Zhao, Yaqin; Zhong, Xin; Wu, Di; Zhang, Ye; Ren, Guanghui; Wu, Zhilu
2013-09-01
Optical code-division multiple access (OCDMA) systems usually allocate orthogonal or quasi-orthogonal codes to the active users. When transmitting through atmospheric scattering channel, the coding pulses are broadened and the orthogonality of the codes is worsened. In truly asynchronous case, namely both the chips and the bits are asynchronous among each active user, the pulse broadening affects the system performance a lot. In this paper, we evaluate the performance of a 2D asynchronous hard-limiting wireless OCDMA system through atmospheric scattering channel. The probability density function of multiple access interference in truly asynchronous case is given. The bit error rate decreases as the ratio of the chip period to the root mean square delay spread increases and the channel limits the bit rate to different levels when the chip period varies.
He, Anqi; Kang, Xiaoyan; Xu, Yizhuang; Noda, Isao; Ozaki, Yukihiro; Wu, Jinguang
2017-10-05
The interaction between berberine chloride and β-cyclodextrin (β-CyD) is investigated via 2D asynchronous UV-Vis spectrum. The occurrence of cross peaks around (420nm, 420nm) in 2D asynchronous spectrum reveals that specific intermolecular interaction indeed exists between berberine chloride and β-CyD. In spite of the difficulty caused by overlapping of cross peaks, we manage to confirm that the 420nm band of berberine undergoes a red-shift, and its bandwidth decreases under the interaction with β-CyD. The red-shift of the 420nm band that can be assigned to n-π* transition indicates the environment of berberine becomes more hydrophobic. The above spectral behavior is helpful in understanding why the solubility of berberine is enhanced by β-CyD. Copyright © 2017. Published by Elsevier B.V.
Validation of minor species of the MIPAS2D database
Directory of Open Access Journals (Sweden)
Enzo Papandrea
2014-01-01
Full Text Available The MIPAS2D [Dinelli et al., 2010] database has been developed applying the tomographic analysis technique GMTR [Carlotti et al., 2001] to measurements acquired in the nominal observation mode of the complete MIPAS (Michelson Interferometer for Passive Atmosphere Sounding [Fischer et al., 2008] mission. […
Performance of the 2-D asynchronous OCDMA system with ASE light sources
Ni, Bin; Lehnert, James S.
2005-09-01
The wavelength-hopping/time-spreading scheme for optical code-division multiple-access (OCDMA), also known as the 2-D scheme, has been studied by many researchers for more than a decade. In all of previous analyses, the light sources were modeled as perfectly incoherent, which requires infinite bandwidth, and chip-synchrony was assumed for mathematical simplicity. Therefore, it is important to study how the system actually performs with true asynchrony and practical light sources. The amplified spontaneous emission (ASE) source is a desirable source for the incoherent OCDMA system because of its broad bandwidth, large power, and low cost. In this paper, each chip generated by the transmitter is a rectangular ASE pulse with a Gaussian-distributed electrical field. The coherence time is much smaller than the chip duration, but non-zero. Because of this partial coherence of the light source, beat noise will occur when multiple pulses are combined. In addition, interfering pulses may only partially overlap with the pulses from the desired user due to the asynchrony, which introduces more randomness into the decision statistic. Both factors are taken into account when the distribution of the decision statistic is derived mathematically. Simulations of the bit-error rate (BER) are performed, and the results show that the coherence time may be the major limiting factor on the system performance. For example, when the coherence time is only 1/100 of the chip duration, the BER is 1-4 orders of magnitude worse than that of the ideal case.
International Nuclear Information System (INIS)
Jung, Young Mee
2003-01-01
Principal component analysis based two-dimensional (PCA-2D) correlation analysis is applied to FTIR spectra of polystyrene/methyl ethyl ketone/toluene solution mixture during the solvent evaporation. Substantial amount of artificial noise were added to the experimental data to demonstrate the practical noise-suppressing benefit of PCA-2D technique. 2D correlation analysis of the reconstructed data matrix from PCA loading vectors and scores successfully extracted only the most important features of synchronicity and asynchronicity without interference from noise or insignificant minor components. 2D correlation spectra constructed with only one principal component yield strictly synchronous response with no discernible a asynchronous features, while those involving at least two or more principal components generated meaningful asynchronous 2D correlation spectra. Deliberate manipulation of the rank of the reconstructed data matrix, by choosing the appropriate number and type of PCs, yields potentially more refined 2D correlation spectra
Summary of the Minor Actinide-bearing MOX AFC-2C and -2D Irradiations
International Nuclear Information System (INIS)
McClellan, Kenneth; Chichester, Heather; Hayes, Steve; Voit, Stewart
2013-01-01
Summary of AFC-2C and AFC-2D tests: • AFC-2C and 2D, 1st MOX experiments in FCRD, were irradiated in ATR; • Initial results indicate performance of experimental MA-MOX fuels are similar to standard FR MOX fuels; • Cd-shrouded ATR experiment assembly and 235 U enrichment produce prototypic fast reactor power and temperature profiles leading to classic MOX zone restructuring; • Baseline postirradiation examinations have been completed for AFC-2C MOX and MA-MOX fuels; • Future work includes: – PIE of AFC-2D; – compare results to prototypic MOX fuel performance; – electron microscopy for microstructure and constituent distribution; – advanced NDE on saved pins
Generalized Asynchronous Systems
Directory of Open Access Journals (Sweden)
E. S. Kudryashova
2012-01-01
Full Text Available The paper consider a mathematical model of a concurrent system, the special case of which is an asynchronous system. Distributed asynchronous automata are introduced here. It is proved that Petri nets and transition systems with independence can be considered as distributed asynchronous automata. Time distributed asynchronous automata are defined in a standard way by correspondence which relates events with time intervals. It is proved that the time distributed asynchronous automata generalize time Petri nets and asynchronous systems.
Asynchronous LMS adaptive equalization
Bergmans, J.W.M.; Lin, M.Y.; Modrie, D.; Otte, R.
2005-01-01
Digital data receivers often operate at a fixed sampling rate 1/Ts that is asynchronous to the baud rate 1/T. A digital equalizer that processes the incoming signal will also operate in the asynchronous clock domain. Existing adaptation techniques for this equalizer involve an error sequence ek that
International Nuclear Information System (INIS)
Sarma, M.H.; Gupta, G.; Garcia, A.E.; Umemoto, K.; Sarma, R.H.
1990-01-01
Two-dimensional nuclear magnetic resonance (2D NMR) studies on d(GA4T4C)2 and d(GT4A4C)2 showed that A.T pairs are propeller twisted. As a result, A/T tracts form a straight rigid structural block with an array of bifurcated inter base pair H bonds in the major groove. It was demonstrated (previous paper) that replacement of methyl group by hydrogen (changing from T to U) in the major groove does not disrupt the array of bifurcated H bonds in the major groove. In this article, we summarize results of 2D NMR and molecular mechanic studies on the effect of a minor-groove-binding A.T-specific drug on the structure d(GA4T4C)2. A distamycin analogue (Dst2) was used for this study. It is shown that Dst2 binds to the minor groove of d(GA4T4C)2 mainly driven by van der Waals interaction between A.T pairs and the drug; as a consequence, an array of bifurcated H bonds can be formed in the minor groove between amide/amino protons of Dst2 and A.T pairs of DNA. NOESY data suggest that Dst2 predominantly binds at the central 5 A.T pairs. NOESY data also reveal that, upon drug binding, d(GA4T4C)2 does not undergo any significant change in conformation from the free state; i.e., propeller-twisted A.T pairs are still present in DNA and hence the array of bifurcated H bonds must be preserved in the major groove. NOESY data for the A5-T6 sequence also indicate that there is little change in junction stereochemistry upon drug binding
The Aeolian Asynchronous Generator
Directory of Open Access Journals (Sweden)
Ionel Dragomirescu
2008-10-01
Full Text Available The production of the electric energy with lower costs could be realized with the help of the aeolian electric central. In these centrals we can use the squirrel cage asynchronous generators, because these machines are the most safety in function and easy exploited. This work show the function analyzing of the asynchronous generator having on involving torque depending on the square wind speed, the air-density and on the construction of the wing spiral.
Low latency asynchronous interface circuits
Sadowski, Greg
2017-06-20
In one form, a logic circuit includes an asynchronous logic circuit, a synchronous logic circuit, and an interface circuit coupled between the asynchronous logic circuit and the synchronous logic circuit. The asynchronous logic circuit has a plurality of asynchronous outputs for providing a corresponding plurality of asynchronous signals. The synchronous logic circuit has a plurality of synchronous inputs corresponding to the plurality of asynchronous outputs, a stretch input for receiving a stretch signal, and a clock output for providing a clock signal. The synchronous logic circuit provides the clock signal as a periodic signal but prolongs a predetermined state of the clock signal while the stretch signal is active. The asynchronous interface detects whether metastability could occur when latching any of the plurality of the asynchronous outputs of the asynchronous logic circuit using said clock signal, and activates the stretch signal while the metastability could occur.
Asynchronized synchronous machines
Botvinnik, M M
1964-01-01
Asynchronized Synchronous Machines focuses on the theoretical research on asynchronized synchronous (AS) machines, which are "hybrids of synchronous and induction machines that can operate with slip. Topics covered in this book include the initial equations; vector diagram of an AS machine; regulation in cases of deviation from the law of full compensation; parameters of the excitation system; and schematic diagram of an excitation regulator. The possible applications of AS machines and its calculations in certain cases are also discussed. This publication is beneficial for students and indiv
2011-01-01
An asynchronous analog to digital convertor for converting an analog input signal into a digital output is presented. According to an embodiment, the analog to digital convertor comprises a clock input operable to receive an external clock signal having a clock period, a comparator operable to
Multiparty Asynchronous Session Types
DEFF Research Database (Denmark)
Honda, Kohei; Yoshida, Nobuko; Carbone, Marco
2016-01-01
. This work extends the foregoing theories of binary session types to multiparty, asynchronous sessions, which often arise in practical communication-centered applications. Presented as a typed calculus for mobile processes, the theory introduces a new notion of types in which interactions involving multiple......Communication is a central elements in software development. As a potential typed foundation for structured communication-centered programming, session types have been studied over the past decade for a wide range of process calculi and programming languages, focusing on binary (two-party) sessions...... peers are directly abstracted as a global scenario. Global types retain the friendly type syntax of binary session types while specifying dependencies and capturing complex causal chains of multiparty asynchronous interactions. A global type plays the role of a shared agreement among communication peers...
Behavioral synthesis of asynchronous circuits
DEFF Research Database (Denmark)
Nielsen, Sune Fallgaard
2005-01-01
This thesis presents a method for behavioral synthesis of asynchronous circuits, which aims at providing a synthesis flow which uses and tranfers methods from synchronous circuits to asynchronous circuits. We move the synchronous behavioral synthesis abstraction into the asynchronous handshake...... is idle. This reduces unnecessary switching activity in the individual functional units and therefore the energy consumption of the entire circuit. A collection of behavioral synthesis algorithms have been developed allowing the designer to perform time and power constrained design space exploration...
Asynchronous Multiparty Computation
DEFF Research Database (Denmark)
Damgård, Ivan Bjerre; Geisler, Martin; Krøigaard, Mikkel
2009-01-01
guarantees termination if the adversary allows a preprocessing phase to terminate, in which no information is released. The communication complexity of this protocol is the same as that of a passively secure solution up to a constant factor. It is secure against an adaptive and active adversary corrupting...... less than n/3 players. We also present a software framework for implementation of asynchronous protocols called VIFF (Virtual Ideal Functionality Framework), which allows automatic parallelization of primitive operations such as secure multiplications, without having to resort to complicated...... multithreading. Benchmarking of a VIFF implementation of our protocol confirms that it is applicable to practical non-trivial secure computations....
Parallel asynchronous systems and image processing algorithms
Coon, D. D.; Perera, A. G. U.
1989-01-01
A new hardware approach to implementation of image processing algorithms is described. The approach is based on silicon devices which would permit an independent analog processing channel to be dedicated to evey pixel. A laminar architecture consisting of a stack of planar arrays of the device would form a two-dimensional array processor with a 2-D array of inputs located directly behind a focal plane detector array. A 2-D image data stream would propagate in neuronlike asynchronous pulse coded form through the laminar processor. Such systems would integrate image acquisition and image processing. Acquisition and processing would be performed concurrently as in natural vision systems. The research is aimed at implementation of algorithms, such as the intensity dependent summation algorithm and pyramid processing structures, which are motivated by the operation of natural vision systems. Implementation of natural vision algorithms would benefit from the use of neuronlike information coding and the laminar, 2-D parallel, vision system type architecture. Besides providing a neural network framework for implementation of natural vision algorithms, a 2-D parallel approach could eliminate the serial bottleneck of conventional processing systems. Conversion to serial format would occur only after raw intensity data has been substantially processed. An interesting challenge arises from the fact that the mathematical formulation of natural vision algorithms does not specify the means of implementation, so that hardware implementation poses intriguing questions involving vision science.
Pro asynchronous programming with .NET
Blewett, Richard; Ltd, Rock Solid Knowledge
2014-01-01
Pro Asynchronous Programming with .NET teaches the essential skill of asynchronous programming in .NET. It answers critical questions in .NET application development, such as: how do I keep my program responding at all times to keep my users happy how do I make the most of the available hardware how can I improve performanceIn the modern world, users expect more and more from their applications and devices, and multi-core hardware has the potential to provide it. But it takes carefully crafted code to turn that potential into responsive, scalable applications.With Pro Asynchronous Programming
2-D model for electrokinetic remediation
Energy Technology Data Exchange (ETDEWEB)
Rodriguez Maroto, J.M.; Garcia Delgado, R.A.; Gomez Lahoz, C.; Garcia Herruzo, F. [Dept. de Ingenieria Quimica, Univ. de Malaga (Spain); Vereda Alonso, C. [Dept. de Ingenieria Quimica, Univ. de Malaga (Spain)]|[Inst. for Geologi and Geoteknik, Danmarks Tekniske Univ., Lyngby (Denmark)
2001-07-01
A simple two-dimensional numerical model is presented in this work. In this case, the model is used to examine the enhanced method of the electrokinetic remediation technique in a 2-D arrangement. Nevertheless the model with minor changes can also be used to study the effect of the electrode configuration in the performance of this technique. (orig.)
International Nuclear Information System (INIS)
Morel, Christophe
2001-01-01
Scope of the lecture was the modelling of severe reactor accidents. The PERICLES 2D experiment was compared to CATHARE 3D simulation results considering progression of a quench front inside the reactor core, steam flow rates, heat conduction, cladding temperature. (uke)
Asynchronous design of Networks-on-Chip
DEFF Research Database (Denmark)
Sparsø, Jens
2007-01-01
-synchronous, mesochronous, globally-asynchronous locally-synchronous and fully asynchronous), discusses the circuitry needed to implement these timing methodologies, and provides some implementation details for a couple of asynchronous NoCs designed at the Technical University of Denmark (DTU). The paper is written...... to support an invited talk at the NORCHIP’2007 conference....
Computational Aspects of Asynchronous CA
Chandesris, Jérôme; Dennunzio, Alberto; Formenti, Enrico; Manzoni, Luca
2011-01-01
This work studies some aspects of the computational power of fully asynchronous cellular automata (ACA). We deal with some notions of simulation between ACA and Turing Machines. In particular, we characterize the updating sequences specifying which are "universal", i.e., allowing a (specific family of) ACA to simulate any TM on any input. We also consider the computational cost of such simulations.
Parallel asynchronous hardware implementation of image processing algorithms
Coon, Darryl D.; Perera, A. G. U.
1990-01-01
Research is being carried out on hardware for a new approach to focal plane processing. The hardware involves silicon injection mode devices. These devices provide a natural basis for parallel asynchronous focal plane image preprocessing. The simplicity and novel properties of the devices would permit an independent analog processing channel to be dedicated to every pixel. A laminar architecture built from arrays of the devices would form a two-dimensional (2-D) array processor with a 2-D array of inputs located directly behind a focal plane detector array. A 2-D image data stream would propagate in neuron-like asynchronous pulse-coded form through the laminar processor. No multiplexing, digitization, or serial processing would occur in the preprocessing state. High performance is expected, based on pulse coding of input currents down to one picoampere with noise referred to input of about 10 femtoamperes. Linear pulse coding has been observed for input currents ranging up to seven orders of magnitude. Low power requirements suggest utility in space and in conjunction with very large arrays. Very low dark current and multispectral capability are possible because of hardware compatibility with the cryogenic environment of high performance detector arrays. The aforementioned hardware development effort is aimed at systems which would integrate image acquisition and image processing.
Asynchronous control for networked systems
Rubio, Francisco; Bencomo, Sebastián
2015-01-01
This book sheds light on networked control systems; it describes different techniques for asynchronous control, moving away from the periodic actions of classical control, replacing them with state-based decisions and reducing the frequency with which communication between subsystems is required. The text focuses specially on event-based control. Split into two parts, Asynchronous Control for Networked Systems begins by addressing the problems of single-loop networked control systems, laying out various solutions which include two alternative model-based control schemes (anticipatory and predictive) and the use of H2/H∞ robust control to deal with network delays and packet losses. Results on self-triggering and send-on-delta sampling are presented to reduce the need for feedback in the loop. In Part II, the authors present solutions for distributed estimation and control. They deal first with reliable networks and then extend their results to scenarios in which delays and packet losses may occur. The novel ...
Developing asynchronous online interprofessional education.
Sanborn, Heidi
2016-09-01
For many health programmes, developing interprofessional education (IPE) has been a challenge. Evidence on the best method for design and implementation of IPE has been slow to emerge, with little research on how to best incorporate IPE in the asynchronous online learning environment. This leaves online programmes with no clear guidance when embarking upon an initiative to integrate IPE into the curriculum. One tool that can be effective at guiding the incorporation of IPE across all learning platforms is the Interprofessional Education Collaborative (IPEC) competencies. A project was designed to integrate the nationally defined IPEC competencies throughout an asynchronous, online baccalaureate nursing completion programme. A programme-wide review led to targeted revision of course and unit-level objectives, learning experiences, and assessments based on the IPEC framework. As a result of this effort, the programme curriculum now provides interprofessional learning activities across all courses. This report provides a method for using the IPEC competencies to incorporate IPE within various asynchronous learning assessments, assuring students learn about, with, and from other professions.
EPOS for Coordination of Asynchronous Sensor Webs
National Aeronautics and Space Administration — Develop, integrate, and deploy software-based tools to coordinate asynchronous, distributed missions and optimize observation planning spanning simultaneous...
Activated sludge model No. 2d, ASM2d
DEFF Research Database (Denmark)
Henze, M.
1999-01-01
The Activated Sludge Model No. 2d (ASM2d) presents a model for biological phosphorus removal with simultaneous nitrification-denitrification in activated sludge systems. ASM2d is based on ASM2 and is expanded to include the denitrifying activity of the phosphorus accumulating organisms (PAOs......). This extension of ASM2 allows for improved modeling of the processes, especially with respect to the dynamics of nitrate and phosphate. (C) 1999 IAWQ Published by Elsevier Science Ltd. All rights reserved....
Recent mathematical developments in 2D correlation spectroscopy
Noda, I.
2000-03-01
Recent mathematical developments in the field of 2D correlation spectroscopy, especially those related to the statistical theory, are reported. The notion of correlation phase angle is introduced. The significance of correlation phase angle between dynamic fluctuations of signals measured at two different spectral variables may be linked to more commonly known statistical concepts, such as coherence and correlation coefficient. This treatment provides the direct mathematical connection between the synchronous 2D correlation spectrum with a continuous form of the variance-covariance matrix. Moreover, it gives the background for the formal definition of the disrelation spectrum, which may be used as a heuristic substitution for the asynchronous 2D spectrum. The 2D correlation intensity may be separated into two independent factors representing the normalized extent of signal fluctuation coherence (i.e., correlation coefficient) and the magnitude of spectral intensity changes (i.e., variance). Such separation offers a convenient way to artificially enhance the discriminating power of 2D correlation spectra.
Asynchronous communication in real space process algebra
Baeten, J.C.M.; Bergstra, J.A.
1991-01-01
A version of classical real space process algebra is given in which messages travel with constant speed through a three-dimensional medium. It follows that communication is asynchronous and has a broadcasting character. A state operator is used to describe asynchronous message transfer and a
Asynchronous communication in real space process algebra
Bergstra, J.A.; Baeten, J.C.M.
1992-01-01
A version of classical real space process algebra is given in which messages travel with constant speed through a three-dimensional medium. It follows that communication is asynchronous and has a broadcasting character. A state operator is used to describe asynchronous message transfer and a
Asynchronous zero-forcing adaptive equalization
Bergmans, J.W.M.; Pozidis, H.; Lin, M.Y.
2005-01-01
Digital data receivers often operate at a fixed sampling rate 1/Ts that is asynchronous to the baud rate 1/T. A digital equalizer that processes the incoming signal will also be asynchronous, and its adaptation is commonly based on extensions of the LMS algorithm. In this paper, we develop and
Lectures on 2D gravity and 2D string theory
International Nuclear Information System (INIS)
Ginsparg, P.; Moore, G.
1992-01-01
This report the following topics: loops and states in conformal field theory; brief review of the Liouville theory; 2D Euclidean quantum gravity I: path integral approach; 2D Euclidean quantum gravity II: canonical approach; states in 2D string theory; matrix model technology I: method of orthogonal polynomials; matrix model technology II: loops on the lattice; matrix model technology III: free fermions from the lattice; loops and states in matrix model quantum gravity; loops and states in the C=1 matrix model; 6V model fermi sea dynamics and collective field theory; and string scattering in two spacetime dimensions
2D-hahmoanimaation toteuttamistekniikat
Smolander, Aku
2009-01-01
Opinnäytetyössä tutkitaan erilaisia 2D-hahmoanimaation toteuttamistekniikoita. Aluksi luodaan yleiskatsaus animoinnin historiaan ja tekniikoihin piirtämisestä mallintamiseen. Alkukatsauksen jälkeen tutkitaan 2D-hahmon suunnittelua ja liikkeitä koskevia sääntöjä. Hahmoanimaation liikkeissä huomionarvoisia asioita ovat muun muassa ajastus, liioittelu, ennakointi ja painovoima. Seuraavaksi perehdytään itse 2D-hahmoanimaation toteuttamistekniikoihin. Tavoitteena on selvittää, tutkia ja vertailla ...
Burst-Mode Asynchronous Controllers on FPGA
Directory of Open Access Journals (Sweden)
Duarte L. Oliveira
2008-01-01
Full Text Available FPGAs have been mainly used to design synchronous circuits. Asynchronous design on FPGAs is difficult because the resulting circuit may suffer from hazard problems. We propose a method that implements a popular class of asynchronous circuits, known as burst mode, on FPGAs based on look-up table architectures. We present two conditions that, if satisfied, guarantee essential hazard-free implementation on any LUT-based FPGA. By doing that, besides all the intrinsic advantages of asynchronous over synchronous circuits, they also take advantage of the shorter design time and lower cost associated with FPGA designs.
HypGrid2D. A 2-d mesh generator
Energy Technology Data Exchange (ETDEWEB)
Soerensen, N N
1998-03-01
The implementation of a hyperbolic mesh generation procedure, based on an equation for orthogonality and an equation for the cell face area is described. The method is fast, robust and gives meshes with good smoothness and orthogonality. The procedure is implemented in a program called HypGrid2D. The HypGrid2D program is capable of generating C-, O- and `H`-meshes for use in connection with the EllipSys2D Navier-Stokes solver. To illustrate the capabilities of the program, some test examples are shown. First a series of C-meshes are generated around a NACA-0012 airfoil. Secondly a series of O-meshes are generated around a NACA-65-418 airfoil. Finally `H`-meshes are generated over a Gaussian hill and a linear escarpment. (au)
2D Vis/NIR correlation spectroscopy of cooked chicken meats
Liu, Yongliang; Chen, Yud-Ren; Ozaki, Yukihiro
2000-03-01
Cooking of chicken meats was investigated by the generalized two-dimensional visible/near-infrared (2D Vis/NIR) correlation spectroscopy. Synchronous and asynchronous spectra in the 400-700 nm visible region suggested that the 445 and 560 nm bands be ascribed to deoxymyoglobin and oxymyoglobin, and at least one of the 475, 520, and 585 nm bands is assignable to the denatured species (metmyoglobin). The asynchronous 2D NIR correlation spectrum showed that CH bands change their spectral intensities before the OH/NH groups during the cooking process, indicating that CH fractions are easily oxidized and degraded. In addition, strong correlation peaks were observed correlating the bands in the visible and NIR spectral regions.
Asynchronous Parallelization of a CFD Solver
Abdi, Daniel S.; Bitsuamlak, Girma T.
2015-01-01
The article of record as published may be found at http://dx.doi.org/10.1155/2015/295393 A Navier-Stokes equations solver is parallelized to run on a cluster of computers using the domain decomposition method. Two approaches of communication and computation are investigated, namely, synchronous and asynchronous methods. Asynchronous communication between subdomains is not commonly used inCFDcodes; however, it has a potential to alleviate scaling bottlenecks incurred due to process...
Asynchronous networks: modularization of dynamics theorem
Bick, Christian; Field, Michael
2017-02-01
Building on the first part of this paper, we develop the theory of functional asynchronous networks. We show that a large class of functional asynchronous networks can be (uniquely) represented as feedforward networks connecting events or dynamical modules. For these networks we can give a complete description of the network function in terms of the function of the events comprising the network: the modularization of dynamics theorem. We give examples to illustrate the main results.
Asynchronous communication in real space process algebra
Baeten, JCM Jos; Bergstra, JA Jan
1990-01-01
A version of classical real space process algebra is given in which messages travel with constant speed through a three-dimensional medium. It follows that communication is asynchronous and has a broadcasting character. A state operator is used to describe asynchronous message transfer and a priority mechanism allows to express the broadcasting mechanism. As an application, a protocol is specified in which the receiver moves with respect to the sender.
Synchronous and Asynchronous ATM Multiplexor Properties Comparsion
Jan Zabka
2006-01-01
The article is aimed to ATM multiplexor computer model utilisation. Based on simulation runs we try to review aspects of use a synchronous and asynchronous ATM multiplexors. ATM multiplexor is the input queuing model with three inputs. Synchronous multiplexor works without an input priority. Multiplexor inputs are served periodically. Asynchronous multiplexor model supports several queuing and priority mechanisms. CLR and CTD are basic performance parameters. Input cell flows are genera...
International Nuclear Information System (INIS)
Johnson, J.D.; Lyon, S.P.
1982-04-01
SES2D is an interactive graphics code designed to generate plots of equation of state data from the Los Alamos National Laboratory Group T-4 computer libraries. This manual discusses the capabilities of the code. It describes the prompts and commands and illustrates their use with a sample run
Computational 2D Materials Database
DEFF Research Database (Denmark)
Rasmussen, Filip Anselm; Thygesen, Kristian Sommer
2015-01-01
We present a comprehensive first-principles study of the electronic structure of 51 semiconducting monolayer transition-metal dichalcogenides and -oxides in the 2H and 1T hexagonal phases. The quasiparticle (QP) band structures with spin-orbit coupling are calculated in the G(0)W(0) approximation...... and used as input to a 2D hydrogenic model to estimate exciton binding energies. Throughout the paper we focus on trends and correlations in the electronic structure rather than detailed analysis of specific materials. All the computed data is available in an open database......., and comparison is made with different density functional theory descriptions. Pitfalls related to the convergence of GW calculations for two-dimensional (2D) materials are discussed together with possible solutions. The monolayer band edge positions relative to vacuum are used to estimate the band alignment...
African Journals Online (AJOL)
Mohanan Geetha Gopisankar
2017-04-11
Apr 11, 2017 ... involved in drug metabolism and thus determines the therapeutic safety and efficacy of drugs in patients. ..... ity, we take restricted food items that have resulted in the loss of a ... drug-drug interaction can be minor, mild or fatal.
Asynchronous decentralized method for interconnected electricity markets
International Nuclear Information System (INIS)
Huang, Anni; Joo, Sung-Kwan; Song, Kyung-Bin; Kim, Jin-Ho; Lee, Kisung
2008-01-01
This paper presents an asynchronous decentralized method to solve the optimization problem of interconnected electricity markets. The proposed method decomposes the optimization problem of combined electricity markets into individual optimization problems. The impact of neighboring markets' information is included in the objective function of the individual market optimization problem by the standard Lagrangian relaxation method. Most decentralized optimization methods use synchronous models of communication to exchange updated market information among markets during the iterative process. In this paper, however, the solutions of the individual optimization problems are coordinated through an asynchronous communication model until they converge to the global optimal solution of combined markets. Numerical examples are presented to demonstrate the advantages of the proposed asynchronous method over the existing synchronous methods. (author)
CCS, locations and asynchronous transition systems
DEFF Research Database (Denmark)
Mukund, Madhavan; Nielsen, Mogens
1992-01-01
We provide a simple non-interleaved operational semantics for CCS in terms of asynchronous transition systems. We identify the concurrency present in the system in a natural way, in terms of events occurring at independent locations in the system. We extend the standard interleaving transition...... system for CCS by introducing labels on the transitions with information about the locations of events. We then show that the resulting transition system is an asynchronous transition system which has the additional property of being elementary, which means that it can also be represented by a 1-safe net....... We also introduce a notion of bisimulation on asynchronous transition systems which preserves independence. We conjecture that the induced equivalence on CCS processes coincides with the notion of location equivalence proposed by Boudol et al....
VERTICAL ACTIVITY ESTIMATION USING 2D RADAR
African Journals Online (AJOL)
hennie
estimates on aircraft vertical behaviour from a single 2D radar track. ... Fortunately, the problem of detecting relative vertical motion using a single 2D ..... awareness tools in scenarios where aerial activity sensing is typically limited to 2D.
Asynchronous Message Service Reference Implementation
Burleigh, Scott C.
2011-01-01
This software provides a library of middleware functions with a simple application programming interface, enabling implementation of distributed applications in conformance with the CCSDS AMS (Consultative Committee for Space Data Systems Asynchronous Message Service) specification. The AMS service, and its protocols, implement an architectural concept under which the modules of mission systems may be designed as if they were to operate in isolation, each one producing and consuming mission information without explicit awareness of which other modules are currently operating. Communication relationships among such modules are self-configuring; this tends to minimize complexity in the development and operations of modular data systems. A system built on this model is a society of generally autonomous, inter-operating modules that may fluctuate freely over time in response to changing mission objectives, modules functional upgrades, and recovery from individual module failure. The purpose of AMS, then, is to reduce mission cost and risk by providing standard, reusable infrastructure for the exchange of information among data system modules in a manner that is simple to use, highly automated, flexible, robust, scalable, and efficient. The implementation is designed to spawn multiple threads of AMS functionality under the control of an AMS application program. These threads enable all members of an AMS-based, distributed application to discover one another in real time, subscribe to messages on specific topics, and to publish messages on specific topics. The query/reply (client/server) communication model is also supported. Message exchange is optionally subject to encryption (to support confidentiality) and authorization. Fault tolerance measures in the discovery protocol minimize the likelihood of overall application failure due to any single operational error anywhere in the system. The multi-threaded design simplifies processing while enabling application nodes to
An Overview of the Asynchronous Digital Systems – Part 3
Directory of Open Access Journals (Sweden)
Mihai Timis
2008-01-01
Full Text Available Implementation methods for the digital asynchronous systems use different predefined models like self timed circuits, speed independent circuits, delay insensitive circuits, handshake protocol implementation in asynchronous systems,C Muller circuits.
An Overview of the Asynchronous Digital Systems – Part 2
Directory of Open Access Journals (Sweden)
Mihai Timis
2008-01-01
Full Text Available Implementation methods for the digital asynchronous systems use different predefined models like self timed circuits, speed independent circuits, delay insensitive circuits, handshake protocol implementation in asynchronous systems,C Muller circuits.
Interpolation algorithm for asynchronous ADC-data
Directory of Open Access Journals (Sweden)
S. Bramburger
2017-09-01
Full Text Available This paper presents a modified interpolation algorithm for signals with variable data rate from asynchronous ADCs. The Adaptive weights Conjugate gradient Toeplitz matrix (ACT algorithm is extended to operate with a continuous data stream. An additional preprocessing of data with constant and linear sections and a weighted overlap of step-by-step into spectral domain transformed signals improve the reconstruction of the asycnhronous ADC signal. The interpolation method can be used if asynchronous ADC data is fed into synchronous digital signal processing.
Handbook of asynchronous machines with variable speed
Razik, Hubert
2013-01-01
This handbook deals with the asynchronous machine in its close environment. It was born from a reflection on this electromagnetic converter whose integration in industrial environments takes a wide part. Previously this type of motor operated at fixed speed, from now on it has been integrated more and more in processes at variable speed. For this reason it seemed useful, or necessary, to write a handbook on the various aspects from the motor in itself, via the control and while finishing by the diagnosis aspect. Indeed, an asynchronous motor is used nowadays in industry where variation speed a
Asynchronous Operators of Sequential Logic Venjunction & Sequention
Vasyukevich, Vadim
2011-01-01
This book is dedicated to new mathematical instruments assigned for logical modeling of the memory of digital devices. The case in point is logic-dynamical operation named venjunction and venjunctive function as well as sequention and sequentional function. Venjunction and sequention operate within the framework of sequential logic. In a form of the corresponding equations, they organically fit analytical expressions of Boolean algebra. Thus, a sort of symbiosis is formed using elements of asynchronous sequential logic on the one hand and combinational logic on the other hand. So, asynchronous
Fallow), Stray
2009-01-01
Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and
Increasing Student Engagement Using Asynchronous Learning
Northey, Gavin; Bucic, Tania; Chylinski, Mathew; Govind, Rahul
2015-01-01
Student engagement is an ongoing concern for educators because of its positive association with deep learning and educational outcomes. This article tests the use of a social networking site (Facebook) as a tool to facilitate asynchronous learning opportunities that complement face-to-face interactions and thereby enable a stronger learning…
Basic Algorithms for the Asynchronous Reconfigurable Mesh
Directory of Open Access Journals (Sweden)
Yosi Ben-Asher
2002-01-01
Full Text Available Many constant time algorithms for various problems have been developed for the reconfigurable mesh (RM in the past decade. All these algorithms are designed to work with synchronous execution, with no regard for the fact that large size RMs will probably be asynchronous. A similar observation about the PRAM model motivated many researchers to develop algorithms and complexity measures for the asynchronous PRAM (APRAM. In this work, we show how to define the asynchronous reconfigurable mesh (ARM and how to measure the complexity of asynchronous algorithms executed on it. We show that connecting all processors in a row of an n×n ARM (the analog of barrier synchronization in the APRAM model can be solved with complexity Θ(nlogn. Intuitively, this is average work time for solving such a problem. Next, we describe general a technique for simulating T -step synchronous RM algorithms on the ARM with complexity of Θ(T⋅n2logn. Finally, we consider the simulation of the classical synchronous algorithm for counting the number of non-zero bits in an n bits vector using (k
Emphasis on the Impact of Asynchronous Media
African Journals Online (AJOL)
ICTs and their utilization is one of the most pertinent issues in the education industry today. ... The paper pointed out specific impact of asynchronous ICT media in ... The paper finally noted that the struggle to be part of the digital world is ...
Asynchronous versus Synchronous Learning in Pharmacy Education
Motycka, Carol A.; St. Onge, Erin L.; Williams, Jennifer
2013-01-01
Objective: To better understand the technology being used today in pharmacy education through a review of the current methodologies being employed at various institutions. Also, to discuss the benefits and difficulties of asynchronous and synchronous methodologies, which are being utilized at both traditional and distance education campuses.…
Adaptive hatching hypotheses do not explain asynchronous ...
African Journals Online (AJOL)
At the core of the suite of adaptive hatching hypotheses advanced to explain asynchronous hatching in birds is the assumption that if food is not limited then all the hatchlings will develop normally to adulthood. In this study Brown-headed Parrot Poicephalus cryptoxanthus chicks were hand fed and weighed on a daily basis.
Dynamic Performances of Asynchronous Machines | Ubeku ...
African Journals Online (AJOL)
The per-phase parameters of a 1.5 hp, 380 V, 50 Hz, 4 poles, 3 phase asynchronous machine used in the simulation were computed with reading obtained from a dc, no-load and blocked rotor tests carried out on the machine in the laboratory. The results obtained from the computer simulations confirmed the capabilities ...
Asynchronous stream processing with S-Net
Grelck, C.; Scholz, S.-B.; Shafarenko, A.
2010-01-01
We present the rationale and design of S-Net, a coordination language for asynchronous stream processing. The language achieves a near-complete separation between the application code, written in any conventional programming language, and the coordination/communication code written in S-Net. Our
International Nuclear Information System (INIS)
Georgi, Howard; Kats, Yevgeny
2008-01-01
We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles
International Nuclear Information System (INIS)
Brekke, L.; Imbo, T.D.
1992-01-01
The authors study the inequivalent quantizations of (1 + 1)-dimensional nonlinear sigma models with space manifold S 1 and target manifold X. If x is multiply connected, these models possess topological solitons. After providing a definition of spin and statistics for these solitons and demonstrating a spin-statistics correlation, we give various examples where the solitons can have exotic statistics. In some of these models, the solitons may obey a generalized version of fractional statistics called ambistatistics. In this paper the relevance of these 2d models to the statistics of vortices in (2 + 1)-dimensional spontaneously broken gauge theories is discussed. The authors close with a discussion concerning the extension of our results to higher dimensions
Waldin, Nicholas
2016-06-24
2D color maps are often used to visually encode complex data characteristics such as heat or height. The comprehension of color maps in visualization is affected by the display (e.g., a monitor) and the perceptual abilities of the viewer. In this paper we present a novel method to measure a user\\'s ability to distinguish colors of a two-dimensional color map on a given monitor. We show how to adapt the color map to the user and display to optimally compensate for the measured deficiencies. Furthermore, we improve user acceptance of the calibration procedure by transforming the calibration into a game. The user has to sort colors along a line in a 3D color space in a competitive fashion. The errors the user makes in sorting these lines are used to adapt the color map to his perceptual capabilities.
A Novel Approach to Asynchronous MVP Data Interpretation Based on Elliptical-Vectors
Kruglyakov, M.; Trofimov, I.; Korotaev, S.; Shneyer, V.; Popova, I.; Orekhova, D.; Scshors, Y.; Zhdanov, M. S.
2014-12-01
We suggest a novel approach to asynchronous magnetic-variation profiling (MVP) data interpretation. Standard method in MVP is based on the interpretation of the coefficients of linear relation between vertical and horizontal components of the measured magnetic field.From mathematical point of view this pair of linear coefficients is not a vector which leads to significant difficulties in asynchronous data interpretation. Our approach allows us to actually treat such a pair of complex numbers as a special vector called an ellipse-vector (EV). By choosing the particular definitions of complex length and direction, the basic relation of MVP can be considered as the dot product. This considerably simplifies the interpretation of asynchronous data. The EV is described by four real numbers: the values of major and minor semiaxes, the angular direction of the major semiaxis and the phase. The notation choice is motivated by historical reasons. It is important that different EV's components have different sensitivity with respect to the field sources and the local heterogeneities. Namely, the value of major semiaxis and the angular direction are mostly determined by the field source and the normal cross-section. On the other hand, the value of minor semiaxis and the phase are responsive to local heterogeneities. Since the EV is the general form of complex vector, the traditional Schmucker vectors can be explicitly expressed through its components.The proposed approach was successfully applied to interpretation the results of asynchronous measurements that had been obtained in the Arctic Ocean at the drift stations "North Pole" in 1962-1976.
Aspects of computation on asynchronous parallel processors
International Nuclear Information System (INIS)
Wright, M.
1989-01-01
The increasing availability of asynchronous parallel processors has provided opportunities for original and useful work in scientific computing. However, the field of parallel computing is still in a highly volatile state, and researchers display a wide range of opinion about many fundamental questions such as models of parallelism, approaches for detecting and analyzing parallelism of algorithms, and tools that allow software developers and users to make effective use of diverse forms of complex hardware. This volume collects the work of researchers specializing in different aspects of parallel computing, who met to discuss the framework and the mechanics of numerical computing. The far-reaching impact of high-performance asynchronous systems is reflected in the wide variety of topics, which include scientific applications (e.g. linear algebra, lattice gauge simulation, ordinary and partial differential equations), models of parallelism, parallel language features, task scheduling, automatic parallelization techniques, tools for algorithm development in parallel environments, and system design issues
Asynchronous Gossip for Averaging and Spectral Ranking
Borkar, Vivek S.; Makhijani, Rahul; Sundaresan, Rajesh
2014-08-01
We consider two variants of the classical gossip algorithm. The first variant is a version of asynchronous stochastic approximation. We highlight a fundamental difficulty associated with the classical asynchronous gossip scheme, viz., that it may not converge to a desired average, and suggest an alternative scheme based on reinforcement learning that has guaranteed convergence to the desired average. We then discuss a potential application to a wireless network setting with simultaneous link activation constraints. The second variant is a gossip algorithm for distributed computation of the Perron-Frobenius eigenvector of a nonnegative matrix. While the first variant draws upon a reinforcement learning algorithm for an average cost controlled Markov decision problem, the second variant draws upon a reinforcement learning algorithm for risk-sensitive control. We then discuss potential applications of the second variant to ranking schemes, reputation networks, and principal component analysis.
Computing by Temporal Order: Asynchronous Cellular Automata
Directory of Open Access Journals (Sweden)
Michael Vielhaber
2012-08-01
Full Text Available Our concern is the behaviour of the elementary cellular automata with state set 0,1 over the cell set Z/nZ (one-dimensional finite wrap-around case, under all possible update rules (asynchronicity. Over the torus Z/nZ (n<= 11,we will see that the ECA with Wolfram rule 57 maps any v in F_2^n to any w in F_2^n, varying the update rule. We furthermore show that all even (element of the alternating group bijective functions on the set F_2^n = 0,...,2^n-1, can be computed by ECA57, by iterating it a sufficient number of times with varying update rules, at least for n <= 10. We characterize the non-bijective functions computable by asynchronous rules.
Learn Unity for 2D game development
Thorn, Alan
2013-01-01
The only Unity book specifically covering 2D game development Written by Alan Thorn, experience game developer and author of seven books on game programming Hands-on examples of all major aspects of 2D game development using Unity
Blending Online Asynchronous and Synchronous Learning
Directory of Open Access Journals (Sweden)
Lisa C. Yamagata-Lynch
2014-04-01
Full Text Available In this article I will share a qualitative self-study about a 15-week blended 100% online graduate level course facilitated through synchronous meetings on Blackboard Collaborate and asynchronous discussions on Blackboard. I taught the course at the University of Tennessee (UT during the spring 2012 semester and the course topic was online learning environments. The primary research question of this study was: How can the designer/instructor optimize learning experiences for students who are studying about online learning environments in a blended online course relying on both synchronous and asynchronous technologies? I relied on student reflections of course activities during the beginning, middle, and the end of the semester as the primary data source to obtain their insights regarding course experiences. Through the experiences involved in designing and teaching the course and engaging in this study I found that there is room in the instructional technology research community to address strategies for facilitating online synchronous learning that complement asynchronous learning. Synchronous online whole class meetings and well-structured small group meetings can help students feel a stronger sense of connection to their peers and instructor and stay engaged with course activities. In order to provide meaningful learning spaces in synchronous learning environments, the instructor/designer needs to balance the tension between embracing the flexibility that the online space affords to users and designing deliberate structures that will help them take advantage of the flexible space.
Comparing the force ripple during asynchronous and conventional stimulation.
Downey, Ryan J; Tate, Mark; Kawai, Hiroyuki; Dixon, Warren E
2014-10-01
Asynchronous stimulation has been shown to reduce fatigue during electrical stimulation; however, it may also exhibit a force ripple. We quantified the ripple during asynchronous and conventional single-channel transcutaneous stimulation across a range of stimulation frequencies. The ripple was measured during 5 asynchronous stimulation protocols, 2 conventional stimulation protocols, and 3 volitional contractions in 12 healthy individuals. Conventional 40 Hz and asynchronous 16 Hz stimulation were found to induce contractions that were as smooth as volitional contractions. Asynchronous 8, 10, and 12 Hz stimulation induced contractions with significant ripple. Lower stimulation frequencies can reduce fatigue; however, they may also lead to increased ripple. Future efforts should study the relationship between force ripple and the smoothness of the evoked movements in addition to the relationship between stimulation frequency and NMES-induced fatigue to elucidate an optimal stimulation frequency for asynchronous stimulation. © 2014 Wiley Periodicals, Inc.
Current Trends in High-Level Synthesis of Asynchronous Circuits
DEFF Research Database (Denmark)
Sparsø, Jens
2009-01-01
This paper is a survey paper presenting what the author sees as two major and promising trends in the current research in CAD-tools and design-methods for asynchronous circuits. One branch of research builds on top of existing asynchronous CAD-tools that perform syntax directed translation, e...... a conventional synchronous circuit as the starting point, and then adds some form of handshake-based flow-control. One approach keeps the global clock and implements discrete-time asynchronous operation. Another approach substitutes the clocked registers by asynchronous handshake-registers, thus creating truly...
Noda, Isao
2018-05-01
Two-trace two-dimensional (2T2D) correlation spectroscopy, where a pair of spectra are compared as 2D maps by a form of cross correlation analysis, is introduced. In 2T2D, spectral intensity changes of bands arising from the same origin, which cannot change independently of each other, are synchronized. Meanwhile, those arising from different sources may and often do change asynchronously. By taking advantage of this property, one can distinguish and classify a number of contributing bands present in the original pair of spectra in a systematic manner. Highly overlapped neighboring bands originating from different sources can also be identified by the presence of asynchronous cross peaks, thus enhancing the apparent spectral resolution. Computational procedure to obtain 2T2D correlation spectra and their interpretation method, as well as an illustrative description of the basic concept in the vector phase space, are provided. 2T2D spectra may also be viewed as individual building blocks of the generalized 2D correlation spectra derived from a series of more than two spectral data. Some promising application potentials of 2T2D correlation and integration with established advanced 2D correlation techniques are discussed.
Pass-transistor asynchronous sequential circuits
Whitaker, Sterling R.; Maki, Gary K.
1989-01-01
Design methods for asynchronous sequential pass-transistor circuits, which result in circuits that are hazard- and critical-race-free and which have added degrees of freedom for the input signals, are discussed. The design procedures are straightforward and easy to implement. Two single-transition-time state assignment methods are presented, and hardware bounds for each are established. A surprising result is that the hardware realizations for each next state variable and output variable is identical for a given flow table. Thus, a state machine with N states and M outputs can be constructed using a single layout replicated N + M times.
Massive Asynchronous Parallelization of Sparse Matrix Factorizations
Energy Technology Data Exchange (ETDEWEB)
Chow, Edmond [Georgia Inst. of Technology, Atlanta, GA (United States)
2018-01-08
Solving sparse problems is at the core of many DOE computational science applications. We focus on the challenge of developing sparse algorithms that can fully exploit the parallelism in extreme-scale computing systems, in particular systems with massive numbers of cores per node. Our approach is to express a sparse matrix factorization as a large number of bilinear constraint equations, and then solving these equations via an asynchronous iterative method. The unknowns in these equations are the matrix entries of the factorization that is desired.
