteins within a macromolecular complex can regulate channel activity and thereby impact neuronal excitability. However, the downstream consequences of ion channel modulation remain largely undetermined. The Drosophila melanogaster large conductance calcium-activated potassium channel SLOWPOKE (SLO undergoes modulation via its binding partner SLO-binding protein (SLOB. Regulation of SLO by SLOB influences the voltage dependence of SLO activation and modulates synaptic transmission. SLO and SLOB are expressed especially prominently in median neurosecretory cells (mNSCs in the pars intercerebralis (PI region of the brain; these cells also express and secrete Drosophila insulin like peptides (dILPs. Previously, we found that flies lacking SLOB exhibit increased resistance to starvation, and we reasoned that SLOB may regulate aspects of insulin signaling and metabolism. Here we investigate the role of SLOB in metabolism and find that slob null flies exhibit changes in energy storage and insulin pathway signaling. In addition, slob null flies have decreased levels of dilp3 and increased levels of takeout, a gene known to be involved in feeding and metabolism. Targeted expression of SLOB to mNSCs rescues these alterations in gene expression, as well as the metabolic phenotypes. Analysis of fly lines mutant for both slob and slo indicate that the effect of SLOB on metabolism and gene expression is via SLO. We propose that modulation of SLO by SLOB regulates neurotransmission in mNSCs, influencing downstream insulin pathway signaling and metabolism.

  16. Influence of culture conditions on growth and protein metabolism in chlorella pyranosides

    International Nuclear Information System (INIS)

    Growth and protein metabolism of Chlorella pyranoside under different conditions of temperature, photo period and CO2 concentration was studied. The optimum of biomass production was observed at 25 degree centigree, 40.000 ppm of CO2 in air and a 20 h. light period, followed of 4 h. of darkness. Some variations in free aminoacids content was observed under different conditions but no change did occur in protein. (Author) 68 refs

  17. Role of a liver fatty acid-binding protein gene in lipid metabolism in chicken hepatocytes.

    Science.gov (United States)

    Gao, G L; Na, W; Wang, Y X; Zhang, H F; Li, H; Wang, Q G

    2015-01-01

    This study investigated the role of the chicken liver fatty acid-binding protein (L-FABP) gene in lipid metabolism in hepatocytes, and the regulatory relationships between L-FABP and genes related to lipid metabolism. The short hairpin RNA (shRNA) interference vector with L-FABP and an eukaryotic expression vector were used. Chicken hepatocytes were subjected to shRNA-mediated knockdown or L-FABP cDNA overexpression. Expression levels of lipid metabolism-related genes and biochemical parameters were detected 24, 36, 48, 60, and 72 h after transfection with the interference or overexpression plasmids for L-FABP, PPARα and L-BABP expression levels, and the total amount of cholesterol, were significantly affected by L-FABP expression. L-FABP may affect lipid metabolism by regulating PPARα and L-BABP in chicken hepatocytes. PMID:25966259

  18. Role of the Mixed-Lineage Protein Kinase Pathway in the Metabolic Stress Response to Obesity

    Directory of Open Access Journals (Sweden)

    Shashi Kant

    2013-08-01

    Full Text Available Saturated free fatty acid (FFA is implicated in the metabolic response to obesity. In vitro studies indicate that FFA signaling may be mediated by the mixed-lineage protein kinase (MLK pathway that activates cJun NH2-terminal kinase (JNK. Here, we examined the role of the MLK pathway in vivo using a mouse model of diet-induced obesity. The ubiquitously expressed MLK2 and MLK3 protein kinases have partially redundant functions. We therefore compared wild-type and compound mutant mice that lack expression of MLK2 and MLK3. MLK deficiency protected mice against high-fat-diet-induced insulin resistance and obesity. Reduced JNK activation and increased energy expenditure contribute to the metabolic effects of MLK deficiency. These data confirm that the MLK pathway plays a critical role in the metabolic response to obesity.

  19. Studies of the protein and the energy metabolism in man during a wintering in Antarctica

    International Nuclear Information System (INIS)

    During the 29th Soviet Antarctic Expedition in Novolazarevskaya from March 1984 to March 1985 the protein and energy metabolisms were studied in six expeditioners from the GDR. The investigations were carried out at the beginning of the expedition (May), during the polar night (July) and during the polar day (December). The effect of a special stress situation (sledge trek in April 1984) was investigated in one subject. The stable nitrogen isotope 15N was used to study the protein metabolism. The assessment of the energy metabolism was based on the oxygen consumption, which was determined by means of a spirograph. In addition, the vital capacity, the breath minute volume, the blood pressure, etc. were measured. 69 refs. (author)

  20. The unfolded protein response mediates reversible tau phosphorylation induced by metabolic stress

    NARCIS (Netherlands)

    van der Harg, J. M.; Nolle, A.; Zwart, R.; Boerema, A. S.; van Haastert, E. S.; Strijkstra, A. M.; Hoozemans, J. J. M.; Scheper, W.

    2014-01-01

    The unfolded protein response (UPR) is activated in neurodegenerative tauopathies such as Alzheimer's disease (AD) in close connection with early stages of tau pathology. Metabolic disturbances are strongly associated with increased risk for AD and are a potent inducer of the UPR. Here, we demonstra

  1. Adherence Issues in Inherited Metabolic Disorders Treated by Low Natural Protein Diets

    NARCIS (Netherlands)

    MacDonald, A.; van Rijn, M.; Feillet, F.; Lund, A. M.; Bernstein, L.; Bosch, A. M.; Gizewska, M.; van Spronsen, F. J.

    2012-01-01

    Common inborn errors of metabolism treated by low natural protein diets [amino acid (AA) disorders, organic acidemias and urea cycle disorders] are responsible for a collection of diverse clinical symptoms, each condition presenting at different ages with variable severity. Precursor-free or essenti

  2. Methodical investigation of the protein metabolism and of the bioenergetics of the protein retention in growing animals. 2

    International Nuclear Information System (INIS)

    The amino acid composition of the proteins in selected body fractions of chickens and the 15N -excess of amino acids isolated from them resulting from a feeding experiment with long-term 15NH4-acetate labelling were determined. The amino acid spectra of feathers, breast and leg muscles are characterized by differences in the content of individual amino acids specific for the organs, the composition of the proteins, however, is independent of the protein content of the ration and the age of the animals. The sarcoplasmatic and myofibrillar proteins also have typical amino acid patterns, which-with the exception of the histidine content-are neither influenced by the extraction of the proteins from the breast or leg muscles nor by the energy level of the feeding or the age of the animals. There are no significant differences in the metabolization of the main protein fraction of the breast and leg muscles. The oral supply of 15N-ammonium acetate to broilers predominantly labels the non-essential amino acids so that the derived kinetic data chiefly represent the metabolism of the non-essential amino acids. (author)

  3. Regulation of lifespan, metabolism, and stress responses by the Drosophila SH2B protein, Lnk.

    Directory of Open Access Journals (Sweden)

    Cathy Slack

    2010-03-01

    Full Text Available Drosophila Lnk is the single ancestral orthologue of a highly conserved family of structurally-related intracellular adaptor proteins, the SH2B proteins. As adaptors, they lack catalytic activity but contain several protein-protein interaction domains, thus playing a critical role in signal transduction from receptor tyrosine kinases to form protein networks. Physiological studies of SH2B function in mammals have produced conflicting data. However, a recent study in Drosophila has shown that Lnk is an important regulator of the insulin/insulin-like growth factor (IGF-1 signaling (IIS pathway during growth, functioning in parallel to the insulin receptor substrate, Chico. As this pathway also has an evolutionary conserved role in the determination of organism lifespan, we investigated whether Lnk is required for normal lifespan in Drosophila. Phenotypic analysis of mutants for Lnk revealed that loss of Lnk function results in increased lifespan and improved survival under conditions of oxidative stress and starvation. Starvation resistance was found to be associated with increased metabolic stores of carbohydrates and lipids indicative of impaired metabolism. Biochemical and genetic data suggest that Lnk functions in both the IIS and Ras/Mitogen activated protein Kinase (MapK signaling pathways. Microarray studies support this model, showing transcriptional feedback onto genes in both pathways as well as indicating global changes in both lipid and carbohydrate metabolism. Finally, our data also suggest that Lnk itself may be a direct target of the IIS responsive transcription factor, dFoxo, and that dFoxo may repress Lnk expression. We therefore describe novel functions for a member of the SH2B protein family and provide the first evidence for potential mechanisms of SH2B regulation. Our findings suggest that IIS signaling in Drosophila may require the activity of a second intracellular adaptor, thereby yielding fundamental new insights into the

  4. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels

    OpenAIRE

    M. Ryan Smith; Vayalil, Praveen K.; Fen Zhou; Benavides, Gloria A; Beggs, Reena R.; Hafez Golzarian; Bhavitavya Nijampatnam; Oliver, Patsy G.; Smith, Robin A.J.; Murphy, Michael P.; Velu, Sadanandan E.; Aimee Landar

    2016-01-01

    Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compo...

  5. Effects of Uniconazole on Nitrogen Metabolism and Grain Protein Content of Rice

    Institute of Scientific and Technical Information of China (English)

    XIANG Zu-fen; YANG Wen-yu; REN Wan-jun; WANG Xiao-chun

    2005-01-01

    The effects of uniconazole by soaking seeds and spraying leaves at booting stage with different concentrations (0, 20 and40 mg/kg) on the nitrogen metabolism of flag leaf and grains after flowering, and rice grain protein content and yield were studied withhybrid rice combination Shanyou 63. Under uniconazole treatment, the soluble protein content in flag leaf was increased in early andmiddle period of grain filling, but this content was nearly the same as or even lower than that of control at maturity; Glutaminesynthetase activity in superior and inferior grains and non-protein nitrogen content in superior grains at early stage of graindevelopment were promoted, and moreover, the transforming speed from non-protein nitrogen to protein nitrogen was accelerated;Non-protein nitrogen content was lower than that of control at maturity, but protein nitrogen content at each stage was higher thanthose of control; Protein nitrogen content in superior and inferior grains and protein nitrogen absolutely accumulative content in agrain both were enhanced and protein content and yield in rice grain were raised. The application of uniconazole by soaking seedsand spraying leaves raised crude protein content by an average of 7.2% and 8.3%, and protein yield by an average of 13.1% and13.4%, respectively.

  6. New method for the quality check of food proteins of the maintenance metabolism. 4

    International Nuclear Information System (INIS)

    Male adult rats (370 g body weight) were fed on maintenance level (460 kJ ME/kgsup(0,75). In a 10 days preliminary period they received a casein/methionine (95/5) diet supplemented with 10 mg 15N excess per 0.178 kg metabolic body weight in form of ammonium acetate. Thereafter the animals were put on 8 isonitrogenous diets containing as protein sources casein, soya protein, gelatine, whole-egg, fish meal, pea, wheat and yeast. The 15N excretion via urine and feces was used to evaluate the dietary proteins for maintenance. 15N in urine was lowest in animals fed on wheat diet and highest after feeding whole-egg diet. From these data a so called '15N excretion biological valence (BV)' was calculated, which indicated the highest quality for wheat and soy protein in meeting the needs of the intermediary maintenance metabolism. On the other hand, dietary protein sources influence the loss of endogenous nitrogen as metabolic fecal nitrogen (MFN). It was found to be lowest in animals fed on diets containing isolated proteins (6 mg MFN/100 g body weight) and highest after feeding protein sources of plant origin with a high content in crude fibre (10 mg MFN/100 g). Both, losses of 15N via urine and via feces were combined in a parameter called 'total BV'. According to this parameter the differences in quality for maintenance were only little between the protein sources tested (casein 100, soy protein 100, pea 99, wheat 99, whole egg 92, fish meal 89, gelatin 89). It was concluded that in the state of maintenance the supply with essential amino acids is not critical and that the supply with dispensable amino acids (or nonspecific nitrogen) is of great importance. (author)

  7. Effects of Different Protein Levels on the Growth Performance and Metabolic Rate of Nutrition in Broilers

    Institute of Scientific and Technical Information of China (English)

    WU Hongda

    2009-01-01

    The objective of this study is to determine the effect of different protein levels on the growth performance and metabolic rate of nutrition in broilers. Total 360 healthy and weight closed local broilers of 3 weeks were chosen and then divided into three groups randomly by one factor. Each group contains three handlings, each handling consists of 40 broilers. The period of experiment was 7 weeks. The metabolic experiment was performed at the 7th week. Three different protein levels were used in broilers' diet. The levels of protein were 19%, 17.5% and 16%. The results showed that the different levels of protein in crude dietary had significant difference between 19% group and the other two groups. The average daily weight gain and daily efficiency were significantly higher than that of the other two groups (P0.05), and the metabolic rate of the impact of phosphorus was significantly different (P<0.05). The result showed that when protein level was 19%, the growth of the local broiler was the best.

  8. Effect of protein malnutrition on the metabolism of bone collagen in albino rats

    International Nuclear Information System (INIS)

    The effect of protein malnutrition on the metabolism of collagen in bone was studied in young female albino rats after a single injection of 3H-proline. Both specific and total radioactivities of hydroxyproline in the total collagen of the bone were found to decrease in the protein-deficient animals, indicating decreased rate of collagen synthesis. In the urine the amount of hydroxyproline excreted and total radioactivity of 3H-hydroxyproline were greatly decreased. The results of the present investigation therefore clearly indicate decreased synthesis and catabolism of collagen in bones of protein deficient animals compared to controls. (auth.)

  9. Asynchronous Complex Pipeline Design Based on ARM Instruction Set

    Institute of Scientific and Technical Information of China (English)

    WANG Bing; WANG Qin; PENG Rui-hua; FU Yu-zhuo

    2008-01-01

    This paper proposes an asynchronous complex pipeline based on ARM-V3 instruction set. Muller pipeline structure is used as prototype, and the factors which may affect pipeline performance are analyzed. To balance the difficulty of asynchronous design and performance analysis, both complete asynchronous and partial asynchronous structures aere designed and compared. Results of comparison with the well-Rnown industrial product ARM922T verify that about 30% and 40% performance improvement of the partial and complete asynchronous complex pipelines can be obtained respectively. The design methodologies can also be used in the design of other asynchronous pipelines.

  10. Effects of adiposity and 30 days of caloric restriction upon protein metabolism in moderately versus severely obese women

    OpenAIRE

    Henderson, G. C.; Nadeau, D; Horton, E.S.; Nair, K. S.

    2010-01-01

    Protein metabolism adapts during caloric restriction (CR) to minimize protein loss, and it is unclear if greater fat stores favorably affect this response. We sought to determine if protein metabolism is related to degree of obesity and if the response to CR is impacted by pre-CR adiposity level. Whole body protein metabolism was studied in 12 obese women over a wide range of body mass index (BMI) (30-53kg/m2) as inpatients using [1-13C]leucine as a tracer following 5 days of a weight maintai...

  11. Metabolism

    Science.gov (United States)

    ... a particular food provides to the body. A chocolate bar has more calories than an apple, so ... More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood ...

  12. Different proteolipid protein mutants exhibit unique metabolic defects

    Directory of Open Access Journals (Sweden)

    Maik Hüttemann

    2009-08-01

    Full Text Available PMD (Pelizaeus–Merzbacher disease, a CNS (central nervous system disease characterized by shortened lifespan and severe neural dysfunction, is caused by mutations of the PLP1 (X-linked myelin proteolipid protein gene. The majority of human PLP1 mutations are caused by duplications; almost all others are caused by missense mutations. The cellular events leading to the phenotype are unknown. The same mutations in non-humans make them ideal models to study the mechanisms that cause neurological sequelae. In the present study we show that mice with Plp1 duplications (Plp1tg have major mitochondrial deficits with a 50% reduction in ATP, a drastically reduced mitochondrial membrane potential and increased numbers of mitochondria. In contrast, the jp (jimpy mouse with a Plp1 missense mutation exhibits normal mitochondrial function. We show that PLP in the Plp1tg mice and in Plp1-transfected cells is targeted to mitochondria. PLP has motifs permissive for insertion into mitochondria and deletions near its N-terminus prevent its co-localization to mitochondria. These novel data show that Plp1 missense mutations and duplications of the native Plp1 gene initiate uniquely different cellular responses.

  13. Acrylamide administration alters protein phosphorylation and phospholipid metabolism in rat sciatic nerve

    International Nuclear Information System (INIS)

    The effects of ACR on protein phosphorylation and phospholipid metabolism were assessed in rat sciatic nerve. After 5 days of ACR administration (50 mg/kg/day) an increase in the incorporation of 32P into phosphatidylinositol-4,5-bisphosphate, phosphatidylinositol-4-phosphate, and phosphatidylcholine was detected in proximal sciatic nerve segments. In contrast, no changes in phospholipid metabolism were observed in distal segments. After 9 days of ACR treatment when neurotoxicological symptoms were clearly apparent, a generalized increase in radiolabel uptake into phospholipids was noted exclusively in proximal nerve regions. ACR-induced increases in phospholipid metabolism were toxicologically specific since comparable administration of MBA (108 mg/kg/day X 5 or 9 days) produced only minor changes. ACR intoxication was also associated with a rise in sciatic nerve protein phosphorylation. After 9 days of ACR treatment, phosphorylation of beta-tubulin, P0, and several unidentified proteins (38 and 180 kDa) was increased in distal segments. In contrast, chronic administration of MBA caused increases in phosphorylation of beta-tubulin and the major myelin proteins of proximal nerve segments. In cell free homogenates prepared from sciatic nerves of treated and control rats, MBA caused an increase in phosphorylation of major myelin proteins similar to its effect in intact proximal nerve segments. The most striking effect observed in nerve homogenates of ACR-treated rats was a marked decrease in phosphorylation of an 80-kDa protein. Addition of ACR (1 mM) to homogenates of normal nerve had no effect on protein phosphorylation. Our results indicate that changes in the phosphorylation of phospholipids and proteins in sciatic nerve might be a component of the neurotoxic mechanism of ACR

  14. Relationship between C-reactive protein and features of the metabolic syndrome in military pilots in the Serbia and Montenegro

    OpenAIRE

    Jovelić Aleksandra; Rađen Goran; Jovelić Stojan; Marković Marica

    2005-01-01

    Background/Aim. C-reactive protein is an independent predictor of the risk of cardiovascular events and diabetes mellitus in apparently healthy men. The relationship between C-reactive protein and the features of metabolic syndrome has not been fully elucidated. To assess the cross-sectional relationship between C-reactive protein and the features of metabolic syndrome in healthy people. Methods. We studied 161 military pilots (agee, 40±6 years) free of cardiovascular disease, diabetes mellit...

  15. Hypolipidemic effect of dietary pea proteins: Impact on genes regulating hepatic lipid metabolism.

    Science.gov (United States)

    Rigamonti, Elena; Parolini, Cinzia; Marchesi, Marta; Diani, Erika; Brambilla, Stefano; Sirtori, Cesare R; Chiesa, Giulia

    2010-05-01

    Controversial data on the lipid-lowering effect of dietary pea proteins have been provided and the mechanisms behind this effect are not completely understood. The aim of the study was to evaluate a possible hypolipidemic activity of a pea protein isolate and to determine whether pea proteins could affect the hepatic lipid metabolism through regulation of genes involved in cholesterol and fatty acid homeostasis. Rats were fed Nath's hypercholesterolemic diets for 28 days, the protein sources being casein or a pea protein isolate from Pisum sativum. After 14 and 28 days of dietary treatment, rats fed pea proteins had markedly lower plasma cholesterol and triglyceride levels than rats fed casein (pPea protein-fed rats displayed higher hepatic mRNA levels of LDL receptor versus those fed casein (ppea protein-fed rats than in rats fed casein (ppea proteins in rats. Moreover, pea proteins appear to affect cellular lipid homeostasis by upregulating genes involved in hepatic cholesterol uptake and by downregulating fatty acid synthesis genes. PMID:20077421

  16. Reciprocal regulation of protein synthesis and carbon metabolism for thylakoid membrane biogenesis.

    Directory of Open Access Journals (Sweden)

    Alexandra-Viola Bohne

    Full Text Available Metabolic control of gene expression coordinates the levels of specific gene products to meet cellular demand for their activities. This control can be exerted by metabolites acting as regulatory signals and/or a class of metabolic enzymes with dual functions as regulators of gene expression. However, little is known about how metabolic signals affect the balance between enzymatic and regulatory roles of these dual functional proteins. We previously described the RNA binding activity of a 63 kDa chloroplast protein from Chlamydomonas reinhardtii, which has been implicated in expression of the psbA mRNA, encoding the D1 protein of photosystem II. Here, we identify this factor as dihydrolipoamide acetyltransferase (DLA2, a subunit of the chloroplast pyruvate dehydrogenase complex (cpPDC, which is known to provide acetyl-CoA for fatty acid synthesis. Analyses of RNAi lines revealed that DLA2 is involved in the synthesis of both D1 and acetyl-CoA. Gel filtration analyses demonstrated an RNP complex containing DLA2 and the chloroplast psbA mRNA specifically in cells metabolizing acetate. An intrinsic RNA binding activity of DLA2 was confirmed by in vitro RNA binding assays. Results of fluorescence microscopy and subcellular fractionation experiments support a role of DLA2 in acetate-dependent localization of the psbA mRNA to a translation zone within the chloroplast. Reciprocally, the activity of the cpPDC was specifically affected by binding of psbA mRNA. Beyond that, in silico analysis and in vitro RNA binding studies using recombinant proteins support the possibility that RNA binding is an ancient feature of dihydrolipoamide acetyltransferases. Our results suggest a regulatory function of DLA2 in response to growth on reduced carbon energy sources. This raises the intriguing possibility that this regulation functions to coordinate the synthesis of lipids and proteins for the biogenesis of photosynthetic membranes.

  17. Ruminal protein metabolism and intestinal amino acid utilization as affected by dietary protein and carbohydrate sources in sheep.

    Science.gov (United States)

    Hussein, H S; Jordan, R M; Stern, M D

    1991-05-01

    Eight wether lambs fitted with ruminal, duodenal, and ileal cannulas were used in a replicated 4 x 4 Latin square design to study the effects of carbohydrate and protein sources on ruminal protein metabolism and carbohydrate fermentation and intestinal amino acid (AA) absorption. Treatments were arranged as a 2 x 2 factorial. Carbohydrate sources were corn and barley; protein sources were soybean meal (SBM) and fish meal (FM). Diets contained 15.5% CP, of which 40% was supplied by SBM or FM. Corn or barley provided 39% of dietary DM that contained equal amounts of grass hay and wheat straw. Fish meal diets produced a lower (P less than .05) ruminal NH3 concentration and resulted in less CP degradation and bacterial protein flow to the duodenum than did SBM diets. Replacing SBM with FM increased (P less than .05) ruminal digestion of all fiber fractions. In addition, cellulose and hemicellulose digestibilities in the rumen tended to increase (P greater than .05) when barley replaced corn in the FM diets. Carbohydrate x protein interactions (P less than .05) were observed for OM digestion in the rumen and AA absorption in the small intestine (percentage of AA entering); these interactions were highest for the barley-FM diet. These results suggest that feeding FM with barley, which is high in both degradable carbohydrate and protein, might benefit ruminants more than feeding FM with corn, which is high in degradable carbohydrate but relatively low in degradable protein. PMID:1648551

  18. Asynchronous decentralized method for interconnected electricity markets

    International Nuclear Information System (INIS)

    This paper presents an asynchronous decentralized method to solve the optimization problem of interconnected electricity markets. The proposed method decomposes the optimization problem of combined electricity markets into individual optimization problems. The impact of neighboring markets' information is included in the objective function of the individual market optimization problem by the standard Lagrangian relaxation method. Most decentralized optimization methods use synchronous models of communication to exchange updated market information among markets during the iterative process. In this paper, however, the solutions of the individual optimization problems are coordinated through an asynchronous communication model until they converge to the global optimal solution of combined markets. Numerical examples are presented to demonstrate the advantages of the proposed asynchronous method over the existing synchronous methods. (author)

  19. Short communication: Proteins from circulating exosomes represent metabolic state in transition dairy cows.

    Science.gov (United States)

    Crookenden, M A; Walker, C G; Peiris, H; Koh, Y; Heiser, A; Loor, J J; Moyes, K M; Murray, A; Dukkipati, V S R; Kay, J K; Meier, S; Roche, J R; Mitchell, M D

    2016-09-01

    Biomarkers that identify prepathological disease could enhance preventive management, improve animal health and productivity, and reduce costs. Circulating extracellular vesicles, particularly exosomes, are considered to be long-distance, intercellular communication systems in human medicine. Exosomes provide tissue-specific messages of functional state and can alter the cellular activity of recipient tissues through their protein and microRNA content. We hypothesized that exosomes circulating in the blood of cows during early lactation would contain proteins representative of the metabolic state of important tissues, such as liver, which play integral roles in regulating the physiology of cows postpartum. From a total of 150 cows of known metabolic phenotype, 10 cows were selected with high (n=5; high risk) and low (n=5; low risk) concentrations of nonesterified fatty acids, β-hydroxybutyrate, and liver triacylglycerol during wk 1 and 2 after calving. Exosomes were extracted from blood on the day of calving (d 0) and postcalving at wk 1 and wk 4, and their protein composition was determined by mass spectroscopy. Extracellular vesicle protein concentration and the number of exosome vesicles were not affected by risk category; however, the exosome protein cargo differed between the groups, with proteins at each time point identified as being unique to the high- and low-risk groups. The proteins α-2 macroglobulin, fibrinogen, and oncoprotein-induced transcript 3 were unique to the high-risk cows on d 0 and have been associated with metabolic syndrome and liver function in humans. Their presence may indicate a more severe inflammatory state and a greater degree of liver dysfunction in the high-risk cows than in the low-risk cows, consistent with the high-risk cows' greater plasma β-hydroxybutyrate and liver triacylglycerol concentrations. The commonly shared proteins and those unique to the low-risk category indicate a role for exosomes in immune function. The data

  20. FANCM-FAAP24 and FANCJ: FA proteins that metabolize DNA

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Abdullah Mahmood; Singh, Thiyam Ramsing [Division of Experimental Hematology and Cancer Biology, Cincinnati Children' s Research Foundation, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH 45229 (United States); Meetei, Amom Ruhikanta, E-mail: Ruhikanta.Meetei@cchmc.org [Division of Experimental Hematology and Cancer Biology, Cincinnati Children' s Research Foundation, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH 45229 (United States); Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229 (United States)

    2009-07-31

    Fanconi anemia (FA) is a rare autosomal recessive or X-linked disorder characterized by aplastic anemia, cancer susceptibility and cellular sensitivity to DNA-crosslinking agents. Eight FA proteins (FANCA, -B, -C, -E, -F, -G, -L and -M) and three non-FA proteins (FAAP100, FAAP24 and HES1) form the FA nuclear core complex that is required for monoubiquitination of the FANCD2-FANCI dimer upon DNA damage. The other three FA proteins, FANCD1/BRCA2, FANCJ/BACH1/BRIP1 and FANCN/PALB2, act in parallel or downstream of the FANCD2-FANCI dimer. Despite the isolation and characterization of several FA proteins, the mechanism by which these proteins protect cells from DNA interstrand crosslinking agents has been unclear. This is because a majority of the FA proteins lack any recognizable functional domains that can provide insight into their function. The recently discovered FANCM (Hef) and FANCJ (BRIP1/BACH1) proteins contain helicase domains, providing potential insight into the role of FA proteins in DNA repair. FANCM with its partner, FAAP24, and FANCJ bind and metabolize a variety of DNA substrates. In this review, we focus on the discovery, structure, and function of the FANCM-FAAP24 and FANCJ proteins.

  1. Impact of Exercise and Metabolic Disorders on Heat Shock Proteins and Vascular Inflammation

    Directory of Open Access Journals (Sweden)

    Earl G. Noble

    2012-01-01

    Full Text Available Heat shock proteins (Hsp play critical roles in the body’s self-defense under a variety of stresses, including heat shock, oxidative stress, radiation, and wounds, through the regulation of folding and functions of relevant cellular proteins. Exercise increases the levels of Hsp through elevated temperature, hormones, calcium fluxes, reactive oxygen species (ROS, or mechanical deformation of tissues. Isotonic contractions and endurance- type activities tend to increase Hsp60 and Hsp70. Eccentric muscle contractions lead to phosphorylation and translocation of Hsp25/27. Exercise-induced transient increases of Hsp inhibit the generation of inflammatory mediators and vascular inflammation. Metabolic disorders (hyperglycemia and dyslipidemia are associated with type 1 diabetes (an autoimmune disease, type 2 diabetes (the common type of diabetes usually associated with obesity, and atherosclerotic cardiovascular disease. Metabolic disorders activate HSF/Hsp pathway, which was associated with oxidative stress, increased generation of inflammatory mediators, vascular inflammation, and cell injury. Knock down of heat shock factor-1 (HSF1 reduced the activation of key inflammatory mediators in vascular cells. Accumulating lines of evidence suggest that the activation of HSF/Hsp induced by exercise or metabolic disorders may play a dual role in inflammation. The benefits of exercise on inflammation and metabolism depend on the type, intensity, and duration of physical activity.

  2. A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution

    DEFF Research Database (Denmark)

    Maida, Adriano; Zota, Annika; Sjøberg, Kim Anker;

    2016-01-01

    of impaired glucose homeostasis independently of obesity and food intake. DPD-mediated metabolic inefficiency and improvement of glucose homeostasis were independent of uncoupling protein 1 (UCP1), but required expression of liver-derived fibroblast growth factor 21 (FGF21) in both lean and obese mice. FGF21...... expression and secretion as well as the associated metabolic remodeling induced by DPD also required induction of liver-integrated stress response-driven nuclear protein 1 (NUPR1). Insufficiency of select nonessential amino acids (NEAAs) was necessary and adequate for NUPR1 and subsequent FGF21 induction...... and secretion in hepatocytes in vitro and in vivo. Taken together, these data indicate that DPD promotes improved glucose homeostasis through an NEAA insufficiency-induced liver NUPR1/FGF21 axis....

  3. Handbook of asynchronous machines with variable speed

    CERN Document Server

    Razik, Hubert

    2013-01-01

    This handbook deals with the asynchronous machine in its close environment. It was born from a reflection on this electromagnetic converter whose integration in industrial environments takes a wide part. Previously this type of motor operated at fixed speed, from now on it has been integrated more and more in processes at variable speed. For this reason it seemed useful, or necessary, to write a handbook on the various aspects from the motor in itself, via the control and while finishing by the diagnosis aspect. Indeed, an asynchronous motor is used nowadays in industry where variation speed a

  4. [A study on protein metabolism in nephrotic patients treated with Chinese herbs].

    Science.gov (United States)

    Li, L; Yu, H; Pan, J

    1995-10-01

    It was found in our previous studies that two Chinese herbs Astragali and Angelica (A&A) together with high protein diet could ameliorate the lowering of serum albumin level and increase the synthesis rate of protein as shown by 15N-glicine tracer priming protein turnover study in nephrotic rats. Further experiment was designed to investigate the role of A&A and high protein intake in protein dynamic study and nitrogen balance in nephrotic patients. The level of serum total protein (STP), serum albumin (SA), urinary protein loss (UP), serum cholesterol (Cho) and index number of protein turnover and nitrogen balance in 7 patients were measured before and after treatment of 30 days with A&A. The results showed that after treatment the patients had significantly increased STA and SA (44.3 +/- 5.60 vs 49.7 +/- 6.80 P < 0.01; 22.6 +/- 0.42 vs. 29.4 +/- 7.40 P < 0.05), decreased UP and Cho (6.54 +/- 1.83 vs 4.63 +/- 1.33 P < 0.05; 9.69 +/- 2.31 vs. 7.82 +/- 1.95 P < 0.05) and increased net rates of total protein synthesis (1.06 +/- 0.03 vs 1.27 +/- 0.12 P < 0.05). It is concluded that A&A together with high protein intake could improve the disorder of protein metabolism and increase the level of serum protein by improving the net rate of protein synthesis in nephrotic patients. PMID:8731827

  5. The Roles of Vitamin A in the Regulation of Carbohydrate, Lipid, and Protein Metabolism

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2014-05-01

    Full Text Available Currently, two-thirds of American adults are overweight or obese. This high prevalence of overweight/obesity negatively affects the health of the population, as obese individuals tend to develop several chronic diseases, such as type 2 diabetes and cardiovascular diseases. Due to obesity’s impact on health, medical costs, and longevity, the rise in the number of obese people has become a public health concern. Both genetic and environmental/dietary factors play a role in the development of metabolic diseases. Intuitively, it seems to be obvious to link over-nutrition to the development of obesity and other metabolic diseases. However, the underlying mechanisms are still unclear. Dietary nutrients not only provide energy derived from macronutrients, but also factors such as micronutrients with regulatory roles. How micronutrients, such as vitamin A (VA; retinol, regulate macronutrient homeostasis is still an ongoing research topic. As an essential micronutrient, VA plays a key role in the general health of an individual. This review summarizes recent research progress regarding VA’s role in carbohydrate, lipid, and protein metabolism. Due to the large amount of information regarding VA functions, this review focusses on metabolism in metabolic active organs and tissues. Additionally, some perspectives for future studies will be provided.

  6. The role of AMP-activated protein kinase in regulation of skeletal muscle metabolism

    OpenAIRE

    Anna Dziewulska; Paweł Dobrzyń; Agnieszka Dobrzyń

    2010-01-01

    AMP-activated protein kinase (AMPK) is a conserved, ubiquitously expressed eukaryotic enzyme that is activated in response to increasing AMP level. Regulation of AMPK activity in skeletal muscle is coordinated by contraction and phosphorylation by upstream kinases and a growing number of hormones and cytokines. Once activated, AMPK turns on catabolic, ATP-generating pathways, and turns off ATP-consuming metabolic processes such as biosynthesis and proliferation. Activation of AMPK promotes gl...

  7. Relationship between high-sensitivity C-reactive protein and obesity / metabolic syndrome in children

    Institute of Scientific and Technical Information of China (English)

    陈芳芳

    2014-01-01

    Objective To explore the relationship between highsensitivity C-reactive protein(hsC RP)and obesity/metabolic syndrome(MetS)related factors in children.Methods 403 children aged 10-14 and born in Beijing were involved in this study.Height,weight,waist circumference,fat mass percentage(Fat%),blood pressure(BP),hsC RP,triglyceride(TG),total cholesterol

  8. Metabolic Basis for Thyroid Hormone Liver Preconditioning: Upregulation of AMP-Activated Protein Kinase Signaling

    OpenAIRE

    Videla, Luis A; Virginia Fernández; Pamela Cornejo; Romina Vargas

    2012-01-01

    The liver is a major organ responsible for most functions of cellular metabolism and a mediator between dietary and endogenous sources of energy for extrahepatic tissues. In this context, adenosine-monophosphate- (AMP-) activated protein kinase (AMPK) constitutes an intrahepatic energy sensor regulating physiological energy dynamics by limiting anabolism and stimulating catabolism, thus increasing ATP availability. This is achieved by mechanisms involving direct allosteric activation and reve...

  9. Type and amount of dietary protein in the treatment of metabolic syndrome: a randomized controlled trial 1 2

    OpenAIRE

    Hill, Alison M; Harris Jackson, Kristina A; Roussell, Michael A; West, Sheila G.; Kris-Etherton, Penny M

    2015-01-01

    Background: Food-based dietary patterns emphasizing plant protein that were evaluated in the Dietary Approaches to Stop Hypertension (DASH) and OmniHeart trials are recommended for the treatment of metabolic syndrome (MetS). However, the contribution of plant protein to total protein in these diets is proportionally less than that of animal protein. Objective: This study compared 3 diets varying in type (animal compared with plant) and amount of protein on MetS criteria. Design: Sixty-two ove...

  10. Acceptability of an Asynchronous Learning Forum on Mobile Devices

    Science.gov (United States)

    Chang, Chih-Kai

    2010-01-01

    Mobile learning has recently become noteworthy because mobile devices have become popular. To construct an asynchronous learning forum on mobile devices is important because an asynchronous learning forum is always an essential part of networked asynchronous distance learning. However, the input interface in handheld learning devices, which is…

  11. The non-anticipation of the asynchronous systems

    OpenAIRE

    Vlad, Serban E.

    2008-01-01

    The asynchronous systems are the models of the asynchronous circuits from the digital electrical engineering and non-anticipation is one of the most important properties in systems theory. Our present purpose is to introduce several concepts of non-anticipation of the asynchronous systems.

  12. Myocardial Reloading after Extracorporeal Membrane Oxygenation Alters Substrate Metabolism While Promoting Protein Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kajimoto, Masaki; Priddy, Colleen M.; Ledee, Dolena; Xu, Chun; Isern, Nancy G.; Olson, Aaron; Des Rosiers, Christine; Portman, Michael A.

    2013-08-19

    Extracorporeal membrane oxygenation (ECMO) unloads the heart providing a bridge to recovery in children after myocardial stunning. Mortality after ECMO remains high.Cardiac substrate and amino acid requirements upon weaning are unknown and may impact recovery. We assessed the hypothesis that ventricular reloading modulates both substrate entry into the citric acid cycle (CAC) and myocardial protein synthesis. Fourteen immature piglets (7.8-15.6 kg) were separated into 2 groups based on ventricular loading status: 8 hour-ECMO (UNLOAD) and post-wean from ECMO (RELOAD). We infused [2-13C]-pyruvate as an oxidative substrate and [13C6]-L-leucine, as a tracer of amino acid oxidation and protein synthesis into the coronary artery. RELOAD showed marked elevations in myocardial oxygen consumption above baseline and UNLOAD. Pyruvate uptake was markedly increased though RELOAD decreased pyruvate contribution to oxidative CAC metabolism.RELOAD also increased absolute concentrations of all CAC intermediates, while maintaining or increasing 13C-molar percent enrichment. RELOAD also significantly increased cardiac fractional protein synthesis rates by >70% over UNLOAD. Conclusions: RELOAD produced high energy metabolic requirement and rebound protein synthesis. Relative pyruvate decarboxylation decreased with RELOAD while promoting anaplerotic pyruvate carboxylation and amino acid incorporation into protein rather than to the CAC for oxidation. These perturbations may serve as therapeutic targets to improve contractile function after ECMO.

  13. Effects of Dietary Protein Source and Quantity during Weight Loss on Appetite, Energy Expenditure, and Cardio-Metabolic Responses

    Science.gov (United States)

    Li, Jia; Armstrong, Cheryl L. H.; Campbell, Wayne W.

    2016-01-01

    Higher protein meals increase satiety and the thermic effect of feeding (TEF) in acute settings, but it is unclear whether these effects remain after a person becomes acclimated to energy restriction or a given protein intake. This study assessed the effects of predominant protein source (omnivorous, beef/pork vs. lacto-ovo vegetarian, soy/legume) and quantity (10%, 20%, or 30% of energy from protein) on appetite, energy expenditure, and cardio-metabolic indices during energy restriction (ER) in overweight and obese adults. Subjects were randomly assigned to one protein source and then consumed diets with different quantities of protein (4 weeks each) in a randomized crossover manner. Perceived appetite ratings (free-living and in-lab), TEF, and fasting cardio-metabolic indices were assessed at the end of each 4-week period. Protein source and quantity did not affect TEF, hunger, or desire to eat, other than a modestly higher daily composite fullness rating with 30% vs. 10% protein diet (p = 0.03). While the 20% and 30% protein diets reduced cholesterol, triacylglycerol, and APO-B vs. 10% protein (p < 0.05), protein source did not affect cardio-metabolic indices. In conclusion, diets varying in protein quantity with either beef/pork or soy/legume as the predominant source have minimal effects on appetite control, energy expenditure and cardio-metabolic risk factors during ER-induced weight loss. PMID:26821042

  14. Effects of Dietary Protein Source and Quantity during Weight Loss on Appetite, Energy Expenditure, and Cardio-Metabolic Responses.

    Science.gov (United States)

    Li, Jia; Armstrong, Cheryl L H; Campbell, Wayne W

    2016-02-01

    Higher protein meals increase satiety and the thermic effect of feeding (TEF) in acute settings, but it is unclear whether these effects remain after a person becomes acclimated to energy restriction or a given protein intake. This study assessed the effects of predominant protein source (omnivorous, beef/pork vs. lacto-ovo vegetarian, soy/legume) and quantity (10%, 20%, or 30% of energy from protein) on appetite, energy expenditure, and cardio-metabolic indices during energy restriction (ER) in overweight and obese adults. Subjects were randomly assigned to one protein source and then consumed diets with different quantities of protein (4 weeks each) in a randomized crossover manner. Perceived appetite ratings (free-living and in-lab), TEF, and fasting cardio-metabolic indices were assessed at the end of each 4-week period. Protein source and quantity did not affect TEF, hunger, or desire to eat, other than a modestly higher daily composite fullness rating with 30% vs. 10% protein diet (p = 0.03). While the 20% and 30% protein diets reduced cholesterol, triacylglycerol, and APO-B vs. 10% protein (p protein source did not affect cardio-metabolic indices. In conclusion, diets varying in protein quantity with either beef/pork or soy/legume as the predominant source have minimal effects on appetite control, energy expenditure and cardio-metabolic risk factors during ER-induced weight loss. PMID:26821042

  15. Effects of Dietary Protein Source and Quantity during Weight Loss on Appetite, Energy Expenditure, and Cardio-Metabolic Responses

    Directory of Open Access Journals (Sweden)

    Jia Li

    2016-01-01

    Full Text Available Higher protein meals increase satiety and the thermic effect of feeding (TEF in acute settings, but it is unclear whether these effects remain after a person becomes acclimated to energy restriction or a given protein intake. This study assessed the effects of predominant protein source (omnivorous, beef/pork vs. lacto-ovo vegetarian, soy/legume and quantity (10%, 20%, or 30% of energy from protein on appetite, energy expenditure, and cardio-metabolic indices during energy restriction (ER in overweight and obese adults. Subjects were randomly assigned to one protein source and then consumed diets with different quantities of protein (4 weeks each in a randomized crossover manner. Perceived appetite ratings (free-living and in-lab, TEF, and fasting cardio-metabolic indices were assessed at the end of each 4-week period. Protein source and quantity did not affect TEF, hunger, or desire to eat, other than a modestly higher daily composite fullness rating with 30% vs. 10% protein diet (p = 0.03. While the 20% and 30% protein diets reduced cholesterol, triacylglycerol, and APO-B vs. 10% protein (p < 0.05, protein source did not affect cardio-metabolic indices. In conclusion, diets varying in protein quantity with either beef/pork or soy/legume as the predominant source have minimal effects on appetite control, energy expenditure and cardio-metabolic risk factors during ER-induced weight loss.

  16. Effect of protein provision via milk replacer or solid feed on protein metabolism in veal calves

    DEFF Research Database (Denmark)

    Berends, H.; van den Borne, J. J G C; Røjen, B. A.;

    2015-01-01

    total N intake). The SF mixture consisted of 50% concentrates, 25% corn silage, and 25% straw on a dry matter basis. Total N intake was equalized to 1.8g of N·kg of BW-0.75·d-1 by adjusting N intake via MR. All calves were housed individually on metabolic cages to allow for quantification of a N balance...

  17. Aerobic fitness does not modulate protein metabolism in response to increased exercise: a controlled trial

    Directory of Open Access Journals (Sweden)

    Byerley Lauri O

    2009-06-01

    Full Text Available Abstract Background A sudden increase in exercise and energy expenditure is associated with an increase in protein turnover and nitrogen excretion. This study examined how a sudden increase in exercise-induced energy expenditure affected whole body protein metabolism and nitrogen balance in people of differing levels of aerobic fitness. We hypothesized that alterations in whole-body protein turnover would be attenuated, and nitrogen balance would be preserved, in individual with higher levels of aerobic fitness. Methods Eleven men, categorized as either having a lower (LOW-FIT; n = 5 or higher (FIT; n = 6 aerobic fitness level, completed a 4-d baseline period (BL of an energy balance diet while maintaining usual physical activity level, followed by a 7-d intervention consisting of 1,000 kcal·d-1 increased energy expenditure via exercise (50–65% VO2peak. All volunteers consumed 0.9 g protein·kg-1·d-1 and total energy intake was adjusted to maintain energy balance throughout the 11-d study. Mean nitrogen balance (NBAL was determined for BL, days 5–8 (EX1, and days 9–11 (EX2. Whole-body protein turnover was derived from phenylalanine and tyrosine kinetics assessed while fasting at rest on days 4, 7, and 12 using a priming dose of L-[ring-15N]tyrosine and a 4-h primed, continuous infusion of L-[15N]phenylalanine and L-[ring-2H4]tyrosine. Results A significant main effect of time indicated that NBAL increased over the course of the intervention; however, a group-by-time interaction was not observed. Although FIT demonstrated a lower net protein oxidation and higher net protein balance compared to LOW-FIT, neither the effect of time nor a group-by-time interaction was significant for Phe flux, net protein oxidation, or derived whole-body protein synthesis and net protein balance. Conclusion The absence of significant group-by-time interactions in protein metabolism (i.e., NBAL and whole-body protein turnover between LOW-FIT and FIT males

  18. Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria.

    Science.gov (United States)

    Mailloux, Ryan J; Treberg, Jason R

    2016-08-01

    At its core mitochondrial function relies on redox reactions. Electrons stripped from nutrients are used to form NADH and NADPH, electron carriers that are similar in structure but support different functions. NADH supports ATP production but also generates reactive oxygen species (ROS), superoxide (O2(·-)) and hydrogen peroxide (H2O2). NADH-driven ROS production is counterbalanced by NADPH which maintains antioxidants in an active state. Mitochondria rely on a redox buffering network composed of reduced glutathione (GSH) and peroxiredoxins (Prx) to quench ROS generated by nutrient metabolism. As H2O2 is quenched, NADPH is expended to reactivate antioxidant networks and reset the redox environment. Thus, the mitochondrial redox environment is in a constant state of flux reflecting changes in nutrient and ROS metabolism. Changes in redox environment can modulate protein function through oxidation of protein cysteine thiols. Typically cysteine oxidation is considered to be mediated by H2O2 which oxidizes protein thiols (SH) forming sulfenic acid (SOH). However, problems begin to emerge when one critically evaluates the regulatory function of SOH. Indeed SOH formation is slow, non-specific, and once formed SOH reacts rapidly with a variety of molecules. By contrast, protein S-glutathionylation (PGlu) reactions involve the conjugation and removal of glutathione moieties from modifiable cysteine residues. PGlu reactions are driven by fluctuations in the availability of GSH and oxidized glutathione (GSSG) and thus should be exquisitely sensitive to changes ROS flux due to shifts in the glutathione pool in response to varying H2O2 availability. Here, we propose that energy metabolism-linked redox signals originating from mitochondria are mediated indirectly by H2O2 through the GSH redox buffering network in and outside mitochondria. This proposal is based on several observations that have shown that unlike other redox modifications PGlu reactions fulfill the requisite

  19. Skeletal Muscle AMP-activated Protein Kinase Is Essential for the Metabolic Response to Exercise in Vivo*

    OpenAIRE

    Lee-Young, Robert S; Griffee, Susan R.; Lynes, Sara E.; Bracy, Deanna P.; Julio E Ayala; McGuinness, Owen P.; Wasserman, David H.

    2009-01-01

    AMP-activated protein kinase (AMPK) has been postulated as a super-metabolic regulator, thought to exert numerous effects on skeletal muscle function, metabolism, and enzymatic signaling. Despite these assertions, little is known regarding the direct role(s) of AMPK in vivo, and results obtained in vitro or in situ are conflicting. Using a chronically catheterized mouse model (carotid artery and jugular vein), we show that AMPK regulates skeletal muscle metabolism in vivo at several levels, w...

  20. Asynchronous Rumor Spreading on Random Graphs

    CERN Document Server

    Panagiotou, Konstantinos

    2016-01-01

    We perform a thorough study of various characteristics of the asynchronous push-pull protocol for spreading a rumor on Erd\\H{o}s-R\\'enyi random graphs $G_{n,p}$, for any $p>c\\ln(n)/n$ with $c>1$. In particular, we provide a simple strategy for analyzing the asynchronous push-pull protocol on arbitrary graph topologies and apply this strategy to $G_{n,p}$. We prove tight bounds of logarithmic order for the total time that is needed until the information has spread to all nodes. Surprisingly, the time required by the asynchronous push-pull protocol is asymptotically almost unaffected by the average degree of the graph. Similarly tight bounds for Erd\\H{o}s-R\\'enyi random graphs have previously only been obtained for the synchronous push protocol, where it has been observed that the total running time increases significantly for sparse random graphs. Finally, we quantify the robustness of the protocol with respect to transmission and node failures. Our analysis suggests that the asynchronous protocols are particu...

  1. Increasing Student Engagement Using Asynchronous Learning

    Science.gov (United States)

    Northey, Gavin; Bucic, Tania; Chylinski, Mathew; Govind, Rahul

    2015-01-01

    Student engagement is an ongoing concern for educators because of its positive association with deep learning and educational outcomes. This article tests the use of a social networking site (Facebook) as a tool to facilitate asynchronous learning opportunities that complement face-to-face interactions and thereby enable a stronger learning…

  2. Duration of asynchronous operations in distributed systems

    OpenAIRE

    Makhaniok, Mikhail; Männer, Reinhard

    1995-01-01

    A distributed asynchronous system is investigated. Its processing elements execute common operations concurrently and distributively. They are implemented as combinatorial circuits and exchange data via open collector bus lines. A method is presented to identify and to minimize the duration of an operation and therefore to increase the performance of the system. No hardware modifications are required.

  3. CCS, locations and asynchronous transition systems

    DEFF Research Database (Denmark)

    Mukund, Madhavan; Nielsen, Mogens

    system for CCS by introducing labels on the transitions with information about the locations of events. We then show that the resulting transition system is an asynchronous transition system which has the additional property of being elementary, which means that it can also be represented by a 1-safe net...

