WorldWideScience

Sample records for asymptotics-based ci models

  1. Directions for model building from asymptotic safety

    Science.gov (United States)

    Bond, Andrew D.; Hiller, Gudrun; Kowalska, Kamila; Litim, Daniel F.

    2017-08-01

    Building on recent advances in the understanding of gauge-Yukawa theories we explore possibilities to UV-complete the Standard Model in an asymptotically safe manner. Minimal extensions are based on a large flavor sector of additional fermions coupled to a scalar singlet matrix field. We find that asymptotic safety requires fermions in higher representations of SU(3) C × SU(2) L . Possible signatures at colliders are worked out and include R-hadron searches, diboson signatures and the evolution of the strong and weak coupling constants.

  2. Asymptotically free SU(5) models

    International Nuclear Information System (INIS)

    Kogan, Ya.I.; Ter-Martirosyan, K.A.; Zhelonkin, A.V.

    1981-01-01

    The behaviour of Yukawa and Higgs effective charges of the minimal SU(5) unification model is investigated. The model includes ν=3 (or more, up to ν=7) generations of quarks and leptons and, in addition, the 24-plet of heavy fermions. A number of solutions of the renorm-group equations are found, which reproduce the known data about quarks and leptons and, due to a special choice of the coupling constants at the unification point are asymptotically free in all charges. The requirement of the asymptotical freedom leads to some restrictions on the masses of particles and on their mixing angles [ru

  3. Induction motor IFOC based speed-controlled drive with asymptotic disturbance compensation

    Directory of Open Access Journals (Sweden)

    Stojić Đorđe M.

    2012-01-01

    Full Text Available This paper presents the design of digitally controlled speed electrical drive, with the asymptotic compensation of external disturbances, implemented by using the IFOC (Indirect Field Oriented Control torque controlled induction motor. The asymptotic disturbance compensation is achieved by using the DOB (Disturbance Observer with the IMP (Internal Model Principle. When compared to the existing IMP-based DOB solutions, in this paper the robust stability and disturbance compensation are improved by implementing the minimal order DOB filter. Also, the IMP-based DOB design is improved by employing the asymptotic compensation of all elemental or more complex external disturbances. The dynamic model of the IFOC torque electrical drive is, also, included in the speed-controller and DOB section design. The simulation and experimental measurements presented in the paper illustrate the effectiveness and robustness of the proposed control scheme.

  4. Asymptotic stability of spectral-based PDF modeling for homogeneous turbulent flows

    Science.gov (United States)

    Campos, Alejandro; Duraisamy, Karthik; Iaccarino, Gianluca

    2015-11-01

    Engineering models of turbulence, based on one-point statistics, neglect spectral information inherent in a turbulence field. It is well known, however, that the evolution of turbulence is dictated by a complex interplay between the spectral modes of velocity. For example, for homogeneous turbulence, the pressure-rate-of-strain depends on the integrated energy spectrum weighted by components of the wave vectors. The Interacting Particle Representation Model (IPRM) (Kassinos & Reynolds, 1996) and the Velocity/Wave-Vector PDF model (Van Slooten & Pope, 1997) emulate spectral information in an attempt to improve the modeling of turbulence. We investigate the evolution and asymptotic stability of the IPRM using three different approaches. The first approach considers the Lagrangian evolution of individual realizations (idealized as particles) of the stochastic process defined by the IPRM. The second solves Lagrangian evolution equations for clusters of realizations conditional on a given wave vector. The third evolves the solution of the Eulerian conditional PDF corresponding to the aforementioned clusters. This last method avoids issues related to discrete particle noise and slow convergence associated with Lagrangian particle-based simulations.

  5. Callan-Symanzik equation and asymptotic freedom in the Marr-Shimamoto model

    International Nuclear Information System (INIS)

    Scarfone, Leonard M.

    2010-01-01

    The exactly soluble nonrelativistic Marr-Shimamoto model was introduced in 1964 as an example of the Lee model with a propagator and a nontrivial vertex function. An exactly soluble relativistic version of this model, known as the Zachariasen model, has been found to be asymptotically free in terms of coupling constant renormalization at an arbitrary spacelike momentum and on the basis of exact solutions of the Gell-Mann-Low equations. This is accomplished with conventional cut-off regularization by setting up the Yukawa and Fermi coupling constants at Euclidean momenta in terms of on mass-shell couplings and then taking the asymptotic limit. In view of this background, it may be expected that an investigation of the nonrelativistic Marr-Shimamoto theory may also exhibit asymptotic freedom in view of its manifest mathematical similarity to that of the Zachariasen model. To prove this point, the present paper prefers to examine asymptotic freedom in the nonrelativistic Marr-Shimamoto theory using the powerful concepts of the renormalization group and the Callan-Symanzik equation, in conjunction with the specificity of dimensional regularization and on-shell renormalization. This approach is based on calculations of the Callan-Symanzik coefficients and determinations of the effective coupling constants. It is shown that the Marr-Shimamoto theory is asymptotically free for dimensions D 3 occurring in periodic intervals over the range of 0< D<27 of particular interest. This differs from the original Lee model which has been shown by several authors, using these same concepts, to be asymptotically free only for D<4.

  6. Global asymptotic stability of density dependent integral population projection models.

    Science.gov (United States)

    Rebarber, Richard; Tenhumberg, Brigitte; Townley, Stuart

    2012-02-01

    Many stage-structured density dependent populations with a continuum of stages can be naturally modeled using nonlinear integral projection models. In this paper, we study a trichotomy of global stability result for a class of density dependent systems which include a Platte thistle model. Specifically, we identify those systems parameters for which zero is globally asymptotically stable, parameters for which there is a positive asymptotically stable equilibrium, and parameters for which there is no asymptotically stable equilibrium. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Asymptotically Safe Standard Model Extensions arXiv

    CERN Document Server

    Pelaggi, Giulio Maria; Salvio, Alberto; Sannino, Francesco; Smirnov, Juri; Strumia, Alessandro

    We consider theories with a large number NF of charged fermions and compute the renormalisation group equations for the gauge, Yukawa and quartic couplings resummed at leading order in NF. We construct extensions of the Standard Model where SU(2) and/or SU(3) are asymptotically safe. When the same procedure is applied to the Abelian U(1) factor, we find that the Higgs quartic can not be made asymptotically safe and stay perturbative at the same time.

  8. arXiv Asymptotically Safe Standard Model Extensions?

    CERN Document Server

    Pelaggi, Giulio Maria; Salvio, Alberto; Sannino, Francesco; Smirnov, Juri; Strumia, Alessandro

    2018-05-15

    We consider theories with a large number NF of charged fermions and compute the renormalization group equations for the gauge, Yukawa and quartic couplings resummed at leading order in 1/NF. We construct extensions of the standard model where SU(2) and/or SU(3) are asymptotically safe. When the same procedure is applied to the Abelian U(1) factor, we find that the Higgs quartic can not be made asymptotically safe and stay perturbative at the same time.

  9. Asymptotic conformal invariance in a non-Abelian Chern-Simons-matter model

    Energy Technology Data Exchange (ETDEWEB)

    Acebal, J.L. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Campos e Particulas]. E-mail: acebal@cbpf.br

    2002-08-01

    One shows here the existence of solutions to the Callan-Symanzik equation for the non-Abelian SU(2) Chern-Simons-matter model which exhibits asymptotic conformal invariance to every order in perturbative theory. The conformal symmetry in the classical domain is shown to hold by means of a local criteria based on the trace of the energy-momentum tensor. By using recently exhibited regimes for the dependence between the several couplings in which the set of {beta}-functions vanish, the asymptotic conformal invariance of the model appears to be valid in the quantum domain. By considering the SU (n) case the possible non validity of the proof for a particular {eta} would be merely accidental. (author)

  10. Contact mechanics of articular cartilage layers asymptotic models

    CERN Document Server

    Argatov, Ivan

    2015-01-01

    This book presents a comprehensive and unifying approach to articular contact mechanics with an emphasis on frictionless contact interaction of thin cartilage layers. The first part of the book (Chapters 1–4) reviews the results of asymptotic analysis of the deformational behavior of thin elastic and viscoelastic layers. A comprehensive review of the literature is combined with the authors’ original contributions. The compressible and incompressible cases are treated separately with a focus on exact solutions for asymptotic models of frictionless contact for thin transversely isotropic layers bonded to rigid substrates shaped like elliptic paraboloids. The second part (Chapters 5, 6, and 7) deals with the non-axisymmetric contact of thin transversely isotropic biphasic layers and presents the asymptotic modelling methodology for tibio-femoral contact. The third part of the book consists of Chapter 8, which covers contact problems for thin bonded inhomogeneous transversely isotropic elastic layers, and Cha...

  11. Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence

    International Nuclear Information System (INIS)

    Zhang Tailei; Teng Zhidong

    2008-01-01

    In this paper, the asymptotic behavior of solutions of an autonomous SEIRS epidemic model with the saturation incidence is studied. Using the method of Liapunov-LaSalle invariance principle, we obtain the disease-free equilibrium is globally stable if the basic reproduction number is not greater than one. Moreover, we show that the disease is permanent if the basic reproduction number is greater than one. Furthermore, the sufficient conditions of locally and globally asymptotically stable convergence to an endemic equilibrium are obtained base on the permanence

  12. Systematic assignment of Feshbach resonances via an asymptotic bound state model

    NARCIS (Netherlands)

    Goosen, M.; Kokkelmans, SJ.J.M.F.

    2008-01-01

    We present an Asymptotic Bound state Model (ABM), which is useful to predict Feshbach resonances. The model utilizes asymptotic properties of the interaction potentials to represent coupled molecular wavefunctions. The bound states of this system give rise to Feshbach resonances, localized at the

  13. Model Hadron asymptotic behaviour

    International Nuclear Information System (INIS)

    Kralchevsky, P.; Nikolov, A.

    1983-01-01

    The work is devoted to the problem of solving a set of asymptotic equations describing the model hardon interaction. More specifically an interactive procedure consisting of two stages is proposed and the first stage is exhaustively studied here. The principle of contracting transformations has been applied for this purpose. Under rather general and natural assumptions, solutions in a series of metric spaces suitable for physical applications have been found. For each of these spaces a solution with unique definiteness is found. (authors)

  14. Pseudo-random number generator based on asymptotic deterministic randomness

    Science.gov (United States)

    Wang, Kai; Pei, Wenjiang; Xia, Haishan; Cheung, Yiu-ming

    2008-06-01

    A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks.

  15. Pseudo-random number generator based on asymptotic deterministic randomness

    International Nuclear Information System (INIS)

    Wang Kai; Pei Wenjiang; Xia Haishan; Cheung Yiuming

    2008-01-01

    A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks

  16. Asymptotic solutions of diffusion models for risk reserves

    Directory of Open Access Journals (Sweden)

    S. Shao

    2003-01-01

    Full Text Available We study a family of diffusion models for risk reserves which account for the investment income earned and for the inflation experienced on claim amounts. After we defined the process of the conditional probability of ruin over finite time and imposed the appropriate boundary conditions, classical results from the theory of diffusion processes turn the stochastic differential equation to a special class of initial and boundary value problems defined by a linear diffusion equation. Armed with asymptotic analysis and perturbation theory, we obtain the asymptotic solutions of the diffusion models (possibly degenerate governing the conditional probability of ruin over a finite time in terms of interest rate.

  17. Modeling broadband poroelastic propagation using an asymptotic approach

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, Donald W.

    2009-05-01

    An asymptotic method, valid in the presence of smoothly-varying heterogeneity, is used to derive a semi-analytic solution to the equations for fluid and solid displacements in a poroelastic medium. The solution is defined along trajectories through the porous medium model, in the manner of ray theory. The lowest order expression in the asymptotic expansion provides an eikonal equation for the phase. There are three modes of propagation, two modes of longitudinal displacement and a single mode of transverse displacement. The two longitudinal modes define the Biot fast and slow waves which have very different propagation characteristics. In the limit of low frequency, the Biot slow wave propagates as a diffusive disturbance, in essence a transient pressure pulse. Conversely, at low frequencies the Biot fast wave and the transverse mode are modified elastic waves. At intermediate frequencies the wave characteristics of the longitudinal modes are mixed. A comparison of the asymptotic solution with analytic and numerical solutions shows reasonably good agreement for both homogeneous and heterogeneous Earth models.

  18. The Barrett–Crane model: asymptotic measure factor

    International Nuclear Information System (INIS)

    Kamiński, Wojciech; Steinhaus, Sebastian

    2014-01-01

    The original spin foam model construction for 4D gravity by Barrett and Crane suffers from a few troubling issues. In the simple examples of the vertex amplitude they can be summarized as the existence of contributions to the asymptotics from non-geometric configurations. Even restricted to geometric contributions the amplitude is not completely worked out. While the phase is known to be the Regge action, the so-called measure factor has remained mysterious for a decade. In the toy model case of the 6j symbol this measure factor has a nice geometric interpretation of V −1/2 leading to speculations that a similar interpretation should be possible also in the 4D case. In this paper we provide the first geometric interpretation of the geometric part of the asymptotic for the spin foam consisting of two glued 4-simplices (decomposition of the 4-sphere) in the Barrett–Crane model in the large internal spin regime. (paper)

  19. The Barrett-Crane model: asymptotic measure factor

    Science.gov (United States)

    Kamiński, Wojciech; Steinhaus, Sebastian

    2014-04-01

    The original spin foam model construction for 4D gravity by Barrett and Crane suffers from a few troubling issues. In the simple examples of the vertex amplitude they can be summarized as the existence of contributions to the asymptotics from non-geometric configurations. Even restricted to geometric contributions the amplitude is not completely worked out. While the phase is known to be the Regge action, the so-called measure factor has remained mysterious for a decade. In the toy model case of the 6j symbol this measure factor has a nice geometric interpretation of V-1/2 leading to speculations that a similar interpretation should be possible also in the 4D case. In this paper we provide the first geometric interpretation of the geometric part of the asymptotic for the spin foam consisting of two glued 4-simplices (decomposition of the 4-sphere) in the Barrett-Crane model in the large internal spin regime.

  20. Symmetry breaking and asymptotic freedom in colour SU(3) gauge models

    International Nuclear Information System (INIS)

    Ma, E.

    1976-01-01

    A class of quark models based on the colour gauge group SU(3) is shown to be asymptotically free despite the complete breakdown of local symmetry to guarantee infrared stability. The symmetry breakdown is achieved by the presence of elementary scalar fields either through the Higgs mechanism or dynamically as first proposed by Coleman and Weinberg. Asymptotic freedom is preserved by imposing eigenvalue conditions on the coupling constants as first proposed by Chang. New quark species must be present, but below their production threshold, colour can still be a global symmetry which is approximate under SU(3), but exact under SU(2). Among the many implications of this class of models is the possibility of producing isolated quarks and gluons of non-zero mass without altering the short-distance behaviour of the superstrong interaction which binds them. (Auth.)

  1. Assessing model fit in latent class analysis when asymptotics do not hold

    NARCIS (Netherlands)

    van Kollenburg, Geert H.; Mulder, Joris; Vermunt, Jeroen K.

    2015-01-01

    The application of latent class (LC) analysis involves evaluating the LC model using goodness-of-fit statistics. To assess the misfit of a specified model, say with the Pearson chi-squared statistic, a p-value can be obtained using an asymptotic reference distribution. However, asymptotic p-values

  2. Asymptotically Safe Standard Model via Vectorlike Fermions

    Science.gov (United States)

    Mann, R. B.; Meffe, J. R.; Sannino, F.; Steele, T. G.; Wang, Z. W.; Zhang, C.

    2017-12-01

    We construct asymptotically safe extensions of the standard model by adding gauged vectorlike fermions. Using large number-of-flavor techniques we argue that all gauge couplings, including the hypercharge and, under certain conditions, the Higgs coupling, can achieve an interacting ultraviolet fixed point.

  3. Asymptotic solving method for sea-air coupled oscillator ENSO model

    International Nuclear Information System (INIS)

    Zhou Xian-Chun; Yao Jing-Sun; Mo Jia-Qi

    2012-01-01

    The ENSO is an interannual phenomenon involved in the tropical Pacific ocean-atmosphere interaction. In this article, we create an asymptotic solving method for the nonlinear system of the ENSO model. The asymptotic solution is obtained. And then we can furnish weather forecasts theoretically and other behaviors and rules for the atmosphere-ocean oscillator of the ENSO. (general)

  4. Fast-slow asymptotics for a Markov chain model of fast sodium current

    Science.gov (United States)

    Starý, Tomáš; Biktashev, Vadim N.

    2017-09-01

    We explore the feasibility of using fast-slow asymptotics to eliminate the computational stiffness of discrete-state, continuous-time deterministic Markov chain models of ionic channels underlying cardiac excitability. We focus on a Markov chain model of fast sodium current, and investigate its asymptotic behaviour with respect to small parameters identified in different ways.

  5. Risk methodology for geologic disposal of radioactive waste: asymptotic properties of the environmental transport model

    International Nuclear Information System (INIS)

    Helton, J.C.; Brown, J.B.; Iman, R.L.

    1981-02-01

    The Environmental Transport Model is a compartmental model developed to represent the surface movement of radionuclides. The purpose of the present study is to investigate the asymptotic behavior of the model and to acquire insight with respect to such behavior and the variables which influence it. For four variations of a hypothetical river receiving a radionuclide discharge, the following properties are considered: predicted asymptotic values for environmental radionuclide concentrations and time required for environmental radionuclide concentrations to reach 90% of their predicted asymptotic values. Independent variables of two types are used to define each variation of the river: variables which define physical properties of the river system (e.g., soil depth, river discharge and sediment resuspension) and variables which summarize radionuclide properties (i.e., distribution coefficients). Sensitivity analysis techniques based on stepwise regression are used to determine the dominant variables influencing the behavior of the model. This work constitutes part of a project at Sandia National Laboratories funded by the Nuclear Regulatory Commission to develop a methodology to assess the risk associated with geologic disposal of radioactive waste

  6. Transient Mobility on Submonolayer Island Growth: An Exploration of Asymptotic Effects in Modeling

    Science.gov (United States)

    Morales-Cifuentes, Josue; Einstein, Theodore L.; Pimpinelli, Alberto

    In studies of epitaxial growth, modeling of the smallest stable cluster (i+1 monomers, with i the critical nucleus size), is paramount in understanding growth dynamics. Our previous work has tackled submonolayer growth by modeling the effect of ballistic monomers, hot-precursors, on diffusive dynamics. Different scaling regimes and energies were predicted, with initial confirmation by applying to para-hexaphenyl submonolayer studies. Lingering questions about the applicability and behavior of the model are addressed. First, we show how an asymptotic approximation based on the growth exponent, α (N Fα) allows for robustness of modeling to experimental data; second, we answer questions about non-monotonicity by exploring the behavior of the growth exponent across realizable parameter spaces; third, we revisit our previous para-hexaphenyl work and examine relevant physical parameters, namely the speed of the hot-monomers. We conclude with an exploration of how the new asymptotic approximation can be used to strengthen the application of our model to other physical systems.

  7. Asymptotic time dependent neutron transport in multidimensional systems

    International Nuclear Information System (INIS)

    Nagy, M.E.; Sawan, M.E.; Wassef, W.A.; El-Gueraly, L.A.

    1983-01-01

    A model which predicts the asymptotic time behavior of the neutron distribution in multi-dimensional systems is presented. The model is based on the kernel factorization method used for stationary neutron transport in a rectangular parallelepiped. The accuracy of diffusion theory in predicting the asymptotic time dependence is assessed. The use of neutron pulse experiments for predicting the diffusion parameters is also investigated

  8. Asymptotic Effectiveness of the Event-Based Sampling According to the Integral Criterion

    Directory of Open Access Journals (Sweden)

    Marek Miskowicz

    2007-01-01

    Full Text Available A rapid progress in intelligent sensing technology creates new interest in a development of analysis and design of non-conventional sampling schemes. The investigation of the event-based sampling according to the integral criterion is presented in this paper. The investigated sampling scheme is an extension of the pure linear send-on- delta/level-crossing algorithm utilized for reporting the state of objects monitored by intelligent sensors. The motivation of using the event-based integral sampling is outlined. The related works in adaptive sampling are summarized. The analytical closed-form formulas for the evaluation of the mean rate of event-based traffic, and the asymptotic integral sampling effectiveness, are derived. The simulation results verifying the analytical formulas are reported. The effectiveness of the integral sampling is compared with the related linear send-on-delta/level-crossing scheme. The calculation of the asymptotic effectiveness for common signals, which model the state evolution of dynamic systems in time, is exemplified.

  9. Long-time and large-distance asymptotic behavior of the current-current correlators in the non-linear Schroedinger model

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Terras, V. [CNRS, ENS Lyon (France). Lab. de Physique

    2010-12-15

    We present a new method allowing us to derive the long-time and large-distance asymptotic behavior of the correlations functions of quantum integrable models from their exact representations. Starting from the form factor expansion of the correlation functions in finite volume, we explain how to reduce the complexity of the computation in the so-called interacting integrable models to the one appearing in free fermion equivalent models. We apply our method to the time-dependent zero-temperature current-current correlation function in the non-linear Schroedinger model and compute the first few terms in its asymptotic expansion. Our result goes beyond the conformal field theory based predictions: in the time-dependent case, other types of excitations than the ones on the Fermi surface contribute to the leading orders of the asymptotics. (orig.)

  10. Long-time and large-distance asymptotic behavior of the current-current correlators in the non-linear Schroedinger model

    International Nuclear Information System (INIS)

    Kozlowski, K.K.; Terras, V.

    2010-12-01

    We present a new method allowing us to derive the long-time and large-distance asymptotic behavior of the correlations functions of quantum integrable models from their exact representations. Starting from the form factor expansion of the correlation functions in finite volume, we explain how to reduce the complexity of the computation in the so-called interacting integrable models to the one appearing in free fermion equivalent models. We apply our method to the time-dependent zero-temperature current-current correlation function in the non-linear Schroedinger model and compute the first few terms in its asymptotic expansion. Our result goes beyond the conformal field theory based predictions: in the time-dependent case, other types of excitations than the ones on the Fermi surface contribute to the leading orders of the asymptotics. (orig.)

  11. On the Asymptotic Capacity of Dual-Aperture FSO Systems with a Generalized Pointing Error Model

    KAUST Repository

    Al-Quwaiee, Hessa

    2016-06-28

    Free-space optical (FSO) communication systems are negatively affected by two physical phenomenon, namely, scintillation due to atmospheric turbulence and pointing errors. To quantify the effect of these two factors on FSO system performance, we need an effective mathematical model for them. In this paper, we propose and study a generalized pointing error model based on the Beckmann distribution. We then derive a generic expression of the asymptotic capacity of FSO systems under the joint impact of turbulence and generalized pointing error impairments. Finally, the asymptotic channel capacity formula are extended to quantify the FSO systems performance with selection and switched-and-stay diversity.

  12. Large-distance and long-time asymptotic behavior of the reduced density matrix in the non-linear Schroedinger model

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.K.

    2010-12-15

    Starting from the form factor expansion in finite volume, we derive the multidimensional generalization of the so-called Natte series for the zero-temperature, time and distance dependent reduced density matrix in the non-linear Schroedinger model. This representation allows one to read-off straightforwardly the long-time/large-distance asymptotic behavior of this correlator. Our method of analysis reduces the complexity of the computation of the asymptotic behavior of correlation functions in the so-called interacting integrable models, to the one appearing in free fermion equivalent models. We compute explicitly the first few terms appearing in the asymptotic expansion. Part of these terms stems from excitations lying away from the Fermi boundary, and hence go beyond what can be obtained by using the CFT/Luttinger liquid based predictions. (orig.)

  13. Asymptotics for Estimating Equations in Hidden Markov Models

    DEFF Research Database (Denmark)

    Hansen, Jørgen Vinsløv; Jensen, Jens Ledet

    Results on asymptotic normality for the maximum likelihood estimate in hidden Markov models are extended in two directions. The stationarity assumption is relaxed, which allows for a covariate process influencing the hidden Markov process. Furthermore a class of estimating equations is considered...

  14. Asymptotically Safe Dark Matter

    DEFF Research Database (Denmark)

    Sannino, Francesco; Shoemaker, Ian M.

    2015-01-01

    We introduce a new paradigm for dark matter (DM) interactions in which the interaction strength is asymptotically safe. In models of this type, the coupling strength is small at low energies but increases at higher energies, and asymptotically approaches a finite constant value. The resulting...... searches are the primary ways to constrain or discover asymptotically safe dark matter....

  15. Asymptotically Free Natural Supersymmetric Twin Higgs Model

    Science.gov (United States)

    Badziak, Marcin; Harigaya, Keisuke

    2018-05-01

    Twin Higgs (TH) models explain the absence of new colored particles responsible for natural electroweak symmetry breaking (EWSB). All known ultraviolet completions of TH models require some nonperturbative dynamics below the Planck scale. We propose a supersymmetric model in which the TH mechanism is introduced by a new asymptotically free gauge interaction. The model features natural EWSB for squarks and gluino heavier than 2 TeV even if supersymmetry breaking is mediated around the Planck scale, and has interesting flavor phenomenology including the top quark decay into the Higgs boson and the up quark which may be discovered at the LHC.

  16. Asymptotic Behavior of the Stock Price Distribution Density and Implied Volatility in Stochastic Volatility Models

    International Nuclear Information System (INIS)

    Gulisashvili, Archil; Stein, Elias M.

    2010-01-01

    We study the asymptotic behavior of distribution densities arising in stock price models with stochastic volatility. The main objects of our interest in the present paper are the density of time averages of the squared volatility process and the density of the stock price process in the Stein-Stein and the Heston model. We find explicit formulas for leading terms in asymptotic expansions of these densities and give error estimates. As an application of our results, sharp asymptotic formulas for the implied volatility in the Stein-Stein and the Heston model are obtained.

  17. An asymptotic safety scenario for gauged chiral Higgs-Yukawa models

    International Nuclear Information System (INIS)

    Gies, Holger; Rechenberger, Stefan; Scherer, Michael M.; Zambelli, Luca

    2013-01-01

    We investigate chiral Higgs-Yukawa models with a non-abelian gauged left-handed sector reminiscent to a sub-sector of the standard model. We discover a new weak-coupling fixed-point behavior that allows for ultraviolet complete RG trajectories which can be connected with a conventional long-range infrared behavior in the Higgs phase. This non-trivial ultraviolet behavior is characterized by asymptotic freedom in all interaction couplings, but a quasi conformal behavior in all mass-like parameters. The stable microscopic scalar potential asymptotically approaches flatness in the ultraviolet, however, with a non-vanishing minimum increasing inversely proportional to the asymptotically free gauge coupling. This gives rise to non-perturbative - though weak-coupling - threshold effects which induce ultraviolet stability along a line of fixed points. Despite the weak-coupling properties, the system exhibits non-Gaussian features which are distinctly different from its standard perturbative counterpart: e.g., on a branch of the line of fixed points, we find linear instead of quadratically running renormalization constants. Whereas the Fermi constant and the top mass are naturally of the same order of magnitude, our model generically allows for light Higgs boson masses. Realistic mass ratios are related to particular RG trajectories with a ''walking'' mid-momentum regime. (orig.)

  18. An asymptotic safety scenario for gauged chiral Higgs-Yukawa models

    Science.gov (United States)

    Gies, Holger; Rechenberger, Stefan; Scherer, Michael M.; Zambelli, Luca

    2013-12-01

    We investigate chiral Higgs-Yukawa models with a non-abelian gauged left-handed sector reminiscent to a sub-sector of the standard model. We discover a new weak-coupling fixed-point behavior that allows for ultraviolet complete RG trajectories which can be connected with a conventional long-range infrared behavior in the Higgs phase. This non-trivial ultraviolet behavior is characterized by asymptotic freedom in all interaction couplings, but a quasi conformal behavior in all mass-like parameters. The stable microscopic scalar potential asymptotically approaches flatness in the ultraviolet, however, with a non-vanishing minimum increasing inversely proportional to the asymptotically free gauge coupling. This gives rise to non-perturbative—though weak-coupling—threshold effects which induce ultraviolet stability along a line of fixed points. Despite the weak-coupling properties, the system exhibits non-Gaußian features which are distinctly different from its standard perturbative counterpart: e.g., on a branch of the line of fixed points, we find linear instead of quadratically running renormalization constants. Whereas the Fermi constant and the top mass are naturally of the same order of magnitude, our model generically allows for light Higgs boson masses. Realistic mass ratios are related to particular RG trajectories with a "walking" mid-momentum regime.

  19. On some asymptotic relations in the Boltzmann-Enskog model

    International Nuclear Information System (INIS)

    Sadovnikov, B.I.; Inozemtseva, N.G.

    1977-04-01

    The coefficients in the tsup(-3/2) asymptotics of the time autocorrelation functions are successively determined in the framework of the non-linear Boltzmann-Enskog model. The left and right eigenfunction systems are constructed for the Boltzmann-Enskog operator

  20. Efficient nonparametric and asymptotic Bayesian model selection methods for attributed graph clustering

    KAUST Repository

    Xu, Zhiqiang

    2017-02-16

    Attributed graph clustering, also known as community detection on attributed graphs, attracts much interests recently due to the ubiquity of attributed graphs in real life. Many existing algorithms have been proposed for this problem, which are either distance based or model based. However, model selection in attributed graph clustering has not been well addressed, that is, most existing algorithms assume the cluster number to be known a priori. In this paper, we propose two efficient approaches for attributed graph clustering with automatic model selection. The first approach is a popular Bayesian nonparametric method, while the second approach is an asymptotic method based on a recently proposed model selection criterion, factorized information criterion. Experimental results on both synthetic and real datasets demonstrate that our approaches for attributed graph clustering with automatic model selection significantly outperform the state-of-the-art algorithm.

  1. Efficient nonparametric and asymptotic Bayesian model selection methods for attributed graph clustering

    KAUST Repository

    Xu, Zhiqiang; Cheng, James; Xiao, Xiaokui; Fujimaki, Ryohei; Muraoka, Yusuke

    2017-01-01

    Attributed graph clustering, also known as community detection on attributed graphs, attracts much interests recently due to the ubiquity of attributed graphs in real life. Many existing algorithms have been proposed for this problem, which are either distance based or model based. However, model selection in attributed graph clustering has not been well addressed, that is, most existing algorithms assume the cluster number to be known a priori. In this paper, we propose two efficient approaches for attributed graph clustering with automatic model selection. The first approach is a popular Bayesian nonparametric method, while the second approach is an asymptotic method based on a recently proposed model selection criterion, factorized information criterion. Experimental results on both synthetic and real datasets demonstrate that our approaches for attributed graph clustering with automatic model selection significantly outperform the state-of-the-art algorithm.

  2. Detection of CI line emission towards the oxygen-rich AGB star omi Ceti

    Science.gov (United States)

    Saberi, M.; Vlemmings, W. H. T.; De Beck, E.; Montez, R.; Ramstedt, S.

    2018-05-01

    We present the detection of neutral atomic carbon CI(3P1-3P0) line emission towards omi Cet. This is the first time that CI is detected in the envelope around an oxygen-rich M-type asymptotic giant branch (AGB) star. We also confirm the previously tentative CI detection around V Hya, a carbon-rich AGB star. As one of the main photodissociation products of parent species in the circumstellar envelope (CSE) around evolved stars, CI can be used to trace sources of ultraviolet (UV) radiation in CSEs. The observed flux density towards omi Cet can be reproduced by a shell with a peak atomic fractional abundance of 2.4 × 10-5 predicted based on a simple chemical model where CO is dissociated by the interstellar radiation field. However, the CI emission is shifted by 4 km s-1 from the stellar velocity. Based on this velocity shift, we suggest that the detected CI emission towards omi Cet potentially arises from a compact region near its hot binary companion. The velocity shift could, therefore, be the result of the orbital velocity of the binary companion around omi Cet. In this case, the CI column density is estimated to be 1.1 × 1019 cm-2. This would imply that strong UV radiation from the companion and/or accretion of matter between two stars is most likely the origin of the CI enhancement. However, this hypothesis can be confirmed by high-angular resolution observations.

  3. Extreme-Strike and Small-time Asymptotics for Gaussian Stochastic Volatility Models

    OpenAIRE

    Zhang, Xin

    2016-01-01

    Asymptotic behavior of implied volatility is of our interest in this dissertation. For extreme strike, we consider a stochastic volatility asset price model in which the volatility is the absolute value of a continuous Gaussian process with arbitrary prescribed mean and covariance. By exhibiting a Karhunen-Loève expansion for the integrated variance, and using sharp estimates of the density of a general second-chaos variable, we derive asymptotics for the asset price density for large or smal...

  4. Renormalization group and asymptotic freedom

    International Nuclear Information System (INIS)

    Morris, J.R.

    1978-01-01

    Several field theoretic models are presented which allow exact expressions of the renormalization constants and renormalized coupling constants. These models are analyzed as to their content of asymptotic free field behavior through the use of the Callan-Symanzik renormalization group equation. It is found that none of these models possesses asymptotic freedom in four dimensions

  5. Cookbook asymptotics for spiral and scroll waves in excitable media.

    Science.gov (United States)

    Margerit, Daniel; Barkley, Dwight

    2002-09-01

    Algebraic formulas predicting the frequencies and shapes of waves in a reaction-diffusion model of excitable media are presented in the form of four recipes. The formulas themselves are based on a detailed asymptotic analysis (published elsewhere) of the model equations at leading order and first order in the asymptotic parameter. The importance of the first order contribution is stressed throughout, beginning with a discussion of the Fife limit, Fife scaling, and Fife regime. Recipes are given for spiral waves and detailed comparisons are presented between the asymptotic predictions and the solutions of the full reaction-diffusion equations. Recipes for twisted scroll waves with straight filaments are given and again comparisons are shown. The connection between the asymptotic results and filament dynamics is discussed, and one of the previously unknown coefficients in the theory of filament dynamics is evaluated in terms of its asymptotic expansion. (c) 2002 American Institute of Physics.

  6. Asymptotical construction of a fully coupled, Reissner–Mindlin model for piezoelectric composite plates

    International Nuclear Information System (INIS)

    Liao Lin; Yu Wenbin

    2008-01-01

    The variational asymptotic method is used to construct a fully coupled Reissner–Mindlin model for piezoelectric composite plates with some surfaces parallel to the reference surface coated with electrodes. Taking advantage of the smallness of the plate thickness, we asymptotically split the original three-dimensional electromechanical problem into a one-dimensional through-the-thickness analysis and a two-dimensional plate analysis. The through-the-thickness analysis serves as a link between the original three-dimensional analysis and the plate analysis by providing a constitutive model for the plate analysis and recovering the three-dimensional field variables in terms of two-dimensional plate global responses. The present theory is implemented into the computer program VAPAS (variational asymptotic plate and shell analysis). The resulting model is as simple as an equivalent single-layer, first-order shear deformation theory with accuracy comparable to higher-order layerwise theories. Various numerical examples have been used to validate the present model

  7. Asymptotic solution for the El Niño time delay sea—air oscillator model

    International Nuclear Information System (INIS)

    Mo Jia-Qi; Lin Wan-Tao; Lin Yi-Hua

    2011-01-01

    A sea—air oscillator model is studied using the time delay theory. The aim is to find an asymptotic solving method for the El Niño-southern oscillation (ENSO) model. Employing the perturbed method, an asymptotic solution of the corresponding problem is obtained. Thus we can obtain the prognoses of the sea surface temperature (SST) anomaly and the related physical quantities. (general)

  8. The intermediates take it all: asymptotics of higher criticism statistics and a powerful alternative based on equal local levels.

    Science.gov (United States)

    Gontscharuk, Veronika; Landwehr, Sandra; Finner, Helmut

    2015-01-01

    The higher criticism (HC) statistic, which can be seen as a normalized version of the famous Kolmogorov-Smirnov statistic, has a long history, dating back to the mid seventies. Originally, HC statistics were used in connection with goodness of fit (GOF) tests but they recently gained some attention in the context of testing the global null hypothesis in high dimensional data. The continuing interest for HC seems to be inspired by a series of nice asymptotic properties related to this statistic. For example, unlike Kolmogorov-Smirnov tests, GOF tests based on the HC statistic are known to be asymptotically sensitive in the moderate tails, hence it is favorably applied for detecting the presence of signals in sparse mixture models. However, some questions around the asymptotic behavior of the HC statistic are still open. We focus on two of them, namely, why a specific intermediate range is crucial for GOF tests based on the HC statistic and why the convergence of the HC distribution to the limiting one is extremely slow. Moreover, the inconsistency in the asymptotic and finite behavior of the HC statistic prompts us to provide a new HC test that has better finite properties than the original HC test while showing the same asymptotics. This test is motivated by the asymptotic behavior of the so-called local levels related to the original HC test. By means of numerical calculations and simulations we show that the new HC test is typically more powerful than the original HC test in normal mixture models. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. "An Asymptotic Expansion Approach to Currency Options with a Market Model of Interest Rates under Stochastic Volatility Processes of Spot Exchange Rates"

    OpenAIRE

    Akihiko Takahashi; Kohta Takehara

    2007-01-01

    This paper proposes an asymptotic expansion scheme of currency options with a libor market model of interest rates and stochastic volatility models of spot exchange rates. In particular, we derive closed-form approximation formulas for the density functions of the underlying assets and for pricing currency options based on the third order asymptotic expansion scheme; we do not model a foreign exchange rate's variance such as in Heston[1993], but its volatility that follows a general time-inho...

  10. Asymptotic behavior of Bayes estimators for hidden Markov models with application to ion channels

    NARCIS (Netherlands)

    de Gunst, M.C.M.; Shcherbakova, O.V.

    2008-01-01

    In this paper we study the asymptotic behavior of Bayes estimators for hidden Markov models as the number of observations goes to infinity. The theorem that we prove is similar to the Bernstein-von Mises theorem on the asymptotic behavior of the posterior distribution for the case of independent

  11. Asymptotic numbers, asymptotic functions and distributions

    International Nuclear Information System (INIS)

    Todorov, T.D.

    1979-07-01

    The asymptotic functions are a new type of generalized functions. But they are not functionals on some space of test-functions as the distributions of Schwartz. They are mappings of the set denoted by A into A, where A is the set of the asymptotic numbers introduced by Christov. On its part A is a totally-ordered set of generalized numbers including the system of real numbers R as well as infinitesimals and infinitely large numbers. Every two asymptotic functions can be multiplied. On the other hand, the distributions have realizations as asymptotic functions in a certain sense. (author)

  12. Navier-Stokes-Fourier Equations A Rational Asymptotic Modelling Point of View

    CERN Document Server

    Zeytounian, Radyadour Kh

    2012-01-01

    This research monograph deals with a modeling theory of the system of Navier-Stokes-Fourier equations for a Newtonian fluid governing a compressible viscous and heat conducting flows. The main objective is threefold. First , to 'deconstruct' this Navier-Stokes-Fourier system in order to unify the puzzle of the various partial simplified approximate models used in Newtonian Classical Fluid Dynamics and this, first facet, have obviously a challenging approach and a very important pedagogic impact on the university education. The second facet of the main objective is to outline a rational consistent asymptotic/mathematical theory of the of  fluid flows modeling on the basis of a typical Navier-Stokes-Fourier  initial and boundary value problem. The third facet is devoted to an illustration of our rational asymptotic/mathematical modeling theory for various technological and geophysical stiff  problems from: aerodynamics, thermal and thermocapillary convections and also meteofluid dynamics.

  13. Asymptotic Delay Analysis for Cross-Layer Delay-Based Routing in Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Philippe Jacquet

    2007-01-01

    Full Text Available This paper addresses the problem of the evaluation of the delay distribution via analytical means in IEEE 802.11 wireless ad hoc networks. We show that the asymptotic delay distribution can be expressed as a power law. Based on the latter result, we present a cross-layer delay estimation protocol and we derive new delay-distribution-based routing algorithms, which are well adapted to the QoS requirements of real-time multimedia applications. In fact, multimedia services are not sensitive to average delays, but rather to the asymptotic delay distributions. Indeed, video streaming applications drop frames when they are received beyond a delay threshold, determined by the buffer size. Although delay-distribution-based routing is an NP-hard problem, we show that it can be solved in polynomial time when the delay threshold is large, because of the asymptotic power law distribution of the link delays.

  14. Path integral representation of Lorentzian spinfoam model, asymptotics and simplicial geometries

    International Nuclear Information System (INIS)

    Han, Muxin; Krajewski, Thomas

    2014-01-01

    A new path integral representation of Lorentzian Engle–Pereira–Rovelli–Livine spinfoam model is derived by employing the theory of unitary representation of SL(2,C). The path integral representation is taken as a starting point of semiclassical analysis. The relation between the spinfoam model and classical simplicial geometry is studied via the large-spin asymptotic expansion of the spinfoam amplitude with all spins uniformly large. More precisely, in the large-spin regime, there is an equivalence between the spinfoam critical configuration (with certain nondegeneracy assumption) and a classical Lorentzian simplicial geometry. Such an equivalence relation allows us to classify the spinfoam critical configurations by their geometrical interpretations, via two types of solution-generating maps. The equivalence between spinfoam critical configuration and simplical geometry also allows us to define the notion of globally oriented and time-oriented spinfoam critical configuration. It is shown that only at the globally oriented and time-oriented spinfoam critical configuration, the leading-order contribution of spinfoam large-spin asymptotics gives precisely an exponential of Lorentzian Regge action of General Relativity. At all other (unphysical) critical configurations, spinfoam large-spin asymptotics modifies the Regge action at the leading-order approximation. (paper)

  15. On the asymptotic ergodic capacity of FSO links with generalized pointing error model

    KAUST Repository

    Al-Quwaiee, Hessa

    2015-09-11

    Free-space optical (FSO) communication systems are negatively affected by two physical phenomenon, namely, scintillation due to atmospheric turbulence and pointing errors. To quantize the effect of these two factors on FSO system performance, we need an effective mathematical model for them. Scintillations are typically modeled by the log-normal and Gamma-Gamma distributions for weak and strong turbulence conditions, respectively. In this paper, we propose and study a generalized pointing error model based on the Beckmann distribution. We then derive the asymptotic ergodic capacity of FSO systems under the joint impact of turbulence and generalized pointing error impairments. © 2015 IEEE.

  16. The renormalizability and the asymptotically free behaviour of the extended Wess-Zumino models

    International Nuclear Information System (INIS)

    Ha Huy Bang; Hoang Ngoc Long.

    1989-09-01

    By using the path integral method for superfields the Ward identities and the Callan-Symanzik equations for the extended Wess-Zumino models are derived. From these the renormalizability and the asymptotically behaviour of all the extended Wess-Zumino models in d = 2,4 (mod 8)-dimensional space-time are studied. In particular, we will come to the conclusion that the supersymmetric Ward identities together with the broken chiral Ward identities imply that a single wave function renormalization is sufficient to renormalize the theory and that the theory is not asymptotically free. (author). 16 refs

  17. Models of Regge behaviour in an asymptotically free theory

    International Nuclear Information System (INIS)

    Polkinghorne, J.C.

    1976-01-01

    Two simple Feynman integral models are presented which reproduce the features expected to be of physical importance in the Regge behaviour of asymptotically free theories. Analysis confirms the result, expected on general grounds, that phi 3 in six dimensions has an essential singularity at l=-1. The extension to gauge theories is discussed. (Auth.)

  18. Asymptotic Estimates of Gerber-Shiu Functions in the Renewal Risk Model with Exponential Claims

    Institute of Scientific and Technical Information of China (English)

    Li WEI

    2012-01-01

    This paper continues to study the asymptotic behavior of Gerber-Shiu expected discounted penalty functions in the renewal risk model as the initial capital becomes large.Under the assumption that the claim-size distribution is exponential,we establish an explicit asymptotic formula.Some straightforward consequences of this formula match existing results in the field.

  19. Asymptotic evolution of quantum Markov chains

    Energy Technology Data Exchange (ETDEWEB)

    Novotny, Jaroslav [FNSPE, CTU in Prague, 115 19 Praha 1 - Stare Mesto (Czech Republic); Alber, Gernot [Institut fuer Angewandte Physik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany)

    2012-07-01

    The iterated quantum operations, so called quantum Markov chains, play an important role in various branches of physics. They constitute basis for many discrete models capable to explore fundamental physical problems, such as the approach to thermal equilibrium, or the asymptotic dynamics of macroscopic physical systems far from thermal equilibrium. On the other hand, in the more applied area of quantum technology they also describe general characteristic properties of quantum networks or they can describe different quantum protocols in the presence of decoherence. A particularly, an interesting aspect of these quantum Markov chains is their asymptotic dynamics and its characteristic features. We demonstrate there is always a vector subspace (typically low-dimensional) of so-called attractors on which the resulting superoperator governing the iterative time evolution of quantum states can be diagonalized and in which the asymptotic quantum dynamics takes place. As the main result interesting algebraic relations are presented for this set of attractors which allow to specify their dual basis and to determine them in a convenient way. Based on this general theory we show some generalizations concerning the theory of fixed points or asymptotic evolution of random quantum operations.

  20. The fourth-order non-linear sigma models and asymptotic freedom in four dimensions

    International Nuclear Information System (INIS)

    Buchbinder, I.L.; Ketov, S.V.

    1991-01-01

    Starting with the most general Lagrangian of the fourth-order non-linear sigma model in four space-time dimensions, we calculate the one-loop, on-shell ultra-violet-divergent part of the effective action. The formalism is based on the background field method and the generalised Schwinger-De Witt technique. The multiplicatively renormalisable case is investigated in some detail. The renormalisation group equations are obtained, and the conditions for a realisation of asymptotic freedom are considered. (orig.)

  1. Asymptotically exact solution of the multi-channel resonant-level model

    International Nuclear Information System (INIS)

    Zhang Guangming; Su Zhaobin; Yu Lu.

    1994-01-01

    An asymptotically exact partition function of the multi-channel resonant-level model is obtained through Tomonaga-Luttinger bosonization. A Fermi-liquid vs. non-Fermi-liquid transition, resulting from a competition between the Kondo and X-ray edge physics, is elucidated explicitly via the renormalization group theory. In the strong-coupling limit, the model is renormalized to the Toulouse limit. (author). 20 refs, 1 fig

  2. The Asymptotic Behavior of Particle Size Distribution Undergoing Brownian Coagulation Based on the Spline-Based Method and TEMOM Model

    Directory of Open Access Journals (Sweden)

    Qing He

    2018-01-01

    Full Text Available In this paper, the particle size distribution is reconstructed using finite moments based on a converted spline-based method, in which the number of linear system of equations to be solved reduced from 4m × 4m to (m + 3 × (m + 3 for (m + 1 nodes by using cubic spline compared to the original method. The results are verified by comparing with the reference firstly. Then coupling with the Taylor-series expansion moment method, the evolution of particle size distribution undergoing Brownian coagulation and its asymptotic behavior are investigated.

  3. On the asymptotic behaviour of a simple model for sorption in porous media

    International Nuclear Information System (INIS)

    Linke, R.; Memmert, G.

    1988-01-01

    In order to study adsorption and desorption processes of a tracer in porous media, a simple model was used. In this model all reaction steps are assumed to be reversible and to follow first order kinetic behaviour. Results are presented for a homogeneous one-dimensional system. In particular, the asymptotic behaviour at long times is investigated. The asymptotic results are modified, if a second species of the tracer is present in the fluid phase. This additional component in the model might be the same element in a different oxidation state, or it could be a colloid. It is shown how different speciation in the fluid modifies the maximum value of tracer concentration due to the time dependent processes. (orig.)

  4. Asymptotic Completeness for a Renormalized Nonrelativistic Hamiltonian in Quantum Field Theory: The Nelson Model

    International Nuclear Information System (INIS)

    Ammari, Zied

    2000-01-01

    Scattering theory for the Nelson model is studied. We show Rosen estimates and we prove the existence of a ground state for the Nelson Hamiltonian. Also we prove that it has a locally finite pure point spectrum outside its thresholds. We study the asymptotic fields and the existence of the wave operators. Finally we show asymptotic completeness for the Nelson Hamiltonian

  5. An explicit asymptotic model for the surface wave in a viscoelastic half-space based on applying Rabotnov's fractional exponential integral operators

    Science.gov (United States)

    Wilde, M. V.; Sergeeva, N. V.

    2018-05-01

    An explicit asymptotic model extracting the contribution of a surface wave to the dynamic response of a viscoelastic half-space is derived. Fractional exponential Rabotnov's integral operators are used for describing of material properties. The model is derived by extracting the principal part of the poles corresponding to the surface waves after applying Laplace and Fourier transforms. The simplified equations for the originals are written by using power series expansions. Padè approximation is constructed to unite short-time and long-time models. The form of this approximation allows to formulate the explicit model using a fractional exponential Rabotnov's integral operator with parameters depending on the properties of surface wave. The applicability of derived models is studied by comparing with the exact solutions of a model problem. It is revealed that the model based on Padè approximation is highly effective for all the possible time domains.

  6. Boundary asymptotics for a non-neutral electrochemistry model with small Debye length

    Science.gov (United States)

    Lee, Chiun-Chang; Ryham, Rolf J.

    2018-04-01

    This article addresses the boundary asymptotics of the electrostatic potential in non-neutral electrochemistry models with small Debye length in bounded domains. Under standard physical assumptions motivated by non-electroneutral phenomena in oxidation-reduction reactions, we show that the electrostatic potential asymptotically blows up at boundary points with respect to the bulk reference potential as the scaled Debye length tends to zero. The analysis gives a lower bound for the blow-up rate with respect to the model parameters. Moreover, the maximum potential difference over any compact subset of the physical domain vanishes exponentially in the zero-Debye-length limit. The results mathematically confirm the physical description that electrolyte solutions are electrically neutral in the bulk and are strongly electrically non-neutral near charged surfaces.

  7. Stable Asymptotically Free Extensions (SAFEs) of the Standard Model

    International Nuclear Information System (INIS)

    Holdom, Bob; Ren, Jing; Zhang, Chen

    2015-01-01

    We consider possible extensions of the standard model that are not only completely asymptotically free, but are such that the UV fixed point is completely UV attractive. All couplings flow towards a set of fixed ratios in the UV. Motivated by low scale unification, semi-simple gauge groups with elementary scalars in various representations are explored. The simplest model is a version of the Pati-Salam model. The Higgs boson is truly elementary but dynamical symmetry breaking from strong interactions may be needed at the unification scale. A hierarchy problem, much reduced from grand unified theories, is still in need of a solution.