FEM-2D - Input description and performance
International Nuclear Information System (INIS)
Schmidt, F.A.R.
1975-03-01
FEM-2D solves the 2d diffusion equation by the Finite Element Method. This version of the code was written for x-y geometry, triangular elements with first and second order flux approximations, and has a solution routine which is based on a modified Cholesky procedure. FEM-2D is fully integrated into the modular system RSYST. However, we have developed a simulation program RSIMK which simulates some of the functions of RSYST and allows to run FEM-2D independently. (orig.) [de
MODELING AND INVESTIGATION OF ASYNCHRONOUS TWO-MACHINE SYSTEM MODES
Directory of Open Access Journals (Sweden)
V. S. Safaryan
2014-01-01
Full Text Available The paper considers stationary and transient processes of an asynchronous two-machine system. A mathematical model for investigation of stationary and transient modes, static characteristics and research results of dynamic process pertaining to starting-up the asynchronous two-machine system has been given in paper.
Two Studies Examining Argumentation in Asynchronous Computer Mediated Communication
Joiner, Richard; Jones, Sarah; Doherty, John
2008-01-01
Asynchronous computer mediated communication (CMC) would seem to be an ideal medium for supporting development in student argumentation. This paper investigates this assumption through two studies. The first study compared asynchronous CMC with face-to-face discussions. The transactional and strategic level of the argumentation (i.e. measures of…
Designing Asynchronous Circuits for Low Power: An IFIR Filter
DEFF Research Database (Denmark)
Nielsen, Lars Skovby; Sparsø, Jens
1999-01-01
This paper addresses the design of asynchronous circuits for low power through an example: a filter bank for a digital hearing aid. The asynchronous design re-implements an existing synchronous circuit which is used in a commercial product. For comparison, both designs have been fabricated...
Evaluation of discrete modeling efficiency of asynchronous electric machines
Byczkowska-Lipińska, Liliana; Stakhiv, Petro; Hoholyuk, Oksana; Vasylchyshyn, Ivanna
2011-01-01
In the paper the problem of effective mathematical macromodels in the form of state variables intended for asynchronous motor transient analysis is considered. Their comparing with traditional mathematical models of asynchronous motors including models built into MATLAB/Simulink software was carried out and analysis of their efficiency was conducted.
Asynchronous Learning Sources in a High-Tech Organization
Bouhnik, Dan; Giat, Yahel; Sanderovitch, Yafit
2009-01-01
Purpose: The purpose of this study is to characterize learning from asynchronous sources among research and development (R&D) personnel. It aims to examine four aspects of asynchronous source learning: employee preferences regarding self-learning; extent of source usage; employee satisfaction with these sources and the effect of the sources on the…
Integrating Asynchronous Digital Design Into the Computer Engineering Curriculum
Smith, S. C.; Al-Assadi, W. K.; Di, J.
2010-01-01
As demand increases for circuits with higher performance, higher complexity, and decreased feature size, asynchronous (clockless) paradigms will become more widely used in the semiconductor industry, as evidenced by the International Technology Roadmap for Semiconductors' (ITRS) prediction of a likely shift from synchronous to asynchronous design…
Localized radio frequency communication using asynchronous transfer mode protocol
Witzke, Edward L.; Robertson, Perry J.; Pierson, Lyndon G.
2007-08-14
A localized wireless communication system for communication between a plurality of circuit boards, and between electronic components on the circuit boards. Transceivers are located on each circuit board and electronic component. The transceivers communicate with one another over spread spectrum radio frequencies. An asynchronous transfer mode protocol controls communication flow with asynchronous transfer mode switches located on the circuit boards.
The Determination of the Asynchronous Traction Motor Characteristics of Locomotive
Directory of Open Access Journals (Sweden)
Pavel Grigorievich Kolpakhchyan
2017-01-01
Full Text Available The article deals with the problem of the locomotive asynchronous traction motor control with the AC diesel-electric transmission. The limitations of the torque of the traction motor when powered by the inverter are determined. The recommendations to improve the use of asynchronous traction motor of locomotives with the AC diesel-electric transmission are given.
Exploring Asynchronous and Synchronous Tool Use in Online Courses
Oztok, Murat; Zingaro, Daniel; Brett, Clare; Hewitt, Jim
2013-01-01
While the independent contributions of synchronous and asynchronous interaction in online learning are clear, comparatively less is known about the pedagogical consequences of using both modes in the same environment. In this study, we examine relationships between students' use of asynchronous discussion forums and synchronous private messages…
Asynchronous and Synchronous Online Discussion: Real and Perceived Achievement Differences
Johnson, Genevieve Marie; Buck, George H.
2007-01-01
Students in an introductory educational psychology course used two WebCT communication tools (synchronous chat and asynchronous discussion) to discuss four case studies. In response to the item, "I learned the case studies best when using," 39 students selected synchronous chat and 51 students selected asynchronous discussion. Students who…
Regression analysis of sparse asynchronous longitudinal data.
Cao, Hongyuan; Zeng, Donglin; Fine, Jason P
2015-09-01
We consider estimation of regression models for sparse asynchronous longitudinal observations, where time-dependent responses and covariates are observed intermittently within subjects. Unlike with synchronous data, where the response and covariates are observed at the same time point, with asynchronous data, the observation times are mismatched. Simple kernel-weighted estimating equations are proposed for generalized linear models with either time invariant or time-dependent coefficients under smoothness assumptions for the covariate processes which are similar to those for synchronous data. For models with either time invariant or time-dependent coefficients, the estimators are consistent and asymptotically normal but converge at slower rates than those achieved with synchronous data. Simulation studies evidence that the methods perform well with realistic sample sizes and may be superior to a naive application of methods for synchronous data based on an ad hoc last value carried forward approach. The practical utility of the methods is illustrated on data from a study on human immunodeficiency virus.
Asynchronous schemes for CFD at extreme scales
Konduri, Aditya; Donzis, Diego
2013-11-01
Recent advances in computing hardware and software have made simulations an indispensable research tool in understanding fluid flow phenomena in complex conditions at great detail. Due to the nonlinear nature of the governing NS equations, simulations of high Re turbulent flows are computationally very expensive and demand for extreme levels of parallelism. Current large simulations are being done on hundreds of thousands of processing elements (PEs). Benchmarks from these simulations show that communication between PEs take a substantial amount of time, overwhelming the compute time, resulting in substantial waste in compute cycles as PEs remain idle. We investigate a novel approach based on widely used finite-difference schemes in which computations are carried out asynchronously, i.e. synchronization of data among PEs is not enforced and computations proceed regardless of the status of messages. This drastically reduces PE idle time and results in much larger computation rates. We show that while these schemes remain stable, their accuracy is significantly affected. We present new schemes that maintain accuracy under asynchronous conditions and provide a viable path towards exascale computing. Performance of these schemes will be shown for simple models like Burgers' equation.
Annotated Bibliography of EDGE2D Use
Energy Technology Data Exchange (ETDEWEB)
J.D. Strachan and G. Corrigan
2005-06-24
This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.
2D NMR studies of biomolecules
International Nuclear Information System (INIS)
Lamerichs, R.M.J.N.
1989-01-01
The work described in this thesis comprises two related subjects. The first part describes methods to derive high-resolution structures of proteins in solution using two-dimensional (2-D) NMR. The second part describes 2-D NMR studies on the interaction between proteins and DNA. (author). 261 refs.; 52 figs.; 23 tabs
DEFF Research Database (Denmark)
Cronin-Fenton, Deirdre P.; Damkier, Per
2018-01-01
Tamoxifen reduces the rate of breast cancer recurrence by about one-half. It is converted to more active metabolites by enzymes encoded by polymorphic genes, including cytochrome P450 2D6 (CYP2D6) and transported by ATP-binding cassette transporters. Genetic polymorphisms that confer reduced CYP2...
Annotated Bibliography of EDGE2D Use
International Nuclear Information System (INIS)
Strachan, J.D.; Corrigan, G.
2005-01-01
This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables
[System of telesonography with synchronous teleconsultations and asynchronous telediagnoses (Togo)].
Adambounou, K; Farin, F; Boucher, A; Adjenou, K V; Gbeassor, M; N'dakena, K; Vincent, N; Arbeille, P
2012-01-01
successfully for 2 days during the 9(th) Congress of the French-speaking Black Africa Society of Radiology (SRANF in French) held from 4 till 6 May 2011 at the hotel EDA OBA. During this seminar, 4 ultrasound teleconsultations were performed from the hotel by eminent African radiologists. This preliminary study, although limited in the number of patients, allowed us to assess the technical features of our telesonography system. Togo, a developing country with a very modest infrastructure for information and communication, was an ideal site for a first test of this platform. Our system of remote ultrasound requires the local patient center to be equipped simply with a 2D ultrasound machine. The cost is quite low, in comparison to the asynchronous techniques requiring 3D devices. The high cost of 3D or 4D ultrasound machines and their fragility make it difficult to install them at the isolated sites and was a serious obstacle in the development of this system. If the center already has a 2D device and a computer, the cost to equip it with the remaining communications materials is 1,500 €. The experience in Togo clearly highlighted the possibility of teletraining and complete teleradiology with our system. The next stage of this work will seek to validate the results of this preliminary experience on a larger sample with more precise assessment criteria in 2012. The results will allow the widespread dissemination and routine use of this system in developing countries.
Light field morphing using 2D features.
Wang, Lifeng; Lin, Stephen; Lee, Seungyong; Guo, Baining; Shum, Heung-Yeung
2005-01-01
We present a 2D feature-based technique for morphing 3D objects represented by light fields. Existing light field morphing methods require the user to specify corresponding 3D feature elements to guide morph computation. Since slight errors in 3D specification can lead to significant morphing artifacts, we propose a scheme based on 2D feature elements that is less sensitive to imprecise marking of features. First, 2D features are specified by the user in a number of key views in the source and target light fields. Then the two light fields are warped view by view as guided by the corresponding 2D features. Finally, the two warped light fields are blended together to yield the desired light field morph. Two key issues in light field morphing are feature specification and warping of light field rays. For feature specification, we introduce a user interface for delineating 2D features in key views of a light field, which are automatically interpolated to other views. For ray warping, we describe a 2D technique that accounts for visibility changes and present a comparison to the ideal morphing of light fields. Light field morphing based on 2D features makes it simple to incorporate previous image morphing techniques such as nonuniform blending, as well as to morph between an image and a light field.
Elena Purcaru; Cristian Toma
2011-01-01
The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution - DNA2DBC - DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features ...
Amitai, Dganit; Averbuch, Amir; Itzikowitz, Samuel; Turkel, Eli
1991-01-01
A major problem in achieving significant speed-up on parallel machines is the overhead involved with synchronizing the concurrent process. Removing the synchronization constraint has the potential of speeding up the computation. The authors present asynchronous (AS) and corrected-asynchronous (CA) finite difference schemes for the multi-dimensional heat equation. Although the discussion concentrates on the Euler scheme for the solution of the heat equation, it has the potential for being extended to other schemes and other parabolic partial differential equations (PDEs). These schemes are analyzed and implemented on the shared memory multi-user Sequent Balance machine. Numerical results for one and two dimensional problems are presented. It is shown experimentally that the synchronization penalty can be about 50 percent of run time: in most cases, the asynchronous scheme runs twice as fast as the parallel synchronous scheme. In general, the efficiency of the parallel schemes increases with processor load, with the time level, and with the problem dimension. The efficiency of the AS may reach 90 percent and over, but it provides accurate results only for steady-state values. The CA, on the other hand, is less efficient, but provides more accurate results for intermediate (non steady-state) values.
Energy Technology Data Exchange (ETDEWEB)
Fornel, B. de [Institut National Polytechnique, 31 - Toulouse (France)
2006-05-15
The asynchronous machine, with its low cost and robustness, is today the most widely used motor to make speed variators. However, its main drawback is that the same current generates both the magnetic flux and the torque, and thus any torque variation creates a flux variation. Such a coupling gives to the asynchronous machine a nonlinear behaviour which makes its control much more complex. The direct self control (DSC) method has been developed to improve the low efficiency of the scalar control method and for the specific railway drive application. The direct torque control (DTC) method is derived from the DSC method but corresponds to other type of applications. The DSC and DTC algorithms for asynchronous motors are presented in this article: 1 - direct control of the stator flux (DSC): principle, flux control, torque control, switching frequency of the inverter, speed estimation; 2 - direct torque control (DTC): principle, electromagnetic torque derivative, signals shape and switching frequency, some results, DTC speed variator without speed sensor, DTC application to multi-machine multi-converter systems; 3 - conclusion. (J.S.)
Asynchronous discrete event schemes for PDEs
Stone, D.; Geiger, S.; Lord, G. J.
2017-08-01
A new class of asynchronous discrete-event simulation schemes for advection-diffusion-reaction equations is introduced, based on the principle of allowing quanta of mass to pass through faces of a (regular, structured) Cartesian finite volume grid. The timescales of these events are linked to the flux on the face. The resulting schemes are self-adaptive, and local in both time and space. Experiments are performed on realistic physical systems related to porous media flow applications, including a large 3D advection diffusion equation and advection diffusion reaction systems. The results are compared to highly accurate reference solutions where the temporal evolution is computed with exponential integrator schemes using the same finite volume discretisation. This allows a reliable estimation of the solution error. Our results indicate a first order convergence of the error as a control parameter is decreased, and we outline a framework for analysis.
Error characterization for asynchronous computations: Proxy equation approach
Sallai, Gabriella; Mittal, Ankita; Girimaji, Sharath
2017-11-01
Numerical techniques for asynchronous fluid flow simulations are currently under development to enable efficient utilization of massively parallel computers. These numerical approaches attempt to accurately solve time evolution of transport equations using spatial information at different time levels. The truncation error of asynchronous methods can be divided into two parts: delay dependent (EA) or asynchronous error and delay independent (ES) or synchronous error. The focus of this study is a specific asynchronous error mitigation technique called proxy-equation approach. The aim of this study is to examine these errors as a function of the characteristic wavelength of the solution. Mitigation of asynchronous effects requires that the asynchronous error be smaller than synchronous truncation error. For a simple convection-diffusion equation, proxy-equation error analysis identifies critical initial wave-number, λc. At smaller wave numbers, synchronous error are larger than asynchronous errors. We examine various approaches to increase the value of λc in order to improve the range of applicability of proxy-equation approach.
Hybridized Plasmons in 2D Nanoslits: From Graphene to Anisotropic 2D Materials
DEFF Research Database (Denmark)
Gonçalves, P. A. D.; Xiao, Sanshui; Peres, N. M. R.
2017-01-01
of arbitrary width, and remains valid irrespective of the 2D conductive material (e.g., doped graphene, 2D transition metal dichalcogenides, or phosphorene). We derive the dispersion relation of the hybrid modes of a 2D nanoslit along with the corresponding induced potential and electric field distributions...
International Nuclear Information System (INIS)
Ginsparg, P.
1991-01-01
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date
A companion matrix for 2-D polynomials
International Nuclear Information System (INIS)
Boudellioua, M.S.
1995-08-01
In this paper, a matrix form analogous to the companion matrix which is often encountered in the theory of one dimensional (1-D) linear systems is suggested for a class of polynomials in two indeterminates and real coefficients, here referred to as two dimensional (2-D) polynomials. These polynomials arise in the context of 2-D linear systems theory. Necessary and sufficient conditions are also presented under which a matrix is equivalent to this companion form. (author). 6 refs
Applications of 2D helical vortex dynamics
DEFF Research Database (Denmark)
Okulov, Valery; Sørensen, Jens Nørkær
2010-01-01
In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...... of the vorticity field are addressed. These included some of the problems related to vortex breakdown, instability of far wakes behind rotors and vortex theory of ideal rotors....
2d index and surface operators
International Nuclear Information System (INIS)
Gadde, Abhijit; Gukov, Sergei
2014-01-01
In this paper we compute the superconformal index of 2d (2,2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in N=2 superconformal gauge theories. They are engineered by coupling the 2d (2,2) supersymmetric gauge theory living on the support of the surface operator to the 4d N=2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role
Detection of Failure in Asynchronous Motor Using Soft Computing Method
Vinoth Kumar, K.; Sony, Kevin; Achenkunju John, Alan; Kuriakose, Anto; John, Ano P.
2018-04-01
This paper investigates the stator short winding failure of asynchronous motor also their effects on motor current spectrums. A fuzzy logic approach i.e., model based technique possibly will help to detect the asynchronous motor failure. Actually, fuzzy logic similar to humanoid intelligent methods besides expected linguistic empowering inferences through vague statistics. The dynamic model is technologically advanced for asynchronous motor by means of fuzzy logic classifier towards investigate the stator inter turn failure in addition open phase failure. A hardware implementation was carried out with LabVIEW for the online-monitoring of faults.
Energy transfer mechanisms in layered 2D perovskites.
Williams, Olivia F; Guo, Zhenkun; Hu, Jun; Yan, Liang; You, Wei; Moran, Andrew M
2018-04-07
Two-dimensional (2D) perovskite quantum wells are generating broad scientific interest because of their potential for use in optoelectronic devices. Recently, it has been shown that layers of 2D perovskites can be grown in which the average thicknesses of the quantum wells increase from the back to the front of the film. This geometry carries implications for light harvesting applications because the bandgap of a quantum well decreases as its thickness increases. The general structural formula for the 2D perovskite systems under investigation in this work is (PEA) 2 (MA) n-1 [Pb n I 3n+1 ] (PEA = phenethyl ammonium, MA = methyl ammonium). Here, we examine two layered 2D perovskites with different distributions of quantum well thicknesses. Spectroscopic measurements and model calculations suggest that both systems funnel electronic excitations from the back to the front of the film through energy transfer mechanisms on the time scales of 100's of ps (i.e., energy transfer from thinner to thicker quantum wells). In addition, the model calculations demonstrate that the transient absorption spectra are composed of a progression of single exciton and biexciton resonances associated with the individual quantum wells. We find that exciton dissociation and/or charge transport dynamics make only minor contributions to the transient absorption spectra within the first 1 ns after photo-excitation. An analysis of the energy transfer kinetics indicates that the transitions occur primarily between quantum wells with values of n that differ by 1 because of the spectral overlap factor that governs the energy transfer rate. Two-dimensional transient absorption spectra reveal a pattern of resonances consistent with the dominance of sequential energy transfer dynamics.
Energy transfer mechanisms in layered 2D perovskites
Williams, Olivia F.; Guo, Zhenkun; Hu, Jun; Yan, Liang; You, Wei; Moran, Andrew M.
2018-04-01
Two-dimensional (2D) perovskite quantum wells are generating broad scientific interest because of their potential for use in optoelectronic devices. Recently, it has been shown that layers of 2D perovskites can be grown in which the average thicknesses of the quantum wells increase from the back to the front of the film. This geometry carries implications for light harvesting applications because the bandgap of a quantum well decreases as its thickness increases. The general structural formula for the 2D perovskite systems under investigation in this work is (PEA)2(MA)n-1[PbnI3n+1] (PEA = phenethyl ammonium, MA = methyl ammonium). Here, we examine two layered 2D perovskites with different distributions of quantum well thicknesses. Spectroscopic measurements and model calculations suggest that both systems funnel electronic excitations from the back to the front of the film through energy transfer mechanisms on the time scales of 100's of ps (i.e., energy transfer from thinner to thicker quantum wells). In addition, the model calculations demonstrate that the transient absorption spectra are composed of a progression of single exciton and biexciton resonances associated with the individual quantum wells. We find that exciton dissociation and/or charge transport dynamics make only minor contributions to the transient absorption spectra within the first 1 ns after photo-excitation. An analysis of the energy transfer kinetics indicates that the transitions occur primarily between quantum wells with values of n that differ by 1 because of the spectral overlap factor that governs the energy transfer rate. Two-dimensional transient absorption spectra reveal a pattern of resonances consistent with the dominance of sequential energy transfer dynamics.
Verification and Planning for Stochastic Processes with Asynchronous Events
National Research Council Canada - National Science Library
Younes, Hakan L
2005-01-01
.... The most common assumption is that of history-independence: the Markov assumption. In this thesis, the author considers the problems of verification and planning for stochastic processes with asynchronous events, without relying on the Markov assumption...
TCDQ-TCT retraction and losses during asynchronous beam dump
Bracco, Chiara; Quaranta, Elena; CERN. Geneva. ATS Department
2016-01-01
The protection provided by the TCDQs in case of asynchronous beam dump depends strongly on their correct setup. They have to respect the strict hierarchy of the full collimation system and shield the tertiary collimators in the experimental regions. This MD aimed at performing asynchronous beam dump tests with different configurations, in order to assess the minimum allowed retraction between TCTs and TCDQs and, as a consequence, on the The protection provided by the TCDQs in case of asynchronous beam dump depends strongly on their correct setup. They have to respect the strict hierarchy of the full collimation system and shield the tertiary collimators in the experimental regions. This MD aimed at performing asynchronous beam dump tests with different configurations, in order to assess the minimum allowed retraction between TCTs and TCDQs and, as a consequence, on the β* reach.
Supporting collaborative discussions on asynchronous time: a technological perspective
Caballé, Santi
2011-01-01
The aim of this paper is to report on an experience of using an innovative on-line learning tool to support real, collaborative learning through discussion in asynchronous time. While asynchronous interaction gives rise to unique opportunities that support active, collaborative learning, unique problems also arise, such as frustration, caused by waiting for other peoples' reactions and feedback and the consequent loss of motivation, which has a negative impact on learning outcomes. In order t...
A Block-Asynchronous Relaxation Method for Graphics Processing Units
Anzt, H.; Dongarra, J.; Heuveline, Vincent; Tomov, S.
2011-01-01
In this paper, we analyze the potential of asynchronous relaxation methods on Graphics Processing Units (GPUs). For this purpose, we developed a set of asynchronous iteration algorithms in CUDA and compared them with a parallel implementation of synchronous relaxation methods on CPU-based systems. For a set of test matrices taken from the University of Florida Matrix Collection we monitor the convergence behavior, the average iteration time and the total time-to-solution time. Analyzing the r...
Functional asynchronous networks: Factorization of dynamics and function
Directory of Open Access Journals (Sweden)
Bick Christian
2016-01-01
Full Text Available In this note we describe the theory of functional asynchronous networks and one of the main results, the Modularization of Dynamics Theorem, which for a large class of functional asynchronous networks gives a factorization of dynamics in terms of constituent subnetworks. For these networks we can give a complete description of the network function in terms of the function of the events comprising the network and thereby answer a question originally raised by Alon in the context of biological networks.
Novel Asynchronous Wrapper and Its Application to GALS Systems
Institute of Scientific and Technical Information of China (English)
Zhuang Shengxian; Peng Anjin; Lars Wanhammar
2006-01-01
An asynchronous wrapper with novel handshake circuits for data communication in globally asynchronous locally synchronous (GALS) systems is proposed. The handshake circuits include two communication ports and a local clock generator. Two approaches for the implementation of communication ports are presented, one with pure standard cells and the others with Müller-C elements. The detailed design methodology for GALS systems is given and the circuits are validated with VHDL and circuits simulation in standard CMOS technology.
Commande adaptive d'une machine asynchrone
Slama-Belkhodja, I.; de Fornel, B.
1996-06-01
The paper deals with an indirect self-tuning speed control for an induction motor supplied by a chopper-filter-inverter system. Input/Output models are identified with the recursive least squares algorithm and the controller adaptation is based on a pole assignement strategy. Emphasis is put on the evaluation of the parameter identification in order to avoid instabilities because of disturbances or insufficient excitations. This is especially of importance when the adaptive control is carried out in closed loop systems and without additional test signals. Simulation results show the improvement of the dynamic responses and the robustness against load variations or parameters variations (rotor resistance, inertia). Cat article décrit une stratégie de commande adaptive indirecte à Placement de Pôles (PP), appliquée à la commande en vitesse d'une machine asynchrone alimentée par un ensemble hacheur-filtre-onduleur de tension. L'algorithme des Moindres Carrés Récursifs (MCR) est utilisé pour l'identification des modèles de comportement type entrées/sorties. Un intérêt particulier est porté à la mise en oeuvre de cet algorithme et à la discussion de ses résultats, tenant compte des erreurs de modélisation et de la nature peu riche en excitations des entrées du processus. Différents régimes transitoires ont été simulés pour apprécier l'apport de cette association (MCR-PP) : démarrages et inversion des sens de rotation, à vide et en charges, applications d'échelons de couple résistant, variations paramétriques. Les résultats permettent d'illustrer, tant au niveau des performances que de la robustesse, l'apport d'une telle commande adaptive pour des entraînements électriques avec une machine asynchrone.
Orthotropic Piezoelectricity in 2D Nanocellulose.
García, Y; Ruiz-Blanco, Yasser B; Marrero-Ponce, Yovani; Sotomayor-Torres, C M
2016-10-06
The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V -1 , ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.
Automatic Contour Extraction from 2D Image
Directory of Open Access Journals (Sweden)
Panagiotis GIOANNIS
2011-03-01
Full Text Available Aim: To develop a method for automatic contour extraction from a 2D image. Material and Method: The method is divided in two basic parts where the user initially chooses the starting point and the threshold. Finally the method is applied to computed tomography of bone images. Results: An interesting method is developed which can lead to a successful boundary extraction of 2D images. Specifically data extracted from a computed tomography images can be used for 2D bone reconstruction. Conclusions: We believe that such an algorithm or part of it can be applied on several other applications for shape feature extraction in medical image analysis and generally at computer graphics.
Orthotropic Piezoelectricity in 2D Nanocellulose
García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.
2016-10-01
The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V-1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.
Explorative analysis of 2D color maps
Steiger, Martin; Bernard, Jürgen; Thum, Simon; Mittelstädt, Sebastian; Hutter, Marco; Keim, Daniel A.; Kohlhammer, Jörn
2015-01-01
Color is one of the most important visual variables in information visualization. In many cases, two-dimensional information can be color-coded based on a 2D color map. A variety of color maps as well as a number of quality criteria for the use of color have been presented. The choice of the best color map depends on the analytical task users intend to perform and the design space in choosing an appropriate 2D color map is large. In this paper, we present the ColorMap-Explorer, a visual-inter...
Asynchronous Rate Chaos in Spiking Neuronal Circuits.
Directory of Open Access Journals (Sweden)
Omri Harish
2015-07-01
Full Text Available The brain exhibits temporally complex patterns of activity with features similar to those of chaotic systems. Theoretical studies over the last twenty years have described various computational advantages for such regimes in neuronal systems. Nevertheless, it still remains unclear whether chaos requires specific cellular properties or network architectures, or whether it is a generic property of neuronal circuits. We investigate the dynamics of networks of excitatory-inhibitory (EI spiking neurons with random sparse connectivity operating in the regime of balance of excitation and inhibition. Combining Dynamical Mean-Field Theory with numerical simulations, we show that chaotic, asynchronous firing rate fluctuations emerge generically for sufficiently strong synapses. Two different mechanisms can lead to these chaotic fluctuations. One mechanism relies on slow I-I inhibition which gives rise to slow subthreshold voltage and rate fluctuations. The decorrelation time of these fluctuations is proportional to the time constant of the inhibition. The second mechanism relies on the recurrent E-I-E feedback loop. It requires slow excitation but the inhibition can be fast. In the corresponding dynamical regime all neurons exhibit rate fluctuations on the time scale of the excitation. Another feature of this regime is that the population-averaged firing rate is substantially smaller in the excitatory population than in the inhibitory population. This is not necessarily the case in the I-I mechanism. Finally, we discuss the neurophysiological and computational significance of our results.
Managing Asynchronous Data in ATLAS's Concurrent Framework
Baines, John; The ATLAS collaboration
2016-01-01
In order to be able to make effective use of emerging hardware, where the amount of memory available to any CPU is rapidly decreasing as the core count continues to rise, ATLAS has begun a migration to a concurrent, multi-threaded software framework, known as AthenaMT. Significant progress has been made in implementing AthenaMT - we can currently run realistic Geant4 simulations on massively concurrent machines. the migration of realistic prototypes of reconstruction workflows is more difficult, given the large amounts of legacy code and the complexity and challenges of reconstruction software. These types of workflows, however, are the types that will most benefit from the memory reduction features of a multi-threaded framework. One of the challenges that we will report on in this paper is the re-design and implementation of several key asynchronous technologies whose behaviour is radically different in a concurrent environment than in a serial one, namely the management of Conditions data and the Detector D...
Rapid, generalized adaptation to asynchronous audiovisual speech.
Van der Burg, Erik; Goodbourn, Patrick T
2015-04-07
The brain is adaptive. The speed of propagation through air, and of low-level sensory processing, differs markedly between auditory and visual stimuli; yet the brain can adapt to compensate for the resulting cross-modal delays. Studies investigating temporal recalibration to audiovisual speech have used prolonged adaptation procedures, suggesting that adaptation is sluggish. Here, we show that adaptation to asynchronous audiovisual speech occurs rapidly. Participants viewed a brief clip of an actor pronouncing a single syllable. The voice was either advanced or delayed relative to the corresponding lip movements, and participants were asked to make a synchrony judgement. Although we did not use an explicit adaptation procedure, we demonstrate rapid recalibration based on a single audiovisual event. We find that the point of subjective simultaneity on each trial is highly contingent upon the modality order of the preceding trial. We find compelling evidence that rapid recalibration generalizes across different stimuli, and different actors. Finally, we demonstrate that rapid recalibration occurs even when auditory and visual events clearly belong to different actors. These results suggest that rapid temporal recalibration to audiovisual speech is primarily mediated by basic temporal factors, rather than higher-order factors such as perceived simultaneity and source identity. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Asynchronous Rate Chaos in Spiking Neuronal Circuits
Harish, Omri; Hansel, David
2015-01-01
The brain exhibits temporally complex patterns of activity with features similar to those of chaotic systems. Theoretical studies over the last twenty years have described various computational advantages for such regimes in neuronal systems. Nevertheless, it still remains unclear whether chaos requires specific cellular properties or network architectures, or whether it is a generic property of neuronal circuits. We investigate the dynamics of networks of excitatory-inhibitory (EI) spiking neurons with random sparse connectivity operating in the regime of balance of excitation and inhibition. Combining Dynamical Mean-Field Theory with numerical simulations, we show that chaotic, asynchronous firing rate fluctuations emerge generically for sufficiently strong synapses. Two different mechanisms can lead to these chaotic fluctuations. One mechanism relies on slow I-I inhibition which gives rise to slow subthreshold voltage and rate fluctuations. The decorrelation time of these fluctuations is proportional to the time constant of the inhibition. The second mechanism relies on the recurrent E-I-E feedback loop. It requires slow excitation but the inhibition can be fast. In the corresponding dynamical regime all neurons exhibit rate fluctuations on the time scale of the excitation. Another feature of this regime is that the population-averaged firing rate is substantially smaller in the excitatory population than in the inhibitory population. This is not necessarily the case in the I-I mechanism. Finally, we discuss the neurophysiological and computational significance of our results. PMID:26230679
High power-efficient asynchronous SAR ADC for IoT devices
Zhang, Beichen; Yao, Bingbing; Liu, Liyuan; Liu, Jian; Wu, Nanjian
2017-10-01
This paper presents a power-efficient 100-MS/s, 10-bit asynchronous successive approximation register (SAR) ADC. It includes an on-chip reference buffer and the total power dissipation is 6.8 mW. To achieve high performance with high power-efficiency in the proposed ADC, bootstrapped switch, redundancy, set-and-down switching approach, dynamic comparator and dynamic logic techniques are employed. The prototype was fabricated using 65 nm standard CMOS technology. At a 1.2-V supply and 100 MS/s, the ADC achieves an SNDR of 56.2 dB and a SFDR of 65.1 dB. The ADC core consumes only 3.1 mW, resulting in a figure of merit (FOM) of 30.27 fJ/conversionstep and occupies an active area of only 0.009 mm2.
Aircraft height estimation using 2-D radar
CSIR Research Space (South Africa)
Hakl, H
2010-01-01
Full Text Available A method to infer height information from an aircraft tracked with a single 2-D search radar is presented. The method assumes level flight in the target aircraft and a good estimate of the speed of the aircraft. The method yields good results...
2D PIM Simulation Based on COMSOL
DEFF Research Database (Denmark)
Wang, Xinbo; Cui, Wanzhao; Wang, Jingyu
2011-01-01
Passive intermodulation (PIM) is a problematic type of nonlinear distortion en- countered in many communication systems. To analyze the PIM distortion resulting from ma- terial nonlinearity, a 2D PIM simulation method based on COMSOL is proposed in this paper. As an example, a rectangular wavegui...
Small polarons in 2D perovskites
Cortecchia, Daniele
2017-11-02
We demonstrate that white light luminescence in two-dimensional (2D) perovskites stems from photoinduced formation of small polarons confined at specific sites of the inorganic framework in the form of self-trapped electrons and holes. We discuss their application in white light emitting devices and X-ray scintillators.
Small polarons in 2D perovskites
Cortecchia, Daniele; Yin, Jun; Birowosuto, Muhammad D.; Lo, Shu-Zee A.; Gurzadyan, Gagik G.; Bruno, Annalisa; Bredas, Jean-Luc; Soci, Cesare
2017-01-01
We demonstrate that white light luminescence in two-dimensional (2D) perovskites stems from photoinduced formation of small polarons confined at specific sites of the inorganic framework in the form of self-trapped electrons and holes. We discuss their application in white light emitting devices and X-ray scintillators.
International Nuclear Information System (INIS)
Metzler, R
2005-01-01
New branches of scientific disciplines often have a few paradigmatic models that serve as a testing ground for theories and a starting point for new inquiries. In the late 1990s, one of these models found fertile ground in the growing field of econophysics: the Minority Game (MG), a model for speculative markets that combined conceptual simplicity with interesting emergent behaviour and challenging mathematics. The two basic ingredients were the minority mechanism (a large number of players have to choose one of two alternatives in each round, and the minority wins) and limited rationality (each player has a small set of decision rules, and chooses the more successful ones). Combining these, one observes a phase transition between a crowded and an inefficient market phase, fat-tailed price distributions at the transition, and many other nontrivial effects. Now, seven years after the first paper, three of the key players-Damien Challet, Matteo Marsili and Yi-Cheng Zhang-have published a monograph that summarizes the current state of the science. The book consists of two parts: a 100-page overview of the various aspects of the MG, and reprints of many essential papers. The first chapters of Part I give a well-written description of the motivation and the history behind the MG, and then go into the phenomenology and the mathematical treatment of the model. The authors emphasize the 'physics' underlying the behaviour and give coherent, intuitive explanations that are difficult to extract from the original papers. The mathematics is outlined, but calculations are not carried out in great detail (maybe they could have been included in an appendix). Chapter 4 then discusses how and why the MG is a model for speculative markets, how it can be modified to give a closer fit to observed market statistics (in particular, reproducing the 'stylized facts' of fat-tailed distributions and volatility clustering), and what conclusions one can draw from the behaviour of the MG when
Effect of asynchronous updating on the stability of cellular automata
International Nuclear Information System (INIS)
Baetens, J.M.; Van der Weeën, P.; De Baets, B.
2012-01-01
Highlights: ► An upper bound on the Lyapunov exponent of asynchronously updated CA is established. ► The employed update method has repercussions on the stability of CAs. ► A decision on the employed update method should be taken with care. ► Substantial discrepancies arise between synchronously and asynchronously updated CA. ► Discrepancies between different asynchronous update schemes are less pronounced. - Abstract: Although cellular automata (CAs) were conceptualized as utter discrete mathematical models in which the states of all their spatial entities are updated simultaneously at every consecutive time step, i.e. synchronously, various CA-based models that rely on so-called asynchronous update methods have been constructed in order to overcome the limitations that are tied up with the classical way of evolving CAs. So far, only a few researchers have addressed the consequences of this way of updating on the evolved spatio-temporal patterns, and the reachable stationary states. In this paper, we exploit Lyapunov exponents to determine to what extent the stability of the rules within a family of totalistic CAs is affected by the underlying update method. For that purpose, we derive an upper bound on the maximum Lyapunov exponent of asynchronously iterated CAs, and show its validity, after which we present a comparative study between the Lyapunov exponents obtained for five different update methods, namely one synchronous method and four well-established asynchronous methods. It is found that the stability of CAs is seriously affected if one of the latter methods is employed, whereas the discrepancies arising between the different asynchronous methods are far less pronounced and, finally, we discuss the repercussions of our findings on the development of CA-based models.
ASCERTAINMENT OF THE EQUIVALENT CIRCUIT PARAMETERS OF THE ASYNCHRONOUS MACHINE
Directory of Open Access Journals (Sweden)
V. S. Safaryan
2015-01-01
Full Text Available The article considers experimental and analytical determination of the asynchronous machine equivalent-circuit parameters with application of the reference data. Transient processes investigation of the asynchronous machines necessitates the equivalent circuit parameters (resistance impedance, inductances and coefficient of the stator-rotor contours mutual inductance that help form the transitory-process mathematical simulation model. The reference books do not provide those parameters; they instead give the rated ones (active power, voltage, slide, coefficient of performance and capacity coefficient as well as the ratio of starting and nominal currents and torques. The noted studies on the asynchronous machine equivalent-circuits parametrization fail to solve the problems ad finem or solve them with admissions. The paper presents experimental and analytical determinations of the asynchronous machine equivalent-circuit parameters: the experimental one based on the results of two measurements and the analytical one where the problem boils down to solving a system of nonlineal algebraic equations. The authors investigate the equivalent asynchronous machine input-resistance properties and adduce the dependence curvatures of the input-resistances on the slide. They present a symbolic model for analytical parameterization of the asynchronous machine equivalent-circuit that represents a system of nonlineal equations and requires one of the rotor-parameters arbitrary assignment. The article demonstrates that for the asynchronous machine equivalent-circuit experimental parameterization the measures are to be conducted of the stator-circuit voltage, current and active power with two different slides and arbitrary assignment of one of the rotor parameters. The paper substantiates the fact that additional measurement does not discard the rotor-parameter choice arbitrariness. The authors establish that in motoring mode there is a critical slide by which the
Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology
Directory of Open Access Journals (Sweden)
Kateryna Shavanova
2016-02-01
Full Text Available The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical. A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.
IHadoop: Asynchronous iterations for MapReduce
Elnikety, Eslam Mohamed Ibrahim
2011-11-01
MapReduce is a distributed programming frame-work designed to ease the development of scalable data-intensive applications for large clusters of commodity machines. Most machine learning and data mining applications involve iterative computations over large datasets, such as the Web hyperlink structures and social network graphs. Yet, the MapReduce model does not efficiently support this important class of applications. The architecture of MapReduce, most critically its dataflow techniques and task scheduling, is completely unaware of the nature of iterative applications; tasks are scheduled according to a policy that optimizes the execution for a single iteration which wastes bandwidth, I/O, and CPU cycles when compared with an optimal execution for a consecutive set of iterations. This work presents iHadoop, a modified MapReduce model, and an associated implementation, optimized for iterative computations. The iHadoop model schedules iterations asynchronously. It connects the output of one iteration to the next, allowing both to process their data concurrently. iHadoop\\'s task scheduler exploits inter-iteration data locality by scheduling tasks that exhibit a producer/consumer relation on the same physical machine allowing a fast local data transfer. For those iterative applications that require satisfying certain criteria before termination, iHadoop runs the check concurrently during the execution of the subsequent iteration to further reduce the application\\'s latency. This paper also describes our implementation of the iHadoop model, and evaluates its performance against Hadoop, the widely used open source implementation of MapReduce. Experiments using different data analysis applications over real-world and synthetic datasets show that iHadoop performs better than Hadoop for iterative algorithms, reducing execution time of iterative applications by 25% on average. Furthermore, integrating iHadoop with HaLoop, a variant Hadoop implementation that caches
IHadoop: Asynchronous iterations for MapReduce
Elnikety, Eslam Mohamed Ibrahim; El Sayed, Tamer S.; Ramadan, Hany E.
2011-01-01
MapReduce is a distributed programming frame-work designed to ease the development of scalable data-intensive applications for large clusters of commodity machines. Most machine learning and data mining applications involve iterative computations over large datasets, such as the Web hyperlink structures and social network graphs. Yet, the MapReduce model does not efficiently support this important class of applications. The architecture of MapReduce, most critically its dataflow techniques and task scheduling, is completely unaware of the nature of iterative applications; tasks are scheduled according to a policy that optimizes the execution for a single iteration which wastes bandwidth, I/O, and CPU cycles when compared with an optimal execution for a consecutive set of iterations. This work presents iHadoop, a modified MapReduce model, and an associated implementation, optimized for iterative computations. The iHadoop model schedules iterations asynchronously. It connects the output of one iteration to the next, allowing both to process their data concurrently. iHadoop's task scheduler exploits inter-iteration data locality by scheduling tasks that exhibit a producer/consumer relation on the same physical machine allowing a fast local data transfer. For those iterative applications that require satisfying certain criteria before termination, iHadoop runs the check concurrently during the execution of the subsequent iteration to further reduce the application's latency. This paper also describes our implementation of the iHadoop model, and evaluates its performance against Hadoop, the widely used open source implementation of MapReduce. Experiments using different data analysis applications over real-world and synthetic datasets show that iHadoop performs better than Hadoop for iterative algorithms, reducing execution time of iterative applications by 25% on average. Furthermore, integrating iHadoop with HaLoop, a variant Hadoop implementation that caches
2D-deformaatio-animaatio peligrafiikassa
Falck, Tia
2017-01-01
Opinnäytetyössä tavoitteena oli esitellä deformaatio-animaation hyötyjä peligrafiikassa. Esimerkillisenä pelinä käytettiin pääasiassa Vanillawaren Dragon’s Crownian, koska siinä yhdistyvät perinteinen sprite sheet -animaatiota käyttävä peligrafiikka ja animaatiotyyli, jonka pystyisi tekemään helpommin kokonaan 2D-mesh-deformaatiota ja luurankoanimaatiota käyttäen. Projektityön osuudessa käytiin läpi animoidun 2D-hahmon työvaiheet kahdessa eri ohjelmassa, joissa molemmissa pystyi teke...
Flexible 2D layered material junctions
Balabai, R.; Solomenko, A.
2018-03-01
Within the framework of the methods of the electron density functional and the ab initio pseudopotential, we have obtained the valence electron density spatial distribution, the densities of electron states, the widths of band gaps, the charges on combined regions, and the Coulomb potentials for graphene-based flexible 2D layered junctions, using author program complex. It is determined that the bending of the 2D layered junctions on the angle α leads to changes in the electronic properties of these junctions. In the graphene/graphane junction, there is clear charge redistribution with different signs in the regions of junctions. The presence in the heterojunctions of charge regions with different signs leads to the formation of potential barriers. The greatest potential jump is in the graphene/fluorographene junction. The greatest value of the band gap width is in the graphene/graphane junction.
Energy Technology Data Exchange (ETDEWEB)
Metzler, R [Institut fuer Theoretische Physik, Universitaet Wuerzburg, Am Hubland, D-97074 Wuerzburg (Germany)
2005-02-25
New branches of scientific disciplines often have a few paradigmatic models that serve as a testing ground for theories and a starting point for new inquiries. In the late 1990s, one of these models found fertile ground in the growing field of econophysics: the Minority Game (MG), a model for speculative markets that combined conceptual simplicity with interesting emergent behaviour and challenging mathematics. The two basic ingredients were the minority mechanism (a large number of players have to choose one of two alternatives in each round, and the minority wins) and limited rationality (each player has a small set of decision rules, and chooses the more successful ones). Combining these, one observes a phase transition between a crowded and an inefficient market phase, fat-tailed price distributions at the transition, and many other nontrivial effects. Now, seven years after the first paper, three of the key players-Damien Challet, Matteo Marsili and Yi-Cheng Zhang-have published a monograph that summarizes the current state of the science. The book consists of two parts: a 100-page overview of the various aspects of the MG, and reprints of many essential papers. The first chapters of Part I give a well-written description of the motivation and the history behind the MG, and then go into the phenomenology and the mathematical treatment of the model. The authors emphasize the 'physics' underlying the behaviour and give coherent, intuitive explanations that are difficult to extract from the original papers. The mathematics is outlined, but calculations are not carried out in great detail (maybe they could have been included in an appendix). Chapter 4 then discusses how and why the MG is a model for speculative markets, how it can be modified to give a closer fit to observed market statistics (in particular, reproducing the 'stylized facts' of fat-tailed distributions and volatility clustering), and what conclusions one can draw from the
Smith, Greg; Lankshear, Allan
1998-07-01
2dF is a multi-object instrument mounted at prime focus at the AAT capable of spectroscopic analysis of 400 objects in a single 2 degree field. It also prepares a second 2 degree 400 object field while the first field is being observed. At its heart is a high precision robotic positioner that places individual fiber end magnetic buttons on one of two field plates. The button gripper is carried on orthogonal gantries powered by linear synchronous motors and contains a TV camera which precisely locates backlit buttons to allow placement in user defined locations to 10 (mu) accuracy. Fiducial points on both plates can also be observed by the camera to allow repeated checks on positioning accuracy. Field plates rotate to follow apparent sky rotation. The spectrographs both analyze light from the 200 observing fibers each and back- illuminate the 400 fibers being re-positioned during the observing run. The 2dF fiber position and spectrograph system is a large and complex instrument located at the prime focus of the Anglo Australian Telescope. The mechanical design has departed somewhat from the earlier concepts of Gray et al, but still reflects the audacity of those first ideas. The positioner is capable of positioning 400 fibers on a field plate while another 400 fibers on another plate are observing at the focus of the telescope and feeding the twin spectrographs. When first proposed it must have seemed like ingenuity unfettered by caution. Yet now it works, and works wonderfully well. 2dF is a system which functions as the result of the combined and coordinated efforts of the astronomers, the mechanical designers and tradespeople, the electronic designers, the programmers, the support staff at the telescope, and the manufacturing subcontractors. The mechanical design of the 2dF positioner and spectrographs was carried out by the mechanical engineering staff of the AAO and the majority of the manufacture was carried out in the AAO workshops.
Design of 2-D rational digital filters
International Nuclear Information System (INIS)
Harris, D.B
1981-01-01
A novel 2-D rational filter design technique is presented which makes use of a reflection coefficient function (RCF) representation for the filter transfer function. The design problem is formulated in the frequency domain. A least-square error criterion is used though the usual error measure is augmented with barrier functions. These act to restrict the domain of approximation to the set of stable filters. Construction of suitable barrier functions is facilitated by the RCF characterization
Quasiparticle interference in unconventional 2D systems.
Chen, Lan; Cheng, Peng; Wu, Kehui
2017-03-15
At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe 2 ), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.