  4. The role of leucine and its metabolites in protein and energy metabolism.

    Science.gov (United States)

    Duan, Yehui; Li, Fengna; Li, Yinghui; Tang, Yulong; Kong, Xiangfeng; Feng, Zemeng; Anthony, Tracy G; Watford, Malcolm; Hou, Yongqing; Wu, Guoyao; Yin, Yulong

    2016-01-01

    Leucine (Leu) is a nutritionally essential branched-chain amino acid (BCAA) in animal nutrition. It is usually one of the most abundant amino acids in high-quality protein foods. Leu increases protein synthesis through activation of the mammalian target of rapamycin (mTOR) signaling pathway in skeletal muscle, adipose tissue and placental cells. Leu promotes energy metabolism (glucose uptake, mitochondrial biogenesis, and fatty acid oxidation) to provide energy for protein synthesis, while inhibiting protein degradation. Approximately 80 % of Leu is normally used for protein synthesis, while the remainder is converted to α-ketoisocaproate (α-KIC) and β-hydroxy-β-methylbutyrate (HMB) in skeletal muscle. Therefore, it has been hypothesized that some of the functions of Leu are modulated by its metabolites. Both α-KIC and HMB have recently received considerable attention as nutritional supplements used to increase protein synthesis, inhibit protein degradation, and regulate energy homeostasis in a variety of in vitro and in vivo models. Leu and its metabolites hold great promise to enhance the growth and health of animals (including humans, birds and fish). PMID:26255285

  5. Mcy protein, a potential antidiabetic agent: evaluation of carbohydrate metabolic enzymes and antioxidant status.

    Science.gov (United States)

    Marella, Saritha; Maddirela, Dilip Rajasekhar; Kumar, E G T V; Tilak, Thandaiah Krishna; Badri, Kameswara Rao; Chippada, Apparao

    2016-05-01

    The objective of the present study is to elucidate the long-term effects of anti-hyperglycemic active principle, Mcy protein (MCP), isolated from the fruits of Momordica cymbalaria on carbohydrate metabolism and oxidative stress in experimental diabetic rats. We used streptozotocin induced diabetic rats for the current studies. Our studies showed that MCP (2.5mg/kg.b.w) treatment significantly normalized the deranged activities of critical carbohydrate metabolizing enzymes, hexokinase, glucose-6-phosphate dehydrogenase, glucose-6-phosphatase and fructose-1,6-bis phosphatase. In addition MCP showed inhibitory activity on α-glucosidase and aldose reductase enzymes in in vitro assays. Further MCP treatment improved the antioxidant defensive mechanism by preventing deleterious oxidative products of cellular metabolism, which initiates the lipid peroxidation and by normalizing the antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase) activities. Additional structural studies using circular dichroism spectroscopy indicate that MCP contains majorly α-helix. Our findings suggest MCP regulates blood glucose and better manage diabetes mellitus associated complications by regulating carbohydrate metabolism and by protecting from the deleterious effects of oxidative stress. PMID:26826289

  6. The Ablation of Mitochondrial Protein Phosphatase Pgam5 Confers Resistance Against Metabolic Stress

    Directory of Open Access Journals (Sweden)

    Shiori Sekine

    2016-03-01

    Full Text Available Phosphoglycerate mutase family member 5 (PGAM5 is a mitochondrial protein phosphatase that has been reported to be involved in various stress responses from mitochondrial quality control to cell death. However, its roles in vivo are largely unknown. Here, we show that Pgam5-deficient mice are resistant to several metabolic insults. Under cold stress combined with fasting, Pgam5-deficient mice better maintained body temperature than wild-type mice and showed an extended survival rate. Serum triglycerides and lipid content in brown adipose tissue (BAT, a center of adaptive thermogenesis, were severely reduced in Pgam5-deficient mice. Moreover, although Pgam5 deficiency failed to maintain proper mitochondrial integrity in BAT, it reciprocally resulted in the dramatic induction of fibroblast growth factor 21 (FGF21 that activates various functions of BAT including thermogenesis. Thus, the enhancement of lipid metabolism and FGF21 may contribute to the cold resistance of Pgam5-deficient mice under fasting condition. Finally, we also found that Pgam5-deficient mice are resistant to high-fat-diet-induced obesity. Our study uncovered that PGAM5 is involved in the whole-body metabolism in response to stresses that impose metabolic challenges on mitochondria.

  7. The Ablation of Mitochondrial Protein Phosphatase Pgam5 Confers Resistance Against Metabolic Stress.

    Science.gov (United States)

    Sekine, Shiori; Yao, Akari; Hattori, Kazuki; Sugawara, Sho; Naguro, Isao; Koike, Masato; Uchiyama, Yasuo; Takeda, Kohsuke; Ichijo, Hidenori

    2016-03-01

    Phosphoglycerate mutase family member 5 (PGAM5) is a mitochondrial protein phosphatase that has been reported to be involved in various stress responses from mitochondrial quality control to cell death. However, its roles in vivo are largely unknown. Here, we show that Pgam5-deficient mice are resistant to several metabolic insults. Under cold stress combined with fasting, Pgam5-deficient mice better maintained body temperature than wild-type mice and showed an extended survival rate. Serum triglycerides and lipid content in brown adipose tissue (BAT), a center of adaptive thermogenesis, were severely reduced in Pgam5-deficient mice. Moreover, although Pgam5 deficiency failed to maintain proper mitochondrial integrity in BAT, it reciprocally resulted in the dramatic induction of fibroblast growth factor 21 (FGF21) that activates various functions of BAT including thermogenesis. Thus, the enhancement of lipid metabolism and FGF21 may contribute to the cold resistance of Pgam5-deficient mice under fasting condition. Finally, we also found that Pgam5-deficient mice are resistant to high-fat-diet-induced obesity. Our study uncovered that PGAM5 is involved in the whole-body metabolism in response to stresses that impose metabolic challenges on mitochondria. PMID:27077115

  8. Comparative proteome analysis of metabolic proteins from seeds of durum wheat (cv. Svevo) subjected to heat stress

    DEFF Research Database (Denmark)

    Laino, Paolo; Shelton, Dale; Finnie, Christine;

    2010-01-01

    include proteins with metabolic activity or structural function. In order to investigate the consequences of heat stress on the accumulation of nonprolamin proteins in mature durum wheat kernels, the Italian cultivar Svevo was subjected to two thermal regimes (heat stress versus control). The 2-D patterns...... polypeptides, 47 of which were identified by MALDI-TOF and MALDI-TOF-TOF MS and included HSPs, proteins involved in the glycolysis and carbohydrate metabolism, as well as stress-related proteins. Many of the heat-induced polypeptides are considered to be allergenic for sensitive individuals....

  9. Argininosuccinate synthetase regulates hepatic AMPK linking protein catabolism and ureagenesis to hepatic lipid metabolism.

    Science.gov (United States)

    Madiraju, Anila K; Alves, Tiago; Zhao, Xiaojian; Cline, Gary W; Zhang, Dongyan; Bhanot, Sanjay; Samuel, Varman T; Kibbey, Richard G; Shulman, Gerald I

    2016-06-14

    A key sensor of cellular energy status, AMP-activated protein kinase (AMPK), interacts allosterically with AMP to maintain an active state. When active, AMPK triggers a metabolic switch, decreasing the activity of anabolic pathways and enhancing catabolic processes such as lipid oxidation to restore the energy balance. Unlike oxidative tissues, in which AMP is generated from adenylate kinase during states of high energy demand, the ornithine cycle enzyme argininosuccinate synthetase (ASS) is a principle site of AMP generation in the liver. Here we show that ASS regulates hepatic AMPK, revealing a central role for ureagenesis flux in the regulation of metabolism via AMPK. Treatment of primary rat hepatocytes with amino acids increased gluconeogenesis and ureagenesis and, despite nutrient excess, induced both AMPK and acetyl-CoA carboxylase (ACC) phosphorylation. Antisense oligonucleotide knockdown of hepatic ASS1 expression in vivo decreased liver AMPK activation, phosphorylation of ACC, and plasma β-hydroxybutyrate concentrations. Taken together these studies demonstrate that increased amino acid flux can activate AMPK through increased AMP generated by ASS, thus providing a novel link between protein catabolism, ureagenesis, and hepatic lipid metabolism. PMID:27247419

  10. Heat Shock Protein 90 Indirectly Regulates ERK Activity by Affecting Raf Protein Metabolism

    Institute of Scientific and Technical Information of China (English)

    Fei DOU; Liu-Di YUAN; Jing-Jing ZHU

    2005-01-01

    Extracellular signal-regulated protein kinase (ERK) has been implicated in the pathogenesis of several nerve system diseases. As more and more kinases have been discovered to be the client proteins of the molecular chaperone Hsp90, the use of Hsp90 inhibitors to reduce abnormal kinase activity is a new treatment strategy for nerve system diseases. This study investigated the regulation of the ERK pathway by Hsp90. We showed that Hsp90 inhibitors reduce ERK phosphorylation without affecting the total ERK protein level. Further investigation showed that Raf, the upstream kinase in the Ras-Raf-MEK-ERK pathway,forms a complex with Hsp90 and Hsp70. Treating cells with Hsp90 inhibitors facilitates Raf degradation,thereby down-regulating the activity of ERK.

  11. Effects of Dietary Protein Source and Quantity during Weight Loss on Appetite, Energy Expenditure, and Cardio-Metabolic Responses

    OpenAIRE

    Jia Li; Armstrong, Cheryl L.H.; Campbell, Wayne W.

    2016-01-01

    Higher protein meals increase satiety and the thermic effect of feeding (TEF) in acute settings, but it is unclear whether these effects remain after a person becomes acclimated to energy restriction or a given protein intake. This study assessed the effects of predominant protein source (omnivorous, beef/pork vs. lacto-ovo vegetarian, soy/legume) and quantity (10%, 20%, or 30% of energy from protein) on appetite, energy expenditure, and cardio-metabolic indices during energy restriction (ER)...

  12. The effect of dietary protein on the amino acid supply and threonine metabolism in the pregnant rat

    OpenAIRE

    Rees, William; Hay, Susan; Antipatis, Christos

    2006-01-01

    International audience To characterise the effects of dietary protein content on threonine metabolism during pregnancy, rats were fed diets containing 18% or 9% protein and then killed at different stages of gestation. Serum threonine concentrations fell significantly faster in the animals fed the diet containing 9% protein when compared to those fed the diet containing 18% protein. On day 4 of gestation the rate of threonine oxidation was higher in maternal liver homogenates prepared from...

  13. Effects of Human C-Reactive Protein on Pathogenesis of Features of the Metabolic Syndrome

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Kajiya, T.; Zídek, Václav; Landa, Vladimír; Mlejnek, Petr; Šimáková, Miroslava; Šilhavý, Jan; Malínská, H.; Oliyarnyk, O.; Kazdová, L.; Fan, J.; Wang, J.; Kurtz, T. W.

    2011-01-01

    Roč. 57, č. 4 (2011), s. 731-737. ISSN 0194-911X R&D Projects: GA MZd(CZ) NS9759; GA MŠk(CZ) ME08006; GA MŠk(CZ) 1M0520; GA ČR(CZ) GAP301/10/0290; GA ČR GAP303/10/0505; GA AV ČR(CZ) IAA500110805 Grant ostatní: EC(XE) HEALTH-F4-2010-241504 Institutional research plan: CEZ:AV0Z50110509 Keywords : C-reactive protein * metabolic syndrome * transgenic rat Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 6.207, year: 2011

  14. Mixed - Lineage Protein kinases (MLKs) in inflammation, metabolism, and other disease states.

    Science.gov (United States)

    Craige, Siobhan M; Reif, Michaella M; Kant, Shashi

    2016-09-01

    Mixed lineage kinases, or MLKs, are members of the MAP kinase kinase kinase (MAP3K) family, which were originally identified among the activators of the major stress-dependent mitogen activated protein kinases (MAPKs), JNK and p38. During stress, the activation of JNK and p38 kinases targets several essential downstream substrates that react in a specific manner to the unique stressor and thus determine the fate of the cell in response to a particular challenge. Recently, the MLK family was identified as a specific modulator of JNK and p38 signaling in metabolic syndrome. Moreover, the MLK family of kinases appears to be involved in a very wide spectrum of disorders. This review discusses the newly identified functions of MLKs in multiple diseases including metabolic disorders, inflammation, cancer, and neurological diseases. PMID:27259981

  15. Effects of Radiation and Dietary Iron on Expression of Genes and Proteins Involved in Drug Metabolism

    Science.gov (United States)

    Faust, K. M.; Wotring, V. E.

    2014-01-01

    Liver function, especially the rate of metabolic enzyme activities, determines the concentration of circulating drugs and the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand any effects of spaceflight on the enzymes of the liver. Dietary factors and exposure to radiation are aspects of spaceflight that are potential oxidative stressors and both can be modeled in ground experiments. In this experiment, we examined the effects of high dietary iron and low dose gamma radiation (individually and combined) on the gene expression of enzymes involved in drug metabolism, redox homeostasis, and DNA repair. METHODS All procedures were approved by the JSC Animal Care and Use Committee. Male Sprague-Dawley rats were divided into 4 groups (n=8); control, high Fe diet (650 mg iron/kg), radiation (fractionated 3 Gy exposure from a Cs- 137 source) and combined high Fe diet + radiation exposure. Animals were euthanized 24h after the last treatment of radiation; livers were removed immediately and flash -frozen in liquid nitrogen. Expression of genes thought to be involved in redox homeostasis, drug metabolism and DNA damage repair was measured by RT-qPCR. Where possible, protein expression of the same genes was measured by western blotting. All data are expressed as % change in expression normalized to reference gene expression; comparisons were then made of each treatment group to the sham exposed/ normal diet control group. Data was considered significant at p< 0

  16. PARAMETERS OF PROTEIN METABOLISM IN GOATS FED DIETS WITH DIFFERENT PORTION OF SUGARCANE BAGASSE

    Directory of Open Access Journals (Sweden)

    S.A. Ariyani

    2015-04-01

    Full Text Available Fifteen Jawarandu male goats were used to study the effect of different portion of sugarcanebagasse in diets on some parameters of protein metabolism. Goats had average of body weight of 18 kgand aged at 18 months. Animals were housed in metabolic cages and were alloted to a completelyrandomized design receiving three experimental diets with sugarcane bagasse portions of 15, 25, and35% (dry matter basis, respectively. After eight weeks of adjustment period to experimental diets andenvironment, each group of treatment was subjected to ten days of digestion trial, and followed bycollection of rumen liquid samples. Parameters observed were feed digestibility, nitrogen retention,ruminal feed fermentation, and excretion of urinary allantoin to estimate microbial protein synthesis.Data were tested using one way analysis of variance, and followed by Duncan’s mulitiple range test. Drymatter and protein intakes lowered (P<0.05 as the increasing of sugarcane bagasse in diets. Proteindigestibility and retention were unaffected by the treatment of bagasse portion. The dietary treatment didnot change ruminal ammonia, total VFA, acetate, propionate, and butyrate concentrations. Microbialnitrogen synthesis and efficiency of microbial nitrogen synthesis were unaffected by the dietarytreatment.

  17. Danthron activates AMP-activated protein kinase and regulates lipid and glucose metabolism in vitro

    Institute of Scientific and Technical Information of China (English)

    Rong ZHOU; Ling WANG; Xing XU; Jing CHEN; Li-hong HU; Li-li CHEN; Xu SHEN

    2013-01-01

    Aim:To discover the active compound on AMP-activated protein kinase (AMPK) activation and investigate the effects of the active compound 1,8-dihydroxyanthraquinone (danthron) from the traditional Chinese medicine rhubarb on AMPK-mediated lipid and glucose metabolism in vitro.Methods:HepG2 and C2C12 cells were used.Cell viability was determined using MTT assay.Real-time PCR was performed to measure the gene expression.Western blotting assay was applied to investigate the protein phosphorylation level.Enzymatic assay kits were used to detect the total cholesterol (TC),triglyceride (TG) and glucose contents.Results:Danthron (0.1,1,and 10 μmol/L) dose-dependently promoted the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC)in both HepG2 and C2C12 cells.Meanwhile,danthron treatment significantly reduced the lipid synthesis related sterol regulatory element-binding protein 1c (SREBP1c) and fatty acid synthetase (FAS) gene expressions,and the TC and TG levels.In addition,danthron treatment efficiently increased glucose consumption.The actions of danthron on lipid and glucose metabolism were abolished or reversed by co-treatment with the AMPK inhibitor compound C.Conclusion:Danthron effectively reduces intracellular lipid contents and enhanced glucose consumption in vitro via activation of AMPK signaling pathway.

  18. Impact of dietary protein on lipid metabolism-related gene expression in porcine adipose tissue

    Directory of Open Access Journals (Sweden)

    Ge Changrong

    2010-01-01

    Full Text Available Abstract Background High dietary protein can reduce fat deposition in animal subcutaneous adipose tissue, but little is known about the mechanism. Methods Sixty Wujin pigs of about 15 kg weight were fed either high protein (HP: 18% or low protein (LP: 14% diets, and slaughtered at body weights of 30, 60 or 100 kg. Bloods were collected to measure serum parameters. Subcutaneous adipose tissues were sampled for determination of adipocyte size, protein content, lipid metabolism-related gene expression, and enzyme activities. Results HP significantly reduced adipocyte size, fat meat percentage and backfat thickness, but significantly increased daily gain, lean meat percentage and loin eye area at 60 and 100 kg. Serum free fatty acid and triglyceride concentrations in the HP group were significantly higher than in the LP group. Serum glucose and insulin concentrations were not significantly affected by dietary protein at any body weight. HP significantly reduced gene expression of acetyl CoA carboxylase (ACC, fatty acid synthase (FAS and sterol regulatory element binding protein 1c (SREBP-1c at 60 kg and 100 kg; however, the mRNA level and enzyme activity of FAS were increased at 30 kg. HP promoted gene and protein expression and enzyme activities of lipoprotein lipase (LPL, carmitine palmtoyltransferase-1B (CPT-1B, peroxisome proliferator-activated receptor γ (PPARγ and adipocyte-fatty acid binding proteins (A-FABP at 60 kg, but reduced their expression at 100 kg. Gene expression and enzyme activity of hormone sensitive lipase (HSL was reduced markedly at 60 kg but increased at 100 kg by the high dietary protein. Levels of mRNA, enzyme activities and protein expression of ACC, FAS, SREBP-1c and PPARγ in both LP and HP groups increased with increasing body weight. However, gene and protein expression levels/enzyme activities of LPL, CPT-1B, A-FABP and HSL in both groups were higher at 60 kg than at 30 and 100 kg. Conclusion Fat deposition in Wujin

  19. Adherence issues in inherited metabolic disorders treated by low natural protein diets

    DEFF Research Database (Denmark)

    MaCdonald, A; van Rijn, M; Feillet, F;

    2012-01-01

    Common inborn errors of metabolism treated by low natural protein diets [amino acid (AA) disorders, organic acidemias and urea cycle disorders] are responsible for a collection of diverse clinical symptoms, each condition presenting at different ages with variable severity. Precursor...... on their neuropsychological profile. There are little data about their ability to self-manage their own diet or the success of any formal educational programs that may have been implemented. Trials conducted in non-phenylketonuria (PKU) patients are rare, and the development of specialist L-AAs for non-PKU AA disorders has...

  20. The effect of BmNPV infection on protein metabolism in silkworm (Bombyx mori) larva

    OpenAIRE

    K Etebari; L Matindoost; SZ Mirhoseini; MW Turnbull

    2007-01-01

    Grasseri is one of the most important diseases of silkworm with significant yield loss, which is caused by nuclear polyhedrosis viruses (NPV). In the present research the effect of this disease on changes of biochemical compounds which are related to protein metabolism in 5th instar larvae were studied. The larvae that showed the grasseri symptoms after contamination with 5.5×10-4 polyhedral/ml were assumed as infected treatment. The hemolymph of infected and uninfected larvae in 3 and 5 days...

  1. Heme metabolism in stress regulation and protein production: from Cinderella to a key player

    DEFF Research Database (Denmark)

    Martínez, J. L.; Petranovic, D.; Nielsen, Jens

    2016-01-01

    Heme biosynthesis is a highly conserved pathway which is present in all kingdoms, from Archaea to higher organisms such as plants and mammals. The heme molecule acts as a prosthetic group for different proteins and enzymes involved in energy metabolism and reactions involved in electron transfer....... Based on our recent findings and other recent reports, we here illustrate that heme is more than a co-factor. We also discuss the necessity to gain more insight into the heme biosynthesis pathway regulation, as this interacts closely with overall stress control. Understanding heme biosynthesis and its...

  2. Temperature-dependent alterations in metabolic enzymes and proteins of three ecophysiologically different species of earthworms

    Directory of Open Access Journals (Sweden)

    G Tripathi

    2011-08-01

    Full Text Available The effects of varying temperatures (12 - 44° C on the specific activity of cytoplasmic malate dehydrogenase ((cMDH, mitochondrial malate dehydrogenase (mMDH and lactate dehydrogenase (LDH of some earthworms (Metaphire posthuma, Perionyx sansibaricus and Lampito mauritii were studied. The effects of different temperatures on supernatant and mitochondrial protein contents were also investigated. The specific activities of cMDH, mMDH and LDH of the earthworms decreased gradually as a function of increasing temperature from 12 to 44°C. Higher metabolic energy was needed to maintain the activity at low temperatures. Hence, the earthworms showed increased enzyme specific activity at low temperatures. However, the protein content increased upto 28°C. Afterwards, with the increase in the temperature from 28 to 42°C, the proteins in the earthworms showed a significant decrease. The temperature-associated changes in the protein content could be explained by the fact that protein synthesizing capacity was hampered above and below the optimum temperature range. The most pronounced effects of varying temperatures were on P. sansibaricus. It might be due to the epigeic nature of the earthworm species. Then minimum effect was on the endogeic earthworm M. posthuma. Virtually, the differences in the enzymes physiology were associated with the differences in the ecological categories of the earthworms. This clearly demonstrate a possible link between the physiology and ecology at aerobic (cMDH, mMDH and anaerobic (LDH levels in the tropical earthworms.

  3. Soy Germ Protein With or Without-Zn Improve Plasma Lipid Profile in Metabolic Syndrome Women

    Directory of Open Access Journals (Sweden)

    SIWI PRAMATAMA MARS WIJAYANTI

    2012-03-01

    Full Text Available The aim of this research was to determine the effect of soy germ protein on lipid profile of metabolic syndrome (MetS patients. Respondents were 30 women with criteria, i.e. blood glucose level > normal, body mass index > 25 kg/m2, hypertriglyceridemia, low cholesterol-HDL level, 40-65 years old, living in Purwokerto, and signed the informed consent. The project was approved by the ethics committee of the Medical Faculty from Gadjah Mada University-Yogyakarta. Respondents were divided into three randomly chosen groups consisting of ten women each. The first, second, and third groups were treated, respectively, with milk enriched soy germ protein plus Zn, milk enriched soy germ protein (without Zn, and placebo for two months. Blood samples were taken at baseline, one and two months after observation. Two months after observation the groups consuming milk enriched with soy germ protein, both with or without Zn, had their level of cholesterol-total decrease from 215.8 to 180.2 mg/dl (P = 0.03, triglyceride from 240.2 to 162.5 mg/dl (P = 0.02, and LDL from 154.01 to 93.85 mg/dl (P = 0.03. In contrast, HDL increased from 38.91 to 49.49 mg/dl (P = 0.0008. In conclusion, soy germ protein can improve lipid profile, thus it can inhibit atherosclerosis incident.

  4. AMP-Activated Protein Kinase Regulates Oxidative Metabolism in Caenorhabditis elegans through the NHR-49 and MDT-15 Transcriptional Regulators

    Science.gov (United States)

    Moreno-Arriola, Elizabeth; EL Hafidi, Mohammed; Ortega-Cuéllar, Daniel; Carvajal, Karla

    2016-01-01

    Cellular energy regulation relies on complex signaling pathways that respond to fuel availability and metabolic demands. Dysregulation of these networks is implicated in the development of human metabolic diseases such as obesity and metabolic syndrome. In Caenorhabditis elegans the AMP-activated protein kinase, AAK, has been associated with longevity and stress resistance; nevertheless its precise role in energy metabolism remains elusive. In the present study, we find an evolutionary conserved role of AAK in oxidative metabolism. Similar to mammals, AAK is activated by AICAR and metformin and leads to increased glycolytic and oxidative metabolic fluxes evidenced by an increase in lactate levels and mitochondrial oxygen consumption and a decrease in total fatty acids and lipid storage, whereas augmented glucose availability has the opposite effects. We found that these changes were largely dependent on the catalytic subunit AAK-2, since the aak-2 null strain lost the observed metabolic actions. Further results demonstrate that the effects due to AAK activation are associated to SBP-1 and NHR-49 transcriptional factors and MDT-15 transcriptional co-activator, suggesting a regulatory pathway that controls oxidative metabolism. Our findings establish C. elegans as a tractable model system to dissect the relationship between distinct molecules that play a critical role in the regulation of energy metabolism in human metabolic diseases. PMID:26824904

  5. Existence test for asynchronous interval iterations

    DEFF Research Database (Denmark)

    Madsen, Kaj; Caprani, O.; Stauning, Ole

    1997-01-01

    In the search for regions that contain fixed points ofa real function of several variables, tests based on interval calculationscan be used to establish existence ornon-existence of fixed points in regions that are examined in the course ofthe search. The search can e.g. be performed as a...... synchronous (sequential) interval iteration:In each iteration step all components of the iterate are calculatedbased on the previous iterate. In this case it is straight forward to base simple interval existence and non-existencetests on the calculations done in each step of the iteration. The search can also...... be performed as an asynchronous (parallel) iteration: Only a few components are changed in each stepand this calculation is in general based on components from differentprevious iterates. For the asynchronous iteration it turns out thatsimple tests of existence and non-existence can be based on...

  6. Computing by Temporal Order: Asynchronous Cellular Automata

    Directory of Open Access Journals (Sweden)

    Michael Vielhaber

    2012-08-01

    Full Text Available Our concern is the behaviour of the elementary cellular automata with state set 0,1 over the cell set Z/nZ (one-dimensional finite wrap-around case, under all possible update rules (asynchronicity. Over the torus Z/nZ (n<= 11,we will see that the ECA with Wolfram rule 57 maps any v in F_2^n to any w in F_2^n, varying the update rule. We furthermore show that all even (element of the alternating group bijective functions on the set F_2^n = 0,...,2^n-1, can be computed by ECA57, by iterating it a sufficient number of times with varying update rules, at least for n <= 10. We characterize the non-bijective functions computable by asynchronous rules.

  7. Inhibition Controls Asynchronous States of Neuronal Networks

    Science.gov (United States)

    Treviño, Mario

    2016-01-01

    Computations in cortical circuits require action potentials from excitatory and inhibitory neurons. In this mini-review, I first provide a quick overview of findings that indicate that GABAergic neurons play a fundamental role in coordinating spikes and generating synchronized network activity. Next, I argue that these observations helped popularize the notion that network oscillations require a high degree of spike correlations among interneurons which, in turn, produce synchronous inhibition of the local microcircuit. The aim of this text is to discuss some recent experimental and computational findings that support a complementary view: one in which interneurons participate actively in producing asynchronous states in cortical networks. This requires a proper mixture of shared excitation and inhibition leading to asynchronous activity between neighboring cells. Such contribution from interneurons would be extremely important because it would tend to reduce the spike correlation between neighboring pyramidal cells, a drop in redundancy that could enhance the information-processing capacity of neural networks. PMID:27274721

  8. Multi-omic profiling of EPO-producing Chinese hamster ovary cell panel reveals metabolic adaptation to heterologous protein production

    DEFF Research Database (Denmark)

    Ley, Daniel; Kazemi Seresht, Ali; Engmark, Mikael;

    2015-01-01

    Chinese hamster ovary (CHO) cells are the preferred production host for many therapeutic proteins. The production of heterologous proteins in CHO cells imposes a burden on the host cell metabolism and impact cellular physiology on a global scale. In this work, a multi-omics approach was applied t...

  9. Energy metabolism in young mink kits (Neovison vison) affected by protein and carbohydrate level in the diet

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Hansen, NE; Tauson, A-H

    The mink is a strict carnivore and mink diets usually have a high content of protein. The energy metabolism in young minks in the transition period from milk to solid food is not investigated in detail, and the protein requirement is poorly defined. The substrate oxidation can give useful informa...

  10. Methodical studies on measuring kinetic parameters of the protein metabolism of the whole body in connection with measurings of the energy metabolic rate of rats

    International Nuclear Information System (INIS)

    In 3 successive experiments with growing rats the suitability of pulse labelling with 15N glycine, linked with labelling by means of 14C lysine (experiment 3), was tested for the determination of kinetic parameters of the protein metabolism of the whole body by the application of the compartment model in comparison with pulse labelling with 15N-amino acid mixture (experiment 2) and long-term labelling with 15N-labelled wheat in the feed (experiment 1) under standardized experiment conditions. In measurings of energy metabolism simultaneously carried out with parallel groups of animals the comparability of the metabolic development was studied. The ascertained values of protein synthesis rate, protein catabolism rate and re-utilization rate showed insignificant differences only between the 3 15N tracer variants (with certain limitations for the 'protein turnover' (P)-group of experiment 2) in comparison with errors of the applied methods, from which conclusions can be drawn for the suitability of 15N glycine as tracer, at least under the experimental conditions tested. Protein synthesis and degradation rates ascertained from 14CO2 excretion in experiment 3 were clearly below those average values ascertained with 15N. The differences in the average heat production between the main periods of the 3 experiments were statistically insignificant. (author)

  11. Direct Torque Control of the Asynchronous Motor

    Directory of Open Access Journals (Sweden)

    Peter Girovský

    2008-05-01

    Full Text Available This contribution deals with the proposal of direct torque control (DTC of asynchronous motor (AMwith the help of fuzzy logic. The whole structure of DTC is designed in software Matlab – Simulink, the fuzzy regulator is designed with the help of Fuzzy Toolbox. The results of DTC with fuzzy regulator are compared with DTC with the help of Depenbrock method and DTC with the help of Takahashi method.

  12. Direct Torque Control of the Asynchronous Motor

    OpenAIRE

    Peter Girovský; Jaroslava Žilková; Ľubomír Cibuľa; Jaroslav Timko

    2008-01-01

    This contribution deals with the proposal of direct torque control (DTC) of asynchronous motor (AM)with the help of fuzzy logic. The whole structure of DTC is designed in software Matlab – Simulink, the fuzzy regulator is designed with the help of Fuzzy Toolbox. The results of DTC with fuzzy regulator are compared with DTC with the help of Depenbrock method and DTC with the help of Takahashi method.

  13. Asynchronous Nano-Electronics: Preliminary Investigation

    OpenAIRE

    Martin, Alain J.; Prakash, Piyush

    2008-01-01

    This paper is a preliminary investigation in implementing asynchronous QDI logic in molecular nano-electronics, taking into account the restricted geometry, the lack of control on transistor strengths, the high timing variations. We show that the main building blocks of QDI logic can be successfully implemented; we illustrate the approach with the layout of an adder stage. The proposed techniques to improve the reliability of QDI apply to nano-CMOS as well.

  14. Rapid, generalized adaptation to asynchronous audiovisual speech

    OpenAIRE

    Van der Burg, Erik; Goodbourn, Patrick T.

    2015-01-01

    The brain is adaptive. The speed of propagation through air, and of low-level sensory processing, differs markedly between auditory and visual stimuli; yet the brain can adapt to compensate for the resulting cross-modal delays. Studies investigating temporal recalibration to audiovisual speech have used prolonged adaptation procedures, suggesting that adaptation is sluggish. Here, we show that adaptation to asynchronous audiovisual speech occurs rapidly. Participants viewed a brief clip of an...

  15. Accurate estimator of correlations between asynchronous signals

    OpenAIRE

    Toth, Bence; Kertesz, Janos

    2008-01-01

    The estimation of the correlation between time series is often hampered by the asynchronicity of the signals. Cumulating data within a time window suppresses this source of noise but weakens the statistics. We present a method to estimate correlations without applying long time windows. We decompose the correlations of data cumulated over a long window using decay of lagged correlations as calculated from short window data. This increases the accuracy of the estimated correlation significantl...

  16. Quantitative phase microscopy with asynchronous digital holography

    OpenAIRE

    Chalut, Kevin J.; Brown, William J.; Wax, Adam

    2007-01-01

    We demonstrate a new method of measuring quantitative phase in imaging of biological materials. This method, asynchronous digital holography, employs knowledge of a moving fringe created by acousto-optic modulators to execute phase-shifting interferometry using two near-simultaneous interferograms. The method can be used to obtain quantitative phase images of dynamic biological samples on millisecond time scales. We present results on a standard sample, and on live cell samples.

  17. Cytosolic fatty acid-binding proteins: subjects and tools in metabolic research

    Energy Technology Data Exchange (ETDEWEB)

    Binas, B. [Max Delbrueck Center for Molecular Medicine, Berlin-Buch (Germany)

    1998-12-31

    Fatty acid-binding proteins (FABPs) are major targets for specific binding of fatty acids in vivo. They constitute a widely expressed family of genetically related, small cytosolic proteins which very likely mediate intracellular transport of free long chain fatty acids. Genetic inhibition of FABP expression in vivo should therefore provide a useful tool to investigate and engineer fatty acid metabolism. (orig.) [Deutsch] Fettsaeurebindungsproteine (FABPs) sind wichtige Bindungsstellen fuer Fettsaeuren in vivo; sie bilden eine breit exprimierte Familie genetisch verwandter kleiner Zytosoleiweisse, die sehr wahrscheinlich den intrazellulaeren Transport unveresterter langkettiger Fettsaeuren vermitteln. Die genetische Hemmung der FABP-Expanssion in vivo bietet sich deshalb als Werkzeug zur Erforschung und gezielten Veraenderung des Fettsaeurestoffwechsels an. (orig.)

  18. Dissociation of the effects of epinephrine and insulin on glucose and protein metabolism

    International Nuclear Information System (INIS)

    The separate and combined effects of insulin and epinephrine on leucine metabolism were examined in healthy young volunteers. Subjects participated in four experimental protocols: (1) euglycemic insulin clamp (+80 microU/ml), (2) epinephrine infusion (50 ng.kg-1.min-1) plus somatostatin with basal replacement of insulin and glucagon, (3) combined epinephrine (50 ng.kg-1.min-1) plus insulin (+80 microU/ml) infusion, and (4) epinephrine and somatostatin as in study 2 plus basal amino acid replacement. Studies were performed with a prime-continuous infusion of [1-14C]leucine and indirect calorimetry. Our results indicate that (1) hyperinsulinemia causes a generalized decrease in plasma amino acid concentrations, including leucine; (2) the reduction in plasma leucine concentration is primarily due to an inhibition of endogenous leucine flux; nonoxidative leucine disposal decreases after insulin infusion; (3) epinephrine, without change in plasma insulin concentration, reduces plasma amino acid levels; (4) combined epinephrine-insulin infusion causes a greater decrease in plasma amino levels than observed with either hormone alone; this is because of a greater inhibition of endogenous leucine flux; and (5) when basal amino acid concentrations are maintained constant with a balanced amino acid infusion, epinephrine inhibits the endogenous leucine flux. In conclusion, the present results do not provide support for the concept that epinephrine is a catabolic hormone with respect to amino acid-protein metabolism. In contrast, epinephrine markedly inhibits insulin-mediated glucose metabolism

  19. Specific estrogen-binding protein of rat liver and sex steroid metabolism

    International Nuclear Information System (INIS)

    Model experiments were conducted to study the effect of a highly purified preparation of specific estrogen-binding protein (SEBP) on the intensity of estradiol and testosterone metabolism under the influence of enzymes in liver homogenate from female rats, not containing SEBP. The liver of mature female rats was homogenized in two volumes of 50 mM Tris-HCl buffer, pH 7.5, containing 600 mg% of glucose. The tritium-steroid was preincubated for 15 min at 0-4 C with 0-4 microg of the preparation of SEBP (200 microl). A standard preparation of partially purified SEBP was obtained from liver cystosol of mature male rats; affinity chromatography on estradiolagarose was used. It is shown that SEBP can really take part in regulation of the dynamics of sex steroids in the liver. E1 did not affect the metabolic rate of H 3-E2 by liver homogenate from females, but caused marked acceleration of H 3-E2 metabolism by male liver homogenate

  20. A new fluorescence-based method identifies protein phosphatases regulating lipid droplet metabolism.

    Directory of Open Access Journals (Sweden)

    Bruno L Bozaquel-Morais

    Full Text Available In virtually every cell, neutral lipids are stored in cytoplasmic structures called lipid droplets (LDs and also referred to as lipid bodies or lipid particles. We developed a rapid high-throughput assay based on the recovery of quenched BODIPY-fluorescence that allows to quantify lipid droplets. The method was validated by monitoring lipid droplet turnover during growth of a yeast culture and by screening a group of strains deleted in genes known to be involved in lipid metabolism. In both tests, the fluorimetric assay showed high sensitivity and good agreement with previously reported data using microscopy. We used this method for high-throughput identification of protein phosphatases involved in lipid droplet metabolism. From 65 yeast knockout strains encoding protein phosphatases and its regulatory subunits, 13 strains revealed to have abnormal levels of lipid droplets, 10 of them having high lipid droplet content. Strains deleted for type I protein phosphatases and related regulators (ppz2, gac1, bni4, type 2A phosphatase and its related regulator (pph21 and sap185, type 2C protein phosphatases (ptc1, ptc4, ptc7 and dual phosphatases (pps1, msg5 were catalogued as high-lipid droplet content strains. Only reg1, a targeting subunit of the type 1 phosphatase Glc7p, and members of the nutrient-sensitive TOR pathway (sit4 and the regulatory subunit sap190 were catalogued as low-lipid droplet content strains, which were studied further. We show that Snf1, the homologue of the mammalian AMP-activated kinase, is constitutively phosphorylated (hyperactive in sit4 and sap190 strains leading to a reduction of acetyl-CoA carboxylase activity. In conclusion, our fast and highly sensitive method permitted us to catalogue protein phosphatases involved in the regulation of LD metabolism and present evidence indicating that the TOR pathway and the SNF1/AMPK pathway are connected through the Sit4p-Sap190p pair in the control of lipid droplet biogenesis.

  1. A new tool in C. elegans reveals changes in secretory protein metabolism in ire-1-deficient animals.

    Science.gov (United States)

    Safra, Modi; Henis-Korenblit, Sivan

    2014-01-01

    We recently showed that the ire-1/xbp-1 arm of the UPR plays a crucial role in maintaining basic endoplasmic reticulum (ER) functions required for the metabolism of secreted proteins even during unstressed growth conditions. During these studies we realized that although C. elegans is a powerful system to study the genetics of many cellular processes; it lacks effective tools for tracking the metabolism of secreted proteins at the cell and organism levels. Here, we outline how genetic manipulations and expression analysis of a DAF-28::GFP translational fusion transgene can be combined to infer different steps in the life cycle of secretory proteins. We demonstrate how we have used this tool to reveal folding defects, clearance defects, and secretion defects in ire-1 and xbp-1 mutants. We believe that further studies using this tool will deepen the understanding of secretory protein metabolism. PMID:25191629

  2. Blending Online Asynchronous and Synchronous Learning

    Directory of Open Access Journals (Sweden)

    Lisa C. Yamagata-Lynch

    2014-04-01

    Full Text Available In this article I will share a qualitative self-study about a 15-week blended 100% online graduate level course facilitated through synchronous meetings on Blackboard Collaborate and asynchronous discussions on Blackboard. I taught the course at the University of Tennessee (UT during the spring 2012 semester and the course topic was online learning environments. The primary research question of this study was: How can the designer/instructor optimize learning experiences for students who are studying about online learning environments in a blended online course relying on both synchronous and asynchronous technologies? I relied on student reflections of course activities during the beginning, middle, and the end of the semester as the primary data source to obtain their insights regarding course experiences. Through the experiences involved in designing and teaching the course and engaging in this study I found that there is room in the instructional technology research community to address strategies for facilitating online synchronous learning that complement asynchronous learning. Synchronous online whole class meetings and well-structured small group meetings can help students feel a stronger sense of connection to their peers and instructor and stay engaged with course activities. In order to provide meaningful learning spaces in synchronous learning environments, the instructor/designer needs to balance the tension between embracing the flexibility that the online space affords to users and designing deliberate structures that will help them take advantage of the flexible space.

  3. Enabling techniques for asynchronous coherent OCDMA

    Science.gov (United States)

    Wang, Xu; Wada, Naoya; Kitayama, Ken-ichi

    2005-11-01

    The coherent OCDMA system could suffer from severe multiple access interference (MAI) and beat noise, which limit the maximum number of active users that can be supported in a network. One effective method to reduce the beat noise as well as the MAI noise is to lower the interference level by adopting ultra-long optical code. Applying optical thresholding technique is also crucial to enable data-rate detection for achieving a practical OCDMA system. In this paper, we review the recent progress in the key enabling techniques for asynchronous coherent OCDMA: the novel encoder/decoders including spatial lightwave phase modulator, micro-ring resonator for spectral phase coding and superstructured FBG (SSFBG) and AWG type encode/decoder for time-spreading coding; optical thresholding techniques with PPLN and nonlinearity in fiber. The FEC has also been applied in OCDMA system recently. With 511-chip SSFBG and SC-based optical thresholder, 10-user, truly-asynchronous gigabit OCDMA transmission has been successfully achieved. Most recently, a record throughput 12×10.71 Gbps truly-asynchronous OCDMA has been demonstrated by using the 16×16 ports AWG-type encoder/decoder and FEC transmit ITU-T G.709 OTN frames.

  4. Cocoa and Whey Protein Differentially Affect Markers of Lipid and Glucose Metabolism and Satiety.

    Science.gov (United States)

    Campbell, Caroline L; Foegeding, E Allen; Harris, G Keith

    2016-03-01

    Food formulation with bioactive ingredients is a potential strategy to promote satiety and weight management. Whey proteins are high in leucine and are shown to decrease hunger ratings and increase satiety hormone levels; cocoa polyphenolics moderate glucose levels and slow digestion. This study examined the effects of cocoa and whey proteins on lipid and glucose metabolism and satiety in vitro and in a clinical trial. In vitro, 3T3-L1 preadipocytes were treated with 0.5-100 μg/mL cocoa polyphenolic extract (CPE) and/or 1-15 mM leucine (Leu) and assayed for lipid accumulation and leptin production. In vivo, a 6-week clinical trial consisted of nine panelists (age: 22.6 ± 1.7; BMI: 22.3 ± 2.1) consuming chocolate-protein beverages once per week, including placebo, whey protein isolate (WPI), low polyphenolic cocoa (LP), high polyphenolic cocoa (HP), LP-WPI, and HP-WPI. Measurements included blood glucose and adiponectin levels, and hunger ratings at baseline and 0.5-4.0 h following beverage consumption. At levels of 50 and 100 μg/mL, CPE significantly inhibited preadipocyte lipid accumulation by 35% and 50%, respectively, and by 22% and 36% when combined with 15 mM Leu. Leu treatment increased adipocyte leptin production by 26-37%. In the clinical trial, all beverages significantly moderated blood glucose levels 30 min postconsumption. WPI beverages elicited lowest peak glucose levels and HP levels were significantly lower than LP. The WPI and HP beverage treatments significantly increased adiponectin levels, but elicited no significant changes in hunger ratings. These trends suggest that combinations of WPI and cocoa polyphenols may improve markers of metabolic syndrome and satiety. PMID:26987021

  5. Anesthesia with halothane and nitrous oxide alters protein and amino acid metabolism in dogs

    International Nuclear Information System (INIS)

    General anesthesia in combination with surgery is known to result in negative nitrogen balance. To determine whether general anesthesia without concomitant surgery decreases whole body protein synthesis and/or increases whole body protein breakdown, two groups of dogs were studied: Group 1 (n = 6) in the conscious state and Group 2 (n = 8) during general anesthesia employing halothane (1.5 MAC) in 50% nitrous oxide and oxygen. Changes in protein metabolism were estimated by isotope dilution techniques employing simultaneous infusions of [4,53H]leucine and alpha-[1-14C]-ketoisocaproate (KIC). Total leucine carbon flux was unchanged or slightly increased in the anesthetized animals when compared to the conscious controls, indicating only a slight increase in the rate of proteolysis. However, leucine oxidation was increased (P less than 0.001) by more than 80% in the anesthetized animals when compared with their conscious controls, whereas whole body nonoxidative leucine disappearance, an indicator of whole body protein synthesis, was decreased. The ratio of leucine oxidation to the nonoxidative rate of leucine disappearance, which provides an index of the catabolism of at least one essential amino acid in the postabsorptive state, was more than twofold increased (P less than 0.001) in the anesthetized animals regardless of the tracer employed. These studies suggest that the administration of anesthesia alone, without concomitant surgery, is associated with a decreased rate of whole body protein synthesis and increased leucine oxidation, resulting in increased leucine and protein catabolism, which may be underlying or initiating some of the protein wasting known to occur in patients undergoing surgery

  6. Ecdysteroids affect in vivo protein metabolism of the flight muscle of the tobacco hornworm (Manduca sexta)

    Science.gov (United States)

    Tischler, M. E.; Wu, M.; Cook, P.; Hodsden, S.

    1990-01-01

    Ecdysteroid growth promotion of the dorsolongitudinal flight muscle of Manduca sexta was studied by measuring in vivo protein metabolism using both "flooding-dose" and "non-carrier" techniques. These procedures differ in that the former method includes injection of non-labelled phenylalanine (30 micromoles/insect) together with the [3H]amino acid. Injected radioactivity plateaued in the haemolymph within 7 min. With the flooding-dose method, haemolymph and intramuscular specific radioactivities were similar between 15 min and 2 h. Incorporation of [3H]phenylalanine into muscle protein was linear with either method between 30 and 120 min. Fractional rates (%/12 h) of synthesis with the flooding-dose technique were best measured after 1 h because of the initial delay in radioactivity equilibration. Estimation of body phenylalanine turnover with the non-carrier method showed 24-53%/h which was negligible with the flooding-dose method. Since the two methods yielded similar rates of protein synthesis, the large injection of non-labelled amino acid did not alter the rate of synthesis. Because the flooding-dose technique requires only a single time point measurement, it is the preferred method. The decline and eventual cessation of flight-muscle growth was mostly a consequence of declining protein synthesis though degradation increased between 76-86 h before eclosion and was relatively rapid. This decline in muscle growth could be prevented by treating pupae with 20-hydroxyecdysone (10 micrograms/insect). Protein accretion was promoted by a decline of up to 80% in protein breakdown, which was offset in part by a concurrent though much smaller decrease in protein synthesis. Therefore, ecdysteroids may increase flight-muscle growth by inhibiting proteolysis.

  7. Pesticidal Impact on the Protein Metabolism of Freshwater Field Crab,Oziotelphusa Senex Senex(Fabricius)

    Institute of Scientific and Technical Information of China (English)

    K.RADHAKRISHNAIAH; B.SIVARAMAKRISHNAtffu

    1995-01-01

    The total protein increased in the gills and decreased in the muscle of the freshwater field crab Oziotelphusa senex senex at days 1 and 2 on eposure to lethal concentrations and at days 1 and 10 to sublethal concentrations of furadan,endosulfan,chlorpyrifos,and a mixture of these three in a 100:1:1 ratio.The increase in the gill protein was greater on exposure to the sublethal concentrations than to the lethal concentrations while the decrease in the muscle protein was greater on exposure to the lethal concentrations than to the sublethal concentrations.In the hepatopancreas,the protein content decreased on exposure to the lethal concentrations,but,in contrast,increased on exposure to the sublethal concentrations.These results clearly indicate that changes in the protein content are not only organ-deendent but also concentration-dependent.i.e.,lethal versus sbulethal.Irrespective of the changes in the total protein,the levels of free amino acids and the activities of protease,alanine and aspartate aminortransferases,and glutamate dehydrogenase increased in all the three organs o the crabs exposed to the lethal and sublethal concentrations,(more in lethal than in sublethal)and increased at a greater rate over time of exposure.Ammonia toxicity,measured by an increase in the hemolymph ammonia and a decrease in the urea,was also observed at the lethal concentrations of all the three pesticides.The ammonia and urea levela increased in the crabs exposed to the sublethal concentrations.Although the effect of each pesticide on the protein metabolism was similar,the degree of toxicity was the lowest ox exposure to furadan,intermediate on exposure to endosulfan and chlorpyrifos,and cumulative on exposure to a mixture of the three pesticides.

  8. Integration and Validation of the Genome-Scale Metabolic Models of Pichia pastoris: A Comprehensive Update of Protein Glycosylation Pathways, Lipid and Energy Metabolism.

    Directory of Open Access Journals (Sweden)

    Màrius Tomàs-Gamisans

    Full Text Available Genome-scale metabolic models (GEMs are tools that allow predicting a phenotype from a genotype under certain environmental conditions. GEMs have been developed in the last ten years for a broad range of organisms, and are used for multiple purposes such as discovering new properties of metabolic networks, predicting new targets for metabolic engineering, as well as optimizing the cultivation conditions for biochemicals or recombinant protein production. Pichia pastoris is one of the most widely used organisms for heterologous protein expression. There are different GEMs for this methylotrophic yeast of which the most relevant and complete in the published literature are iPP668, PpaMBEL1254 and iLC915. However, these three models differ regarding certain pathways, terminology for metabolites and reactions and annotations. Moreover, GEMs for some species are typically built based on the reconstructed models of related model organisms. In these cases, some organism-specific pathways could be missing or misrepresented.In order to provide an updated and more comprehensive GEM for P. pastoris, we have reconstructed and validated a consensus model integrating and merging all three existing models. In this step a comprehensive review and integration of the metabolic pathways included in each one of these three versions was performed. In addition, the resulting iMT1026 model includes a new description of some metabolic processes. Particularly new information described in recently published literature is included, mainly related to fatty acid and sphingolipid metabolism, glycosylation and cell energetics. Finally the reconstructed model was tested and validated, by comparing the results of the simulations with available empirical physiological datasets results obtained from a wide range of experimental conditions, such as different carbon sources, distinct oxygen availability conditions, as well as producing of two different recombinant proteins. In

  9. Label-acquired magnetorotation for biosensing: An asynchronous rotation assay

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, Ariel, E-mail: hecht@umich.ed [University of Michigan, Department of Biomedical Engineering, 2200 Bonisteel, Ann Arbor, MI 48109-2099 (United States); University of Michigan, Department of Chemistry, 930 North University, Ann Arbor, MI 48109-1055 (United States); Kinnunen, Paivo, E-mail: pkkinn@umich.ed [University of Michigan, Department of Chemistry, 930 North University, Ann Arbor, MI 48109-1055 (United States); University of Michigan, Applied Physics Program, 2477 Randall Laboratory, Ann Arbor, MI 48109-1120 (United States); McNaughton, Brandon, E-mail: bmcnaugh@umich.ed [University of Michigan, Department of Biomedical Engineering, 2200 Bonisteel, Ann Arbor, MI 48109-2099 (United States); University of Michigan, Department of Chemistry, 930 North University, Ann Arbor, MI 48109-1055 (United States); University of Michigan, Applied Physics Program, 2477 Randall Laboratory, Ann Arbor, MI 48109-1120 (United States); Kopelman, Raoul, E-mail: kopelman@umich.ed [University of Michigan, Department of Biomedical Engineering, 2200 Bonisteel, Ann Arbor, MI 48109-2099 (United States); University of Michigan, Department of Chemistry, 930 North University, Ann Arbor, MI 48109-1055 (United States); University of Michigan, Applied Physics Program, 2477 Randall Laboratory, Ann Arbor, MI 48109-1120 (United States)

    2011-02-15

    This paper presents a novel application of magnetic particles for biosensing, called label-acquired magnetorotation (LAM). This method is based on a combination of the traditional sandwich assay format with the asynchronous magnetic bead rotation (AMBR) method. In label-acquired magnetorotation, an analyte facilitates the binding of a magnetic label bead to a nonmagnetic solid phase sphere, forming a sandwich complex. The sandwich complex is then placed in a rotating magnetic field, where the rotational frequency of the sandwich complex is a function of the amount of analyte attached to the surface of the sphere. Here, we use streptavidin-coated beads and biotin-coated particles as analyte mimics, to be replaced by proteins and other biological targets in future work. We show this sensing method to have a dynamic range of two orders of magnitude.