  8. A Multivariate Asymmetric Long Memory Conditional Volatility Model with X, Regularity and Asymptotics

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2016-01-01

    textabstractThe paper derives a Multivariate Asymmetric Long Memory conditional volatility model with Exogenous Variables (X), or the MALMX model, with dynamic conditional correlations, appropriate regularity conditions, and associated asymptotic theory. This enables checking of internal consistency

  9. High-frequency asymptotics of the local vertex function. Algorithmic implementations

    Energy Technology Data Exchange (ETDEWEB)

    Tagliavini, Agnese; Wentzell, Nils [Institut fuer Theoretische Physik, Eberhard Karls Universitaet, 72076 Tuebingen (Germany); Institute for Solid State Physics, Vienna University of Technology, 1040 Vienna (Austria); Li, Gang; Rohringer, Georg; Held, Karsten; Toschi, Alessandro [Institute for Solid State Physics, Vienna University of Technology, 1040 Vienna (Austria); Taranto, Ciro [Institute for Solid State Physics, Vienna University of Technology, 1040 Vienna (Austria); Max Planck Institute for Solid State Research, D-70569 Stuttgart (Germany); Andergassen, Sabine [Institut fuer Theoretische Physik, Eberhard Karls Universitaet, 72076 Tuebingen (Germany)

    2016-07-01

    Local vertex functions are a crucial ingredient of several forefront many-body algorithms in condensed matter physics. However, the full treatment of their frequency dependence poses a huge limitation to the numerical performance. A significant advancement requires an efficient treatment of the high-frequency asymptotic behavior of the vertex functions. We here provide a detailed diagrammatic analysis of the high-frequency asymptotic structures and their physical interpretation. Based on these insights, we propose a frequency parametrization, which captures the whole high-frequency asymptotics for arbitrary values of the local Coulomb interaction and electronic density. We present its algorithmic implementation in many-body solvers based on parquet-equations as well as functional renormalization group schemes and assess its validity by comparing our results for the single impurity Anderson model with exact diagonalization calculations.

  10. Asymptotically exact solution of a local copper-oxide model

    International Nuclear Information System (INIS)

    Zhang Guangming; Yu Lu.

    1994-03-01

    We present an asymptotically exact solution of a local copper-oxide model abstracted from the multi-band models. The phase diagram is obtained through the renormalization-group analysis of the partition function. In the strong coupling regime, we find an exactly solved line, which crosses the quantum critical point of the mixed valence regime separating two different Fermi-liquid (FL) phases. At this critical point, a many-particle resonance is formed near the chemical potential, and a marginal-FL spectrum can be derived for the spin and charge susceptibilities. (author). 15 refs, 1 fig

  11. Development of a Watershed-Scale Long-Term Hydrologic Impact Assessment Model with the Asymptotic Curve Number Regression Equation

    Directory of Open Access Journals (Sweden)

    Jichul Ryu

    2016-04-01

    Full Text Available In this study, 52 asymptotic Curve Number (CN regression equations were developed for combinations of representative land covers and hydrologic soil groups. In addition, to overcome the limitations of the original Long-term Hydrologic Impact Assessment (L-THIA model when it is applied to larger watersheds, a watershed-scale L-THIA Asymptotic CN (ACN regression equation model (watershed-scale L-THIA ACN model was developed by integrating the asymptotic CN regressions and various modules for direct runoff/baseflow/channel routing. The watershed-scale L-THIA ACN model was applied to four watersheds in South Korea to evaluate the accuracy of its streamflow prediction. The coefficient of determination (R2 and Nash–Sutcliffe Efficiency (NSE values for observed versus simulated streamflows over intervals of eight days were greater than 0.6 for all four of the watersheds. The watershed-scale L-THIA ACN model, including the asymptotic CN regression equation method, can simulate long-term streamflow sufficiently well with the ten parameters that have been added for the characterization of streamflow.

  12. Trinucleon asymptotic normalization constants including Coulomb effects

    International Nuclear Information System (INIS)

    Friar, J.L.; Gibson, B.F.; Lehman, D.R.; Payne, G.L.

    1982-01-01

    Exact theoretical expressions for calculating the trinucleon S- and D-wave asymptotic normalization constants, with and without Coulomb effects, are presented. Coordinate-space Faddeev-type equations are used to generate the trinucleon wave functions, and integral relations for the asymptotic norms are derived within this framework. The definition of the asymptotic norms in the presence of the Coulomb interaction is emphasized. Numerical calculations are carried out for the s-wave NN interaction models of Malfliet and Tjon and the tensor force model of Reid. Comparison with previously published results is made. The first estimate of Coulomb effects for the D-wave asymptotic norm is given. All theoretical values are carefully compared with experiment and suggestions are made for improving the experimental situation. We find that Coulomb effects increase the 3 He S-wave asymptotic norm by less than 1% relative to that of 3 H, that Coulomb effects decrease the 3 He D-wave asymptotic norm by approximately 8% relative to that of 3 H, and that the distorted-wave Born approximation D-state parameter, D 2 , is only 1% smaller in magnitude for 3 He than for 3 H due to compensating Coulomb effects

  13. An asymptotic solution of large-N QCD

    Directory of Open Access Journals (Sweden)

    Bochicchio Marco

    2014-01-01

    Full Text Available We find an asymptotic solution for two-, three- and multi-point correlators of local gauge-invariant operators, in a lower-spin sector of massless large-N QCD, in terms of glueball and meson propagators, in such a way that the solution is asymptotic in the ultraviolet to renormalization-group improved perturbation theory, by means of a new purely field-theoretical technique that we call the asymptotically-free bootstrap, based on a recently-proved asymptotic structure theorem for two-point correlators. The asymptotically-free bootstrap provides as well asymptotic S-matrix amplitudes in terms of glueball and meson propagators. Remarkably, the asymptotic S-matrix depends only on the unknown particle spectrum, but not on the anomalous dimensions, as a consequence of the LS Z reduction formulae. Very many physics consequences follow, both practically and theoretically. In fact, the asymptotic solution sets the strongest constraints on any actual solution of large-N QCD, and in particular on any string solution.

  14. Asymptotic expansion of a partition function related to the sinh-model

    CERN Document Server

    Borot, Gaëtan; Kozlowski, Karol K

    2016-01-01

    This book elaborates on the asymptotic behaviour, when N is large, of certain N-dimensional integrals which typically occur in random matrices, or in 1+1 dimensional quantum integrable models solvable by the quantum separation of variables. The introduction presents the underpinning motivations for this problem, a historical overview, and a summary of the strategy, which is applicable in greater generality. The core aims at proving an expansion up to o(1) for the logarithm of the partition function of the sinh-model. This is achieved by a combination of potential theory and large deviation theory so as to grasp the leading asymptotics described by an equilibrium measure, the Riemann-Hilbert approach to truncated Wiener-Hopf in order to analyse the equilibrium measure, the Schwinger-Dyson equations and the boostrap method to finally obtain an expansion of correlation functions and the one of the partition function. This book is addressed to researchers working in random matrices, statistical physics or integra...

  15. Large N Penner matrix model and a novel asymptotic formula for the generalized Laguerre polynomials

    International Nuclear Information System (INIS)

    Deo, N

    2003-01-01

    The Gaussian Penner matrix model is re-examined in the light of the results which have been found in double-well matrix models. The orthogonal polynomials for the Gaussian Penner model are shown to be the generalized Laguerre polynomials L (α) n (x) with α and x depending on N, the size of the matrix. An asymptotic formula for the orthogonal polynomials is derived following closely the orthogonal polynomial method of Deo (1997 Nucl. Phys. B 504 609). The universality found in the double-well matrix model is extended to include non-polynomial potentials. An asymptotic formula is also found for the Laguerre polynomial using the saddle-point method by rescaling α and x with N. Combining these results a novel asymptotic formula is found for the generalized Laguerre polynomials (different from that given in Szego's book) in a different asymptotic regime. This may have applications in mathematical and physical problems in the future. The density-density correlators are derived and are the same as those found for the double-well matrix models. These correlators in the smoothed large N limit are sensitive to odd and even N where N is the size of the matrix. These results for the two-point density-density correlation function may be useful in finding eigenvalue effects in experiments in mesoscopic systems or small metallic grains. There may be applications to string theory as well as the tunnelling of an eigenvalue from one valley to the other being an important quantity there

  16. Nonminimal hints for asymptotic safety

    Science.gov (United States)

    Eichhorn, Astrid; Lippoldt, Stefan; Skrinjar, Vedran

    2018-01-01

    In the asymptotic-safety scenario for gravity, nonzero interactions are present in the ultraviolet. This property should also percolate into the matter sector. Symmetry-based arguments suggest that nonminimal derivative interactions of scalars with curvature tensors should therefore be present in the ultraviolet regime. We perform a nonminimal test of the viability of the asymptotic-safety scenario by working in a truncation of the renormalization group flow, where we discover the existence of an interacting fixed point for a corresponding nonminimal coupling. The back-coupling of such nonminimal interactions could in turn destroy the asymptotically safe fixed point in the gravity sector. As a key finding, we observe nontrivial indications of stability of the fixed-point properties under the impact of nonminimal derivative interactions, further strengthening the case for asymptotic safety in gravity-matter systems.

  17. Asymptotic analysis of a stochastic non-linear nuclear reactor model

    International Nuclear Information System (INIS)

    Rodriguez, M.A.; Sancho, J.M.

    1986-01-01

    The asymptotic behaviour of a stochastic non-linear nuclear reactor modelled by a master equation is analysed in two different limits: the thermodynamic limit and the zero-neutron-source limit. In the first limit a finite steady neutron density is obtained. The second limit predicts the neutron extinction. The interplay between these two limits is studied for different situations. (author)

  18. Asymptotic performance modelling of DCF protocol with prioritized channel access

    Science.gov (United States)

    Choi, Woo-Yong

    2017-11-01

    Recently, the modification of the DCF (Distributed Coordination Function) protocol by the prioritized channel access was proposed to resolve the problem that the DCF performance worsens exponentially as more nodes exist in IEEE 802.11 wireless LANs. In this paper, an asymptotic analytical performance model is presented to analyze the MAC performance of the DCF protocol with the prioritized channel access.

  19. Asymptotic integration of differential and difference equations

    CERN Document Server

    Bodine, Sigrun

    2015-01-01

    This book presents the theory of asymptotic integration for both linear differential and difference equations. This type of asymptotic analysis is based on some fundamental principles by Norman Levinson. While he applied them to a special class of differential equations, subsequent work has shown that the same principles lead to asymptotic results for much wider classes of differential and also difference equations. After discussing asymptotic integration in a unified approach, this book studies how the application of these methods provides several new insights and frequent improvements to results found in earlier literature. It then continues with a brief introduction to the relatively new field of asymptotic integration for dynamic equations on time scales. Asymptotic Integration of Differential and Difference Equations is a self-contained and clearly structured presentation of some of the most important results in asymptotic integration and the techniques used in this field. It will appeal to researchers i...

  20. Bridging asymptotic independence and dependence in spatial exbtremes using Gaussian scale mixtures

    KAUST Repository

    Huser, Raphaël

    2017-06-23

    Gaussian scale mixtures are constructed as Gaussian processes with a random variance. They have non-Gaussian marginals and can exhibit asymptotic dependence unlike Gaussian processes, which are asymptotically independent except in the case of perfect dependence. In this paper, we study the extremal dependence properties of Gaussian scale mixtures and we unify and extend general results on their joint tail decay rates in both asymptotic dependence and independence cases. Motivated by the analysis of spatial extremes, we propose flexible yet parsimonious parametric copula models that smoothly interpolate from asymptotic dependence to independence and include the Gaussian dependence as a special case. We show how these new models can be fitted to high threshold exceedances using a censored likelihood approach, and we demonstrate that they provide valuable information about tail characteristics. In particular, by borrowing strength across locations, our parametric model-based approach can also be used to provide evidence for or against either asymptotic dependence class, hence complementing information given at an exploratory stage by the widely used nonparametric or parametric estimates of the χ and χ̄ coefficients. We demonstrate the capacity of our methodology by adequately capturing the extremal properties of wind speed data collected in the Pacific Northwest, US.

  1. Bridging asymptotic independence and dependence in spatial exbtremes using Gaussian scale mixtures

    KAUST Repository

    Huser, Raphaë l; Opitz, Thomas; Thibaud, Emeric

    2017-01-01

    Gaussian scale mixtures are constructed as Gaussian processes with a random variance. They have non-Gaussian marginals and can exhibit asymptotic dependence unlike Gaussian processes, which are asymptotically independent except in the case of perfect dependence. In this paper, we study the extremal dependence properties of Gaussian scale mixtures and we unify and extend general results on their joint tail decay rates in both asymptotic dependence and independence cases. Motivated by the analysis of spatial extremes, we propose flexible yet parsimonious parametric copula models that smoothly interpolate from asymptotic dependence to independence and include the Gaussian dependence as a special case. We show how these new models can be fitted to high threshold exceedances using a censored likelihood approach, and we demonstrate that they provide valuable information about tail characteristics. In particular, by borrowing strength across locations, our parametric model-based approach can also be used to provide evidence for or against either asymptotic dependence class, hence complementing information given at an exploratory stage by the widely used nonparametric or parametric estimates of the χ and χ̄ coefficients. We demonstrate the capacity of our methodology by adequately capturing the extremal properties of wind speed data collected in the Pacific Northwest, US.

  2. Asymptotic Behaviour and Extinction of Delay Lotka-Volterra Model with Jump-Diffusion

    Directory of Open Access Journals (Sweden)

    Dan Li

    2014-01-01

    Full Text Available This paper studies the effect of jump-diffusion random environmental perturbations on the asymptotic behaviour and extinction of Lotka-Volterra population dynamics with delays. The contributions of this paper lie in the following: (a to consider delay stochastic differential equation with jumps, we introduce a proper initial data space, in which the initial data may be discontinuous function with downward jumps; (b we show that the delay stochastic differential equation with jumps associated with our model has a unique global positive solution and give sufficient conditions that ensure stochastically ultimate boundedness, moment average boundedness in time, and asymptotic polynomial growth of our model; (c the sufficient conditions for the extinction of the system are obtained, which generalized the former results and showed that the sufficiently large random jump magnitudes and intensity (average rate of jump events arrival may lead to extinction of the population.

  3. Asymptotic performance of regularized quadratic discriminant analysis based classifiers

    KAUST Repository

    Elkhalil, Khalil

    2017-12-13

    This paper carries out a large dimensional analysis of the standard regularized quadratic discriminant analysis (QDA) classifier designed on the assumption that data arise from a Gaussian mixture model. The analysis relies on fundamental results from random matrix theory (RMT) when both the number of features and the cardinality of the training data within each class grow large at the same pace. Under some mild assumptions, we show that the asymptotic classification error converges to a deterministic quantity that depends only on the covariances and means associated with each class as well as the problem dimensions. Such a result permits a better understanding of the performance of regularized QDA and can be used to determine the optimal regularization parameter that minimizes the misclassification error probability. Despite being valid only for Gaussian data, our theoretical findings are shown to yield a high accuracy in predicting the performances achieved with real data sets drawn from popular real data bases, thereby making an interesting connection between theory and practice.

  4. Large Deviations and Asymptotic Methods in Finance

    CERN Document Server

    Gatheral, Jim; Gulisashvili, Archil; Jacquier, Antoine; Teichmann, Josef

    2015-01-01

    Topics covered in this volume (large deviations, differential geometry, asymptotic expansions, central limit theorems) give a full picture of the current advances in the application of asymptotic methods in mathematical finance, and thereby provide rigorous solutions to important mathematical and financial issues, such as implied volatility asymptotics, local volatility extrapolation, systemic risk and volatility estimation. This volume gathers together ground-breaking results in this field by some of its leading experts. Over the past decade, asymptotic methods have played an increasingly important role in the study of the behaviour of (financial) models. These methods provide a useful alternative to numerical methods in settings where the latter may lose accuracy (in extremes such as small and large strikes, and small maturities), and lead to a clearer understanding of the behaviour of models, and of the influence of parameters on this behaviour. Graduate students, researchers and practitioners will find th...

  5. Asymptotic Analysis of SPTA-Based Algorithms for No-Wait Flow Shop Scheduling Problem with Release Dates

    Directory of Open Access Journals (Sweden)

    Tao Ren

    2014-01-01

    Full Text Available We address the scheduling problem for a no-wait flow shop to optimize total completion time with release dates. With the tool of asymptotic analysis, we prove that the objective values of two SPTA-based algorithms converge to the optimal value for sufficiently large-sized problems. To further enhance the performance of the SPTA-based algorithms, an improvement scheme based on local search is provided for moderate scale problems. New lower bound is presented for evaluating the asymptotic optimality of the algorithms. Numerical simulations demonstrate the effectiveness of the proposed algorithms.

  6. Asymptotic analysis of SPTA-based algorithms for no-wait flow shop scheduling problem with release dates.

    Science.gov (United States)

    Ren, Tao; Zhang, Chuan; Lin, Lin; Guo, Meiting; Xie, Xionghang

    2014-01-01

    We address the scheduling problem for a no-wait flow shop to optimize total completion time with release dates. With the tool of asymptotic analysis, we prove that the objective values of two SPTA-based algorithms converge to the optimal value for sufficiently large-sized problems. To further enhance the performance of the SPTA-based algorithms, an improvement scheme based on local search is provided for moderate scale problems. New lower bound is presented for evaluating the asymptotic optimality of the algorithms. Numerical simulations demonstrate the effectiveness of the proposed algorithms.

  7. CI Implementation

    DEFF Research Database (Denmark)

    Jørgensen, Frances; Boer, Harry; Laugen, Bjørge Timenes

    2006-01-01

    There are a number of tools available for organizations wishing to measure and subsequently develop Continuous Improvement (CI). In this article, we review and evaluate a well-accepted CI development model, namely the CI Maturity Model (Bessant and Caffyn, 1997), against data collected from the 2nd...... Continuous Improvement Network Survey and a number of empirical cases described in the literature. While the CI Maturity Model suggests that CI maturation ought to be a linear process, the findings in this article suggest that there are feasible alternatives for companies to develop CI capability....

  8. Framework for an asymptotically safe standard model via dynamical breaking

    DEFF Research Database (Denmark)

    Abel, Steven; Sannino, Francesco

    2017-01-01

    We present a consistent embedding of the matter and gauge content of the Standard Model into an underlying asymptotically safe theory that has a well-determined interacting UV fixed point in the large color/flavor limit. The scales of symmetry breaking are determined by two mass-squared parameters...... with the breaking of electroweak symmetry being driven radiatively. There are no other free parameters in the theory apart from gauge couplings....

  9. Fast evaluation of complete synthetic SH seismograms based on asymptotic mode theory

    NARCIS (Netherlands)

    Bastians, M.W.J.M.

    1986-01-01

    In this thesis we have developed an asymptotic mode theory with the following features. 1) Complete synthetic SH seismograms can be evaluated for both realistic models of Earth and crust. 2) The method is of practical value and can be used even on small computers wi th reasonable computation

  10. Asymptotic distribution of ∆AUC, NRIs, and IDI based on theory of U-statistics.

    Science.gov (United States)

    Demler, Olga V; Pencina, Michael J; Cook, Nancy R; D'Agostino, Ralph B

    2017-09-20

    The change in area under the curve (∆AUC), the integrated discrimination improvement (IDI), and net reclassification index (NRI) are commonly used measures of risk prediction model performance. Some authors have reported good validity of associated methods of estimating their standard errors (SE) and construction of confidence intervals, whereas others have questioned their performance. To address these issues, we unite the ∆AUC, IDI, and three versions of the NRI under the umbrella of the U-statistics family. We rigorously show that the asymptotic behavior of ∆AUC, NRIs, and IDI fits the asymptotic distribution theory developed for U-statistics. We prove that the ∆AUC, NRIs, and IDI are asymptotically normal, unless they compare nested models under the null hypothesis. In the latter case, asymptotic normality and existing SE estimates cannot be applied to ∆AUC, NRIs, or IDI. In the former case, SE formulas proposed in the literature are equivalent to SE formulas obtained from U-statistics theory if we ignore adjustment for estimated parameters. We use Sukhatme-Randles-deWet condition to determine when adjustment for estimated parameters is necessary. We show that adjustment is not necessary for SEs of the ∆AUC and two versions of the NRI when added predictor variables are significant and normally distributed. The SEs of the IDI and three-category NRI should always be adjusted for estimated parameters. These results allow us to define when existing formulas for SE estimates can be used and when resampling methods such as the bootstrap should be used instead when comparing nested models. We also use the U-statistic theory to develop a new SE estimate of ∆AUC. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Quasi-extended asymptotic functions

    International Nuclear Information System (INIS)

    Todorov, T.D.

    1979-01-01

    The class F of ''quasi-extended asymptotic functions'' is introduced. It contains all extended asymptotic functions as well as some new asymptotic functions very similar to the Schwartz distributions. On the other hand, every two quasiextended asymptotic functions can be multiplied as opposed to the Schwartz distributions; in particular, the square delta 2 of an asymptotic function delta similar to Dirac's delta-function, is constructed as an example

  12. Fast evaluation of complete synthetic SH seismograms based on asymptotic mode theory

    NARCIS (Netherlands)

    Bastians, M.W.J.M.

    1986-01-01

    In this thesis we have developed an asymptotic mode theory with the following features. 1) Complete synthetic SH seismograms can be evaluated for both realistic models of Earth and crust. 2) The method is of practical value and can be used even on small computers wi th reasonable computation times

  13. Asymptotic theory of generalized estimating equations based on jack-knife pseudo-observations

    DEFF Research Database (Denmark)

    Overgaard, Morten; Parner, Erik Thorlund; Pedersen, Jan

    2017-01-01

    A general asymptotic theory of estimates from estimating functions based on jack-knife pseudo-observations is established by requiring that the underlying estimator can be expressed as a smooth functional of the empirical distribution. Using results in p-variation norms, the theory is applied...

  14. Quantum field inspired model of decision making: Asymptotic stabilization of belief state via interaction with surrounding mental environment

    OpenAIRE

    Bagarello, Fabio; Basieva, Irina; Khrennikov, Andrei

    2017-01-01

    This paper is devoted to justification of quantum-like models of the process of decision making based on the theory of open quantum systems, i.e. decision making is considered as decoherence. This process is modeled as interaction of a decision maker, Alice, with a mental (information) environment ${\\cal R}$ surrounding her. Such an interaction generates "dissipation of uncertainty" from Alice's belief-state $\\rho(t)$ into ${\\cal R}$ and asymptotic stabilization of $\\rho(t)$ to a steady belie...

  15. Questioning the quark model. Strong interaction, gravitation and time arrows. An approach to asymptotic freedom

    International Nuclear Information System (INIS)

    Basini, G.

    2003-01-01

    Asymptotic freedom, as a natural result of a theory based on a general approach, derived by a new interpretation of phenomena like the EPR paradox, the black-hole formation and the absence of primary cosmic antimatter is presented. In this approach, conservation laws are considered always and absolutely valid, leading to the possibility of topology changes, and recovering the mutual influence between fundamental forces. Moreover, a new consideration of time arrows leads to asymptotic freedom as a necessary consequence. In fact, asymptotic freedom of strong interactions seems to be a feature common also to gravitational interaction, if induced-gravity theories (t → ∞) are taken into account and a symmetric-time dynamics is recovered in the light of a general conservation principle. (authors)

  16. Questioning the quark model. Strong interaction, gravitation and time arrows. An approach to asymptotic freedom

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G. [Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati; Capozziello, S. [E.R. Caianiello, Dipt. di Fisica, Roma (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Universita di Salerno, Boronissi, SA (Italy)

    2003-09-01

    Asymptotic freedom, as a natural result of a theory based on a general approach, derived by a new interpretation of phenomena like the EPR paradox, the black-hole formation and the absence of primary cosmic antimatter is presented. In this approach, conservation laws are considered always and absolutely valid, leading to the possibility of topology changes, and recovering the mutual influence between fundamental forces. Moreover, a new consideration of time arrows leads to asymptotic freedom as a necessary consequence. In fact, asymptotic freedom of strong interactions seems to be a feature common also to gravitational interaction, if induced-gravity theories (t {yields} {infinity}) are taken into account and a symmetric-time dynamics is recovered in the light of a general conservation principle. (authors)

  17. Asymptotic work distributions in driven bistable systems

    International Nuclear Information System (INIS)

    Nickelsen, D; Engel, A

    2012-01-01

    The asymptotic tails of the probability distributions of thermodynamic quantities convey important information about the physics of nanoscopic systems driven out of equilibrium. We apply a recently proposed method to analytically determine the asymptotics of work distributions in Langevin systems to an one-dimensional model of single-molecule force spectroscopy. The results are in excellent agreement with numerical simulations, even in the centre of the distributions. We compare our findings with a recent proposal for an universal form of the asymptotics of work distributions in single-molecule experiments.

  18. Large order asymptotics and convergent perturbation theory for critical indices of the φ4 model in 4 - ε expansion

    International Nuclear Information System (INIS)

    Honkonen, J.; Komarova, M.; Nalimov, M.

    2002-01-01

    Large order asymptotic behaviour of renormalization constants in the minimal subtraction scheme for the φ 4 (4 - ε) theory is discussed. Well-known results of the asymptotic 4 - ε expansion of critical indices are shown to be far from the large order asymptotic value. A convergent series for the model φ 4 (4 - ε) is then considered. Radius of convergence of the series for Green functions and for renormalisation group functions is studied. The results of the convergent expansion of critical indices in the 4 - ε scheme are revalued using the knowledge of large order asymptotics. Specific features of this procedure are discussed (Authors)

  19. An asymptotic analysis for an integrable variant of the Lotka–Volterra prey–predator model via a determinant expansion technique

    Directory of Open Access Journals (Sweden)

    Masato Shinjo

    2015-12-01

    Full Text Available The Hankel determinant appears in representations of solutions to several integrable systems. An asymptotic expansion of the Hankel determinant thus plays a key role in the investigation of asymptotic analysis of such integrable systems. This paper presents an asymptotic expansion formula of a certain Casorati determinant as an extension of the Hankel case. This Casorati determinant is then shown to be associated with the solution to the discrete hungry Lotka–Volterra (dhLV system, which is an integrable variant of the famous prey–predator model in mathematical biology. Finally, the asymptotic behavior of the dhLV system is clarified using the expansion formula for the Casorati determinant.

  20. Polymers and Random graphs: Asymptotic equivalence to branching processes

    International Nuclear Information System (INIS)

    Spouge, J.L.

    1985-01-01

    In 1974, Falk and Thomas did a computer simulation of Flory's Equireactive RA/sub f/ Polymer model, rings forbidden and rings allowed. Asymptotically, the Rings Forbidden model tended to Stockmayer's RA/sub f/ distribution (in which the sol distribution ''sticks'' after gelation), while the Rings Allowed model tended to the Flory version of the RA/sub f/ distribution. In 1965, Whittle introduced the Tree and Pseudomultigraph models. We show that these random graphs generalize the Falk and Thomas models by incorporating first-shell substitution effects. Moreover, asymptotically the Tree model displays postgelation ''sticking.'' Hence this phenomenon results from the absence of rings and occurs independently of equireactivity. We also show that the Pseudomultigraph model is asymptotically identical to the Branching Process model introduced by Gordon in 1962. This provides a possible basis for the Branching Process model in standard statistical mechanics

  1. On equivalent parameter learning in simplified feature space based on Bayesian asymptotic analysis.

    Science.gov (United States)

    Yamazaki, Keisuke

    2012-07-01

    Parametric models for sequential data, such as hidden Markov models, stochastic context-free grammars, and linear dynamical systems, are widely used in time-series analysis and structural data analysis. Computation of the likelihood function is one of primary considerations in many learning methods. Iterative calculation of the likelihood such as the model selection is still time-consuming though there are effective algorithms based on dynamic programming. The present paper studies parameter learning in a simplified feature space to reduce the computational cost. Simplifying data is a common technique seen in feature selection and dimension reduction though an oversimplified space causes adverse learning results. Therefore, we mathematically investigate a condition of the feature map to have an asymptotically equivalent convergence point of estimated parameters, referred to as the vicarious map. As a demonstration to find vicarious maps, we consider the feature space, which limits the length of data, and derive a necessary length for parameter learning in hidden Markov models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Preheating in an asymptotically safe quantum field theory

    DEFF Research Database (Denmark)

    Svendsen, Ole; Moghaddam, Hossein Bazrafshan; Brandenberger, Robert

    2016-01-01

    . High Energy Phys. 01 (2016) 081]. These theories allow for an inflationary phase in the very early universe. Inflation ends with a period of reheating. Since the models contain many scalar fields which are intrinsically coupled to the inflaton there is the possibility of parametric resonance...... fluctuations induced by the parametrically amplified entropy modes do not exceed the upper observational bounds puts a lower bound on the number of fields which the model followed in [D. F. Litim and F. Sannino, Asymptotic safety guaranteed, J. High Energy Phys. 12 (2014) 178; D. F. Litim, M. Mojaza, and F......We consider reheating in a class of asymptotically safe quantum field theories recently studied in [D. F. Litim and F. Sannino, Asymptotic safety guaranteed, J. High Energy Phys. 12 (2014) 178; D. F. Litim, M. Mojaza, and F. Sannino, Vacuum stability of asymptotically safe gauge-Yukawa theories, J...

  3. Asymptotic behavior of observables in the asymmetric quantum Rabi model

    Science.gov (United States)

    Semple, J.; Kollar, M.

    2018-01-01

    The asymmetric quantum Rabi model with broken parity invariance shows spectral degeneracies in the integer case, that is when the asymmetry parameter equals an integer multiple of half the oscillator frequency, thus hinting at a hidden symmetry and accompanying integrability of the model. We study the expectation values of spin observables for each eigenstate and observe characteristic differences between the integer and noninteger cases for the asymptotics in the deep strong coupling regime, which can be understood from a perturbative expansion in the qubit splitting. We also construct a parent Hamiltonian whose exact eigenstates possess the same symmetries as the perturbative eigenstates of the asymmetric quantum Rabi model in the integer case.

  4. An asymptotic model of seismic reflection from a permeable layer

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.; Goloshubin, G.

    2009-10-15

    Analysis of compression wave propagation in a poroelastic medium predicts a peak of reflection from a high-permeability layer in the low-frequency end of the spectrum. An explicit formula expresses the resonant frequency through the elastic moduli of the solid skeleton, the permeability of the reservoir rock, the fluid viscosity and compressibility, and the reservoir thickness. This result is obtained through a low-frequency asymptotic analysis of Biot's model of poroelasticity. A review of the derivation of the main equations from the Hooke's law, momentum and mass balance equations, and Darcy's law suggests an alternative new physical interpretation of some coefficients of the classical poroelasticity. The velocity of wave propagation, the attenuation factor, and the wave number, are expressed in the form of power series with respect to a small dimensionless parameter. The absolute value of this parameter is equal to the product of the kinematic reservoir fluid mobility and the wave frequency. Retaining only the leading terms of the series leads to explicit and relatively simple expressions for the reflection and transmission coefficients for a planar wave crossing an interface between two permeable media, as well as wave reflection from a thin highly-permeable layer (a lens). Practical applications of the obtained asymptotic formulae are seismic modeling, inversion, and at-tribute analysis.

  5. Asymptotic behaviour of two-point functions in multi-species models

    Directory of Open Access Journals (Sweden)

    Karol K. Kozlowski

    2016-05-01

    Full Text Available We extract the long-distance asymptotic behaviour of two-point correlation functions in massless quantum integrable models containing multi-species excitations. For such a purpose, we extend to these models the method of a large-distance regime re-summation of the form factor expansion of correlation functions. The key feature of our analysis is a technical hypothesis on the large-volume behaviour of the form factors of local operators in such models. We check the validity of this hypothesis on the example of the SU(3-invariant XXX magnet by means of the determinant representations for the form factors of local operators in this model. Our approach confirms the structure of the critical exponents obtained previously for numerous models solvable by the nested Bethe Ansatz.

  6. Asymptotic strength of thermal pulses in the helium shell burning

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, M Y [Niigata Univ. (Japan); Sugimoto, D

    1979-03-01

    Secular growth in the strength of the recurrent thermal pulses of helium shell burning is discussed for the purpose of determining its asymptotic strength. It is shown that the pulse grows stronger if the helium zone has been cooled more before the initiation of the pulse. The secular growth of the pulse is related with the increasing degree of cooling. Thermal pulses are computed for an initial model corresponding to the maximum possible cooling, i.e., for a model in which the steady-state entropy distribution was realized in the helium zone. Such thermal pulses are shown to give an upper bound to the asymptotic strength, which is close enough to the asymptotic strength itself for relatively large core masses. Numerical results are given for the core mass of 1.07 M sub(sun), for which the asymptotic strength is found to be 9 x 10/sup 6/ L sub(sun). Thermal pulses are also computed for an initial model which has been cooled artificially more than the steady-state model. The first pulse results in a much greater strength than in the normal model, but a later pulse approaches the normal asymptotic value. Such models are also discussed in relation to the shell flashes on accreting white dwarfs.

  7. Asymptotic chaos expansions in finance theory and practice

    CERN Document Server

    Nicolay, David

    2014-01-01

    Stochastic instantaneous volatility models such as Heston, SABR or SV-LMM have mostly been developed to control the shape and joint dynamics of the implied volatility surface. In principle, they are well suited for pricing and hedging vanilla and exotic options, for relative value strategies or for risk management. In practice however, most SV models lack a closed form valuation for European options. This book presents the recently developed Asymptotic Chaos Expansions methodology (ACE) which addresses that issue. Indeed its generic algorithm provides, for any regular SV model, the pure asymptotes at any order for both the static and dynamic maps of the implied volatility surface. Furthermore, ACE is programmable and can complement other approximation methods. Hence it allows a systematic approach to designing, parameterising, calibrating and exploiting SV models, typically for Vega hedging or American Monte-Carlo. Asymptotic Chaos Expansions in Finance illustrates the ACE approach for single underlyings (suc...

  8. Nonlinear mechanics of thin-walled structures asymptotics, direct approach and numerical analysis

    CERN Document Server

    Vetyukov, Yury

    2014-01-01

    This book presents a hybrid approach to the mechanics of thin bodies. Classical theories of rods, plates and shells with constrained shear are based on asymptotic splitting of the equations and boundary conditions of three-dimensional elasticity. The asymptotic solutions become accurate as the thickness decreases, and the three-dimensional fields of stresses and displacements can be determined. The analysis includes practically important effects of electromechanical coupling and material inhomogeneity. The extension to the geometrically nonlinear range uses the direct approach based on the principle of virtual work. Vibrations and buckling of pre-stressed structures are studied with the help of linearized incremental formulations, and direct tensor calculus rounds out the list of analytical techniques used throughout the book. A novel theory of thin-walled rods of open profile is subsequently developed from the models of rods and shells, and traditionally applied equations are proven to be asymptotically exa...

  9. Handling data redundancy in helical cone beam reconstruction with a cone-angle-based window function and its asymptotic approximation

    International Nuclear Information System (INIS)

    Tang Xiangyang; Hsieh Jiang

    2007-01-01

    A cone-angle-based window function is defined in this manuscript for image reconstruction using helical cone beam filtered backprojection (CB-FBP) algorithms. Rather than defining the window boundaries in a two-dimensional detector acquiring projection data for computed tomographic imaging, the cone-angle-based window function deals with data redundancy by selecting rays with the smallest cone angle relative to the reconstruction plane. To be computationally efficient, an asymptotic approximation of the cone-angle-based window function is also given and analyzed in this paper. The benefit of using such an asymptotic approximation also includes the avoidance of functional discontinuities that cause artifacts in reconstructed tomographic images. The cone-angle-based window function and its asymptotic approximation provide a way, equivalent to the Tam-Danielsson-window, for helical CB-FBP reconstruction algorithms to deal with data redundancy, regardless of where the helical pitch is constant or dynamically variable during a scan. By taking the cone-parallel geometry as an example, a computer simulation study is conducted to evaluate the proposed window function and its asymptotic approximation for helical CB-FBP reconstruction algorithm to handle data redundancy. The computer simulated Forbild head and thorax phantoms are utilized in the performance evaluation, showing that the proposed cone-angle-based window function and its asymptotic approximation can deal with data redundancy very well in cone beam image reconstruction from projection data acquired along helical source trajectories. Moreover, a numerical study carried out in this paper reveals that the proposed cone-angle-based window function is actually equivalent to the Tam-Danielsson-window, and rigorous mathematical proofs are being investigated

  10. Asymptotic dynamics for the Cucker-Smale-type model with the Rayleigh friction

    International Nuclear Information System (INIS)

    Ha, Seung-Yeal; Ha, Taeyoung; Kim, Jong-Ho

    2010-01-01

    We study the asymptotic flocking dynamics for the Cucker-Smale-type second-order continuous-time dynamical system with the Rayleigh friction. For mean-field communications with a positive lower bound, we show that an asymptotic flocking occurs for any compactly supported initial configuration in a large coupling regime. In contrast, in a small coupling regime, an asymptotic flocking is possible for a restricted class of initial configurations near complete flocking states. We also present several numerical simulations and compare them with our analytical results.

  11. Asymptotic dynamics for the Cucker-Smale-type model with the Rayleigh friction

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Seung-Yeal [Department of Mathematical Sciences, Seoul National University, Seoul 151-747 (Korea, Republic of); Ha, Taeyoung; Kim, Jong-Ho, E-mail: syha@snu.ac.k, E-mail: tha@nims.re.k, E-mail: jhkim@nims.re.k [National Institute for Mathematical Sciences, 385-16, 3F Tower Koreana, Doryong-dong, Yuseong-gu, Daejeon, 305-340 (Korea, Republic of)

    2010-08-06

    We study the asymptotic flocking dynamics for the Cucker-Smale-type second-order continuous-time dynamical system with the Rayleigh friction. For mean-field communications with a positive lower bound, we show that an asymptotic flocking occurs for any compactly supported initial configuration in a large coupling regime. In contrast, in a small coupling regime, an asymptotic flocking is possible for a restricted class of initial configurations near complete flocking states. We also present several numerical simulations and compare them with our analytical results.

  12. Asymptotics and Borel summability

    CERN Document Server

    Costin, Ovidiu

    2008-01-01

    Incorporating substantial developments from the last thirty years into one resource, Asymptotics and Borel Summability provides a self-contained introduction to asymptotic analysis with special emphasis on topics not covered in traditional asymptotics books. The author explains basic ideas, concepts, and methods of generalized Borel summability, transseries, and exponential asymptotics. He provides complete mathematical rigor while supplementing it with heuristic material and examples, so that some proofs may be omitted by applications-oriented readers.To give a sense of how new methods are us

  13. An asymptotical machine

    Science.gov (United States)

    Cristallini, Achille

    2016-07-01

    A new and intriguing machine may be obtained replacing the moving pulley of a gun tackle with a fixed point in the rope. Its most important feature is the asymptotic efficiency. Here we obtain a satisfactory description of this machine by means of vector calculus and elementary trigonometry. The mathematical model has been compared with experimental data and briefly discussed.

  14. On the asymptotic behavior of a boltzmann-type price formation model

    KAUST Repository

    Burger, Martin; Caffarelli, Luis A.; Markowich, Peter A.; Wolfram, Marie-Therese

    2014-01-01

    In this paper we study the asymptotic behavior of a Boltzmann-type price formation model, which describes the trading dynamics in a financial market. In many of these markets trading happens at high frequencies and low transaction costs. This observation motivates the study of the limit as the number of transactions k tends to infinity, the transaction cost a to zero and ka=const. Furthermore we illustrate the price dynamics with numerical simulations © 2014 International Press.

  15. The drift-flux asymptotic limit of baro-tropic two-phase two-pressure models

    International Nuclear Information System (INIS)

    Ambroso, A.; Galie, Th.; Chalons, Ch.; Coquel, F.; Godlewski, E.; Raviart, P.A.; Seguin, N.; Coquel, F.

    2008-01-01

    We study the asymptotic behavior of the solutions of baro-tropic two-phase two-pressure models, with pressure relaxation, drag force and external forces. Using Chapman-Enskog expansions close to the expected equilibrium, a drift-flux model with a Darcy type closure law is obtained. Also, restricting this closure law to permanent flows (defined as steady flows in some Lagrangian frame), we can obtain a drift-flux model with an algebraic closure law, in the spirit of Zuber-Findlay models. The example of a two-phase flow in a vertical pipe is described. (authors)

  16. Asymptotic failure rate of a continuously monitored system

    International Nuclear Information System (INIS)

    Grall, A.; Dieulle, L.; Berenguer, C.; Roussignol, M.

    2006-01-01

    This paper deals with a perfectly continuously monitored system which gradually and stochastically deteriorates. The system is renewed by a delayed maintenance operation, which is triggered when the measured deterioration level exceeds an alarm threshold. A mathematical model is developed to study the asymptotic behavior of the reliability function. A procedure is proposed which allows us to identify the asymptotic failure rate of the maintained system. Numerical experiments illustrate the efficiency of the proposed procedure and emphasize the relevance of the asymptotic failure rate as an interesting indicator for the evaluation of the control-limit preventive replacement policy

  17. Asymptotic failure rate of a continuously monitored system

    Energy Technology Data Exchange (ETDEWEB)

    Grall, A. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: antoine.grall@utt.fr; Dieulle, L. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: laurence.dieulle@utt.fr; Berenguer, C. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: christophe.berenguer@utt.fr; Roussignol, M. [Laboratoire d' Analyse et de Mathematiques Appliquees, Universite de Marne la Vallee, 5 bd Descartes, Champs sur Marne, 77454 Marne la Vallee, Cedex 2 (France)]. E-mail: michel.roussignol@univ-mlv.fr

    2006-02-01

    This paper deals with a perfectly continuously monitored system which gradually and stochastically deteriorates. The system is renewed by a delayed maintenance operation, which is triggered when the measured deterioration level exceeds an alarm threshold. A mathematical model is developed to study the asymptotic behavior of the reliability function. A procedure is proposed which allows us to identify the asymptotic failure rate of the maintained system. Numerical experiments illustrate the efficiency of the proposed procedure and emphasize the relevance of the asymptotic failure rate as an interesting indicator for the evaluation of the control-limit preventive replacement policy.

  18. Watermelon configurations with wall interaction: exact and asymptotic results

    Energy Technology Data Exchange (ETDEWEB)

    Krattenthaler, C [Institut Camille Jordan, Universite Claude Bernard Lyon-I, 21, avenue Claude Bernard, F-69622 Villeurbanne Cedex (France)

    2006-06-15

    We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature.

  19. Watermelon configurations with wall interaction: exact and asymptotic results

    International Nuclear Information System (INIS)

    Krattenthaler, C

    2006-01-01

    We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature

  20. Watermelon configurations with wall interaction: exact and asymptotic results

    Science.gov (United States)

    Krattenthaler, C.

    2006-06-01

    We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature.

  1. Szegö Kernels and Asymptotic Expansions for Legendre Polynomials

    Directory of Open Access Journals (Sweden)

    Roberto Paoletti

    2017-01-01

    Full Text Available We present a geometric approach to the asymptotics of the Legendre polynomials Pk,n+1, based on the Szegö kernel of the Fermat quadric hypersurface, leading to complete asymptotic expansions holding on expanding subintervals of [-1,1].

  2. arXiv Framework for an asymptotically safe Standard Model via dynamical breaking

    CERN Document Server

    Abel, Steven

    2017-09-15

    We present a consistent embedding of the matter and gauge content of the Standard Model into an underlying asymptotically safe theory that has a well-determined interacting UV fixed point in the large color/flavor limit. The scales of symmetry breaking are determined by two mass-squared parameters with the breaking of electroweak symmetry being driven radiatively. There are no other free parameters in the theory apart from gauge couplings.

  3. Asymptotic Eigenstructures

    Science.gov (United States)

    Thompson, P. M.; Stein, G.

    1980-01-01

    The behavior of the closed loop eigenstructure of a linear system with output feedback is analyzed as a single parameter multiplying the feedback gain is varied. An algorithm is presented that computes the asymptotically infinite eigenstructure, and it is shown how a system with high gain, feedback decouples into single input, single output systems. Then a synthesis algorithm is presented which uses full state feedback to achieve a desired asymptotic eigenstructure.

  4. Asymptotics of pion electromagnetics form factor in scale invariant quark model

    International Nuclear Information System (INIS)

    Efremov, A.V.; Radyushkin, A.V.

    1976-01-01

    A consistent relativistic approach is proposed to the investigation of asymptotic behaviour of form factor of a system, composed of two spinor particles, interacting with the vector of (pseudo) scalar neutral field. It is shown that the assumption of finite and small asymptotical value of quark-gluon interaction invariant charge at small distances (g 9 2 9 2 ln(-Q 2 ) 2 values (Q 2 is squared momentum)

  5. Extended asymptotic functions - some examples

    International Nuclear Information System (INIS)

    Todorov, T.D.

    1981-01-01

    Several examples of extended asymptotic functions of two variables are given. This type of asymptotic functions has been introduced as an extension of continuous ordinary functions. The presented examples are realizations of some Schwartz distributions delta(x), THETA(x), P(1/xsup(n)) and can be multiplied in the class of the asymptotic functions as opposed to the theory of Schwartz distributions. The examples illustrate the method of construction of extended asymptotic functions similar to the distributions. The set formed by the extended asymptotic functions is also considered. It is shown, that this set is not closed with respect to addition and multiplication

  6. Non-Asymptotic Confidence Sets for Circular Means

    Directory of Open Access Journals (Sweden)

    Thomas Hotz

    2016-10-01

    Full Text Available The mean of data on the unit circle is defined as the minimizer of the average squared Euclidean distance to the data. Based on Hoeffding’s mass concentration inequalities, non-asymptotic confidence sets for circular means are constructed which are universal in the sense that they require no distributional assumptions. These are then compared with asymptotic confidence sets in simulations and for a real data set.

  7. Asymptotics of relativistic spin networks

    International Nuclear Information System (INIS)

    Barrett, John W; Steele, Christopher M

    2003-01-01

    The stationary phase technique is used to calculate asymptotic formulae for SO(4) relativistic spin networks. For the tetrahedral spin network this gives the square of the Ponzano-Regge asymptotic formula for the SU(2) 6j-symbol. For the 4-simplex (10j-symbol) the asymptotic formula is compared with numerical calculations of the spin network evaluation. Finally, we discuss the asymptotics of the SO(3, 1) 10j-symbol

  8. ASYMPTOTICS OF a PARTICLES TRANSPORT PROBLEM

    Directory of Open Access Journals (Sweden)

    Kuzmina Ludmila Ivanovna

    2017-11-01

    Full Text Available Subject: a groundwater filtration affects the strength and stability of underground and hydro-technical constructions. Research objectives: the study of one-dimensional problem of displacement of suspension by the flow of pure water in a porous medium. Materials and methods: when filtering a suspension some particles pass through the porous medium, and some of them are stuck in the pores. It is assumed that size distributions of the solid particles and the pores overlap. In this case, the main mechanism of particle retention is a size-exclusion: the particles pass freely through the large pores and get stuck at the inlet of the tiny pores that are smaller than the particle diameter. The concentrations of suspended and retained particles satisfy two quasi-linear differential equations of the first order. To solve the filtration problem, methods of nonlinear asymptotic analysis are used. Results: in a mathematical model of filtration of suspensions, which takes into account the dependence of the porosity and permeability of the porous medium on concentration of retained particles, the boundary between two phases is moving with variable velocity. The asymptotic solution to the problem is constructed for a small filtration coefficient. The theorem of existence of the asymptotics is proved. Analytical expressions for the principal asymptotic terms are presented for the case of linear coefficients and initial conditions. The asymptotics of the boundary of two phases is given in explicit form. Conclusions: the filtration problem under study can be solved analytically.

  9. Some asymptotic properties of functions holomorphic in tubular domains

    International Nuclear Information System (INIS)

    Zavialov, B.I.

    1988-10-01

    For the function holomorphic in curved tubular domain the connection between asymptotic behaviour of real part of its boundary value at a given point of base manifold and asymptotic behaviour of the whole function from the inside of this domain is studied. (author). 3 refs

  10. Asymptotics for the conditional-sum-of-squares estimator in multivariate fractional time series models

    DEFF Research Database (Denmark)

    Ørregård Nielsen, Morten

    This paper proves consistency and asymptotic normality for the conditional-sum-of-squares estimator, which is equivalent to the conditional maximum likelihood estimator, in multivariate fractional time series models. The model is parametric and quite general, and, in particular, encompasses...... the multivariate non-cointegrated fractional ARIMA model. The novelty of the consistency result, in particular, is that it applies to a multivariate model and to an arbitrarily large set of admissible parameter values, for which the objective function does not converge uniformly in probablity, thus making...

  11. Asymptotic and geometrical quantization

    International Nuclear Information System (INIS)

    Karasev, M.V.; Maslov, V.P.

    1984-01-01

    The main ideas of geometric-, deformation- and asymptotic quantizations are compared. It is shown that, on the one hand, the asymptotic approach is a direct generalization of exact geometric quantization, on the other hand, it generates deformation in multiplication of symbols and Poisson brackets. Besides investigating the general quantization diagram, its applications to the calculation of asymptotics of a series of eigenvalues of operators possessing symmetry groups are considered

  12. Asymptotically Optimal Agents

    OpenAIRE

    Lattimore, Tor; Hutter, Marcus

    2011-01-01

    Artificial general intelligence aims to create agents capable of learning to solve arbitrary interesting problems. We define two versions of asymptotic optimality and prove that no agent can satisfy the strong version while in some cases, depending on discounting, there does exist a non-computable weak asymptotically optimal agent.