Thermodynamics of 2D string theory
International Nuclear Information System (INIS)
Alexandrov, Sergei Yu.; V.A. Fock Department of Theoretical Physics, St. Petersburg University
2003-01-01
We calculate the free energy, energy and entropy in the matrix quantum mechanical formulation of 2D string theory in a background strongly perturbed by tachyons with the imaginary minkowskian momentum ±i/R ('Sine-Liouville' theory). The system shows a thermodynamical behaviour corresponding to the temperature T={1/(2π R)}. We show that the microscopically calculated energy of the system satisfies the usual thermodynamical relations and leads to a non-zero entropy. (author)
2D materials: Graphene and others
Energy Technology Data Exchange (ETDEWEB)
Bansal, Suneev Anil, E-mail: suneev@gmail.com; Singh, Amrinder Pal [Deptt. of Mech Engg, UIET, Panjab University, Chandigarh (India); Kumar, Suresh [Deptt. of Applied Sciences, UIET, Panjab University, Chandigarh (India)
2016-05-06
Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.
Simulation of 2D Granular Hopper Flow
Li, Zhusong; Shattuck, Mark
2012-02-01
Jamming and intermittent granular flow are big problems in industry, and the vertical hopper is a canonical example of these difficulties. We simulate gravity driven flow and jamming of 2D disks in a vertical hopper and compare with identical companion experiments presented in this session. We measure and compare the flow rate and probability for jamming as a function of particle properties and geometry. We evaluate the ability of standard Hertz-Mindlin contact mode to quantitatively predict the experimental flow.
Realistic and efficient 2D crack simulation
Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek
2010-04-01
Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.
Engineering light outcoupling in 2D materials
Lien, Derhsien
2015-02-11
When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.
Engineering light outcoupling in 2D materials
Lien, Derhsien; Kang, Jeongseuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsinping; Roy, Tania; Eggleston, Michael S.; Wu, Ming C.; Dubey, Madan; Lee, Sichen; He, Jr-Hau; Javey, Ali
2015-01-01
When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.
Simulating fail-stop in asynchronous distributed systems
Sabel, Laura; Marzullo, Keith
1994-01-01
The fail-stop failure model appears frequently in the distributed systems literature. However, in an asynchronous distributed system, the fail-stop model cannot be implemented. In particular, it is impossible to reliably detect crash failures in an asynchronous system. In this paper, we show that it is possible to specify and implement a failure model that is indistinguishable from the fail-stop model from the point of view of any process within an asynchronous system. We give necessary conditions for a failure model to be indistinguishable from the fail-stop model, and derive lower bounds on the amount of process replication needed to implement such a failure model. We present a simple one-round protocol for implementing one such failure model, which we call simulated fail-stop.
The Design of Finite State Machine for Asynchronous Replication Protocol
Wang, Yanlong; Li, Zhanhuai; Lin, Wei; Hei, Minglei; Hao, Jianhua
Data replication is a key way to design a disaster tolerance system and to achieve reliability and availability. It is difficult for a replication protocol to deal with the diverse and complex environment. This means that data is less well replicated than it ought to be. To reduce data loss and to optimize replication protocols, we (1) present a finite state machine, (2) run it to manage an asynchronous replication protocol and (3) report a simple evaluation of the asynchronous replication protocol based on our state machine. It's proved that our state machine is applicable to guarantee the asynchronous replication protocol running in the proper state to the largest extent in the event of various possible events. It also can helpful to build up replication-based disaster tolerance systems to ensure the business continuity.
PsychVACS: a system for asynchronous telepsychiatry.
Odor, Alberto; Yellowlees, Peter; Hilty, Donald; Parish, Michelle Burke; Nafiz, Najia; Iosif, Ana-Maria
2011-05-01
To describe the technical development of an asynchronous telepsychiatry application, the Psychiatric Video Archiving and Communication System. A client-server application was developed in Visual Basic.Net with Microsoft(®) SQL database as the backend. It includes the capability of storing video-recorded psychiatric interviews and manages the workflow of the system with automated messaging. Psychiatric Video Archiving and Communication System has been used to conduct the first ever series of asynchronous telepsychiatry consultations worldwide. A review of the software application and the process as part of this project has led to a number of improvements that are being implemented in the next version, which is being written in Java. This is the first description of the use of video recorded data in an asynchronous telemedicine application. Primary care providers and consulting psychiatrists have found it easy to work with and a valuable resource to increase the availability of psychiatric consultation in remote rural locations.
From 2D to 3D turbulence through 2D3C configurations
Buzzicotti, Michele; Biferale, Luca; Linkmann, Moritz
2017-11-01
We study analytically and numerically the geometry of the nonlinear interactions and the resulting energy transfer directions of 2D3C flows. Through a set of suitably designed Direct Numerical Simulations we also study the coupling between several 2D3C flows, where we explore the transition between 2D and fully 3D turbulence. In particular, we find that the coupling of three 2D3C flows on mutually orthogonal planes subject to small-scale forcing leads to a stationary 3D out-of-equilibrium dynamics at the energy containing scales where the inverse cascade is directly balanced by a forward cascade carried by a different subsets of interactions. ERC AdG Grant No 339032 NewTURB.
2D non-separable linear canonical transform (2D-NS-LCT) based cryptography
Zhao, Liang; Muniraj, Inbarasan; Healy, John J.; Malallah, Ra'ed; Cui, Xiao-Guang; Ryle, James P.; Sheridan, John T.
2017-05-01
The 2D non-separable linear canonical transform (2D-NS-LCT) can describe a variety of paraxial optical systems. Digital algorithms to numerically evaluate the 2D-NS-LCTs are not only important in modeling the light field propagations but also of interest in various signal processing based applications, for instance optical encryption. Therefore, in this paper, for the first time, a 2D-NS-LCT based optical Double-random- Phase-Encryption (DRPE) system is proposed which offers encrypting information in multiple degrees of freedom. Compared with the traditional systems, i.e. (i) Fourier transform (FT); (ii) Fresnel transform (FST); (iii) Fractional Fourier transform (FRT); and (iv) Linear Canonical transform (LCT), based DRPE systems, the proposed system is more secure and robust as it encrypts the data with more degrees of freedom with an augmented key-space.
Asynchronous glaciations in arid continental climate
Batbaatar, Jigjidsurengiin; Gillespie, Alan R.; Fink, David; Matmon, Ari; Fujioka, Toshiyuki
2018-02-01
Mountain glaciers at ∼26-19 ka, during the global Last Glacial Maximum near the end of the last 105 yr glacial cycle, are commonly considered on the basis of dating and field mapping in several well-studied areas to have been the largest of the late Quaternary and to have advanced synchronously from region to region. However, a numerical sensitivity model (Rupper and Roe, 2008) predicts that the fraction of ablation due to melting varies across Central Asia in proportion to the annual precipitation. The equilibrium-line altitude of glaciers across this region likely varies accordingly: in high altitude, cold and arid regions sublimation can ablate most of the ice, whereas glaciers fed by high precipitation cannot ablate completely due to sublimation alone, but extend downhill until higher temperatures there cause them to melt. We have conducted field studies and 10Be dating at five glaciated sites along a precipitation gradient in Mongolia to test the Rupper/Roe model. The sites are located in nearby 1.875 × 1.875° cells of the Rupper/Roe model, each with a different melt fraction, in this little-studied region. The modern environment of the sites ranges from dry subhumid in the north (47.7° N) to arid in the south (45° N). Our findings show that the maximum local advances in the dry subhumid conditions predated the global Last Glacial Maximum and were likely from MIS 3. However, we also found that at ∼8-7 ka a cirque glacier in one mountain range of the arid Gobi desert grew to a magnitude comparable to that of the local maximum extent. This Holocene maximum occurred during a regional pluvial period thousands of years after the retreat of the Pleistocene glaciers globally. This asynchronous behavior is not predicted by the prevailing and generally correct presumption that glacier advances are dominantly driven by temperature, although precipitation also plays a role. Our findings are consistent with and support the Rupper/Roe model, which calls for
On the Convergence of Asynchronous Parallel Pattern Search
International Nuclear Information System (INIS)
Tamara Gilbson Kolda
2002-01-01
In this paper the authors prove global convergence for asynchronous parallel pattern search. In standard pattern search, decisions regarding the update of the iterate and the step-length control parameter are synchronized implicitly across all search directions. They lose this feature in asynchronous parallel pattern search since the search along each direction proceeds semi-autonomously. By bounding the value of the step-length control parameter after any step that produces decrease along a single search direction, they can prove that all the processes share a common accumulation point and that such a point is a stationary point of the standard nonlinear unconstrained optimization problem
Application of intelligent soft start in asynchronous motor
Du, Xue; Ye, Ying; Wang, Yuelong; Peng, Lei; Zhang, Suying
2018-05-01
The starting way of three phase asynchronous motor has full voltage start and step-down start. Direct starting brings large current impact, causing excessive local temperature to the power grid and larger starting torque will also impact the motor equipment and affect the service life of the motor. Aim at the problem of large current and torque caused by start-up, an intelligent soft starter is proposed. Through the application of intelligent soft start on asynchronous motor, highlights its application advantage in motor control.
DESIGN METHODOLOGY OF SELF-EXCITED ASYNCHRONOUS GENERATOR
Directory of Open Access Journals (Sweden)
Berzan V.
2012-04-01
Full Text Available The paper sets out the methodology of designing an asynchronous generator with capacitive self-excitation. It is known that its design is possible on the basis of serial synchronous motor with squirrel cage rotor. With this approach, the design reworked only the stator winding of electrical machines, making it cost-effectively implement the creation of the generator. Therefore, the methodology for the design, optimization calculations, the development scheme and the stator winding excitation system gain, not only of practical interest, and may also be useful for specialists in the field of electrical machines in the design of asynchronous generators.
Reliable self-replicating machines in asynchronous cellular automata.
Lee, Jia; Adachi, Susumu; Peper, Ferdinand
2007-01-01
We propose a self-replicating machine that is embedded in a two-dimensional asynchronous cellular automaton with von Neumann neighborhood. The machine dynamically encodes its shape into description signals, and despite the randomness of cell updating, it is able to successfully construct copies of itself according to the description signals. Self-replication on asynchronously updated cellular automata may find application in nanocomputers, where reconfigurability is an essential property, since it allows avoidance of defective parts and simplifies programming of such computers.
On the theoretical gap between synchronous and asynchronous MPC protocols
DEFF Research Database (Denmark)
Beerliová-Trubíniová, Zuzana; Hirt, Martin; Nielsen, Jesper Buus
2010-01-01
that in the cryptographic setting (with setup), the sole reason for it is the distribution of inputs: given an oracle for input distribution, cryptographically-secure asynchronous MPC is possible with the very same condition as synchronous MPC, namely t ..., we show that such an input-distribution oracle can be reduced to an oracle that allows each party to synchronously broadcast one single message. This means that when one single round of synchronous broadcast is available, then asynchronous MPC is possible at the same condition as synchronous MPC...
Design issues in the semantics and scheduling of asynchronous tasks.
Energy Technology Data Exchange (ETDEWEB)
Olivier, Stephen L.
2013-07-01
The asynchronous task model serves as a useful vehicle for shared memory parallel programming, particularly on multicore and manycore processors. As adoption of model among programmers has increased, support has emerged for the integration of task parallel language constructs into mainstream programming languages, e.g., C and C++. This paper examines some of the design decisions in Cilk and OpenMP concerning semantics and scheduling of asynchronous tasks with the aim of informing the efforts of committees considering language integration, as well as developers of new task parallel languages and libraries.
Temple, Aidan
2013-01-01
Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. The step-by-step approach taken by this book will show you how to develop a 2D HTML5 platformer-based game that you will be able to publish to multiple devices.This book is great for anyone who has an interest in HTML5 games development, and who already has a basic to intermediate grasp on both the HTML markup and JavaScript programming languages. Therefore, due to this requirement, the book will not discuss the inner workings of either of these languages but will instead attempt to
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Frigaard, Peter
This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), on behalf of Energy E2 A/S part of DONG Energy A/S, Denmark. The objective of the tests was: to investigate the combined influence of the pile...... diameter to water depth ratio and the wave hight to water depth ratio on wave run-up of piles. The measurements should be used to design access platforms on piles....
Gluon amplitudes as 2 d conformal correlators
Pasterski, Sabrina; Shao, Shu-Heng; Strominger, Andrew
2017-10-01
Recently, spin-one wave functions in four dimensions that are conformal primaries of the Lorentz group S L (2 ,C ) were constructed. We compute low-point, tree-level gluon scattering amplitudes in the space of these conformal primary wave functions. The answers have the same conformal covariance as correlators of spin-one primaries in a 2 d CFT. The Britto-Cachazo-Feng-Witten (BCFW) recursion relation between three- and four-point gluon amplitudes is recast into this conformal basis.
2D gravity and random matrices
International Nuclear Information System (INIS)
Zinn-Justin, J.
1990-01-01
Recent progress in 2D gravity coupled to d ≤ 1 matter, based on a representation of discrete gravity in terms of random matrices, is reported. The matrix problem can be solved in many cases by the introduction of suitable orthogonal polynomials. Alternatively in the continuum limit the orthogonal polynomial method can be shown to be equivalent to the construction of representation of the canonical commutation relations in terms of differential operators. In the case of pure gravity or discrete Ising-like matter the sum over topologies is reduced to the solution of non-linear differential equations. The d = 1 problem can be solved by semiclassical methods
2-d spectroscopic imaging of brain tumours
International Nuclear Information System (INIS)
Ferris, N.J.; Brotchie, P.R.
2002-01-01
Full text: This poster illustrates the use of two-dimensional spectroscopic imaging (2-D SI) in the characterisation of brain tumours, and the monitoring of subsequent treatment. After conventional contrast-enhanced MR imaging of patients with known or suspected brain tumours, 2-D SI is performed at a single axial level. The level is chosen to include the maximum volume of abnormal enhancement, or, in non-enhancing lesions. The most extensive T2 signal abnormality. Two different MR systems have been used (Marconi Edge and GE Signa LX); at each site, a PRESS localisation sequence is employed with TE 128-144 ms. Automated software is used to generate spectral arrays, metabolite maps, and metabolite ratio maps from the spectroscopic data. Colour overlays of the maps onto anatomical images are produced using manufacturer software or the Medex imaging data analysis package. High grade gliomas showed choline levels higher than those in apparently normal brain, with decreases in NAA and creatine. Some lesions showed spectral abnormality extending into otherwise normal appearing brain. This was also seen in a case of CNS lymphoma. Lowgrade lesions showed choline levels similar to normal brain, but with decreased NAA. Only a small number of metastases have been studied, but to date no metastasis has shown spectral abnormality beyond the margins suggested by conventional imaging. Follow-up studies generally show spectral heterogeneity. Regions with choline levels higher than those in normal-appearing brain are considered to represent recurrent high-grade tumour. Some regions show choline to be the dominant metabolite, but its level is not greater than that seen in normal brain. These regions are considered suspicious for residual / recurrent tumour when the choline / creatine ratio exceeds 2 (lower ratios may represent treatment effect). 2-D SI improves the initial assessment of brain tumours, and has potential for influencing the radiotherapy treatment strategy. 2-D SI also
Is 'bosonic matter' unstable in 2D?
Manoukian, E B
2003-01-01
An upper bound is derived for the exact ground-state energy in 2D, E sub N <= -(me sup 4 /2 h-bar sup 2)(N sup 3 sup / sup 2 /50 pi sup 2), of 'bosonic matter' consisting of N positive and N negative charges with Coulombic interactions. This is to be compared with the classic N sup 7 sup / sup 5 3D-law of Dyson and gives rise to a more 'violent' collapse of such matter in 2D for large N. The derivation is based on a rigorous analysis which, in the process, controls the negative part of the Hamiltonian over its positive kinetic energy part and detailed estimates needed for counting trial wavefunctions of arbitrary states. A formal dimensional analysis in the style of Dyson alone shows, in arbitrary dimensions of space d = 1, 2, ..., that E sub N approx = -(me sup 4 /2 h-bar sup 2)C sub d N suprho, rho = (d + 4)/(d + 2), where C sub d is a positive constant depending on d, consistent with our rigorous bound, and we are led to conjecture that 'bosonic matter' is unstable in all dimensions.
Yang, Shengxue; Jiang, Chengbao; Wei, Su-huai
2017-06-01
Two-dimensional (2D) layered inorganic nanomaterials have attracted huge attention due to their unique electronic structures, as well as extraordinary physical and chemical properties for use in electronics, optoelectronics, spintronics, catalysts, energy generation and storage, and chemical sensors. Graphene and related layered inorganic analogues have shown great potential for gas-sensing applications because of their large specific surface areas and strong surface activities. This review aims to discuss the latest advancements in the 2D layered inorganic materials for gas sensors. We first elaborate the gas-sensing mechanisms and introduce various types of gas-sensing devices. Then, we describe the basic parameters and influence factors of the gas sensors to further enhance their performance. Moreover, we systematically present the current gas-sensing applications based on graphene, graphene oxide (GO), reduced graphene oxide (rGO), functionalized GO or rGO, transition metal dichalcogenides, layered III-VI semiconductors, layered metal oxides, phosphorene, hexagonal boron nitride, etc. Finally, we conclude the future prospects of these layered inorganic materials in gas-sensing applications.
Energy Technology Data Exchange (ETDEWEB)
Wang, Yuxian [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Xie, Yongbing, E-mail: ybxie@ipe.ac.cn [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Sun, Hongqi [Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Xiao, Jiadong; Cao, Hongbin [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Wang, Shaobin, E-mail: shaobin.wang@curtin.edu.au [Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia)
2016-01-15
Highlights: • 2D γ-MnO{sub 2}/2D rGO hybrids (MnO{sub 2}/rGO) via a facile hydrothermal route were prepared. • MnO{sub 2}/rGO exhibits high activity in catalytic ozonation of 4-nitrophenol. • ·O{sub 2}{sup ̄} and {sup 1}O{sub 2} are the major radicals for 4-nitrophenol degradation and mineralization. • A synergistic effect of ozonation and peroxymonosulfate oxidation was evaluated. - Abstract: Two-dimensional reduced graphene oxide (2D rGO) was employed as both a shape-directing medium and support to fabricate 2D γ-MnO{sub 2}/2D rGO nano-hybrids (MnO{sub 2}/rGO) via a facile hydrothermal route. For the first time, the 2D/2D hybrid materials were used for catalytic ozonation of 4-nitrophenol. The catalytic efficiency of MnO{sub 2}/rGO was much higher than either MnO{sub 2} or rGO only, and rGO was suggested to play the role for promoting electron transfers. Quenching tests using tert-butanol, p-benzoquinone, and sodium azide suggested that the major radicals responsible for 4-nitrophenol degradation and mineralization are O{sub 2}{sup ̄} and {sup 1}O{sub 2}, but not ·OH. Reusability tests demonstrated a high stability of the materials in catalytic ozonation with minor Mn leaching below 0.5 ppm. Degradation mechanism, reaction kinetics, reusability and a synergistic effect between catalytic ozonation and coupling peroxymonosulfate (PMS) activation were also discussed.
2D correlation Raman microspectroscopy of chosen parts of rat's brain tissue
Zięba-Palus, J.; Wesełucha-Birczyńska, A.; Sacharz, J.; Lewandowski, M. H.; Palus, K.; Chrobok, Ł.; Kowalski, R.; Moskal, P.; Birczyńska, M.; Sozańska, Agnieszka
2017-11-01
Raman spectra of two areas of Wistar rat brain tissue, tissue that are linked functionally to one another -the somatosensory cortex (Sc) and the dorsolateral geniculate nucleus of the thalamus (DLG)- excited with 442 nm, 514.5 nm, 785 nm and 1064 nm laser lines- were studied. No fixation method was used to preserve samples taken from the precisely defined anatomical areas of the brain. The brain slides were kept in artificial cerebrospinal fluid during the measurements. Averaged spectra were analyzed using the 2D correlation method. The varying wavelength/energy of the excitation laser was regarded as an external stimulus. 2D correlation analysis resolved differences between Sc and DLG in the range of 1800-1000 cm-1 and also in the hetero-spectral regions of about 1800-1200 cm-1 and 3100-2500 cm-1. Auto-peaks at 1659 cm-1 and 1666 cm-1 characterize the phase of the constituent lipid clusters with proteins and cholesterol in Sc and cholesterol in DLG, respectively. Appearing cross-peaks indicate the correlations with different phospholipids structures and protein bands and also cholesterol for Sc and DLG, respectively. Asynchronous spectra distinguish between areas of the brain due to the presence of neurotransmitters.
Epileptic rat brain tissue analyzed by 2D correlation Raman spectroscopy
Sacharz, Julia; Wesełucha-Birczyńska, Aleksandra; Zięba-Palus, Janina; Lewandowski, Marian H.; Kowalski, Rafał; Palus, Katarzyna; Chrobok, Łukasz; Moskal, Paulina; Birczyńska, Malwina; Sozańska, Agnieszka
2018-01-01
Absence epilepsy is the neurological disorder characterized by the pathological spike-and wave discharges present in the electroencephalogram, accompanying a sudden loss of consciousness. Experiments were performed on brain slices obtained from young male WAG/Rij rats (2-3 weeks old), so that they were sampled before the appearance of brain-damaging seizures symptoms. Two differing brain areas of the rats' brain tissue were studied: the somatosensory cortex (Sc) and the dorsal lateral geniculate nucleus of the thalamus (DLG). The Raman spectra of the fresh brain scraps, kept during measurements in artificial cerebrospinal fluid, were collected using as an excitation source 442 nm, 514.5 nm, 785 nm and 1064 nm laser line. The average spectra were analyzed by 2D correlation method regarding laser line as an external perturbation. In 2D synchronous spectra positive auto-peaks corresponding to the Cdbnd C stretching and amide I band vibrations show maxima at 1660 cm- 1 and 1662 cm- 1 for Sc and DLG, respectively. The prominent auto-peak at 2937 cm- 1, originated from the CH3 mode in DLG brain area, seems to indicate the importance of methylation, considered to be significant in epileptogenesis. Synchronous and asynchronous correlations peaks, glutamic acid and gamma-aminobutyric acid (GABA), appear in Sc and DLG, respectively. In the 1730-1600 cm- 1 range occur cross-peaks which appearance might be triggered by glial fibrillary acidic protein (GFAP) activation.
O Riagain, Padraig; Shuibhne, Niamh Nic
1997-01-01
A survey of literature since 1990 on minority languages and language rights focuses on five issues: definition of minorities; individual vs. collective rights; legal bases for minority linguistic rights; applications and interpretations of minority language rights; and assessments of the impact of minority rights legislation. A nine-item annotated…
Adding the Human Touch to Asynchronous Online Learning
Glenn, Cynthia Wheatley
2018-01-01
For learners to actively accept responsibility in a virtual classroom platform, it is necessary to provide special motivation extending across the traditional classroom setting into asynchronous online learning. This article explores specific ways to do this that bridge the gap between ground and online students' learning experiences, and how…
Miscellany of Students' Satisfaction in an Asynchronous Learning Environment
Larbi-Siaw, Otu; Owusu-Agyeman, Yaw
2017-01-01
This study investigates the determinants of students' satisfaction in an asynchronous learning environment using seven key considerations: the e-learning environment, student-content interaction, student and student interaction, student-teacher interaction, group cohesion and timely participation, knowledge of Internet usage, and satisfaction. The…
An improved modelling of asynchronous machine with skin-effect ...
African Journals Online (AJOL)
The conventional method of analysis of Asynchronous machine fails to give accurate results especially when the machine is operated under high rotor frequency. At high rotor frequency, skin-effect dominates causing the rotor impedance to be frequency dependant. This paper therefore presents an improved method of ...
Content Analysis Coding Schemes for Online Asynchronous Discussion
Weltzer-Ward, Lisa
2011-01-01
Purpose: Researchers commonly utilize coding-based analysis of classroom asynchronous discussion contributions as part of studies of online learning and instruction. However, this analysis is inconsistent from study to study with over 50 coding schemes and procedures applied in the last eight years. The aim of this article is to provide a basis…
Reconceptualising Moderation in Asynchronous Online Discussions Using Grounded Theory
Vlachopoulos, Panos; Cowan, John
2010-01-01
This article reports a grounded theory study of the moderation of asynchronous online discussions, to explore the processes by which tutors in higher education decide when and how to moderate. It aims to construct a theory of e-moderation based on some key factors which appear to influence e-moderation. It discusses previous research on the…
Asynchronous Assessment in a Large Lecture Marketing Course
Downey, W. Scott; Schetzsle, Stacey
2012-01-01
Asynchronous assessment, which includes quizzes or exams online or outside class, offers marketing educators an opportunity to make more efficient use of class time and to enhance students' learning experiences by giving them more flexibility and choice in their assessment environment. In this paper, we examine the performance difference between…
Asynchronous Group Review of EFL Writing: Interactions and Text Revisions
Saeed, Murad Abdu; Ghazali, Kamila
2017-01-01
The current paper reports an empirical study of asynchronous online group review of argumentative essays among nine English as foreign language (EFL) Arab university learners joining English in their first, second, and third years at the institution. In investigating online interactions, commenting patterns, and how the students facilitate text…
Turing Incompleteness of Asynchronous P Systems with Active Membranes
Leporati, Alberto; Manzoni, Luca; Porreca, Antonio E.
2013-01-01
We prove that asynchronous P systems with active membranes without divi- sion rules can be simulated by place/transition Petri nets, and hence are computationally weaker than Turing machines. This result holds even if the synchronisation mechanisms provided by electrical charges and membrane dissolution are exploited.
Asynchronous online foresight panels: the case of wildfire management
David N. Bengston; Robert L. Olson
2015-01-01
Text-based asynchronous online conferencing involves structured online discussion and deliberation among multiple participants from multiple sites in which there is a delay in interaction between contributors. This method has been widely used for a variety of purposes in higher education and other settings, but has not been commonly used in futures research. This paper...
OFDM with Index Modulation for Asynchronous mMTC Networks.
Doğan, Seda; Tusha, Armed; Arslan, Hüseyin
2018-04-21
One of the critical missions for next-generation wireless communication systems is to fulfill the high demand for massive Machine-Type Communications (mMTC). In mMTC systems, a sporadic transmission is performed between machine users and base station (BS). Lack of coordination between the users and BS in time destroys orthogonality between the subcarriers, and causes inter-carrier interference (ICI). Therefore, providing services to asynchronous massive machine users is a major challenge for Orthogonal Frequency Division Multiplexing (OFDM). In this study, OFDM with index modulation (OFDM-IM) is proposed as an eligible solution to alleviate ICI caused by asynchronous transmission in uncoordinated mMTC networks. In OFDM-IM, data transmission is performed not only by modulated subcarriers but also by the indices of active subcarriers. Unlike classical OFDM, fractional subcarrier activation leads to less ICI in OFDM-IM technology. A novel subcarrier mapping scheme (SMS) named as Inner Subcarrier Activation is proposed to further alleviate adjacent user interference in asynchronous OFDM-IM-based systems. ISA reduces inter-user interference since it gives more activation priority to inner subcarriers compared with the existing SMS-s. The superiority of the proposed SMS is shown through both theoretical analysis and computer-based simulations in comparison to existing mapping schemes for asynchronous systems.
Designing a Web-Based Asynchronous Innovation/Entrepreneurism Course
Ghandforoush, Parviz
2017-01-01
Teaching an online fully asynchronous information technology course that requires students to ideate, build an e-commerce website, and develop an effective business plan involves a well-developed and highly engaging course design. This paper describes the design, development, and implementation of such a course and presents information on…
Study of a centrifugal pump, asynchronous motor and inverter, using ...
African Journals Online (AJOL)
The signals generated by the micro controller have been used to program the parallel port of a computer. By reading the recorded bits of the parallel port in LabVIEW software, the signals from the micro controller have been restored and made available to the simulation model of the three-phase inverter, asynchronous ...
Optimization of parameters of special asynchronous electric drives
Karandey, V. Yu; Popov, B. K.; Popova, O. B.; Afanasyev, V. L.
2018-03-01
The article considers the solution of the problem of parameters optimization of special asynchronous electric drives. The solution of the problem will allow one to project and create special asynchronous electric drives for various industries. The created types of electric drives will have optimum mass-dimensional and power parameters. It will allow one to realize and fulfill the set characteristics of management of technological processes with optimum level of expenses of electric energy, time of completing the process or other set parameters. The received decision allows one not only to solve a certain optimizing problem, but also to construct dependences between the optimized parameters of special asynchronous electric drives, for example, with the change of power, current in a winding of the stator or rotor, induction in a gap or steel of magnetic conductors and other parameters. On the constructed dependences, it is possible to choose necessary optimum values of parameters of special asynchronous electric drives and their components without carrying out repeated calculations.
Positive semidefinite integrated covariance estimation, factorizations and asynchronicity
DEFF Research Database (Denmark)
Boudt, Kris; Laurent, Sébastien; Lunde, Asger
2017-01-01
An estimator of the ex-post covariation of log-prices under asynchronicity and microstructure noise is proposed. It uses the Cholesky factorization of the covariance matrix in order to exploit the heterogeneity in trading intensities to estimate the different parameters sequentially with as many...
Positive Semidefinite Integrated Covariance Estimation, Factorizations and Asynchronicity
DEFF Research Database (Denmark)
Boudt, Kris; Laurent, Sébastien; Lunde, Asger
An estimator of the ex-post covariation of log-prices under asynchronicity and microstructure noise is proposed. It uses the Cholesky factorization on the correlation matrix in order to exploit the heterogeneity in trading intensity to estimate the different parameters sequentially with as many...
Developing a Successful Asynchronous Online Extension Program for Forest Landowners
Zobrist, Kevin W.
2014-01-01
Asynchronous online Extension classes can reach a wide audience, is convenient for the learner, and minimizes ongoing demands on instructor time. However, producing such classes takes significant effort up front. Advance planning and good communication with contributors are essential to success. Considerations include delivery platforms, content…
2-d Simulations of Test Methods
DEFF Research Database (Denmark)
Thrane, Lars Nyholm
2004-01-01
One of the main obstacles for the further development of self-compacting concrete is to relate the fresh concrete properties to the form filling ability. Therefore, simulation of the form filling ability will provide a powerful tool in obtaining this goal. In this paper, a continuum mechanical...... approach is presented by showing initial results from 2-d simulations of the empirical test methods slump flow and L-box. This method assumes a homogeneous material, which is expected to correspond to particle suspensions e.g. concrete, when it remains stable. The simulations have been carried out when...... using both a Newton and Bingham model for characterisation of the rheological properties of the concrete. From the results, it is expected that both the slump flow and L-box can be simulated quite accurately when the model is extended to 3-d and the concrete is characterised according to the Bingham...
2D vector-cyclic deformable templates
DEFF Research Database (Denmark)
Schultz, Nette; Conradsen, Knut
1998-01-01
In this paper the theory of deformable templates is a vector cycle in 2D is described. The deformable template model originated in (Grenander, 1983) and was further investigated in (Grenander et al., 1991). A template vector distribution is induced by parameter distribution from transformation...... matrices applied to the vector cycle. An approximation in the parameter distribution is introduced. The main advantage by using the deformable template model is the ability to simulate a wide range of objects trained by e.g. their biological variations, and thereby improve restoration, segmentation...... and probabillity measurement. The case study concerns estimation of meat percent in pork carcasses. Given two cross-sectional images - one at the front and one near the ham of the carcass - the areas of lean and fat and a muscle in the lean area are measured automatically by the deformable templates....
2D quantum gravity from quantum entanglement.
Gliozzi, F
2011-01-21
In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.
Locality constraints and 2D quasicrystals
International Nuclear Information System (INIS)
Socolar, J.E.S.
1990-01-01
The plausible assumption that long-range interactions between atoms are negligible in a quasicrystal leaks to the study of tilings that obey constraints on the local configurations of tiles. The theory of such constraints (called matching rules) for 2D quasicrystal tilings is reviewed here. Different types of matching rules are defined and examples of tilings obeying them are given where known. The role of tile decoration is discussed and is shown to be significant in at least two cases (octagonal and dodecagonal duals of periodic 4-grids and 6-grids). A new result is introduced: a constructive procedure is described for generating weak matching rules for tilings with N-fold symmetry, for any N that is either a prime number or twice a prime number. The physics associated with weak matching rules, results on local growth rules, and the case of icosahedral symmetry are all briefly discussed. (author). 29 refs, 4 figs
Nonlinear Optics with 2D Layered Materials.
Autere, Anton; Jussila, Henri; Dai, Yunyun; Wang, Yadong; Lipsanen, Harri; Sun, Zhipei
2018-03-25
2D layered materials (2DLMs) are a subject of intense research for a wide variety of applications (e.g., electronics, photonics, and optoelectronics) due to their unique physical properties. Most recently, increasing research efforts on 2DLMs are projected toward the nonlinear optical properties of 2DLMs, which are not only fascinating from the fundamental science point of view but also intriguing for various potential applications. Here, the current state of the art in the field of nonlinear optics based on 2DLMs and their hybrid structures (e.g., mixed-dimensional heterostructures, plasmonic structures, and silicon/fiber integrated structures) is reviewed. Several potential perspectives and possible future research directions of these promising nanomaterials for nonlinear optics are also presented. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2D Electrostatic Actuation of Microshutter Arrays
Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.
2015-01-01
An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.
2-D Model Test of Dolosse Breakwater
DEFF Research Database (Denmark)
Burcharth, Hans F.; Liu, Zhou
1994-01-01
). To extend the design diagram to cover Dolos breakwaters with superstructure, 2-D model tests of Dolos breakwater with wave wall is included in the project Rubble Mound Breakwater Failure Modes sponsored by the Directorate General XII of the Commission of the European Communities under Contract MAS-CT92......The rational design diagram for Dolos armour should incorporate both the hydraulic stability and the structural integrity. The previous tests performed by Aalborg University (AU) made available such design diagram for the trunk of Dolos breakwater without superstructures (Burcharth et al. 1992...... was on the Dolos breakwater with a high superstructure, where there was almost no overtopping. This case is believed to be the most dangerous one. The test of the Dolos breakwater with a low superstructure was also performed. The objective of the last part of the experiment is to investigate the influence...
Full revivals in 2D quantum walks
International Nuclear Information System (INIS)
Stefanak, M; Jex, I; Kollar, B; Kiss, T
2010-01-01
Recurrence of a random walk is described by the Polya number. For quantum walks, recurrence is understood as the return of the walker to the origin, rather than the full revival of its quantum state. Localization for two-dimensional quantum walks is known to exist in the sense of non-vanishing probability distribution in the asymptotic limit. We show, on the example of the 2D Grover walk, that one can exploit the effect of localization to construct stationary solutions. Moreover, we find full revivals of a quantum state with a period of two steps. We prove that there cannot be longer cycles for a four-state quantum walk. Stationary states and revivals result from interference, which has no counterpart in classical random walks.
Predicting 2D target velocity cannot help 2D motion integration for smooth pursuit initiation.
Montagnini, Anna; Spering, Miriam; Masson, Guillaume S
2006-12-01
Smooth pursuit eye movements reflect the temporal dynamics of bidimensional (2D) visual motion integration. When tracking a single, tilted line, initial pursuit direction is biased toward unidimensional (1D) edge motion signals, which are orthogonal to the line orientation. Over 200 ms, tracking direction is slowly corrected to finally match the 2D object motion during steady-state pursuit. We now show that repetition of line orientation and/or motion direction does not eliminate the transient tracking direction error nor change the time course of pursuit correction. Nonetheless, multiple successive presentations of a single orientation/direction condition elicit robust anticipatory pursuit eye movements that always go in the 2D object motion direction not the 1D edge motion direction. These results demonstrate that predictive signals about target motion cannot be used for an efficient integration of ambiguous velocity signals at pursuit initiation.
Minority engineering scholarships, 2012.
2014-02-01
Scholarships for Minority Students Studying Engineering and Science: Support will make scholarships available to minority students : interested in engineering and science and will increase significantly the number of minority students that Missouri S...
Photovoltaic Effect of 2D Homologous Perovskites
International Nuclear Information System (INIS)
Jung, Mi-Hee
2017-01-01
Highlights: • The mixed perovskite was prepared by exposure of MAI gas on the BAPbI_4 film. • The increased dimensional perovskite shows a smaller band gap than 2D perovskite. • The mixed perovskite system shows the vertical crystal orientation. • The mixed perovskite cell exhibits the higher Jsc and FF than 2D perovskite cell. - Abstract: The controlled growth of mixed dimensional perovskite structures, (C_6H_5CH_2NH_2)(CH_3NH_3)_n_-_1Pb_nI_3_n_+_1, through the introduction of CH_3NH_3I molecule vapor into the two-dimensional perovskite C_6H_5CH_2NH_3PbI_4 structure and its application in photovoltaic devices is reported. The dimensionality of (C_6H_5CH_2NH_2)(CH_3NH_3)_n_-_1Pb_nI_3_n_+_1 is controlled using the exposure time to the CH_3NH_3I vapor on the C_6H_5CH_2NH_3PbI_4 perovskite film. As the stacking of the lead iodide lattice increases, the crystallographic planes of the inorganic perovskite compound exhibit vertical growth in order to facilitate efficient charge transport. Furthermore, the devices have a smaller band gap, which offers broader absorption and the potential to increase the photocurrent density in the solar cell. As a result, the photovoltaic device based on the (C_6H_5CH_2NH_2)(CH_3NH_3)_n_-_1Pb_nI_3_n_+_1 perovskite exhibits a power conversion efficiency of 5.43% with a short circuit current density of 14.49 mA cm"−"2, an open circuit voltage of 0.85 V, and a fill factor of 44.30 for the best power conversion efficiency under AM 1.5G solar irradiation (100 mW cm"−"2), which is significantly higher than the 0.34% of the pure two-dimensional BAPbI_4 perovskite-based solar cell.
Parallelization of 2-D lattice Boltzmann codes
International Nuclear Information System (INIS)
Suzuki, Soichiro; Kaburaki, Hideo; Yokokawa, Mitsuo.
1996-03-01
Lattice Boltzmann (LB) codes to simulate two dimensional fluid flow are developed on vector parallel computer Fujitsu VPP500 and scalar parallel computer Intel Paragon XP/S. While a 2-D domain decomposition method is used for the scalar parallel LB code, a 1-D domain decomposition method is used for the vector parallel LB code to be vectorized along with the axis perpendicular to the direction of the decomposition. High parallel efficiency of 95.1% by the vector parallel calculation on 16 processors with 1152x1152 grid and 88.6% by the scalar parallel calculation on 100 processors with 800x800 grid are obtained. The performance models are developed to analyze the performance of the LB codes. It is shown by our performance models that the execution speed of the vector parallel code is about one hundred times faster than that of the scalar parallel code with the same number of processors up to 100 processors. We also analyze the scalability in keeping the available memory size of one processor element at maximum. Our performance model predicts that the execution time of the vector parallel code increases about 3% on 500 processors. Although the 1-D domain decomposition method has in general a drawback in the interprocessor communication, the vector parallel LB code is still suitable for the large scale and/or high resolution simulations. (author)
Multimodal 2D Brain Computer Interface.
Almajidy, Rand K; Boudria, Yacine; Hofmann, Ulrich G; Besio, Walter; Mankodiya, Kunal
2015-08-01
In this work we used multimodal, non-invasive brain signal recording systems, namely Near Infrared Spectroscopy (NIRS), disc electrode electroencephalography (EEG) and tripolar concentric ring electrodes (TCRE) electroencephalography (tEEG). 7 healthy subjects participated in our experiments to control a 2-D Brain Computer Interface (BCI). Four motor imagery task were performed, imagery motion of the left hand, the right hand, both hands and both feet. The signal slope (SS) of the change in oxygenated hemoglobin concentration measured by NIRS was used for feature extraction while the power spectrum density (PSD) of both EEG and tEEG in the frequency band 8-30Hz was used for feature extraction. Linear Discriminant Analysis (LDA) was used to classify different combinations of the aforementioned features. The highest classification accuracy (85.2%) was achieved by using features from all the three brain signals recording modules. The improvement in classification accuracy was highly significant (p = 0.0033) when using the multimodal signals features as compared to pure EEG features.
FILM ANIMASI 2D (DIMENSI PENYULUHAN KB
Directory of Open Access Journals (Sweden)
Tri Hidayatul Ahmad Ismail
2013-02-01
Full Text Available Multimedia Animation is an attempt to make a live presentation of static or moving, the animation may consist of images and music to blend together and become alive. In this case Multimedia Animation designed by using multimedia-based information technology. From year to year Multimedia Animation Film Animation shaped more advanced, both in coloring, and in concep movement. With the community Animation Film spoiled by progress dazzling animation creation. Later in the era of globalization in Indonesia's population penetration rate can be calculated very rapidly. So the authors designed an Animated Film to Family Planning Counseling to promote family planning in the community.Data collection methods used to make this application is the method of interview and literature study. For the development of the system in this paper by using development techniques Luther systems development models - Sutopo which consists of six stages: concept, design, collecting materials, assembly, testing and distribution. The results of this study are 2D Animation Film as a medium of socialization to Family Planning Department with extension. Avi and will be distributed via CD media and aired on Social Media such as Facebook, Twitter and YouTube. This animation movie aims to be one choice as the media reduces the increase in the number of residents is too drastic. Keywords: movies, animation, family planning, Luther-Sutopo
2D conformal field theories and holography
International Nuclear Information System (INIS)
Freidel, Laurent; Krasnov, Kirill
2004-01-01
It is known that the chiral part of any 2D conformal field theory defines a 3D topological quantum field theory: quantum states of this TQFT are the CFT conformal blocks. The main aim of this paper is to show that a similar CFT/TQFT relation exists also for the full CFT. The 3D topological theory that arises is a certain 'square' of the chiral TQFT. Such topological theories were studied by Turaev and Viro; they are related to 3D gravity. We establish an operator/state correspondence in which operators in the chiral TQFT correspond to states in the Turaev-Viro theory. We use this correspondence to interpret CFT correlation functions as particular quantum states of the Turaev-Viro theory. We compute the components of these states in the basis in the Turaev-Viro Hilbert space given by colored 3-valent graphs. The formula we obtain is a generalization of the Verlinde formula. The later is obtained from our expression for a zero colored graph. Our results give an interesting 'holographic' perspective on conformal field theories in two dimensions
2D electromagnetic modelling of superconductors
International Nuclear Information System (INIS)
Morandi, Antonio
2012-01-01
Some issues concerning the numerical analysis of superconductors are discussed and a novel approach to 2D modelling is proposed. Both axial and translational symmetric as well as current driven and voltage driven systems are examined in detail. The E–J power law is chosen instead of the critical state model as a constitutive relation of the material and the need to modify this relation in order to account for the normal state transition at high currents is discussed. A linear space reconstruction of the current density by means of nodal shape functions is used in order to build the finite dimensional model. A method to relax the tangential continuity of the current density, which is inherent to the discretization method used, is discussed. The performance of the proposed approach, both in terms of current distribution and AC loss, is evaluated with reference to some cases of practical interest involving composite materials. The role of the electric field as a natural state variable for superconducting problems is also pointed out. The use of the method as an alternative to the circuit approach or edge elements for modelling the superconductors is finally discussed. (paper)
Parallelization of 2-D lattice Boltzmann codes
Energy Technology Data Exchange (ETDEWEB)
Suzuki, Soichiro; Kaburaki, Hideo; Yokokawa, Mitsuo
1996-03-01
Lattice Boltzmann (LB) codes to simulate two dimensional fluid flow are developed on vector parallel computer Fujitsu VPP500 and scalar parallel computer Intel Paragon XP/S. While a 2-D domain decomposition method is used for the scalar parallel LB code, a 1-D domain decomposition method is used for the vector parallel LB code to be vectorized along with the axis perpendicular to the direction of the decomposition. High parallel efficiency of 95.1% by the vector parallel calculation on 16 processors with 1152x1152 grid and 88.6% by the scalar parallel calculation on 100 processors with 800x800 grid are obtained. The performance models are developed to analyze the performance of the LB codes. It is shown by our performance models that the execution speed of the vector parallel code is about one hundred times faster than that of the scalar parallel code with the same number of processors up to 100 processors. We also analyze the scalability in keeping the available memory size of one processor element at maximum. Our performance model predicts that the execution time of the vector parallel code increases about 3% on 500 processors. Although the 1-D domain decomposition method has in general a drawback in the interprocessor communication, the vector parallel LB code is still suitable for the large scale and/or high resolution simulations. (author).
A simplified 2D HTTR benchmark problem
International Nuclear Information System (INIS)
Zhang, Z.; Rahnema, F.; Pounders, J. M.; Zhang, D.; Ougouag, A.
2009-01-01
To access the accuracy of diffusion or transport methods for reactor calculations, it is desirable to create heterogeneous benchmark problems that are typical of relevant whole core configurations. In this paper we have created a numerical benchmark problem in 2D configuration typical of a high temperature gas cooled prismatic core. This problem was derived from the HTTR start-up experiment. For code-to-code verification, complex details of geometry and material specification of the physical experiments are not necessary. To this end, the benchmark problem presented here is derived by simplifications that remove the unnecessary details while retaining the heterogeneity and major physics properties from the neutronics viewpoint. Also included here is a six-group material (macroscopic) cross section library for the benchmark problem. This library was generated using the lattice depletion code HELIOS. Using this library, benchmark quality Monte Carlo solutions are provided for three different configurations (all-rods-in, partially-controlled and all-rods-out). The reference solutions include the core eigenvalue, block (assembly) averaged fuel pin fission density distributions, and absorption rate in absorbers (burnable poison and control rods). (authors)
NASA-VOF2D, 2-D Transient Free Surface Incompressible Fluid Dynamic
International Nuclear Information System (INIS)
Torrey, M.D.
1988-01-01
1 - Description of program or function: NASA-VOF2D is a two- dimensional, transient, free surface incompressible fluid dynamics program. It allows multiple free surfaces with surface tension and wall adhesion forces and has a partial cell treatment which allows curved boundaries and interior obstacles. 2 - Method of solution: NASA-VOF2D simulates incompressible flows with free surfaces using the volume-of-fluid (VOF) algorithm. This technique is based on the use of donor-acceptor differencing to track the free surface across an Eulerian grid. The complete Navier-Stokes equations in primitive variables for an incompressible fluid are solved by finite differences with surface tension and wall adhesion included. Optionally the pressure equation can be solved by a conjugate residual method rather than the successive over-relaxation (SOR) method
Asynchronous decision making in a memorized paddle pressing task.
Dankert, James R; Olson, Byron; Si, Jennie
2008-12-01
This paper presents a method for asynchronous decision making using recorded neural data in a binary decision task. This is a demonstration of a technique for developing motor cortical neural prosthetics that do not rely on external cued timing information. The system presented in this paper uses support vector machines and leaky integrate-and-fire elements to predict directional paddle presses. In addition to the traditional metrics of accuracy, asynchronous systems must also optimize the time needed to make a decision. The system presented is able to predict paddle presses with a median accuracy of 88% and all decisions are made before the time of the actual paddle press. An alternative bit rate measure of performance is defined to show that the system proposed here is able to perform the task with the same efficiency as the rats.
Parallel, Asynchronous Executive (PAX): System concepts, facilities, and architecture
Jones, W. H.