  10. Biochemical and clinical aspects of advanced oxidation protein products in kidney diseases and metabolic disturbances

    Directory of Open Access Journals (Sweden)

    Agnieszka Piwowar

    2014-02-01

    Full Text Available Intensified oxidative modification of proteins and increased concentration of advanced oxidation protein products (AOPPs are confirmed by many experimental investigations in different pathological states, especially these with well-known participation of oxidative stress (OS in etiopathogenesis but also these with not well recognized its role. Presented data indicate that AOPPs play a significant role in many disorders with chronic background, because of they reflect both intensification of OS and the degree of pathological changes connected with OS in these diseases. This review sets out the clinical and diagnostic aspects of AOPPs in these diseases such as: renal diseases with different etiology, cardiovascular diseases, as well as connected with metabolic disturbances – e.g. diabetes, atherosclerosis or metabolic syndrome. Moreover results of investigation about utility of AOPPs measurement, mainly in plasma/serum, in these diseases are presented. The review and evaluation of application of AOPPs as useful marker in diagnosis, prognosis and monitoring the course of these diseases were performed. This paper also describes the suggested mechanisms of their action which contribute to biochemical and clinic changes undergoing in the condition of increased OS. Diagnostic or prognostic utility of AOPPs are especially indicated in the course of diabetes and its complications (diabetic nephropahy and cardiovascular diseases.

  11. Lack of the Lysosomal Membrane Protein, GLMP, in Mice Results in Metabolic Dysregulation in Liver.

    Directory of Open Access Journals (Sweden)

    Xiang Yi Kong

    Full Text Available Ablation of glycosylated lysosomal membrane protein (GLMP, formerly known as NCU-G1 has been shown to cause chronic liver injury which progresses into liver fibrosis in mice. Both lysosomal dysfunction and chronic liver injury can cause metabolic dysregulation. Glmp gt/gt mice (formerly known as Ncu-g1gt/gt mice were studied between 3 weeks and 9 months of age. Body weight gain and feed efficiency of Glmp gt/gt mice were comparable to wild type siblings, only at the age of 9 months the Glmp gt/gt siblings had significantly reduced body weight. Reduced size of epididymal fat pads was accompanied by hepatosplenomegaly in Glmp gt/gt mice. Blood analysis revealed reduced levels of blood glucose, circulating triacylglycerol and non-esterified fatty acids in Glmp gt/gt mice. Increased flux of glucose, increased de novo lipogenesis and lipid accumulation were detected in Glmp gt/gt primary hepatocytes, as well as elevated triacylglycerol levels in Glmp gt/gt liver homogenates, compared to hepatocytes and liver from wild type mice. Gene expression analysis showed an increased expression of genes involved in fatty acid uptake and lipogenesis in Glmp gt/gt liver compared to wild type. Our findings are in agreement with the metabolic alterations observed in other mouse models lacking lysosomal proteins, and with alterations characteristic for advanced chronic liver injury.

  12. Impaired mitochondrial metabolism and protein synthesis in streptozotocin diabetic rat hepatocytes

    International Nuclear Information System (INIS)

    Isolated hepatocytes prepared from control, streptozotocin diabetic rats were incubated at 30 degrees C in Krebs-Henseleit bicarbonate buffer, pH 7.4, containing 0.5 mM concentration of each of the 20 natural amino acids. Effect of insulin on the oxidation of 2,3-14C and 1,4-14C succinate (suc) carbons and their incorporation into hepatocyte protein, lipid and various metabolic intermediates was studied. Mitochondrial oxidation of suc carbons and their incorporation into protein and lipid was significantly lower in diabetic and insulin treated diabetic rats. Diabetic rats failed to exhibit any significant insulin effect on the oxidation of either 2,3 or 1,4-14C suc carbons. Amphibolic channeling of 2,3-14C suc carbons into amino acids was significantly reduced in hepatocytes of diabetic rats, however, more of these carbons were diverted into the gluconeogenesis pathway. Diabetes caused a far greater decrease in the oxidation of 2,3-14C suc carbons as compared to 1,4-14C suc. Based on an earlier report that insulin stimulates only the intramitochondrial Krebs cycle reactions, the authors conclude that the diminished level of anabolic activities in the diabetic rat hepatocytes is due to the subsequent reduction in amphibolic channeling of metabolic intermediates

  13. Metabolic Basis for Thyroid Hormone Liver Preconditioning: Upregulation of AMP-Activated Protein Kinase Signaling

    Directory of Open Access Journals (Sweden)

    Luis A. Videla

    2012-01-01

    Full Text Available The liver is a major organ responsible for most functions of cellular metabolism and a mediator between dietary and endogenous sources of energy for extrahepatic tissues. In this context, adenosine-monophosphate- (AMP- activated protein kinase (AMPK constitutes an intrahepatic energy sensor regulating physiological energy dynamics by limiting anabolism and stimulating catabolism, thus increasing ATP availability. This is achieved by mechanisms involving direct allosteric activation and reversible phosphorylation of AMPK, in response to signals such as energy status, serum insulin/glucagon ratio, nutritional stresses, pharmacological and natural compounds, and oxidative stress status. Reactive oxygen species (ROS lead to cellular AMPK activation and downstream signaling under several experimental conditions. Thyroid hormone (L-3,3′,5-triiodothyronine, T3 administration, a condition that enhances liver ROS generation, triggers the redox upregulation of cytoprotective proteins affording preconditioning against ischemia-reperfusion (IR liver injury. Data discussed in this work suggest that T3-induced liver activation of AMPK may be of importance in the promotion of metabolic processes favouring energy supply for the induction and operation of preconditioning mechanisms. These include antioxidant, antiapoptotic, and anti-inflammatory mechanisms, repair or resynthesis of altered biomolecules, induction of the homeostatic acute-phase response, and stimulation of liver cell proliferation, which are required to cope with the damaging processes set in by IR.

  14. Quantitative Metabolomics and Instationary 13C-Metabolic Flux Analysis Reveals Impact of Recombinant Protein Production on Trehalose and Energy Metabolism in Pichia pastoris

    OpenAIRE

    Joel Jordà; Hugo Cueto Rojas; Marc Carnicer; Aljoscha Wahl; Pau Ferrer; Joan Albiol

    2014-01-01

    Pichia pastoris has been recognized as an effective host for recombinant protein production. In this work, we combine metabolomics and instationary 13C metabolic flux analysis (INST 13C-MFA) using GC-MS and LC-MS/MS to evaluate the potential impact of the production of a Rhizopus oryzae lipase (Rol) on P. pastoris central carbon metabolism. Higher oxygen uptake and CO2 production rates and slightly reduced biomass yield suggest an increased energy demand for the producing strain. This observa...

  15. Muscle protein degradation and amino acid metabolism during prolonged knee-extensor exercise in humans

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Saltin, B; Wagenmakers, A J

    1999-01-01

    The aim of this study was to investigate whether prolonged one-leg knee-extensor exercise enhances net protein degradation in muscle with a normal or low glycogen content. Net amino acid production, as a measure of net protein degradation, was estimated from leg exchange and from changes in the c...... and glutamate extracted in increased amounts from the blood during exercise, are used for the synthesis of glutamine and for tricarboxylic-acid cycle anaplerosis.......The aim of this study was to investigate whether prolonged one-leg knee-extensor exercise enhances net protein degradation in muscle with a normal or low glycogen content. Net amino acid production, as a measure of net protein degradation, was estimated from leg exchange and from changes in the...... concentrations of amino acids that are not metabolized in skeletal muscle. Experiments were performed at rest and during one-leg knee-extensor exercise in six subjects having one leg with a normal glycogen content and the other with a low glycogen content. Exercise was performed for 90 min at a workload of 60...

  16. The orchestra of lipid-transfer proteins at the crossroads between metabolism and signaling.

    Science.gov (United States)

    Chiapparino, Antonella; Maeda, Kenji; Turei, Denes; Saez-Rodriguez, Julio; Gavin, Anne-Claude

    2016-01-01

    Within the eukaryotic cell, more than 1000 species of lipids define a series of membranes essential for cell function. Tightly controlled systems of lipid transport underlie the proper spatiotemporal distribution of membrane lipids, the coordination of spatially separated lipid metabolic pathways, and lipid signaling mediated by soluble proteins that may be localized some distance away from membranes. Alongside the well-established vesicular transport of lipids, non-vesicular transport mediated by a group of proteins referred to as lipid-transfer proteins (LTPs) is emerging as a key mechanism of lipid transport in a broad range of biological processes. More than a hundred LTPs exist in humans and these can be divided into at least ten protein families. LTPs are widely distributed in tissues, organelles and membrane contact sites (MCSs), as well as in the extracellular space. They all possess a soluble and globular domain that encapsulates a lipid monomer and they specifically bind and transport a wide range of lipids. Here, we present the most recent discoveries in the functions and physiological roles of LTPs, which have expanded the playground of lipids into the aqueous spaces of cells. PMID:26658141

  17. The choice of label and measurement technique in tracer studies of body protein metabolism in man

    International Nuclear Information System (INIS)

    The turnover of non-serum proteins in man has had limited study despite the physiological importance of maintaining the balance between synthesis and breakdown of body proteins. Body protein is usually considered as a single pool and breakdown rates are often measured by monitoring excreted label at intervals after pulse labelling with radioactive or 15N amino acids. No label has yet been used for measuring tissue protein breakdown in man which is free from the major problem of label re-utilization. All measurements of breakdown rates, eg. with 75Se-selenomethionine, 15N- or 14C-glycine, give rate constants which are too low. The heterogeneity of body proteins also means that an estimate of the weighted average breakdown rate can only be obtained after following the excretion of isotope for a long period, perhaps of the order of 3-4 half-lives which, for man, would be 100 days after labelling. We therefore use infusions with either 14C- or 15N-labelled amino acids to measure breakdown and synthesis rates: these values are less affected by problems of protein heterogeneity. Single injection techniques are subject to more error than constant infusions of label because of the difficulty of defining the precursor activity. 15N labelling need not be confined to essential amino acids if total protein rather than amino acid turnover is studied: the latter involves measurements of the labelled amino acid itself which is difficult with 15N because of the small amounts of free amino acid nitrogen available. Carbon labelling of non-essential amino acids is unsuitable for studies of protein turnover and the choice of the position of the label on the molecule is important when labelled essential amino acids are employed. Short-term changes in protein metabolism are evaluated better with amino acids with a small pool size; the equilibration time in the excretory bicarbonate pool is also shorter than in the urea pool so that 15N is less useful than carbon labelling. We now use C

  18. Designing asynchronous circuits using NULL convention logic (NCL)

    CERN Document Server

    Smith, Scott

    2009-01-01

    Designing Asynchronous Circuits using NULL Convention Logic (NCL) begins with an introduction to asynchronous (clockless) logic in general, and then focuses on delay-insensitive asynchronous logic design using the NCL paradigm. The book details design of input-complete and observable dual-rail and quad-rail combinational circuits, and then discusses implementation of sequential circuits, which require datapath feedback. Next, throughput optimization techniques are presented, including pipelining, embedding registration, early completion, and NULL cycle reduction. Subsequently, low-power design

  19. Structure and Characterization of Proteins and Enzymes Involved in Nucleotide Metabolism and Iron-Sulfur Proteins

    DEFF Research Database (Denmark)

    Løvgreen, Monika Nøhr; Ooi, Bee Lean

    hindrance caused by the introduced valine side chain. In contrast to the A115V:dTTP structure, an increased number of hydrogen bonds in the WT:dTTP structure favors dTTP binding in the inactive conformation. The reduced number of hydrogen bonds in A115V:dTTP may explain its reduced thermal stability.......8. The crystal structure of D14C [Fe3S4] is the first structure with a [Fe3S4] cluster, in which a cysteine from a full cysteine binding motif is unprotected and facing away from the cluster. The structure is in close resemblance with the WT [Fe3S4] structure. Crystal packing in both D14C and WT [Fe3S4] Fd shows...... extended β-sheet dimers. These dimers were not observed in solution and were likely a result of the high protein concentration in the crystals. WT, A115V and A115G Mt DCD-DUT were successfully purified, and the crystal structure of the A115V variant with dTTP bound was solved. The variants were created...

  20. The use of N15 for the study of protein metabolism, with particular reference to nutritional problems

    International Nuclear Information System (INIS)

    The stable isotopes that have been or might be used for the study of protein metabolism are N15, C13 and D. The subject of this paper is limited to some of the applications of N15 because labelled nitrogen is the most direct tool for the study of nitrogen metabolism. There are advantages and disadvantages to using N15 instead of the radioactive isotopes C14 and S35 which have been widely used in work on protein metabolism, particularly in animals. Most of the principles of experimental design and difficulties of interpretation are the same regardless of the isotope used. There are however, physiological and technical differences which must be considered. For example, nitrogen and sulphur are excreted in the urine, where carbon is excreted by the lungs. In metabolic studies which involve measurements of excretion, particularly cumulative excretion, the use of N15 or S35 is clearly preferable to that of C14

  1. Designing Asynchronous Circuits for Low Power: An IFIR Filter

    DEFF Research Database (Denmark)

    Nielsen, Lars Skovby; Sparsø, Jens

    1999-01-01

    This paper addresses the design of asynchronous circuits for low power through an example: a filter bank for a digital hearing aid. The asynchronous design re-implements an existing synchronous circuit which is used in a commercial product. For comparison, both designs have been fabricated in the...... by numerically small samples). Apart from the improved RAM design, these measures are only viable in an asynchronous design. The principles and techniques explained in this paper are of a general nature, and they apply to the design of asynchronous low-power digital signal-processing circuits in a...

  2. EPOS for Coordination of Asynchronous Sensor Webs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop, integrate, and deploy software-based tools to coordinate asynchronous, distributed missions and optimize observation planning spanning simultaneous...

  3. Metformin revisited: Does this regulator of AMP-activated protein kinase secondarily affect bone metabolism and prevent diabetic osteopathy

    OpenAIRE

    McCarthy, Antonio Desmond; Cortizo, Ana María; Sedlinsky, Claudia

    2016-01-01

    Patients with long-term type 1 and type 2 diabetes mellitus (DM) can develop skeletal complications or “diabetic osteopathy”. These include osteopenia, osteoporosis and an increased incidence of low-stress fractures. In this context, it is important to evaluate whether current anti-diabetic treatments can secondarily affect bone metabolism. Adenosine monophosphate-activated protein kinase (AMPK) modulates multiple metabolic pathways and acts as a sensor of the cellular energy status; recent e...

  4. Effects of Chinese herbal medicine on plasma glucose, protein and energy metabolism in sheep

    Institute of Scientific and Technical Information of China (English)

    Xi Liang; Kyota Yamazaki; Mohammad Kamruzzaman; Xue Bi; Arvinda Panthee; Hiroaki Sano

    2014-01-01

    Background:The use of antibiotics in animal diets is facing negative feedback due to the hidden danger of drug residues to human health. Traditional Chinese herbal medicine has been used to replace antibiotics in the past two decades and played an increasingly important role in livestock production. The present study was carried out to assess the feeding effects of a traditional nourishing Chinese herbal medicine mixture on kinetics of plasma glucose, protein and energy metabolism in sheep. Ruminal fermentation characteristics were also determined. Methods:Four sheep were fed on either mixed hay (MH-diet) or MH-diet supplemented with 2%of Chinese herbal medicine (mixture of Astragalus root, Angelica root and Atractylodes rhizome;CHM-diet) over two 35-day periods using a crossover design. The turnover rate of plasma glucose was measured with an isotope dilution method using [U-13C]glucose. The rates of plasma leucine turnover and leucine oxidation, whole body protein synthesis (WBPS) and metabolic heat production were measured using the [1-13C]leucine dilution and open circuit calorimetry. Results:Body weight gain of sheep was higher (P=0.03) for CHM-diet than for MH-diet. Rumen pH was lower (P=0.02), concentration of rumen total volatile fatty acid tended to be higher (P=0.05) and acetate was higher (P=0.04) for CHM-diet than for MH-diet. Turnover rates of plasma glucose and leucine did not differ between diets. Oxidation rate of leucine tended to be higher (P=0.06) for CHM-diet than for MH-diet, but the WBPS did not differ between diets. Metabolic heat production tended to be greater (P=0.05) for CHM-diet than for MH-diet. Conclusions:The sheep fed on CHM-diet had a higher body weight gain and showed positive impacts on rumen fermentation and energy metabolism without resulting in any adverse response. Therefore, these results suggested that the Chinese herbal medicine mixture should be considered as a potential feed additive for sheep.

  5. Highly sensitive C reactive protein in patients with metabolic syndrome and cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Mukta N Chowta

    2012-01-01

    Full Text Available Context: Although there are several studies reported in the western literature regarding the association of C reactive protein (CRP level with components of metabolic syndrome, data in the Indian population were lacking. As there will be a considerable difference in the profile of risk factors for cardiovascular diseases (CVDs, studies regarding the correlation of CRP level with cardiovascular risk factors and metabolic syndrome in the Indian population are required. Objective: To correlate the highly sensitive CRP (hsCRP level to individual components of metabolic syndrome and coronary vascular disease. Materials and Methods : Forty patients who were diagnosed clinically with metabolic syndrome were included in the study. Detailed history with regard to diabetes mellitus, hypertension and other CVD was collected from each patient. All the patients underwent complete physical examination, including ECG. Height, weight, fasting blood glucose and lipid levels were measured in all the patients. CVD was assessed with the following: new-onset angina, fatal and non-fatal myocardial infarction or stroke, transient ischemic attack, heart failure or intermittent claudication. Results: The mean hsCRP level was higher in patients with CVD compared with those without CVD. The CRP level correlation with CVD showed a statistically significant correlation. hsCRP level was very high in eight hypertensive patients, whereas it was very high in five normotensives. But, statistical analysis has not shown any significant correlation between hypertension and hsCRP level. Similarly, although a higher hsCRP level was seen in diabeteics, statistical analysis failed to show a significant correlation between diabetes and the hsCRP level. Analyses of hsCRP correlation with body mass index, fasting glucose, cholesterol, triglycerides, high-density lipoprotein and low-density lipoprotein did not show a significant correlation with the hsCRP level. Conclusions: Increased hs

  6. Effect of Different Protein Levels On Nutrient Digestion Metabolism and Serum Biochemical Parameters in Calves

    Institute of Scientific and Technical Information of China (English)

    LI Hui; DIAO Qi-yu; ZHANG Nai-feng; TU Yan; WANG Ji-feng

    2008-01-01

    The current study has been performed to examine the effects of different dietary protein levels on the growth,nutrient digestion and absorption,as well as biochemical parameters in calves.Nine healthy newborn calves were selected,randomly divided into 3 groups and fed 3 milk replacers with different protein levels(18,22,and 26%),respectively.Five period-digestion-metabolism trials were taken between 12-20,22-30,32-40,42-50,and 52-60 days after birth.All 3 groups showed a similar growth curve during 11 to 61 experimental days,however,the growth rate of the 22%crude protein(CP) group was 8.89%higher than that of the 18%CP group and 19.48%higher than that of the 26%CP group.respectively. The apparent digestibility of dry material(DM)declined gradually with age,whereas,the apparent digestibility of N,extract ether(EE)rose slightly.Compared to the 22%CP and 26%CP group,calves fed with 18%CP apparently had a lower digestibility than DM,EE,and nitrogen(N).The average apparent digestibilities of N were 69.39,75.36,and 74.55%, respectively.Both the apparent digestibility and retention of calcium(Ca)and phosphorus(P)were steady throughout the experiment,but the average apparent digestibility of P in the 26%CP group was only 63.83%,which was markedly lower than that of the 18%CP group(70.40%)and 22%CP group(69.73%).In addition,the sernm concentrations of total protein(TP),albumin(ALB),and globulin(GLOB)of the 22%CP group were higher than those in the 18%CP and 26%CP groups.The urea N(BUN)content in the 18%CP group,on the other hand,was significantly lower than that of the other two groups.The highest glucose(GLU)concentration was found in the 22%CP group(5.38 mmol L-1),at the end of the trials.The protein levels in the milk replacer affected the digestion metabolism of nutrition and the serum biochemical parameters of calves at different physiological phases.Calves fed with 22%CP milk replacer had a better growth performance than the other groups.

  7. High-sensitivity C-reactive protein predicts target organ damage in Chinese patients with metabolic syndrome

    DEFF Research Database (Denmark)

    Zhao, Zhigang; Nie, Hai; He, Hongbo;

    2007-01-01

    with metabolic syndrome. A total of 1082 consecutive patients of Chinese origin were screened for the presence of metabolic syndrome according to the National Cholesterol Education Program's Adult Treatment Panel III. High-sensitivity C-reactive protein and target organ damage, including cardiac...... hypertrophy, carotid intima-media thickness, and renal impairment, were investigated. The median (25th and 75th percentiles) of high-sensitivity C-reactive protein in 619 patients with metabolic syndrome was 2.42 mg/L (0.75 and 3.66 mg/L) compared with 1.13 mg/L (0.51 and 2.46 mg/L) among 463 control subjects...... (P <.01). There was a progressive increase in high-sensitivity C-reactive protein level with the number of components of the metabolic syndrome. Stratification of patients with metabolic syndrome into 3 groups according to their high-sensitivity C-reactive protein concentrations (3.0 mg/L) showed...

  8. AMP-activated protein kinase: an emerging drug target to regulate imbalances in lipid and carbohydrate metabolism to treat cardio-metabolic diseases.

    Science.gov (United States)

    Srivastava, Rai Ajit K; Pinkosky, Stephen L; Filippov, Sergey; Hanselman, Jeffrey C; Cramer, Clay T; Newton, Roger S

    2012-12-01

    The adenosine monophosphate-activated protein kinase (AMPK) is a metabolic sensor of energy metabolism at the cellular as well as whole-body level. It is activated by low energy status that triggers a switch from ATP-consuming anabolic pathways to ATP-producing catabolic pathways. AMPK is involved in a wide range of biological activities that normalizes lipid, glucose, and energy imbalances. These pathways are dysregulated in patients with metabolic syndrome (MetS), which represents a clustering of major cardiovascular risk factors including diabetes, lipid abnormalities, and energy imbalances. Clearly, there is an unmet medical need to find a molecule to treat alarming number of patients with MetS. AMPK, with multifaceted activities in various tissues, has emerged as an attractive drug target to manage lipid and glucose abnormalities and maintain energy homeostasis. A number of AMPK activators have been tested in preclinical models, but many of them have yet to reach to the clinic. This review focuses on the structure-function and role of AMPK in lipid, carbohydrate, and energy metabolism. The mode of action of AMPK activators, mechanism of anti-inflammatory activities, and preclinical and clinical findings as well as future prospects of AMPK as a drug target in treating cardio-metabolic disease are discussed. PMID:22798688

  9. The influence of maternal protein nutrition on offspring development and metabolism: the role of glucocorticoids.

    Science.gov (United States)

    Almond, K; Bikker, P; Lomax, M; Symonds, M E; Mostyn, A

    2012-02-01

    The consequences of sub-optimal nutrition through alterations in the macronutrient content of the maternal diet will not simply be reflected in altered neonatal body composition and increased mortality, but are likely to continue into adulthood and confer greater risk of metabolic disease. One mechanism linking manipulations of the maternal environment to an increased risk of later disease is enhanced fetal exposure to glucocorticoids (GC). Tissue sensitivity to cortisol is regulated, in part, by the GC receptor and 11β-hydroxysteroid dehydrogenase (11β-HSD) types 1 and 2. Several studies have shown the effects of maternal undernutrition, particularly low-protein diets, on the programming of GC action in the offspring; however, dietary excess is far more characteristic of the diets consumed by contemporary pregnant women. This study investigated the programming effects of moderate protein supplementation in pigs throughout pregnancy. We have demonstrated an up-regulation of genes involved in GC sensitivity, such as GC receptor and 11β-HSD, in the liver, but have yet to detect any other significant changes in these piglets, with no differences observed in body weight or composition. This increase in GC sensitivity was similar to the programming effects observed following maternal protein restriction or global undernutrition during pregnancy. PMID:22123495

  10. Intracellular transport of secretory proteins in the pancreatic exocrine cell. IV. Metabolic requirements.

    Science.gov (United States)

    Jamieson, J D; Palade, G E

    1968-12-01

    Since in the pancreatic exocrine cell synthesis and intracellular transport of secretory proteins can be uncoupled (1), it is possible to examine separately the metabolic requirements of the latter process. To this intent, guinea pig pancreatic slices were pulse labeled with leucine-(3)H for 3 min and incubated post-pulse for 37 min in chase medium containing 5 x 10(-4)M cycloheximide and inhibitors of glycolysis, respiration, or oxidative phosphorylation. In each case, the effect on transport was assessed by measuring the amount of labeled secretory proteins found in zymogen granule fractions isolated from the corresponding slices. This assay is actually a measure of the efficiency of transport of secretory proteins from the cisternae of the rough endoplasmic reticulum (RER) to the condensing vacuoles of the Golgi complex which are recovered in the zymogen granule fraction (16). The results indicate that transport is insensitive to glycolytic inhibitors (fluoride, iodoacetate) but is blocked by respiratory inhibitors (N(2), cyanide, Antimycin A) and by inhibitors of oxidative phosphorylation (dinitrophenol, oligomycin). Except for Antimycin A, the effect is reversible. Parallel radioautographic studies and cell fractionation procedures applied to microsomal subfractions have indicated that the energy-dependent step is located between the transitional elements of the RER and the small, smooth-surfaced vesicles at the periphery of the Golgi complex. Radiorespirometric data indicate that the substrates oxidized to support transport are endogenous long-chain fatty acids. PMID:5699933

  11. Proteomic Analysis of Protein Turnover by Metabolic Whole Rodent Pulse-Chase Isotopic Labeling and Shotgun Mass Spectrometry Analysis.

    Science.gov (United States)

    Savas, Jeffrey N; Park, Sung Kyu; Yates, John R

    2016-01-01

    The analysis of protein half-life and degradation dynamics has proven critically important to our understanding of a broad and diverse set of biological conditions ranging from cancer to neurodegeneration. Historically these protein turnover measures have been performed in cells by monitoring protein levels after "pulse" labeling of newly synthesized proteins and subsequent chase periods. Comparing the level of labeled protein remaining as a function of time to the initial level reveals the protein's half-life. In this method we provide a detailed description of the workflow required for the determination of protein turnover rates on a whole proteome scale in vivo.Our approach starts with the metabolic labeling of whole rodents by restricting all the nitrogen in their diet to exclusively nitrogen-15 in the form of spirulina algae. After near complete organismal labeling with nitrogen-15, the rodents are then switched to a normal nitrogen-14 rich diet for time periods of days to years. Tissues are harvested, the extracts are fractionated, and the proteins are digested to peptides. Peptides are separated by multidimensional liquid chromatography and analyzed by high resolution orbitrap mass spectrometry (MS). The nitrogen-15 containing proteins are then identified and measured by the bioinformatic proteome analysis tools Sequest, DTASelect2, and Census. In this way, our metabolic pulse-chase approach reveals in vivo protein decay rates proteome-wide. PMID:26867752

  12. Energy dense, protein restricted diet increases adiposity and perturbs metabolism in young, genetically lean pigs.

    Directory of Open Access Journals (Sweden)

    Kimberly D Fisher

    Full Text Available Animal models of obesity and metabolic dysregulation during growth (or childhood are lacking. Our objective was to increase adiposity and induce metabolic syndrome in young, genetically lean pigs. Pre-pubertal female pigs, age 35 d, were fed a high-energy diet (HED; n = 12, containing 15% tallow, 35% refined sugars and 9.1-12.9% crude protein, or a control corn-based diet (n = 11 with 12.2-19.2% crude protein for 16 wk. Initially, HED pigs self-regulated energy intake similar to controls, but by wk 5, consumed more (P<0.001 energy per kg body weight. At wk 15, pigs were subjected to an oral glucose tolerance test (OGTT; blood glucose increased (P<0.05 in control pigs and returned to baseline levels within 60 min. HED pigs were hyperglycemic at time 0, and blood glucose did not return to baseline (P = 0.01, even 4 h post-challenge. During OGTT, glucose area under the curve (AUC was higher and insulin AUC was lower in HED pigs compared to controls (P = 0.001. Chronic HED intake increased (P<0.05 subcutaneous, intramuscular, and perirenal fat deposition, and induced hyperglycemia, hypoinsulinemia, and low-density lipoprotein hypercholesterolemia. A subset of HED pigs (n = 7 was transitioned back to a control diet for an additional six weeks. These pigs were subjected to an additional OGTT at 22 wk. Glucose AUC and insulin AUC did not improve, supporting that dietary intervention was not sufficient to recover glucose tolerance or insulin production. These data suggest a HED may be used to increase adiposity and disrupt glucose homeostasis in young, growing pigs.

  13. Vertebrate patatin-like phospholipase domain-containing protein 4 (PNPLA4) genes and proteins: a gene with a role in retinol metabolism

    OpenAIRE

    Holmes, Roger S

    2012-01-01

    At least eight families of mammalian patatin-like phospholipase domain-containing proteins (PNPLA) (E.C. 3.1.1.3) catalyse the hydrolysis of triglycerides, including PNPLA4 (alternatively PLPL4 or GS2), which also acts as a retinol transacylase and participates in retinol-ester metabolism in the body. Bioinformatic methods were used to predict the amino acid sequences, secondary and tertiary structures and gene locations for PNPLA4 genes and encoded proteins using data from several vertebrate...

  14. Localized radio frequency communication using asynchronous transfer mode protocol

    Science.gov (United States)

    Witzke, Edward L.; Robertson, Perry J.; Pierson, Lyndon G.

    2007-08-14

    A localized wireless communication system for communication between a plurality of circuit boards, and between electronic components on the circuit boards. Transceivers are located on each circuit board and electronic component. The transceivers communicate with one another over spread spectrum radio frequencies. An asynchronous transfer mode protocol controls communication flow with asynchronous transfer mode switches located on the circuit boards.

  15. Integrating Asynchronous Digital Design Into the Computer Engineering Curriculum

    Science.gov (United States)

    Smith, S. C.; Al-Assadi, W. K.; Di, J.

    2010-01-01

    As demand increases for circuits with higher performance, higher complexity, and decreased feature size, asynchronous (clockless) paradigms will become more widely used in the semiconductor industry, as evidenced by the International Technology Roadmap for Semiconductors' (ITRS) prediction of a likely shift from synchronous to asynchronous design…

  16. Asynchronous Learning Sources in a High-Tech Organization

    Science.gov (United States)

    Bouhnik, Dan; Giat, Yahel; Sanderovitch, Yafit

    2009-01-01

    Purpose: The purpose of this study is to characterize learning from asynchronous sources among research and development (R&D) personnel. It aims to examine four aspects of asynchronous source learning: employee preferences regarding self-learning; extent of source usage; employee satisfaction with these sources and the effect of the sources on the…

  17. Teaching Presence and Communication Timeliness in Asynchronous Online Courses

    Science.gov (United States)

    Skramstad, Erik; Schlosser, Charles; Orellana, Anymir

    2012-01-01

    This study examined student perceptions of teaching presence and communication timeliness in asynchronous online courses. Garrison, Anderson, and Archer's (2000) community of inquiry model provided the framework for the survey research methodology used. Participants were 59 student volunteers taking 1 or more asynchronous online graduate courses.…

  18. Considerations regarding asynchronous motor rotor parameters determination by FEM

    Directory of Open Access Journals (Sweden)

    Olivian Chiver

    2010-12-01

    Full Text Available The paper presents some considerations about asynchronous motor rotor parameters determination, using software based on finite elements method (FEM. For this, 2D magnetostatic and time harmonic analysis will be realized, at different frequencies, in case of a three phase asynchronous motor.

  19. Considerations regarding asynchronous motor rotor parameters determination by FEM

    OpenAIRE

    Olivian Chiver; Liviu Neamt; Zoltan Erdei; Eleonora Pop

    2010-01-01

    The paper presents some considerations about asynchronous motor rotor parameters determination, using software based on finite elements method (FEM). For this, 2D magnetostatic and time harmonic analysis will be realized, at different frequencies, in case of a three phase asynchronous motor.

  20. Exercise training and work task induced metabolic and stress-related mRNA and protein responses in myalgic muscles

    DEFF Research Database (Denmark)

    Sjøgaard, Gisela; Zebis, Mette Kreutzfeldt; Kiilerich, Kristian;

    2013-01-01

    The aim was to assess mRNA and/or protein levels of heat shock proteins, cytokines, growth regulating, and metabolic proteins in myalgic muscle at rest and in response to work tasks and prolonged exercise training. A randomized controlled trial included 28 females with trapezius myalgia and 16...... healthy controls. Those with myalgia performed similar to 7 hrs repetitive stressful work and were subsequently randomized to 10 weeks of specific strength training, general fitness training, or reference intervention. Muscles biopsies were taken from the trapezius muscle at baseline, after work and after...... 10 weeks intervention. The main findings are that the capacity of carbohydrate oxidation was reduced in myalgic compared with healthy muscle. Repetitive stressful work increased mRNA content for heat shock proteins and decreased levels of key regulators for growth and oxidative metabolism. In...

  1. Preoperative overnight parenteral nutrition (TPN) improves skeletal muscle protein metabolism indicated by microarray algorithm analyses in a randomized trial

    OpenAIRE

    Iresjö, Britt‐Marie; Engström, Cecilia; Lundholm, Kent

    2016-01-01

    Abstract Loss of muscle mass is associated with increased risk of morbidity and mortality in hospitalized patients. Uncertainties of treatment efficiency by short‐term artificial nutrition remain, specifically improvement of protein balance in skeletal muscles. In this study, algorithmic microarray analysis was applied to map cellular changes related to muscle protein metabolism in human skeletal muscle tissue during provision of overnight preoperative total parenteral nutrition (TPN). Twenty...

  2. The Components of Flemingia macrophylla Attenuate Amyloid β-Protein Accumulation by Regulating Amyloid β-Protein Metabolic Pathway

    Directory of Open Access Journals (Sweden)

    Yun-Lian Lin

    2012-01-01

    Full Text Available Flemingia macrophylla (Leguminosae is a popular traditional remedy used in Taiwan as anti-inflammatory, promoting blood circulation and antidiabetes agent. Recent study also suggested its neuroprotective activity against Alzheimer's disease. Therefore, the effects of F. macrophylla on Aβ production and degradation were studied. The effect of F. macrophylla on Aβ metabolism was detected using the cultured mouse neuroblastoma cells N2a transfected with human Swedish mutant APP (swAPP-N2a cells. The effects on Aβ degradation were evaluated on a cell-free system. An ELISA assay was applied to detect the level of Aβ1-40 and Aβ1-42. Western blots assay was employed to measure the levels of soluble amyloid precursor protein and insulin degrading enzyme (IDE. Three fractions of F. macrophylla modified Aβ accumulation by both inhibiting β-secretase and activating IDE. Three flavonoids modified Aβ accumulation by activating IDE. The activated IDE pool by the flavonoids was distinctly regulated by bacitracin (an IDE inhibitor. Furthermore, flavonoid 94-18-13 also modulates Aβ accumulation by enhancing IDE expression. In conclusion, the components of F. macrophylla possess the potential for developing new therapeutic drugs for Alzheimer's disease.

  3. Selective particle capture by asynchronously beating cilia

    Science.gov (United States)

    Ding, Yang; Kanso, Eva

    2015-12-01

    Selective particle filtration is fundamental in many engineering and biological systems. For example, many aquatic microorganisms use filter feeding to capture food particles from the surrounding fluid, using motile cilia. One of the capture strategies is to use the same cilia to generate feeding currents and to intercept particles when the particles are on the downstream side of the cilia. Here, we develop a 3D computational model of ciliary bands interacting with flow suspended particles and calculate particle trajectories for a range of particle sizes. Consistent with experimental observations, we find optimal particle sizes that maximize capture rate. The optimal size depends nonlinearly on cilia spacing and cilia coordination, synchronous vs. asynchronous. These parameters affect the cilia-generated flow field, which in turn affects particle trajectories. The low capture rate of smaller particles is due to the particles' inability to cross the flow streamlines of neighboring cilia. Meanwhile, large particles have difficulty entering the sub-ciliary region once advected downstream, also resulting in low capture rates. The optimal range of particle sizes is enhanced when cilia beat asynchronously. These findings have potentially important implications on the design and use of biomimetic cilia in processes such as particle sorting in microfluidic devices.

  4. Nitrogen metabolism and protozoa production rate in cattle fed on diet containing protected protein

    International Nuclear Information System (INIS)

    Nitrogen metabolism and protozoa production rate using 14C-choline as marker were studied on 9 adult male crossbred (Tharparker x Brown Swiss) rumen fistulated animals divided into 3 groups (A, B and C). All the animals were fed concentrate mixture and wheatstraw. However, groundnut cake (GNC) in concentrate mixture was untreated in group A, 50 per cent formaldehyde treated in group B and 100 per cent formaldehyde treated in group C. Although, DM intake was similar in these groups but water intake was significantly (P<0.05) higher in control group. Total-N, ammonia-N and blood urea were significantly lower in group B and C as compared to group A. Apparent CP digestibility was not affected by addition of formaldehyde treated GNC at 50 and 100 per cent levels. However, N balances increased significantly (P<0.05) due to addition of protected protein in diet. Protozoal pool as well as production rate were significantly (P<0.01) decreased due to formaldehyde treatment of GNC protein. Thus addition of formaldehyde treated GNC in diets decreased ammonia and protozoa production but increased N retention in groups B and C. (author). 27 refs., 3 tabs., 2 figs

  5. Coupling Bioorthogonal Chemistries with Artificial Metabolism: Intracellular Biosynthesis of Azidohomoalanine and Its Incorporation into Recombinant Proteins

    Directory of Open Access Journals (Sweden)

    Ying Ma

    2014-01-01

    Full Text Available In this paper, we present a novel, “single experiment” methodology based on genetic engineering of metabolic pathways for direct intracellular production of non-canonical amino acids from simple precursors, coupled with expanded genetic code. In particular, we engineered the intracellular biosynthesis of L-azidohomoalanine from O-acetyl-L-homoserine and NaN3, and achieved its direct incorporation into recombinant target proteins by AUG codon reassignment in a methionine-auxotroph E. coli strain. In our system, the host’s methionine biosynthetic pathway was first diverted towards the production of the desired non-canonical amino acid by exploiting the broad reaction specificity of recombinant pyridoxal phosphate-dependent O-acetylhomoserine sulfhydrylase from Corynebacterium glutamicum. Then, the expression of the target protein barstar, accompanied with efficient L-azidohomoalanine incorporation in place of L-methionine, was accomplished. This work stands as proof-of-principle and paves the way for additional work towards intracellular production and site-specific incorporation of biotechnologically relevant non-canonical amino acids directly from common fermentable sources.

  6. Rice bran proteins and their hydrolysates modulate cholesterol metabolism in mice on hypercholesterolemic diets.

    Science.gov (United States)

    Zhang, Huijuan; Wang, Jing; Liu, Yingli; Gong, Lingxiao; Sun, Baoguo

    2016-06-15

    The hypolipidemic properties of defatted rice bran protein (DRBP), fresh rice bran protein (FRBP), DRBP hydrolysates (DRBPH), and FRBP hydrolysates (FRBPH) were determined in mice on high fat diets for four weeks. Very low-density lipoprotein cholesterol (VLDL-C), low-density lipoprotein cholesterol (LDL-C) contents, and the hepatic total cholesterol content were reduced while fecal total cholesterol and total bile acid (TBA) contents were increased in the FRBPH diet group. The expression levels of hepatic genes for cholesterol biosynthesis HMG-CoAR and SREBP-2 were lowest in the FRBPH diet group. The mRNA level of HMG-CoAR was significantly positively correlated with the hepatic TG content (r = 0.82, P < 0.05). The mRNA levels of genes related to bile acid biosynthesis and cholesterol efflux, CYP7A1, ABCA1, and PPARγ were up-regulated in all test groups. The results suggest that FRBPH regulates cholesterol metabolism in mice fed the high fat and cholesterol diet by increasing fecal steroid excretion and expression levels of genes related to bile acid synthesis and cholesterol efflux, and the down-regulation of the expression levels of genes related to cholesterol biosynthesis. PMID:27216972

  7. Influence of some simulated factors of cosmic flight on mineral and protein metabolism in the maxillodental system of rats

    International Nuclear Information System (INIS)

    Mineral and protein metabolic changes in hard tissues of the maxillodental system, as opposed to skeletal bone, were studied in model experiments simulating space flight, with extreme factors given solely or combined: hypergravitation, ionizing radiation, magnetically activated water. Alterations occurring in protein synthesis proved to be the key events, whereas those in individual mineral components were either insignificant or of secondary nature. Long-term ingestion of magnetically activated water reduced radiation susceptibility of metabolic processes in mineralized tissues, but affected unfavorably the complex of signs resulting from combined exposure to extreme factors. Administration of a radioprotective drug, Adeturone, in treatments involving acceleration plus radiation led to normalization or partial balancing of metabolic processes in the mineral and organic components of maxillodental hard tissues and skeletal bone. The evidence obtained adds thus an anti-osteolathyrogenic feature to the radioprotective characteristics of Adeturone

  8. EFFECTS OF CORDYCEPS SINENSIS PREPARATION ON BODY PROTEIN AND AMINO ACID METABOLISM IN PATIENTS AND RATS WITH CHRONIC RENAL FAILURE

    Institute of Scientific and Technical Information of China (English)

    朱淳; 刘强; 左静南; 朱汉威; 马济民

    2002-01-01

    Objective To study the effects of Cordyceps sinensis (CS) on the metabolism of body protein and intra-extracellular amino acids in patients with chronic renal failure( CRF) , and on the rates of protein synthesis in rats with CRF. Methods In patients with CRF, free amino acid concentrations in plasma and skeletal muscle before and after CS treatment were measured by the LKB-4400 amino acid automatic analytical instrument and the changes of body protein metabolism were observed by the method of 15 N-labeled glycine.Meanwhile, the rates of protein synthesis in liver ( SL % /d ) and muscle (SM%/d) of rats with CRF were determinedd by 3f-phenylalanine radioactive tracer. Results After patients with CRF were treated by CS, the Leu, lie, Thr , Lys, Cys, Tyr concentrations in plasma approached the normal levels. In one sample of skeletal muscle the Thr and Lys concentrations approached the normal, whereas both the intracellular and extracellular Val concentrations were still remarkably decreased as compared with the normal controls. Moreover, the nitrogen flow rate (Q) , rates of protein synthesis (S) and catabolism ( C) , and amino nitrogen utilization ratio (S/Q) in patients with CRF and the SL % /d and SM%/d in rats with CRF were significantly increased as compared with those before CS treatment. Conclusion CS can notably improve the amino acid metabolism, promote the body protein synthesis in patients with CRF , and increase the rates of SL % /d and SM%/d in rats with CRF.

  9. Identifying molecular effects of diet through systems biology: influence of herring diet on sterol metabolism and protein turnover in mice.

    Directory of Open Access Journals (Sweden)

    Intawat Nookaew

    Full Text Available BACKGROUND: Changes in lifestyle have resulted in an epidemic development of obesity-related diseases that challenge the healthcare systems worldwide. To develop strategies to tackle this problem the focus is on diet to prevent the development of obesity-associated diseases such as cardiovascular disease (CVD. This will require methods for linking nutrient intake with specific metabolic processes in different tissues. METHODOLOGY/PRINCIPAL FINDING: Low-density lipoprotein receptor-deficient (Ldlr -/- mice were fed a high fat/high sugar diet to mimic a westernized diet, being a major reason for development of obesity and atherosclerosis. The diets were supplemented with either beef or herring, and matched in macronutrient contents. Body composition, plasma lipids and aortic lesion areas were measured. Transcriptomes of metabolically important tissues, e.g. liver, muscle and adipose tissue were analyzed by an integrated approach with metabolic networks to directly map the metabolic effects of diet in these different tissues. Our analysis revealed a reduction in sterol metabolism and protein turnover at the transcriptional level in herring-fed mice. CONCLUSION: This study shows that an integrated analysis of transcriptome data using metabolic networks resulted in the identification of signature pathways. This could not have been achieved using standard clustering methods. In particular, this systems biology analysis could enrich the information content of biomedical or nutritional data where subtle changes in several tissues together affects body metabolism or disease progression. This could be applied to improve diets for subjects exposed to health risks associated with obesity.

  10. Aroclor 1254, a developmental neurotoxicant, alters energy metabolism- and intracellular signaling-associated protein networks in rat cerebellum and hippocampus

    International Nuclear Information System (INIS)

    The vast literature on the mode of action of polychlorinated biphenyls (PCBs) indicates that PCBs are a unique model for understanding the mechanisms of toxicity of environmental mixtures of persistent chemicals. PCBs have been shown to adversely affect psychomotor function and learning and memory in humans. Although the molecular mechanisms for PCB effects are unclear, several studies indicate that the disruption of Ca2+-mediated signal transduction plays significant roles in PCB-induced developmental neurotoxicity. Culminating events in signal transduction pathways include the regulation of gene and protein expression, which affects the growth and function of the nervous system. Our previous studies showed changes in gene expression related to signal transduction and neuronal growth. In this study, protein expression following developmental exposure to PCB is examined. Pregnant rats (Long Evans) were dosed with 0.0 or 6.0 mg/kg/day of Aroclor-1254 from gestation day 6 through postnatal day (PND) 21, and the cerebellum and hippocampus from PND14 animals were analyzed to determine Aroclor 1254-induced differential protein expression. Two proteins were found to be differentially expressed in the cerebellum following PCB exposure while 18 proteins were differentially expressed in the hippocampus. These proteins are related to energy metabolism in mitochondria (ATP synthase, sub unit β (ATP5B), creatine kinase, and malate dehydrogenase), calcium signaling (voltage-dependent anion-selective channel protein 1 (VDAC1) and ryanodine receptor type II (RyR2)), and growth of the nervous system (dihydropyrimidinase-related protein 4 (DPYSL4), valosin-containing protein (VCP)). Results suggest that Aroclor 1254-like persistent chemicals may alter energy metabolism and intracellular signaling, which might result in developmental neurotoxicity. -- Highlights: ► We performed brain proteomic analysis of rats exposed to the neurotoxicant, Aroclor 1254. ► Cerebellum and

  11. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels.