  13. Near-wall extension of a non-equilibrium, omega-based Reynolds stress model

    International Nuclear Information System (INIS)

    Nguyen, Tue; Behr, Marek; Reinartz, Birgit

    2011-01-01

    In this paper, the development of a new ω-based Reynolds stress model that is consistent with asymptotic analysis in the near wall region and with rapid distortion theory in homogeneous turbulence is reported. The model is based on the SSG/LRR-ω model developed by Eisfeld (2006) with three main modifications. Firstly, the near wall behaviors of the redistribution, dissipation and diffusion terms are modified according to the asymptotic analysis and a new blending function based on low Reynolds number is proposed. Secondly, an anisotropic dissipation tensor based on the Reynolds stress inhomogeneity (Jakirlic et al., 2007) is used instead of the original isotropic model. Lastly, the SSG redistribution term, which is activated far from the wall, is replaced by Speziale's non-equilibrium model (Speziale, 1998).

  14. The unusual asymptotics of three-sided prudent polygons

    International Nuclear Information System (INIS)

    Beaton, Nicholas R; Guttmann, Anthony J; Flajolet, Philippe

    2010-01-01

    We have studied the area-generating function of prudent polygons on the square lattice. Exact solutions are obtained for the generating function of two-sided and three-sided prudent polygons, and a functional equation is found for four-sided prudent polygons. This is used to generate series coefficients in polynomial time, and these are analysed to determine the asymptotics numerically. A careful asymptotic analysis of the three-sided polygons produces a most surprising result. A transcendental critical exponent is found, and the leading amplitude is not quite a constant, but is a constant plus a small oscillatory component with an amplitude approximately 10 -8 times that of the leading amplitude. This effect cannot be seen by any standard numerical analysis, but it may be present in other models. If so, it changes our whole view of the asymptotic behaviour of lattice models. (fast track communication)

  15. Variationally Asymptotically Stable Difference Systems

    Directory of Open Access Journals (Sweden)

    Goo YoonHoe

    2007-01-01

    Full Text Available We characterize the h-stability in variation and asymptotic equilibrium in variation for nonlinear difference systems via n∞-summable similarity and comparison principle. Furthermore we study the asymptotic equivalence between nonlinear difference systems and their variational difference systems by means of asymptotic equilibria of two systems.

  16. Vacuum energy in asymptotically flat 2 + 1 gravity

    Energy Technology Data Exchange (ETDEWEB)

    Miskovic, Olivera, E-mail: olivera.miskovic@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Olea, Rodrigo, E-mail: rodrigo.olea@unab.cl [Departamento de Ciencias Físicas, Universidad Andres Bello, Sazié 2212, Piso 7, Santiago (Chile); Roy, Debraj, E-mail: roy.debraj@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile)

    2017-04-10

    We compute the vacuum energy of three-dimensional asymptotically flat space based on a Chern–Simons formulation for the Poincaré group. The equivalent action is nothing but the Einstein–Hilbert term in the bulk plus half of the Gibbons–Hawking term at the boundary. The derivation is based on the evaluation of the Noether charges in the vacuum. We obtain that the vacuum energy of this space has the same value as the one of the asymptotically flat limit of three-dimensional anti-de Sitter space.

  17. Vacuum energy in asymptotically flat 2 + 1 gravity

    International Nuclear Information System (INIS)

    Miskovic, Olivera; Olea, Rodrigo; Roy, Debraj

    2017-01-01

    We compute the vacuum energy of three-dimensional asymptotically flat space based on a Chern–Simons formulation for the Poincaré group. The equivalent action is nothing but the Einstein–Hilbert term in the bulk plus half of the Gibbons–Hawking term at the boundary. The derivation is based on the evaluation of the Noether charges in the vacuum. We obtain that the vacuum energy of this space has the same value as the one of the asymptotically flat limit of three-dimensional anti-de Sitter space.

  18. Robust methods and asymptotic theory in nonlinear econometrics

    CERN Document Server

    Bierens, Herman J

    1981-01-01

    This Lecture Note deals with asymptotic properties, i.e. weak and strong consistency and asymptotic normality, of parameter estimators of nonlinear regression models and nonlinear structural equations under various assumptions on the distribution of the data. The estimation methods involved are nonlinear least squares estimation (NLLSE), nonlinear robust M-estimation (NLRME) and non­ linear weighted robust M-estimation (NLWRME) for the regression case and nonlinear two-stage least squares estimation (NL2SLSE) and a new method called minimum information estimation (MIE) for the case of structural equations. The asymptotic properties of the NLLSE and the two robust M-estimation methods are derived from further elaborations of results of Jennrich. Special attention is payed to the comparison of the asymptotic efficiency of NLLSE and NLRME. It is shown that if the tails of the error distribution are fatter than those of the normal distribution NLRME is more efficient than NLLSE. The NLWRME method is appropriate ...

  19. Polynomial Asymptotes of the Second Kind

    Science.gov (United States)

    Dobbs, David E.

    2011-01-01

    This note uses the analytic notion of asymptotic functions to study when a function is asymptotic to a polynomial function. Along with associated existence and uniqueness results, this kind of asymptotic behaviour is related to the type of asymptote that was recently defined in a more geometric way. Applications are given to rational functions and…

  20. Nonpointlike-parton model with asymptotic scaling and with scaling violationat moderate Q2 values

    International Nuclear Information System (INIS)

    Chen, C.K.

    1981-01-01

    A nonpointlike-parton model is formulated on the basis of the assumption of energy-independent total cross sections of partons and the current-algebra sum rules. No specific strong-interaction Lagrangian density is introduced in this approach. This model predicts asymptotic scaling for the inelastic structure functions of nucleons on the one hand and scaling violation at moderate Q 2 values on the other hand. The predicted scaling-violation patterns at moderate Q 2 values are consistent with the observed scaling-violation patterns. A numerical fit of F 2 functions is performed in order to demonstrate that the predicted scaling-violation patterns of this model at moderate Q 2 values fit the data, and to see how the predicted asymptotic scaling behavior sets in at various x values. Explicit analytic forms of F 2 functions are obtained from this numerical fit, and are compared in detail with the analytic forms of F 2 functions obtained from the numerical fit of the quantum-chromodynamics (QCD) parton model. This comparison shows that this nonpointlike-parton model fits the data better than the QCD parton model, especially at large and small x values. Nachtman moments are computed from the F 2 functions of this model and are shown to agree with data well. It is also shown that the two-dimensional plot of the logarithm of a nonsinglet moment versus the logarithm of another such moment is not a good way to distinguish this nonpointlike-parton model from the QCD parton model

  1. A quantum kinematics for asymptotically flat gravity

    Science.gov (United States)

    Campiglia, Miguel; Varadarajan, Madhavan

    2015-07-01

    We construct a quantum kinematics for asymptotically flat gravity based on the Koslowski-Sahlmann (KS) representation. The KS representation is a generalization of the representation underlying loop quantum gravity (LQG) which supports, in addition to the usual LQG operators, the action of ‘background exponential operators’, which are connection dependent operators labelled by ‘background’ su(2) electric fields. KS states have, in addition to the LQG state label corresponding to one dimensional excitations of the triad, a label corresponding to a ‘background’ electric field that describes three dimensional excitations of the triad. Asymptotic behaviour in quantum theory is controlled through asymptotic conditions on the background electric fields that label the states and the background electric fields that label the operators. Asymptotic conditions on the triad are imposed as conditions on the background electric field state label while confining the LQG spin net graph labels to compact sets. We show that KS states can be realised as wave functions on a quantum configuration space of generalized connections and that the asymptotic behaviour of each such generalized connection is determined by that of the background electric fields which label the background exponential operators. Similar to the spatially compact case, the Gauss law and diffeomorphism constraints are then imposed through group averaging techniques to obtain a large sector of gauge invariant states. It is shown that this sector supports a unitary action of the group of asymptotic rotations and translations and that, as anticipated by Friedman and Sorkin, for appropriate spatial topology, this sector contains states that display fermionic behaviour under 2π rotations.

  2. Development and Analysis of Original UNIFAC-CI and Modified UNIFAC-CI Models for Prediction of VLE and SLE Systems

    DEFF Research Database (Denmark)

    Mustaffa, Azizul Azri; Kontogeorgis, Georgios; Kang, Jeong Won

    approach that is able to extend the application range of property models has been developed for mixture properties. This so-called GCPlus approach is a hybrid model which combines GC and valence connectivity indices (CI). The main idea is the use of CI to describe the molecular fragmentation that relates...... parameters are checked using a quality assessment algorithm which combines four widely used consistency tests (Herington, Van Ness, Point/Differential and Infinite Dilution tests) and also a check on the consistencies of the data with the pure component vapor pressures. The overall quality factors, QVLE...

  3. Asymptotic freedom in the theory of the strong interaction. Comment on the nobel prize in physics 2004

    International Nuclear Information System (INIS)

    Zhang Zhaoxi

    2005-01-01

    The 2004 Nobel Prize in Physics was awarded to David J. Gross, Frank Wilczek and H. David Politzer for their decisive contributions to the theory of the asymptotic freedom of the strong interaction (a fundamental interaction). The fundamental elements of quantum chromodynamics (QCD) and the theory of the strong interaction are briefly reviewed in their historical context. How to achieve asymptotic freedom is introduced and its physical meaning explained. The latest experimental tests of asymptotic freedom are presented, and it is shown that the theoretical prediction agrees excellently with the experimental measurements. Perturbative QCD which is based on the asymptotic freedom is outlined. It is pointed out that the theoretical discovery and experimental proof of the asymptotic freedom are crucial for QCD to be the correct theory of strong interaction. Certain frontier research areas of QCD, such as 'color confinement', are mentioned. The discovery and confirmation of asymptotic freedom has indeed deeply affected particle physics, and has led to QCD becoming a main content of the standard model, and to further development of the so-called grand unification theories of interactions. (author)

  4. Inverted hierarchy and asymptotic freedom in grand unified supersymmetric theories

    International Nuclear Information System (INIS)

    Aratyn, H.

    1983-01-01

    The interrelation between an inverted hierarchy mechanism and asymptotic freedom in supersymmetric theories is analyzed in two models for which we performed a detailed analysis of the effective potentials and effective couplings. We find it difficult to accommodate an inverted hierarchy together with asymptotic freedom for the matter-Yukawa couplings. (orig.)

  5. Asymptotic series and functional integrals in quantum field theory

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1979-01-01

    Investigations of the methods for analyzing ultra-violet and infrared asymptotics in the quantum field theory (QFT) have been reviewed. A powerful method of the QFT analysis connected with the group property of renormalized transformations has been created at the first stage. The result of the studies of the second period is the constructive solution of the problem of outgoing the framework of weak coupling. At the third stage of studies essential are the asymptotic series and functional integrals in the QFT, which are used for obtaining the asymptotic type of the power expansion coefficients in the coupling constant at high values of the exponents for a number of simple models. Further advance to higher values of the coupling constant requires surmounting the difficulties resulting from the asymptotic character of expansions and a constructive application in the region of strong coupling (g >> 1)

  6. Integrable theories that are asymptotically CFT

    CERN Document Server

    Evans, J M; Jonathan M Evans; Timothy J Hollowood

    1995-01-01

    A series of sigma models with torsion are analysed which generate their mass dynamically but whose ultra-violet fixed points are non-trivial conformal field theories -- in fact SU(2) WZW models at level k. In contrast to the more familiar situation of asymptotically free theories in which the fixed points are trivial, the sigma models considered here may be termed ``asymptotically CFT''. These theories have previously been conjectured to be quantum integrable; we confirm this by proposing a factorizable S-matrix to describe their infra-red behaviour and then carrying out a stringent test of this proposal. The test involves coupling the theory to a conserved charge and evaluating the response of the free-energy both in perturbation theory to one loop and directly from the S-matrix via the Thermodynamic Bethe Ansatz with a chemical potential at zero temperature. Comparison of these results provides convincing evidence in favour of the proposed S-matrix; it also yields the universal coefficients of the beta-func...

  7. On the asymptotics of dimers on tori

    OpenAIRE

    Kenyon, Richard W.; Sun, Nike; Wilson, David B.

    2013-01-01

    We study asymptotics of the dimer model on large toric graphs. Let $\\mathbb L$ be a weighted $\\mathbb{Z}^2$-periodic planar graph, and let $\\mathbb{Z}^2 E$ be a large-index sublattice of $\\mathbb{Z}^2$. For $\\mathbb L$ bipartite we show that the dimer partition function on the quotient $\\mathbb{L}/(\\mathbb{Z}^2 E)$ has the asymptotic expansion $\\exp[A f_0 + \\text{fsc} + o(1)]$, where $A$ is the area of $\\mathbb{L}/(\\mathbb{Z}^2 E)$, $f_0$ is the free energy density in the bulk, and $\\text{fsc...

  8. Revisiting r > g-The asymptotic dynamics of wealth inequality

    Science.gov (United States)

    Berman, Yonatan; Shapira, Yoash

    2017-02-01

    Studying the underlying mechanisms of wealth inequality dynamics is essential for its understanding and for policy aiming to regulate its level. We apply a heterogeneous non-interacting agent-based modeling approach, solved using iterated maps to model the dynamics of wealth inequality based on 3 parameters-the economic output growth rate g, the capital value change rate a and the personal savings rate s and show that for a income distribution. If a > g, the wealth distribution constantly becomes more and more inegalitarian. We also show that when a economic output, which also implies that the wealth-disposable income ratio asymptotically converges to s /(g - a) .

  9. Asymptotic numbers: Pt.1

    International Nuclear Information System (INIS)

    Todorov, T.D.

    1980-01-01

    The set of asymptotic numbers A as a system of generalized numbers including the system of real numbers R, as well as infinitely small (infinitesimals) and infinitely large numbers, is introduced. The detailed algebraic properties of A, which are unusual as compared with the known algebraic structures, are studied. It is proved that the set of asymptotic numbers A cannot be isomorphically embedded as a subspace in any group, ring or field, but some particular subsets of asymptotic numbers are shown to be groups, rings, and fields. The algebraic operation, additive and multiplicative forms, and the algebraic properties are constructed in an appropriate way. It is shown that the asymptotic numbers give rise to a new type of generalized functions quite analogous to the distributions of Schwartz allowing, however, the operation multiplication. A possible application of these functions to quantum theory is discussed

  10. Asymptotic Expansions for Higher-Order Scalar Difference Equations

    Directory of Open Access Journals (Sweden)

    Pituk Mihály

    2007-01-01

    Full Text Available We give an asymptotic expansion of the solutions of higher-order Poincaré difference equation in terms of the characteristic solutions of the limiting equation. As a consequence, we obtain an asymptotic description of the solutions approaching a hyperbolic equilibrium of a higher-order nonlinear difference equation with sufficiently smooth nonlinearity. The proof is based on the inversion formula for the z -transform and the residue theorem.

  11. Asymptotically Constant-Risk Predictive Densities When the Distributions of Data and Target Variables Are Different

    Directory of Open Access Journals (Sweden)

    Keisuke Yano

    2014-05-01

    Full Text Available We investigate the asymptotic construction of constant-risk Bayesian predictive densities under the Kullback–Leibler risk when the distributions of data and target variables are different and have a common unknown parameter. It is known that the Kullback–Leibler risk is asymptotically equal to a trace of the product of two matrices: the inverse of the Fisher information matrix for the data and the Fisher information matrix for the target variables. We assume that the trace has a unique maximum point with respect to the parameter. We construct asymptotically constant-risk Bayesian predictive densities using a prior depending on the sample size. Further, we apply the theory to the subminimax estimator problem and the prediction based on the binary regression model.

  12. Asymptotic Safety Guaranteed in Supersymmetry

    Science.gov (United States)

    Bond, Andrew D.; Litim, Daniel F.

    2017-11-01

    We explain how asymptotic safety arises in four-dimensional supersymmetric gauge theories. We provide asymptotically safe supersymmetric gauge theories together with their superconformal fixed points, R charges, phase diagrams, and UV-IR connecting trajectories. Strict perturbative control is achieved in a Veneziano limit. Consistency with unitarity and the a theorem is established. We find that supersymmetry enhances the predictivity of asymptotically safe theories.

  13. Delay-Dependent Asymptotic Stability of Cohen-Grossberg Models with Multiple Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Xiaofeng Liao

    2007-01-01

    Full Text Available Dynamical behavior of a class of Cohen-Grossberg models with multiple time-varying delays is studied in detail. Sufficient delay-dependent criteria to ensure local and global asymptotic stabilities of the equilibrium of this network are derived by constructing suitable Lyapunov functionals. The obtained conditions are shown to be less conservative and restrictive than those reported in the known literature. Some numerical examples are included to demonstrate our results.

  14. The importance and use of asymptotic freedom beyond the leading order

    International Nuclear Information System (INIS)

    Duke, D.W.

    1979-05-01

    The theoretical and phenomenological importance of asymptotic freedom beyond the leading order is discussed. The two main topics are (1) the determination of the fundamental scale Λ, and (2) ambiguities in parton model definitions when using the higher order effects of asymptotic freedom. (author)

  15. Comment on 'Asymptotic form of the Kohn-Sham correlation potential'

    International Nuclear Information System (INIS)

    Holas, A.

    2008-01-01

    For finite systems that have the energetically highest-occupied molecular orbital (HOMO) with an asymptotic nodal surface, Joubert demonstrated recently [Phys. Rev. A 76, 012501 (2007)] strongly anisotropic behavior (in the asymptotic large-r region) of the exact correlation potential of density-functional theory. As is shown by us, this result is a direct and simple consequence of the strong anisotropy of the exact exchange potential obtained by Della Sala and Goerling [Phys. Rev. Lett. 89, 033003 (2002); Della Sala and GoerlingJ. Chem. Phys. 116, 5374 (2002)] and the assumption about the asymptotic isotropy of the Kohn-Sham (KS) potential (based on the investigation of Almbladh and von Barth [Phys. Rev. B 31, 3231 (1985)] for atoms). Joubert's result remains a hypothesis only, because the last assumption is in contradiction with the asymptotic strong anisotropy of the KS potential for systems with asymptotic nodal surface of the HOMO, demonstrated by Wu, Ayers, and Yang [J. Chem. Phys. 119, 2978 (2003)]. The correlation potential in the asymptotic region, stemming from their results, is given

  16. Asymptotic safety of gravity with matter

    Science.gov (United States)

    Christiansen, Nicolai; Litim, Daniel F.; Pawlowski, Jan M.; Reichert, Manuel

    2018-05-01

    We study the asymptotic safety conjecture for quantum gravity in the presence of matter fields. A general line of reasoning is put forward explaining why gravitons dominate the high-energy behavior, largely independently of the matter fields as long as these remain sufficiently weakly coupled. Our considerations are put to work for gravity coupled to Yang-Mills theories with the help of the functional renormalization group. In an expansion about flat backgrounds, explicit results for beta functions, fixed points, universal exponents, and scaling solutions are given in systematic approximations exploiting running propagators, vertices, and background couplings. Invariably, we find that the gauge coupling becomes asymptotically free while the gravitational sector becomes asymptotically safe. The dependence on matter field multiplicities is weak. We also explain how the scheme dependence, which is more pronounced, can be handled without changing the physics. Our findings offer a new interpretation of many earlier results, which is explained in detail. The results generalize to theories with minimally coupled scalar and fermionic matter. Some implications for the ultraviolet closure of the Standard Model or its extensions are given.

  17. Asymptotic inference in system identification for the atom maser.

    Science.gov (United States)

    Catana, Catalin; van Horssen, Merlijn; Guta, Madalin

    2012-11-28

    System identification is closely related to control theory and plays an increasing role in quantum engineering. In the quantum set-up, system identification is usually equated to process tomography, i.e. estimating a channel by probing it repeatedly with different input states. However, for quantum dynamical systems such as quantum Markov processes, it is more natural to consider the estimation based on continuous measurements of the output, with a given input that may be stationary. We address this problem using asymptotic statistics tools, for the specific example of estimating the Rabi frequency of an atom maser. We compute the Fisher information of different measurement processes as well as the quantum Fisher information of the atom maser, and establish the local asymptotic normality of these statistical models. The statistical notions can be expressed in terms of spectral properties of certain deformed Markov generators, and the connection to large deviations is briefly discussed.

  18. Asymptotics of the QMLE for General ARCH(q) Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbek, Anders Christian

    2009-01-01

    -ARCH -- are derived. Strong consistency is established under the assumptions that the ARCH process is geometrically ergodic, the conditional variance function has a finite log-moment, and finite second moment of the rescaled error. Asymptotic normality of the estimator is established under the additional assumption...

  19. Asymptotic Expansions for Higher-Order Scalar Difference Equations

    Directory of Open Access Journals (Sweden)

    Ravi P. Agarwal

    2007-04-01

    Full Text Available We give an asymptotic expansion of the solutions of higher-order Poincaré difference equation in terms of the characteristic solutions of the limiting equation. As a consequence, we obtain an asymptotic description of the solutions approaching a hyperbolic equilibrium of a higher-order nonlinear difference equation with sufficiently smooth nonlinearity. The proof is based on the inversion formula for the z -transform and the residue theorem.

  20. Asymptotics of bivariate generating functions with algebraic singularities

    Science.gov (United States)

    Greenwood, Torin

    Flajolet and Odlyzko (1990) derived asymptotic formulae the coefficients of a class of uni- variate generating functions with algebraic singularities. Gao and Richmond (1992) and Hwang (1996, 1998) extended these results to classes of multivariate generating functions, in both cases by reducing to the univariate case. Pemantle and Wilson (2013) outlined new multivariate ana- lytic techniques and used them to analyze the coefficients of rational generating functions. After overviewing these methods, we use them to find asymptotic formulae for the coefficients of a broad class of bivariate generating functions with algebraic singularities. Beginning with the Cauchy integral formula, we explicity deform the contour of integration so that it hugs a set of critical points. The asymptotic contribution to the integral comes from analyzing the integrand near these points, leading to explicit asymptotic formulae. Next, we use this formula to analyze an example from current research. In the following chapter, we apply multivariate analytic techniques to quan- tum walks. Bressler and Pemantle (2007) found a (d + 1)-dimensional rational generating function whose coefficients described the amplitude of a particle at a position in the integer lattice after n steps. Here, the minimal critical points form a curve on the (d + 1)-dimensional unit torus. We find asymptotic formulae for the amplitude of a particle in a given position, normalized by the number of steps n, as n approaches infinity. Each critical point contributes to the asymptotics for a specific normalized position. Using Groebner bases in Maple again, we compute the explicit locations of peak amplitudes. In a scaling window of size the square root of n near the peaks, each amplitude is asymptotic to an Airy function.

  1. Naturalness of asymptotically safe Higgs

    DEFF Research Database (Denmark)

    Pelaggi, Giulio M.; Sannino, Francesco; Strumia, Alessandro

    2017-01-01

    that the scalars can be lighter than Λ. Although we do not have an answer to whether the Standard Model hypercharge coupling growth toward a Landau pole at around Λ ~ 1040GeV can be tamed by non-perturbative asymptotic safety, our results indicate that such a possibility is worth exploring. In fact, if successful...

  2. A differential equation for the asymptotic fitness distribution in the Bak-Sneppen model with five species.

    Science.gov (United States)

    Schlemm, Eckhard

    2015-09-01

    The Bak-Sneppen model is an abstract representation of a biological system that evolves according to the Darwinian principles of random mutation and selection. The species in the system are characterized by a numerical fitness value between zero and one. We show that in the case of five species the steady-state fitness distribution can be obtained as a solution to a linear differential equation of order five with hypergeometric coefficients. Similar representations for the asymptotic fitness distribution in larger systems may help pave the way towards a resolution of the question of whether or not, in the limit of infinitely many species, the fitness is asymptotically uniformly distributed on the interval [fc, 1] with fc ≳ 2/3. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Asymptotic structure of isolated systems

    International Nuclear Information System (INIS)

    Schmidt, B.G.

    1979-01-01

    The main methods to formulate asymptotic flatness conditions are introduced and motivation and basic ideas are emphasized. Any asymptotic flatness condition proposed up to now describes space-times which behave somehow like Minkowski space, and a very explicit exposition of the structure at infinity of Minkowski space is given. This structure is used to describe the asymptotic behaviour of fields on Minkowski space in a frame-dependent way. The definition of null infinity for curved space-time according to Penrose is given and attempts to define spacelike infinity are outlined. The conformal bundle approach to the formulation of asymptotic behaviour is described and its relation to null and spacelike infinity is given, as far as known. (Auth.)

  4. Asymptotic analysis of the Forward Search

    DEFF Research Database (Denmark)

    Johansen, Søren; Nielsen, Bent

    The Forward Search is an iterative algorithm concerned with detection of outliers and other unsuspected structures in data. This approach has been suggested, analysed and applied for regression models in the monograph Atkinson and Riani (2000). An asymptotic analysis of the Forward Search is made...

  5. Applications of Asymptotic Sampling on High Dimensional Structural Dynamic Problems

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Nielsen, Søren R.K.; Bucher, Christian

    2011-01-01

    The paper represents application of the asymptotic sampling on various structural models subjected to random excitations. A detailed study on the effect of different distributions of the so-called support points is performed. This study shows that the distribution of the support points has consid...... dimensional reliability problems in structural dynamics.......The paper represents application of the asymptotic sampling on various structural models subjected to random excitations. A detailed study on the effect of different distributions of the so-called support points is performed. This study shows that the distribution of the support points has...... is minimized. Next, the method is applied on different cases of linear and nonlinear systems with a large number of random variables representing the dynamic excitation. The results show that asymptotic sampling is capable of providing good approximations of low failure probability events for very high...

  6. Global asymptotic stability of bistable traveling fronts in reaction-diffusion systems and their applications to biological models

    International Nuclear Information System (INIS)

    Wu Shiliang; Li Wantong

    2009-01-01

    This paper deals with the global asymptotic stability and uniqueness (up to translation) of bistable traveling fronts in a class of reaction-diffusion systems. The known results do not apply in solving these problems because the reaction terms do not satisfy the required monotone condition. To overcome the difficulty, a weak monotone condition is proposed for the reaction terms, which is called interval monotone condition. Under such a weak monotone condition, the existence and comparison theorem of solutions is first established for reaction-diffusion systems on R by appealing to the theory of abstract differential equations. The global asymptotic stability and uniqueness (up to translation) of bistable traveling fronts are then proved by the elementary super- and sub-solution comparison and squeezing methods for nonlinear evolution equations. Finally, these abstract results are applied to a two species competition-diffusion model and a system modeling man-environment-man epidemics.

  7. Generating asymptotically plane wave spacetimes

    International Nuclear Information System (INIS)

    Hubeny, Veronika E.; Rangamani, Mukund

    2003-01-01

    In an attempt to study asymptotically plane wave spacetimes which admit an event horizon, we find solutions to vacuum Einstein's equations in arbitrary dimension which have a globally null Killing field and rotational symmetry. We show that while such solutions can be deformed to include ones which are asymptotically plane wave, they do not posses a regular event horizon. If we allow for additional matter, such as in supergravity theories, we show that it is possible to have extremal solutions with globally null Killing field, a regular horizon, and which, in addition, are asymptotically plane wave. In particular, we deform the extremal M2-brane solution in 11-dimensional supergravity so that it behaves asymptotically as a 10-dimensional vacuum plane wave times a real line. (author)

  8. A general framework for global asymptotic stability analysis of delayed neural networks based on LMI approach

    International Nuclear Information System (INIS)

    Cao Jinde; Ho, Daniel W.C.

    2005-01-01

    In this paper, global asymptotic stability is discussed for neural networks with time-varying delay. Several new criteria in matrix inequality form are given to ascertain the uniqueness and global asymptotic stability of equilibrium point for neural networks with time-varying delay based on Lyapunov method and Linear Matrix Inequality (LMI) technique. The proposed LMI approach has the advantage of considering the difference of neuronal excitatory and inhibitory efforts, which is also computationally efficient as it can be solved numerically using recently developed interior-point algorithm. In addition, the proposed results generalize and improve previous works. The obtained criteria also combine two existing conditions into one generalized condition in matrix form. An illustrative example is also given to demonstrate the effectiveness of the proposed results

  9. Size Matters: Individual Variation in Ectotherm Growth and Asymptotic Size

    Science.gov (United States)

    King, Richard B.

    2016-01-01

    Body size, and, by extension, growth has impacts on physiology, survival, attainment of sexual maturity, fecundity, generation time, and population dynamics, especially in ectotherm animals that often exhibit extensive growth following attainment of sexual maturity. Frequently, growth is analyzed at the population level, providing useful population mean growth parameters but ignoring individual variation that is also of ecological and evolutionary significance. Our long-term study of Lake Erie Watersnakes, Nerodia sipedon insularum, provides data sufficient for a detailed analysis of population and individual growth. We describe population mean growth separately for males and females based on size of known age individuals (847 captures of 769 males, 748 captures of 684 females) and annual growth increments of individuals of unknown age (1,152 males, 730 females). We characterize individual variation in asymptotic size based on repeated measurements of 69 males and 71 females that were each captured in five to nine different years. The most striking result of our analyses is that asymptotic size varies dramatically among individuals, ranging from 631–820 mm snout-vent length in males and from 835–1125 mm in females. Because female fecundity increases with increasing body size, we explore the impact of individual variation in asymptotic size on lifetime reproductive success using a range of realistic estimates of annual survival. When all females commence reproduction at the same age, lifetime reproductive success is greatest for females with greater asymptotic size regardless of annual survival. But when reproduction is delayed in females with greater asymptotic size, lifetime reproductive success is greatest for females with lower asymptotic size when annual survival is low. Possible causes of individual variation in asymptotic size, including individual- and cohort-specific variation in size at birth and early growth, warrant further investigation. PMID

  10. Size Matters: Individual Variation in Ectotherm Growth and Asymptotic Size.

    Directory of Open Access Journals (Sweden)

    Richard B King

    Full Text Available Body size, and, by extension, growth has impacts on physiology, survival, attainment of sexual maturity, fecundity, generation time, and population dynamics, especially in ectotherm animals that often exhibit extensive growth following attainment of sexual maturity. Frequently, growth is analyzed at the population level, providing useful population mean growth parameters but ignoring individual variation that is also of ecological and evolutionary significance. Our long-term study of Lake Erie Watersnakes, Nerodia sipedon insularum, provides data sufficient for a detailed analysis of population and individual growth. We describe population mean growth separately for males and females based on size of known age individuals (847 captures of 769 males, 748 captures of 684 females and annual growth increments of individuals of unknown age (1,152 males, 730 females. We characterize individual variation in asymptotic size based on repeated measurements of 69 males and 71 females that were each captured in five to nine different years. The most striking result of our analyses is that asymptotic size varies dramatically among individuals, ranging from 631-820 mm snout-vent length in males and from 835-1125 mm in females. Because female fecundity increases with increasing body size, we explore the impact of individual variation in asymptotic size on lifetime reproductive success using a range of realistic estimates of annual survival. When all females commence reproduction at the same age, lifetime reproductive success is greatest for females with greater asymptotic size regardless of annual survival. But when reproduction is delayed in females with greater asymptotic size, lifetime reproductive success is greatest for females with lower asymptotic size when annual survival is low. Possible causes of individual variation in asymptotic size, including individual- and cohort-specific variation in size at birth and early growth, warrant further

  11. Asymptotic twistor theory and the Kerr theorem

    International Nuclear Information System (INIS)

    Newman, Ezra T

    2006-01-01

    We first review asymptotic twistor theory with its real subspace of null asymptotic twistors: a five-dimensional CR manifold. This is followed by a description of the Kerr theorem (the identification of shear-free null congruences, in Minkowski space, with the zeros of holomorphic functions of three variables) and an asymptotic version of the Kerr theorem that produces regular asymptotically shear-free null geodesic congruences in arbitrary asymptotically flat Einstein or Einstein-Maxwell spacetimes. A surprising aspect of this work is the role played by analytic curves in H-space, each curve generating an asymptotically flat null geodesic congruence. Also there is a discussion of the physical space realizations of the two associated five- and three-dimensional CR manifolds

  12. ADM Mass for Asymptotically de Sitter Space-Time

    International Nuclear Information System (INIS)

    Huang Shiming; Yue Ruihong; Jia Dongyan

    2010-01-01

    In this paper, an ADM mass formula for asymptotically de Sitter(dS) space-time is derived from the energy-momentum tensor. We take the vacuum dS space as the background and investigate the ADM mass of the (d + 3)-dimensional sphere-symmetric space with a positive cosmological constant, and find that the ADM mass of asymptotically dS space is based on the ADM mass of Schwarzschild field and the cosmological background brings some small mass contribution as well. (general)

  13. Asymptotic representation of relaxation oscillations in lasers

    CERN Document Server

    Grigorieva, Elena V

    2017-01-01

    In this book we analyze relaxation oscillations in models of lasers with nonlinear elements controlling light dynamics. The models are based on rate equations taking into account periodic modulation of parameters, optoelectronic delayed feedback, mutual coupling between lasers, intermodal interaction and other factors. With the aim to study relaxation oscillations we present the special asymptotic method of integration for ordinary differential equations and differential-difference equations. As a result, they are reduced to discrete maps. Analyzing the maps we describe analytically such nonlinear phenomena in lasers as multistability of large-amplitude relaxation cycles, bifurcations of cycles, controlled switching of regimes, phase synchronization in an ensemble of coupled systems and others. The book can be fruitful for students and technicians in nonlinear laser dynamics and in differential equations.

  14. Non-pionic effects in deuteron asymptotic observables

    International Nuclear Information System (INIS)

    Ballot, J.L.; Robilotta, M.R.

    1991-01-01

    It is well known that pion dynamics dominates deuteron asymptotic observables, especially η, the D/S ratio and Q, the quadrupole moment. A procedure has been discussed earlier that allows the unambiguous determination of the pion contribution to these observables as function of the pion-nucleon coupling constant. This problem is discussed in the framework of a specific model for the nucleon-nucleon interaction, namely the potential developed by the Tourreil, Rouben and Sprung. The contribution of non-pionic dynamics to deuteron asymptotic observables is investigated. It is shown that effects due to ρ and ω exchanges are negligible. (K.A.) 8 refs., 1 fig., 1 tab

  15. Asymptotic behaviour of Feynman integrals

    International Nuclear Information System (INIS)

    Bergere, M.C.

    1980-01-01

    In these lecture notes, we describe how to obtain the asymptotic behaviour of Feynman amplitudes; this technique has been already applied in several cases, but the general solution for any kind of asymptotic behaviour has not yet been found. From the mathematical point of view, the problem to solve is close to the following problem: find the asymptotic expansion at large lambda of the integral ∫...∫ [dx] esup(-LambdaP[x]) where P[x] is a polynomial of several variables. (orig.)

  16. Asymptotic theory for Brownian semi-stationary processes with application to turbulence

    DEFF Research Database (Denmark)

    Corcuera, José Manuel; Hedevang, Emil; Pakkanen, Mikko S.

    2013-01-01

    This paper presents some asymptotic results for statistics of Brownian semi-stationary (BSS) processes. More precisely, we consider power variations of BSS processes, which are based on high frequency (possibly higher order) differences of the BSS model. We review the limit theory discussed......, which allow to obtain a valid central limit theorem for the critical region. Finally, we apply our statistical theory to turbulence data....

  17. Behavior of asymptotically electro-Λ spacetimes

    Science.gov (United States)

    Saw, Vee-Liem

    2017-04-01

    We present the asymptotic solutions for spacetimes with nonzero cosmological constant Λ coupled to Maxwell fields, using the Newman-Penrose formalism. This extends a recent work that dealt with the vacuum Einstein (Newman-Penrose) equations with Λ ≠0 . The results are given in two different null tetrads: the Newman-Unti and Szabados-Tod null tetrads, where the peeling property is exhibited in the former but not the latter. Using these asymptotic solutions, we discuss the mass loss of an isolated electrogravitating system with cosmological constant. In a universe with Λ >0 , the physics of electromagnetic (EM) radiation is relatively straightforward compared to those of gravitational radiation: (1) It is clear that outgoing EM radiation results in a decrease to the Bondi mass of the isolated system. (2) It is also perspicuous that if any incoming EM radiation from elsewhere is present, those beyond the isolated system's cosmological horizon would eventually arrive at the spacelike I and increase the Bondi mass of the isolated system. Hence, the (outgoing and incoming) EM radiation fields do not couple with Λ in the Bondi mass-loss formula in an unusual manner, unlike the gravitational counterpart where outgoing gravitational radiation induces nonconformal flatness of I . These asymptotic solutions to the Einstein-Maxwell-de Sitter equations presented here may be used to extend a raft of existing results based on Newman-Unti's asymptotic solutions to the Einstein-Maxwell equations where Λ =0 , to now incorporate the cosmological constant Λ .

  18. A multiscale asymptotic analysis of time evolution equations on the complex plane

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Gastão A., E-mail: gbraga@mat.ufmg.br [Departamento de Matemática, Universidade Federal de Minas Gerais, Caixa Postal 702, 30161-970 Belo Horizonte, MG (Brazil); Conti, William R. P., E-mail: wrpconti@gmail.com [Departamento de Ciências do Mar, Universidade Federal de São Paulo, Rua Dr. Carvalho de Mendonça 144, 11070-100 Santos, SP (Brazil)

    2016-07-15

    Using an appropriate norm on the space of entire functions, we extend to the complex plane the renormalization group method as developed by Bricmont et al. The method is based upon a multiscale approach that allows for a detailed description of the long time asymptotics of solutions to initial value problems. The time evolution equation considered here arises in the study of iterations of the block spin renormalization group transformation for the hierarchical N-vector model. We show that, for initial conditions belonging to a certain Fréchet space of entire functions of exponential type, the asymptotics is universal in the sense that it is dictated by the fixed point of a certain operator acting on the space of initial conditions.

  19. Hybrid resonance and long-time asymptotic of the solution to Maxwell's equations

    Energy Technology Data Exchange (ETDEWEB)

    Després, Bruno, E-mail: despres@ann.jussieu.fr [Laboratory Jacques Louis Lions, University Pierre et Marie Curie, Paris VI, Boîte courrier 187, 75252 Paris Cedex 05 (France); Weder, Ricardo, E-mail: weder@unam.mx [Departamento de Física Matemática, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Apartado Postal 20-126, DF 01000 (Mexico)

    2016-03-22

    We study the long-time asymptotic of the solutions to Maxwell's equation in the case of an upper-hybrid resonance in the cold plasma model. We base our analysis in the transfer to the time domain of the recent results of B. Després, L.M. Imbert-Gérard and R. Weder (2014) [15], where the singular solutions to Maxwell's equations in the frequency domain were constructed by means of a limiting absorption principle and a formula for the heating of the plasma in the limit of vanishing collision frequency was obtained. Currently there is considerable interest in these problems, in particular, because upper-hybrid resonances are a possible scenario for the heating of plasmas, and since they can be a model for the diagnostics involving wave scattering in plasmas. - Highlights: • The upper-hybrid resonance in the cold plasma model is considered. • The long-time asymptotic of the solutions to Maxwell's equations is studied. • A method based in a singular limiting absorption principle is proposed.

  20. Asymptotic Approximations to the Non-Isothermal Distributed Activation Energy Model for Bio-Mass Pyrolysis

    Directory of Open Access Journals (Sweden)

    Dhaundiyal Alok

    2017-12-01

    Full Text Available This paper describes the influence of some parameters significant to biomass pyrolysis on the numerical solutions of the non-isothermal nth order distributed activation energy model (DAEM using the Gamma distribution and discusses the special case for the positive integer value of the scale parameter (λ, i.e. the Erlang distribution. Investigated parameters are the integral upper limit, the frequency factor, the heating rate, the reaction order, and the shape and rate parameters of the Gamma distribution. Influence of these parameters has been considered for the determination of the kinetic parameters of the non-isothermal nth order Gamma distribution from the experimentally derived thermoanalytical data of biomass pyrolysis. Mathematically, the effect of parameters on numerical solution is also used for predicting the behaviour of the unpyrolysized fraction of biomass with respect to temperature. Analysis of the mathematical model is based upon asymptotic expansions, which leads to the systematic methods for efficient way to determine the accurate approximations. The proposed method, therefore, provides a rapid and highly effective way for estimating the kinetic parameters and the distribution of activation energies.

  1. Asymptotic functions and multiplication of distributions

    International Nuclear Information System (INIS)

    Todorov, T.D.

    1979-01-01

    Considered is a new type of generalized asymptotic functions, which are not functionals on some space of test functions as the Schwartz distributions. The definition of the generalized asymptotic functions is given. It is pointed out that in future the particular asymptotic functions will be used for solving some topics of quantum mechanics and quantum theory

  2. Deep inelastic scattering in an asymptotically free gauge theory

    International Nuclear Information System (INIS)

    Fujiwara, Tsutomu

    1977-01-01

    This paper reviews the success of the asymptotically free gauge theory which describes the deep inelastic lepton-hadron scattering. The asymptotically free gauge theory was discussed as well as the reason why the parton has the nature like free particles by the aid of the field theory. The asymptotically free gauge theory (AFGT) gives the prediction that the Bjorken scaling gives rise to logarithmic violation. The theory was applied to the exchange processes of single photon and two photons. First, this paper describes the approaches to the Bjorken scaling. The approaches are the discussion of the scaling law dependent on the model and the discussion of the scaling law independent of the model. The field theoretical treatment in described. This is called the method of the renormalization group introduced by Wilson. The asymptotically free gauge theory was formed on the basis of the Callan-Symanzik equation (CSE) and of the Weinberg's power counting theorem. The exact Bjorken scaling does not hold in the quantum field theory, at least there must be logarithmic violation. The pattern of the scaling violation cannot be clarified by the present data. Discussions concerning two gamma process are presented. The measurement of the photon-photon scattering process will give the judgement whether the prediction of the AFGT is correct or not. (Kato, T.)

  3. Asymptotic stability of a coupled advection-diffusion-reaction system arising in bioreactor processes

    Directory of Open Access Journals (Sweden)

    Maria Crespo

    2017-08-01

    Full Text Available In this work, we present an asymptotic analysis of a coupled system of two advection-diffusion-reaction equations with Danckwerts boundary conditions, which models the interaction between a microbial population (e.g., bacteria, called biomass, and a diluted organic contaminant (e.g., nitrates, called substrate, in a continuous flow bioreactor. This system exhibits, under suitable conditions, two stable equilibrium states: one steady state in which the biomass becomes extinct and no reaction is produced, called washout, and another steady state, which corresponds to the partial elimination of the substrate. We use the linearization method to give sufficient conditions for the linear asymptotic stability of the two stable equilibrium configurations. Finally, we compare our asymptotic analysis with the usual asymptotic analysis associated to the continuous bioreactor when it is modeled with ordinary differential equations.

  4. Infrared divergences in the asymptotically not free Yang-Mills theory

    International Nuclear Information System (INIS)

    Fajzullaev, B.A.

    1979-01-01

    Shown is analogy of infrared asymptotics (with the accuracy up to the multiplier in the degree index) of Green fermion functions in quantum electrodynamics as well as in nonabelian asymptotics free and not free models. Infrared asymptotics of Green functions of calibrating boson in accordance with Appelquist and Carazzone theorem does not depend on the present massive fermions. The calculations showed that in the fermion models interacting with nonabelian calibrating fields, infrared divergences in the physical processes are not reduced no matter whether they are free or not free. So, in these models the point αsub(c)=0 will always be infrared-instable no matter whether αsub(c)=0 is ultraviolet-stable or not. This result is in agreement with one of the Appelquist-Carazzone theorem consequences stating that if the calibrating group is divided into direct product of several subgroups and they are connected only by exchange of a heavy particle, then the charge of each subgroup is subjected (within the infrared limit) to its renormgroup equation

  5. Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy

    KAUST Repository

    Pouchol, Camille; Clairambault, Jean; Lorz, Alexander; Tré lat, Emmanuel

    2017-01-01

    to the treatment. We analyse the asymptotic behaviour of the model under constant infusion of drugs. By designing an appropriate Lyapunov function, we prove that both cell densities converge to Dirac masses. We then define an optimal control problem, by considering

  6. Self similar asymptotics of the drift ion acoustic waves

    International Nuclear Information System (INIS)

    Taranov, V.B.

    2004-01-01

    A 3D model for the coupled drift and ion acoustic waves is considered. It is shown that self-similar solutions can exist due to the symmetry extension in asymptotic regimes. The form of these solutions is determined in the presence of the magnetic shear as well as in the shear less case. Some of the most symmetric exact solutions are obtained explicitly. In particular, solutions describing asymptotics of zonal flow interaction with monochromatic waves are presented and corresponding frequency shifts are determined

  7. On asymptotics and resurgent structures of enumerative Gromov-Witten invariants

    International Nuclear Information System (INIS)

    Couso-Santamaria, Ricardo; Schiappa, Ricardo; Geneve Univ.; Vaz, Ricardo; DESY Hamburg

    2016-05-01

    Making use of large-order techniques in asymptotics and resurgent analysis, this work addresses the growth of enumerative Gromov-Witten invariants - in their dependence upon genus and degree of the embedded curve - for several different threefold Calabi-Yau toric-varieties. In particular, while the leading asymptotics of these invariants at large genus or at large degree is exponential, at combined large genus and degree it turns out to be factorial. This factorial growth has a resurgent nature, originating via mirror symmetry from the resurgent-transseries description of the B-model free energy. This implies the existence of nonperturbative sectors controlling the asymptotics of the Gromov-Witten invariants, which could themselves have an enumerative-geometry interpretation. The examples addressed include: the resolved conifold; the local surfaces local P 2 and local P 1 x P 1 ; the local curves and Hurwitz theory; and the compact quintic. All examples suggest very rich interplays between resurgent asymptotics and enumerative problems in algebraic geometry.

  8. On asymptotics and resurgent structures of enumerative Gromov-Witten invariants

    Energy Technology Data Exchange (ETDEWEB)

    Couso-Santamaria, Ricardo [Lisboa Univ. (Portugal). Inst. Superior Tecnico (IST); Schiappa, Ricardo [Lisboa Univ. (Portugal). Inst. Superior Tecnico (IST); Geneve Univ. (Switzerland). Dept. de Physique Theoretique et Section de Mathematiques; Vaz, Ricardo [Lisboa Univ. (Portugal). Inst. Superior Tecnico (IST); DESY Hamburg (Germany). Theory Group

    2016-05-15

    Making use of large-order techniques in asymptotics and resurgent analysis, this work addresses the growth of enumerative Gromov-Witten invariants - in their dependence upon genus and degree of the embedded curve - for several different threefold Calabi-Yau toric-varieties. In particular, while the leading asymptotics of these invariants at large genus or at large degree is exponential, at combined large genus and degree it turns out to be factorial. This factorial growth has a resurgent nature, originating via mirror symmetry from the resurgent-transseries description of the B-model free energy. This implies the existence of nonperturbative sectors controlling the asymptotics of the Gromov-Witten invariants, which could themselves have an enumerative-geometry interpretation. The examples addressed include: the resolved conifold; the local surfaces local P{sup 2} and local P{sup 1} x P{sup 1}; the local curves and Hurwitz theory; and the compact quintic. All examples suggest very rich interplays between resurgent asymptotics and enumerative problems in algebraic geometry.

  9. Asymptotic behavior of the warm inflation scenario with viscous pressure

    International Nuclear Information System (INIS)

    Mimoso, Jose P.; Nunes, Ana; Pavon, Diego

    2006-01-01

    We analyze the dynamics of models of warm inflation with general dissipative effects. We consider phenomenological terms both for the inflaton decay rate and for viscous effects within matter. We provide a classification of the asymptotic behavior of these models and show that the existence of a late-time scaling regime depends not only on an asymptotic behavior of the scalar field potential, but also on an appropriate asymptotic behavior of the inflaton decay rate. There are scaling solutions whenever the latter evolves to become proportional to the Hubble rate of expansion regardless of the steepness of the scalar field exponential potential. We show from thermodynamic arguments that the scaling regime is associated with a power-law dependence of the matter-radiation temperature on the scale factor, which allows a mild variation of the temperature of the matter/radiation fluid. We also show that the late-time contribution of the dissipative terms alleviates the depletion of matter, and increases the duration of inflation

  10. On the nature of the symbiotic binary CI Cygni

    International Nuclear Information System (INIS)

    Kenyon, S.J.; Oliversen, N.A.; Mikolajewska, J.; Mikolajewski, M.; Stencel, R.E.

    1991-01-01

    An analysis of ultraviolet and optical spectroscopy is presented for the symbiotic binary CI Cyg. This system contains an M5 II asymptotic branch giant Mg of about 1.5 solar mass, transfering material at a few times 0.00001 solar mass/yr into a large accretion disk surrounding a main-sequence star with Mh of about 0.5 solar mass. A boundary layer at the inner edge of the disk photoionizes a small nebula approximately confined to the Roche volume of the accreting star. An extended, more highly ionized region forms when material ejected from the disk interacts with the red giant wind. 115 refs

  11. Discrete Weighted Pseudo Asymptotic Periodicity of Second Order Difference Equations

    Directory of Open Access Journals (Sweden)

    Zhinan Xia

    2014-01-01

    Full Text Available We define the concept of discrete weighted pseudo-S-asymptotically periodic function and prove some basic results including composition theorem. We investigate the existence, and uniqueness of discrete weighted pseudo-S-asymptotically periodic solution to nonautonomous semilinear difference equations. Furthermore, an application to scalar second order difference equations is given. The working tools are based on the exponential dichotomy theory and fixed point theorem.

  12. Asymptotic theory of two-dimensional trailing-edge flows

    Science.gov (United States)

    Melnik, R. E.; Chow, R.

    1975-01-01

    Problems of laminar and turbulent viscous interaction near trailing edges of streamlined bodies are considered. Asymptotic expansions of the Navier-Stokes equations in the limit of large Reynolds numbers are used to describe the local solution near the trailing edge of cusped or nearly cusped airfoils at small angles of attack in compressible flow. A complicated inverse iterative procedure, involving finite-difference solutions of the triple-deck equations coupled with asymptotic solutions of the boundary values, is used to accurately solve the viscous interaction problem. Results are given for the correction to the boundary-layer solution for drag of a finite flat plate at zero angle of attack and for the viscous correction to the lift of an airfoil at incidence. A rational asymptotic theory is developed for treating turbulent interactions near trailing edges and is shown to lead to a multilayer structure of turbulent boundary layers. The flow over most of the boundary layer is described by a Lighthill model of inviscid rotational flow. The main features of the model are discussed and a sample solution for the skin friction is obtained and compared with the data of Schubauer and Klebanoff for a turbulent flow in a moderately large adverse pressure gradient.