1983-01-01
The Parallel, Asynchronous Executive (PAX) is a software operating system simulation that allows many computers to work on a single problem at the same time. PAX is currently implemented on a UNIVAC 1100/42 computer system. Independent UNIVAC runstreams are used to simulate independent computers. Data are shared among independent UNIVAC runstreams through shared mass-storage files. PAX has achieved the following: (1) applied several computing processes simultaneously to a single, logically unified problem; (2) resolved most parallel processor conflicts by careful work assignment; (3) resolved by means of worker requests to PAX all conflicts not resolved by work assignment; (4) provided fault isolation and recovery mechanisms to meet the problems of an actual parallel, asynchronous processing machine. Additionally, one real-life problem has been constructed for the PAX environment. This is CASPER, a collection of aerodynamic and structural dynamic problem simulation routines. CASPER is not discussed in this report except to provide examples of parallel-processing techniques.
Ultra Low Energy FDSOI Asynchronous Reconfiguration Network for Adaptive Circuits
Directory of Open Access Journals (Sweden)
Soundous Chairat
2017-05-01
Full Text Available This paper introduces a plug-and-play on-chip asynchronous communication network aimed at the dynamic reconfiguration of a low-power adaptive circuit such as an internet of things (IoT system. By using a separate communication network, we can address both digital and analog blocks at a lower configuration cost, increasing the overall system power efficiency. As reconfiguration only occurs according to specific events and has to be automatically in stand-by most of the time, our design is fully asynchronous using handshake protocols. The paper presents the circuit’s architecture, performance results, and an example of the reconfiguration of frequency locked loops (FLL to validate our work. We obtain an overall energy per bit of 0.07 pJ/bit for one stage, in a 28 nm Fully Depleted Silicon On Insulator (FDSOI technology at 0.6 V and a 1.1 ns/bit latency per stage.
Identification of novel CYP2D7-2D6 hybrids: non-functional and functional variants
Directory of Open Access Journals (Sweden)
Andrea Gaedigk
2010-10-01
Full Text Available Polymorphic expression of CYP2D6 contributes to the wide range of activity observed for this clinically important drug metabolizing enzyme. In this report we describe novel CYP2D7/2D6 hybrid genes encoding non-functional and functional CYP2D6 protein and a CYP2D7 variant that mimics a CYP2D7/2D6 hybrid gene. Five kb long PCR products encompassing the novel genes were entirely sequenced. A quantitative assay probing in different gene regions was employed to determine CYP2D6 and 2D7 copy number variations and the relative position of the hybrid genes within the locus was assessed by long-range PCR. In addition to the previously known CYP2D6*13 and *66 hybrids, we describe three novel non-functional CYP2D7-2D6 hybrids with gene switching in exon 2 (CYP2D6*79, intron 2 (CYP2D6*80 and intron 5 (CYP2D6*67. A CYP2D7-specific T-ins in exon 1 causes a detrimental frame shift. One subject revealed a CYP2D7 conversion in the 5’-flanking region of a CYP2D6*35 allele, was otherwise unaffected (designated CYP2D6*35B. Finally, three DNAs revealed a CYP2D7 gene with a CYP2D6-like region downstream of exon 9 (designated CYP2D7[REP6]. Quantitative copy number determination, sequence analyses and long-range PCR mapping were in agreement and excluded the presence of additional gene units. Undetected hybrid genes may cause over-estimation of CYP2D6 activity (CYP2D6*1/*1 vs *1/hybrid, etc, but may also cause results that may interfere with the genotype determination. Detection of hybrid events, ‘single’ and tandem, will contribute to more accurate phenotype prediction from genotype data.
Teleoperation system using Asynchronous transfer mode, ATM network
International Nuclear Information System (INIS)
Mohd Dani Baba; A Nasoruddin Mohamad
1999-01-01
This paper examines the application of Asynchronous Transfer Mode (ATM) in a distributed industrial environment such as in teleoperation, which performs real time control manipulation from a remote location. In our study, two models of teleoperation are proposed; the first model is a point to point connection and the second model is through an ATM network. The performance results are analysed as to determine whether the two models can support the teleoperation traffics via simulation using commercial software design tool. (Author)
Asynchronous Multi-Party Computation with Quadratic Communication
DEFF Research Database (Denmark)
Hirt, Martin; Nielsen, Jesper Buus; Przydatek, Bartosz
2008-01-01
We present an efficient protocol for secure multi-party computation in the asynchronous model with optimal resilience. For n parties, up to t < n/3 of them being corrupted, and security parameter κ, a circuit with c gates can be securely computed with communication complexity O(cn^2k) bits, which...... circuit randomization due to Beaver (Crypto’91), and an abstraction of certificates, which can be of independent interest....
Psychophysiological effects of synchronous versus asynchronous music during cycling.
Lim, Harry B T; Karageorghis, Costas I; Romer, Lee M; Bishop, Daniel T
2014-02-01
Synchronizing movement to a musical beat may reduce the metabolic cost of exercise, but findings to date have been equivocal. Our aim was to examine the degree to which the synchronous application of music moderates the metabolic demands of a cycle ergometer task. Twenty-three recreationally active men made two laboratory visits. During the first visit, participants completed a maximal incremental ramp test on a cycle ergometer. At the second visit, they completed four randomized 6-min cycling bouts at 90% of ventilatory threshold (control, metronome, synchronous music, and asynchronous music). Main outcome variables were oxygen uptake, HR, ratings of dyspnea and limb discomfort, affective valence, and arousal. No significant differences were evident for oxygen uptake. HR was lower under the metronome condition (122 ± 15 bpm) compared to asynchronous music (124 ± 17 bpm) and control (125 ± 16 bpm). Limb discomfort was lower while listening to the metronome (2.5 ± 1.2) and synchronous music (2.3 ± 1.1) compared to control (3.0 ± 1.5). Both music conditions, synchronous (1.9 ± 1.2) and asynchronous (2.1 ± 1.3), elicited more positive affective valence compared to metronome (1.2 ± 1.4) and control (1.2 ± 1.2), while arousal was higher with synchronous music (3.4 ± 0.9) compared to metronome (2.8 ± 1.0) and control (2.8 ± 0.9). Synchronizing movement to a rhythmic stimulus does not reduce metabolic cost but may lower limb discomfort. Moreover, synchronous music has a stronger effect on limb discomfort and arousal when compared to asynchronous music.
Asynchronous monitoring of the quality of multilevel optical PAM signals
Siuzdak, J.
2017-08-01
In the paper, there is analyzed the signal quality assessment method based on delay tap asynchronous sampling, both for binary and multilevel PAM signals. The obtained multilevel phase diagrams are far more complicated than binary ones. The phase diagrams are affected by the signal distortions but it is difficult to relate reliably the phase diagram form to the distortion type and its influence on the signal quality.
Asynchronous Execution of the Fast Multipole Method Using Charm++
AbdulJabbar, Mustafa; Yokota, Rio; Keyes, David
2014-01-01
Fast multipole methods (FMM) on distributed mem- ory have traditionally used a bulk-synchronous model of com- municating the local essential tree (LET) and overlapping it with computation of the local data. This could be perceived as an extreme case of data aggregation, where the whole LET is communicated at once. Charm++ allows a much finer control over the granularity of communication, and has a asynchronous execution model that fits well with the structure of our FMM code. Unlike previous ...
On physical states in 2d (topological) gravity
International Nuclear Information System (INIS)
Bouwknegt, P.; McCarthy, J.; Pilch, K.
1993-01-01
We review the BRST computation of physical states in various 2d gravity theories. First we discuss the cohomology relevant for 2d gravity coupled to c ≤ 1 conformal matter. We then use these results to compute the cohomology of a c=26 βγ-system, i.e. restricted 2d topological gravity. We also comment on the cohomology for the complete 2d topological gravity. (author). 39 refs
A novel asynchronous access method with binary interfaces
Directory of Open Access Journals (Sweden)
Torres-Solis Jorge
2008-10-01
Full Text Available Abstract Background Traditionally synchronous access strategies require users to comply with one or more time constraints in order to communicate intent with a binary human-machine interface (e.g., mechanical, gestural or neural switches. Asynchronous access methods are preferable, but have not been used with binary interfaces in the control of devices that require more than two commands to be successfully operated. Methods We present the mathematical development and evaluation of a novel asynchronous access method that may be used to translate sporadic activations of binary interfaces into distinct outcomes for the control of devices requiring an arbitrary number of commands to be controlled. With this method, users are required to activate their interfaces only when the device under control behaves erroneously. Then, a recursive algorithm, incorporating contextual assumptions relevant to all possible outcomes, is used to obtain an informed estimate of user intention. We evaluate this method by simulating a control task requiring a series of target commands to be tracked by a model user. Results When compared to a random selection, the proposed asynchronous access method offers a significant reduction in the number of interface activations required from the user. Conclusion This novel access method offers a variety of advantages over traditionally synchronous access strategies and may be adapted to a wide variety of contexts, with primary relevance to applications involving direct object manipulation.
Pseudo Asynchronous Level Crossing adc for ecg Signal Acquisition.
Marisa, T; Niederhauser, T; Haeberlin, A; Wildhaber, R A; Vogel, R; Goette, J; Jacomet, M
2017-02-07
A new pseudo asynchronous level crossing analogue-to-digital converter (adc) architecture targeted for low-power, implantable, long-term biomedical sensing applications is presented. In contrast to most of the existing asynchronous level crossing adc designs, the proposed design has no digital-to-analogue converter (dac) and no continuous time comparators. Instead, the proposed architecture uses an analogue memory cell and dynamic comparators. The architecture retains the signal activity dependent sampling operation by generating events only when the input signal is changing. The architecture offers the advantages of smaller chip area, energy saving and fewer analogue system components. Beside lower energy consumption the use of dynamic comparators results in a more robust performance in noise conditions. Moreover, dynamic comparators make interfacing the asynchronous level crossing system to synchronous processing blocks simpler. The proposed adc was implemented in [Formula: see text] complementary metal-oxide-semiconductor (cmos) technology, the hardware occupies a chip area of 0.0372 mm 2 and operates from a supply voltage of [Formula: see text] to [Formula: see text]. The adc's power consumption is as low as 0.6 μW with signal bandwidth from [Formula: see text] to [Formula: see text] and achieves an equivalent number of bits (enob) of up to 8 bits.
A Synchronous-Asynchronous Particle Swarm Optimisation Algorithm
Ab Aziz, Nor Azlina; Mubin, Marizan; Mohamad, Mohd Saberi; Ab Aziz, Kamarulzaman
2014-01-01
In the original particle swarm optimisation (PSO) algorithm, the particles' velocities and positions are updated after the whole swarm performance is evaluated. This algorithm is also known as synchronous PSO (S-PSO). The strength of this update method is in the exploitation of the information. Asynchronous update PSO (A-PSO) has been proposed as an alternative to S-PSO. A particle in A-PSO updates its velocity and position as soon as its own performance has been evaluated. Hence, particles are updated using partial information, leading to stronger exploration. In this paper, we attempt to improve PSO by merging both update methods to utilise the strengths of both methods. The proposed synchronous-asynchronous PSO (SA-PSO) algorithm divides the particles into smaller groups. The best member of a group and the swarm's best are chosen to lead the search. Members within a group are updated synchronously, while the groups themselves are asynchronously updated. Five well-known unimodal functions, four multimodal functions, and a real world optimisation problem are used to study the performance of SA-PSO, which is compared with the performances of S-PSO and A-PSO. The results are statistically analysed and show that the proposed SA-PSO has performed consistently well. PMID:25121109
Data Collection for Mobile Group Consumption: An Asynchronous Distributed Approach
Directory of Open Access Journals (Sweden)
Weiping Zhu
2016-04-01
Full Text Available Mobile group consumption refers to consumption by a group of people, such as a couple, a family, colleagues and friends, based on mobile communications. It differs from consumption only involving individuals, because of the complex relations among group members. Existing data collection systems for mobile group consumption are centralized, which has the disadvantages of being a performance bottleneck, having single-point failure and increasing business and security risks. Moreover, these data collection systems are based on a synchronized clock, which is often unrealistic because of hardware constraints, privacy concerns or synchronization cost. In this paper, we propose the first asynchronous distributed approach to collecting data generated by mobile group consumption. We formally built a system model thereof based on asynchronous distributed communication. We then designed a simulation system for the model for which we propose a three-layer solution framework. After that, we describe how to detect the causality relation of two/three gathering events that happened in the system based on the collected data. Various definitions of causality relations based on asynchronous distributed communication are supported. Extensive simulation results show that the proposed approach is effective for data collection relating to mobile group consumption.
Data Collection for Mobile Group Consumption: An Asynchronous Distributed Approach.
Zhu, Weiping; Chen, Weiran; Hu, Zhejie; Li, Zuoyou; Liang, Yue; Chen, Jiaojiao
2016-04-06
Mobile group consumption refers to consumption by a group of people, such as a couple, a family, colleagues and friends, based on mobile communications. It differs from consumption only involving individuals, because of the complex relations among group members. Existing data collection systems for mobile group consumption are centralized, which has the disadvantages of being a performance bottleneck, having single-point failure and increasing business and security risks. Moreover, these data collection systems are based on a synchronized clock, which is often unrealistic because of hardware constraints, privacy concerns or synchronization cost. In this paper, we propose the first asynchronous distributed approach to collecting data generated by mobile group consumption. We formally built a system model thereof based on asynchronous distributed communication. We then designed a simulation system for the model for which we propose a three-layer solution framework. After that, we describe how to detect the causality relation of two/three gathering events that happened in the system based on the collected data. Various definitions of causality relations based on asynchronous distributed communication are supported. Extensive simulation results show that the proposed approach is effective for data collection relating to mobile group consumption.
Energy Technology Data Exchange (ETDEWEB)
Guerette, D.
2009-07-01
This document presented a detailed mathematical explanation and validation of the steps leading to the development of an asynchronous squirrel-cage machine. The MatLab/Simulink software was used to model a wind turbine at variable high speeds. The asynchronous squirrel-cage machine is an electromechanical system coupled to a magnetic circuit. The resulting electromagnetic circuit can be represented as a set of resistances, leakage inductances and mutual inductances. Different models were used for a comparison study, including the Munteanu, Boldea, Wind Turbine Blockset, and SimPowerSystem. MatLab/Simulink modeling results were in good agreement with the results from other comparable models. Simulation results were in good agreement with analytical calculations. 6 refs, 2 tabs, 9 figs.
ON THE ISSUE OF VECTOR CONTROL OF THE ASYNCHRONOUS MOTORS
Directory of Open Access Journals (Sweden)
B. I. Firago
2015-01-01
Full Text Available The paper considers the issue of one of the widespread types of vector control realization for the asynchronous motors with a short-circuited rotor. Of all more than 20 vector control types known presently, the following are applied most frequently: direct vector control with velocity pickup (VP, direct vector control without VP, indirect vector control with VP and indirect vector control without VP. Despite the fact that the asynchronous-motor indirect vector control without VP is the easiest and most spread, the absence of VP does not allow controlling the motor electromagnetic torque at zero velocity. This is the reason why for electric motor drives of such requirements they utilize the vector control with a velocity transducer. The systems of widest dissemination became the direct and indirect vector control systems with X-axis alignment of the synchronously rotating x–y-coordinate frame along the rotor flux-linkage vector inasmuch as this provides the simplest correlations for controlling variables. Although these two types of vector control are well presented in literature, a number of issues concerning their realization and practical application require further elaboration. These include: the block schemes adequate representation as consisted with the modern realization of vector control and clarification of the analytical expressions for evaluating the regulator parameters.The authors present a technique for evaluating the dynamics of an asynchronous electric motor drive with direct vector control and x-axis alignment along the vector of rotor flux linkage. The article offers a generalized structure of this vector control type with detailed description of its principal blocks: controlling system, frequency converter, and the asynchronous motor.The paper presents a direct vector control simulating model developed in the MatLab environment on the grounds of this structure. The authors illustrate the described technique with the results
NKG2D and its ligands in cancer.
Dhar, Payal; Wu, Jennifer D
2018-04-01
NKG2D is an activating immune receptor expressed by NK and effector T cells. Induced expression of NKG2D ligand on tumor cell surface during oncogenic insults renders cancer cells susceptible to immune destruction. In advanced human cancers, tumor cells shed NKG2D ligand to produce an immune soluble form as a means of immune evasion. Soluble NKG2D ligands have been associated with poor clinical prognosis in cancer patients. Harnessing NKG2D pathway is considered a viable avenue in cancer immunotherapy over recent years. In this review, we will discuss the progress and perspectives. Copyright © 2018. Published by Elsevier Ltd.
Buxton, Eric C
2014-02-12
To evaluate and compare pharmacists' satisfaction with the content and learning environment of a continuing education program series offered as either synchronous or asynchronous webinars. An 8-lecture series of online presentations on the topic of new drug therapies was offered to pharmacists in synchronous and asynchronous webinar formats. Participants completed a 50-question online survey at the end of the program series to evaluate their perceptions of the distance learning experience. Eighty-two participants completed the survey instrument (41 participants from the live webinar series and 41 participants from the asynchronous webinar series.) Responses indicated that while both groups were satisfied with the program content, the asynchronous group showed greater satisfaction with many aspects of the learning environment. The synchronous and asynchronous webinar participants responded positively regarding the quality of the programming and the method of delivery, but asynchronous participants rated their experience more positively overall.
CYP2D7 sequence variation interferes with TaqMan CYP2D6*15 and *35 genotyping
Directory of Open Access Journals (Sweden)
Amanda K Riffel
2016-01-01
Full Text Available TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35 which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696 SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe
Coles, Flournoy A., Jr.
1973-01-01
This article discusses some of the more important economic problems of minorities in the United States, identifying the economics of minorities with the economics of poverty, discrimination, exploitation, urban life, and alienation. (JM)
Functional characterization of a first avian cytochrome P450 of the CYP2D subfamily (CYP2D49.
Directory of Open Access Journals (Sweden)
Hua Cai
Full Text Available The CYP2D family members are instrumental in the metabolism of 20-25% of commonly prescribed drugs. Although many CYP2D isoforms have been well characterized in other animal models, research concerning the chicken CYP2Ds is limited. In this study, a cDNA encoding a novel CYP2D enzyme (CYP2D49 was cloned from the chicken liver for the first time. The CYP2D49 cDNA contained an open reading frame of 502 amino acids that shared 52%-57% identities with other CYP2Ds. The gene structure and neighboring genes of CYP2D49 are conserved and similar to those of human CYP2D6. Additionally, similar to human CYP2D6, CYP2D49 is un-inducible in the liver and expressed predominantly in the liver, kidney and small intestine, with detectable levels in several other tissues. Metabolic assays of the CYP2D49 protein heterologously expressed in E. coli and Hela cells indicated that CYP2D49 metabolized the human CYP2D6 substrate, bufuralol, but not debrisoquine. Moreover, quinidine, a potent inhibitor of human CYP2D6, only inhibited the bufuralol 1'-hydroxylation activity of CYP2D49 to a negligible degree. All these results indicated that CYP2D49 had functional characteristics similar to those of human CYP2D6 but measurably differed in the debrisoquine 4'-hydroxylation and quinidine inhibitory profile. Further structure-function investigations that employed site-directed mutagenesis and circular dichroism spectroscopy identified the importance of Val-126, Glu-222, Asp-306, Phe-486 and Phe-488 in keeping the enzymatic activity of CYP2D49 toward bufuralol as well as the importance of Asp-306, Phe-486 and Phe-488 in maintaining the conformation of CYP2D49 protein. The current study is only the first step in characterizing the metabolic mechanism of CYP2D49; further studies are still required.
Nijman, J.E.; Fassbender, B.; Peters, A.
2012-01-01
This chapter discusses the paradox of minorities as a constitutive Other of international law. While minorities have been viewed as outside the international legal system for centuries, minorities have at the same time made a significant and fundamental contribution to precisely that system, as they
Blockchain-Empowered Fair Computational Resource Sharing System in the D2D Network
Directory of Open Access Journals (Sweden)
Zhen Hong
2017-11-01
Full Text Available Device-to-device (D2D communication is becoming an increasingly important technology in future networks with the climbing demand for local services. For instance, resource sharing in the D2D network features ubiquitous availability, flexibility, low latency and low cost. However, these features also bring along challenges when building a satisfactory resource sharing system in the D2D network. Specifically, user mobility is one of the top concerns for designing a cooperative D2D computational resource sharing system since mutual communication may not be stably available due to user mobility. A previous endeavour has demonstrated and proven how connectivity can be incorporated into cooperative task scheduling among users in the D2D network to effectively lower average task execution time. There are doubts about whether this type of task scheduling scheme, though effective, presents fairness among users. In other words, it can be unfair for users who contribute many computational resources while receiving little when in need. In this paper, we propose a novel blockchain-based credit system that can be incorporated into the connectivity-aware task scheduling scheme to enforce fairness among users in the D2D network. Users’ computational task cooperation will be recorded on the public blockchain ledger in the system as transactions, and each user’s credit balance can be easily accessible from the ledger. A supernode at the base station is responsible for scheduling cooperative computational tasks based on user mobility and user credit balance. We investigated the performance of the credit system, and simulation results showed that with a minor sacrifice of average task execution time, the level of fairness can obtain a major enhancement.
The no-hair conjecture in 2D dilaton supergravity
International Nuclear Information System (INIS)
Gamboa, J.; Georgelin, Y.
1993-06-01
Two dimensional dilaton gravity and supergravity are studied following Hamiltonian methods. The structure of constraints of 2D dilaton gravity and the 2D dilaton supergravity theory is discussed taking the square root of the bosonic constraints. The equations of motion are integrated in both cases, and it is shown that the solutions of the equation of motion of 2D dilaton supergravity differs from the solutions of 2D dilaton gravity only by boundary conditions on the fermionic variables, i.e. the black holes of 2D dilaton supergravity theory are exactly the same black holes of 2D bosonic dilaton gravity modulo supersymmetry transformations. This result is the bidimensional analogue of the no-hair theorem for supergravity. (authors). 28 refs
DEFF Research Database (Denmark)
Vadstrup, Kasper; Bendtsen, Flemming
2017-01-01
with a wide range of cell types and proteins involved. Natural Killer Group 2D (NKG2D) is an activating receptor constitutively expressed on human Natural Killer (NK), γδ T, mucosal-associated invariant T (MAIT), CD56⁺ T, and CD8⁺ T cells. Activation of NKG2D triggers cellular proliferation, cytokine...... production, and target cell killing. Research into the NKG2D mechanism of action has primarily been focused on cancer and viral infections where cytotoxicity evasion is a concern. In human inflammatory bowel disease (IBD) this system is less characterized, but the ligands have been shown to be highly...... expressed during intestinal inflammation and the following receptor activation may contribute to tissue degeneration. A recent phase II clinical trial showed that an antibody against NKG2D induced clinical remission of CD in some patients, suggesting NKG2D and its ligands to be of importance...
The Mechanical Transient Process at Asynchronous Motor Oscillating Mode
Antonovičs, Uldis; Bražis, Viesturs; Greivulis, Jānis
2009-01-01
The research object is squirrel-cage asynchronous motor connected to single-phase sinusoidal. There are shown, that by connecting to the stator windings a certain sequence of half-period positive and negative voltage, a motor rotor is rotated, but three times slower than in the three-phase mode. Changing the connecting sequence of positive and negative half-period voltage to stator windings, motor can work in various oscillating modes. It is tested experimentally. The mechanical transient processes had been researched in rotation and oscillating modes.
Asynchronous variational integration using continuous assumed gradient elements.
Wolff, Sebastian; Bucher, Christian
2013-03-01
Asynchronous variational integration (AVI) is a tool which improves the numerical efficiency of explicit time stepping schemes when applied to finite element meshes with local spatial refinement. This is achieved by associating an individual time step length to each spatial domain. Furthermore, long-term stability is ensured by its variational structure. This article presents AVI in the context of finite elements based on a weakened weak form (W2) Liu (2009) [1], exemplified by continuous assumed gradient elements Wolff and Bucher (2011) [2]. The article presents the main ideas of the modified AVI, gives implementation notes and a recipe for estimating the critical time step.
Buser, Thaddaeus J; Sidlauskas, Brian L; Summers, Adam P
2018-05-01
We contrast 2D vs. 3D landmark-based geometric morphometrics in the fish subfamily Oligocottinae by using 3D landmarks from CT-generated models and comparing the morphospace of the 3D landmarks to one based on 2D landmarks from images. The 2D and 3D shape variables capture common patterns across taxa, such that the pairwise Procrustes distances among taxa correspond and the trends captured by principal component analysis are similar in the xy plane. We use the two sets of landmarks to test several ecomorphological hypotheses from the literature. Both 2D and 3D data reject the hypothesis that head shape correlates significantly with the depth at which a species is commonly found. However, in taxa where shape variation in the z-axis is high, the 2D shape variables show sufficiently strong distortion to influence the outcome of the hypothesis tests regarding the relationship between mouth size and feeding ecology. Only the 3D data support previous studies which showed that large mouth sizes correlate positively with high percentages of elusive prey in the diet. When used to test for morphological divergence, 3D data show no evidence of divergence, while 2D data show that one clade of oligocottines has diverged from all others. This clade shows the greatest degree of z-axis body depth within Oligocottinae, and we conclude that the inability of the 2D approach to capture this lateral body depth causes the incongruence between 2D and 3D analyses. Anat Rec, 301:806-818, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Energy Technology Data Exchange (ETDEWEB)
Jacob, D.
2005-07-01
This book proposes a presentation of AC electric motors essentially based on physics and technology. Its originality consists in avoiding to use mathematical formulations (like Park's transformation). The modeling retained, which only uses magnetic momentum, magnetic fields and reluctance concepts, leads simply and naturally to the vectorial control principle. The book develops some lecture elements which includes some topics rarely considered like the dimensioning of an asynchronous motor or of a single-phase brush-less motor. Experimental results illustrate the physical phenomena described and many original problems are resolved and commented at the end of each chapter. Content: signals and systems in electrotechnics, torque and rotating magnetic fields generation, asynchronous machine in permanent regime, speed variation of the asynchronous motor, special asynchronous motors, synchronous machine in permanent regime, brush-less motor, note about step motors, note about inverters, index. (J.S.)
DEFF Research Database (Denmark)
Nielsen, Sune Fallgaard; Sparsø, Jens; Madsen, Jan
2004-01-01
This paper presents a method for behavioral synthesis of asynchronous circuits. Our approach aims at providing a synthesis flow which is very similar to what is found in existing synchronous design tools. We adapt the synchronous behavioral synthesis abstraction into the asynchronous handshake...
Using Television Sitcoms to Facilitate Asynchronous Discussions in the Online Communication Course
Tolman, Elizabeth; Asbury, Bryan
2012-01-01
Asynchronous discussions are a useful instructional resource in the online communication course. In discussion groups students have the opportunity to actively participate and interact with students and the instructor. Asynchronous communication allows for flexibility because "participants can interact with significant amounts of time between…
The design of an asynchronous Tiny RISC TM/TR4101 microprocessor core
DEFF Research Database (Denmark)
Christensen, Kåre Tais; Jensen, P.; Korger, P.
1998-01-01
This paper presents the design of an asynchronous version of the TR4101 embedded microprocessor core developed by LSI Logic Inc. The asynchronous processor, called ARISC, was designed using the same CAD tools and the same standard cell library that was used to implement the TR4101. The paper repo...
Algebraic Number Precoded OFDM Transmission for Asynchronous Cooperative Multirelay Networks
Directory of Open Access Journals (Sweden)
Hua Jiang
2014-01-01
Full Text Available This paper proposes a space-time block coding (STBC transmission scheme for asynchronous cooperative systems. By combination of rotated complex constellations and Hadamard transform, these constructed codes are capable of achieving full cooperative diversity with the analysis of the pairwise error probability (PEP. Due to the asynchronous characteristic of cooperative systems, orthogonal frequency division multiplexing (OFDM technique with cyclic prefix (CP is adopted for combating timing delays from relay nodes. The total transmit power across the entire network is fixed and appropriate power allocation can be implemented to optimize the network performance. The relay nodes do not require decoding and demodulation operation, resulting in a low complexity. Besides, there is no delay for forwarding the OFDM symbols to the destination node. At the destination node the received signals have the corresponding STBC structure on each subcarrier. In order to reduce the decoding complexity, the sphere decoder is implemented for fast data decoding. Bit error rate (BER performance demonstrates the effectiveness of the proposed scheme.
Asynchronous Channel-Hopping Scheme under Jamming Attacks
Directory of Open Access Journals (Sweden)
Yongchul Kim
2018-01-01
Full Text Available Cognitive radio networks (CRNs are considered an attractive technology to mitigate inefficiency in the usage of licensed spectrum. CRNs allow the secondary users (SUs to access the unused licensed spectrum and use a blind rendezvous process to establish communication links between SUs. In particular, quorum-based channel-hopping (CH schemes have been studied recently to provide guaranteed blind rendezvous in decentralized CRNs without using global time synchronization. However, these schemes remain vulnerable to jamming attacks. In this paper, we first analyze the limitations of quorum-based rendezvous schemes called asynchronous channel hopping (ACH. Then, we introduce a novel sequence sensing jamming attack (SSJA model in which a sophisticated jammer can dramatically reduce the rendezvous success rates of ACH schemes. In addition, we propose a fast and robust asynchronous rendezvous scheme (FRARS that can significantly enhance robustness under jamming attacks. Our numerical results demonstrate that the performance of the proposed scheme vastly outperforms the ACH scheme when there are security concerns about a sequence sensing jammer.
Formation of the wide asynchronous binary asteroid population
International Nuclear Information System (INIS)
Jacobson, Seth A.; Scheeres, Daniel J.; McMahon, Jay
2014-01-01
We propose and analyze a new mechanism for the formation of the wide asynchronous binary population. These binary asteroids have wide semimajor axes relative to most near-Earth and main belt asteroid systems. Confirmed members have rapidly rotating primaries and satellites that are not tidally locked. Previously suggested formation mechanisms from impact ejecta, from planetary flybys, and directly from rotational fission events cannot satisfy all of the observations. The newly hypothesized mechanism works as follows: (1) these systems are formed from rotational fission, (2) their satellites are tidally locked, (3) their orbits are expanded by the binary Yarkovsky-O'Keefe-Radzievskii-Paddack (BYORP) effect, (4) their satellites desynchronize as a result of the adiabatic invariance between the libration of the secondary and the mutual orbit, and (5) the secondary avoids resynchronization because of the YORP effect. This seemingly complex chain of events is a natural pathway for binaries with satellites that have particular shapes, which define the BYORP effect torque that acts on the system. After detailing the theory, we analyze each of the wide asynchronous binary members and candidates to assess their most likely formation mechanism. Finally, we suggest possible future observations to check and constrain our hypothesis.
An Asynchronous IEEE Floating-Point Arithmetic Unit
Directory of Open Access Journals (Sweden)
Joel R. Noche
2007-12-01
Full Text Available An asynchronous floating-point arithmetic unit is designed and tested at the transistor level usingCadence software. It uses CMOS (complementary metal oxide semiconductor and DCVS (differentialcascode voltage switch logic in a 0.35 µm process using a 3.3 V supply voltage, with dual-rail data andsingle-rail control signals using four-phase handshaking.Using 17,085 transistors, the unit handles single-precision (32-bit addition/subtraction, multiplication,division, and remainder using the IEEE 754-1985 Standard for Binary Floating-Point Arithmetic, withrounding and other operations to be handled by separate hardware or software. Division and remainderare done using a restoring subtractive algorithm; multiplication uses an additive algorithm. Exceptionsare noted by flags (and not trap handlers and the output is in single-precision.Previous work on asynchronous floating-point arithmetic units have mostly focused on single operationssuch as division. This is the first work to the authors' knowledge that can perform floating-point addition,multiplication, division, and remainder using a common datapath.
Asynchronous Task-Based Polar Decomposition on Manycore Architectures
Sukkari, Dalal
2016-10-25
This paper introduces the first asynchronous, task-based implementation of the polar decomposition on manycore architectures. Based on a new formulation of the iterative QR dynamically-weighted Halley algorithm (QDWH) for the calculation of the polar decomposition, the proposed implementation replaces the original and hostile LU factorization for the condition number estimator by the more adequate QR factorization to enable software portability across various architectures. Relying on fine-grained computations, the novel task-based implementation is also capable of taking advantage of the identity structure of the matrix involved during the QDWH iterations, which decreases the overall algorithmic complexity. Furthermore, the artifactual synchronization points have been severely weakened compared to previous implementations, unveiling look-ahead opportunities for better hardware occupancy. The overall QDWH-based polar decomposition can then be represented as a directed acyclic graph (DAG), where nodes represent computational tasks and edges define the inter-task data dependencies. The StarPU dynamic runtime system is employed to traverse the DAG, to track the various data dependencies and to asynchronously schedule the computational tasks on the underlying hardware resources, resulting in an out-of-order task scheduling. Benchmarking experiments show significant improvements against existing state-of-the-art high performance implementations (i.e., Intel MKL and Elemental) for the polar decomposition on latest shared-memory vendors\\' systems (i.e., Intel Haswell/Broadwell/Knights Landing, NVIDIA K80/P100 GPUs and IBM Power8), while maintaining high numerical accuracy.
Continuous EEG signal analysis for asynchronous BCI application.
Hsu, Wei-Yen
2011-08-01
In this study, we propose a two-stage recognition system for continuous analysis of electroencephalogram (EEG) signals. An independent component analysis (ICA) and correlation coefficient are used to automatically eliminate the electrooculography (EOG) artifacts. Based on the continuous wavelet transform (CWT) and Student's two-sample t-statistics, active segment selection then detects the location of active segment in the time-frequency domain. Next, multiresolution fractal feature vectors (MFFVs) are extracted with the proposed modified fractal dimension from wavelet data. Finally, the support vector machine (SVM) is adopted for the robust classification of MFFVs. The EEG signals are continuously analyzed in 1-s segments, and every 0.5 second moves forward to simulate asynchronous BCI works in the two-stage recognition architecture. The segment is first recognized as lifted or not in the first stage, and then is classified as left or right finger lifting at stage two if the segment is recognized as lifting in the first stage. Several statistical analyses are used to evaluate the performance of the proposed system. The results indicate that it is a promising system in the applications of asynchronous BCI work.
Spatiotemporal Features for Asynchronous Event-based Data
Directory of Open Access Journals (Sweden)
Xavier eLagorce
2015-02-01
Full Text Available Bio-inspired asynchronous event-based vision sensors are currently introducing a paradigm shift in visual information processing. These new sensors rely on a stimulus-driven principle of light acquisition similar to biological retinas. They are event-driven and fully asynchronous, thereby reducing redundancy and encoding exact times of input signal changes, leading to a very precise temporal resolution. Approaches for higher-level computer vision often rely on the realiable detection of features in visual frames, but similar definitions of features for the novel dynamic and event-based visual input representation of silicon retinas have so far been lacking. This article addresses the problem of learning and recognizing features for event-based vision sensors, which capture properties of truly spatiotemporal volumes of sparse visual event information. A novel computational architecture for learning and encoding spatiotemporal features is introduced based on a set of predictive recurrent reservoir networks, competing via winner-take-all selection. Features are learned in an unsupervised manner from real-world input recorded with event-based vision sensors. It is shown that the networks in the architecture learn distinct and task-specific dynamic visual features, and can predict their trajectories over time.
A Parallel Particle Swarm Optimization Algorithm Accelerated by Asynchronous Evaluations
Venter, Gerhard; Sobieszczanski-Sobieski, Jaroslaw
2005-01-01
A parallel Particle Swarm Optimization (PSO) algorithm is presented. Particle swarm optimization is a fairly recent addition to the family of non-gradient based, probabilistic search algorithms that is based on a simplified social model and is closely tied to swarming theory. Although PSO algorithms present several attractive properties to the designer, they are plagued by high computational cost as measured by elapsed time. One approach to reduce the elapsed time is to make use of coarse-grained parallelization to evaluate the design points. Previous parallel PSO algorithms were mostly implemented in a synchronous manner, where all design points within a design iteration are evaluated before the next iteration is started. This approach leads to poor parallel speedup in cases where a heterogeneous parallel environment is used and/or where the analysis time depends on the design point being analyzed. This paper introduces an asynchronous parallel PSO algorithm that greatly improves the parallel e ciency. The asynchronous algorithm is benchmarked on a cluster assembled of Apple Macintosh G5 desktop computers, using the multi-disciplinary optimization of a typical transport aircraft wing as an example.
Asynchronous cracking with dissimilar paths in multilayer graphene.
Jang, Bongkyun; Kim, Byungwoon; Kim, Jae-Hyun; Lee, Hak-Joo; Sumigawa, Takashi; Kitamura, Takayuki
2017-11-16
Multilayer graphene consists of a stack of single-atomic-thick monolayer graphene sheets bound with π-π interactions and is a fascinating model material opening up a new field of fracture mechanics. In this study, fracture behavior of single-crystalline multilayer graphene was investigated using an in situ mode I fracture test under a scanning electron microscope, and abnormal crack propagation in multilayer graphene was identified for the first time. The fracture toughness of graphene was determined from the measured load-displacement curves and the realistic finite element modelling of specimen geometries. Nonlinear fracture behavior of the multilayer graphene is discussed based on nonlinear elastic fracture mechanics. In situ scanning electron microscope images obtained during the fracture test showed asynchronous crack propagation along independent paths, causing interlayer shear stress and slippages. We also found that energy dissipation by interlayer slippages between the graphene layers is the reason for the enhanced fracture toughness of multilayer graphene. The asynchronous cracking with independent paths is a unique cracking and toughening mechanism for single-crystalline multilayer graphene, which is not observed for the monolayer graphene. This could provide a useful insight for the design and development of graphene-based composite materials for structural applications.
Structural Theory and Classification of 2D Adinkras
International Nuclear Information System (INIS)
Iga, Kevin; Zhang, Yan X.
2016-01-01
Adinkras are combinatorial objects developed to study (1-dimensional) supersymmetry representations. Recently, 2D Adinkras have been developed to study 2-dimensional supersymmetry. In this paper, we classify all 2D Adinkras, confirming a conjecture of T. Hübsch. Along the way, we obtain other structural results, including a simple characterization of Hübsch’s even-split doubly even codes.
The relation between Euclidean and Lorentzian 2D quantum gravity
Ambjørn, J.; Correia, J.; Kristjansen, C.; Loll, R.
1999-01-01
Starting from 2D Euclidean quantum gravity, we show that one recovers 2D Lorentzian quantum gravity by removing all baby universes. Using a peeling procedure to decompose the discrete, triangulated geometries along a one-dimensional path, we explicitly associate with each Euclidean space-time a
2D gravity, random surfaces and all that
International Nuclear Information System (INIS)
Ambjoern, J.
1990-11-01
I review the recent progress in 2d gravity and discuss the new numerical simulations for 2d gravity and for random surfaces in d>2. The random surface theories of interest in d>2 have extrinsic curvature terms, and for a finite value of the extrinsic curvature coupling there seems to be a second order phase transition where the string tension scales. (orig.)
Cascading Constrained 2-D Arrays using Periodic Merging Arrays
DEFF Research Database (Denmark)
Forchhammer, Søren; Laursen, Torben Vaarby
2003-01-01
We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes...
From 2D Lithography to 3D Patterning
Van Zeijl, H.W.; Wei, J.; Shen, C.; Verhaar, T.M.; Sarro, P.M.
2010-01-01
Lithography as developed for IC device fabrication is a high volume high accuracy patterning technology with strong 2 dimensional (2D) characteristics. This 2D nature makes it a challenge to integrate this technology in a 3 dimensional (3D) manufacturing environment. This article addresses the
Router Designs for an Asynchronous Time-Division-Multiplexed Network-on-Chip
DEFF Research Database (Denmark)
Kasapaki, Evangelia; Sparsø, Jens; Sørensen, Rasmus Bo
2013-01-01
In this paper we explore the design of an asynchronous router for a time-division-multiplexed (TDM) network-on-chip (NOC) that is being developed for a multi-processor platform for hard real-time systems. TDM inherently requires a common time reference, and existing TDM-based NOC designs are either....... This adds hardware complexity and increases area and power consumption. We propose to use asynchronous routers in order to achieve a simpler, more robust and globally-asynchronous NOC, and this represents an unexplored point in the design space. The paper presents a range of alternative router designs. All...... routers have been synthesized for a 65nm CMOS technology, and the paper reports post-layout figures for area, speed and energy and compares the asynchronous designs with an existing mesochronous clocked router. The results show that an asynchronous router is 2 times smaller, marginally slower...
Synthesis and chemistry of elemental 2D materials
Energy Technology Data Exchange (ETDEWEB)
Mannix, Andrew J.; Kiraly, Brian; Hersam, Mark C.; Guisinger, Nathan P.
2017-01-25
2D materials have attracted considerable attention in the past decade for their superlative physical properties. These materials consist of atomically thin sheets exhibiting covalent in-plane bonding and weak interlayer and layer-substrate bonding. Following the example of graphene, most emerging 2D materials are derived from structures that can be isolated from bulk phases of layered materials, which form a limited library for new materials discovery. Entirely synthetic 2D materials provide access to a greater range of properties through the choice of constituent elements and substrates. Of particular interest are elemental 2D materials, because they provide the most chemically tractable case for synthetic exploration. In this Review, we explore the progress made in the synthesis and chemistry of synthetic elemental 2D materials, and offer perspectives and challenges for the future of this emerging field.
2D nanomaterials assembled from sequence-defined molecules
International Nuclear Information System (INIS)
Mu, Peng; State University of New York; Zhou, Guangwen; Chen, Chun-Long
2017-01-01
Two dimensional (2D) nanomaterials have attracted broad interest owing to their unique physical and chemical properties with potential applications in electronics, chemistry, biology, medicine and pharmaceutics. Due to the current limitations of traditional 2D nanomaterials (e.g., graphene and graphene oxide) in tuning surface chemistry and compositions, 2D nanomaterials assembled from sequence-defined molecules (e.g., DNAs, proteins, peptides and peptoids) have recently been developed. They represent an emerging class of 2D nanomaterials with attractive physical and chemical properties. Here, we summarize the recent progress in the synthesis and applications of this type of sequence-defined 2D nanomaterials. We also discuss the challenges and opportunities in this new field.
Spratt, Christopher E.
1988-08-01
There are (March, 1988) 3774 minor planets which have received a permanent number. Of these, there are some whose mean distance to the sun is very nearly equal to that of Jupiter, and whose heliocentric longitudes from that planet are about 60°, so that the three bodies concerned (sun, Jupiter, minor planet) make an approximate equilateral triangle. These minor planets, which occur in two distinct groups, one preceding Jupiter and one following, have received the names of the heroes of the Trojan war. This paper concerns the 49 numbered minor planets of this group.
Moskal, Paulina; Wesełucha-Birczyńska, Aleksandra; Łabanowska, Maria; Kurdziel, Magdalena; Filek, Maria
2018-01-15
Leaves of Urtica dioica collected from two areas of different environmental pollution were analysed by fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance (EPR) spectroscopy. Analysis of FTIR spectra allows to describe main component of plant like proteins, lipids and carbohydrates. Although the FTIR spectra of plants from these two geographical locations of different environmental pollution appear to be relatively similar, 2D correlation shows completely different patterns. Synchronous and asynchronous correlation maps showed sequences of changes occurring during development of plant, manly in Amide I and Amide II, lignin, lipids and cellulose. In addition, 2D analysis revealed another sequence of changes as the function of plant growth depending on the degree of the environmental pollution. Two various kinds of paramagnetic species, transition metal ions (Mn(II), Fe(III)) and stable organic radicals (chlorophyll, semiquinone, tyrosyl and carbon centered) were found in leaves of nettle collected at different stages of development and growing in clean and polluted environment. In plants growing in polluted area the injuries of protein molecules bonding metal ions and the disturbances of photosynthesis and redox equilibrium in cells, as well as instability of polysaccharide structure of cell walls were observed. Copyright © 2017 Elsevier B.V. All rights reserved.
Moskal, Paulina; Wesełucha-Birczyńska, Aleksandra; Łabanowska, Maria; Kurdziel, Magdalena; Filek, Maria
2018-01-01
Leaves of Urtica dioica collected from two areas of different environmental pollution were analysed by fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance (EPR) spectroscopy. Analysis of FTIR spectra allows to describe main component of plant like proteins, lipids and carbohydrates. Although the FTIR spectra of plants from these two geographical locations of different environmental pollution appear to be relatively similar, 2D correlation shows completely different patterns. Synchronous and asynchronous correlation maps showed sequences of changes occurring during development of plant, manly in Amide I and Amide II, lignin, lipids and cellulose. In addition, 2D analysis revealed another sequence of changes as the function of plant growth depending on the degree of the environmental pollution. Two various kinds of paramagnetic species, transition metal ions (Mn(II), Fe(III)) and stable organic radicals (chlorophyll, semiquinone, tyrosyl and carbon centered) were found in leaves of nettle collected at different stages of development and growing in clean and polluted environment. In plants growing in polluted area the injuries of protein molecules bonding metal ions and the disturbances of photosynthesis and redox equilibrium in cells, as well as instability of polysaccharide structure of cell walls were observed.
From 3 d duality to 2 d duality
Aharony, Ofer; Razamat, Shlomo S.; Willett, Brian
2017-11-01
In this paper we discuss 3 d N = 2 supersymmetric gauge theories and their IR dualities when they are compactified on a circle of radius r, and when we take the 2 d limit in which r → 0. The 2 d limit depends on how the mass parameters are scaled as r → 0, and often vacua become infinitely distant in the 2 d limit, leading to a direct sum of different 2 d theories. For generic mass parameters, when we take the same limit on both sides of a duality, we obtain 2 d dualities (between gauge theories and/or Landau-Ginzburg theories) that pass all the usual tests. However, when there are non-compact branches the discussion is subtle because the metric on the moduli space, which is not controlled by supersymmetry, plays an important role in the low-energy dynamics after compactification. Generally speaking, for IR dualities of gauge theories, we conjecture that dualities involving non-compact Higgs branches survive. On the other hand when there is a non-compact Coulomb branch on at least one side of the duality, the duality fails already when the 3 d theories are compactified on a circle. Using the valid reductions we reproduce many known 2 d IR dualities, giving further evidence for their validity, and we also find new 2 d dualities.