    Science.gov (United States)

    Smith, M Ryan; Vayalil, Praveen K; Zhou, Fen; Benavides, Gloria A; Beggs, Reena R; Golzarian, Hafez; Nijampatnam, Bhavitavya; Oliver, Patsy G; Smith, Robin A J; Murphy, Michael P; Velu, Sadanandan E; Landar, Aimee

    2016-08-01

    Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compound, iodobutyl triphenylphosphonium (IBTP), decreased mitochondrial metabolism and ATP in MDA-MB 231 (MB231) breast adenocarcinoma cells up to 6 days after an initial 24h treatment. Mitochondrial thiol modification also depressed oxygen consumption rates (OCR) in a dose-dependent manner to a greater extent than a non-thiol modifying analog, suggesting that thiol reactivity is an important factor in the inhibition of cancer cell metabolism. In non-tumorigenic MCF-10A cells, IBTP also decreased OCR; however the extracellular acidification rate was significantly increased at all but the highest concentration (10µM) of IBTP indicating that thiol modification can have significantly different effects on bioenergetics in tumorigenic versus non-tumorigenic cells. ATP and other adenonucleotide levels were also decreased by thiol modification up to 6 days post-treatment, indicating a decreased overall energetic state in MB231 cells. Cellular proliferation of MB231 cells was also inhibited up to 6 days post-treatment with little change to cell viability. Targeted metabolomic analyses revealed that thiol modification caused depletion of both Krebs cycle and glutaminolysis intermediates. Further experiments revealed that the activity of the Krebs cycle enzyme, aconitase, was attenuated in response to thiol modification. Additionally, the inhibition of glutaminolysis corresponded to decreased glutaminase C (GAC) protein levels, although other protein levels were unaffected. This study

  12. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels

    Directory of Open Access Journals (Sweden)

    M. Ryan Smith

    2016-08-01

    Full Text Available Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compound, iodobutyl triphenylphosphonium (IBTP, decreased mitochondrial metabolism and ATP in MDA-MB 231 (MB231 breast adenocarcinoma cells up to 6 days after an initial 24 h treatment. Mitochondrial thiol modification also depressed oxygen consumption rates (OCR in a dose-dependent manner to a greater extent than a non-thiol modifying analog, suggesting that thiol reactivity is an important factor in the inhibition of cancer cell metabolism. In non-tumorigenic MCF-10A cells, IBTP also decreased OCR; however the extracellular acidification rate was significantly increased at all but the highest concentration (10 µM of IBTP indicating that thiol modification can have significantly different effects on bioenergetics in tumorigenic versus non-tumorigenic cells. ATP and other adenonucleotide levels were also decreased by thiol modification up to 6 days post-treatment, indicating a decreased overall energetic state in MB231 cells. Cellular proliferation of MB231 cells was also inhibited up to 6 days post-treatment with little change to cell viability. Targeted metabolomic analyses revealed that thiol modification caused depletion of both Krebs cycle and glutaminolysis intermediates. Further experiments revealed that the activity of the Krebs cycle enzyme, aconitase, was attenuated in response to thiol modification. Additionally, the inhibition of glutaminolysis corresponded to decreased glutaminase C (GAC protein levels, although other protein levels were

  13. Synaptotagmin-7 is an asynchronous calcium sensor for synaptic transmission in neurons expressing SNAP-23.

    Directory of Open Access Journals (Sweden)

    Jens P Weber

    Full Text Available Synchronization of neurotransmitter release with the presynaptic action potential is essential for maintaining fidelity of information transfer in the central nervous system. However, synchronous release is frequently accompanied by an asynchronous release component that builds up during repetitive stimulation, and can even play a dominant role in some synapses. Here, we show that substitution of SNAP-23 for SNAP-25 in mouse autaptic glutamatergic hippocampal neurons results in asynchronous release and a higher frequency of spontaneous release events (mEPSCs. Use of neurons from double-knock-out (SNAP-25, synaptotagmin-7 mice in combination with viral transduction showed that SNAP-23-driven release is triggered by endogenous synaptotagmin-7. In the absence of synaptotagmin-7 release became even more asynchronous, and the spontaneous release rate increased even more, indicating that synaptotagmin-7 acts to synchronize release and suppress spontaneous release. However, compared to synaptotagmin-1, synaptotagmin-7 is a both leaky and asynchronous calcium sensor. In the presence of SNAP-25, consequences of the elimination of synaptotagmin-7 were small or absent, indicating that the protein pairs SNAP-25/synaptotagmin-1 and SNAP-23/synaptotagmin-7 might act as mutually exclusive calcium sensors. Expression of fusion proteins between pHluorin (pH-sensitive GFP and synaptotagmin-1 or -7 showed that vesicles that fuse using the SNAP-23/synaptotagmin-7 combination contained synaptotagmin-1, while synaptotagmin-7 barely displayed activity-dependent trafficking between vesicle and plasma membrane, implying that it acts as a plasma membrane calcium sensor. Overall, these findings support the idea of alternative syt∶SNARE combinations driving release with different kinetics and fidelity.

  14. Lipoic acid entrains the hepatic circadian clock and lipid metabolic proteins that have been desynchronized with advanced age

    International Nuclear Information System (INIS)

    Highlights: • 24 month old rats were supplemented with 0.2% lipoic acid in the diet for 2 weeks. • Lipoic acid shifts phase of core circadian clock proteins. • Lipoic acid corrects age-induced desynchronized lipid metabolism rhythms. - Abstract: It is well established that lipid metabolism is controlled, in part, by circadian clocks. However, circadian clocks lose temporal precision with age and correlates with elevated incidence in dyslipidemia and metabolic syndrome in older adults. Because our lab has shown that lipoic acid (LA) improves lipid homeostasis in aged animals, we hypothesized that LA affects the circadian clock to achieve these results. We fed 24 month old male F344 rats a diet supplemented with 0.2% (w/w) LA for 2 weeks prior to sacrifice and quantified hepatic circadian clock protein levels and clock-controlled lipid metabolic enzymes. LA treatment caused a significant phase-shift in the expression patterns of the circadian clock proteins Period (Per) 2, Brain and Muscle Arnt-Like1 (BMAL1), and Reverse Erythroblastosis virus (Rev-erb) β without altering the amplitude of protein levels during the light phase of the day. LA also significantly altered the oscillatory patterns of clock-controlled proteins associated with lipid metabolism. The level of peroxisome proliferator-activated receptor (PPAR) α was significantly increased and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were both significantly reduced, suggesting that the LA-supplemented aged animals are in a catabolic state. We conclude that LA remediates some of the dyslipidemic processes associated with advanced age, and this mechanism may be at least partially through entrainment of circadian clocks

  15. Lipoic acid entrains the hepatic circadian clock and lipid metabolic proteins that have been desynchronized with advanced age

    Energy Technology Data Exchange (ETDEWEB)

    Keith, Dove; Finlay, Liam; Butler, Judy [Linus Pauling Institute, Oregon State University (United States); Gómez, Luis; Smith, Eric [Linus Pauling Institute, Oregon State University (United States); Biochemistry Biophysics Department, Oregon State University (United States); Moreau, Régis [Linus Pauling Institute, Oregon State University (United States); Hagen, Tory, E-mail: Tory.Hagen@oregonstate.edu [Linus Pauling Institute, Oregon State University (United States); Biochemistry Biophysics Department, Oregon State University (United States)

    2014-07-18

    Highlights: • 24 month old rats were supplemented with 0.2% lipoic acid in the diet for 2 weeks. • Lipoic acid shifts phase of core circadian clock proteins. • Lipoic acid corrects age-induced desynchronized lipid metabolism rhythms. - Abstract: It is well established that lipid metabolism is controlled, in part, by circadian clocks. However, circadian clocks lose temporal precision with age and correlates with elevated incidence in dyslipidemia and metabolic syndrome in older adults. Because our lab has shown that lipoic acid (LA) improves lipid homeostasis in aged animals, we hypothesized that LA affects the circadian clock to achieve these results. We fed 24 month old male F344 rats a diet supplemented with 0.2% (w/w) LA for 2 weeks prior to sacrifice and quantified hepatic circadian clock protein levels and clock-controlled lipid metabolic enzymes. LA treatment caused a significant phase-shift in the expression patterns of the circadian clock proteins Period (Per) 2, Brain and Muscle Arnt-Like1 (BMAL1), and Reverse Erythroblastosis virus (Rev-erb) β without altering the amplitude of protein levels during the light phase of the day. LA also significantly altered the oscillatory patterns of clock-controlled proteins associated with lipid metabolism. The level of peroxisome proliferator-activated receptor (PPAR) α was significantly increased and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were both significantly reduced, suggesting that the LA-supplemented aged animals are in a catabolic state. We conclude that LA remediates some of the dyslipidemic processes associated with advanced age, and this mechanism may be at least partially through entrainment of circadian clocks.

  16. Metabolically inert perfluorinated fatty acids directly activate uncoupling protein 1 in brown-fat mitochondria.

    Science.gov (United States)

    Shabalina, Irina G; Kalinovich, Anastasia V; Cannon, Barbara; Nedergaard, Jan

    2016-05-01

    The metabolically inert perfluorinated fatty acids perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) can display fatty acid-like activity in biological systems. The uncoupling protein 1 (UCP1) in brown adipose tissue is physiologically (re)activated by fatty acids, including octanoate. This leads to bioenergetically uncoupled energy dissipation (heat production, thermogenesis). We have examined here the possibility that PFOA/PFOS can directly (re)activate UCP1 in isolated mouse brown-fat mitochondria. In wild-type brown-fat mitochondria, PFOS and PFOA overcame GDP-inhibited thermogenesis, leading to increased oxygen consumption and dissipated membrane potential. The absence of this effect in brown-fat mitochondria from UCP1-ablated mice indicated that it occurred through activation of UCP1. A competitive type of inhibition by increased GDP concentrations indicated interaction with the same mechanistic site as that utilized by fatty acids. No effect was observed in heart mitochondria, i.e., in mitochondria without UCP1. The stimulatory effect of PFOA/PFOS was not secondary to non-specific mitochondrial membrane permeabilization or to ROS production. Thus, metabolic effects of perfluorinated fatty acids could include direct brown adipose tissue (UCP1) activation. The possibility that this may lead to unwarranted extra heat production and thus extra utilization of food resources, leading to decreased fitness in mammalian wildlife, is discussed, as well as possible negative effects in humans. However, a possibility to utilize PFOA-/PFOS-like substances for activating UCP1 therapeutically in obesity-prone humans may also be envisaged. PMID:26041126

  17. Characterization of a corrinoid protein involved in the C1 metabolism of strict anaerobic bacterium Moorella thermoacetica.

    Science.gov (United States)

    Das, Amaresh; Fu, Zheng-Qing; Tempel, Wolfram; Liu, Zhi-Jie; Chang, Jessie; Chen, Lirong; Lee, Doowon; Zhou, Weihong; Xu, Hao; Shaw, Neil; Rose, John P; Ljungdahl, Lars G; Wang, Bi-Cheng

    2007-04-01

    The strict anaerobic, thermophilic bacterium Moorella thermoacetica metabolizes C1 compounds for example CO(2)/H(2), CO, formate, and methanol into acetate via the Wood/Ljungdahl pathway. Some of the key steps in this pathway include the metabolism of the C1 compounds into the methyl group of methylenetetrahydrofolate (MTHF) and the transfer of the methyl group from MTHF to the methyl group of acetyl-CoA catalyzed by methyltransferase, corrinoid protein and CO dehydrogenase/acetyl CoA synthase. Recently, we reported the crystallization of a 25 kDa methanol-induced corrinoid protein from M. thermoacetica (Zhou et al., Acta Crystallogr F 2005; 61:537-540). In this study we analyzed the crystal structure of the 25 kDa protein and provide genetic and biochemical evidences supporting its role in the methanol metabolism of M. thermoacetia. The 25 kDa protein was encoded by orf1948 of contig 303 in the M. thermoacetica genome. It resembles similarity to MtaC the corrinoid protein of the methanol:CoM methyltransferase system of methane producing archaea. The latter enzyme system also contains two additional enzymes MtaA and MtaB. Homologs of MtaA and MtaB were found to be encoded by orf2632 of contig 303 and orf1949 of contig 309, respectively, in the M. thermoacetica genome. The orf1948 and orf1949 were co-transcribed from a single polycistronic operon. Metal analysis and spectroscopic data confirmed the presence of cobalt and the corrinoid in the purified 25 kDa protein. High resolution X-ray crystal structure of the purified 25 kDa protein revealed corrinoid as methylcobalamin with the imidazole of histidine as the alpha-axial ligand replacing benziimidazole, suggesting base-off configuration for the corrinoid. Methanol significantly activated the expression of the 25 kDa protein. Cyanide and nitrate inhibited methanol metabolism and suppressed the level of the 25 kDa protein. The results suggest a role of the 25 kDa protein in the methanol metabolism of M

  18. Hepatitis C virus core protein induces energy metabolism disorders of hepatocytes by down-regulation of silent mating type information regulation 2 homolog-1 and adenosine monophosphate-acti vated protein kinase signaling pathway

    Institute of Scientific and Technical Information of China (English)

    于建武

    2013-01-01

    Objective To study the role of silent mating type information regulation2homotog-1(SIRT1)-adenosine monophosphate(AMP)-activated protein kinase(AMPK) signaling pathway in hepatitis C virus core protein(HCV-core)induced energy metabolism disorders

  19. Combined inflammatory and metabolic defects reflected by reduced serum protein levels in patients with Buruli ulcer disease.

    Directory of Open Access Journals (Sweden)

    Richard O Phillips

    2014-04-01

    Full Text Available Buruli ulcer is a skin disease caused by Mycobacterium ulcerans that is spreading in tropical countries, with major public health and economic implications in West Africa. Multi-analyte profiling of serum proteins in patients and endemic controls revealed that Buruli ulcer disease down-regulates the circulating levels of a large array of inflammatory mediators, without impacting on the leukocyte composition of peripheral blood. Notably, several proteins contributing to acute phase reaction, lipid metabolism, coagulation and tissue remodelling were also impacted. Their down-regulation was selective and persisted after the elimination of bacteria with antibiotic therapy. It involved proteins with various functions and origins, suggesting that M. ulcerans infection causes global and chronic defects in the host's protein metabolism. Accordingly, patients had reduced levels of total serum proteins and blood urea, in the absence of signs of malnutrition, or functional failure of liver or kidney. Interestingly, slow healers had deeper metabolic and coagulation defects at the start of antibiotic therapy. In addition to providing novel insight into Buruli ulcer pathogenesis, our study therefore identifies a unique proteomic signature for this disease.

  20. Role and metabolism of free leucine in skeletal muscle in protein sparing action of dietary carbohydrate and fat

    International Nuclear Information System (INIS)

    Feeding rats with either a carbohydrate meal or a fat meal to the previously fasted rats caused significant decrease in urinary output of urea and total nitrogen. The content of free leucine in skeletal muscle decreased in the rats fed either a carbohydrate meal or a fat meal. Feeding of either a carbohydrate meal or a fat meal stimulated incorporation of L-leucine-1-14C into protein fraction of skeletal muscle and reduced its oxidation to 14CO2. These results suggest that the metabolism of leucine is under nutritional regulation and that the decrease in content of free leucine in skeletal muscle might be caused by enhanced reutilization of leucine into protein by the feeding of a carbohydrate meal or a fat meal. The role of free leucine in skeletal muscle as a regulator of protein turnover in the tissue are discussed in relation to the metabolism of this branched chain amino acid. (auth.)

  1. Asynchronous machines. Direct torque control; Machines asynchrones. Commande par controle direct de couple

    Energy Technology Data Exchange (ETDEWEB)

    Fornel, B. de [Institut National Polytechnique, 31 - Toulouse (France)

    2006-05-15

    The asynchronous machine, with its low cost and robustness, is today the most widely used motor to make speed variators. However, its main drawback is that the same current generates both the magnetic flux and the torque, and thus any torque variation creates a flux variation. Such a coupling gives to the asynchronous machine a nonlinear behaviour which makes its control much more complex. The direct self control (DSC) method has been developed to improve the low efficiency of the scalar control method and for the specific railway drive application. The direct torque control (DTC) method is derived from the DSC method but corresponds to other type of applications. The DSC and DTC algorithms for asynchronous motors are presented in this article: 1 - direct control of the stator flux (DSC): principle, flux control, torque control, switching frequency of the inverter, speed estimation; 2 - direct torque control (DTC): principle, electromagnetic torque derivative, signals shape and switching frequency, some results, DTC speed variator without speed sensor, DTC application to multi-machine multi-converter systems; 3 - conclusion. (J.S.)

  2. Use of stable isotopes to assess protein and amino acid metabolism in children and adolescents: a brief review.

    Science.gov (United States)

    Darmaun, Dominique; Mauras, Nelly

    2005-01-01

    As protein accretion is a prerequisite for growth, studying the mechanisms by which nutrients and hormones promote protein gain is of the utmost relevance to paediatric endocrinology. Tracers are ideally suited for the assessment of protein and amino acid kinetics in vivo, as they provide an estimate of synthesis and turnover. Current tracer approaches in children and adolescents utilize stable isotopes, 'heavier' forms of elements that have one or several extra neutrons in the nucleus. Such isotopes are already present at low, but significant, levels in all tissues and foodstuffs, are not radioactive and are devoid of any known side-effects when present in small amounts. L-[1-(13)C] labelled leucine, given as a 4- to 6-h intravenous infusion, has become the method of choice to assess whole-body protein kinetics. After infusion, any 13C-leucine that is oxidized appears in the breath as 13CO2, whereas the remainder is incorporated into body proteins through protein synthesis. The isotope enrichments are determined by isotope ratio mass spectrometry and gas chromatography mass spectrometry, and absolute rates of whole-body protein synthesis, oxidation, and breakdown can be extrapolated. This approach has been used extensively to investigate the regulation of protein kinetics by nutrients and by hormones. Attempts have also been made to measure amino acid/protein metabolism in selected body compartments, and to measure the kinetics of specific tissue proteins, for example, muscle, gut, or plasma proteins. PMID:16439842

  3. Asynchronous Parallel Evolutionary Algorithms for Constrained Optimizations

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Recently Guo Tao proposed a stochastic search algorithm in his PhD thesis for solving function op-timization problems. He combined the subspace search method (a general multi-parent recombination strategy) with the population hill-climbing method. The former keeps a global search for overall situation,and the latter keeps the convergence of the algorithm. Guo's algorithm has many advantages ,such as the sim-plicity of its structure ,the higher accuracy of its results, the wide range of its applications ,and the robustness of its use. In this paper a preliminary theoretical analysis of the algorithm is given and some numerical experiments has been done by using Guo's algorithm for demonstrating the theoretical results. Three asynchronous paral-lel evolutionary algorithms with different granularities for MIMD machines are designed by parallelizing Guo's Algorithm.

  4. Metabolic parameters and emotionality are little affected in G-protein coupled receptor 12 (Gpr12 mutant mice.

    Directory of Open Access Journals (Sweden)

    Elisabeth Frank

    Full Text Available BACKGROUND: G-protein coupled receptors (GPR bear the potential to serve as yet unidentified drug targets for psychiatric and metabolic disorders. GPR12 is of major interest given its putative role in metabolic function and its unique brain distribution, which suggests a role in emotionality and affect. We tested Gpr12 deficient mice in a series of metabolic and behavioural tests and subjected them to a well-established high-fat diet feeding protocol. METHODOLOGY/PRINCIPAL FINDINGS: Comparing the mutant mice with wild type littermates, no significant differences were seen in body weight, fatness or weight gain induced by a high-fat diet. The Gpr12 mutant mice displayed a modest but significant lowering of energy expenditure and a trend to lower food intake on a chow diet, but no other metabolic parameters, including respiratory rate, were altered. No emotionality-related behaviours (assessed by light-dark box, tail suspension, and open field tests were affected by the Gpr12 gene mutation. CONCLUSIONS/SIGNIFICANCE: Studying metabolic and emotionality parameters in Gpr12 mutant mice did not reveal a major phenotypic impact of the gene mutation. Compared to previous results showing a metabolic phenotype in Gpr12 mice with a mixed 129 and C57Bl6 background, we suggest that a more pure C57Bl/6 background due to further backcrossing might have reduced the phenotypic penetrance.

  5. Evidence of a Role for Insulin-Like Growth Factor Binding Protein (IGFBP)-3 in Metabolic Regulation

    OpenAIRE

    Yamada, P. M.; Mehta, H. H.; Hwang, D.; Roos, K P; Hevener, A. L.; Lee, K.W.

    2010-01-01

    IGF-binding protein (IGFBP)-3 is a metabolic regulator that has been shown to inhibit insulin-stimulated glucose uptake in murine models. This finding contrasts with epidemiological evidence of decreased serum IGFBP-3 in patients with type 2 diabetes. The purpose of this study was to clarify the role of IGFBP-3 in metabolism. Four-week-old male IGFBP-3−/− and control mice were subjected to a high-fat diet (HFD) for 12 wk. IGFBP-3−/− mice were heavier before the initiation of HFD and at the en...

  6. Insulin responsiveness of protein metabolism in vivo following bedrest in humans

    International Nuclear Information System (INIS)

    To test the influence of bedrest on insulin regulation of leucine metabolism, six normal young men were subjected to a five-step hyperinsulinemic euglycemic clamp before and after 7 days of strict bedrest. A primed-constant infusion of [1-13C]leucine was used. Before bedrest, the basal rate of appearance (Ra) of intracellular leucine and leucine oxidation were 2.79±0.17 and 0.613±0.070 μmol·kg-1·min-1, respectively. Insulin caused a dose-dependent reduction of the intracellular leucine Ra and leucine oxidation to a minimum of 1.64±0.08 and 0.322±0.039 μmol·kg-1·min-1, respectively, in nonbedrested subjects. Insulin also caused a dose-dependent reduction of plasma leucine concentration. After bedrest, subjects exhibited decreased glucose tolerance and increased endogenous insulin secretion, but basal and insulin-suppressed intracellular leucine Ra and leucine oxidation rates were not different from control. Magnetic resonance imaging of the back and lower extremities revealed a 1-4% decrease in muscle volume and a 2-5% increase in fat volume secondary to bedrest. Bedrest also resulted in a negative nitrogen balance as compared with the control period. Thus because negative nitrogen balance and skeletal muscle atrophy occurred in six rested subjects in the absence of changes in the two indices of protein breakdown used in this study, it seems likely that muscle protein synthesis was inhibited

  7. Insulin responsiveness of protein metabolism in vivo following bedrest in humans

    Energy Technology Data Exchange (ETDEWEB)

    Shangraw, R.E.; Stuart, C.A.; Prince, M.J.; Peters, E.J.; Wolfe, R.R. (Univ. of Texas Medical Branch and Metabolism Unit., Galveston (USA))

    1988-10-01

    To test the influence of bedrest on insulin regulation of leucine metabolism, six normal young men were subjected to a five-step hyperinsulinemic euglycemic clamp before and after 7 days of strict bedrest. A primed-constant infusion of (1-{sup 13}C)leucine was used. Before bedrest, the basal rate of appearance (R{sub a}) of intracellular leucine and leucine oxidation were 2.79{plus minus}0.17 and 0.613{plus minus}0.070 {mu}mol{center dot}kg{sup {minus}1}{center dot}min{sup {minus}1}, respectively. Insulin caused a dose-dependent reduction of the intracellular leucine R{sub a} and leucine oxidation to a minimum of 1.64{plus minus}0.08 and 0.322{plus minus}0.039 {mu}mol{center dot}kg{sup {minus}1}{center dot}min{sup {minus}1}, respectively, in nonbedrested subjects. Insulin also caused a dose-dependent reduction of plasma leucine concentration. After bedrest, subjects exhibited decreased glucose tolerance and increased endogenous insulin secretion, but basal and insulin-suppressed intracellular leucine R{sub a} and leucine oxidation rates were not different from control. Magnetic resonance imaging of the back and lower extremities revealed a 1-4% decrease in muscle volume and a 2-5% increase in fat volume secondary to bedrest. Bedrest also resulted in a negative nitrogen balance as compared with the control period. Thus because negative nitrogen balance and skeletal muscle atrophy occurred in six rested subjects in the absence of changes in the two indices of protein breakdown used in this study, it seems likely that muscle protein synthesis was inhibited.

  8. Sex difference in the association of metabolic syndrome with high sensitivity C-reactive protein in a Taiwanese population

    Directory of Open Access Journals (Sweden)

    Lin Wen-Yuan

    2010-07-01

    Full Text Available Abstract Background Although sex differences have been reported for associations between components of metabolic syndrome and inflammation, the question of whether there is an effect modification by sex in the association between inflammation and metabolic syndrome has not been investigated in detail. Therefore, the aim of this study was to compare associations of high sensitivity C-creative protein (hs-CRP with metabolic syndrome and its components between men and women. Methods A total of 1,305 subjects aged 40 years and over were recruited in 2004 in a metropolitan city in Taiwan. The biochemical indices, such as hs-CRP, fasting glucose levels, lipid profiles, urinary albumin, urinary creatinine and anthropometric indices, were measured. Metabolic syndrome was defined using the American Heart Association and the National Heart, lung and Blood Institute (AHA/NHLBI definition. The relationship between metabolic syndrome and hs-CRP was examined using multivariate logistic regression analysis. Results After adjustment for age and lifestyle factors including smoking, and alcohol intake, elevated concentrations of hs-CRP showed a stronger association with metabolic syndrome in women (odds ratio comparing tertile extremes 4.80 [95% CI: 3.31-6.97] than in men (2.30 [1.65-3.21]. The p value for the sex interaction was 0.002. All components were more strongly associated with metabolic syndrome in women than in men, and all sex interactions were significant except for hypertension. Conclusions Our data suggest that inflammatory processes may be of particular importance in the pathogenesis of metabolic syndrome in women.

  9. Alterations in glucose and protein metabolism in animals subjected to simulated microgravity

    Science.gov (United States)

    Mondon, C. E.; Rodnick, K. J.; Dolkas, C. B.; Azhar, S.; Reaven, G. M.

    1992-09-01

    Reduction of physical activity due to disease or environmental restraints, such as total bed rest or exposure to spaceflight, leads to atrophy of skeletal muscle and is frequently accompanied by alterations in food intake and the concentration of metabolic regulatory hormones such as insulin. Hindlimb suspension of laboratory rats, as a model for microgravity, also shows marked atrophy of gravity dependent muscles along with a reduced gain in body weight. Suspended rats exhibit enhanced sensitivity to insulin-induced glucose uptake when compared with normal control rats and resistance to insulin action when compared with control rats matched similarly for reduced body weight gain. These changes are accompanied by decreased insulin binding and tyrosine kinase activity in soleus but not plantaris muscle, unchanged glucose uptake by perfused hindlimb and decreased sensitivity but not responsiveness to insulin-induced suppression of net proteolysis in hindlimb skeletal muscle. These findings suggest that loss of insulin sensitivity during muscle atrophy is associated with decreased insulin binding and tyrosine kinase activity in atrophied soleus muscle along with decreased sensitivity to the effects of insulin on suppressing net protein breakdown but not on enhancing glucose uptake by perfused hindlimb.

  10. Alterations in glucose and protein metabolism in animals subjected to simulated microgravity

    Science.gov (United States)

    Mondon, C. E.; Rodnick, K. J.; Azhar, S.; Reaven, G. M.; Dolkas, C. B.

    1992-01-01

    Reduction of physical activity due to disease or environmental restraints, such as total bed rest or exposure to spaceflight, leads to atrophy of skeletal muscle and is frequently accompanied by alterations in food intake and the concentration of metabolic regulatory hormones such as insulin. Hindlimb suspension of laboratory rats, as a model for microgravity, also shows marked atrophy of gravity-dependent muscles along with a reduced gain in body weight. Suspended rats exhibit enhanced sensitivity to insulin-induced glucose uptake when compared with normal control rats and resistance to insulin action when compared with control rats matched similarly for reduced body weight gain. These changes are accompanied by decreased insulin binding and tyrosine kinase activity in soleus but not plantaris muscle, unchanged glucose uptake by perfused hindlimb and decreased sensitivity but not responsiveness to insulin-induced suppression of net proteolysis in hindlimb skeletal muscle. These findings suggest that loss of insulin sensitivity during muscle atrophy is associated with decreased insulin binding and tyrosine kinase activity in atrophied soleus muscle along with decreased sensitivity to the effects of insulin on suppressing net protein breakdown but not on enhancing glucose uptake by perfused hindlimb.

  11. Aggravation of Irradiation Induced Impairment in Protein Metabolism in Albino Rate Subjected to Oral Injection of Kelthane Miticide

    International Nuclear Information System (INIS)

    The combined effect of both whole body gamma radiation exposure and administration of organo chlorine miticide kelthaneon protein metabolism was investigated in male albino rats. Kelthane was orally given at a dose level of 100 mg/kg body weight over a period of seven days. Irradiation process permitted the rats to receive one Gray every other day at a weekly cumulative dose of 3 Gy up to a total dose of 15 Gy. The biochemical assays included total proteins, protein fractions, free amino acids (FAAS) and urea level in blood serum as well as protein content and its FAAS in urine . The data revealed significant changes in the protein parameters due to whole body gamma irradiation. These changes were shown to be dose and time dependent which reached their maximum at the end of the experimentation period. The alterations were more pronounced in animal groups exposed to gamma radiation and received keltane pesticide

  12. The role of thioredoxin h in protein metabolism during wheat (Triticum aestivum L.) seed germination.

    Science.gov (United States)

    Guo, Hongxiang; Wang, Shaoxin; Xu, Fangfang; Li, Yongchun; Ren, Jiangping; Wang, Xiang; Niu, Hongbin; Yin, Jun

    2013-06-01

    Thioredoxin h can regulate the redox environment in the cell and play an important role in the germination of cereals. In the present study, the thioredoxin s antisense transgenic wheat with down-regulation of thioredoxin h was used to study the role of thioredoxin h in protein metabolism during germination of wheat seeds, and to explore the mechanism of the thioredoxin s antisense transgenic wheat seeds having high resistance to pre-harvest sprouting. The qRT-PCR results showed that the expression of protein disulfide isomerase in the thioredoxin s antisense transgenic wheat was up-regulated, which induced easily forming glutenin macropolymers and the resistance of storage proteins to degradation. The expression of serine protease inhibitor was also up-regulated in transgenic wheat, which might be responsible for the decreased activity of thiocalsin during the germination. The expression of WRKY6 in transgenic wheat was down-regulated, which was consistent with the decreased activity of glutamine oxoglutarate aminotransferase. In transgenic wheat, the activities of glutamate dehydrogenase, glutamic pyruvic transaminase and glutamic oxaloacetic transaminase were down-regulated, indicating that the metabolism of amino acid was lower than that in wild-type wheat during seed germination. A putative model for the role of thioredoxin h in protein metabolism during wheat seed germination was proposed and discussed. PMID:23562797

  13. Metabolic responses to acute physical exercise in young rats recovered from fetal protein malnutrition with a fructose-rich diet

    Directory of Open Access Journals (Sweden)

    Botezelli José D

    2011-09-01

    Full Text Available Abstract Background Malnutrition in utero can "program" the fetal tissues, making them more vulnerable to metabolic disturbances. Also there is association between excessive consumption of fructose and the development of metabolic syndrome. However, there is little information regarding the acute effect of physical exercise on subjects recovered from malnutrition and/or fed with a fructose-rich diet. The objective of this study was to evaluate the metabolic aspects and the response to acute physical exercise in rats recovered from fetal protein malnutrition with a fructose-rich diet. Methods Pregnant Wistar rats were fed with a balanced (B diet or a low-protein (L diet. After birth and until 60 days of age, the offspring were distributed into four groups according to the diet received: B: B diet during the whole experiment; balanced/fructose (BF: B diet until birth and fructose-rich (F diet afterwards; low protein/balanced (LB: L diet until birth and B diet afterwards; low protein/fructose (LF: L diet until birth and F diet afterwards. Results The excess fructose intake reduced the body weight gain, especially in the BF group. Furthermore, the serum total cholesterol and the LDL cholesterol were elevated in this group. In the LF group, the serum total cholesterol and the muscle glycogen increased. Acute physical exercise increased the serum concentrations of glucose, triglycerides, HDL cholesterol and liver lipids and reduced the concentrations of muscle glycogen in all groups. Conclusion An excess fructose intake induced some signs of metabolic syndrome. However, protein malnutrition appeared to protect against the short term effects of fructose. In other hand, most responses to acute physical exercise were not influenced by early malnutrition and/or by the fructose overload.

  14. Treatment of Metabolic syndrome by combination of physical activity and diet needs an optimal protein intake: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Dutheil Frédéric

    2012-09-01

    Full Text Available Abstract Background The recommended dietary allowance (RDA for protein intake has been set at 1.0-1.3 g/kg/day for senior. To date, no consensus exists on the lower threshold intake (LTI = RDA/1.3 for the protein intake (PI needed in senior patients ongoing both combined caloric restriction and physical activity treatment for metabolic syndrome. Considering that age, caloric restriction and exercise are three increasing factors of protein need, this study was dedicated to determine the minimal PI in this situation, through the determination of albuminemia that is the blood marker of protein homeostasis. Methods Twenty eight subjects (19 M, 9 F, 61.8 ± 6.5 years, BMI 33.4 ± 4.1 kg/m2 with metabolic syndrome completed a three-week residential programme (Day 0 to Day 21 controlled for nutrition (energy balance of −500 kcal/day and physical activity (3.5 hours/day. Patients were randomly assigned in two groups: Normal-PI (NPI: 1.0 g/kg/day and High-PI (HPI: 1.2 g/kg/day. Then, patients returned home and were followed for six months. Albuminemia was measured at D0, D21, D90 and D180. Results At baseline, PI was spontaneously 1.0 g/kg/day for both groups. Albuminemia was 40.6 g/l for NPI and 40.8 g/l for HPI. A marginal protein under-nutrition appeared in NPI with a decreased albuminemia at D90 below 35 g/l (34.3 versus 41.5 g/l for HPI, p  Conclusion During the treatment based on restricted diet and exercise in senior people with metabolic syndrome, the lower threshold intake for protein must be set at 1.2 g/kg/day to maintain blood protein homeostasis.

  15. Preoperative overnight parenteral nutrition (TPN) improves skeletal muscle protein metabolism indicated by microarray algorithm analyses in a randomized trial.

    Science.gov (United States)

    Iresjö, Britt-Marie; Engström, Cecilia; Lundholm, Kent

    2016-06-01

    Loss of muscle mass is associated with increased risk of morbidity and mortality in hospitalized patients. Uncertainties of treatment efficiency by short-term artificial nutrition remain, specifically improvement of protein balance in skeletal muscles. In this study, algorithmic microarray analysis was applied to map cellular changes related to muscle protein metabolism in human skeletal muscle tissue during provision of overnight preoperative total parenteral nutrition (TPN). Twenty-two patients (11/group) scheduled for upper GI surgery due to malignant or benign disease received a continuous peripheral all-in-one TPN infusion (30 kcal/kg/day, 0.16 gN/kg/day) or saline infusion for 12 h prior operation. Biopsies from the rectus abdominis muscle were taken at the start of operation for isolation of muscle RNA RNA expression microarray analyses were performed with Agilent Sureprint G3, 8 × 60K arrays using one-color labeling. 447 mRNAs were differently expressed between study and control patients (P proteins as well as transcripts related to intracellular signaling pathways, PI3 kinase/MAPkinase, were either increased or decreased. In conclusion, muscle mRNA alterations during overnight standard TPN infusions at constant rate altered mRNAs associated with mTOR signaling; increased initiation of protein translation; and suppressed autophagy/lysosomal degradation of proteins. This indicates that overnight preoperative parenteral nutrition is effective to promote muscle protein metabolism. PMID:27273879

  16. Stand-Alone and Hybrid Positioning Using Asynchronous Pseudolites

    Directory of Open Access Journals (Sweden)

    Ciro Gioia

    2014-12-01

    Full Text Available global navigation satellite system (GNSS receivers are usually unable to achieve satisfactory performance in difficult environments, such as open-pit mines, urban canyons and indoors. Pseudolites have the potential to extend GNSS usage and significantly improve receiver performance in such environments by providing additional navigation signals. This also applies to asynchronous pseudolite systems, where different pseudolites operate in an independent way. Asynchronous pseudolite systems require, however, dedicated strategies in order to properly integrate GNSS and pseudolite measurements. In this paper, several asynchronous pseudolite/GNSS integration strategies are considered: loosely- and tightly-coupled approaches are developed and combined with pseudolite proximity and receiver signal strength (RSS-based positioning. The performance of the approaches proposed has been tested in different scenarios, including static and kinematic conditions. The tests performed demonstrate that the methods developed are effective techniques for integrating heterogeneous measurements from different sources, such as asynchronous pseudolites and GNSS.

  17. TCDQ-TCT retraction and losses during asynchronous beam dump

    CERN Document Server

    Bracco, Chiara; Quaranta, Elena; CERN. Geneva. ATS Department

    2016-01-01

    The protection provided by the TCDQs in case of asynchronous beam dump depends strongly on their correct setup. They have to respect the strict hierarchy of the full collimation system and shield the tertiary collimators in the experimental regions. This MD aimed at performing asynchronous beam dump tests with different configurations, in order to assess the minimum allowed retraction between TCTs and TCDQs and, as a consequence, on the The protection provided by the TCDQs in case of asynchronous beam dump depends strongly on their correct setup. They have to respect the strict hierarchy of the full collimation system and shield the tertiary collimators in the experimental regions. This MD aimed at performing asynchronous beam dump tests with different configurations, in order to assess the minimum allowed retraction between TCTs and TCDQs and, as a consequence, on the β* reach.

  18. A Comparison of Distance Education Competencies Delivered Synchronously and Asynchronously.

    Science.gov (United States)

    Dooley, Kim E.; Lindner, James R.; Richards, Lance J.

    2003-01-01

    Comparison of agriculture courses delivered synchronously via interactive television (20 students) and asynchronously via the Web (22 students) showed similar achievement of core distance education competencies: adult learning, technology knowledge, instructional design, communication skills, graphic design, administration) regardless of delivery…

  19. Solving SAT and Hamiltonian Cycle Problem Using Asynchronous P Systems

    Science.gov (United States)

    Tagawa, Hirofumi; Fujiwara, Akihiro

    In the present paper, we consider fully asynchronous parallelism in membrane computing, and propose two asynchronous P systems for the satisfiability (SAT) and Hamiltonian cycle problem. We first propose an asynchronous P system that solves SAT with n variables and m clauses, and show that the proposed P system computes SAT in O(mn2n) sequential steps or O(mn) parallel steps using O(mn) kinds of objects. We next propose an asynchronous P system that solves the Hamiltonian cycle problem with n nodes, and show that the proposed P system computes the problem in O(n!) sequential steps or O(n2) parallel steps using O(n2) kinds of objects.

  20. Asynchronous FSK wireless data traffic interface circuit design

    International Nuclear Information System (INIS)

    This article gives a practical interface circuit, which is able to conduct asynchronous wireless data communication through data transfer broadcasting station. And the circuit's design as well as its applications are introduced. (authors)

  1. Reconstruction of the yeast protein-protein interaction network involved in nutrient sensing and global metabolic regulation

    OpenAIRE

    Nielsen Jens; Jouhten Paula; Nandy Subir K

    2010-01-01

    Abstract Background Several protein-protein interaction studies have been performed for the yeast Saccharomyces cerevisiae using different high-throughput experimental techniques. All these results are collected in the BioGRID database and the SGD database provide detailed annotation of the different proteins. Despite the value of BioGRID for studying protein-protein interactions, there is a need for manual curation of these interactions in order to remove false positives. Results Here we des...

  2. Control of asynchronous motors. Volume 1. Modeling, vectorial control and direct torque control; Commande des moteurs asynchrones. Volume 1. Modelisation, controle vectoriel et DTC

    Energy Technology Data Exchange (ETDEWEB)

    Canudas de Wit, C. [Ecole Nationale Superieure d' Ingenieurs de Genie Chimique, ENSIGC, 31 - Toulouse (France)

    2000-07-01

    This first volume deals with the problems of control of asynchronous motors in industrial environments: industrial environment, variable speed, asynchronous motors and power supplies, modeling, direct torque control laws, control by controlled limit cycles under frequency constraints. (J.S.)

  3. Minocycline alleviates beta-amyloid protein and tau pathology via restraining neuroinflammation induced by diabetic metabolic disorder

    Science.gov (United States)

    Cai, Zhiyou; Yan, Yong; Wang, Yonglong

    2013-01-01

    Background Compelling evidence has shown that diabetic metabolic disorder plays a critical role in the pathogenesis of Alzheimer’s disease, including increased expression of β-amyloid protein (Aβ) and tau protein. Evidence has supported that minocycline, a tetracycline derivative, protects against neuroinflammation induced by neurodegenerative disorders or cerebral ischemia. This study has evaluated minocycline influence on expression of Aβ protein, tau phosphorylation, and inflammatory cytokines (interleukin-1β and tumor necrosis factor-α) in the brain of diabetic rats to clarify neuroprotection by minocycline under diabetic metabolic disorder. Method An animal model of diabetes was established by high fat diet and intraperitoneal injection of streptozocin. In this study, we investigated the effect of minocycline on expression of Aβ protein, tau phosphorylation, and inflammatory cytokines (interleukin-1β and tumor necrosis factor-α) in the hippocampus of diabetic rats via immunohistochemistry, western blotting, and enzyme-linked immunosorbent assay. Results These results showed that minocycline decreased expression of Aβ protein and lowered the phosphorylation of tau protein, and retarded the proinflammatory cytokines, but not amyloid precursor protein. Conclusion On the basis of the finding that minocycline had no influence on amyloid precursor protein and beta-site amyloid precursor protein cleaving enzyme 1 which determines the speed of Aβ generation, the decreases in Aβ production and tau hyperphosphorylation by minocycline are through inhibiting neuroinflammation, which contributes to Aβ production and tau hyperphosphorylation. Minocycline may also lower the self-perpetuating cycle between neuroinflammation and the pathogenesis of tau and Aβ to act as a neuroprotector. Therefore, the ability of minocycline to modulate inflammatory reactions may be of great importance in the selection of neuroprotective agents, especially in chronic conditions

  4. The RNA binding protein CsrA controls c-di-GMP metabolism by directly regulating the expression of GGDEF proteins

    OpenAIRE

    Jonas, Kristina; Edwards, Adrianne N.; Simm, Roger; Romeo, Tony; Römling, Ute; Melefors, Öjar

    2008-01-01

    The carbon storage regulator CsrA is an RNA binding protein that controls carbon metabolism, biofilm formation and motility in various eubacteria. Nevertheless, in Escherichia coli only five target mRNAs have been shown to be directly regulated by CsrA at the post-transcriptional level. Here we identified two new direct targets for CsrA, ycdT and ydeH, both of which encode proteins with GGDEF domains. A csrA mutation caused mRNA levels of ycdT and ydeH to increase more than 10-fold. RNA mobil...

  5. Dynamic interactions between asynchronous grids interconnected through an MTDC system

    OpenAIRE

    Endegnanew, Atsede Gualu; Beerten, Jef; Uhlen, Kjetil

    2015-01-01

    The large-scale integration of renewable energy sources in the power system, combined with the need for an increased transmission capacity has led to a growing interest in multi-terminal high voltage dc (MTDC) grids. In the future, these grids will be integrated with different existing asynchronous ac grids, eventually resulting in hybrid AC/DC power systems. This paper investigates interactions between asynchronous ac grids in a hybrid AC/DC power system. In the study, a symmetrical monopola...

  6. The Engine Mechanical Coordinates Measuring in the Asynchronous Motor

    Directory of Open Access Journals (Sweden)

    Dementyev Yuriy N.

    2014-01-01

    Full Text Available The article considers indirect control devices for the mechanical coordinate’s measurement of a three-phase asynchronous electric motor, which detects the temperature of the stator winding conductors and the basic frequency of stator voltage. Characteristics of mechanical coordinate’s simulation of the asynchronous motor are provided to assess the accuracy of the mechanical coordinate’s measurement in the dynamic modes.

  7. The Engine Mechanical Coordinates Measuring in the Asynchronous Motor

    OpenAIRE

    Dementyev Yuriy N.; Umurzakova Anara D.

    2014-01-01

    The article considers indirect control devices for the mechanical coordinate’s measurement of a three-phase asynchronous electric motor, which detects the temperature of the stator winding conductors and the basic frequency of stator voltage. Characteristics of mechanical coordinate’s simulation of the asynchronous motor are provided to assess the accuracy of the mechanical coordinate’s measurement in the dynamic modes.

  8. Tidal Flows in asynchronous binaries: The beta-factor

    CERN Document Server

    Koenigsberger, Gloria

    2013-01-01

    We discuss the potential role that tidal flows in asynchronous binary stars may play in transporting chemically enriched material from deep layers towards the surface and the corresponding observational consequences of these processes. We suggest that the time-dependent velocity field induced by asynchronous rotation may contribute significantly to the mixing, thus providing a channel for the formation of chemically enriched slowly rotating massive stars.

  9. Effect of ethanol in utero on higher nervous activity and protein and lipid metabolism in the rat brain

    International Nuclear Information System (INIS)

    The authors study parameters of protein phosphorylation and glycoprotein and phospholipid synthesis in the neocortex and hippocampus of adult rats and compare the findings with the results of an investigation of formation and preservation of defensive conditioned reflexes. The pattern of changes in these metabolic parameters are studied in response to stress. For the biochemical tests, the animals were lightly anesthetized with ether and injected with a mixture of (P 32)-orthophosphate and (H 3)-fucose. Phospholipids were identified with molybdate reagent and radioactivity of the protein digest and lipids was measured in Bray's scintillator. The study shows that the use of stress brought metabolic differences between the brain of the experimental and control rats more clearly to light

  10. Glucose Availability and AMP-Activated Protein Kinase Link Energy Metabolism and Innate Immunity in the Bovine Endometrium

    Science.gov (United States)

    Turner, Matthew L.; Cronin, James G.; Noleto, Pablo G.; Sheldon, I. Martin

    2016-01-01

    Defences against the bacteria that usually infect the endometrium of postpartum cattle are impaired when there is metabolic energy stress, leading to endometritis and infertility. The endometrial response to bacteria depends on innate immunity, with recognition of pathogen-associated molecular patterns stimulating inflammation, characterised by secretion of interleukin (IL)-1β, IL-6 and IL-8. How metabolic stress impacts tissue responses to pathogens is unclear, but integration of energy metabolism and innate immunity means that stressing one system might affect the other. Here we tested the hypothesis that homeostatic pathways integrate energy metabolism and innate immunity in bovine endometrial tissue. Glucose deprivation reduced the secretion of IL-1β, IL-6 and IL-8 from ex vivo organ cultures of bovine endometrium challenged with the pathogen-associated molecular patterns lipopolysaccharide and bacterial lipopeptide. Endometrial inflammatory responses to lipopolysaccharide were also reduced by small molecules that activate or inhibit the intracellular sensor of energy, AMP-activated protein kinase (AMPK). However, inhibition of mammalian target of rapamycin, which is a more global metabolic sensor than AMPK, had little effect on inflammation. Similarly, endometrial inflammatory responses to lipopolysaccharide were not affected by insulin-like growth factor-1, which is an endocrine regulator of metabolism. Interestingly, the inflammatory responses to lipopolysaccharide increased endometrial glucose consumption and induced the Warburg effect, which could exacerbate deficits in glucose availability in the tissue. In conclusion, metabolic energy stress perturbed inflammatory responses to pathogen-associated molecular patterns in bovine endometrial tissue, and the most fundamental regulators of cellular energy, glucose availability and AMPK, had the greatest impact on innate immunity. PMID:26974839

  11. Glucose Availability and AMP-Activated Protein Kinase Link Energy Metabolism and Innate Immunity in the Bovine Endometrium.

    Science.gov (United States)

    Turner, Matthew L; Cronin, James G; Noleto, Pablo G; Sheldon, I Martin

    2016-01-01

    Defences against the bacteria that usually infect the endometrium of postpartum cattle are impaired when there is metabolic energy stress, leading to endometritis and infertility. The endometrial response to bacteria depends on innate immunity, with recognition of pathogen-associated molecular patterns stimulating inflammation, characterised by secretion of interleukin (IL)-1β, IL-6 and IL-8. How metabolic stress impacts tissue responses to pathogens is unclear, but integration of energy metabolism and innate immunity means that stressing one system might affect the other. Here we tested the hypothesis that homeostatic pathways integrate energy metabolism and innate immunity in bovine endometrial tissue. Glucose deprivation reduced the secretion of IL-1β, IL-6 and IL-8 from ex vivo organ cultures of bovine endometrium challenged with the pathogen-associated molecular patterns lipopolysaccharide and bacterial lipopeptide. Endometrial inflammatory responses to lipopolysaccharide were also reduced by small molecules that activate or inhibit the intracellular sensor of energy, AMP-activated protein kinase (AMPK). However, inhibition of mammalian target of rapamycin, which is a more global metabolic sensor than AMPK, had little effect on inflammation. Similarly, endometrial inflammatory responses to lipopolysaccharide were not affected by insulin-like growth factor-1, which is an endocrine regulator of metabolism. Interestingly, the inflammatory responses to lipopolysaccharide increased endometrial glucose consumption and induced the Warburg effect, which could exacerbate deficits in glucose availability in the tissue. In conclusion, metabolic energy stress perturbed inflammatory responses to pathogen-associated molecular patterns in bovine endometrial tissue, and the most fundamental regulators of cellular energy, glucose availability and AMPK, had the greatest impact on innate immunity. PMID:26974839

  12. Garlic (Allium sativum) Extract Supplementation Alters the Glycogen Deposition in Liver and Protein Metabolism in Gonads of Female Albino Rats

    OpenAIRE

    Sashank Srivastava; P. H. Pathak

    2012-01-01

    Garlic is an ayurvedic herb that has been extensively used as medication and as the taste enhancer of the food. The present investigation was undertaken to provide data on the efficacy of garlic (Allium sativum Linn.) extract on glycogen deposition and protein metabolism in female albino rats that may further explore medicinal potential of garlic. The rats were divided into four groups A, B, C and D, keeping group A as a healthy control. The garlic extract was tried in three different doses, ...

  13. Lipoprotein Particles, Insulin, Adiponectin, C-Reactive Protein and Risk of Coronary Heart Disease among Men with Metabolic Syndrome

    OpenAIRE

    Kuller, Lewis H; Grandits, Gregory; Cohen, Jerome D.; Neaton, James D.; Ronald, Prineas

    2006-01-01

    We tested the hypotheses whether nuclear magnetic resonance (NMR) determined lipoprotein particles, insulin and adiponectin, and C-reactive protein (CRP) and white blood cell (WBC) count as markers of inflammation predicted risk of coronary heart disease (CHD) death among 428 men age 35–57 years with metabolic syndrome (MetSyn) in a matched case control study within the Multiple Risk Factor Intervention Trial.

  14. High-sensitivity C-reactive protein and liver enzymes in individuals with Metabolic Syndrome in Talca, Chile

    OpenAIRE

    Leiva, E.; V. Mujica; PALOMO, I.; ORREGO, R.; Guzmán, L.; S. Núñez; MOORE-CARRASCO, R.; Icaza, G.; Díaz, N.

    2010-01-01

    Metabolic syndrome (MS) is a core set of disorders, including abdominal obesity, dyslipidemia, hypertension and hypertriglyceridemia that together predict the development of diabetes type 2 and cardiovascular disease. This study investigated the relationship between liver enzyme levels and high-sensitivity C-reactive protein (hs-CRP) in subjects with and without MS. Alanine-aminotransferase (ALAT), aspartate-aminotransferase (ASAT), γ-glutamyl transferase (GGT) and hs-CRP were measured in 510...

  15. Ternary Tree Asynchronous Interconnect Network for GALS' SOC

    Directory of Open Access Journals (Sweden)

    Vivek E. Khetade

    2013-03-01

    Full Text Available Interconnect fabric requires easy integration of computational block operating with unrelated clocks.Thispaper presents asynchronous interconnect with ternary tree asynchronous network for GloballyAsynchronous Locally Synchronous (GALS system-on-chip (SOC. Here architecture is proposed forinterconnection with ternary tree asynchronous network where ratio of number NOC design unit andnumber of router is 4:1,6:2, 8:3,10:4 etc .It is scalable for any number of NOC design unit. It offersaneasy integration of different clock domain with lowcommunication overhead .NOC design unit for GALS‘SOC is formulated by wrapping synchronous module with input port along with input port controller,output port along with output port controller and local clock generator. It creates the interface betweensynchronous to asynchronous and asynchronous to synchronous. For this purpose four port asynchronousrouters is designed with routing element and outputarbitration and buffering with micro-pipeline. Thisinterconnect fabric minimizes silicon area, minimize Latency and maximize throughput. Here functionalmodel is made for TTAN and application MPEG4 is mapped on the Network .Desired traffic pattern isgenerated and performance of the network is evaluated. Significant improvement in the networkperformance parameter has been observed.