  13. Model-based estimation of finite population total in stratified sampling

    African Journals Online (AJOL)

    The work presented in this paper concerns the estimation of finite population total under modelbased framework. Nonparametric regression approach as a method of estimating finite population total is explored. The asymptotic properties of the estimators based on nonparametric regression are also developed under ...

  14. Chiral symmetry breaking in asymptotically free and non-asymptotically free gauge theories

    International Nuclear Information System (INIS)

    Gusynin, V.P.; Miranskij, V.A.

    1986-01-01

    An essential distinction in the realization of the PCAC-dynamics in vector-like asymptotically free and non-asymptotically free (with a non-trival ultraviolet stable fixed point) gauge theories is revealed. For the latter theories an analytical expression for the condensate is obtained in the two-loop approximation and the arguments in support of a soft behaviour at small distances of composite operators are given. The problem of factorizing the low-energy region for the Wess-Zumino-Witten action is discussed

  15. Asymptotic behavior of the elastic form factor in two-dimensional scalar field theory of the bag model

    International Nuclear Information System (INIS)

    Krapchev, V.

    1976-01-01

    In the framework of the two-dimensional scalar quantum theory of the bag model of Chodos et al a definition of the physical field and a general scheme for constructing a physical state are given. Some of the difficulties associated with such an approach are exposed. Expressions for the physical current and the elastic form factor are given. The calculation of the latter is restricted at first to the approximation in which the mapping from a bag of changing shape to a fixed domain is realized only by a term which is a diagonal, bilinear function of the creation and annihilation operators. This is done for the case of a one-mode and an infinite-mode bag theory. By computing the form factor in an exact one-mode bag model it is shown that the logarithmic falloff of the asymptotic term is the same as the one in the approximation. On the basis of this a form for the asymptotic behavior of the form factor is suggested which may be correct for the general two-dimensional scalar bag theory

  16. Pointwise asymptotic convergence of solutions for a phase separation model

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel; Zheng, S.

    2006-01-01

    Roč. 16, č. 1 (2006), s. 1-18 ISSN 1078-0947 Institutional research plan: CEZ:AV0Z10190503 Keywords : phase-field system * asymptotic phase separation * energy Subject RIV: BA - General Mathematics Impact factor: 1.087, year: 2006 http://aimsciences.org/journals/pdfs.jsp?paperID=1875&mode=full

  17. Journal Afrika Statistika ISSN 0852-0305 Asymptotic representation ...

    African Journals Online (AJOL)

    Asymptotic representation theorems for poverty indices ... Statistical asymptotic laws for these indices, particularly asymptotic normality, on which statistical inference on the ... population of individuals, each of which having a random income or ...

  18. Asymptotic safety, emergence and minimal length

    International Nuclear Information System (INIS)

    Percacci, Roberto; Vacca, Gian Paolo

    2010-01-01

    There seems to be a common prejudice that asymptotic safety is either incompatible with, or at best unrelated to, the other topics in the title. This is not the case. In fact, we show that (1) the existence of a fixed point with suitable properties is a promising way of deriving emergent properties of gravity, and (2) there is a sense in which asymptotic safety implies a minimal length. In doing so we also discuss possible signatures of asymptotic safety in scattering experiments.

  19. On asymptotic isotropy for a hydrodynamic model of liquid crystals

    Czech Academy of Sciences Publication Activity Database

    Dai, M.; Feireisl, Eduard; Rocca, E.; Schimperna, G.; Schonbek, M.E.

    2016-01-01

    Roč. 97, 3-4 (2016), s. 189-210 ISSN 0921-7134 Grant - others:European Research Council(XE) MATHEF(320078) Institutional support: RVO:67985840 Keywords : liquid crystal * Q-tensor description * long-time behavior Subject RIV: BA - General Mathematics Impact factor: 0.933, year: 2016 http://content.iospress.com/articles/asymptotic-analysis/asy1348

  20. On asymptotic isotropy for a hydrodynamic model of liquid crystals

    Czech Academy of Sciences Publication Activity Database

    Dai, M.; Feireisl, Eduard; Rocca, E.; Schimperna, G.; Schonbek, M.E.

    2016-01-01

    Roč. 97, 3-4 (2016), s. 189-210 ISSN 0921-7134 Grant - others:European Research Council(XE) MATHEF(320078) Institutional support: RVO:67985840 Keywords : liquid crystal * Q-tensor description * long-time behavior Subject RIV: BA - General Mathematics Impact factor: 0.933, year: 2016 http://content.iospress.com/articles/asymptotic- analysis /asy1348

  1. Perils of Asymptotics

    International Nuclear Information System (INIS)

    Dewar, R. L.

    1995-01-01

    A large part of physics consists of learning which asymptotic methods to apply where, yet physicists are not always taught asymptotics in a systematic way. Asymptotology is given using an example from aerodynamics, and a rent Phys. Rev. Letter Comment is used as a case study of one subtle way things can go wrong. It is shown that the application of local analysis leads to erroneous conclusions regarding the existence of a continuous spectrum in a simple test problem, showing that a global analysis must be used. The final section presents results on a more sophisticated example, namely the WKBJ solution of Mathieu equation. 13 refs., 2 figs

  2. Asymptotic Poincare lemma and its applications

    International Nuclear Information System (INIS)

    Ziolkowski, R.W.; Deschamps, G.A.

    1984-01-01

    An asymptotic version of Poincare's lemma is defined and solutions are obtained with the calculus of exterior differential forms. They are used to construct the asymptotic approximations of multidimensional oscillatory integrals whose forms are commonly encountered, for example, in electromagnetic problems. In particular, the boundary and stationary point evaluations of these integrals are considered. The former is applied to the Kirchhoff representation of a scalar field diffracted through an aperture and simply recovers the Maggi-Rubinowicz-Miyamoto-Wolf results. Asymptotic approximations in the presence of other (standard) critical points are also discussed. Techniques developed for the asymptotic Poincare lemma are used to generate a general representation of the Leray form. All of the (differential form) expressions presented are generalizations of known (vector calculus) results. 14 references, 4 figures

  3. Some asymptotic theory for variance function smoothing | Kibua ...

    African Journals Online (AJOL)

    Simple selection of the smoothing parameter is suggested. Both homoscedastic and heteroscedastic regression models are considered. Keywords: Asymptotic, Smoothing, Kernel, Bandwidth, Bias, Variance, Mean squared error, Homoscedastic, Heteroscedastic. > East African Journal of Statistics Vol. 1 (1) 2005: pp. 9-22 ...

  4. Asymptotic analysis of discrete schemes for non-equilibrium radiation diffusion

    International Nuclear Information System (INIS)

    Cui, Xia; Yuan, Guang-wei; Shen, Zhi-jun

    2016-01-01

    Motivated by providing well-behaved fully discrete schemes in practice, this paper extends the asymptotic analysis on time integration methods for non-equilibrium radiation diffusion in [2] to space discretizations. Therein studies were carried out on a two-temperature model with Larsen's flux-limited diffusion operator, both the implicitly balanced (IB) and linearly implicit (LI) methods were shown asymptotic-preserving. In this paper, we focus on asymptotic analysis for space discrete schemes in dimensions one and two. First, in construction of the schemes, in contrast to traditional first-order approximations, asymmetric second-order accurate spatial approximations are devised for flux-limiters on boundary, and discrete schemes with second-order accuracy on global spatial domain are acquired consequently. Then by employing formal asymptotic analysis, the first-order asymptotic-preserving property for these schemes and furthermore for the fully discrete schemes is shown. Finally, with the help of manufactured solutions, numerical tests are performed, which demonstrate quantitatively the fully discrete schemes with IB time evolution indeed have the accuracy and asymptotic convergence as theory predicts, hence are well qualified for both non-equilibrium and equilibrium radiation diffusion. - Highlights: • Provide AP fully discrete schemes for non-equilibrium radiation diffusion. • Propose second order accurate schemes by asymmetric approach for boundary flux-limiter. • Show first order AP property of spatially and fully discrete schemes with IB evolution. • Devise subtle artificial solutions; verify accuracy and AP property quantitatively. • Ideas can be generalized to 3-dimensional problems and higher order implicit schemes.

  5. Asymptotic inversion of the Erlang B formula

    NARCIS (Netherlands)

    Leeuwaarden, van J.S.H.; Temme, N.M.

    2008-01-01

    The Erlang B formula represents the steady-state blocking probability in the Erlang loss model or M=M=s=s queue. We derive asymptotic expansions for the offered load that matches, for a given number of servers, a certain blocking probability. In addressing this inversion problem we make use of

  6. Self-similar cosmological solutions with dark energy. I. Formulation and asymptotic analysis

    International Nuclear Information System (INIS)

    Harada, Tomohiro; Maeda, Hideki; Carr, B. J.

    2008-01-01

    Based on the asymptotic analysis of ordinary differential equations, we classify all spherically symmetric self-similar solutions to the Einstein equations which are asymptotically Friedmann at large distances and contain a perfect fluid with equation of state p=(γ-1)μ with 0 1). However, in the latter case there is an additional parameter associated with the weak discontinuity at the sonic point and the solutions are only asymptotically 'quasi-Friedmann', in the sense that they exhibit an angle deficit at large distances. In the 0<γ<2/3 case, there is no sonic point and there exists a one-parameter family of solutions which are genuinely asymptotically Friedmann at large distances. We find eight classes of asymptotic behavior: Friedmann or quasi-Friedmann or quasistatic or constant-velocity at large distances, quasi-Friedmann or positive-mass singular or negative-mass singular at small distances, and quasi-Kantowski-Sachs at intermediate distances. The self-similar asymptotically quasistatic and quasi-Kantowski-Sachs solutions are analytically extendible and of great cosmological interest. We also investigate their conformal diagrams. The results of the present analysis are utilized in an accompanying paper to obtain and physically interpret numerical solutions

  7. Nursing domain of CI governance: recommendations for health IT adoption and optimization.

    Science.gov (United States)

    Collins, Sarah A; Alexander, Dana; Moss, Jacqueline

    2015-05-01

    There is a lack of recommended models for clinical informatics (CI) governance that can facilitate successful health information technology implementation. To understand existing CI governance structures and provide a model with recommended roles, partnerships, and councils based on perspectives of nursing informatics leaders. We conducted a cross-sectional study through administering a survey via telephone to facilitate semistructured interviews from June 2012 through November 2012. We interviewed 12 nursing informatics leaders, across the United States, currently serving in executive- or director-level CI roles at integrated health care systems that have pioneered electronic health records implementation projects. We found the following 4 themes emerge: (1) Interprofessional partnerships are essential. (2) Critical role-based levels of practice and competencies need to be defined. (3) Integration into existing clinical infrastructure facilitates success. (4) CI governance is an evolving process. We described specific lessons learned and a model of CI governance with recommended roles, partnerships, and councils from the perspective of nursing informatics leaders. Applied CI work is highly interprofessional with patient safety implications that heighten the need for best practice models for governance structures, adequate resource allocation, and role-based competencies. Overall, there is a notable lack of a centralized CI group comprised of formally trained informaticians to provide expertise and promote adherence to informatics principles within EHR implementation governance structures. Our model of the nursing domain of CI governance with recommended roles, partnerships, and councils provides a starting point that should be further explored and validated. Not only can the model be used to understand, shape, and standardize roles, competencies, and structures within CI practice for nursing, it can be used within other clinical domains and by other informaticians

  8. Asymptotics of Laplace-Dirichlet integrals

    International Nuclear Information System (INIS)

    Kozlov, S.M.

    1990-01-01

    Here we consider the problem of the asymptotic expansion of the Laplace-Dirichlet integral. In homogenization theory such an integral represents the energy, and in general depends on the cohomology class. Here the asymptotic behaviour of this integral is found. The full text will appear in Functional Analysis and Applications, 1990, No.2. (author). 3 refs

  9. Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models

    International Nuclear Information System (INIS)

    Hsu, Cheng-Hsiung; Yang, Tzi-Sheng

    2013-01-01

    The purpose of this work is to investigate the existence, uniqueness, monotonicity and asymptotic behaviour of travelling wave solutions for a general epidemic model arising from the spread of an epidemic by oral–faecal transmission. First, we apply Schauder's fixed point theorem combining with a supersolution and subsolution pair to derive the existence of positive monotone monostable travelling wave solutions. Then, applying the Ikehara's theorem, we determine the exponential rates of travelling wave solutions which converge to two different equilibria as the moving coordinate tends to positive infinity and negative infinity, respectively. Finally, using the sliding method, we prove the uniqueness result provided the travelling wave solutions satisfy some boundedness conditions. (paper)

  10. Discounted cost model for condition-based maintenance optimization

    International Nuclear Information System (INIS)

    Weide, J.A.M. van der; Pandey, M.D.; Noortwijk, J.M. van

    2010-01-01

    This paper presents methods to evaluate the reliability and optimize the maintenance of engineering systems that are damaged by shocks or transients arriving randomly in time and overall degradation is modeled as a cumulative stochastic point process. The paper presents a conceptually clear and comprehensive derivation of formulas for computing the discounted cost associated with a maintenance policy combining both condition-based and age-based criteria for preventive maintenance. The proposed discounted cost model provides a more realistic basis for optimizing the maintenance policies than those based on the asymptotic, non-discounted cost rate criterion.

  11. Asymptotic conditions and conserved quantities

    International Nuclear Information System (INIS)

    Koul, R.K.

    1990-01-01

    Two problems have been investigated in this dissertation. The first one deals with the relationship between stationary space-times which are flat at null infinity and stationary space-times which are asymptotic flat at space-like infinity. It is shown that the stationary space-times which are asymptotically flat, in the Penrose sense, at null infinity, are asymptotically flat at space-like infinity in the Geroch sense and metric at space like infinity is at least C 1 . In the converse it is shown that the stationary space-times which are asymptotically flat at space like infinity, in the Beig sense, are asymptotically flat at null infinity in the Penrose sense. The second problem addressed deals with the theories of arbitrary dimensions. The theories treated are the ones which have fiber bundle structure, outside some compact region. For these theories the criterion for the choice of the background metric is specified, and the boundary condition for the initial data set (q ab , P ab ) is given in terms of the background metric. Having these boundary conditions it is shown that the symplectic structure and the constraint functionals are well defined. The conserved quantities associated with internal Killing vector fields are specified. Lastly the energy relative to a fixed background and the total energy of the theory have been given. It is also shown that the total energy of the theory is independent of the choice of the background

  12. Black hole thermodynamics from a variational principle: asymptotically conical backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    An, Ok Song [SISSA and INFN, Sezione di Trieste,Via Bonomea 265, 34136 Trieste (Italy); Department of Physics, Kim Il Sung University,Ryongnam Dong, TaeSong District, Pyongyang, D.P.R. (Korea, Republic of); ICTP,Strada Costiera 11, 34014 Trieste (Italy); Cvetič, Mirjam [Department of Physics and Astronomy, University of Pennsylvania,209 S 33rd St, Philadelphia, PA 19104 (United States); Center for Applied Mathematics and Theoretical Physics, University of Maribor,Mladinska 3, SI2000 Maribor (Slovenia); Papadimitriou, Ioannis [SISSA and INFN, Sezione di Trieste,Via Bonomea 265, 34136 Trieste (Italy)

    2016-03-14

    The variational problem of gravity theories is directly related to black hole thermodynamics. For asymptotically locally AdS backgrounds it is known that holographic renormalization results in a variational principle in terms of equivalence classes of boundary data under the local asymptotic symmetries of the theory, which automatically leads to finite conserved charges satisfying the first law of thermodynamics. We show that this connection holds well beyond asymptotically AdS black holes. In particular, we formulate the variational problem for N=2 STU supergravity in four dimensions with boundary conditions corresponding to those obeyed by the so called ‘subtracted geometries’. We show that such boundary conditions can be imposed covariantly in terms of a set of asymptotic second class constraints, and we derive the appropriate boundary terms that render the variational problem well posed in two different duality frames of the STU model. This allows us to define finite conserved charges associated with any asymptotic Killing vector and to demonstrate that these charges satisfy the Smarr formula and the first law of thermodynamics. Moreover, by uplifting the theory to five dimensions and then reducing on a 2-sphere, we provide a precise map between the thermodynamic observables of the subtracted geometries and those of the BTZ black hole. Surface terms play a crucial role in this identification.

  13. Generalized Asymptotically Almost Periodic and Generalized Asymptotically Almost Automorphic Solutions of Abstract Multiterm Fractional Differential Inclusions

    Directory of Open Access Journals (Sweden)

    G. M. N’Guérékata

    2018-01-01

    Full Text Available The main aim of this paper is to investigate generalized asymptotical almost periodicity and generalized asymptotical almost automorphy of solutions to a class of abstract (semilinear multiterm fractional differential inclusions with Caputo derivatives. We illustrate our abstract results with several examples and possible applications.

  14. Generalized Empirical Likelihood-Based Focused Information Criterion and Model Averaging

    Directory of Open Access Journals (Sweden)

    Naoya Sueishi

    2013-07-01

    Full Text Available This paper develops model selection and averaging methods for moment restriction models. We first propose a focused information criterion based on the generalized empirical likelihood estimator. We address the issue of selecting an optimal model, rather than a correct model, for estimating a specific parameter of interest. Then, this study investigates a generalized empirical likelihood-based model averaging estimator that minimizes the asymptotic mean squared error. A simulation study suggests that our averaging estimator can be a useful alternative to existing post-selection estimators.

  15. A stochastic asymptotic-preserving scheme for a kinetic-fluid model for disperse two-phase flows with uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Shi, E-mail: sjin@wisc.edu [Department of Mathematics, University of Wisconsin–Madison, Madison, WI 53706 (United States); Institute of Natural Sciences, School of Mathematical Science, MOELSEC and SHL-MAC, Shanghai Jiao Tong University, Shanghai 200240 (China); Shu, Ruiwen, E-mail: rshu2@math.wisc.edu [Department of Mathematics, University of Wisconsin–Madison, Madison, WI 53706 (United States)

    2017-04-15

    In this paper we consider a kinetic-fluid model for disperse two-phase flows with uncertainty. We propose a stochastic asymptotic-preserving (s-AP) scheme in the generalized polynomial chaos stochastic Galerkin (gPC-sG) framework, which allows the efficient computation of the problem in both kinetic and hydrodynamic regimes. The s-AP property is proved by deriving the equilibrium of the gPC version of the Fokker–Planck operator. The coefficient matrices that arise in a Helmholtz equation and a Poisson equation, essential ingredients of the algorithms, are proved to be positive definite under reasonable and mild assumptions. The computation of the gPC version of a translation operator that arises in the inversion of the Fokker–Planck operator is accelerated by a spectrally accurate splitting method. Numerical examples illustrate the s-AP property and the efficiency of the gPC-sG method in various asymptotic regimes.

  16. Non-linear and signal energy optimal asymptotic filter design

    Directory of Open Access Journals (Sweden)

    Josef Hrusak

    2003-10-01

    Full Text Available The paper studies some connections between the main results of the well known Wiener-Kalman-Bucy stochastic approach to filtering problems based mainly on the linear stochastic estimation theory and emphasizing the optimality aspects of the achieved results and the classical deterministic frequency domain linear filters such as Chebyshev, Butterworth, Bessel, etc. A new non-stochastic but not necessarily deterministic (possibly non-linear alternative approach called asymptotic filtering based mainly on the concepts of signal power, signal energy and a system equivalence relation plays an important role in the presentation. Filtering error invariance and convergence aspects are emphasized in the approach. It is shown that introducing the signal power as the quantitative measure of energy dissipation makes it possible to achieve reasonable results from the optimality point of view as well. The property of structural energy dissipativeness is one of the most important and fundamental features of resulting filters. Therefore, it is natural to call them asymptotic filters. The notion of the asymptotic filter is carried in the paper as a proper tool in order to unify stochastic and non-stochastic, linear and nonlinear approaches to signal filtering.

  17. Technicolor and the asymptotic behavior of dynamically generated masses

    International Nuclear Information System (INIS)

    Natale, A.A.

    1984-01-01

    Arguments are given in favor of a hard asymptotic behavior of dynamically generated masses, its consequences for technicolor models are analyzed and a model is proposed, where effects of flavor changing neutral currents are highly supressed and pseudo Goldstone bosons get masses of O(30-90) GeV. (Author) [pt

  18. Large degree asymptotics of generalized Bessel polynomials

    NARCIS (Netherlands)

    J.L. López; N.M. Temme (Nico)

    2011-01-01

    textabstractAsymptotic expansions are given for large values of $n$ of the generalized Bessel polynomials $Y_n^\\mu(z)$. The analysis is based on integrals that follow from the generating functions of the polynomials. A new simple expansion is given that is valid outside a compact neighborhood of the

  19. On maximal surfaces in asymptotically flat space-times

    International Nuclear Information System (INIS)

    Bartnik, R.; Chrusciel, P.T.; O Murchadha, N.

    1990-01-01

    Existence of maximal and 'almost maximal' hypersurfaces in asymptotically flat space-times is established under boundary conditions weaker than those considered previously. We show in particular that every vacuum evolution of asymptotically flat data for Einstein equations can be foliated by slices maximal outside a spatially compact set and that every (strictly) stationary asymptotically flat space-time can be foliated by maximal hypersurfaces. Amongst other uniqueness results, we show that maximal hypersurface can be used to 'partially fix' an asymptotic Poincare group. (orig.)

  20. Chiral fermions in asymptotically safe quantum gravity.

    Science.gov (United States)

    Meibohm, J; Pawlowski, J M

    2016-01-01

    We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.

  1. Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations

    International Nuclear Information System (INIS)

    Kaikina, Elena I; Naumkin, Pavel I; Shishmarev, Il'ya A

    2009-01-01

    The large-time asymptotic behaviour of solutions of the Cauchy problem is investigated for a non-linear Sobolev-type equation with dissipation. For small initial data the approach taken is based on a detailed analysis of the Green's function of the linear problem and the use of the contraction mapping method. The case of large initial data is also closely considered. In the supercritical case the asymptotic formulae are quasi-linear. The asymptotic behaviour of solutions of a non-linear Sobolev-type equation with a critical non-linearity of the non-convective kind differs by a logarithmic correction term from the behaviour of solutions of the corresponding linear equation. For a critical convective non-linearity, as well as for a subcritical non-convective non-linearity it is proved that the leading term of the asymptotic expression for large times is a self-similar solution. For Sobolev equations with convective non-linearity the asymptotic behaviour of solutions in the subcritical case is the product of a rarefaction wave and a shock wave. Bibliography: 84 titles.

  2. Global asymptotical ω-periodicity of a fractional-order non-autonomous neural networks.

    Science.gov (United States)

    Chen, Boshan; Chen, Jiejie

    2015-08-01

    We study the global asymptotic ω-periodicity for a fractional-order non-autonomous neural networks. Firstly, based on the Caputo fractional-order derivative it is shown that ω-periodic or autonomous fractional-order neural networks cannot generate exactly ω-periodic signals. Next, by using the contraction mapping principle we discuss the existence and uniqueness of S-asymptotically ω-periodic solution for a class of fractional-order non-autonomous neural networks. Then by using a fractional-order differential and integral inequality technique, we study global Mittag-Leffler stability and global asymptotical periodicity of the fractional-order non-autonomous neural networks, which shows that all paths of the networks, starting from arbitrary points and responding to persistent, nonconstant ω-periodic external inputs, asymptotically converge to the same nonconstant ω-periodic function that may be not a solution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Asymptotic description of plasma turbulence: Krylov-Bogoliubov methods and quasi-particles

    International Nuclear Information System (INIS)

    Sosenko, P.P.; Bertrand, P.; Decyk, V.K.

    2001-01-01

    The asymptotic theory of charged particle motion in electromagnetic fields is developed for the general case of finite Larmor-radius effects by means of Krylov-Bogoliubov averaging method. The correspondence between the general asymptotic methods, elaborated by M. Krylov and M.Bogoliubov, the quasi-particle description and gyrokinetics is established. Such a comparison is used to shed more light on the physical sense of the reduced Poisson equation, introduced in gyrokinetics, and the particle polarization drift. It is shown that the modification of the Poisson equation in the asymptotic theory is due to the non-conservation of the magnetic moment and gyrophase trembling. it is shown that the second-order modification of the adiabatic invariant can determine the conditions of global plasma stability and introduces new nonlinear terms into the reduced Poisson equation. Such a modification is important for several plasma orderings, e.g. NHD type ordering. The feasibility of numerical simulation schemes in which the polarization drift is included into the quasi-particle equations of motion, and the Poisson equation remains unchanged is analyzed. A consistent asymptotic model is proposed in which the polarization drift is included into the quasi-particle equations of motion and the particle and quasi-particle velocities are equal. It is shown that in such models there are additional modifications of the reduced Poisson equation. The latter becomes even more complicated in contrast to earlier suggestions

  4. On asymptotic continuity of functions of quantum states

    International Nuclear Information System (INIS)

    Synak-Radtke, Barbara; Horodecki, Michal

    2006-01-01

    A useful kind of continuity of quantum states functions in asymptotic regime is so-called asymptotic continuity. In this letter, we provide general tools for checking if a function possesses this property. First we prove equivalence of asymptotic continuity with so-called robustness under admixture. This allows us to show that relative entropy distance from a convex set including a maximally mixed state is asymptotically continuous. Subsequently, we consider arrowing-a way of building a new function out of a given one. The procedure originates from constructions of intrinsic information and entanglement of formation. We show that arrowing preserves asymptotic continuity for a class of functions (so-called subextensive ones). The result is illustrated by means of several examples. (letter to the editor)

  5. Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices

    Science.gov (United States)

    Böttcher, A.; Bogoya, J. M.; Grudsky, S. M.; Maximenko, E. A.

    2017-11-01

    Analysis of the asymptotic behaviour of the spectral characteristics of Toeplitz matrices as the dimension of the matrix tends to infinity has a history of over 100 years. For instance, quite a number of versions of Szegő's theorem on the asymptotic behaviour of eigenvalues and of the so-called strong Szegő theorem on the asymptotic behaviour of the determinants of Toeplitz matrices are known. Starting in the 1950s, the asymptotics of the maximum and minimum eigenvalues were actively investigated. However, investigation of the individual asymptotics of all the eigenvalues and eigenvectors of Toeplitz matrices started only quite recently: the first papers on this subject were published in 2009-2010. A survey of this new field is presented here. Bibliography: 55 titles.

  6. The asymptotic expansion method via symbolic computation

    OpenAIRE

    Navarro, Juan F.

    2012-01-01

    This paper describes an algorithm for implementing a perturbation method based on an asymptotic expansion of the solution to a second-order differential equation. We also introduce a new symbolic computation system which works with the so-called modified quasipolynomials, as well as an implementation of the algorithm on it.

  7. Stationary solutions and asymptotic flatness I

    International Nuclear Information System (INIS)

    Reiris, Martin

    2014-01-01

    In general relativity, a stationary isolated system is defined as an asymptotically flat (AF) stationary spacetime with compact material sources. Other definitions that are less restrictive on the type of asymptotic could in principle be possible. Between this article and its sequel, we show that under basic assumptions, asymptotic flatness indeed follows as a consequence of Einstein's theory. In particular, it is proved that any vacuum stationary spacetime-end whose (quotient) manifold is diffeomorphic to R 3 minus a ball and whose Killing field has its norm bounded away from zero, is necessarily AF with Schwarzschildian fall off. The ‘excised’ ball would contain (if any) the actual material body, but this information is unnecessary to reach the conclusion. In this first article, we work with weakly asymptotically flat (WAF) stationary ends, a notion that generalizes as much as possible that of the AF end, and prove that WAF ends are AF with Schwarzschildian fall off. Physical and mathematical implications are also discussed. (paper)

  8. Asymptotic elastic energy in simple metals

    International Nuclear Information System (INIS)

    Khalifeh, J.M.

    1983-07-01

    The asymptotic form of the elastic binding energy ΔEsup(as)(R) between two Mg atoms in Al is expressed as a product of a lattice Green function and the dipole force tensor P. The quantity P is obtained by a nearly free electron model in which the impurity effect is introduced by a screened Ashcroft pseudopotential characterized by an excess charge ΔZ and a core radius rsub(j). (author)

  9. Asymptotic bounded consensus tracking of double-integrator multi-agent systems with bounded-jerk target based on sampled-data without velocity measurements

    International Nuclear Information System (INIS)

    Wu Shuang-Shuang; Wu Zhi-Hai; Peng Li; Xie Lin-Bo

    2017-01-01

    This paper investigates asymptotic bounded consensus tracking (ABCT) of double-integrator multi-agent systems (MASs) with an asymptotically-unbounded-acceleration and bounded-jerk target (AUABJT) available to partial agents based on sampled-data without velocity measurements. A sampled-data consensus tracking protocol (CTP) without velocity measurements is proposed to guarantee that double-integrator MASs track an AUABJT available to only partial agents. The eigenvalue analysis method together with the augmented matrix method is used to obtain the necessary and sufficient conditions for ABCT. A numerical example is provided to illustrate the effectiveness of theoretical results. (paper)

  10. Asymptotic variance of grey-scale surface area estimators

    DEFF Research Database (Denmark)

    Svane, Anne Marie

    Grey-scale local algorithms have been suggested as a fast way of estimating surface area from grey-scale digital images. Their asymptotic mean has already been described. In this paper, the asymptotic behaviour of the variance is studied in isotropic and sufficiently smooth settings, resulting...... in a general asymptotic bound. For compact convex sets with nowhere vanishing Gaussian curvature, the asymptotics can be described more explicitly. As in the case of volume estimators, the variance is decomposed into a lattice sum and an oscillating term of at most the same magnitude....

  11. Asymptotic boundary conditions for dissipative waves: General theory

    Science.gov (United States)

    Hagstrom, Thomas

    1990-01-01

    An outstanding issue in the computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.

  12. Asymptotic boundary conditions for dissipative waves - General theory

    Science.gov (United States)

    Hagstrom, Thomas

    1991-01-01

    An outstanding issue in computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.

  13. Asymptotic analysis for a simple explicit estimator in Barndorff-Nielsen and Shephard stochastic volatility models

    DEFF Research Database (Denmark)

    Hubalek, Friedrich; Posedel, Petra

    expressions for the asymptotic covariance matrix. We develop in detail the martingale estimating function approach for a bivariate model, that is not a diffusion, but admits jumps. We do not use ergodicity arguments. We assume that both, logarithmic returns and instantaneous variance are observed...... on a discrete grid of fixed width, and the observation horizon tends to infinity. This anaysis is a starting point and benchmark for further developments concerning optimal martingale estimating functions, and for theoretical and empirical investigations, that replace the (actually unobserved) variance process...

  14. The Asymptotic Expansion Method via Symbolic Computation

    Directory of Open Access Journals (Sweden)

    Juan F. Navarro

    2012-01-01

    Full Text Available This paper describes an algorithm for implementing a perturbation method based on an asymptotic expansion of the solution to a second-order differential equation. We also introduce a new symbolic computation system which works with the so-called modified quasipolynomials, as well as an implementation of the algorithm on it.

  15. Asymptotic adaptive bipartite entanglement-distillation protocol

    International Nuclear Information System (INIS)

    Hostens, Erik; Dehaene, Jeroen; De Moor, Bart

    2006-01-01

    We present an asymptotic bipartite entanglement-distillation protocol that outperforms all existing asymptotic schemes. This protocol is based on the breeding protocol with the incorporation of two-way classical communication. Like breeding, the protocol starts with an infinite number of copies of a Bell-diagonal mixed state. Breeding can be carried out as successive stages of partial information extraction, yielding the same result: one bit of information is gained at the cost (measurement) of one pure Bell state pair (ebit). The basic principle of our protocol is at every stage to replace measurements on ebits by measurements on a finite number of copies, whenever there are two equiprobable outcomes. In that case, the entropy of the global state is reduced by more than one bit. Therefore, every such replacement results in an improvement of the protocol. We explain how our protocol is organized as to have as many replacements as possible. The yield is then calculated for Werner states

  16. Fluctuations of Wigner-type random matrices associated with symmetric spaces of class DIII and CI

    Science.gov (United States)

    Stolz, Michael

    2018-02-01

    Wigner-type randomizations of the tangent spaces of classical symmetric spaces can be thought of as ordinary Wigner matrices on which additional symmetries have been imposed. In particular, they fall within the scope of a framework, due to Schenker and Schulz-Baldes, for the study of fluctuations of Wigner matrices with additional dependencies among their entries. In this contribution, we complement the results of these authors by explicit calculations of the asymptotic covariances for symmetry classes DIII and CI and thus obtain explicit CLTs for these classes. On the technical level, the present work is an exercise in controlling the cumulative effect of systematically occurring sign factors in an involved sum of products by setting up a suitable combinatorial model for the summands. This aspect may be of independent interest. Research supported by Deutsche Forschungsgemeinschaft (DFG) via SFB 878.

  17. Global Asymptotic Stability of a Predator-Prey Model with Modified Leslie-Gower and Holling-Type II Schemes

    Directory of Open Access Journals (Sweden)

    Shengbin Yu

    2012-01-01

    Full Text Available We study the predator-prey model proposed by Aziz-Alaoui and Okiye (Appl. Math. Lett. 16 (2003 1069–1075 First, the structure of equilibria and their linearized stability is investigated. Then, we provide two sufficient conditions on the global asymptotic stability of a positive equilibrium by employing the Fluctuation Lemma and Lyapunov direct method, respectively. The obtained results not only improve but also supplement existing ones.

  18. Asymptotic Conservation Laws in Classical Field Theory

    International Nuclear Information System (INIS)

    Anderson, I.M.; Torre, C.G.

    1996-01-01

    A new, general, field theoretic approach to the derivation of asymptotic conservation laws is presented. In this approach asymptotic conservation laws are constructed directly from the field equations according to a universal prescription which does not rely upon the existence of Noether identities or any Lagrangian or Hamiltonian formalisms. The resulting general expressions of the conservation laws enjoy important invariance properties and synthesize all known asymptotic conservation laws, such as the Arnowitt-Deser-Misner energy in general relativity. copyright 1996 The American Physical Society

  19. Asymptotic optimality of RESTART estimators in highly dependable systems

    International Nuclear Information System (INIS)

    Villén-Altamirano, J.

    2014-01-01

    We consider a wide class of models that includes the highly reliable Markovian systems (HRMS) often used to represent the evolution of multi-component systems in reliability settings. Repair times and component lifetimes are random variables that follow a general distribution, and the repair service adopts a priority repair rule based on system failure risk. Since crude simulation has proved to be inefficient for highly-dependable systems, the RESTART method is used for the estimation of steady-state unavailability and other reliability measures. In this method, a number of simulation retrials are performed when the process enters regions of the state space where the chance of occurrence of a rare event (e.g., a system failure) is higher. The main difficulty involved in applying this method is finding a suitable function, called the importance function, to define the regions. In this paper we introduce an importance function which, for unbalanced systems, represents a great improvement over the importance function used in previous papers. We also demonstrate the asymptotic optimality of RESTART estimators in these models. Several examples are presented to show the effectiveness of the new approach, and probabilities up to the order of 10 −42 are accurately estimated with little computational effort. - Highlights: • Rare event probabilities of highly reliable systems are estimated by simulation. • The asymptotic optimality of the application is proved. • A better importance function for highly reliable systems is provided in the paper

  20. Asymptotic symmetries, holography and topological hair

    Science.gov (United States)

    Mishra, Rashmish K.; Sundrum, Raman

    2018-01-01

    Asymptotic symmetries of AdS4 quantum gravity and gauge theory are derived by coupling the holographically dual CFT3 to Chern-Simons gauge theory and 3D gravity in a "probe" (large-level) limit. Despite the fact that the three-dimensional AdS4 boundary as a whole is consistent with only finite-dimensional asymptotic symmetries, given by AdS isometries, infinite-dimensional symmetries are shown to arise in circumstances where one is restricted to boundary subspaces with effectively two-dimensional geometry. A canonical example of such a restriction occurs within the 4D subregion described by a Wheeler-DeWitt wavefunctional of AdS4 quantum gravity. An AdS4 analog of Minkowski "super-rotation" asymptotic symmetry is probed by 3D Einstein gravity, yielding CFT2 structure (in a large central charge limit), via AdS3 foliation of AdS4 and the AdS3/CFT2 correspondence. The maximal asymptotic symmetry is however probed by 3D conformal gravity. Both 3D gravities have Chern-Simons formulation, manifesting their topological character. Chern-Simons structure is also shown to be emergent in the Poincare patch of AdS4, as soft/boundary limits of 4D gauge theory, rather than "put in by hand" as an external probe. This results in a finite effective Chern-Simons level. Several of the considerations of asymptotic symmetry structure are found to be simpler for AdS4 than for Mink4, such as non-zero 4D particle masses, 4D non-perturbative "hard" effects, and consistency with unitarity. The last of these in particular is greatly simplified because in some set-ups the time dimension is explicitly shared by each level of description: Lorentzian AdS4, CFT3 and CFT2. Relatedly, the CFT2 structure clarifies the sense in which the infinite asymptotic charges constitute a useful form of "hair" for black holes and other complex 4D states. An AdS4 analog of Minkowski "memory" effects is derived, but with late-time memory of earlier events being replaced by (holographic) "shadow" effects. Lessons

  1. Asymptotically safe non-minimal inflation

    Energy Technology Data Exchange (ETDEWEB)

    Tronconi, Alessandro, E-mail: Alessandro.Tronconi@bo.infn.it [Dipartimento di Fisica e Astronomia and INFN, Via Irnerio 46,40126 Bologna (Italy)

    2017-07-01

    We study the constraints imposed by the requirement of Asymptotic Safety on a class of inflationary models with an inflaton field non-minimally coupled to the Ricci scalar. The critical surface in the space of theories is determined by the improved renormalization group flow which takes into account quantum corrections beyond the one loop approximation. The combination of constraints deriving from Planck observations and those from theory puts severe bounds on the values of the parameters of the model and predicts a quite large tensor to scalar ratio. We finally comment on the dependence of the results on the definition of the infrared energy scale which parametrises the running on the critical surface.

  2. Accelerated convergence and robust asymptotic regression of the Gumbel scale parameter for gapped sequence alignment

    International Nuclear Information System (INIS)

    Park, Yonil; Sheetlin, Sergey; Spouge, John L

    2005-01-01

    Searches through biological databases provide the primary motivation for studying sequence alignment statistics. Other motivations include physical models of annealing processes or mathematical similarities to, e.g., first-passage percolation and interacting particle systems. Here, we investigate sequence alignment statistics, partly to explore two general mathematical methods. First, we model the global alignment of random sequences heuristically with Markov additive processes. In sequence alignment, the heuristic suggests a numerical acceleration scheme for simulating an important asymptotic parameter (the Gumbel scale parameter λ). The heuristic might apply to similar mathematical theories. Second, we extract the asymptotic parameter λ from simulation data with the statistical technique of robust regression. Robust regression is admirably suited to 'asymptotic regression' and deserves to be better known for it

  3. Almost Surely Asymptotic Stability of Exact and Numerical Solutions for Neutral Stochastic Pantograph Equations

    Directory of Open Access Journals (Sweden)

    Zhanhua Yu

    2011-01-01

    Full Text Available We study the almost surely asymptotic stability of exact solutions to neutral stochastic pantograph equations (NSPEs, and sufficient conditions are obtained. Based on these sufficient conditions, we show that the backward Euler method (BEM with variable stepsize can preserve the almost surely asymptotic stability. Numerical examples are demonstrated for illustration.

  4. Large gauge symmetries and asymptotic states in QED

    Energy Technology Data Exchange (ETDEWEB)

    Gabai, Barak; Sever, Amit [School of Physics and Astronomy, Tel Aviv University,Ramat Aviv 69978 (Israel)

    2016-12-19

    Large Gauge Transformations (LGT) are gauge transformations that do not vanish at infinity. Instead, they asymptotically approach arbitrary functions on the conformal sphere at infinity. Recently, it was argued that the LGT should be treated as an infinite set of global symmetries which are spontaneously broken by the vacuum. It was established that in QED, the Ward identities of their induced symmetries are equivalent to the Soft Photon Theorem. In this paper we study the implications of LGT on the S-matrix between physical asymptotic states in massive QED. In appose to the naively free scattering states, physical asymptotic states incorporate the long range electric field between asymptotic charged particles and were already constructed in 1970 by Kulish and Faddeev. We find that the LGT charge is independent of the particles’ momenta and may be associated to the vacuum. The soft theorem’s manifestation as a Ward identity turns out to be an outcome of not working with the physical asymptotic states.

  5. Asymptotic analysis and boundary layers

    CERN Document Server

    Cousteix, Jean

    2007-01-01

    This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general comprehensive presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows. The advantages of SCEM are discussed in comparison with the standard Method of Matched Asymptotic Expansions. In particular, for the first time, the theory of Interactive Boundary Layer is fully justified. With its chapter summaries, detailed derivations of results, discussed examples and fully worked out problems and solutions, the book is self-contained. It is written on a mathematical level accessible to graduate and post-graduate students of engineering and physics with a good knowledge in fluid mechanics. Researchers and practitioners will estee...

  6. Asymptotic theory for regressions with smoothly changing parameters

    DEFF Research Database (Denmark)

    Hillebrand, Eric; Medeiros, Marcelo; Xu, Junyue

    2013-01-01

    We derive asymptotic properties of the quasi maximum likelihood estimator of smooth transition regressions when time is the transition variable. The consistency of the estimator and its asymptotic distribution are examined. It is shown that the estimator converges at the usual pT-rate and has...... an asymptotically normal distribution. Finite sample properties of the estimator are explored in simulations. We illustrate with an application to US inflation and output data....

  7. Asymptotic problems for stochastic partial differential equations

    Science.gov (United States)

    Salins, Michael

    Stochastic partial differential equations (SPDEs) can be used to model systems in a wide variety of fields including physics, chemistry, and engineering. The main SPDEs of interest in this dissertation are the semilinear stochastic wave equations which model the movement of a material with constant mass density that is exposed to both determinstic and random forcing. Cerrai and Freidlin have shown that on fixed time intervals, as the mass density of the material approaches zero, the solutions of the stochastic wave equation converge uniformly to the solutions of a stochastic heat equation, in probability. This is called the Smoluchowski-Kramers approximation. In Chapter 2, we investigate some of the multi-scale behaviors that these wave equations exhibit. In particular, we show that the Freidlin-Wentzell exit place and exit time asymptotics for the stochastic wave equation in the small noise regime can be approximated by the exit place and exit time asymptotics for the stochastic heat equation. We prove that the exit time and exit place asymptotics are characterized by quantities called quasipotentials and we prove that the quasipotentials converge. We then investigate the special case where the equation has a gradient structure and show that we can explicitly solve for the quasipotentials, and that the quasipotentials for the heat equation and wave equation are equal. In Chapter 3, we study the Smoluchowski-Kramers approximation in the case where the material is electrically charged and exposed to a magnetic field. Interestingly, if the system is frictionless, then the Smoluchowski-Kramers approximation does not hold. We prove that the Smoluchowski-Kramers approximation is valid for systems exposed to both a magnetic field and friction. Notably, we prove that the solutions to the second-order equations converge to the solutions of the first-order equation in an Lp sense. This strengthens previous results where convergence was proved in probability.

  8. Asymptotically perfect discrimination in the local-operation-and-classical-communication paradigm

    International Nuclear Information System (INIS)

    Kleinmann, M.; Kampermann, H.; Bruss, D.

    2011-01-01

    We revisit the problem of discriminating orthogonal quantum states within the local-quantum-operation-and-classical-communication (LOCC) paradigm. Our particular focus is on the asymptotic situation where the parties have infinite resources and the protocol may become arbitrarily long. Our main result is a necessary condition for perfect asymptotic LOCC discrimination. As an application, we prove that for complete product bases, unlimited resources are of no advantage. On the other hand, we identify an example for which it still remains undecided whether unlimited resources are superior.

  9. 3D face recognition with asymptotic cones based principal curvatures

    KAUST Repository

    Tang, Yinhang

    2015-05-01

    The classical curvatures of smooth surfaces (Gaussian, mean and principal curvatures) have been widely used in 3D face recognition (FR). However, facial surfaces resulting from 3D sensors are discrete meshes. In this paper, we present a general framework and define three principal curvatures on discrete surfaces for the purpose of 3D FR. These principal curvatures are derived from the construction of asymptotic cones associated to any Borel subset of the discrete surface. They describe the local geometry of the underlying mesh. First two of them correspond to the classical principal curvatures in the smooth case. We isolate the third principal curvature that carries out meaningful geometric shape information. The three principal curvatures in different Borel subsets scales give multi-scale local facial surface descriptors. We combine the proposed principal curvatures with the LNP-based facial descriptor and SRC for recognition. The identification and verification experiments demonstrate the practicability and accuracy of the third principal curvature and the fusion of multi-scale Borel subset descriptors on 3D face from FRGC v2.0.

  10. 3D face recognition with asymptotic cones based principal curvatures

    KAUST Repository

    Tang, Yinhang; Sun, Xiang; Huang, Di; Morvan, Jean-Marie; Wang, Yunhong; Chen, Liming

    2015-01-01

    The classical curvatures of smooth surfaces (Gaussian, mean and principal curvatures) have been widely used in 3D face recognition (FR). However, facial surfaces resulting from 3D sensors are discrete meshes. In this paper, we present a general framework and define three principal curvatures on discrete surfaces for the purpose of 3D FR. These principal curvatures are derived from the construction of asymptotic cones associated to any Borel subset of the discrete surface. They describe the local geometry of the underlying mesh. First two of them correspond to the classical principal curvatures in the smooth case. We isolate the third principal curvature that carries out meaningful geometric shape information. The three principal curvatures in different Borel subsets scales give multi-scale local facial surface descriptors. We combine the proposed principal curvatures with the LNP-based facial descriptor and SRC for recognition. The identification and verification experiments demonstrate the practicability and accuracy of the third principal curvature and the fusion of multi-scale Borel subset descriptors on 3D face from FRGC v2.0.

  11. Criteria for exponential asymptotic stability in the large of ...

    African Journals Online (AJOL)

    The purpose of this study is to provide necessary and sufficient conditions for exponential asymptotic stability in the large and uniform asymptotic stability of perturbations of linear systems with unbounded delays. A strong relationship is established between the two types of asymptotic stability. It is found that if the ...

  12. Asymptotic Theory for Regressions with Smoothly Changing Parameters

    DEFF Research Database (Denmark)

    Hillebrand, Eric Tobias; Medeiros, Marcelo C.; Xu, Junyue

    We derive asymptotic properties of the quasi maximum likelihood estimator of smooth transition regressions when time is the transition variable. The consistency of the estimator and its asymptotic distribution are examined. It is shown that the estimator converges at the usual square-root-of-T rate...... and has an asymptotically normal distribution. Finite sample properties of the estimator are explored in simulations. We illustrate with an application to US inflation and output data....

  13. Nonlinear adaptive control system design with asymptotically stable parameter estimation error

    Science.gov (United States)

    Mishkov, Rumen; Darmonski, Stanislav

    2018-01-01

    The paper presents a new general method for nonlinear adaptive system design with asymptotic stability of the parameter estimation error. The advantages of the approach include asymptotic unknown parameter estimation without persistent excitation and capability to directly control the estimates transient response time. The method proposed modifies the basic parameter estimation dynamics designed via a known nonlinear adaptive control approach. The modification is based on the generalised prediction error, a priori constraints with a hierarchical parameter projection algorithm, and the stable data accumulation concepts. The data accumulation principle is the main tool for achieving asymptotic unknown parameter estimation. It relies on the parametric identifiability system property introduced. Necessary and sufficient conditions for exponential stability of the data accumulation dynamics are derived. The approach is applied in a nonlinear adaptive speed tracking vector control of a three-phase induction motor.

  14. Asymptotic expansion of the Keesom integral

    International Nuclear Information System (INIS)

    Abbott, Paul C

    2007-01-01

    The asymptotic evaluation and expansion of the Keesom integral, K(a), is discussed at some length in Battezzati and Magnasco (2004 J. Phys. A: Math. Gen. 37 9677; 2005 J. Phys. A: Math. Gen. 38 6715). Here, using standard identities, it is shown that this triple integral can be reduced to a single integral from which the asymptotic behaviour is readily obtained using Laplace's method. (comment)

  15. AGB [asymptotic giant branch]: Star evolution

    International Nuclear Information System (INIS)

    Becker, S.A.

    1987-01-01

    Asymptotic giant branch stars are red supergiant stars of low-to-intermediate mass. This class of stars is of particular interest because many of these stars can have nuclear processed material brought up repeatedly from the deep interior to the surface where it can be observed. A review of recent theoretical and observational work on stars undergoing the asymptotic giant branch phase is presented. 41 refs

  16. Wijsman Orlicz Asymptotically Ideal -Statistical Equivalent Sequences

    Directory of Open Access Journals (Sweden)

    Bipan Hazarika

    2013-01-01

    in Wijsman sense and present some definitions which are the natural combination of the definition of asymptotic equivalence, statistical equivalent, -statistical equivalent sequences in Wijsman sense. Finally, we introduce the notion of Cesaro Orlicz asymptotically -equivalent sequences in Wijsman sense and establish their relationship with other classes.

  17. On Small Deviation Asymptotics In L2 of Some Mixed Gaussian Processes

    Directory of Open Access Journals (Sweden)

    Alexander I. Nazarov

    2018-04-01

    Full Text Available We study the exact small deviation asymptotics with respect to the Hilbert norm for some mixed Gaussian processes. The simplest example here is the linear combination of the Wiener process and the Brownian bridge. We get the precise final result in this case and in some examples of more complicated processes of similar structure. The proof is based on Karhunen–Loève expansion together with spectral asymptotics of differential operators and complex analysis methods.