Frog: Asynchronous Graph Processing on GPU with Hybrid Coloring Model
Energy Technology Data Exchange (ETDEWEB)
Shi, Xuanhua; Luo, Xuan; Liang, Junling; Zhao, Peng; Di, Sheng; He, Bingsheng; Jin, Hai
2018-01-01
GPUs have been increasingly used to accelerate graph processing for complicated computational problems regarding graph theory. Many parallel graph algorithms adopt the asynchronous computing model to accelerate the iterative convergence. Unfortunately, the consistent asynchronous computing requires locking or atomic operations, leading to significant penalties/overheads when implemented on GPUs. As such, coloring algorithm is adopted to separate the vertices with potential updating conflicts, guaranteeing the consistency/correctness of the parallel processing. Common coloring algorithms, however, may suffer from low parallelism because of a large number of colors generally required for processing a large-scale graph with billions of vertices. We propose a light-weight asynchronous processing framework called Frog with a preprocessing/hybrid coloring model. The fundamental idea is based on Pareto principle (or 80-20 rule) about coloring algorithms as we observed through masses of realworld graph coloring cases. We find that a majority of vertices (about 80%) are colored with only a few colors, such that they can be read and updated in a very high degree of parallelism without violating the sequential consistency. Accordingly, our solution separates the processing of the vertices based on the distribution of colors. In this work, we mainly answer three questions: (1) how to partition the vertices in a sparse graph with maximized parallelism, (2) how to process large-scale graphs that cannot fit into GPU memory, and (3) how to reduce the overhead of data transfers on PCIe while processing each partition. We conduct experiments on real-world data (Amazon, DBLP, YouTube, RoadNet-CA, WikiTalk and Twitter) to evaluate our approach and make comparisons with well-known non-preprocessed (such as Totem, Medusa, MapGraph and Gunrock) and preprocessed (Cusha) approaches, by testing four classical algorithms (BFS, PageRank, SSSP and CC). On all the tested applications and
Optimization and practical implementation of ultrafast 2D NMR experiments
Energy Technology Data Exchange (ETDEWEB)
Queiroz Junior, Luiz H. K., E-mail: professorkeng@gmail.com [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Universidade Federal de Goias (UFGO), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Giraudeau, Patrick [Universite de Nantes (France). CNRS, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation
2013-09-01
Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively. (author)
Kalman Filter for Generalized 2-D Roesser Models
Institute of Scientific and Technical Information of China (English)
SHENG Mei; ZOU Yun
2007-01-01
The design problem of the state filter for the generalized stochastic 2-D Roesser models, which appears when both the state and measurement are simultaneously subjected to the interference from white noise, is discussed. The wellknown Kalman filter design is extended to the generalized 2-D Roesser models. Based on the method of "scanning line by line", the filtering problem of generalized 2-D Roesser models with mode-energy reconstruction is solved. The formula of the optimal filtering, which minimizes the variance of the estimation error of the state vectors, is derived. The validity of the designed filter is verified by the calculation steps and the examples are introduced.
Effective viscosity of 2D suspensions - Confinement effects
Doyeux , Vincent; Priem , Stephane; Jibuti , Levan; Farutin , Alexander; Ismail , Mourad; Peyla , Philippe
2016-01-01
International audience; We study the rheology of a sheared 2D suspension of non-Brownian disks in presence of walls. Although, it is of course possible today with modern computers and powerful algorithms to perform direct numerical simulations that fully account for multiparticle 3D interactions in the presence of walls, the analysis of the simple case of a 2D suspension, provides valuable insights and helps to understand 3D results. Thanks to the direct visualization of the whole 2D flow (th...
Wearable energy sources based on 2D materials.
Yi, Fang; Ren, Huaying; Shan, Jingyuan; Sun, Xiao; Wei, Di; Liu, Zhongfan
2018-05-08
Wearable energy sources are in urgent demand due to the rapid development of wearable electronics. Besides flexibility and ultrathin thickness, emerging 2D materials present certain extraordinary properties that surpass the properties of conventional materials, which make them advantageous for high-performance wearable energy sources. Here, we provide a comprehensive review of recent advances in 2D material based wearable energy sources including wearable batteries, supercapacitors, and different types of energy harvesters. The crucial roles of 2D materials in the wearable energy sources are highlighted. Based on the current progress, the existing challenges and future prospects are outlined and discussed.
Introduction to game physics with Box2D
Parberry, Ian
2013-01-01
Written by a pioneer of game development in academia, Introduction to Game Physics with Box2D covers the theory and practice of 2D game physics in a relaxed and entertaining yet instructional style. It offers a cohesive treatment of the topics and code involved in programming the physics for 2D video games. Focusing on writing elementary game physics code, the first half of the book helps you grasp the challenges of programming game physics from scratch, without libraries or outside help. It examines the mathematical foundation of game physics and illustrates how it is applied in practice thro
Kornegay, Francis A.
Various aspects of the relationship between minorities and malnutrition are discussed in this brief paper. Malnutrition, one of the byproducts of low economic status, is creating a crisis-proportion health problem affecting minority citizens. Malnutrition seriously affects children, older people in poverty, and chronically unemployed or…
Joost Kappelhof
2015-01-01
Obtaining accurate survey data on ethnic minorities is not easy. Ethnic minorities are usually underrepresented in surveys, and it is moreover not certain that those who do take part in surveys are representative of the group the researcher is interested in. For example, is it only people with
DEFF Research Database (Denmark)
Barten, Ulrike
2008-01-01
on the content of the syllabus. When autonomy is understood in the literal sense, of giving oneself one's own laws, then there is a clear connection. Autonomy is usually connected to politics and a geographically limited territory. Special political rights of minorities - e.g. is the Danish minority party SSW...
A prototype pixel readout chip for asynchronous detection applications
International Nuclear Information System (INIS)
Raymond, D.M.; Hall, G.; Lewis, A.J.; Sharp, P.H.
1991-01-01
A two-dimensional array of amplifier cells has been fabricated as a prototype readout system for a matching array of silicon diode detectors. Each cell contains a preamplifier, shaping amplifier, comparator and analogue signal storage in an area of 300 μmx320 μm using 3 μm CMOS technology. Full size chips will be bump bonded to pixel detector arrays. Low noise and asynchronous operation are novel design features. With noise levels of less than 250 rms electrons for input capacitances up to 600 fF, pixel detectors will be suitable for autoradiography, synchrotron X-ray and high energy particle detection applications. The design of the prototype chip is presented and future developments and prospects for applications are discussed. (orig.)
Asynchronous sampled-data approach for event-triggered systems
Mahmoud, Magdi S.; Memon, Azhar M.
2017-11-01
While aperiodically triggered network control systems save a considerable amount of communication bandwidth, they also pose challenges such as coupling between control and event-condition design, optimisation of the available resources such as control, communication and computation power, and time-delays due to computation and communication network. With this motivation, the paper presents separate designs of control and event-triggering mechanism, thus simplifying the overall analysis, asynchronous linear quadratic Gaussian controller which tackles delays and aperiodic nature of transmissions, and a novel event mechanism which compares the cost of the aperiodic system against a reference periodic implementation. The proposed scheme is simulated on a linearised wind turbine model for pitch angle control and the results show significant improvement against the periodic counterpart.
Asynchronous emergence by loggerhead turtle (Caretta caretta) hatchlings.
Houghton, J D; Hays, G C
2001-03-01
For many decades it has been accepted that marine turtle hatchlings from the same nest generally emerge from the sand together. However, for loggerhead turtles (Caretta caretta) nesting on the Greek Island of Kefalonia, a more asynchronous pattern of emergence has been documented. By placing temperature loggers at the top and bottom of nests laid on Kefalonia during 1998, we examined whether this asynchronous emergence was related to the thermal conditions within nests. Pronounced thermal variation existed not only between, but also within, individual nests. These within-nest temperature differences were related to the patterns of hatchling emergence, with hatchlings from nests displaying large thermal ranges emerging over a longer time-scale than those characterised by more uniform temperatures. In many egg-laying animals, parental care of the offspring may continue while the eggs are incubating and also after they have hatched. Consequently, the importance of the nest site for determining incubation conditions may be reduced since the parents themselves may alter the local environment. By contrast, in marine turtles, parental care ceases once the eggs have been laid and the nest site covered. The positioning of the nest site, in both space and time, may therefore have profound effects for marine turtles by affecting, for example, the survival of the eggs and hatchlings as well as their sex (Janzen and Paukstis 1991). During incubation, sea turtle embryos grow from a few cells at oviposition to a self-sufficient organism at hatching some 50-80 days later (Ackerman 1997). After hatching, the young turtles dig up through the sand and emerge typically en masse at the surface 1-7 nights later, with a number of stragglers following over the next few nights (Christens 1990). This contrasts with the frequently observed pattern of hatching asynchrony in birds. It has been suggested that the cause of mass emergence in turtles is that eggs within a clutch are fertilised
Blow Flies Visiting Decaying Alligators: Is Succession Synchronous or Asynchronous?
Directory of Open Access Journals (Sweden)
Mark P. Nelder
2009-01-01
Full Text Available Succession patterns of adult blow flies (Diptera: Calliphoridae on decaying alligators were investigated in Mobile (Ala, USA during August 2002. The most abundant blow fly species visiting the carcasses were Chrysomya rufifacies (Macquart, Cochliomyia macellaria (Fabricus, Chrysomya megacephala (Fabricus, Phormia regina (Meigen, and Lucilia coeruleiviridis (Macquart. Lucilia coeruleiviridis was collected more often during the early stages of decomposition, followed by Chrysomya spp., Cochliomyia macellaria, and Phormia regina in the later stages. Lucilia coeruleiviridis was the only synchronous blow fly on the three carcasses; other blow fly species exhibited only site-specific synchrony. Using dichotomous correlations and analyses of variance, we demonstrated that blow fly-community succession was asynchronous among three alligators; however, Monte Carlo simulations indicate that there was some degree of synchrony between the carcasses.
Asynchronous data-driven classification of weapon systems
International Nuclear Information System (INIS)
Jin, Xin; Mukherjee, Kushal; Gupta, Shalabh; Ray, Asok; Phoha, Shashi; Damarla, Thyagaraju
2009-01-01
This communication addresses real-time weapon classification by analysis of asynchronous acoustic data, collected from microphones on a sensor network. The weapon classification algorithm consists of two parts: (i) feature extraction from time-series data using symbolic dynamic filtering (SDF), and (ii) pattern classification based on the extracted features using the language measure (LM) and support vector machine (SVM). The proposed algorithm has been tested on field data, generated by firing of two types of rifles. The results of analysis demonstrate high accuracy and fast execution of the pattern classification algorithm with low memory requirements. Potential applications include simultaneous shooter localization and weapon classification with soldier-wearable networked sensors. (rapid communication)
Asynchronous machine rotor speed estimation using a tabulated numerical approach
Nguyen, Huu Phuc; De Miras, Jérôme; Charara, Ali; Eltabach, Mario; Bonnet, Stéphane
2017-12-01
This paper proposes a new method to estimate the rotor speed of the asynchronous machine by looking at the estimation problem as a nonlinear optimal control problem. The behavior of the nonlinear plant model is approximated off-line as a prediction map using a numerical one-step time discretization obtained from simulations. At each time-step, the speed of the induction machine is selected satisfying the dynamic fitting problem between the plant output and the predicted output, leading the system to adopt its dynamical behavior. Thanks to the limitation of the prediction horizon to a single time-step, the execution time of the algorithm can be completely bounded. It can thus easily be implemented and embedded into a real-time system to observe the speed of the real induction motor. Simulation results show the performance and robustness of the proposed estimator.
Induction motor for superconducting synchronous/asynchronous motor
International Nuclear Information System (INIS)
Litz, D.C.; Haller, H.E. III.
1975-01-01
An induction motor structure for use on the outside of a superconducting rotor comprising a cylindrical shell of solid and laminated, magnetic iron with squirrel cage windings embedded in the outer circumference of said shell is described. The sections of the shell between the superconducting windings of the rotor are solid magnetic iron. The sections of the shell over the superconducting windings are made of laminations of magnetic iron. These laminations are parallel to the axis of the machine and are divided in halves with the laminations in each half oriented in diagonal opposition so that the intersection of the laminations forms a V. This structure presents a relatively high reluctance to leakage flux from the superconducting windings in the synchronous operating mode, while presenting a low reluctance path to the stator flux during asynchronous operation
Exploring Asynchronous Many-Task Runtime Systems toward Extreme Scales
Energy Technology Data Exchange (ETDEWEB)
Knight, Samuel [O8953; Baker, Gavin Matthew; Gamell, Marc [Rutgers U; Hollman, David [08953; Sjaardema, Gregor [SNL; Kolla, Hemanth [SNL; Teranishi, Keita; Wilke, Jeremiah J; Slattengren, Nicole [SNL; Bennett, Janine Camille
2015-10-01
Major exascale computing reports indicate a number of software challenges to meet the dramatic change of system architectures in near future. While several-orders-of-magnitude increase in parallelism is the most commonly cited of those, hurdles also include performance heterogeneity of compute nodes across the system, increased imbalance between computational capacity and I/O capabilities, frequent system interrupts, and complex hardware architectures. Asynchronous task-parallel programming models show a great promise in addressing these issues, but are not yet fully understood nor developed su ciently for computational science and engineering application codes. We address these knowledge gaps through quantitative and qualitative exploration of leading candidate solutions in the context of engineering applications at Sandia. In this poster, we evaluate MiniAero code ported to three leading candidate programming models (Charm++, Legion and UINTAH) to examine the feasibility of these models that permits insertion of new programming model elements into an existing code base.
Indoor Positioning for Smartphones Using Asynchronous Ultrasound Trilateration
Directory of Open Access Journals (Sweden)
James D. Carswell
2013-06-01
Full Text Available Modern smartphones are a great platform for Location Based Services (LBS. While outdoor LBS for smartphones has proven to be very successful, indoor LBS for smartphones has not yet fully developed due to the lack of an accurate positioning technology. In this paper we present an accurate indoor positioning approach for commercial off-the-shelf (COTS smartphones that uses the innate ability of mobile phones to produce ultrasound, combined with Time-Difference-of-Arrival (TDOA asynchronous trilateration. We evaluate our indoor positioning approach by describing its strengths and weaknesses, and determine its absolute accuracy. This is accomplished through a range of experiments that involve variables such as position of control point microphones, position of phone within the room, direction speaker is facing and presence of user in the signal path. Test results show that our Lok8 (locate mobile positioning system can achieve accuracies better than 10 cm in a real-world environment.
Bio-Inspired Asynchronous Pixel Event Tricolor Vision Sensor.
Lenero-Bardallo, Juan Antonio; Bryn, D H; Hafliger, Philipp
2014-06-01
This article investigates the potential of the first ever prototype of a vision sensor that combines tricolor stacked photo diodes with the bio-inspired asynchronous pixel event communication protocol known as Address Event Representation (AER). The stacked photo diodes are implemented in a 22 × 22 pixel array in a standard STM 90 nm CMOS process. Dynamic range is larger than 60 dB and pixels fill factor is 28%. The pixels employ either simple pulse frequency modulation (PFM) or a Time-to-First-Spike (TFS) mode. A heuristic linear combination of the chip's inherent pseudo colors serves to approximate RGB color representation. Furthermore, the sensor outputs can be processed to represent the radiation in the near infrared (NIR) band without employing external filters, and to color-encode direction of motion due to an asymmetry in the update rates of the different diode layers.
Operational aspects of asynchronous filtering for flood forecasting
Rakovec, O.; Weerts, A. H.; Sumihar, J.; Uijlenhoet, R.
2015-06-01
This study investigates the suitability of the asynchronous ensemble Kalman filter (AEnKF) and a partitioned updating scheme for hydrological forecasting. The AEnKF requires forward integration of the model for the analysis and enables assimilation of current and past observations simultaneously at a single analysis step. The results of discharge assimilation into a grid-based hydrological model (using a soil moisture error model) for the Upper Ourthe catchment in the Belgian Ardennes show that including past predictions and observations in the data assimilation method improves the model forecasts. Additionally, we show that elimination of the strongly non-linear relation between the soil moisture storage and assimilated discharge observations from the model update becomes beneficial for improved operational forecasting, which is evaluated using several validation measures.
Operational aspects of asynchronous filtering for hydrological forecasting
Rakovec, O.; Weerts, A. H.; Sumihar, J.; Uijlenhoet, R.
2015-03-01
This study investigates the suitability of the Asynchronous Ensemble Kalman Filter (AEnKF) and a partitioned updating scheme for hydrological forecasting. The AEnKF requires forward integration of the model for the analysis and enables assimilation of current and past observations simultaneously at a single analysis step. The results of discharge assimilation into a grid-based hydrological model for the Upper Ourthe catchment in the Belgian Ardennes show that including past predictions and observations in the data assimilation method improves the model forecasts. Additionally, we show that elimination of the strongly non-linear relation between the soil moisture storage and assimilated discharge observations from the model update becomes beneficial for improved operational forecasting, which is evaluated using several validation measures.
Label-acquired magnetorotation for biosensing: An asynchronous rotation assay
International Nuclear Information System (INIS)
Hecht, Ariel; Kinnunen, Paivo; McNaughton, Brandon; Kopelman, Raoul
2011-01-01
This paper presents a novel application of magnetic particles for biosensing, called label-acquired magnetorotation (LAM). This method is based on a combination of the traditional sandwich assay format with the asynchronous magnetic bead rotation (AMBR) method. In label-acquired magnetorotation, an analyte facilitates the binding of a magnetic label bead to a nonmagnetic solid phase sphere, forming a sandwich complex. The sandwich complex is then placed in a rotating magnetic field, where the rotational frequency of the sandwich complex is a function of the amount of analyte attached to the surface of the sphere. Here, we use streptavidin-coated beads and biotin-coated particles as analyte mimics, to be replaced by proteins and other biological targets in future work. We show this sensing method to have a dynamic range of two orders of magnitude.
An Asynchronous Cellular Automata-Based Adaptive Illumination Facility
Bandini, Stefania; Bonomi, Andrea; Vizzari, Giuseppe; Acconci, Vito
The term Ambient Intelligence refers to electronic environments that are sensitive and responsive to the presence of people; in the described scenario the environment itself is endowed with a set of sensors (to perceive humans or other physical entities such as dogs, bicycles, etc.), interacting with a set of actuators (lights) that choose their actions (i.e. state of illumination) in an attempt improve the overall experience of these users. The model for the interaction and action of sensors and actuators is an asynchronous Cellular Automata (CA) with memory, supporting a self-organization of the system as a response to the presence and movements of people inside it. The paper will introduce the model, as well as an ad hoc user interface for the specification of the relevant parameters of the CA transition rule that determines the overall system behaviour.
Realization of station for testing asynchronous three-phase motors
Wróbel, A.; Surma, W.
2016-08-01
Nowadays, you cannot imagine the construction and operation of machines without the use of electric motors [13-15]. The proposed position is designed to allow testing of asynchronous three-phase motors. The position consists of a tested engine and the engine running as a load, both engines combined with a mechanical clutch [2]. The value of the load is recorded by measuring shaft created with Strain Gauge Bridge. This concept will allow to study the basic parameters of the engines, visualization motor parameters both vector and scalar controlled, during varying load drive system. In addition, registration during the variable physical parameters of the working electric motor, controlled by a frequency converter or controlled by a contactor will be possible. Position is designed as a teaching and research position to characterize the engines. It will be also possible selection of inverter parameters.
Asynchronous learning: student utilization out of sync with their preference
Directory of Open Access Journals (Sweden)
Edward K. Lew
2016-06-01
Full Text Available Background: Asynchronous learning is gaining popularity. Data are limited regarding this learning method in medical students rotating in emergency medicine (EM. In EM, faculty time is limited to give in-person lectures. The authors sought to create an online curriculum that students could utilize as an additional learning modality. Objective: The goal was to evaluate effectiveness, participation, and preference for this mode of learning. Methods: We developed five online, narrated PowerPoint presentations. After orientation, access to the online curriculum was provided to the students, which they could review at their leisure. Results: One hundred and seven fourth-year medical students participated. They reported the curriculum to be of high quality. Pretest scores were similar for those that viewed all lectures – compliant group (CG (9.5 [CI 4.8–14.1] and those that did not view any – non-compliant group (NCG (9.6 [CI 5.9–13.4]. There was no statistical significant difference in posttest scores between the groups although there was improvement overall: CG 14.6 (CI 6.9–22.1; NCG 11.4 (CI 5.7–17.1. A majority (69.2% favored inclusion of asynchronous learning, but less than a quarter (22.4% reported viewing all five modules and more than a third (36.4% viewed none. Conclusion: Despite student-expressed preference for an online curriculum, they used the online resource less than expected. This should give pause to educators looking to convert core EM topics to an online format. However, when high-quality online lectures are utilized as a learning tool, this study demonstrates that they had neither a positive nor a negative impact on test scores.
32 CFR 1639.4 - Exclusion from Class 2-D.
2010-07-01
... recognized; or (c) He ceases to be a full-time student; or (d) He fails to maintain satisfactory academic... Class 2-D when: (a) He fails to establish that the theological or divinity school is a recognized school...
Proteome analysis of human colorectal cancer tissue using 2-D ...
African Journals Online (AJOL)
Jane
2010-10-11
Oct 11, 2010 ... protein spots were identified by mass spectrometric analysis. The cDNA of the ..... sensitivity, dynamic range and reproducibility vs the conventional 2-D ... linkage, and also has molecular chaperones activity for inhibiting the ...
National Aeronautics and Space Administration — The MAC0NXASM or const_2d_asm_Nx data product is the MERRA Data Assimilation System 2-Dimensional Constants at native resolution. MERRA, or the Modern Era...
National Aeronautics and Space Administration — The MAC0FXCHM or const_2d_chm_Fx data product is the MERRA Data Assimilation System 2-Dimensional Constants at native Fv resolution. MERRA, or the Modern Era...
Optical identification using imperfections in 2D materials
Cao, Yameng; Robson, Alexander J.; Alharbi, Abdullah; Roberts, Jonathan; Woodhead, Christopher S.; Noori, Yasir J.; Bernardo-Gavito, Ramón; Shahrjerdi, Davood; Roedig, Utz; Fal'ko, Vladimir I.; Young, Robert J.
2017-12-01
The ability to uniquely identify an object or device is important for authentication. Imperfections, locked into structures during fabrication, can be used to provide a fingerprint that is challenging to reproduce. In this paper, we propose a simple optical technique to read unique information from nanometer-scale defects in 2D materials. Imperfections created during crystal growth or fabrication lead to spatial variations in the bandgap of 2D materials that can be characterized through photoluminescence measurements. We show a simple setup involving an angle-adjustable transmission filter, simple optics and a CCD camera can capture spatially-dependent photoluminescence to produce complex maps of unique information from 2D monolayers. Atomic force microscopy is used to verify the origin of the optical signature measured, demonstrating that it results from nanometer-scale imperfections. This solution to optical identification with 2D materials could be employed as a robust security measure to prevent counterfeiting.
Soluble NKG2D ligands: prevalence, release, and functional impact.
Salih, Helmut Rainer; Holdenrieder, Stefan; Steinle, Alexander
2008-05-01
Natural Killer (NK) cells are capable to recognize and eliminate malignant cells. Anti-tumor responses of NK cells are promoted by the tumor-associated expression of cell stress-inducible ligands of the activating NK receptor NKG2D. Current evidence suggests that established tumors subvert NKG2D-mediated tumor immunosurveillance by releasing NKG2D ligands (NKG2DL). Release of NKG2DL has been observed in a broad variety of human tumor entities and is thought to interfere with NKG2D-mediated tumor immunity in several ways. Further, levels of soluble NKG2DL (sNKG2DL) were also found to be elevated under various non-malignant conditions, although the functional implications remain largely unclear. Here we review and discuss the available data on the prevalence, release, functional impact, and potential clinical value of sNKG2DL.
Isotropic 2D quadrangle meshing with size and orientation control
Pellenard, Bertrand; Alliez, Pierre; Morvan, Jean-Marie
2011-01-01
We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse
Excitons in atomically thin 2D semiconductors and their applications
Xiao, Jun; Zhao, Mervin; Wang, Yuan; Zhang, Xiang
2017-06-01
The research on emerging layered two-dimensional (2D) semiconductors, such as molybdenum disulfide (MoS2), reveals unique optical properties generating significant interest. Experimentally, these materials were observed to host extremely strong light-matter interactions as a result of the enhanced excitonic effect in two dimensions. Thus, understanding and manipulating the excitons are crucial to unlocking the potential of 2D materials for future photonic and optoelectronic devices. In this review, we unravel the physical origin of the strong excitonic effect and unique optical selection rules in 2D semiconductors. In addition, control of these excitons by optical, electrical, as well as mechanical means is examined. Finally, the resultant devices such as excitonic light emitting diodes, lasers, optical modulators, and coupling in an optical cavity are overviewed, demonstrating how excitons can shape future 2D optoelectronics.
Tailored Assembly of 2D Heterostructures beyond Graphene
2017-05-11
attainable. Here we propose our synthetic approach to construct graphene-based 3D heterostructures composed of 2D layered materials with finely tunable...DISTRIBUTION A: Distribution approved for public release. AF Office Of Scientific Research (AFOSR)/ IOA Arlington, Virginia 22203 Air Force Research ...Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT Rapid progress in graphene research has attracted further research attentions for other 2D layered
Proteasome modulator 9 and macrovascular pathology of T2D
Directory of Open Access Journals (Sweden)
Gragnoli Claudia
2011-04-01
Full Text Available Abstract Aims Coronary artery disease (CAD and stroke share a major linkage at the chromosome 12q24 locus. The same chromosome region entails at least a major risk gene for type 2 diabetes (T2D within NIDDM2, the non-insulin-dependent-diabetes 2 locus. The gene of Proteasome Modulator 9 (PSMD9 lies in the NIDDM2 region and is implicated in diabetes in mice. PSMD9 mutations rarely cause T2D and common variants are linked to both late-onset T2D and maturity-onset-diabetes of the young (MODY3. In this study, we aimed at determining whether PSMD9 is linked to macrovascular pathology of T2D. Methods and Results In our 200 T2D families from Italy, we characterized the clinical phenotype of macrovascular pathology by defining the subjects for presence or absence of CAD, stroke and/or transitory ischemic attacks (TIA, plaques of the large arterial vessels (macro-vasculopathy and arterial angioplasty performance. We then screened 200 T2D siblings/families for PSMD9 +nt460A/G, +nt437C/T and exon E197G A/G single nucleotide polymorphisms (SNPs and performed a non-parametric linkage study to test for linkage for coronary artery disease, stroke/TIA, macro-vasculopathy and macrovascular pathology of T2D. We performed 1,000 replicates to test the power of our significant results. Our results show a consistent significant LOD score in linkage with all the above-mentioned phenotypes. Our 1000 simulation analyses, performed for each single test, confirm that the results are not due to random chance. Conclusions In summary, the PSMD9 IVS3+nt460A/G, +nt437C/T and exon E197G A/G SNPs are linked to CAD, stroke/TIA and macrovascular pathology of T2D in Italians.
Photonics of 2D gold nanolayers on sapphire surface
Energy Technology Data Exchange (ETDEWEB)
Muslimov, A. E., E-mail: amuslimov@mail.ru; Butashin, A. V.; Nabatov, B. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Research Center “Crystallography and Photonics” (Russian Federation); Konovko, A. A.; Belov, I. V.; Gizetdinov, R. M.; Andreev, A. V. [Moscow State University (Russian Federation); Kanevsky, V. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Research Center “Crystallography and Photonics” (Russian Federation)
2017-03-15
Gold layers with thicknesses of up to several nanometers, including ordered and disordered 2D nanostructures of gold particles, have been formed on sapphire substrates; their morphology is described; and optical investigations are carried out. The possibility of increasing the accuracy of predicting the optical properties of gold layers and 2D nanostructures using quantum-mechanical models based on functional density theory calculation techniques is considered. The application potential of the obtained materials in photonics is estimated.
Large scale 2D spectral compressed sensing in continuous domain
Cai, Jian-Feng
2017-06-20
We consider the problem of spectral compressed sensing in continuous domain, which aims to recover a 2-dimensional spectrally sparse signal from partially observed time samples. The signal is assumed to be a superposition of s complex sinusoids. We propose a semidefinite program for the 2D signal recovery problem. Our model is able to handle large scale 2D signals of size 500 × 500, whereas traditional approaches only handle signals of size around 20 × 20.
Large scale 2D spectral compressed sensing in continuous domain
Cai, Jian-Feng; Xu, Weiyu; Yang, Yang
2017-01-01
We consider the problem of spectral compressed sensing in continuous domain, which aims to recover a 2-dimensional spectrally sparse signal from partially observed time samples. The signal is assumed to be a superposition of s complex sinusoids. We propose a semidefinite program for the 2D signal recovery problem. Our model is able to handle large scale 2D signals of size 500 × 500, whereas traditional approaches only handle signals of size around 20 × 20.
Maximizing the Optical Band Gap in 2D Photonic Crystals
DEFF Research Database (Denmark)
Hougaard, Kristian G.; Sigmund, Ole
Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid.......Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid....
Benchmarking of FA2D/PARCS Code Package
International Nuclear Information System (INIS)
Grgic, D.; Jecmenica, R.; Pevec, D.
2006-01-01
FA2D/PARCS code package is used at Faculty of Electrical Engineering and Computing (FER), University of Zagreb, for static and dynamic reactor core analyses. It consists of two codes: FA2D and PARCS. FA2D is a multigroup two dimensional transport theory code for burn-up calculations based on collision probability method, developed at FER. It generates homogenised cross sections both of single pins and entire fuel assemblies. PARCS is an advanced nodal code developed at Purdue University for US NRC and it is based on neutron diffusion theory for three dimensional whole core static and dynamic calculations. It is modified at FER to enable internal 3D depletion calculation and usage of neutron cross section data in a format produced by FA2D and interface codes. The FA2D/PARCS code system has been validated on NPP Krsko operational data (Cycles 1 and 21). As we intend to use this code package for development of IRIS reactor loading patterns the first logical step was to validate the FA2D/PARCS code package on a set of IRIS benchmarks, starting from simple unit fuel cell, via fuel assembly, to full core benchmark. The IRIS 17x17 fuel with erbium burnable absorber was used in last full core benchmark. The results of modelling the IRIS full core benchmark using FA2D/PARCS code package have been compared with reference data showing the adequacy of FA2D/PARCS code package model for IRIS reactor core design.(author)
CYP2D6 variability in populations from Venezuela.
Moreno, Nancy; Flores-Angulo, Carlos; Villegas, Cecilia; Mora, Yuselin
2016-12-01
CYP2D6 is an important cytochrome P450 enzyme that plays an important role in the metabolism of about 25% of currently prescribed drugs. The presence of polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatments. The most prevalent diseases in the admixed population from Venezuela are cardiovascular and cancer, whereas viral, bacterial and parasitic diseases, particularly malaria, are prevalent in Amerindian populations; in the treatment of these diseases, several drugs that are metabolized by CYP2D6 are used. In this work, we reviewed the data on CYP2D6 variability and predicted metabolizer phenotypes, in healthy volunteers of two admixed and five Amerindian populations from Venezuela. The Venezuelan population is very heterogeneous as a result of the genetic admixture of three major ethnical components: Europeans, Africans and Amerindians. There are noticeable inter-regional and inter-population differences in the process of mixing of this population. Hitherto, there are few published studies in Venezuela on CYP2D6; therefore, it is necessary to increase research in this regard, in particular to develop studies with a larger sample size. There is a considerable amount of work remaining before CYP2D6 is integrated into clinical practice in Venezuela.
Dirac Magnon Nodal Loops in Quasi-2D Quantum Magnets.
Owerre, S A
2017-07-31
In this report, we propose a new concept of one-dimensional (1D) closed lines of Dirac magnon nodes in two-dimensional (2D) momentum space of quasi-2D quantum magnetic systems. They are termed "2D Dirac magnon nodal-line loops". We utilize the bilayer honeycomb ferromagnets with intralayer coupling J and interlayer coupling J L , which is realizable in the honeycomb chromium compounds CrX 3 (X ≡ Br, Cl, and I). However, our results can also exist in other layered quasi-2D quantum magnetic systems. Here, we show that the magnon bands of the bilayer honeycomb ferromagnets overlap for J L ≠ 0 and form 1D closed lines of Dirac magnon nodes in 2D momentum space. The 2D Dirac magnon nodal-line loops are topologically protected by inversion and time-reversal symmetry. Furthermore, we show that they are robust against weak Dzyaloshinskii-Moriya interaction Δ DM magnon edge modes.
Modeling and Analysis of Asynchronous Systems Using SAL and Hybrid SAL
Tiwari, Ashish; Dutertre, Bruno
2013-01-01
We present formal models and results of formal analysis of two different asynchronous systems. We first examine a mid-value select module that merges the signals coming from three different sensors that are each asynchronously sampling the same input signal. We then consider the phase locking protocol proposed by Daly, Hopkins, and McKenna. This protocol is designed to keep a set of non-faulty (asynchronous) clocks phase locked even in the presence of Byzantine-faulty clocks on the network. All models and verifications have been developed using the SAL model checking tools and the Hybrid SAL abstractor.
UNIVERSAL REGULAR AUTONOMOUS ASYNCHRONOUS SYSTEMS: ω-LIMIT SETS, INVARIANCE AND BASINS OF ATTRACTION
Directory of Open Access Journals (Sweden)
Serban Vlad
2011-07-01
Full Text Available The asynchronous systems are the non-deterministic real timebinarymodels of the asynchronous circuits from electrical engineering.Autonomy means that the circuits and their models have no input.Regularity means analogies with the dynamical systems, thus such systems may be considered to be real time dynamical systems with a’vector field’, Universality refers to the case when the state space of the system is the greatest possible in the sense of theinclusion. The purpose of this paper is that of defining, by analogy with the dynamical systems theory, the omega-limit sets, the invariance and the basins of attraction of the universal regular autonomous asynchronous systems.
Optimization of FIBMOS Through 2D Silvaco ATLAS and 2D Monte Carlo Particle-based Device Simulations
Kang, J.; He, X.; Vasileska, D.; Schroder, D. K.
2001-01-01
Focused Ion Beam MOSFETs (FIBMOS) demonstrate large enhancements in core device performance areas such as output resistance, hot electron reliability and voltage stability upon channel length or drain voltage variation. In this work, we describe an optimization technique for FIBMOS threshold voltage characterization using the 2D Silvaco ATLAS simulator. Both ATLAS and 2D Monte Carlo particle-based simulations were used to show that FIBMOS devices exhibit enhanced current drive ...
California Natural Resource Agency — An administrative permit can be issued for an activity that qualifies as a minor repair or improvement in a relatively short period of time and without a public...
Department of Veterans Affairs — This report is the first comprehensive report that chronicles the history of racial and ethnic minorities in the military and as Veterans, profiles characteristics...
DEFF Research Database (Denmark)
Elling, Rasmus Christian
Contrary to the popular understanding of Iran as a Persian nation, half of the country's population consists of minorities, among whom there has been significant ethnic mobilization at crucial stages in Iranian history. One such stage is now: suppressed minority demands, identity claims, and deba......Contrary to the popular understanding of Iran as a Persian nation, half of the country's population consists of minorities, among whom there has been significant ethnic mobilization at crucial stages in Iranian history. One such stage is now: suppressed minority demands, identity claims......, and debates on diversity have entered public discourse and politics. In 2005–2007, Iran was rocked by the most widespread ethnic unrest experienced in that country since the revolution. The same period was also marked by the re-emergence of nationalism. This interdisciplinary book takes a long-overdue step...
Department of Veterans Affairs — This report is the first comprehensive report that chronicles the history of racial and ethnic minorities in the military and as Veterans, profiles characteristics...
International Nuclear Information System (INIS)
Ein-Dor, Liat; Metzler, Richard; Kanter, Ido; Kinzel, Wolfgang
2001-01-01
The generalization of the problem of adaptive competition, known as the minority game, to the case of K possible choices for each player, is addressed, and applied to a system of interacting perceptrons with input and output units of a type of K-state Potts spins. An optimal solution of this minority game, as well as the dynamic evolution of the adaptive strategies of the players, are solved analytically for a general K and compared with numerical simulations
Transition to Asynchronous Transfer Mode (ATM) an Implementation Model for NPS Software Metrics Lab
National Research Council Canada - National Science Library
Carney, Cameron
1999-01-01
With Asynchronous Transfer Mode (ATM), we are experiencing the emergence of a network technology that has the potential of satisfying the requirement for a worldwide standard to allow interoperability of information, regardless...
Integration of asynchronous knowledge sources in a novel speech recognition framework
Van hamme, Hugo
2008-01-01
Van hamme H., ''Integration of asynchronous knowledge sources in a novel speech recognition framework'', Proceedings ITRW on speech analysis and processing for knowledge discovery, 4 pp., June 2008, Aalborg, Denmark.
Determining sociability, social space, and social presence in (A)synchronous collaborative groups
Kreijns, K.; Kirschner, P.A.; Jochems, W.; Buuren, H. van
2004-01-01
The effectiveness of group learning in asynchronous distributed learning groups depends on the social interaction that takes place. This social interaction affects both cognitive and socioemotional processes that take place during learning, group forming, establishment of group structures, and group
Dewiyanti, Silvia; Brand-Gruwel, Saskia; Jochems, Wim; Broers, Nick
2008-01-01
Dewiyanti, S., Brand-Gruwel, S., Jochems, W., & Broers, N. (2007). Students experiences with collaborative learning in asynchronous computer-supported collaborative learning environments. Computers in Human Behavior, 23, 496-514.
ZONES OF STEADY CAPACITOR EXCITATION IN A MODE OF GENERATION OF TYPICAL ASYNCHRONOUS MACHINES
Directory of Open Access Journals (Sweden)
Postoronca Sv.
2009-12-01
Full Text Available In work some features of a mode of capacitor excitation of industrial asynchronous electric motors, and also generators made on their base which can be used in wind installations of low power are considered. Borders of zones of steady capacitor excitation of asynchronous electric motors in rated power of 0,25-22,0 kW and generators made on their base, and also character of influence of own losses and active capacity of loading of the equivalent circuit of the asynchronous machine resulted in parameters have been determined. Some recommendations after maintenance of stability of capacitor excitation of asynchronous machines for work in a mode of generation of electric energy are given.
Behavioral Synthesis of Asynchronous Circuits Using Syntax Directed Translation as Backend
DEFF Research Database (Denmark)
Nielsen, Sune Fallgaard; Sparsø, Jens; Madsen, Jan
2009-01-01
The current state-of-the art in high-level synthesis of asynchronous circuits is syntax directed translation, which performs a one-to-one mapping of a HDL-description into a corresponding circuit. This paper presents a method for behavioral synthesis of asynchronous circuits which builds on top...... description language Balsa [1]. This ”conventional” template architecture allows us to adapt traditional synchronous synthesis techniques for resource sharing, scheduling, binding etc, to the domain of asynchronous circuits. A prototype tool has been implemented on top of the Balsa framework, and the method...... is illustrated through the implementation of a set of example circuits. The main contributions of the paper are: the fundamental idea, the template architecture and its implementation using asynchronous handshake components, and the implementation of a prototype tool....
Distributed Consensus of Stochastic Delayed Multi-agent Systems Under Asynchronous Switching.
Wu, Xiaotai; Tang, Yang; Cao, Jinde; Zhang, Wenbing
2016-08-01
In this paper, the distributed exponential consensus of stochastic delayed multi-agent systems with nonlinear dynamics is investigated under asynchronous switching. The asynchronous switching considered here is to account for the time of identifying the active modes of multi-agent systems. After receipt of confirmation of mode's switching, the matched controller can be applied, which means that the switching time of the matched controller in each node usually lags behind that of system switching. In order to handle the coexistence of switched signals and stochastic disturbances, a comparison principle of stochastic switched delayed systems is first proved. By means of this extended comparison principle, several easy to verified conditions for the existence of an asynchronously switched distributed controller are derived such that stochastic delayed multi-agent systems with asynchronous switching and nonlinear dynamics can achieve global exponential consensus. Two examples are given to illustrate the effectiveness of the proposed method.
Determining sociability, social space, and social presence in (a)synchronous collaborating groups
Kreijns, C.J.; Kirschner, P.A.; Jochems, W.M.G.; Buuren, van H.
2004-01-01
The effectiveness of group learning in asynchronous distributed learning groups depends on the social interaction that takes place. This social interaction affects both cognitive and socioemotional processes that take place during learning, group forming, establishment of group structures, and group
Low-power Implementation of an Encryption/Decryption System with Asynchronous Techniques
Directory of Open Access Journals (Sweden)
Nikos Sklavos
2002-01-01
Full Text Available An asynchronous VLSI implementation of the International Data Encryption Algorithm (IDEA is presented in this paper. In order to evaluate the asynchronous design a synchronous version of the algorithm was also designed. VHDL hardware description language was used in order to describe the algorithm. By using Synopsys commercial available tools the VHDL code was synthesized. After placing and routing both designs were fabricated with 0.6 μm CMOS technology. With a system clock of up to 8 MHz and a power supply of 5 V the two chips were tested and evaluated comparing with the software implementation of the IDEA algorithm. This new approach proves efficiently the lowest power consumption of the asynchronous implementation compared to the existing synchronous. Therefore, the asynchronous chip performs efficiently in Wireless Encryption Protocols and high speed networks.
Asynchronous Sensor fuSion for Improved Safety of air Traffic (ASSIST), Phase I
National Aeronautics and Space Administration — SSCI proposes to develop, implement and test a collision detection system for unmanned aerial vehicles (UAV), referred to as the Asynchronous Sensor fuSion for...
2-D Clinostat for Simulated Microgravity Experiments with Arabidopsis Seedlings
Wang, Hui; Li, Xugang; Krause, Lars; Görög, Mark; Schüler, Oliver; Hauslage, Jens; Hemmersbach, Ruth; Kircher, Stefan; Lasok, Hanna; Haser, Thomas; Rapp, Katja; Schmidt, Jürgen; Yu, Xin; Pasternak, Taras; Aubry-Hivet, Dorothée; Tietz, Olaf; Dovzhenko, Alexander; Palme, Klaus; Ditengou, Franck Anicet
2016-04-01
Ground-based simulators of microgravity such as fast rotating 2-D clinostats are valuable tools to study gravity related processes. We describe here a versatile g-value-adjustable 2-D clinostat that is suitable for plant analysis. To avoid seedling adaptation to 1 g after clinorotation, we designed chambers that allow rapid fixation. A detailed protocol for fixation, RNA isolation and the analysis of selected genes is described. Using this clinostat we show that mRNA levels of LONG HYPOCOTYL 5 (HY5), MIZU-KUSSEI 1 (MIZ1) and microRNA MIR163 are down-regulated in 5-day-old Arabidopsis thaliana roots after 3 min and 6 min of clinorotation using a maximal reduced g-force of 0.02 g, hence demonstrating that this 2-D clinostat enables the characterization of early transcriptomic events during root response to microgravity. We further show that this 2-D clinostat is able to compensate the action of gravitational force as both gravitropic-dependent statolith sedimentation and subsequent auxin redistribution (monitoring D R5 r e v :: G F P reporter) are abolished when plants are clinorotated. Our results demonstrate that 2-D clinostats equipped with interchangeable growth chambers and tunable rotation velocity are suitable for studying how plants perceive and respond to simulated microgravity.
Operational aspects of asynchronous filtering for improved flood forecasting
Rakovec, Oldrich; Weerts, Albrecht; Sumihar, Julius; Uijlenhoet, Remko
2014-05-01
Hydrological forecasts can be made more reliable and less uncertain by recursively improving initial conditions. A common way of improving the initial conditions is to make use of data assimilation (DA), a feedback mechanism or update methodology which merges model estimates with available real world observations. The traditional implementation of the Ensemble Kalman Filter (EnKF; e.g. Evensen, 2009) is synchronous, commonly named a three dimensional (3-D) assimilation, which means that all assimilated observations correspond to the time of update. Asynchronous DA, also called four dimensional (4-D) assimilation, refers to an updating methodology, in which observations being assimilated into the model originate from times different to the time of update (Evensen, 2009; Sakov 2010). This study investigates how the capabilities of the DA procedure can be improved by applying alternative Kalman-type methods, e.g., the Asynchronous Ensemble Kalman Filter (AEnKF). The AEnKF assimilates observations with smaller computational costs than the original EnKF, which is beneficial for operational purposes. The results of discharge assimilation into a grid-based hydrological model for the Upper Ourthe catchment in Belgian Ardennes show that including past predictions and observations in the AEnKF improves the model forecasts as compared to the traditional EnKF. Additionally we show that elimination of the strongly non-linear relation between the soil moisture storage and assimilated discharge observations from the model update becomes beneficial for an improved operational forecasting, which is evaluated using several validation measures. In the current study we employed the HBV-96 model built within a recently developed open source modelling environment OpenStreams (2013). The advantage of using OpenStreams (2013) is that it enables direct communication with OpenDA (2013), an open source data assimilation toolbox. OpenDA provides a number of algorithms for model calibration
Violation of the equivalence principle for stressed bodies in asynchronous relativity
Energy Technology Data Exchange (ETDEWEB)
Andrade Martins, R. de (Centro de Logica, Epistemologia e Historia da Ciencia, Campinas (Brazil))
1983-12-11
In the recently developed asynchronous formulation of the relativistic theory of extended bodies, the inertial mass of a body does not explicitly depend on its pressure or stress. The detailed analysis of the weight of a box filled with a gas and placed in a weak gravitational field shows that this feature of asynchronous relativity implies a breakdown of the equivalence between inertial and passive gravitational mass for stressed systems.
An Evaluation of Parallel Synchronous and Conservative Asynchronous Logic-Level Simulations
Directory of Open Access Journals (Sweden)
Ausif Mahmood
1996-01-01
a circuit remain fixed during the entire simulation. We remove this limitation and, by extending the analyses to multi-input, multi-output circuits with an arbitrary number of input events, show that the conservative asynchronous simulation extracts more parallelism and executes faster than synchronous simulation in general. Our conclusions are supported by a comparison of the idealized execution times of synchronous and conservative asynchronous algorithms on ISCAS combinational and sequential benchmark circuits.
Asynchronous Free-Space Optical CDMA Communications System for Last-mile Access Network
DEFF Research Database (Denmark)
Jurado-Navas, Antonio; Raddo, Thiago R.; Sanches, Anderson L.
2016-01-01
We propose a new hybrid asynchronous OCDMA-FSO communications system for access network solutions. New ABER expressions are derived under gamma-gamma scintillation channels, where all users can surprisingly achieve error-free transmissions when FEC is employed.......We propose a new hybrid asynchronous OCDMA-FSO communications system for access network solutions. New ABER expressions are derived under gamma-gamma scintillation channels, where all users can surprisingly achieve error-free transmissions when FEC is employed....
Strict optical orthogonal codes for purely asynchronous code-division multiple-access applications
Zhang, Jian-Guo
1996-12-01
Strict optical orthogonal codes are presented for purely asynchronous optical code-division multiple-access (CDMA) applications. The proposed code can strictly guarantee the peaks of its cross-correlation functions and the sidelobes of any of its autocorrelation functions to have a value of 1 in purely asynchronous data communications. The basic theory of the proposed codes is given. An experiment on optical CDMA systems is also demonstrated to verify the characteristics of the proposed code.
The study of transient processes in the asynchronous starting of the synchronous motor
Alexandru Bârlea; Olivian Chiver
2012-01-01
Starting synchronous motors can be achieved by several ethods: starting with an auxiliary motor launch, starting in asynchronous regim, by feeding from a variable frequency source, auto-synchronization with the network.. In our case we study the transient processes in a asynchronous regim . In this case the synchronous motor is started like a squirrel cage induction motor . To start, the synchronous motor is equipped with a starting winding cage placed in the pole pieces of polar inducers; la...
MED5/355: Using Web-technology for Asynchronous Telemedicine Consulting
Reviakin, Y; Sukhanov, A
1999-01-01
Introduction Common telemedicine consultations can be divided in two classes: real-time telemedicine consultations and asynchronous telemedicine consultations. The advantage of real-time consultations is obvious - this is a natural discussion between physicians, which may be realised on the basis of desktop videoconferences. But the problems are also obvious: the necessity of additional hardware and the elevated demands for channel bandwidth. Because of the latter, the use of asynchronous tel...