  16. Varying plant protein sources in the diet of sea bass Dicentrarchus labrax differently affects lipid metabolism and deposition

    Directory of Open Access Journals (Sweden)

    E. Tibaldi

    2010-04-01

    Full Text Available The liver activity of lipogenic enzymes, the lipid content in various tissues, and plasma lipid levels of major, were measured in sea bass (D. labrax fed over 96 days either a, fish meal-based control diet or preparations where 70% of fish meal protein was replaced by wheat gluten singly or in combination with pea or soybean meals. Relative to the controls, sea bass fed the wheat gluten-based diet resulted in stimulated lipogenesis in liver and increased lipid deposition in muscle. The opposite occurred when a substantial amount of soybean meal was included in the diet. Mesenteric fat depots were apparently insensitive to major changes in dietary protein source in fish showing similar intakes of digestible protein, energy and lipid. These results confirm that varying plant protein source in the diet differently affects lipid metabolism and deposition in sea bass.

  17. Exercise Training and Work Task Induced Metabolic and Stress-Related mRNA and Protein Responses in Myalgic Muscles

    Directory of Open Access Journals (Sweden)

    Gisela Sjøgaard

    2013-01-01

    Full Text Available The aim was to assess mRNA and/or protein levels of heat shock proteins, cytokines, growth regulating, and metabolic proteins in myalgic muscle at rest and in response to work tasks and prolonged exercise training. A randomized controlled trial included 28 females with trapezius myalgia and 16 healthy controls. Those with myalgia performed ~7 hrs repetitive stressful work and were subsequently randomized to 10 weeks of specific strength training, general fitness training, or reference intervention. Muscles biopsies were taken from the trapezius muscle at baseline, after work and after 10 weeks intervention. The main findings are that the capacity of carbohydrate oxidation was reduced in myalgic compared with healthy muscle. Repetitive stressful work increased mRNA content for heat shock proteins and decreased levels of key regulators for growth and oxidative metabolism. In contrast, prolonged general fitness as well as specific strength training decreased mRNA content of heat shock protein while the capacity of carbohydrate oxidation was increased only after specific strength training.

  18. Glutamine metabolism in uricotelic species: variation in skeletal muscle glutamine synthetase, glutaminase, glutamine levels and rates of protein synthesis.

    Science.gov (United States)

    Watford, Malcolm; Wu, Guoyao

    2005-04-01

    High intracellular glutamine levels have been implicated in promoting net protein synthesis and accretion in mammalian skeletal muscle. Little is known regarding glutamine metabolism in uricotelic species but chicken breast muscle exhibits high rates of protein accretion and would be predicted to maintain high glutamine levels. However, chicken breast muscle expresses high glutaminase activity and here we report that chicken breast muscle also expresses low glutamine synthetase activity (0.07+/-0.01 U/g) when compared to leg muscle (0.50+/-0.04 U/g). Free glutamine levels were 1.38+/-0.09 and 9.69+/-0.12 nmol/mg wet weight in breast and leg muscles of fed chickens, respectively. Glutamine levels were also lower in dove breast muscle (4.82+/-0.35 nmol/mg wet weight) when compared to leg muscle (16.2+/-1.0 nmol/mg wet weight) and much lower (1.80+/-0.46 nmol/mg wet weight) in lizard leg muscle. In fed chickens, rates of fractional protein synthesis were higher in leg than in breast muscle, and starvation (48 h) resulted in a decrease in both glutamine content and rate of protein synthesis in leg muscle. Thus, although tissue-specific glutamine metabolism in uricotelic species differs markedly from that in ureotelic animals, differences in rates of skeletal muscle protein synthesis are associated with corresponding differences in intramuscular glutamine content. PMID:15763516

  19. Marked over expression of uncoupling protein-2 in beta cells exerts minor effects on mitochondrial metabolism

    International Nuclear Information System (INIS)

    Highlights: ► The impact of UCP-2 over expression on mitochondrial function is controversial. ► We tested mitochondrial functions at defined levels of overexpression. ► We find minor increases of fatty acid oxidation and uncoupling. ► Effects were seen only at high level (fourfold) of over expression. ► Hence it is doubtful whether these effects are of importance in diabetes. -- Abstract: Evidence is conflicting as to the impact of elevated levels of uncoupling protein-2 (UCP-2) on insulin-producing beta cells. Here we investigated effects of a fourfold induction of UCP-2 protein primarily on mitochondrial parameters and tested for replication of positive findings at a lower level of induction. We transfected INS-1 cells to obtain a tet-on inducible cell line. A 48 h exposure to 1 μg/ml of doxycycline (dox) induced UCP-2 fourfold (424 ± 113%, mean ± SEM) and 0.1 μg/ml twofold (178 ± 29%, n = 3). Fourfold induced cells displayed normal viability (MTT, apoptosis), normal cellular insulin contents and, glucose-induced insulin secretion (+27 ± 11%) as well as D-[U-14C]-glucose oxidation (+5 ± 9% at 11 mM glucose). Oxidation of [1-14C]-oleate was increased from 4088 to 5797 fmol/μg prot/2 h at 3.3 mM glucose, p 14C(U)]-glutamine was unaffected. Induction of UCP-2 did not significantly affect measures of mitochondrial membrane potential (Rhodamine 123) or mitochondrial mass (Mitotracker Green) and did not affect ATP levels. Oligomycin-inhibited oxygen consumption (a measure of mitochondrial uncoupling) was marginally increased, the effect being significant in comparison with dox-only treated cells, p < 0.05. Oxygen radicals, assessed by dichlorofluorescin diacetate, were decreased by 30%, p < 0.025. Testing for the lower level of UCP-2 induction did not reproduce any of the positive findings. A fourfold induction of UCP-2 was required to exert minor metabolic effects. These findings question an impact of moderately elevated UCP-2 levels in beta cells as

  20. Marked over expression of uncoupling protein-2 in beta cells exerts minor effects on mitochondrial metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Hals, Ingrid K., E-mail: ingrid.hals@ntnu.no [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Ogata, Hirotaka; Pettersen, Elin [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Ma, Zuheng; Bjoerklund, Anneli [Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm (Sweden); Skorpen, Frank [Department of Laboratory Medicine, NTNU, Trondheim (Norway); Egeberg, Kjartan Wollo [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Grill, Valdemar [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm (Sweden)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer The impact of UCP-2 over expression on mitochondrial function is controversial. Black-Right-Pointing-Pointer We tested mitochondrial functions at defined levels of overexpression. Black-Right-Pointing-Pointer We find minor increases of fatty acid oxidation and uncoupling. Black-Right-Pointing-Pointer Effects were seen only at high level (fourfold) of over expression. Black-Right-Pointing-Pointer Hence it is doubtful whether these effects are of importance in diabetes. -- Abstract: Evidence is conflicting as to the impact of elevated levels of uncoupling protein-2 (UCP-2) on insulin-producing beta cells. Here we investigated effects of a fourfold induction of UCP-2 protein primarily on mitochondrial parameters and tested for replication of positive findings at a lower level of induction. We transfected INS-1 cells to obtain a tet-on inducible cell line. A 48 h exposure to 1 {mu}g/ml of doxycycline (dox) induced UCP-2 fourfold (424 {+-} 113%, mean {+-} SEM) and 0.1 {mu}g/ml twofold (178 {+-} 29%, n = 3). Fourfold induced cells displayed normal viability (MTT, apoptosis), normal cellular insulin contents and, glucose-induced insulin secretion (+27 {+-} 11%) as well as D-[U-{sup 14}C]-glucose oxidation (+5 {+-} 9% at 11 mM glucose). Oxidation of [1-{sup 14}C]-oleate was increased from 4088 to 5797 fmol/{mu}g prot/2 h at 3.3 mM glucose, p < 0.03. Oxidation of L-[{sup 14}C(U)]-glutamine was unaffected. Induction of UCP-2 did not significantly affect measures of mitochondrial membrane potential (Rhodamine 123) or mitochondrial mass (Mitotracker Green) and did not affect ATP levels. Oligomycin-inhibited oxygen consumption (a measure of mitochondrial uncoupling) was marginally increased, the effect being significant in comparison with dox-only treated cells, p < 0.05. Oxygen radicals, assessed by dichlorofluorescin diacetate, were decreased by 30%, p < 0.025. Testing for the lower level of UCP-2 induction did not reproduce any of the

  1. Interactions between vertebrate hemoglobins and red cell proteins: Possible roles in regulating cellular metabolism and rheology

    DEFF Research Database (Denmark)

    Weber, Roy E.

    2007-01-01

    Red blood cells (RBCs) play a vital role in vertebrate metabolism. Tissue O2 delivery depends on their O2 transporting properties and rheology, an integral determinant of tissue perfusion. The mechanical characteristics and key metabolic characteristics of RBCs (such as glycolysis rate, pentose...

  2. Aroclor 1254, a developmental neurotoxicant, alters energy metabolism- and intracellular signaling-associated protein networks in rat cerebellum and hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Kodavanti, Prasada Rao S., E-mail: kodavanti.prasada@epa.gov [Neurotoxicology Branch, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (United States); Osorio, Cristina [Systems Proteomics Center, University of North Carolina at Chapel Hill, North Carolina (United States); Program on Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, North Carolina (United States); Royland, Joyce E.; Ramabhadran, Ram [Genetic and Cellular Toxicology Branch, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (United States); Alzate, Oscar [Department of Cellular and Developmental Biology, University of North Carolina at Chapel Hill, North Carolina (United States); Systems Proteomics Center, University of North Carolina at Chapel Hill, North Carolina (United States); Program on Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, North Carolina (United States)

    2011-11-15

    The vast literature on the mode of action of polychlorinated biphenyls (PCBs) indicates that PCBs are a unique model for understanding the mechanisms of toxicity of environmental mixtures of persistent chemicals. PCBs have been shown to adversely affect psychomotor function and learning and memory in humans. Although the molecular mechanisms for PCB effects are unclear, several studies indicate that the disruption of Ca{sup 2+}-mediated signal transduction plays significant roles in PCB-induced developmental neurotoxicity. Culminating events in signal transduction pathways include the regulation of gene and protein expression, which affects the growth and function of the nervous system. Our previous studies showed changes in gene expression related to signal transduction and neuronal growth. In this study, protein expression following developmental exposure to PCB is examined. Pregnant rats (Long Evans) were dosed with 0.0 or 6.0 mg/kg/day of Aroclor-1254 from gestation day 6 through postnatal day (PND) 21, and the cerebellum and hippocampus from PND14 animals were analyzed to determine Aroclor 1254-induced differential protein expression. Two proteins were found to be differentially expressed in the cerebellum following PCB exposure while 18 proteins were differentially expressed in the hippocampus. These proteins are related to energy metabolism in mitochondria (ATP synthase, sub unit {beta} (ATP5B), creatine kinase, and malate dehydrogenase), calcium signaling (voltage-dependent anion-selective channel protein 1 (VDAC1) and ryanodine receptor type II (RyR2)), and growth of the nervous system (dihydropyrimidinase-related protein 4 (DPYSL4), valosin-containing protein (VCP)). Results suggest that Aroclor 1254-like persistent chemicals may alter energy metabolism and intracellular signaling, which might result in developmental neurotoxicity. -- Highlights: Black-Right-Pointing-Pointer We performed brain proteomic analysis of rats exposed to the neurotoxicant

  3. Asynchronous event-based hebbian epipolar geometry.

    Science.gov (United States)

    Benosman, Ryad; Ieng, Sio-Hoï; Rogister, Paul; Posch, Christoph

    2011-11-01

    Epipolar geometry, the cornerstone of perspective stereo vision, has been studied extensively since the advent of computer vision. Establishing such a geometric constraint is of primary importance, as it allows the recovery of the 3-D structure of scenes. Estimating the epipolar constraints of nonperspective stereo is difficult, they can no longer be defined because of the complexity of the sensor geometry. This paper will show that these limitations are, to some extent, a consequence of the static image frames commonly used in vision. The conventional frame-based approach suffers from a lack of the dynamics present in natural scenes. We introduce the use of neuromorphic event-based--rather than frame-based--vision sensors for perspective stereo vision. This type of sensor uses the dimension of time as the main conveyor of information. In this paper, we present a model for asynchronous event-based vision, which is then used to derive a general new concept of epipolar geometry linked to the temporal activation of pixels. Practical experiments demonstrate the validity of the approach, solving the problem of estimating the fundamental matrix applied, in a first stage, to classic perspective vision and then to more general cameras. Furthermore, this paper shows that the properties of event-based vision sensors allow the exploration of not-yet-defined geometric relationships, finally, we provide a definition of general epipolar geometry deployable to almost any visual sensor. PMID:21954205

  4. Rapid, generalized adaptation to asynchronous audiovisual speech.

    Science.gov (United States)

    Van der Burg, Erik; Goodbourn, Patrick T

    2015-04-01

    The brain is adaptive. The speed of propagation through air, and of low-level sensory processing, differs markedly between auditory and visual stimuli; yet the brain can adapt to compensate for the resulting cross-modal delays. Studies investigating temporal recalibration to audiovisual speech have used prolonged adaptation procedures, suggesting that adaptation is sluggish. Here, we show that adaptation to asynchronous audiovisual speech occurs rapidly. Participants viewed a brief clip of an actor pronouncing a single syllable. The voice was either advanced or delayed relative to the corresponding lip movements, and participants were asked to make a synchrony judgement. Although we did not use an explicit adaptation procedure, we demonstrate rapid recalibration based on a single audiovisual event. We find that the point of subjective simultaneity on each trial is highly contingent upon the modality order of the preceding trial. We find compelling evidence that rapid recalibration generalizes across different stimuli, and different actors. Finally, we demonstrate that rapid recalibration occurs even when auditory and visual events clearly belong to different actors. These results suggest that rapid temporal recalibration to audiovisual speech is primarily mediated by basic temporal factors, rather than higher-order factors such as perceived simultaneity and source identity. PMID:25716790

  5. Managing Asynchronous Data in ATLAS's Concurrent Framework

    CERN Document Server

    Baines, John; The ATLAS collaboration

    2016-01-01

    In order to be able to make effective use of emerging hardware, where the amount of memory available to any CPU is rapidly decreasing as the core count continues to rise, ATLAS has begun a migration to a concurrent, multi-threaded software framework, known as AthenaMT. Significant progress has been made in implementing AthenaMT - we can currently run realistic Geant4 simulations on massively concurrent machines. the migration of realistic prototypes of reconstruction workflows is more difficult, given the large amounts of legacy code and the complexity and challenges of reconstruction software. These types of workflows, however, are the types that will most benefit from the memory reduction features of a multi-threaded framework. One of the challenges that we will report on in this paper is the re-design and implementation of several key asynchronous technologies whose behaviour is radically different in a concurrent environment than in a serial one, namely the management of Conditions data and the Detector D...

  6. A Metabolic Probe-Enabled Strategy Reveals Uptake and Protein Targets of Polyunsaturated Aldehydes in the Diatom Phaeodactylum tricornutum.

    Directory of Open Access Journals (Sweden)

    Stefanie Wolfram

    Full Text Available Diatoms are unicellular algae of crucial importance as they belong to the main primary producers in aquatic ecosystems. Several diatom species produce polyunsaturated aldehydes (PUAs that have been made responsible for chemically mediated interactions in the plankton. PUA-effects include chemical defense by reducing the reproductive success of grazing copepods, allelochemical activity by interfering with the growth of competing phytoplankton and cell to cell signaling. We applied a PUA-derived molecular probe, based on the biologically highly active 2,4-decadienal, with the aim to reveal protein targets of PUAs and affected metabolic pathways. By using fluorescence microscopy, we observed a substantial uptake of the PUA probe into cells of the diatom Phaeodactylum tricornutum in comparison to the uptake of a structurally closely related control probe based on a saturated aldehyde. The specific uptake motivated a chemoproteomic approach to generate a qualitative inventory of proteins covalently targeted by the α,β,γ,δ-unsaturated aldehyde structure element. Activity-based protein profiling revealed selective covalent modification of target proteins by the PUA probe. Analysis of the labeled proteins gave insights into putative affected molecular functions and biological processes such as photosynthesis including ATP generation and catalytic activity in the Calvin cycle or the pentose phosphate pathway. The mechanism of action of PUAs involves covalent reactions with proteins that may result in protein dysfunction and interference of involved pathways.

  7. Metabolic labeling of cellular glycoproteins with glucosamine: potential for erroneous interpretations due to nonenzymatic radiolabeling of proteins

    International Nuclear Information System (INIS)

    Proteins, including serum proteins of culture media, become nonenzymatically radiolabeled under conditions used for metabolic labeling of cultured cells with glucosamine. This occurs even under sterile conditions in the absence of cells. Various commercial lots of 3H or 14C glcN gave similar results: ∼ 0.7% of total label was incorporated into 20% serum (14 mg/ml protein) in 48 h at 370C. By SDS-PAGE fluorography, labeled serum bands correspond to Coomassie stained bands. Incorporation is linear with protein concentration and label input, shows biphasic kinetics (initial rapid rate within first 3 hr, followed by slower linear rate with no sign of saturation through 120 hr), and is temperature-dependent (no reaction at 00C; incorporation at 200C is ∼ 45% of that at 370C). Poly-D-lysine is a better acceptor than protein: 0.5 mg/ml PL accepts as much label as 7 mg/ml protein. Incorporation is inhibited by excess unlabeled glcN and ethanolamine, but not by man, gal or glucose. However, when proteins were incubated with 160 mM glcN, SDS-PAGE bands were yellow-brown, suggesting the occurrence of Maillard-type reactions. Although the chemical mechanism(s) responsible for nonmetabolic radiolabeling by glcN are not clear at this point, the fact that it occurs represents a serious artifact which may lead to erroneous interpretation of data

  8. Effect of asynchronous updating on the stability of cellular automata

    International Nuclear Information System (INIS)

    Highlights: ► An upper bound on the Lyapunov exponent of asynchronously updated CA is established. ► The employed update method has repercussions on the stability of CAs. ► A decision on the employed update method should be taken with care. ► Substantial discrepancies arise between synchronously and asynchronously updated CA. ► Discrepancies between different asynchronous update schemes are less pronounced. - Abstract: Although cellular automata (CAs) were conceptualized as utter discrete mathematical models in which the states of all their spatial entities are updated simultaneously at every consecutive time step, i.e. synchronously, various CA-based models that rely on so-called asynchronous update methods have been constructed in order to overcome the limitations that are tied up with the classical way of evolving CAs. So far, only a few researchers have addressed the consequences of this way of updating on the evolved spatio-temporal patterns, and the reachable stationary states. In this paper, we exploit Lyapunov exponents to determine to what extent the stability of the rules within a family of totalistic CAs is affected by the underlying update method. For that purpose, we derive an upper bound on the maximum Lyapunov exponent of asynchronously iterated CAs, and show its validity, after which we present a comparative study between the Lyapunov exponents obtained for five different update methods, namely one synchronous method and four well-established asynchronous methods. It is found that the stability of CAs is seriously affected if one of the latter methods is employed, whereas the discrepancies arising between the different asynchronous methods are far less pronounced and, finally, we discuss the repercussions of our findings on the development of CA-based models.

  9. The effect of milk and milk proteins on risk factors of metabolic syndrome in overweight adolecents

    DEFF Research Database (Denmark)

    Arnberg, Karina

    of type-2 diabetes and atherosclerotic cardiovascular diseases. Overweight children have higher concentrations of the metabolic syndrome risk factors than normal weight children and the pathological condition underlying cardiovascular diseases, called atherosclerosis, seems to start in childhood. A...

  10. Minocycline alleviates beta-amyloid protein and tau pathology via restraining neuroinflammation induced by diabetic metabolic disorder

    Directory of Open Access Journals (Sweden)

    Cai Z

    2013-08-01

    Full Text Available Zhiyou Cai,1 Yong Yan,2 Yonglong Wang2 1Department of Neurology, the Lu’an Affiliated Hospital of Anhui Medical University, Lu’an People’s Hospital, Lu’an, Anhui Province, People’s Republic of China; 2Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, People’s Republic of China Background: Compelling evidence has shown that diabetic metabolic disorder plays a critical role in the pathogenesis of Alzheimer’s disease, including increased expression of β-amyloid protein (Aβ and tau protein. Evidence has supported that minocycline, a tetracycline derivative, protects against neuroinflammation induced by neurodegenerative disorders or cerebral ischemia. This study has evaluated minocycline influence on expression of Aβ protein, tau phosphorylation, and inflammatory cytokines (interleukin-1β and tumor necrosis factor-α in the brain of diabetic rats to clarify neuroprotection by minocycline under diabetic metabolic disorder. Method: An animal model of diabetes was established by high fat diet and intraperitoneal injection of streptozocin. In this study, we investigated the effect of minocycline on expression of Aβ protein, tau phosphorylation, and inflammatory cytokines (interleukin-1β and tumor necrosis factor-α in the hippocampus of diabetic rats via immunohistochemistry, western blotting, and enzyme-linked immunosorbent assay. Results: These results showed that minocycline decreased expression of Aβ protein and lowered the phosphorylation of tau protein, and retarded the proinflammatory cytokines, but not amyloid precursor protein. Conclusion: On the basis of the finding that minocycline had no influence on amyloid precursor protein and beta-site amyloid precursor protein cleaving enzyme 1 which determines the speed of Aβ generation, the decreases in Aβ production and tau hyperphosphorylation by minocycline are through inhibiting

  11. Interplay between mitogen-activated protein kinase and nitric oxide in brassinosteroid-induced pesticide metabolism in Solanum lycopersicum.

    Science.gov (United States)

    Yin, Yan-Ling; Zhou, Yue; Zhou, Yan-Hong; Shi, Kai; Zhou, Jie; Yu, Yunlong; Yu, Jing-Quan; Xia, Xiao-Jian

    2016-10-01

    Nitric oxide (NO) and mitogen-activated protein kinase (MPK) play important roles in brassinosteroid (BR)-induced stress tolerance, however, their functions in BR-induced pesticides metabolism remain unclear. Here, we showed that MPK activity and transcripts of SlMPK1 and SlMPK2 were induced by chlorothalonil (CHT), a widely used fungicide, in tomato leaves. However, cosilencing of SlMPK1/2 compromised the 24-epibrassinolide (EBR)-induced upregulation of detoxification genes and CHT metabolism in tomato leaves. In addition, cosilencing of SlMPK1/2 inhibited the accumulation of S-nitrosothiol (SNO), the reservoir of nitric oxide (NO) in plants, whereas tungstate, the inhibitor of nitrate reductase (NR), blocked EBR-induced SNO accumulation and MPK activity. Inhibiting the accumulation of NO by cPTIO, the specific scavenger and tungstate abolished the EBR-induced upregulation of detoxification genes, glutathione accumulation and CHT metabolism. The results showed that MPK and NR-dependent NO were involved in BR-induced CHT metabolism. Notably, there was a positive crosstalk between the MPK and NO production. PMID:27236431

  12. Significantly fewer protein functional changing variants for lipid metabolism in Africans than in Europeans

    OpenAIRE

    Xue, Cheng; Liu, Xiaoming; Gong, Yun; Zhao, Yuhai; Fu, Yun-Xin

    2013-01-01

    Background The disorders in metabolism of energy substances are usually related to some diseases, such as obesity, diabetes and cancer, etc. However, the genetic background for these disorders has not been well understood. In this study, we explored the genetic risk differences among human populations in metabolism (catabolism and biosynthesis) of energy substances, including lipids, carbohydrates and amino acids. Results Two genotype datasets (Hapmap and 1000 Genome) were used for this study...

  13. Urinary deoxypyridinoline (DPD), serum bone glia protein (BGP) and bone metabolism change in hyperthyroidism

    International Nuclear Information System (INIS)

    Objective: To study the effect of thyroid function on bone metabolism. Methods: Urinary DPD, Serum FT3, FT4 and BGP levels were determined with chemiluminescence assay and RIA in 41 patients with hyperthyroidism and 47 healthy controls. Results: Urinary DPD and serum FT3, FT4, BGP levels were significantly higher in patients with hyperthyroidism than those in healthy controls (p < 0.01). Conclusion: The data showed that hyperthyroidism was correlated with bone metabolism

  14. Protein and folic acid content in the maternal diet determine lipid metabolism and response to high-fat feeding in rat progeny in an age-dependent manner

    OpenAIRE

    Chmurzynska, Agata; Stachowiak, Monika; Gawecki, Jan; Pruszynska-Oszmalek, Ewa; Tubacka, Małgorzata

    2011-01-01

    Maternal diet during gestation can exert a long-term effect on the progeny’s health by programming their developmental scheme and metabolism. The aim of this study is to analyze the influence of maternal diet on lipid metabolism in 10- and 16-week-old rats. Pregnant dams were fed one of four diets: a normal protein and normal folic acid diet (NP-NF), a protein-restricted and normal folic acid diet (PR-NF), a protein-restricted and folic-acid-supplemented diet (PR-FS), or a normal protein and ...

  15. Biochemical studies of effects of alcohol consumption on fat and carbohydrate metabolism in rats fed different levels of proteins

    International Nuclear Information System (INIS)

    Alcohol, ethanol and ethyl alcohol are synonymously used during the present dissertation. Alcohol probably was among the first psychoactive substances to be used by man (Winger et al., 1992). Ethanol is mainly oxidized to acetaldehyde in the liver (Ugarte and Peresa, 1978) by alcohol dehydrogenase (ADH). Alcohol is associated with many metabolic disorders inside the body (Thayer and Rubin, 1979; Forsander and Poso, 1988; Poso and Hirsimaki, 1991; Bernal, et al., 1992). The nutritional factors which received little attention have an important role in alcoholic metabolizing alterations. Morphologically and biochemically, an increase in hepatic lipid was demonstrated when ethanol was given either as a supplement or as an iso caloric substitute for carbohydrate together with an otherwise nutritionally adequate diet. Low-protein diets have been shown to diminish hepatic alcohol dehydrogenase (ADH) levels in rats and to slow down the metabolism of ethanol considerably (Wilson et al., 1986). Hepatic steatosis was produced, even with a high-protein, vitamin-supplemented diet and was accompanied by major ultrastructural liver changes and by elevations of hepatic transaminases in blood (Lieber et al., 1963 and 1965 and Lane and Lieber, 1966). If dietary fat was reduced from 35 to 25% of total calories, hepatic triglyceride accumulation greatly decreased (Lieber and DeCarli, 970)

  16. Evaluation of metabolism, plasma protein binding and other biological parameters after administration of (−)-[18 F]Flubatine in humans

    International Nuclear Information System (INIS)

    Introduction: (−)-[18 F]Flubatine is a PET tracer with high affinity and selectivity for the nicotinic acetylcholine α4β2 receptor subtype. A clinical trial assessing the availability of this subtype of nAChRs was performed. From a total participant number of 21 Alzheimer’s disease (AD) patients and 20 healthy controls (HCs), the following parameters were determined: plasma protein binding, metabolism and activity distribution between plasma and whole blood. Methods: Plasma protein binding and fraction of unchanged parent compound were assessed by ultracentrifugation and HPLC, respectively. The distribution of radioactivity (parent compound + metabolites) between plasma and whole blood was determined ex vivo at different time-points after injection by gamma counting after separation of whole blood by centrifugation into the cellular and non-cellular components. In additional experiments in vitro, tracer distribution between these blood components was assessed for up to 90 min. Results: A fraction of 15% ± 2% of (−)-[18 F]Flubatine was found to be bound to plasma proteins. Metabolic degradation of (−)-[18 F]Flubatine was very low, resulting in almost 90% unchanged parent compound at 90 min p.i. with no significant difference between AD and HC. The radioactivity distribution between plasma and whole blood changed in vivo only slightly over time from 0.82 ± 0.03 at 3 min p.i. to 0.87 ± 0.03 at 270 min p.i. indicating the contribution of only a small amount of metabolites. In vitro studies revealed that (−)-[18 F]Flubatine was instantaneously distributed between cellular and non-cellular blood parts. Discussion: (−)-[18 F]Flubatine exhibits very favourable characteristics for a PET radiotracer such as slow metabolic degradation and moderate plasma protein binding. Equilibrium of radioactivity distribution between plasma and whole blood is reached instantaneously and remains almost constant over time allowing both convenient sample handling and

  17. Proteomic analysis of ACTN4-interacting proteins reveals it's a putative involvement in mRNA metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Khotin, Mikhail, E-mail: h_mg@mail.ru [Department of Cell Cultures, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av., 4, 194064 St. Petersburg (Russian Federation); Turoverova, Lidia [Department of Cell Cultures, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av., 4, 194064 St. Petersburg (Russian Federation); Aksenova, Vasilisa [Department of Cell Cultures, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av., 4, 194064 St. Petersburg (Russian Federation); Department of Genetics, St. Petersburg State University, Universitetskaya nab., 7/9, 199034 St. Petersburg (Russian Federation); Barlev, Nikolai [Department of Cell Cultures, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av., 4, 194064 St. Petersburg (Russian Federation); Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN (United Kingdom); Borutinskaite, Veronika Viktorija [Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linkoeping University, SE-581 85 Linkoeping (Sweden); Department of Developmental Biology, Institute of Biochemistry, LT-08662 Vilnius (Lithuania); Vener, Alexander [Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linkoeping University, SE-581 85 Linkoeping (Sweden); Bajenova, Olga [Department of Genetics, St. Petersburg State University, Universitetskaya nab., 7/9, 199034 St. Petersburg (Russian Federation); Magnusson, Karl-Eric [Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linkoeping University, SE-581 85 Linkoeping (Sweden); Pinaev, George P. [Department of Cell Cultures, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av., 4, 194064 St. Petersburg (Russian Federation); Tentler, Dmitri, E-mail: dtentler@mail.cytspb.rssi.ru [Department of Cell Cultures, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av., 4, 194064 St. Petersburg (Russian Federation)

    2010-06-25

    Alpha-actinin 4 (ACTN4) is an actin-binding protein. In the cytoplasm, ACTN4 participates in structural organisation of the cytoskeleton via cross-linking of actin filaments. Nuclear localisation of ACTN4 has also been reported, but no clear role in the nucleus has been established. In this report, we describe the identification of proteins associated with ACTN4 in the nucleus. A combination of two-dimensional gel electrophoresis (2D-GE) and MALDI-TOF mass-spectrometry revealed a large number of ACTN4-bound proteins that are involved in various aspects of mRNA processing and transport. The association of ACTN4 with different ribonucleoproteins suggests that a major function of nuclear ACTN4 may be regulation of mRNA metabolism and signaling.

  18. Efficiency asynchronous application programming language Python

    OpenAIRE

    Толстікова, О. В.; Національний авіаційний університет; Мирошниченко, І. С.; Національний авіаційний університет; Коцюр, А. Б.; Національний авіаційний університет

    2016-01-01

    Consider tools that implement asynchronous programming in Python and allow more efficient use ofasynchronous programming applications. The efficiency of the module asyncio (PEP 3156) incomparison with classical spivprohramamy Рассмотрены инструменты, которые реализуют асинхронное программирование в языкеPython и позволяют повысить эффективность использования программирования асинхронныхприложений. Показана эффективность работы модуля asyncio (PEP 3156) по сравнению с классическими сопрогра...

  19. IHadoop: Asynchronous iterations for MapReduce

    KAUST Repository

    Elnikety, Eslam Mohamed Ibrahim

    2011-11-01

    MapReduce is a distributed programming frame-work designed to ease the development of scalable data-intensive applications for large clusters of commodity machines. Most machine learning and data mining applications involve iterative computations over large datasets, such as the Web hyperlink structures and social network graphs. Yet, the MapReduce model does not efficiently support this important class of applications. The architecture of MapReduce, most critically its dataflow techniques and task scheduling, is completely unaware of the nature of iterative applications; tasks are scheduled according to a policy that optimizes the execution for a single iteration which wastes bandwidth, I/O, and CPU cycles when compared with an optimal execution for a consecutive set of iterations. This work presents iHadoop, a modified MapReduce model, and an associated implementation, optimized for iterative computations. The iHadoop model schedules iterations asynchronously. It connects the output of one iteration to the next, allowing both to process their data concurrently. iHadoop\\'s task scheduler exploits inter-iteration data locality by scheduling tasks that exhibit a producer/consumer relation on the same physical machine allowing a fast local data transfer. For those iterative applications that require satisfying certain criteria before termination, iHadoop runs the check concurrently during the execution of the subsequent iteration to further reduce the application\\'s latency. This paper also describes our implementation of the iHadoop model, and evaluates its performance against Hadoop, the widely used open source implementation of MapReduce. Experiments using different data analysis applications over real-world and synthetic datasets show that iHadoop performs better than Hadoop for iterative algorithms, reducing execution time of iterative applications by 25% on average. Furthermore, integrating iHadoop with HaLoop, a variant Hadoop implementation that caches

  20. Effect of long-term refeeding on protein metabolism in patients with cirrhosis of the liver

    DEFF Research Database (Denmark)

    Kondrup, J; Nielsen, K; Juul, A

    1997-01-01

    protein synthesis was associated with significant increases in plasma concentrations of total amino acids (25%), leucine (58%), isoleucine (82%), valine (72%), proline (48%) and triiodothyronine (27%) while insulin, growth hormone, insulin-like growth factor (IGF)-I and IGF-binding protein-3 were not...... a normal protein requirement with the patients who had an increased protein requirement suggests that the increased protein requirement is due to a primary increase in protein degradation. It is speculated that this is due to low levels of IGF-I secondary to impaired liver function, since initial...... plasma concentration of IGF-I was about 25% of control values and remained low during refeeding....

  1. Proteomic Profiling of the Dystrophin-Deficient MDX Heart Reveals Drastically Altered Levels of Key Metabolic and Contractile Proteins

    Directory of Open Access Journals (Sweden)

    Caroline Lewis

    2010-01-01

    Full Text Available Although Duchenne muscular dystrophy is primarily classified as a neuromuscular disease, cardiac complications play an important role in the course of this X-linked inherited disorder. The pathobiochemical steps causing a progressive decline in the dystrophic heart are not well understood. We therefore carried out a fluorescence difference in-gel electrophoretic analysis of 9-month-old dystrophin-deficient versus age-matched normal heart, using the established MDX mouse model of muscular dystrophy-related cardiomyopathy. Out of 2,509 detectable protein spots, 79 2D-spots showed a drastic differential expression pattern, with the concentration of 3 proteins being increased, including nucleoside diphosphate kinase and lamin-A/C, and of 26 protein species being decreased, including ATP synthase, fatty acid binding-protein, isocitrate dehydrogenase, NADH dehydrogenase, porin, peroxiredoxin, adenylate kinase, tropomyosin, actin, and myosin light chains. Hence, the lack of cardiac dystrophin appears to trigger a generally perturbed protein expression pattern in the MDX heart, affecting especially energy metabolism and contractile proteins.

  2. Different true-protein sources do not modify the metabolism of crossbred Bos taurus × Bos indicus growing heifers

    Directory of Open Access Journals (Sweden)

    Diego Azevedo Mota

    2015-02-01

    Full Text Available The present study was conducted to investigate the effect of alternative true-protein sources to soybean meal, with different ruminal degradability, using a sugarcane-based diet, on nutrient digestion, ruminal fermentation, efficiency of microbial protein synthesis and passage rate in prepubertal dairy heifers. Eight crossbred rumen- and duodenum-cannulated Holstein × Gyr dairy heifers (202.0±11.5 kg BW were evaluated in a 4 × 4 Latin square experimental design with four treatments and four periods in two simultaneous replicates. Dietary treatments were: soybean meal; cottonseed meal; peanut meal; and sunflower meal. When associated with diets containing sugarcane, the different protein sources did not affect intake or digestibility of dry mater, crude protein, organic matter and neutral detergent fiber. The average ruminal pH, NH3-N and concentration of total volatile fatty acids were not different among the diets supplied. The concentration of butyric acid was different among the protein sources, wherein the animals fed the diet with sunflower meal presented lower values than those fed the other sources. Diets did not affect nitrogen balance, microbial nitrogen, microbial synthesisefficiency, estimated dry matter flow, or passage rate. Alternative protein sources can be used to reduce the costs without changing the animal metabolism.

  3. Protein kinase A induces UCP1 expression in specific adipose depots to increase energy expenditure and improve metabolic health.

    Science.gov (United States)

    Dickson, Lorna M; Gandhi, Shriya; Layden, Brian T; Cohen, Ronald N; Wicksteed, Barton

    2016-07-01

    Adipose tissue PKA has roles in adipogenesis, lipolysis, and mitochondrial function. PKA transduces the cAMP signal downstream of G protein-coupled receptors, which are being explored for therapeutic manipulation to reduce obesity and improve metabolic health. This study aimed to determine the overall physiological consequences of PKA activation in adipose tissue. Mice expressing an activated PKA catalytic subunit in adipose tissue (Adipoq-caPKA mice) showed increased PKA activity in subcutaneous, epididymal, and mesenteric white adipose tissue (WAT) depots and brown adipose tissue (BAT) compared with controls. Adipoq-caPKA mice weaned onto a high-fat diet (HFD) or switched to the HFD at 26 wk of age were protected from diet-induced weight gain. Metabolic health was improved, with enhanced insulin sensitivity, glucose tolerance, and β-cell function. Adipose tissue health was improved, with smaller adipocyte size and reduced macrophage engulfment of adipocytes. Using metabolic cages, we found that Adipoq-caPKA mice were shown to have increased energy expenditure, but no difference to littermate controls in physical activity or food consumption. Immunoblotting of adipose tissue showed increased expression of uncoupling protein-1 (UCP1) in BAT and dramatic UCP1 induction in subcutaneous WAT, but no induction in the visceral depots. Feeding a HFD increased PKA activity in epididymal WAT of wild-type mice compared with chow, but did not change PKA activity in subcutaneous WAT or BAT. This was associated with changes in PKA regulatory subunit expression. This study shows that adipose tissue PKA activity is sufficient to increase energy expenditure and indicates that PKA is a beneficial target in metabolic health. PMID:27097660

  4. Pulmonary heat shock protein expression after exposure to a metabolically activated Clara cell toxicant: relationship to protein adduct formation

    International Nuclear Information System (INIS)

    Heat shock proteins/stress proteins (Hsps) participate in regulation of protein synthesis and degradation and serve as general cytoprotectants, yet their role in lethal Clara cell injury is not clear. To define the pattern of Hsp expression in acute lethal Clara cell injury, mice were treated with the Clara cell-specific toxicant naphthalene (NA), and patterns of expression compared to electrophilic protein adduction and previously established organellar degradation and gluathione (GSH) depletion. In sites of lethal injury (distal bronchiole), prior to organellar degradation (1 h post-NA), protein adduction is detectable and ubiquitin, Hsp 25, Hsp 72, and heme-oxygenase 1 (HO-1) are increased. Maximal Hsp expression, protein adduction, and GSH depletion occur simultaneous (by 2-3 h) with early organelle disruption. Hsp expression is higher later (6-24 h), only in exfoliating cells. In airway sites (proximal bronchiole) with nonlethal Clara cell injury elevation of Hsp 25, 72, and HO-1 expression follows significant GSH depletion (greater than 50% 2 h post-NA). This data build upon our previous studies and we conclude that (1) in lethal (terminal bronchiole) and nonlethal (proximal bronchiole) Clara cell injury, Hsp induction is associated with the loss of GSH and increased protein adduction, and (2) in these same sites, organelle disruption is not a prerequisite for Hsp induction

  5. Arginine Depletion by Arginine Deiminase Does Not Affect Whole Protein Metabolism or Muscle Fractional Protein Synthesis Rate in Mice

    Science.gov (United States)

    Marini, Juan C.; Didelija, Inka Cajo

    2015-01-01

    Due to the absolute need for arginine that certain cancer cells have, arginine depletion is a therapy in clinical trials to treat several types of cancers. Arginine is an amino acids utilized not only as a precursor for other important molecules, but also for protein synthesis. Because arginine depletion can potentially exacerbate the progressive loss of body weight, and especially lean body mass, in cancer patients we determined the effect of arginine depletion by pegylated arginine deiminase (ADI-PEG 20) on whole body protein synthesis and fractional protein synthesis rate in multiple tissues of mice. ADI-PEG 20 successfully depleted circulating arginine (<1 μmol/L), and increased citrulline concentration more than tenfold. Body weight and body composition, however, were not affected by ADI-PEG 20. Despite the depletion of arginine, whole body protein synthesis and breakdown were maintained in the ADI-PEG 20 treated mice. The fractional protein synthesis rate of muscle was also not affected by arginine depletion. Most tissues (liver, kidney, spleen, heart, lungs, stomach, small and large intestine, pancreas) were able to maintain their fractional protein synthesis rate; however, the fractional protein synthesis rate of brain, thymus and testicles was reduced due to the ADI-PEG 20 treatment. Furthermore, these results were confirmed by the incorporation of ureido [14C]citrulline, which indicate the local conversion into arginine, into protein. In conclusion, the intracellular recycling pathway of citrulline is able to provide enough arginine to maintain protein synthesis rate and prevent the loss of lean body mass and body weight. PMID:25775142

  6. Identification of mitogen-activated protein kinase docking sites in enzymes that metabolize phosphatidylinositols and inositol phosphates

    Directory of Open Access Journals (Sweden)

    Buckley Colin T

    2006-01-01

    Full Text Available Abstract Background Reversible interactions between the components of cellular signaling pathways allow for the formation and dissociation of multimolecular complexes with spatial and temporal resolution and, thus, are an important means of integrating multiple signals into a coordinated cellular response. Several mechanisms that underlie these interactions have been identified, including the recognition of specific docking sites, termed a D-domain and FXFP motif, on proteins that bind mitogen-activated protein kinases (MAPKs. We recently found that phosphatidylinositol-specific phospholipase C-γ1 (PLC-γ1 directly binds to extracellular signal-regulated kinase 2 (ERK2, a MAPK, via a D-domain-dependent mechanism. In addition, we identified D-domain sequences in several other PLC isozymes. In the present studies we sought to determine whether MAPK docking sequences could be recognized in other enzymes that metabolize phosphatidylinositols (PIs, as well as in enzymes that metabolize inositol phosphates (IPs. Results We found that several, but not all, of these enzymes contain identifiable D-domain sequences. Further, we found a high degree of conservation of these sequences and their location in human and mouse proteins; notable exceptions were PI 3-kinase C2-γ, PI 4-kinase type IIβ, and inositol polyphosphate 1-phosphatase. Conclusion The results indicate that there may be extensive crosstalk between MAPK signaling and signaling pathways that are regulated by cellular levels of PIs or IPs.

  7. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    Science.gov (United States)

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin. PMID:27348124

  8. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    Directory of Open Access Journals (Sweden)

    Hitomi Maruta

    Full Text Available Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4 genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A, which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin.

  9. Effects of X-irradiation on some aspects of protein metabolism in the frog, Rana hexadactyla

    International Nuclear Information System (INIS)

    Changes in the level of total proteins and protease in brain, muscle and liver tissues of normal and X-irradiated frogs were determined. Low doses of radiation produced an increment in protein level while high doses produced decrement. However, protease activity at all doses exhibited an elevatory trend. Exposure of frogs to lethal doses resulted in increased protease activity and decreased protein content during post-irradiation periods. The results are discussed on the basis of protein destruction and lysosomal damage. (auth.)

  10. Metabolism of labelled proteins of bombicid moth hemolymph at the final stage of its larval development

    International Nuclear Information System (INIS)

    Studied was the distribution of radioactivity among hemolymph total proteins, fat body, carcass, intestinal wall, febroin and sericin sections of the silk gland after a single injection of hemolymph radioactive preparation into a bombyx. The fat body was the place of the synthesis of proteins used for silk protein formation at the end of 5-larval age

  11. A P4-ATPase protein interaction network reveals a link between aminophospholipid transport and phosphoinositide metabolism

    NARCIS (Netherlands)

    Puts, C.F.; Lenoir, G.F.; Krijgsveld, J.; WIlliamson, P.L.; Holthuis, J.C.M.

    2009-01-01

    High-throughput analysis of protein-protein interactions can provide unprecedented insight into how cellular processes are integrated at the molecular level. Yet membrane proteins are often overlooked in these studies owing to their hydrophobic nature and low abundance. Here we used a proteomics-bas

  12. Role of Glucocorticoids in the Response to Unloading of Muscle Protein and Amino Acid Metabolism

    Science.gov (United States)

    Tischler, M. E.; Jaspers, S. R.

    1985-01-01

    Intact control (weight bearing) and suspended rats gained weight at a similar rate during a 6 day period. Adrenaectomized (adx) weight bearing rats gained less weight during this period while adrenalectomized suspended rats showed no significant weight gain. Cortisol treatment of both of these groups of animals caused a loss of body weight. Results from these studies show several important findings: (1) Metabolic changes in the extensor digitorum longus muscle of suspended rats are due primarily to increased circulating gluccorticoids; (2) Metabolic changes in the soleus due to higher steroid levels are probably potentiated by greater numbers of receptors; and (3) Not all metabolic responses in the unloaded soleus muscle are due to direct action of elevated glucocorticoids or increased sensitivity to these hormones.

  13. Controlled trial of the effects of milk basic protein (MBP) supplementation on bone metabolism in healthy adult women.

    Science.gov (United States)

    Aoe, S; Toba, Y; Yamamura, J; Kawakami, H; Yahiro, M; Kumegawa, M; Itabashi, A; Takada, Y

    2001-04-01

    Milk has more beneficial effects on bone health compared to other food sources. Recent in vitro and in vivo studies showed that milk whey protein, especially its basic protein fraction, contains several components capable of both promoting bone formation and inhibiting bone resorption. However, the effects of milk basic protein (MBP) on bone metabolism of humans are not known. The object of this study was to examine the effects of MBP on bone metabolism of healthy adult women. Thirty-three normal healthy women were randomly assigned to treatment with either placebo or MBP (40 mg per day) for six months. The bone mineral density (BMD) of the left calcaneus of each subject was measured at the beginning of the study and after six months of treatment, by dual-energy x-ray absorptiometry. Serum and urine indices of bone metabolism were measured at the base line, three-month intervals, and the end of the study. Daily intake of nutrients was monitored by a three-day food record made at three and six months. The mean (+/- SD) rate of left calcaneus BMD gain of women in the MBP group (3.42 +/- 2.05%) was significantly higher than that of women in the placebo group (2.01 +/- 1.75%, P = 0.042). As compared with the placebo group, urinary cross-linked N-teleopeptides of type-I collagen/creatinine and deoxypyridinoline/creatinine were significantly decreased in the MBP group (p supplementation of 40 mg in healthy adult women can significantly increase their BMD independent of dietary intake of minerals and vitamins. This increase in BMD might be primarily mediated through inhibition of osteoclast-mediated bone resorption by the MBP supplementation. PMID:11388472

  14. Asynchronous event-based corner detection and matching.

    Science.gov (United States)

    Clady, Xavier; Ieng, Sio-Hoi; Benosman, Ryad

    2015-06-01

    This paper introduces an event-based luminance-free method to detect and match corner events from the output of asynchronous event-based neuromorphic retinas. The method relies on the use of space-time properties of moving edges. Asynchronous event-based neuromorphic retinas are composed of autonomous pixels, each of them asynchronously generating "spiking" events that encode relative changes in pixels' illumination at high temporal resolutions. Corner events are defined as the spatiotemporal locations where the aperture problem can be solved using the intersection of several geometric constraints in events' spatiotemporal spaces. A regularization process provides the required constraints, i.e. the motion attributes of the edges with respect to their spatiotemporal locations using local geometric properties of visual events. Experimental results are presented on several real scenes showing the stability and robustness of the detection and matching. PMID:25828960

  15. Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release.

    Science.gov (United States)

    Kaeser, Pascal S; Regehr, Wade G

    2014-01-01

    Most neuronal communication relies upon the synchronous release of neurotransmitters, which occurs through synaptic vesicle exocytosis triggered by action potential invasion of a presynaptic bouton. However, neurotransmitters are also released asynchronously with a longer, variable delay following an action potential or spontaneously in the absence of action potentials. A compelling body of research has identified roles and mechanisms for synchronous release, but asynchronous release and spontaneous release are less well understood. In this review, we analyze how the mechanisms of the three release modes overlap and what molecular pathways underlie asynchronous and spontaneous release. We conclude that the modes of release have key fusion processes in common but may differ in the source of and necessity for Ca(2+) to trigger release and in the identity of the Ca(2+) sensor for release. PMID:24274737

  16. A Novel Multiuser Detector for Asynchronous CDMA System

    Institute of Scientific and Technical Information of China (English)

    LIANGXint; SHANGYong; LIANGQinglin; XIANGHaige

    2004-01-01

    The decorrelating and the MMSE (Minimum mean square error) multiuser detector for asynchronous CDMA (Code devision multiple access) system are ideally anticausal infinite memory-length detectors. Asa result~ in practice they have to be approximately implemented with finite-memory structure, and the process delay in detection is unavoidable. Based on the analysis of a new signal model for asynchronous system, a novel multiuser detector for asynchronous CDMA system is proposed in this paper~ which is termed as DF-IC-MMSE (Decision ,feedback interference cancellation-MMSE) detector. It's the detection statistics that makes the DF-IC-MMSE-detector basically different from other traditional ones. The DF-IC-MMSE detector can be ideally implemented with Causal finite memory-length structure, and cause no delay in symbol detection. Simulations show that the performance of DF-IC-MMSE detector is almost identical to that of the ideal MMSE detector.