  18. Asymptotic geometric analysis, part I

    CERN Document Server

    Artstein-Avidan, Shiri

    2015-01-01

    The authors present the theory of asymptotic geometric analysis, a field which lies on the border between geometry and functional analysis. In this field, isometric problems that are typical for geometry in low dimensions are substituted by an "isomorphic" point of view, and an asymptotic approach (as dimension tends to infinity) is introduced. Geometry and analysis meet here in a non-trivial way. Basic examples of geometric inequalities in isomorphic form which are encountered in the book are the "isomorphic isoperimetric inequalities" which led to the discovery of the "concentration phenomen

  19. Asymptotic safety guaranteed

    DEFF Research Database (Denmark)

    Litim, Daniel F.; Sannino, Francesco

    2014-01-01

    We study the ultraviolet behaviour of four-dimensional quantum field theories involving non-abelian gauge fields, fermions and scalars in the Veneziano limit. In a regime where asymptotic freedom is lost, we explain how the three types of fields cooperate to develop fully interacting ultraviolet ...

  20. Cosmic censorship, persistent curvature and asymptotic causal pathology

    International Nuclear Information System (INIS)

    Newman, R.P.A.C.

    1984-01-01

    The paper examines cosmic censorship in general relativity theory. Conformally flat space-times; persistent curvature; weakly asymptotically simple and empty asymptotes; censorship conditions; and the censorship theorem; are all discussed. (U.K.)

  1. On the asymptotic preserving property of the unified gas kinetic scheme for the diffusion limit of linear kinetic models

    International Nuclear Information System (INIS)

    Mieussens, Luc

    2013-01-01

    The unified gas kinetic scheme (UGKS) of K. Xu et al. (2010) [37], originally developed for multiscale gas dynamics problems, is applied in this paper to a linear kinetic model of radiative transfer theory. While such problems exhibit purely diffusive behavior in the optically thick (or small Knudsen) regime, we prove that UGKS is still asymptotic preserving (AP) in this regime, but for the free transport regime as well. Moreover, this scheme is modified to include a time implicit discretization of the limit diffusion equation, and to correctly capture the solution in case of boundary layers. Contrary to many AP schemes, this method is based on a standard finite volume approach, it does neither use any decomposition of the solution, nor staggered grids. Several numerical tests demonstrate the properties of the scheme

  2. Asymptotically optimal production policies in dynamic stochastic jobshops with limited buffers

    Science.gov (United States)

    Hou, Yumei; Sethi, Suresh P.; Zhang, Hanqin; Zhang, Qing

    2006-05-01

    We consider a production planning problem for a jobshop with unreliable machines producing a number of products. There are upper and lower bounds on intermediate parts and an upper bound on finished parts. The machine capacities are modelled as finite state Markov chains. The objective is to choose the rate of production so as to minimize the total discounted cost of inventory and production. Finding an optimal control policy for this problem is difficult. Instead, we derive an asymptotic approximation by letting the rates of change of the machine states approach infinity. The asymptotic analysis leads to a limiting problem in which the stochastic machine capacities are replaced by their equilibrium mean capacities. The value function for the original problem is shown to converge to the value function of the limiting problem. The convergence rate of the value function together with the error estimate for the constructed asymptotic optimal production policies are established.

  3. Asymptotic behaviour of a rescattering series for nonlinear reggeons

    International Nuclear Information System (INIS)

    Akkelin, S.V.; Martynov, E.S.

    1990-01-01

    A series of elastic re-scattering (both quasi-eikonal and U-matrix ones) for reggeons with nonlinear trajectories are estimated asymptotically. The calculations are performed for models of supercritical and dipole pomerons. A weak dependence of the series of re-scattering on reggeon trajectory nonlinearity is revealed. 13 refs.; 3 figs

  4. Asymptotic expansions for high-contrast linear elasticity

    KAUST Repository

    Poveda, Leonardo A.; Huepo, Sebastian; Calo, Victor M.; Galvis, Juan

    2015-01-01

    We study linear elasticity problems with high contrast in the coefficients using asymptotic limits recently introduced. We derive an asymptotic expansion to solve heterogeneous elasticity problems in terms of the contrast in the coefficients. We study the convergence of the expansion in the H1 norm. © 2015 Elsevier B.V.

  5. Asymptotic expansions for high-contrast linear elasticity

    KAUST Repository

    Poveda, Leonardo A.

    2015-03-01

    We study linear elasticity problems with high contrast in the coefficients using asymptotic limits recently introduced. We derive an asymptotic expansion to solve heterogeneous elasticity problems in terms of the contrast in the coefficients. We study the convergence of the expansion in the H1 norm. © 2015 Elsevier B.V.

  6. On asymptotic analysis of spectral problems in elasticity

    Directory of Open Access Journals (Sweden)

    S.A. Nazarov

    Full Text Available The three-dimensional spectral elasticity problem is studied in an anisotropic and inhomogeneous solid with small defects, i.e., inclusions, voids, and microcracks. Asymptotics of eigenfrequencies and the corresponding elastic eigenmodes are constructed and justified. New technicalities of the asymptotic analysis are related to variable coefficients of differential operators, vectorial setting of the problem, and usage of intrinsic integral characteristics of defects. The asymptotic formulae are developed in a form convenient for application in shape optimization and inverse problems.

  7. State Manipulation and Asymptotic Inefficiency in a Dynamic Model of Monetary Policy

    DEFF Research Database (Denmark)

    Jensen, Henrik; Lockwood, Ben

    2000-01-01

    . In a dynamic version of a well-known monetary policy game we show that such asymptotic efficiency may not be possible, as the presence of a state variable introduces the possibility of state manipulation. Moreover, the lowest inflation rate in Nash threats equilibrium may be increasing as players become more...

  8. Exact asymptotic relations for the effective response of linear viscoelastic heterogeneous media

    Science.gov (United States)

    Gallican, Valentin; Brenner, Renald; Suquet, Pierre

    2017-11-01

    This article addresses the asymptotic response of viscoelastic heterogeneous media in the frequency domain, at high and low frequencies, for different types of elementary linear viscoelastic constituents. By resorting to stationary principles for complex viscoelasticity and adopting a classification of the viscoelastic behaviours based on the nature of their asymptotic regimes, either elastic or viscous, four exact relations are obtained on the overall viscoelastic complex moduli in each case. Two relations are related to the asymptotic uncoupled heterogeneous problems, while the two remaining ones result from the viscoelastic coupling that manifests itself in the transient regime. These results also provide exact conditions on certain integrals in time of the effective relaxation spectrum. This general setting encompasses the results obtained in preceding studies on mixtures of Maxwell constituents [1,2]. xml:lang="fr"

  9. Non-asymptotic fractional order differentiators via an algebraic parametric method

    KAUST Repository

    Liu, Dayan; Gibaru, O.; Perruquetti, Wilfrid

    2012-01-01

    Recently, Mboup, Join and Fliess [27], [28] introduced non-asymptotic integer order differentiators by using an algebraic parametric estimation method [7], [8]. In this paper, in order to obtain non-asymptotic fractional order differentiators we apply this algebraic parametric method to truncated expansions of fractional Taylor series based on the Jumarie's modified Riemann-Liouville derivative [14]. Exact and simple formulae for these differentiators are given where a sliding integration window of a noisy signal involving Jacobi polynomials is used without complex mathematical deduction. The efficiency and the stability with respect to corrupting noises of the proposed fractional order differentiators are shown in numerical simulations. © 2012 IEEE.

  10. Non-asymptotic fractional order differentiators via an algebraic parametric method

    KAUST Repository

    Liu, Dayan

    2012-08-01

    Recently, Mboup, Join and Fliess [27], [28] introduced non-asymptotic integer order differentiators by using an algebraic parametric estimation method [7], [8]. In this paper, in order to obtain non-asymptotic fractional order differentiators we apply this algebraic parametric method to truncated expansions of fractional Taylor series based on the Jumarie\\'s modified Riemann-Liouville derivative [14]. Exact and simple formulae for these differentiators are given where a sliding integration window of a noisy signal involving Jacobi polynomials is used without complex mathematical deduction. The efficiency and the stability with respect to corrupting noises of the proposed fractional order differentiators are shown in numerical simulations. © 2012 IEEE.

  11. Max-Min SINR in Large-Scale Single-Cell MU-MIMO: Asymptotic Analysis and Low Complexity Transceivers

    KAUST Repository

    Sifaou, Houssem

    2016-12-28

    This work focuses on the downlink and uplink of large-scale single-cell MU-MIMO systems in which the base station (BS) endowed with M antennas communicates with K single-antenna user equipments (UEs). Particularly, we aim at reducing the complexity of the linear precoder and receiver that maximize the minimum signal-to-interference-plus-noise ratio subject to a given power constraint. To this end, we consider the asymptotic regime in which M and K grow large with a given ratio. Tools from random matrix theory (RMT) are then used to compute, in closed form, accurate approximations for the parameters of the optimal precoder and receiver, when imperfect channel state information (modeled by the generic Gauss-Markov formulation form) is available at the BS. The asymptotic analysis allows us to derive the asymptotically optimal linear precoder and receiver that are characterized by a lower complexity (due to the dependence on the large scale components of the channel) and, possibly, by a better resilience to imperfect channel state information. However, the implementation of both is still challenging as it requires fast inversions of large matrices in every coherence period. To overcome this issue, we apply the truncated polynomial expansion (TPE) technique to the precoding and receiving vector of each UE and make use of RMT to determine the optimal weighting coefficients on a per- UE basis that asymptotically solve the max-min SINR problem. Numerical results are used to validate the asymptotic analysis in the finite system regime and to show that the proposed TPE transceivers efficiently mimic the optimal ones, while requiring much lower computational complexity.

  12. EPRL/FK asymptotics and the flatness problem

    Science.gov (United States)

    Oliveira, José Ricardo

    2018-05-01

    Spin foam models are an approach to quantum gravity based on the concept of sum over states, which aims to describe quantum spacetime dynamics in a way that its parent framework, loop quantum gravity, has not as of yet succeeded. Since these models’ relation to classical Einstein gravity is not explicit, an important test of their viabilitiy is the study of asymptotics—the classical theory should be obtained in a limit where quantum effects are negligible, taken to be the limit of large triangle areas in a triangulated manifold with boundary. In this paper we will briefly introduce the EPRL/FK spin foam model and known results about its asymptotics, proceeding then to describe a practical computation of spin foam and semiclassical geometric data for a simple triangulation with only one interior triangle. The results are used to comment on the ‘flatness problem’—a hypothesis raised by Bonzom (2009 Phys. Rev. D 80 064028) suggesting that EPRL/FK’s classical limit only describes flat geometries in vacuum.

  13. Asymptotic Modeling of Coherent Scattering from Random Rough Layers: Application to Road Survey by GPR at Nadir

    Directory of Open Access Journals (Sweden)

    Nicolas Pinel

    2012-01-01

    Full Text Available This paper studies the coherent scattering from random rough layers made up of two uncorrelated random rough surfaces, by considering 2D problems. The results from a rigorous electromagnetic method called PILE (propagation-inside-layer expansion are used as a reference. Also, two asymptotic analytical approaches are presented and compared to the numerical model for comparison. The cases of surfaces with both Gaussian and exponential correlations are studied. This approach is applied to road survey by GPR at nadir.

  14. Asymptotic properties of Pearson's rank-variate correlation coefficient under contaminated Gaussian model.

    Science.gov (United States)

    Ma, Rubao; Xu, Weichao; Zhang, Yun; Ye, Zhongfu

    2014-01-01

    This paper investigates the robustness properties of Pearson's rank-variate correlation coefficient (PRVCC) in scenarios where one channel is corrupted by impulsive noise and the other is impulsive noise-free. As shown in our previous work, these scenarios that frequently encountered in radar and/or sonar, can be well emulated by a particular bivariate contaminated Gaussian model (CGM). Under this CGM, we establish the asymptotic closed forms of the expectation and variance of PRVCC by means of the well known Delta method. To gain a deeper understanding, we also compare PRVCC with two other classical correlation coefficients, i.e., Spearman's rho (SR) and Kendall's tau (KT), in terms of the root mean squared error (RMSE). Monte Carlo simulations not only verify our theoretical findings, but also reveal the advantage of PRVCC by an example of estimating the time delay in the particular impulsive noise environment.

  15. Asymptotic Stabilization of Non-holonomic Port-controlled Hamiltonian Systems

    DEFF Research Database (Denmark)

    Sørensen, Mathias Jesper; Bendtsen, Jan Dimon; Andersen, Palle

    2004-01-01

    A novel method for asymptotic stabilization of a class of non-holonomic systems is presented. The method is based on the port-controlled Hamiltonian description of electro-mechanical systems. The general system is augmented with so-called kinematic inputs, thus representing a special class of mob...

  16. 8. Asymptotically Flat and Regular Cauchy Data

    Science.gov (United States)

    Dain, Sergio

    I describe the construction of a large class of asymptotically flat initial data with non-vanishing mass and angular momentum for which the metric and the extrinsic curvature have asymptotic expansions at space-like infinity in terms of powers of a radial coordinate. I emphasize the motivations and the main ideas behind the proofs.

  17. Rank-based Tests of the Cointegrating Rank in Semiparametric Error Correction Models

    NARCIS (Netherlands)

    Hallin, M.; van den Akker, R.; Werker, B.J.M.

    2012-01-01

    Abstract: This paper introduces rank-based tests for the cointegrating rank in an Error Correction Model with i.i.d. elliptical innovations. The tests are asymptotically distribution-free, and their validity does not depend on the actual distribution of the innovations. This result holds despite the

  18. The Data-Constrained Generalized Maximum Entropy Estimator of the GLM: Asymptotic Theory and Inference

    Directory of Open Access Journals (Sweden)

    Nicholas Scott Cardell

    2013-05-01

    Full Text Available Maximum entropy methods of parameter estimation are appealing because they impose no additional structure on the data, other than that explicitly assumed by the analyst. In this paper we prove that the data constrained GME estimator of the general linear model is consistent and asymptotically normal. The approach we take in establishing the asymptotic properties concomitantly identifies a new computationally efficient method for calculating GME estimates. Formulae are developed to compute asymptotic variances and to perform Wald, likelihood ratio, and Lagrangian multiplier statistical tests on model parameters. Monte Carlo simulations are provided to assess the performance of the GME estimator in both large and small sample situations. Furthermore, we extend our results to maximum cross-entropy estimators and indicate a variant of the GME estimator that is unbiased. Finally, we discuss the relationship of GME estimators to Bayesian estimators, pointing out the conditions under which an unbiased GME estimator would be efficient.

  19. Asymptotics for the Kummer function of Bose plasmas

    International Nuclear Information System (INIS)

    Kowalenko, V.; Frankel, N.E.

    1993-01-01

    The asymptotic expansions for the Kummer function obtained in the study of the linear response of magnetised Bose plasmas at T = 0 K are presented for large and small values of its parameter, thereby displaying the function's asymptotic non-uniformity. The large parameter expansion plays a determining role in the behaviour of these Bose systems in the limit that the external magnetic field B →0. This particular expansion is generalised herein and its validity tested by determining the asymptotic expansion for the Hurwitz zeta function. 18 refs., 1 tab., 2 figs

  20. Resonant tunneling quantum waveguides of variable cross-section, asymptotics, numerics, and applications

    CERN Document Server

    Baskin, Lev; Plamenevskii, Boris; Sarafanov, Oleg

    2015-01-01

    This volume studies electron resonant tunneling in two- and three-dimensional quantum waveguides of variable cross-sections in the time-independent approach. Mathematical models are suggested for the resonant tunneling and develop asymptotic and numerical approaches for investigating the models. Also, schemes are presented for several electronics devices based on the phenomenon of resonant tunneling.   Devices based on the phenomenon of electron resonant tunneling are widely used in electronics. Efforts are directed towards refining properties of resonance structures. There are prospects for building new nanosize electronics elements based on quantum dot systems.   However, the role of resonance structure can also be given to a quantum wire of variable cross-section. Instead of an "electrode - quantum dot - electrode" system, one can use a quantum wire with two narrows. A waveguide narrow is an effective potential barrier for longitudinal electron motion along a waveguide. The part of the waveguide between ...

  1. The long-term stability of self-esteem: its time-dependent decay and nonzero asymptote.

    Science.gov (United States)

    Kuster, Farah; Orth, Ulrich

    2013-05-01

    How stable are individual differences in self-esteem? We examined the time-dependent decay of rank-order stability of self-esteem and tested whether stability asymptotically approaches zero or a nonzero value across long test-retest intervals. Analyses were based on 6 assessments across a 29-year period of a sample of 3,180 individuals aged 14 to 102 years. The results indicated that, as test-retest intervals increased, stability exponentially decayed and asymptotically approached a nonzero value (estimated as .43). The exponential decay function explained a large proportion of variance in observed stability coefficients, provided a better fit than alternative functions, and held across gender and for all age groups from adolescence to old age. Moreover, structural equation modeling of the individual-level data suggested that a perfectly stable trait component underlies stability of self-esteem. The findings suggest that the stability of self-esteem is relatively large, even across very long periods, and that self-esteem is a trait-like characteristic.

  2. Asymptotic Expansions of Generalized Nevanlinna Functions and their Spectral Properties

    NARCIS (Netherlands)

    Derkach, Vladimir; Hassi, Seppo; de Snoo, Hendrik

    2007-01-01

    Asymptotic expansions of generalized Nevanlinna functions Q are investigated by means of a factorization model involving a part of the generalized zeros and poles of nonpositive type of the function Q. The main results in this paper arise from the explicit construction of maximal Jordan chains in

  3. Finite-sample instrumental variables inference using an asymptotically pivotal statistic

    NARCIS (Netherlands)

    Bekker, Paul A.; Kleibergen, Frank

    2001-01-01

    The paper considers the K-statistic, Kleibergen’s (2000) adaptation of the Anderson-Rubin (AR) statistic in instrumental variables regression. Compared to the AR-statistic this K-statistic shows improved asymptotic efficiency in terms of degrees of freedom in overidenti?ed models and yet it shares,

  4. Empiryczna weryfikacja hipotezy o przenośności modelu Altmana na warunki polskiej gospodarki oraz uniwersalności sektorowej modeli

    Directory of Open Access Journals (Sweden)

    Tomasz Iwanowicz

    2018-03-01

    Full Text Available Celem artykułu jest próba udzielenia odpowiedzi na pytanie, czy istnieje uzasadnienie dla mechanicznego przenoszenia modelu Altmana na warunki polskiej gospodarki oraz sprawdzenie, czy wśród testowanych modeli istnieje model wykazujący dla każdego typu przedsiębiorstwa (przemysłowe, handlowe, usługo- we najwyższą skuteczność i najlepsze wartości zastosowanych metod porównawczych. W artykule porównano trzynaście testowanych modeli używając macierzy klasyfikacji, ilorazu szans, krzywej kon- centracji CAP i wskaźnika dokładności Giniego, będących metodami oceny sprawności, oraz wskaźnika Briera będącego metodą oceny modeli z punktu widzenia kryterium kalibracji. Badania zostały przepro- wadzone na bazie 439 sprawozdań finansowych opublikowanych przez 139 spółek kapitałowych zarejestrowanych w warszawskich sądach okręgowych i rejonowych (w tym 79 spółek, które w rzeczywistości ogłosiły upadłość. Przeprowadzone badania obaliły mit o przenośności modelu Altmana na warunki polskiej gospodarki oraz uniwersalności sektorowej modeli. Wykazano, że sprawność modeli różni się dla spółek produkcyjnych, handlowych i usługowych oraz określono te sprawności. Ponadto udowodniono, że istnieją modele dyskryminacyjne różniące się zestawem zmiennych oraz współczynnikami wagowymi, które wykazują zbliżone skuteczności predykcyjne. The purpose of this paper is to answer the question about the validity of mechanical transfer of the Alt- man model to Polish economy and to check if among the tested models there is a model with the highest efficiency and best outcomes for the used comparative methods for each type of enterprise (manufactur- ing, trading, service. Thirteen tested models were compared using the classification matrix, odds ratio, CAP concentration curve and Gini accuracy index, which are efficiency evaluation methods, as well as using the Brier index, which is a method of evaluating models

  5. Likelihood-Based Inference in Nonlinear Error-Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbæk, Anders

    We consider a class of vector nonlinear error correction models where the transfer function (or loadings) of the stationary relation- ships is nonlinear. This includes in particular the smooth transition models. A general representation theorem is given which establishes the dynamic properties...... and a linear trend in general. Gaussian likelihood-based estimators are considered for the long- run cointegration parameters, and the short-run parameters. Asymp- totic theory is provided for these and it is discussed to what extend asymptotic normality and mixed normaity can be found. A simulation study...

  6. Focused information criterion and model averaging based on weighted composite quantile regression

    KAUST Repository

    Xu, Ganggang

    2013-08-13

    We study the focused information criterion and frequentist model averaging and their application to post-model-selection inference for weighted composite quantile regression (WCQR) in the context of the additive partial linear models. With the non-parametric functions approximated by polynomial splines, we show that, under certain conditions, the asymptotic distribution of the frequentist model averaging WCQR-estimator of a focused parameter is a non-linear mixture of normal distributions. This asymptotic distribution is used to construct confidence intervals that achieve the nominal coverage probability. With properly chosen weights, the focused information criterion based WCQR estimators are not only robust to outliers and non-normal residuals but also can achieve efficiency close to the maximum likelihood estimator, without assuming the true error distribution. Simulation studies and a real data analysis are used to illustrate the effectiveness of the proposed procedure. © 2013 Board of the Foundation of the Scandinavian Journal of Statistics..

  7. POST ASYMPTOTIC GIANT BRANCH BIPOLAR REFLECTION NEBULAE: RESULT OF DYNAMICAL EJECTION OR SELECTIVE ILLUMINATION?

    International Nuclear Information System (INIS)

    Koning, N.; Kwok, Sun; Steffen, W.

    2013-01-01

    A model for post asymptotic giant branch bipolar reflection nebulae has been constructed based on a pair of evacuated cavities in a spherical dust envelope. Many of the observed features of bipolar nebulae, including filled bipolar lobes, an equatorial torus, searchlight beams, and a bright central light source, can be reproduced. The effects on orientation and dust densities are studied and comparisons with some observed examples are offered. We suggest that many observed properties of bipolar nebulae are the result of optical effects and any physical modeling of these nebulae has to take these factors into consideration.

  8. Komar integrals in asymptotically anti-de Sitter space-times

    International Nuclear Information System (INIS)

    Magnon, A.

    1985-01-01

    Recently, boundary conditions governing the asymptotic behavior of the gravitational field in the presence of a negative cosmological constant have been introduced using Penrose's conformal techniques. The subsequent analysis has led to expressions of conserved quantities (associated with asymptotic symmetries) involving asymptotic Weyl curvature. On the other hand, if the underlying space-time is equipped with isometries, a generalization of the Komar integral which incorporates the cosmological constant is also available. Thus, in the presence of an isometry, one is faced with two apparently unrelated definitions. It is shown that these definitions agree. This coherence supports the choice of boundary conditions for asymptotically anti-de Sitter space-times and reinforces the definitions of conserved quantities

  9. A method for summing nonalternating asymptotic series

    International Nuclear Information System (INIS)

    Kazakov, D.I.

    1980-01-01

    A method for reconstructing a function from its nonalternating asymptotic series is proposed. It can also be applied when only a limited number of coefficients and their high order asymptotic behaviour are known. The method is illustrated by examples of the ordinary simple integral simulating a functional integral in a theory with degenerate minimum and of the double-well unharmonic oscillator

  10. Asymptotic Analysis in MIMO MRT/MRC Systems

    Directory of Open Access Journals (Sweden)

    Zhou Quan

    2006-01-01

    Full Text Available Through the analysis of the probability density function of the squared largest singular value of a complex Gaussian matrix at the origin and tail, we obtain two asymptotic results related to the multi-input multi-output (MIMO maximum-ratio-transmission/maximum-ratio-combining (MRT/MRC systems. One is the asymptotic error performance (in terms of SNR in a single-user system, and the other is the asymptotic system capacity (in terms of the number of users in the multiuser scenario when multiuser diversity is exploited. Similar results are also obtained for two other MIMO diversity schemes, space-time block coding and selection combining. Our results reveal a simple connection with system parameters, providing good insights for the design of MIMO diversity systems.

  11. A drift-diffusion-reaction model for excitonic photovoltaic bilayers: Photovoltaic bilayers: Asymptotic analysis and a 2D hdg finite element scheme

    KAUST Repository

    Brinkman, Daniel

    2013-05-01

    We present and discuss a mathematical model for the operation of bilayer organic photovoltaic devices. Our model couples drift-diffusion-recombination equations for the charge carriers (specifically, electrons and holes) with a reaction-diffusion equation for the excitons/polaron pairs and Poisson\\'s equation for the self-consistent electrostatic potential. The material difference (i.e. the HOMO/LUMO gap) of the two organic substrates forming the bilayer device is included as a work-function potential. Firstly, we perform an asymptotic analysis of the scaled one-dimensional stationary state system: (i) with focus on the dynamics on the interface and (ii) with the goal of simplifying the bulk dynamics away from the interface. Secondly, we present a two-dimensional hybrid discontinuous Galerkin finite element numerical scheme which is very well suited to resolve: (i) the material changes, (ii) the resulting strong variation over the interface, and (iii) the necessary upwinding in the discretization of drift-diffusion equations. Finally, we compare the numerical results with the approximating asymptotics. © 2013 World Scientific Publishing Company.

  12. Atomic collisions in the presence of laser radiation - Time dependence and the asymptotic wave function

    Science.gov (United States)

    Devries, P. L.; George, T. F.

    1982-01-01

    A time-dependent, wave-packet description of atomic collisions in the presence of laser radiation is extracted from the more conventional time-independent, stationary-state description. This approach resolves certain difficulties of interpretation in the time-independent approach which arise in the case of asymptotic near resonance. In the two-state model investigated, the approach predicts the existence of three spherically scattered waves in this asymptotically near-resonant case.

  13. Fog prediction using the modified asymptotic liquid water content vertical distribution formulation with the Weather Research and Forecasting model

    Science.gov (United States)

    Kim, E.; Lee, S.; Kim, J.; Chae, D.

    2017-12-01

    Fog forecasts have difficulty in forecasting due to temporal and spatial resolution problems, high numerical computations, complicated mechanisms related to turbulence in order to analyze the fog in the model, and a lack of appropriate fog physical processes. Conventional fog prediction is based on the surface visibility threshold "fog diagnosis method is based on the fog related variables near the surface, such as visibility, low stratus, relative humidity and wind speed but this method only predicts fog occurrence not fog intensity. To improve this, a new fog diagnostic scheme, based on an asymptotic analytical study of radiation fog (Zhou and Ferrier 2008, ZF08) is to increase the accuracy of fog prediction by calculating the vertical LWC considering cooling, turbulence and droplet settling, visibility, surface relative humidity and low stratus. In this study, we intend to improve fog prediction through the Weather Research and Forecasting (WRF) model using high-resolution data. Although the prediction accuracy can be improved by combining the WRF Planetary Boundary Layer (PBL) scheme and 1 dimension (1D) model, it is necessary to increase the vertical resolution in the boundary layer to implement the fog formation and persistence mechanism in the internal boundary layer in the PBL more accurately, we'll modify the algorithm to enhance the effects of turbulence and then compare the newly predicted fog and observations to determine the accuracy of the forecast of the fog occurring on the Korean peninsula.

  14. Asymptotic laws for random knot diagrams

    Science.gov (United States)

    Chapman, Harrison

    2017-06-01

    We study random knotting by considering knot and link diagrams as decorated, (rooted) topological maps on spheres and pulling them uniformly from among sets of a given number of vertices n, as first established in recent work with Cantarella and Mastin. The knot diagram model is an exciting new model which captures both the random geometry of space curve models of knotting as well as the ease of computing invariants from diagrams. We prove that unknot diagrams are asymptotically exponentially rare, an analogue of Sumners and Whittington’s landmark result for self-avoiding polygons. Our proof uses the same key idea: we first show that knot diagrams obey a pattern theorem, which describes their fractal structure. We examine how quickly this behavior occurs in practice. As a consequence, almost all diagrams are asymmetric, simplifying sampling from this model. We conclude with experimental data on knotting in this model. This model of random knotting is similar to those studied by Diao et al, and Dunfield et al.

  15. An asymptotic preserving multidimensional ALE method for a system of two compressible flows coupled with friction

    Science.gov (United States)

    Del Pino, S.; Labourasse, E.; Morel, G.

    2018-06-01

    We present a multidimensional asymptotic preserving scheme for the approximation of a mixture of compressible flows. Fluids are modelled by two Euler systems of equations coupled with a friction term. The asymptotic preserving property is mandatory for this kind of model, to derive a scheme that behaves well in all regimes (i.e. whatever the friction parameter value is). The method we propose is defined in ALE coordinates, using a Lagrange plus remap approach. This imposes a multidimensional definition and analysis of the scheme.

  16. Coordinate asymptotics of the (3→3) wave functions for a three charged particle system

    International Nuclear Information System (INIS)

    Merkur'ev, S.P.

    1977-01-01

    Coordinate asymptotics of the (3 → 3) wave functions for three particles system with Coulomb interaction in the scattering problem is plotted. (3 → 3) and (3 → 2) process cases are considered, when the particles are not connected at the initial state. For coordinate asymptotics plotting the basis functions are used which meet Schroedinger equation in the eikonal approximation. The wave functions coordinate asymptotics plotting method is described far from special directions. Wave function asymptotical form is studied in the range of special directions and (3 → 3) scattering amplitude singularities are described. All data are given in accordance with the system with 2 charged particles only. The model in question is of special interest because of the described ppn system the studying of which is of great importance in nuclear physics. Final formulae are discussed for the most general case of three charged particles. Boundary problems for Schroedinger equation are shown to give the only way of definition for the (3 → 3) wave functions. It is pointed out that in special directions wave function coordinate asymptotics is presented with accuracy that gives the possibility to set such a boundary problem

  17. Numerical algorithms for uniform Airy-type asymptotic expansions

    NARCIS (Netherlands)

    N.M. Temme (Nico)

    1997-01-01

    textabstractAiry-type asymptotic representations of a class of special functions are considered from a numerical point of view. It is well known that the evaluation of the coefficients of the asymptotic series near the transition point is a difficult problem. We discuss two methods for computing

  18. H. David Politzer, Asymptotic Freedom, and Strong Interaction

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis H. David Politzer, Asymptotic Freedom, and Strong Interaction Resources with Additional Information H. David Politzer Photo Credit: California Institute of Technology H. David Politzer has won the 2004 Nobel Prize in Physics 'for the discovery of asymptotic freedom

  19. Stark resonances: asymptotics and distributional Borel sum

    International Nuclear Information System (INIS)

    Caliceti, E.; Grecchi, V.; Maioli, M.

    1993-01-01

    We prove that the Stark effect perturbation theory of a class of bound states uniquely determines the position and the width of the resonances by Distributional Borel Sum. In particular the small field asymptotics of the width is uniquely related to the large order asymptotics of the perturbation coefficients. Similar results apply to all the ''resonances'' of the anharmonic and double well oscillators. (orig.)

  20. Probabilistic finite element stiffness of a laterally loaded monopile based on an improved asymptotic sampling method

    DEFF Research Database (Denmark)

    Vahdatirad, Mohammadjavad; Bayat, Mehdi; Andersen, Lars Vabbersgaard

    2015-01-01

    shear strength of clay. Normal and Sobol sampling are employed to provide the asymptotic sampling method to generate the probability distribution of the foundation stiffnesses. Monte Carlo simulation is used as a benchmark. Asymptotic sampling accompanied with Sobol quasi random sampling demonstrates......The mechanical responses of an offshore monopile foundation mounted in over-consolidated clay are calculated by employing a stochastic approach where a nonlinear p–y curve is incorporated with a finite element scheme. The random field theory is applied to represent a spatial variation for undrained...... an efficient method for estimating the probability distribution of stiffnesses for the offshore monopile foundation....

  1. Asymptotics of the filtration problem for suspension in porous media

    Directory of Open Access Journals (Sweden)

    Kuzmina Ludmila Ivanovna

    2015-01-01

    Full Text Available The mechanical-geometric model of the suspension filtering in the porous media is considered. Suspended solid particles of the same size move with suspension flow through the porous media - a solid body with pores - channels of constant cross section. It is assumed that the particles pass freely through the pores of large diameter and are stuck at the inlet of pores that are smaller than the particle size. It is considered that one particle can clog only one small pore and vice versa. The particles stuck in the pores remain motionless and form a deposit. The concentrations of suspended and retained particles satisfy a quasilinear hyperbolic system of partial differential equations of the first order, obtained as a result of macro-averaging of micro-stochastic diffusion equations. Initially the porous media contains no particles and both concentrations are equal to zero; the suspension supplied to the porous media inlet has a constant concentration of suspended particles. The flow of particles moves in the porous media with a constant speed, before the wave front the concentrations of suspended and retained particles are zero. Assuming that the filtration coefficient is small we construct an asymptotic solution of the filtration problem over the concentration front. The terms of the asymptotic expansions satisfy linear partial differential equations of the first order and are determined successively in an explicit form. It is shown that in the simplest case the asymptotics found matches the known asymptotic expansion of the solution near the concentration front.

  2. Asymptotic freedom without guilt

    International Nuclear Information System (INIS)

    Ma, E.

    1979-01-01

    The notion of asymptotic freedom in quantum chromodynamics is explained on general physical grounds, without invoking the formal arguments of renormalizable quantum field theory. The related concept of quark confinement is also discussed along the same line. 5 references

  3. Theorems for asymptotic safety of gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Andrew D.; Litim, Daniel F. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)

    2017-06-15

    We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasised. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated. (orig.)

  4. Evolution and nucleosynthesis of asymptotic giant branch stellar models of low metallicity

    Energy Technology Data Exchange (ETDEWEB)

    Fishlock, Cherie K.; Karakas, Amanda I.; Yong, David [Research School of Astronomy and Astrophysics, Australian National University, Canberra ACT 2611 (Australia); Lugaro, Maria, E-mail: cherie.fishlock@anu.edu.au, E-mail: amanda.karakas@anu.edu.au, E-mail: david.yong@anu.edu.au, E-mail: maria.lugaro@monash.edu [Monash Centre for Astrophysics, Monash University, Clayton VIC 3800 (Australia)

    2014-12-10

    We present stellar evolutionary tracks and nucleosynthetic predictions for a grid of stellar models of low- and intermediate-mass asymptotic giant branch (AGB) stars at Z = 0.001 ([Fe/H] =–1.2). The models cover an initial mass range from 1 M {sub ☉} to 7 M {sub ☉}. Final surface abundances and stellar yields are calculated for all elements from hydrogen to bismuth as well as isotopes up to the iron group. We present the first study of neutron-capture nucleosynthesis in intermediate-mass AGB models, including a super-AGB model, of [Fe/H] = –1.2. We examine in detail a low-mass AGB model of 2 M {sub ☉} where the {sup 13}C(α,n){sup 16}O reaction is the main source of neutrons. We also examine an intermediate-mass AGB model of 5 M {sub ☉} where intershell temperatures are high enough to activate the {sup 22}Ne neutron source, which produces high neutron densities up to ∼10{sup 14} n cm{sup –3}. Hot bottom burning is activated in models with M ≥ 3 M {sub ☉}. With the 3 M {sub ☉} model, we investigate the effect of varying the extent in mass of the region where protons are mixed from the envelope into the intershell at the deepest extent of each third dredge-up. We compare the results of the low-mass models to three post-AGB stars with a metallicity of [Fe/H] ≅ – 1.2. The composition is a good match to the predicted neutron-capture abundances except for Pb and we confirm that the observed Pb abundances are lower than what is calculated by AGB models.

  5. Conformal Phase Diagram of Complete Asymptotically Free Theories

    DEFF Research Database (Denmark)

    Pica, Claudio; Ryttov, Thomas A.; Sannino, Francesco

    2017-01-01

    function. We provide the general conditions that the beta function coefficients must abide for the theory to be completely asymptotically free while simultaneously possessing an infrared stable fixed point. We also uncover special trajectories in coupling space along which some couplings are both...... asymptotically safe and infrared conformal....

  6. Asymptotic representation theorems for poverty indices | Lo | Afrika ...

    African Journals Online (AJOL)

    Abstract. We set general conditions under which the general poverty index, which summarizes all the available indices, is asymptotically represented with some empirical processes. This representation theorem offers a general key, in most directions, for the asymptotic of the bulk of poverty indices and issues in poverty ...

  7. Numerical integration of asymptotic solutions of ordinary differential equations

    Science.gov (United States)

    Thurston, Gaylen A.

    1989-01-01

    Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.

  8. Scaling versus asymptotic scaling in the non-linear σ-model in 2D. Continuum version

    International Nuclear Information System (INIS)

    Flyvbjerg, H.

    1990-01-01

    The two-point function of the O(N)-symmetric non-linear σ-model in two dimensions is large-N expanded and renormalized, neglecting terms of O(1/N 2 ). At finite cut-off, universal, analytical expressions relate the magnetic susceptibility and the dressed mass to the bare coupling. Removing the cut-off, a similar relation gives the renormalized coupling as a function of the mass gap. In the weak-coupling limit these relations reproduce the results of renormalization group improved weak-coupling perturbation theory to two-loop order. The constant left unknown, when the renormalization group is integrated, is determined here. The approach to asymptotic scaling is studied for various values of N. (orig.)

  9. Exact asymptotic expansions for solutions of multi-dimensional renewal equations

    International Nuclear Information System (INIS)

    Sgibnev, M S

    2006-01-01

    We derive expansions with exact asymptotic expressions for the remainders for solutions of multi-dimensional renewal equations. The effect of the roots of the characteristic equation on the asymptotic representation of solutions is taken into account. The resulting formulae are used to investigate the asymptotic behaviour of the average number of particles in age-dependent branching processes having several types of particles

  10. Asymptotic stability of a catalyst particle

    DEFF Research Database (Denmark)

    Wedel, Stig; Michelsen, Michael L.; Villadsen, John

    1977-01-01

    The catalyst asymptotic stability problem is studied by means of several new methods that allow accurate solutions to be calculated where other methods have given qualitatively erroneous results. The underlying eigenvalue problem is considered in three limiting situations Le = ∞, 1 and 0. These a......The catalyst asymptotic stability problem is studied by means of several new methods that allow accurate solutions to be calculated where other methods have given qualitatively erroneous results. The underlying eigenvalue problem is considered in three limiting situations Le = ∞, 1 and 0...

  11. Asymptotical approximation of interconnection of nucleons' quadrupole and cluster motion in atomic nucleus

    International Nuclear Information System (INIS)

    Kabulov, A.B.

    2003-01-01

    Atomic nuclei display different kinds of collective motion. The well known example - is the collective model arising from valent nucleons motion. The other a special kind of collective motion is cluster mode. If a collective model has quadrupole character, then cluster one has dipole character. In the boson formalism this model is describing by dynamic symmetry U(6) direct X U(4). The common Hamiltonian symmetrical to U(6) direct X U(4) group has a form H=H d +H p +V pd . In the paper the asymptotical wave function for dipole states connected with (N-1) bosons of s- and d-types is presented. In this case the problem for Hamiltonian eigenvalues is solving by analytical way. With use Elliot method and wave functions asymptotical form the operators for matrix elements of E2-, E1-, M1-transitions are cited

  12. Simple Algorithms to Calculate Asymptotic Null Distributions of Robust Tests in Case-Control Genetic Association Studies in R

    Directory of Open Access Journals (Sweden)

    Wing Kam Fung

    2010-02-01

    Full Text Available The case-control study is an important design for testing association between genetic markers and a disease. The Cochran-Armitage trend test (CATT is one of the most commonly used statistics for the analysis of case-control genetic association studies. The asymptotically optimal CATT can be used when the underlying genetic model (mode of inheritance is known. However, for most complex diseases, the underlying genetic models are unknown. Thus, tests robust to genetic model misspecification are preferable to the model-dependant CATT. Two robust tests, MAX3 and the genetic model selection (GMS, were recently proposed. Their asymptotic null distributions are often obtained by Monte-Carlo simulations, because they either have not been fully studied or involve multiple integrations. In this article, we study how components of each robust statistic are correlated, and find a linear dependence among the components. Using this new finding, we propose simple algorithms to calculate asymptotic null distributions for MAX3 and GMS, which greatly reduce the computing intensity. Furthermore, we have developed the R package Rassoc implementing the proposed algorithms to calculate the empirical and asymptotic p values for MAX3 and GMS as well as other commonly used tests in case-control association studies. For illustration, Rassoc is applied to the analysis of case-control data of 17 most significant SNPs reported in four genome-wide association studies.

  13. Asymptotic freedom

    International Nuclear Information System (INIS)

    Meyer, P.

    1978-01-01

    After having established the renormalization group equations and the possibilities of fixed points for the effective coupling constants the non abelian gauge theories are shown to have the property of asymptotic freedom. These results are applied to the colour gauge group of the strong interactions of quarks and gluons. The behavior of the moments of the structure functions of the deep inelastic scattering of leptons on nucleons (scaling and its logarithmic violations) is then deduced with using the Wilson's operator product expansion [fr

  14. Grassmann scalar fields and asymptotic freedom

    Energy Technology Data Exchange (ETDEWEB)

    Palumbo, F [INFN, Laboratori Nazionali di Frascati, Rome (Italy)

    1996-03-01

    The authors extend previous results about scalar fields whose Fourier components are even elements of a Grassmann algebra with given index of nilpotency. Their main interest in particle physics is related to the possibility that they describe fermionic composites analogous to the Copper pairs of superconductivity. The authors evaluate the free propagators for arbitrary index of nilpotency and they investigate a {phi}{sup 4} model to one loop. Due to the nature of the integral over even Grassmann fields such as a model exists for repulsive as well as attractive self interaction. In the first case the {beta}-function is equal to that of the ordinary theory, while in the second one the model is asymptotically free. The bare mass has a peculiar dependence on the cutoff, being quadratically decreasing/increasing for attractive/repulsive self interaction.

  15. Asymptotic propagators and trajectories in plasma turbulence theory. The importance of irreversibility, asymptoticity and non-Markovian terms

    International Nuclear Information System (INIS)

    Misguich, J.H.

    1978-09-01

    The physical meaning of perturbed trajectories in turbulent fields is analysed. Special care is devoted to the asymptotic description of average trajectories for long time intervals, as occuring in many recent plasma turbulence theories. Equivalence is proved between asymptotic average trajectories described as well (i) by the propagators V(t,t-tau) for retrodiction and Wsub(J)(t,t+tau) for prediction, and (ii) by the long time secular behavior of the solution of the equations of motion. This confirms the equivalence between perturbed orbit theories and renormalized theories, including non-Markovian contributions

  16. Two-terminal reliability of a mobile ad hoc network under the asymptotic spatial distribution of the random waypoint model

    International Nuclear Information System (INIS)

    Chen, Binchao; Phillips, Aaron; Matis, Timothy I.

    2012-01-01

    The random waypoint (RWP) mobility model is frequently used in describing the movement pattern of mobile users in a mobile ad hoc network (MANET). As the asymptotic spatial distribution of nodes under a RWP model exhibits central tendency, the two-terminal reliability of the MANET is investigated as a function of the source node location. In particular, analytical expressions for one and two hop connectivities are developed as well as an efficient simulation methodology for two-terminal reliability. A study is then performed to assess the effect of nodal density and network topology on network reliability.

  17. Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy

    KAUST Repository

    Pouchol, Camille

    2017-10-27

    We consider a system of two coupled integro-differential equations modelling populations of healthy and cancer cells under chemotherapy. Both populations are structured by a phenotypic variable, representing their level of resistance to the treatment. We analyse the asymptotic behaviour of the model under constant infusion of drugs. By designing an appropriate Lyapunov function, we prove that both cell densities converge to Dirac masses. We then define an optimal control problem, by considering all possible infusion protocols and minimising the number of cancer cells over a prescribed time frame. We provide a quasi-optimal strategy and prove that it solves this problem for large final times. For this modelling framework, we illustrate our results with numerical simulations, and compare our optimal strategy with periodic treatment schedules.

  18. Asymptotically anti-de Sitter spacetimes in topologically massive gravity

    International Nuclear Information System (INIS)

    Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo

    2009-01-01

    We consider asymptotically anti-de Sitter spacetimes in three-dimensional topologically massive gravity with a negative cosmological constant, for all values of the mass parameter μ (μ≠0). We provide consistent boundary conditions that accommodate the recent solutions considered in the literature, which may have a slower falloff than the one relevant for general relativity. These conditions are such that the asymptotic symmetry is in all cases the conformal group, in the sense that they are invariant under asymptotic conformal transformations and that the corresponding Virasoro generators are finite. It is found that, at the chiral point |μl|=1 (where l is the anti-de Sitter radius), allowing for logarithmic terms (absent for general relativity) in the asymptotic behavior of the metric makes both sets of Virasoro generators nonzero even though one of the central charges vanishes.

  19. Asymptotically shear-free and twist-free null geodesic congruences

    International Nuclear Information System (INIS)

    Kozameh, Carlos; Newman, Ezra T

    2007-01-01

    The Robinson-Trautman spacetime is a special case of asymptotically flat spacetimes that possess asymptotically shear-free and twist-free (surface forming) null geodesic congruences. In this paper we show that, although they are rare, a larger class of asymptotically flat spacetimes with this property does exist. In particular, we display the class of spacetimes that possess this dual property and demonstrate how these congruences can be found. In addition, we show that in each case the congruence is isolated in the sense that there are no other neighbouring congruences with this dual property

  20. Heat Kernel Asymptotics of Zaremba Boundary Value Problem

    Energy Technology Data Exchange (ETDEWEB)

    Avramidi, Ivan G. [Department of Mathematics, New Mexico Institute of Mining and Technology (United States)], E-mail: iavramid@nmt.edu

    2004-03-15

    The Zaremba boundary-value problem is a boundary value problem for Laplace-type second-order partial differential operators acting on smooth sections of a vector bundle over a smooth compact Riemannian manifold with smooth boundary but with discontinuous boundary conditions, which include Dirichlet boundary conditions on one part of the boundary and Neumann boundary conditions on another part of the boundary. We study the heat kernel asymptotics of Zaremba boundary value problem. The construction of the asymptotic solution of the heat equation is described in detail and the heat kernel is computed explicitly in the leading approximation. Some of the first nontrivial coefficients of the heat kernel asymptotic expansion are computed explicitly.

  1. Null Geodesic Congruences, Asymptotically-Flat Spacetimes and Their Physical Interpretation

    Directory of Open Access Journals (Sweden)

    Timothy M. Adamo

    2009-09-01

    Full Text Available A priori, there is nothing very special about shear-free or asymptotically shear-free null geodesic congruences. Surprisingly, however, they turn out to possess a large number of fascinating geometric properties and to be closely related, in the context of general relativity, to a variety of physically significant effects. It is the purpose of this paper to try to fully develop these issues. This work starts with a detailed exposition of the theory of shear-free and asymptotically shear-free null geodesic congruences, i.e., congruences with shear that vanishes at future conformal null infinity. A major portion of the exposition lies in the analysis of the space of regular shear-free and asymptotically shear-free null geodesic congruences. This analysis leads to the space of complex analytic curves in complex Minkowski space. They in turn play a dominant role in the applications. The applications center around the problem of extracting interior physical properties of an asymptotically-flat spacetime directly from the asymptotic gravitational (and Maxwell field itself, in analogy with the determination of total charge by an integral over the Maxwell field at infinity or the identification of the interior mass (and its loss by (Bondi’s integrals of the Weyl tensor, also at infinity. More specifically, we will see that the asymptotically shear-free congruences lead us to an asymptotic definition of the center-of-mass and its equations of motion. This includes a kinematic meaning, in terms of the center-of-mass motion, for the Bondi three-momentum. In addition, we obtain insights into intrinsic spin and, in general, angular momentum, including an angular-momentum–conservation law with well-defined flux terms. When a Maxwell field is present, the asymptotically shear-free congruences allow us to determine/define at infinity a center-of-charge world line and intrinsic magnetic dipole moment.

  2. Null Geodesic Congruences, Asymptotically-Flat Spacetimes and Their Physical Interpretation

    Directory of Open Access Journals (Sweden)

    Timothy M. Adamo

    2012-01-01

    Full Text Available A priori, there is nothing very special about shear-free or asymptotically shear-free null geodesic congruences. Surprisingly, however, they turn out to possess a large number of fascinating geometric properties and to be closely related, in the context of general relativity, to a variety of physically significant effects. It is the purpose of this paper to try to fully develop these issues. This work starts with a detailed exposition of the theory of shear-free and asymptotically shear-free null geodesic congruences, i.e., congruences with shear that vanishes at future conformal null infinity. A major portion of the exposition lies in the analysis of the space of regular shear-free and asymptotically shear-free null geodesic congruences. This analysis leads to the space of complex analytic curves in an auxiliary four-complex dimensional space, H-space. They in turn play a dominant role in the applications. The applications center around the problem of extracting interior physical properties of an asymptotically-flat spacetime directly from the asymptotic gravitational (and Maxwell field itself, in analogy with the determination of total charge by an integral over the Maxwell field at infinity or the identification of the interior mass (and its loss by (Bondi's integrals of the Weyl tensor, also at infinity. More specifically, we will see that the asymptotically shear-free congruences lead us to an asymptotic definition of the center-of-mass and its equations of motion. This includes a kinematic meaning, in terms of the center-of-mass motion, for the Bondi three-momentum. In addition, we obtain insights into intrinsic spin and, in general, angular momentum, including an angular-momentum--conservation law with well-defined flux terms. When a Maxwell field is present, the asymptotically shear-free congruences allow us to determine/define at infinity a center-of-charge world line and intrinsic magnetic dipole moment.