Minority engineering scholarships renewal, 2011.
2012-08-01
Scholarships for Minority Students Studying Engineering and Science : Support will make scholarships available to minority students : interested in engineering and science and will increase significantly the number of minority students that Missouri ...
Graphene based 2D-materials for supercapacitors
Palaniselvam, Thangavelu; Baek, Jong-Beom
2015-09-01
Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.
Maximizing entropy of image models for 2-D constrained coding
DEFF Research Database (Denmark)
Forchhammer, Søren; Danieli, Matteo; Burini, Nino
2010-01-01
This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite...... context models, which define stationary probability distributions on finite rectangles and thus allow for calculation of the entropy. We consider two binary constraints and revisit the hard square constraint given by forbidding neighboring 1s and provide novel results for the constraint that no uniform 2...... £ 2 squares contains all 0s or all 1s. The maximum values of the entropy for the constraints are estimated and binary PRF satisfying the constraint are characterized and optimized w.r.t. the entropy. The maximum binary PRF entropy is 0.839 bits/symbol for the no uniform squares constraint. The entropy...
Approximate 2D inversion of airborne TEM data
DEFF Research Database (Denmark)
Christensen, N.B.; Wolfgram, Peter
2006-01-01
We propose an approximate two-dimensional inversion procedure for transient electromagnetic data. The method is a two-stage procedure, where data are first inverted with 1D multi-layer models. The 1D model section is then considered as data for the next inversion stage that produces the 2D model...... section. For moving platform data there is translational invariance and the second part of the inversion becomes a deconvolution. The convolution kernels are computed by perturbing one model element in an otherwise homogeneous 2D section and calculating full nonlinear responses. These responses...... are then inverted with 1D models to produce a 1D model section. This section is the convolution kernel for the deconvolution. Within its limitations, the approximate 2D inversion performs well. Theoretical modeling shows that it delivers model sections that are a definite improvement over 1D model sections...
Graphene based 2D-materials for supercapacitors
International Nuclear Information System (INIS)
Palaniselvam, Thangavelu; Baek, Jong-Beom
2015-01-01
Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed. (topical review)
Effective viscosity of 2D suspensions - Confinement effects
Peyla, Philippe; Priem, Stephane; Vincent, Doyeux; Farutin, Alexander; Ismail, Mourad
2014-11-01
We study the rheology of a sheared 2D suspension of non-Brownian disks in presence of walls. Although, it is of course possible today with modern computers and powerful algorithms to perform direct numerical simulations that fully account for multiparticle 3D interactions, the analysis of the simple case of a 2D suspension, provides valuable insights and helps to understand 3D results. For instance, we examine the role of particle-wall and particle-particle interactions in determining the rheology of confined sheared suspensions. In addition we evaluate the intrinsic viscosity as well as the contribution of hydrodynamic interactions to the dissipation as a function of a wide range of confinements. Thanks to the direct visualisation of the whole 2D Stokes flow, we are able to give a clear interpretation about the rheology of semi-dilute confined suspensions.
Theory of Magnetoelectric Properties of 2D Systems
Chen, S. C.; Wu, J. Y.; Lin, C. Y.; Lin, M. F.
2017-12-01
This book addresses important advances in diverse quantization phenomena. 'Theory of Magnetoelectric Properties of 2D Systems' develops the generalized tight-binding model in order to comprehend the rich quantization phenomena in 2D materials. The unusual effects, taken into consideration simultaneously, mainly come from the multi-orbital hybridization, the spin-orbital coupling, the intralayer and interlayer atomic interactions, the layer number, the stacking configuration, the site-energy difference, the magnetic field, and the electric field. The origins of the phenomena are discussed in depth, particularly focusing on graphene, tinene, phosphorene and MoS2, with a broader model also drawn. This model could be further used to investigate electronic properties of 1D and 3D condensed-matter systems, and this book will prove to be a valuable resource to researchers and graduate students working in 2D materials science.
MESH2D Grid generator design and use
Energy Technology Data Exchange (ETDEWEB)
Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2017-10-31
Mesh2d is a Fortran90 program originally designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). x-coordinates depending only on index i implies strictly vertical x-grid lines, whereas the y-grid lines can undulate. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. Since the original development effort, Mesh2d has been extended to more general two-dimensional structured grids of the form [x(i,j),(i,j)].
Simulating Quantitative Cellular Responses Using Asynchronous Threshold Boolean Network Ensembles
Directory of Open Access Journals (Sweden)
Shah Imran
2011-07-01
Full Text Available Abstract Background With increasing knowledge about the potential mechanisms underlying cellular functions, it is becoming feasible to predict the response of biological systems to genetic and environmental perturbations. Due to the lack of homogeneity in living tissues it is difficult to estimate the physiological effect of chemicals, including potential toxicity. Here we investigate a biologically motivated model for estimating tissue level responses by aggregating the behavior of a cell population. We assume that the molecular state of individual cells is independently governed by discrete non-deterministic signaling mechanisms. This results in noisy but highly reproducible aggregate level responses that are consistent with experimental data. Results We developed an asynchronous threshold Boolean network simulation algorithm to model signal transduction in a single cell, and then used an ensemble of these models to estimate the aggregate response across a cell population. Using published data, we derived a putative crosstalk network involving growth factors and cytokines - i.e., Epidermal Growth Factor, Insulin, Insulin like Growth Factor Type 1, and Tumor Necrosis Factor α - to describe early signaling events in cell proliferation signal transduction. Reproducibility of the modeling technique across ensembles of Boolean networks representing cell populations is investigated. Furthermore, we compare our simulation results to experimental observations of hepatocytes reported in the literature. Conclusion A systematic analysis of the results following differential stimulation of this model by growth factors and cytokines suggests that: (a using Boolean network ensembles with asynchronous updating provides biologically plausible noisy individual cellular responses with reproducible mean behavior for large cell populations, and (b with sufficient data our model can estimate the response to different concentrations of extracellular ligands. Our
Determination of slope failure using 2-D resistivity method
Muztaza, Nordiana Mohd; Saad, Rosli; Ismail, Nur Azwin; Bery, Andy Anderson
2017-07-01
Landslides and slope failure may give negative economic effects including the cost to repair structures, loss of property value and medical costs in the event of injury. To avoid landslide, slope failure and disturbance of the ecosystem, good and detailed planning must be done when developing hilly area. Slope failure classification and various factors contributing to the instability using 2-D resistivity survey conducted in Selangor, Malaysia are described. The study on landslide and slope failure was conducted at Site A and Site B, Selangor using 2-D resistivity method. The implications of the anticipated ground conditions as well as the field observation of the actual conditions are discussed. Nine 2-D resistivity survey lines were conducted in Site A and six 2-D resistivity survey lines with 5 m minimum electrode spacing using Pole-dipole array were performed in Site B. The data were processed using Res2Dinv and Surfer10 software to evaluate the subsurface characteristics. 2-D resistivity results from both locations show that the study areas consist of two main zones. The first zone is alluvium or highly weathered with the resistivity of 100-1000 Ωm at 20-70 m depth. This zone consists of saturated area (1-100 Ωm) and boulders with resistivity value of 1200-3000 Ωm. The second zone with resistivity values of > 3000 Ωm was interpreted as granitic bedrock. The study area was characterized by saturated zones, highly weathered zone, highly contain of sand and boulders that will trigger slope failure in the survey area. Based on the results obtained from the study findings, it can be concluded that 2-D resistivity method is useful method in determination of slope failure.
Kunin, Marc; Julliard, Kell N; Rodriguez, Tobias E
2014-06-01
The Department of Dental Medicine of Lutheran Medical Center has developed an asynchronous online curriculum consisting of prerecorded PowerPoint presentations with audio explanations. The focus of this study was to evaluate if the new asynchronous format satisfied the educational needs of the residents compared to traditional lecture (face-to-face) and synchronous (distance learning) formats. Lectures were delivered to 219 dental residents employing face-to-face and synchronous formats, as well as the new asynchronous format; 169 (77 percent) participated in the study. Outcomes were assessed with pretests, posttests, and individual lecture surveys. Results found the residents preferred face-to-face and asynchronous formats to the synchronous format in terms of effectiveness and clarity of presentations. This preference was directly related to the residents' perception of how well the technology worked in each format. The residents also rated the quality of student-instructor and student-student interactions in the synchronous and asynchronous formats significantly higher after taking the lecture series than they did before taking it. However, they rated the face-to-face format as significantly more conducive to student-instructor and student-student interaction. While the study found technology had a major impact on the efficacy of this curricular model, the results suggest that the asynchronous format can be an effective way to teach a postgraduate course.
Quantum process tomography by 2D fluorescence spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Pachón, Leonardo A. [Grupo de Física Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States); Marcus, Andrew H. [Department of Chemistry and Biochemistry, Oregon Center for Optics, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403 (United States); Aspuru-Guzik, Alán [Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States)
2015-06-07
Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.
Quantum process tomography by 2D fluorescence spectroscopy
International Nuclear Information System (INIS)
Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán
2015-01-01
Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed
Melting of 2D monatomic solids: Lennard-Jones system
International Nuclear Information System (INIS)
Yi, Y.M.; Guo, Z.C.
1987-09-01
The Lennard-Jones interaction has been introduced into the Collins mix lattice of 2D liquids. By means of rigorous calculation of the total potential and the free area, the Gibbs functions for 2D liquid and solid have been derived. The melting line obtained from the phase transition equation agrees quite well with the result of recent computer simulation experiments. The obtained reduced temperature of the triple point T* t =0.438 agrees with the data measured in experiments of some inert gas monolayers adsorbed on graphite as well as in computer simulation experiments. (author). 11 refs, 7 figs, 3 tabs
EEG simulation by 2D interconnected chaotic oscillators
International Nuclear Information System (INIS)
Kubany, Adam; Mhabary, Ziv; Gontar, Vladimir
2011-01-01
Research highlights: → ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. → An inverse problem solution (PRCGA) is proposed. → Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.
2-D emittance equation with acceleration and compression
International Nuclear Information System (INIS)
Hahn, K.D.; Smith, L.
1988-10-01
Since both acceleration and compression are required for an Inertial Fusion Driver, the understanding of their effect on the beam quality, emittance, is important. This report attempts to generalize the usual emittance formula for the drifting beam to include these effects. The derivation of the 2-D emittance equation is carried out and a comparison with the particle code results is given. The 2-D emittance at a given axial location is reasonable to consider for a long beam, particularly with velocity tilt; transverse emittance averaged over the entire bunch is not a useful quantity. 6 refs., 2 figs., 1 tab
Real-time 2-D Phased Array Vector Flow Imaging
DEFF Research Database (Denmark)
Holbek, Simon; Hansen, Kristoffer Lindskov; Fogh, Nikolaj
2018-01-01
Echocardiography examination of the blood flow is currently either restricted to 1-D techniques in real-time or experimental off-line 2-D methods. This paper presents an implementation of transverse oscillation for real-time 2-D vector flow imaging (VFI) on a commercial BK Ultrasound scanner....... A large field-of-view (FOV) sequence for studying flow dynamics at 11 frames per second (fps) and a sequence for studying peak systolic velocities (PSV) with a narrow FOV at 36 fps were validated. The VFI sequences were validated in a flow-rig with continuous laminar parabolic flow and in a pulsating flow...
Radiative heat transfer in 2D Dirac materials
International Nuclear Information System (INIS)
Rodriguez-López, Pablo; Tse, Wang-Kong; Dalvit, Diego A R
2015-01-01
We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials. (paper)
EEG simulation by 2D interconnected chaotic oscillators
Energy Technology Data Exchange (ETDEWEB)
Kubany, Adam, E-mail: adamku@bgu.ac.i [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Mhabary, Ziv; Gontar, Vladimir [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel)
2011-01-15
Research highlights: ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. An inverse problem solution (PRCGA) is proposed. Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.
First Principles Calculations of Electronic Excitations in 2D Materials
DEFF Research Database (Denmark)
Rasmussen, Filip Anselm
electronic transport, optical and chemical properties. On the other hand it has shown to be a great starting point for a systematic pertubation theory approach to obtain the so-called quasiparticle spectrum. In the GW approximation one considers the considers the potential from a charged excitation...... as if it is being screened by the electrons in the material. This method has been very successful for calculating quasiparticle energies of bulk materials but results have been more varying for 2D materials. The reason is that the 2D confined electrons are less able to screen the added charge and some...
Design and production of a short 2D animated film
Prusnik, Petra
2014-01-01
Design and production of a short 2D animated film The thesis aims at analysing animation, the process of creating an ani- mated film with its technical and compositional details as well as show the process of making a short 2D animated movie with Toon Boom Studio. It is composed of theoretical and practical part. The theoretical part of this thesis consists of the definition of the term "animation", a quick overview of its history and evolution, and an in-depth look into var...
2D director calculation for liquid crystal optical phased array
International Nuclear Information System (INIS)
Xu, L; Zhang, J; Wu, L Y
2005-01-01
A practical numerical model for a liquid crystal cell is set up based on the geometrical structure of liquid crystal optical phased arrays. Model parameters include width and space of electrodes, thickness of liquid crystal layer, alignment layers and glass substrates, pre-tilted angles, dielectric constants, elastic constants and so on. According to electrostatic field theory and Frank-Oseen elastic continuum theory, 2D electric potential distribution and 2D director distribution are calculated by means of the finite difference method on non-uniform grids. The influence of cell sizes on director distribution is analyzed. The fringe field effect between electrodes is also discussed
Spreading dynamics of 2D dipolar Langmuir monolayer phases.
Heinig, P; Wurlitzer, S; Fischer, Th M
2004-07-01
We study the spreading of a liquid 2D dipolar droplet in a Langmuir monolayer. Interfacial tensions (line tensions) and microscopic contact angles depend on the scale on which they are probed and obey a scaling law. Assuming rapid equilibration of the microscopic contact angle and ideal slippage of the 2D solid/liquid and solid/gas boundary, the driving force of spreading is merely expressed by the shape-dependent long-range interaction integrals. We obtain good agreement between experiment and numerical simulations using this theory.
Isotropic 2D quadrangle meshing with size and orientation control
Pellenard, Bertrand
2011-12-01
We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.
Design of the LRP airfoil series using 2D CFD
DEFF Research Database (Denmark)
Zahle, Frederik; Bak, Christian; Sørensen, Niels N.
2014-01-01
This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D...... Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils....
Design of the LRP airfoil series using 2D CFD
International Nuclear Information System (INIS)
Zahle, Frederik; Bak, Christian; Sørensen, Niels N; Vronsky, Tomas; Gaudern, Nicholas
2014-01-01
This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils
Thermodynamics of an Attractive 2D Fermi Gas
Fenech, K.; Dyke, P.; Peppler, T.; Lingham, M. G.; Hoinka, S.; Hu, H.; Vale, C. J.
2016-01-01
Thermodynamic properties of matter are conveniently expressed as functional relations between variables known as equations of state. Here we experimentally determine the compressibility, density, and pressure equations of state for an attractive 2D Fermi gas in the normal phase as a function of temperature and interaction strength. In 2D, interacting gases exhibit qualitatively different features to those found in 3D. This is evident in the normalized density equation of state, which peaks at intermediate densities corresponding to the crossover from classical to quantum behavior.
How Mucosal Epithelia Deal with Stress: Role of NKG2D/NKG2D Ligands during Inflammation
Directory of Open Access Journals (Sweden)
Fabrizio Antonangeli
2017-11-01
Full Text Available Mucosal epithelia encounter both physicochemical and biological stress during their life and have evolved several mechanisms to deal with them, including regulation of immune cell functions. Stressed and damaged cells need to be cleared to control local inflammation and trigger tissue healing. Engagement of the activating NKG2D receptor is one of the most direct mechanisms involved in the recognition of stressed cells by the immune system. Indeed, injured cells promptly express NKG2D ligands that in turn mediate the activation of lymphocytes of both innate and adaptive arms of the immune system. This review focuses on different conditions that are able to modulate NKG2D ligand expression on the epithelia. Special attention is given to the mechanisms of immunosurveillance mediated by natural killer cells, which are finely tuned by NKG2D. Different types of stress, including viral and bacterial infections, chronic inflammation, and cigarette smoke exposure, are discussed as paradigmatic conditions for NKG2D ligand modulation, and the implications for tissue homeostasis are discussed.
Defining minors' abortion rights.
Rhodes, A M
1988-01-01
The right to abortion is confirmed in the Roe versus Wade case, by the US Supreme Court. It is a fundamental right of privacy but not an absolute right, and must consider state interests. During the first trimester of pregnancy abortion is a decision of the woman and her doctor. During the second trimester of pregnancy the state may control the abortion practice to protect the mothers health, and in the last trimester, it may prohibit abortion, except in cases where the mother's life or health are in danger. The states enacted laws, including one that required parents to give written consent for a unmarried minor's abortion. This law was struck down by the US Court, but laws on notification were upheld as long as there was alternative procedures where the minor's interests are upheld. Many of these law have been challenged successfully, where the minor was judged mature and where it served her best interests. The state must enact laws on parental notification that take into consideration basic rights of the minor woman. Health professionals and workers should be aware of these laws and should encourage the minor to let parents in on the decision making process where possible.
Understanding and Optimizing Asynchronous Low-Precision Stochastic Gradient Descent
De Sa, Christopher; Feldman, Matthew; Ré, Christopher; Olukotun, Kunle
2018-01-01
Stochastic gradient descent (SGD) is one of the most popular numerical algorithms used in machine learning and other domains. Since this is likely to continue for the foreseeable future, it is important to study techniques that can make it run fast on parallel hardware. In this paper, we provide the first analysis of a technique called Buckwild! that uses both asynchronous execution and low-precision computation. We introduce the DMGC model, the first conceptualization of the parameter space that exists when implementing low-precision SGD, and show that it provides a way to both classify these algorithms and model their performance. We leverage this insight to propose and analyze techniques to improve the speed of low-precision SGD. First, we propose software optimizations that can increase throughput on existing CPUs by up to 11×. Second, we propose architectural changes, including a new cache technique we call an obstinate cache, that increase throughput beyond the limits of current-generation hardware. We also implement and analyze low-precision SGD on the FPGA, which is a promising alternative to the CPU for future SGD systems. PMID:29391770
Identity Presentation: The Construction of Identity in Asynchronous Discussion
Directory of Open Access Journals (Sweden)
Brian Morgan
2008-08-01
Full Text Available This study examines the use of e-mail as a tool for long term discussion between teachers and grade six students. E-mail messages between grade six students and teachers were collected over the course of one academic year. Methods of conversation analysis within a framework of social practice are used to examine the data. While identity is more readily constructed and more fully developed in contexts which allow for physical embodiment such as face-to-face discussion, this analysis found that identity can be constructed in a context that does not provide for the physical embodiment of identity: Identity was constructed using the social, cultural, and technological tools provided and supported by e-mail to develop social practices germane to the e-mail discussion. This study has implications for further understanding the relation between identity, goals, constraints and affordances, and the collaborative creation of social practices in asynchronous computer mediated communication. URN: urn:nbn:de:0114-fqs0803185
FACT. Normalized and asynchronous mirror alignment for Cherenkov telescopes
Energy Technology Data Exchange (ETDEWEB)
Mueller, Sebastian Achim [ETH Zurich (Switzerland); Buss, Jens [TU Dortmund (Germany)
2016-07-01
Imaging Atmospheric Cherenkov Telescopes (IACTs) need fast and large imaging optics to map the faint Cherenkov light emitted in cosmic ray air showers onto their image sensors. Segmented reflectors are inexpensive, lightweight and offer good image quality. However, alignment of the mirror facets remains a challenge. A good alignment is crucial in IACT observations to separate gamma rays from hadronic cosmic rays. We present a star tracking alignment method which is not restricted to clear nights. It normalizes the mirror facet reflections to be independent of the reference star or the cloud coverage. It records asynchronously of the telescope drive which makes the method easy to integrate in existing telescopes. It can be combined with remote facet actuation, but it does not need one to work. Furthermore, it can reconstruct all individual mirror facet point spread functions. We present the method and alignment results on the First Geiger-mode Photo Diode Avalanche Cherenkov Telescope (FACT) on the Canary Island of La Palma, Spain.
Preparation for an online asynchronous university doctoral course. Lessons learned.
Milstead, J A; Nelson, R
1998-01-01
This article addresses the development of the initial course in the first completely online doctoral program in nursing. Synchronous and asynchronous methods of distance education were assessed. Planning focused at the university, school, and course levels. University planning involved the technical infrastructure, registration, student services, and library services. School planning examined administrative commitment and faculty commitment and willingness. Course planning focused on marketing, precourse information, time frame, modular design, planned interaction, and professor availability and support. Implementation issues centered on getting students connected, learning the software, changing instructional methods, and managing chats. Traditional methods of evaluating student learning and course evaluation were supplemented with the development of qualitative and quantitative tools to gather data for making administrative decisions. The Dean and faculty agreed that the internet was an effective method of delivering content in the initial Health Policy course. The Dean and faculty agreed to continue the PhD program online for one cohort and continue to evaluate student progress and faculty and student satisfaction.
Performance Studies for Protection Against Asynchronous Dumps in the LHC
Kramer, T; Bracco, C; Goddard, B; Meddahi, M
2010-01-01
The LHC beam dump system has to safely dispose all beams in a wide energy range of 450 GeV to 7 TeV. A 3 ms abort gap in the beam structure for the switch-on of the extraction kicker field ideally allows a loss-free extraction under normal operating conditions. However, a low number of asynchronous beam aborts is to be expected from reliability calculations and from the first year's operational experience with the beam dump kickers. For such cases, MAD-X simulations including all optics and alignment errors have been performed to determine loss patterns around the LHC as a function of the position of the main protection elements in interaction region six. Special attention was paid to the beam load on the tungsten collimators which protect the triplets in the LHC experimental insertions, and the tracking results compared with semi-analytical numerical estimates. The simulations are also compared to the results of beam commissioning of these protection devices.
Asynchronous vehicle pose correction using visual detection of ground features
International Nuclear Information System (INIS)
Harnarinesingh, Randy E S; Syan, Chanan S
2014-01-01
The inherent noise associated with odometry manifests itself as errors in localization for autonomous vehicles. Visual odometry has been previously used in order to supplement classical vehicle odometry. However, visual odometry is limited in its ability to reduce errors in localization for large travel distances that entail the cumulative summing of individual frame-to-frame image errors. In this paper, a novel machine vision approach for tiled surfaces is proposed to address this problem. Tile edges in a laboratory environment are used to define a travel trajectory for the Quansar Qbot (autonomous vehicle) built on the iRobot iRoomba platform with a forward facing camera. Tile intersections are used to enable asynchronous error recovery for vehicle position and orientation. The proposed approach employs real-time image classification and is feasible for error mitigation for large travel distances. The average position error for an 8m travel distance using classical odometry was measured to be 0.28m. However, implementation of the proposed approach resulted in an error of 0.028m. The proposed approach therefore significantly reduces pose estimation error and could be used to supplement existing modalities such as GPS and Laser-based range sensors
Combining Synchronous and Asynchronous Collaboration within 3D City Models
Klimke, Jan; Döllner, Jürgen
This paper presents an approach for combining spatially distributed synchronous and asynchronous collaboration within 3D city models. Software applications use these models as additional communication medium to facilitate communication of georeferenced and geospatial information. Collaboration tools should support both the communication with other collaborators and their awareness of the current collaboration context. To support collaborative knowledge construction and gathering, we have designed a collaboration system to facilitate (a) creation of annotations that have 3D references to the virtual 3D city model and (b) collection information about the context in which these annotations are created. Our approach supports synchronous collaboration in connection with the creation of non volatile, precisely georeferenced units of information allow for a comprehensible form of cooperation in spatially distributed settings. Storage and retrieval of this information is provided through a Web Feature Service, which eases integration of collaboration data into existing applications. We further introduce a visualization technique that integrates annotations as complex structured data into the 3D visualization. This avoids media breaks and disruptions in working processes and creates a spatial coherence between annotation and annotated feature or geometry.
Synchronous versus asynchronous modeling of gene regulatory networks.
Garg, Abhishek; Di Cara, Alessandro; Xenarios, Ioannis; Mendoza, Luis; De Micheli, Giovanni
2008-09-01
In silico modeling of gene regulatory networks has gained some momentum recently due to increased interest in analyzing the dynamics of biological systems. This has been further facilitated by the increasing availability of experimental data on gene-gene, protein-protein and gene-protein interactions. The two dynamical properties that are often experimentally testable are perturbations and stable steady states. Although a lot of work has been done on the identification of steady states, not much work has been reported on in silico modeling of cellular differentiation processes. In this manuscript, we provide algorithms based on reduced ordered binary decision diagrams (ROBDDs) for Boolean modeling of gene regulatory networks. Algorithms for synchronous and asynchronous transition models have been proposed and their corresponding computational properties have been analyzed. These algorithms allow users to compute cyclic attractors of large networks that are currently not feasible using existing software. Hereby we provide a framework to analyze the effect of multiple gene perturbation protocols, and their effect on cell differentiation processes. These algorithms were validated on the T-helper model showing the correct steady state identification and Th1-Th2 cellular differentiation process. The software binaries for Windows and Linux platforms can be downloaded from http://si2.epfl.ch/~garg/genysis.html.
Directory of Open Access Journals (Sweden)
Lina Yang
2014-01-01
Full Text Available To reduce the computation complexity of wavelet transform, this paper presents a novel approach to be implemented. It consists of two key techniques: (1 fast number theoretic transform(FNTT In the FNTT, linear convolution is replaced by the circular one. It can speed up the computation of 2D discrete wavelet transform. (2 In two-dimensional overlap-save method directly calculating the FNTT to the whole input sequence may meet two difficulties; namely, a big modulo obstructs the effective implementation of the FNTT and a long input sequence slows the computation of the FNTT down. To fight with such deficiencies, a new technique which is referred to as 2D overlap-save method is developed. Experiments have been conducted. The fast number theoretic transform and 2D overlap-method have been used to implement the dyadic wavelet transform and applied to contour extraction in pattern recognition.
The toroidal Hausdorff dimension of 2d Euclidean quantum gravity
DEFF Research Database (Denmark)
Ambjorn, Jan; Budd, Timothy George
2013-01-01
The lengths of shortest non-contractible loops are studied numerically in 2d Euclidean quantum gravity on a torus coupled to conformal field theories with central charge less than one. We find that the distribution of these geodesic lengths displays a scaling in agreement with a Hausdorff dimension...
2-D fluid transport simulations of gaseous/radiative divertors
International Nuclear Information System (INIS)
Rognlien, T.D.; Brown, P.N.; Campbell, R.B.; Kaiser, T.B.; Knoll, D.A.; McHugh, P.R.; Porter, G.D.; Rensink, M.E.; Smith, G.R.
1994-01-01
The features of the fully implicit 2-D fluid code UEDGE are described. The utility of the code is demonstrated by showing bifurcations or multiple solutions of the tokamak edge plasma for both deuterium and impurity injection in the divertor. (orig.)
2D Materials with Nanoconfined Fluids for Electrochemical Energy Storage
Energy Technology Data Exchange (ETDEWEB)
Augustyn, Veronica [North Carolina State Univ., Raleigh, NC (United States). Dept. of Materials Science and Engineering; Gogotsi, Yury [Drexel Univ., Philadelphia, PA (United States). Dept. of Materials Science and Engineering, A. J. Drexel Nanomaterials Inst.
2017-10-11
In the quest to develop energy storage with both high power and high energy densities, and while maintaining high volumetric capacity, recent results show that a variety of 2D and layered materials exhibit rapid kinetics of ion transport by the incorporation of nanoconfined fluids.
Interactive exploratory visualization of 2D vector fields
Isenberg, Tobias; Everts, Maarten H.; Grubert, Jens; Carpendale, Sheelagh
In this paper we present several techniques to interactively explore representations of 2D vector fields. Through a set of simple hand postures used on large, touch-sensitive displays, our approach allows individuals to custom design glyphs (arrows, lines, etc.) that best reveal patterns of the
2D Vertical Heterostructures for Novel Tunneling Device Applications
2017-03-01
2D Vertical Heterostructures for Novel Tunneling Device Applications Philip M. Campbell, Christopher J. Perini, W. Jud Ready, and Eric M. Vogel...School of Materials Science and Engineering Georgia Institute of Technology Atlanta, GA, USA 30332 Abstract: Vertical heterostructures...digital logic, signal processing, analog-to-digital conversion, and high-frequency communications, vertical heterostructure tunneling devices have
2-D Imaging of Electron Temperature in Tokamak Plasmas
International Nuclear Information System (INIS)
Munsat, T.; Mazzucato, E.; Park, H.; Domier, C.W.; Johnson, M.; Luhmann, N.C. Jr.; Wang, J.; Xia, Z.; Classen, I.G.J.; Donne, A.J.H.; Pol, M.J. van de
2004-01-01
By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented
2-D tiles declustering method based on virtual devices
Li, Zhongmin; Gao, Lu
2009-10-01
Generally, 2-D spatial data are divided as a series of tiles according to the plane grid. To satisfy the effect of vision, the tiles in the query window including the view point would be displayed quickly at the screen. Aiming at the performance difference of real storage devices, we propose a 2-D tiles declustering method based on virtual device. Firstly, we construct a group of virtual devices which have same storage performance and non-limited capacity, then distribute the tiles into M virtual devices according to the query window of 2-D tiles. Secondly, we equably map the tiles in M virtual devices into M equidistant intervals in [0, 1) using pseudo-random number generator. Finally, we devide [0, 1) into M intervals according to the tiles distribution percentage of every real storage device, and distribute the tiles in each interval in the corresponding real storage device. We have designed and realized a prototype GlobeSIGht, and give some related test results. The results show that the average response time of each tile in the query window including the view point using 2-D tiles declustering method based on virtual device is more efficient than using other methods.
2D nanomaterials based electrochemical biosensors for cancer diagnosis.
Wang, Lu; Xiong, Qirong; Xiao, Fei; Duan, Hongwei
2017-03-15
Cancer is a leading cause of death in the world. Increasing evidence has demonstrated that early diagnosis holds the key towards effective treatment outcome. Cancer biomarkers are extensively used in oncology for cancer diagnosis and prognosis. Electrochemical sensors play key roles in current laboratory and clinical analysis of diverse chemical and biological targets. Recent development of functional nanomaterials offers new possibilities of improving the performance of electrochemical sensors. In particular, 2D nanomaterials have stimulated intense research due to their unique array of structural and chemical properties. The 2D materials of interest cover broadly across graphene, graphene derivatives (i.e., graphene oxide and reduced graphene oxide), and graphene-like nanomaterials (i.e., 2D layered transition metal dichalcogenides, graphite carbon nitride and boron nitride nanomaterials). In this review, we summarize recent advances in the synthesis of 2D nanomaterials and their applications in electrochemical biosensing of cancer biomarkers (nucleic acids, proteins and some small molecules), and present a personal perspective on the future direction of this area. Copyright © 2016 Elsevier B.V. All rights reserved.
Discrepant Results in a 2-D Marble Collision
Kalajian, Peter
2013-01-01
Video analysis of 2-D collisions is an excellent way to investigate conservation of linear momentum. The often-desired experimental design goal is to minimize the momentum loss in order to demonstrate the conservation law. An air table with colliding pucks is an ideal medium for this experiment, but such equipment is beyond the budget of many…
Validation and testing of the VAM2D computer code
International Nuclear Information System (INIS)
Kool, J.B.; Wu, Y.S.
1991-10-01
This document describes two modeling studies conducted by HydroGeoLogic, Inc. for the US NRC under contract no. NRC-04089-090, entitled, ''Validation and Testing of the VAM2D Computer Code.'' VAM2D is a two-dimensional, variably saturated flow and transport code, with applications for performance assessment of nuclear waste disposal. The computer code itself is documented in a separate NUREG document (NUREG/CR-5352, 1989). The studies presented in this report involve application of the VAM2D code to two diverse subsurface modeling problems. The first one involves modeling of infiltration and redistribution of water and solutes in an initially dry, heterogeneous field soil. This application involves detailed modeling over a relatively short, 9-month time period. The second problem pertains to the application of VAM2D to the modeling of a waste disposal facility in a fractured clay, over much larger space and time scales and with particular emphasis on the applicability and reliability of using equivalent porous medium approach for simulating flow and transport in fractured geologic media. Reflecting the separate and distinct nature of the two problems studied, this report is organized in two separate parts. 61 refs., 31 figs., 9 tabs
ENVIRONMENTAL EFFECTS OF DREDGING AND DISPOSAL (E2-D2)
US Army Corps of Engineers public web site for the "Environmental Effects of Dredging and Disposal" ("E2-D2") searchable database of published reports and studies about environmental impacts associated with dredging and disposal operations. Many of the reports and studies are ava...
Band Alignment of 2D Transition Metal Dichalcogenide Heterojunctions
Chiu, Ming-Hui
2016-09-20
It is critically important to characterize the band alignment in semiconductor heterojunctions (HJs) because it controls the electronic and optical properties. However, the well-known Anderson\\'s model usually fails to predict the band alignment in bulk HJ systems due to the presence of charge transfer at the interfacial bonding. Atomically thin 2D transition metal dichalcogenide materials have attracted much attention recently since the ultrathin HJs and devices can be easily built and they are promising for future electronics. The vertical HJs based on 2D materials can be constructed via van der Waals stacking regardless of the lattice mismatch between two materials. Despite the defect-free characteristics of the junction interface, experimental evidence is still lacking on whether the simple Anderson rule can predict the band alignment of HJs. Here, the validity of Anderson\\'s model is verified for the 2D heterojunction systems and the success of Anderson\\'s model is attributed to the absence of dangling bonds (i.e., interface dipoles) at the van der Waal interface. The results from the work set a foundation allowing the use of powerful Anderson\\'s rule to determine the band alignments of 2D HJs, which is beneficial to future electronic, photonic, and optoelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reorientation of magnetization with temperature in 2D ferromagnets
International Nuclear Information System (INIS)
Fridman, Yu. A.; Spirin, D.V.; Klevets, Ph. N.
2002-01-01
We investigated 2D Heisenberg ferromagnet (monolayer) with the account of dipolar forces and uniaxial anisotropy and found a reorientation phase transition in temperature from out-of-plane to in-plane phase. This phase transition is of the first order with hysteresis. We estimated the temperatures of switching both analytically and numerically
CFD code comparison for 2D airfoil flows
DEFF Research Database (Denmark)
Sørensen, Niels N.; Méndez, B.; Muñoz, A.
2016-01-01
The current paper presents the effort, in the EU AVATAR project, to establish the necessary requirements to obtain consistent lift over drag ratios among seven CFD codes. The flow around a 2D airfoil case is studied, for both transitional and fully turbulent conditions at Reynolds numbers of 3...
Spontaneous bending of 2D molecular bottle-brush
Subbotin, A; Jong, J; ten Brinke, G
Using a scaling approach we consider a 2D comb copolymer brush under bending deformations. We show that the rectilinear brush is locally stable and can be characterized by a persistence length lambda increasing with the molecular weight of grafting side chains as lambda similar to M-3. A bending
Lattice simulation of 2d Gross-Neveu-type models
International Nuclear Information System (INIS)
Limmer, M.; Gattringer, C.; Hermann, V.
2006-01-01
Full text: We discuss a Monte Carlo simulation of 2d Gross-Neveu-type models on the lattice. The four-Fermi interaction is written as a Gaussian integral with an auxiliary field and the fermion determinant is included by reweighting. We present results for bulk quantities and correlators and compare them to a simulation using a fermion-loop representation. (author)
Rheological Properties of Quasi-2D Fluids in Microgravity
Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha
2015-01-01
In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.
2D MR angiography of the aortic aneurysm
International Nuclear Information System (INIS)
Amanuma, Makoto; Hasegawa, Makoto; Watabe, Tsuneya; Heshiki, Atsuko
1992-01-01
2D time-of-flight MR angiography was performed in 6 cases of thoracic aortic aneurysm. Oblique saturation pulses were used to suppress the signals of the pulmonary artery and SVC, providing excellent selective MR aortograms. Three dimensional extension of the aneurysm and its relation with cervical branches were easily assessed. It could be possible to replace invasive aortography by this technique. (author)
2D Toda chain and associated commutator identity
Pogrebkov, A. K.
2007-01-01
Developing observation made in \\cite{commut} we show that simple identity of the commutator type on an associative algebra is in one-to-one correspondence to 2D (infinite) Toda chain. We introduce representation of elements of associative algebra that, under some generic conditions, enables derivation of the Toda chain equation and its Lax pair from the given commutator identity.
ELLIPT2D: A Flexible Finite Element Code Written Python
International Nuclear Information System (INIS)
Pletzer, A.; Mollis, J.C.
2001-01-01
The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research
Asynchronous vs didactic education: it’s too early to throw in the towel on tradition
2013-01-01
Background Asynchronous, computer based instruction is cost effective, allows self-directed pacing and review, and addresses preferences of millennial learners. Current research suggests there is no significant difference in learning compared to traditional classroom instruction. Data are limited for novice learners in emergency medicine. The objective of this study was to compare asynchronous, computer-based instruction with traditional didactics for senior medical students during a week-long intensive course in acute care. We hypothesized both modalities would be equivalent. Methods This was a prospective observational quasi-experimental study of 4th year medical students who were novice learners with minimal prior exposure to curricular elements. We assessed baseline knowledge with an objective pre-test. The curriculum was delivered in either traditional lecture format (shock, acute abdomen, dyspnea, field trauma) or via asynchronous, computer-based modules (chest pain, EKG interpretation, pain management, trauma). An interactive review covering all topics was followed by a post-test. Knowledge retention was measured after 10 weeks. Pre and post-test items were written by a panel of medical educators and validated with a reference group of learners. Mean scores were analyzed using dependent t-test and attitudes were assessed by a 5-point Likert scale. Results 44 of 48 students completed the protocol. Students initially acquired more knowledge from didactic education as demonstrated by mean gain scores (didactic: 28.39% ± 18.06; asynchronous 9.93% ± 23.22). Mean difference between didactic and asynchronous = 18.45% with 95% CI [10.40 to 26.50]; p = 0.0001. Retention testing demonstrated similar knowledge attrition: mean gain scores −14.94% (didactic); -17.61% (asynchronous), which was not significantly different: 2.68% ± 20.85, 95% CI [−3.66 to 9.02], p = 0.399. The attitudinal survey revealed that 60.4% of students believed the asynchronous
Asynchronous vs didactic education: it's too early to throw in the towel on tradition.
Jordan, Jaime; Jalali, Azadeh; Clarke, Samuel; Dyne, Pamela; Spector, Tahlia; Coates, Wendy
2013-08-08
Asynchronous, computer based instruction is cost effective, allows self-directed pacing and review, and addresses preferences of millennial learners. Current research suggests there is no significant difference in learning compared to traditional classroom instruction. Data are limited for novice learners in emergency medicine. The objective of this study was to compare asynchronous, computer-based instruction with traditional didactics for senior medical students during a week-long intensive course in acute care. We hypothesized both modalities would be equivalent. This was a prospective observational quasi-experimental study of 4th year medical students who were novice learners with minimal prior exposure to curricular elements. We assessed baseline knowledge with an objective pre-test. The curriculum was delivered in either traditional lecture format (shock, acute abdomen, dyspnea, field trauma) or via asynchronous, computer-based modules (chest pain, EKG interpretation, pain management, trauma). An interactive review covering all topics was followed by a post-test. Knowledge retention was measured after 10 weeks. Pre and post-test items were written by a panel of medical educators and validated with a reference group of learners. Mean scores were analyzed using dependent t-test and attitudes were assessed by a 5-point Likert scale. 44 of 48 students completed the protocol. Students initially acquired more knowledge from didactic education as demonstrated by mean gain scores (didactic: 28.39% ± 18.06; asynchronous 9.93% ± 23.22). Mean difference between didactic and asynchronous = 18.45% with 95% CI [10.40 to 26.50]; p = 0.0001. Retention testing demonstrated similar knowledge attrition: mean gain scores -14.94% (didactic); -17.61% (asynchronous), which was not significantly different: 2.68% ± 20.85, 95% CI [-3.66 to 9.02], p = 0.399. The attitudinal survey revealed that 60.4% of students believed the asynchronous modules were educational and 95
FWM behavior in 2-D time-spreading wavelength-hopping OCDMA systems
Bazan, Taher M.
2017-03-01
A new formula for the signal-to-four-wave mixing (FWM) crosstalk in 2-D time-spreading wavelength-hopping (TW) optical code division multiple access (OCDMA) systems is derived. The influence of several system parameters on the signal-to-FWM crosstalk ratio (SXR) is analyzed, including transmitted power per chip, code length, the number of active users, code weight, wavelength spacing, and transmission distance. Furthermore, for the first time, a closed-form expression for the total number of possible FWM products employing symmetric TW codes with equal wavelength spacing is investigated. The results show that SXR is sensitive to minor variations in system parameters, especially the launched power level and the code length while the wavelength spacing has a less impact on the level of the generated FWM power.
Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.
2016-08-01
Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets
Cytochrome P-450 2D6 (CYP2D6) Genotype and Breast Cancer Recurrence in Tamoxifen-Treated Patients
DEFF Research Database (Denmark)
Ahern, Thomas P; Hertz, Daniel L; Damkier, Per
2017-01-01
-infiltrated tissues, all of which showed excellent CYP2D6 genotype agreement. We applied these concordance data to a quantitative bias analysis of the subset of the 31 studies that were based on genotypes from tumor-infiltrated tissue to examine whether genotyping errors substantially biased estimates of association...... genotyped DNA from tumor-infiltrated tissues, and their results may have been susceptible to germline genotype misclassification from loss of heterozygosity at the CYP2D6 locus. We systematically reviewed 6 studies of concordance between genotypes obtained from paired nonneoplastic and breast tumor...
Flood hazard assessment using 1D and 2D approaches
Petaccia, Gabriella; Costabile, Pierfranco; Macchione, Francesco; Natale, Luigi
2013-04-01
The EU flood risk Directive (Directive 2007/60/EC) prescribes risk assessment and mapping to develop flood risk management plans. Flood hazard mapping may be carried out with mathematical models able to determine flood-prone areas once realistic conditions (in terms of discharge or water levels) are imposed at the boundaries of the case study. The deterministic models are mainly based on shallow water equations expressed in their 1D or 2D formulation. The 1D approach is widely used, especially in technical studies, due to its relative simplicity, its computational efficiency and also because it requires topographical data not as expensive as the ones needed by 2D models. Even if in a great number of practical situations, such as modeling in-channel flows and not too wide floodplains, the 1D approach may provide results close to the prediction of a more sophisticated 2D model, it must be pointed out that the correct use of a 1D model in practical situations is more complex than it may seem. The main issues to be correctly modeled in a 1D approach are the definition of hydraulic structures such as bridges and buildings interacting with the flow and the treatment of the tributaries. Clearly all these aspects have to be taken into account also in the 2D modeling, but with fewer difficulties. The purpose of this paper is to show how the above cited issues can be described using a 1D or 2D unsteady flow modeling. In particular the Authors will show the devices that have to be implemented in 1D modeling to get reliable predictions of water levels and discharges comparable to the ones obtained using a 2D model. Attention will be focused on an actual river (Crati river) located in the South of Italy. This case study is quite complicated since it deals with the simulation of channeled flows, overbank flows, interactions with buildings, bridges and tributaries. Accurate techniques, intentionally developed by the Authors to take into account all these peculiarities in 1D and 2
Teaching minority children hygiene
DEFF Research Database (Denmark)
Rheinländer, Thilde; Samuelsen, Helle; Dalsgaard, Anders
2015-01-01
infrastructures were important barriers for the implementation of safe home child hygiene. Furthermore, the everyday life of highland villages, with parents working away from the households resulted in little daily adult supervision of safe child hygiene practices. While kindergartens were identified......Objectives. Ethnic minority children in Vietnam experience high levels of hygiene- and sanitation-related diseases. Improving hygiene for minority children is therefore vital for improving child health. The study objective was to investigate how kindergarten and home environments influence...... children were further disadvantaged as teaching was only provided in non-minority language. Conclusions. Kindergartens can be important institutions for the promotion of safe hygiene practices among children, but they must invest in the maintenance of hygiene and sanitation infrastructures and adopt...
Directory of Open Access Journals (Sweden)
I Gusti Ayu Agung Laksemi
2013-12-01
Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Minor surgery is small surgery or localized example cut ulcers and boils, cyst excision, and suturing. Somethings that need to be considered in the preparation of the surgery is minor tools, operating rooms and operating tables, lighting, maintenance of tools and equipment, sterilization and desinfection equipment, preparation of patients and anesthesia. In general cysts is walled chamber that consist of fluid, cells and the remaining cells. Cysts are formed not due to inflammation although then be inflamed. Lining of the cysts wall is composed of fibrous tissue and usually coated epithelial cells or endothelial. Cysts formed by dilated glands and closed channels, glands, blood vessels, lymph channels or layers of the epidermis. Contents of the cysts wall consists of the results is serum, lymph, sweat sebum, epithelial cells, the stratum corneum, and hair. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}
2d-LCA - an alternative to x-wires
Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim
2014-11-01
The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.
Half-metallicity in 2D organometallic honeycomb frameworks
Sun, Hao; Li, Bin; Zhao, Jin
2016-10-01
Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.
Half-metallicity in 2D organometallic honeycomb frameworks
International Nuclear Information System (INIS)
Sun, Hao; Li, Bin; Zhao, Jin
2016-01-01
Half-metallic materials with a high Curie temperature (T C ) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d – p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology. (paper)
International Nuclear Information System (INIS)
Giaddui, T; Yu, J; Xiao, Y; Jacobs, P; Manfredi, D; Linnemann, N
2015-01-01
Purpose: 2D-2D kV image guided radiation therapy (IGRT) credentialing evaluation for clinical trial qualification was historically qualitative through submitting screen captures of the fusion process. However, as quantitative DICOM 2D-2D and 2D-3D image registration tools are implemented in clinical practice for better precision, especially in centers that treat patients with protons, better IGRT credentialing techniques are needed. The aim of this work is to establish methodologies for quantitatively reviewing IGRT submissions based on DICOM 2D-2D and 2D-3D image registration and to test the methodologies in reviewing 2D-2D and 2D-3D IGRT submissions for RTOG/NRG Oncology clinical trials qualifications. Methods: DICOM 2D-2D and 2D-3D automated and manual image registration have been tested using the Harmony tool in MIM software. 2D kV orthogonal portal images are fused with the reference digital reconstructed radiographs (DRR) in the 2D-2D registration while the 2D portal images are fused with DICOM planning CT image in the 2D-3D registration. The Harmony tool allows alignment of the two images used in the registration process and also calculates the required shifts. Shifts calculated using MIM are compared with those submitted by institutions for IGRT credentialing. Reported shifts are considered to be acceptable if differences are less than 3mm. Results: Several tests have been performed on the 2D-2D and 2D-3D registration. The results indicated good agreement between submitted and calculated shifts. A workflow for reviewing these IGRT submissions has been developed and will eventually be used to review IGRT submissions. Conclusion: The IROC Philadelphia RTQA center has developed and tested a new workflow for reviewing DICOM 2D-2D and 2D-3D IGRT credentialing submissions made by different cancer clinical centers, especially proton centers. NRG Center for Innovation in Radiation Oncology (CIRO) and IROC RTQA center continue their collaborative efforts to enhance
Energy Technology Data Exchange (ETDEWEB)
Giaddui, T; Yu, J; Xiao, Y [Thomas Jefferson University, Philadelphia, PA (United States); Jacobs, P [MIM Software, Inc, Cleavland, Ohio (United States); Manfredi, D; Linnemann, N [IROC Philadelphia, RTQA Center, Philadelphia, PA (United States)
2015-06-15
Purpose: 2D-2D kV image guided radiation therapy (IGRT) credentialing evaluation for clinical trial qualification was historically qualitative through submitting screen captures of the fusion process. However, as quantitative DICOM 2D-2D and 2D-3D image registration tools are implemented in clinical practice for better precision, especially in centers that treat patients with protons, better IGRT credentialing techniques are needed. The aim of this work is to establish methodologies for quantitatively reviewing IGRT submissions based on DICOM 2D-2D and 2D-3D image registration and to test the methodologies in reviewing 2D-2D and 2D-3D IGRT submissions for RTOG/NRG Oncology clinical trials qualifications. Methods: DICOM 2D-2D and 2D-3D automated and manual image registration have been tested using the Harmony tool in MIM software. 2D kV orthogonal portal images are fused with the reference digital reconstructed radiographs (DRR) in the 2D-2D registration while the 2D portal images are fused with DICOM planning CT image in the 2D-3D registration. The Harmony tool allows alignment of the two images used in the registration process and also calculates the required shifts. Shifts calculated using MIM are compared with those submitted by institutions for IGRT credentialing. Reported shifts are considered to be acceptable if differences are less than 3mm. Results: Several tests have been performed on the 2D-2D and 2D-3D registration. The results indicated good agreement between submitted and calculated shifts. A workflow for reviewing these IGRT submissions has been developed and will eventually be used to review IGRT submissions. Conclusion: The IROC Philadelphia RTQA center has developed and tested a new workflow for reviewing DICOM 2D-2D and 2D-3D IGRT credentialing submissions made by different cancer clinical centers, especially proton centers. NRG Center for Innovation in Radiation Oncology (CIRO) and IROC RTQA center continue their collaborative efforts to enhance
Chang, Todd P; Pham, Phung K; Sobolewski, Brad; Doughty, Cara B; Jamal, Nazreen; Kwan, Karen Y; Little, Kim; Brenkert, Timothy E; Mathison, David J
2014-08-01
Asynchronous e-learning allows for targeted teaching, particularly advantageous when bedside and didactic education is insufficient. An asynchronous e-learning curriculum has not been studied across multiple centers in the context of a clinical rotation. We hypothesize that an asynchronous e-learning curriculum during the pediatric emergency medicine (EM) rotation improves medical knowledge among residents and students across multiple participating centers. Trainees on pediatric EM rotations at four large pediatric centers from 2012 to 2013 were randomized in a Solomon four-group design. The experimental arms received an asynchronous e-learning curriculum consisting of nine Web-based, interactive, peer-reviewed Flash/HTML5 modules. Postrotation testing and in-training examination (ITE) scores quantified improvements in knowledge. A 2 × 2 analysis of covariance (ANCOVA) tested interaction and main effects, and Pearson's correlation tested associations between module usage, scores, and ITE scores. A total of 256 of 458 participants completed all study elements; 104 had access to asynchronous e-learning modules, and 152 were controls who used the current education standards. No pretest sensitization was found (p = 0.75). Use of asynchronous e-learning modules was associated with an improvement in posttest scores (p effect (partial η(2) = 0.19). Posttest scores correlated with ITE scores (r(2) = 0.14, p e-learning is an effective educational tool to improve knowledge in a clinical rotation. Web-based asynchronous e-learning is a promising modality to standardize education among multiple institutions with common curricula, particularly in clinical rotations where scheduling difficulties, seasonality, and variable experiences limit in-hospital learning. © 2014 by the Society for Academic Emergency Medicine.
[A novel proposal explaining sleep disturbance of children in Japan--asynchronization].
Kohyama, Jun
2008-07-01
It has been reported that more than half of the children in Japan suffer from daytime sleepiness. In contrast, about one quarter of junior high-school students in Japan complain of insomnia. According to the International Classification of Sleep Disorders (Second edition), these children could be diagnosed as having behaviorally-induced insufficient sleep syndrome due to inadequate sleeping habits. Getting on adequate amount of sleep should solve such problems;however, such a therapeutic approach often fails. Although social factors are involved in these sleep disturbances, I feel that a novel notion - asynchronization - leads to an understanding of the pathophysiology of disturbances in these children. Further, it could contribute to resolve their problems. The essence of asynchronization is a disturbance of various aspects (e.g., cycle, amplitude, phase, and interrelationship) of the biological rhythms that normally exhibits circadian oscillation. The main cause of asynchronization is hypothesized to be the combination of light exposure during night and the lack of light exposure in the morning. Asynchronization results in the disturbance of variable systems. Thus, symptoms of asynchronization include disturbances of the autonomic nervous system (sleepiness, insomnia, disturbance of hormonal excretion, gastrointestinal problems, etc.) and higher brain function (disorientation, loss of sociality, loss of will or motivation, impaired alertness and performance, etc.). Neurological (attention deficit, aggression, impulsiveness, hyperactivity, etc.), psychiatric (depressive disorders, personality disorders, anxiety disorders, etc.) and somatic (tiredness, fatigue, etc.) disturbances could also be symptoms of asynchronization. At the initial phase of asynchronization, disturbances are functional and can be resolved relatively easily, such as by the establishment of a regular sleep-wakefulness cycle;however, without adequate intervention the disturbances could gradually
Farber, Nuri B; Nemmers, Brian; Noguchi, Kevin K
2006-09-15
Antagonists of the N-methyl-D-aspartate (NMDA) glutamate receptor, most likely by producing disinhibtion in complex circuits, acutely produce psychosis and cognitive disturbances in humans, and neurotoxicity in rodents. Studies examining NMDA Receptor Hypofunction (NRHypo) neurotoxicity in animals, therefore, may provide insights into the pathophysiology of psychotic disorders. Dopaminergic D2 and/or D3 agents can modify psychosis over days to weeks, suggesting involvement of these transmitter system(s). We studied the ability of D2/D3 agonists and antagonists to modify NRHypo neurotoxicity both after a one-time acute exposure and after chronic daily exposure. Here we report that D2/D3 dopamine agonists, probably via D3 receptors, prevent NRHypo neurotoxicity when given acutely. The protective effect with D2/D3 agonists is not seen after chronic daily dosing. In contrast, the antipsychotic haloperidol does not affect NRHypo neurotoxicity when given acutely at D2/D3 doses. However, after chronic daily dosing of 1, 3, or 5 weeks, haloperidol does prevent NRHypo neurotoxicity with longer durations producing greater protection. Understanding the changes that occur in the NRHypo circuit after chronic exposure to dopaminergic agents could provide important clues into the pathophysiology of psychotic disorders.
Titan 2D: Understanding Titan’s Seasonal Atmospheric Cycles
Wong, Michael; Zhang, X.; Li, C.; Hu, R.; Shia, R.; Newman, C.; Müller-Wodarg, I.; Yung, Y.
2013-10-01
In this study, we present results from a novel two-dimensional (2D) model that simulates the physics and chemistry of Titan’s atmosphere. Despite being an icy moon of Saturn, Titan is the only Solar System object aside from Earth that is sheathed by a thick nitrogen-dominated atmosphere. This vulnerable gaseous envelope—an embodiment of a delicate coupling between photochemistry, radiation, and dynamics—is Nature’s laboratory for the synthesis of complex organic molecules. Titan’s large obliquity generates pronounced seasonal cycles in its atmosphere, and the Cassini spacecraft has been observing these variations since 2004. In particular, Cassini measurements show that the latitudinal distribution of Titan’s rich mélange of hydrocarbon species follows seasonal patterns. The mixing ratios of hydrocarbons increase with latitude towards the winter pole, suggesting a pole-to-pole circulation that reverses after equinox. Using a one-dimensional photochemical model of Titan’s atmosphere, we show that photochemistry alone cannot produce the observed meridional hydrocarbon distribution. This necessitates the employment of a 2D chemistry-transport model that includes meridional circulation as well as diffusive processes and photochemistry. Of additional concern, no previous 2D model of Titan extends beyond 500 km altitude—a critical limitation since the peak of methane photolysis is at 800 km. Our 2D model is the first to include Titan’s stratosphere, mesosphere, and thermosphere. The meridional circulation in our 2D model is derived from the outputs of two general circulation models (GCMs): the TitanWRF GCM (Newman et al. 2011) covering the troposphere, stratosphere, and lower mesosphere, and a thermosphere general circulation model (TGCM) covering the remainder of the atmosphere through the thermosphere (Müller-Wodarg et al. 2003; 2008). This presentation will focus on the utilization of these advances applied to the 2D Caltech/JPL KINETICS model to
2-D linear motion system. Innovative technology summary report
International Nuclear Information System (INIS)
1998-11-01
The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker trademark, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m 2 of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology. However
Housing Problems of Minorities
Weaver, Robert
1975-01-01
This testimony, before a public hearing of the New York City Commission on Human Rights in May 1974, reviews the status of minority group housing and the effects of federal programs upon it, advocating an approach which recognizes the intrinsic locational and real estate value of many black ghettos. (Author/JM)
Monique Turkenburg
2001-01-01
Original title: Onderwijs in alochtone levende talen. At the request of the Dutch Ministry of Education, Culture and Science, an exploratory study was carried out of minority Language teaching for primary school pupils. This exploratory study in seven municipalities not only shows the way in
Ethnic Minorities and Integration
Mérove Gijsberts
2005-01-01
There has been a great deal of discussion in the Netherlands recently about the integration of ethnic minorities. The tenor of that discussion is sombre: some observers speak of a 'multicultural drama', while others claim that the government's integration policy has failed completely. Recent
Becoming (ethnic minority) teenagers
DEFF Research Database (Denmark)
Tørslev, Mette Kirstine; Nørredam, Marie Louise; Vitus, Kathrine
2017-01-01
and majority students in two school classes from the fifth to seventh grades. Taking a practice approach, the article first analyses school as a social site before turning phenomenological attention to experiences and expectations of becoming teenagers, focusing on the experiences of ethnic minority students...
Central Office of Information, London (England).
This pamphlet discusses the situation of ethnic minorities--particularly those of Caribbean, Asian, or African origin--in the United Kingdom. Following introductory material, the background to immigration in Britain is described and the numbers and geographic distribution of the different ethnic groups are discussed. Next comes a general…
Directory of Open Access Journals (Sweden)
F. Ravegnani
2006-06-01
Full Text Available tants, offering numerous advantages over conventional networks of in situ analysers. We propose some innovative solutions in the field of DOAS (Differential Optical Absorption Spectroscopy remote systems, utilizing diffuse solar light as the radiation source. We examine the numerous potentialities of minor gas slant column calculations, applying the «off-axis» methodology for collecting the diffuse solar radiation. One of these particular approaches, using measurements along horizontal paths, has already been tested with the spectrometer installed on board the Geophysica aircraft during stratospheric flights up to altitudes of 20 km. The theoretical basis of these new measurement techniques using DOAS remote sensing systems are delineated to assess whether low altitude flights can provide 2D and 3D pollution tomography over metropolitan areas. The 2D or 3D trace gas total column mapping could be used to investigate: i transport and dispersion phenomena of air pollution, ii photochemical process rates, iii gas plume tomography, iv minor gas vertical profiles into the Planetary Boundary Layer and v minor gas flux divergence over a large area.
Asynchronous Task-Based Parallelization of Algebraic Multigrid
AlOnazi, Amani A.
2017-06-23
As processor clock rates become more dynamic and workloads become more adaptive, the vulnerability to global synchronization that already complicates programming for performance in today\\'s petascale environment will be exacerbated. Algebraic multigrid (AMG), the solver of choice in many large-scale PDE-based simulations, scales well in the weak sense, with fixed problem size per node, on tightly coupled systems when loads are well balanced and core performance is reliable. However, its strong scaling to many cores within a node is challenging. Reducing synchronization and increasing concurrency are vital adaptations of AMG to hybrid architectures. Recent communication-reducing improvements to classical additive AMG by Vassilevski and Yang improve concurrency and increase communication-computation overlap, while retaining convergence properties close to those of standard multiplicative AMG, but remain bulk synchronous.We extend the Vassilevski and Yang additive AMG to asynchronous task-based parallelism using a hybrid MPI+OmpSs (from the Barcelona Supercomputer Center) within a node, along with MPI for internode communications. We implement a tiling approach to decompose the grid hierarchy into parallel units within task containers. We compare against the MPI-only BoomerAMG and the Auxiliary-space Maxwell Solver (AMS) in the hypre library for the 3D Laplacian operator and the electromagnetic diffusion, respectively. In time to solution for a full solve an MPI-OmpSs hybrid improves over an all-MPI approach in strong scaling at full core count (32 threads per single Haswell node of the Cray XC40) and maintains this per node advantage as both weak scale to thousands of cores, with MPI between nodes.
iHadoop: Asynchronous Iterations Support for MapReduce
Elnikety, Eslam
2011-08-01
MapReduce is a distributed programming framework designed to ease the development of scalable data-intensive applications for large clusters of commodity machines. Most machine learning and data mining applications involve iterative computations over large datasets, such as the Web hyperlink structures and social network graphs. Yet, the MapReduce model does not efficiently support this important class of applications. The architecture of MapReduce, most critically its dataflow techniques and task scheduling, is completely unaware of the nature of iterative applications; tasks are scheduled according to a policy that optimizes the execution for a single iteration which wastes bandwidth, I/O, and CPU cycles when compared with an optimal execution for a consecutive set of iterations. This work presents iHadoop, a modified MapReduce model, and an associated implementation, optimized for iterative computations. The iHadoop model schedules iterations asynchronously. It connects the output of one iteration to the next, allowing both to process their data concurrently. iHadoop\\'s task scheduler exploits inter- iteration data locality by scheduling tasks that exhibit a producer/consumer relation on the same physical machine allowing a fast local data transfer. For those iterative applications that require satisfying certain criteria before termination, iHadoop runs the check concurrently during the execution of the subsequent iteration to further reduce the application\\'s latency. This thesis also describes our implementation of the iHadoop model, and evaluates its performance against Hadoop, the widely used open source implementation of MapReduce. Experiments using different data analysis applications over real-world and synthetic datasets show that iHadoop performs better than Hadoop for iterative algorithms, reducing execution time of iterative applications by 25% on average. Furthermore, integrating iHadoop with HaLoop, a variant Hadoop implementation that caches
MPEG-4-based 2D facial animation for mobile devices
Riegel, Thomas B.
2005-03-01
The enormous spread of mobile computing devices (e.g. PDA, cellular phone, palmtop, etc.) emphasizes scalable applications, since users like to run their favorite programs on the terminal they operate at that moment. Therefore appliances are of interest, which can be adapted to the hardware realities without loosing a lot of their functionalities. A good example for this is "Facial Animation," which offers an interesting way to achieve such "scalability." By employing MPEG-4, which provides an own profile for facial animation, a solution for low power terminals including mobile phones is demonstrated. From the generic 3D MPEG-4 face a specific 2D head model is derived, which consists primarily of a portrait image superposed by a suited warping mesh and adapted 2D animation rules. Thus the animation process of MPEG-4 need not be changed and standard compliant facial animation parameters can be used to displace the vertices of the mesh and warp the underlying image accordingly.
Cluster algebras in scattering amplitudes with special 2D kinematics
Energy Technology Data Exchange (ETDEWEB)
Torres, Marcus A.C. [Institut de Physique Theorique, CEA-Saclay, Gif-sur-Yvette Cedex (France)
2014-02-15
We study the cluster algebra of the kinematic configuration space Conf{sub n}(P{sup 3}P3) of an n-particle scattering amplitude restricted to the special 2D kinematics. We found that the n-point two-loop MHVremainder function in special 2D kinematics depends on a selection of the X-coordinates that are part of a special structure of the cluster algebra related to snake triangulations of polygons. This structure forms a necklace of hypercube beads in the corresponding Stasheff polytope. Furthermore at n = 12, the cluster algebra and the selection of theX-coordinates in special2Dkinematics replicates the cluster algebra and the selection of X-coordinates of the n = 6 two-loop MHV amplitude in 4D kinematics. (orig.)
2D-immunoblotting analysis of Sporothrix schenckii cell wall
Directory of Open Access Journals (Sweden)
Estela Ruiz-Baca
2011-03-01
Full Text Available We utilized two-dimensional gel electrophoresis and immunoblotting (2D-immunoblotting with anti-Sporothrix schenckii antibodies to identify antigenic proteins in cell wall preparations obtained from the mycelial and yeast-like morphologies of the fungus. Results showed that a 70-kDa glycoprotein (Gp70 was the major antigen detected in the cell wall of both morphologies and that a 60-kDa glycoprotein was present only in yeast-like cells. In addition to the Gp70, the wall from filament cells showed four proteins with molecular weights of 48, 55, 66 and 67 kDa, some of which exhibited several isoforms. To our knowledge, this is the first 2D-immunoblotting analysis of the S. schenckii cell wall.
Room temperature Sieving of Hydrogen Isotopes Using 2-D Materials
Energy Technology Data Exchange (ETDEWEB)
Hitchcock, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Krentz, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Serkiz, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Velten, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Xiao, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2017-09-28
Hydrogen isotope separation is critical to the DOE’s mission in environmental remediation and nuclear nonproliferation. Isotope separation is also a critical technology for the NNSA, and the ability to perform the separations at room temperature with a relatively small amount of power and space would be a major advancement for their respective missions. Recent work has shown that 2-D materials such as graphene and hexagonal boron nitride can act as an isotopic sieve at room temperature; efficiently separating hydrogen isotopes in water with reported separation ratios of 10:1 for hydrogen: deuterium separation for a single pass. The work performed here suggests that this technique has merit, and furthermore, we are investigating optimization and scale up of the required 2-D material based membranes.
2D-grafiikan käyttö peliprojektissa
Reimi-Orsa, Anniina
2010-01-01
Opinnäytetyö on projektikuvaus, jossa on käsitelty kaksiulotteisen grafiikan käyttöä peliprojektissa toteutettujen töiden kautta. Työharjoittelussani tuotin materiaalia peliprojektiin, jonka maailma luotiin pääasiassa 2D-grafiikan avulla. Projektikuvauksessa on käyty läpi työn kulkua alkuvalmisteluista valmiiseen pelissä käytettävään grafiikkaan sekä käytäntöjä tämän tyyppisen 2D-grafiikan tuotannossa. Alussa peliprojektia on käsitelty yleisluontoisesti sekä avattu työssä käytettyjä ja p...
Two-particle microrheology of quasi-2D viscous systems.
Prasad, V; Koehler, S A; Weeks, Eric R
2006-10-27
We study the spatially correlated motions of colloidal particles in a quasi-2D system (human serum albumin protein molecules at an air-water interface) for different surface viscosities eta s. We observe a transition in the behavior of the correlated motion, from 2D interface dominated at high eta s to bulk fluid dependent at low eta s. The correlated motions can be scaled onto a master curve which captures the features of this transition. This master curve also characterizes the spatial dependence of the flow field of a viscous interface in response to a force. The scale factors used for the master curve allow for the calculation of the surface viscosity eta s that can be compared to one-particle measurements.
2D/3D Program work summary report
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-09-01
The 2D/3D Program was carried out by Germany, Japan and the United States to investigate the thermal-hydraulics of a PWR large-break LOCA. A contributory approach was utilized in which each country contributed significant effort to the program and all three countries shared the research results. Germany constructed and operated the Upper Plenum Test Facility (UPTF), and Japan constructed and operated the Cylindrical Core Test Facility (CCTF) and the Slab Core Test Facility (SCTF). The US contribution consisted of provision of advanced instrumentation to each of the three test facilities, and assessment of the TRAC computer code against the test results. Evaluations of the test results were carried out in all three countries. This report summarizes the 2D/3D Program in terms of the contributing efforts of the participants, and was prepared in a coordination among three countries. US and Germany have published the report as NUREG/IA-0126 and GRS-100, respectively. (author).
2-D and 3-D computations of curved accelerator magnets
International Nuclear Information System (INIS)
Turner, L.R.
1991-01-01
In order to save computer memory, a long accelerator magnet may be computed by treating the long central region and the end regions separately. The dipole magnets for the injector synchrotron of the Advanced Photon Source (APS), now under construction at Argonne National Laboratory (ANL), employ magnet iron consisting of parallel laminations, stacked with a uniform radius of curvature of 33.379 m. Laplace's equation for the magnetic scalar potential has a different form for a straight magnet (x-y coordinates), a magnet with surfaces curved about a common center (r-θ coordinates), and a magnet with parallel laminations like the APS injector dipole. Yet pseudo 2-D computations for the three geometries give basically identical results, even for a much more strongly curved magnet. Hence 2-D (x-y) computations of the central region and 3-D computations of the end regions can be combined to determine the overall magnetic behavior of the magnets. 1 ref., 6 figs
2D/3D Program work summary report
International Nuclear Information System (INIS)
1995-09-01
The 2D/3D Program was carried out by Germany, Japan and the United States to investigate the thermal-hydraulics of a PWR large-break LOCA. A contributory approach was utilized in which each country contributed significant effort to the program and all three countries shared the research results. Germany constructed and operated the Upper Plenum Test Facility (UPTF), and Japan constructed and operated the Cylindrical Core Test Facility (CCTF) and the Slab Core Test Facility (SCTF). The US contribution consisted of provision of advanced instrumentation to each of the three test facilities, and assessment of the TRAC computer code against the test results. Evaluations of the test results were carried out in all three countries. This report summarizes the 2D/3D Program in terms of the contributing efforts of the participants, and was prepared in a coordination among three countries. US and Germany have published the report as NUREG/IA-0126 and GRS-100, respectively. (author)
The 2-D lattice theory of Flower Constellations
Avendaño, Martín E.; Davis, Jeremy J.; Mortari, Daniele
2013-08-01
The 2-D lattice theory of Flower Constellations, generalizing Harmonic Flower Constellations (the symmetric subset of Flower Constellations) as well as the Walker/ Mozhaev constellations, is presented here. This theory is a new general framework to design symmetric constellations using a 2× 2 lattice matrix of integers or by its minimal representation, the Hermite normal form. From a geometrical point of view, the phasing of satellites is represented by a regular pattern (lattice) on a two-Dimensional torus. The 2-D lattice theory of Flower Constellations does not require any compatibility condition and uses a minimum set of integer parameters whose meaning are explored throughout the paper. This general minimum-parametrization framework allows us to obtain all symmetric distribution of satellites. Due to the J_2 effect this design framework is meant for circular orbits and for elliptical orbits at critical inclination, or to design elliptical constellations for the unperturbed Keplerian case.
Beam test of the 2D position sensitive neutron detector
International Nuclear Information System (INIS)
Tian Lichao; Chen Yuanbo; Sun Zhijia; Tang Bin; Zhou Jianrong; Qi Huirong; Liu Rongguang; Zhang Jian; Yang Guian; Xu Hong
2014-01-01
China Spallation Neutron Source (CSNS), one of the Major scientific apparatuses of the national Eleventh Five-Year Plane, is under construction and three spectrumeters will be constructed in the first phase of the project. A 2D position sensitive neutron detector has been constructed for the Multifunctional Reflect spectrumeter (MR) in Institute of High Energy Physics (IHEP). The basic operation principle of the detector and the test on the residual stress diffractometer of Chinese Advanced Research Reactor (CARR) in China Institute of Atomic Energy (CIAE) is introduced in this paper. The results show that it has a good position resolution of l.18 mm (FWHM) for the neutrons of l.37 A and 2D imaging ability, which is consistent with the theory. It can satisfy the requirements of MR and lays the foundation for the construction of larger neutron detectors. (authors)
A 2-D nucleation-growth model of spheroidal graphite
International Nuclear Information System (INIS)
Lacaze, Jacques; Bourdie, Jacques; Castro-Román, Manuel Jesus
2017-01-01
Analysis of recent experimental investigations, in particular by transmission electron microscopy, suggests spheroidal graphite grows by 2-D nucleation of new graphite layers at the outer surface of the nodules. These layers spread over the surface along the prismatic direction of graphite which is the energetically preferred growth direction of graphite when the apparent growth direction of the nodules is along the basal direction of graphite. 2-D nucleation-growth models first developed for precipitation of pure substances are then adapted to graphite growth from the liquid in spheroidal graphite cast irons. Lateral extension of the new graphite layers is controlled by carbon diffusion in the liquid. This allows describing quantitatively previous experimental results giving strong support to this approach.
DEVELOPMENT OF 2D HUMAN BODY MODELING USING THINNING ALGORITHM
Directory of Open Access Journals (Sweden)
K. Srinivasan
2010-11-01
Full Text Available Monitoring the behavior and activities of people in Video surveillance has gained more applications in Computer vision. This paper proposes a new approach to model the human body in 2D view for the activity analysis using Thinning algorithm. The first step of this work is Background subtraction which is achieved by the frame differencing algorithm. Thinning algorithm has been used to find the skeleton of the human body. After thinning, the thirteen feature points like terminating points, intersecting points, shoulder, elbow, and knee points have been extracted. Here, this research work attempts to represent the body model in three different ways such as Stick figure model, Patch model and Rectangle body model. The activities of humans have been analyzed with the help of 2D model for the pre-defined poses from the monocular video data. Finally, the time consumption and efficiency of our proposed algorithm have been evaluated.
The Ising model coupled to 2d orders
Glaser, Lisa
2018-04-01
In this article we make first steps in coupling matter to causal set theory in the path integral. We explore the case of the Ising model coupled to the 2d discrete Einstein Hilbert action, restricted to the 2d orders. We probe the phase diagram in terms of the Wick rotation parameter β and the Ising coupling j and find that the matter and the causal sets together give rise to an interesting phase structure. The couplings give rise to five different phases. The causal sets take on random or crystalline characteristics as described in Surya (2012 Class. Quantum Grav. 29 132001) and the Ising model can be correlated or uncorrelated on the random orders and correlated, uncorrelated or anti-correlated on the crystalline orders. We find that at least one new phase transition arises, in which the Ising spins push the causal set into the crystalline phase.
Electrical spin injection into high mobility 2D systems.
Oltscher, M; Ciorga, M; Utz, M; Schuh, D; Bougeard, D; Weiss, D
2014-12-05
We report on spin injection into a high mobility 2D electron system confined at an (Al,Ga)As/GaAs interface, using (Ga,Mn)As Esaki diode contacts as spin aligners. We measured a clear nonlocal spin valve signal, which varies nonmonotonically with the applied bias voltage. The magnitude of the signal cannot be described by the standard spin drift-diffusion model, because at maximum this would require the spin polarization of the injected current to be much larger than 100%, which is unphysical. A strong correlation of the spin signal with contact width and electron mean free path suggests that ballistic transport in the 2D region below ferromagnetic contacts should be taken into account to fully describe the results.
Conformal field theory and 2D critical phenomena. Part 1
International Nuclear Information System (INIS)
Zamolodchikov, A.B.; Zamolodchikov, Al.B.
1989-01-01
Review of the recent developments in the two-dimensional conformal field theory and especially its applications to the physics of 2D critical phenomena is given. It includes the Ising model, the Potts model. Minimal models, corresponding to theories invariant under higher symmetries, such as superconformal theories, parafermionic theories and theories with current and W-algebras are also discussed. Non-hamiltonian approach to two-dimensional field theory is formulated. 126 refs
Spontaneous compactification in 2D induced quantum gravity
International Nuclear Information System (INIS)
Elizalde, E.; Odintsov, S.D.
1992-01-01
In this paper spontaneous compactification - on a R 1 x S 1 background - in 2D induced quantum gravity (considered as a toy model for more fundamental quantum gravity) is analyzed in the gauge-independent effective action formalism. It is shown that such compactification is stable, in contradistinction to multidimensional quantum gravity on a R degrees x S 1 (D-> 2) background - which is known to be one-loop unstable
2D/ 3D Quantitative Ultrasound of the Breast
Nasief, Haidy Gerges
Breast cancer is the second leading cause of cancer death of women in the United States, so breast cancer screening for early detection is common. The purpose of this dissertation is to optimize quantitative ultrasound (QUS) methods to improve the specificity and objectivity of breast ultrasound. To pursue this goal, the dissertation is divided into two parts: 1) to optimize 2D QUS, and 2) to introduce and validate 3D QUS. Previous studies had validated these methods in phantoms. Applying our QUS analysis on subcutaneous breast fat demonstrated that QUS parameter estimates for subcutaneous fat were consistent among different human subjects. This validated our in vivo data acquisition methods and supported the use of breast fat as a clinical reference tissue for ultrasound BI-RADSRTM assessments. Although current QUS methods perform well for straightforward cases when assumptions of stationarity and diffuse scattering are well-founded, these conditions often are not present due to the complicated nature of in vivo breast tissue. Key improvements in QUS algorithms to address these challenges were: 1) applying a "modified least squares method (MLSM)" to account for the heterogeneous tissue path between the transducer and the region of interest, ROI; 2) detecting anisotropy in acoustic parameters; and 3) detecting and removing the echo sources that depart from diffuse and stationary scattering conditions. The results showed that a Bayesian classifier combining three QUS parameters in a biased pool of high-quality breast ultrasound data successfully differentiated all fibroadenomas from all carcinomas. Given promising initial results in 2D, extension to 3D acquisitions in QUS provided a unique capability to test QUS for the entire breast volume. QUS parameter estimates using 3D data were consistent with those found in 2D for phantoms and in vivo data. Extensions of QUS technology from 2D to 3D can improve the specificity of breast ultrasound, and thus, could lead to
The Seismic Analyzer: Interpreting and Illustrating 2D Seismic Data
Patel, Daniel; Giertsen, Christopher; Thurmond, John; Gjelberg, John; Gröller, Eduard
2008-01-01
We present a toolbox for quickly interpreting and illustrating 2D slices of seismic volumetric reflection data. Searching for oil and gas involves creating a structural overview of seismic reflection data to identify hydrocarbon reservoirs. We improve the search of seismic structures by precalculating the horizon structures of the seismic data prior to interpretation. We improve the annotation of seismic structures by applying novel illustrative rendering algorithms tailored to seism...
Report of the 1988 2-D Intercomparison Workshop, chapter 3
Jackman, Charles H.; Brasseur, Guy; Soloman, Susan; Guthrie, Paul D.; Garcia, Rolando; Yung, Yuk L.; Gray, Lesley J.; Tung, K. K.; Ko, Malcolm K. W.; Isaken, Ivar
1989-01-01
Several factors contribute to the errors encountered. With the exception of the line-by-line model, all of the models employ simplifying assumptions that place fundamental limits on their accuracy and range of validity. For example, all 2-D modeling groups use the diffusivity factor approximation. This approximation produces little error in tropospheric H2O and CO2 cooling rates, but can produce significant errors in CO2 and O3 cooling rates at the stratopause. All models suffer from fundamental uncertainties in shapes and strengths of spectral lines. Thermal flux algorithms being used in 2-D tracer tranport models produce cooling rates that differ by as much as 40 percent for the same input model atmosphere. Disagreements of this magnitude are important since the thermal cooling rates must be subtracted from the almost-equal solar heating rates to derive the net radiative heating rates and the 2-D model diabatic circulation. For much of the annual cycle, the net radiative heating rates are comparable in magnitude to the cooling rate differences described. Many of the models underestimate the cooling rates in the middle and lower stratosphere. The consequences of these errors for the net heating rates and the diabatic circulation will depend on their meridional structure, which was not tested here. Other models underestimate the cooling near 1 mbar. Suchs errors pose potential problems for future interactive ozone assessment studies, since they could produce artificially-high temperatures and increased O3 destruction at these levels. These concerns suggest that a great deal of work is needed to improve the performance of thermal cooling rate algorithms used in the 2-D tracer transport models.
2D and 3D Traveling Salesman Problem
Haxhimusa, Yll; Carpenter, Edward; Catrambone, Joseph; Foldes, David; Stefanov, Emil; Arns, Laura; Pizlo, Zygmunt
2011-01-01
When a two-dimensional (2D) traveling salesman problem (TSP) is presented on a computer screen, human subjects can produce near-optimal tours in linear time. In this study we tested human performance on a real and virtual floor, as well as in a three-dimensional (3D) virtual space. Human performance on the real floor is as good as that on a…
EDGE2D Simulations of JET 13C Migration Experiments
International Nuclear Information System (INIS)
Strachan, J.D.; Coad, J.P.; Corrigan, G.; Matthews, G.F.; Spence, J.
2004-01-01
Material migration has received renewed interest due to tritium retention associated with carbon transport to remote vessel locations. Those results influence the desirability of carbon usage on ITER. Subsequently, additional experiments have been performed, including tracer experiments attempting to identify material migration from specific locations. In this paper, EDGE2D models a well-diagnosed JET 13 C tracer migration experiment. The role of SOL flows upon the migration patterns is identified
Adaptyvaus 2d pozicionavimo metodo autonominiam robotui tyrimas
Senvaitis, Vytautas
2016-01-01
Overview SLAM algorithm, laser distance scanner working principle, EKF and UKF filters in analytical part. EKF mathematical models are implemented for autonomous robot whit two-wheel drive and for laser distance scanner. EKF and UKF filters are compared. 2D robot positioning with EKF filter are modeled and simulated in MATALB and STM32 microcontroller with DSP library. MATLAB and STM32 are compared in speed test. Analyzing EKF filter working. Design and construct autonomous robot experimental...
Design Application Translates 2-D Graphics to 3-D Surfaces
2007-01-01
Fabric Images Inc., specializing in the printing and manufacturing of fabric tension architecture for the retail, museum, and exhibit/tradeshow communities, designed software to translate 2-D graphics for 3-D surfaces prior to print production. Fabric Images' fabric-flattening design process models a 3-D surface based on computer-aided design (CAD) specifications. The surface geometry of the model is used to form a 2-D template, similar to a flattening process developed by NASA's Glenn Research Center. This template or pattern is then applied in the development of a 2-D graphic layout. Benefits of this process include 11.5 percent time savings per project, less material wasted, and the ability to improve upon graphic techniques and offer new design services. Partners include Exhibitgroup/Giltspur (end-user client: TAC Air, a division of Truman Arnold Companies Inc.), Jack Morton Worldwide (end-user client: Nickelodeon), as well as 3D Exhibits Inc., and MG Design Associates Corp.
MXene–2D layered electrode materials for energy storage
Directory of Open Access Journals (Sweden)
Hao Tang
2018-04-01
Full Text Available As promising candidates of power resources, electrochemical energy storage (EES devices have drawn more and more attention due to their ease of use, environmental friendliness, and high transformation efficiency. The performances of EES devices, such as lithium-ion batteries, sodium-ion batteries, and supercapacitors, depend largely on the inherent properties of electrode materials. On account of the outstanding properties of graphene, a lot of studies have been carried out on two-dimensional (2D materials. Over the past few years, a new exfoliation method has been utilized to successfully prepare a new family of 2D transition metal carbides, nitrides, and carbonitrides, termed MXene, from layered precursors. Moreover, some unique EES properties of MXene have been discovered. With rapid research progress on this field, a timely account about the applications of MXene in the EES fields is highly necessary. In this article, the research progress on the preparation, electrochemical performance, and mechanism analysis of MXene is summarized and discussed. We also propose some personal prospects for the further development of this field. Keywords: MXene, 2D materials, Electrochemistry, Battery, Supercapacitor
Exciton Dynamics of 2D Hybrid Perovskite Nanocrystal
Guo, Rui; Zhu, Zhuan; Boulesbaa, Abdelaziz; Venkatesan, Swaminathan; Xiao, Kai; Bao, Jiming; Yao, Yan; Li, Wenzhi
Organic-inorganic hybrid perovskites have emerged as promising materials for applications in photovoltaic and optoelectronic devices. Among the perovskites, two dimensional (2D) perovskites are of great interests due to their remarkable optical and electrical properties as well as the flexibility of material selection for the organic and inorganic moieties. In this study, we demonstrate the solution-phase growth of large square-shaped single-crystalline 2D hybrid perovskites of (C6H5C2H4 NH3) 2 PbBr4 with a few unit cells thickness. Compared to the bulk crystal, a band gap shift and new photoluminescence (PL) peak are observed from the hybrid perovskite sheets. Color of the 2D crystals can be tuned by adjusting the sheet thickness. Pump-probe spectroscopy is used to investigate the exciton dynamics and exhibits a biexponential decay with an amplitude-weighted lifetime of 16.7 ps. Such high-quality (C6H5C2H4 NH3) 2 PbBr4 sheets are expected to have high PL quantum efficiency which can be adopted for light-emitting devices. National Science Foundation (Grant No. CMMI-1334417 and DMR-1506640).
Hybrid 3D-2D printing for bone scaffolds fabrication
Seleznev, V. A.; Prinz, V. Ya
2017-02-01
It is a well-known fact that bone scaffold topography on micro- and nanometer scale influences the cellular behavior. Nano-scale surface modification of scaffolds allows the modulation of biological activity for enhanced cell differentiation. To date, there has been only a limited success in printing scaffolds with micro- and nano-scale features exposed on the surface. To improve on the currently available imperfect technologies, in our paper we introduce new hybrid technologies based on a combination of 2D (nano imprint) and 3D printing methods. The first method is based on using light projection 3D printing and simultaneous 2D nanostructuring of each of the layers during the formation of the 3D structure. The second method is based on the sequential integration of preliminarily created 2D nanostructured films into a 3D printed structure. The capabilities of the developed hybrid technologies are demonstrated with the example of forming 3D bone scaffolds. The proposed technologies can be used to fabricate complex 3D micro- and nanostructured products for various fields.
F-theory and 2d (0,2) theories
Energy Technology Data Exchange (ETDEWEB)
Schäfer-Nameki, Sakura [Department of Mathematics, King’s College London, The Strand, London WC2R 2LS (United Kingdom); Weigand, Timo [Institut für Theoretische Physik, Ruprecht-Karls-Universität,Philosophenweg 19, 69120 Heidelberg (Germany)
2016-05-11
F-theory compactified on singular, elliptically fibered Calabi-Yau five-folds gives rise to two-dimensional gauge theories preserving N=(0,2) supersymmetry. In this paper we initiate the study of such compactifications and determine the dictionary between the geometric data of the elliptic fibration and the 2d gauge theory such as the matter content in terms of (0,2) superfields and their supersymmetric couplings. We study this setup both from a gauge-theoretic point of view, in terms of the partially twisted 7-brane theory, and provide a global geometric description based on the structure of the elliptic fibration and its singularities. Global consistency conditions are determined and checked against the dual M-theory compactification to one dimension. This includes a discussion of gauge anomalies, the structure of the Green-Schwarz terms and the Chern-Simons couplings in the dual M-theory supersymmetric quantum mechanics. Furthermore, by interpreting the resulting 2d (0,2) theories as heterotic worldsheet theories, we propose a correspondence between the geometric data of elliptically fibered Calabi-Yau five-folds and the target space of a heterotic gauged linear sigma-model (GLSM). In particular the correspondence between the Landau-Ginsburg and sigma-model phase of a 2d (0,2) GLSM is realized via different T-branes or gluing data in F-theory.
Barrera-Valencia, Camilo; Benito-Devia, Alexis Vladimir; Vélez-Álvarez, Consuelo; Figueroa-Barrera, Mario; Franco-Idárraga, Sandra Milena
Telepsychiatry is defined as the use of information and communication technology (ICT) in providing remote psychiatric services. Telepsychiatry is applied using two types of communication: synchronous (real time) and asynchronous (store and forward). To determine the cost-effectiveness of a synchronous and an asynchronous telepsychiatric model in prison inmate patients with symptoms of depression. A cost-effectiveness study was performed on a population consisting of 157 patients from the Establecimiento Penitenciario y Carcelario de Mediana Seguridad de Manizales, Colombia. The sample was determined by applying Zung self-administered surveys for depression (1965) and the Hamilton Depression Rating Scale (HDRS), the latter being the tool used for the comparison. Initial Hamilton score, arrival time, duration of system downtime, and clinical effectiveness variables had normal distributions (P>.05). There were significant differences (P<.001) between care costs for the different models, showing that the mean cost of the asynchronous model is less than synchronous model, and making the asynchronous model more cost-effective. The asynchronous model is the most cost-effective model of telepsychiatry care for patients with depression admitted to a detention centre, according to the results of clinical effectiveness, cost measurement, and patient satisfaction. Copyright © 2016 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
FPGA BASED ASYNCHRONOUS PIPELINED MB-OFDM UWB TRANSMITTER BACKEND MODULES
Directory of Open Access Journals (Sweden)
M. Santhi
2010-03-01
Full Text Available In this paper, a novel scheme is proposed which comprises the advantages of asynchronous pipelining techniques and the advantages of FPGAs for implementing a 200Mbps MB-OFDM UWB transmitter digital backend modules. In asynchronous pipelined system, registers are used as in synchronous system. But they are controlled by handshaking signals. Since FPGAs are rich in registers, design and implementation of asynchronous pipelined MBOFDM UWB transmitter on FPGA using four-phase bundled-data protocol is considered in this paper. Novel ideas have also been proposed for designing asynchronous OFDM using Modified Radix-24 SDF and asynchronous interleaver using two RAM banks. Implementation has been performed on ALTERA STRATIX II EP2S60F1020C4 FPGA and it is operating at a speed of 350MHz. It is assured that the proposed MB-OFDM UWB system can be made to work on STRATIX III device with the operating frequency of 528MHz in compliance to the ECMA-368 standard. The proposed scheme is also applicable for FPGA from other vendors and ASIC.
Huang, Yuecheng; Cheng, Wuyi; Luo, Sida; Luo, Yun; Ma, Chengchen; He, Tailin
2016-01-01
The features of the asynchronous correlation between accident indices and the factors that influence accidents can provide an effective reference for warnings of coal mining accidents. However, what are the features of this correlation? To answer this question, data from the China coal price index and the number of deaths from coal mining accidents were selected as the sample data. The fluctuation modes of the asynchronous correlation between the two data sets were defined according to the asynchronous correlation coefficients, symbolization, and sliding windows. We then built several directed and weighted network models, within which the fluctuation modes and the transformations between modes were represented by nodes and edges. Then, the features of the asynchronous correlation between these two variables could be studied from a perspective of network topology. We found that the correlation between the price index and the accidental deaths was asynchronous and fluctuating. Certain aspects, such as the key fluctuation modes, the subgroups characteristics, the transmission medium, the periodicity and transmission path length in the network, were analyzed by using complex network theory, analytical methods and spectral analysis method. These results provide a scientific reference for generating warnings for coal mining accidents based on economic indices. PMID:27902748
ELRIS2D: A MATLAB Package for the 2D Inversion of DC Resistivity/IP Data
Akca Irfan
2016-01-01
ELRIS2D is an open source code written in MATLAB for the two-dimensional inversion of direct current resistivity (DCR) and time domain induced polarization (IP) data. The user interface of the program is designed for functionality and ease of use. All available settings of the program can be reached from the main window. The subsurface is discretized using a hybrid mesh generated by the combination of structured and unstructured meshes, which reduces the computational cost of the whole invers...
International Nuclear Information System (INIS)
Damek, Nawel; Kamoun, Samira
2011-01-01
In this communication, two recursive parametric estimation algorithms are analyzed and applied to an squirrelcage asynchronous machine located at the research ''Unit of Automatic Control'' (UCA) at ENIS. The first algorithm which, use the transfer matrix mathematical model, is based on the gradient principle. The second algorithm, which use the state-space mathematical model, is based on the minimization of the estimation error. These algorithms are applied as a key technique to estimate asynchronous machine with unknown, but constant or timevarying parameters. Stator voltage and current are used as measured data. The proposed recursive parametric estimation algorithms are validated on the experimental data of an asynchronous machine under normal operating condition as full load. The results show that these algorithms can estimate effectively the machine parameters with reliability.
Determination of power and moment on shaft of special asynchronous electric drives
Karandey, V. Yu; Popov, B. K.; Popova, O. B.; Afanasyev, V. L.
2018-03-01
In the article, questions and tasks of determination of power and the moment on a shaft of special asynchronous electric drives are considered. Use of special asynchronous electric drives in mechanical engineering and other industries is relevant. The considered types of electric drives possess the improved mass-dimensional indicators in comparison with singleengine systems. Also these types of electric drives have constructive advantages; the improved characteristics allow one to realize the technological process. But creation and design of new electric drives demands adjustment of existing or development of new methods and approaches of calculation of parameters. Determination of power and the moment on a shaft of special asynchronous electric drives is the main objective during design of electric drives. This task has been solved based on a method of electromechanical transformation of energy.
Gigabit Ethernet signal transmission using asynchronous optical code division multiple access.
Ma, Philip Y; Fok, Mable P; Shastri, Bhavin J; Wu, Ben; Prucnal, Paul R
2015-12-15
We propose and experimentally demonstrate a novel architecture for interfacing and transmitting a Gigabit Ethernet (GbE) signal using asynchronous incoherent optical code division multiple access (OCDMA). This is the first such asynchronous incoherent OCDMA system carrying GbE data being demonstrated to be working among multi-users where each user is operating with an independent clock/data rate and is granted random access to the network. Three major components, the GbE interface, the OCDMA transmitter, and the OCDMA receiver are discussed in detail. The performance of the system is studied and characterized through measuring eye diagrams, bit-error rate and packet loss rate in real-time file transfer. Our Letter also addresses the near-far problem and realizes asynchronous transmission and detection of signal.
Methodological Reflections on the Use of Asynchronous Online Focus Groups in Health Research
Directory of Open Access Journals (Sweden)
Sarah Williams PhD
2012-09-01
Full Text Available The Internet is increasingly used as a tool in qualitative research. In particular, asynchronous online focus groups are used when factors such as cost, time, or access to participants can make conducting face-to-face research difficult. In this article we consider key methodological issues involved in using asynchronous online focus groups to explore experiences of health and illness. The written nature of Internet communication, the lack of physical presence, and the asynchronous, longitudinal aspects enable participants who might not normally contribute to research studies to reflect on their personal stories before disclosing them to the researcher. Implications for study design, recruitment strategies, and ethics should be considered when deciding whether to use this method.
THE ROLE OF OFFLINE METALANGUAGE TALK IN ASYNCHRONOUS COMPUTER-MEDIATED COMMUNICATION
Directory of Open Access Journals (Sweden)
Keiko Kitade
2008-02-01
Full Text Available In order to demonstrate how learners utilize the text-based asynchronous attributes of the Bulletin Board System, this study explored Japanese-as-a-second-language learners' metalanguage episodes (Swain & Lapkin, 1995, 1998 in offline verbal peer speech and online asynchronous discussions with their Japanese key pals. The findings suggest the crucial role of offline collaborative dialogue, the interactional modes in which the episodes occur, and the unique discourse structure of metalanguage episodes concerning online and offline interactions. A high score on the posttest also suggests the high retention of linguistic knowledge constructed through offline peer dialogue. In the offline mode, the learners were able to collaboratively construct knowledge with peers in the stipulated time, while simultaneously focusing on task content in the online interaction. The retrospective interviews and questionnaires reveal the factors that could affect the benefits of the asynchronous computer-mediated communication medium for language learning.