  17. A Loosely Synchronizing Asynchronous Router for TDM-Scheduled NOCs

    DEFF Research Database (Denmark)

    Kotleas, Ioannis; Humphreys, Dean; Sørensen, Rasmus Bo;

    2014-01-01

    This paper presents an asynchronous router design for use in time-division-multiplexed (TDM) networks-on-chip. Unlike existing synchronous, mesochronous and asynchronous router designs with similar functionality, the router is able to silently skip over cycles/TDM-slots where no traffic is...... scheduled and hence avoid all switching activity in the idle links and router ports. In this way switching activity is reduced to the minimum possible amount. The fact that this relaxed synchronization is sufficient to implement TDM scheduling represents a contribution at the conceptual level. The idea can...... only be implemented using asynchronous circuit techniques. To this end, the paper explores the use of “click-element” templates. Click-element templates use only flipflops and conventional gates, and this greatly simplifies the design process when using conventional EDA tools and standard cell...

  18. Role of acylCoA binding protein in acylCoA transport, metabolism and cell signaling

    DEFF Research Database (Denmark)

    Knudsen, J; Jensen, M V; Hansen, J K; Færgeman, Nils J.; Neergaard, T B; Gaigg, B

    Long chain acylCoA esters (LCAs) act both as substrates and intermediates in intermediary metabolism and as regulators in various intracellular functions. AcylCoA binding protein (ACBP) binds LCAs with high affinity and is believed to play an important role in intracellular acylCoA transport and ......) [4]. Additional factors affecting the concentration of free LCA include feed back inhibition of the acylCoA synthetase [5], binding to acylCoA receptors (LCA-regulated molecules and enzymes), binding to membranes and the activity of acylCoA hydrolases [6]....

  19. Structural and metabolic studies of O-linked fucose-containing proteins of normal and virally-transformed rat fibroblasts

    International Nuclear Information System (INIS)

    Previous studies in this laboratory have demonstrated that cultured human and rodent cells contain a series of low molecular weight glycosylated amino acids of unusual structure, designated amino acid fucosides. The incorporation of radiolabelled-fucose into one of these components, designated FL4a (glucosylfucosylthreonine), is markedly-reduced in transformed epithelial and fibroblastic cells. The authors have examined fucose-labelled normal and virally-transformed rat fibroblast cell lines for glycoproteins which might be precursors to amino acid fucosides. Using milk alkaline/borohydride treatment (the beta-elimination reaction) to release O-linked oligosaccharides from proteins, they have isolated and partially characterized two low M/sub r/ reaction products (designated DS-ol and TS-ol) released from macromolecular cell material. The identity of one of these components (DS-ol, glucosylfucitol) suggested the existence in these cells of a direct protein precursor to FL4a. They examined fucose-labelled macromolecular cell material for proteins which release DS-ol (DS-proteins.). Using gel filtration chromatography and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) with subsequent autoradiography, they have observed DS-proteins which appear to exhibit a broad molecular weight size range, and are also present in culture medium from normal and transformed cells. The findings suggest that mammalian cells contain DS-proteins and TS-proteins with a novel carbohydrate-peptide linkage wherein L-fucose is O-linked to a polypeptide backbone. Metabolic studies were undertaken to examine both the relationship between DS-protein and FL4a and the biochemical basis for the decreased level of FL4a and the biochemical basis for the decreased level of FL4a observed in transformed cells

  20. Integrated application of transcriptomics and metabolomics yields insights into population-asynchronous ovary development in Coilia nasus.

    Science.gov (United States)

    Xu, Gangchun; Du, Fukuan; Li, Yan; Nie, Zhijuan; Xu, Pao

    2016-01-01

    Populations of Coilia nasus demonstrate asynchronous ovarian development, which severely restricts artificial breeding and large-scale cultivation. In this study, we used a combination of transcriptomic and metabolomic methods to identify the key signaling pathways and genes regulation affecting ovarian development. We identified 565 compounds and generated 47,049 unigenes from ovary tissue. Fifteen metabolites and 830 genes were significantly up-regulated, while 27 metabolites and 642 genes were significantly down-regulated from stage III to stage IV of ovary development. Meanwhile, 31 metabolites and 1,932 genes were significantly up-regulated, and four metabolites and 764 genes were down-regulated from stage IV to stage V. These differentially expressed genes and metabolites were enriched by MetScape. Forty-three and 50 signaling pathways had important functions from stage III-IV and from stage IV-V in the ovary, respectively. Among the above signaling pathways, 39 played important roles from ovarian stage III-V, including "squalene and cholesterol biosynthesis", "steroid hormone biosynthesis", and "arachidonate metabolism and prostaglandin formation" pathways which may thus have key roles in regulating asynchronous development. These results shed new light on our understanding of the mechanisms responsible for population-asynchronous development in fish. PMID:27545088

  1. Current Trends in High-Level Synthesis of Asynchronous Circuits

    DEFF Research Database (Denmark)

    Sparsø, Jens

    2009-01-01

    .g. the Haste/TiDE tool from Handshake Solutions or the Balsa tool from the University of Manchester. The aims are to add highlevel synthesis capabilities to these tools and to extend the tools such that a wider range of (higher speed) micro-architectures can be generated. Another branch of research takes...... a conventional synchronous circuit as the starting point, and then adds some form of handshake-based flow-control. One approach keeps the global clock and implements discrete-time asynchronous operation. Another approach substitutes the clocked registers by asynchronous handshake-registers, thus...

  2. DESIGN METHODOLOGY OF SELF-EXCITED ASYNCHRONOUS GENERATOR

    Directory of Open Access Journals (Sweden)

    Berzan V.

    2012-04-01

    Full Text Available The paper sets out the methodology of designing an asynchronous generator with capacitive self-excitation. It is known that its design is possible on the basis of serial synchronous motor with squirrel cage rotor. With this approach, the design reworked only the stator winding of electrical machines, making it cost-effectively implement the creation of the generator. Therefore, the methodology for the design, optimization calculations, the development scheme and the stator winding excitation system gain, not only of practical interest, and may also be useful for specialists in the field of electrical machines in the design of asynchronous generators.

  3. On the theoretical gap between synchronous and asynchronous MPC protocols

    DEFF Research Database (Denmark)

    Beerliová-Trubíniová, Zuzana; Hirt, Martin; Nielsen, Jesper Buus

    2010-01-01

    Multiparty computation (MPC) protocols among n parties secure against t active faults are known to exist if and only if t < n/2, when the channels are synchronous, and t < n/3, when the channels are asynchronous, respectively.   In this work we analyze the gap between these bounds, and show that in...... the cryptographic setting (with setup), the sole reason for it is the distribution of inputs: given an oracle for input distribution, cryptographically-secure asynchronous MPC is possible with the very same condition as synchronous MPC, namely t < n/2. We do not know whether the gaps in other security...

  4. Asynchronous updating of threshold-coupled chaotic neurons

    Indian Academy of Sciences (India)

    Manish Dev Shirmali; Sudeshna Sinha; Kazuyuki Aihara

    2008-06-01

    We study a network of chaotic model neurons incorporating threshold activated coupling. We obtain a wide range of spatiotemporal patterns under varying degrees of asynchronicity in the evolution of the neuronal components. For instance, we find that sequential updating of threshold-coupled chaotic neurons can yield dynamical switching of the individual neurons between two states. So varying the asynchronicity in the updating scheme can serve as a control mechanism to extract different responses, and this can have possible applications in computation and information processing.

  5. DPA on quasi delay insensitive asynchronous circuits : formalization and improvement

    CERN Document Server

    Bouesse, G F; Dumont, S; Germain, F

    2007-01-01

    The purpose of this paper is to formally specify a flow devoted to the design of Differential Power Analysis (DPA) resistant QDI asynchronous circuits. The paper first proposes a formal modeling of the electrical signature of QDI asynchronous circuits. The DPA is then applied to the formal model in order to identify the source of leakage of this type of circuits. Finally, a complete design flow is specified to minimize the information leakage. The relevancy and efficiency of the approach is demonstrated using the design of an AES crypto-processor.

  6. Structural elements that underlie Doc2β function during asynchronous synaptic transmission.

    Science.gov (United States)

    Xue, Renhao; Gaffaney, Jon D; Chapman, Edwin R

    2015-08-01

    Double C2-like domain-containing proteins alpha and beta (Doc2α and Doc2β) are tandem C2-domain proteins proposed to function as Ca(2+) sensors for asynchronous neurotransmitter release. Here, we systematically analyze each of the negatively charged residues that mediate binding of Ca(2+) to the β isoform. The Ca(2+) ligands in the C2A domain were dispensable for Ca(2+)-dependent translocation to the plasma membrane, with one exception: neutralization of D220 resulted in constitutive translocation. In contrast, three of the five Ca(2+) ligands in the C2B domain are required for translocation. Importantly, translocation was correlated with the ability of the mutants to enhance asynchronous release when overexpressed in neurons. Finally, replacement of specific Ca(2+)/lipid-binding loops of synaptotagmin 1, a Ca(2+) sensor for synchronous release, with corresponding loops from Doc2β, resulted in chimeras that yielded slower kinetics in vitro and slower excitatory postsynaptic current decays in neurons. Together, these data reveal the key determinants of Doc2β that underlie its function during the slow phase of synaptic transmission. PMID:26195798

  7. Intermittent fasting does not affect whole-body glucose, lipid, or protein metabolism

    NARCIS (Netherlands)

    M.R. Soeters; N.M. Lammers; P.F. Dubbelhuis; M.T. Ackermans; C.F. Jonkers-Schuitema; E. Fliers; H.P. Sauerwein; J.M. Aerts; M.J. Serlie

    2009-01-01

    Background: Intermittent fasting (IF) was shown to increase whole-body insulin sensitivity, but it is uncertain whether IF selectively influences intermediary metabolism. Such selectivity might be advantageous when adapting to periods of food abundance and food shortage. Objective: The objective was

  8. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the 'anabolic resistance' of ageing

    Directory of Open Access Journals (Sweden)

    Phillips Stuart M

    2011-10-01

    Full Text Available Abstract Age-related muscle wasting (sarcopenia is accompanied by a loss of strength which can compromise the functional abilities of the elderly. Muscle proteins are in a dynamic equilibrium between their respective rates of synthesis and breakdown. It has been suggested that age-related sarcopenia is due to: i elevated basal-fasted rates of muscle protein breakdown, ii a reduction in basal muscle protein synthesis (MPS, or iii a combination of the two factors. However, basal rates of muscle protein synthesis and breakdown are unchanged with advancing healthy age. Instead, it appears that the muscles of the elderly are resistant to normally robust anabolic stimuli such as amino acids and resistance exercise. Ageing muscle is less sensitive to lower doses of amino acids than the young and may require higher quantities of protein to acutely stimulate equivalent muscle protein synthesis above rest and accrue muscle proteins. With regard to dietary protein recommendations, emerging evidence suggests that the elderly may need to distribute protein intake evenly throughout the day, so as to promote an optimal per meal stimulation of MPS. The branched-chain amino acid leucine is thought to play a central role in mediating mRNA translation for MPS, and the elderly should ensure sufficient leucine is provided with dietary protein intake. With regards to physical activity, lower, than previously realized, intensity high-volume resistance exercise can stimulate a robust muscle protein synthetic response similar to traditional high-intensity low volume training, which may be beneficial for older adults. Resistance exercise combined with amino acid ingestion elicits the greatest anabolic response and may assist elderly in producing a 'youthful' muscle protein synthetic response provided sufficient protein is ingested following exercise.

  9. Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism

    Directory of Open Access Journals (Sweden)

    Serenella Nardi

    2016-02-01

    Full Text Available ABSTRACT In recent years, the use of biostimulants in sustainable agriculture has been growing. Biostimulants can be obtained from different organic materials and include humic substances (HS, complex organic materials, beneficial chemical elements, peptides and amino acids, inorganic salts, seaweed extracts, chitin and chitosan derivatives, antitranspirants, amino acids and other N-containing substances. The application of biostimulants to plants leads to higher content of nutrients in their tissue and positive metabolic changes. For these reasons, the development of new biostimulants has become a focus of scientific interest. Among their different functions, biostimulants influence plant growth and nitrogen metabolism, especially because of their content in hormones and other signalling molecules. A significant increase in root hair length and density is often observed in plants treated with biostimulants, suggesting that these substances induce a “nutrient acquisition response” that favors nutrient uptake in plants via an increase in the absorptive surface area. Furthermore, biostimulants positively influence the activity and gene expression of enzymes functioning in the primary and secondary plant metabolism. This article reviews the current literature on two main classes of biostimulants: humic substances and protein-based biostimulants. The characteristic of these biostimulants and their effects on plants are thoroughly described.

  10. The Influence of Asynchronous Video Communication on Learner Social Presence: A Narrative Analysis of Four Cases

    Science.gov (United States)

    Borup, Jered; West, Richard E.; Graham, Charles R.

    2013-01-01

    Online courses are increasingly using asynchronous video communication. However, little is known about how asynchronous video communication influences students' communication patterns. This study presents four narratives of students with varying characteristics who engaged in asynchronous video communication. The extrovert valued the efficiency of…

  11. Dual roles of the transmembrane protein p23/TMP21 in the modulation of amyloid precursor protein metabolism

    Directory of Open Access Journals (Sweden)

    Wieland Felix T

    2007-02-01

    Full Text Available Abstract Background Alzheimer's disease (AD is characterized by cerebral deposition of β-amyloid (Aβ peptides. Aβ is released from ectodomain cleaved amyloid precursor protein (APP via intramembranous proteolysis by γ-secretase, a complex consisting of presenilin and a few other proteins. p23/TMP21, a member of the p24 family type I transmembrane proteins, was recently identified as a presenilin complex component capable of modulating γ-secretase cleavage. The p24 family proteins form oligomeric complexes and regulate vesicular trafficking in the early secretory pathway, but their role in APP trafficking has not been investigated. Results Here, we report that siRNA-mediated depletion of p23 in N2a neuroblastoma and HeLa cells produces concomitant knockdown of additional p24 family proteins and increases secretion of sAPP. Furthermore, intact cell and cell-free Aβ production increases following p23 knockdown, similar to data reported earlier using HEK293 cells. However, we find that p23 is not present in mature γ-secretase complexes isolated using an active-site γ-secretase inhibitor. Depletion of p23 and expression of a familial AD-linked PS1 mutant have additive effects on Aβ42 production. Knockdown of p23 expression confers biosynthetic stability to nascent APP, allowing its efficient maturation and surface accumulation. Moreover, immunoisolation analyses show decrease in co-residence of APP and the APP adaptor Mint3. Thus, multiple lines of evidence indicate that p23 function influences APP trafficking and sAPP release independent of its reported role in γ-secretase modulation. Conclusion These data assign significance to p24 family proteins in regulating APP trafficking in the continuum of bidirectional transport between the ER and Golgi, and ascribe new relevance to the regulation of early trafficking in AD pathogenesis.

  12. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the 'anabolic resistance' of ageing

    OpenAIRE

    Phillips Stuart M; Breen Leigh

    2011-01-01

    Abstract Age-related muscle wasting (sarcopenia) is accompanied by a loss of strength which can compromise the functional abilities of the elderly. Muscle proteins are in a dynamic equilibrium between their respective rates of synthesis and breakdown. It has been suggested that age-related sarcopenia is due to: i) elevated basal-fasted rates of muscle protein breakdown, ii) a reduction in basal muscle protein synthesis (MPS), or iii) a combination of the two factors. However, basal rates of m...

  13. A metabolic phenotype in sarcoma? Repression of skeletal muscle transcription factor mondo A (Mlx- Interacting Protein)

    OpenAIRE

    Bishop, Emily; Yusuf, Alex; Stephenson, John; Airley, Rachel

    2013-01-01

    MondoA (MLX-interacting protein) is a bHLH transcription factor primarily located in skeletal muscle which drives glucose-dependent pathways such as glycolysis and the expression of TXNIP (thioredoxin-interacting protein). A Mondo-A/TXNIP feedback pathway has been defined previously which is believed to regulate the uptake of glucose by tumours in response to increased glycolysis and production of lactate1. The aim of this study was to profile MondoA protein expression...

  14. Intein Applications: From Protein Purification and Labeling to Metabolic Control Methods*

    OpenAIRE

    Wood, David W.; Camarero, Julio A.

    2014-01-01

    The discovery of inteins in the early 1990s opened the door to a wide variety of new technologies. Early engineered inteins from various sources allowed the development of self-cleaving affinity tags and new methods for joining protein segments through expressed protein ligation. Some applications were developed around native and engineered split inteins, which allow protein segments expressed separately to be spliced together in vitro. More recently, these early applications have been expand...

  15. The relationship of sterol regulatory element-binding protein cleavage-activation protein and apolipoprotein E gene polymorphisms with metabolic changes during weight reduction.

    Science.gov (United States)

    Nieminen, Tuomo; Matinheikki, Jussi; Nenonen, Arja; Kukkonen-Harjula, Katriina; Lindi, Virpi; Hämelahti, Päivi; Laaksonen, Reijo; Fan, Yue-Mei; Kähönen, Mika; Fogelholm, Mikael; Lehtimäki, Terho

    2007-07-01

    Sterol regulatory element-binding protein cleavage-activating protein (SCAP) and apolipoprotein E (apo E) regulate cellular and plasma lipid metabolism. Therefore, variations in the corresponding genes might influence weight reduction and obesity-associated metabolic changes. We investigated the relationships of SCAP (Ile796Val) and apo E polymorphisms on metabolic changes during weight reduction by using a 12-week very low-energy diet. Body composition, serum lipids, plasma glucose, and insulin were assessed in 78 healthy premenopausal women (initial body mass index, 34 +/- 4 kg/m(2); age, 40 +/- 4 years) before and after the intervention. The SCAP genotype groups did not differ in the responses of any parameters measured during weight reduction. Apo E did not differentiate the weight loss, but the changes in total and low-density lipoprotein cholesterol for the genotype groups apo E epsilon2/3, epsilon3/3, as well as epsilon3/4 and epsilon4/4 combined were -0.94 +/- 0.56 and -0.59 +/- 0.32, -0.71 +/- 0.49 and -0.49 +/- 0.45, and -0.55 +/- 0.47 and -0.37 +/- 0.39 mmol/L, respectively (P < .05 for both). In conclusion, neither the SCAP Ile796Val nor the apo E polymorphism was associated with weight loss in obese premenopausal women. However, the apo E-but not SCAP genotype-seems to be one of the modifying factors for serum cholesterol concentrations during very low-energy diet in obese premenopausal women. PMID:17570245

  16. Consequences of exchanging carbohydrates for proteins in the cholesterol metabolism of mice fed a high-fat diet.

    Directory of Open Access Journals (Sweden)

    Frédéric Raymond

    Full Text Available Consumption of low-carbohydrate, high-protein, high-fat diets lead to rapid weight loss but the cardioprotective effects of these diets have been questioned. We examined the impact of high-protein and high-fat diets on cholesterol metabolism by comparing the plasma cholesterol and the expression of cholesterol biosynthesis genes in the liver of mice fed a high-fat (HF diet that has a high (H or a low (L protein-to-carbohydrate (P/C ratio. H-P/C-HF feeding, compared with L-P/C-HF feeding, decreased plasma total cholesterol and increased HDL cholesterol concentrations at 4-wk. Interestingly, the expression of genes involved in hepatic steroid biosynthesis responded to an increased dietary P/C ratio by first down-regulation (2-d followed by later up-regulation at 4-wk, and the temporal gene expression patterns were connected to the putative activity of SREBF1 and 2. In contrast, Cyp7a1, the gene responsible for the conversion of cholesterol to bile acids, was consistently up-regulated in the H-P/C-HF liver regardless of feeding duration. Over expression of Cyp7a1 after 2-d and 4-wk H-P/C-HF feeding was connected to two unique sets of transcription regulators. At both time points, up-regulation of the Cyp7a1 gene could be explained by enhanced activations and reduced suppressions of multiple transcription regulators. In conclusion, we demonstrated that the hypocholesterolemic effect of H-P/C-HF feeding coincided with orchestrated changes of gene expressions in lipid metabolic pathways in the liver of mice. Based on these results, we hypothesize that the cholesterol lowering effect of high-protein feeding is associated with enhanced bile acid production but clinical validation is warranted. (246 words.

  17. Visible injury and nitrogen metabolism of rice leaves under ozone stress, and effect on sugar and protein contents in grain

    Science.gov (United States)

    Huang, Y. Z.; Sui, L. H.; Wang, W.; Geng, C. M.; Yin, B. H.

    2012-12-01

    Effect of ozone on the visible injury, nitrogen metabolism of rice leaves, and sugar and protein contents in rice grain was carried out by the open-top chamber. The results indicated that ozone stress caused obvious injury in rice leaves. The increase in ozone concentration had significant influence on the nitrate reductase activity in rice leaves. At the ozone concentration of 40, 80 and 120 nL L-1, the nitrate reductase activities in rice leaves in the tillering stage, the jointing stage, the heading stage and milk stage were separately reduced by 25.3-86.3%, 57.4-97.8%, 91.0-99.3% and 89.5-96.7% compared with those in the control treatment. As ozone concentration increased, the contents of ammonium nitrogen and nitrate nitrogen in rice leaves were obviously reduced. Ozone stress also had an influence on the contents of sugar and protein in rice grain. The stress of high ozone concentration (120 nL L-1) caused the starch content in grain to reduce by 15.8% than that in the control treatment, but total soluble sugars in grain was actually enhanced by 47.5% compared to that in the control treatment. The contents of albumin and glutenin in rice grain increased with increasing the ozone concentration, and prolamin and crude protein contents in rice grain increased only at the higher ozone concentration. Under ozone concentration of 120 nL L-1, the contents of albumin, glutenin and crude protein in rice grain were increased respectively by 23.1%, 21.0% and 21.1% compared with those in the control treatment. The result suggested that ozone tress has an influence on nitrogen metabolism of rice leaves and grain quality.

  18. Differential metabolic and endocrine adaptations in llamas, sheep, and goats fed high- and low-protein grass-based diets.

    Science.gov (United States)

    Kiani, A; Alstrup, L; Nielsen, M O

    2015-10-01

    This study aimed to elucidate whether distinct endocrine and metabolic adaptations provide llamas superior ability to adapt to low protein content grass-based diets as compared with the true ruminants. Eighteen adult, nonpregnant females (6 llamas, 6 goats, and 6 sheep) were fed either green grass hay with (HP) or grass seed straw (LP) in a cross-over design experiment over 2 periods of 21 d. Blood samples were taken on day 21 in each period at -30, 60, 150, and 240 min after feeding the morning meal and analyzed for plasma contents of glucose, triglyceride, nonesterified fatty acids, β-hydroxy butyrate (BOHB), urea, creatinine, insulin, and leptin. Results showed that llamas vs sheep and goats had higher plasma concentrations of glucose (7.1 vs 3.5 and 3.6 ± 0.18 mmol/L), creatinine (209 vs 110 and 103 ± 10 μmol/L), and urea (6.7 vs 5.6 and 4.9 ± 0.5 mmol/L) but lower leptin (0.33 vs 1.49 and 1.05 ± 0.1 ng/mL) and BOHB (0.05 vs 0.26 and 0.12 ± 0.02 mmol/L), respectively. BOHB in llamas was extremely low for a ruminating animal. Llamas showed that hyperglycemia coexisted with hyperinsulinemia (in general on the HP diet; postprandially on the LP diet). Llamas were clearly hypercreatinemic compared with the true ruminants, which became further exacerbated on the LP diet, where they also sustained plasma urea at markedly higher concentrations. However, llamas had markedly lower leptin concentrations than the true ruminants. In conclusion, llamas appear to have an intrinsic insulin resistant phenotype. Augmentation of creatinine and sustenance of elevated plasma urea concentrations in llamas when fed the LP diet must reflect distinct metabolic adaptations of intermediary protein and/or nitrogen metabolism, not observed in the true ruminants. These features can contribute to explain lower metabolic rates in llamas compared with the true ruminants, which must improve the chances of survival on low protein content diets. PMID:26073222

  19. Effect of various treatments of protein on rumen metabolism and incorporation of 35S in the microbial protein

    International Nuclear Information System (INIS)

    A replicated 4x4 Latin square design involving switch over experiment was conducted on four adult bucks fitted with rumen fistula. The animals were offered concentrate mixture with 15 percent DCP and 67 percent TDN containing untreated and treated protein in control and experimental rations, respectively. There was a significant difference (P 35S. (author)

  20. The adaptive metabolic response involves specific protein glutathionylation during the filamentation process in the pathogen Candida albicans.

    Science.gov (United States)

    Gergondey, R; Garcia, C; Serre, V; Camadro, J M; Auchère, F

    2016-07-01

    Candida albicans is an opportunist pathogen responsible for a large spectrum of infections, from superficial mycosis to the systemic disease candidiasis. Its ability to adopt various morphological forms, such as unicellular yeasts, filamentous pseudohyphae and hyphae, contributes to its ability to survive within the host. It has been suggested that the antioxidant glutathione is involved in the filamentation process. We investigated S-glutathionylation, the reversible binding of glutathione to proteins, and the functional consequences on C. albicans metabolic remodeling during the yeast-to-hyphae transition. Our work provided evidence for the specific glutathionylation of mitochondrial proteins involved in bioenergetics pathways in filamentous forms and a regulation of the main enzyme of the glyoxylate cycle, isocitrate lyase, by glutathionylation. Isocitrate lyase inactivation in the hyphal forms was reversed by glutaredoxin treatment, in agreement with a glutathionylation process, which was confirmed by proteomic data showing the binding of one glutathione molecule to the enzyme (data are available via ProteomeXchange with identifier PXD003685). We also assessed the effect of alternative carbon sources on glutathione levels and isocitrate lyase activity. Changes in nutrient availability led to morphological flexibility and were related to perturbations in glutathione levels and isocitrate lyase activity, confirming the key role of the maintenance of intracellular redox status in the adaptive metabolic strategy of the pathogen. PMID:27083931

  1. Involvement of senescence marker protein-30 in glucose metabolism disorder and non-alcoholic fatty liver disease.

    Science.gov (United States)

    Kondo, Yoshitaka; Ishigami, Akihito

    2016-03-01

    Senescence marker protein-30 (SMP30) was found to decrease in the liver, kidneys and lungs of mice during aging. SMP30 is a pleiotropic protein that acts to protect cells from apoptosis by enhancing plasma membrane Ca(2+) -pump activity and is bona fide gluconolactonase (EC 3.1.1.17) that participates in the penultimate step of the vitamin C biosynthetic pathway. For the past several years, we have obtained strong evidence showing the close relationship between SMP30, glucose metabolism disorder and non-alchoholic fatty liver disease in experiments with SMP30 knockout mice. Emerging proof links the following abnormalities: (i) the reduction of SMP30 by aging and/or excessive dietary fat or genetic deficiency causes a loss of Ca(2+) pumping activity, which impairs acute insulin release in pancreatic β-cells, initiates inflammatory responses with oxidative stress and endoplasmic reticulum stress in non-alchoholic steatohepatitis, exacerbates renal tubule damage, and introduces tubulointerstitial inflammation and fibrosis in diabetic nephropathy; (ii) vitamin C insufficiency also impairs acute insulin secretion in pancreatic β-cells by a mechanism distinct from that of the SMP30 deficiency; and (iii) the increased oxidative stress by concomitant deficiencies of SMP30, superoxide dismutase 1 and vitamin C similarly causes hepatic steatosis. Here, we review recent advances in our understanding of SMP30 in glucose metabolism disorder and non-alchoholic fatty liver disease. PMID:27018279

  2. Assessment of the natural variation of low abundant metabolic proteins in soybean seeds using proteomics

    Science.gov (United States)

    Using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry, we investigated the distribution of the low abundant proteins that are involved in soybean seed development in four wild and twelve cultivated soybean genotypes. We found proteomic variation of these proteins within and...

  3. Metabolic protein interactions in Bacillus subtilis studied at the single cell level

    NARCIS (Netherlands)

    Detert Oude Weme, Ruud Gerardus Johannes

    2015-01-01

    We have investigated protein-protein interactions in live Bacillus subtilis cells (a bacterium). B. subtilis’ natural habitat is the soil and the roots of plants, but also the human microbiota. B. subtilis is used worldwide as a model organism. Unlike eukaryotic cells, bacteria do not have organelle

  4. EFFECT OF DIETARY LYSINE AND GENETICS ON INDICES OF ENERGY AND PROTEIN METABOLISM IN RAINBOW TROUT

    Science.gov (United States)

    Since feed cost represents about 70% of production cost, inexpensive protein alternatives are desirable replacements for fish meal. One drawback to the replacement of fish meal with soybean meal is that the latter protein source is first limiting in lysine. To investigate if different genetic line...

  5. Structure SNP (StSNP): a web server for mapping and modeling nsSNPs on protein structures with linkage to metabolic pathways

    OpenAIRE

    Uzun, Alper; Leslin, Chesley M.; Abyzov, Alexej; Ilyin, Valentin

    2007-01-01

    SNPs located within the open reading frame of a gene that result in an alteration in the amino acid sequence of the encoded protein [nonsynonymous SNPs (nsSNPs)] might directly or indirectly affect functionality of the protein, alone or in the interactions in a multi-protein complex, by increasing/decreasing the activity of the metabolic pathway. Understanding the functional consequences of such changes and drawing conclusions about the molecular basis of diseases, involves integrating inform...

  6. Role of Plasma Phospholipid Transfer Protein in Lipid and Lipoprotein Metabolism

    OpenAIRE

    Albers, John J.; Vuletic, Simona; Cheung, Marian C.

    2011-01-01

    The understanding of the physiological and pathophysiological role of PLTP has greatly increased since the discovery of PLTP more than a quarter of century ago. A comprehensive review of PLTP is presented on the following topics: PLTP gene organization and structure; PLTP transfer properties; different forms of PLTP; characteristics of plasma PLTP complexes; relationship of plasma PLTP activity, mass and specific activity with lipoprotein and metabolic factors; role of PLTP in lipoprotein met...

  7. Knockdown of proteins involved in iron metabolism limits tick reproduction and development

    Czech Academy of Sciences Publication Activity Database

    Hajdušek, O.; Sojka, Daniel; Kopáček, Petr; Burešová, Veronika; Franta, Zdeněk; Šauman, Ivo; Winzerling, J.; Grubhoffer, L.

    2009-01-01

    Roč. 106, č. 4 (2009), s. 1033-1038. ISSN 0027-8424 R&D Projects: GA MŠk(CZ) LC06009; GA MŠk LC07032; GA AV ČR IAA600220603 Institutional research plan: CEZ:AV0Z60220518; CEZ:AV0Z50070508 Keywords : tick ferritin * iron metabolism * RNA interference Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.432, year: 2009

  8. The binding versatility of plant acyl-CoA-binding proteins and their significance in lipid metabolism.

    Science.gov (United States)

    Lung, Shiu-Cheung; Chye, Mee-Len

    2016-09-01

    Acyl-CoA esters are the activated form of fatty acids and play important roles in lipid metabolism and the regulation of cell functions. They are bound and transported by nonenzymic proteins such as the acyl-CoA-binding proteins (ACBPs). Although plant ACBPs were so named by virtue of amino acid homology to existing yeast and mammalian counterparts, recent studies revealed that ligand specificities of plant ACBPs are not restricted to acyl-CoA esters. Arabidopsis and rice ACBPs also interact with phospholipids, and their affinities to different acyl-CoA species and phospholipid classes vary amongst isoforms. Their ligands also include heavy metals. Interactors of plant ACBPs are further diversified due to the evolution of protein-protein interacting domains. This review summarizes our current understanding of plant ACBPs with a focus on their binding versatility. Their broad ligand range is of paramount significance in serving a multitude of functions during development and stress responses as discussed herein. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. PMID:26747650

  9. Data set of interactomes and metabolic pathways of proteins differentially expressed in brains with Alzheimer׳s disease.

    Science.gov (United States)

    Minjarez, Benito; Calderón-González, Karla Grisel; Valero Rustarazo, Ma Luz; Herrera-Aguirre, María Esther; Labra-Barrios, María Luisa; Rincon-Limas, Diego E; Sánchez Del Pino, Manuel M; Mena, Raul; Luna-Arias, Juan Pedro

    2016-06-01

    Alzheimer׳s disease is one of the main causes of dementia in the elderly and its frequency is on the rise worldwide. It is considered the result of complex interactions between genetic and environmental factors, being many of them unknown. Therefore, there is a dire necessity for the identification of novel molecular players for the understanding of this disease. In this data article we determined the protein expression profiles of whole protein extracts from cortex regions of brains from patients with Alzheimer׳s disease in comparison to a normal brain. We identified 721 iTRAQ-labeled polypeptides with more than 95% in confidence. We analyzed all proteins that changed in their expression level and located them in the KEGG metabolic pathways, as well as in the mitochondrial complexes of the electron transport chain and ATP synthase. In addition, we analyzed the over- and sub-expressed polypeptides through IPA software, specifically Core I and Biomarkers I modules. Data in this article is related to the research article "Identification of proteins that are differentially expressed in brains with Alzheimer's disease using iTRAQ labeling and tandem mass spectrometry" (Minjarez et al., 2016) [1]. PMID:27257613

  10. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization.

    Science.gov (United States)

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-01

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement. PMID:26791570

  11. Asynchronous Assessment in a Large Lecture Marketing Course

    Science.gov (United States)

    Downey, W. Scott; Schetzsle, Stacey

    2012-01-01

    Asynchronous assessment, which includes quizzes or exams online or outside class, offers marketing educators an opportunity to make more efficient use of class time and to enhance students' learning experiences by giving them more flexibility and choice in their assessment environment. In this paper, we examine the performance difference between…

  12. Structure-Based Deadlock Checking of Asynchronous Circuits

    Institute of Scientific and Technical Information of China (English)

    Hong-Guang Ren; Zhi-Ying Wang; Doug Edwards

    2011-01-01

    It is important to verify the absence of deadlocks in asynchronous circuits.Much previous work relies on a reachability analysis of the circuits' states,with the use of binary decision diagrams (BDDs) or Petri nets to model the behaviors of circuits.This paper presents an alternative approach focusing on the structural properties of well-formed asynchronous circuits that will never suffer deadlocks.A class of data-driven asynchronous pipelines is targeted in this paper,which can be viewed as a network of basic components connected by handshake channels.The sufficient and necessary conditions for a component network consisting of Steer,Merge,Fork and Join are given.The slack elasticity of the channels is analyzed in order to introduce pipelining.As an application,a deadlock checking method is implemented in a syntax-directed asynchronous design tool - Teak.The proposed method shows a great runtime advantage when compared against previous Petri net based verification tools.

  13. APPLICATION OF ASYNCHRONOUS GENERATOR FOR INDUCTION MOTOR’S FEEDING

    OpenAIRE

    Bogdan A. V.; Ilchenko Y. A.; Sobol A. N.; Erokhov M. V.

    2014-01-01

    In the article, the following items are represented: mathematical formulation of system including: asynchronous generator with cage rotor, condenser’s for excitation, induction load. Electromagnetic and electromechanical processes of induction motor’s connecting and feeding are described. Equations of voltage stability, equations of current, equations of rotor are used for describing of electricity circuits of generator

  14. Analysis of the Relevance of Posts in Asynchronous Discussions

    Science.gov (United States)

    Azevedo, Breno T.; Reategui, Eliseo; Behar, Patrícia A.

    2014-01-01

    This paper presents ForumMiner, a tool for the automatic analysis of students' posts in asynchronous discussions. ForumMiner uses a text mining system to extract graphs from texts that are given to students as a basis for their discussion. These graphs contain the most relevant terms found in the texts, as well as the relationships between them.…

  15. GPU-Based Asynchronous Global Optimization with Particle Swarm

    International Nuclear Information System (INIS)

    The recent upsurge in research into general-purpose applications for graphics processing units (GPUs) has made low cost high-performance computing increasingly more accessible. Many global optimization algorithms that have previously benefited from parallel computation are now poised to take advantage of general-purpose GPU computing as well. In this paper, a global parallel asynchronous particle swarm optimization (PSO) approach is employed to solve three relatively complex, realistic parameter estimation problems in which each processor performs significant computation. Although PSO is readily parallelizable, memory bandwidth limitations with GPUs must be addressed, which is accomplished by minimizing communication among individual population members though asynchronous operations. The effect of asynchronous PSO on robustness and efficiency is assessed as a function of problem and population size. Experiments were performed with different population sizes on NVIDIA GPUs and on single-core CPUs. Results for successful trials exhibit marked speedup increases with the population size, indicating that more particles may be used to improve algorithm robustness while maintaining nearly constant time. This work also suggests that asynchronous operations on the GPU may be viable in stochastic population-based algorithms to increase efficiency without sacrificing the quality of the solutions.

  16. Cyber Asynchronous versus Blended Cyber Approach in Distance English Learning

    Science.gov (United States)

    Ge, Zi-Gang

    2012-01-01

    This study aims to compare the single cyber asynchronous learning approach with the blended cyber learning approach in distance English education. Two classes of 70 students participated in this study, which lasted one semester of about four months, with one class using the blended approach for their English study and the other only using the…

  17. Psychological Type and Asynchronous Written Dialogue in Adult Learning

    Science.gov (United States)

    Lin, Lin; Cranton, Patricia; Bridglall, Beatrice

    2005-01-01

    This study explores how adults learn from asynchronous written dialogue through the lens of psychological type preferences. We asked participants to discover their dominant and auxiliary psychological preferences using the Personal Empowerment through Type inventory. Participants then completed an open-ended survey in which they described their…

  18. Asynchronous Linking in a Service –Oriented Architecture.

    OpenAIRE

    Vivek, Sanjay; Tso, Kenneth; Thompson, Mark; De Roure, David

    2002-01-01

    In this paper, we identify research issues in the development of system infrastructure support for asynchronous linkservices in a service-oriented architecture. We explore the suitability and applicability of using MQSeries Everyplace to provide a messaging backbone for linkservices that increases reliability, fault tolerance, and scalability. We identify and discuss some important problems and research issues related to this approach.

  19. Abstracting Asynchronous Multi-Valued Networks: An Initial Investigation

    CERN Document Server

    Steggles, L Jason

    2011-01-01

    Multi-valued networks provide a simple yet expressive qualitative state based modelling approach for biological systems. In this paper we develop an abstraction theory for asynchronous multi-valued network models that allows the state space of a model to be reduced while preserving key properties of the model. The abstraction theory therefore provides a mechanism for coping with the state space explosion problem and supports the analysis and comparison of multi-valued networks. We take as our starting point the abstraction theory for synchronous multi-valued networks which is based on the finite set of traces that represent the behaviour of such a model. The problem with extending this approach to the asynchronous case is that we can now have an infinite set of traces associated with a model making a simple trace inclusion test infeasible. To address this we develop a decision procedure for checking asynchronous abstractions based on using the finite state graph of an asynchronous multi-valued network to reas...

  20. Asynchronous Torque Characteristics of VR Type Vernier Motor

    Science.gov (United States)

    Suda, Hiroshi; Matsushima, Yoshitaro; Xu, Li; Anazawa, Yoshihisa

    Recently, various types of vernier motor are developed. The VR type vernier motor is a kind of three-phase reluctance motor, and its stator has slots and distributed three-phase windings. The rotor is slotted iron core without windings. Relationship between S, R and P is S = R±2, where S and R are the numbers of stator and rotor slots per pair of poles, and the number of poles P is two. The rotor of the vernier motor moves at a sub-multiple of the angular velocity of the stator mmf. The multiplying factor is P/R. Authors had reported that the VR type vernier motors are analyzed as a three-phase reluctance motor, and have obtained the voltage equations on the γ-δ axis and expression of the torque.However, the asynchronous characteristics of the vernier motor are not clear yet. In this paper, the asynchronous characteristics of the vernier motors are analyzed with the symmetric components transformation and the commutator transformation. The voltage equations on the symmetrical co-ordinates and asynchronous and synchronous torque expression at steady state condition are obtained. The tests were performed on the trial motor. The calculated asynchronous torque has agreed well with the measured values.

  1. Asynchronous Multi-Party Computation with Quadratic Communication

    DEFF Research Database (Denmark)

    Hirt, Martin; Nielsen, Jesper Buus; Przydatek, Bartosz

    2008-01-01

    We present an efficient protocol for secure multi-party computation in the asynchronous model with optimal resilience. For n parties, up to t < n/3 of them being corrupted, and security parameter κ, a circuit with c gates can be securely computed with communication complexity O(cn^2k) bits, which...

  2. Asynchronous rotation scan for synthetic aperture interferometric radiometer

    Institute of Scientific and Technical Information of China (English)

    WU Ji; ZHANG Cheng; LIU Hao; SUN WeiYing

    2009-01-01

    Synthetic aperture interferometric technique has wide applications in optics, radio astronomy and mi-crowave remote sensing areas. With the increasing demands of high resolution imaging observation, a new time-sharing sampling scheme of asynchronous rotation scan is proposed to meet the technical challenge of achieving a large equivalent aperture and overcome the operating barriers of space borne application. This configuration is basically composed by two asynchronously and concentrically ro-tating antenna groups, whose revolving radii and speeds are different. The synthetic aperture system with asynchronous rotation scanning scheme can effectively solve the trade-off problem of system complexity, and greatly simplify the system hardware at the cost of sacrificing a certain time resolution. The basic rules and design methods of asynchronous rotation scan are investigated The Gridding method is introduced to inverse the spiral sampling data for image reconstruction. The potential ap-plications of geostationary orbit (GEO) earth observation and solar polar orbit (SPO) plasma cloud observation are explored with numerical simulations to validate the significance and feasibility of this new imaging configuration.

  3. Asynchronous rotation scan for synthetic aperture interferometric radiometer

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Synthetic aperture interferometric technique has wide applications in optics,radio astronomy and mi-crowave remote sensing areas.With the increasing demands of high resolution imaging observation,a new time-sharing sampling scheme of asynchronous rotation scan is proposed to meet the technical challenge of achieving a large equivalent aperture and overcome the operating barriers of space borne application.This configuration is basically composed by two asynchronously and concentrically ro-tating antenna groups,whose revolving radii and speeds are different.The synthetic aperture system with asynchronous rotation scanning scheme can effectively solve the trade-off problem of system complexity,and greatly simplify the system hardware at the cost of sacrificing a certain time resolution.The basic rules and design methods of asynchronous rotation scan are investigated The Gridding method is introduced to inverse the spiral sampling data for image reconstruction.The potential ap-plications of geostationary orbit(GEO)earth observation and solar polar orbit(SPO)plasma cloud observation are explored with numerical simulations to validate the significance and feasibility of this new imaging configuration.

  4. Effects of Soy-Germ Protein on Catalase Activity of Plasma and Erythocyte of Metabolic Syndrome Women

    Directory of Open Access Journals (Sweden)

    Hery Winarsi

    2015-01-01

    Full Text Available Oxidative stress always accompany patients with metabolic syndrome (MS. Several researchers reported that soy-protein is able to decrease oxidative stress level. However, there is no report so far about soy-germ protein in relation to its potential to the decrease oxidative stress level of MS patients. The aim of this study was to explore the potential of soy-germ protein on activity of catalase enzyme in blood’s plasma as well as erythrocytes of MS patients. Double-blind randomized clinical trial was used as an experimental study. Thirty respondents were included in this study with MS, normal level blood sugar, low-HDL cholesterol but high in triglyceride, 40-65 years old, Body Mass Index > 25 kg/m2, live in Purwokerto and agreed to sign the informed consent. They were randomly grouped into 3 different groups, 10 each: Group I, was given special milk that contains soy-germ protein and Zn; Group II, soy-germ protein, while Group III was placebo; for two consecutive months. Data were taken from blood samples in 3 different periods i.e. 0, 1, and 2 months after treatment. Two months after treatment, there was an increase from 5.36 to 20.17 IU/mg (P = 0.028 in activity of catalase enzyme in blood’s plasma respondents who consumed milk containing soy-germ protein with or without Zn. A similar trend of catalase activity, but at a lower level, was also noticed in erythrocyte; which increased from 88.31 to 201.11 IU/mg (P = 0.013. The increase in activity of catalase enzyme in blood’s plasma was 2.2 times higher than that in erythrocytes.

  5. Hormonal regulation of protein metabolism in relation to nutrition and disease.

    Science.gov (United States)

    Garlick, P J; McNurlan, M A; Bark, T; Lang, C H; Gelato, M C

    1998-02-01

    This paper examines the role of hormones in the normal responses of muscle protein synthesis to nutrient intake and the use of hormones to improve the effects of nutritional therapies in patients with protein-wasting conditions. In growing rats, the increase in muscle protein synthesis after feeding seems to be mediated by the rise in plasma insulin and also by an enhanced sensitivity of the muscle to insulin brought about by the amino acid leucine. In adult rats, however, the responsiveness of muscle to both feeding and insulin is much reduced, suggesting that changes in protein degradation play an important role in the response to feeding. Similarly, in adult humans, muscle protein synthesis is not affected by insulin, but is stimulated by insulin-like growth factor (IGF)-I and growth hormone (GH). The effect of GH treatment has been studied in a number of different groups of patients suffering from protein wasting, and improvements in nitrogen balance and lean body mass have been reported. In a study of patients with acquired immunodeficiency syndrome (AIDS), however, GH treatment for 2 wk caused a fall in muscle protein synthesis in the patients with wasting, despite an increase in healthy controls, suggesting that the responsiveness of muscle to the hormone may be altered by the stage of the disease. PMID:9478024

  6. Is Cancer Cachexia Attributed to Impairments in Basal or Postprandial Muscle Protein Metabolism?

    Science.gov (United States)

    Horstman, Astrid M H; Olde Damink, Steven W; Schols, Annemie M W J; van Loon, Luc J C

    2016-01-01

    Cachexia is a significant clinical problem associated with very poor quality of life, reduced treatment tolerance and outcomes, and a high mortality rate. Mechanistically, any sizeable loss of skeletal muscle mass must be underpinned by a structural imbalance between muscle protein synthesis and breakdown rates. Recent data indicate that the loss of muscle mass with aging is, at least partly, attributed to a blunted muscle protein synthetic response to protein feeding. Whether such anabolic resistance is also evident in conditions where cachexia is present remains to be addressed. Only few data are available on muscle protein synthesis and breakdown rates in vivo in cachectic cancer patients. When calculating the theoretical changes in basal or postprandial fractional muscle protein synthesis and breakdown rates that would be required to lose 5% of body weight within a six-month period, we can define the changes that would need to occur to explain the muscle mass loss observed in cachectic patients. If changes in both post-absorptive and postprandial muscle protein synthesis and breakdown rates contribute to the loss of muscle mass, it would take alterations as small as 1%-2% to induce a more than 5% decline in body weight. Therefore, when trying to define impairments in basal and/or postprandial muscle protein synthesis or breakdown rates using contemporary stable isotope methodology in cancer cachexia, we need to select large homogenous groups of cancer patients (>40 patients) to allow us to measure physiological and clinically relevant differences in muscle protein synthesis and/or breakdown rates. Insight into impairments in basal or postprandial muscle protein synthesis and breakdown rates in cancer cachexia is needed to design more targeted nutritional, pharmaceutical and/or physical activity interventions to preserve skeletal muscle mass and, as such, to reduce the risk of complications, improve quality of life, and lower mortality rates during the various

  7. Ochratoxin a lowers mRNA levels of genes encoding for key proteins of liver cell metabolism.

    Science.gov (United States)

    Hundhausen, Christoph; Boesch-Saadatmandi, Christine; Matzner, Nicole; Lang, Florian; Blank, Ralf; Wolffram, Siegfried; Blaschek, Wolfgang; Rimbach, Gerald

    2008-01-01

    Ochratoxin A (OTA) is a nephro- and hepatotoxic mycotoxin that frequently contaminates food and feedstuffs. Although recent studies have indicated that OTA modulates renal gene expression, little is known regarding its impact on differential gene expression in the liver. Therefore a microarray study of the HepG2 liver cell transcriptome in response to OTA exposure (0, 0.25, 2.5 micromol/l for 24 h) was performed using Affymetrix GeneChip technology. Selected microarray results were verified by real-time PCR and Western blotting as independent methods. Out of 14,500 genes present on the microarray, 13 and 250 genes were down-regulated by 0.25 and 2.5 micromol/l OTA, respectively. Reduced mRNA levels of calcineurin A beta (PPP3CB), which regulates inflammatory signalling pathways in immune cells, and of the uncoupling protein 2 (UCP2), which has been suggested to control the production of reactive oxygen species (ROS), were observed in response to 0.25 micromol/l OTA. A particularly strong down-regulation due to 2.5 micromol/l OTA was evident for the mRNA levels of insulin-like growth factor binding protein 1 (IGFBP1) and tubulin beta 1 (TUBB1) which have been demonstrated to function as a pro-survival factor in hepatocytes and as an important cytoskeletal component, respectively. In addition, many genes involved in energy and xenobiotic metabolism, including phosphoglycerate kinase 1 (PGK1), stearoyl-Coenzyme A desaturase 1 (SCD), and glutathione S-transferase omega 1 (GSTO1), were down-regulated by OTA. Furthermore, OTA significantly inhibited the capacitative calcium entry into the HepG2 cells, indicating an alteration of calcium homeostasis. Overall, OTA dose-dependently affects multiple genes encoding for key proteins of liver cell metabolism. PMID:19287073

  8. Gamma-glutamyl transferase and C-reactive protein as alternative markers of metabolic abnormalities and their associated comorbidites: a prospective cohort study

    OpenAIRE

    Melvin, Jennifer C; Rodrigues, Crystal; Holmberg, Lars; Garmo, Hans; Hammar, Niklas; Jungner, Ingmar; Walldius, Göran; Lambe, Mats; Jassem, Wayel; Van Hemelrijck, Mieke

    2012-01-01

    Background: Recent studies suggested that gamma-glutamyl transferase (GGT) and C-reactive protein (CRP) are good markers of metabolic abnormalities. We assessed the link between GGT, CRP and common metabolic abnormalities, as well their link to related diseases, such as cancer and cardiovascular disease (CVD). Methods: We selected 333,313 subjects with baseline measurements of triglycerides (TG), total cholesterol (TC), glucose, GGT and CRP in the Swedish AMORIS study. Baseline measurement of...

  9. Fatty acid binding protein 3 (fabp3) is associated with insulin, lipids and cardiovascular phenotypes of the metabolic syndrome through epigenetic modifications in a northern european family population

    OpenAIRE

    Zhang, Yi; Kent, Jack W; Lee, Adam; Cerjak, Diana; ALI Omar; Diasio, Robert; Olivier, Michael; Blangero, John; Carless, Melanie A.; Kissebah, Ahmed H.