  3. Null Geodesic Congruences, Asymptotically-Flat Spacetimes and Their Physical Interpretation.

    Science.gov (United States)

    Adamo, Timothy M; Newman, Ezra T; Kozameh, Carlos

    2012-01-01

    A priori, there is nothing very special about shear-free or asymptotically shear-free null geodesic congruences. Surprisingly, however, they turn out to possess a large number of fascinating geometric properties and to be closely related, in the context of general relativity, to a variety of physically significant effects. It is the purpose of this paper to try to fully develop these issues. This work starts with a detailed exposition of the theory of shear-free and asymptotically shear-free null geodesic congruences, i.e., congruences with shear that vanishes at future conformal null infinity. A major portion of the exposition lies in the analysis of the space of regular shear-free and asymptotically shear-free null geodesic congruences. This analysis leads to the space of complex analytic curves in an auxiliary four-complex dimensional space, [Formula: see text]-space. They in turn play a dominant role in the applications. The applications center around the problem of extracting interior physical properties of an asymptotically-flat spacetime directly from the asymptotic gravitational (and Maxwell) field itself, in analogy with the determination of total charge by an integral over the Maxwell field at infinity or the identification of the interior mass (and its loss) by (Bondi's) integrals of the Weyl tensor, also at infinity. More specifically, we will see that the asymptotically shear-free congruences lead us to an asymptotic definition of the center-of-mass and its equations of motion. This includes a kinematic meaning, in terms of the center-of-mass motion, for the Bondi three-momentum. In addition, we obtain insights into intrinsic spin and, in general, angular momentum, including an angular-momentum-conservation law with well-defined flux terms. When a Maxwell field is present, the asymptotically shear-free congruences allow us to determine/define at infinity a center-of-charge world line and intrinsic magnetic dipole moment.

  4. Robust anti-synchronization of uncertain chaotic systems based on multiple-kernel least squares support vector machine modeling

    International Nuclear Information System (INIS)

    Chen Qiang; Ren Xuemei; Na Jing

    2011-01-01

    Highlights: Model uncertainty of the system is approximated by multiple-kernel LSSVM. Approximation errors and disturbances are compensated in the controller design. Asymptotical anti-synchronization is achieved with model uncertainty and disturbances. Abstract: In this paper, we propose a robust anti-synchronization scheme based on multiple-kernel least squares support vector machine (MK-LSSVM) modeling for two uncertain chaotic systems. The multiple-kernel regression, which is a linear combination of basic kernels, is designed to approximate system uncertainties by constructing a multiple-kernel Lagrangian function and computing the corresponding regression parameters. Then, a robust feedback control based on MK-LSSVM modeling is presented and an improved update law is employed to estimate the unknown bound of the approximation error. The proposed control scheme can guarantee the asymptotic convergence of the anti-synchronization errors in the presence of system uncertainties and external disturbances. Numerical examples are provided to show the effectiveness of the proposed method.

  5. Asymptotic safety of quantum gravity beyond Ricci scalars

    Science.gov (United States)

    Falls, Kevin; King, Callum R.; Litim, Daniel F.; Nikolakopoulos, Kostas; Rahmede, Christoph

    2018-04-01

    We investigate the asymptotic safety conjecture for quantum gravity including curvature invariants beyond Ricci scalars. Our strategy is put to work for families of gravitational actions which depend on functions of the Ricci scalar, the Ricci tensor, and products thereof. Combining functional renormalization with high order polynomial approximations and full numerical integration we derive the renormalization group flow for all couplings and analyse their fixed points, scaling exponents, and the fixed point effective action as a function of the background Ricci curvature. The theory is characterized by three relevant couplings. Higher-dimensional couplings show near-Gaussian scaling with increasing canonical mass dimension. We find that Ricci tensor invariants stabilize the UV fixed point and lead to a rapid convergence of polynomial approximations. We apply our results to models for cosmology and establish that the gravitational fixed point admits inflationary solutions. We also compare findings with those from f (R ) -type theories in the same approximation and pin-point the key new effects due to Ricci tensor interactions. Implications for the asymptotic safety conjecture of gravity are indicated.

  6. Time-asymptotic interactions of two ensembles of Cucker-Smale flocking particles

    Science.gov (United States)

    Ha, Seung-Yeal; Ko, Dongnam; Zhang, Xiongtao; Zhang, Yinglong

    2017-07-01

    We study the time-asymptotic interactions of two ensembles of Cucker-Smale flocking particles. For this, we use a coupled hydrodynamic Cucker-Smale system and discuss two frameworks, leading to mono-cluster and bi-cluster flockings asymptotically depending on initial configurations, coupling strengths, and the far-field decay property of communication weights. Under the proposed two frameworks, we show that mono-cluster and bi-cluster flockings emerge asymptotically exponentially fast and algebraically slow, respectively. Our asymptotic analysis uses the Lyapunov functional approach and a Lagrangian formulation of the coupled system.

  7. Asymptotic forms for the energy of force-free magnetic field ion figurations of translational symmetry

    Science.gov (United States)

    Sturrock, P. A.; Antiochos, S. K.; Klinchuk, J. A.; Roumeliotis, G.

    1994-01-01

    It is known from computer calculations that if a force-free magnetic field configuration is stressed progressively by footpoint displacements, the configuration expands and approaches the open configuration with the same surface flux distribution and the energy of the field increases progressively. For configurations of translationalsymmetry, it has been found empirically that the energy tends asymptotically to a certain functional form. It is here shown that analysis of a simple model of the asymptotic form of force-free fields of translational symmetry leads to and therefore justifies this functional form. According to this model, the field evolves in a well-behaved manner with no indication of instability or loss of equilibrium.

  8. Asymptotically safe grand unification

    Energy Technology Data Exchange (ETDEWEB)

    Bajc, Borut [J. Stefan Institute,1000 Ljubljana (Slovenia); Sannino, Francesco [CP-Origins & the Danish IAS, University of Southern Denmark,Campusvej 55, DK-5230 Odense M (Denmark); Université de Lyon, France, Université Lyon 1, CNRS/IN2P3, UMR5822 IPNL,F-69622 Villeurbanne Cedex (France)

    2016-12-28

    Phenomenologically appealing supersymmetric grand unified theories have large gauge representations and thus are not asymptotically free. Their ultraviolet validity is limited by the appearance of a Landau pole well before the Planck scale. One could hope that these theories save themselves, before the inclusion of gravity, by generating an interacting ultraviolet fixed point, similar to the one recently discovered in non-supersymmetric gauge-Yukawa theories. Employing a-maximization, a-theorem, unitarity bounds, as well as positivity of other central charges we nonperturbatively rule out this possibility for a broad class of prime candidates of phenomenologically relevant supersymmetric grand unified theories. We also uncover candidates passing these tests, which have either exotic matter or contain one field decoupled from the superpotential. The latter class of theories contains a model with the minimal matter content required by phenomenology.

  9. Asymptotic diffusion limit of cell temperature discretisation schemes for thermal radiation transport

    Energy Technology Data Exchange (ETDEWEB)

    Smedley-Stevenson, Richard P., E-mail: richard.smedley-stevenson@awe.co.uk [AWE PLC, Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom); Department of Earth Science and Engineering, Imperial College London, SW7 2AZ (United Kingdom); McClarren, Ryan G., E-mail: rmcclarren@ne.tamu.edu [Department of Nuclear Engineering, Texas A & M University, College Station, TX 77843-3133 (United States)

    2015-04-01

    This paper attempts to unify the asymptotic diffusion limit analysis of thermal radiation transport schemes, for a linear-discontinuous representation of the material temperature reconstructed from cell centred temperature unknowns, in a process known as ‘source tilting’. The asymptotic limits of both Monte Carlo (continuous in space) and deterministic approaches (based on linear-discontinuous finite elements) for solving the transport equation are investigated in slab geometry. The resulting discrete diffusion equations are found to have nonphysical terms that are proportional to any cell-edge discontinuity in the temperature representation. Based on this analysis it is possible to design accurate schemes for representing the material temperature, for coupling thermal radiation transport codes to a cell centred representation of internal energy favoured by ALE (arbitrary Lagrange–Eulerian) hydrodynamics schemes.

  10. Asymptotic diffusion limit of cell temperature discretisation schemes for thermal radiation transport

    International Nuclear Information System (INIS)

    Smedley-Stevenson, Richard P.; McClarren, Ryan G.

    2015-01-01

    This paper attempts to unify the asymptotic diffusion limit analysis of thermal radiation transport schemes, for a linear-discontinuous representation of the material temperature reconstructed from cell centred temperature unknowns, in a process known as ‘source tilting’. The asymptotic limits of both Monte Carlo (continuous in space) and deterministic approaches (based on linear-discontinuous finite elements) for solving the transport equation are investigated in slab geometry. The resulting discrete diffusion equations are found to have nonphysical terms that are proportional to any cell-edge discontinuity in the temperature representation. Based on this analysis it is possible to design accurate schemes for representing the material temperature, for coupling thermal radiation transport codes to a cell centred representation of internal energy favoured by ALE (arbitrary Lagrange–Eulerian) hydrodynamics schemes

  11. Composite asymptotic expansions and scaling wall turbulence.

    Science.gov (United States)

    Panton, Ronald L

    2007-03-15

    In this article, the assumptions and reasoning that yield composite asymptotic expansions for wall turbulence are discussed. Particular attention is paid to the scaling quantities that are used to render the variables non-dimensional and of order one. An asymptotic expansion is proposed for the streamwise Reynolds stress that accounts for the active and inactive turbulence by using different scalings. The idea is tested with the data from the channel flows and appears to have merit.

  12. Asymptotics of empirical eigenstructure for high dimensional spiked covariance.

    Science.gov (United States)

    Wang, Weichen; Fan, Jianqing

    2017-06-01

    We derive the asymptotic distributions of the spiked eigenvalues and eigenvectors under a generalized and unified asymptotic regime, which takes into account the magnitude of spiked eigenvalues, sample size, and dimensionality. This regime allows high dimensionality and diverging eigenvalues and provides new insights into the roles that the leading eigenvalues, sample size, and dimensionality play in principal component analysis. Our results are a natural extension of those in Paul (2007) to a more general setting and solve the rates of convergence problems in Shen et al. (2013). They also reveal the biases of estimating leading eigenvalues and eigenvectors by using principal component analysis, and lead to a new covariance estimator for the approximate factor model, called shrinkage principal orthogonal complement thresholding (S-POET), that corrects the biases. Our results are successfully applied to outstanding problems in estimation of risks of large portfolios and false discovery proportions for dependent test statistics and are illustrated by simulation studies.

  13. Ciência no globo-ciência

    OpenAIRE

    Mendonça,Otávio Machado Lopes de

    1996-01-01

    O objetivo da presente pesquisa foi verificar as áreas de conhecimento científico que se fizeram presentes na programação do Globo-Ciência, veiculada pela Rede Globo de Televisão,verificando também as estratégias usadas e o material empregado como recursos didáticos. O material utilizado foi o catálogo da programação do Globo-Ciência-10 anos (1984-1994). Os resultados mostram que as Ciências Exatas e da Terra foi a mais apresentada no programa com 49,65%,havendo pouco espaço para as outras, v...

  14. Asymptotically double lacunry equivalent sequences defined by Orlicz functions

    Directory of Open Access Journals (Sweden)

    Ayhan Esi

    2014-04-01

    Full Text Available This paper presents the following definition which is natural combition of the definition for asymptotically equivalent and Orlicz function. The two nonnegative double sequences x=(x_{k,l} and y=(y_{k,l} are said to be M-asymptotically double equivalent to multiple L provided that for every ε>0, P-lim_{k,l}M(((|((x_{k,l}/(y_{k,l}-L|/ρ=0, for some ρ>0, (denoted by x∽y and simply M-asymptotically double equivalent if L=1. Also we give some new concepts related to this definition and some inclusion theorems.

  15. Asymptotic Behaviour and Extinction of Delay Lotka-Volterra Model with Jump-Diffusion

    OpenAIRE

    Dan Li; Jing’an Cui; Guohua Song

    2014-01-01

    This paper studies the effect of jump-diffusion random environmental perturbations on the asymptotic behaviour and extinction of Lotka-Volterra population dynamics with delays. The contributions of this paper lie in the following: (a) to consider delay stochastic differential equation with jumps, we introduce a proper initial data space, in which the initial data may be discontinuous function with downward jumps; (b) we show that the delay stochastic differential equation with jumps associate...

  16. LEFT-WING ASYMPTOTICS OF THE IMPLIED VOLATILITY IN THE PRESENCE OF ATOMS

    OpenAIRE

    ARCHIL GULISASHVILI

    2015-01-01

    The paper considers the asymptotic behavior of the implied volatility in stochastic asset price models with atoms. In such models, the asset price distribution has a singular component at zero. Examples of models with atoms include the constant elasticity of variance (CEV) model, jump-to-default models, and stochastic models described by processes stopped at the first hitting time of zero. For models with atoms, the behavior of the implied volatility at large strikes is similar to that in mod...

  17. Continuous time random walk model with asymptotical probability density of waiting times via inverse Mittag-Leffler function

    Science.gov (United States)

    Liang, Yingjie; Chen, Wen

    2018-04-01

    The mean squared displacement (MSD) of the traditional ultraslow diffusion is a logarithmic function of time. Recently, the continuous time random walk model is employed to characterize this ultraslow diffusion dynamics by connecting the heavy-tailed logarithmic function and its variation as the asymptotical waiting time density. In this study we investigate the limiting waiting time density of a general ultraslow diffusion model via the inverse Mittag-Leffler function, whose special case includes the traditional logarithmic ultraslow diffusion model. The MSD of the general ultraslow diffusion model is analytically derived as an inverse Mittag-Leffler function, and is observed to increase even more slowly than that of the logarithmic function model. The occurrence of very long waiting time in the case of the inverse Mittag-Leffler function has the largest probability compared with the power law model and the logarithmic function model. The Monte Carlo simulations of one dimensional sample path of a single particle are also performed. The results show that the inverse Mittag-Leffler waiting time density is effective in depicting the general ultraslow random motion.

  18. A diffusion model for two parallel queues with processor sharing: transient behavior and asymptotics

    Directory of Open Access Journals (Sweden)

    Charles Knessl

    1999-01-01

    Full Text Available We consider two identical, parallel M/M/1 queues. Both queues are fed by a Poisson arrival stream of rate λ and have service rates equal to μ. When both queues are non-empty, the two systems behave independently of each other. However, when one of the queues becomes empty, the corresponding server helps in the other queue. This is called head-of-the-line processor sharing. We study this model in the heavy traffic limit, where ρ=λ/μ→1. We formulate the heavy traffic diffusion approximation and explicitly compute the time-dependent probability of the diffusion approximation to the joint queue length process. We then evaluate the solution asymptotically for large values of space and/or time. This leads to simple expressions that show how the process achieves its stead state and other transient aspects.

  19. Asymptotic freeze-out of the perturbations generated inside a corrugated rarefaction wave

    International Nuclear Information System (INIS)

    Wouchuk, J.G.; Serrano Rodrigo, A.D.

    2004-01-01

    Based on previous work [J. G. Wouchuk and R. Carretero, Phys. Plasmas 10, 4237 (2003)], the conditions of asymptotic freeze-out of the ripples at the tail of a corrugated rarefaction wave are analyzed. The precise location of the freezing-out regions in the space of preshock parameters is tried, and an efficient algorithm for their determination is given. It is seen that asymptotic freeze-out can only happen for gases that have an isentropic exponent γ cr ≅2.2913hellip. It is shown that the late time freeze-out of the ripple perturbations is correlated to the initial tangential velocity profile (at t=0+) inside the expansion fan

  20. Asymptotic stability boundaries of ballooning modes in circular tokamaks

    International Nuclear Information System (INIS)

    Chen, L.; Bondeson, A.; Chance, M.S.

    1987-06-01

    The model ballooning mode equation of Connor, Hastie, and Taylor for large-aspect-ratio circular tokamaks is analyzed in the limit of large pressure gradient, and corresponding expressions for stability boundaries are derived. In particular, it is found that for a fixed radial wave number, there exists an infinite sequence of unstable bands, and that minimizing over the radial wave numbers leads to asymptotic merging between the neighboring bands

  1. Coulomb string tension, asymptotic string tension, and the gluon chain

    OpenAIRE

    Greensite, Jeff; Szczepaniak, Adam P.

    2014-01-01

    We compute, via numerical simulations, the non-perturbative Coulomb potential of pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.

  2. Boundary dynamics of asymptotically flat 3D gravity coupled to higher spin fields

    International Nuclear Information System (INIS)

    González, Hernán A.; Pino, Miguel

    2014-01-01

    We construct a two-dimensional action principle invariant under a spin-three extension of BMS_3 group. Such a theory is obtained through a reduction of Chern-Simons action with a boundary. This procedure is carried out by imposing a set of boundary conditions obtained from asymptotically flat spacetimes in three dimensions. When implementing part of this set, we obtain an analog of chiral WZW model based on a contraction of sl(3,ℝ)×sl(3,ℝ). The remaining part of the boundary conditions imposes constraints on the conserved currents of the model, which allows to further reduce the action principle. It is shown that a sector of this latter theory is related to a flat limit of Toda theory

  3. Boundary dynamics of asymptotically flat 3D gravity coupled to higher spin fields

    Energy Technology Data Exchange (ETDEWEB)

    González, Hernán A. [Physique Théorique et Mathématique,Université Libre de Bruxelles & International Solvay Institutes,Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Pino, Miguel [Departamento de Física, Universidad de Santiago de Chile,Av. Ecuador 3493, Estación Central, Santiago (Chile)

    2014-05-27

    We construct a two-dimensional action principle invariant under a spin-three extension of BMS{sub 3} group. Such a theory is obtained through a reduction of Chern-Simons action with a boundary. This procedure is carried out by imposing a set of boundary conditions obtained from asymptotically flat spacetimes in three dimensions. When implementing part of this set, we obtain an analog of chiral WZW model based on a contraction of sl(3,ℝ)×sl(3,ℝ). The remaining part of the boundary conditions imposes constraints on the conserved currents of the model, which allows to further reduce the action principle. It is shown that a sector of this latter theory is related to a flat limit of Toda theory.

  4. Asymptotics for the number of negative eigenvalues of a model operator related to a system of three-particles on lattices

    International Nuclear Information System (INIS)

    Rasulov, T.H.

    2009-04-01

    A model operator H μ , μ > 0 associated to a system of three particles on the three-dimensional lattice Z 3 . We study the case where the parameter function w has a special form with the nondegenerate minimum at the n, n > 1 points. If the associated Friedrichs model has a zero energy resonance, then we prove that the operator H μ has infinitely many negative eigenvalues accumulating at zero. Moreover, we obtain an asymptotic value for the number of negative eigenvalues of H μ lying below z < 0 with respect to the spectral parameter z → -0. (author)

  5. A asymptotic numerical method for the steady-state convection diffusion equation

    International Nuclear Information System (INIS)

    Wu Qiguang

    1988-01-01

    In this paper, A asymptotic numerical method for the steady-state Convection diffusion equation is proposed, which need not take very fine mesh size in the neighbourhood of the boundary layer. Numerical computation for model problem show that we can obtain the numerical solution in the boundary layer with moderate step size

  6. Asymptotic solutions of glass temperature profiles during steady optical fibre drawing

    KAUST Repository

    Taroni, M.

    2013-03-12

    In this paper we derive realistic simplified models for the high-speed drawing of glass optical fibres via the downdraw method that capture the fluid dynamics and heat transport in the fibre via conduction, convection and radiative heating. We exploit the small aspect ratio of the fibre and the relative orders of magnitude of the dimensionless parameters that characterize the heat transfer to reduce the problem to one- or two-dimensional systems via asymptotic analysis. The resulting equations may be readily solved numerically and in many cases admit exact analytic solutions. The systematic asymptotic breakdown presented is used to elucidate the relative importance of furnace temperature profile, convection, surface radiation and conduction in each portion of the furnace and the role of each in controlling the glass temperature. The models derived predict many of the qualitative features observed in real industrial processes, such as the glass temperature profile within the furnace and the sharp transition in fibre thickness. The models thus offer a desirable route to quick scenario testing, providing valuable practical information about the dependencies of the solution on the parameters and the dominant heat-transport mechanism. © 2013 Springer Science+Business Media Dordrecht.

  7. More asymptotic safety guaranteed

    Science.gov (United States)

    Bond, Andrew D.; Litim, Daniel F.

    2018-04-01

    We study interacting fixed points and phase diagrams of simple and semisimple quantum field theories in four dimensions involving non-Abelian gauge fields, fermions and scalars in the Veneziano limit. Particular emphasis is put on new phenomena which arise due to the semisimple nature of the theory. Using matter field multiplicities as free parameters, we find a large variety of interacting conformal fixed points with stable vacua and crossovers inbetween. Highlights include semisimple gauge theories with exact asymptotic safety, theories with one or several interacting fixed points in the IR, theories where one of the gauge sectors is both UV free and IR free, and theories with weakly interacting fixed points in the UV and the IR limits. The phase diagrams for various simple and semisimple settings are also given. Further aspects such as perturbativity beyond the Veneziano limit, conformal windows, and implications for model building are discussed.

  8. Asymptotic approach for the nonlinear equatorial long wave interactions

    International Nuclear Information System (INIS)

    Ramirez Gutierrez, Enver; Silva Dias, Pedro L; Raupp, Carlos

    2011-01-01

    In the present work we use an asymptotic approach to obtain the long wave equations. The shallow water equation is put as a function of an external parameter that is a measure of both the spatial scales anisotropy and the fast to slow time ratio. The values given to the external parameters are consistent with those computed using typical values of the perturbations in tropical dynamics. Asymptotically, the model converge toward the long wave model. Thus, it is possible to go toward the long wave approximation through intermediate realizable states. With this approach, the resonant nonlinear wave interactions are studied. To simplify, the reduced dynamics of a single resonant triad is used for some selected equatorial trios. It was verified by both theoretical and numerical results that the nonlinear energy exchange period increases smoothly as we move toward the long wave approach. The magnitude of the energy exchanges is also modified, but in this case depends on the particular triad used and also on the initial energy partition among the triad components. Some implications of the results for the tropical dynamics are discussed. In particular, we discuss the implications of the results for El Nino and the Madden-Julian in connection with other scales of time and spatial variability.

  9. On hierarchy in asymptotic reconstruction of spontaneously broken isotopic symmetry

    International Nuclear Information System (INIS)

    Ermolaev, B.I.

    1978-01-01

    The isotopic features of the effective current-current lagrangian of the Lsub(eff) electromagnetic-weak interaction between elementary particles are treated at large momentum transfers using the Weinberg-Salam model. Transition to other models may be made by analogy. It is shown that when the collision energies of elementary particles exceed 90 GeV one may expect the hierarchy in the asymptotic reconstruction of the isotopic symmetry. Such hierarchy could be observed, in particular, in experiments on elastic leptonic collisions at high energies

  10. Kuhn e as ciências sociais

    Directory of Open Access Journals (Sweden)

    Jesus de Paula Assis

    1993-12-01

    Full Text Available No texto, são expostos os motivos básicos pelos quais o vocabulário emprestado de Thomas Kuhn - notadamente o termo paradigma - e o modelo de desenvolvimento científico exposto pelo autor em seu A estrutura das revoluções científicas foram tomados de empréstimo em textos que discutem a epistemologia das ciências sociais. A conclusão é que as supostas aplicações do modelo kuhniano às ciências sociais se baseiam em leitura que não encontra qualquer apoio no autor e, principalmente, obscurecem as implicações mais amplas de sua obra.The article shows for what reasons the vocabulary and the model for scientific growth of Thomas Kuhn were borrowed by epistemologists of the social sciences. The conclusion is that the texts produced in this vein are based in a shallow understanding of the author's main implications.

  11. (Human) Resourcing For CI

    DEFF Research Database (Denmark)

    Jørgensen, Frances; S., Jacob; Kofoed, Lise Busk

    2005-01-01

    the change processes in which we are engaged?” Without a clear picture of the types of competencies required to implement CI, it is impossible for companies to make informed decisions regarding recruitment, hiring, and training of their workforce. The objective of this paper is therefore to define...... and characterize the types of competencies necessary for persons involved change implementation. Data collection involved interviews and observations in three longitudinal studies in five companies based in Denmark. From these data, a list of competencies that appeared to facilitate CI implementation was compiled...... challenging in organizations involved in change processes such as Continuous Improvement (CI), as the technical skills traditionally valued are no longer adequate. These companies are faced with the question: “What competencies should our employees possess in order to contribute to our success, given...

  12. Continuous Record Laplace-based Inference about the Break Date in Structural Change Models

    OpenAIRE

    Casini, Alessandro; Perron, Pierre

    2018-01-01

    Building upon the continuous record asymptotic framework recently introduced by Casini and Perron (2017a) for inference in structural change models, we propose a Laplace-based (Quasi-Bayes) procedure for the construction of the estimate and confidence set for the date of a structural change. The procedure relies on a Laplace-type estimator defined by an integration-based rather than an optimization-based method. A transformation of the leastsquares criterion function is evaluated in order to ...

  13. Asymptotic structure of isolated systems

    International Nuclear Information System (INIS)

    Beig, R.

    1988-01-01

    I discuss the general ideas underlying the subject of ''asymptotics'' in general relativity and describe the current status of the concepts resulting from these ideas. My main concern will be the problem of consistency. By this I mean the question as to whether the geometric assumptions inherent in these concepts are compatible with the dynamics of the theory, as determined by Einstein's equations. This rather strong bias forces me to leave untouched several issues related to asymptotics, discussed in the recent literature, some of which are perhaps thought equally, or more important, by other workers in the field. In addition I shall, for coherence of presentation, mainly consider Einstein's equations in vacuo. When attention is confined to small neighbourhoods of null and spacelike infinity, this restriction is not important, but is surely relevant for more global issues. (author)

  14. Grey radiative transfer in binary statistical media with material temperature coupling: asymptotic limits

    International Nuclear Information System (INIS)

    Prinja, A.K.; Olson, G.L.

    2005-01-01

    Simplified models for the unconditional ensemble-averaged radiation intensity and material energy are developed for radiative transfer in binary statistical media. Asymptotic analysis is used to construct an effective transport model with homogenized opacities in two limits. In the first, the material properties are assumed to have low contrast on average, and is shown to correctly reproduce the well-known atomic mix model in both time-dependent and equilibrium situations. Our analysis successfully resolves an inconsistency previously noted in the literature with the application of the standard definition of the atomic mix limit to radiative transfer in participating random media. In the second limit considered, the materials are assumed to have highly contrasting opacities, yielding a reduced transport model with effective scattering. The existence of these limits requires the mean chunk sizes to be independent of the photon direction and this creates an ambiguity in the interpretation of the models when the underlying stochastic geometry is comprised of alternating one-dimensional slabs. A consistent one-dimensional setting is defined and the asymptotic models are numerically validated over a broad range of physical parameter values

  15. Asymptotic limits of a statistical transport description

    International Nuclear Information System (INIS)

    Malvagi, F.; Levermore, C.D.; Pomraning, G.C.; Department of Mathematics, University of Arizona, Tucson, AZ 85721)

    1989-01-01

    We consider three different asymptotic limits of a model describing linear particle transport in a stochastic medium consisting of two randomly mixed immiscible fluids. These three limits are: (1) the fluid packets are small compared to the particle mean free path in the packet; (2) a small amount of large cross section fluid is admixed with a large amount of small cross section fluid; and (3) the angular dependence of the intensity (angular flux) is nearly isotropic. The first two limits reduce the underlying model, which consists of two coupled transport equations, to a single transport equation of the usual form. The third limit yields a two-equation diffusion approximation, and a boundary layer analysis gives boundary conditions for these two coupled diffusion equations

  16. Regge asymptotics of scattering with flavour exchange in QCD

    International Nuclear Information System (INIS)

    Kirschner, R.

    1994-06-01

    The contribution to the perturbative Regge asymptotics of the exchange of two reggeized fermions with opposite helicity is investigated. The methods of conformal symmetry known for the case of gluon exchange are extended to this case where double-logarithmic contributions dominate the asymptotics. The Regge trajectories at large momentum transfer are calculated. (orig.)

  17. An asymptotic formula of the divergent bilateral basic hypergeometric series

    OpenAIRE

    Morita, Takeshi

    2012-01-01

    We show an asymptotic formula of the divergent bilateral basic hypergeometric series ${}_1\\psi_0 (a;-;q,\\cdot)$ with using the $q$-Borel-Laplace method. We also give the limit $q\\to 1-0$ of our asymptotic formula.

  18. Asymptotically Almost Periodic Solutions of Evolution Equations in Banach Spaces

    Science.gov (United States)

    Ruess, W. M.; Phong, V. Q.

    Tile linear abstract evolution equation (∗) u'( t) = Au( t) + ƒ( t), t ∈ R, is considered, where A: D( A) ⊂ E → E is the generator of a strongly continuous semigroup of operators in the Banach space E. Starting from analogs of Kadets' and Loomis' Theorems for vector valued almost periodic Functions, we show that if σ( A) ∩ iR is countable and ƒ: R → E is [asymptotically] almost periodic, then every bounded and uniformly continuous solution u to (∗) is [asymptotically] almost periodic, provided e-λ tu( t) has uniformly convergent means for all λ ∈ σ( A) ∩ iR. Related results on Eberlein-weakly asymptotically almost periodic, periodic, asymptotically periodic and C 0-solutions of (∗), as well as on the discrete case of solutions of difference equations are included.

  19. Caustics, counting maps and semi-classical asymptotics

    Science.gov (United States)

    Ercolani, N. M.

    2011-02-01

    This paper develops a deeper understanding of the structure and combinatorial significance of the partition function for Hermitian random matrices. The coefficients of the large N expansion of the logarithm of this partition function, also known as the genus expansion (and its derivatives), are generating functions for a variety of graphical enumeration problems. The main results are to prove that these generating functions are, in fact, specific rational functions of a distinguished irrational (algebraic) function, z0(t). This distinguished function is itself the generating function for the Catalan numbers (or generalized Catalan numbers, depending on the choice of weight of the parameter t). It is also a solution of the inviscid Burgers equation for certain initial data. The shock formation, or caustic, of the Burgers characteristic solution is directly related to the poles of the rational forms of the generating functions. As an intriguing application, one gains new insights into the relation between certain derivatives of the genus expansion, in a double-scaling limit, and the asymptotic expansion of the first Painlevé transcendent. This provides a precise expression of the Painlevé asymptotic coefficients directly in terms of the coefficients of the partial fractions expansion of the rational form of the generating functions established in this paper. Moreover, these insights point towards a more general program relating the first Painlevé hierarchy to the higher order structure of the double-scaling limit through the specific rational structure of generating functions in the genus expansion. The paper closes with a discussion of the relation of this work to recent developments in understanding the asymptotics of graphical enumeration. As a by-product, these results also yield new information about the asymptotics of recurrence coefficients for orthogonal polynomials with respect to exponential weights, the calculation of correlation functions for certain

  20. Caustics, counting maps and semi-classical asymptotics

    International Nuclear Information System (INIS)

    Ercolani, N M

    2011-01-01

    This paper develops a deeper understanding of the structure and combinatorial significance of the partition function for Hermitian random matrices. The coefficients of the large N expansion of the logarithm of this partition function, also known as the genus expansion (and its derivatives), are generating functions for a variety of graphical enumeration problems. The main results are to prove that these generating functions are, in fact, specific rational functions of a distinguished irrational (algebraic) function, z 0 (t). This distinguished function is itself the generating function for the Catalan numbers (or generalized Catalan numbers, depending on the choice of weight of the parameter t). It is also a solution of the inviscid Burgers equation for certain initial data. The shock formation, or caustic, of the Burgers characteristic solution is directly related to the poles of the rational forms of the generating functions. As an intriguing application, one gains new insights into the relation between certain derivatives of the genus expansion, in a double-scaling limit, and the asymptotic expansion of the first Painlevé transcendent. This provides a precise expression of the Painlevé asymptotic coefficients directly in terms of the coefficients of the partial fractions expansion of the rational form of the generating functions established in this paper. Moreover, these insights point towards a more general program relating the first Painlevé hierarchy to the higher order structure of the double-scaling limit through the specific rational structure of generating functions in the genus expansion. The paper closes with a discussion of the relation of this work to recent developments in understanding the asymptotics of graphical enumeration. As a by-product, these results also yield new information about the asymptotics of recurrence coefficients for orthogonal polynomials with respect to exponential weights, the calculation of correlation functions for certain

  1. Transport of radionuclides in stochastic media. Pt. 1: The quasi-asymptotic approximation

    International Nuclear Information System (INIS)

    Devooght, J.; Smidts, O.F.

    1996-01-01

    A three-dimensional quasi-asymptotic approximate equation is developed for the transport of radionuclides in a stochastic velocity field. This approximation is derived from an integro-differential equation of transport in stochastic media, commonly encountered in hydrogeology. The quasi-asymptotic equation turns out to be a generalised Telegrapher's equation as found by Williams in the particular context of fractured media. We obtain the Telegrapher's equation without specifying the causes responsible for the random velocity field. Our model may thus be applied in porous media as well as in fractured media. We give the developments leading to the analytical solution of the three-dimensional Telegrapher's equation for constant parameters. This solution is then visualised for a source in the form of a square wave. (Author)

  2. Asymptotics for a special solution to the second member of the Painleve I hierarchy

    International Nuclear Information System (INIS)

    Claeys, T

    2010-01-01

    We study the asymptotic behavior of a special smooth solution y(x, t) to the second member of the Painleve I hierarchy. This solution arises in random matrix theory and in the study of the Hamiltonian perturbations of hyperbolic equations. The asymptotic behavior of y(x, t) if x → ±∞ (for fixed t) is known and relatively simple, but it turns out to be more subtle when x and t tend to infinity simultaneously. We distinguish a region of algebraic asymptotic behavior and a region of elliptic asymptotic behavior, and we obtain rigorous asymptotics in both regions. We also discuss two critical transitional asymptotic regimes.

  3. Numerical Asymptotic Solutions Of Differential Equations

    Science.gov (United States)

    Thurston, Gaylen A.

    1992-01-01

    Numerical algorithms derived and compared with classical analytical methods. In method, expansions replaced with integrals evaluated numerically. Resulting numerical solutions retain linear independence, main advantage of asymptotic solutions.

  4. Asymptotics for Large Time of Global Solutions to the Generalized Kadomtsev-Petviashvili Equation

    Science.gov (United States)

    Hayashi, Nakao; Naumkin, Pavel I.; Saut, Jean-Claude

    We study the large time asymptotic behavior of solutions to the generalized Kadomtsev-Petviashvili (KP) equations where σ= 1 or σ=- 1. When ρ= 2 and σ=- 1, (KP) is known as the KPI equation, while ρ= 2, σ=+ 1 corresponds to the KPII equation. The KP equation models the propagation along the x-axis of nonlinear dispersive long waves on the surface of a fluid, when the variation along the y-axis proceeds slowly [10]. The case ρ= 3, σ=- 1 has been found in the modeling of sound waves in antiferromagnetics [15]. We prove that if ρ>= 3 is an integer and the initial data are sufficiently small, then the solution u of (KP) satisfies the following estimates: for all t∈R, where κ= 1 if ρ= 3 and κ= 0 if ρ>= 4. We also find the large time asymptotics for the solution.

  5. CiPA: Ongoing testing, future qualification procedures, and pending issues.

    Science.gov (United States)

    Cavero, Icilio; Holzgrefe, Henry

    2015-01-01

    The comprehensive in vitro proarrhythmia assay (CiPA) is a nonclinical, mechanism-based paradigm for assessing drug proarrhythmic liability. The first CiPA assay determines effects on cloned human cardiac ion channels. The second investigates whether the latter study-generated metrics engender proarrhythmic markers on a computationally reconstructed human ventricular action potential. The third evaluates conclusions from, and searches possibly missed effects by in silico analysis, in human stem cell-derived cardiomyocytes (hSC-CMs). CiPA ad hoc Expert-Working Groups have proposed patch clamp protocols for seven cardiac ion channels, a modified O'Hara-Rudy model for in silico analysis, detailed procedures for field (MEA) and action potential (VSD) measurements in hSC-CMs, and 29 reference drugs for CiPA assay testing and validation. CiPA adoption as drug development tool for identifying electrophysiological mechanisms conferring proarrhythmic liability to candidate drugs is a complex, multi-functional task requiring significant time, reflection, and efforts to be fully achieved. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Asymptotic behaviour of pion-pion total cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Greynat, David [Dipartimento di Scienze Fisiche, Universita di Napoli “Federico II”,Via Cintia, 80126 Napoli (Italy); Rafael, Eduardo de [Aix-Marseille Université, CNRS,CPT, UMR 7332, 13288 Marseille (France); Université de Toulon, CNRS,CPT, UMR 7332, 83957 La Garde (France); Vulvert, Grégory [Departament de Física Teórica, IFIC,CSIC - Universitat de València, Apt. Correus 22085, E-46071 València (Spain)

    2014-03-24

    We derive a sum rule which shows that the Froissart-Martin bound for the asymptotic behaviour of the ππ total cross sections at high energies, if modulated by the Lukaszuk-Martin coefficient of the leading log{sup 2} s behaviour, cannot be an optimal bound in QCD. We next compute the total cross sections for π{sup +}π{sup −}, π{sup ±}π{sup 0} and π{sup 0}π{sup 0} scattering within the framework of the constituent chiral quark model (CχQM) in the limit of a large number of colours N{sub c} and discuss their asymptotic behaviours. The same ππ cross sections are also discussed within the general framework of Large-N{sub c} QCD and we show that it is possible to make an Ansatz for the isospin I=1 and I=0 spectrum which satisfy the Froissart-Martin bound with coefficients which, contrary to the Lukaszuk-Martin coefficient, are not singular in the chiral limit and have the correct Large-N{sub c} counting. We finally propose a simple phenomenological model which matches the low energy behaviours of the σ{sub π{sup ±}π{sup 0total}}(s) cross section predicted by the CχQM with the high energy behaviour predicted by the Large-N{sub c} Ansatz. The magnitude of these cross sections at very high energies is of the order of those observed for the pp and pp-bar scattering total cross sections.

  7. Asymptotic behaviour of pion-pion total cross-sections

    International Nuclear Information System (INIS)

    Greynat, David; Rafael, Eduardo de; Vulvert, Grégory

    2014-01-01

    We derive a sum rule which shows that the Froissart-Martin bound for the asymptotic behaviour of the ππ total cross sections at high energies, if modulated by the Lukaszuk-Martin coefficient of the leading log 2  s behaviour, cannot be an optimal bound in QCD. We next compute the total cross sections for π + π − , π ± π 0 and π 0 π 0 scattering within the framework of the constituent chiral quark model (CχQM) in the limit of a large number of colours N c and discuss their asymptotic behaviours. The same ππ cross sections are also discussed within the general framework of Large-N c QCD and we show that it is possible to make an Ansatz for the isospin I=1 and I=0 spectrum which satisfy the Froissart-Martin bound with coefficients which, contrary to the Lukaszuk-Martin coefficient, are not singular in the chiral limit and have the correct Large-N c counting. We finally propose a simple phenomenological model which matches the low energy behaviours of the σ π ± π 0 total (s) cross section predicted by the CχQM with the high energy behaviour predicted by the Large-N c Ansatz. The magnitude of these cross sections at very high energies is of the order of those observed for the pp and pp-bar scattering total cross sections

  8. Novel Fuzzy-Modeling-Based Adaptive Synchronization of Nonlinear Dynamic Systems

    Directory of Open Access Journals (Sweden)

    Shih-Yu Li

    2017-01-01

    Full Text Available In this paper, a novel fuzzy-model-based adaptive synchronization scheme and its fuzzy update laws of parameters are proposed to address the adaptive synchronization problem. The proposed fuzzy controller does not share the same premise of fuzzy system, and the numbers of fuzzy controllers is reduced effectively through the novel modeling strategy. In addition, based on the adaptive synchronization scheme, the error dynamic system can be guaranteed to be asymptotically stable and the true values of unknown parameters can be obtained. Two identical complicated dynamic systems, Mathieu-Van der pol system (M-V system with uncertainties, are illustrated for numerical simulation example to show the effectiveness and feasibility of the proposed novel adaptive control strategy.

  9. Asymptotic analysis of multicell massive MIMO over Rician fading channels

    KAUST Repository

    Sanguinetti, Luca; Kammoun, Abla; Debbah, Merouane

    2017-01-01

    This work considers the downlink of a multicell massive MIMO system in which L base stations (BSs) of N antennas each communicate with K single-antenna user equipments randomly positioned in the coverage area. Within this setting, we are interested in evaluating the sum rate of the system when MRT and RZF are employed under the assumption that each intracell link forms a MIMO Rician uncorrelated fading channel. The analysis is conducted assuming that N and K grow large with a non-trivial ratio N/K under the assumption that the data transmission in each cell is affected by channel estimation errors, pilot contamination, and an arbitrary large scale attenuation. Numerical results are used to validate the asymptotic analysis in the finite system regime and to evaluate the network performance under different settings. The asymptotic results are also instrumental to get insights into the interplay among system parameters.

  10. Asymptotic analysis of multicell massive MIMO over Rician fading channels

    KAUST Repository

    Sanguinetti, Luca

    2017-06-20

    This work considers the downlink of a multicell massive MIMO system in which L base stations (BSs) of N antennas each communicate with K single-antenna user equipments randomly positioned in the coverage area. Within this setting, we are interested in evaluating the sum rate of the system when MRT and RZF are employed under the assumption that each intracell link forms a MIMO Rician uncorrelated fading channel. The analysis is conducted assuming that N and K grow large with a non-trivial ratio N/K under the assumption that the data transmission in each cell is affected by channel estimation errors, pilot contamination, and an arbitrary large scale attenuation. Numerical results are used to validate the asymptotic analysis in the finite system regime and to evaluate the network performance under different settings. The asymptotic results are also instrumental to get insights into the interplay among system parameters.

  11. Asymptotic size determines species abundance in the marine size spectrum

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Beyer, Jan

    2006-01-01

    The majority of higher organisms in the marine environment display indeterminate growth; that is, they continue to grow throughout their life, limited by an asymptotic size. We derive the abundance of species as a function of their asymptotic size. The derivation is based on size-spectrum theory......, where population structure is derived from physiology and simple arguments regarding the predator-prey interaction. Using a hypothesis of constant satiation, which states that the average degree of satiation is independent of the size of an organism, the number of individuals with a given size is found...... to be proportional to the weight raised to the power -2.05, independent of the predator/prey size ratio. This is the first time the spectrum exponent has been derived solely on the basis of processes at the individual level. The theory furthermore predicts that the parameters in the von Bertalanffy growth function...

  12. Spectral asymptotics of a strong δ′ interaction supported by a surface

    International Nuclear Information System (INIS)

    Exner, Pavel; Jex, Michal

    2014-01-01

    Highlights: • Attractive δ ′ interactions supported by a smooth surface are considered. • Surfaces can be either infinite and asymptotically planar, or compact and closed. • Spectral asymptotics is determined by the geometry of the interaction support. - Abstract: We derive asymptotic expansion for the spectrum of Hamiltonians with a strong attractive δ ′ interaction supported by a smooth surface in R 3 , either infinite and asymptotically planar, or compact and closed. Its second term is found to be determined by a Schrödinger type operator with an effective potential expressed in terms of the interaction support curvatures

  13. Binary non-additive hard sphere mixtures: fluid demixing, asymptotic decay of correlations and free fluid interfaces

    International Nuclear Information System (INIS)

    Hopkins, Paul; Schmidt, Matthias

    2010-01-01

    Using a fundamental measure density functional theory we investigate both bulk and inhomogeneous systems of the binary non-additive hard sphere model. For sufficiently large (positive) non-additivity the mixture phase separates into two fluid phases with different compositions. We calculate bulk fluid-fluid coexistence curves for a range of size ratios and non-additivity parameters and find that they compare well to simulation results from the literature. Using the Ornstein-Zernike equation, we investigate the asymptotic, r→∞, decay of the partial pair correlation functions, g ij (r). At low densities a structural crossover occurs in the asymptotic decay between two different damped oscillatory modes with different wavelengths corresponding to the two intra-species hard-core diameters. On approaching the fluid-fluid critical point there is a Fisher-Widom crossover from exponentially damped oscillatory to monotonic asymptotic decay. Using the density functional we calculate the density profiles for the planar free fluid-fluid interface between coexisting fluid phases. We show that the type of asymptotic decay of g ij (r) not only determines the asymptotic decay of the interface profiles, but is also relevant for intermediate and even short-ranged behaviour. We also determine the surface tension of the free fluid interface, finding that it increases with non-additivity, and that on approaching the critical point mean-field scaling holds.

  14. Error estimates in horocycle averages asymptotics: challenges from string theory

    NARCIS (Netherlands)

    Cardella, M.A.

    2010-01-01

    For modular functions of rapid decay, a classical result connects the error estimate in their long horocycle average asymptotic to the Riemann hypothesis. We study similar asymptotics, for modular functions with not that mild growing conditions, such as of polynomial growth and of exponential growth

  15. Asymptotic Solution of the Theory of Shells Boundary Value Problem

    Directory of Open Access Journals (Sweden)

    I. V. Andrianov

    2007-01-01

    Full Text Available This paper provides a state-of-the-art review of asymptotic methods in the theory of plates and shells. Asymptotic methods of solving problems related to theory of plates and shells have been developed by many authors. The main features of our paper are: (i it is devoted to the fundamental principles of asymptotic approaches, and (ii it deals with both traditional approaches, and less widely used, new approaches. The authors have paid special attention to examples and discussion of results rather than to burying the ideas in formalism, notation, and technical details.

  16. Asymptotics for the ratio and the zeros of multiple Charlier polynomials

    OpenAIRE

    Ndayiragije, François; Van Assche, Walter

    2011-01-01

    We investigate multiple Charlier polynomials and in particular we will use the (nearest neighbor) recurrence relation to find the asymptotic behavior of the ratio of two multiple Charlier polynomials. This result is then used to obtain the asymptotic distribution of the zeros, which is uniform on an interval. We also deal with the case where one of the parameters of the various Poisson distributions depend on the degree of the polynomial, in which case we obtain another asymptotic distributio...

  17. Ruin problems and tail asymptotics

    DEFF Research Database (Denmark)

    Rønn-Nielsen, Anders

    The thesis Ruin Problems and Tail Asymptotics provides results on ruin problems for several classes of Markov processes. For a class of diffusion processes with jumps an explicit expression for the joint Laplace transform of the first passage time and the corresponding undershoot is derived...

  18. Global asymptotic stability of delayed Cohen-Grossberg neural networks

    International Nuclear Information System (INIS)

    Wu Wei; Cui Baotong; Huang Min

    2007-01-01

    In this letter, the global asymptotic stability of a class of Cohen-Grossberg neural networks with time-varying delays is discussed. A new set of sufficient conditions for the neural networks are proposed to guarantee the global asymptotic convergence. Our criteria represent an extension of the existing results in literatures. An example is also presented to compare our results with the previous results

  19. The asymptotic variance of departures in critically loaded queues

    NARCIS (Netherlands)

    Al Hanbali, Ahmad; Mandjes, M.R.H.; Nazarathy, Y.; Whitt, W.

    2011-01-01

    We consider the asymptotic variance of the departure counting process D(t) of the GI/G/1 queue; D(t) denotes the number of departures up to time t. We focus on the case where the system load ϱ equals 1, and prove that the asymptotic variance rate satisfies limt→∞varD(t) / t = λ(1 - 2 / π)(ca2 +

  20. Asymptotic symmetries of Rindler space at the horizon and null infinity

    International Nuclear Information System (INIS)

    Chung, Hyeyoun

    2010-01-01

    We investigate the asymptotic symmetries of Rindler space at null infinity and at the event horizon using both systematic and ad hoc methods. We find that the approaches that yield infinite-dimensional asymptotic symmetry algebras in the case of anti-de Sitter and flat spaces only give a finite-dimensional algebra for Rindler space at null infinity. We calculate the charges corresponding to these symmetries and confirm that they are finite, conserved, and integrable, and that the algebra of charges gives a representation of the asymptotic symmetry algebra. We also use relaxed boundary conditions to find infinite-dimensional asymptotic symmetry algebras for Rindler space at null infinity and at the event horizon. We compute the charges corresponding to these symmetries and confirm that they are finite and integrable. We also determine sufficient conditions for the charges to be conserved on-shell, and for the charge algebra to give a representation of the asymptotic symmetry algebra. In all cases, we find that the central extension of the charge algebra is trivial.

  1. Large time asymptotics of solutions of the equations of principal chiral field

    International Nuclear Information System (INIS)

    Sukhanov, V.V.

    1990-01-01

    Asymptotic behaviour of solutions of the equations of principal chiral field when one of the arguments tends to infinity is investigated. Asymptotics of solutions of the corresponding spectral problem is investigated as well. explicit formulas are constructed which connect the coefficients of the asymptotic decomposition of the potential with the data of the corresponding inverse problem by means of a birational transformation

  2. Self-consistent field theory of collisions: Orbital equations with asymptotic sources and self-averaged potentials

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Y.K., E-mail: ykhahn22@verizon.net

    2014-12-15

    The self-consistent field theory of collisions is formulated, incorporating the unique dynamics generated by the self-averaged potentials. The bound state Hartree–Fock approach is extended for the first time to scattering states, by properly resolving the principal difficulties of non-integrable continuum orbitals and imposing complex asymptotic conditions. The recently developed asymptotic source theory provides the natural theoretical basis, as the asymptotic conditions are completely transferred to the source terms and the new scattering function is made fullyintegrable. The scattering solutions can then be directly expressed in terms of bound state HF configurations, establishing the relationship between the bound and scattering state solutions. Alternatively, the integrable spin orbitals are generated by constructing the individual orbital equations that contain asymptotic sources and self-averaged potentials. However, the orbital energies are not determined by the equations, and a special channel energy fixing procedure is developed to secure the solutions. It is also shown that the variational construction of the orbital equations has intrinsic ambiguities that are generally associated with the self-consistent approach. On the other hand, when a small subset of open channels is included in the source term, the solutions are only partiallyintegrable, but the individual open channels can then be treated more simply by properly selecting the orbital energies. The configuration mixing and channel coupling are then necessary to complete the solution. The new theory improves the earlier continuum HF model. - Highlights: • First extension of HF to scattering states, with proper asymptotic conditions. • Orbital equations with asymptotic sources and integrable orbital solutions. • Construction of self-averaged potentials, and orbital energy fixing. • Channel coupling and configuration mixing, involving the new orbitals. • Critical evaluation of the

  3. Delay-dependent asymptotic stability of mobile ad-hoc networks: A descriptor system approach

    International Nuclear Information System (INIS)

    Yang Juan; Yang Dan; Zhang Xiao-Hong; Huang Bin; Luo Jian-Lu

    2014-01-01

    In order to analyze the capacity stability of the time-varying-propagation and delay-dependent of mobile ad-hoc networks (MANETs), in this paper, a novel approach is proposed to explore the capacity asymptotic stability for the delay-dependent of MANETs based on non-cooperative game theory, where the delay-dependent conditions are explicitly taken into consideration. This approach is based on the Lyapunov—Krasovskii stability theory for functional differential equations and the linear matrix inequality (LMI) technique. A corresponding Lyapunov—Krasovskii functional is introduced for the stability analysis of this system with use of the descriptor and “neutral-type” model transformation without producing any additional dynamics. The delay-dependent stability criteria are derived for this system. Conditions are given in terms of linear matrix inequalities, and for the first time referred to neutral systems with the time-varying propagation and delay-dependent stability for capacity analysis of MANETs. The proposed criteria are less conservative since they are based on an equivalent model transformation. Furthermore, we also provide an effective and efficient iterative algorithm to solve the constrained stability control model. Simulation experiments have verified the effectiveness and efficiency of our algorithm. (general)

  4. LHV predication models and LHV effect on the performance of CI engine running with biodiesel blends

    International Nuclear Information System (INIS)

    Tesfa, B.; Gu, F.; Mishra, R.; Ball, A.D.