Directory of Open Access Journals (Sweden)
Keming Zhou
2017-05-01
Full Text Available Excitation-inhibition imbalance in neural networks is widely linked to neurological and neuropsychiatric disorders. However, how genetic factors alter neuronal activity, leading to excitation-inhibition imbalance, remains unclear. Here, using the C. elegans locomotor circuit, we examine how altering neuronal activity for varying time periods affects synaptic release pattern and animal behavior. We show that while short-duration activation of excitatory cholinergic neurons elicits a reversible enhancement of presynaptic strength, persistent activation results to asynchronous and reduced cholinergic drive, inducing imbalance between endogenous excitation and inhibition. We find that the neuronal calcium sensor protein NCS-2 is required for asynchronous cholinergic release in an activity-dependent manner and dampens excitability of inhibitory neurons non-cell autonomously. The function of NCS-2 requires its Ca2+ binding and membrane association domains. These results reveal a synaptic mechanism implicating asynchronous release in regulation of excitation-inhibition balance.
Argo: A Time-Elastic Time-Division-Multiplexed NOC using Asynchronous Routers
DEFF Research Database (Denmark)
Kasapaki, Evangelia; Sparsø, Jens
2014-01-01
are either synchronous or mesochronous. We use asynchronous routers to achieve a simpler, smaller, and more robust, self-timed design. Our design exploits the fact that pipelined asynchronous circuits also behave as ripple FIFOs. Thus, it avoids the need for explicit synchronization FIFOs between the routers......In this paper we explore the use of asynchronous routers in a time-division-multiplexed (TDM) network-on-chip (NOC), Argo, that is being developed for a multi-processor platform for hard real-time systems. TDM inherently requires a common time reference, and existing TDM-based NOC designs...... delays derived from a 65nm CMOS implementation, a worstcase analysis shows that a typical design can tolerate a skew of 1-5 cycles (depending on FIFO depths and NI clock frequency). Simulation results of a 2 x 2 NOC confirm this....
2D/3D/4D ULTRASOUND IN INFERTILITY MANAGEMENT
Directory of Open Access Journals (Sweden)
Uršula Reš-Muravec
2018-02-01
Ultrasound in infertility diagnostics: Ultrasound is used for examination of uterus, tubes, ovaries and peritoneal cause of infertility. It can be used in different menstrual phases: proliferative, periovulatory and secretory phase. Examination of uterus: A 2D scan can measure the size of the uterus (length, width and depth and a 2D flow (colour and power doppler. With 3D technology we can measure the whole volume with VOCAL (virtual organ computer-aided analysis and 3D circulation with the index (VI – vascular index, FI – flow index and VFI – vascular flow index in the uterus. A 2D scan can help us define uterine malformations, fibroids and adenomyosis to a certain extent. However, a 3D scan offers more accurate diagnosis of these malformations. Endometrium is examined separately. With 2D the width is measured and morphology and focal lesions (polyp, fibroids, adhesions are examined. With 3D the real sagital plane for the width measurement can be defined . We can measure the volume of endometrium and subendometrium and 3D circulation in endometrium and subendometrium. The FIS (f luid instlation sonography is very useful when examining the endometrium; saline or gel can be used for uterine instalation. We can measure and define the position of the structures in the endometrium more accurately when they are surrouned by saline or gel. We can view these structures with a surface view, similar to the one used for hysteroscopy. With this information we can explain the pathology to the patient and easily plan the surgical procedures. Examination of the tubes: With 2D US we can see the tubes in the pelvis only if there are dilatations, but sometimes it is difficult to distinguish them from the neighbouring forma- tions. With a 3D ultrasound we can define the shape and continuity of the tube and we can view the tube from different angles (inversion mode. Different contrast media are used for determining tubal patency. Tubal patency can be diagnosed with 2D Hy
Network evolution induced by asynchronous stimuli through spike-timing-dependent plasticity.
Directory of Open Access Journals (Sweden)
Wu-Jie Yuan
Full Text Available In sensory neural system, external asynchronous stimuli play an important role in perceptual learning, associative memory and map development. However, the organization of structure and dynamics of neural networks induced by external asynchronous stimuli are not well understood. Spike-timing-dependent plasticity (STDP is a typical synaptic plasticity that has been extensively found in the sensory systems and that has received much theoretical attention. This synaptic plasticity is highly sensitive to correlations between pre- and postsynaptic firings. Thus, STDP is expected to play an important role in response to external asynchronous stimuli, which can induce segregative pre- and postsynaptic firings. In this paper, we study the impact of external asynchronous stimuli on the organization of structure and dynamics of neural networks through STDP. We construct a two-dimensional spatial neural network model with local connectivity and sparseness, and use external currents to stimulate alternately on different spatial layers. The adopted external currents imposed alternately on spatial layers can be here regarded as external asynchronous stimuli. Through extensive numerical simulations, we focus on the effects of stimulus number and inter-stimulus timing on synaptic connecting weights and the property of propagation dynamics in the resulting network structure. Interestingly, the resulting feedforward structure induced by stimulus-dependent asynchronous firings and its propagation dynamics reflect both the underlying property of STDP. The results imply a possible important role of STDP in generating feedforward structure and collective propagation activity required for experience-dependent map plasticity in developing in vivo sensory pathways and cortices. The relevance of the results to cue-triggered recall of learned temporal sequences, an important cognitive function, is briefly discussed as well. Furthermore, this finding suggests a potential
FAST: A fully asynchronous and status-tracking pattern for geoprocessing services orchestration
Wu, Huayi; You, Lan; Gui, Zhipeng; Gao, Shuang; Li, Zhenqiang; Yu, Jingmin
2014-09-01
Geoprocessing service orchestration (GSO) provides a unified and flexible way to implement cross-application, long-lived, and multi-step geoprocessing service workflows by coordinating geoprocessing services collaboratively. Usually, geoprocessing services and geoprocessing service workflows are data and/or computing intensive. The intensity feature may make the execution process of a workflow time-consuming. Since it initials an execution request without blocking other interactions on the client side, an asynchronous mechanism is especially appropriate for GSO workflows. Many critical problems remain to be solved in existing asynchronous patterns for GSO including difficulties in improving performance, status tracking, and clarifying the workflow structure. These problems are a challenge when orchestrating performance efficiency, making statuses instantly available, and constructing clearly structured GSO workflows. A Fully Asynchronous and Status-Tracking (FAST) pattern that adopts asynchronous interactions throughout the whole communication tier of a workflow is proposed for GSO. The proposed FAST pattern includes a mechanism that actively pushes the latest status to clients instantly and economically. An independent proxy was designed to isolate the status tracking logic from the geoprocessing business logic, which assists the formation of a clear GSO workflow structure. A workflow was implemented in the FAST pattern to simulate the flooding process in the Poyang Lake region. Experimental results show that the proposed FAST pattern can efficiently tackle data/computing intensive geoprocessing tasks. The performance of all collaborative partners was improved due to the asynchronous mechanism throughout communication tier. A status-tracking mechanism helps users retrieve the latest running status of a GSO workflow in an efficient and instant way. The clear structure of the GSO workflow lowers the barriers for geospatial domain experts and model designers to
2D Seismic Reflection Data across Central Illinois
Energy Technology Data Exchange (ETDEWEB)
Smith, Valerie; Leetaru, Hannes
2014-09-30
In a continuing collaboration with the Midwest Geologic Sequestration Consortium (MGSC) on the Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins project, Schlumberger Carbon Services and WesternGeco acquired two-dimensional (2D) seismic data in the Illinois Basin. This work included the design, acquisition and processing of approximately 125 miles of (2D) seismic reflection surveys running west to east in the central Illinois Basin. Schlumberger Carbon Services and WesternGeco oversaw the management of the field operations (including a pre-shoot planning, mobilization, acquisition and de-mobilization of the field personnel and equipment), procurement of the necessary permits to conduct the survey, post-shoot closure, processing of the raw data, and provided expert consultation as needed in the interpretation of the delivered product. Three 2D seismic lines were acquired across central Illinois during November and December 2010 and January 2011. Traversing the Illinois Basin, this 2D seismic survey was designed to image the stratigraphy of the Cambro-Ordovician sections and also to discern the basement topography. Prior to this survey, there were no regionally extensive 2D seismic data spanning this section of the Illinois Basin. Between the NW side of Morgan County and northwestern border of Douglas County, these seismic lines ran through very rural portions of the state. Starting in Morgan County, Line 101 was the longest at 93 miles in length and ended NE of Decatur, Illinois. Line 501 ran W-E from the Illinois Basin – Decatur Project (IBDP) site to northwestern Douglas County and was 25 miles in length. Line 601 was the shortest and ran N-S past the IBDP site and connected lines 101 and 501. All three lines are correlated to well logs at the IBDP site. Originally processed in 2011, the 2D seismic profiles exhibited a degradation of signal quality below ~400 millisecond (ms) which made
Data of evolutionary structure change: 1ONAD-2D3PC [Confc[Archive
Lifescience Database Archive (English)
Full Text Available 1ONAD-2D3PC 1ONA 2D3P D C ADTIVAVELDTYPNTDIGDPSYPHIGIDIKSVRSKKTAK...WNMQNGKVGTAHIIYNSVDKRLSAVVSYPNADSATVSYDVDLDNVLPEWVRVGLSASTGLYKETNTILSWSFTSKLKT------NALHFMFNQFSKDQKDLILQGDAT...14> 1ONA D 1ONAD
Data of evolutionary structure change: 1ONAD-2D3PA [Confc[Archive
Lifescience Database Archive (English)
Full Text Available 1ONAD-2D3PA 1ONA 2D3P D A ADTIVAVELDTYPNTDIGDPSYPHIGIDIKSVRSKKTAK...WNMQNGKVGTAHIIYNSVDKRLSAVVSYPNADSATVSYDVDLDNVLPEWVRVGLSASTGLYKETNTILSWSFTSKLKT------NALHFMFNQFSKDQKDLILQGDAT...ONA D 1ONAD LTRVSSNGSPQ
Data of evolutionary structure change: 1ONAD-2D3PB [Confc[Archive
Lifescience Database Archive (English)
Full Text Available 1ONAD-2D3PB 1ONA 2D3P D B ADTIVAVELDTYPNTDIGDPSYPHIGIDIKSVRSKKTAK...WNMQNGKVGTAHIIYNSVDKRLSAVVSYPNADSATVSYDVDLDNVLPEWVRVGLSASTGLYKETNTILSWSFTSKLKT------NALHFMFNQFSKDQKDLILQGDAT...ain> 1ONA D 1ONAD TR
Data of evolutionary structure change: 1ONAD-2D3RA [Confc[Archive
Lifescience Database Archive (English)
Full Text Available 1ONAD-2D3RA 1ONA 2D3R D A ADTIVAVELDTYPNTDIGDPSYPHIGIDIKSVRSKKTAK...WNMQNGKVGTAHIIYNSVDKRLSAVVSYPNADSATVSYDVDLDNVLPEWVRVGLSASTGLYKETNTILSWSFTSKLKT------NALHFMFNQFSKDQKDLILQGDAT...ID>1ONA D 1ONAD TRVSSNGSPQG <
Data of evolutionary structure change: 1ONAD-2D3RC [Confc[Archive
Lifescience Database Archive (English)
Full Text Available 1ONAD-2D3RC 1ONA 2D3R D C ADTIVAVELDTYPNTDIGDPSYPHIGIDIKSVRSKKTAK...WNMQNGKVGTAHIIYNSVDKRLSAVVSYPNADSATVSYDVDLDNVLPEWVRVGLSASTGLYKETNTILSWSFTSKLKT------NALHFMFNQFSKDQKDLILQGDAT... 1ONA D 1ONAD TRVSSN
Data of evolutionary structure change: 1ONAD-2D3RD [Confc[Archive
Lifescience Database Archive (English)
Full Text Available 1ONAD-2D3RD 1ONA 2D3R D D ADTIVAVELDTYPNTDIGDPSYPHIGIDIKSVRSKKTAK...WNMQNGKVGTAHIIYNSVDKRLSAVVSYPNADSATVSYDVDLDNVLPEWVRVGLSASTGLYKETNTILSWSFTSKLK------TNALHFMFNQFSKDQKDLILQGDAT...n> 1ONA D 1ONAD TRVS
Emmanouilidou, Kyriaki; Derri, Vassiliki; Antoniou, Panagiotis; Kyrgiridis, Pavlos
2012-01-01
The purpose of the study was to compare the influences of a training programme's instructional delivery method (synchronous and asynchronous) on Greek in-service physical educators' cognitive understanding on student assessment. Forty nine participants were randomly divided into synchronous, asynchronous, and control group. The experimental groups…
Al Dobaikhi, Hend; Woollard, John
2011-01-01
The impacts of emerging ICT into educational curricula Asynchronous discussion forumDiscussion groups via e-learning environmentPosting questions and commentsSelf-efficacy in asynchronous e-learning Web community participationCollaborative learning can be fosteredPositive impacts on objectives of educational curriculum
2D to 3D conversion implemented in different hardware
Ramos-Diaz, Eduardo; Gonzalez-Huitron, Victor; Ponomaryov, Volodymyr I.; Hernandez-Fragoso, Araceli
2015-02-01
Conversion of available 2D data for release in 3D content is a hot topic for providers and for success of the 3D applications, in general. It naturally completely relies on virtual view synthesis of a second view given by original 2D video. Disparity map (DM) estimation is a central task in 3D generation but still follows a very difficult problem for rendering novel images precisely. There exist different approaches in DM reconstruction, among them manually and semiautomatic methods that can produce high quality DMs but they demonstrate hard time consuming and are computationally expensive. In this paper, several hardware implementations of designed frameworks for an automatic 3D color video generation based on 2D real video sequence are proposed. The novel framework includes simultaneous processing of stereo pairs using the following blocks: CIE L*a*b* color space conversions, stereo matching via pyramidal scheme, color segmentation by k-means on an a*b* color plane, and adaptive post-filtering, DM estimation using stereo matching between left and right images (or neighboring frames in a video), adaptive post-filtering, and finally, the anaglyph 3D scene generation. Novel technique has been implemented on DSP TMS320DM648, Matlab's Simulink module over a PC with Windows 7, and using graphic card (NVIDIA Quadro K2000) demonstrating that the proposed approach can be applied in real-time processing mode. The time values needed, mean Similarity Structural Index Measure (SSIM) and Bad Matching Pixels (B) values for different hardware implementations (GPU, Single CPU, and DSP) are exposed in this paper.
Non-Newtonian fluid flow in 2D fracture networks
Zou, L.; Håkansson, U.; Cvetkovic, V.
2017-12-01
Modeling of non-Newtonian fluid (e.g., drilling fluids and cement grouts) flow in fractured rocks is of interest in many geophysical and industrial practices, such as drilling operations, enhanced oil recovery and rock grouting. In fractured rock masses, the flow paths are dominated by fractures, which are often represented as discrete fracture networks (DFN). In the literature, many studies have been devoted to Newtonian fluid (e.g., groundwater) flow in fractured rock using the DFN concept, but few works are dedicated to non-Newtonian fluids.In this study, a generalized flow equation for common non-Newtonian fluids (such as Bingham, power-law and Herschel-Bulkley) in a single fracture is obtained from the analytical solutions for non-Newtonian fluid discharge between smooth parallel plates. Using Monte Carlo sampling based on site characterization data for the distribution of geometrical features (e.g., density, length, aperture and orientations) in crystalline fractured rock, a two dimensional (2D) DFN model is constructed for generic flow simulations. Due to complex properties of non-Newtonian fluids, the relationship between fluid discharge and the pressure gradient is nonlinear. A Galerkin finite element method solver is developed to iteratively solve the obtained nonlinear governing equations for the 2D DFN model. Using DFN realizations, simulation results for different geometrical distributions of the fracture network and different non-Newtonian fluid properties are presented to illustrate the spatial discharge distributions. The impact of geometrical structures and the fluid properties on the non-Newtonian fluid flow in 2D DFN is examined statistically. The results generally show that modeling non-Newtonian fluid flow in fractured rock as a DFN is feasible, and that the discharge distribution may be significantly affected by the geometrical structures as well as by the fluid constitutive properties.
Novel 2D representation of vibration for local damage detection
Directory of Open Access Journals (Sweden)
Grzegorz Żak
2014-07-01
Full Text Available In this paper a new 2D representation for local damage detection is presented. It is based on a vibration time series analysis. A raw vibration signal is decomposed via short-time Fourier transform and new time series for each frequency bin are differentiated to decorrelate them. For each time series, autocorrelation function is calculated. In the next step ACF maps are constructed. For healthy bearing ACF map should not have visible horizontal lines indicating damage. The method is illustrated by analysis of real data containing signals from damaged bearing and healthy for comparison.
Deep Cuboid Detection: Beyond 2D Bounding Boxes
Dwibedi, Debidatta; Malisiewicz, Tomasz; Badrinarayanan, Vijay; Rabinovich, Andrew
2016-01-01
We present a Deep Cuboid Detector which takes a consumer-quality RGB image of a cluttered scene and localizes all 3D cuboids (box-like objects). Contrary to classical approaches which fit a 3D model from low-level cues like corners, edges, and vanishing points, we propose an end-to-end deep learning system to detect cuboids across many semantic categories (e.g., ovens, shipping boxes, and furniture). We localize cuboids with a 2D bounding box, and simultaneously localize the cuboid's corners,...
A new 2-d approach to iterative , learning control system
International Nuclear Information System (INIS)
Ashraf, S.; Muhammad, E.; Tasleem, M.
2004-01-01
The well known two-dimensional system theory is used to analyze and develop a class of learning control system. In this paper we first explore and test a method given by ZHENG and JAMSHIDI. In that paper all the input samples are treated at once. In comparison our paper presents a scheme in which one sample at a time is treated. The 2- D state-space model of proposed learning control scheme is given. An important consequence of the proposed scheme is that given the right choice of gain matrix and sampling time the system's output can be made to converge to any degree of accuracy. (author)
Topology-Preserving Rigid Transformation of 2D Digital Images.
Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues
2014-02-01
We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping.
2D Inversion of Transient Electromagnetic Method (TEM)
Bortolozo, Cassiano Antonio; Luís Porsani, Jorge; Acácio Monteiro dos Santos, Fernando
2017-04-01
A new methodology was developed for 2D inversion of Transient Electromagnetic Method (TEM). The methodology consists in the elaboration of a set of routines in Matlab code for modeling and inversion of TEM data and the determination of the most efficient field array for the problem. In this research, the 2D TEM modeling uses the finite differences discretization. To solve the inversion problem, were applied an algorithm based on Marquardt technique, also known as Ridge Regression. The algorithm is stable and efficient and it is widely used in geoelectrical inversion problems. The main advantage of 1D survey is the rapid data acquisition in a large area, but in regions with two-dimensional structures or that need more details, is essential to use two-dimensional interpretation methodologies. For an efficient field acquisition we used in an innovative form the fixed-loop array, with a square transmitter loop (200m x 200m) and 25m spacing between the sounding points. The TEM surveys were conducted only inside the transmitter loop, in order to not deal with negative apparent resistivity values. Although it is possible to model the negative values, it makes the inversion convergence more difficult. Therefore the methodology described above has been developed in order to achieve maximum optimization of data acquisition. Since it is necessary only one transmitter loop disposition in the surface for each series of soundings inside the loop. The algorithms were tested with synthetic data and the results were essential to the interpretation of the results with real data and will be useful in future situations. With the inversion of the real data acquired over the Paraná Sedimentary Basin (PSB) was successful realized a 2D TEM inversion. The results indicate a robust geoelectrical characterization for the sedimentary and crystalline aquifers in the PSB. Therefore, using a new and relevant approach for 2D TEM inversion, this research effectively contributed to map the most
The multicomponent 2D Toda hierarchy: dispersionless limit
International Nuclear Information System (INIS)
Mañas, Manuel; Alonso, Luis Martínez
2009-01-01
The factorization problem of the multi-component 2D Toda hierarchy is used to analyze the dispersionless limit of this hierarchy. A dispersive version of the Whitham hierarchy defined in terms of scalar Lax and Orlov–Schulman operators is introduced and the corresponding additional symmetries and string equations are discussed. Then, it is shown how KP and Toda pictures of the dispersionless Whitham hierarchy emerge in the dispersionless limit. Moreover, the additional symmetries and string equations for the dispersive Whitham hierarchy are studied in this limit
Optical diffraction by ordered 2D arrays of silica microspheres
Shcherbakov, A. A.; Shavdina, O.; Tishchenko, A. V.; Veillas, C.; Verrier, I.; Dellea, O.; Jourlin, Y.
2017-03-01
The article presents experimental and theoretical studies of angular dependent diffraction properties of 2D monolayer arrays of silica microspheres. High-quality large area defect-free monolayers of 1 μm diameter silica microspheres were deposited by the Langmuir-Blodgett technique under an accurate optical control. Measured angular dependencies of zeroth and one of the first order diffraction efficiencies produced by deposited samples were simulated by the rigorous Generalized Source Method taking into account particle size dispersion and lattice nonideality.
Rotational Invariance of the 2d Spin - Spin Correlation Function
Pinson, Haru
2012-09-01
At the critical temperature in the 2d Ising model on the square lattice, we establish the rotational invariance of the spin-spin correlation function using the asymptotics of the spin-spin correlation function along special directions (McCoy and Wu in the two dimensional Ising model. Harvard University Press, Cambridge, 1973) and the finite difference Hirota equation for which the spin-spin correlation function is shown to satisfy (Perk in Phys Lett A 79:3-5, 1980; Perk in Proceedings of III international symposium on selected topics in statistical mechanics, Dubna, August 22-26, 1984, JINR, vol II, pp 138-151, 1985).
Hybrid animation integrating 2D and 3D assets
O'Hailey, Tina
2010-01-01
Artist imaginations continue to grow and stretch the boundaries of traditional animation. Successful animators adept and highly skilled in traditional animation mediums are branching out beyond traditional animation workflows and will often use multiple forms of animation in a single project. With the knowledge of 3D and 2D assets and the integration of multiple animation mediums into a single project, animators have a wealth of creative resources available for a project that is not limited to a specific animation medium, software package or workflow processs. Enhance a poignant scene by choos
A generalized 2-D Poincaré inequality
Directory of Open Access Journals (Sweden)
Crisciani Fulvio
2000-01-01
Full Text Available Two 1-D Poincaré-like inequalities are proved under the mild assumption that the integrand function is zero at just one point. These results are used to derive a 2-D generalized Poincare inequality in which the integrand function is zero on a suitable arc contained in the domain (instead of the whole boundary. As an application, it is shown that a set of boundary conditions for the quasi geostrophic equation of order four are compatible with general physical constraints dictated by the dissipation of kinetic energy.
DESAIN KOMUNIKASI DAKWAH VISUAL ANIMASI 2D UNTUK ANAK
Directory of Open Access Journals (Sweden)
Mokhamad Mahfud
2017-04-01
Full Text Available Dakwah activities as a communication process of delivering the teachings of Islam's ideal has no power to change people for the better. There are many causal factors, one of them is because of propagandas that has been done tends to be cold, impersonal, and is only informative sheer, yet using less effective communication ethics. A visual cultural revolution is now growing rapidly, unfortunately its dominated by capitalists and worshipers of lust. For example, nearly all visual ads is using the interest of sensuality and lust to lure customers. On the billboards, media newspapers, magazines, television and other media, visual communication seemed to be a valuable garbage, and this is very dangerous, especially if in the consumption of children who are mentally and immature psyche. The Effects of visual "value-free" communication can damage the sense of children as the next generation, we are slowly showed on-aurast which makes Muslims become stupid. This study aims to provide a creative space to explore the lives of children for the purpose of providing religious materials in SDN Monggang Pendowoharjo Sewon Bantul. 2D animation design is expected to give a message to children that religious material is not complicated but enjoyable. And the use of cartoon animation techniques in the making is in fact, expecting the material to be delivered to children to be light for their minds and appropriate with their entertainment media which is television. This research Visual Communication Design using 2d Animation For Children is using descriptive study which is a qualitative research method that analyze the words or sentences and separate it by category for the conclusion. Qualitative research aims to explain the phenomenon in detail and in-depth data collection that focuses on quality rather than the quantity of data. The results of this study is that the creation of 2D animation is effective to be a dakwah media for children that will be made with a
Resolving power test of 2-D K+ K+ interferometry
International Nuclear Information System (INIS)
Padula, Sandra S.; Roldao, Christiane G.
1999-01-01
Adopting a procedure previously proposed to quantitatively study pion interferometry 1 , an equivalent 2-D X 2 analysis was performed to test the resolving power of that method when applied to less favorable conditions, when no significant contribution from long lived resonances is expected, as in kaon interferometry. For that purpose, use is made of the preliminary E859 K + K + interferometry data from Si+Au collisions at 14.6 A GeV/c. Less sensitivity is achieved in the present case, although it is shown that it is still possible to distinguish two distinct decoupling geometries. (author)
Survey of 1 1/2D transport codes
International Nuclear Information System (INIS)
Grad, H.
1978-10-01
A survey is given of a family of classical transport codes, recently termed ''1 1/2D'', which efficiently and accurately follow the evolution of plasma configurations on a long time scale, following coupled changes in plasma shape and topology with transport (but not wave motion). Codes have been constructed and operated (since 1974) which include various combinations of finite beta, general plasma cross-section and aspect, various topologies (Doublet, tearing, reversed-field mirror) including time dependent transitions in topology resulting from external coil variation and plasma transport, with models including (classical) tensor resistivity and heat flow as well as the adiabatic limiting case
Conformal field theory and 2D quantum gravity
International Nuclear Information System (INIS)
Distler, J.; Kawai, Hikaru
1989-01-01
Inspired by the recent work of Knizhnik, Polyakov and Zamolodchikov on the solution of 2D quantum gravity in the 'light cone' gauge, we present a proposal for solving the theory in the usual conformal gauge. Our results for the critical exponents of the theory agree with the genus-zero results of KPZ. Since our formalism naturally generalizes to higher-genus Riemann surfaces, we obtain the critical exponents for all genera. The corresponding results for the supersymmetric case are presented. We also show how to calculate correlation functions in these theories. (orig.)
Microscopy of 2D Fermi gases. Exploring excitations and thermodynamics
Energy Technology Data Exchange (ETDEWEB)
Morgener, Kai Henning
2014-12-08
This thesis presents experiments on three-dimensional (3D) and two-dimensional (2D) ultracold fermionic {sup 6}Li gases providing local access to microscopic quantum many-body physics. A broad magnetic Feshbach resonance is used to tune the interparticle interaction strength freely to address the entire crossover between the Bose-Einstein-Condensate (BEC) and Bardeen-Cooper-Schrieffer (BCS) regime. We map out the critical velocity in the crossover from BEC to BCS superfluidity by moving a small attractive potential through the 3D cloud. We compare the results with theoretical predictions and achieve quantitative understanding in the BEC regime by performing numerical simulations. Of particular interest is the regime of strong correlations, where no theoretical predictions exist. In the BEC regime, the critical velocity should be closely related to the speed of sound, according to the Landau criterion and Bogolyubov theory. We measure the sound velocity by exciting a density wave and tracking its propagation. The focus of this thesis is on our first experiments on general properties of quasi-2D Fermi gases. We realize strong vertical confinement by generating a 1D optical lattice by intersecting two blue-detuned laser beams under a steep angle. The large resulting lattice spacing enables us to prepare a single planar quantum gas deeply in the 2D regime. The first measurements of the speed of sound in quasi-2D gases in the BEC-BCS crossover are presented. In addition, we present preliminary results on the pressure equation of state, which is extracted from in-situ density profiles. Since the sound velocity is directly connected to the equation of state, the results provide a crosscheck of the speed of sound. Moreover, we benchmark the derived sound from available equation of state predictions, find very good agreement with recent numerical calculations, and disprove a sophisticated mean field approach. These studies are carried out with a novel apparatus which has
GAIA: A 2-D Curvilinear moving grid hydrodynamic code
International Nuclear Information System (INIS)
Jourdren, H.
1987-02-01
The GAIA computer code is developed for time dependent, compressible, multimaterial fluid flow problems, to overcome some drawbacks of traditional 2-D Lagrangian codes. The initial goals of robustness, entropy accuracies, efficiency in presence of large interfacial slip, have already been achieved. The general GODUNOV approach is applied to an arbitrary time varying control-volume formulation. We review in this paper the Riemann solver, the GODUNOV cartesian and curvilinear moving grid schemes and an efficient grid generation algorithm. We finally outline a possible second order accuracy extension
Integer channels in nonuniform non-equilibrium 2D systems
Shikin, V.
2018-01-01
We discuss the non-equilibrium properties of integer channels in nonuniform 2D electron (hole) systems in the presence of a strong magnetic field. The results are applied to a qualitative explanation of the Corbino disk current-voltage characteristics (IVC) in the quantum Hall effect (QHE) regime. Special consideration is paid to the so-called "QHE breakdown" effect, which is readily observed in both the Hall bar and Corbino geometries of the tested cells. The QHE breakdown is especially evident in the Corbino samples, allowing for a more in-depth study of these effects.
Laser dynamics of asynchronous rational harmonic mode-locked fiber soliton lasers
International Nuclear Information System (INIS)
Jyu, Siao-Shan; Jiang, Guo-Hao; Lai, Yinchieh
2013-01-01
Laser dynamics of asynchronous rational harmonic mode-locked (ARHM) fiber soliton lasers are investigated in detail. In particular, based on the unique laser dynamics of asynchronous mode-locking, we have developed a new method for determining the effective active modulation strength in situ for ARHM lasers. By measuring the magnitudes of the slowly oscillating pulse timing position and central frequency, the effective phase modulation strength at the multiplication frequency of rational harmonic mode-locking can be accurately inferred. The method can be a very useful tool for developing ARHM fiber lasers. (paper)
Heating calculation features at self-start of large asynchronous motor
Shevchenko, A. A.; Temlyakova, Z. S.; Grechkin, V. V.; Vilberger, M. E.
2017-10-01
The article proposes a method for optimizing the incremental heating calculation in the active volume of a large asynchronous motor for certain kinds of load characteristics. The incremental heating calculation is conditioned by the need to determine the aging level of the insulation and to predict a decrease in the electric machine service life. The method for optimizing the incremental heating calculation of asynchronous motor active volume is based on the automation of calculating the heating when simulating the self-starting process of the motor after eliminating an AC drop.
Directory of Open Access Journals (Sweden)
Romanenko N. G.
2017-10-01
Full Text Available the application of virtual laboratories will allow to show different transition processes, as well as to carry out experiments that are very expensive in real electrical machines’ labs, for example, to calculate the energy costs in electric drives. Models of non-regulation asynchronous drive and frequency-regulated asynchronous electric drive are examined in this article. The author has calculated and compared the energy losses of these systems with various types of loads and this lets us to evaluate work processes of many technical devices.
Rissanen, Mikko J; Kume, Naoto; Kuroda, Yoshihiro; Kuroda, Tomohiro; Yoshimura, Koji; Yoshihara, Hiroyuki
2008-01-01
Many VR technology based training systems use expert's motion data as the training aid, but would not provide any short-cut to teaching medical skills that do not depend on exact motions. Earlier we presented Annotated Simulation Records (ASRs), which can be used to encapsulate experts' insight on psychomotor skills. Annotations made to behavioural parameters in training simulators enable asynchronous teaching instead of just motion training in a proactive way to the learner. We evaluated ASRs for asynchronous teaching of Digital Rectal Examination (DRE) with 3 urologists and 8 medical students. The ASRs were found more effective than motion-based training with verbal feedback.
A low-power asynchronous data-path for a FIR filter bank
DEFF Research Database (Denmark)
Nielsen, Lars Skovby; Sparsø, Jens
1996-01-01
This paper describes a number of design issues relating to the implementation of low-power asynchronous signal processing circuits. Specifically, the paper addresses the design of a dedicated processor structure that implements an audio FIR filter bank which is part of an industrial application....... The algorithm requires a fixed number of steps and the moderate speed requirement allows a sequential implementation. The latter, in combination with a huge predominance of numerically small data values in the input data stream, is the key to a low-power asynchronous implementation. Power is minimized in two...
Minor burn - first aid - slideshow
... page: //medlineplus.gov/ency/presentations/100213.htm Minor burn - first aid - series—Procedure, part 1 To use ... out of 2 Overview To treat a minor burn, run cool water over the area of the ...
Energy Technology Data Exchange (ETDEWEB)
Peeters, J.; Van Dorst, C. [Hyteps, Gemert (Netherlands)
2008-10-15
The three phase asynchronous motor has been applied in various installations since time immemorial. Although the motor is more efficient at full mechanical load, this is not always applied efficiently. Can the efficiency of low load motors be improved or is this a utopia? The Sinusoidal Motor Controller (SinuMEC) improves efficiency, saves energy and lengthens the life span. [mk]. [Dutch] De driefasen asynchrone motor wordt sinds mensenheugenis in uiteenlopende installaties toegepast. Hoewel de motor met een volle mechanische belasting efficient is, wordt deze niet altijd efficient toegepast. Kan de efficiency van laag belaste motoren worden verbeterd of is dit een utopie? De Sinusoidal Motor efficiency controller (SinuMEC) verbetert de efficiency, bespaart energie en verlengt de levensduur.
Nested 1D-2D approach for urban surface flood modeling
Murla, Damian; Willems, Patrick
2015-04-01
Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of
Minor actinide transmutation using minor actinide burner reactors
International Nuclear Information System (INIS)
Mukaiyama, T.; Yoshida, H.; Gunji, Y.
1991-01-01
The concept of minor actinide burner reactor is proposed as an efficient way to transmute long-lived minor actinides in order to ease the burden of high-level radioactive waste disposal problem. Conceptual design study of minor actinide burner reactors was performed to obtain a reactor model with very hard neutron spectrum and very high neutron flux in which minor actinides can be fissioned efficiently. Two models of burner reactors were obtained, one with metal fuel core and the other with particle fuel core. Minor actinide transmutation by the actinide burner reactors is compared with that by power reactors from both the reactor physics and fuel cycle facilities view point. (author)
Institutional Investors as Minority Shareholders
Assaf Hamdani; Yishay Yafeh
2013-01-01
We examine the link between minority shareholders' rights and corporate governance by studying institutional investors' voting patterns in a concentrated ownership environment. Institutions rarely vote against insider-sponsored proposals even when the law empowers the minority. Institutions vote against compensation-related proposals more often than against related party transactions even when minority shareholders cannot influence outcomes. Potentially conflicted institutions are more likely...
2D arc-PIC code description: methods and documentation
Timko, Helga
2011-01-01
Vacuum discharges are one of the main limiting factors for future linear collider designs such as that of the Compact LInear Collider. To optimize machine efficiency, maintaining the highest feasible accelerating gradient below a certain breakdown rate is desirable; understanding breakdowns can therefore help us to achieve this goal. As a part of ongoing theoretical research on vacuum discharges at the Helsinki Institute of Physics, the build-up of plasma can be investigated through the particle-in-cell method. For this purpose, we have developed the 2D Arc-PIC code introduced here. We present an exhaustive description of the 2D Arc-PIC code in two parts. In the first part, we introduce the particle-in-cell method in general and detail the techniques used in the code. In the second part, we provide a documentation and derivation of the key equations occurring in the code. The code is original work of the author, written in 2010, and is therefore under the copyright of the author. The development of the code h...
2-D Fractal Carpet Antenna Design and Performance
Barton, C. C.; Tebbens, S. F.; Ewing, J. J.; Peterman, D. J.; Rizki, M. M.
2017-12-01
A 2-D fractal carpet antenna uses a fractal (self-similar) pattern to increase its perimeter by iteration and can receive or transmit electromagnetic radiation within its perimeter-bounded surface area. 2-D fractals are shapes that, at their mathematical limit (infinite iterations) have an infinite perimeter bounding a finite surface area. The fractal dimension describes the degree of space filling and lacunarity which quantifies the size and spatial distribution of open space bounded by a fractal shape. A key aspect of fractal antennas lies in iteration (repetition) of a fractal pattern over a range of length scales. Iteration produces fractal antennas that are very compact, wideband and multiband. As the number of iterations increases, the antenna operates at higher and higher frequencies. Manifestly different from traditional antenna designs, a fractal antenna can operate at multiple frequencies simultaneously. We have created a MATLAB code to generate deterministic and stochastic modes of Sierpinski carpet fractal antennas with a range of fractal dimensions between 1 and 2. Variation in fractal dimension, stochasticity, number of iterations, and lacunarities have been computationally tested using COMSOL Multiphysics software to determine their effect on antenna performance
2-D Fractal Wire Antenna Design and Performance
Tebbens, S. F.; Barton, C. C.; Peterman, D. J.; Ewing, J. J.; Abbott, C. S.; Rizki, M. M.
2017-12-01
A 2-D fractal wire antenna uses a fractal (self-similar) pattern to increase its length by iteration and can receive or transmit electromagnetic radiation. 2-D fractals are shapes that, at their mathematical limit (of infinite iterations) have an infinite length. The fractal dimension describes the degree of space filling. A fundamental property of fractal antennas lies in iteration (repetition) of a fractal pattern over a range of length scales. Iteration produces fractal antennas that can be very compact, wideband and multiband. As the number of iterations increases, the antenna tends to have additional frequencies that minimize far field return loss. This differs from traditional antenna designs in that a single fractal antenna can operate well at multiple frequencies. We have created a MATLAB code to generate deterministic and stochastic modes of fractal wire antennas with a range of fractal dimensions between 1 and 2. Variation in fractal dimension, stochasticity, and number of iterations have been computationally tested using COMSOL Multiphysics software to determine their effect on antenna performance.
The unitary conformal field theory behind 2D Asymptotic Safety
Energy Technology Data Exchange (ETDEWEB)
Nink, Andreas; Reuter, Martin [Institute of Physics, PRISMA & MITP, Johannes Gutenberg University Mainz,Staudingerweg 7, D-55099 Mainz (Germany)
2016-02-25
Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in d>2 dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge c=25. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety program. In particular, we discuss its field parametrization dependence and argue that there might exist more than one universality class of metric gravity theories in two dimensions. Furthermore, studying the gravitational dressing in 2D asymptotically safe gravity coupled to conformal matter we uncover a mechanism which leads to a complete quenching of the a priori expected Knizhnik-Polyakov-Zamolodchikov (KPZ) scaling. A possible connection of this prediction to Monte Carlo results obtained in the discrete approach to 2D quantum gravity based upon causal dynamical triangulations is mentioned. Similarities of the fixed point theory to, and differences from, non-critical string theory are also described. On the technical side, we provide a detailed analysis of an intriguing connection between the Einstein-Hilbert action in d>2 dimensions and Polyakov’s induced gravity action in two dimensions.
Preconditioning 2D Integer Data for Fast Convex Hull Computations.
Cadenas, José Oswaldo; Megson, Graham M; Luengo Hendriks, Cris L
2016-01-01
In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) ≤ n holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved.
Syndrome identification based on 2D analysis software.
Boehringer, Stefan; Vollmar, Tobias; Tasse, Christiane; Wurtz, Rolf P; Gillessen-Kaesbach, Gabriele; Horsthemke, Bernhard; Wieczorek, Dagmar
2006-10-01
Clinical evaluation of children with developmental delay continues to present a challenge to the clinicians. In many cases, the face provides important information to diagnose a condition. However, database support with respect to facial traits is limited at present. Computer-based analyses of 2D and 3D representations of faces have been developed, but it is unclear how well a larger number of conditions can be handled by such systems. We have therefore analysed 2D pictures of patients each being affected with one of 10 syndromes (fragile X syndrome; Cornelia de Lange syndrome; Williams-Beuren syndrome; Prader-Willi syndrome; Mucopolysaccharidosis type III; Cri-du-chat syndrome; Smith-Lemli-Opitz syndrome; Sotos syndrome; Microdeletion 22q11.2; Noonan syndrome). We can show that a classification accuracy of >75% can be achieved for a computer-based diagnosis among the 10 syndromes, which is about the same accuracy achieved for five syndromes in a previous study. Pairwise discrimination of syndromes ranges from 80 to 99%. Furthermore, we can demonstrate that the criteria used by the computer decisions match clinical observations in many cases. These findings indicate that computer-based picture analysis might be a helpful addition to existing database systems, which are meant to assist in syndrome diagnosis, especially as data acquisition is straightforward and involves off-the-shelf digital camera equipment.
Polymer ultrapermeability from the inefficient packing of 2D chains
Rose, Ian; Bezzu, C. Grazia; Carta, Mariolino; Comesaña-Gándara, Bibiana; Lasseuguette, Elsa; Ferrari, M. Chiara; Bernardo, Paola; Clarizia, Gabriele; Fuoco, Alessio; Jansen, Johannes C.; Hart, Kyle E.; Liyana-Arachchi, Thilanga P.; Colina, Coray M.; McKeown, Neil B.
2017-09-01
The promise of ultrapermeable polymers, such as poly(trimethylsilylpropyne) (PTMSP), for reducing the size and increasing the efficiency of membranes for gas separations remains unfulfilled due to their poor selectivity. We report an ultrapermeable polymer of intrinsic microporosity (PIM-TMN-Trip) that is substantially more selective than PTMSP. From molecular simulations and experimental measurement we find that the inefficient packing of the two-dimensional (2D) chains of PIM-TMN-Trip generates a high concentration of both small (Gas permeability data for PIM-TMN-Trip surpass the 2008 Robeson upper bounds for O2/N2, H2/N2, CO2/N2, H2/CH4 and CO2/CH4, with the potential for biogas purification and carbon capture demonstrated for relevant gas mixtures. Comparisons between PIM-TMN-Trip and structurally similar polymers with three-dimensional (3D) contorted chains confirm that its additional intrinsic microporosity is generated from the awkward packing of its 2D polymer chains in a 3D amorphous solid. This strategy of shape-directed packing of chains of microporous polymers may be applied to other rigid polymers for gas separations.
Predicting non-square 2D dice probabilities
Pender, G. A. T.; Uhrin, M.
2014-07-01
The prediction of the final state probabilities of a general cuboid randomly thrown onto a surface is a problem that naturally arises in the minds of men and women familiar with regular cubic dice and the basic concepts of probability. Indeed, it was considered by Newton in 1664 (Newton 1967 The Mathematical Papers of Issac Newton vol I (Cambridge: Cambridge University Press) pp 60-1). In this paper we make progress on the 2D problem (which can be realized in 3D by considering a long cuboid, or alternatively a rectangular cross-sectioned dreidel). For the two-dimensional case we suggest that the ratio of the probabilities of landing on each of the two sides is given by \\frac{\\sqrt{{{k}^{2}}+{{l}^{2}}}-k}{\\sqrt{{{k}^{2}}+{{l}^{2}}}-l}\\frac{arctan \\frac{l}{k}}{arctan \\frac{k}{l}} where k and l are the lengths of the two sides. We test this theory both experimentally and computationally, and find good agreement between our theory, experimental and computational results. Our theory is known, from its derivation, to be an approximation for particularly bouncy or ‘grippy’ surfaces where the die rolls through many revolutions before settling. On real surfaces we would expect (and we observe) that the true probability ratio for a 2D die is a somewhat closer to unity than predicted by our theory. This problem may also have wider relevance in the testing of physics engines.
Joint Secrecy for D2D Communications Underlying Cellular Networks
Hyadi, Amal
2018-01-15
In this work, we investigate the ergodic secrecy rate region of a block-fading spectrum-sharing system, where a D2D communication is underlying a cellular channel. We consider that both the primary and the secondary transmissions require their respective transmitted messages to be kept secret from a common eavesdropper under a joint secrecy constraint. The presented results are for three different scenarios, each corresponding to a particular requirement of the cellular system. First, we consider the case of a fair cellular system, and we show that the impact of jointly securing the transmissions can be balanced between the primary and the secondary systems. The second scenario examines the case when the primary network is demanding and requires the secondary transmission to be at a rate that is decodable by the primary receiver, while the last scenario assumes a joint transmission of artificial noise by the primary and the secondary transmitters. For each scenario, we present an achievable ergodic secrecy rate region that can be used as an indicator for the cellular and the D2D systems to agree under which terms the spectrum will be shared.
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Brorsen, Michael
This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), Denmark. The starting point for the present report is the previously carried out run-up tests described in Lykke Andersen & Frigaard, 2006. The......-shaped access platforms on piles. The Model tests include mainly regular waves and a few irregular wave tests. These tests have been conducted at Aalborg University from 9. November, 2006 to 17. November, 2006.......This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), Denmark. The starting point for the present report is the previously carried out run-up tests described in Lykke Andersen & Frigaard, 2006....... The objective of the tests was to investigate the impact pressures generated on a horizontal platform and a cone platform for selected sea states calibrated by Lykke Andersen & Frigaard, 2006. The measurements should be used for assessment of slamming coefficients for the design of horizontal and cone...
New Approach for 2D Readout of GEM Detectors
International Nuclear Information System (INIS)
Hasell, Douglas K.
2011-01-01
Detectors based on Gas Electron Multiplication (GEM) technology are becoming more and more widely used in nuclear and high energy physics and are being applied in astronomy, medical physics, industry, and homeland security. GEM detectors are thin, low mass, insensitive to magnetic fields, and can currently provide position resolutions down to ∼50 microns. However, the designs for reconstructing the position, in two dimensions (2D), of the charged particles striking a GEM detector are often complicated to fabricate and expensive. The objective of this proposal is to investigate a simpler procedure for producing the two dimensional readout layer of GEM detectors using readily available printed circuit board technology which can be tailored to the detector requirements. We will use the established GEM laboratory and facilities at M.I.T. currently employed in developing GEM detectors for the STAR forward tracking upgrade to simplify the testing and evaluation of the new 2D readout designs. If this new design proves successful it will benefit future nuclear and high energy physics experiments already being planned and will similarly extend and simplify the application of GEM technology to other branches of science, medicine, and industry. These benefits would be not only in lower costs for fabrication but also it increased flexibility for design and application.
DNN-state identification of 2D distributed parameter systems
Chairez, I.; Fuentes, R.; Poznyak, A.; Poznyak, T.; Escudero, M.; Viana, L.
2012-02-01
There are many examples in science and engineering which are reduced to a set of partial differential equations (PDEs) through a process of mathematical modelling. Nevertheless there exist many sources of uncertainties around the aforementioned mathematical representation. Moreover, to find exact solutions of those PDEs is not a trivial task especially if the PDE is described in two or more dimensions. It is well known that neural networks can approximate a large set of continuous functions defined on a compact set to an arbitrary accuracy. In this article, a strategy based on the differential neural network (DNN) for the non-parametric identification of a mathematical model described by a class of two-dimensional (2D) PDEs is proposed. The adaptive laws for weights ensure the 'practical stability' of the DNN-trajectories to the parabolic 2D-PDE states. To verify the qualitative behaviour of the suggested methodology, here a non-parametric modelling problem for a distributed parameter plant is analysed.