    2013-01-01

    Background Fatty acid-binding proteins (FABPs) play regulatory roles at the nexus of lipid metabolism and signaling. Dyslipidemia in clinical manifestation frequently co-occurs with obesity, insulin resistance and hypertension in the Metabolic Syndrome (MetS). Animal studies have suggested FABPs play regulatory roles in expressing MetS phenotypes. In our family cohort of Northern European descent, transcript levels in peripheral white blood cells (PWBCs) of a key FABPs, FABP3, is correlated w...

  10. Highly sensitive C-reactive protein and male gender are independently related to the severity of coronary disease in patients with metabolic syndrome and an acute coronary event

    OpenAIRE

    C.M.C. Monteiro; Pinheiro, L. F.; Izar, M.C.; S.W. Barros; M.B. Vasco; Fischer, S M; R.M. Povoa; S.A. Brandão; Santos, A.O.; Oliveira, L.; A.C. Carvalho; F.A.H. Fonseca

    2010-01-01

    Patients with metabolic syndrome are at high-risk for development of atherosclerosis and cardiovascular events. The objective of this study was to examine the major determinants of coronary disease severity, including those coronary risk factors associated with metabolic syndrome, during the early period after an acute coronary episode. We tested the hypothesis that inflammatory markers, especially highly sensitive C-reactive protein (hsCRP), are related to coronary atherosclerosis, in additi...

  11. Mechanical ventilation and sepsis impair protein metabolism in the diaphragm of neonatal pigs

    Science.gov (United States)

    Mechanical ventilation (MV) impairs diaphragmatic function and diminishes the ability to wean from ventilatory support in adult humans. In normal neonatal pigs, animals that are highly anabolic, endotoxin (LPS) infusion induces sepsis, reduces peripheral skeletal muscle protein synthesis rates, but ...

  12. Targeted Proteomics of Metabolic Pathways and Protein Turnover Analysis in Plants

    Institute of Scientific and Technical Information of China (English)

    A.Harvey Millar; Clark Nelson; Lei Li; Nicolas L.Taylor; Ricarda Fenske

    2012-01-01

    Shotgun approaches have dominated proteome studies as discovery tools to find changes in protein abundance.However,they often only provide a mosaic image of the proteome response and they focus mainly on the proteins that are changing in abundance to find biological insights.Using mass spectrometry for targeted identification of changes in whole biochemical pathways and analysing protein synthesis and degradation rates with stable isotope labelling provide an added depth of biological insights.These can help us to uncover the costs of protein production in plants and the role of specific pathways in responding to harsh or nutrient depleted environments.By adapting the selected reaction monitoring and the progressive 15N incorporation stu-dies we have developed in model plants,we are beginning to discover the power of these systems to analyse the response of barley to low nitrogen,rice to low phosphate and wheat to saline conditions.

  13. Effects of Endotoxaemia on Protein Metabolism in Rat Fast-Twitch Skeletal Muscle and Myocardium

    OpenAIRE

    Andrew J Murton; Nima Alamdari; Gardiner, Sheila M.; Dumitru Constantin-Teodosiu; Robert Layfield; Terence Bennett; Greenhaff, Paul L.

    2009-01-01

    BACKGROUND: It is unclear if the rat myocardium undergoes the same rapid reductions in protein content that are classically observed in fast-twitch skeletal muscle during endotoxaemia. METHODOLOGY/PRINCIPAL FINDINGS: To investigate this further, and to determine if there is any divergence in the response of skeletal muscle and myocardium in the mechanisms that are thought to be largely responsible for eliciting changes in protein content, Sprague Dawley rats were implanted with vascular cathe...

  14. Phosphoproteomics reveals extensive in vivo phosphorylation of Arabidopsis proteins involved in RNA metabolism

    OpenAIRE

    la Fuente van Bentem, Sergio de; Anrather, Dorothea; Roitinger, Elisabeth; Djamei, Armin; Hufnagl, Thomas; Barta, Andrea; Csaszar, Edina; Dohnal, Ilse; Lecourieux, David; Hirt, Heribert

    2006-01-01

    Most regulatory pathways are governed by the reversible phosphorylation of proteins. Recent developments in mass spectrometry-based technology allow the large-scale analysis of protein phosphorylation. Here, we show the application of immobilized metal affinity chromatography to purify phosphopeptides from Arabidopsis extracts. Phosphopeptide sequences were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS/MS). A total of 79 unique phosphorylation sites were determined in...

  15. The Shwachman-Bodian-Diamond Syndrome Protein Family Is Involved in RNA Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Savchenko, A; Krogan, Nevan; Cort, John R.; Evdokimova, Elena; Lew, Jocelyne M.; Yee, Adelinda; Sanchez-Pulido, Luis; Andrade, Miguel; Bochkarev, Alexey; Watson, James D.; Kennedy, Michael A.; Greenblatt, Jack; Hughes, Timothy; Arrowsmith, Cheryl H.; Rommens, Johanna M.; Edwards, Aled M.

    2005-05-13

    A combination of structural, biochemical, and genetic studies in model organisms was used to infer a cellular role for the human protein (SBDS) responsible for Shwachman-Bodian-Diamond syndrome. The crystal structure of the SBDS homologue in Archaeoglobus fulgidus, AF0491, revealed a three domain protein. The N-terminal domain, which harbors the majority of disease-linked mutations, has a novel three-dimensional fold.

  16. The influence of dietary crude protein intake on bone and mineral metabolism in sheep

    Directory of Open Access Journals (Sweden)

    T.S. Brand

    1999-07-01

    Full Text Available Increased dietary protein consumption is thought to cause calciuresis, a negative calcium balance and increased bone loss that may result in skeletal deformities and fracture. To explore this hypothesis, 40 approximately 100-day-old meat-type Merino ram lambs were fed, for 6 months, diets with an increasing crude protein (CP content (114, 142, 171 and 190 g/kg DM but approximately on an iso-nutrient basis with regard to metabolisable energy, calcium and phosphorus. Increased protein consumption modestly (NS enhanced calciuresis and resulted in significant (P < 0.01 limb skewness. This could not, however, be ascribed to osteopaenic bones, and compared with animals consuming lower protein rations, the bone mineral density (BMD and vertebral trabecular bone volume of animals fed high protein diets were significantly increased: theBMDof thoracic vertebrae was positively related to the CP intake (r=0.62; P < 0.001. In animals consuming higher protein diets, skeletal radiology and quantitative bone histology revealed no evidence of increased bone turnover as would be expected in animals that are in negative calcium balance. No relationship existed between limb skewness and the growth rate of lambs. However, the ratio of Ca:P in the forelimb (r = -0.98, vertebrae (r = -0.72 and rib (r = -0.42 was found to be inversely correlated with increased protein intake and resulted from an increase in the phosphorus content of bone, while the amount of bone calcium was unaffected. We conclude that qualitative micro-architectural abnormalities, and not mere bone loss, may underlie the skeletal deformities induced by increased protein consumption in sheep.

  17. Metabolism of the Antibacterial Triclocarban by Human Epidermal Keratinocytes to Yield Protein Adducts

    OpenAIRE

    Schebb, Nils Helge; Buchholz, Bruce A.; Hammock, Bruce D.; Rice, Robert H.

    2012-01-01

    Previous studies of triclocarban suggest that its biotransformation could yield reactive metabolites that form protein adducts. Since the skin is the major route of triclocarban exposure, present work examined this possibility in cultured human keratinocytes. The results provide evidence for considerable biotransformation and protein adduct formation when cytochrome P450 activity is induced in the cells by TCDD, a model Ah receptor ligand. Since detecting low adduct levels in cells and tissue...

  18. Molecular structures and metabolic characteristics of protein in brown and yellow flaxseed with altered nutrient traits.

    Science.gov (United States)

    Khan, Nazir Ahmad; Booker, Helen; Yu, Peiqiang

    2014-07-16

    The objectives of this study were to investigate the chemical profiles; crude protein (CP) subfractions; ruminal CP degradation characteristics and intestinal digestibility of rumen undegraded protein (RUP); and protein molecular structures using molecular spectroscopy of newly developed yellow-seeded flax (Linum usitatissimum L.). Seeds from two yellow flaxseed breeding lines and two brown flaxseed varieties were evaluated. The yellow-seeded lines had higher (P < 0.001) contents of oil (44.54 vs 41.42% dry matter (DM)) and CP (24.94 vs 20.91% DM) compared to those of the brown-seeded varieties. The CP in yellow seeds contained lower (P < 0.01) contents of true protein subfraction (81.31 vs 92.71% CP) and more (P < 0.001) extensively degraded (70.8 vs 64.9% CP) in rumen resulting in lower (P < 0.001) content of RUP (29.2 vs 35.1% CP) than that in the brown-seeded varieties. However, the total supply of digestible RUP was not significantly different between the two seed types. Regression equations based on protein molecular structural features gave relatively good estimation for the contents of CP (R(2) = 0.87), soluble CP (R(2) = 0.92), RUP (R(2) = 0.97), and intestinal digestibility of RUP (R(2) = 0.71). In conclusion, molecular spectroscopy can be used to rapidly characterize feed protein molecular structures and predict their nutritive value. PMID:24931851

  19. An inverse metabolic engineering approach for the design of an improved host platform for over-expression of recombinant proteins in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Ghosh Chaitali

    2012-07-01

    Full Text Available Abstract Background A useful goal for metabolic engineering would be to generate non-growing but metabolically active quiescent cells which would divert the metabolic fluxes towards product formation rather than growth. However, for products like recombinant proteins, which are intricately coupled to the growth process it is difficult to identify the genes that need to be knocked-out/knocked-in to get this desired phenotype. To circumvent this we adopted an inverse metabolic engineering strategy which would screen for the desired phenotype and thus help in the identification of genetic targets which need to be modified to get overproducers of recombinant protein. Such quiescent cells would obviate the need for high cell density cultures and increase the operational life span of bioprocesses. Results A novel strategy for generating a library, consisting of randomly down regulated metabolic pathways in E. coli was designed by cloning small genomic DNA fragments in expression vectors. Some of these DNA fragments got inserted in the reverse orientation thereby generating anti-sense RNA upon induction. These anti-sense fragments would hybridize to the sense mRNA of specific genes leading to gene ‘silencing’. This library was first screened for slow growth phenotype and subsequently for enhanced over-expression ability. Using Green Fluorescent Protein (GFP as a reporter protein on second plasmid, we were able to identify metabolic blocks which led to significant increase in expression levels. Thus down-regulating the ribB gene (3, 4 dihydroxy-2-butanone-4-phosphate synthase led to a 7 fold increase in specific product yields while down regulating the gene kdpD (histidine kinase led to 3.2 fold increase in specific yields. Conclusion We have designed a high throughput screening approach which is a useful tool in the repertoire of reverse metabolic engineering strategies for the generation of improved hosts for recombinant protein expression.

  20. The fatty liver dystrophy (fld) mutation: Developmentally related alterations in hepatic triglyceride metabolism and protein expression

    Energy Technology Data Exchange (ETDEWEB)

    Reue, K.; Rehnmark, S.; Cohen, R.D.; Leete, T.H.; Doolittle, M.H. [West Los Angeles VA Medical Center, CA (United States). Lipid Research Lab.]|[Univ. of California, Los Angeles, CA (United States). Dept. of Medicine; Giometti, C.S.; Mishler, K. [Argonne National Lab., IL (United States); Slavin, B.G. [Univ. of Southern California, Los Angeles, CA (United States)

    1997-07-01

    Fatty liver dystrophy (fld) is an autosomal recessive mutation in mice characterized by hypertriglyceridemia and development of a fatty liver in the early neonatal period. Also associated with the fld phenotype is a tissue-specific deficiency in the expression of lipoprotein lipase and hepatic lipase, as well as elevations in hepatic apolipoprotein A-IV and apolipoprotein C-II mRNA levels. Although these lipid abnormalities resolve at the age of weaning, adult mutant mice exhibit a peripheral neuropathy associated with abnormal myelin formation. The fatty liver in fld/fld neonates is characterized by the accumulation of large triglyceride droplets within the parenchymal cells, and these droplets persist within isolated hepatocytes maintained in culture for several days. To identify the metabolic defect that leads to lipid accumulation, the authors investigated several aspects of cellular triglyceride metabolism. The mutant mice exhibited normal activity of acid triacylglycerol lipase, an enzyme thought to be responsible for hydrolysis of dietary triglycerides in the liver. Metabolic labeling studies performed with oleic acid revealed that free fatty acids accumulate in the liver of 3 day old fld/fld mice, but not in adults. This accumulation in liver was mirrored by elevated free fatty acid levels in plasma of fld/fld neonates, with levels highest in very young mice and returning to normal by the age of one month. Quantitation of fatty acid oxidation in cells isolated from fld/fld neonates revealed that oxidation rate is reduced 60% in hepatocytes and 40% in fibroblasts; hepatocytes from adult fld/fld mice exhibited an oxidation rate similar to those from wild-type mice.

  1. Growth and nitrogen metabolism of sea bass fed graded levels of nucleic acid nitrogen from yeast or RNA extract as partial substitute for protein nitrogen from fish meal

    Directory of Open Access Journals (Sweden)

    S. Kaushik

    2010-01-01

    Full Text Available Some studies carried out in mammalian models have shown de novo synthesis and salvage of nucleotides to be a costly metabolic process and a dietary supplementation with nucleic acids (NA or nucleotides has been suggested to result in a protein sparing action (Sanderson and He, 1994. On the other hand, high levels of dietary NA could have toxic effects and lead to disturbance in protein, lipid and carbohydrate metabolism in monogastric animals lacking uricase activity, an enzyme involved in NA degradation (Clifford and Story, 1976. So far, there is no clear indication of such effects in fish fed nucleic acid-enriched diets (Tacon and Cooke, 1980; Rumsey et al., 1992; Fournier et al., 2002. The aim of this experiment was to investigate growth response and N metabolism in juvenile sea bass (D. labrax fed diets supplying graded levels of nucleic acid N from dry brewer's yeast or RNA extract as partial substitutes for protein nitrogen provided by fish meal.

  2. Differential Roles of the TRAF3 Adapter Protein in Adipogenesis and Glucose Metabolism

    OpenAIRE

    Loo, Lotus Kyi

    2015-01-01

    The main goal of this project is to delineate the roles and mechanisms of constitutive type II nuclear factor-kappa B (NF-kB) activation on adipogenesis and glucose metabolism. Our laboratory has shown that the tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3) is a critical negative modulator of type II NF-kB and TRAF3 knockout (TRAF3-/-) have constitutive activation of non canonical or type II NF-kB pathway. However, TRAF3-/- pups die within two weeks after birth and the funct...

  3. Protein and energy metabolism of young male Wistar rats fed conjugated linoleic acid as structured triacylglycerol

    DEFF Research Database (Denmark)

    Jørgensen, H.; Hansen, C. H.; Mu, Huiling;

    2010-01-01

    Twelve 4-week-old male Wistar rats weighing 100 g were fed diets semi-ad libitum for 22 d containing either 1.5% conjugated linoleic acid (CLA-diet) or high oleic sunflower oil (Control-diet). The CLA was structured triacylglycerol with predominantly cis-9, trans-11 and trans-10, cis-12 fatty aci...... isomers in the inner position and oleic acid in the other positions of the glycerol molecule. The rats were kept individually in metabolic cages. From days 8-16 energy, nitrogen (N) and carbon...

  4. Metabolic Cost of Protein Synthesis in Larvae of the Pacific Oyster (Crassostrea gigas) Is Fixed Across Genotype, Phenotype, and Environmental Temperature.

    Science.gov (United States)

    Lee, Jimmy W; Applebaum, Scott L; Manahan, Donal T

    2016-06-01

    The energy made available through catabolism of specific biochemical reserves is constant using standard thermodynamic conversion equivalents (e.g., 24.0 J mg protein(-1)). In contrast, measurements reported for the energy cost of synthesis of specific biochemical constituents are highly variable. In this study, we measured the metabolic cost of protein synthesis and determined whether this cost was influenced by genotype, phenotype, or environment. We focused on larval stages of the Pacific oyster Crassostrea gigas, a species that offers several experimental advantages: availability of genetically pedigreed lines, manipulation of ploidy, and tractability of larval forms for in vivo studies of physiological processes. The cost of protein synthesis was measured in larvae of C. gigas for 1) multiple genotypes, 2) phenotypes with different growth rates, and 3) different environmental temperatures. For all treatments, the cost of protein synthesis was within a narrow range--near the theoretical minimum--with a fixed cost (mean ± one standard error, n = 21) of 2.1 ± 0.2 J (mg protein synthesized)(-1) We conclude that there is no genetic variation in the metabolic cost of protein synthesis, thereby simplifying bioenergetic models. Protein synthesis is a major component of larval metabolism in C. gigas, accounting for more than half the metabolic rate in diploid (59%) and triploid larvae (54%). These results provide measurements of metabolic cost of protein synthesis in larvae of C. gigas, an indicator species for impacts of ocean change, and provide a quantitative basis for evaluating the cost of resilience. PMID:27365413

  5. Hepcidin and HFE protein: Iron metabolism as a target for the anemia of chronic kidney disease.

    Science.gov (United States)

    Canavesi, Elena; Alfieri, Carlo; Pelusi, Serena; Valenti, Luca

    2012-12-01

    The anemia of chronic kidney disease and hemodialysis is characterized by chronic inflammation and release of cytokines, resulting in the upregulation of the iron hormone hepcidin, also increased by iron therapy and reduced glomerular filtration, with consequent reduction in iron absorption, recycling, and availability to the erythron. This response proves advantageous in the short-term to restrain iron availability to pathogens, but ultimately leads to severe anemia, and impairs the response to erythropoietin (Epo) and iron. Homozygosity for the common C282Y and H63D HFE polymorphisms influence iron metabolism by hampering hepcidin release by hepatocytes in response to increased iron stores, thereby resulting in inadequate inhibition of the activity of Ferroportin-1, inappropriately high iron absorption and recycling, and iron overload. However, in hemodialysis patients, carriage of HFE mutations may confer an adaptive benefit by decreasing hepcidin release in response to iron infusion and inflammation, thereby improving iron availability to erythropoiesis, anemia control, the response to Epo, and possibly survival. Therefore, anti-hepcidin therapies may improve anemia management in hemodialysis. However, HFE mutations directly favor hemoglobinization independently of hepcidin, and reduce macrophages activation in response to inflammation, whereas hepcidin might also play a beneficial anti-inflammatory and anti-microbic action during sepsis, so that direct inhibition of HFE-mediated regulation of iron metabolism may represent a valuable alternative therapeutic target. Genetic studies may offer a valuable tool to test these hypotheses and guide the research of new therapies. PMID:24175256

  6. Metabolism of ribosomal proteins microinjected into the oocytes of Xenopus laevis

    International Nuclear Information System (INIS)

    When the total proteins from Xenopus laevis 60 S ribosomal subunits (TP60) were 3H-labeled in vitro and injected back into X. laevis oocytes, most 3H-TP60 are integrated into the cytoplasmic 60 S subunits via the nucleus during 16 h of incubation. In the oocytes whose rRNA synthesis is inhibited, 3H-TP60 are rapidly degraded with a half-life of 2-3 h. This degradation ceased as soon as rRNA synthesis was resumed, suggesting that ribosomal proteins unassociated with nascent rRNA are unstable in the oocytes. The degradation of 3H-TP60 in the absence of RNA synthesis was inhibited by iodoacetamide, a cysteine protease inhibitor, resulting in the accumulation of 3H-TP60 in the nucleus reaching about a threefold concentration in the cytoplasm. Considering the results with enucleated oocytes, we suggest that the X. laevis nucleus has a limited capacity to accumulate ribosomal proteins in an active manner but that those ribosomal proteins accumulated in excess over rRNA synthesis are degraded by a cysteine protease in the nucleus. By contrast, ribosomal proteins from Escherichia coli only equilibrate between the nucleus and the cytoplasm and are degraded by serine protease(s) in the cytoplasm without being integrated in the form of ribosomes in the nucleus

  7. Effect of fetal growth on maternal protein metabolism in postabsorptive rat

    International Nuclear Information System (INIS)

    Rates of protein synthesis were measured in whole fetuses and maternal tissues at 17 and 20 days of gestation in postabsorptive rats using continuous infusion of L-[1-14C]leucine. Fetal protein degradation rates were derived from the fractional rates of synthesis and growth. Whole-body (plasma) leucine kinetics in the mother showed a significant reduction of the fraction of plasma leucine oxidized in the mothers bearing older fetuses, a slight increase in the plasma flux, with total leucine oxidation and incorporation into protein remaining similar at the two gestational ages. Estimates of fractional protein synthesis in maternal tissues revealed an increase in placental and hepatic rates at 20 days of gestation, whereas the fractional synthetic rate in muscle remained unchanged. A model for estimation of the redistribution of leucine between plasma and tissues is described in detail. This model revealed a more efficient utilization of leucine in fetal protein synthesis in comparison with other maternal tissues, a greater dependency of the fetus on plasma supply of leucine, and a significant increase (2-fold) in the release of leucine from maternal muscle as the fetal requirements increased proportionately with its size. The latter conclusion, supported by nitrogen analysis and the ratio of bound-to-free leucine in maternal tissues, confirms the importance of maternal stores in maintaining the homeostasis of essential amino acids during late pregnancy

  8. Garlic (Allium sativum Extract Supplementation Alters the Glycogen Deposition in Liver and Protein Metabolism in Gonads of Female Albino Rats

    Directory of Open Access Journals (Sweden)

    Sashank Srivastava

    2012-04-01

    Full Text Available Garlic is an ayurvedic herb that has been extensively used as medication and as the taste enhancer of the food. The present investigation was undertaken to provide data on the efficacy of garlic (Allium sativum Linn. extract on glycogen deposition and protein metabolism in female albino rats that may further explore medicinal potential of garlic. The rats were divided into four groups A, B, C and D, keeping group A as a healthy control. The garlic extract was tried in three different doses, 1ml, 2ml and 4ml/ kg body weight as low, medium and high dose respectively and given orally for the period of 7, 14, 21 and 28 days daily to the rats of group B, C and D as stated above. The significant (P<0.01 & P<0.05 increase in glycogen and protein level was observed when rats were fed with low and medium dose but when rats were fed with high dose of garlic extract there was significant (P<0.01 decrease in glycogen level and a not significant decrease in protein level was observed.

  9. Effect of acute maternal starvation on tyrosine metabolism and protein synthesis in fetal sheep

    International Nuclear Information System (INIS)

    To determine the effects of acute maternal starvation on intrauterine growth, tyrosine concentration and specific activity values in plasma, intracellular free and protein bound pools were determined in catheterized ovine fetuses following an 8 h continuous infusion of L-[2,3,5,6 3H] or L-[U-14C] tyrosine into the ewe and fetus respectively at 115-125 days of gestation. From the kinetic data the rates of whole body and tissue fractional protein synthesis were calculated. Although placental protein synthesis was not significantly changed as a result of acute maternal starvation, fetal whole body protein synthesis was reduced from 63 g/d/kg in the fed to 25 g/d/kg in the starved condition. There was also a 10 fold reduction in the net placental transfer of tyrosine to the fetus in the starved ewes. In addition, a three fold increase was observed in the quantity of tyrosine used for oxidation by the fetuses of starved ewes, changing from 5.2% of tyrosine net utilization in the fed to 13.7% in the starved condition. Significant reductions in tissue fractional protein synthesis rates were also seen in the liver, brain, lung kidney and GIT tissues from 78, 37, 65, 45 and 71%/d respectively in the fed to 12, 10, 23, 22 and 35%/d in the fetuses of starved ewes. The data indicate that during acute maternal starvation the sheep fetus utilizes more tyrosine for oxidation and less for anabolic purposes which is reflected in a decrease both in whole body and tissue fractional rates of protein synthesis

  10. Metabolism in compensatory growth. V. Effect of undegraded protein in compensatory growth

    Directory of Open Access Journals (Sweden)

    Prappti Mahyudin

    2001-10-01

    Full Text Available An experiment was designed to study the effect of increasing availability of amino acids in growing animal fed maintenance diet and which previously subjected to underfeeding. Twelve wether Iambs were divided into 3 treatment groups, each was fed pelleted lucerne (Medicago sativa. The treatments were: diet at maintenance energy level (M, M + 60 g formaldehyde treatedcasein(M + HCHO-casein and ad libitum. The increase in protein consumption increased nitrogen (N retention, although the highest efficiency of N retention occurred in animal fed M diet (0.36 compared to those fed M + HCHO-casein (0.31 or ad libitum diet (0.2. Provision of amino acids by supplementation of 60 g HCHO-casein resulted in an increment of 19 g glucose/d or 32 g glucose/lOO g protein. Glucose entry rate (GER increased with increasing digestible crude protein. Although GER was not different between animals on M and M + HCHO-casein diet, the uptake of glucose in the hind-limb muscles of animals on the M + HCHO-casein was twice (0. 18mM than that of animals on the M diet (0.08 mM. There was a significant effect on the uptake and output of essential amino acids, leucine, isoleucine, lysine and threonine and non-essential amino acids, tyrosine and glutamine as levels of protein in the diet increased. Supplementation with HCHO-casein increased the arterial blood concentration of branch chain amino acids (BCAA by 76 % and phenylalanine by 61 %. In general there was an increase in the arterial concentration of amino acids in animals fed either M + HCHO-casein or ad libitum. However, this increase was followed by increased amino acids oxidation, which showed in increased urea excretion. There was a positive correlation between urinary urea and N intake, suggesting that amino acids were not fully utilized for protein synthesis or protein deposition.

  11. Changes in metabolic proteins in ex vivo rat retina during glutamate-induced neural progenitor cell induction.

    Science.gov (United States)

    Tokuda, Kazuhiro; Kuramitsu, Yasuhiro; Baron, Byron; Kitagawa, Takao; Tokuda, Nobuko; Kobayashi, Masaaki; Kimura, Kazuhiro; Sonoda, Koh-Hei; Nakamura, Kazuyuki

    2016-08-01

    Understanding how energy metabolism and related proteins influence neural progenitor cells in adult tissues is critical for developing new strategies in clinical tissue regeneration therapy. We have recently reported that a subtoxic concentration of glutamate-induced neural progenitor cells in the mature ex vivo rat retina. We herein explore changes in the metabolic pathways during the process. We firstly observed an increase in lactate and lactate dehydrogenase concentration in the glutamate-treated retina. We then investigated the levels of glycolytic enzymes and confirmed significant upregulation of pyruvate kinase M type (PKM), especially PKM2, enolase, phosphoglycerate mutase 1 (PGAM1), and inosine-5'-monophosphate dehydrogenase (IMPDH1) in the glutamate-treated retina compared to the untreated retina. An analysis of the subcellular localization of PKM2 revealed nuclear translocation in the treated retina, which has been reported to regulate cell cycle proliferation and glycolytic enzymes. Our findings indicate that the mature rat retina undergoes an increase in aerobic glycolysis. PKM2, both in the cytoplasm and in the nucleus, may thus play an important role during neural progenitor cell induction, as it does in other proliferating cells. PMID:27421851

  12. HIV and Cocaine Impact Glial Metabolism: Energy Sensor AMP-activated protein kinase Role in Mitochondrial Biogenesis and Epigenetic Remodeling.

    Science.gov (United States)

    Samikkannu, Thangavel; Atluri, Venkata S R; Nair, Madhavan P N

    2016-01-01

    HIV infection and cocaine use have been identified as risk factors for triggering neuronal dysfunction. In the central nervous system (CNS), energy resource and metabolic function are regulated by astroglia. Glia is the major reservoir of HIV infection and disease progression in CNS. However, the role of cocaine in accelerating HIV associated energy deficit and its impact on neuronal dysfunction has not been elucidated yet. The aim of this study is to elucidate the molecular mechanism of HIV associated neuropathogenesis in cocaine abuse and how it accelerates the energy sensor AMPKs and its subsequent effect on mitochondrial oxidative phosphorylation (OXPHOS), BRSKs, CDC25B/C, MAP/Tau, Wee1 and epigenetics remodeling complex SWI/SNF. Results showed that cocaine exposure during HIV infection significantly increased the level of p24, reactive oxygen species (ROS), ATP-utilization and upregulated energy sensor AMPKs, CDC25B/C, MAP/Tau and Wee1 protein expression. Increased ROS production subsequently inhibits OCR/ECAR ratio and OXPHOS, and eventually upregulate epigenetics remodeling complex SWI/SNF in CHME-5 cells. These results suggest that HIV infection induced energy deficit and metabolic dysfunction is accelerated by cocaine inducing energy sensor AMPKs, mitochondrial biogenesis and chromatin remodeling complex SWI/SNF activation, which may lead to neuroAIDS disease progression. PMID:27535703

  13. Metabolic imaging of the tumor treated by KillerRed fluorescent protein-based photodynamic therapy in mice

    Science.gov (United States)

    Sha, Shuang; Qin, Lingsong; Wang, Anle; Liu, Zheng; Yang, Fei; Jin, Honglin; Zhang, Zhihong

    2014-02-01

    KillerRed is a unique red fluorescent protein exhibiting excellent phototoxic properties. It has the ability to produce reactive oxygen species (ROS), for killing tumor cells in vitro upon laser irradiation and has the potential to act as a photosensitizer in the application of tumor therapy. Here, we investigated the effects of KillerRed-based photodynamic therapy (PDT) on tumor growth in vivo and examined the subsequent tumor metabolic states including the changes of pyridine nucleotide (PN) and flavoprotein (Fp), two important metabolic coenzymes of tumor cells. Results showed that the tumor was scabbed in response to 561 nm laser irradiation at 80 mV for 3 min, and the tumor growth had been significantly inhibited by KillerRed-based PDT treatment compared to control groups. More importantly, a home-made cryo-imaging redox scanner was used to measure intrinsic fluorescence and exogenous KillerRed fluorescence signals in tumors. The flavoprotein was remarkable elevated and the PN was seldom increased with concomitant photobleaching of KillerRed fluorescence after irradiation, suggesting that flavoprotein and PN were oxidized in the course of KillerRed-based PDT.

  14. HIV and Cocaine Impact Glial Metabolism: Energy Sensor AMP-activated protein kinase Role in Mitochondrial Biogenesis and Epigenetic Remodeling

    Science.gov (United States)

    Samikkannu, Thangavel; Atluri, Venkata S. R.; Nair, Madhavan P. N.

    2016-01-01

    HIV infection and cocaine use have been identified as risk factors for triggering neuronal dysfunction. In the central nervous system (CNS), energy resource and metabolic function are regulated by astroglia. Glia is the major reservoir of HIV infection and disease progression in CNS. However, the role of cocaine in accelerating HIV associated energy deficit and its impact on neuronal dysfunction has not been elucidated yet. The aim of this study is to elucidate the molecular mechanism of HIV associated neuropathogenesis in cocaine abuse and how it accelerates the energy sensor AMPKs and its subsequent effect on mitochondrial oxidative phosphorylation (OXPHOS), BRSKs, CDC25B/C, MAP/Tau, Wee1 and epigenetics remodeling complex SWI/SNF. Results showed that cocaine exposure during HIV infection significantly increased the level of p24, reactive oxygen species (ROS), ATP-utilization and upregulated energy sensor AMPKs, CDC25B/C, MAP/Tau and Wee1 protein expression. Increased ROS production subsequently inhibits OCR/ECAR ratio and OXPHOS, and eventually upregulate epigenetics remodeling complex SWI/SNF in CHME-5 cells. These results suggest that HIV infection induced energy deficit and metabolic dysfunction is accelerated by cocaine inducing energy sensor AMPKs, mitochondrial biogenesis and chromatin remodeling complex SWI/SNF activation, which may lead to neuroAIDS disease progression. PMID:27535703

  15. Influence of apolipoprotein E and its receptors on cerebral amyloid precursor protein metabolism following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shuai; SUN Xiao-chuan

    2012-01-01

    Traumatic brain injury (TBI) is the leading cause of mortality and disability among young individuals in our society,and globally the incidence of TBI is rising sharply.Mounting evidence has indicated that apolipoprotein E (apoE:protein; APOE:gene) genotype influences the outcome after TBI.The proposed mechanism by which APOE affects the clinicopathological consequences of TBI is multifactorial and includes amyloid deposition,disruption of lipid distribution,dysfunction of mitochondrial energy production,oxidative stress and increases intracellular calcium in response to injury.This paper reviews the current state of knowledge regarding the influence of apoE and its receptors on cerebral amyloid betaprotein precursor metabolism following TBI.

  16. Disruption of the acyl-coa binding protein gene delays hepatic adaptation to metabolic changes at weaning

    DEFF Research Database (Denmark)

    Neess, Ditte; Bloksgaard, Maria; Sørensen, Signe Bek; Marcher, Ann-Britt; Elle, Ida C; Helledie, Torben; Due, Marianne; Pagmantidis, Vasileios; Finsen, Bente; Wilbertz, Johannes; Kruhoeffer, Mogens; Faergeman, Nils; Mandrup, Susanne

    2011-01-01

    , little is known about the in vivo function in mammalian cells. We have generated mice with targeted disruption of ACBP (ACBP-/-). These mice are viable and fertile and develop normally. However, around weaning the ACBP-/- mice go through a crisis with overall weakness, and a slightly decreased growth...... rate. Using microarray analysis we show that the liver of ACBP-/- mice display a significantly delayed adaptation to weaning with late induction of target genes of the sterol regulatory element binding protein (SREBP) family. As a result, hepatic de novo cholesterogenesis is decreased at weaning. The...... delayed induction of SREBP target genes around weaning is caused by a compromised processing and decreased expression of SREBP precursors leading to reduced binding of SREBP to target sites in chromatin. In conclusion, lack of ACBP interferes with the normal metabolic adaptation to weaning and leads to...

  17. Yeast (different sources and levels) as protein source in diets of reared piglets: effects on protein digestibility and N-metabolism.

    Science.gov (United States)

    Spark, M; Paschertz, H; Kamphues, J

    2005-01-01

    The aim of this study was to examine the feeding value of different yeasts as a substitute for soya bean meal, the main protein source in diets of weaned piglets. Tested two yeasts were already available on the market, Saccharomyces cerevisiae and Kluyveromyces lactis (beer and milk yeast), which replaced 40% of the soya bean meal in the diets. Furthermore, a yeast (Kluyveromyces fragilis) grown on whey, a side-product of cheese production, was used in increasing concentrations in the diets, so that increasing amounts of the soya bean meal (20%, 40% and 60%) could be replaced. As proved in these experiments, a replacement of 60% of the soya protein with whey yeast protein had positive effects on the performances (daily weight gain) and on the N-metabolism and did not have negative effects on the health or the faeces consistency. The whey yeast stands out because of its high protein quality (N-digestibility and N-retention). Furthermore, the replacement of soya bean meal with highly digestible yeasts is welcomed under the aspect of animal health, because of the reduction of anti-nutritive soya components (stachyose, glycinin) in diets of weaned piglets. The controlled production conditions of the yeasts result in a high feed safety; in addition, the yeast as an end-of-pipe-product is a resource conserving and valuable feed. A main stimulus for the use of yeasts, however, in a food production controlled by economic standpoints, is their price and the costs of other competing feeds. PMID:15787992

  18. Premature delivery reduces intestinal cytoskeleton, metabolism, and stress response proteins in newborn formula-fed pigs

    DEFF Research Database (Denmark)

    Jiang, Pingping; Wan, Jennifer Man-Fan; Cilieborg, Malene Skovsted;

    2013-01-01

    proteins, thus helping to explain why preterm neonates are more susceptible to feeding-induced disorders such as necrotizing enterocolitis (NEC). METHODS:: Incidence of feeding-induced NEC, intestinal mass and brush-border enzyme activities, and the intestinal proteome in preterm caesarean-delivered pigs...

  19. Protein Restriction During the Last Third of Pregnancy Malprograms the Neuroendocrine Axes to Induce Metabolic Syndrome in Adult Male Rat Offspring.

    Science.gov (United States)

    de Oliveira, Júlio Cezar; Gomes, Rodrigo Mello; Miranda, Rosiane Aparecida; Barella, Luiz Felipe; Malta, Ananda; Martins, Isabela Peixoto; Franco, Claudinéia Conationi da Silva; Pavanello, Audrei; Torrezan, Rosana; Natali, Maria Raquel Marçal; Lisboa, Patrícia Cristina; Mathias, Paulo Cezar de Freitas; de Moura, Egberto Gaspar

    2016-05-01

    Metabolic malprogramming has been associated with low birth weight; however, the interplay between insulin secretion disruption and adrenal function upon lipid metabolism is unclear in adult offspring from protein-malnourished mothers during the last third of gestation. Thus, we aimed to study the effects of a maternal low-protein diet during the last third of pregnancy on adult offspring metabolism, including pancreatic islet function and morphophysiological aspects of the liver, adrenal gland, white adipose tissue, and pancreas. Virgin female Wistar rats (age 70 d) were mated and fed a protein-restricted diet (4%, intrauterine protein restricted [IUPR]) from day 14 of pregnancy until delivery, whereas control dams were fed a 20.5% protein diet. At age 91 d, their body composition, glucose-insulin homeostasis, ACTH, corticosterone, leptin, adiponectin, lipid profile, pancreatic islet function and liver, adrenal gland, and pancreas morphology were assessed. The birth weights of the IUPR rats were 20% lower than the control rats (P rats were heavier, hyperphagic, hyperglycemic, hyperinsulinemic, hyperleptinemic, and hypercorticosteronemic (P rats (P < .05). Maternal undernutrition during the last third of gestation disrupts the pancreatic islet insulinotropic response and induces obesity-associated complications. Such alterations lead to a high risk of metabolic syndrome, characterized by insulin resistance, visceral obesity, and lower high-density lipoprotein cholesterol. PMID:27007071

  20. Effects of recombinant human growth hormone therapy on carbohydrate, lipid and protein metabolisms of children with Turner syndrome

    Science.gov (United States)

    Qi, Weibin; Li, Shuxian; Shen, Qiong; Guo, Xiuxia; Rong, Huijuan

    2014-01-01

    Objective: To study the effect of recombinant human growth hormone (rhGH) therapy on carbohydrate, lipid and protein metabolisms of Turner syndrome (TS). Metho d s: Total 45 patients with TS admitted between Jul. 2008 and Jun. 2011 were involved in this study. All patients received the clinical evaluation of body fat, plasma lipids, proteins and oral glucose tolerance test (OGTT) before and after rhGH therapy. Results : Our results indicated a significant decrease of body fat (FAT%) from 23.56±4.21 to 18.71±2.23 but no obvious change on the level of fat mass (FM) (p>0.05) was observed after rhGH therapy. We also detected significant changes on plasma high-density lipoprotein cholesterol (HDL-C) from (1.65±0.58 mmol/L) to (2.20±0.65 mmol/L) and low-density lipoprotein cholesterol (LDH-C) from (2.55±0.55 mmol/L) to (2.10±0.54 mmol/L) after rhGH exposure. However, no statistical significance was detected on the level of plasma triglyceride (TG), cholesterol (CHO). Interestingly, the levels of plasma retinol binding protein (RbP) (32.55±4.28mg/L), transferrin (TRF) (2.95±0.40 mg/L), serum albumin (PRE) (250.00±45.50 mg/L) and albumin (propagated) (33.58±4.25 mg/L) were significantly increased. When it goes to the oral glucose tolerance test (OGTT) test, there were 10 impaired glucose tolerance (IGT) cases among all patients before and after rhGH therapy. No significant change was observed on homeostasis model assessment- insulin resistance (HOMA-IR) level during rhGH intervention. Conclusion : Abnormal lipid and protein metabolisms of the children with TS can be improved with rhGH therapy for 6 months. PMID:25097506

  1. Influence of methionine/valine-depleted enteral nutrition on nucleic acid and protein metabolism in tumor-bearing rats

    Institute of Scientific and Technical Information of China (English)

    Yin-Cheng He; Jun Cao; Ji-Wei Chen; Ding-Yu Pan; Ya-Kui Zhou

    2003-01-01

    AIM: To investigate the effects of methionine/valine-depleted enteral nutrition (EN) on RNA, DNA and protein metabolism in tumor-bearing (TB) rats.METHODS: Sprague-Dawlley (SD) rats underwent jejunostomy for nutritional support. A suspension of Walker256 carcinosarcoma cells was subcutaneously inoculated.48 TB rats were randomly divided in 4 groups: A, B, C and D. The TB rats had respectively received jejunal feedings supplemented with balanced amino acids, methioninedepleted, balanced amino acids and valine-depleted for 6days before injection of 740 KBq 3H- methionine/valine via jejunum. The 3H incorporation rate of the radioactivity into RNA, DNA and proteins in tumor tissues at 0.5, 1, 2, 4 h postinjection of tracers was assessed with liquid scintillation counter.RESULTS: Incorporation of 3H into proteins in groups B and D was (0.500±0.020) % to (3.670±0.110) % and (0.708±0.019) % to (3.813±0.076) % respectively, lower than in groups A [(0.659±0.055) % to (4.492±0.108) %]and C r(0.805±0.098) % to (4.180±0.018) %]. Incorporation of 3H into RNA, DNA in group B was (0.237±0.075) %and (0.231±0.052) % respectively, lower than in group A (P<0.01). There was no significant difference in uptake of 3H by RNA and DNA between group C and D (P>0.05).CONCLUSION: Protein synthesis was inhibited by methionine/valine starvation in TB rats and nucleic acid synthesis was reduced after methionine depletion, thus resulting in suppression of tumor growth.

  2. Deregulation of proteins involved in iron metabolism in hepcidin-deficient mice.

    Science.gov (United States)

    Viatte, Lydie; Lesbordes-Brion, Jeanne-Claire; Lou, Dan-Qing; Bennoun, Myriam; Nicolas, Gaël; Kahn, Axel; Canonne-Hergaux, François; Vaulont, Sophie

    2005-06-15

    Evidence is accumulating that hepcidin, a liver regulatory peptide, could be the common pathogenetic denominator of all forms of iron overload syndromes including HFE-related hemochromatosis, the most prevalent genetic disorder characterized by inappropriate iron absorption. To understand the mechanisms whereby hepcidin controls iron homeostasis in vivo, we have analyzed the level of iron-related proteins by Western blot and immunohistochemistry in hepcidin-deficient mice, a mouse model of severe hemochromatosis. These mice showed important increased levels of duodenal cytochrome b (Dcytb), divalent metal transporter 1 (DMT1), and ferroportin compared with control mice. Interestingly, the level of ferroportin was coordinately up-regulated in the duodenum, the spleen, and the liver (predominantly in the Kupffer cells). Finally, we also evidenced a decrease of ceruloplasmin in the liver of hepcidin-deficient mice. We hypothesized that the deregulation of these proteins might be central in the pathogenesis of iron overload, providing key therapeutic targets for iron disorders. PMID:15713792

  3. Dietary whey protein lessens several risk factors for metabolic diseases: a review

    Directory of Open Access Journals (Sweden)

    Sousa Gabriela TD

    2012-07-01

    Full Text Available Abstract Obesity and type 2 diabetes mellitus (DM have grown in prevalence around the world, and recently, related diseases have been considered epidemic. Given the high cost of treatment of obesity/DM-associated diseases, strategies such as dietary manipulation have been widely studied; among them, the whey protein diet has reached popularity because it has been suggested as a strategy for the prevention and treatment of obesity and DM in both humans and animals. Among its main actions, the following activities stand out: reduction of serum glucose in healthy individuals, impaired glucose tolerance in DM and obese patients; reduction in body weight; maintenance of muscle mass; increases in the release of anorectic hormones such as cholecystokinin, leptin, and glucagon like-peptide 1 (GLP-1; and a decrease in the orexigenic hormone ghrelin. Furthermore, studies have shown that whey protein can also lead to reductions in blood pressure, inflammation, and oxidative stress.

  4. The Involvement of hybrid cluster protein 4, HCP4, in Anaerobic Metabolism in Chlamydomonas reinhardtii

    OpenAIRE

    Olson, Adam C.; Carter, Clay J

    2016-01-01

    The unicellular green algae Chlamydomonas reinhardtii has long been studied for its unique fermentation pathways and has been evaluated as a candidate organism for biofuel production. Fermentation in C. reinhardtii is facilitated by a network of three predominant pathways producing four major byproducts: formate, ethanol, acetate and hydrogen. Previous microarray studies identified many genes as being highly up-regulated during anaerobiosis. For example, hybrid cluster protein 4 (HCP4) was fo...

  5. Temperature-dependent alterations in metabolic enzymes and proteins of three ecophysiologically different species of earthworms

    OpenAIRE

    Tripathi, G.; N. Kachhwaha; I. Dabi; N. Bandooni

    2011-01-01

    The effects of varying temperatures (12 - 44° C) on the specific activity of cytoplasmic malate dehydrogenase ((cMDH), mitochondrial malate dehydrogenase (mMDH) and lactate dehydrogenase (LDH) of some earthworms (Metaphire posthuma, Perionyx sansibaricus and Lampito mauritii) were studied. The effects of different temperatures on supernatant and mitochondrial protein contents were also investigated. The specific activities of cMDH, mMDH and LDH of the earthworms decreased gradually as a funct...

  6. Detection of AGEs as markers for carbohydrate metabolism and protein denaturation

    OpenAIRE

    Nagai, Ryoji; Shirakawa, Jun-ichi; Fujiwara, Yukio; Ohno, Rei-ichi; Moroishi, Narumi; Sakata, Noriyuki; Nagai, Mime

    2014-01-01

    Approximately 100 years have passed since the Maillard reaction was first reported in the field of food chemistry as a condensation reaction between reducing sugars and amino acids. This reaction is thought to progress slowly primarily from glucose with proteins in vivo. An early-stage product, called the ”Amadori product”, is converted into advanced glycation end products. Those accumulate in the body in accordance with age, with such accumulation being enhanced by lifestyle-related diseases...

  7. Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Ines eLassowskat

    2014-10-01

    Full Text Available Mitogen-activated protein kinases (MAPKs target a variety of protein substrates to regulate cellular signaling processes in eukaryotes. In plants, the number of identified MAPK substrates that control plant defense responses is still limited. Here, we generated transgenic Arabidopsis thaliana plants with an inducible system to simulate in vivo activation of two stress-activated MAPKs, MPK3 and MPK6. Metabolome analysis revealed that this artificial MPK3/6 activation (without any exposure to pathogens or other stresses is sufficient to drive the production of major defense-related metabolites, including various camalexin, indole glucosinolate and agmatine derivatives. An accompanying (phosphoproteome analysis led to detection of hundreds of potential phosphoproteins downstream of MPK3/6 activation. Besides known MAPK substrates, many candidates on this list possess typical MAPK-targeted phosphosites and in many cases, the corresponding phosphopeptides were detected by mass spectrometry. Notably, several of these putative phosphoproteins have been reported to be associated with the biosynthesis of antimicrobial defense substances (e.g. WRKY transcription factors and proteins encoded by the genes from the PEN pathway required for penetration resistance to filamentous pathogens. Thus, this work provides an inventory of candidate phosphoproteins, including putative direct MAPK substrates, for future analysis of MAPK-mediated defense control. (Proteomics data are available with the identifier PXD001252 via ProteomeXchange, http://proteomecentral.proteomexchange.org.

  8. Asynchronous Cooperative e-Learning System and Its Evaluation

    Science.gov (United States)

    Eto, Kazuhiro; Miyoshi, Takumi

    Much attention has been attracted to collaborative learning on an e-learning system. However, it is difficult to implement the collaborative environment to an asynchronous e-learning system since collaboration would be realized only when learners join the system at the same time. On the other hand, cooperative learning has been proposed. In this method, learners can study on their own pace without making mutual agreement but with receiving cognitive information from others. In this paper, the authors have developed the asynchronous cooperative e-learning system that provides learners' attendance and studying progress as the cognitive information. The subjective evaluation experiments show that our system is slightly inferior to the synchronous collaborative e-learning system, but it can motivate the learners more than the conventional system.

  9. Effects of Amyloid Precursor Protein 17 Peptide on the Protection of Diabetic Encephalopathy and Improvement of Glycol Metabolism in the Diabetic Rat

    OpenAIRE

    Heng Meng; Duo Zhang; Haishan Yang

    2013-01-01

    Researchers have proposed that amyloid precursor protein 17 peptide (APP17 peptide), an active fragment of amyloid precursor protein (APP) in the nervous system, has therapeutic effects on neurodegeneration. Diabetic encephalopathy (DE) is a neurological disease caused by diabetes. Here we use multiple experimental approaches to investigate the effect of APP17 peptide on changes in learning behavior and glycol metabolism in rats. It was found that rats with DE treated by APP17 peptide showed ...

  10. Influence of culture conditions on growth and protein metabolism in chlorella pyranosides; Influencia de las condiciones de cultivo sobre el crecimiento y metabolismo proteico de chlorella pyrenoidosa

    Energy Technology Data Exchange (ETDEWEB)

    Mazon Matanzo, M. P.; Fernandez Gonzalez, J.; Batuecas Suarez, B.

    1981-07-01

    Growth and protein metabolism of Chlorella pyranoside under different conditions of temperature, photo period and CO{sub 2} concentration was studied. The optimum of biomass production was observed at 25 degree centigree, 40.000 ppm of CO{sub 2} in air and a 20 h. light period, followed of 4 h. of darkness. Some variations in free aminoacids content was observed under different conditions but no change did occur in protein. (Author) 68 refs.

  11. A STUDY ON ASYNCHRONOUS SERIAL COMMUNICATON BETWEEN COMPONENTS IN AUTOMOBILES

    OpenAIRE

    ŞAHİN, Yaşar Güneri

    2010-01-01

    ABSTRACTIn connection with the developments in the automobile sector, the number of in-automobile components, the amount of cable used for providing in-automobile communication between these components and costs are increased gradually. In this study, a method is presented in which asynchronous serial connection is used for decreasing the initial and maintenance costs by means of decreasing the amount of cables used in middle and lower class automobiles. The electronic circuits required to es...

  12. Diversity Multiplexing Tradeoff of Asynchronous Cooperative Relay Networks

    CERN Document Server

    Krishnakumar, R N; Kumar, P Vijay

    2008-01-01

    The assumption of nodes in a cooperative communication relay network operating in synchronous fashion is often unrealistic. In the present paper, we consider two different models of asynchronous operation in cooperative-diversity networks experiencing slow fading and examine the corresponding diversity-multiplexing tradeoffs (DMT). For both models, we propose protocols and distributed space-time codes that asymptotically achieve the transmit diversity bound for all multiplexing gains and for any number of relays.