    2013-01-01

    Highlights: • Lower heating values of neat biodiesel and its blends were measured experimentally. • Lower heating value prediction models were developed based on the density and viscosity values of the fuel. • The predication models were validated by measured values and previous models. • The prediction models were used to predict the lower heating value of 24 biodiesel feedstock types produced globally. • The effects of lower heating vale on brake specific fuel consumption and thermal efficiency were investigated. - Abstract: The heating value of fuel is one of its most important physical properties, and is used for the design and numerical simulation of combustion processes within internal combustion (IC) engines. Recently, there has been a significant increase in the use of dual fuel and blended fuels in compression ignition (CI) engines. Most of the blended fuels include biodiesel as one of the constituents and hence the objective of this study is to investigate the effect of biodiesel content to lower heating value (LHV) and to develop new LHV prediction models that correlate the LHV with biodiesel fraction, density and viscosity. Furthermore, this study also investigated the effects of the LHV on CI engines performance parameters experimentally. To achieve the above mentioned objectives density, viscosity and LHV of rapeseed oil biodiesel, corn oil biodiesel and waste oil biodiesel at different blend fraction values (B0, B5, B10, B20, B50, B75, and B100, where ‘B5’ denotes a blend of 5% biodiesel and 95% mineral diesel, etc.) were measured as per EN ISO 3675:1998, EN ISO 3104:1996 and DIN 51900 standards. The engine experimental work was conducted on a four-cylinder, four-stroke, direct injection (DI) and turbocharged diesel engine by using rapeseed oil and normal diesel blends. Based on the experimental results, models were developed which have the capability to predict the LHV corresponding to different fractions, densities and viscosities of

  5. The PN theory as an asymptotic limit of transport theory in planar geometry. 1

    International Nuclear Information System (INIS)

    Larsen, E.W.; Pomraning, G.C.

    1991-01-01

    In this paper the P N theory is shown to be an asymptotic limit of transport theory for an optically thick planar-geometry system with small absorption and highly anisotropic scattering. The asymptotic analysis shows that the solution in the interior of the system is described by the standard P N equations for which initial, boundary, and interface conditions are determined by asymptotic initial, boundary layer, and interface layer calculations. The asymptotic initial, (reflecting) boundary, and interface conditions for the P N equations agree with conventional formulations. However, at a boundary having a prescribed incident flux, the asymptotic boundary layer analysis yields P N boundary conditions that differ from previous formulations. Numerical transport and P N results are presented to substantiate this asymptotic theory

  6. Asymptotic Performance Analysis of the k-th Best Link Selection over Wireless Fading Channels: An Extreme Value Theory Approach

    KAUST Repository

    Al-Badarneh, Yazan Hussein

    2018-01-25

    We consider a general selection-diversity (SD) scheme in which the k-th best link is selected from a number of links. We use extreme value theory (EVT) to derive simple closed-form asymptotic expressions for the average throughput, effective throughput and average bit error probability (BEP) for the k-th best link over various channel models that are widely used to characterize fading in wireless communication systems. As an application example, we consider the Weibull fading channel model and verify the accuracy of the derived asymptotic expressions through Monte Carlo simulations.

  7. Asymptotic Performance Analysis of the k-th Best Link Selection over Wireless Fading Channels: An Extreme Value Theory Approach

    KAUST Repository

    Al-Badarneh, Yazan Hussein; Georghiades, Costas; Alouini, Mohamed-Slim

    2018-01-01

    We consider a general selection-diversity (SD) scheme in which the k-th best link is selected from a number of links. We use extreme value theory (EVT) to derive simple closed-form asymptotic expressions for the average throughput, effective throughput and average bit error probability (BEP) for the k-th best link over various channel models that are widely used to characterize fading in wireless communication systems. As an application example, we consider the Weibull fading channel model and verify the accuracy of the derived asymptotic expressions through Monte Carlo simulations.

  8. arXiv Phase structure of complete asymptotically free SU($N_c$) theories with quarks and scalar quarks

    CERN Document Server

    Hansen, Frederik F.; Langæble, Kasper; Mann, Robert B.; Sannino, Francesco; Steele, Tom G.; Wang, Zhi-Wei

    2018-03-21

    We determine the phase diagram of completely asymptotically free SU(Nc) gauge theories featuring Ns complex scalars and Nf Dirac quarks transforming according to the fundamental representation of the gauge group. The analysis is performed at the maximum known order in perturbation theory. We unveil a very rich dynamics and associated phase structure. Intriguingly, we discover that the completely asymptotically free conditions guarantee that the infrared dynamics displays long-distance conformality, and in a regime when perturbation theory is applicable. We conclude our analysis by determining the quantum corrected potential of the model and summarizing the possible patterns of radiative symmetry breaking. These models are of potential phenomenological interest as either elementary or composite ultraviolet finite extensions of the standard model.

  9. Gravitational charges of transverse asymptotically AdS spacetimes

    International Nuclear Information System (INIS)

    Cebeci, Hakan; Sarioglu, Oezguer; Tekin, Bayram

    2006-01-01

    Using Killing-Yano symmetries, we construct conserved charges of spacetimes that asymptotically approach to the flat or anti-de Sitter spaces only in certain directions. In D dimensions, this allows one to define gravitational charges (such as mass and angular momenta densities) of p-dimensional branes/solitons or any other extended objects that curve the transverse space into an asymptotically flat or AdS one. Our construction answers the question of what kind of charges the antisymmetric Killing-Yano tensors lead to

  10. Globally Asymptotic Stability of Stochastic Nonlinear Systems with Time-Varying Delays via Output Feedback Control

    Directory of Open Access Journals (Sweden)

    Mingzhu Song

    2016-01-01

    Full Text Available We address the problem of globally asymptotic stability for a class of stochastic nonlinear systems with time-varying delays. By the backstepping method and Lyapunov theory, we design a linear output feedback controller recursively based on the observable linearization for a class of stochastic nonlinear systems with time-varying delays to guarantee that the closed-loop system is globally asymptotically stable in probability. In particular, we extend the deterministic nonlinear system to stochastic nonlinear systems with time-varying delays. Finally, an example and its simulations are given to illustrate the theoretical results.

  11. Thermodynamics of asymptotically safe theories

    DEFF Research Database (Denmark)

    Rischke, Dirk H.; Sannino, Francesco

    2015-01-01

    We investigate the thermodynamic properties of a novel class of gauge-Yukawa theories that have recently been shown to be completely asymptotically safe, because their short-distance behaviour is determined by the presence of an interacting fixed point. Not only do all the coupling constants freeze...

  12. Numerical relativity and asymptotic flatness

    International Nuclear Information System (INIS)

    Deadman, E; Stewart, J M

    2009-01-01

    It is highly plausible that the region of spacetime far from an isolated gravitating body is, in some sense, asymptotically Minkowskian. However theoretical studies of the full nonlinear theory, initiated by Bondi et al (1962 Proc. R. Soc. A 269 21-51), Sachs (1962 Proc. R. Soc. A 270 103-26) and Newman and Unti (1962 J. Math. Phys. 3 891-901), rely on careful, clever, a priori choices of a chart (and tetrad) and so are not readily accessible to the numerical relativist, who chooses her/his chart on the basis of quite different grounds. This paper seeks to close this gap. Starting from data available in a typical numerical evolution, we construct a chart and tetrad which are, asymptotically, sufficiently close to the theoretical ones, so that the key concepts of the Bondi news function, Bondi mass and its rate of decrease can be estimated. In particular, these estimates can be expressed in the numerical relativist's chart as numerical relativity recipes.

  13. Asymptotic Solution of a Model for Bilayer Organic Diodes and Solar Cells

    KAUST Repository

    Richardson, Giles

    2012-11-15

    Organic diodes and solar cells are constructed by placing together two organic semiconducting materials with dissimilar electron affinities and ionization potentials. The electrical behavior of such devices has been successfully modeled numerically using conventional drift diffusion together with recombination (which is usually assumed to be bimolecular) and thermal generation. Here a particular model is considered and the dark current-voltage curve and the spatial structure of the solution across the device is extracted analytically using asymptotic methods. We concentrate on the case of Shockley-Read-Hall recombination but note the extension to other recombination mechanisms. We find that there are three regimes of behavior, dependent on the total current. For small currents-i.e., at reverse bias or moderate forward bias-the structure of the solution is independent of the total current. For large currents-i.e., at strong forward bias-the current varies linearly with the voltage and is primarily controlled by drift of charges in the organic layers. There is then a narrow range of currents where the behavior undergoes a transition between the two regimes. The magnitude of the parameter that quantifies the interfacial recombination rate is critical in determining where the transition occurs. The extension of the theory to organic solar cells generating current under illumination is discussed as is the analogous current-voltage curves derived where the photo current is small. Finally, by comparing the analytic results to real experimental data, we show how the model parameters can be extracted from the shape of current-voltage curves measured in the dark. © 2012 Society for Industrial and Applied Mathematics.

  14. Asymptotic Solution of a Model for Bilayer Organic Diodes and Solar Cells

    KAUST Repository

    Richardson, Giles; Please, Colin; Foster, Jamie; Kirkpatrick, James

    2012-01-01

    Organic diodes and solar cells are constructed by placing together two organic semiconducting materials with dissimilar electron affinities and ionization potentials. The electrical behavior of such devices has been successfully modeled numerically using conventional drift diffusion together with recombination (which is usually assumed to be bimolecular) and thermal generation. Here a particular model is considered and the dark current-voltage curve and the spatial structure of the solution across the device is extracted analytically using asymptotic methods. We concentrate on the case of Shockley-Read-Hall recombination but note the extension to other recombination mechanisms. We find that there are three regimes of behavior, dependent on the total current. For small currents-i.e., at reverse bias or moderate forward bias-the structure of the solution is independent of the total current. For large currents-i.e., at strong forward bias-the current varies linearly with the voltage and is primarily controlled by drift of charges in the organic layers. There is then a narrow range of currents where the behavior undergoes a transition between the two regimes. The magnitude of the parameter that quantifies the interfacial recombination rate is critical in determining where the transition occurs. The extension of the theory to organic solar cells generating current under illumination is discussed as is the analogous current-voltage curves derived where the photo current is small. Finally, by comparing the analytic results to real experimental data, we show how the model parameters can be extracted from the shape of current-voltage curves measured in the dark. © 2012 Society for Industrial and Applied Mathematics.

  15. Ratio asymptotics of Hermite-Pade polynomials for Nikishin systems

    International Nuclear Information System (INIS)

    Aptekarev, A I; Lopez, Guillermo L; Rocha, I A

    2005-01-01

    The existence of ratio asymptotics is proved for a sequence of multiple orthogonal polynomials with orthogonality relations distributed among a system of m finite Borel measures with support on a bounded interval of the real line which form a so-called Nikishin system. For m=1 this result reduces to Rakhmanov's celebrated theorem on the ratio asymptotics for orthogonal polynomials on the real line.

  16. The Best Model of the Swiss Banknote Data -Validation by the 95% CI of coefficients and t-test of discriminant scores

    Directory of Open Access Journals (Sweden)

    Shuichi Shinmura

    2016-06-01

    Full Text Available The discriminant analysis is not the inferential statistics since there are no equations for standard error (SE of error rate and discriminant coefficient based on the normal distribution. In this paper, we proposed the “k-fold cross validation for small sample” and can obtain the 95% confidence interval (CI of error rates and discriminant coefficients. This method is the computer-intensive approach by statistical and mathematical programming (MP software such as JMP and LINGO. By the proposed approach, we can choose the best model with the minimum mean of error rate in the validation samples (Minimum M2 Standard. In this research, we examine the sixteen linear separable models of Swiss banknote data by eight linear discriminant functions (LDFs. M2 of the best model of Revised IP-OLDF is the smallest value of all models. We find all coefficients of six Revised IP-OLDF among sixteen models rejected by the 95% CI of discriminant coefficients (Discriminant coefficient standard. We compare t-values of the discriminant scores. The t-value of the best model has the maximum values among sixteen models (Maximum t-value Standard. Moreover, we can conclude that all standards support the best model of Revised IP-OLDF.

  17. Asymptotic density and effective negligibility

    Science.gov (United States)

    Astor, Eric P.

    In this thesis, we join the study of asymptotic computability, a project attempting to capture the idea that an algorithm might work correctly in all but a vanishing fraction of cases. In collaboration with Hirschfeldt and Jockusch, broadening the original investigation of Jockusch and Schupp, we introduce dense computation, the weakest notion of asymptotic computability (requiring only that the correct answer is produced on a set of density 1), and effective dense computation, where every computation halts with either the correct answer or (on a set of density 0) a symbol denoting uncertainty. A few results make more precise the relationship between these notions and work already done with Jockusch and Schupp's original definitions of coarse and generic computability. For all four types of asymptotic computation, including generic computation, we demonstrate that non-trivial upper cones have measure 0, building on recent work of Hirschfeldt, Jockusch, Kuyper, and Schupp in which they establish this for coarse computation. Their result transfers to yield a minimal pair for relative coarse computation; we generalize their method and extract a similar result for relative dense computation (and thus for its corresponding reducibility). However, all of these notions of near-computation treat a set as negligible iff it has asymptotic density 0. Noting that this definition is not computably invariant, this produces some failures of intuition and a break with standard expectations in computability theory. For instance, as shown by Hamkins and Miasnikov, the halting problem is (in some formulations) effectively densely computable, even in polynomial time---yet this result appears fragile, as indicated by Rybalov. In independent work, we respond to this by strengthening the approach of Jockusch and Schupp to avoid such phenomena; specifically, we introduce a new notion of intrinsic asymptotic density, invariant under computable permutation, with rich relations to both

  18. On calculating double logarithmical asymptotics of vertex functions defined on the mass shell

    International Nuclear Information System (INIS)

    Belokurov, V.V.; Usyukina, N.I.

    1981-01-01

    The essence of the calculation method of double logarithmical asymptotics of vertex functions defined on the mass shell is presented. Using the method the asymptotics of the form-factor of electron is calculated. The ladder and cross-ladder diagrams are asymptotically considerable in every order of the perturbation theory. The way in which the asymptotics of the 4-order diagrams is calculated has been shown. The diagrams of this order and reduction procedures for them are given in a graphic form. The photon mass μ 2 not equal to 0 plays the role of a regulator, removing infrared divergencies. The double logarithmical asymptotics of the form-factor of electron on the mass shell is calculated rigorously in an arbitrary order of the perturbation theory [ru

  19. Modeling spatial processes with unknown extremal dependence class

    KAUST Repository

    Huser, Raphaël G.

    2017-03-17

    Many environmental processes exhibit weakening spatial dependence as events become more extreme. Well-known limiting models, such as max-stable or generalized Pareto processes, cannot capture this, which can lead to a preference for models that exhibit a property known as asymptotic independence. However, weakening dependence does not automatically imply asymptotic independence, and whether the process is truly asymptotically (in)dependent is usually far from clear. The distinction is key as it can have a large impact upon extrapolation, i.e., the estimated probabilities of events more extreme than those observed. In this work, we present a single spatial model that is able to capture both dependence classes in a parsimonious manner, and with a smooth transition between the two cases. The model covers a wide range of possibilities from asymptotic independence through to complete dependence, and permits weakening dependence of extremes even under asymptotic dependence. Censored likelihood-based inference for the implied copula is feasible in moderate dimensions due to closed-form margins. The model is applied to oceanographic datasets with ambiguous true limiting dependence structure.

  20. Very proton-rich nuclei with N asymptotically equals 82

    International Nuclear Information System (INIS)

    Nolte, E.

    1984-01-01

    The proton-rich nuclei with N asymptotically equals 82 show beautifully properties, which are perfectly described by the nuclear shell model. Some of these properties are the occurrence of seniority isomerism in the proton-rich N=82 isotones and the perfect description of the corresponding life times by the seniority scheme as well as the observation of favoured Gamow-Teller β transitions in this nuclear region and the dependence of the corresponding ft values on the number of the envolved nucleons. (author)

  1. Scalar hairy black holes and solitons in asymptotically flat spacetimes

    International Nuclear Information System (INIS)

    Nucamendi, Ulises; Salgado, Marcelo

    2003-01-01

    A numerical analysis shows that the Einstein field equations allow static and spherically symmetric black hole solutions with scalar-field hair in asymptotically flat spacetimes. When regularity at the origin is imposed (i.e., in the absence of a horizon) globally regular scalar solitons are found. The asymptotically flat solutions are obtained provided that the scalar potential V(φ) of the theory is not positive semidefinite and such that its local minimum is also a zero of the potential, the scalar field settling asymptotically at that minimum. The configurations, although unstable under spherically symmetric linear perturbations, are regular and thus can serve as counterexamples to the no-scalar-hair conjecture

  2. Non-Weyl asymptotics for quantum graphs with general coupling conditions

    International Nuclear Information System (INIS)

    Davies, E Brian; Exner, Pavel; Lipovsky, JirI

    2010-01-01

    Inspired by a recent result of Davies and Pushnitski, we study resonance asymptotics of quantum graphs with general coupling conditions at the vertices. We derive a criterion for the asymptotics to be of a non-Weyl character. We show that for balanced vertices with permutation-invariant couplings the asymptotics is non-Weyl only in the case of Kirchhoff or anti-Kirchhoff conditions. While for graphs without permutation symmetry numerous examples of non-Weyl behaviour can be constructed. Furthermore, we present an insight into what makes the Kirchhoff/anti-Kirchhoff coupling particular from the resonance point of view. Finally, we demonstrate a generalization to quantum graphs with unequal edge weights.

  3. Exponentially asymptotical synchronization in uncertain complex dynamical networks with time delay

    Energy Technology Data Exchange (ETDEWEB)

    Luo Qun; Yang Han; Li Lixiang; Yang Yixian [Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Han Jiangxue, E-mail: luoqun@bupt.edu.c [National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2010-12-10

    Over the past decade, complex dynamical network synchronization has attracted more and more attention and important developments have been made. In this paper, we explore the scheme of globally exponentially asymptotical synchronization in complex dynamical networks with time delay. Based on Lyapunov stability theory and through defining the error function between adjacent nodes, four novel adaptive controllers are designed under four situations where the Lipschitz constants of the state function in nodes are known or unknown and the network structure is certain or uncertain, respectively. These controllers could not only globally asymptotically synchronize all nodes in networks, but also ensure that the error functions do not exceed the pre-scheduled exponential function. Finally, simulations of the synchronization among the chaotic system in the small-world and scale-free network structures are presented, which prove the effectiveness and feasibility of our controllers.

  4. Effective action for composite operators and chiral symmetry breakdown in asymptotically free and non-asymptotically free gauge theories

    International Nuclear Information System (INIS)

    Gusynin, V.P.; Miranskij, V.A.

    1987-01-01

    An essential distinction in the relaization of the PCAC dynamics in asymptotically free and non-asymptotically free (with a non-trivial ultraviolet-stable fixed point) gauge theories is revealed. For the latter theories an analytical expressions for the condensate is obtained in the two-loop approximation and arguments of support of a soft behaviour at small distances of composite operators are given. The problem of factorizing the low-energy region for the Wess-Zumino-Witten action is discussed. Besides, the mass relations for pseudoscalar mesons in arbitrary Θ-sector are obtained in the first order in fermion bare masses and the impossibility for spontaneous P and CP-symmetries breaking in vector-like gauge theories at Θ=0 is shown

  5. New rigorous asymptotic theorems for inverse scattering amplitudes

    International Nuclear Information System (INIS)

    Lomsadze, Sh.Yu.; Lomsadze, Yu.M.

    1984-01-01

    The rigorous asymptotic theorems both of integral and local types obtained earlier and establishing logarithmic and in some cases even power correlations aetdeen the real and imaginary parts of scattering amplitudes Fsub(+-) are extended to the inverse amplitudes 1/Fsub(+-). One also succeeds in establishing power correlations of a new type between the real and imaginary parts, both for the amplitudes themselves and for the inverse ones. All the obtained assertions are convenient to be tested in high energy experiments when the amplitudes show asymptotic behaviour

  6. Mass loss of stars on the asymptotic giant branch. Mechanisms, models and measurements

    Science.gov (United States)

    Höfner, Susanne; Olofsson, Hans

    2018-01-01

    As low- and intermediate-mass stars reach the asymptotic giant branch (AGB), they have developed into intriguing and complex objects that are major players in the cosmic gas/dust cycle. At this stage, their appearance and evolution are strongly affected by a range of dynamical processes. Large-scale convective flows bring newly-formed chemical elements to the stellar surface and, together with pulsations, they trigger shock waves in the extended stellar atmosphere. There, massive outflows of gas and dust have their origin, which enrich the interstellar medium and, eventually, lead to a transformation of the cool luminous giants into white dwarfs. Dust grains forming in the upper atmospheric layers play a critical role in the wind acceleration process, by scattering and absorbing stellar photons and transferring their outward-directed momentum to the surrounding gas through collisions. Recent progress in high-angular-resolution instrumentation, from the visual to the radio regime, is leading to valuable new insights into the complex dynamical atmospheres of AGB stars and their wind-forming regions. Observations are revealing asymmetries and inhomogeneities in the photospheric and dust-forming layers which vary on time-scales of months, as well as more long-lived large-scale structures in the circumstellar envelopes. High-angular-resolution observations indicate at what distances from the stars dust condensation occurs, and they give information on the chemical composition and sizes of dust grains in the close vicinity of cool giants. These are essential constraints for building realistic models of wind acceleration and developing a predictive theory of mass loss for AGB stars, which is a crucial ingredient of stellar and galactic chemical evolution models. At present, it is still not fully possible to model all these phenomena from first principles, and to predict the mass-loss rate based on fundamental stellar parameters only. However, much progress has been made

  7. Surface-state mediated three-adsorbate interaction: exact and numerical results and simple asymptotic expression

    International Nuclear Information System (INIS)

    Hyldgaard, Per; Einstein, T.L.

    2003-01-01

    The interaction energy of three adsorbates on a surface consists of the sum of the three-pair interactions plus a trio contribution produced primarily by interference of electrons which traverse the entire perimeter, d 123 , of the three-adsorbate cluster. Here, we investigate this three-adatom interaction when mediated by the isotropic Shockley surface-state band found on noble-metal (1 1 1) surfaces, extending work on pair interactions. Our experimentally testable result depends on the s-wave phase-shift, characterizing the standing-wave patterns seen in scanning-tunneling microscopy (STM) images. Compared with the adsorbate-pair interactions, and in contrast to bulk-mediated interactions, the trio contribution exhibits a slightly weaker amplitude and a slightly faster asymptotic envelope decay, d 123 -5/2 . It also has a different but well-defined oscillation period dependent on d 123 and little dependence on the shape of the cluster. We finally compare the asymptotic description with exact model calculations assuming short-range interactions, which are viable even in the non-asymptotic range (when not outweighed by bulk-mediated interactions)

  8. Neutronics equations: Positiveness; compactness; spectral theory; time asymptotic behavior

    International Nuclear Information System (INIS)

    Mokhtar-Kharroubi, M.

    1987-12-01

    Neutronics equations are studied: the continuous model (with and without delayed neutrons) and the multigroup model. Asymptotic descriptions of these equations (t→+∞) are obtained, either by the Dunford method or by using semigroup perturbation techniques, after deriving the spectral theory for the equations. Compactness problems are reviewed, and a general theory of compact injection in neutronic functional space is derived. The effects of positiveness in neutronics are analyzed: the irreducibility of the transport semigroup, and the properties of the main eigenvalue (existence, nonexistence, frame, strict dominance, strict monotony in relation to all the parameters). A class of transport operators whose real spectrum can be completely described is shown [fr

  9. More on asymptotically anti-de Sitter spaces in topologically massive gravity

    International Nuclear Information System (INIS)

    Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo

    2010-01-01

    Recently, the asymptotic behavior of three-dimensional anti-de Sitter (AdS) gravity with a topological mass term was investigated. Boundary conditions were given that were asymptotically invariant under the two dimensional conformal group and that included a falloff of the metric sufficiently slow to consistently allow pp-wave type of solutions. Now, pp waves can have two different chiralities. Above the chiral point and at the chiral point, however, only one chirality can be considered, namely, the chirality that has the milder behavior at infinity. The other chirality blows up faster than AdS and does not define an asymptotically AdS spacetime. By contrast, both chiralities are subdominant with respect to the asymptotic behavior of AdS spacetime below the chiral point. Nevertheless, the boundary conditions given in the earlier treatment only included one of the two chiralities (which could be either one) at a time. We investigate in this paper whether one can generalize these boundary conditions in order to consider simultaneously both chiralities below the chiral point. We show that this is not possible if one wants to keep the two-dimensional conformal group as asymptotic symmetry group. Hence, the boundary conditions given in the earlier treatment appear to be the best possible ones compatible with conformal symmetry. In the course of our investigations, we provide general formulas controlling the asymptotic charges for all values of the topological mass (not just below the chiral point).

  10. The unitary conformal field theory behind 2D Asymptotic Safety

    Energy Technology Data Exchange (ETDEWEB)

    Nink, Andreas; Reuter, Martin [Institute of Physics, PRISMA & MITP, Johannes Gutenberg University Mainz,Staudingerweg 7, D-55099 Mainz (Germany)

    2016-02-25

    Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in d>2 dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge c=25. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety program. In particular, we discuss its field parametrization dependence and argue that there might exist more than one universality class of metric gravity theories in two dimensions. Furthermore, studying the gravitational dressing in 2D asymptotically safe gravity coupled to conformal matter we uncover a mechanism which leads to a complete quenching of the a priori expected Knizhnik-Polyakov-Zamolodchikov (KPZ) scaling. A possible connection of this prediction to Monte Carlo results obtained in the discrete approach to 2D quantum gravity based upon causal dynamical triangulations is mentioned. Similarities of the fixed point theory to, and differences from, non-critical string theory are also described. On the technical side, we provide a detailed analysis of an intriguing connection between the Einstein-Hilbert action in d>2 dimensions and Polyakov’s induced gravity action in two dimensions.

  11. A low-frequency asymptotic model of seismic reflection from a high-permeability layer

    Energy Technology Data Exchange (ETDEWEB)

    Silin, Dmitriy; Goloshubin, Gennady

    2009-03-01

    Analysis of compression wave propagation through a high-permeability layer in a homogeneous poroelastic medium predicts a peak of reflection in the low-frequency end of the spectrum. An explicit formula expresses the resonant frequency through the elastic moduli of the solid skeleton, the permeability of the reservoir rock, the fluid viscosity and compressibility, and the reservoir thickness. This result is obtained through a low-frequency asymptotic analysis of the Biot's model of poroelasticity. A new physical interpretation of some coefficients of the classical poroelasticity is a result of the derivation of the main equations from the Hooke's law, momentum and mass balance equations, and the Darcy's law. The velocity of wave propagation, the attenuation factor, and the wave number, are expressed in the form of power series with respect to a small dimensionless parameter. The latter is equal to the product of the kinematic reservoir fluid mobility, an imaginary unit, and the frequency of the signal. Retaining only the leading terms of the series leads to explicit and relatively simple expressions for the reflection and transmission coefficients for a planar wave crossing an interface between two permeable media, as well as wave reflection from a thin highly-permeable layer (a lens). The practical implications of the theory developed here are seismic modeling, inversion, and attribute analysis.

  12. The time-dependent simplified P2 equations: Asymptotic analyses and numerical experiments

    International Nuclear Information System (INIS)

    Shin, U.; Miller, W.F. Jr.

    1998-01-01

    Using an asymptotic expansion, the authors found that the modified time-dependent simplified P 2 (SP 2 ) equations are robust, high-order, asymptotic approximations to the time-dependent transport equation in a physical regime in which the conventional time-dependent diffusion equation is the leading-order approximation. Using diffusion limit analysis, they also asymptotically compared three competitive time-dependent equations (the telegrapher's equation, the time-dependent SP 2 equations, and the time-dependent simplified even-parity equation). As a result, they found that the time-dependent SP 2 equations contain higher-order asymptotic approximations to the time-dependent transport equation than the other competitive equations. The numerical results confirm that, in the vast majority of cases, the time-dependent SP 2 solutions are significantly more accurate than the time-dependent diffusion and the telegrapher's solutions. They have also shown that the time-dependent SP 2 equations have excellent characteristics such as rotational invariance (which means no ray effect), good diffusion limit behavior, guaranteed positivity in diffusive regimes, and significant accuracy, even in deep-penetration problems. Through computer-running-time tests, they have shown that the time-dependent SP 2 equations can be solved with significantly less computational effort than the conventionally used, time-dependent S N equations (for N > 2) and almost as fast as the time-dependent diffusion equation. From all these results, they conclude that the time-dependent SP 2 equations should be considered as an important competitor for an improved approximately transport equations solver. Such computationally efficient time-dependent transport models are important for problems requiring enhanced computational efficiency, such as neutronics/fluid-dynamics coupled problems that arise in the analyses of hypothetical nuclear reactor accidents

  13. Asymptotic stability of a genetic network under impulsive control

    International Nuclear Information System (INIS)

    Li Fangfei; Sun Jitao

    2010-01-01

    The study of the stability of genetic network is an important motif for the understanding of the living organism at both molecular and cellular levels. In this Letter, we provide a theoretical method for analyzing the asymptotic stability of a genetic network under impulsive control. And the sufficient conditions of its asymptotic stability under impulsive control are obtained. Finally, an example is given to illustrate the effectiveness of the obtained method.

  14. Asymptotic freedom and the symplectic and G2 groups

    International Nuclear Information System (INIS)

    Chaichian, M; Kolmakov, Yu. N.; Nelipa, N. F.

    1978-01-01

    It is shown that the symplectic Sp(4), Sp(6) and the exceptional G 2 gauge field theories with complete Spontaneous symmetry breaking through the Higgs mechanism are not asymptotically free. This, together with earlier results for other groups, hints at the existence of a general theorem according to which it would no longer be possible for asymptotic freedom to coexist with the absence of infrared divergences. (author)

  15. On Asymptotically Lacunary Statistical Equivalent Sequences of Order α in Probability

    Directory of Open Access Journals (Sweden)

    Işık Mahmut

    2017-01-01

    Full Text Available In this study, we introduce and examine the concepts of asymptotically lacunary statistical equivalent of order α in probability and strong asymptotically lacunary equivalent of order α in probability. We give some relations connected to these concepts.

  16. FLUORINE ABUNDANCES IN GALACTIC ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Abia, C.; Cristallo, S.; DomInguez, I.; Cunha, K.; Hinkle, K.; Smith, V. V.; De Laverny, P.; Recio-Blanco, A.; Eriksson, K.; Wahlin, R.; Gialanella, L.; Imbriani, G.; Straniero, O.

    2010-01-01

    An analysis of the fluorine abundance in Galactic asymptotic giant branch (AGB) carbon stars (24 N-type, 5 SC-type, and 5 J-type) is presented. This study uses the state-of-the-art carbon-rich atmosphere models and improved atomic and molecular line lists in the 2.3 μm region. Significantly lower F abundances are obtained in comparison to previous studies in the literature. This difference is mainly due to molecular blends. In the case of carbon stars of SC-type, differences in the model atmospheres are also relevant. The new F enhancements are now in agreement with the most recent theoretical nucleosynthesis models in low-mass AGB stars, solving the long-standing problem of F in Galactic AGB stars. Nevertheless, some SC-type carbon stars still show larger F abundances than predicted by stellar models. The possibility that these stars are of larger mass is briefly discussed.

  17. Soft dipole mode of 11Li in approximation of asymptotic potential

    International Nuclear Information System (INIS)

    Filippov, G.F.; Lashko, Yu.A.

    2001-01-01

    The soft dipole mode of 11 Li is studied in the frame of microscopic tri-cluster model and in the asymptotic potential approximation. The theory reproduces well the ground state energy, matter radius and the behaviour of the effective photodisintegration cross section in the range of low energies above the decay threshold of 11 Li. Our calculations point two resonant states in this range [ru

  18. Theory of tunneling ionization of molecules: Weak-field asymptotics including dipole effects

    DEFF Research Database (Denmark)

    Tolstikhin, Oleg I.; Morishita, Toru; Madsen, Lars Bojer

    2011-01-01

    The formulation of the parabolic adiabatic expansion approach to the problem of ionization of atomic systems in a static electric field, originally developed for the axially symmetric case [ Phys. Rev. A 82 023416 (2010)], is generalized to arbitrary potentials. This approach is used to rederive...... the asymptotic theory of tunneling ionization in the weak-field limit. In the atomic case, the resulting formulas for the ionization rate coincide with previously known results. In addition, the present theory accounts for the possible existence of a permanent dipole moment of the unperturbed system and, hence......, applies to polar molecules. Accounting for dipole effects constitutes an important difference of the present theory from the so-called molecular Ammosov-Delone-Krainov theory. The theory is illustrated by comparing exact and asymptotic results for a set of model polar molecules and a realistic molecular...

  19. Hořava Gravity is Asymptotically Free in 2+1 Dimensions.

    Science.gov (United States)

    Barvinsky, Andrei O; Blas, Diego; Herrero-Valea, Mario; Sibiryakov, Sergey M; Steinwachs, Christian F

    2017-11-24

    We compute the β functions of marginal couplings in projectable Hořava gravity in 2+1 spacetime dimensions. We show that the renormalization group flow has an asymptotically free fixed point in the ultraviolet (UV), establishing the theory as a UV-complete model with dynamical gravitational degrees of freedom. Therefore, this theory may serve as a toy model to study fundamental aspects of quantum gravity. Our results represent a step forward towards understanding the UV properties of realistic versions of Hořava gravity.

  20. On the asymptotic stability of nonlinear mechanical switched systems

    Science.gov (United States)

    Platonov, A. V.

    2018-05-01

    Some classes of switched mechanical systems with dissipative and potential forces are considered. The case, where either dissipative or potential forces are essentially nonlinear, is studied. It is assumed that the zero equilibrium position of the system is asymptotically stable at least for one operating mode. We will look for sufficient conditions which guarantee the preservation of asymptotic stability of the equilibrium position under the switching of modes. The Lyapunov direct method is used. A Lyapunov function for considered system is constructed, which satisfies the differential inequality of special form for every operating mode. This inequality is nonlinear for the chosen mode with asymptotically stable equilibrium position, and it is linear for the rest modes. The correlations between the intervals of activity of the pointed mode and the intervals of activity of the rest modes are obtained which guarantee the required properties.

  1. Pushing the asymptotics of the 6j-symbol further

    International Nuclear Information System (INIS)

    Dupuis, Maiete; Livine, Etera R.

    2009-01-01

    In the context of spin-foam models for quantum gravity, we investigate the asymptotical behavior of the (6j)-symbol at next-to-leading order. This gives the first quantum gravity correction to the (3d) Regge action. We compute it analytically and check our results against numerical calculations. The (6j)-symbol is the building block of the Ponzano-Regge amplitudes for 3d quantum gravity, and the present analysis is directly relevant to deriving the quantum corrections to gravitational correlations in the spin-foam formalism.

  2. A multigroup flux-limited asymptotic diffusion Fokker-Planck equation

    International Nuclear Information System (INIS)

    Liu Chengan

    1987-01-01

    A more perfrect flux-limited method is applied to combine with asymptotic diffusion theory of the radiation transpore, and the high peaked component in the scattering angle is treated with Fokker-Planck methods, thus the flux-limited asymptotic diffusion Fokker-Planck equation has been founded. Since the equation is of diffusion form, it retains the simplity and the convenience of the classical diffusion theory, and improves precision in describing radiation transport problems

  3. Causal wave propagation for relativistic massive particles: physical asymptotics in action

    International Nuclear Information System (INIS)

    Berry, M V

    2012-01-01

    Wavepackets representing relativistic quantum particles injected into a half-space, from a source that is switched on at a definite time, are represented by superpositions of plane waves that must include negative frequencies. Propagation is causal: it is a consequence of analyticity that at time t no part of the wave has travelled farther than ct, corresponding to the front of the signal. Nevertheless, interference fringes behind the front travel superluminally. For Klein-Gordon and Dirac wavepackets, the spatially integrated density increases because current is injected at the boundary. Even in the simplest causal model, understanding the shape of the wave after long times is an instructive exercise in the asymptotics of integrals, illustrating several techniques at a level suitable for graduate students; different spatial features involve contributions from a pole and from two saddle points, the uniform asymptotics for the pole close to a saddle, and the coalescence of two saddles into the Sommerfeld precursor immediately behind the front. (paper)

  4. Optimal difference-based estimation for partially linear models

    KAUST Repository

    Zhou, Yuejin; Cheng, Yebin; Dai, Wenlin; Tong, Tiejun

    2017-01-01

    Difference-based methods have attracted increasing attention for analyzing partially linear models in the recent literature. In this paper, we first propose to solve the optimal sequence selection problem in difference-based estimation for the linear component. To achieve the goal, a family of new sequences and a cross-validation method for selecting the adaptive sequence are proposed. We demonstrate that the existing sequences are only extreme cases in the proposed family. Secondly, we propose a new estimator for the residual variance by fitting a linear regression method to some difference-based estimators. Our proposed estimator achieves the asymptotic optimal rate of mean squared error. Simulation studies also demonstrate that our proposed estimator performs better than the existing estimator, especially when the sample size is small and the nonparametric function is rough.

  5. Optimal difference-based estimation for partially linear models

    KAUST Repository

    Zhou, Yuejin

    2017-12-16

    Difference-based methods have attracted increasing attention for analyzing partially linear models in the recent literature. In this paper, we first propose to solve the optimal sequence selection problem in difference-based estimation for the linear component. To achieve the goal, a family of new sequences and a cross-validation method for selecting the adaptive sequence are proposed. We demonstrate that the existing sequences are only extreme cases in the proposed family. Secondly, we propose a new estimator for the residual variance by fitting a linear regression method to some difference-based estimators. Our proposed estimator achieves the asymptotic optimal rate of mean squared error. Simulation studies also demonstrate that our proposed estimator performs better than the existing estimator, especially when the sample size is small and the nonparametric function is rough.

  6. Asymptotic normalization coefficients and astrophysical factors

    International Nuclear Information System (INIS)

    Mukhamedzhanov, A.M.; Azhari, A.; Clark, H.L.; Gagliardi, C.A.; Lui, Y.-W.; Sattarov, A.; Trache, L.; Tribble, R.E.; Burjan, V.; Kroha, V.; Carstoiu, F.

    2000-01-01

    The S factor for the direct capture reaction 7 Be(p,γ) 8 B can be found at astrophysical energies from the asymptotic normalization coefficients (ANC's) which provide the normalization of the tails of the overlap functions for 8 B → 7 Be + p. Peripheral transfer reactions offer a technique to determine these ANC's. Using this technique, the 10 B( 7 Be, 8 B) 9 Be and 14 N( 7 Be, 8 B) 13 C reactions have been used to measure the asymptotic normalization coefficient for 7 Be(p, γ) 8 B. These results provide an indirect determination of S 17 (0). Analysis of the existing 9 Be(p, γ) 10 B experimental data within the framework of the R-matrix method demonstrates that experimentally measured ANC's can provide a reasonable determination of direct radiative capture rates. (author)

  7. Asymptotic properties of a simple random motion

    International Nuclear Information System (INIS)

    Ravishankar, K.

    1988-01-01

    A random walker in R/sup N/ is considered. At each step the walker picks a point in R/sup N/ from a fixed finite set of destination points. Having chosen the point, the walker moves a fraction r (r < 1) of the distance toward the point along a straight line. Assuming that the successive destination points are chosen independently, it is shown that the asymptotic distribution of the walker's position has the same mean as the destination point distribution. An estimate is obtained for the fraction of time the walker stays within a ball centered at the mean value for almost every destination sequence. Examples show that the asymptotic distribution could have intricate structure

  8. Impulsive effects on global asymptotic stability of delay BAM neural networks

    International Nuclear Information System (INIS)

    Chen Jun; Cui Baotong

    2008-01-01

    Based on the proper Lyapunov functions and the Jacobsthal liner inequality, some sufficient conditions are presented in this paper for global asymptotic stability of delay bidirectional associative memory neural networks with impulses. The obtained results are independently of the delay parameters and can be easily verified. Also, some remarks and an illustrative example are given to demonstrate the effectiveness of the obtained results

  9. Asymptotic tracking and disturbance rejection of the blood glucose regulation system.

    Science.gov (United States)

    Ashley, Brandon; Liu, Weijiu

    2017-07-01

    Type 1 diabetes patients need external insulin to maintain blood glucose within a narrow range from 65 to 108 mg/dl (3.6 to 6.0 mmol/l). A mathematical model for the blood glucose regulation is required for integrating a glucose monitoring system into insulin pump technology to form a closed-loop insulin delivery system on the feedback of the blood glucose, the so-called "artificial pancreas". The objective of this paper is to treat the exogenous glucose from food as a glucose disturbance and then develop a closed-loop feedback and feedforward control system for the blood glucose regulation system subject to the exogenous glucose disturbance. For this, a mathematical model for the glucose disturbance is proposed on the basis of experimental data, and then incorporated into an existing blood glucose regulation model. Because all the eigenvalues of the disturbance model have zero real parts, the center manifold theory is used to establish blood glucose regulator equations. We then use their solutions to synthesize a required feedback and feedforward controller to reject the disturbance and asymptotically track a constant glucose reference of 90  mg/dl. Since the regulator equations are nonlinear partial differential equations and usually impossible to solve analytically, a linear approximation solution is obtained. Our numerical simulations show that, under the linear approximate feedback and feedforward controller, the blood glucose asymptotically tracks its desired level of 90 mg/dl approximately. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. H∞ Control of Supply Chain Based on Switched Model of Stock Level

    Directory of Open Access Journals (Sweden)

    Junzhi Luo

    2014-01-01

    Full Text Available This paper is concerned with the problem of H∞ control for a class of discrete supply chain systems. A new method based on network control technique is presented to address this issue. Supply chain systems are modeled as networked systems with stochastic time delay. Sufficient conditions for H∞ controller design are given in terms of a set of linear matrix inequalities, based on which the mean-square asymptotic stability as well as H∞ performance is satisfied for such systems. Simulation results are provided to demonstrate the effectiveness of the proposed method.

  11. Derivative analyticity relations and asymptotic energies

    International Nuclear Information System (INIS)

    Fischer, J.

    1976-01-01

    On the basis of general principles of the S-matrix theory theorems are derived showing that derivative analyticity relations analogous to those of Bronzen, Kane and Sukhatme hold at asymptotic energies if the high-energy limits of certain physical quantities exist

  12. Kuramoto model with uniformly spaced frequencies: Finite-N asymptotics of the locking threshold.

    Science.gov (United States)

    Ottino-Löffler, Bertrand; Strogatz, Steven H

    2016-06-01

    We study phase locking in the Kuramoto model of coupled oscillators in the special case where the number of oscillators, N, is large but finite, and the oscillators' natural frequencies are evenly spaced on a given interval. In this case, stable phase-locked solutions are known to exist if and only if the frequency interval is narrower than a certain critical width, called the locking threshold. For infinite N, the exact value of the locking threshold was calculated 30 years ago; however, the leading corrections to it for finite N have remained unsolved analytically. Here we derive an asymptotic formula for the locking threshold when N≫1. The leading correction to the infinite-N result scales like either N^{-3/2} or N^{-1}, depending on whether the frequencies are evenly spaced according to a midpoint rule or an end-point rule. These scaling laws agree with numerical results obtained by Pazó [D. Pazó, Phys. Rev. E 72, 046211 (2005)PLEEE81539-375510.1103/PhysRevE.72.046211]. Moreover, our analysis yields the exact prefactors in the scaling laws, which also match the numerics.

  13. Asymptotical behaviour of pion electromagnetic form factor in QCD

    International Nuclear Information System (INIS)

    Efremov, A.V.; Radyushkin, A.V.

    1978-01-01

    In the framework of the renormalizable quantum field theory a new approach is developed to the investigation of asymptotical behaviour of two-particle bound state electromagnetic form factor. It is shown that the behaviour of the pion EM form factor in quantum chromodynamics at sufficiently large momentum transfers is controlled by the short-distance dynamics only. The formula is obtained which expresses the asymptotical behaviour of the pion form factor in terms of the fundamental constants of the theory

  14. DNA damage in isolated rat hepatocytes exposed to C.I. pigment orange 5 and C.I. pigment yellow 12 by the alkaline comet assay

    DEFF Research Database (Denmark)

    Møller, P; Wallin, Håkan; Grunnet, N

    1998-01-01

    The induction of DNA damage by commonly used printing ink pigments, C.I. pigment orange 5 (C.I. 12075) and C.I. pigment yellow 12 (C.I. 21090), was investigated in freshly isolated rat hepatocytes with the comet assay. C.I. pigment yellow 12 is a 3,3'-dichlorobenzidine-based diarylide pigment...

  15. A rigorous methodology for development and uncertainty analysis of group contribution based property models

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Abildskov, Jens; Sin, Gürkan

    ) weighted-least-square regression. 3) Initialization of estimation by use of linear algebra providing a first guess. 4) Sequential parameter and simultaneous GC parameter by using of 4 different minimization algorithms. 5) Thorough uncertainty analysis: a) based on asymptotic approximation of parameter...... covariance matrix b) based on boot strap method. Providing 95%-confidence intervals of parameters and predicted property. 6) Performance statistics analysis and model application. The application of the methodology is shown for a new GC model built to predict lower flammability limit (LFL) for refrigerants...... their credibility and robustness in wider industrial and scientific applications....

  16. Asymptotic Expansions - Methods and Applications

    International Nuclear Information System (INIS)

    Harlander, R.

    1999-01-01

    Different viewpoints on the asymptotic expansion of Feynman diagrams are reviewed. The relations between the field theoretic and diagrammatic approaches are sketched. The focus is on problems with large masses or large external momenta. Several recent applications also for other limiting cases are touched upon. Finally, the pros and cons of the different approaches are briefly discussed. (author)

  17. Centrally extended symmetry algebra of asymptotically Goedel spacetimes

    International Nuclear Information System (INIS)

    Compere, Geoffrey; Detournay, Stephane

    2007-01-01

    We define an asymptotic symmetry algebra for three-dimensional Goedel spacetimes supported by a gauge field which turns out to be the semi-direct sum of the diffeomorphisms on the circle with two loop algebras. A class of fields admitting this asymptotic symmetry algebra and leading to well-defined conserved charges is found. The covariant Poisson bracket of the conserved charges is then shown to be centrally extended to the semi-direct sum of a Virasoro algebra and two affine algebras. The subsequent analysis of three-dimensional Goedel black holes indicates that the Virasoro central charge is negative

  18. Deep learning ensemble with asymptotic techniques for oscillometric blood pressure estimation.

    Science.gov (United States)

    Lee, Soojeong; Chang, Joon-Hyuk

    2017-11-01

    This paper proposes a deep learning based ensemble regression estimator with asymptotic techniques, and offers a method that can decrease uncertainty for oscillometric blood pressure (BP) measurements using the bootstrap and Monte-Carlo approach. While the former is used to estimate SBP and DBP, the latter attempts to determine confidence intervals (CIs) for SBP and DBP based on oscillometric BP measurements. This work originally employs deep belief networks (DBN)-deep neural networks (DNN) to effectively estimate BPs based on oscillometric measurements. However, there are some inherent problems with these methods. First, it is not easy to determine the best DBN-DNN estimator, and worthy information might be omitted when selecting one DBN-DNN estimator and discarding the others. Additionally, our input feature vectors, obtained from only five measurements per subject, represent a very small sample size; this is a critical weakness when using the DBN-DNN technique and can cause overfitting or underfitting, depending on the structure of the algorithm. To address these problems, an ensemble with an asymptotic approach (based on combining the bootstrap with the DBN-DNN technique) is utilized to generate the pseudo features needed to estimate the SBP and DBP. In the first stage, the bootstrap-aggregation technique is used to create ensemble parameters. Afterward, the AdaBoost approach is employed for the second-stage SBP and DBP estimation. We then use the bootstrap and Monte-Carlo techniques in order to determine the CIs based on the target BP estimated using the DBN-DNN ensemble regression estimator with the asymptotic technique in the third stage. The proposed method can mitigate the estimation uncertainty such as large the standard deviation of error (SDE) on comparing the proposed DBN-DNN ensemble regression estimator with the DBN-DNN single regression estimator, we identify that the SDEs of the SBP and DBP are reduced by 0.58 and 0.57  mmHg, respectively. These

  19. Penultimate modeling of spatial extremes: statistical inference for max-infinitely divisible processes

    KAUST Repository

    Huser, Raphaël

    2018-01-09

    Extreme-value theory for stochastic processes has motivated the statistical use of max-stable models for spatial extremes. However, fitting such asymptotic models to maxima observed over finite blocks is problematic when the asymptotic stability of the dependence does not prevail in finite samples. This issue is particularly serious when data are asymptotically independent, such that the dependence strength weakens and eventually vanishes as events become more extreme. We here aim to provide flexible sub-asymptotic models for spatially indexed block maxima, which more realistically account for discrepancies between data and asymptotic theory. We develop models pertaining to the wider class of max-infinitely divisible processes, extending the class of max-stable processes while retaining dependence properties that are natural for maxima: max-id models are positively associated, and they yield a self-consistent family of models for block maxima defined over any time unit. We propose two parametric construction principles for max-id models, emphasizing a point process-based generalized spectral representation, that allows for asymptotic independence while keeping the max-stable extremal-$t$ model as a special case. Parameter estimation is efficiently performed by pairwise likelihood, and we illustrate our new modeling framework with an application to Dutch wind gust maxima calculated over different time units.

  20. On iterative procedures of asymptotic inference

    NARCIS (Netherlands)

    K.O. Dzhaparidze (Kacha)

    1983-01-01

    textabstractAbstract  An informal discussion is given on performing an unconstrained maximization or solving non‐linear equations of statistics by iterative methods with the quadratic termination property. It is shown that if a miximized function, e.g. likelihood, is asymptotically quadratic, then

  1. First-passage time asymptotics over moving boundaries for random walk bridges

    NARCIS (Netherlands)

    Sloothaak, F.; Zwart, B.; Wachtel, V.

    2017-01-01

    We study the asymptotic tail probability of the first-passage time over a moving boundary for a random walk conditioned to return to zero, where the increments of the random walk have finite variance. Typically, the asymptotic tail behavior may be described through a regularly varying function with

  2. Asymptotic formulae for solutions of the two-group integral neutron-transport equation

    International Nuclear Information System (INIS)

    Duracz, T.

    1976-01-01

    The steady-state, two-group integral neutron-transport equation is considered for two cases. First, for plane geometry, formulae for the asymptotic flux are obtained, under assumptions of homogeneous medium with isotropic scattering, extended to infinity (whole space and half-space), with sources vanishing at infinity as 0(esup(-IXI)). Next, for spherical geometry, the Milne problem is considered and formulae for the asymptotic flux are obtained. These formulae have the form of asymptotic expansions for small and large radii of the black sphere. (orig.) [de

  3. The Asymptotic Safety Scenario in Quantum Gravity.

    Science.gov (United States)

    Niedermaier, Max; Reuter, Martin

    2006-01-01

    The asymptotic safety scenario in quantum gravity is reviewed, according to which a renormalizable quantum theory of the gravitational field is feasible which reconciles asymptotically safe couplings with unitarity. The evidence from symmetry truncations and from the truncated flow of the effective average action is presented in detail. A dimensional reduction phenomenon for the residual interactions in the extreme ultraviolet links both results. For practical reasons the background effective action is used as the central object in the quantum theory. In terms of it criteria for a continuum limit are formulated and the notion of a background geometry self-consistently determined by the quantum dynamics is presented. Self-contained appendices provide prerequisites on the background effective action, the effective average action, and their respective renormalization flows.

  4. Asymptotics for the Fredholm determinant of the sine kernel on a union of intervals

    Science.gov (United States)

    Widom, Harold

    1995-07-01

    In the bulk scaling limit of the Gaussian Unitary Ensemble of hermitian matrices the probability that an interval of length s contains no eigenvalues is the Fredholm determinant of the sine kernel{sin (x - y)}/{π (x - y)} over this interval. A formal asymptotic expansion for the determinant as s tends to infinity was obtained by Dyson. In this paper we replace a single interval of length s by sJ, where J is a union of m intervals and present a proof of the asymptotics up to second order. The logarithmic derivative with respect to s of the determinant equals a constant (expressible in terms of hyperelliptic integrals) times s, plus a bounded oscillatory function of s (zero if m=1, periodic if m=2, and in general expressible in terms of the solution of a Jacobi inversion problem), plus o(1). Also determined are the asymptotics of the trace of the resolvent operator, which is the ratio in the same model of the probability that the set contains exactly one eigenvalue to the probability that it contains none. The proofs use ideas from orthogonal polynomial theory.

  5. Perturbed asymptotically linear problems

    OpenAIRE

    Bartolo, R.; Candela, A. M.; Salvatore, A.

    2012-01-01

    The aim of this paper is investigating the existence of solutions of some semilinear elliptic problems on open bounded domains when the nonlinearity is subcritical and asymptotically linear at infinity and there is a perturbation term which is just continuous. Also in the case when the problem has not a variational structure, suitable procedures and estimates allow us to prove that the number of distinct crtitical levels of the functional associated to the unperturbed problem is "stable" unde...

  6. Global asymptotic behavior in a Lotka–Volterra competition system with spatio-temporal delays

    International Nuclear Information System (INIS)

    Zhang, Jia-Fang; Chen, Heshan

    2014-01-01

    This paper is concerned with a Lotka–Volterra competition system with spatio-temporal delays. By using the linearization method, we show the local asymptotic behavior of the nonnegative steady-state solutions. Especially, the global asymptotic stability of the positive steady-state solution is investigated by the method of upper and lower solutions. The result of global asymptotic stability implies that the system has no nonconstant positive steady-state solution

  7. NL(q) Theory: A Neural Control Framework with Global Asymptotic Stability Criteria.

    Science.gov (United States)

    Vandewalle, Joos; De Moor, Bart L.R.; Suykens, Johan A.K.

    1997-06-01

    In this paper a framework for model-based neural control design is presented, consisting of nonlinear state space models and controllers, parametrized by multilayer feedforward neural networks. The models and closed-loop systems are transformed into so-called NL(q) system form. NL(q) systems represent a large class of nonlinear dynamical systems consisting of q layers with alternating linear and static nonlinear operators that satisfy a sector condition. For such NL(q)s sufficient conditions for global asymptotic stability, input/output stability (dissipativity with finite L(2)-gain) and robust stability and performance are presented. The stability criteria are expressed as linear matrix inequalities. In the analysis problem it is shown how stability of a given controller can be checked. In the synthesis problem two methods for neural control design are discussed. In the first method Narendra's dynamic backpropagation for tracking on a set of specific reference inputs is modified with an NL(q) stability constraint in order to ensure, e.g., closed-loop stability. In a second method control design is done without tracking on specific reference inputs, but based on the input/output stability criteria itself, within a standard plant framework as this is done, for example, in H( infinity ) control theory and &mgr; theory. Copyright 1997 Elsevier Science Ltd.

  8. Holography in asymptotically flat spacetimes and the BMS group

    International Nuclear Information System (INIS)

    Arcioni, Giovanni; Dappiaggi, Claudio

    2004-01-01

    In a previous paper (Arcioni G and Dappiaggi C 2003 Preprint hep-th/0306142) we have started to explore the holographic principle in the case of asymptotically flat spacetimes and analysed, in particular, different aspects of the Bondi-Metzner-Sachs (BMS) group, namely the asymptotic symmetry group of any asymptotically flat spacetime. We continue this investigation in this paper. Having in mind an S-matrix approach with future and past null infinity playing the role of holographic screens on which the BMS group acts, we connect the IR sectors of the gravitational field with the representation theory of the BMS group. We analyse the (complicated) mapping between bulk and boundary symmetries pointing out differences with respect to the anti-de Sitter (AdS)/CFT set up. Finally, we construct a BMS phase space and a free Hamiltonian for fields transforming with respect to BMS representations. The last step is supposed to be an explorative investigation of the boundary data living on the degenerate null manifold at infinity

  9. An asymptotic problem in renewal theory

    NARCIS (Netherlands)

    Klamkin, M.S.; van Lint, J.H.

    1972-01-01

    A special problem in renewal theory is considered. The asymptotic behavior of the renewal function was studied by W. L. Smith. Here we show that his result with an exponentially small remainder term follows from a theorem of De Bruijn on Volterra integral equations.

  10. Asymptotic structure of the Einstein-Maxwell theory on AdS{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Alfredo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Riquelme, Miguel [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile); Tempo, David [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Physique Théorique et Mathématique,Université Libre de Bruxelles and International Solvay Institutes,Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Troncoso, Ricardo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile)

    2016-02-02

    The asymptotic structure of AdS spacetimes in the context of General Relativity coupled to the Maxwell field in three spacetime dimensions is analyzed. Although the fall-off of the fields is relaxed with respect to that of Brown and Henneaux, the variation of the canonical generators associated to the asymptotic Killing vectors can be shown to be finite once required to span the Lie derivative of the fields. The corresponding surface integrals then acquire explicit contributions from the electromagnetic field, and become well-defined provided they fulfill suitable integrability conditions, implying that the leading terms of the asymptotic form of the electromagnetic field are functionally related. Consequently, for a generic choice of boundary conditions, the asymptotic symmetries are broken down to ℝ⊗U(1)⊗U(1). Nonetheless, requiring compatibility of the boundary conditions with one of the asymptotic Virasoro symmetries, singles out the set to be characterized by an arbitrary function of a single variable, whose precise form depends on the choice of the chiral copy. Remarkably, requiring the asymptotic symmetries to contain the full conformal group selects a very special set of boundary conditions that is labeled by a unique constant parameter, so that the algebra of the canonical generators is given by the direct sum of two copies of the Virasoro algebra with the standard central extension and U(1). This special set of boundary conditions makes the energy spectrum of electrically charged rotating black holes to be well-behaved.

  11. Asymptotic symmetries on the Kerr-Newman horizon without the anomaly of diffeomorphism invariance

    International Nuclear Information System (INIS)

    Koga, Jun-ichirou

    2008-01-01

    We analyze asymptotic symmetries on the Killing horizon of the four-dimensional Kerr-Newman black hole. We first derive the asymptotic Killing vectors on the Killing horizon, which describe the asymptotic symmetries, and find that the general form of these asymptotic Killing vectors is the universal one possessed by arbitrary Killing horizons. We then construct the phase space associated with the asymptotic symmetries. It is shown that the phase space of an extreme black hole either has the size comparable with a non-extreme black hole, or is small enough to exclude degeneracy, depending on whether or not the global structure of a Killing horizon particular to an extreme black hole is respected. We also show that the classical central charge in the Poisson brackets algebra of these asymptotic symmetries vanishes, which implies that there is not an anomaly of diffeomorphism invariance. By taking into account other results in the literature, we argue that the vanishing central charge on a black hole horizon, in an effective theory, looks consistent with the thermal feature of a black hole. We furthermore argue that the vanishing central charge implies that there are sufficiently many classical configurations that constitute a single macroscopic state, while these configurations are distinguished physically

  12. Estimation of CN Parameter for Small Agricultural Watersheds Using Asymptotic Functions

    Directory of Open Access Journals (Sweden)

    Tomasz Kowalik

    2015-03-01

    Full Text Available This paper investigates a possibility of using asymptotic functions to determine the value of curve number (CN parameter as a function of rainfall in small agricultural watersheds. It also compares the actually calculated CN with its values provided in the Soil Conservation Service (SCS National Engineering Handbook Section 4: Hydrology (NEH-4 and Technical Release 20 (TR-20. The analysis showed that empirical CN values presented in the National Engineering Handbook tables differed from the actually observed values. Calculations revealed a strong correlation between the observed CN and precipitation (P. In three of the analyzed watersheds, a typical pattern of the observed CN stabilization during abundant precipitation was perceived. It was found that Model 2, based on a kinetics equation, most effectively described the P-CN relationship. In most cases, the observed CN in the investigated watersheds was similar to the empirical CN, corresponding to average moisture conditions set out by NEH-4. Model 2 also provided the greatest stability of CN at 90% sampled event rainfall.

  13. Qualitative and Asymptotic Theory of Detonations

    KAUST Repository

    Faria, Luiz

    2014-11-09

    Shock waves in reactive media possess very rich dynamics: from formation of cells in multiple dimensions to oscillating shock fronts in one-dimension. Because of the extreme complexity of the equations of combustion theory, most of the current understanding of unstable detonation waves relies on extensive numerical simulations of the reactive compressible Euler/Navier-Stokes equations. Attempts at a simplified theory have been made in the past, most of which are very successful in describing steady detonation waves. In this work we focus on obtaining simplified theories capable of capturing not only the steady, but also the unsteady behavior of detonation waves. The first part of this thesis is focused on qualitative theories of detonation, where ad hoc models are proposed and analyzed. We show that equations as simple as a forced Burgers equation can capture most of the complex phenomena observed in detonations. In the second part of this thesis we focus on rational theories, and derive a weakly nonlinear model of multi-dimensional detonations. We also show, by analysis and numerical simulations, that the asymptotic equations provide good quantitative predictions.

  14. Selected asymptotic methods with applications to electromagnetics and antennas

    CERN Document Server

    Fikioris, George; Bakas, Odysseas N

    2013-01-01

    This book describes and illustrates the application of several asymptotic methods that have proved useful in the authors' research in electromagnetics and antennas. We first define asymptotic approximations and expansions and explain these concepts in detail. We then develop certain prerequisites from complex analysis such as power series, multivalued functions (including the concepts of branch points and branch cuts), and the all-important gamma function. Of particular importance is the idea of analytic continuation (of functions of a single complex variable); our discussions here include som

  15. Asymptotic inverse periods of reflected reactors above prompt critical

    International Nuclear Information System (INIS)

    Spriggs, G.D.; Busch, R.D.

    1995-01-01

    It is commonly assumed that the kinetic behavior of reflected and unreflected reactors is identical. In particular, it is often accepted that a given reactivity change in either type of system will result in an identical asymptotic inverse period. This is generally true for reactivities below prompt critical. For reactivities above prompt critical, however, the asymptotic inverse period can vary in a highly nonlinear fashion with system reactivity depending on the reflector return fraction, the neutron lifetime in the core, and the neutron lifetime in the reflector

  16. Asymptotic solution of the non-isothermal Cahn-Hilliard system

    International Nuclear Information System (INIS)

    Omel'yanov, G.A.

    1995-05-01

    The non-isothermal Cahn-Hillard questions with a small parameter in the n-dimensional case (n = 2.3) are considered. The small parameter is proportional both to the relaxation time and to the linear scale of transition zone, so the large time process is examined. The asymptotic solution describing the free interface dynamics is constructed. As the small parameter tends to zero, the limiting solution satisfies the modified Stefan problem with corrected Gibbs-Thomson law. The justification of the asymptotic solution is proved. (author). 26 refs

  17. Asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size.

    Science.gov (United States)

    Chen, Hua; Chen, Kun

    2013-07-01

    The distributions of coalescence times and ancestral lineage numbers play an essential role in coalescent modeling and ancestral inference. Both exact distributions of coalescence times and ancestral lineage numbers are expressed as the sum of alternating series, and the terms in the series become numerically intractable for large samples. More computationally attractive are their asymptotic distributions, which were derived in Griffiths (1984) for populations with constant size. In this article, we derive the asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size. For a sample of size n, denote by Tm the mth coalescent time, when m + 1 lineages coalesce into m lineages, and An(t) the number of ancestral lineages at time t back from the current generation. Similar to the results in Griffiths (1984), the number of ancestral lineages, An(t), and the coalescence times, Tm, are asymptotically normal, with the mean and variance of these distributions depending on the population size function, N(t). At the very early stage of the coalescent, when t → 0, the number of coalesced lineages n - An(t) follows a Poisson distribution, and as m → n, $$n\\left(n-1\\right){T}_{m}/2N\\left(0\\right)$$ follows a gamma distribution. We demonstrate the accuracy of the asymptotic approximations by comparing to both exact distributions and coalescent simulations. Several applications of the theoretical results are also shown: deriving statistics related to the properties of gene genealogies, such as the time to the most recent common ancestor (TMRCA) and the total branch length (TBL) of the genealogy, and deriving the allele frequency spectrum for large genealogies. With the advent of genomic-level sequencing data for large samples, the asymptotic distributions are expected to have wide applications in theoretical and methodological development for population genetic inference.

  18. Robust control of chaos in Chua's circuit based on internal model principle

    International Nuclear Information System (INIS)

    Lee, Keum W.; Singh, Sahjendra N.

    2007-01-01

    The paper treats the question of robust control of chaos in Chua's circuit based on the internal model principle. The Chua's diode has polynomial non-linearity and it is assumed that the parameters of the circuit are not known. A robust control law for the asymptotic regulation of the output (node voltage) along constant and sinusoidal reference trajectories is derived. For the derivation of the control law, the non-linear regulator equations are solved to obtain a manifold in the state space on which the output error is zero and an internal model of the k-fold exosystem (k = 3 here) is constructed. Then a feedback control law using the optimal control theory or pole placement technique for the stabilization of the augmented system including the Chua's circuit and the internal model is derived. In the closed-loop system, robust output node voltage trajectory tracking of sinusoidal and constant reference trajectories are accomplished and in the steady state, the remaining state variables converge to periodic and constant trajectories, respectively. Simulation results are presented which show that in the closed-loop system, asymptotic trajectory control, disturbance rejection and suppression of chaotic motion in spite of uncertainties in the system are accomplished

  19. Dynamic RCS Simulation of a Missile Target Group Based on the High-frequency Asymptotic Method

    Directory of Open Access Journals (Sweden)

    Zhao Tao

    2014-04-01

    Full Text Available To simulate dynamic Radar Cross Section (RCS of missile target group, an efficient RCS prediction approach is proposed based on the high-frequency asymptotic theory. The minimal energy trajectory and coordinate transformation is used to get trajectories of the missile, decoys and roll booster, and establish the dynamic scene for the separate procedure of the target group, and the dynamic RCS including specular reflection, edge diffraction and multi-reflection from the target group are obtained by Physical Optics (PO, Equivalent Edge Currents (EEC and Shooting-and-Bouncing Ray (SBR methods. Compared with the dynamic RCS result with the common interpolation method, the proposed method is consistent with the common method when the targets in the scene are far away from each other and each target is not sheltered by others in the incident direction. When the target group is densely distributed and the shelter effect can not be neglected, the interpolation method is extremely difficult to realize, whereas the proposed method is successful.

  20. Asymptotic expansion of unsteady gravity flow of a power-law fluid ...

    African Journals Online (AJOL)

    We present a paper on the asymptotic expansion of unsteady non-linear rheological effects of a power-law fluid under gravity. The fluid flows through a porous medium. The asymptotic expansion is employed to obtain solution of the nonlinear problem. The results show the existence of traveling waves. It is assumed that the ...

  1. GENERALISED MODEL BASED CONFIDENCE INTERVALS IN TWO STAGE CLUSTER SAMPLING

    Directory of Open Access Journals (Sweden)

    Christopher Ouma Onyango

    2010-09-01

    Full Text Available Chambers and Dorfman (2002 constructed bootstrap confidence intervals in model based estimation for finite population totals assuming that auxiliary values are available throughout a target population and that the auxiliary values are independent. They also assumed that the cluster sizes are known throughout the target population. We now extend to two stage sampling in which the cluster sizes are known only for the sampled clusters, and we therefore predict the unobserved part of the population total. Jan and Elinor (2008 have done similar work, but unlike them, we use a general model, in which the auxiliary values are not necessarily independent. We demonstrate that the asymptotic properties of our proposed estimator and its coverage rates are better than those constructed under the model assisted local polynomial regression model.

  2. LSZ asymptotic condition and dynamic equations in quantum field theory

    International Nuclear Information System (INIS)

    Arkhipov, A.A.; Savrin, V.I.

    1983-01-01

    Some techniques that may be appropriate for the derivation of dynamic equations in quantum field theory are considered. A new method of deriving equations based on the use of LSZ asymptotic condition is described. It is proved that with the help of this method it becomes possible to obtain equations for wave functions both of scattering and bound states. Work is described in several papers under the dame title. The first paper is devoted to the Bethe-Salpeter equation

  3. The BFKL high energy asymptotic in the next-to-leading approximation

    International Nuclear Information System (INIS)

    Levin, Eugene

    1999-01-01

    We discuss the high energy asymptotic in the next-to-leading (NLO) BFKL equation. We find a general solution for the Green functions and consider two properties of the NLO BFKL kernel: running QCD coupling and large NLO corrections to the conformal part of the kernel. Both these effects lead to Regge-BFKL asymptotic only in the limited range of energy (y = ln(s/qq 0 ) ≤ (α S ) ((-5)/(3)) ) and change the energy behaviour of the amplitude for higher values of energy. We confirm the oscillation in the total cross section found by D.A. Ross [SHEP-98-06, hep-ph/9804332] in the NLO BFKL asymptotic, which shows that the NLO BFKL has a serious pathology

  4. Asymptotic mass degeneracies in conformal field theories

    International Nuclear Information System (INIS)

    Kani, I.; Vafa, C.

    1990-01-01

    By applying a method of Hardy and Ramanujan to characters of rational conformal field theories, we find an asymptotic expansion for degeneracy of states in the limit of large mass which is exact for strings propagating in more than two uncompactified space-time dimensions. Moreover we explore how the rationality of the conformal theory is reflected in the degeneracy of states. We also consider the one loop partition function for strings, restricted to physical states, for arbitrary (irrational) conformal theories, and obtain an asymptotic expansion for it in the limit that the torus degenerates. This expansion depends only on the spectrum of (physical and unphysical) relevant operators in the theory. We see how rationality is consistent with the smoothness of mass degeneracies as a function of moduli. (orig.)

  5. The Asymptotic Safety Scenario in Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Niedermaier Max

    2006-12-01

    Full Text Available The asymptotic safety scenario in quantum gravity is reviewed, according to which a renormalizable quantum theory of the gravitational field is feasible which reconciles asymptotically safe couplings with unitarity. The evidence from symmetry truncations and from the truncated flow of the effective average action is presented in detail. A dimensional reduction phenomenon for the residual interactions in the extreme ultraviolet links both results. For practical reasons the background effective action is used as the central object in the quantum theory. In terms of it criteria for a continuum limit are formulated and the notion of a background geometry self-consistently determined by the quantum dynamics is presented. Self-contained appendices provide prerequisites on the background effective action, the effective average action, and their respective renormalization flows.

  6. Some relations between asymptotic results for dead-time-distorted processes. Part I. The expectation values

    International Nuclear Information System (INIS)

    Mueller, J.W.

    1975-01-01

    The purpose of the present study is twofold. On the one hand, it should provide us with a deeper insight into the mechanism of these processes. On the other hand, we shall arrive at some new forms of asymptotic results not commonly known, in particular those pertaining to an extended dead time. In addition, the novel approach permits independent checking of earlier results (some of which had been at variance with previous claims). In view of the usually quite cumbersome arithmetic involved, such controls are certainly most welcome. In this first part all the relations concerning the asymptotic expectation values will be discussed; the second part will do the same for the variances. A more elegant treatment of these problems, based on some general asymptotic results for renewal processes of the type first derived by Smith must be postponed for the moment since the corresponding formulae for a modified process are not yet readily available. We hope to be able to fill this gap in a near future

  7. Asymptotic near freedom

    International Nuclear Information System (INIS)

    Bailin, D.

    1974-01-01

    It is proved that the characteristic power deviations from scaling of the theories which are not asymptotically free should be detectable in the N.A.L. muon experiments. The Yukawa theories here considered have SU(3) non-singlet structure function moments varying as a power of -q 2 , namely (-q 2 ) at power -p. The maximum value of p is determined to be 2/3:SU3 and 1:SU2. The outstanding question is whether the Yukawa theories considered do in fact have fixed points satisfying the inequalities, and thus simultaneous (non-trivial) zeroes of β(g) and β(lambda) have to be found

  8. Supersymmetric asymptotic safety is not guaranteed

    DEFF Research Database (Denmark)

    Intriligator, Kenneth; Sannino, Francesco

    2015-01-01

    in supersymmetric theories, and use unitarity bounds, and the a-theorem, to rule it out in broad classes of theories. The arguments apply without assuming perturbation theory. Therefore, the UV completion of a non-asymptotically free susy theory must have additional, non-obvious degrees of freedom, such as those...

  9. Generalized heat kernel coefficients for a new asymptotic expansion

    International Nuclear Information System (INIS)

    Osipov, Alexander A.; Hiller, Brigitte

    2003-01-01

    The method which allows for asymptotic expansion of the one-loop effective action W = lndetA is formulated. The positively defined elliptic operator A = U + M2 depends on the external classical fields taking values in the Lie algebra of the internal symmetry group G. Unlike the standard method of Schwinger - DeWitt, the more general case with the nongenerate mass matrix M = diag(m1, m2, ...) is considered. The first coefficients of the new asymptotic series are calculated and their relationship with the Seeley - DeWitt coefficients is clarified

  10. Global Asymptotic Stability of Switched Neural Networks with Delays

    Directory of Open Access Journals (Sweden)

    Zhenyu Lu

    2015-01-01

    Full Text Available This paper investigates the global asymptotic stability of a class of switched neural networks with delays. Several new criteria ensuring global asymptotic stability in terms of linear matrix inequalities (LMIs are obtained via Lyapunov-Krasovskii functional. And here, we adopt the quadratic convex approach, which is different from the linear and reciprocal convex combinations that are extensively used in recent literature. In addition, the proposed results here are very easy to be verified and complemented. Finally, a numerical example is provided to illustrate the effectiveness of the results.

  11. Asymptotic analysis of spatial discretizations in implicit Monte Carlo

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.

    2009-01-01

    We perform an asymptotic analysis of spatial discretizations in Implicit Monte Carlo (IMC). We consider two asymptotic scalings: one that represents a time step that resolves the mean-free time, and one that corresponds to a fixed, optically large time step. We show that only the latter scaling results in a valid spatial discretization of the proper diffusion equation, and thus we conclude that IMC only yields accurate solutions when using optically large spatial cells if time steps are also optically large. We demonstrate the validity of our analysis with a set of numerical examples.

  12. Asymptotic Ergodic Capacity Analysis of Composite Lognormal Shadowed Channels

    KAUST Repository

    Ansari, Imran Shafique

    2015-05-01

    Capacity analysis of composite lognormal (LN) shadowed links, such as Rician-LN, Gamma-LN, and Weibull-LN, is addressed in this work. More specifically, an exact closed-form expression for the moments of the end-to-end signal-to-noise ratio (SNR) of a single composite link transmission system is presented in terms of well- known elementary functions. Capitalizing on these new moments expressions, we present asymptotically tight lower bounds for the ergodic capacity at high SNR. All the presented results are verified via computer-based Monte-Carlo simulations. © 2015 IEEE.

  13. Asymptotic Ergodic Capacity Analysis of Composite Lognormal Shadowed Channels

    KAUST Repository

    Ansari, Imran Shafique; Alouini, Mohamed-Slim

    2015-01-01

    Capacity analysis of composite lognormal (LN) shadowed links, such as Rician-LN, Gamma-LN, and Weibull-LN, is addressed in this work. More specifically, an exact closed-form expression for the moments of the end-to-end signal-to-noise ratio (SNR) of a single composite link transmission system is presented in terms of well- known elementary functions. Capitalizing on these new moments expressions, we present asymptotically tight lower bounds for the ergodic capacity at high SNR. All the presented results are verified via computer-based Monte-Carlo simulations. © 2015 IEEE.

  14. Asymptotic angular dependences of exclusive hadron large-angle scattering

    International Nuclear Information System (INIS)

    Goloskokov, S.V.; Kudinov, A.V.; Kuleshov, S.P.

    1979-01-01

    Asymptotic approach to the description of the large-angle scattering amplitudes of the meson-nucleon and nucleon-nucleon scattering is studied. The paper is based on the Mandelstam representation and quark counting rules. The crossing summetry, SU-3 symmetry and spin effects are taken into account. Formulae obtained are used for the description of the differential cross sections of πsup(+-)p, pp and pn scattering. The predictions about ksup(+-)p and p anti p scattering are made. It is shown that formulae provide quantitative description of experimental data for the considered reactions

  15. Asymptotic properties of spherically symmetric, regular and static solutions to Yang-Mills equations

    International Nuclear Information System (INIS)

    Cronstrom, C.

    1987-01-01

    In this paper the author discusses the asymptotic properties of solutions to Yang-Mills equations with the gauge group SU(2), for spherically symmetric, regular and static potentials. It is known, that the pure Yang-Mills equations cannot have nontrivial regular solutions which vanish rapidly at space infinity (socalled finite energy solutions). So, if regular solutions exist, they must have non-trivial asymptotic properties. However, if the asymptotic behaviour of the solutions is non-trivial, then the fact must be explicitly taken into account in constructing the proper action (and energy) for the theory. The elucidation of the appropriate surface correction to the Yang-Mills action (and hence the energy-momentum tensor density) is one of the main motivations behind the present study. In this paper the author restricts to the asymptotic behaviour of the static solutions. It is shown that this asymptotic behaviour is such that surface corrections (at space-infinity) are needed in order to obtain a well-defined (classical) theory. This is of relevance in formulating a quantum Yang-Mills theory

  16. Ciência global?

    OpenAIRE

    Abreu, Armando Trigo de

    2000-01-01

    No fim do séc. XX, poucas actividades podem reclamar um passado de universalidade tão longo e tão paradigmático como a ciência. Se eliminarmos ocasionais e limitados acessos de nacionalismo ou ideologismo mais destemperado que levaram à procura da ciência proletária ou da filosofia portuguesa, a história da ciência é uma história comum. Portugal está excepcionalmente bem situado para compreender esta característica da ciência universal. Três exemplos, apenas, podem ilustrar esta condição:...

  17. Asymptotically Matched Layer (AML) for transient wave propagation in a moving frame of reference

    DEFF Research Database (Denmark)

    Madsen, Stine Skov; Krenk, Steen

    2017-01-01

    The paper presents an Asymptotically Matched Layer (AML) formulation in a moving frame of reference for transient dynamic response of a multi-layer 2D half-space. A displacement based finite element formulation of the convected domain problem is presented together with the AML formulation in whic...

  18. Heavy-element yields and abundances of asymptotic giant branch models with a Small Magellanic Cloud metallicity

    Science.gov (United States)

    Karakas, Amanda I.; Lugaro, Maria; Carlos, Marília; Cseh, Borbála; Kamath, Devika; García-Hernández, D. A.

    2018-06-01

    We present new theoretical stellar yields and surface abundances for asymptotic giant branch (AGB) models with a metallicity appropriate for stars in the Small Magellanic Cloud (SMC, Z = 0.0028, [Fe/H] ≈ -0.7). New evolutionary sequences and post-processing nucleosynthesis results are presented for initial masses between 1 and 7 M⊙, where the 7 M⊙ is a super-AGB star with an O-Ne core. Models above 1.15 M⊙ become carbon rich during the AGB, and hot bottom burning begins in models M ≥ 3.75 M⊙. We present stellar surface abundances as a function of thermal pulse number for elements between C to Bi and for a selection of isotopic ratios for elements up to Fe and Ni (e.g. 12C/13C), which can be compared to observations. The integrated stellar yields are presented for each model in the grid for hydrogen, helium, and all stable elements from C to Bi. We present evolutionary sequences of intermediate-mass models between 4 and 7 M⊙ and nucleosynthesis results for three masses (M = 3.75, 5, and 7 M⊙) including s-process elements for two widely used AGB mass-loss prescriptions. We discuss our new models in the context of evolved AGB and post-AGB stars in the SMCs, barium stars in our Galaxy, the composition of Galactic globular clusters including Mg isotopes with a similar metallicity to our models, and to pre-solar grains which may have an origin in metal-poor AGB stars.

  19. EMC effect: asymptotic freedom with nuclear targets

    International Nuclear Information System (INIS)

    West, G.B.

    1984-01-01

    General features of the EMC effect are discussed within the framework of quantum chromodynamics as expressed via the operator product expansion and asymptotic freedom. These techniques are reviewed with emphasis on the target dependence. 22 references

  20. Asymptotic Likelihood Distribution for Correlated & Constrained Systems

    CERN Document Server

    Agarwal, Ujjwal

    2016-01-01

    It describes my work as summer student at CERN. The report discusses the asymptotic distribution of the likelihood ratio for total no. of parameters being h and 2 out of these being are constrained and correlated.

  1. Asymptotical representation of discrete groups

    International Nuclear Information System (INIS)

    Mishchenko, A.S.; Mohammad, N.

    1995-08-01

    If one has a unitary representation ρ: π → U(H) of the fundamental group π 1 (M) of the manifold M then one can do may useful things: 1. To construct a natural vector bundle over M; 2. To construct the cohomology groups with respect to the local system of coefficients; 3. To construct the signature of manifold M with respect to the local system of coefficients; and others. In particular, one can write the Hirzebruch formula which compares the signature with the characteristic classes of the manifold M, further based on this, find the homotopy invariant characteristic classes (i.e. the Novikov conjecture). Taking into account that the family of known representations is not sufficiently large, it would be interesting to extend this family to some larger one. Using the ideas of A.Connes, M.Gromov and H.Moscovici a proper notion of asymptotical representation is defined. (author). 7 refs

  2. Structure of the gravitational field at spatial infinity. II. Asymptotically Minkowskian space--times

    International Nuclear Information System (INIS)

    Persides, S.

    1980-01-01

    A new formulation is established for the study of the asymptotic structure at spatial infinity of asymptotically Minkowskian space--times. First, the concept of an asymptotically simple space--time at spatial infinity is defined. This is a (physical) space--time (M,g) which can be imbedded in an unphysical space--time (M,g) with a boundary S, a C/sup infinity/ metric g and a C/sup infinity/ scalar field Ω such that Ω=0 on S, Ω>0 on M-S, and g/sup munu/ + g/sup mulambda/ g/sup nurho/ Ω/sub vertical-barlambda/ Ω/sub vertical-barrho/=Ω -2 g/sup murho/ +Ω -4 g/sup mulambda/ g/sup nurho/ Ω/sub ;/lambda Ω/sub ;/rho on M. Then an almost asymptotically flat space--time (AAFS) is defined as an asymptotically simple space--time for which S is isometric to the unit timelike hyperboloid and g/sup munu/ Ω/sub vertical-barmu/ Ω/sub vertical-barnu/ =Ω -4 g/sup munu/ Ω/sub ;/μΩ/sub ;/ν=-1 on S. Equivalent definitions are given in terms of the existence of coordinate systems in which g/sub munu/ or g/sub munu/ have simple explicitly given forms. The group of asymptotic symmetries of (M,g) is studied and is found to be isomorphic to the Lorentz group. The asymptotic behavior of an AAFS is studied. It is proven that the conformal metric g/sub munu/=Ω 2 g/sub munu/ gives C/sup lambdamurhonu/=0, Ω -1 C/sup lambdamurhonu/ Ω/sub ;/μ =0, Ω -2 C/sup lambdamurhonu/ Ω/sub ;/μ Ω/sub ;/ν=0 on S

  3. Asymptotics for moist deep convection I: refined scalings and self-sustaining updrafts

    Science.gov (United States)

    Hittmeir, Sabine; Klein, Rupert

    2018-04-01

    Moist processes are among the most important drivers of atmospheric dynamics, and scale analysis and asymptotics are cornerstones of theoretical meteorology. Accounting for moist processes in systematic scale analyses therefore seems of considerable importance for the field. Klein and Majda (Theor Comput Fluid Dyn 20:525-551, 2006) proposed a scaling regime for the incorporation of moist bulk microphysics closures in multiscale asymptotic analyses of tropical deep convection. This regime is refined here to allow for mixtures of ideal gases and to establish consistency with a more general multiple scales modeling framework for atmospheric flows. Deep narrow updrafts, the so-called hot towers, constitute principal building blocks of larger scale storm systems. They are analyzed here in a sample application of the new scaling regime. A single quasi-one-dimensional upright columnar cloud is considered on the vertical advective (or tower life cycle) time scale. The refined asymptotic scaling regime is essential for this example as it reveals a new mechanism for the self-sustainance of such updrafts. Even for strongly positive convectively available potential energy, a vertical balance of buoyancy forces is found in the presence of precipitation. This balance induces a diagnostic equation for the vertical velocity, and it is responsible for the generation of self-sustained balanced updrafts. The time-dependent updraft structure is encoded in a Hamilton-Jacobi equation for the precipitation mixing ratio. Numerical solutions of this equation suggest that the self-sustained updrafts may strongly enhance hot tower life cycles.

  4. Spectral asymptotic in the large coupling limit

    CERN Document Server

    Bruneau, V

    2002-01-01

    In this paper, we study a singular perturbation of an eigenvalues problem related to supra-conductor wave guides. Using boundary layer tools we perform a complete asymptotic expansion of the eigenvalues as the conductivity tends to $+\\infty$.

  5. Method of asymptotic expansions and qualitative analysis of finite-dimensional models in the nonlinear field theory

    International Nuclear Information System (INIS)

    Eleonskij, V.M.; Kulagin, N.E.; Novozhilova, N.S.; Silin, V.P.

    1984-01-01

    The reasons which prevent the existence of periodic in time and self-localised in space solutions of the nonlinear wave equation u=F (u) are determined by the methods of qualitative theory of dynamical systems. The correspondence between the qualitative behaviour of special (separatrix) trajectories in the phase space and asymptotic solutions of the nonlinear wave equation is analysed

  6. Optimal Homotopy Asymptotic Method for Solving System of Fredholm Integral Equations

    Directory of Open Access Journals (Sweden)

    Bahman Ghazanfari

    2013-08-01

    Full Text Available In this paper, optimal homotopy asymptotic method (OHAM is applied to solve system of Fredholm integral equations. The effectiveness of optimal homotopy asymptotic method is presented. This method provides easy tools to control the convergence region of approximating solution series wherever necessary. The results of OHAM are compared with homotopy perturbation method (HPM and Taylor series expansion method (TSEM.

  7. Asymptotic kinetic theory of magnetized plasmas: quasi-particle concept

    International Nuclear Information System (INIS)

    Sosenko, P.P.; Zagorodny, A.H.

    2004-01-01

    The asymptotic kinetic theory of magnetized plasmas is elaborated within the context of general statistical approach and asymptotic methods, developed by M. Krylov and M. Bohol'ubov, for linear and non-linear dynamic systems with a rapidly rotating phase. The quasi-particles are introduced already on the microscopic level. Asymptotic expansions enable to close the description for slow processes, and to relate consistently particles and guiding centres to quasi-particles. The kinetic equation for quasi-particles is derived. It makes a basis for the reduced description of slow collective phenomena in the medium. The kinetic equation for quasi-particles takes into account self-consistent interaction fields, quasi-particle collisions and collective-fluctuation-induced relaxation of quasi-particle distribution function. The relationships between the distribution functions for particles, guiding centres and quasi-particles are derived taking into account fluctuations, which can be especially important in turbulent states. In this way macroscopic (statistical) particle properties can be obtained from those of quasi-particles in the general case of non-equilibrium. (authors)

  8. Globally asymptotically stable analysis in a discrete time eco-epidemiological system

    International Nuclear Information System (INIS)

    Hu, Zengyun; Teng, Zhidong; Zhang, Tailei; Zhou, Qiming; Chen, Xi

    2017-01-01

    Highlights: • Dynamical behaviors of a discrete time eco-epidemiological system are discussed. • Global asymptotical stability of this system is obtained by an iteration scheme which can be expended to general dimensional discrete system. • More complex dynamical behaviors are obtained by numerical simulations. - Abstract: In this study, the dynamical behaviors of a discrete time eco-epidemiological system are discussed. The local stability, bifurcation and chaos are obtained. Moreover, the global asymptotical stability of this system is explored by an iteration scheme. The numerical simulations illustrate the theoretical results and exhibit the complex dynamical behaviors such as flip bifurcation, Hopf bifurcation and chaotic dynamical behaviors. Our main results provide an efficient method to analyze the global asymptotical stability for general three dimensional discrete systems.

  9. SISTEM PENJUALAN SPARE PART TOKO AJM MOTOR MENGGUNAKAN CI BERBASIS ARSITEKTUR MVC

    Directory of Open Access Journals (Sweden)

    Ade Setiadi

    2016-11-01

    Full Text Available Saat ini penggunaan komputer dan perangkat lunak semakin banyak hingga ke berbagai kehidupan, bahkan sampai pada bidang ekonomi. Sistem Informasi merupakan peranan sangat penting dalam kegiatan bisnis di suatu perusahaan. Toko AJM Motor bergerak dalam bidang penjualan spare part mobil dan masih menggunakan cara yang konvensional dalam mengolah data tentang transaksi penjualan, untuk itu Toko AJM Motor membutuhkan sistem informasi yang dapat menunjang kelancaran dalam melakukan transaksi penjualannya. Dalam dunia teknologi khususnya pemrograman saat ini, baik itu desktop maupun web base semakin marak pengerjaannya menggunakan framework dan salah satu framework berbasis PHP yang banyak digunakan yaitu CodeIgniter (CI. Framework CI memang dikembangkan untuk memudahkan dalam developing aplikasi dengan struktur file source code-nya menggunakan pendekatan arsitektur Models-Views-Controller (MVC dan pemrograman berorientasi objek. Oleh sebab itu, kami menggunakan CI dalam developing aplikasi ini dengan metode Object Oriented Analysis and Design sebagai metode pengembangan system. Dengan dirancangnya sistem ini telah mempermudah pemilik toko dalam mengelola data pelanggan, supplier dan barang yang di beli dan di jual serta pembuatan laporan yang diperlukan untuk perhitungan penjualan dan dapat memberikan informasi yang berguna bagi pemilik toko secara up to date. Kata kunci: codeigniter (CI, models-views-controller (MVC, object oriented, penjualan.

  10. Inverse curvature flows in asymptotically Robertson Walker spaces

    Science.gov (United States)

    Kröner, Heiko

    2018-04-01

    In this paper we consider inverse curvature flows in a Lorentzian manifold N which is the topological product of the real numbers with a closed Riemannian manifold and equipped with a Lorentzian metric having a future singularity so that N is asymptotically Robertson Walker. The flow speeds are future directed and given by 1 / F where F is a homogeneous degree one curvature function of class (K*) of the principal curvatures, i.e. the n-th root of the Gauss curvature. We prove longtime existence of these flows and that the flow hypersurfaces converge to smooth functions when they are rescaled with a proper factor which results from the asymptotics of the metric.

  11. A modified CAS-CI approach for an efficient calculation of magnetic exchange coupling constants

    Science.gov (United States)

    Fink, Karin; Staemmler, Volker

    2013-09-01

    A modification of the conventional wavefunction-based CAS-CI method for the calculation of magnetic exchange coupling constants J in small molecules and transition metal complexes is presented. In general, CAS-CI approaches yield much too small values for J since the energies of the important charge transfer configurations are calculated with the ground state orbitals and are therefore much too high. In the present approach we improve these energies by accounting for the relaxation of the orbitals in the charge transfer configurations. The necessary relaxation energies R can be obtained in separate calculations using mononuclear or binuclear model systems. The method is applied to a few examples, small molecules, binuclear transition metal complexes, and bulk NiO. It allows to obtaining fairly reliable estimates for J at costs that are not higher than those of conventional CAS-CI calculations. Therefore, extended and very time-consuming perturbation theory (PT2), configuration interaction (CI), or coupled cluster (CC) schemes on top of the CAS-CI calculation can be avoided and the modified CAS-CI (MCAS-CI) approach can be applied to rather large systems.

  12. Asymptotic convergence for iterative optimization in electronic structure

    International Nuclear Information System (INIS)

    Lippert, Ross A.; Sears, Mark P.

    2000-01-01

    There have recently been a number of proposals for solving large electronic structure problems (local-density approximation, Hartree-Fock, and tight-binding methods) iteratively with a computational effort proportional to the size of the system. The effort needed to perform a single iteration in these schemes is well understood but the convergence rate has been an empirical matter. This paper will show that many of the proposed methods have a single underlying geometrical structure, which has a specific asymptotic convergence behavior, and that behavior can be understood in terms of some simple condition numbers based on the spectrum of the Hamiltonian. (c) 2000 The American Physical Society

  13. Physically asymptotic Hartree-Fock stationary-phase approximant to the many-body S-matrix

    International Nuclear Information System (INIS)

    Griffin, J.J.; Dworzecka, M.

    1982-01-01

    The Asymptotic Hartree-Fock Approximant replaces the physically non-asymptotic (and dynamically nontrivial) external translation of the FISP result with the asymptotic and dynamically trivial translational evolution of Dirac-TDHF by adding an explicit restriction upon the acceptable channel states. It is therefore preferable under the principle of commensurability, which judges the expected output of physical descriptions in terms of the physical assumptions they incorporate. Further insight into the relationship between the TDSHF and FISP methods will reward careful comparison of the respective expressions, in specific cases

  14. Asymptotically flat structure of hypergravity in three spacetime dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Fuentealba, Oscar [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile); Matulich, Javier; Troncoso, Ricardo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile)

    2015-10-02

    The asymptotic structure of three-dimensional hypergravity without cosmological constant is analyzed. In the case of gravity minimally coupled to a spin-5/2 field, a consistent set of boundary conditions is proposed, being wide enough so as to accommodate a generic choice of chemical potentials associated to the global charges. The algebra of the canonical generators of the asymptotic symmetries is given by a hypersymmetric nonlinear extension of BMS{sub 3}. It is shown that the asymptotic symmetry algebra can be recovered from a subset of a suitable limit of the direct sum of the W{sub (2,4)} algebra with its hypersymmetric extension. The presence of hypersymmetry generators allows to construct bounds for the energy, which turn out to be nonlinear and saturate for spacetimes that admit globally-defined “Killing vector-spinors”. The null orbifold or Minkowski spacetime can then be seen as the corresponding ground state in the case of fermions that fulfill periodic or antiperiodic boundary conditions, respectively. The hypergravity theory is also explicitly extended so as to admit parity-odd terms in the action. It is then shown that the asymptotic symmetry algebra includes an additional central charge, being proportional to the coupling of the Lorentz-Chern-Simons form. The generalization of these results in the case of gravity minimally coupled to arbitrary half-integer spin fields is also carried out. The hypersymmetry bounds are found to be given by a suitable polynomial of degree s+(1/2) in the energy, where s is the spin of the fermionic generators.

  15. UV conformal window for asymptotic safety

    Science.gov (United States)

    Bond, Andrew D.; Litim, Daniel F.; Vazquez, Gustavo Medina; Steudtner, Tom

    2018-02-01

    Interacting fixed points in four-dimensional gauge theories coupled to matter are investigated using perturbation theory up to three loop order. It is shown how fixed points, scaling exponents, and anomalous dimensions are obtained as a systematic power series in a small parameter. The underlying ordering principle is explained and contrasted with conventional perturbation theory and Weyl consistency conditions. We then determine the conformal window with asymptotic safety from the complete next-to-next-to-leading order in perturbation theory. Limits for the conformal window arise due to fixed point mergers, the onset of strong coupling, or vacuum instability. A consistent picture is uncovered by comparing various levels of approximation. The theory remains perturbative in the entire conformal window, with vacuum stability dictating the tightest constraints. We also speculate about a secondary conformal window at strong coupling and estimate its lower limit. Implications for model building and cosmology are indicated.

  16. Ultraviolet asymptotic behavior of the photon propagator in dimensionally regularized quantum electrodynamics

    International Nuclear Information System (INIS)

    Krasnikov, N.V.

    1991-01-01

    Study of the ultraviolet behavior of asymptotically nonfree theories is one of the most important problems of quantum field theory. Unfortunately, not too much is known about the ultraviolet properties in asymptotically nonfree theories; the main obstacle is the growth of the effective coupling constant in the ultraviolet region, which renders perturbation theory inapplicable. It is shown that in quantum electrodynamics in n = 4 + 2 var-epsilon space-time (var-epsilon > 0) the photon propagator has the ultraviolet asymptotic behavior D(k 2 ) ∼ (k 2 ) -1-var-epsilon . In the case var-epsilon R ≤ -3π var-epsilon + O(var-epsilon 2 )

  17. Asymptotic behaviour of solutions of real two-dimensional differential system with nonconstant delay in an unstable case

    Directory of Open Access Journals (Sweden)

    J. Kalas

    2012-01-01

    Full Text Available The asymptotic behaviour for the solutions of a real two-dimensional system with a bounded nonconstant delay is studied under the assumption of instability. Our results improve and complement previous results by J. Kalas, where the sufficient conditions assuring the existence of bounded solutions or solutions tending to origin for $t$ approaching infinity are given. The method of investigation is based on the transformation of the considered real system to one equation with complex-valued coefficients. Asymptotic properties of this equation are studied by means of a suitable Lyapunov-Krasovskii functional and by virtue of the Wazewski topological principle.

  18. High frequency asymptotic methods

    International Nuclear Information System (INIS)

    Bouche, D.; Dessarce, R.; Gay, J.; Vermersch, S.

    1991-01-01

    The asymptotic methods allow us to compute the interaction of high frequency electromagnetic waves with structures. After an outline of their foundations with emphasis on the geometrical theory of diffraction, it is shown how to use these methods to evaluate the radar cross section (RCS) of complex tri-dimensional objects of great size compared to the wave-length. The different stages in simulating phenomena which contribute to the RCS are reviewed: physical theory of diffraction, multiple interactions computed by shooting rays, research for creeping rays. (author). 7 refs., 6 figs., 3 insets

  19. Existence and asymptotic behavior of solutions for nonlinear Schrödinger-Poisson systems with steep potential well.

    Science.gov (United States)

    Du, Miao; Tian, Lixin; Wang, Jun; Zhang, Fubao

    2016-03-01

    In this paper, we are concerned with a class of Schrödinger-Poisson systems with the asymptotically linear or asymptotically 3-linear nonlinearity. Under some suitable assumptions on V , K , a , and f , we prove the existence, nonexistence, and asymptotic behavior of solutions via variational methods. In particular, the potential V is allowed to be sign-changing for the asymptotically linear case.

  20. Sharp asymptotic estimates for vorticity solutions of the 2D Navier-Stokes equation

    Directory of Open Access Journals (Sweden)

    Yuncheng You

    2008-12-01

    Full Text Available The asymptotic dynamics of high-order temporal-spatial derivatives of the two-dimensional vorticity and velocity of an incompressible, viscous fluid flow in $mathbb{R}^2$ are studied, which is equivalent to the 2D Navier-Stokes equation. It is known that for any integrable initial vorticity, the 2D vorticity solution converges to the Oseen vortex. In this paper, sharp exterior decay estimates of the temporal-spatial derivatives of the vorticity solution are established. These estimates are then used and combined with similarity and $L^p$ compactness to show the asymptotical attraction rates of temporal-spatial derivatives of generic 2D vorticity and velocity solutions by the Oseen vortices and velocity solutions respectively. The asymptotic estimates and the asymptotic attraction rates of all the derivatives obtained in this paper are independent of low or high Reynolds numbers.