  13. Indoor Positioning for Smartphones Using Asynchronous Ultrasound Trilateration

    OpenAIRE

    James D. Carswell; Viacheslav Filonenko; Charlie Cullen

    2013-01-01

    Modern smartphones are a great platform for Location Based Services (LBS). While outdoor LBS for smartphones has proven to be very successful, indoor LBS for smartphones has not yet fully developed due to the lack of an accurate positioning technology. In this paper we present an accurate indoor positioning approach for commercial off-the-shelf (COTS) smartphones that uses the innate ability of mobile phones to produce ultrasound, combined with Time-Difference-of-Arrival (TDOA) asynchronous t...

  14. Research on DSP-based Asynchronous Motor Control Technology

    OpenAIRE

    Jun Yao; Xiangxin Qiao; Xin Wang

    2013-01-01

    The Motor in a variety of electrical transmission and position servo system occupies an extremely important position. After the DSP technology being applied to the motor control, the unification of the hardware and the flexibility of the software can be combined. Take the brushless DC motor for example, studied the mathematical model and the structure of the motor control system, also obtained the design scheme of the DSP-based asynchronous motor control system. With TI's 32 bit fixed point D...

  15. Applications of Maximum Likelihood Algorithm in Asynchronous CDMA Systems

    OpenAIRE

    Xiao, P; Strom, E

    2002-01-01

    We treat the problems of propagation delay and channel estimation as well as data detection of orthogonally modulated signals in an asynchronous DS-CDMA system over fading channels using the maximum likelihood (ML) approach. The overwhelming computational complexity of the ML algorithm makes it unfeasible for implementation. The emphasis of this paper is to reduce its complexity by some approximation methods. The derived approximative ML schemes are compared with conventional algorithms as we...

  16. Asynchronous Discourse Analysis in the Quality of Expected Learning

    OpenAIRE

    Schalk-Quintanar, Ana-Elena; Marcelo-García, Carlos

    2010-01-01

    Universities are gradually implementing virtual learning processes. However, research still remains limited in examining the internal processes that occur in learning in virtual environments. This article presents an investigation that seeks to describe the relationship between the quality of interaction in asynchronous discussion forums in training experiences in e-learning, and the quality of learning offered and achieved. The main objective was to determine how interactions in online envir...

  17. On the convergence time of asynchronous distributed quantized averaging algorithms

    OpenAIRE

    ZHU, MINGHUI; Martinez, Sonia

    2010-01-01

    We come up with a class of distributed quantized averaging algorithms on asynchronous communication networks with fixed, switching and random topologies. The implementation of these algorithms is subject to the realistic constraint that the communication rate, the memory capacities of agents and the computation precision are finite. The focus of this paper is on the study of the convergence time of the proposed quantized averaging algorithms. By appealing to random walks on graphs, we derive ...

  18. Abstractions for asynchronous distributed computing with malicious players

    OpenAIRE

    Vukolic, Marko; Guerraoui, Rachid

    2009-01-01

    In modern distributed systems, failures are the norm rather than the exception. In many cases, these failures are not benign. Settings such as the Internet might incur malicious (also called Byzantine or arbitrary) behavior and asynchrony. As a result, and perhaps not surprisingly, research on asynchronous Byzantine fault-tolerant (BFT) distributed systems is flourishing. Tolerating arbitrary behavior and asynchrony calls for very sophisticated algorithms. This is in particular the case with ...

  19. A novel asynchronous access method with binary interfaces

    OpenAIRE

    Torres-Solis Jorge; Silva Jorge; Chau Tom; Mihailidis Alex

    2008-01-01

    Abstract Background Traditionally synchronous access strategies require users to comply with one or more time constraints in order to communicate intent with a binary human-machine interface (e.g., mechanical, gestural or neural switches). Asynchronous access methods are preferable, but have not been used with binary interfaces in the control of devices that require more than two commands to be successfully operated. Methods We present the mathematical development and evaluation of a novel as...

  20. Design and Implementation of an Asynchronous Pipelined FFT Processor

    OpenAIRE

    Claesson, Jonas

    2003-01-01

    FFT processors are today one of the most important blocks in communication equipment. They are used in everything from broadband to 3G and digital TV to Radio LANs. This master's thesis project will deal with pipelined hardware solutions for FFT processors with long FFT transforms, 1K to 8K points. These processors could be used for instance in OFDM communication systems. The final implementation of the FFT processor uses a GALS (Globally Asynchronous Locally Synchronous) architecture, that ...

  1. Teleoperation system using Asynchronous transfer mode, ATM network

    International Nuclear Information System (INIS)

    This paper examines the application of Asynchronous Transfer Mode (ATM) in a distributed industrial environment such as in teleoperation, which performs real time control manipulation from a remote location. In our study, two models of teleoperation are proposed; the first model is a point to point connection and the second model is through an ATM network. The performance results are analysed as to determine whether the two models can support the teleoperation traffics via simulation using commercial software design tool. (Author)

  2. Direct effects of locally administered lipopolysaccharide on glucose, lipid, and protein metabolism in the placebo-controlled, bilaterally infused human leg

    DEFF Research Database (Denmark)

    Buhl, Mads; Bosnjak, Ermina; Vendelbo, Mikkel H;

    2013-01-01

    Context: Accumulating evidence suggests that chronic exposure to lipopolysaccharide (LPS, endotoxin) maycreate a constant low-grade inflammation, leading to insulin resistance and diabetes. All previous human studies assessing the metabolic actions of LPS have used systemic administration, making...... discrimination between direct and indirect effects impossible. Objective: We sought to define the direct, placebo-controlled effects of LPS on insulin resistance and protein and lipid metabolism in the infused human leg without systemic interference from cytokines and stress hormones. Design...... release in the perfused human leg without detectable effects on amino acid metabolism. Conclusions: These data strongly suggest that the primary metabolic effect of LPS is increased lipolysis and muscle insulin resistance, which, together with secondary insulin resistance, caused by systemic cytokine...

  3. Effects of nutritional and hormonal factors on the metabolism of retinol-binding protein by primary cultures of rat hepatocytes

    International Nuclear Information System (INIS)

    Studies were conducted to explore hormonal and nutritional factors that might be involved in the regulation of retinol-binding protein (RBP) synthesis and secretion by the liver. The studies employed primary cultures of hepatocytes from normal rats. When cells were cultured in Dulbecco's modified Eagle's medium alone, a high rate of RBP secretion was observed initially, which declined and became quite low by 24 hr. Supplementing the medium with amino acids maintained RBP and albumin secretion at moderate (but less than initial) rates for at least 3 days. Further addition of dexamethasone maintained the production and secretion rates of RBP, transthyretin, and albumin close to the initial rates for up to 3-5 days in culture as measured by radioimmunoassay. Hormonally treated hepatocytes produced and secreted RBP, transthyretin, and albumin at both absolute and relative rates similar to physiological values, as estimated from rates reported by others from studies in vivo and with perfused livers. Glucagon addition partially maintained the secretion rates of these 3 proteins, but less effectively than did dexamethasone. A number of other hormones, added singly or in combination, did not affect RBP production or secretion. Addition of retinol to the cultured normal hepatocytes was without effect upon RBP secretion. These studies show that supplementing the culture medium of hepatocytes with amino acids and dexamethasone maintains RBP production and secretion for several days. In normal hepatocytes, with ample supply of retinol available within the cell, addition of exogenous retinol does not appear to influence RBP metabolism or secretion by the cells

  4. Mitogen-activated protein kinase cascade required for regulation of development and secondary metabolism in Neurospora crassa.

    Science.gov (United States)

    Park, Gyungsoon; Pan, Songqin; Borkovich, Katherine A

    2008-12-01

    Mitogen-activated protein kinase (MAPK) signaling cascades are composed of MAPK kinase kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs. In this study, we characterize components of a MAPK cascade in Neurospora crassa (mik-1, MAPKKK; mek-1, MAPKK; and mak-1, MAPK) homologous to that controlling cell wall integrity in Saccharomyces cerevisiae. Growth of basal hyphae is significantly reduced in mik-1, mek-1, and mak-1 deletion mutants on solid medium. All three mutants formed short aerial hyphae and the formation of asexual macroconidia was reduced in Deltamik-1 mutants and almost abolished in Deltamek-1 and Deltamak-1 strains. In contrast, the normally rare asexual spores, arthroconidia, were abundant in cultures of the three mutants. Deltamik-1, Deltamek-1, and Deltamak-1 mutants were unable to form protoperithecia or perithecia when used as females in a sexual cross. The MAK-1 MAPK was not phosphorylated in Deltamik-1 and Deltamek-1 mutants, consistent with the involvement of MIK-1, MEK-1, and MAK-1 in the same signaling cascade. Interestingly, we observed increased levels of mRNA and protein for tyrosinase in the mutants under nitrogen starvation, a condition favoring sexual differentiation. Tyrosinase is an enzyme that catalyzes production of the secondary metabolite l-DOPA melanin. These results implicate the MAK-1 pathway in regulation of development and secondary metabolism in filamentous fungi. PMID:18849472

  5. Non-Detection of Nova Shells Around Asynchronous Polars

    CERN Document Server

    Pagnotta, Ashley

    2016-01-01

    Asynchronous polars (APs) are accreting white dwarfs (WDs) that have different WD and orbital angular velocities, unlike the rest of the known polars, which rotate synchronously (i.e., their WD and orbital angular velocities are the same). Past nova eruptions are the predicted cause of the asynchronicity, in part due to the fact that one of the APs, V1500 Cyg, was observed to undergo a nova eruption in 1975. We used the Southern African Large Telescope 10m class telescope and the MDM 2.4m Hiltner telescope to search for nova shells around three of the remaining four APs (V1432 Aql, BY Cam, and CD Ind) as well as one Intermediate Polar with a high asynchronicity (EX Hya). We found no evidence of nova shells in any of our images. We therefore cannot say that any of the systems besides V1500 Cyg had nova eruptions, but because not all post-nova systems have detectable shells, we also cannot exclude the possibility of a nova eruption occurring in any of these systems and knocking the rotation out of sync.

  6. Asynchronous Stoichiometric Response in Lithium Iron Phosphate Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, William A. [State Univ. of New Jersey, Piscataway, NJ (United States); Akdogan, E. Koray [State Univ. of New Jersey, Piscataway, NJ (United States); Savkliyidiz, Ilyas [State Univ. of New Jersey, Piscataway, NJ (United States); Choksi, Ankur U. [State Univ. of New Jersey, Piscataway, NJ (United States); Silver, Scott X. [State Univ. of New Jersey, Piscataway, NJ (United States); Tsakalokos, Thomas [State Univ. of New Jersey, Piscataway, NJ (United States); Zhong, Zhong [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-11-11

    The operando energy-dispersive x-ray diffraction (EDXRD) was carried out on a newly formed 8 Ah lithium iron phosphate (LiFePO4) battery with the goal of elucidating the origin of asynchronous phase transformation commonly seen with in situ x-ray diffraction studies. The high-energy photons at the NSLS X17B1 beamline allow for penetration into a fully assembled battery and therefore negate any need for a specially designed in situ cell which often uses modified current collectors to minimize x-ray attenuation. Spatially-and-temporally resolved phase-mapping was conducted with a semiquantitative reference intensity ratio (RIR) analysis to estimate the relative abundance of the delithiated phase. The data show an asynchronous response in the stoichiometry versus the electrochemical profile and suggest limited diffusion in the electrode toward the end of discharge. These results confirm that the asynchronous electrode response is not just limited to specially designed cells but occurs in fully assembled cells alike. We attribute this behavior to be a consequence of performing a local measurement over a wide-area heterogeneous reaction.

  7. Divorce and asynchronous arrival in common terns, Sterna hirundo.

    Science.gov (United States)

    GonzáLez-SolíS; Becker; Wendeln

    1999-11-01

    We investigated which of three hypotheses (better option, incompatibility or asynchronous arrival) best explains divorce in the common tern. One partner did not return the next year in 18.5% of 150 pairs. Among the 106 pairs in which both mates returned, the divorce rate was 18.9%. We found no significant differences in: breeding performance or condition in relation to the probability of divorce; quality of previous mates and new mates, mean age in relation to pair bond status; breeding success before and after divorce nor did this differ from breeding success of reunited pairs. Hence the better option and incompatibility hypotheses were not supported. However, divorce was more likely in pairs in which mates arrived asynchronously on the breeding grounds, supporting the asynchronous arrival hypothesis. Median arrival asynchrony for divorced pairs was 7.5 days and for reunited pairs 2 days; mates arriving more than 16 days apart always split up. About 20% of divorced birds lost breeding status in the year of divorce, probably as a consequence of their late arrival. Our results suggest that terns search for a new mate as soon as they arrive on the breeding grounds and that mates remain faithful to each other to avoid the costs of searching for a new partner. Thus, synchrony in arrival facilitates pair bond maintenance rather than asynchrony promoting divorce, since divorce appears to be a side-effect of asynchrony and not an active decision. Copyright 1999 The Association for the Study of Animal Behaviour. PMID:10564616

  8. Data Collection for Mobile Group Consumption: An Asynchronous Distributed Approach.

    Science.gov (United States)

    Zhu, Weiping; Chen, Weiran; Hu, Zhejie; Li, Zuoyou; Liang, Yue; Chen, Jiaojiao

    2016-01-01

    Mobile group consumption refers to consumption by a group of people, such as a couple, a family, colleagues and friends, based on mobile communications. It differs from consumption only involving individuals, because of the complex relations among group members. Existing data collection systems for mobile group consumption are centralized, which has the disadvantages of being a performance bottleneck, having single-point failure and increasing business and security risks. Moreover, these data collection systems are based on a synchronized clock, which is often unrealistic because of hardware constraints, privacy concerns or synchronization cost. In this paper, we propose the first asynchronous distributed approach to collecting data generated by mobile group consumption. We formally built a system model thereof based on asynchronous distributed communication. We then designed a simulation system for the model for which we propose a three-layer solution framework. After that, we describe how to detect the causality relation of two/three gathering events that happened in the system based on the collected data. Various definitions of causality relations based on asynchronous distributed communication are supported. Extensive simulation results show that the proposed approach is effective for data collection relating to mobile group consumption. PMID:27058544

  9. Asynchronous signal-dependent non-uniform sampler

    Science.gov (United States)

    Can-Cimino, Azime; Chaparro, Luis F.; Sejdić, Ervin

    2014-05-01

    Analog sparse signals resulting from biomedical and sensing network applications are typically non-stationary with frequency-varying spectra. By ignoring that the maximum frequency of their spectra is changing, uniform sampling of sparse signals collects unnecessary samples in quiescent segments of the signal. A more appropriate sampling approach would be signal-dependent. Moreover, in many of these applications power consumption and analog processing are issues of great importance that need to be considered. In this paper we present a signal dependent non-uniform sampler that uses a Modified Asynchronous Sigma Delta Modulator which consumes low-power and can be processed using analog procedures. Using Prolate Spheroidal Wave Functions (PSWF) interpolation of the original signal is performed, thus giving an asynchronous analog to digital and digital to analog conversion. Stable solutions are obtained by using modulated PSWFs functions. The advantage of the adapted asynchronous sampler is that range of frequencies of the sparse signal is taken into account avoiding aliasing. Moreover, it requires saving only the zero-crossing times of the non-uniform samples, or their differences, and the reconstruction can be done using their quantized values and a PSWF-based interpolation. The range of frequencies analyzed can be changed and the sampler can be implemented as a bank of filters for unknown range of frequencies. The performance of the proposed algorithm is illustrated with an electroencephalogram (EEG) signal.

  10. A novel asynchronous access method with binary interfaces

    Directory of Open Access Journals (Sweden)

    Torres-Solis Jorge

    2008-10-01

    Full Text Available Abstract Background Traditionally synchronous access strategies require users to comply with one or more time constraints in order to communicate intent with a binary human-machine interface (e.g., mechanical, gestural or neural switches. Asynchronous access methods are preferable, but have not been used with binary interfaces in the control of devices that require more than two commands to be successfully operated. Methods We present the mathematical development and evaluation of a novel asynchronous access method that may be used to translate sporadic activations of binary interfaces into distinct outcomes for the control of devices requiring an arbitrary number of commands to be controlled. With this method, users are required to activate their interfaces only when the device under control behaves erroneously. Then, a recursive algorithm, incorporating contextual assumptions relevant to all possible outcomes, is used to obtain an informed estimate of user intention. We evaluate this method by simulating a control task requiring a series of target commands to be tracked by a model user. Results When compared to a random selection, the proposed asynchronous access method offers a significant reduction in the number of interface activations required from the user. Conclusion This novel access method offers a variety of advantages over traditionally synchronous access strategies and may be adapted to a wide variety of contexts, with primary relevance to applications involving direct object manipulation.

  11. Non-detection of nova shells around asynchronous polars

    Science.gov (United States)

    Pagnotta, Ashley; Zurek, David

    2016-05-01

    Asynchronous polars (APs) are accreting white dwarfs (WDs) that have different WD and orbital angular velocities, unlike the rest of the known polars, which rotate synchronously (i.e. their WD and orbital angular velocities are the same). Past nova eruptions are the predicted cause of the asynchronicity, in part due to the fact that one of the APs, V1500 Cyg, was observed to undergo a nova eruption in 1975. We used the Southern African Large Telescope 10 m class telescope and the MDM 2.4 m Hiltner telescope to search for nova shells around three of the remaining four APs (V1432 Aql, BY Cam, and CD Ind) as well as one Intermediate Polar with a high asynchronicity (EX Hya). We found no evidence of nova shells in any of our images. We therefore cannot say that any of the systems besides V1500 Cyg had nova eruptions, but because not all post-nova systems have detectable shells, we also cannot exclude the possibility of a nova eruption occurring in any of these systems and knocking the rotation out of sync.

  12. A 1-year lifestyle intervention for weight loss in individuals with type 2 diabetes reduces high C-reactive protein levels and identifies metabolic predictors of change

    Science.gov (United States)

    OBJECTIVE: We examined whether a 1-year intensive lifestyle intervention (ILI) for weight loss reduced elevated high-sensitivity C-reactive protein (hs-CRP) levels in obese individuals with diabetes and identified metabolic and fitness predictors of hs-CRP change. RESEARCH DESIGN AND METHODS: Look A...

  13. Effect of plant proteins and crystalline amino acid supplementation on postprandial plasma amino acid profiles and metabolic response in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Rolland, Marine; Larsen, Bodil Katrine; Holm, Jørgen;

    2015-01-01

    The use of aquafeeds formulated with plant protein sources supplemented with crystalline amino acids (CAAs) is believed to influence amino acid (AA) uptake patterns and AA metabolic fate. Oxygen consumption and ammonia excretion rates were measured in rainbow trout (468.5 +/- A 86.5 g) force fed 0...

  14. Low-carbohydrate/high-protein diet improves diastolic cardiac function and the metabolic syndrome in overweight-obese patients with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    H. von Bibra

    2014-03-01

    Conclusions: These data indicate, that a low-glycaemic/high-protein but not a low-fat/high-carbohydrate nutrition modulates diastolic dysfunction in overweight T2D patients, improves insulin resistance and may prevent or delay the onset of diabetic cardiomyopathy and the metabolic syndrome.

  15. The effect of a high-protein, high-sodium diet on calcium and bone metabolism in postmenopausal women stratified by hormone replacement therapy use

    DEFF Research Database (Denmark)

    Harrington, M.; Bennett, T.; Jakobsen, Jette; Ovesen, L.; Brot, C.; Flynn, A.; Cashman, K. D.

    2004-01-01

    The objective of this study was to investigate the influence of a high-sodium, high-protein diet on bone metabolism in postmenopausal women ( aged 49 - 60 y) stratified by hormone replacement therapy (HRT) use. In a crossover trial, 18 women (n = 8 HRT users (+HRT) and n = 10 nonusers (-HRT)) were...

  16. Skin sensitization: Modeling based on skin metabolism simulation and formation of protein conjugates

    DEFF Research Database (Denmark)

    Dimitrov, Sabcho; Low, Lawrence; Patlewicz, Grace;

    2005-01-01

    . The covalent interactions of chemicals and their metabolites with skin proteins were described by 83 reactions that fall within 39 alerting groups. The SAR/QSAR system developed was able to correctly classify about 80% of the chemicals with significant sensitizing effect and 72% of nonsensitizing...... chemicals. For some alerting groups, three-dimensional (3D)-QSARs were developed to describe the multiplicity of physicochemical, steric, and electronic parameters. These 3D-QSARs, so-called pattern recognition-type models, were applied each time a latent alerting group was identified in a parent chemical...

  17. The Involvement of hybrid cluster protein 4, HCP4, in Anaerobic Metabolism in Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Adam C Olson

    Full Text Available The unicellular green algae Chlamydomonas reinhardtii has long been studied for its unique fermentation pathways and has been evaluated as a candidate organism for biofuel production. Fermentation in C. reinhardtii is facilitated by a network of three predominant pathways producing four major byproducts: formate, ethanol, acetate and hydrogen. Previous microarray studies identified many genes as being highly up-regulated during anaerobiosis. For example, hybrid cluster protein 4 (HCP4 was found to be one of the most highly up-regulated genes under anoxic conditions. Hybrid cluster proteins have long been studied for their unique spectroscopic properties, yet their biological functions remain largely unclear. To probe its role during anaerobiosis, HCP4 was silenced using artificial microRNAs (ami-hcp4 followed by extensive phenotypic analyses of cells grown under anoxic conditions. Both the expression of key fermentative enzymes and their respective metabolites were significantly altered in ami-hcp4, with nitrogen uptake from the media also being significantly different than wild-type cells. The results strongly suggest a role for HCP4 in regulating key fermentative and nitrogen utilization pathways.

  18. The Involvement of hybrid cluster protein 4, HCP4, in Anaerobic Metabolism in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Olson, Adam C; Carter, Clay J

    2016-01-01

    The unicellular green algae Chlamydomonas reinhardtii has long been studied for its unique fermentation pathways and has been evaluated as a candidate organism for biofuel production. Fermentation in C. reinhardtii is facilitated by a network of three predominant pathways producing four major byproducts: formate, ethanol, acetate and hydrogen. Previous microarray studies identified many genes as being highly up-regulated during anaerobiosis. For example, hybrid cluster protein 4 (HCP4) was found to be one of the most highly up-regulated genes under anoxic conditions. Hybrid cluster proteins have long been studied for their unique spectroscopic properties, yet their biological functions remain largely unclear. To probe its role during anaerobiosis, HCP4 was silenced using artificial microRNAs (ami-hcp4) followed by extensive phenotypic analyses of cells grown under anoxic conditions. Both the expression of key fermentative enzymes and their respective metabolites were significantly altered in ami-hcp4, with nitrogen uptake from the media also being significantly different than wild-type cells. The results strongly suggest a role for HCP4 in regulating key fermentative and nitrogen utilization pathways. PMID:26930496

  19. Role of acyl carrier protein isoforms in plant lipid metabolism: Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Ohlrogge, J.B.

    1989-01-01

    Previous research from my lab has revealed that several higher plant species have multiple isoforms of acyl carrier protein (ACP) and therefore this trait appears highly conserved among higher plants. This level of conservation suggests that the existence of ACP isoforms is not merely the results of neutral gene duplications. We have developed techniques to examine a wider range of species. Acyl carrier proteins can be labelled very specifically and to high specific activity using H-palmitate and the E. coli enzyme acyl-ACP synthetase. Isoforms were then resolved by western blotting and native PAGE of H-palmitate labelled ACP's. Multiple isoforms of ACP were observed the leaf tissue of the monocots Avena sativa and Hordeum vulgare and dicots including Arabidopsis thallina, Cuphea wrightii, and Brassica napus. Lower vascular plants including the cycad, Dioon edule, Ginkgo biloba, the gymnosperm Pinus, the fern Anernia phyllitidis and Psilotum nudum, the most primitive known extant vascular plant, were also found to have multiple ACP isoforms as were the nonvascular liverwort, Marchantia and moss, Polytrichum. Therefore, the development of ACP isoforms occurred early in evolution. However, the uniellular alge Chlamydomonas and Dunaliella and the photosynthetic cyanobacteria Synechocystis and Agmnellum have only a single elecrophotetic form of ACP. Thus, multiple forms of ACP do not occur in all photosynthetic organisms but may be associated with multicellular plants.

  20. Metabolic induction and early responses of mouse blastocyst developmental programming following maternal low protein diet affecting life-long health.

    Directory of Open Access Journals (Sweden)

    Judith J Eckert

    Full Text Available Previously, we have shown that a maternal low protein diet, fed exclusively during the preimplantation period of mouse development (Emb-LPD, is sufficient to induce by the blastocyst stage a compensatory growth phenotype in late gestation and postnatally, correlating with increased risk of adult onset cardiovascular disease and behavioural dysfunction. Here, we examine mechanisms of induction of maternal Emb-LPD programming and early compensatory responses by the embryo. Emb-LPD induced changes in maternal serum metabolites at the time of blastocyst formation (E3.5, notably reduced insulin and increased glucose, together with reduced levels of free amino acids (AAs including branched chain AAs leucine, isoleucine and valine. Emb-LPD also caused reduction in the branched chain AAs within uterine fluid at the blastocyst stage. These maternal changes coincided with an altered content of blastocyst AAs and reduced mTORC1 signalling within blastocysts evident in reduced phosphorylation of effector S6 ribosomal protein and its ratio to total S6 protein but no change in effector 4E-BP1 phosphorylated and total pools. These changes were accompanied by increased proliferation of blastocyst trophectoderm and total cells and subsequent increased spreading of trophoblast cells in blastocyst outgrowths. We propose that induction of metabolic programming following Emb-LPD is achieved through mTORC1signalling which acts as a sensor for preimplantation embryos to detect maternal nutrient levels via branched chain AAs and/or insulin availability. Moreover, this induction step associates with changes in extra-embryonic trophectoderm behaviour occurring as early compensatory responses leading to later nutrient recovery.

  1. HIV蛋白酶抑制剂相关性脂肪代谢及糖代谢异常的研究进展%Research advances in HIV protein inhibitor related fat metabolism and glucose metabolism disorders

    Institute of Scientific and Technical Information of China (English)

    蒋海花

    2012-01-01

    艾滋病病毒(HIV)蛋白酶抑制剂的运用,使HIV患者脂肪代谢及糖代谢异常增加.脂肪代谢异常的可能机制包括干扰脂代谢相关蛋白,干扰胆固醇代谢相关蛋白及遗传因素.糖代谢异常的可能机制包括抑制脂肪细胞GLUT4活性,抑制骨骼肌葡萄糖摄取,抑制胰岛素降解酶活性,降低胰岛素信号传导,氧化应激.代谢紊乱与心血管疾病密切相关,因此对蛋白酶抑制剂引起的代谢紊乱需积极处理.进一步探索相关机制,有助于未来新药的研发.%Fat and glucose metabolism disorders have increased because of the use of HIV protein inhibitors in patients with HIV infection . The possible mechanism of fat metabolism disorders include disturbing lipid metabolism related protein, interfering with cholesterol metabolism related protein and genetic factors . And the mechanism of glucose metabolism disorders include inhibiting Glut4 activity in adipocytes, repressing glucose uptake in skeletal muscle, inhibition of insulin-degrading enzyme, reducing insulin signaling and the impact of oxidative stress. Further exploration of the relevant mechanism would be helpful to new drug research.

  2. ON THE ISSUE OF VECTOR CONTROL OF THE ASYNCHRONOUS MOTORS

    Directory of Open Access Journals (Sweden)

    B. I. Firago

    2015-10-01

    Full Text Available The paper considers the issue of one of the widespread types of vector control realization for the asynchronous motors with a short-circuited rotor. Of all more than 20 vector control types known presently, the following are applied most frequently: direct vector control with velocity pickup (VP, direct vector control without VP, indirect vector control with VP and indirect vector control without VP. Despite the fact that the asynchronous-motor indirect vector control without VP is the easiest and most spread, the absence of VP does not allow controlling the motor electromagnetic torque at zero velocity. This is the reason why for electric motor drives of such requirements they utilize the vector control with a velocity transducer. The systems of widest dissemination became the direct and indirect vector control systems with X-axis alignment of the synchronously rotating x–y-coordinate frame along the rotor flux-linkage vector inasmuch as this provides the simplest correlations for controlling variables. Although these two types of vector control are well presented in literature, a number of issues concerning their realization and practical application require further elaboration. These include: the block schemes adequate representation as consisted with the modern realization of vector control and clarification of the analytical expressions for evaluating the regulator parameters.The authors present a technique for evaluating the dynamics of an asynchronous electric motor drive with direct vector control and x-axis alignment along the vector of rotor flux linkage. The article offers a generalized structure of this vector control type with detailed description of its principal blocks: controlling system, frequency converter, and the asynchronous motor.The paper presents a direct vector control simulating model developed in the MatLab environment on the grounds of this structure. The authors illustrate the described technique with the results

  3. The effects of exercise on C-reactive protein, insulin, leptin and some cardiometabolic risk factors in Egyptian children with or without metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Kamal Nashwa

    2012-06-01

    Full Text Available Abstract Background The prevalence and magnitude of obesity in the children and the adolescents have increased dramatically in the developing countries over the last 20–30 years. The prevalence of metabolic syndrome (MS in children is increasing. Aim: This study aimed to investigate the changes of C-reactive protein (CRP, leptin, insulin, and blood lipids before and after the exercise therapy in normal and obese children (with or without metabolic syndrome. Methods The study covered 49 normal children (control, 32 obese children without metabolic syndrome and 12 obese children with metabolic syndrome. We examined the influence of exercise (3 times/week for 12 weeks on the levels of serum CRP, leptin, insulin, homeostatic model assessment insulin resistance (HOMA-IR, triglycerides (TG, total cholesterol (TC, low-density lipoprotein cholesterol (LDL-C, and high-density lipoprotein cholesterol (HDL-C in all groups. Results There were significant correlations between HOMA-IR and the individual components of the metabolic syndrome. After 12 weeks of exercise, both of the obese children groups, with and without metabolic syndrome, showed reduced body weight, body mass index (BMI, and CRP level, and increased HDL-C level. The percentage of metabolic syndrome decreased from 12.9% before the exercise training to 7.5% after training. Also, there was a significant reduction in BMI (from 47.3 to 32.6%, in systolic blood pressure (from 18.3 to 15.1% and in HDL-C level (from 18.3 to 9.7%. Conclusion Overweight children have multiple risk factors associated with the metabolic syndrome. 12-week exercise may have a positive effect on reducing risk factors for the metabolic syndrome.

  4. C-reactive protein, high-molecular-weight adiponectin and development of metabolic syndrome in the Japanese general population: a longitudinal cohort study.

    Directory of Open Access Journals (Sweden)

    Yoshifumi Saisho

    Full Text Available AIMS: To clarify predictive values of C-reactive protein (CRP and high-molecular-weight (HMW adiponectin for development of metabolic syndrome. RESEARCH DESIGN AND METHODS: We conducted a prospective cohort study of Japanese workers who had participated in an annual health checkup in 2007 and 2011. A total of 750 subjects (558 men and 192 women, age 46±8 years who had not met the criteria of metabolic syndrome and whose CRP and HMW-adiponectin levels had been measured in 2007 were enrolled in this study. Associations between CRP, HMW-adiponectin and development of metabolic syndrome after 4 years were assessed by logistic regression analysis and their predictive values were compared by receiver operating characteristic analysis. RESULTS: Among 750 subjects, 61 (8.1% developed metabolic syndrome defined by modified National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATP III criteria and 53 (7.1% developed metabolic syndrome defined by Japan Society for the Study of Obesity (JASSO in 2011. Although CRP and HMW-adiponectin were both significantly correlated with development of metabolic syndrome, multivariate logistic regression analysis revealed that HMW-adiponectin but not CRP was associated with metabolic syndrome independently of BMI or waist circumference. Adding these biomarkers to BMI or waist circumference did not improve the predictive value for metabolic syndrome. CONCLUSION: Our findings indicate that the traditional markers of adiposity such as BMI or waist circumference remain superior markers for predicting metabolic syndrome compared to CRP, HMW-adiponectin, or the combination of both among the Japanese population.

  5. Expression and purification of the recombinant GAPDHS, sperm-specific protein of energy metabolism

    Czech Academy of Sciences Publication Activity Database

    Dorosh, Andriy; Děd, Lukáš; Margaryan, Hasmik; Pěknicová, Jana

    Praha: Biotechnologický ústav v.v AVČR, 2011 - (Pěknicová, J.). s. 64-64 [XVII. symposium českých reprodukčních imunologů s mezinárodní účastí. 26.05.2011-29.05.2011, Žďár nad Sázavou] R&D Projects: GA ČR(CZ) GA523/09/1793; GA ČR(CZ) GA523/08/H064; GA MŠk(CZ) 1M06011; GA MZd(CZ) NS10009 Institutional research plan: CEZ:AV0Z50520701 Keywords : recombinant protein * GAPDHS Subject RIV: CE - Biochemistry

  6. Abomasal protein infusion in postpartum transition dairy cows: Effect on performance and mammary metabolism

    DEFF Research Database (Denmark)

    Larsen, Mogens; Lapierre, H; Kristensen, Niels Bastian

    2014-01-01

    blood samples were taken 14 d before expected parturition and at 4, 15, and 29 d in milk (DIM). To compensate previously estimated deficiency of essential AA and to avoid oversupply, casein protein infusion was graduated with 696 ± 1, 490 ± 9, and 212 ± 10 g/d at 4, 15 and 29 DIM, respectively. Dry...... indicated that Lys, Leu, and Tyr were the first-limiting AA at 4 DIM with CTRL. Mammary plasma flow was unaffected by treatment, indicating similar perfusion of mammary tissue. The greater milk yield with CAS was associated with greater mammary uptake of individual essential AA, tendencies to greater uptake...... of glucose, lactate, and β-hydroxybutyrate, whereas uptakes of volatile fatty acids were unaffected. Despite similar MP supply by 29 DIM, milk and lactose yields were greater with CAS indicating a persistent response to increased postpartum MP supply. In conclusion, the postpartum MP deficiency can...

  7. Deimination of the myelin basic protein decelerates its proteasome-mediated metabolism.

    Science.gov (United States)

    Kuzina, E S; Kudriaeva, A A; Glagoleva, I S; Knorre, V D; Gabibov, A G; Belogurov, A A

    2016-07-01

    Deimination of myelin basic protein (MBP) by peptidylarginine deiminase (PAD) prevents its binding to the proteasome and decelerates its degradation by the proteasome in mammalian cells. Potential anticancer drug tetrazole analogue of chloramidine 2, at concentrations greater than 1 µM inhibits the enzymatic activity of PAD in vitro. The observed acceleration of proteasome hydrolysis of MBP to antigenic peptides in the presence of PAD inhibitor may increase the efficiency of lesion of the central nervous system by cytotoxic lymphocytes in multiple sclerosis. We therefore suggest that clinical trials and the introduction of PAD inhibitors in clinical practice for the treatment of malignant neoplasms should be performed only after a careful analysis of their potential effect on the induction of autoimmune neurodegeneration processes. PMID:27599511

  8. Effect of starvation on human muscle protein metabolism and its response to insulin

    International Nuclear Information System (INIS)

    To assess the effect of fasting on muscle protein turnover in the basal state and in response to insulin, we measured forearm amino acid kinetics, using [3H]phenylalanine (Phe) and [14C]leucine (Leu) infused systemically, in eight healthy subjects after 12 (postabsorptive) and 60 h of fasting. After a 150-min basal period, forearm local insulin concentration was selectively raised by approximately 25 muU/ml for 150 min by intra-arterial insulin infusion (0.02 mU.kg-1. min-1). The 60-h fast increased urine nitrogen loss and whole body Leu flux and oxidation (by 50-75%, all P less than 0.02). Post-absorptively, forearm muscle exhibited a net release of Phe and Leu, which increased two- to threefold after the 60-h fast (P less than 0.05); this effect was mediated exclusively by accelerated local rates of amino acid appearance (Ra), with no reduction in rates of disposal (Rd). Local hyperinsulinemia in the postabsorptive condition caused a twofold increase in forearm glucose uptake (P less than 0.01) and completely suppressed the net forearm output of Phe and Leu (P less than 0.02). After the 60-h fast, forearm glucose disposal was depressed basally and showed no response to insulin; in contrast, insulin totally abolished the accelerated net forearm release of Phe and Leu. The action of insulin to reverse the augmented net release of Phe and Leu was mediated exclusively by approximately 40% suppression of Ra (P less than 0.02) rather than a stimulation of Rd. We conclude that in short-term fasted humans (1) muscle amino acid output accelerates due to increased proteolysis rather than reduced protein synthesis, and (2) despite its catabolic state and a marked impairment in insulin-mediated glucose disposal, muscle remains sensitive to insulin's antiproteolytic action

  9. Impact of thermoelectric cooling modules on the efficiency of a single-phase asynchronous machine

    OpenAIRE

    Gouws, Rupert; Van Jaarsveldt, Heino

    2014-01-01

    In this paper, the authors present the impact of thermoelectric cooling modules (TECMs) on the efficiency of a single-phase asynchronous machine. TECMs are used to lower the stator winding temperature and core temperature of the single-phase asynchronous machine. A similar effect might be possible by operating the asynchronous machine in a controlled lower temperature environment or by using other means of improved controlled cooling. An overview on the materials an...

  10. Impact of rs361072 in the phosphoinositide 3-kinase p110beta gene on whole-body glucose metabolism and subunit protein expression in skeletal muscle

    DEFF Research Database (Denmark)

    Ribel-Madsen, Rasmus; Poulsen, Pernille; Holmkvist, Johan;

    2010-01-01

    aim was to investigate the influence of rs361072 on in vivo glucose metabolism, skeletal muscle PI3K subunit protein levels, and type 2 diabetes. RESEARCH DESIGN AND METHODS: The functional role of rs361072 was studied in 196 Danish healthy adult twins. Peripheral and hepatic insulin sensitivity was...... assessed by a euglycemic-hyperinsulinemic clamp. Basal and insulin-stimulated biopsies were taken from the vastus lateralis muscle, and tissue p110beta and p85alpha proteins were measured by Western blotting. The genetic association with type 2 diabetes and quantitative metabolic traits was investigated in...... infusion. rs361072 did not associate with insulin-stimulated peripheral glucose disposal despite a decreased muscle p85alpha:p110beta protein ratio (P(add) = 0.03) in G allele carriers. No association with HOMA-IR or type 2 diabetes (odds ratio 1.07, P = 0.5) was identified, and obesity did not interact...

  11. Pharmacists’ Perception of Synchronous Versus Asynchronous Distance Learning for Continuing Education Programs

    OpenAIRE

    Buxton, Eric C.

    2014-01-01

    Objective. To evaluate and compare pharmacists’ satisfaction with the content and learning environment of a continuing education program series offered as either synchronous or asynchronous webinars.

  12. Proteomic screen in the simple metazoan Hydra identifies 14-3-3 binding proteins implicated in cellular metabolism, cytoskeletal organisation and Ca2+ signalling

    Science.gov (United States)

    Pauly, Barbara; Lasi, Margherita; MacKintosh, Carol; Morrice, Nick; Imhof, Axel; Regula, Jörg; Rudd, Stephen; David, Charles N; Böttger, Angelika

    2007-01-01

    Background 14-3-3 proteins have been implicated in many signalling mechanisms due to their interaction with Ser/Thr phosphorylated target proteins. They are evolutionarily well conserved in eukaryotic organisms from single celled protozoans and unicellular algae to plants and humans. A diverse array of target proteins has been found in higher plants and in human cell lines including proteins involved in cellular metabolism, apoptosis, cytoskeletal organisation, secretion and Ca2+ signalling. Results We found that the simple metazoan Hydra has four 14-3-3 isoforms. In order to investigate whether the diversity of 14-3-3 target proteins is also conserved over the whole animal kingdom we isolated 14-3-3 binding proteins from Hydra vulgaris using a 14-3-3-affinity column. We identified 23 proteins that covered most of the above-mentioned groups. We also isolated several novel 14-3-3 binding proteins and the Hydra specific secreted fascin-domain-containing protein PPOD. In addition, we demonstrated that one of the 14-3-3 isoforms, 14-3-3 HyA, interacts with one Hydra-Bcl-2 like protein in vitro. Conclusion Our results indicate that 14-3-3 proteins have been ubiquitous signalling components since the start of metazoan evolution. We also discuss the possibility that they are involved in the regulation of cell numbers in response to food supply in Hydra. PMID:17651497

  13. Proteomic screen in the simple metazoan Hydra identifies 14-3-3 binding proteins implicated in cellular metabolism, cytoskeletal organisation and Ca2+ signalling

    Directory of Open Access Journals (Sweden)

    Imhof Axel

    2007-07-01

    Full Text Available Abstract Background 14-3-3 proteins have been implicated in many signalling mechanisms due to their interaction with Ser/Thr phosphorylated target proteins. They are evolutionarily well conserved in eukaryotic organisms from single celled protozoans and unicellular algae to plants and humans. A diverse array of target proteins has been found in higher plants and in human cell lines including proteins involved in cellular metabolism, apoptosis, cytoskeletal organisation, secretion and Ca2+ signalling. Results We found that the simple metazoan Hydra has four 14-3-3 isoforms. In order to investigate whether the diversity of 14-3-3 target proteins is also conserved over the whole animal kingdom we isolated 14-3-3 binding proteins from Hydra vulgaris using a 14-3-3-affinity column. We identified 23 proteins that covered most of the above-mentioned groups. We also isolated several novel 14-3-3 binding proteins and the Hydra specific secreted fascin-domain-containing protein PPOD. In addition, we demonstrated that one of the 14-3-3 isoforms, 14-3-3 HyA, interacts with one Hydra-Bcl-2 like protein in vitro. Conclusion Our results indicate that 14-3-3 proteins have been ubiquitous signalling components since the start of metazoan evolution. We also discuss the possibility that they are involved in the regulation of cell numbers in response to food supply in Hydra.

  14. Identification and characterization of PhbF: A DNA binding protein with regulatory role in the PHB metabolism of Herbaspirillum seropedicae SmR1

    Directory of Open Access Journals (Sweden)

    Pedrosa Fabio O

    2011-10-01

    Full Text Available Abstract Background Herbaspirillum seropedicae SmR1 is a nitrogen fixing endophyte associated with important agricultural crops. It produces polyhydroxybutyrate (PHB which is stored intracellularly as granules. However, PHB metabolism and regulatory control is not yet well studied in this organism. Results In this work we describe the characterization of the PhbF protein from H. seropedicae SmR1 which was purified and characterized after expression in E. coli. The purified PhbF protein was able to bind to eleven putative promoters of genes involved in PHB metabolism in H. seropedicae SmR1. In silico analyses indicated a probable DNA-binding sequence which was shown to be protected in DNA footprinting assays using purified PhbF. Analyses using lacZ fusions showed that PhbF can act as a repressor protein controlling the expression of PHB metabolism-related genes. Conclusions Our results indicate that H. seropedicae SmR1 PhbF regulates expression of phb-related genes by acting as a transcriptional repressor. The knowledge of the PHB metabolism of this plant-associated bacterium may contribute to the understanding of the plant-colonizing process and the organism's resistance and survival in planta.

  15. Hepatitis B virus X protein (HBx)-induced abnormalities of nucleic acid metabolism revealed by 1H-NMR-based metabonomics

    Science.gov (United States)

    Dan Yue; Zhang, Yuwei; Cheng, Liuliu; Ma, Jinhu; Xi, Yufeng; Yang, Liping; Su, Chao; Shao, Bin; Huang, Anliang; Xiang, Rong; Cheng, Ping

    2016-01-01

    Hepatitis B virus X protein (HBx) plays an important role in HBV-related hepatocarcinogenesis; however, mechanisms underlying HBx-mediated carcinogenesis remain unclear. In this study, an NMR-based metabolomics approach was applied to systematically investigate the effects of HBx on cell metabolism. EdU incorporation assay was conducted to examine the effects of HBx on DNA synthesis, an important feature of nucleic acid metabolism. The results revealed that HBx disrupted metabolism of glucose, lipids, and amino acids, especially nucleic acids. To understand the potential mechanism of HBx-induced abnormalities of nucleic acid metabolism, gene expression profiles of HepG2 cells expressing HBx were investigated. The results showed that 29 genes involved in DNA damage and DNA repair were differentially expressed in HBx-expressing HepG2 cells. HBx-induced DNA damage was further demonstrated by karyotyping, comet assay, Western blotting, immunofluorescence and immunohistochemistry analyses. Many studies have previously reported that DNA damage can induce abnormalities of nucleic acid metabolism. Thus, our results implied that HBx initially induces DNA damage, and then disrupts nucleic acid metabolism, which in turn blocks DNA repair and induces the occurrence of hepatocellular carcinoma (HCC). These findings further contribute to our understanding of the occurrence of HCC. PMID:27075403

  16. Regulation of skeletal muscle sucrose, non-fermenting 1/AMP-activated protein kinase-related kinase (SNARK) by metabolic stress and diabetes.

    OpenAIRE

    Rune, A.; Osler, M. E.; Fritz, T.; Zierath, J. R.

    2010-01-01

    Aims/hypothesis Sucrose, non-fermenting 1/AMP-activated protein kinase-related kinase (SNARK) is involved in cellular stress responses linked to obesity and type 2 diabetes. We determined the role of SNARK in response to metabolic stress and insulin action on glucose and lipid metabolism in skeletal muscle. Methods Vastus lateralis skeletal muscle biopsies were obtained from normal glucose tolerant (n = 35) and type 2 diabetic (n = 31) men and women for SNARK expression studies. Primary myotu...

  17. Alterations in pulmonary surfactant protein a metabolism and its diagnostic value in onset of radiation pneumonitis

    International Nuclear Information System (INIS)

    Radiation pneumonitis (RP) is a serious disorder caused by radiation therapy, for the detection of which there exists no simple and sensitive clinical examination. In this study, we examined whether the measurement of serum pulmonary surfactant protein A (SP-A) levels could be effective for detecting the onset of RP. Of the 18 patients included in the study, 9 suffered RP complication after radiation therapy. Serum SP-A levels in patients with RP (64.1±6.5 ng/ml) were 1.82 times as high as those of pre-radiation (36.2±4.0 ng/ml). The difference between them was significant (p=0.0003), while the SP-A value in patients without RP after radiation therapy was almost the same as the pre-radiation level. To study the mechanisms of these elevations, we developed a model of whole lung irradiation (20 Gy) in adult rats. Prior to alveolitis, which was a histological change seen at day 28, levels of SP-A in lung tissue homogenates and bronchoalveolar lavage fluid had become elevated by day 21. Serum SP-A levels in the irradiated rats were significantly elevated by day 21, peaking at day 35, and then declined. Hydroxyproline contents in lung tissues were elevated by day 42 and remained so through day 56. Therefore, the increase in serum SP-A level may be reflected by alveolitis but not fibrosis. In conclusion, determination of serum SP-A could be helpful in detecting the onset of RP. (author)

  18. Acylation stimulating protein, complement C3 and lipid metabolism in ketosis-prone diabetic subjects.

    Directory of Open Access Journals (Sweden)

    Yan Liu

    Full Text Available Ketosis-prone diabetes (KPDM is new-onset diabetic ketoacidosis without precipitating factors in non-type 1 diabetic patients; after management, some are withdrawn from exogenous insulin, although determining factors remain unclear.Twenty KPDM patients and twelve type 1 diabetic patients (T1DM, evaluated at baseline, 12 and 24 months with/without insulin maintenance underwent a standardized mixed-meal tolerance test (MMTT for 2 h.At baseline, triglyceride and C3 were higher during MMTT in KPDM vs. T1DM (p<0.0001 with no differences in non-esterified fatty acids (NEFA while Acylation Stimulating Protein (ASP tended to be higher. Within 12 months, 11 KPDM were withdrawn from insulin treatment (KPDM-ins, while 9 were maintained (KPDM+ins. NEFA was lower in KPDM-ins vs. KPDM+ins at baseline (p = 0.0006, 12 months (p<0.0001 and 24 months (p<0.0001 during MMTT. NEFA in KPDM-ins decreased over 30-120 minutes (p<0.05, but not in KPDM+ins. Overall, C3 was higher in KPDM-ins vs KPDM+ins at 12 months (p = 0.0081 and 24 months (p = 0.0019, while ASP was lower at baseline (p = 0.0024 and 12 months (p = 0.0281, with a decrease in ASP/C3 ratio.Notwithstanding greater adiposity in KPDM-ins, greater NEFA decreases and lower ASP levels during MMTT suggest better insulin and ASP sensitivity in these patients.

  19. GAIP interacting protein C-terminus regulates autophagy and exosome biogenesis of pancreatic cancer through metabolic pathways.

    Directory of Open Access Journals (Sweden)

    Santanu Bhattacharya

    Full Text Available GAIP interacting protein C terminus (GIPC is known to play an important role in a variety of physiological and disease states. In the present study, we have identified a novel role for GIPC as a master regulator of autophagy and the exocytotic pathways in cancer. We show that depletion of GIPC-induced autophagy in pancreatic cancer cells, as evident from the upregulation of the autophagy marker LC3II. We further report that GIPC regulates cellular trafficking pathways by modulating the secretion, biogenesis, and molecular composition of exosomes. We also identified the involvement of GIPC on metabolic stress pathways regulating autophagy and microvesicular shedding, and observed that GIPC status determines the loading of cellular cargo in the exosome. Furthermore, we have shown the overexpression of the drug resistance gene ABCG2 in exosomes from GIPC-depleted pancreatic cancer cells. We also demonstrated that depletion of GIPC from cancer cells sensitized them to gemcitabine treatment, an avenue that can be explored as a potential therapeutic strategy to overcome drug resistance in cancer.

  20. An ER Protein Functionally Couples Neutral Lipid Metabolism on Lipid Droplets to Membrane Lipid Synthesis in the ER

    Directory of Open Access Journals (Sweden)

    Daniel F. Markgraf

    2014-01-01

    Full Text Available Eukaryotic cells store neutral lipids such as triacylglycerol (TAG in lipid droplets (LDs. Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER. We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG. During LD breakdown in early exponential phase, an ER membrane protein (Ice2p facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption.