WorldWideScience

Sample records for asymptotically scale-invariant occupancy

  1. Hidden scale invariance of metals

    DEFF Research Database (Denmark)

    Hummel, Felix; Kresse, Georg; Dyre, Jeppe C.

    2015-01-01

    Density functional theory (DFT) calculations of 58 liquid elements at their triple point show that most metals exhibit near proportionality between the thermal fluctuations of the virial and the potential energy in the isochoric ensemble. This demonstrates a general “hidden” scale invariance...... of iron and phosphorous are shown to increase at elevated pressures. Finally, we discuss how scale invariance explains the Grüneisen equation of state and a number of well-known empirical melting and freezing rules...

  2. The Mond Limit from Spacetime Scale Invariance

    Science.gov (United States)

    Milgrom, Mordehai

    2009-06-01

    The modified Newtonian dynamics (MOND) limit is shown to follow from a requirement of spacetime scale invariance of the equations of motion for nonrelativistic, purely gravitational systems, i.e., invariance of the equations of motion under (t, r) → (λt, λr) in the limit a 0 → ∞. It is suggested that this should replace the definition of the MOND limit based on the low-acceleration behavior of a Newtonian-MOND interpolating function. In this way, the salient, deep-MOND results—asymptotically flat rotation curves, the mass-rotational-speed relation (baryonic Tully-Fisher relation), the Faber-Jackson relation, etc.,—follow from a symmetry principle. For example, asymptotic flatness of rotation curves reflects the fact that radii change under scaling, while velocities do not. I then comment on the interpretation of the deep-MOND limit as one of "zero mass": rest masses, whose presence obstructs scaling symmetry, become negligible compared to the "phantom," dynamical masses—those that some would attribute to dark matter. Unlike the former masses, the latter transform in a way that is consistent with the symmetry. Finally, I discuss the putative MOND-cosmology connection in light of another, previously known symmetry of the deep-MOND limit. In particular, it is suggested that MOND is related to the asymptotic de Sitter geometry of our universe. It is conjectured, for example that in an exact de Sitter cosmos, deep-MOND physics would exactly apply to local systems. I also point out, in this connection, the possible relevance of a de Sitter-conformal-field-theory (dS/CFT) duality.

  3. Scale invariance in road networks.

    Science.gov (United States)

    Kalapala, Vamsi; Sanwalani, Vishal; Clauset, Aaron; Moore, Cristopher

    2006-02-01

    We study the topological and geographic structure of the national road networks of the United States, England, and Denmark. By transforming these networks into their dual representation, where roads are vertices and an edge connects two vertices if the corresponding roads ever intersect, we show that they exhibit both topological and geographic scale invariance. That is, we show that for sufficiently large geographic areas, the dual degree distribution follows a power law with exponent 2.2< or = alpha < or =2.4, and that journeys, regardless of their length, have a largely identical structure. To explain these properties, we introduce and analyze a simple fractal model of road placement that reproduces the observed structure, and suggests a testable connection between the scaling exponent and the fractal dimensions governing the placement of roads and intersections.

  4. Scale invariant Volkov–Akulov supergravity

    Directory of Open Access Journals (Sweden)

    S. Ferrara

    2015-10-01

    Full Text Available A scale invariant goldstino theory coupled to supergravity is obtained as a standard supergravity dual of a rigidly scale-invariant higher-curvature supergravity with a nilpotent chiral scalar curvature. The bosonic part of this theory describes a massless scalaron and a massive axion in a de Sitter Universe.

  5. A scale invariance criterion for LES parametrizations

    Directory of Open Access Journals (Sweden)

    Urs Schaefer-Rolffs

    2015-01-01

    Full Text Available Turbulent kinetic energy cascades in fluid dynamical systems are usually characterized by scale invariance. However, representations of subgrid scales in large eddy simulations do not necessarily fulfill this constraint. So far, scale invariance has been considered in the context of isotropic, incompressible, and three-dimensional turbulence. In the present paper, the theory is extended to compressible flows that obey the hydrostatic approximation, as well as to corresponding subgrid-scale parametrizations. A criterion is presented to check if the symmetries of the governing equations are correctly translated into the equations used in numerical models. By applying scaling transformations to the model equations, relations between the scaling factors are obtained by demanding that the mathematical structure of the equations does not change.The criterion is validated by recovering the breakdown of scale invariance in the classical Smagorinsky model and confirming scale invariance for the Dynamic Smagorinsky Model. The criterion also shows that the compressible continuity equation is intrinsically scale-invariant. The criterion also proves that a scale-invariant turbulent kinetic energy equation or a scale-invariant equation of motion for a passive tracer is obtained only with a dynamic mixing length. For large-scale atmospheric flows governed by the hydrostatic balance the energy cascade is due to horizontal advection and the vertical length scale exhibits a scaling behaviour that is different from that derived for horizontal length scales.

  6. Modified dispersion relations, inflation, and scale invariance

    Science.gov (United States)

    Bianco, Stefano; Friedhoff, Victor Nicolai; Wilson-Ewing, Edward

    2018-02-01

    For a certain type of modified dispersion relations, the vacuum quantum state for very short wavelength cosmological perturbations is scale-invariant and it has been suggested that this may be the source of the scale-invariance observed in the temperature anisotropies in the cosmic microwave background. We point out that for this scenario to be possible, it is necessary to redshift these short wavelength modes to cosmological scales in such a way that the scale-invariance is not lost. This requires nontrivial background dynamics before the onset of standard radiation-dominated cosmology; we demonstrate that one possible solution is inflation with a sufficiently large Hubble rate, for this slow roll is not necessary. In addition, we also show that if the slow-roll condition is added to inflation with a large Hubble rate, then for any power law modified dispersion relation quantum vacuum fluctuations become nearly scale-invariant when they exit the Hubble radius.

  7. Holography for chiral scale-invariant models

    NARCIS (Netherlands)

    Caldeira Costa, R.N.; Taylor, M.

    2011-01-01

    Deformation of any d-dimensional conformal field theory by a constant null source for a vector operator of dimension (d + z -1) is exactly marginal with respect to anisotropic scale invariance, of dynamical exponent z. The holographic duals to such deformations are AdS plane waves, with z=2 being

  8. Holography for chiral scale-invariant models

    NARCIS (Netherlands)

    Caldeira Costa, R.N.; Taylor, M.

    2010-01-01

    Deformation of any d-dimensional conformal field theory by a constant null source for a vector operator of dimension (d + z -1) is exactly marginal with respect to anisotropic scale invariance, of dynamical exponent z. The holographic duals to such deformations are AdS plane waves, with z=2 being

  9. Scale invariance from phase transitions to turbulence

    CERN Document Server

    Lesne, Annick

    2012-01-01

    During a century, from the Van der Waals mean field description (1874) of gases to the introduction of renormalization group (RG techniques 1970), thermodynamics and statistical physics were just unable to account for the incredible universality which was observed in numerous critical phenomena. The great success of RG techniques is not only to solve perfectly this challenge of critical behaviour in thermal transitions but to introduce extremely useful tools in a wide field of daily situations where a system exhibits scale invariance. The introduction of scaling, scale invariance and universality concepts has been a significant turn in modern physics and more generally in natural sciences. Since then, a new "physics of scaling laws and critical exponents", rooted in scaling approaches, allows quantitative descriptions of numerous phenomena, ranging from phase transitions to earthquakes, polymer conformations, heartbeat rhythm, diffusion, interface growth and roughening, DNA sequence, dynamical systems, chaos ...

  10. Hidden Scale Invariance in Condensed Matter

    DEFF Research Database (Denmark)

    Dyre, J. C.

    2014-01-01

    . This means that the phase diagram becomes effectively one-dimensional with regard to several physical properties. Liquids and solids with isomorphs include most or all van der Waals bonded systems and metals, as well as weakly ionic or dipolar systems. On the other hand, systems with directional bonding...... (hydrogen bonds or covalent bonds) or strong Coulomb forces generally do not exhibit hidden scale invariance. The article reviews the theory behind this picture of condensed matter and the evidence for it coming from computer simulations and experiments...

  11. Natural inflation with hidden scale invariance

    Directory of Open Access Journals (Sweden)

    Neil D. Barrie

    2016-05-01

    Full Text Available We propose a new class of natural inflation models based on a hidden scale invariance. In a very generic Wilsonian effective field theory with an arbitrary number of scalar fields, which exhibits scale invariance via the dilaton, the potential necessarily contains a flat direction in the classical limit. This flat direction is lifted by small quantum corrections and inflation is realised without need for an unnatural fine-tuning. In the conformal limit, the effective potential becomes linear in the inflaton field, yielding to specific predictions for the spectral index and the tensor-to-scalar ratio, being respectively: ns−1≈−0.025(N⋆60−1 and r≈0.0667(N⋆60−1, where N⋆≈30–65 is a number of efolds during observable inflation. This predictions are in reasonable agreement with cosmological measurements. Further improvement of the accuracy of these measurements may turn out to be critical in falsifying our scenario.

  12. Notes on the occupancy problem with infinitely many boxes: general asymptotics and power laws

    OpenAIRE

    Gnedin, Alexander; Hansen, Ben; Pitman, Jim

    2007-01-01

    This paper collects facts about the number of occupied boxes in the classical balls-in-boxes occupancy scheme with infinitely many positive frequencies: equivalently, about the number of species represented in samples from populations with infinitely many species. We present moments of this random variable, discuss asymptotic relations among them and with related random variables, and draw connections with regular variation, which appears in various manifestations.

  13. Scale-invariant nonlinear optics in gases

    CERN Document Server

    Heyl, C M; Miranda, M; Louisy, M; Kovacs, K; Tosa, V; Balogh, E; Varjú, K; L'Huillier, A; Couairon, A; Arnold, C L

    2015-01-01

    Nonlinear optical methods are becoming ubiquitous in many areas of modern photonics. They are, however, often limited to a certain range of input parameters, such as pulse energy and average power, since restrictions arise from, for example, parasitic nonlinear effects, damage problems and geometrical considerations. Here, we show that many nonlinear optics phenomena in gaseous media are scale-invariant if spatial coordinates, gas density and laser pulse energy are scaled appropriately. We develop a general scaling model for (3+1)-dimensional wave equations, demonstrating the invariant scaling of nonlinear pulse propagation in gases. Our model is numerically applied to high-order harmonic generation and filamentation as well as experimentally verified using the example of pulse post-compression via filamentation. Our results provide a simple recipe for up-or downscaling of nonlinear processes in gases with numerous applications in many areas of science.

  14. Scale invariance and universality of economic fluctuations

    Science.gov (United States)

    Stanley, H. E.; Amaral, L. A. N.; Gopikrishnan, P.; Plerou, V.

    2000-08-01

    In recent years, physicists have begun to apply concepts and methods of statistical physics to study economic problems, and the neologism “econophysics” is increasingly used to refer to this work. Much recent work is focused on understanding the statistical properties of time series. One reason for this interest is that economic systems are examples of complex interacting systems for which a huge amount of data exist, and it is possible that economic time series viewed from a different perspective might yield new results. This manuscript is a brief summary of a talk that was designed to address the question of whether two of the pillars of the field of phase transitions and critical phenomena - scale invariance and universality - can be useful in guiding research on economics. We shall see that while scale invariance has been tested for many years, universality is relatively less frequently discussed. This article reviews the results of two recent studies - (i) The probability distribution of stock price fluctuations: Stock price fluctuations occur in all magnitudes, in analogy to earthquakes - from tiny fluctuations to drastic events, such as market crashes. The distribution of price fluctuations decays with a power-law tail well outside the Lévy stable regime and describes fluctuations that differ in size by as much as eight orders of magnitude. (ii) Quantifying business firm fluctuations: We analyze the Computstat database comprising all publicly traded United States manufacturing companies within the years 1974-1993. We find that the distributions of growth rates is different for different bins of firm size, with a width that varies inversely with a power of firm size. Similar variation is found for other complex organizations, including country size, university research budget size, and size of species of bird populations.

  15. Scale-invariant transition probabilities in free word association trajectories

    Directory of Open Access Journals (Sweden)

    Martin Elias Costa

    2009-09-01

    Full Text Available Free-word association has been used as a vehicle to understand the organization of human thoughts. The original studies relied mainly on qualitative assertions, yielding the widely intuitive notion that trajectories of word associations are structured, yet considerably more random than organized linguistic text. Here we set to determine a precise characterization of this space, generating a large number of word association trajectories in a web implemented game. We embedded the trajectories in the graph of word co-occurrences from a linguistic corpus. To constrain possible transport models we measured the memory loss and the cycling probability. These two measures could not be reconciled by a bounded diffusive model since the cycling probability was very high (16 % of order-2 cycles implying a majority of short-range associations whereas the memory loss was very rapid (converging to the asymptotic value in ∼ 7 steps which, in turn, forced a high fraction of long-range associations. We show that memory loss and cycling probabilities of free word association trajectories can be simultaneously accounted by a model in which transitions are determined by a scale invariant probability distribution.

  16. The Scale Invariant Synchrotron Jet of Flat Spectrum Radio Quasars

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... In this paper, the scale invariance of the synchrotron jet of Flat Spectrum Radio Quasars has been studied using a sample of combined sources from FKM04 and from SDSS DR3 catalogue. Since the research of scale invariance has been focused on sub-Eddington cases that can be fitted onto the ...

  17. The Scale Invariant Synchrotron Jet of Flat Spectrum Radio Quasars ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, the scale invariance of the synchrotron jet of Flat. Spectrum Radio Quasars has been studied using a sample of combined sources from FKM04 and from SDSS DR3 catalogue. Since the research of scale invariance has been focused on sub-Eddington cases that can be fitted onto the fundamental ...

  18. Network connectivity modulates power spectrum scale invariance.

    Science.gov (United States)

    Rădulescu, Anca; Mujica-Parodi, Lilianne R

    2014-04-15

    Measures of complexity are sensitive in detecting disease, which has made them attractive candidates for diagnostic biomarkers; one complexity measure that has shown promise in fMRI is power spectrum scale invariance (PSSI). Even if scale-free features of neuroimaging turn out to be diagnostically useful, however, their underlying neurobiological basis is poorly understood. Using modeling and simulations of a schematic prefrontal-limbic meso-circuit, with excitatory and inhibitory networks of nodes, we present here a framework for how network density within a control system can affect the complexity of signal outputs. Our model demonstrates that scale-free behavior, similar to that observed in fMRI PSSI data, can be obtained for sufficiently large networks in a context as simple as a linear stochastic system of differential equations, although the scale-free range improves when introducing more realistic, nonlinear behavior in the system. PSSI values (reflective of complexity) vary as a function of both input type (excitatory, inhibitory) and input density (mean number of long-range connections, or strength), independent of their node-specific geometric distribution. Signals show pink noise (1/f) behavior when excitatory and inhibitory influences are balanced. As excitatory inputs are increased and decreased, signals shift towards white and brown noise, respectively. As inhibitory inputs are increased and decreased, signals shift towards brown and white noise, respectively. The results hold qualitatively at the hemodynamic scale, which we modeled by introducing a neurovascular component. Comparing hemodynamic simulation results to fMRI PSSI results from 96 individuals across a wide spectrum of anxiety-levels, we show how our model can generate concrete and testable hypotheses for understanding how connectivity affects regulation of meso-circuits in the brain. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Manifestly scale-invariant regularization and quantum effective operators

    CERN Document Server

    Ghilencea, D.M.

    2016-01-01

    Scale invariant theories are often used to address the hierarchy problem, however the regularization of their quantum corrections introduces a dimensionful coupling (dimensional regularization) or scale (Pauli-Villars, etc) which break this symmetry explicitly. We show how to avoid this problem and study the implications of a manifestly scale invariant regularization in (classical) scale invariant theories. We use a dilaton-dependent subtraction function $\\mu(\\sigma)$ which after spontaneous breaking of scale symmetry generates the usual DR subtraction scale $\\mu(\\langle\\sigma\\rangle)$. One consequence is that "evanescent" interactions generated by scale invariance of the action in $d=4-2\\epsilon$ (but vanishing in $d=4$), give rise to new, finite quantum corrections. We find a (finite) correction $\\Delta U(\\phi,\\sigma)$ to the one-loop scalar potential for $\\phi$ and $\\sigma$, beyond the Coleman-Weinberg term. $\\Delta U$ is due to an evanescent correction ($\\propto\\epsilon$) to the field-dependent masses (of...

  20. Tuning the cosmological constant, broken scale invariance, unitarity

    Energy Technology Data Exchange (ETDEWEB)

    Förste, Stefan; Manz, Paul [Bethe Center for Theoretical Physics,Nussallee 12, 53115 Bonn (Germany); Physikalisches Institut der Universität Bonn,Nussallee 12, 53115 Bonn (Germany)

    2016-06-10

    We study gravity coupled to a cosmological constant and a scale but not conformally invariant sector. In Minkowski vacuum, scale invariance is spontaneously broken. We consider small fluctuations around the Minkowski vacuum. At the linearised level we find that the trace of metric perturbations receives a positive or negative mass squared contribution. However, only for the Fierz-Pauli combination the theory is free of ghosts. The mass term for the trace of metric perturbations can be cancelled by explicitly breaking scale invariance. This reintroduces fine-tuning. Models based on four form field strength show similarities with explicit scale symmetry breaking due to quantisation conditions.

  1. Binary optical filters for scale invariant pattern recognition

    Science.gov (United States)

    Reid, Max B.; Downie, John D.; Hine, Butler P.

    1992-01-01

    Binary synthetic discriminant function (BSDF) optical filters which are invariant to scale changes in the target object of more than 50 percent are demonstrated in simulation and experiment. Efficient databases of scale invariant BSDF filters can be designed which discriminate between two very similar objects at any view scaled over a factor of 2 or more. The BSDF technique has considerable advantages over other methods for achieving scale invariant object recognition, as it also allows determination of the object's scale. In addition to scale, the technique can be used to design recognition systems invariant to other geometric distortions.

  2. Scalar dark matter in scale invariant standard model

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbani, Karim [Physics Department, Faculty of Sciences,Arak University, Arak 38156-8-8349 (Iran, Islamic Republic of); Ghorbani, Hossein [Institute for Research in Fundamental Sciences (IPM),School of Particles and Accelerators, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-04-05

    We investigate single and two-component scalar dark matter scenarios in classically scale invariant standard model which is free of the hierarchy problem in the Higgs sector. We show that despite the very restricted space of parameters imposed by the scale invariance symmetry, both single and two-component scalar dark matter models overcome the direct and indirect constraints provided by the Planck/WMAP observational data and the LUX/Xenon100 experiment. We comment also on the radiative mass corrections of the classically massless scalon that plays a crucial role in our study.

  3. Spacetime scale-invariance and the super p-brane

    NARCIS (Netherlands)

    Bergshoeff, E.; London, L.A.J.; Townsend, P.K.

    1992-01-01

    We generalize to p-dimensional extended objects and type II superstrings a recently proposed Green-Schwarz type I superstring action in which the tension T emerges as an integration constant of the equations of motion. The action is spacetime scale-invariant but its equations of motion are

  4. Scaling invariance of spherical projectile fragmentation upon high-velocity impact on a thin continuous shield

    Energy Technology Data Exchange (ETDEWEB)

    Myagkov, N. N., E-mail: nn-myagkov@mail.ru [Russian Academy of Sciences, Institute of Applied Mechanics (Russian Federation)

    2017-01-15

    The problem of aluminum projectile fragmentation upon high-velocity impact on a thin aluminum shield is considered. A distinctive feature of this description is that the fragmentation has been numerically simulated using the complete system of equations of deformed solid mechanics by a method of smoothed particle hydrodynamics in three-dimensional setting. The transition from damage to fragmentation is analyzed and scaling relations are derived in terms of the impact velocity (V), ratio of shield thickness to projectile diameter (h/D), and ultimate strength (σ{sub p}) in the criterion of projectile and shield fracture. Analysis shows that the critical impact velocity V{sub c} (separating the damage and fragmentation regions) is a power function of σ{sub p} and h/D. In the supercritical region (V > V{sub c}), the weight-average fragment mass asymptotically tends to a power function of the impact velocity with exponent independent of h/D and σ{sub p}. Mean cumulative fragment mass distributions at the critical point are scale-invariant with respect to parameters h/D and σ{sub p}. Average masses of the largest fragments are also scale-invariant at V > V{sub c}, but only with respect to variable parameter σ{sub p}.

  5. Gauge coupling unification in a classically scale invariant model

    Energy Technology Data Exchange (ETDEWEB)

    Haba, Naoyuki; Ishida, Hiroyuki [Graduate School of Science and Engineering, Shimane University,Matsue 690-8504 (Japan); Takahashi, Ryo [Graduate School of Science, Tohoku University,Sendai, 980-8578 (Japan); Yamaguchi, Yuya [Graduate School of Science and Engineering, Shimane University,Matsue 690-8504 (Japan); Department of Physics, Faculty of Science, Hokkaido University,Sapporo 060-0810 (Japan)

    2016-02-08

    There are a lot of works within a class of classically scale invariant model, which is motivated by solving the gauge hierarchy problem. In this context, the Higgs mass vanishes at the UV scale due to the classically scale invariance, and is generated via the Coleman-Weinberg mechanism. Since the mass generation should occur not so far from the electroweak scale, we extend the standard model only around the TeV scale. We construct a model which can achieve the gauge coupling unification at the UV scale. In the same way, the model can realize the vacuum stability, smallness of active neutrino masses, baryon asymmetry of the universe, and dark matter relic abundance. The model predicts the existence vector-like fermions charged under SU(3){sub C} with masses lower than 1 TeV, and the SM singlet Majorana dark matter with mass lower than 2.6 TeV.

  6. On logarithmic extensions of local scale-invariance

    Energy Technology Data Exchange (ETDEWEB)

    Henkel, Malte, E-mail: malte.henkel@ijl.nancy-universite.fr [Groupe de Physique Statistique, Département de Physique de la Matière et des Matériaux, Institut Jean Lamour (CNRS UMR 7198), Université de Lorraine Nancy, B.P. 70239, F-54506 Vandoeuvre lès Nancy Cedex (France)

    2013-04-11

    Ageing phenomena far from equilibrium naturally present dynamical scaling and in many situations this may be generalised to local scale-invariance. Generically, the absence of time-translation-invariance implies that each scaling operator is characterised by two independent scaling dimensions. Building on analogies with logarithmic conformal invariance and logarithmic Schrödinger-invariance, this work proposes a logarithmic extension of local scale-invariance, without time-translation-invariance. Carrying this out requires in general to replace both scaling dimensions of each scaling operator by Jordan cells. Co-variant two-point functions are derived for the most simple case of a two-dimensional logarithmic extension. Their form is compared to simulational data for autoresponse functions in several universality classes of non-equilibrium ageing phenomena.

  7. Scale-invariance as the origin of dark radiation?

    Directory of Open Access Journals (Sweden)

    Dmitry Gorbunov

    2014-12-01

    Full Text Available Recent cosmological data favor R2-inflation and some amount of non-standard dark radiation in the Universe. We show that a framework of high energy scale invariance can explain these data. The spontaneous breaking of this symmetry provides gravity with the Planck mass and particle physics with the electroweak scale. We found that the corresponding massless Nambu–Goldstone bosons – dilatons – are produced at reheating by the inflaton decay right at the amount needed to explain primordial abundances of light chemical elements and anisotropy of the cosmic microwave background. Then we extended the discussion on the interplay with Higgs-inflation and on general class of inflationary models where dilatons are allowed and may form the dark radiation. As a result we put a lower limit on the reheating temperature in a general scale invariant model of inflation.

  8. The evolving Planck mass in classically scale-invariant theories

    Science.gov (United States)

    Kannike, K.; Raidal, M.; Spethmann, C.; Veermäe, H.

    2017-04-01

    We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg potential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories. Field oscillations around the fixed point, if not damped, contribute to the dark matter density of the Universe.

  9. The evolving Planck mass in classically scale-invariant theories

    Energy Technology Data Exchange (ETDEWEB)

    Kannike, K.; Raidal, M.; Spethmann, C.; Veermäe, H. [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia)

    2017-04-05

    We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg potential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories. Field oscillations around the fixed point, if not damped, contribute to the dark matter density of the Universe.

  10. One-loop potential with scale invariance and effective operators

    CERN Document Server

    Ghilencea, D M

    2016-01-01

    We study quantum corrections to the scalar potential in classically scale invariant theories, using a manifestly scale invariant regularization. To this purpose, the subtraction scale $\\mu$ of the dimensional regularization is generated after spontaneous scale symmetry breaking, from a subtraction function of the fields, $\\mu(\\phi,\\sigma)$. This function is then uniquely determined from general principles showing that it depends on the dilaton only, with $\\mu(\\sigma)\\sim \\sigma$. The result is a scale invariant one-loop potential $U$ for a higgs field $\\phi$ and dilaton $\\sigma$ that contains an additional {\\it finite} quantum correction $\\Delta U(\\phi,\\sigma)$, beyond the Coleman Weinberg term. $\\Delta U$ contains new, non-polynomial effective operators like $\\phi^6/\\sigma^2$ whose quantum origin is explained. A flat direction is maintained at the quantum level, the model has vanishing vacuum energy and the one-loop correction to the mass of $\\phi$ remains small without tuning (of its self-coupling, etc) bey...

  11. Standard model with spontaneously broken quantum scale invariance

    Science.gov (United States)

    Ghilencea, D. M.; Lalak, Z.; Olszewski, P.

    2017-09-01

    We explore the possibility that scale symmetry is a quantum symmetry that is broken only spontaneously and apply this idea to the standard model. We compute the quantum corrections to the potential of the Higgs field (ϕ ) in the classically scale-invariant version of the standard model (mϕ=0 at tree level) extended by the dilaton (σ ). The tree-level potential of ϕ and σ , dictated by scale invariance, may contain nonpolynomial effective operators, e.g., ϕ6/σ2, ϕ8/σ4, ϕ10/σ6, etc. The one-loop scalar potential is scale invariant, since the loop calculations manifestly preserve the scale symmetry, with the dimensional regularization subtraction scale μ generated spontaneously by the dilaton vacuum expectation value μ ˜⟨σ ⟩. The Callan-Symanzik equation of the potential is verified in the presence of the gauge, Yukawa, and the nonpolynomial operators. The couplings of the nonpolynomial operators have nonzero beta functions that we can actually compute from the quantum potential. At the quantum level, the Higgs mass is protected by spontaneously broken scale symmetry, even though the theory is nonrenormalizable. We compare the one-loop potential to its counterpart computed in the "traditional" dimensional regularization scheme that breaks scale symmetry explicitly (μ =constant) in the presence at the tree level of the nonpolynomial operators.

  12. Higgs mass naturalness and scale invariance in the UV

    CERN Document Server

    Tavares, Gustavo Marques; Skiba, Witold

    2014-01-01

    It has been suggested that electroweak symmetry breaking in the Standard Model may be natural if the Standard Model merges into a conformal field theory (CFT) at short distances. In such a scenario the Higgs mass would be protected from quantum corrections by the scale invariance of the CFT. In order for the Standard Model to merge into a CFT at least one new ultraviolet (UV) scale is required at which the couplings turn over from their usual Standard Model running to the fixed point behavior. We argue that the Higgs mass is sensitive to such a turn-over scale even if there are no associated massive particles and the scale arises purely from dimensional transmutation. We demonstrate this sensitivity to the turnover scale explicitly in toy models. Thus if scale invariance is responsible for Higgs mass naturalness, then the transition to CFT dynamics must occur near the TeV scale with observable consequences at colliders. In addition, the UV fixed point theory in such a scenario must be interacting because loga...

  13. Evaluation of scaling invariance embedded in short time series.

    Directory of Open Access Journals (Sweden)

    Xue Pan

    Full Text Available Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2. Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03 and sharp confidential interval (standard deviation ≤0.05. Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.

  14. Criticality in the scale invariant standard model (squared

    Directory of Open Access Journals (Sweden)

    Robert Foot

    2015-07-01

    Full Text Available We consider first the standard model Lagrangian with μh2 Higgs potential term set to zero. We point out that this classically scale invariant theory potentially exhibits radiative electroweak/scale symmetry breaking with very high vacuum expectation value (VEV for the Higgs field, 〈ϕ〉≈1017–18 GeV. Furthermore, if such a vacuum were realized then cancellation of vacuum energy automatically implies that this nontrivial vacuum is degenerate with the trivial unbroken vacuum. Such a theory would therefore be critical with the Higgs self-coupling and its beta function nearly vanishing at the symmetry breaking minimum, λ(μ=〈ϕ〉≈βλ(μ=〈ϕ〉≈0. A phenomenologically viable model that predicts this criticality property arises if we consider two copies of the standard model Lagrangian, with exact Z2 symmetry swapping each ordinary particle with a partner. The spontaneously broken vacuum can then arise where one sector gains the high scale VEV, while the other gains the electroweak scale VEV. The low scale VEV is perturbed away from zero due to a Higgs portal coupling, or via the usual small Higgs mass terms μh2, which softly break the scale invariance. In either case, the cancellation of vacuum energy requires Mt=(171.53±0.42 GeV, which is close to its measured value of (173.34±0.76 GeV.

  15. Generalized scale invariance, clouds and radiative transfer on multifractal clouds

    Energy Technology Data Exchange (ETDEWEB)

    Lovejoy, S.; Schertzer, D. [Univ. Pierre et Marie Curie, Paris (France)

    1995-09-01

    Recent systematic satellite studies (LANDSAT, AVHRR, METEOSAT) of cloud radiances using (isotropic) energy spectra have displayed excellent scaling from at least about 300m to about 4000km, even for individual cloud pictures. At first sight, this contradicts the observed diversity of cloud morphology, texture and type. The authors argue that the explanation of this apparent paradox is that the differences are due to anisotropy, e.g. differential stratification and rotation. A general framework for anisotropic scaling expressed in terms of isotropic self-similar scaling and fractals and multifractals is needed. Schertzer and Lovejoy have proposed Generalized Scale Invariance (GSI) in response to this need. In GSI, the statistics of the large and small scales of system can be related to each other by a scale changing operator T{sub {lambda}} which depends only on the scale ratio {lambda}{sub i} there is no characteristic size. 3 refs., 1 fig.

  16. Inertial Spontaneous Symmetry Breaking and Quantum Scale Invariance

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Pedro G. [Oxford U.; Hill, Christopher T. [Fermilab; Ross, Graham G. [Oxford U., Theor. Phys.

    2018-01-23

    Weyl invariant theories of scalars and gravity can generate all mass scales spontaneously, initiated by a dynamical process of "inertial spontaneous symmetry breaking" that does not involve a potential. This is dictated by the structure of the Weyl current, $K_\\mu$, and a cosmological phase during which the universe expands and the Einstein-Hilbert effective action is formed. Maintaining exact Weyl invariance in the renormalised quantum theory is straightforward when renormalisation conditions are referred back to the VEV's of fields in the action of the theory, which implies a conserved Weyl current. We do not require scale invariant regulators. We illustrate the computation of a Weyl invariant Coleman-Weinberg potential.

  17. Weyl current, scale-invariant inflation, and Planck scale generation

    Science.gov (United States)

    Ferreira, Pedro G.; Hill, Christopher T.; Ross, Graham G.

    2017-02-01

    Scalar fields, ϕi, can be coupled nonminimally to curvature and satisfy the general criteria: (i) the theory has no mass input parameters, including MP=0 ; (ii) the ϕi have arbitrary values and gradients, but undergo a general expansion and relaxation to constant values that satisfy a nontrivial constraint, K (ϕi)=constant; (iii) this constraint breaks scale symmetry spontaneously, and the Planck mass is dynamically generated; (iv) there can be adequate inflation associated with slow roll in a scale-invariant potential subject to the constraint; (v) the final vacuum can have a small to vanishing cosmological constant; (vi) large hierarchies in vacuum expectation values can naturally form; (vii) there is a harmless dilaton which naturally eludes the usual constraints on massless scalars. These models are governed by a global Weyl scale symmetry and its conserved current, Kμ. At the quantum level the Weyl scale symmetry can be maintained by an invariant specification of renormalized quantities.

  18. Scale-invariant gauge theories of gravity: theoretical foundations

    CERN Document Server

    Lasenby, Anthony

    2015-01-01

    We consider the construction of gauge theories of gravity, focussing in particular on the extension of local Poincar\\'e invariance to include invariance under local changes of scale. We work exclusively in terms of finite transformations, which allow for a more transparent interpretation of such theories in terms of gauge fields in Minkowski spacetime. Our approach therefore differs from the usual geometrical description of locally scale-invariant Poincar\\'e gauge theory (PGT) and Weyl gauge theory (WGT) in terms of Riemann--Cartan and Weyl--Cartan spacetimes, respectively. In particular, we reconsider the interpretation of the Einstein gauge and also the equations of motion of matter fields and test particles in these theories. Inspired by the observation that the PGT and WGT matter actions for the Dirac field and electromagnetic field have more general invariance properties than those imposed by construction, we go on to present a novel alternative to WGT by considering an `extended' form for the transforma...

  19. Scale Invariance in Lateral Head Scans During Spatial Exploration

    Science.gov (United States)

    Yadav, Chetan K.; Doreswamy, Yoganarasimha

    2017-04-01

    Universality connects various natural phenomena through physical principles governing their dynamics, and has provided broadly accepted answers to many complex questions, including information processing in neuronal systems. However, its significance in behavioral systems is still elusive. Lateral head scanning (LHS) behavior in rodents might contribute to spatial navigation by actively managing (optimizing) the available sensory information. Our findings of scale invariant distributions in LHS lifetimes, interevent intervals and event magnitudes, provide evidence for the first time that the optimization takes place at a critical point in LHS dynamics. We propose that the LHS behavior is responsible for preprocessing of the spatial information content, critical for subsequent foolproof encoding by the respective downstream neural networks.

  20. Strain estimation in elastography using scale-invariant keypoints tracking.

    Science.gov (United States)

    Xiao, Yang; Shen, Yang; Niu, Lili; Ling, Tao; Wang, Congzhi; Zheng, Hairong

    2013-04-01

    This paper proposes a novel strain estimator using scale-invariant keypoints tracking (SIKT) for ultrasonic elastography. This method is based on tracking stable features between the pre- and post-compression A-lines to obtain tissue displacement estimates. The proposed features, termed scaleinvariant keypoints, are independent of signal scale change according to the scale-space theory, and therefore can preserve their patterns while undergoing a substantial range of compression. The keypoints can be produced by searching for repeatedly assigned points across all possible scales constructed from the convolution with a one-parameter family of Gaussian kernels. Because of the distinctive property of the keypoints, the SIKT method could provide a reliable tracking over changing strains, an effective resistance to anamorphic noise and sonographic noise, and a significant reduction in processing time. Simulation and experimental results show that the SIKT method is able to provide better sensitivity, a larger dynamic range of the strain filter, higher resolution, and a better contrast- to-noise ratio (CNRe) than the conventional methods. Moreover, the computation time of the SIKT method is approximately 5 times that of the cross-correlation techniques.

  1. Scale invariant for one-sided multivariate likelihood ratio tests

    Directory of Open Access Journals (Sweden)

    Samruam Chongcharoen

    2010-07-01

    Full Text Available Suppose 1 2 , ,..., n X X X is a random sample from Np ( ,V distribution. Consider 0 1 2 : ... 0 p H      and1 : 0 for 1, 2,..., i H   i  p , let 1 0 H  H denote the hypothesis that 1 H holds but 0 H does not, and let ~ 0 H denote thehypothesis that 0 H does not hold. Because the likelihood ratio test (LRT of 0 H versus 1 0 H  H is complicated, severalad hoc tests have been proposed. Tang, Gnecco and Geller (1989 proposed an approximate LRT, Follmann (1996 suggestedrejecting 0 H if the usual test of 0 H versus ~ 0 H rejects 0 H with significance level 2 and a weighted sum of the samplemeans is positive, and Chongcharoen, Singh and Wright (2002 modified Follmann’s test to include information about thecorrelation structure in the sum of the sample means. Chongcharoen and Wright (2007, 2006 give versions of the Tang-Gnecco-Geller tests and Follmann-type tests, respectively, with invariance properties. With LRT’s scale invariant desiredproperty, we investigate its powers by using Monte Carlo techniques and compare them with the tests which we recommendin Chongcharoen and Wright (2007, 2006.

  2. Spectral-Spatial Scale Invariant Feature Transform for Hyperspectral Images.

    Science.gov (United States)

    Al-Khafaji, Suhad Lateef; Zhou, Jun; Zia, Ali; Liew, Alan Wee-Chung

    2017-09-04

    Spectral-spatial feature extraction is an important task in hyperspectral image processing. In this paper we propose a novel method to extract distinctive invariant features from hyperspectral images for registration of hyperspectral images with different spectral conditions. Spectral condition means images are captured with different incident lights, viewing angles, or using different hyperspectral cameras. In addition, spectral condition includes images of objects with the same shape but different materials. This method, which is named Spectral-Spatial Scale Invariant Feature Transform (SS-SIFT), explores both spectral and spatial dimensions simultaneously to extract spectral and geometric transformation invariant features. Similar to the classic SIFT algorithm, SS-SIFT consists of keypoint detection and descriptor construction steps. Keypoints are extracted from spectral-spatial scale space and are detected from extrema after 3D difference of Gaussian is applied to the data cube. Two descriptors are proposed for each keypoint by exploring the distribution of spectral-spatial gradient magnitude in its local 3D neighborhood. The effectiveness of the SS-SIFT approach is validated on images collected in different light conditions, different geometric projections, and using two hyperspectral cameras with different spectral wavelength ranges and resolutions. The experimental results show that our method generates robust invariant features for spectral-spatial image matching.

  3. Scale Invariant Gabor Descriptor-based Noncooperative Iris Recognition

    Directory of Open Access Journals (Sweden)

    Zhi Zhou

    2010-01-01

    Full Text Available A new noncooperative iris recognition method is proposed. In this method, the iris features are extracted using a Gabor descriptor. The feature extraction and comparison are scale, deformation, rotation, and contrast-invariant. It works with off-angle and low-resolution iris images. The Gabor wavelet is incorporated with scale-invariant feature transformation (SIFT for feature extraction to better extract the iris features. Both the phase and magnitude of the Gabor wavelet outputs were used in a novel way for local feature point description. Two feature region maps were designed to locally and globally register the feature points and each subregion in the map is locally adjusted to the dilation/contraction/deformation. We also developed a video-based non-cooperative iris recognition system by integrating video-based non-cooperative segmentation, segmentation evaluation, and score fusion units. The proposed method shows good performance for frontal and off-angle iris matching. Video-based recognition methods can improve non-cooperative iris recognition accuracy.

  4. Scale Invariant Gabor Descriptor-Based Noncooperative Iris Recognition

    Directory of Open Access Journals (Sweden)

    Du Yingzi

    2010-01-01

    Full Text Available Abstract A new noncooperative iris recognition method is proposed. In this method, the iris features are extracted using a Gabor descriptor. The feature extraction and comparison are scale, deformation, rotation, and contrast-invariant. It works with off-angle and low-resolution iris images. The Gabor wavelet is incorporated with scale-invariant feature transformation (SIFT for feature extraction to better extract the iris features. Both the phase and magnitude of the Gabor wavelet outputs were used in a novel way for local feature point description. Two feature region maps were designed to locally and globally register the feature points and each subregion in the map is locally adjusted to the dilation/contraction/deformation. We also developed a video-based non-cooperative iris recognition system by integrating video-based non-cooperative segmentation, segmentation evaluation, and score fusion units. The proposed method shows good performance for frontal and off-angle iris matching. Video-based recognition methods can improve non-cooperative iris recognition accuracy.

  5. Classical scale invariance in the inert doublet model

    Energy Technology Data Exchange (ETDEWEB)

    Plascencia, Alexis D. [Institute for Particle Physics Phenomenology, Department of Physics,Durham University, Durham DH1 3LE (United Kingdom)

    2015-09-04

    The inert doublet model (IDM) is a minimal extension of the Standard Model (SM) that can account for the dark matter in the universe. Naturalness arguments motivate us to study whether the model can be embedded into a theory with dynamically generated scales. In this work we study a classically scale invariant version of the IDM with a minimal hidden sector, which has a U(1){sub CW} gauge symmetry and a complex scalar Φ. The mass scale is generated in the hidden sector via the Coleman-Weinberg (CW) mechanism and communicated to the two Higgs doublets via portal couplings. Since the CW scalar remains light, acquires a vacuum expectation value and mixes with the SM Higgs boson, the phenomenology of this construction can be modified with respect to the traditional IDM. We analyze the impact of adding this CW scalar and the Z{sup ′} gauge boson on the calculation of the dark matter relic density and on the spin-independent nucleon cross section for direct detection experiments. Finally, by studying the RG equations we find regions in parameter space which remain valid all the way up to the Planck scale.

  6. Dark matter and leptogenesis linked by classical scale invariance

    Science.gov (United States)

    Khoze, Valentin V.; Plascencia, Alexis D.

    2016-11-01

    In this work we study a classically scale invariant extension of the Standard Model that can explain simultaneously dark matter and the baryon asymmetry in the universe. In our set-up we introduce a dark sector, namely a non-Abelian SU(2) hidden sector coupled to the SM via the Higgs portal, and a singlet sector responsible for generating Majorana masses for three right-handed sterile neutrinos. The gauge bosons of the dark sector are mass-degenerate and stable, and this makes them suitable as dark matter candidates. Our model also accounts for the matter-anti-matter asymmetry. The lepton flavour asymmetry is produced during CP-violating oscillations of the GeV-scale right-handed neutrinos, and converted to the baryon asymmetry by the electroweak sphalerons. All the characteristic scales in the model: the electro-weak, dark matter and the leptogenesis/neutrino mass scales, are generated radiatively, have a common origin and related to each other via scalar field couplings in perturbation theory.

  7. Rigidity-induced scale invariance in polymer ejection from capsid

    Science.gov (United States)

    Linna, R. P.; Suhonen, P. M.; Piili, J.

    2017-11-01

    While the dynamics of a fully flexible polymer ejecting a capsid through a nanopore has been extensively studied, the ejection dynamics of semiflexible polymers has not been properly characterized. Here we report results from simulations of ejection dynamics of semiflexible polymers ejecting from spherical capsids. Ejections start from strongly confined polymer conformations of constant initial monomer density. We find that, unlike for fully flexible polymers, for semiflexible polymers the force measured at the pore does not show a direct relation to the instantaneous ejection velocity. The cumulative waiting time t (s ) , that is, the time at which a monomer s exits the capsid the last time, shows a clear change when increasing the polymer rigidity κ . The major part of an ejecting polymer is driven out of the capsid by internal pressure. At the final stage the polymer escapes the capsid by diffusion. For the driven part there is a crossover from essentially exponential growth of t with s of the fully flexible polymers to a scale-invariant form. In addition, a clear dependence of t on polymer length N0 was found. These findings combined give the dependence t (s ) ∝N00.55s1.33 for the strongly rigid polymers. This crossover in dynamics where κ acts as a control parameter is reminiscent of a phase transition. This analogy is further enhanced by our finding a perfect data collapse of t for polymers of different N0 and any constant κ .

  8. Higgs naturalness and dark matter stability by scale invariance

    Directory of Open Access Journals (Sweden)

    Jun Guo

    2015-09-01

    Full Text Available Extending the spacetime symmetries of standard model (SM by scale invariance (SI may address the Higgs naturalness problem. In this article we attempt to embed accidental dark matter (DM into SISM, requiring that the symmetry protecting DM stability is accidental due to the model structure rather than imposed by hand. In this framework, if the light SM-like Higgs boson is the pseudo Goldstone boson of SI spontaneously breaking, we can even pine down the model, two-Higgs-doublets plus a real singlet: The singlet is the DM candidate and the extra Higgs doublet triggers electroweak symmetry breaking via the Coleman–Weinberg mechanism; Moreover, it dominates DM dynamics. We study spontaneously breaking of SI using the Gillard–Weinberg approach and find that the second doublet should acquire vacuum expectation value near the weak scale. Moreover, its components should acquire masses around 380 GeV except for a light CP-odd Higgs boson. Based on these features, we explore viable ways to achieve the correct relic density of DM, facing stringent constraints from direct detections of DM. For instance, DM annihilates into bb¯ near the SM-like Higgs boson pole, or into a pair of CP-odd Higgs boson with mass above that pole.

  9. Scale-invariant structure of energy fluctuations in real earthquakes

    Science.gov (United States)

    Wang, Ping; Chang, Zhe; Wang, Huanyu; Lu, Hong

    2017-11-01

    Earthquakes are obviously complex phenomena associated with complicated spatiotemporal correlations, and they are generally characterized by two power laws: the Gutenberg-Richter (GR) and the Omori-Utsu laws. However, an important challenge has been to explain two apparently contrasting features: the GR and Omori-Utsu laws are scale-invariant and unaffected by energy or time scales, whereas earthquakes occasionally exhibit a characteristic energy or time scale, such as with asperity events. In this paper, three high-quality datasets on earthquakes were used to calculate the earthquake energy fluctuations at various spatiotemporal scales, and the results reveal the correlations between seismic events regardless of their critical or characteristic features. The probability density functions (PDFs) of the fluctuations exhibit evidence of another scaling that behaves as a q-Gaussian rather than random process. The scaling behaviors are observed for scales spanning three orders of magnitude. Considering the spatial heterogeneities in a real earthquake fault, we propose an inhomogeneous Olami-Feder-Christensen (OFC) model to describe the statistical properties of real earthquakes. The numerical simulations show that the inhomogeneous OFC model shares the same statistical properties with real earthquakes.

  10. epsilon -meson coupling constants and scale invariance breaking

    CERN Document Server

    Petersen, J L

    1972-01-01

    A general method for obtaining ratios of coupling constants (defined by pole residues) in a way which is completely free of resonance /background separation troubles is devised and applied to the epsilon -meson. Huge discrepancies between previous determinations are shown to arise (i) from inherent ambiguities in the methods used, (ii) from lack of knowledge about the epsilon -pole position and (iii) from the well-known up-down ambiguity in the isospin-0 s-wave pi pi phase shift delta /sub 0//sup o/. Taking as input pi N phase shifts, available information on delta /sup 0//sub 0/ and including all possible uncertainties, the authors find for down-up or up-up delta /sup 0//sub 0/: g/sub epsilon NN//g/sub epsilon pi pi /=(6+or-3) mu /sup -1/, and for down-down or up-up delta /sup 0//sub 0/: g/sub epsilon NN//g/sub epsilon pi pi /=(1.8+or-0.5) mu /sup -1/ The precise validity of the scale invariance breaking prediction (g/sub epsilon NN//g/sub epsilon pi pi /). m/sup 2//sub epsilon //2M=1 is fulfilled in some th...

  11. Dark matter and leptogenesis linked by classical scale invariance

    Energy Technology Data Exchange (ETDEWEB)

    Khoze, Valentin V.; Plascencia, Alexis D. [Institute for Particle Physics Phenomenology, Department of Physics, Durham University,South Road, Durham, DH1 3LE United Kingdom (United Kingdom)

    2016-11-07

    In this work we study a classically scale invariant extension of the Standard Model that can explain simultaneously dark matter and the baryon asymmetry in the universe. In our set-up we introduce a dark sector, namely a non-Abelian SU(2) hidden sector coupled to the SM via the Higgs portal, and a singlet sector responsible for generating Majorana masses for three right-handed sterile neutrinos. The gauge bosons of the dark sector are mass-degenerate and stable, and this makes them suitable as dark matter candidates. Our model also accounts for the matter-anti-matter asymmetry. The lepton flavour asymmetry is produced during CP-violating oscillations of the GeV-scale right-handed neutrinos, and converted to the baryon asymmetry by the electroweak sphalerons. All the characteristic scales in the model: the electro-weak, dark matter and the leptogenesis/neutrino mass scales, are generated radiatively, have a common origin and related to each other via scalar field couplings in perturbation theory.

  12. Scale invariance of a diode-like tunnel junction

    Science.gov (United States)

    Cabrera, Hugo; Zanin, Danilo Andrea; de Pietro, Lorenzo Giuseppe; Michaels, Thomas; Thalmann, Peter; Ramsperger, Urs; Vindigni, Alessandro; Pescia, Danilo

    2013-03-01

    In Near Field-Emission SEM (NFESEM), electrostatic considerations favor a diode-like tunnel junction consisting of an atomic-sized source mounted at the apex of a thin wire placed at nanometric distances from a collector. The quantum mechanical tunnel process, instead, can provide a barrier toward miniaturization. In the first place, it deteriorates the generation of electrons by introducing non-linearities within the classically forbidden zone that exponentially increase with decreasing sizes. In addition, in the direct tunnelling regime, i.e. when the distance between emitter and collector d approaches the subnanometer range, a characteristic length appears, making the cross-over from the (almost) scale-invariant electric-field assisted regime to the essentially different STM-regime. We have observed that the experimental data relating the current I to the two experimental variables V (bias voltage between tip and collector) and d can be made (almost) collapse onto a ``scaling curve'' relating I to the single variable V .d-λ , λ being some exponent that depends solely on the geometry of the junction. This scaling property can be used to highlight non-linear aspects of the quantum mechanical tunnelling process.

  13. Scale invariant energy smoothing estimates for the Schr\\"odinger Equation with small Magnetic Potential

    OpenAIRE

    Georgiev, Vladimir; Tarulli, Mirko

    2005-01-01

    We consider some scale invariant generalizations of the smoothing estimates for the free Schr\\"odnger equation obtained by Kenig, Ponce and Vega. Applying these estimates and using appropriate commutator estimates, we obtain similar scale invariant smoothing estimates for perturbed Schr\\"odnger equation with small magnetic potential.

  14. Scale invariance implies conformal invariance for the three-dimensional Ising model.

    Science.gov (United States)

    Delamotte, Bertrand; Tissier, Matthieu; Wschebor, Nicolás

    2016-01-01

    Using the Wilson renormalization group, we show that if no integrated vector operator of scaling dimension -1 exists, then scale invariance implies conformal invariance. By using the Lebowitz inequalities, we prove that this necessary condition is fulfilled in all dimensions for the Ising universality class. This shows, in particular, that scale invariance implies conformal invariance for the three-dimensional Ising model.

  15. Time-scale invariances in preseismic electromagnetic radiation, magnetization and damage evolution of rocks

    Directory of Open Access Journals (Sweden)

    Y. Kawada

    2007-10-01

    Full Text Available We investigate the time-scale invariant changes in electromagnetic and mechanical energy releases prior to a rock failure or a large earthquake. The energy release processes are caused by damage evolutions such as crack propagation, motion of charged dislocation, area-enlargement of sheared asperities and repetitive creep-rate changes. Damage mechanics can be used to represent the time-scale invariant evolutions of both brittle and plastic damages. Irreversible thermodynamics applied to the damage mechanics reveals that the damage evolution produces the variations in charge, dipole and electromagnetic signals in addition to mechanical energy release, and yields the time-scale invariant patterns of Benioff electromagnetic radiation and cumulative Benioff strain-release. The irreversible thermodynamic framework of damage mechanics is also applicable to the seismo-magnetic effect, and the time-scale invariance is recognized in the remanent magnetization change associated with damage evolution prior to a rock failure.

  16. Two-measure approach to breaking scale-invariance in a standard-model extension

    Directory of Open Access Journals (Sweden)

    Eduardo I. Guendelman

    2017-02-01

    Full Text Available We introduce Weyl's scale-invariance as an additional global symmetry in the standard model of electroweak interactions. A natural consequence is the introduction of general relativity coupled to scalar fields à la Dirac, that includes the Higgs doublet and a singlet σ-field required for implementing global scale-invariance. We introduce a mechanism for ‘spontaneous breaking’ of scale-invariance by introducing a coupling of the σ-field to a new metric-independent measure Φ defined in terms of four scalars ϕi (i = 1, 2, 3, 4. Global scale-invariance is regained by combining it with internal diffeomorphism of these four scalars. We show that once the global scale-invariance is broken, the phenomenon (a generates Newton's gravitational constant GN and (b triggers spontaneous symmetry breaking in the normal manner resulting in masses for the conventional fermions and bosons. In the absence of fine-tuning the scale at which the scale-symmetry breaks can be of order Planck mass. If right-handed neutrinos are also introduced, their absence at present energy scales is attributed to their mass terms tied to the scale where scale-invariance breaks.

  17. Lack of exercise leads to significant and reversible loss of scale invariance in both aged and young mice

    Science.gov (United States)

    Gu, Changgui; Coomans, Claudia P.; Hu, Kun; Scheer, Frank A. J. L.; Stanley, H. Eugene; Meijer, Johanna H.

    2015-01-01

    In healthy humans and other animals, behavioral activity exhibits scale invariance over multiple timescales from minutes to 24 h, whereas in aging or diseased conditions, scale invariance is usually reduced significantly. Accordingly, scale invariance can be a potential marker for health. Given compelling indications that exercise is beneficial for mental and physical health, we tested to what extent a lack of exercise affects scale invariance in young and aged animals. We studied six or more mice in each of four age groups (0.5, 1, 1.5, and 2 y) and observed an age-related deterioration of scale invariance in activity fluctuations. We found that limiting the amount of exercise, by removing the running wheels, leads to loss of scale-invariant properties in all age groups. Remarkably, in both young and old animals a lack of exercise reduced the scale invariance in activity fluctuations to the same level. We next showed that scale invariance can be restored by returning the running wheels. Exercise during the active period also improved scale invariance during the resting period, suggesting that activity during the active phase may also be beneficial for the resting phase. Finally, our data showed that exercise had a stronger influence on scale invariance than the effect of age. The data suggest that exercise is beneficial as revealed by scale-invariant parameters and that, even in young animals, a lack of exercise leads to strong deterioration in these parameters. PMID:25675516

  18. Characteristic Changes of Scale Invariance of Seismicity Prior to Large Earthquakes: A Constructive Review

    Directory of Open Access Journals (Sweden)

    Qiang Li

    2013-01-01

    Full Text Available Recently, research on the characteristic changes of scale invariance of seismicity before large earthquakes has received considerable attention. However, in some circumstances, it is not easy to obtain these characteristic changes because the features of seismicity in different regions are various. In this paper, we firstly introduced some important research developments of the characteristic changes of scale invariance of seismicity before large earthquakes, which are of particular importance to the researchers in earthquake forecasting and seismic activity. We secondly discussed the strengths and weaknesses of different scale invariance methods such as the local scaling property, the multifractal spectrum, the Hurst exponent analysis, and the correlation dimension. We finally came up with a constructive suggestion for the research strategy in this topic. Our suggestion is that when people try to obtain the precursory information before large earthquakes or to study the fractal property of seismicity by means of the previous scale invariance methods, the strengths and weaknesses of these methods have to be taken into consideration for the purpose of increasing research efficiency. If they do not consider the strengths and weaknesses of these methods, the efficiency of their research might greatly decrease.

  19. Electronic cleansing for computed tomography (CT) colonography using a scale-invariant three-material model

    NARCIS (Netherlands)

    Serlie, Iwo W. O.; Vos, Frans M.; Truyen, Roel; Post, Frits H.; Stoker, Jaap; van Vliet, Lucas J.

    2010-01-01

    A well-known reading pitfall in computed tomography (CT) colonography is posed by artifacts at T-junctions, i.e., locations where air-fluid levels interface with the colon wall. This paper presents a scale-invariant method to determine material fractions in voxels near such T-junctions. The proposed

  20. Definition of fractal topography to essential understanding of scale-invariance

    Science.gov (United States)

    Jin, Yi; Wu, Ying; Li, Hui; Zhao, Mengyu; Pan, Jienan

    2017-01-01

    Fractal behavior is scale-invariant and widely characterized by fractal dimension. However, the cor-respondence between them is that fractal behavior uniquely determines a fractal dimension while a fractal dimension can be related to many possible fractal behaviors. Therefore, fractal behavior is independent of the fractal generator and its geometries, spatial pattern, and statistical properties in addition to scale. To mathematically describe fractal behavior, we propose a novel concept of fractal topography defined by two scale-invariant parameters, scaling lacunarity (P) and scaling coverage (F). The scaling lacunarity is defined as the scale ratio between two successive fractal generators, whereas the scaling coverage is defined as the number ratio between them. Consequently, a strictly scale-invariant definition for self-similar fractals can be derived as D = log F /log P. To reflect the direction-dependence of fractal behaviors, we introduce another parameter Hxy, a general Hurst exponent, which is analytically expressed by Hxy = log Px/log Py where Px and Py are the scaling lacunarities in the x and y directions, respectively. Thus, a unified definition of fractal dimension is proposed for arbitrary self-similar and self-affine fractals by averaging the fractal dimensions of all directions in a d-dimensional space, which . Our definitions provide a theoretical, mechanistic basis for understanding the essentials of the scale-invariant property that reduces the complexity of modeling fractals. PMID:28436450

  1. Discrete Scale Invariance in the Cascade Heart Rate Variability Of Healthy Humans

    OpenAIRE

    Lin, Der Chyan

    2004-01-01

    Evidence of discrete scale invariance (DSI) in daytime healthy heart rate variability (HRV) is presented based on the log-periodic power law scaling of the heart beat interval increment. Our analysis suggests multiple DSI groups and a dynamic cascading process. A cascade model is presented to simulate such a property.

  2. Exact scale-invariant background of gravitational waves from cosmic defects.

    Science.gov (United States)

    Figueroa, Daniel G; Hindmarsh, Mark; Urrestilla, Jon

    2013-03-08

    We demonstrate that any scaling source in the radiation era produces a background of gravitational waves with an exact scale-invariant power spectrum. Cosmic defects, created after a phase transition in the early universe, are such a scaling source. We emphasize that the result is independent of the topology of the cosmic defects, the order of phase transition, and the nature of the symmetry broken, global or gauged. As an example, using large-scale numerical simulations, we calculate the scale-invariant gravitational wave power spectrum generated by the dynamics of a global O(N) scalar theory. The result approaches the large N theoretical prediction as N(-2), albeit with a large coefficient. The signal from global cosmic strings is O(100) times larger than the large N prediction.

  3. Inflation and reheating in scale-invariant scalar-tensor gravity

    CERN Document Server

    Tambalo, Giovanni

    2016-01-01

    We consider the scale-invariant inflationary model studied in [1]. The Lagrangian includes all the scale-invariant operators that can be built with combinations of $R, R^{2}$ and one scalar field. The equations of motion show that the symmetry is spontaneously broken after an arbitrarily long inflationary period and a fundamental mass scale is generated. Upon symmetry breaking, and in the Jordan frame, both Hubble function and the scalar field undergo damped oscillations that can eventually amplify Standard Model fields and reheat the Universe. In the present work, we study in detail inflation and the reheating mechanism of this model in the Einstein frame and we compare some of the results with the latest observational data.

  4. A new dynamics of electroweak symmetry breaking with classically scale invariance

    Energy Technology Data Exchange (ETDEWEB)

    Haba, Naoyuki [Graduate School of Science and Engineering, Shimane University, Matsue 690-8504 (Japan); Ishida, Hiroyuki, E-mail: ishida@riko.shimane-u.ac.jp [Graduate School of Science and Engineering, Shimane University, Matsue 690-8504 (Japan); Kitazawa, Noriaki [Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397 (Japan); Yamaguchi, Yuya [Graduate School of Science and Engineering, Shimane University, Matsue 690-8504 (Japan); Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2016-04-10

    We propose a new dynamics of the electroweak symmetry breaking in a classically scale invariant version of the standard model. The scale invariance is broken by the condensations of additional fermions under a strong coupling dynamics. The electroweak symmetry breaking is triggered by negative mass squared of the elementary Higgs doublet, which is dynamically generated through the bosonic seesaw mechanism. We introduce a real pseudo-scalar singlet field interacting with additional fermions and Higgs doublet in order to avoid massless Nambu–Goldstone bosons from the chiral symmetry breaking in a strong coupling sector. We investigate the mass spectra and decay rates of these pseudo-Nambu–Goldstone bosons, and show they can decay fast enough without cosmological problems. We further show that our model can make the electroweak vacuum stable.

  5. A new dynamics of electroweak symmetry breaking with classically scale invariance

    Directory of Open Access Journals (Sweden)

    Naoyuki Haba

    2016-04-01

    Full Text Available We propose a new dynamics of the electroweak symmetry breaking in a classically scale invariant version of the standard model. The scale invariance is broken by the condensations of additional fermions under a strong coupling dynamics. The electroweak symmetry breaking is triggered by negative mass squared of the elementary Higgs doublet, which is dynamically generated through the bosonic seesaw mechanism. We introduce a real pseudo-scalar singlet field interacting with additional fermions and Higgs doublet in order to avoid massless Nambu–Goldstone bosons from the chiral symmetry breaking in a strong coupling sector. We investigate the mass spectra and decay rates of these pseudo-Nambu–Goldstone bosons, and show they can decay fast enough without cosmological problems. We further show that our model can make the electroweak vacuum stable.

  6. Direct detection of singlet dark matter in classically scale-invariant standard model

    Directory of Open Access Journals (Sweden)

    Kazuhiro Endo

    2015-10-01

    Full Text Available Classical scale invariance is one of the possible solutions to explain the origin of the electroweak scale. The simplest extension is the classically scale-invariant standard model augmented by a multiplet of gauge singlet real scalar. In the previous study it was shown that the properties of the Higgs potential deviate substantially, which can be observed in the International Linear Collider. On the other hand, since the multiplet does not acquire vacuum expectation value, the singlet components are stable and can be dark matter. In this letter we study the detectability of the real singlet scalar bosons in the experiment of the direct detection of dark matter. It is shown that a part of this model has already been excluded and the rest of the parameter space is within the reach of the future experiment.

  7. Searching and fixating: Scale-invariance vs. characteristic timescales in attentional processes

    Science.gov (United States)

    Shinde, D. P.; Mehta, Anita; Mishra, R. K.

    2011-06-01

    In an experiment involving semantic search, the visual movements of sample populations subjected to visual and aural input were tracked in a taskless paradigm. The probability distributions of saccades and fixations were obtained and analyzed. Scale-invariance was observed in the saccadic distributions, while the fixation distributions revealed the presence of a characteristic (attentional) time scale for literate subjects. A detailed analysis of our results suggests that saccadic eye motions are an example of Levy, rather than Brownian, dynamics.

  8. On scale invariant features and sequential Monte Carlo sampling for bronchoscope tracking

    Science.gov (United States)

    Luó, Xióngbiao; Feuerstein, Marco; Kitasaka, Takayuki; Natori, Hiroshi; Takabatake, Hirotsugu; Hasegawa, Yoshinori; Mori, Kensaku

    2011-03-01

    This paper presents an improved bronchoscope tracking method for bronchoscopic navigation using scale invariant features and sequential Monte Carlo sampling. Although image-based methods are widely discussed in the community of bronchoscope tracking, they are still limited to characteristic information such as bronchial bifurcations or folds and cannot automatically resume the tracking procedure after failures, which result usually from problematic bronchoscopic video frames or airway deformation. To overcome these problems, we propose a new approach that integrates scale invariant feature-based camera motion estimation into sequential Monte Carlo sampling to achieve an accurate and robust tracking. In our approach, sequential Monte Carlo sampling is employed to recursively estimate the posterior probability densities of the bronchoscope camera motion parameters according to the observation model based on scale invariant feature-based camera motion recovery. We evaluate our proposed method on patient datasets. Experimental results illustrate that our proposed method can track a bronchoscope more accurate and robust than current state-of-the-art method, particularly increasing the tracking performance by 38.7% without using an additional position sensor.

  9. Two-loop scale-invariant scalar potential and quantum effective operators

    Energy Technology Data Exchange (ETDEWEB)

    Ghilencea, D.M. [National Institute of Physics and Nuclear Engineering (IFIN-HH), Theoretical Physics Department, Bucharest (Romania); CERN, Theory Division, Geneva 23 (Switzerland); Lalak, Z.; Olszewski, P. [University of Warsaw, Faculty of Physics, Institute of Theoretical Physics, Warsaw (Poland)

    2016-12-15

    Spontaneous breaking of quantum scale invariance may provide a solution to the hierarchy and cosmological constant problems. In a scale-invariant regularization, we compute the two-loop potential of a Higgs-like scalar φ in theories in which scale symmetry is broken only spontaneously by the dilaton (σ). Its VEV left angle σ right angle generates the DR subtraction scale (μ ∝ left angle σ right angle), which avoids the explicit scale symmetry breaking by traditional regularizations (where μ = fixed scale). The two-loop potential contains effective operators of non-polynomial nature as well as new corrections, beyond those obtained with explicit breaking (μ = fixed scale). These operators have the form φ{sup 6}/σ{sup 2}, φ{sup 8}/σ{sup 4}, etc., which generate an infinite series of higher dimensional polynomial operators upon expansion about left angle σ right angle >> left angle φ right angle, where such hierarchy is arranged by one initial, classical tuning. These operators emerge at the quantum level from evanescent interactions (∝ ε) between σ and φ that vanish in d = 4 but are required by classical scale invariance in d = 4 - 2ε. The Callan-Symanzik equation of the two-loop potential is respected and the two-loop beta functions of the couplings differ from those of the same theory regularized with μ = fixed scale. Therefore the running of the couplings enables one to distinguish between spontaneous and explicit scale symmetry breaking. (orig.)

  10. Dimensional reduction in momentum space and scale-invariant cosmological fluctuations

    Science.gov (United States)

    Amelino-Camelia, Giovanni; Arzano, Michele; Gubitosi, Giulia; Magueijo, João

    2013-11-01

    We adopt a framework where quantum gravity’s dynamical dimensional reduction of spacetime at short distances is described in terms of modified dispersion relations. We observe that by subjecting such models to a momentum-space diffeomorphism one obtains a “dual picture” with unmodified dispersion relations, but a modified measure of integration over momenta. We then find that the UV Hausdorff dimension of momentum space which can be inferred from this modified integration measure coincides with the short-distance spectral dimension of spacetime. This result sheds light into why scale-invariant fluctuations are obtained if the original model for two UV spectral dimensions is combined with Einstein gravity. By studying the properties of the inner product we derive the result that it is only in two energy-momentum dimensions that microphysical vacuum fluctuations are scale invariant. This is true ignoring gravity, but then we find that if Einstein gravity is postulated in the original frame, in the dual picture gravity switches off, since all matter becomes conformally coupled. We argue that our findings imply that the following concepts are closely connected: scale invariance of vacuum quantum fluctuations, conformal invariance of the gravitational coupling, UV reduction to spectral dimension two in position space, and UV reduction to Hausdorff dimension two in energy-momentum space.

  11. Dynamical and scale invariance of charged particles slipping on a rough surface with periodic excitation

    Science.gov (United States)

    Zhang, Hao; Luo, Pengcheng; Ding, Huifang

    2017-07-01

    This letter deals with the dynamical and scaling invariance of charged particles slipping on a rough surface with periodic excitation. A variant of the Fermi-Ulam model (FUM) is proposed to describe the transport behavior of the particles when the electric field force Fe is smaller or larger than the friction force Ff, i.e., A 0. For these two cases, the stability of fixed points is analyzed with the help of the eigenvalue analysis method, and further the invariant manifolds are constructed to investigate the dynamical invariance such as energy diffusion for some initial conditions in the case A > 0 and decay process in the case A law of the statistical behavior. It follows that both the FA phenomenon for A > 0 and the velocity decay process for A < 0 satisfy scaling invariance with respect to the nondimensional acceleration A. Besides, for A < 0, the transient number nx is proposed to evaluate the speed of the velocity decay process. More importantly, nx is found to possess the attribute of scaling invariance with respect to both the initial velocity V0 and the nondimensional acceleration A. These results are very useful for the in-depth understanding of the energy transport properties of charged particle systems.

  12. Asymptotic topology

    Energy Technology Data Exchange (ETDEWEB)

    Dranishnikov, A N [Steklov Mathematical Institute, Russian Academy of Sciences (Russian Federation)

    2000-12-31

    In this paper we study the similarity between local topology and its global analogue, so-called asymptotic topology. In the asymptotic case, the notions of dimension, cohomological dimension, and absolute extensor are introduced and some basic facts about them are proved. The Higson corona functor establishing a connection between macro- and micro-topology is considered. A relationship between problems of general asymptotic topology and the Novikov conjecture on higher signatures is discussed. Some new results concerning the Novikov conjecture and other related conjectures are presented.

  13. Shift, rotation and scale invariant optical information authentication with binary digital holography

    Science.gov (United States)

    Jiao, Shuming; Zhou, Changyuan; Zou, Wenbin; Li, Xia

    2017-12-01

    An optical information authentication system using binary holography is proposed recently, with high security, flexibility and reduced cipher-text size. Despite the success, we point out one limitation of this system that it cannot well verify scaled and rotated versions of correct images and simply regard them as wrong images. In fact, this limitation generally exists in many other optical authentication systems. In this paper, a preprocessing method based Fourier transform and log polar transform is employed to allow the optical authentication systems shift, rotation and scale invariant. Numerical simulation results demonstrate that our proposed scheme significantly outperforms the existing method.

  14. Scale invariance of shallow seismicity and the prognostic signatures of earthquakes

    Science.gov (United States)

    Stakhovsky, I. R.

    2017-08-01

    The results of seismic investigations based on methods of the theory of nonequilibrium processes and self-similarity theory have shown that a shallow earthquake can be treated as a critical transition that occurs during the evolution of a non-equilibrium seismogenic system and is preceded by phenomena such as the scale invariance of spatiotemporal seismic structures. The implication is that seismicity can be interpreted as a purely multifractal process. Modeling the focal domain as a fractal cluster of microcracks allows formulating the prognostic signatures of earthquakes actually observed in seismic data. Seismic scaling permits monitoring the state of a seismogenic system as it approaches instability.

  15. Scale-invariance underlying the logistic equation and its social applications

    Energy Technology Data Exchange (ETDEWEB)

    Hernando, A., E-mail: alberto.hernando@irsamc.ups-tlse.fr [Laboratoire Collisions, Agrégats, Réactivité, IRSAMC, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 09 (France); Plastino, A., E-mail: plastino@fisica.unlp.edu.ar [National University La Plata, IFLP-CCT-CONICET, C.C. 727, 1900 La Plata (Argentina); Universitat de les Illes Balears and IFISC-CSIC, 07122 Palma de Mallorca (Spain)

    2013-01-03

    On the basis of dynamical principles we i) advance a derivation of the Logistic Equation (LE), widely employed (among multiple applications) in the simulation of population growth, and ii) demonstrate that scale-invariance and a mean-value constraint are sufficient and necessary conditions for obtaining it. We also generalize the LE to multi-component systems and show that the above dynamical mechanisms underlie a large number of scale-free processes. Examples are presented regarding city-populations, diffusion in complex networks, and popularity of technological products, all of them obeying the multi-component logistic equation in an either stochastic or deterministic way.

  16. The proton mass and scale-invariant hidden local symmetry for compressed baryonic matter

    Science.gov (United States)

    Rho, Mannque

    2017-12-01

    I discuss how to access dense baryonic matter of compact stars by combining hidden local symmetry (HLS) of light-quark vector mesons with spontaneously broken scale invariance of a (pseudo) Nambu-Goldstone boson, dilaton, in a description that parallels the approach to dilatonic Higgs. Some of the surprising observations are that the bulk of proton mass is not Nambu-Goldstonian, parity doubling emerges at high density and the EoS of baryonic matter can be soft enough for heavy-ion processes at low density and stiff enough at high density for ˜ 2 solar mass neutron stars.

  17. Exact Scale Invariance in Mixing of Binary Candidates in Voting Model

    Science.gov (United States)

    Mori, Shintaro; Hisakado, Masato

    2010-03-01

    We introduce a voting model and discuss the scale invariance in the mixing of candidates. The Candidates are classified into two categories μ\\in \\{0,1\\} and are called as “binary” candidates. There are in total N=N0+N1 candidates, and voters vote for them one by one. The probability that a candidate gets a vote is proportional to the number of votes. The initial number of votes (“seed”) of a candidate μ is set to be sμ. After infinite counts of voting, the probability function of the share of votes of the candidate μ obeys gamma distributions with the shape exponent sμ in the thermodynamic limit Z0=N1s1+N0s0\\to ∞. Between the cumulative functions \\{xμ\\} of binary candidates, the power-law relation 1-x1 ˜ (1-x0)α with the critical exponent α=s1/s0 holds in the region 1-x0,1-x1≪ 1. In the double scaling limit (s1,s0)\\to (0,0) and Z0 \\to ∞ with s1/s0=α fixed, the relation 1-x1=(1-x0)α holds exactly over the entire range 0≤ x0,x1 ≤ 1. We study the data on horse races obtained from the Japan Racing Association for the period 1986 to 2006 and confirm scale invariance.

  18. Generating scale-invariant tensor perturbations in the non-inflationary universe

    Directory of Open Access Journals (Sweden)

    Mingzhe Li

    2014-09-01

    Full Text Available It is believed that the recent detection of large tensor perturbations strongly favors the inflation scenario in the early universe. This common sense depends on the assumption that Einstein's general relativity is valid at the early universe. In this paper we show that nearly scale-invariant primordial tensor perturbations can be generated during a contracting phase before the radiation dominated epoch if the theory of gravity is modified by the scalar–tensor theory at that time. The scale-invariance protects the tensor perturbations from suppressing at large scales and they may have significant amplitudes to fit BICEP2's result. We construct a model to achieve this purpose and show that the universe can bounce to the hot big bang after long time contraction, and at almost the same time the theory of gravity approaches to general relativity through stabilizing the scalar field. Theoretically, such models are dual to inflation models if we change to the frame in which the theory of gravity is general relativity. Dual models are related by the conformal transformations. With this study we reinforce the point that only the conformal invariant quantities such as the scalar and tensor perturbations are physical. How did the background evolve before the radiation time depends on the frame and has no physical meaning. It is impossible to distinguish different pictures by later time cosmological probes.

  19. Low temperature electroweak phase transition in the Standard Model with hidden scale invariance

    Directory of Open Access Journals (Sweden)

    Suntharan Arunasalam

    2018-01-01

    Full Text Available We discuss a cosmological phase transition within the Standard Model which incorporates spontaneously broken scale invariance as a low-energy theory. In addition to the Standard Model fields, the minimal model involves a light dilaton, which acquires a large vacuum expectation value (VEV through the mechanism of dimensional transmutation. Under the assumption of the cancellation of the vacuum energy, the dilaton develops a very small mass at 2-loop order. As a result, a flat direction is present in the classical dilaton-Higgs potential at zero temperature while the quantum potential admits two (almost degenerate local minima with unbroken and broken electroweak symmetry. We found that the cosmological electroweak phase transition in this model can only be triggered by a QCD chiral symmetry breaking phase transition at low temperatures, T≲132 MeV. Furthermore, unlike the standard case, the universe settles into the chiral symmetry breaking vacuum via a first-order phase transition which gives rise to a stochastic gravitational background with a peak frequency ∼10−8 Hz as well as triggers the production of approximately solar mass primordial black holes. The observation of these signatures of cosmological phase transitions together with the detection of a light dilaton would provide a strong hint of the fundamental role of scale invariance in particle physics.

  20. Low temperature electroweak phase transition in the Standard Model with hidden scale invariance

    Science.gov (United States)

    Arunasalam, Suntharan; Kobakhidze, Archil; Lagger, Cyril; Liang, Shelley; Zhou, Albert

    2018-01-01

    We discuss a cosmological phase transition within the Standard Model which incorporates spontaneously broken scale invariance as a low-energy theory. In addition to the Standard Model fields, the minimal model involves a light dilaton, which acquires a large vacuum expectation value (VEV) through the mechanism of dimensional transmutation. Under the assumption of the cancellation of the vacuum energy, the dilaton develops a very small mass at 2-loop order. As a result, a flat direction is present in the classical dilaton-Higgs potential at zero temperature while the quantum potential admits two (almost) degenerate local minima with unbroken and broken electroweak symmetry. We found that the cosmological electroweak phase transition in this model can only be triggered by a QCD chiral symmetry breaking phase transition at low temperatures, T ≲ 132 MeV. Furthermore, unlike the standard case, the universe settles into the chiral symmetry breaking vacuum via a first-order phase transition which gives rise to a stochastic gravitational background with a peak frequency ∼10-8 Hz as well as triggers the production of approximately solar mass primordial black holes. The observation of these signatures of cosmological phase transitions together with the detection of a light dilaton would provide a strong hint of the fundamental role of scale invariance in particle physics.

  1. Two-loop scale-invariant scalar potential and quantum effective operators

    CERN Document Server

    Ghilencea, D.M.

    2016-11-29

    Spontaneous breaking of quantum scale invariance may provide a solution to the hierarchy and cosmological constant problems. In a scale-invariant regularization, we compute the two-loop potential of a higgs-like scalar $\\phi$ in theories in which scale symmetry is broken only spontaneously by the dilaton ($\\sigma$). Its vev $\\langle\\sigma\\rangle$ generates the DR subtraction scale ($\\mu\\sim\\langle\\sigma\\rangle$), which avoids the explicit scale symmetry breaking by traditional regularizations (where $\\mu$=fixed scale). The two-loop potential contains effective operators of non-polynomial nature as well as new corrections, beyond those obtained with explicit breaking ($\\mu$=fixed scale). These operators have the form: $\\phi^6/\\sigma^2$, $\\phi^8/\\sigma^4$, etc, which generate an infinite series of higher dimensional polynomial operators upon expansion about $\\langle\\sigma\\rangle\\gg \\langle\\phi\\rangle$, where such hierarchy is arranged by {\\it one} initial, classical tuning. These operators emerge at the quantum...

  2. Scale-invariance underlying the logistic equation and its social applications

    CERN Document Server

    Hernando, A

    2012-01-01

    On the basis of dynamical principles we derive the Logistic Equation (LE), widely employed (among multiple applications) in the simulation of population growth, and demonstrate that scale-invariance and a mean-value constraint are sufficient and necessary conditions for obtaining it. We also generalize the LE to multi-component systems and show that the above dynamical mechanisms underlie large number of scale-free processes. Examples are presented regarding city-populations, diffusion in complex networks, and popularity of technological products, all of them obeying the multi-component logistic equation in an either stochastic or deterministic way. So as to assess the predictability-power of our present formalism, we advance a prediction, regarding the next 60 months, for the number of users of the three main web browsers (Explorer, Firefox and Chrome) popularly referred as "Browser Wars".

  3. Retinal Identification Based on an Improved Circular Gabor Filter and Scale Invariant Feature Transform

    Directory of Open Access Journals (Sweden)

    Xiaoming Xi

    2013-07-01

    Full Text Available Retinal identification based on retinal vasculatures in the retina provides the most secure and accurate means of authentication among biometrics and has primarily been used in combination with access control systems at high security facilities. Recently, there has been much interest in retina identification. As digital retina images always suffer from deformations, the Scale Invariant Feature Transform (SIFT, which is known for its distinctiveness and invariance for scale and rotation, has been introduced to retinal based identification. However, some shortcomings like the difficulty of feature extraction and mismatching exist in SIFT-based identification. To solve these problems, a novel preprocessing method based on the Improved Circular Gabor Transform (ICGF is proposed. After further processing by the iterated spatial anisotropic smooth method, the number of uninformative SIFT keypoints is decreased dramatically. Tested on the VARIA and eight simulated retina databases combining rotation and scaling, the developed method presents promising results and shows robustness to rotations and scale changes.

  4. High momentum transfer inelastic muon scattering and test of scale invariance at NAL

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K.Wendell, (Spokesperson); /Princeton U.; Hand, L.N.; /Cornell U., LNS

    1970-06-01

    We propose a relatively simple first stage experiment with muons in the 50-150 GeV range. The experiment is designed to optimize conditions for testing scale invariance while providing some information about the final state, as a test of various theories of high energy interactions. The proposed use of an iron spectrometer and of a high Z (>1) target with a low intensity ({approx}10{sup 6}/sec) muon beam should greatly reduce the cost and complexity of the experiment and especially ease the construction of the beam. It may even be possible to make an adequate muon beam for this purpose from the planned 3.5 mrad high intensity pion beam. A higher intensity muon beam can be used to extend the range in q{sup 2}. Information gained in this first experiment could greatly assist the planning of a more sophisticated experiment proposed for the high intensity {mu} beam.

  5. 1 / f β noise for scale-invariant processes: how long you wait matters

    Science.gov (United States)

    Leibovich, Nava; Barkai, Eli

    2017-11-01

    We study the power spectrum which is estimated from a nonstationary signal. In particular we examine the case when the signal is observed in a measurement time window [tw, tw + tm], namely the observation started after a waiting time tw, and tm is the measurement duration. We introduce a generalized aging Wiener-Khinchin theorem which relates between the spectrum and the time- and ensemble-averaged correlation functions for arbitrary tm and tw. Furthermore we provide a general relation between the non-analytical behavior of the scale-invariant correlation function and the aging 1/fβ noise. We illustrate our general results with two-state renewal models with sojourn times' distributions having a broad tail. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.

  6. Self-organization without conservation: true or just apparent scale-invariance?

    Science.gov (United States)

    Bonachela, Juan A.; Muñoz, Miguel A.

    2009-09-01

    The existence of true scale-invariance in slowly driven models of self-organized criticality without a conservation law, such as forest-fires or earthquake automata, is scrutinized in this paper. By using three different levels of description—(i) a simple mean field, (ii) a more detailed mean-field description in terms of a (self-organized) branching processes, and (iii) a full stochastic representation in terms of a Langevin equation—it is shown on general grounds that non-conserving dynamics does not lead to bona fide criticality. Contrary to the case for conserving systems, a parameter, which we term the 're-charging' rate (e.g. the tree-growth rate in forest-fire models), needs to be fine-tuned in non-conserving systems to obtain criticality. In the infinite-size limit, such a fine-tuning of the loading rate is easy to achieve, as it emerges by imposing a second separation of timescales but, for any finite size, a precise tuning is required to achieve criticality and a coherent finite-size scaling picture. Using the approaches above, we shed light on the common mechanisms by which 'apparent criticality' is observed in non-conserving systems, and explain in detail (both qualitatively and quantitatively) the difference with respect to true criticality obtained in conserving systems. We propose to call this self-organized quasi-criticality (SOqC). Some of the reported results are already known and some of them are new. We hope that the unified framework presented here will help to elucidate the confusing and contradictory literature in this field. In a forthcoming paper, we shall discuss the implications of the general results obtained here for models of neural avalanches in neuroscience for which self-organized scale-invariance in the absence of conservation has been claimed.

  7. Magnetic compressibility and Isotropic Scale-Invariant Dissipation of Solar Wind Turbulence

    Science.gov (United States)

    Kiyani, K. H.; Chapman, S. C.; Khotyaintsev, Y. V.; Hnat, B.; Sahraoui, F.

    2010-12-01

    The anisotropic nature of solar wind magnetic fluctuations is investigated scale-by-scale using high cadence in-situ magnetic field ACE, and Cluster FGM and STAFF observations spanning five decades in scales from the inertial to dissipation ranges of plasma turbulence. We find an abrupt transition at ion kinetic scales to a single isotropic stochastic process as characterized by the single functional form of the probability density functions (PDFs) of fluctuations that characterizes the dissipation range on all observable scales. In contrast to the inertial range, this is accompanied by a successive scale-invariant reduction in the ratio between parallel and transverse power. We suggest that this reflects the phase space nature of the cascade which operates in a scale-invariant isotropic manner in the (kinetic) dissipation range - distinct from the anisotropic phenomenology in the (magnetohydrodynamic) inertial range. Alternatively, if we assume that non-linear effects are weak in the dissipation range and use the results of the linear dispersion theory of waves; then our measurements of fluctuation anisotropy provide deep insight into the nature of these waves. In particular, using these measurements to form a measure for the scale-by-scale magnetic compressibility, we can distinguish between the competing hypotheses of oblique kinetic Alfven waves versus Whistler waves dominating the energy transfer in the dissipation range. By looking at the scale-by-scale PDFs of the fluctuations we will also comment on how reasonable the assumption of linear theory is as we cross from the inertial to the dissipation range of plasma turbulence.

  8. NDVI, scale invariance and the modifiable areal unit problem : An assessment of vegetation in the Adelaide Parklands

    NARCIS (Netherlands)

    Nouri, Hamideh; Anderson, Sharolyn; Sutton, Paul; Beecham, Simon; Nagler, Pamela; Jarchow, Christopher J.; Roberts, Dar A.

    2017-01-01

    This research addresses the question as to whether or not the Normalised Difference Vegetation Index (NDVI) is scale invariant (i.e. constant over spatial aggregation) for pure pixels of urban vegetation. It has been long recognized that there are issues related to the modifiable areal unit problem

  9. Unsupervised Video Shot Detection Using Clustering Ensemble with a Color Global Scale-Invariant Feature Transform Descriptor

    Directory of Open Access Journals (Sweden)

    Hong Yi

    2008-01-01

    Full Text Available Abstract Scale-invariant feature transform (SIFT transforms a grayscale image into scale-invariant coordinates of local features that are invariant to image scale, rotation, and changing viewpoints. Because of its scale-invariant properties, SIFT has been successfully used for object recognition and content-based image retrieval. The biggest drawback of SIFT is that it uses only grayscale information and misses important visual information regarding color. In this paper, we present the development of a novel color feature extraction algorithm that addresses this problem, and we also propose a new clustering strategy using clustering ensembles for video shot detection. Based on Fibonacci lattice-quantization, we develop a novel color global scale-invariant feature transform (CGSIFT for better description of color contents in video frames for video shot detection. CGSIFT first quantizes a color image, representing it with a small number of color indices, and then uses SIFT to extract features from the quantized color index image. We also develop a new space description method using small image regions to represent global color features as the second step of CGSIFT. Clustering ensembles focusing on knowledge reuse are then applied to obtain better clustering results than using single clustering methods for video shot detection. Evaluation of the proposed feature extraction algorithm and the new clustering strategy using clustering ensembles reveals very promising results for video shot detection.

  10. Unsupervised Video Shot Detection Using Clustering Ensemble with a Color Global Scale-Invariant Feature Transform Descriptor

    Directory of Open Access Journals (Sweden)

    Yuchou Chang

    2008-02-01

    Full Text Available Scale-invariant feature transform (SIFT transforms a grayscale image into scale-invariant coordinates of local features that are invariant to image scale, rotation, and changing viewpoints. Because of its scale-invariant properties, SIFT has been successfully used for object recognition and content-based image retrieval. The biggest drawback of SIFT is that it uses only grayscale information and misses important visual information regarding color. In this paper, we present the development of a novel color feature extraction algorithm that addresses this problem, and we also propose a new clustering strategy using clustering ensembles for video shot detection. Based on Fibonacci lattice-quantization, we develop a novel color global scale-invariant feature transform (CGSIFT for better description of color contents in video frames for video shot detection. CGSIFT first quantizes a color image, representing it with a small number of color indices, and then uses SIFT to extract features from the quantized color index image. We also develop a new space description method using small image regions to represent global color features as the second step of CGSIFT. Clustering ensembles focusing on knowledge reuse are then applied to obtain better clustering results than using single clustering methods for video shot detection. Evaluation of the proposed feature extraction algorithm and the new clustering strategy using clustering ensembles reveals very promising results for video shot detection.

  11. Online fringe projection profilometry based on scale-invariant feature transform

    Science.gov (United States)

    Li, Hongru; Feng, Guoying; Yang, Peng; Wang, Zhaomin; Zhou, Shouhuan; Asundi, Anand

    2016-08-01

    An online fringe projection profilometry (OFPP) based on scale-invariant feature transform (SIFT) is proposed. Both rotary and linear models are discussed. First, the captured images are enhanced by "retinex" theory for better contrast and an improved reprojection technique is carried out to rectify pixel size while keeping the right aspect ratio. Then the SIFT algorithm with random sample consensus algorithm is used to match feature points between frames. In this process, quick response code is innovatively adopted as a feature pattern as well as object modulation. The characteristic parameters, which include rotation angle in rotary OFPP and rectilinear displacement in linear OFPP, are calculated by a vector-based solution. Moreover, a statistical filter is applied to obtain more accurate values. The equivalent aligned fringe patterns are then extracted from each frame. The equal step algorithm, advanced iterative algorithm, and principal component analysis are eligible for phase retrieval according to whether the object moving direction accords with the fringe direction or not. The three-dimensional profile of the moving object can finally be reconstructed. Numerical simulations and experimental results verified the validity and feasibility of the proposed method.

  12. Electronic cleansing for computed tomography (CT) colonography using a scale-invariant three-material model.

    Science.gov (United States)

    Serlie, Iwo W O; Vos, Frans M; Truyen, Roel; Post, Frits H; Stoker, Jaap; van Vliet, Lucas J

    2010-06-01

    A well-known reading pitfall in computed tomography (CT) colonography is posed by artifacts at T-junctions, i.e., locations where air-fluid levels interface with the colon wall. This paper presents a scale-invariant method to determine material fractions in voxels near such T-junctions. The proposed electronic cleansing method particularly improves the segmentation at those locations. The algorithm takes a vector of Gaussian derivatives as input features. The measured features are made invariant to the orientation-dependent apparent scale of the data and normalized in a way to obtain equal noise variance. A so-called parachute model is introduced that maps Gaussian derivatives onto material fractions near T-junctions. Projection of the noisy derivatives onto the model yields improved estimates of the true, underlying feature values. The method is shown to render an accurate representation of the object boundary without artifacts near junctions. Therefore, it enhances the reading of CT colonography in a 3-D display mode.

  13. A Registration Scheme for Multispectral Systems Using Phase Correlation and Scale Invariant Feature Matching

    Directory of Open Access Journals (Sweden)

    Hanlun Li

    2016-01-01

    Full Text Available In the past few years, many multispectral systems which consist of several identical monochrome cameras equipped with different bandpass filters have been developed. However, due to the significant difference in the intensity between different band images, image registration becomes very difficult. Considering the common structural characteristic of the multispectral systems, this paper proposes an effective method for registering different band images. First we use the phase correlation method to calculate the parameters of a coarse-offset relationship between different band images. Then we use the scale invariant feature transform (SIFT to detect the feature points. For every feature point in a reference image, we can use the coarse-offset parameters to predict the location of its matching point. We only need to compare the feature point in the reference image with the several near feature points from the predicted location instead of the feature points all over the input image. Our experiments show that this method does not only avoid false matches and increase correct matches, but also solve the matching problem between an infrared band image and a visible band image in cases lacking man-made objects.

  14. Discriminative phenomenological features of scale invariant models for electroweak symmetry breaking

    Directory of Open Access Journals (Sweden)

    Katsuya Hashino

    2016-01-01

    Full Text Available Classical scale invariance (CSI may be one of the solutions for the hierarchy problem. Realistic models for electroweak symmetry breaking based on CSI require extended scalar sectors without mass terms, and the electroweak symmetry is broken dynamically at the quantum level by the Coleman–Weinberg mechanism. We discuss discriminative features of these models. First, using the experimental value of the mass of the discovered Higgs boson h(125, we obtain an upper bound on the mass of the lightest additional scalar boson (≃543 GeV, which does not depend on its isospin and hypercharge. Second, a discriminative prediction on the Higgs-photon–photon coupling is given as a function of the number of charged scalar bosons, by which we can narrow down possible models using current and future data for the di-photon decay of h(125. Finally, for the triple Higgs boson coupling a large deviation (∼+70% from the SM prediction is universally predicted, which is independent of masses, quantum numbers and even the number of additional scalars. These models based on CSI can be well tested at LHC Run II and at future lepton colliders.

  15. Sphaleron and critical bubble in the scale invariant two Higgs doublet model

    Directory of Open Access Journals (Sweden)

    Kaori Fuyuto

    2015-07-01

    Full Text Available We revisit the electroweak phase transition and the critical bubble in the scale invariant two Higgs doublet model in the light of recent LHC data. Moreover, the sphaleron decoupling condition is newly evaluated in this model. The analysis is done by using the resummed finite-temperature one-loop effective potential. It is found that the 125 GeV Higgs boson inevitably leads to the strong first-order electroweak phase transition, and the strength of which is always large enough to satisfy the sphaleron decoupling condition, vN/TN>1.2, where TN denotes a nucleation temperature and vN is the Higgs vacuum expectation value at TN. In this model, even if the Higgs boson couplings to gauge bosons and fermions are similar to the standard model values, the signal strength of the Higgs decay to two photons is reduced by 10% and the triple Higgs boson coupling is enhanced by 82% compared to the standard model prediction.

  16. Equation of state with scale-invariant hidden local symmetry and gravitational waves

    Directory of Open Access Journals (Sweden)

    Lee Hyun Kyu

    2018-01-01

    Full Text Available The equation of state (EoS for the effective theory proposed recently in the frame work of the scale-invariant hidden local symmetry is discussed briefly. The EoS is found to be relatively stiffer at lower density and but relatively softer at higher density. The particular features of EoS on the gravitational waves are discussed. A relatively stiffer EoS for the neutron stars with the lower density induces a larger deviation of the gravitational wave form from the point-particle-approximation. On the other hand, a relatively softer EoS for the merger remnant of the higher density inside might invoke a possibility of the immediate formation of a black hole for short gamma ray bursts or the appearance of the higher peak frequency for gravitational waves from remnant oscillations. It is anticipated that this particular features could be probed in detail by the detections of gravitational waves from the binary neutron star mergers.

  17. Strong dynamics in a classically scale invariant extension of the standard model with a flat potential

    Science.gov (United States)

    Haba, Naoyuki; Yamada, Toshifumi

    2017-06-01

    We investigate the scenario where the standard model is extended with classical scale invariance, which is broken by chiral symmetry breaking and confinement in a new strongly coupled gauge theory that resembles QCD. The standard model Higgs field emerges as a result of the mixing of a scalar meson in the new strong dynamics and a massless elementary scalar field. The mass and scalar decay constant of that scalar meson, which are generated dynamically in the new gauge theory, give rise to the Higgs field mass term, automatically possessing the correct negative sign by the bosonic seesaw mechanism. Using analogy with QCD, we evaluate the dynamical scale of the new gauge theory and further make quantitative predictions for light pseudo-Nambu-Goldstone bosons associated with the spontaneous breaking of axial symmetry along chiral symmetry breaking in the new gauge theory. A prominent consequence of the scenario is that there should be a standard model gauge singlet pseudo-Nambu-Goldstone boson with mass below 220 GeV, which couples to two electroweak gauge bosons through the Wess-Zumino-Witten term, whose strength is thus determined by the dynamical scale of the new gauge theory. Other pseudo-Nambu-Goldstone bosons, charged under the electroweak gauge groups, also appear. Concerning the theoretical aspects, it is shown that the scalar quartic coupling can vanish at the Planck scale with the top quark pole mass as large as 172.5 GeV, realizing the flatland scenario without being in tension with the current experimental data.

  18. Scale-invariant neuronal avalanche dynamics and the cut-off in size distributions.

    Directory of Open Access Journals (Sweden)

    Shan Yu

    Full Text Available Identification of cortical dynamics strongly benefits from the simultaneous recording of as many neurons as possible. Yet current technologies provide only incomplete access to the mammalian cortex from which adequate conclusions about dynamics need to be derived. Here, we identify constraints introduced by sub-sampling with a limited number of electrodes, i.e. spatial 'windowing', for well-characterized critical dynamics-neuronal avalanches. The local field potential (LFP was recorded from premotor and prefrontal cortices in two awake macaque monkeys during rest using chronically implanted 96-microelectrode arrays. Negative deflections in the LFP (nLFP were identified on the full as well as compact sub-regions of the array quantified by the number of electrodes N (10-95, i.e., the window size. Spatiotemporal nLFP clusters organized as neuronal avalanches, i.e., the probability in cluster size, p(s, invariably followed a power law with exponent -1.5 up to N, beyond which p(s declined more steeply producing a 'cut-off' that varied with N and the LFP filter parameters. Clusters of size s≤N consisted mainly of nLFPs from unique, non-repeated cortical sites, emerged from local propagation between nearby sites, and carried spatial information about cluster organization. In contrast, clusters of size s>N were dominated by repeated site activations and carried little spatial information, reflecting greatly distorted sampling conditions. Our findings were confirmed in a neuron-electrode network model. Thus, avalanche analysis needs to be constrained to the size of the observation window to reveal the underlying scale-invariant organization produced by locally unfolding, predominantly feed-forward neuronal cascades.

  19. On supersymmetric geometric flows and R2 inflation from scale invariant supergravity

    Science.gov (United States)

    Rajpoot, Subhash; Vacaru, Sergiu I.

    2017-09-01

    Models of geometric flows pertaining to R2 scale invariant (super) gravity theories coupled to conformally invariant matter fields are investigated. Related to this work are supersymmetric scalar manifolds that are isomorphic to the Kählerian spaces Mn = SU(1 , 1 + k) / U(1) × SU(1 + k) as generalizations of the non-supersymmetric analogs with SO(1 , 1 + k) / SO(1 + k) manifolds. For curved superspaces with geometric evolution of physical objects, a complete supersymmetric theory has to be elaborated on nonholonomic (super) manifolds and bundles determined by non-integrable superdistributions with additional constraints on (super) field dynamics and geometric evolution equations. We also consider generalizations of Perelman's functionals using such nonholonomic variables which result in the decoupling of geometric flow equations and Ricci soliton equations with supergravity modifications of the R2 gravity theory. As such, it is possible to construct exact non-homogeneous and locally anisotropic cosmological solutions for various types of (super) gravity theories modeled as modified Ricci soliton configurations. Such solutions are defined by employing the general ansatz encompassing coefficients of generic off-diagonal metrics and generalized connections that depend generically on all spacetime coordinates. We consider nonholonomic constraints resulting in diagonal homogeneous configurations encoding contributions from possible nonlinear parametric geometric evolution scenarios, off-diagonal interactions and anisotropic polarization/modification of physical constants. In particular, we analyze small parametric deformations when the underlying scale symmetry is preserved and the nontrivial anisotropic vacuum corresponds to generalized de Sitter spaces. Such configurations may mimic quantum effects whenever transitions to flat space are possible. Our approach allows us to generate solutions with scale violating terms induced by geometric flows, off

  20. Is scale-invariance in gauge-Yukawa systems compatible with the graviton?

    Science.gov (United States)

    Christiansen, Nicolai; Eichhorn, Astrid; Held, Aaron

    2017-10-01

    We explore whether perturbative interacting fixed points in matter systems can persist under the impact of quantum gravity. We first focus on semisimple gauge theories and show that the leading order gravity contribution evaluated within the functional Renormalization Group framework preserves the perturbative fixed-point structure in these models discovered in [J. K. Esbensen, T. A. Ryttov, and F. Sannino, Phys. Rev. D 93, 045009 (2016)., 10.1103/PhysRevD.93.045009]. We highlight that the quantum-gravity contribution alters the scaling dimension of the gauge coupling, such that the system exhibits an effective dimensional reduction. We secondly explore the effect of metric fluctuations on asymptotically safe gauge-Yukawa systems which feature an asymptotically safe fixed point [D. F. Litim and F. Sannino, J. High Energy Phys. 12 (2014) 178., 10.1007/JHEP12(2014)178]. The same effective dimensional reduction that takes effect in pure gauge theories also impacts gauge-Yukawa systems. There, it appears to lead to a split of the degenerate free fixed point into an interacting infrared attractive fixed point and a partially ultraviolet attractive free fixed point. The quantum-gravity induced infrared fixed point moves towards the asymptotically safe fixed point of the matter system, and annihilates it at a critical value of the gravity coupling. Even after that fixed-point annihilation, graviton effects leave behind new partially interacting fixed points for the matter sector.

  1. Void probability as a function of the void's shape and scale-invariant models. [in studies of spacial galactic distribution

    Science.gov (United States)

    Elizalde, E.; Gaztanaga, E.

    1992-01-01

    The dependence of counts in cells on the shape of the cell for the large scale galaxy distribution is studied. A very concrete prediction can be done concerning the void distribution for scale invariant models. The prediction is tested on a sample of the CfA catalog, and good agreement is found. It is observed that the probability of a cell to be occupied is bigger for some elongated cells. A phenomenological scale invariant model for the observed distribution of the counts in cells, an extension of the negative binomial distribution, is presented in order to illustrate how this dependence can be quantitatively determined. An original, intuitive derivation of this model is presented.

  2. Effects of heterogeneity in site-site couplings for tight-binding models on scale-invariant structures

    Science.gov (United States)

    Yang, Bingjia; Xie, Pinchen; Zhang, Zhongzhi

    2017-11-01

    We studied the thermodynamic behaviors of non-interacting bosons and fermions trapped by a scale-invariant branching structure of adjustable degree of heterogeneity. The full energy spectrum in tight-binding approximation was analytically solved. We found that the log-periodic oscillation of the specific heat for Fermi gas depended on the heterogeneity of hopping. Also, low dimensional Bose-Einstein condensation occurred only for non-homogeneous setup.

  3. Project SEMACODE : a scale-invariant object recognition system for content-based queries in image databases

    OpenAIRE

    Brause, Rüdiger W.; Arlt, Björn; Tratar, Erwin

    1999-01-01

    For the efficient management of large image databases, the automated characterization of images and the usage of that characterization for searching and ordering tasks is highly desirable. The purpose of the project SEMACODE is to combine the still unsolved problem of content-oriented characterization of images with scale-invariant object recognition and modelbased compression methods. To achieve this goal, existing techniques as well as new concepts related to pattern matching, image encodin...

  4. Dynamical Effects of the Scale Invariance of the Empty Space: The Fall of Dark Matter?

    Science.gov (United States)

    Maeder, Andre

    2017-11-01

    The hypothesis of the scale invariance of the macroscopic empty space, which intervenes through the cosmological constant, has led to new cosmological models. They show an accelerated cosmic expansion after the initial stages and satisfy several major cosmological tests. No unknown particles are needed. Developing the weak-field approximation, we find that the here-derived equation of motion corresponding to Newton’s equation also contains a small outward acceleration term. Its order of magnitude is about \\sqrt{{\\varrho }{{c}}/\\varrho } × Newton’s gravity (ϱ being the mean density of the system and {\\varrho }{{c}} the usual critical density). The new term is thus particularly significant for very low density systems. A modified virial theorem is derived and applied to clusters of galaxies. For the Coma Cluster and Abell 2029, the dynamical masses are about a factor of 5-10 smaller than in the standard case. This tends to leave no room for dark matter in these clusters. Then, the two-body problem is studied and an equation corresponding to the Binet equation is obtained. It implies some secular variations of the orbital parameters. The results are applied to the rotation curve of the outer layers of the Milky Way. Starting backward from the present rotation curve, we calculate the past evolution of the Galactic rotation and find that, in the early stages, it was steep and Keplerian. Thus, the flat rotation curves of galaxies appear as an age effect, a result consistent with recent observations of distant galaxies by Genzel et al. and Lang et al. Finally, in an appendix we also study the long-standing problem of the increase with age of the vertical velocity dispersion in the Galaxy. The observed increase appears to result from the new small acceleration term in the equation of the harmonic oscillator describing stellar motions around the Galactic plane. Thus, we tend to conclude that neither dark energy nor dark matter seems to be needed in the proposed

  5. Alzheimer's Disease as Subcellular `Cancer' --- The Scale-Invariant Principles Underlying the Mechanisms of Aging ---

    Science.gov (United States)

    Murase, M.

    1996-01-01

    with self-organization, has been thought to underlie `creative' aspects of biological phenomena such as the origin of life, adaptive evolution of viruses, immune recognition and brain function. It therefore must be surprising to find that the same principles will also underlie `non-creative' aspects, for example, the development of cancer and the aging of complex organisms. Although self-organization has extensively been studied in nonliving things such as chemical reactions and laser physics, it is undoubtedly true that the similar sources of the order are available to living things at different levels and scales. Several paradigm shifts are, however, required to realize how the general principles of natural selection can be extensible to non-DNA molecules which do not possess the intrinsic nature of self-reproduction. One of them is, from the traditional, genetic inheritance view that DNA (or RNA) molecules are the ultimate unit of heritable variations and natural selection at any organization level, to the epigenetic (nongenetic) inheritance view that any non-DNA molecule can be the target of heritable variations and molecular selection to accumulate in certain biochemical environment. Because they are all enriched with a β-sheet content, ready to mostly interact with one another, different denatured proteins like β-amyloid, PHF and prions can individually undergo self-templating or self-aggregating processes out of gene control. Other paradigm shifts requisite for a break-through in the etiology of neurodegenerative disorders will be discussed. As it is based on the scale-invariant principles, the present theory also predicts plausible mechanisms underlying quite different classes of disorders such as amyotrophic lateral sclerosis (ALS), atherosclerosis, senile cataract and many other symptoms of aging. The present theory, thus, provides the consistent and comprehensive account to the origin of aging by means of natural selection and self-organization.

  6. Scaling invariance for the escape of particles from a periodically corrugated waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Leonel, Edson D., E-mail: edleonel@rc.unesp.br [Departamento de Estatística, Matemática Aplicada e Computação, UNESP – Univ Estadual Paulista, Av. 24A, 1515, CEP 13506-900, Rio Claro, SP (Brazil); Costa, Diogo R. da [Departamento de Estatística, Matemática Aplicada e Computação, UNESP – Univ Estadual Paulista, Av. 24A, 1515, CEP 13506-900, Rio Claro, SP (Brazil); Instituto de Física, Univ São Paulo, Rua do Matão, Cidade Universitária, CEP 05314-970, São Paulo, SP (Brazil); Dettmann, Carl P. [School of Mathematics, University of Bristol, Bristol BS8 1TW (United Kingdom)

    2012-01-09

    The escape dynamics of a classical light ray inside a corrugated waveguide is characterised by the use of scaling arguments. The model is described via a two-dimensional nonlinear and area preserving mapping. The phase space of the mapping contains a set of periodic islands surrounded by a large chaotic sea that is confined by a set of invariant tori. When a hole is introduced in the chaotic sea, letting the ray escape, the histogram of frequency of the number of escaping particles exhibits rapid growth, reaching a maximum value at n{sub p} and later decaying asymptotically to zero. The behaviour of the histogram of escape frequency is characterised using scaling arguments. The scaling formalism is widely applicable to critical phenomena and useful in characterisation of phase transitions, including transitions from limited to unlimited energy growth in two-dimensional time varying billiard problems. -- Highlights: ► Escape of light ray inside a corrugated waveguide ► Two-dimensional nonlinear and area preserving mapping ► Scaling for escaping particles.

  7. Asymptotically Safe Dark Matter

    DEFF Research Database (Denmark)

    Sannino, Francesco; Shoemaker, Ian M.

    2015-01-01

    We introduce a new paradigm for dark matter (DM) interactions in which the interaction strength is asymptotically safe. In models of this type, the coupling strength is small at low energies but increases at higher energies, and asymptotically approaches a finite constant value. The resulting...... searches are the primary ways to constrain or discover asymptotically safe dark matter....

  8. INVESTIGATION OF SCALE-INVARIANT PROPERTY OF ORGANIZATION SYSTEM OF TRAIN TRAFFIC VOLUME BASED ON THE PERCOLATION THEORY

    Directory of Open Access Journals (Sweden)

    A. V. Prokhorchenko

    2014-10-01

    Full Text Available Purpose. The work is devoted to the study the property of scaling invariance of the organization system of train traffic volume on Ukrainian railways. Methodology. To prove the real network origin of Trains Formation Plan (TFP destination to the type of so-called scale-invariant networks it is proposed to generate scale-free networks with different dimensions, Barabási–Albert type with parameters that real networks of TFP destination has and to investigate their structure on survivability using the procedure of percolation nodes. Percolation process is proposed to be considered as a modified version of the spatial movement of cars on the network by increasing the number of railway stations, which have lost the ability to perform the basic function to pass cars on TFP destination in terms of adverse effects (an accident, overload. Findings. Comparative analysis of percolation at random and targeted destructive impact on network nodes has shown matching with the results of real network percolation of TFP destination, which proves the existence of self-similarity. Comparable figures in percolation were: percentage of remote stations in the network, in which the network fragmentation occurs, the average inverse path between network nodes, the diameter of the graph structure, the size meaning of the second largest cluster in the network from the steps of destruction. Originality. For the first time the hypothesis of the existence of scaling invariance properties of the graph TFP destinations on the railways of Ukraine, which can be attributed to a class of the graph scale-free networks was confirmed. Existing knowledge in the field theory of scale-free networks can be used to describe the survivability of system transportation on the railways of Ukraine. Practical value. Based on the identified properties of system directions of train traffic volumes, it is possible to create a mathematical model in the future that will predict the behavior of the

  9. Scale invariance and scaling law of Thomson backscatter spectra by electron moving in laser-magnetic resonance regime

    CERN Document Server

    Fu, Yi-Jia; Wan, Feng; Sang, Hai-Bo; Xie, Bai-Song

    2016-01-01

    The Thomson scattering spectra by an electron moving in the laser-magnetic resonance acceleration regime are computed numerically and analytically. The dependence of fundamental frequency on the laser intensity and magnetic resonance parameter is examined carefully. By calculating the emission of a single electron in a circularly polarized plane-wave laser field and constant external magnetic field, the scale invariance of the radiation spectra is evident in terms of harmonic orders. The scaling law of backscattered spectra are exhibited remarkably for the laser intensity as well for the initial axial momentum of the electron when the cyclotron frequency of the electron approaches the laser frequency. The results indicate that the magnetic resonance parameter plays an important role on the strength of emission. And the rich features of scattering spectra found may be applicable to the radiation source tunability.

  10. Wireless capsule endoscopy video segmentation using an unsupervised learning approach based on probabilistic latent semantic analysis with scale invariant features.

    Science.gov (United States)

    Shen, Yao; Guturu, Parthasarathy Partha; Buckles, Bill P

    2012-01-01

    Since wireless capsule endoscopy (WCE) is a novel technology for recording the videos of the digestive tract of a patient, the problem of segmenting the WCE video of the digestive tract into subvideos corresponding to the entrance, stomach, small intestine, and large intestine regions is not well addressed in the literature. A selected few papers addressing this problem follow supervised leaning approaches that presume availability of a large database of correctly labeled training samples. Considering the difficulties in procuring sizable WCE training data sets needed for achieving high classification accuracy, we introduce in this paper an unsupervised learning approach that employs Scale Invariant Feature Transform (SIFT) for extraction of local image features and the probabilistic latent semantic analysis (pLSA) model used in the linguistic content analysis for data clustering. Results of experimentation indicate that this method compares well in classification accuracy with the state-of-the-art supervised classification approaches to WCE video segmentation.

  11. Asymptotics and Borel summability

    CERN Document Server

    Costin, Ovidiu

    2008-01-01

    Incorporating substantial developments from the last thirty years into one resource, Asymptotics and Borel Summability provides a self-contained introduction to asymptotic analysis with special emphasis on topics not covered in traditional asymptotics books. The author explains basic ideas, concepts, and methods of generalized Borel summability, transseries, and exponential asymptotics. He provides complete mathematical rigor while supplementing it with heuristic material and examples, so that some proofs may be omitted by applications-oriented readers.To give a sense of how new methods are us

  12. NDVI, scale invariance and the modifiable areal unit problem: An assessment of vegetation in the Adelaide Parklands.

    Science.gov (United States)

    Nouri, Hamideh; Anderson, Sharolyn; Sutton, Paul; Beecham, Simon; Nagler, Pamela; Jarchow, Christopher J; Roberts, Dar A

    2017-04-15

    This research addresses the question as to whether or not the Normalised Difference Vegetation Index (NDVI) is scale invariant (i.e. constant over spatial aggregation) for pure pixels of urban vegetation. It has been long recognized that there are issues related to the modifiable areal unit problem (MAUP) pertaining to indices such as NDVI and images at varying spatial resolutions. These issues are relevant to using NDVI values in spatial analyses. We compare two different methods of calculation of a mean NDVI: 1) using pixel values of NDVI within feature/object boundaries and 2) first calculating the mean red and mean near-infrared across all feature pixels and then calculating NDVI. We explore the nature and magnitude of these differences for images taken from two sensors, a 1.24m resolution WorldView-3 and a 0.1m resolution digital aerial image. We apply these methods over an urban park located in the Adelaide Parklands of South Australia. We demonstrate that the MAUP is not an issue for calculation of NDVI within a sensor for pure urban vegetation pixels. This may prove useful for future rule-based monitoring of the ecosystem functioning of green infrastructure. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A novel and robust rotation and scale invariant structuring elements based descriptor for pedestrian classification in infrared images

    Science.gov (United States)

    Soundrapandiyan, Rajkumar; Chandra Mouli, P. V. S. S. R.

    2016-09-01

    In this paper, a novel and robust rotation and scale invariant structuring elements based descriptor (RSSED) for pedestrian classification in infrared (IR) images is proposed. In addition, a segmentation method using difference of Gaussian (DoG) and horizontal intensity projection is proposed. The three major steps are moving object segmentation, feature extraction and classification of objects as pedestrian or non-pedestrian. The segmentation result is used to extract the RSSED feature descriptor. To extract features, the segmentation result is encoded using local directional pattern (LDP). This helps in the identification of local textural patterns. The LDP encoded image is further quantized adaptively to four levels. Finally the proposed RSSED is used to formalize the descriptor from the quantized image. Support vector machine is employed for classification of the moving objects in a given IR image into pedestrian and non-pedestrian classes. The segmentation results shows the robustness in extracting the moving objects. The classification results obtained from SVM classifier shows the efficacy of the proposed method.

  14. Content-based image retrieval using scale invariant feature transform and gray level co-occurrence matrix

    Science.gov (United States)

    Srivastava, Prashant; Khare, Manish; Khare, Ashish

    2017-06-01

    The rapid growth of different types of images has posed a great challenge to the scientific fraternity. As the images are increasing everyday, it is becoming a challenging task to organize the images for efficient and easy access. The field of image retrieval attempts to solve this problem through various techniques. This paper proposes a novel technique of image retrieval by combining Scale Invariant Feature Transform (SIFT) and Co-occurrence matrix. For construction of feature vector, SIFT descriptors of gray scale images are computed and normalized using z-score normalization followed by construction of Gray-Level Co-occurrence Matrix (GLCM) of normalized SIFT keypoints. The constructed feature vector is matched with those of images in database to retrieve visually similar images. The proposed method is tested on Corel-1K dataset and the performance is measured in terms of precision and recall. The experimental results demonstrate that the proposed method outperforms some of the other state-of-the-art methods.

  15. Scale invariant feature transform in adaptive radiation therapy: a tool for deformable image registration assessment and re-planning indication

    Science.gov (United States)

    Paganelli, Chiara; Peroni, Marta; Riboldi, Marco; Sharp, Gregory C.; Ciardo, Delia; Alterio, Daniela; Orecchia, Roberto; Baroni, Guido

    2013-01-01

    Adaptive radiation therapy (ART) aims at compensating for anatomic and pathological changes to improve delivery along a treatment fraction sequence. Current ART protocols require time-consuming manual updating of all volumes of interest on the images acquired during treatment. Deformable image registration (DIR) and contour propagation stand as a state of the ART method to automate the process, but the lack of DIR quality control methods hinder an introduction into clinical practice. We investigated the scale invariant feature transform (SIFT) method as a quantitative automated tool (1) for DIR evaluation and (2) for re-planning decision-making in the framework of ART treatments. As a preliminary test, SIFT invariance properties at shape-preserving and deformable transformations were studied on a computational phantom, granting residual matching errors below the voxel dimension. Then a clinical dataset composed of 19 head and neck ART patients was used to quantify the performance in ART treatments. For the goal (1) results demonstrated SIFT potential as an operator-independent DIR quality assessment metric. We measured DIR group systematic residual errors up to 0.66 mm against 1.35 mm provided by rigid registration. The group systematic errors of both bony and all other structures were also analyzed, attesting the presence of anatomical deformations. The correct automated identification of 18 patients who might benefit from ART out of the total 22 cases using SIFT demonstrated its capabilities toward goal (2) achievement.

  16. NDVI, scale invariance and the modifiable areal unit problem: An assessment of vegetation in the Adelaide Parklands

    Science.gov (United States)

    Nouri, Hamideh; Anderson, Sharolyn; Sutton, Paul; Beecham, Simon; Nagler, Pamela L.; Jarchow, Christopher J.; Roberts, Dar A.

    2017-01-01

    This research addresses the question as to whether or not the Normalised Difference Vegetation Index (NDVI) is scale invariant (i.e. constant over spatial aggregation) for pure pixels of urban vegetation. It has been long recognized that there are issues related to the modifiable areal unit problem (MAUP) pertaining to indices such as NDVI and images at varying spatial resolutions. These issues are relevant to using NDVI values in spatial analyses. We compare two different methods of calculation of a mean NDVI: 1) using pixel values of NDVI within feature/object boundaries and 2) first calculating the mean red and mean near-infrared across all feature pixels and then calculating NDVI. We explore the nature and magnitude of these differences for images taken from two sensors, a 1.24 m resolution WorldView-3 and a 0.1 m resolution digital aerial image. We apply these methods over an urban park located in the Adelaide Parklands of South Australia. We demonstrate that the MAUP is not an issue for calculation of NDVI within a sensor for pure urban vegetation pixels. This may prove useful for future rule-based monitoring of the ecosystem functioning of green infrastructure.

  17. ENHANCED MAGNETIC COMPRESSIBILITY AND ISOTROPIC SCALE INVARIANCE AT SUB-ION LARMOR SCALES IN SOLAR WIND TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Kiyani, K. H.; Fauvarque, O. [Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Chapman, S. C.; Hnat, B. [Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Sahraoui, F. [Laboratoire de Physique des Plasmas, Observatoire de Saint-Maur, F-94107 Saint-Maur-Des-Fosses (France); Khotyaintsev, Yu. V., E-mail: k.kiyani@imperial.ac.uk [Swedish Institute of Space Physics, SE-75121 Uppsala (Sweden)

    2013-01-20

    The anisotropic nature of solar wind magnetic turbulence fluctuations is investigated scale by scale using high cadence in situ magnetic field measurements from the Cluster and ACE spacecraft missions. The data span five decades in scales from the inertial range to the electron Larmor radius. In contrast to the inertial range, there is a successive increase toward isotropy between parallel and transverse power at scales below the ion Larmor radius, with isotropy being achieved at the electron Larmor radius. In the context of wave-mediated theories of turbulence, we show that this enhancement in magnetic fluctuations parallel to the local mean background field is qualitatively consistent with the magnetic compressibility signature of kinetic Alfven wave solutions of the linearized Vlasov equation. More generally, we discuss how these results may arise naturally due to the prominent role of the Hall term at sub-ion Larmor scales. Furthermore, computing higher-order statistics, we show that the full statistical signature of the fluctuations at scales below the ion Larmor radius is that of a single isotropic globally scale-invariant process distinct from the anisotropic statistics of the inertial range.

  18. Enhanced Magnetic Compressibility and Isotropic Scale Invariance at Sub-ion Larmor Scales in Solar Wind Turbulence

    Science.gov (United States)

    Kiyani, K. H.; Chapman, S. C.; Sahraoui, F.; Hnat, B.; Fauvarque, O.; Khotyaintsev, Yu. V.

    2013-01-01

    The anisotropic nature of solar wind magnetic turbulence fluctuations is investigated scale by scale using high cadence in situ magnetic field measurements from the Cluster and ACE spacecraft missions. The data span five decades in scales from the inertial range to the electron Larmor radius. In contrast to the inertial range, there is a successive increase toward isotropy between parallel and transverse power at scales below the ion Larmor radius, with isotropy being achieved at the electron Larmor radius. In the context of wave-mediated theories of turbulence, we show that this enhancement in magnetic fluctuations parallel to the local mean background field is qualitatively consistent with the magnetic compressibility signature of kinetic Alfvén wave solutions of the linearized Vlasov equation. More generally, we discuss how these results may arise naturally due to the prominent role of the Hall term at sub-ion Larmor scales. Furthermore, computing higher-order statistics, we show that the full statistical signature of the fluctuations at scales below the ion Larmor radius is that of a single isotropic globally scale-invariant process distinct from the anisotropic statistics of the inertial range.

  19. Nonstandard asymptotic analysis

    CERN Document Server

    Berg, Imme

    1987-01-01

    This research monograph considers the subject of asymptotics from a nonstandard view point. It is intended both for classical asymptoticists - they will discover a new approach to problems very familiar to them - and for nonstandard analysts but includes topics of general interest, like the remarkable behaviour of Taylor polynomials of elementary functions. Noting that within nonstandard analysis, "small", "large", and "domain of validity of asymptotic behaviour" have a precise meaning, a nonstandard alternative to classical asymptotics is developed. Special emphasis is given to applications in numerical approximation by convergent and divergent expansions: in the latter case a clear asymptotic answer is given to the problem of optimal approximation, which is valid for a large class of functions including many special functions. The author's approach is didactical. The book opens with a large introductory chapter which can be read without much knowledge of nonstandard analysis. Here the main features of the t...

  20. The social brain: scale-invariant layering of Erdős-Rényi networks in small-scale human societies.

    Science.gov (United States)

    Harré, Michael S; Prokopenko, Mikhail

    2016-05-01

    The cognitive ability to form social links that can bind individuals together into large cooperative groups for safety and resource sharing was a key development in human evolutionary and social history. The 'social brain hypothesis' argues that the size of these social groups is based on a neurologically constrained capacity for maintaining long-term stable relationships. No model to date has been able to combine a specific socio-cognitive mechanism with the discrete scale invariance observed in ethnographic studies. We show that these properties result in nested layers of self-organizing Erdős-Rényi networks formed by each individual's ability to maintain only a small number of social links. Each set of links plays a specific role in the formation of different social groups. The scale invariance in our model is distinct from previous 'scale-free networks' studied using much larger social groups; here, the scale invariance is in the relationship between group sizes, rather than in the link degree distribution. We also compare our model with a dominance-based hierarchy and conclude that humans were probably egalitarian in hunter-gatherer-like societies, maintaining an average maximum of four or five social links connecting all members in a largest social network of around 132 people. © 2016 The Author(s).

  1. Optimal asymptotic cloning machines

    Science.gov (United States)

    Chiribella, Giulio; Yang, Yuxiang

    2014-06-01

    We pose the question whether the asymptotic equivalence between quantum cloning and quantum state estimation, valid at the single-clone level, still holds when all clones are examined globally. We conjecture that the answer is affirmative and present a large amount of evidence supporting our conjecture, developing techniques to derive optimal asymptotic cloners and proving their equivalence with estimation in virtually all scenarios considered in the literature. Our analysis covers the case of arbitrary finite sets of states, arbitrary families of coherent states, arbitrary phase- and multiphase-covariant sets of states, and two-qubit maximally entangled states. In all these examples we observe that the optimal asymptotic cloners enjoy a universality property, consisting in the fact that scaling of their fidelity does not depend on the specific details of the input states, but only on the number of free parameters needed to specify them.

  2. Fracture Scale-Invariance in Antarctic Shelf Ice: Wing and Comb Crevasses along Shear Faults within the Minna Bluff Region

    Science.gov (United States)

    Arcone, S. A.

    2016-12-01

    Wing and comb crevasses at the 0.1-10 km scale are associated with three of five large rifts presently off Minna Bluff on the western side of the Ross Ice Shelf, Antarctica. Their similarity to millimeter-scale parent-wing structures that grow from random fractures in biaxially compressed polycrystalline ice specimens demonstrates fracture scale-invariance for these phenomena, as previously shown for sea ice at multi-km scale. Historical WorldView and Landsat images show that these rifts, at least partially filled with marine ice, initiate in a small parent-double wing structure near the Bluff. The tip of the east wing then grows to multi-km lengths eastward into the shelf as it is wedged open by sea water and marine ice to form a rift. The northern edge of each rift is now a right lateral transform fault, with motion caused by expansion rather than by compression in the crystallographic case. RADARSAT imagery differentiates these shear faults from true crevasses. Because of this shear the north edge becomes a new parent. On its relatively faster north side, these new parents have acutely angled stick-slip crevasses. 25 m of movement along the fault relative to the south side occurred over a 20 month period from 2010 to 2011. On the relatively slower south side, as in the crystallographic case the shear has generated multi-km-long curvilinear wings starting at the fault tips, curvilinear wing mouth crevasses that eventually converge far to the east, and comb crevasses (known as teeth) that parallel the wings, all starting more nearly orthogonally to the fault direction. Wings and combs can be as long as parents. Wings are also characterized by a shear fault from which new combs grow. Such evidence for shear along wings has not been seen in SEM crystallographic images, so that the Minna Bluff scale appears to have revealed this new phenomenon. By late 2015 shear crevasses beneath the north parent edge of this one particular rift had virtually closed, which reflects

  3. Computation and Asymptotics

    CERN Document Server

    Ramnath, Rudrapatna V

    2012-01-01

    This book addresses the task of computation from the standpoint of asymptotic analysis and multiple scales that may be inherent in the system dynamics being studied. This is in contrast to the usual methods of numerical analysis and computation. The technical literature is replete with numerical methods such as Runge-Kutta approach and its variations, finite element methods, and so on. However, not much attention has been given to asymptotic methods for computation, although such approaches have been widely applied with great success in the analysis of dynamic systems. The presence of differen

  4. Asymptotic freedom, asymptotic flatness and cosmology

    CERN Document Server

    Kiritsis, Elias

    2013-01-01

    Holographic RG flows in some cases are known to be related to cosmological solutions. In this paper another example of such correspondence is provided. Holographic RG flows giving rise to asymptotically-free $\\beta$-functions have been analyzed in connection with holographic models of QCD. They are shown upon Wick rotation to provide a large class of inflationary models with logarithmically soft inflaton potentials. The scalar spectral index is universal and depends only on the number of e-foldings. The ratio of tensor to scalar power depends on the single extra real parameter that defines this class of models. The Starobinsky inflationary model as well as the recently proposed models of T-inflation are members of this class. The holographic setup gives a completely new (and contrasting) view to the stability and other problems of such inflationary models.

  5. Quadratic maps without asymptotic measure

    Science.gov (United States)

    Hofbauer, Franz; Keller, Gerhard

    1990-02-01

    An interval map is said to have an asymptotic measure if the time averages of the iterates of Lebesgue measure converge weakly. We construct quadratic maps which have no asymptotic measure. We also find examples of quadratic maps which have an asymptotic measure with very unexpected properties, e.g. a map with the point mass on an unstable fix point as asymptotic measure. The key to our construction is a new characterization of kneading sequences.

  6. Quasi-asymptotic Dispersion

    Science.gov (United States)

    Scheven, U. M.; Harris, R.; Johns, M. L.

    2008-12-01

    The experimental characterization of voidspaces in porous media generally includes measurements of volume averaged scalar properties such as porosity, dispersivity, or the hydrodynamic radius rh = V/S, where V and S are the volume and surface area of the pore space respectively. Displacement encoding NMR experiments have made significant contributions to this characterization. It is clear, however, that NMR derived dispersivities in packed beds—the one random porous system for which there exist canonical but incompatible theoretical predictions with few or no adjustable parameters—can be affected by the same experimental complications which have substantially contributed to the puzzling scatter in published dispersion results based on elution experiments. Notable among these are macroscopic flow heterogeneities near walls, and inhomogeneous flow injection. Using the first three cumulants we delineate a transition from a pre-asymptotic to a quasi-asymptotic dispersion regime and determine the true dispersivity of the random pack of spheres.

  7. Scale invariance of the η-deformed AdS5×S5 superstring, T-duality and modified type II equations

    Directory of Open Access Journals (Sweden)

    G. Arutyunov

    2016-02-01

    Full Text Available We consider the ABF background underlying the η-deformed AdS5×S5 sigma model. This background fails to satisfy the standard IIB supergravity equations which indicates that the corresponding sigma model is not Weyl invariant, i.e. does not define a critical string theory in the usual sense. We argue that the ABF background should still define a UV finite theory on a flat 2d world-sheet implying that the η-deformed model is scale invariant. This property follows from the formal relation via T-duality between the η-deformed model and the one defined by an exact type IIB supergravity solution that has 6 isometries albeit broken by a linear dilaton. We find that the ABF background satisfies candidate type IIB scale invariance conditions which for the R–R field strengths are of the second order in derivatives. Surprisingly, we also find that the ABF background obeys an interesting modification of the standard IIB supergravity equations that are first order in derivatives of R–R fields. These modified equations explicitly depend on Killing vectors of the ABF background and, although not universal, they imply the universal scale invariance conditions. Moreover, we show that it is precisely the non-isometric dilaton of the T-dual solution that leads, after T-duality, to modification of type II equations from their standard form. We conjecture that the modified equations should follow from κ-symmetry of the η-deformed model. All our observations apply also to η-deformations of AdS3×S3×T4and AdS2×S2×T6models.

  8. Asymptotic safety guaranteed

    Energy Technology Data Exchange (ETDEWEB)

    Litim, Daniel F. [Department of Physics and Astronomy, University of Sussex,Falmer Campus, Brighton, BN1 9QH (United Kingdom); Sannino, Francesco [CP-Origins & the Danish Institute for Advanced Study Danish IAS, University of Southern Denmark,Campusvej 55, DK-5230 Odense (Denmark)

    2014-12-31

    We study the ultraviolet behaviour of four-dimensional quantum field theories involving non-abelian gauge fields, fermions and scalars in the Veneziano limit. In a regime where asymptotic freedom is lost, we explain how the three types of fields cooperate to develop fully interacting ultraviolet fixed points, strictly controlled by perturbation theory. Extensions towards strong coupling and beyond the large-N limit are discussed.

  9. Asymptotic safety guaranteed

    DEFF Research Database (Denmark)

    Litim, Daniel F.; Sannino, Francesco

    2014-01-01

    We study the ultraviolet behaviour of four-dimensional quantum field theories involving non-abelian gauge fields, fermions and scalars in the Veneziano limit. In a regime where asymptotic freedom is lost, we explain how the three types of fields cooperate to develop fully interacting ultraviolet...... fixed points, strictly controlled by perturbation theory. Extensions towards strong coupling and beyond the large-N limit are discussed....

  10. Asymptotically flat multiblack lenses

    Science.gov (United States)

    Tomizawa, Shinya; Okuda, Taika

    2017-03-01

    We present an asymptotically flat and stationary multiblack lens solution with biaxisymmetry of U (1 )×U (1 ) as a supersymmetric solution in the five-dimensional minimal ungauged supergravity. We show that the spatial cross section of each degenerate Killing horizon admits different lens space topologies of L (n ,1 )=S3/Zn as well as a sphere S3. Moreover, we show that, in contrast to the higher-dimensional Majumdar-Papapetrou multiblack hole and multi-Breckenridge-Myers-Peet-Vafa (BMPV) black hole spacetime, the metric is smooth on each horizon even if the horizon topology is spherical.

  11. Asymptotic structures of cardinals

    Directory of Open Access Journals (Sweden)

    Oleksandr Petrenko

    2014-07-01

    Full Text Available A ballean is a set X endowed with some family F of its subsets, called the balls, in such a way that (X,F  can be considered as an asymptotic counterpart of a uniform topological space. Given a cardinal k, we define F using a natural order structure on k. We characterize balleans up to coarse equivalence, give the criterions of metrizability and cellularity, calculate the basic cardinal invariant of these balleans. We conclude the paper with discussion of some special ultrafilters on cardinal balleans.

  12. Asymptotic black holes

    Science.gov (United States)

    Ho, Pei-Ming

    2017-04-01

    Following earlier works on the KMY model of black-hole formation and evaporation, we construct the metric for a matter sphere in gravitational collapse, with the back-reaction of pre-Hawking radiation taken into consideration. The mass distribution and collapsing velocity of the matter sphere are allowed to have an arbitrary radial dependence. We find that a generic gravitational collapse asymptote to a universal configuration which resembles a black hole but without horizon. This approach clarifies several misunderstandings about black-hole formation and evaporation, and provides a new model for black-hole-like objects in the universe.

  13. Thermodynamics of Asymptotically Conical Geometries.

    Science.gov (United States)

    Cvetič, Mirjam; Gibbons, Gary W; Saleem, Zain H

    2015-06-12

    We study the thermodynamical properties of a class of asymptotically conical geometries known as "subtracted geometries." We derive the mass and angular momentum from the regulated Komar integral and the Hawking-Horowitz prescription and show that they are equivalent. By deriving the asymptotic charges, we show that the Smarr formula and the first law of thermodynamics hold. We also propose an analog of Christodulou-Ruffini inequality. The analysis can be generalized to other asymptotically conical geometries.

  14. Asymptotic independence for unimodal densities

    NARCIS (Netherlands)

    Balkema, G.; Nolde, N.

    2010-01-01

    Asymptotic independence of the components of random vectors is a concept used in many applications. The standard criteria for checking asymptotic independence are given in terms of distribution functions (DFs). DFs are rarely available in an explicit form, especially in the multivariate case. Often

  15. Asymptotic Safety, Fractals, and Cosmology

    Science.gov (United States)

    Reuter, Martin; Saueressig, Frank

    These lecture notes introduce the basic ideas of the asymptotic safety approach to quantum Einstein gravity (QEG). In particular they provide the background for recent work on the possibly multi-fractal structure of the QEG space-times. Implications of asymptotic safety for the cosmology of the early Universe are also discussed.

  16. Essentially asymptotically stable homoclinic networks

    NARCIS (Netherlands)

    Driesse, R.; Homburg, A.J.

    2009-01-01

    Melbourne [An example of a nonasymptotically stable attractor, Nonlinearity 4(3) (1991), pp. 835-844] discusses an example of a robust heteroclinic network that is not asymptotically stable but which has the strong attracting property called essential asymptotic stability. We establish that this

  17. On asymptotics for difference equations

    NARCIS (Netherlands)

    Rafei, M.

    2012-01-01

    In this thesis a class of nonlinear oscillator equations is studied. Asymptotic approximations of first integrals for nonlinear difference equations are constructed by using the recently developed perturbation method based on invariance vectors. The asymptotic approximations of the solutions of the

  18. Asymptotic analysis and boundary layers

    CERN Document Server

    Cousteix, Jean

    2007-01-01

    This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general comprehensive presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows. The advantages of SCEM are discussed in comparison with the standard Method of Matched Asymptotic Expansions. In particular, for the first time, the theory of Interactive Boundary Layer is fully justified. With its chapter summaries, detailed derivations of results, discussed examples and fully worked out problems and solutions, the book is self-contained. It is written on a mathematical level accessible to graduate and post-graduate students of engineering and physics with a good knowledge in fluid mechanics. Researchers and practitioners will estee...

  19. Top mass from asymptotic safety

    Science.gov (United States)

    Eichhorn, Astrid; Held, Aaron

    2018-02-01

    We discover that asymptotically safe quantum gravity could predict the top-quark mass. For a broad range of microscopic gravitational couplings, quantum gravity could provide an ultraviolet completion for the Standard Model by triggering asymptotic freedom in the gauge couplings and bottom Yukawa and asymptotic safety in the top-Yukawa and Higgs-quartic coupling. We find that in a part of this range, a difference of the top and bottom mass of approximately 170GeV is generated and the Higgs mass is determined in terms of the top mass. Assuming no new physics below the Planck scale, we construct explicit Renormalization Group trajectories for Standard Model and gravitational couplings which link the transplanckian regime to the electroweak scale and yield a top pole mass of Mt,pole ≈ 171GeV.

  20. Asymptotic vacua with higher derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Cotsakis, Spiros, E-mail: skot@aegean.gr [Department of Mathematics, American University of the Middle East, P.O. Box 220 Dasman, 15453 (Kuwait); Kadry, Seifedine, E-mail: Seifedine.Kadry@aum.edu.kw [Department of Mathematics, American University of the Middle East, P.O. Box 220 Dasman, 15453 (Kuwait); Kolionis, Georgios, E-mail: gkolionis@aegean.gr [Research group of Geometry, Dynamical Systems and Cosmology, University of the Aegean, Karlovassi 83200, Samos (Greece); Tsokaros, Antonios, E-mail: atsok@aegean.gr [Research group of Geometry, Dynamical Systems and Cosmology, University of the Aegean, Karlovassi 83200, Samos (Greece)

    2016-04-10

    We study limits of vacuum, isotropic universes in the full, effective, four-dimensional theory with higher derivatives. We show that all flat vacua as well as general curved ones are globally attracted by the standard, square root scaling solution at early times. Open vacua asymptote to horizon-free, Milne states in both directions while closed universes exhibit more complex logarithmic singularities, starting from initial data sets of a possibly smaller dimension. We also discuss the relation of our results to the asymptotic stability of the passage through the singularity in ekpyrotic and cyclic cosmologies.

  1. Asymptotic geometric analysis, part I

    CERN Document Server

    Artstein-Avidan, Shiri

    2015-01-01

    The authors present the theory of asymptotic geometric analysis, a field which lies on the border between geometry and functional analysis. In this field, isometric problems that are typical for geometry in low dimensions are substituted by an "isomorphic" point of view, and an asymptotic approach (as dimension tends to infinity) is introduced. Geometry and analysis meet here in a non-trivial way. Basic examples of geometric inequalities in isomorphic form which are encountered in the book are the "isomorphic isoperimetric inequalities" which led to the discovery of the "concentration phenomen

  2. HMI Data Driven Magnetohydrodynamic Model Predicted Active Region Photospheric Heating Rates: Their Scale Invariant, Flare Like Power Law Distributions, and Their Possible Association With Flares

    Science.gov (United States)

    Goodman, Michael L.; Kwan, Chiman; Ayhan, Bulent; Shang, Eric L.

    2017-01-01

    A data driven, near photospheric, 3 D, non-force free magnetohydrodynamic model predicts time series of the complete current density, and the resistive heating rate Q at the photosphere in neutral line regions (NLRs) of 14 active regions (ARs). The model is driven by time series of the magnetic field B observed by the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory (SDO) satellite. Spurious Doppler periods due to SDO orbital motion are filtered out of the time series for B in every AR pixel. Errors in B due to these periods can be significant. The number of occurrences N(q) of values of Q > or = q for each AR time series is found to be a scale invariant power law distribution, N(Q) / Q-s, above an AR dependent threshold value of Q, where 0.3952 or = E obeys the same type of distribution, N(E) / E-S, above an AR dependent threshold value of E, with 0.38 < or approx. S < or approx. 0.60, also with little variation among ARs. Within error margins the ranges of s and S are nearly identical. This strong similarity between N(Q) and N(E) suggests a fundamental connection between the process that drives coronal flares and the process that drives photospheric NLR heating rates in ARs. In addition, results suggest it is plausible that spikes in Q, several orders of magnitude above background values, are correlated with times of the subsequent occurrence of M or X flares.

  3. Asymptotics of weighted random sums

    DEFF Research Database (Denmark)

    Corcuera, José Manuel; Nualart, David; Podolskij, Mark

    2014-01-01

    In this paper we study the asymptotic behaviour of weighted random sums when the sum process converges stably in law to a Brownian motion and the weight process has continuous trajectories, more regular than that of a Brownian motion. We show that these sums converge in law to the integral...

  4. Thermodynamics of asymptotically safe theories

    DEFF Research Database (Denmark)

    Rischke, Dirk H.; Sannino, Francesco

    2015-01-01

    We investigate the thermodynamic properties of a novel class of gauge-Yukawa theories that have recently been shown to be completely asymptotically safe, because their short-distance behaviour is determined by the presence of an interacting fixed point. Not only do all the coupling constants freeze...

  5. Naturalness of asymptotically safe Higgs

    DEFF Research Database (Denmark)

    Pelaggi, Giulio M.; Sannino, Francesco; Strumia, Alessandro

    2017-01-01

    that the scalars can be lighter than Λ. Although we do not have an answer to whether the Standard Model hypercharge coupling growth toward a Landau pole at around Λ ~ 1040GeV can be tamed by non-perturbative asymptotic safety, our results indicate that such a possibility is worth exploring. In fact, if successful...

  6. Ruin problems and tail asymptotics

    DEFF Research Database (Denmark)

    Rønn-Nielsen, Anders

    The thesis Ruin Problems and Tail Asymptotics provides results on ruin problems for several classes of Markov processes. For a class of diffusion processes with jumps an explicit expression for the joint Laplace transform of the first passage time and the corresponding undershoot is derived...

  7. New Analysis Method Application in Metallographic Images through the Construction of Mosaics Via Speeded Up Robust Features and Scale Invariant Feature Transform

    Directory of Open Access Journals (Sweden)

    Pedro Pedrosa Rebouças Filho

    2015-06-01

    results and expediting the decision making process. Two different methods are proposed: One using the transformed Scale Invariant Feature Transform (SIFT, and the second using features extractor Speeded Up Robust Features (SURF. Although slower, the SIFT method is more stable and has a better performance than the SURF method and can be applied to real applications. The best results were obtained using SIFT with Peak Signal-to-Noise Ratio = 61.38, Mean squared error = 0.048 and mean-structural-similarity = 0.999, and processing time of 4.91 seconds for mosaic building. The methodology proposed shows be more promissory in aiding specialists during analysis of metallographic images.

  8. Asymptotic symmetries and electromagnetic memory

    Science.gov (United States)

    Pasterski, Sabrina

    2017-09-01

    Recent investigations into asymptotic symmetries of gauge theory and gravity have illuminated connections between gauge field zero-mode sectors, the corresponding soft factors, and their classically observable counterparts — so called "memories". Namely, low frequency emissions in momentum space correspond to long time integrations of the corre-sponding radiation in position space. Memory effect observables constructed in this manner are non-vanishing in typical scattering processes, which has implications for the asymptotic symmetry group. Here we complete this triad for the case of large U(1) gauge symmetries at null infinity. In particular, we show that the previously studied electromagnetic memory effect, whereby the passage of electromagnetic radiation produces a net velocity kick for test charges in a distant detector, is the position space observable corresponding to th Weinberg soft photon pole in momentum space scattering amplitudes.

  9. Asymptotic prime partitions of integers

    Science.gov (United States)

    Bartel, Johann; Bhaduri, R. K.; Brack, Matthias; Murthy, M. V. N.

    2017-05-01

    In this paper, we discuss P (n ) , the number of ways a given integer n may be written as a sum of primes. In particular, an asymptotic form Pas(n ) valid for n →∞ is obtained analytically using standard techniques of quantum statistical mechanics. First, the bosonic partition function of primes, or the generating function of unrestricted prime partitions in number theory, is constructed. Next, the density of states is obtained using the saddle-point method for Laplace inversion of the partition function in the limit of large n . This gives directly the asymptotic number of prime partitions Pas(n ) . The leading term in the asymptotic expression grows exponentially as √{n /ln(n ) } and agrees with previous estimates. We calculate the next-to-leading-order term in the exponent, proportional to ln[ln(n )]/ln(n ) , and we show that an earlier result in the literature for its coefficient is incorrect. Furthermore, we also calculate the next higher-order correction, proportional to 1 /ln(n ) and given in Eq. (43), which so far has not been available in the literature. Finally, we compare our analytical results with the exact numerical values of P (n ) up to n ˜8 ×106 . For the highest values, the remaining error between the exact P (n ) and our Pas(n ) is only about half of that obtained with the leading-order approximation. But we also show that, unlike for other types of partitions, the asymptotic limit for the prime partitions is still quite far from being reached even for n ˜107 .

  10. Root Asymptotics of Spectral Polynomials

    Directory of Open Access Journals (Sweden)

    B. Shapiro

    2007-01-01

    Full Text Available We have been studying the asymptotic energy distribution of the algebraic part of the spectrum of the one-dimensional sextic anharmonic oscillator. We review some (both old and recent results on the multiparameter spectral problem and show that our problem ranks among the degenerate cases of Heine-Stieltjes spectral problem, and we derive the density of the corresponding probability measure. 

  11. Numerical Relativity and Asymptotic Flatness

    OpenAIRE

    Deadman, E.; Stewart, J. M.

    2009-01-01

    It is highly plausible that the region of space-time far from an isolated gravitating body is, in some sense, asymptotically Minkowskian. However theoretical studies of the full nonlinear theory, initiated by Bondi et al. (1962), Sachs (1962) and Newman & Unti (1962), rely on careful, clever, a-priori choices of chart (and tetrad) and so are not readily accessible to the numerical relativist, who chooses her/his chart on the basis of quite different grounds. This paper seeks to close this gap...

  12. Ultraviolet asymptotics of glueball propagators

    Science.gov (United States)

    Bochicchio, Marco; Muscinelli, Samuele P.

    2013-08-01

    We point out that perturbation theory in conjunction with the renormalization group ( RG) puts a severe constraint on the structure of the large- N non-perturbative glueball propagators in SU( N) pure Y M, in QCD and in = 1 SU SY QCD with massless quarks, or in any confining asymptotically-free gauge theory massless in perturbation theory. For the scalar and pseudoscalar glueball propagators in pure Y M and QCD with massless quarks we check in detail the RG-improved estimate to the order of the leading and next-to-leading logarithms by means of a remarkable three-loop computation by Chetyrkin et al. We investigate as to whether the aforementioned constraint is satisfied by any of the scalar or pseudoscalar glueball propagators computed in the framework of the AdS String/ large- N Gauge Theory correspondence and of a recent proposal based on a Topological Field Theory underlying the large- N limit of Y M . We find that none of the proposals for the scalar or the pseudoscalar glueball propagators based on the AdS String/large- N Gauge Theory correspondence satisfies the constraint, actually as expected, since the gravity side of the correspondence is in fact strongly coupled in the ultraviolet. On the contrary, the Topological Field Theory satisfies the constraint that follows by the asymptotic freedom.

  13. Asymptotically Free Gauge Theories. I

    Science.gov (United States)

    Wilczek, Frank; Gross, David J.

    1973-07-01

    Asymptotically free gauge theories of the strong interactions are constructed and analyzed. The reasons for doing this are recounted, including a review of renormalization group techniques and their application to scaling phenomena. The renormalization group equations are derived for Yang-Mills theories. The parameters that enter into the equations are calculated to lowest order and it is shown that these theories are asymptotically free. More specifically the effective coupling constant, which determines the ultraviolet behavior of the theory, vanishes for large space-like momenta. Fermions are incorporated and the construction of realistic models is discussed. We propose that the strong interactions be mediated by a "color" gauge group which commutes with SU(3)xSU(3). The problem of symmetry breaking is discussed. It appears likely that this would have a dynamical origin. It is suggested that the gauge symmetry might not be broken, and that the severe infrared singularities prevent the occurrence of non-color singlet physical states. The deep inelastic structure functions, as well as the electron position total annihilation cross section are analyzed. Scaling obtains up to calculable logarithmic corrections, and the naive lightcone or parton model results follow. The problems of incorporating scalar mesons and breaking the symmetry by the Higgs mechanism are explained in detail.

  14. Asymptotic dimension of relatively hyperbolic groups

    OpenAIRE

    Osin, D. V.

    2004-01-01

    Suppose that a finitely generated group $G$ is hyperbolic relative to a collection of subgroups $\\{H_1, ..., H_m\\} $. We prove that if each of the subgroups $H_1, ..., H_m$ has finite asymptotic dimension, then asymptotic dimension of $G$ is also finite.

  15. Asymptotically informative prior for Bayesian analysis

    NARCIS (Netherlands)

    Yuan, A.; de Gooijer, J.G.

    2011-01-01

    In classical Bayesian inference the prior is treated as fixed, it is asymptotically negligible, thus any information contained in the prior is ignored from the asymptotic first order result. However, in practice often an informative prior is summarized from previous similar or the same kind of

  16. Term structure modeling and asymptotic long rate

    NARCIS (Netherlands)

    Yao, Y.

    1999-01-01

    This paper examines the dynamics of the asymptotic long rate in three classes of term structure models. It shows that, in a frictionless and arbitrage-free market, the asymptotic long rate is a non-decreasing process. This gives an alternative proof of the same result of Dybvig et al. (Dybvig, P.H.,

  17. Asymptotic methods for wave and quantum problems

    CERN Document Server

    Karasev, M V

    2003-01-01

    The collection consists of four papers in different areas of mathematical physics united by the intrinsic coherence of the asymptotic methods used. The papers describe both the known results and most recent achievements, as well as new concepts and ideas in mathematical analysis of quantum and wave problems. In the introductory paper "Quantization and Intrinsic Dynamics" a relationship between quantization of symplectic manifolds and nonlinear wave equations is described and discussed from the viewpoint of the weak asymptotics method (asymptotics in distributions) and the semiclassical approxi

  18. Occupancy in continuous habitat

    Science.gov (United States)

    Efford, Murray G.; Dawson, Deanna K.

    2012-01-01

    The probability that a site has at least one individual of a species ('occupancy') has come to be widely used as a state variable for animal population monitoring. The available statistical theory for estimation when detection is imperfect applies particularly to habitat patches or islands, although it is also used for arbitrary plots in continuous habitat. The probability that such a plot is occupied depends on plot size and home-range characteristics (size, shape and dispersion) as well as population density. Plot size is critical to the definition of occupancy as a state variable, but clear advice on plot size is missing from the literature on the design of occupancy studies. We describe models for the effects of varying plot size and home-range size on expected occupancy. Temporal, spatial, and species variation in average home-range size is to be expected, but information on home ranges is difficult to retrieve from species presence/absence data collected in occupancy studies. The effect of variable home-range size is negligible when plots are very large (>100 x area of home range), but large plots pose practical problems. At the other extreme, sampling of 'point' plots with cameras or other passive detectors allows the true 'proportion of area occupied' to be estimated. However, this measure equally reflects home-range size and density, and is of doubtful value for population monitoring or cross-species comparisons. Plot size is ill-defined and variable in occupancy studies that detect animals at unknown distances, the commonest example being unlimited-radius point counts of song birds. We also find that plot size is ill-defined in recent treatments of "multi-scale" occupancy; the respective scales are better interpreted as temporal (instantaneous and asymptotic) rather than spatial. Occupancy is an inadequate metric for population monitoring when it is confounded with home-range size or detection distance.

  19. A quantum kinematics for asymptotically flat spacetimes

    CERN Document Server

    Campiglia, Miguel

    2014-01-01

    We construct a quantum kinematics for asymptotically flat spacetimes based on the Koslowski-Sahlmann (KS) representation. The KS representation is a generalization of the representation underlying Loop Quantum Gravity (LQG) which supports, in addition to the usual LQG operators, the action of `background exponential operators' which are connection dependent operators labelled by `background' $su(2)$ electric fields. KS states have, in addition to the LQG state label corresponding to 1 dimensional excitations of the triad, a label corresponding to a `background' electric field which describes 3 dimensional excitations of the triad. Asymptotic behaviour in quantum theory is controlled through asymptotic conditions on the background electric fields which label the {\\em states} and the background electric fields which label the {\\em operators}. Asymptotic conditions on the triad are imposed as conditions on the background electric field state label while confining the LQG spin net graph labels to compact sets. We...

  20. The Asymptotic Approach to the Twin Paradox

    National Research Council Canada - National Science Library

    Spiridon Dumitru

    2008-01-01

    The argument of twins' asymmetry, essentially put forward in the common solution of the Twin Paradox, is revealed to be inoperative in some asymptotic situations in which the noninertial effects are insignificant...

  1. The Asymptotic Approach to the Twin Paradox

    National Research Council Canada - National Science Library

    Dumitru S

    2008-01-01

    The argument of twins’ asymmetry, essentially put forward in the common solution of the Twin Paradox, is revealed to be inoperative in some asymptotic situations in which the noninertial effects are insignificant...

  2. Large Deviations and Asymptotic Methods in Finance

    CERN Document Server

    Gatheral, Jim; Gulisashvili, Archil; Jacquier, Antoine; Teichmann, Josef

    2015-01-01

    Topics covered in this volume (large deviations, differential geometry, asymptotic expansions, central limit theorems) give a full picture of the current advances in the application of asymptotic methods in mathematical finance, and thereby provide rigorous solutions to important mathematical and financial issues, such as implied volatility asymptotics, local volatility extrapolation, systemic risk and volatility estimation. This volume gathers together ground-breaking results in this field by some of its leading experts. Over the past decade, asymptotic methods have played an increasingly important role in the study of the behaviour of (financial) models. These methods provide a useful alternative to numerical methods in settings where the latter may lose accuracy (in extremes such as small and large strikes, and small maturities), and lead to a clearer understanding of the behaviour of models, and of the influence of parameters on this behaviour. Graduate students, researchers and practitioners will find th...

  3. Generalized Asymptotically Almost Periodic and Generalized Asymptotically Almost Automorphic Solutions of Abstract Multiterm Fractional Differential Inclusions

    Directory of Open Access Journals (Sweden)

    G. M. N’Guérékata

    2018-01-01

    Full Text Available The main aim of this paper is to investigate generalized asymptotical almost periodicity and generalized asymptotical almost automorphy of solutions to a class of abstract (semilinear multiterm fractional differential inclusions with Caputo derivatives. We illustrate our abstract results with several examples and possible applications.

  4. ASYMPTOTICS OF a PARTICLES TRANSPORT PROBLEM

    Directory of Open Access Journals (Sweden)

    Kuzmina Ludmila Ivanovna

    2017-11-01

    Full Text Available Subject: a groundwater filtration affects the strength and stability of underground and hydro-technical constructions. Research objectives: the study of one-dimensional problem of displacement of suspension by the flow of pure water in a porous medium. Materials and methods: when filtering a suspension some particles pass through the porous medium, and some of them are stuck in the pores. It is assumed that size distributions of the solid particles and the pores overlap. In this case, the main mechanism of particle retention is a size-exclusion: the particles pass freely through the large pores and get stuck at the inlet of the tiny pores that are smaller than the particle diameter. The concentrations of suspended and retained particles satisfy two quasi-linear differential equations of the first order. To solve the filtration problem, methods of nonlinear asymptotic analysis are used. Results: in a mathematical model of filtration of suspensions, which takes into account the dependence of the porosity and permeability of the porous medium on concentration of retained particles, the boundary between two phases is moving with variable velocity. The asymptotic solution to the problem is constructed for a small filtration coefficient. The theorem of existence of the asymptotics is proved. Analytical expressions for the principal asymptotic terms are presented for the case of linear coefficients and initial conditions. The asymptotics of the boundary of two phases is given in explicit form. Conclusions: the filtration problem under study can be solved analytically.

  5. The optimal homotopy asymptotic method engineering applications

    CERN Document Server

    Marinca, Vasile

    2015-01-01

    This book emphasizes in detail the applicability of the Optimal Homotopy Asymptotic Method to various engineering problems. It is a continuation of the book “Nonlinear Dynamical Systems in Engineering: Some Approximate Approaches”, published at Springer in 2011, and it contains a great amount of practical models from various fields of engineering such as classical and fluid mechanics, thermodynamics, nonlinear oscillations, electrical machines, and so on. The main structure of the book consists of 5 chapters. The first chapter is introductory while the second chapter is devoted to a short history of the development of homotopy methods, including the basic ideas of the Optimal Homotopy Asymptotic Method. The last three chapters, from Chapter 3 to Chapter 5, are introducing three distinct alternatives of the Optimal Homotopy Asymptotic Method with illustrative applications to nonlinear dynamical systems. The third chapter deals with the first alternative of our approach with two iterations. Five application...

  6. Asymptotic Methods for Solitary Solutions and Compactons

    Directory of Open Access Journals (Sweden)

    Ji-Huan He

    2012-01-01

    Full Text Available This paper is an elementary introduction to some new asymptotic methods for the search for the solitary solutions of nonlinear differential equations, nonlinear differential-difference equations, and nonlinear fractional differential equations. Particular attention is paid throughout the paper to giving an intuitive grasp for the variational approach, the Hamiltonian approach, the variational iteration method, the homotopy perturbation method, the parameter-expansion method, the Yang-Laplace transform, the Yang-Fourier transform, and ancient Chinese mathematics. Hamilton principle and variational principles are also emphasized. The reviewed asymptotic methods are easy to be followed for various applications. Some ideas on this paper are first appeared.

  7. Exact Asymptotics of Bivariate Scale Mixture Distributions

    OpenAIRE

    Hashorva, Enkelejd

    2009-01-01

    Let (RU_1, R U_2) be a given bivariate scale mixture random vector, with R>0 being independent of the bivariate random vector (U_1,U_2). In this paper we derive exact asymptotic expansions of the tail probability P{RU_1> x, RU_2> ax}, a \\in (0,1] as x tends infintiy assuming that R has distribution function in the Gumbel max-domain of attraction and (U_1,U_2) has a specific tail behaviour around some absorbing point. As a special case of our results we retrieve the exact asymptotic behaviour ...

  8. Asymptotic stability of a catalyst particle

    DEFF Research Database (Denmark)

    Wedel, Stig; Michelsen, Michael L.; Villadsen, John

    1977-01-01

    The catalyst asymptotic stability problem is studied by means of several new methods that allow accurate solutions to be calculated where other methods have given qualitatively erroneous results. The underlying eigenvalue problem is considered in three limiting situations Le = ∞, 1 and 0. These a......The catalyst asymptotic stability problem is studied by means of several new methods that allow accurate solutions to be calculated where other methods have given qualitatively erroneous results. The underlying eigenvalue problem is considered in three limiting situations Le = ∞, 1 and 0...

  9. Asymptotically flat spacetimes with BMS3 symmetry

    Science.gov (United States)

    Compère, Geoffrey; Fiorucci, Adrien

    2017-10-01

    We construct the phase space of 3-dimensional asymptotically flat spacetimes that forms the bulk metric representation of the BMS group consisting of both supertranslations and superrotations. The asymptotic symmetry group is a unique copy of the BMS group at both null infinities and spatial infinity. The BMS phase space obeys a notion of holographic causality and can be parametrized by boundary null fields. This automatically leads to the antipodal identification of bulk fields between past and future null infinity in the absence of a global conical defect.

  10. On iterative procedures of asymptotic inference

    NARCIS (Netherlands)

    K.O. Dzhaparidze (Kacha)

    1983-01-01

    textabstractAbstract  An informal discussion is given on performing an unconstrained maximization or solving non‐linear equations of statistics by iterative methods with the quadratic termination property. It is shown that if a miximized function, e.g. likelihood, is asymptotically quadratic, then

  11. The Asymptotic Expansion Method via Symbolic Computation

    Directory of Open Access Journals (Sweden)

    Juan F. Navarro

    2012-01-01

    Full Text Available This paper describes an algorithm for implementing a perturbation method based on an asymptotic expansion of the solution to a second-order differential equation. We also introduce a new symbolic computation system which works with the so-called modified quasipolynomials, as well as an implementation of the algorithm on it.

  12. Asymptotically periodic solutions of Volterra integral equations

    Directory of Open Access Journals (Sweden)

    Muhammad N. Islam

    2016-03-01

    Full Text Available We study the existence of asymptotically periodic solutions of a nonlinear Volterra integral equation. In the process, we obtain the existence of periodic solutions of an associated nonlinear integral equation with infinite delay. Schauder's fixed point theorem is used in the analysis.

  13. Term structure extrapolation and asymptotic forward rates

    NARCIS (Netherlands)

    de Kort, J.; Vellekoop, M.H.

    2015-01-01

    We investigate different inter- and extrapolation methods for term structures under different constraints in order to generate market-consistent estimates which describe the asymptotic behavior of forward rates. Our starting point is the method proposed by Smith and Wilson, which is used by the

  14. Asymptotic symmetry algebra of conformal gravity

    Science.gov (United States)

    Irakleidou, Maria; Lovrekovic, Iva

    2017-11-01

    We compute asymptotic symmetry algebras of conformal gravity. Due to more general boundary conditions allowed in conformal gravity in comparison to those in Einstein gravity, we can classify the corresponding algebras. The highest algebra for nontrivial boundary conditions is five dimensional and it leads to global geon solution with nonvanishing charges.

  15. The Asymptotic Approach to the Twin Paradox

    Directory of Open Access Journals (Sweden)

    Dumitru S.

    2008-04-01

    Full Text Available The argument of twins’ asymmetry, essentially put forward in the common solution of the Twin Paradox, is revealed to be inoperative in some asymptotic situations in which the noninertial effects are insignificant. Consequently the respective solution proves itself as unreliable thing and the Twin Paradox is re-established as an open problem which require further investigations.

  16. The Asymptotic Approach to the Twin Paradox

    Directory of Open Access Journals (Sweden)

    Dumitru S.

    2008-04-01

    Full Text Available The argument of twins' asymmetry, essentially put forward in the common solution of the Twin Paradox, is revealed to be inoperative in some asymptotic situations in which the noninertial effects are insignificant. Consequently the respective solution proves itself as unreliable thing and the Twin Paradox is re-established as an open problem which require further investigations.

  17. Fixed Point Theorems for Asymptotically Contractive Multimappings

    Directory of Open Access Journals (Sweden)

    M. Djedidi

    2012-01-01

    Full Text Available We present fixed point theorems for a nonexpansive set-valued mapping from a closed convex subset of a reflexive Banach space into itself under some asymptotic contraction assumptions. Some existence results of coincidence points and eigenvalues for multimappings are given.

  18. Supersymmetric asymptotic safety is not guaranteed

    DEFF Research Database (Denmark)

    Intriligator, Kenneth; Sannino, Francesco

    2015-01-01

    in supersymmetric theories, and use unitarity bounds, and the a-theorem, to rule it out in broad classes of theories. The arguments apply without assuming perturbation theory. Therefore, the UV completion of a non-asymptotically free susy theory must have additional, non-obvious degrees of freedom, such as those...

  19. Asymptotic symmetries, holography and topological hair

    Science.gov (United States)

    Mishra, Rashmish K.; Sundrum, Raman

    2018-01-01

    Asymptotic symmetries of AdS4 quantum gravity and gauge theory are derived by coupling the holographically dual CFT3 to Chern-Simons gauge theory and 3D gravity in a "probe" (large-level) limit. Despite the fact that the three-dimensional AdS4 boundary as a whole is consistent with only finite-dimensional asymptotic symmetries, given by AdS isometries, infinite-dimensional symmetries are shown to arise in circumstances where one is restricted to boundary subspaces with effectively two-dimensional geometry. A canonical example of such a restriction occurs within the 4D subregion described by a Wheeler-DeWitt wavefunctional of AdS4 quantum gravity. An AdS4 analog of Minkowski "super-rotation" asymptotic symmetry is probed by 3D Einstein gravity, yielding CFT2 structure (in a large central charge limit), via AdS3 foliation of AdS4 and the AdS3/CFT2 correspondence. The maximal asymptotic symmetry is however probed by 3D conformal gravity. Both 3D gravities have Chern-Simons formulation, manifesting their topological character. Chern-Simons structure is also shown to be emergent in the Poincare patch of AdS4, as soft/boundary limits of 4D gauge theory, rather than "put in by hand" as an external probe. This results in a finite effective Chern-Simons level. Several of the considerations of asymptotic symmetry structure are found to be simpler for AdS4 than for Mink4, such as non-zero 4D particle masses, 4D non-perturbative "hard" effects, and consistency with unitarity. The last of these in particular is greatly simplified because in some set-ups the time dimension is explicitly shared by each level of description: Lorentzian AdS4, CFT3 and CFT2. Relatedly, the CFT2 structure clarifies the sense in which the infinite asymptotic charges constitute a useful form of "hair" for black holes and other complex 4D states. An AdS4 analog of Minkowski "memory" effects is derived, but with late-time memory of earlier events being replaced by (holographic) "shadow" effects. Lessons

  20. Scale Invariant Jets: From Blazars to Microquasars

    Science.gov (United States)

    Liodakis, Ioannis; Pavlidou, Vasiliki; Papadakis, Iossif; Angelakis, Emmanouil; Marchili, Nicola; Zensus, Johann A.; Fuhrmann, Lars; Karamanavis, Vassilis; Myserlis, Ioannis; Nestoras, Ioannis; Palaiologou, Efthymios; Readhead, Anthony C. S.

    2017-12-01

    Black holes, anywhere in the stellar-mass to supermassive range, are often associated with relativistic jets. Models suggest that jet production may be a universal process common in all black hole systems regardless of their mass. Although in many cases observations support such hypotheses for microquasars and Seyfert galaxies, little is known regarding whether boosted blazar jets also comply with such universal scaling laws. We use uniquely rich multi-wavelength radio light curves from the F-GAMMA program and the most accurate Doppler factors available to date to probe blazar jets in their emission rest frame with unprecedented accuracy. We identify for the first time a strong correlation between the blazar intrinsic broadband radio luminosity and black hole mass, which extends over ∼9 orders of magnitude down to microquasar scales. Our results reveal the presence of a universal scaling law that bridges the observing and emission rest frames in beamed sources and allows us to effectively constrain jet models. They consequently provide an independent method for estimating the Doppler factor and for predicting expected radio luminosities of boosted jets operating in systems of intermediate or tens of solar mass black holes, which are immediately applicable to cases such as those recently observed by LIGO.

  1. Occupational dermatosis

    National Research Council Canada - National Science Library

    Alchorne, Alice de Oliveira de Avelar; Alchorne, Maurício Mota de Avelar; Silva, Marzia Macedo

    2010-01-01

    Occupational Dermatosis is described as any alteration in the skin, mucosa or annexes that is directly or indirectly caused, conditioned, maintained or aggravated by agents present in the occupational...

  2. Asymptotic approximations for non-integer order derivatives of monomials

    Science.gov (United States)

    Aşiru, Muniru A.

    2015-02-01

    In this note, we develop new, simple and very accurate asymptotic approximations for non-integer order derivatives of monomial functions by using the more accurate asymptotic approximations for large factorials that have recently appeared in the literature.

  3. Asymptotic expansions for the Gaussian unitary ensemble

    DEFF Research Database (Denmark)

    Haagerup, Uffe; Thorbjørnsen, Steen

    2012-01-01

    Let g : R ¿ C be a C8-function with all derivatives bounded and let trn denote the normalized trace on the n × n matrices. In Ref. 3 Ercolani and McLaughlin established asymptotic expansions of the mean value ¿{trn(g(Xn))} for a rather general class of random matrices Xn, including the Gaussian...... aj(g), j ¿ N, as distributions (in the sense of L. Schwarts). We derive a similar asymptotic expansion for the covariance Cov{Trn[f(Xn)], Trn[g(Xn)]}, where f is a function of the same kind as g, and Trn = n trn. Special focus is drawn to the case where and for ¿, µ in C\\R. In this case the mean...

  4. Asymptotic Behavior of Certain Integrodifferential Equations

    Directory of Open Access Journals (Sweden)

    Said Grace

    2016-01-01

    Full Text Available This paper deals with asymptotic behavior of nonoscillatory solutions of certain forced integrodifferential equations of the form: atx′t′=e(t+∫ct‍(t-sα-1k(t,sf(s,x(sds,  c>1,  0<α<1. From the obtained results, we derive a technique which can be applied to some related integrodifferential as well as integral equations.

  5. Kink fluctuation asymptotics and zero modes

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, A.A. [Universidad de Salamanca, Departamento de Matematica Aplicada and IUFFyM, Salamanca (Spain); Guilarte, J.M. [Universidad de Salamanca, Departamento de Fisica Fundamental and IUFFyM, Salamanca (Spain)

    2012-10-15

    In this paper we propose a refinement of the heat-kernel/zeta function treatment of kink quantum fluctuations in scalar field theory, further analyzing the existence and implications of a zero-energy fluctuation mode. Improved understanding of the interplay between zero modes and the kink heat-kernel expansion delivers asymptotic estimations of one-loop kink mass shifts with remarkably higher precision than previously obtained by means of the standard Gilkey-DeWitt heat-kernel expansion. (orig.)

  6. Theorems for asymptotic safety of gauge theories

    Science.gov (United States)

    Bond, Andrew D.; Litim, Daniel F.

    2017-06-01

    We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasised. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated.

  7. Asymptotic Representations of Quantum Affine Superalgebras

    Science.gov (United States)

    Zhang, Huafeng

    2017-08-01

    We study representations of the quantum affine superalgebra associated with a general linear Lie superalgebra. In the spirit of Hernandez-Jimbo, we construct inductive systems of Kirillov-Reshetikhin modules based on a cyclicity result that we established previously on tensor products of these modules, and realize their inductive limits as modules over its Borel subalgebra, the so-called q-Yangian. A new generic asymptotic limit of the same inductive systems is proposed, resulting in modules over the full quantum affine superalgebra. We derive generalized Baxter's relations in the sense of Frenkel-Hernandez for representations of the full quantum group.

  8. Asymptotically safe inflation from quadratic gravity

    CERN Document Server

    Bonanno, Alfio

    2015-01-01

    Asymptotically Safe theories of gravity have recently received much attention. In this work we discuss a class of inflationary models derived from quantum-gravity modification of quadratic gravity according to the induced scaling around the non-Gaussian fixed point at very high energies. It is argued that the presence of a three dimensional ultraviolet critical surface generates operators of non-integer power of the type $R^{2-\\theta/2}$ in the effective Lagrangian, where $\\theta>0$ is a critical exponent. The requirement of a successful inflationary model in agreement with the recent Planck 2015 data puts important constraints on the strenght of this new type of couplings.

  9. Discrete dispersion models and their Tweedie asymptotics

    DEFF Research Database (Denmark)

    Jørgensen, Bent; Kokonendji, Célestin C.

    2016-01-01

    in this approach, whereas several overdispersed discrete distributions, such as the Neyman Type A, Pólya-Aeppli, negative binomial and Poisson-inverse Gaussian, turn out to be Poisson-Tweedie factorial dispersion models with power dispersion functions, analogous to ordinary Tweedie exponential dispersion models......-Tweedie asymptotic framework where Poisson-Tweedie models appear as dilation limits. This unifies many discrete convergence results and leads to Poisson and Hermite convergence results, similar to the law of large numbers and the central limit theorem, respectively. The dilation operator also leads to a duality...

  10. Lectures on the asymptotic theory of ideals

    CERN Document Server

    Rees, D

    1988-01-01

    In this book Professor Rees introduces and proves some of the main results of the asymptotic theory of ideals. The author's aim is to prove his Valuation Theorem, Strong Valuation Theorem, and Degree Formula, and to develop their consequences. The last part of the book is devoted to mixed multiplicities. Here the author develops his theory of general elements of ideals and gives a proof of a generalised degree formula. The reader is assumed to be familiar with basic commutative algebra, as covered in the standard texts, but the presentation is suitable for advanced graduate students. The work

  11. Asymptotic granularity reduction and its application

    OpenAIRE

    Su, Shenghui; Lü, Shuwang; Fan, Xiubin

    2011-01-01

    It is well known that the inverse function of y = x with the derivative y' = 1 is x = y, the inverse function of y = c with the derivative y' = 0 is inexistent, and so on. Hence, on the assumption that the noninvertibility of the univariate increasing function y = f(x) with x > 0 is in direct proportion to the growth rate reflected by its derivative, the authors put forward a method of comparing difficulties in inverting two functions on a continuous or discrete interval called asymptotic gra...

  12. On the Asymptotics of Takeuchi Numbers

    OpenAIRE

    Prellberg, Thomas

    2000-01-01

    I present an asymptotic formula for the Takeuchi numbers $T_n$. In particular, I give compelling numerical evidence and present a heuristic argument showing that $$T_n\\sim C_T B_n\\exp{1\\over2}{W(n)}^2$$as $n$ tends to infinity, where $B_n$ are the Bell numbers, W(n) is Lambert's $W$ function, and $C_T=2.239...$ is a constant. Moreover, I show that the method presented here can be generalized to derive conjectures for related problems.

  13. Dynamics and Asymptotics of Brane-Worlds

    Science.gov (United States)

    Antoniadis, I.; Cotsakis, S.; Klaoudatou, I.

    2015-01-01

    The self-tuning mechanism aims to provide a way to address the cosmological constant problem by guarantying the existence of flat brane solutions independently of the brane tension value. In recent work we have studied the asymptotics of different models of brane-worlds, and here we highlight certain interesting behaviors we have encountered in our search for appropriate conditions to avoid finite-distance singularities in flat brane solutions. Finding such conditions offers a framework within which the self-tuning mechanism could be realized.

  14. Scale Invariant Power Laws Capture the 3-D Coupling Between Water, Energy and Carbon Budgets Across River Basins of Increasing Horton-Strahler Orders in the Andes-Amazon System

    Science.gov (United States)

    Poveda, G.; Zapata, A. F.

    2016-12-01

    The Andes-Amazon system exhibits complex interactions and feedbacks between hydrological, ecological, biogeochemical and climatic factors in a broad range of temporal and spatial scales. We aim to understand the coupling existing between water, energy and carbon budgets in the Andes-Amazon system, by performing a systematic study of the system for river basins of increasing Horton-Strahler orders, from the headwaters of the Amazon River basin along the Andes (order ω=1 river sub-basins) to the low-lying larger river sub-basins (order ω=10). To that end, this works introduces a 3-D generalization of the Budyko framework that aims to link the water, energy, and Carbon budgets in river basins. The newly proposed 3-D non-dimensional space is defined by: (1) the ratio between long-term mean values of Actual Evapotranspiration (AET) and Precipitation (P), α=AET/P, representing the water balance; (2) the ratio between AET and Potential Evapotranspiration (PET), β=AET/PET, representing the energy balance; and (3) the ratio between AET and Aboveground Net Primary Productivity, δ=AET/ANPP, representing the carbon budget. We use a 3" Digital Elevation Model (DEM), which allows defining river basins with Horton-Strahler orders from 1 to 10. The long-term water, energy, and carbon budgets are estimated for increasing values of the Horton-Strahler orders during the period 1987-2007. Data sets pertaining to the water balance come from ORE-HYBAM, potential evapotranspiration (PET) from GLEAM (Global Land-surface Evaporation: the Amsterdam Methodology). Data for the energy budget are from the Surface Radiation Budget (SRB). Data for the Carbon budget (annual mean net primary productivity, ANPP, gross primary productivity, GPP, and respiration rates, Rr, come from AMAZALERT and ORCHEDEE (Organizing Carbon and Hydrology In Dynamic EcosystEms), as well as from Flux Tower Data and the LBA project. Our results show that scale invariant power-laws emerge to capture the three 2-D

  15. Homogenization-Based Numerical Mathods, Homogenization, Asymptotic Analysis, Asymptotic Expansion, Numerical Simulation

    OpenAIRE

    Frenod, Emmanuel

    2013-01-01

    In this note, a classification of Homogenization-Based Numerical Methods and (in particular) of Numerical Methods that are based on the Two-Scale Convergence is done. In this classification stand: Direct Homogenization-Based Numerical Methods; H-Measure-Based Numerical Methods; Two-Scale Numerical Methods and TSAPS: Two-Scale Asymptotic Preserving Schemes.

  16. Integrable theories that are asymptotically CFT

    CERN Document Server

    Evans, J M; Jonathan M Evans; Timothy J Hollowood

    1995-01-01

    A series of sigma models with torsion are analysed which generate their mass dynamically but whose ultra-violet fixed points are non-trivial conformal field theories -- in fact SU(2) WZW models at level k. In contrast to the more familiar situation of asymptotically free theories in which the fixed points are trivial, the sigma models considered here may be termed ``asymptotically CFT''. These theories have previously been conjectured to be quantum integrable; we confirm this by proposing a factorizable S-matrix to describe their infra-red behaviour and then carrying out a stringent test of this proposal. The test involves coupling the theory to a conserved charge and evaluating the response of the free-energy both in perturbation theory to one loop and directly from the S-matrix via the Thermodynamic Bethe Ansatz with a chemical potential at zero temperature. Comparison of these results provides convincing evidence in favour of the proposed S-matrix; it also yields the universal coefficients of the beta-func...

  17. Asymptotic accuracy of two-class discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Ho, T.K.; Baird, H.S. [AT& T Bell Laboratories, Murray Hill, NJ (United States)

    1994-12-31

    Poor quality-e.g. sparse or unrepresentative-training data is widely suspected to be one cause of disappointing accuracy of isolated-character classification in modern OCR machines. We conjecture that, for many trainable classification techniques, it is in fact the dominant factor affecting accuracy. To test this, we have carried out a study of the asymptotic accuracy of three dissimilar classifiers on a difficult two-character recognition problem. We state this problem precisely in terms of high-quality prototype images and an explicit model of the distribution of image defects. So stated, the problem can be represented as a stochastic source of an indefinitely long sequence of simulated images labeled with ground truth. Using this sequence, we were able to train all three classifiers to high and statistically indistinguishable asymptotic accuracies (99.9%). This result suggests that the quality of training data was the dominant factor affecting accuracy. The speed of convergence during training, as well as time/space trade-offs during recognition, differed among the classifiers.

  18. Asymptotic variance of grey-scale surface area estimators

    DEFF Research Database (Denmark)

    Svane, Anne Marie

    Grey-scale local algorithms have been suggested as a fast way of estimating surface area from grey-scale digital images. Their asymptotic mean has already been described. In this paper, the asymptotic behaviour of the variance is studied in isotropic and sufficiently smooth settings, resulting...... in a general asymptotic bound. For compact convex sets with nowhere vanishing Gaussian curvature, the asymptotics can be described more explicitly. As in the case of volume estimators, the variance is decomposed into a lattice sum and an oscillating term of at most the same magnitude....

  19. An asymptotic solution of large-$N$ $QCD$

    OpenAIRE

    Bochicchio, Marco

    2014-01-01

    We find an asymptotic solution for two-, three- and multi-point correlators of local gauge-invariant operators, in a lower-spin sector of massless large-$N$ $QCD$, in terms of glueball and meson propagators, in such a way that the solution is asymptotic in the ultraviolet to renormalization-group improved perturbation theory, by means of a new purely field-theoretical technique that we call the asymptotically-free bootstrap, based on a recently-proved asymptotic structure theorem for two-poin...

  20. Soft pion theorem, asymptotic symmetry and new memory effect

    Science.gov (United States)

    Hamada, Yuta; Sugishita, Sotaro

    2017-11-01

    It is known that soft photon and graviton theorems can be regarded as the Ward-Takahashi identities of asymptotic symmetries. In this paper, we consider soft theorem for pions, i.e., Nambu-Goldstone bosons associated with a spontaneously broken axial symmetry. The soft pion theorem is written as the Ward-Takahashi identities of the S-matrix under asymptotic transformations. We investigate the asymptotic dynamics, and find that the conservation of charges generating the asymptotic transformations can be interpreted as a pion memory effect.

  1. The asymptotic complexity of merging networks

    DEFF Research Database (Denmark)

    Miltersen, Peter Bro; Paterson, Mike; Tarui, Jun

    1996-01-01

    Let M(m,n) be the minimum number of comparatorsneeded in a comparator network that merges m elements x1≤x2≤&cdots;≤xm and n elements y1≤y2≤&cdots;≤yn , where n≥m . Batcher's odd-even merge yields the following upper bound: Mm,n≤1 2m+nlog 2m+on; in particular, Mn,n≤nlog 2n+On. We prove the following...... lower bound that matches the upper bound above asymptotically as n≥m→∞: Mm,n≥1 2m+nlog 2m-Om; in particular, Mn,n≥nlog 2n-On. Our proof technique extends to give similarily tight lower bounds for the size of monotone Boolean circuits for merging, and for the size of switching networks capable...... of realizing the set of permutations that arise from merging....

  2. Asymptotic freedom beyond the leading order

    CERN Document Server

    Buras, Andrzej J; Ross, D A; Sachrajda, Christopher T C

    1977-01-01

    The authors make a quantitative analysis of the full G/sup 2/ interaction corrections to the leading Q/sup 2/ dependence of nu W/sub 2/ at x>or=0.4, as given by an asymptotically free gauge theory. It turns out that due to partial cancellations between various contributions the g/sup 2/ corrections are small. The best fit with the SLAC ep data after including the g/sup 2/ corrections is almost identical to that without these corrections, the only effect being a change in Lambda , the one free parameter, which sets the scale of the theory. On the other hand the effect of including target mass corrections is to improve the agreement of the prediction for nu W/sub 2//sup ep/ with data for large values of x. (20 refs).

  3. Asymptotic representation of relaxation oscillations in lasers

    CERN Document Server

    Grigorieva, Elena V

    2017-01-01

    In this book we analyze relaxation oscillations in models of lasers with nonlinear elements controlling light dynamics. The models are based on rate equations taking into account periodic modulation of parameters, optoelectronic delayed feedback, mutual coupling between lasers, intermodal interaction and other factors. With the aim to study relaxation oscillations we present the special asymptotic method of integration for ordinary differential equations and differential-difference equations. As a result, they are reduced to discrete maps. Analyzing the maps we describe analytically such nonlinear phenomena in lasers as multistability of large-amplitude relaxation cycles, bifurcations of cycles, controlled switching of regimes, phase synchronization in an ensemble of coupled systems and others. The book can be fruitful for students and technicians in nonlinear laser dynamics and in differential equations.

  4. Asymptotic stability of steady compressible fluids

    CERN Document Server

    Padula, Mariarosaria

    2011-01-01

    This volume introduces a systematic approach to the solution of some mathematical problems that arise in the study of the hyperbolic-parabolic systems of equations that govern the motions of thermodynamic fluids. It is intended for a wide audience of theoretical and applied mathematicians with an interest in compressible flow, capillarity theory, and control theory. The focus is particularly on recent results concerning nonlinear asymptotic stability, which are independent of assumptions about the smallness of the initial data. Of particular interest is the loss of control that sometimes results when steady flows of compressible fluids are upset by large disturbances. The main ideas are illustrated in the context of three different physical problems: (i) A barotropic viscous gas in a fixed domain with compact boundary. The domain may be either an exterior domain or a bounded domain, and the boundary may be either impermeable or porous. (ii) An isothermal viscous gas in a domain with free boundaries. (iii) A h...

  5. Motion Parallax is Asymptotic to Binocular Disparity

    CERN Document Server

    Stroyan, Keith

    2010-01-01

    Researchers especially beginning with (Rogers & Graham, 1982) have noticed important psychophysical and experimental similarities between the neurologically different motion parallax and stereopsis cues. Their quantitative analysis relied primarily on the "disparity equivalence" approximation. In this article we show that retinal motion from lateral translation satisfies a strong ("asymptotic") approximation to binocular disparity. This precise mathematical similarity is also practical in the sense that it applies at normal viewing distances. The approximation is an extension to peripheral vision of (Cormac & Fox's 1985) well-known non-trig central vision approximation for binocular disparity. We hope our simple algebraic formula will be useful in analyzing experiments outside central vision where less precise approximations have led to a number of quantitative errors in the vision literature.

  6. Traversable asymptotically flat wormholes in Rastall gravity

    Science.gov (United States)

    Moradpour, H.; Sadeghnezhad, N.; Hendi, S. H.

    2017-12-01

    There are some gravitational theories in which the ordinary energy-momentum conservation law is not valid in the curved spacetime. Rastall gravity is one of the known theories in this regard which includes a non-minimal coupling between geometry and matter fields. Equipped with the basis of such theory, we study the properties of traversable wormholes with flat asymptotes. We investigate the possibility of exact solutions by a source with the baryonic matter state parameter. Our survey indicates that Rastall theory has considerable effects on the wormhole characteristics. In addition, we study various case studies and show that the weak energy condition may be met for some solutions. We also give a discussion regarding to traversability of such wormhole geometry with phantom sources.

  7. Correlation at low temperature;2, Asymptotics

    CERN Document Server

    Bach, V

    2003-01-01

    The present paper is a continuation of our paper [Bach-Moller mp_arc 02-215] where the truncated two-point correlation function for a class of lattice spin systems was proved to have exponential decay at low temperature, under a weak coupling assumption. In this paper we compute the asymptotics of the correlation function as the temperature goes to zero. This paper thus extends [Bach-Jecko-Sjostrand, mp_arc 98-552] in two directions: The Hamiltonian function is allowed to have several local minima other than a unique global minimum, and we do not require translation invariance of the Hamiltonian function. We are in particular able to handle spin systems on a general lattice.

  8. Asymptotic theory of weakly dependent random processes

    CERN Document Server

    Rio, Emmanuel

    2017-01-01

    Presenting tools to aid understanding of asymptotic theory and weakly dependent processes, this book is devoted to inequalities and limit theorems for sequences of random variables that are strongly mixing in the sense of Rosenblatt, or absolutely regular. The first chapter introduces covariance inequalities under strong mixing or absolute regularity. These covariance inequalities are applied in Chapters 2, 3 and 4 to moment inequalities, rates of convergence in the strong law, and central limit theorems. Chapter 5 concerns coupling. In Chapter 6 new deviation inequalities and new moment inequalities for partial sums via the coupling lemmas of Chapter 5 are derived and applied to the bounded law of the iterated logarithm. Chapters 7 and 8 deal with the theory of empirical processes under weak dependence. Lastly, Chapter 9 describes links between ergodicity, return times and rates of mixing in the case of irreducible Markov chains. Each chapter ends with a set of exercises. The book is an updated and extended ...

  9. Asymptotic properties of restricted naming games

    Science.gov (United States)

    Bhattacherjee, Biplab; Datta, Amitava; Manna, S. S.

    2017-07-01

    Asymptotic properties of the symmetric and asymmetric naming games have been studied under some restrictions in a community of agents. In one version, the vocabulary sizes of the agents are restricted to finite capacities. In this case, compared to the original naming games, the dynamics takes much longer time for achieving the consensus. In the second version, the symmetric game starts with a limited number of distinct names distributed among the agents. Three different quantities are measured for a quantitative comparison, namely, the maximum value of the total number of names in the community, the time at which the community attains the maximal number of names, and the global convergence time. Using an extensive numerical study, the entire set of three power law exponents characterizing these quantities are estimated for both the versions which are observed to be distinctly different from their counter parts of the original naming games.

  10. Asymptotic methods in mechanics of solids

    CERN Document Server

    Bauer, Svetlana M; Smirnov, Andrei L; Tovstik, Petr E; Vaillancourt, Rémi

    2015-01-01

    The construction of solutions of singularly perturbed systems of equations and boundary value problems that are characteristic for the mechanics of thin-walled structures are the main focus of the book. The theoretical results are supplemented by the analysis of problems and exercises. Some of the topics are rarely discussed in the textbooks, for example, the Newton polyhedron, which is a generalization of the Newton polygon for equations with two or more parameters. After introducing the important concept of the index of variation for functions special attention is devoted to eigenvalue problems containing a small parameter. The main part of the book deals with methods of asymptotic solutions of linear singularly perturbed boundary and boundary value problems without or with turning points, respectively. As examples, one-dimensional equilibrium, dynamics and stability problems for rigid bodies and solids are presented in detail. Numerous exercises and examples as well as vast references to the relevant Russi...

  11. Asymptotically Honest Confidence Regions for High Dimensional

    DEFF Research Database (Denmark)

    Caner, Mehmet; Kock, Anders Bredahl

    While variable selection and oracle inequalities for the estimation and prediction error have received considerable attention in the literature on high-dimensional models, very little work has been done in the area of testing and construction of confidence bands in high-dimensional models. However...... of the asymptotic covariance matrix of an increasing number of parameters which is robust against conditional heteroskedasticity. To our knowledge we are the first to do so. Next, we show that our confidence bands are honest over sparse high-dimensional sub vectors of the parameter space and that they contract...... at the optimal rate. All our results are valid in high-dimensional models. Our simulations reveal that the desparsified conservative Lasso estimates the parameters much more precisely than the desparsified Lasso, has much better size properties and produces confidence bands with markedly superior coverage rates....

  12. Lattice quantum gravity and asymptotic safety

    Science.gov (United States)

    Laiho, J.; Bassler, S.; Coumbe, D.; Du, D.; Neelakanta, J. T.

    2017-09-01

    We study the nonperturbative formulation of quantum gravity defined via Euclidean dynamical triangulations (EDT) in an attempt to make contact with Weinberg's asymptotic safety scenario. We find that a fine-tuning is necessary in order to recover semiclassical behavior. Such a fine-tuning is generally associated with the breaking of a target symmetry by the lattice regulator; in this case we argue that the target symmetry is the general coordinate invariance of the theory. After introducing and fine-tuning a nontrivial local measure term, we find no barrier to taking a continuum limit, and we find evidence that four-dimensional, semiclassical geometries are recovered at long distance scales in the continuum limit. We also find that the spectral dimension at short distance scales is consistent with 3 /2 , a value that could resolve the tension between asymptotic safety and the holographic entropy scaling of black holes. We argue that the number of relevant couplings in the continuum theory is one, once symmetry breaking by the lattice regulator is accounted for. Such a theory is maximally predictive, with no adjustable parameters. The cosmological constant in Planck units is the only relevant parameter, which serves to set the lattice scale. The cosmological constant in Planck units is of order 1 in the ultraviolet and undergoes renormalization group running to small values in the infrared. If these findings hold up under further scrutiny, the lattice may provide a nonperturbative definition of a renormalizable quantum field theory of general relativity with no adjustable parameters and a cosmological constant that is naturally small in the infrared.

  13. Occupational health

    CERN Document Server

    Fingret, Dr Ann

    2013-01-01

    Offers a comprehensive view of health and safety issues at work. An invaluable resource for managers, personnel professionals and occupational health practitioners. Recommended by the Institute of Personnel Management.

  14. Occupational Therapists

    Science.gov (United States)

    ... bachelor’s degree and specific coursework, including biology and physiology. Many programs also require applicants to have volunteered ... of many conditions and ailments commonly associated with aging, such as arthritis and stroke. Occupational therapists also ...

  15. Occupational Health

    Science.gov (United States)

    Occupational health problems occur at work or because of the kind of work you do. These problems can include ... by exposure to radiation Exposure to germs in health care settings Good job safety and prevention practices ...

  16. Occupational Asthma

    Science.gov (United States)

    ... the enzymes of the bacteria Bacillus subtilis, while bakers may develop an allergy and occupational asthma symptoms ... counts Continuing education center Find an allergist / immunologist Journals Login / My membership Search your symptoms Shop the ...

  17. Asymptotic representation theorems for poverty indices | Lo | Afrika ...

    African Journals Online (AJOL)

    Abstract. We set general conditions under which the general poverty index, which summarizes all the available indices, is asymptotically represented with some empirical processes. This representation theorem offers a general key, in most directions, for the asymptotic of the bulk of poverty indices and issues in poverty ...

  18. Asymptotic size determines species abundance in the marine size spectrum

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Beyer, Jan

    2006-01-01

    The majority of higher organisms in the marine environment display indeterminate growth; that is, they continue to grow throughout their life, limited by an asymptotic size. We derive the abundance of species as a function of their asymptotic size. The derivation is based on size-spectrum theory...

  19. Asymptotic behaviour of solutions of a nonlinear transport equation

    NARCIS (Netherlands)

    C.J. van Duijn (Hans); M.A. Peletier (Mark)

    1996-01-01

    textabstractWe investigate the asymptotic behaviour of solutions of the convection- diffusion equation $$ b(u)_t + divleft( u q - n u right) = 0 qquad hbox{for r = |x| > e quadhbox{andquad t>0, $$ where $q=l/r, er $, $l>0$. The asymptotic limits that we consider are $ttoinfty$ and $e downto0$. We

  20. Comparison of the asymptotic stability properties for two multirate strategies

    NARCIS (Netherlands)

    V. Savcenco (Valeriu)

    2007-01-01

    textabstractThis paper contains a comparison of the asymptotic stability properties for two multirate strategies. For each strategy, the asymptotic stability regions are presented for a 2 x 2 test problem and the differences between the results are discussed. The considered multirate schemes use

  1. Journal Afrika Statistika ISSN 0852-0305 Asymptotic representation ...

    African Journals Online (AJOL)

    Abstract. We set general conditions under which the general poverty index, which summarizes all the available indices, is asymptotically represented with some empirical processes. This representation theorem offers a general key, in most directions, for the asymptotic of the bulk of poverty indices and issues in poverty ...

  2. On oscillation and asymptotic behaviour of solutions of forced first ...

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 111; Issue 3. On Oscillation and Asymptotic Behaviour of Solutions of Forced First Order Neutral Differential Equations. N Parhi R N Rath. Volume 111 Issue 3 August 2001 pp ... Keywords. Oscillation; nonoscillation; neutral equations; asymptotic behaviour.

  3. Reduction Arguments for Geometric Inequalities Associated With Asymptotically Hyperboloidal Slices

    CERN Document Server

    Cha, Ye Sle; Sakovich, Anna

    2016-01-01

    We consider several geometric inequalities in general relativity involving mass, area, charge, and angular momentum for asymptotically hyperboloidal initial data. We show how to reduce each one to the known maximal (or time symmetric) case in the asymptotically flat setting, whenever a geometrically motivated system of elliptic equations admits a solution.

  4. Numerical algorithms for uniform Airy-type asymptotic expansions

    NARCIS (Netherlands)

    N.M. Temme (Nico)

    1997-01-01

    textabstractAiry-type asymptotic representations of a class of special functions are considered from a numerical point of view. It is well known that the evaluation of the coefficients of the asymptotic series near the transition point is a difficult problem. We discuss two methods for computing

  5. An efficient locally asymptotic parametric test in nonlinear ...

    African Journals Online (AJOL)

    Abstract. In this paper we deal with a locally asymptotic stringent test for a general class of nonlinear time series heteroscedastic models. Based on the local asymptotic normality (LAN) property of these models, we propose a scoretyp test statistic for testing hypotheses on the parameters appearing in the mean and variance ...

  6. Asymptotic distribution of products of sums of independent random ...

    Indian Academy of Sciences (India)

    453007 Henan, China. E-mail: bigduckwyl@163.com; duhongxia24@gmail.com. MS received 7 April 2012; revised 10 October 2012. Abstract. In the paper we consider the asymptotic distribution of products of weighted sums of independent random variables. Keywords. Asymptotic distribution; products of sums. 1.

  7. An asymptotic solution of large-N QCD

    Directory of Open Access Journals (Sweden)

    Bochicchio Marco

    2014-01-01

    Full Text Available We find an asymptotic solution for two-, three- and multi-point correlators of local gauge-invariant operators, in a lower-spin sector of massless large-N QCD, in terms of glueball and meson propagators, in such a way that the solution is asymptotic in the ultraviolet to renormalization-group improved perturbation theory, by means of a new purely field-theoretical technique that we call the asymptotically-free bootstrap, based on a recently-proved asymptotic structure theorem for two-point correlators. The asymptotically-free bootstrap provides as well asymptotic S-matrix amplitudes in terms of glueball and meson propagators. Remarkably, the asymptotic S-matrix depends only on the unknown particle spectrum, but not on the anomalous dimensions, as a consequence of the LS Z reduction formulae. Very many physics consequences follow, both practically and theoretically. In fact, the asymptotic solution sets the strongest constraints on any actual solution of large-N QCD, and in particular on any string solution.

  8. An asymptotic solution of large-N QCD

    Science.gov (United States)

    Bochicchio, Marco

    2014-11-01

    We find an asymptotic solution for two-, three- and multi-point correlators of local gauge-invariant operators, in a lower-spin sector of massless large-N QCD, in terms of glueball and meson propagators, in such a way that the solution is asymptotic in the ultraviolet to renormalization-group improved perturbation theory, by means of a new purely field-theoretical technique that we call the asymptotically-free bootstrap, based on a recently-proved asymptotic structure theorem for two-point correlators. The asymptotically-free bootstrap provides as well asymptotic S-matrix amplitudes in terms of glueball and meson propagators. Remarkably, the asymptotic S-matrix depends only on the unknown particle spectrum, but not on the anomalous dimensions, as a consequence of the LS Z reduction formulae. Very many physics consequences follow, both practically and theoretically. In fact, the asymptotic solution sets the strongest constraints on any actual solution of large-N QCD, and in particular on any string solution.

  9. Large Time Asymptotics for Solutions of Nonlinear Partial Differential Equations

    CERN Document Server

    Sachdev, PL

    2010-01-01

    A large number of physical phenomena are modeled by nonlinear partial differential equations, subject to appropriate initial/boundary conditions. This title presents the constructive mathematical techniques. It deals with the asymptotic methods which include self-similarity, balancing argument, and matched asymptotic expansions

  10. Asymptotic expansions for high-contrast linear elasticity

    KAUST Repository

    Poveda, Leonardo A.

    2015-03-01

    We study linear elasticity problems with high contrast in the coefficients using asymptotic limits recently introduced. We derive an asymptotic expansion to solve heterogeneous elasticity problems in terms of the contrast in the coefficients. We study the convergence of the expansion in the H1 norm. © 2015 Elsevier B.V.

  11. Numerical and asymptotic aspects of parabolic cylinder functions

    NARCIS (Netherlands)

    N.M. Temme (Nico)

    2000-01-01

    textabstractSeveral uniform asymptotics expansions of the Weber parabolic cylinder functions are considered, one group in terms of elementary functions, another group in terms of Airy functions. Starting point for the discussion are asymptotic expansions given earlier by F.W.J. Olver. Some of his

  12. Asymptotic behavior of a system of linear fractional difference equations

    Directory of Open Access Journals (Sweden)

    Nurkanović M

    2005-01-01

    Full Text Available We investigate the global asymptotic behavior of solutions of the system of difference equations , , , where the parameters , , , and are positive numbers and the initial conditions and are arbitrary nonnegative numbers. We obtain some asymptotic results for the positive equilibrium of this system.

  13. Asymptotic ray theory of linear viscoelastic media

    Science.gov (United States)

    Nechtschein, Stephane

    The Asymptotic Ray Theory (ART) has become a frequently used technique for the numerical modeling of seismic wave propagation in complex geological models. This theory was originally developed for elastic structures with the ray amplitude computation performed in the time domain. ART is now extended to linear viscoelastic media, the linear theory of viscoelasticity being used to simulate the dispersive properties peculiar to anelastic materials. This extension of ART is based on the introduction of a frequency dependent amplitude term having the same properties as in the elastic case and on a frequency dependent complex phase function. Consequently the ray amplitude computation is now performed in the frequency domain, the final solution being obtained by carrying out an Inverse Fourier Transform. Since ART is used, the boundary conditions for the kinematic and dynamic properties of the waves only have to be satisfied locally. This results in a much simpler Snell's Law for linear viscoelastic media, which in fact turns out to be of the same form as for the elastic case. No complex angle is involved. Furthermore the rays, the ray parameters, the geometrical spreading are all real values implying that the direction of the attenuation vector is always along the ray. The reflection and transmission coefficients were therefore rederived. These viscoelastic ART coefficients behave differently from those obtained with the Plane Wave method. Their amplitude and phase curves are always close to those computed for perfectly elastic media and they smoothly approach the elastic reflection/transmission coefficients when the quality factors increase to infinity. These same ART coefficients also display some non-physical results depending on the choice of the quality factors. This last feature might be useful to determine whether or not the two media making up the interface can be regarded as linear viscoelastic. Finally the results obtained from synthetic seismogram computations

  14. Occupational mortality

    DEFF Research Database (Denmark)

    Lynge, Elsebeth

    2011-01-01

    INTRODUCTION: This paper aims to present the methods and main results from the Danish occupational mortality studies, and to set the Danish studies into the international context of occupational mortality studies. RESEARCH TOPICS: The first Danish occupational mortality study from 1970......-1975 revealed a considerable social class gradient in male mortality where university teachers and farmers had a 40% lower mortality and waiters and seamen had an about 100% higher mortality than the average for economically active men. The social class gradient was less steep for women. A similar pattern...... was found in 1996- 2005. CONCLUSION: In view of the considerable societal changes which have taken place from the beginning of the 1970s to the turn of the century, surprisingly small changes have taken place in the mortality pattern across social groups....

  15. Qualitative and Asymptotic Theory of Detonations

    KAUST Repository

    Faria, Luiz

    2014-11-09

    Shock waves in reactive media possess very rich dynamics: from formation of cells in multiple dimensions to oscillating shock fronts in one-dimension. Because of the extreme complexity of the equations of combustion theory, most of the current understanding of unstable detonation waves relies on extensive numerical simulations of the reactive compressible Euler/Navier-Stokes equations. Attempts at a simplified theory have been made in the past, most of which are very successful in describing steady detonation waves. In this work we focus on obtaining simplified theories capable of capturing not only the steady, but also the unsteady behavior of detonation waves. The first part of this thesis is focused on qualitative theories of detonation, where ad hoc models are proposed and analyzed. We show that equations as simple as a forced Burgers equation can capture most of the complex phenomena observed in detonations. In the second part of this thesis we focus on rational theories, and derive a weakly nonlinear model of multi-dimensional detonations. We also show, by analysis and numerical simulations, that the asymptotic equations provide good quantitative predictions.

  16. Asymptotic Behaviour of the QED Perturbation Series

    Directory of Open Access Journals (Sweden)

    Idrish Huet

    2017-01-01

    Full Text Available I will summarize the present state of a long-term effort to obtain information on the large-order asymptotic behaviour of the QED perturbation series through the effective action. Starting with the constant-field case, I will discuss the Euler-Heisenberg Lagrangian in various dimensions and up to the three-loop level. This Lagrangian holds the information on the N-photon amplitudes in the low-energy limit, and combining it with Spinor helicity methods explicit all-N results can be obtained at the one-loop and, for the “all +” amplitudes, also at the two-loop level. For the imaginary part of the Euler-Heisenberg Lagrangian, an all-loop formula has been conjectured independently by Affleck, Alvarez, and Manton for Scalar QED and by Lebedev and Ritus for Spinor QED. This formula can be related through a Borel dispersion relation to the leading large-N behaviour of the N-photon amplitudes. It is analytic in the fine structure constant, which is puzzling and suggests a diagrammatic investigation of the large-N limit in perturbation theory. Preliminary results of such a study for the 1+1 dimensional case throw doubt on the validity of the conjecture.

  17. Asymptotic Solutions of Serial Radial Fuel Shuffling

    Directory of Open Access Journals (Sweden)

    Xue-Nong Chen

    2015-12-01

    Full Text Available In this paper, the mechanism of traveling wave reactors (TWRs is investigated from the mathematical physics point of view, in which a stationary fission wave is formed by radial fuel drifting. A two dimensional cylindrically symmetric core is considered and the fuel is assumed to drift radially according to a continuous fuel shuffling scheme. A one-group diffusion equation with burn-up dependent macroscopic coefficients is set up. The burn-up dependent macroscopic coefficients were assumed to be known as functions of neutron fluence. By introducing the effective multiplication factor keff, a nonlinear eigenvalue problem is formulated. The 1-D stationary cylindrical coordinate problem can be solved successively by analytical and numerical integrations for associated eigenvalues keff. Two representative 1-D examples are shown for inward and outward fuel drifting motions, respectively. The inward fuel drifting has a higher keff than the outward one. The 2-D eigenvalue problem has to be solved by a more complicated method, namely a pseudo time stepping iteration scheme. Its 2-D asymptotic solutions are obtained together with certain eigenvalues keff for several fuel inward drifting speeds. Distributions of the neutron flux, the neutron fluence, the infinity multiplication factor kinf and the normalized power are presented for two different drifting speeds.

  18. Solvable Optimal Velocity Models and Asymptotic Trajectory

    CERN Document Server

    Nakanishi, K; Igarashi, Y; Bando, M

    1996-01-01

    In the Optimal Velocity Model proposed as a new version of Car Following Model, it has been found that a congested flow is generated spontaneously from a homogeneous flow for a certain range of the traffic density. A well-established congested flow obtained in a numerical simulation shows a remarkable repetitive property such that the velocity of a vehicle evolves exactly in the same way as that of its preceding one except a time delay $T$. This leads to a global pattern formation in time development of vehicles' motion, and gives rise to a closed trajectory on $\\Delta x$-$v$ (headway-velocity) plane connecting congested and free flow points. To obtain the closed trajectory analytically, we propose a new approach to the pattern formation, which makes it possible to reduce the coupled car following equations to a single difference-differential equation (Rondo equation). To demonstrate our approach, we employ a class of linear models which are exactly solvable. We also introduce the concept of ``asymptotic traj...

  19. Asymptotic distribution of zeros of polynomials satisfying difference equations

    Science.gov (United States)

    Krasovsky, I. V.

    2003-01-01

    We propose a way to find the asymptotic distribution of zeros of orthogonal polynomials pn(x) satisfying a difference equation of the formB(x)pn(x+[delta])-C(x,n)pn(x)+D(x)pn(x-[delta])=0.We calculate the asymptotic distribution of zeros and asymptotics of extreme zeros of the Meixner and Meixner-Pollaczek polynomials. The distribution of zeros of Meixner polynomials shows some delicate features. We indicate the relation of our technique to the approach based on the Nevai-Dehesa-Ullman distribution.

  20. Asymptotic Solution of the Theory of Shells Boundary Value Problem

    Directory of Open Access Journals (Sweden)

    I. V. Andrianov

    2007-01-01

    Full Text Available This paper provides a state-of-the-art review of asymptotic methods in the theory of plates and shells. Asymptotic methods of solving problems related to theory of plates and shells have been developed by many authors. The main features of our paper are: (i it is devoted to the fundamental principles of asymptotic approaches, and (ii it deals with both traditional approaches, and less widely used, new approaches. The authors have paid special attention to examples and discussion of results rather than to burying the ideas in formalism, notation, and technical details.

  1. About Occupational Therapy

    Science.gov (United States)

    ... if}} {{{tweet}}} About Occupational Therapy What Is Occupational Therapy? Occupational therapy practitioners ask, "What matters to you?" not, " ... about our science-driven and evidence-based profession. Occupational Therapy: Improving Function While Controlling Costs 4 4 The ...

  2. An asymptotic model in acoustics: acoustic drift equations.

    Science.gov (United States)

    Vladimirov, Vladimir A; Ilin, Konstantin

    2013-11-01

    A rigorous asymptotic procedure with the Mach number as a small parameter is used to derive the equations of mean flows which coexist and are affected by the background acoustic waves in the limit of very high Reynolds number.

  3. Preheating in an asymptotically safe quantum field theory

    DEFF Research Database (Denmark)

    Svendsen, Ole; Moghaddam, Hossein Bazrafshan; Brandenberger, Robert

    2016-01-01

    We consider reheating in a class of asymptotically safe quantum field theories recently studied in [D. F. Litim and F. Sannino, Asymptotic safety guaranteed, J. High Energy Phys. 12 (2014) 178; D. F. Litim, M. Mojaza, and F. Sannino, Vacuum stability of asymptotically safe gauge-Yukawa theories, J....... High Energy Phys. 01 (2016) 081]. These theories allow for an inflationary phase in the very early universe. Inflation ends with a period of reheating. Since the models contain many scalar fields which are intrinsically coupled to the inflaton there is the possibility of parametric resonance....... Sannino, Vacuum stability of asymptotically safe gauge-Yukawa theories, J. High Energy Phys. 01 (2016) 081] must contain. This bound also depends on the total number of e-foldings of the inflationary phase....

  4. Pseudo-random number generator based on asymptotic deterministic randomness

    Energy Technology Data Exchange (ETDEWEB)

    Wang Kai [Department of Radio Engineering, Southeast University, Nanjing (China)], E-mail: kaiwang@seu.edu.cn; Pei Wenjiang; Xia Haishan [Department of Radio Engineering, Southeast University, Nanjing (China); Cheung Yiuming [Department of Computer Science, Hong Kong Baptist University, Hong Kong (China)

    2008-06-09

    A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks.

  5. Radial asymptotics of Lemaitre-Tolman-Bondi dust models

    CERN Document Server

    Sussman, Roberto A

    2010-01-01

    We examine the radial asymptotic behavior of spherically symmetric Lemaitre-Tolman-Bondi dust models by looking at their covariant scalars along radial rays, which are spacelike geodesics parametrized by proper length $\\ell$, orthogonal to the 4-velocity and to the orbits of SO(3). By introducing quasi-local scalars defined as integral functions along the rays, we obtain a complete and covariant representation of the models, leading to an initial value parametrization in which all scalars can be given by scaling laws depending on two metric scale factors and two basic initial value functions. Considering regular "open" LTB models whose space slices allow for a diverging $\\ell$, we provide the conditions on the radial coordinate so that its asymptotic limit corresponds to the limit as $\\ell\\to\\infty$. The "asymptotic state" is then defined as this limit, together with asymptotic series expansion around it, evaluated for all metric functions, covariant scalars (local and quasi-local) and their fluctuations. By ...

  6. Robust methods and asymptotic theory in nonlinear econometrics

    CERN Document Server

    Bierens, Herman J

    1981-01-01

    This Lecture Note deals with asymptotic properties, i.e. weak and strong consistency and asymptotic normality, of parameter estimators of nonlinear regression models and nonlinear structural equations under various assumptions on the distribution of the data. The estimation methods involved are nonlinear least squares estimation (NLLSE), nonlinear robust M-estimation (NLRME) and non­ linear weighted robust M-estimation (NLWRME) for the regression case and nonlinear two-stage least squares estimation (NL2SLSE) and a new method called minimum information estimation (MIE) for the case of structural equations. The asymptotic properties of the NLLSE and the two robust M-estimation methods are derived from further elaborations of results of Jennrich. Special attention is payed to the comparison of the asymptotic efficiency of NLLSE and NLRME. It is shown that if the tails of the error distribution are fatter than those of the normal distribution NLRME is more efficient than NLLSE. The NLWRME method is appropriate ...

  7. On the generalized asymptotically nonspreading mappings in convex metric spaces

    Directory of Open Access Journals (Sweden)

    Withun Phuengrattana

    2017-04-01

    Full Text Available In this article, we propose a new class of nonlinear mappings, namely, generalized asymptotically nonspreading mapping, and prove the existence of fixed points for such mapping in convex metric spaces. Furthermore, we also obtain the demiclosed principle and a delta-convergence theorem of Mann iteration for generalized asymptotically nonspreading mappings in CAT(0 spaces.

  8. Comparison of the asymptotic stability properties for two multirate strategies

    OpenAIRE

    Savcenco, V Valeriu

    2007-01-01

    textabstractThis paper contains a comparison of the asymptotic stability properties for two multirate strategies. For each strategy, the asymptotic stability regions are presented for a 2 x 2 test problem and the differences between the results are discussed. The considered multirate schemes use Rosenbrock type methods as the main time integration method and have one level of temporal local refinement. Some remarks on the relevance of the results for 2 x 2 test problems are presented.

  9. Singularity-free gravitational collapse and asymptotic safety

    Science.gov (United States)

    Torres, Ramón

    2014-06-01

    A general class of quantum improved stellar models with interiors composed of non-interacting (dust) particles is obtained and analyzed in a framework compatible with asymptotic safety. First, the effective exterior, based on the Quantum Einstein Gravity approach to asymptotic safety is presented and, second, its effective compatible dust interiors are deduced. The resulting stellar models appear to be devoid of shell-focusing singularities.

  10. Asymptotic-induced numerical methods for conservation laws

    Science.gov (United States)

    Garbey, Marc; Scroggs, Jeffrey S.

    1990-01-01

    Asymptotic-induced methods are presented for the numerical solution of hyperbolic conservation laws with or without viscosity. The methods consist of multiple stages. The first stage is to obtain a first approximation by using a first-order method, such as the Godunov scheme. Subsequent stages of the method involve solving internal-layer problems identified by using techniques derived via asymptotics. Finally, a residual correction increases the accuracy of the scheme. The method is derived and justified with singular perturbation techniques.

  11. Asymptotics of perturbed soliton for Davey-Stewartson; 2, equation

    CERN Document Server

    Gadylshin, R R

    1998-01-01

    It is shown that, under a small perturbation of lump (soliton) for Davey-Stewartson (DS-II) equation, the scattering data gain the nonsoliton structure. As a result, the solution has the form of Fourier type integral. Asymptotic analysis shows that, in spite of dispertion, the principal term of the asymptotic expansion for the solution has the solitary wave form up to large time.

  12. Asymptotic estimation of shift parameter of a quantum state

    OpenAIRE

    Holevo, A. S.

    2003-01-01

    We develop an asymptotic theory of estimation of a shift parameter in a pure quantum state to study the relation between entangled and unentangled covariant estimates in the analytically most transparent way. After recollecting basics of estimation of shift parameter in Sec. 2, we study the structure of the optimal covariant estimate in Sec. 3, showing how entanglement comes into play for several independent trials. In Secs. 4,5 we give the asymptotics of the performance of the optimal covari...

  13. An asymptotically exact theory of functionally graded piezoelectric shells

    CERN Document Server

    Le, Khanh Chau

    2016-01-01

    An asymptotically exact two-dimensional theory of functionally graded piezoelectric shells is derived by the variational-asymptotic method. The error estimation of the constructed theory is given in the energetic norm. As an application, analytical solution to the problem of forced vibration of a functionally graded piezoceramic cylindrical shell with thickness polarization fully covered by electrodes and excited by a harmonic voltage is found.

  14. Occupational epidemiology.

    Science.gov (United States)

    Guidotti, T L

    2000-02-01

    The epidemiological literature for assessing risk in many, if not most, modern occupations has now become sufficiently obsolete that it can no longer be depended upon to guide either prevention or adjudication of compensation. This obsolescence must be dealt with by developing new sources of information pertinent to occupational hazards and the risks associated with most occupations. Ideally, a comprehensive surveillance mechanism that would be automatically updated for the changing risk in a changing economy would be ideal and may be attainable with further developments in health information technology. The characteristics of such a system are described. However, there are many obstacles to such a system which appear insurmountable in the short term. A more eclectic plan for cooperation and data-sharing would help in the short term and would establish a pattern of collaboration that could both place adjudication on a more solid foundation and avoid allegations of collusion in business. The general outline for a practical programme of collaboration along these lines is presented.

  15. On the asymptotic behaviour of solutions of an asymptotically Lotka-Volterra model

    Directory of Open Access Journals (Sweden)

    Attila Dénes

    2016-09-01

    Full Text Available We make more realistic our model [Nonlinear Anal. 73(2010, 650-659] on the coexistence of fishes and plants in Lake Tanganyika. The new model is an asymptotically autonomous system whose limiting equation is a Lotka-Volterra system. We give conditions for the phenomenon that the trajectory of any solution of the original non-autonomous system "rolls up"' onto a cycle of the limiting Lotka-Volterra equation as $t\\to\\infty$, which means that the limit set of the solution of the non-autonomous system coincides with the cycle. A counterexample is constructed showing that the key integral condition on the coefficient function in the original non-autonomous model cannot be dropped. Computer simulations illustrate the results.

  16. Efficient asymptotic frame selection for binary black hole spacetimes using asymptotic radiation

    CERN Document Server

    O'Shaughnessy, R; Healy, J; Meeks, Z; Shoemaker, D

    2011-01-01

    Previous studies have demonstrated that gravitational radiation reliably encodes information about the natural emission direction of the source (e.g., the orbital plane). In this paper, we demonstrate that these orientations can be efficiently estimated by the principal axes of , an average of the action of rotation group generators on the Weyl tensor at asymptotic infinity. Evaluating this average at each time provides the instantaneous emission direction. Further averaging across the entire signal yields an average orientation, closely connected to the angular components of the Fisher matrix. The latter direction is well-suited to data analysis and parameter estimation when the instantaneous emission direction evolves significantly. Finally, in the time domain, the average provides fast, invariant diagnostics of waveform quality.

  17. Occupation: nurse; occupational hazard: radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nickson, K.

    1984-03-01

    The work of the occupational health nurses at the Pickering Generating Station is described. A staff of two nurses teach first aid and safety, practice an emergency plan, and monitor personnel for minimum health standards for radiation workers. Special attention is paid to problems which might be aggravated by radiation, such as skin complaints, respiratory diseases, emotional stability, or phobias regarding heights, plastic suits, or radiation itself. Procedures used in treating contaminated personnel are outlined.

  18. Size Matters: Individual Variation in Ectotherm Growth and Asymptotic Size.

    Science.gov (United States)

    King, Richard B; Stanford, Kristin M; Jones, Peter C; Bekker, Kent

    2016-01-01

    Body size, and, by extension, growth has impacts on physiology, survival, attainment of sexual maturity, fecundity, generation time, and population dynamics, especially in ectotherm animals that often exhibit extensive growth following attainment of sexual maturity. Frequently, growth is analyzed at the population level, providing useful population mean growth parameters but ignoring individual variation that is also of ecological and evolutionary significance. Our long-term study of Lake Erie Watersnakes, Nerodia sipedon insularum, provides data sufficient for a detailed analysis of population and individual growth. We describe population mean growth separately for males and females based on size of known age individuals (847 captures of 769 males, 748 captures of 684 females) and annual growth increments of individuals of unknown age (1,152 males, 730 females). We characterize individual variation in asymptotic size based on repeated measurements of 69 males and 71 females that were each captured in five to nine different years. The most striking result of our analyses is that asymptotic size varies dramatically among individuals, ranging from 631-820 mm snout-vent length in males and from 835-1125 mm in females. Because female fecundity increases with increasing body size, we explore the impact of individual variation in asymptotic size on lifetime reproductive success using a range of realistic estimates of annual survival. When all females commence reproduction at the same age, lifetime reproductive success is greatest for females with greater asymptotic size regardless of annual survival. But when reproduction is delayed in females with greater asymptotic size, lifetime reproductive success is greatest for females with lower asymptotic size when annual survival is low. Possible causes of individual variation in asymptotic size, including individual- and cohort-specific variation in size at birth and early growth, warrant further investigation.

  19. Numerical Analysis of Asymptotic Stability of Equilibrium Points

    Directory of Open Access Journals (Sweden)

    A. A. Vorkel

    2017-01-01

    Full Text Available The aim of this study is to numerically analyze an asymptotic stability of the equilibrium points of autonomous systems of ordinary differential equations on the basis of the asymptotic stability criterion given in the article and the functional localization method of invariant compact sets. The article formulates the necessary and sufficient conditions for an asymptotic stability in terms of invariant compact sets and positively invariant sets and describes a functional localization method. Presents appropriate localization theorems for invariant compact sets of dynamical systems.To investigate the asymptotic stability is proposed an algorithm for a numerical iteration procedure to construct the localizing bounds for invariant compact sets contained in a given initial set. Application of the asymptotic stability criterion is based on the results of this procedure. The author of the article verifies the conditions of the appropriate theorem and confirms the use of this criterion.The examples of two- and three-dimensional systems of differential equations demonstrate a principle of the iteration procedure. The article also gives an example of the system with a limit cycle and it shows that the developed numerical algorithm and the functional localization method of invariant compact sets can be used to analyze stability of the limit cycles.Thanks to the method described in the article, when analyzing an asymptotic stability of equilibrium points, finding a Lyapunov function and calculating eigenvalues of a matrix of linear approximation are non-essential. Thus, it is possible to avoid labour-intensive work with complex analytical structures.The numerical iteration procedure can be used in systems of different dimensions and makes the presented algorithm of asymptotic stability analysis universal.

  20. Size Matters: Individual Variation in Ectotherm Growth and Asymptotic Size

    Science.gov (United States)

    King, Richard B.

    2016-01-01

    Body size, and, by extension, growth has impacts on physiology, survival, attainment of sexual maturity, fecundity, generation time, and population dynamics, especially in ectotherm animals that often exhibit extensive growth following attainment of sexual maturity. Frequently, growth is analyzed at the population level, providing useful population mean growth parameters but ignoring individual variation that is also of ecological and evolutionary significance. Our long-term study of Lake Erie Watersnakes, Nerodia sipedon insularum, provides data sufficient for a detailed analysis of population and individual growth. We describe population mean growth separately for males and females based on size of known age individuals (847 captures of 769 males, 748 captures of 684 females) and annual growth increments of individuals of unknown age (1,152 males, 730 females). We characterize individual variation in asymptotic size based on repeated measurements of 69 males and 71 females that were each captured in five to nine different years. The most striking result of our analyses is that asymptotic size varies dramatically among individuals, ranging from 631–820 mm snout-vent length in males and from 835–1125 mm in females. Because female fecundity increases with increasing body size, we explore the impact of individual variation in asymptotic size on lifetime reproductive success using a range of realistic estimates of annual survival. When all females commence reproduction at the same age, lifetime reproductive success is greatest for females with greater asymptotic size regardless of annual survival. But when reproduction is delayed in females with greater asymptotic size, lifetime reproductive success is greatest for females with lower asymptotic size when annual survival is low. Possible causes of individual variation in asymptotic size, including individual- and cohort-specific variation in size at birth and early growth, warrant further investigation. PMID

  1. Occupational physiology

    CERN Document Server

    Toomingas, Allan; Tornqvist, Ewa Wigaeus

    2011-01-01

    In a clear and accessible presentation, Occupational Physiology focuses on important issues in the modern working world. Exploring major public health problems-such as musculoskeletal disorders and stress-this book explains connections between work, well-being, and health based on up-to-date research in the field. It provides useful methods for risk assessment and guidelines on arranging a good working life from the perspective of the working individual, the company, and society as a whole.The book focuses on common, stressful situations in different professions. Reviewing bodily demands and r

  2. Large gauge symmetries and asymptotic states in QED

    Energy Technology Data Exchange (ETDEWEB)

    Gabai, Barak; Sever, Amit [School of Physics and Astronomy, Tel Aviv University,Ramat Aviv 69978 (Israel)

    2016-12-19

    Large Gauge Transformations (LGT) are gauge transformations that do not vanish at infinity. Instead, they asymptotically approach arbitrary functions on the conformal sphere at infinity. Recently, it was argued that the LGT should be treated as an infinite set of global symmetries which are spontaneously broken by the vacuum. It was established that in QED, the Ward identities of their induced symmetries are equivalent to the Soft Photon Theorem. In this paper we study the implications of LGT on the S-matrix between physical asymptotic states in massive QED. In appose to the naively free scattering states, physical asymptotic states incorporate the long range electric field between asymptotic charged particles and were already constructed in 1970 by Kulish and Faddeev. We find that the LGT charge is independent of the particles’ momenta and may be associated to the vacuum. The soft theorem’s manifestation as a Ward identity turns out to be an outcome of not working with the physical asymptotic states.

  3. Contact mechanics of articular cartilage layers asymptotic models

    CERN Document Server

    Argatov, Ivan

    2015-01-01

    This book presents a comprehensive and unifying approach to articular contact mechanics with an emphasis on frictionless contact interaction of thin cartilage layers. The first part of the book (Chapters 1–4) reviews the results of asymptotic analysis of the deformational behavior of thin elastic and viscoelastic layers. A comprehensive review of the literature is combined with the authors’ original contributions. The compressible and incompressible cases are treated separately with a focus on exact solutions for asymptotic models of frictionless contact for thin transversely isotropic layers bonded to rigid substrates shaped like elliptic paraboloids. The second part (Chapters 5, 6, and 7) deals with the non-axisymmetric contact of thin transversely isotropic biphasic layers and presents the asymptotic modelling methodology for tibio-femoral contact. The third part of the book consists of Chapter 8, which covers contact problems for thin bonded inhomogeneous transversely isotropic elastic layers, and Cha...

  4. Asymptotic chaos expansions in finance theory and practice

    CERN Document Server

    Nicolay, David

    2014-01-01

    Stochastic instantaneous volatility models such as Heston, SABR or SV-LMM have mostly been developed to control the shape and joint dynamics of the implied volatility surface. In principle, they are well suited for pricing and hedging vanilla and exotic options, for relative value strategies or for risk management. In practice however, most SV models lack a closed form valuation for European options. This book presents the recently developed Asymptotic Chaos Expansions methodology (ACE) which addresses that issue. Indeed its generic algorithm provides, for any regular SV model, the pure asymptotes at any order for both the static and dynamic maps of the implied volatility surface. Furthermore, ACE is programmable and can complement other approximation methods. Hence it allows a systematic approach to designing, parameterising, calibrating and exploiting SV models, typically for Vega hedging or American Monte-Carlo. Asymptotic Chaos Expansions in Finance illustrates the ACE approach for single underlyings (suc...

  5. Spherical convective dynamos in the rapidly rotating asymptotic regime

    CERN Document Server

    Aubert, Julien; Fournier, Alexandre

    2016-01-01

    Self-sustained convective dynamos in planetary systems operate in an asymptotic regime of rapid rotation, where a balance is thought to hold between the Coriolis, pressure, buoyancy and Lorentz forces (the MAC balance). Classical numerical solutions have previously been obtained in a regime of moderate rotation where viscous and inertial forces are still significant. We define a unidimensional path in parameter space between classical models and asymptotic conditions from the requirements to enforce a MAC balance and to preserve the ratio between the magnetic diffusion and convective overturn times (the magnetic Reynolds number). Direct numerical simulations performed along this path show that the spatial structure of the solution at scales larger than the magnetic dissipation length is largely invariant. This enables the definition of large-eddy simulations resting on the assumption that small-scale details of the hydrodynamic turbulence are irrelevant to the determination of the large-scale asymptotic state...

  6. Asymptotic Analysis in MIMO MRT/MRC Systems

    Directory of Open Access Journals (Sweden)

    Zhou Quan

    2006-01-01

    Full Text Available Through the analysis of the probability density function of the squared largest singular value of a complex Gaussian matrix at the origin and tail, we obtain two asymptotic results related to the multi-input multi-output (MIMO maximum-ratio-transmission/maximum-ratio-combining (MRT/MRC systems. One is the asymptotic error performance (in terms of SNR in a single-user system, and the other is the asymptotic system capacity (in terms of the number of users in the multiuser scenario when multiuser diversity is exploited. Similar results are also obtained for two other MIMO diversity schemes, space-time block coding and selection combining. Our results reveal a simple connection with system parameters, providing good insights for the design of MIMO diversity systems.

  7. Vacuum energy in asymptotically flat 2+1 gravity

    Directory of Open Access Journals (Sweden)

    Olivera Miskovic

    2017-04-01

    Full Text Available We compute the vacuum energy of three-dimensional asymptotically flat space based on a Chern–Simons formulation for the Poincaré group. The equivalent action is nothing but the Einstein–Hilbert term in the bulk plus half of the Gibbons–Hawking term at the boundary. The derivation is based on the evaluation of the Noether charges in the vacuum. We obtain that the vacuum energy of this space has the same value as the one of the asymptotically flat limit of three-dimensional anti-de Sitter space.

  8. Vacuum energy in asymptotically flat 2 + 1 gravity

    Science.gov (United States)

    Miskovic, Olivera; Olea, Rodrigo; Roy, Debraj

    2017-04-01

    We compute the vacuum energy of three-dimensional asymptotically flat space based on a Chern-Simons formulation for the Poincaré group. The equivalent action is nothing but the Einstein-Hilbert term in the bulk plus half of the Gibbons-Hawking term at the boundary. The derivation is based on the evaluation of the Noether charges in the vacuum. We obtain that the vacuum energy of this space has the same value as the one of the asymptotically flat limit of three-dimensional anti-de Sitter space.

  9. Vacuum energy in asymptotically flat 2 + 1 gravity

    Energy Technology Data Exchange (ETDEWEB)

    Miskovic, Olivera, E-mail: olivera.miskovic@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Olea, Rodrigo, E-mail: rodrigo.olea@unab.cl [Departamento de Ciencias Físicas, Universidad Andres Bello, Sazié 2212, Piso 7, Santiago (Chile); Roy, Debraj, E-mail: roy.debraj@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile)

    2017-04-10

    We compute the vacuum energy of three-dimensional asymptotically flat space based on a Chern–Simons formulation for the Poincaré group. The equivalent action is nothing but the Einstein–Hilbert term in the bulk plus half of the Gibbons–Hawking term at the boundary. The derivation is based on the evaluation of the Noether charges in the vacuum. We obtain that the vacuum energy of this space has the same value as the one of the asymptotically flat limit of three-dimensional anti-de Sitter space.

  10. Asymptotic shape of solutions to nonlinear eigenvalue problems

    Directory of Open Access Journals (Sweden)

    Tetsutaro Shibata

    2005-03-01

    Full Text Available We consider the nonlinear eigenvalue problem $$ -u''(t = f(lambda, u(t, quad u mbox{greater than} 0, quad u(0 = u(1 = 0, $$ where $lambda > 0$ is a parameter. It is known that under some conditions on $f(lambda, u$, the shape of the solutions associated with $lambda$ is almost `box' when $lambda gg 1$. The purpose of this paper is to study precisely the asymptotic shape of the solutions as $lambda o infty$ from a standpoint of $L^1$-framework. To do this, we establish the asymptotic formulas for $L^1$-norm of the solutions as $lambda o infty$.

  11. Asymptotic solutions of diffusion models for risk reserves

    Directory of Open Access Journals (Sweden)

    S. Shao

    2003-01-01

    Full Text Available We study a family of diffusion models for risk reserves which account for the investment income earned and for the inflation experienced on claim amounts. After we defined the process of the conditional probability of ruin over finite time and imposed the appropriate boundary conditions, classical results from the theory of diffusion processes turn the stochastic differential equation to a special class of initial and boundary value problems defined by a linear diffusion equation. Armed with asymptotic analysis and perturbation theory, we obtain the asymptotic solutions of the diffusion models (possibly degenerate governing the conditional probability of ruin over a finite time in terms of interest rate.

  12. Convergence Theorem for Finite Family of Total Asymptotically Nonexpansive Mappings

    Directory of Open Access Journals (Sweden)

    E.U. Ofoedu

    2015-11-01

    Full Text Available In this paper we introduce an explicit iteration process and prove strong convergence of the scheme in a real Hilbert space $H$ to the common fixed point of finite family of total asymptotically nonexpansive mappings which is nearest to the point $u \\in H$.  Our results improve previously known ones obtained for the class of asymptotically nonexpansive mappings. As application, iterative method for: approximation of solution of variational Inequality problem, finite family of continuous pseudocontractive mappings, approximation of solutions of classical equilibrium problems and approximation of solutions of convex minimization problems are proposed. Our theorems unify and complement many recently announced results.

  13. Selected asymptotic methods with applications to electromagnetics and antennas

    CERN Document Server

    Fikioris, George; Bakas, Odysseas N

    2013-01-01

    This book describes and illustrates the application of several asymptotic methods that have proved useful in the authors' research in electromagnetics and antennas. We first define asymptotic approximations and expansions and explain these concepts in detail. We then develop certain prerequisites from complex analysis such as power series, multivalued functions (including the concepts of branch points and branch cuts), and the all-important gamma function. Of particular importance is the idea of analytic continuation (of functions of a single complex variable); our discussions here include som

  14. Global Asymptotic Stability for Linear Fractional Difference Equation

    Directory of Open Access Journals (Sweden)

    A. Brett

    2014-01-01

    Full Text Available Consider the difference equation xn+1=(α+∑i=0kaixn-i/(β+∑i=0kbixn-i,  n=0,1,…, where all parameters α,β,ai,bi,  i=0,1,…,k, and the initial conditions xi,  i∈{-k,…,0} are nonnegative real numbers. We investigate the asymptotic behavior of the solutions of the considered equation. We give easy-to-check conditions for the global stability and global asymptotic stability of the zero or positive equilibrium of this equation.

  15. Occupational Therapy (For Parents)

    Science.gov (United States)

    ... Late for the Flu Vaccine? Eating Disorders Arrhythmias Occupational Therapy KidsHealth > For Parents > Occupational Therapy Print A A ... for some kids. continue Kids Who Might Need Occupational Therapy According to the AOTA, kids with these medical ...

  16. Image processing occupancy sensor

    Science.gov (United States)

    Brackney, Larry J.

    2016-09-27

    A system and method of detecting occupants in a building automation system environment using image based occupancy detection and position determinations. In one example, the system includes an image processing occupancy sensor that detects the number and position of occupants within a space that has controllable building elements such as lighting and ventilation diffusers. Based on the position and location of the occupants, the system can finely control the elements to optimize conditions for the occupants, optimize energy usage, among other advantages.

  17. Occupational therapy students' perceptions of occupational therapy.

    Science.gov (United States)

    Turpin, Merrill June; Rodger, Sylvia; Hall, Anna R

    2012-10-01

    An understanding of students' perceptions of occupational therapy on entry is required to recognise how professional socialisation occurs through curriculum. Findings pertain to a qualitative study investigating students' perceptions of occupational therapy upon entry to two occupational therapy programmes in Australia. Students commencing Bachelor of Occupational Therapy and Masters of Occupational Therapy Studies programmes participated in the study (n = 462). A purpose-designed questionnaire was distributed to students in the first lecture of each programme. Preliminary analysis comprised identification of keywords/phrases and coding categories were generated from patterns of keywords. Frequency counts and percentages of keywords/phrases within categories were completed. Students' responses were categorised as 'what' occupational therapists do; 'how' they do it; 'why' they do it; and 'who' they work with. In 'what' occupational therapists do students frequently described 'helping' people. Both undergraduate and graduate entry masters students used the term 'rehabilitation' to describe how occupational therapy is done, with graduate entry students occasionally responding with 'through occupation' and 'modifying the environment'. Students perceived the 'why' of occupational therapy as getting back to 'everyday activities', with some students emphasising returning to 'normal' activities or life. Regarding the 'who' category, students also thought occupational therapists worked with people with an 'injury' or 'disability'. Students entered their occupational therapy programmes with perceptions consistent with the general public's views of occupational therapy. However, graduate entry students exposed to a pre-reading package prior to entry had more advanced occupational therapy concepts than undergraduate students. © 2011 The Authors. Australian Occupational Therapy Journal © 2011 Occupational Therapy Australia.

  18. Relaxing the parity conditions of asymptotically flat gravity

    NARCIS (Netherlands)

    Compère, G.; Dehouck, F.

    2011-01-01

    Four-dimensional asymptotically flat spacetimes at spatial infinity are defined from first principles without imposing parity conditions or restrictions on the Weyl tensor. The Einstein-Hilbert action is shown to be a correct variational principle when it is supplemented by an anomalous counterterm

  19. Asymptotic inference for jump diffusions with state-dependent intensity

    NARCIS (Netherlands)

    Becheri, Gaia; Drost, Feico; Werker, Bas

    2016-01-01

    We establish the local asymptotic normality property for a class of ergodic parametric jump-diffusion processes with state-dependent intensity and known volatility function sampled at high frequency. We prove that the inference problem about the drift and jump parameters is adaptive with respect to

  20. High energy asymptotics of the scattering amplitude for the ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    High energy asymptotics of the scattering amplitude for the. Schrödinger equation. D YAFAEV. Department of Mathematics, University Rennes-1, Campus Beaulieu, 35042 Rennes,. France. Abstract. We find an explicit function approximating at high energies the kernel of the scattering matrix with arbitrary accuracy.

  1. Asymptotics of sums of lognormal random variables with Gaussian copula

    DEFF Research Database (Denmark)

    Asmussen, Søren; Rojas-Nandayapa, Leonardo

    2008-01-01

    Let (Y1, ..., Yn) have a joint n-dimensional Gaussian distribution with a general mean vector and a general covariance matrix, and let Xi = eYi, Sn = X1 + ⋯ + Xn. The asymptotics of P (Sn > x) as n → ∞ are shown to be the same as for the independent case with the same lognormal marginals. In part...

  2. Chemical Analysis of Asymptotic Giant Branch Stars in M62

    NARCIS (Netherlands)

    Lapenna, E.; Mucciarelli, A.; Ferraro, F. R.; Origlia, L.; Lanzoni, B.; Massari, D.; Dalessandro, E.

    2015-01-01

    We have collected UVES-FLAMES high-resolution spectra for a sample of 6 asymptotic giant branch (AGB) and 13 red giant branch (RGB) stars in the Galactic globular cluster (GC) M62 (NGC 6266). Here we present the detailed abundance analysis of iron, titanium, and light elements (O, Na, Mg, and Al).

  3. Precise asymptotics for complete moment convergence in Hilbert ...

    Indian Academy of Sciences (India)

    ... Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Proceedings – Mathematical Sciences; Volume 122; Issue 1. Precise Asymptotics for Complete Moment Convergence in Hilbert Spaces. Keang Fu Juan Chen. Volume 122 Issue 1 February 2012 ...

  4. Exact overflow asymptotics for queues with many Gaussian inputs

    NARCIS (Netherlands)

    Debicki, Krzysztof; Mandjes, M.R.H.

    2003-01-01

    In this paper we consider a queue fed by a large number of independent continuous-time Gaussian processes with stationary increments. After scaling the buffer exceedance threshold and the (constant) service capacity by the number of sources, we present asymptotically exact results for the

  5. Solute transport through porous media using asymptotic dispersivity

    Indian Academy of Sciences (India)

    Abstract. In this paper, multiprocess non-equilibrium transport equation has been used, which accounts for both physical and chemical non-equilibrium for reactive transport through porous media. An asymptotic distance dependent dispersivity is used to embrace the concept of scale-dependent dispersion for solute ...

  6. Asymptotic linear estimation of the quantile function of a location ...

    African Journals Online (AJOL)

    Specific results are discussed for the ABLUE of Qξ for the location-scale exponential and double exponential distributions. As a further application of the exponential results, we discuss the asymptotically best optimal spacings for the location-scale logistic distribution. Keywords: Quantiles; Order statistics; Optimal spacing; ...

  7. A Review on asymptotic normality of sums of associated random ...

    African Journals Online (AJOL)

    Association between random variables is a generalization of independence of these random variables. This concept is more and more commonly used in current trends in any research elds in Statistics. In this paper, we proceed to a simple, clear and rigorous introduction to it. We will present the fundamental asymptotic ...

  8. The Asymptotic Solution for the Steady Variable-Viscosity Free ...

    African Journals Online (AJOL)

    Under an arbitrary time-dependent heating of an infinite vertical plate (or wall), the steady viscosity-dependent free convection flow of a viscous incompressible fluid is investigated. Using the asymptotic method of solution on the governing equations of motion and energy, the resulting Ordinary differential equations were ...

  9. Asymptotic stability results for retarded differential systems | Igobi ...

    African Journals Online (AJOL)

    The transcendental character of the polynomial equation of the retarded differential system makes it difficult to express its solution explicitly. This has cause a set back in the asymptotic stability analysis of the system solutions. Various acceptable mathematical techniques have been used to address the issue. In this paper ...

  10. Hardy-Weinberg law: asymptotic approach to a generalized form.

    Science.gov (United States)

    Stark, A E

    1976-09-17

    The equilibrium frequencies of a generalized Hardy-Weinberg law are approached at a geometric rate under assortative mating, irrespective of the initial genotypic frequencies. The asymptotic form is similar to that of Wright, and the pattern of assortative mating is based on deviations from the mean genotypic value.

  11. Ergodic Retractions for Families of Asymptotically Nonexpansive Mappings

    Directory of Open Access Journals (Sweden)

    Saeidi Shahram

    2010-01-01

    Full Text Available We prove some theorems for the existence of ergodic retractions onto the set of common fixed points of a family of asymptotically nonexpansive mappings. Our results extend corresponding results of Benavides and Ramírez (2001, and Li and Sims (2002.

  12. Solute transport through porous media using asymptotic dispersivity

    Indian Academy of Sciences (India)

    In this paper, multiprocess non-equilibrium transport equation has been used, which accounts for both physical and chemical non-equilibrium for reactive transport through porous media. An asymptotic distance dependent dispersivity is used to embrace the concept of scale-dependent dispersion for solute transport in ...

  13. Asymptotic estimates of viscoelastic Green's functions near the wavefront

    OpenAIRE

    Hanyga, Andrzej

    2014-01-01

    Asymptotic behavior of viscoelastic Green's functions near the wavefront is expressed in terms of a causal function $g(t)$ defined in \\cite{SerHanJMP} in connection with the Kramers-Kronig dispersion relations. Viscoelastic Green's functions exhibit a discontinuity at the wavefront if $g(0) < \\infty$. Estimates of continuous and discontinuous viscoelastic Green's functions near the wavefront are obtained.

  14. Uniqueness and asymptotic stability properties of the critical solution ...

    African Journals Online (AJOL)

    In this research, the Volterra prey/predator model system is modified by introducing time-lag functions f (t - h) into the state parameters to account for the ... The asymptotic stability properties of the critical solution are investigated using the quadratic matrix equation and symmetric linear matrix inequality test. Results obtained ...

  15. Asymptotics and Numerics for Laminar Flow over Finite Flat Plate

    NARCIS (Netherlands)

    Dijkstra, D.; Kuerten, J.G.M.; Kaper, Hans G.; Garbey, Mare; Pieper, Gail W.

    1992-01-01

    A compilation of theoretical results from the literature on the finite flat-plate flow at zero incidence is presented. This includes the Blasius solution, the Triple Deck at the trailing edge, asymptotics in the wake, and properties near the edges of the plate. In addition, new formulas for skin

  16. Asymptotic-bound-state model for Feshbach resonances

    NARCIS (Netherlands)

    Tiecke, T.G.; Goosen, M.R.; Walraven, J.T.M.; Kokkelmans, S.J.J.M.F.

    2010-01-01

    We present an asymptotic-bound-state model which can be used to accurately describe all Feshbach resonance positions and widths in a two-body system. With this model we determine the coupled bound states of a particular two-body system. The model is based on analytic properties of the two-body

  17. Parabolic cyclinder functions : examples of error bounds for asymptotic expansions

    NARCIS (Netherlands)

    R. Vidunas; N.M. Temme (Nico)

    2002-01-01

    textabstractSeveral asymptotic expansions of parabolic cylinder functions are discussedand error bounds for remainders in the expansions are presented. Inparticular Poincaré-type expansions for large values of the argument$z$ and uniform expansions for large values of the parameter areconsidered.

  18. Precise asymptotics for complete moment convergence in Hilbert ...

    Indian Academy of Sciences (India)

    (Math. Sci.) Vol. 122, No. 1, February 2012, pp. 87–97. c Indian Academy of Sciences. Precise asymptotics for complete moment convergence in Hilbert spaces ... School of Statistics and Mathematics, Zhejiang Gongshang University, .... Now we start to introduce some Propositions, and the proof of our main result is based.

  19. A note on properties of iterative procedures of asymptotic evidence

    NARCIS (Netherlands)

    Paardekooper, H.C.H.; Steens, H.B.A.; Van der Hoek, G.

    1989-01-01

    The theoretical results obtained by Dzhaparidze (1983) are based on a theorem dealing with the asymptotically normality of an estimator which is the result of a Newton-like iteration method. The paper establishes a new theorem that supports the use of a more robust BFGS Quasi Newton method with

  20. Holographic reconstruction and renormalization in asymptotically Ricci-flat spacetimes

    NARCIS (Netherlands)

    Caldeira Costa, R.N.

    2012-01-01

    In this work we elaborate on an extension of the AdS/CFT framework to a sub-class of gravitational theories with vanishing cosmological constant. By building on earlier ideas, we construct a correspondence between Ricci-flat spacetimes admitting asymptotically hyperbolic hypersurfaces and a family

  1. From A to Z: Asymptotic expansions by van Zwet

    NARCIS (Netherlands)

    Albers, Willem/Wim; de Gunst, Mathisca; Klaasen, Chris; van der Vaart, Aad

    2001-01-01

    Refinements of first order asymptotic results axe reviewed, with a number of Ph.D. projects supervised by van Zwet serving as stepping stones. Berry-Esseen bounds and Edgeworth expansions are discussed for R-, L- and [/-statistics. After these special classes, the question about a general second

  2. From A to Z: asymptotic expansions by van Zwet

    NARCIS (Netherlands)

    Albers, Willem/Wim; de Gunst, M.C.M.; Klaassen, C.A.J.; van der Vaart, A.W.

    2001-01-01

    Refinements of first order asymptotic results are reviewed, with a number of Ph.D. projects supervised by van Zwet serving as stepping stones. Berry-Esseen bounds and Edgeworth expansions are discussed for R-, L- and U-statistics. After these special classes, the question about a general second

  3. Tail asymptotics for dependent subexponential differences

    DEFF Research Database (Denmark)

    Albrecher, H; Asmussen, Søren; Kortschak, D.

    We study the asymptotic behavior of P(X − Y > u) as u → ∞, where X is subexponential and X, Y are positive random variables that may be dependent. We give criteria under which the subtraction of Y does not change the tail behavior of X. It is also studied under which conditions the comonotonic...

  4. Asymptotic tensor rank of graph tensors: beyond matrix multiplication

    NARCIS (Netherlands)

    M. Christandl (Matthias); P. Vrana (Péter); J. Zuiddam (Jeroen)

    2016-01-01

    textabstractWe present an upper bound on the exponent of the asymptotic behaviour of the tensor rank of a family of tensors defined by the complete graph on $k$ vertices. For $k\\geq4$, we show that the exponent per edge is at most 0.77, outperforming the best known upper bound on the exponent per

  5. Asymptotics of the filtration problem for suspension in porous media

    Directory of Open Access Journals (Sweden)

    Kuzmina Ludmila Ivanovna

    2015-01-01

    Full Text Available The mechanical-geometric model of the suspension filtering in the porous media is considered. Suspended solid particles of the same size move with suspension flow through the porous media - a solid body with pores - channels of constant cross section. It is assumed that the particles pass freely through the pores of large diameter and are stuck at the inlet of pores that are smaller than the particle size. It is considered that one particle can clog only one small pore and vice versa. The particles stuck in the pores remain motionless and form a deposit. The concentrations of suspended and retained particles satisfy a quasilinear hyperbolic system of partial differential equations of the first order, obtained as a result of macro-averaging of micro-stochastic diffusion equations. Initially the porous media contains no particles and both concentrations are equal to zero; the suspension supplied to the porous media inlet has a constant concentration of suspended particles. The flow of particles moves in the porous media with a constant speed, before the wave front the concentrations of suspended and retained particles are zero. Assuming that the filtration coefficient is small we construct an asymptotic solution of the filtration problem over the concentration front. The terms of the asymptotic expansions satisfy linear partial differential equations of the first order and are determined successively in an explicit form. It is shown that in the simplest case the asymptotics found matches the known asymptotic expansion of the solution near the concentration front.

  6. Quantum local asymptotic normality and other questions of quantum statistics

    NARCIS (Netherlands)

    Kahn, Jonas

    2008-01-01

    This thesis is entitled Quantum Local Asymptotic Normality and other questions of Quantum Statistics ,. Quantum statistics are statistics on quantum objects. In classical statistics, we usually start from the data. Indeed, if we want to predict the weather, and can measure the wind or the

  7. Asymptotic symmetries in de Sitter and inflationary spacetimes

    DEFF Research Database (Denmark)

    Ferreira, Ricardo J. Z.; Sandora, McCullen; Sloth, Martin S.

    2017-01-01

    Soft gravitons produced by the expansion of de Sitter can be viewed as the Nambu-Goldstone bosons of spontaneously broken asymptotic symmetries of the de Sitter spacetime. We explicitly construct the associated charges, and show that acting with the charges on the vacuum creates a new state...

  8. On Asymptotically Lacunary Statistical Equivalent Sequences of Order α in Probability

    Directory of Open Access Journals (Sweden)

    Işık Mahmut

    2017-01-01

    Full Text Available In this study, we introduce and examine the concepts of asymptotically lacunary statistical equivalent of order α in probability and strong asymptotically lacunary equivalent of order α in probability. We give some relations connected to these concepts.

  9. On Asymptotically Lacunary Statistical Equivalent Sequences of Order α in Probability

    OpenAIRE

    Işık Mahmut; Akbaş Kübra Elif

    2017-01-01

    In this study, we introduce and examine the concepts of asymptotically lacunary statistical equivalent of order α in probability and strong asymptotically lacunary equivalent of order α in probability. We give some relations connected to these concepts.

  10. Estudio de la invarianza de escala mediante el método de cálculo integral en la medición de la calidad percibida de los servicios deportivos. (Analysing scale invariance through integral calculus when measuring perceived quality in sports services.

    Directory of Open Access Journals (Sweden)

    José Antonio Martínez García

    2009-04-01

    Full Text Available ResumenEsta investigación presenta un nuevo método para el estudio de la invarianza de escala que complementa otros métodos existentes, lo que contribuye a realizar un análisis ecléctico y multifocal de un problema importante en la investigación de marketing, y en particular en la investigación de servicios deportivos. Este método está basado en la utilización del cálculo integral y tiene una sencilla interpretación geométrica. Se describen y comparan varios procedimientos para testar la invarianza de escala, y se realiza un re-análisis de la investigación de Martínez y Martínez (2008b sobre la percepción de calidad del consumidor de servicios deportivos. Los resultados muestran cómo existen diferencias sobre las conclusiones originales de estos autores. De este modo, las escalas de siete opciones de respuesta sí son invariantes, mientras que la de cinco opciones no lo son. Finalmente, se discuten las bondades y las limitaciones del método integral, abogando por la triangulación estadística para dar robustez a los resultados empíricos.AbstractThis research introduces a new method to analyse scale invariance, which overcomes some shortcomings of other procedures. Under an eclectic perspective, this method must help to provide insights in the marketing research discipline, and specifically in the sports service management. The method is grounded on the use of definite integrals to compute the area between two functions. In addition, several procedures for testing scale invariance are depicted and compared. An empirical application is achieved by re-analysing the study of Martínez & Martínez (2008b on perceived quality in sports services. Results shows that misleading conclusions were derived from the original study of those authors. Finally, advantages and shortcomings of the new method are discussed.

  11. Structure and asymptotic theory for nonlinear models with GARCH errors

    Directory of Open Access Journals (Sweden)

    Felix Chan

    2015-01-01

    Full Text Available Nonlinear time series models, especially those with regime-switching and/or conditionally heteroskedastic errors, have become increasingly popular in the economics and finance literature. However, much of the research has concentrated on the empirical applications of various models, with little theoretical or statistical analysis associated with the structure of the processes or the associated asymptotic theory. In this paper, we derive sufficient conditions for strict stationarity and ergodicity of three different specifications of the first-order smooth transition autoregressions with heteroskedastic errors. This is essential, among other reasons, to establish the conditions under which the traditional LM linearity tests based on Taylor expansions are valid. We also provide sufficient conditions for consistency and asymptotic normality of the Quasi-Maximum Likelihood Estimator for a general nonlinear conditional mean model with first-order GARCH errors.

  12. Asymptotic Expansions of the Contact Angle in Nonlocal Capillarity Problems

    Science.gov (United States)

    Dipierro, Serena; Maggi, Francesco; Valdinoci, Enrico

    2017-10-01

    We consider a family of nonlocal capillarity models, where surface tension is modeled by exploiting the family of fractional interaction kernels |z|^{-n-s}, with s\\in (0,1) and n the dimension of the ambient space. The fractional Young's law (contact angle condition) predicted by these models coincides, in the limit as s→ 1^-, with the classical Young's law determined by the Gauss free energy. Here we refine this asymptotics by showing that, for s close to 1, the fractional contact angle is always smaller than its classical counterpart when the relative adhesion coefficient σ is negative, and larger if σ is positive. In addition, we address the asymptotics of the fractional Young's law in the limit case s→ 0^+ of interaction kernels with heavy tails. Interestingly, near s=0, the dependence of the contact angle from the relative adhesion coefficient becomes linear.

  13. Precise asymptotic behavior of solutions to damped simple pendulum equations

    Directory of Open Access Journals (Sweden)

    Tetsutaro Shibata

    2009-11-01

    Full Text Available We consider the simple pendulum equation $$displaylines{ -u''(t + epsilon f(u'(t = lambdasin u(t, quad t in I:=(-1, 1,cr u(t > 0, quad t in I, quad u(pm 1 = 0, }$$ where $0 < epsilon le 1$, $lambda > 0$, and the friction term is either $f(y = pm|y|$ or $f(y = -y$. Note that when $f(y = -y$ and $epsilon = 1$, we have well known original damped simple pendulum equation. To understand the dependance of solutions, to the damped simple pendulum equation with $lambda gg 1$, upon the term $f(u'(t$, we present asymptotic formulas for the maximum norm of the solutions. Also we present an asymptotic formula for the time at which maximum occurs, for the case $f(u = -u$.

  14. Asymptotic analysis of multicell massive MIMO over Rician fading channels

    KAUST Repository

    Sanguinetti, Luca

    2017-06-20

    This work considers the downlink of a multicell massive MIMO system in which L base stations (BSs) of N antennas each communicate with K single-antenna user equipments randomly positioned in the coverage area. Within this setting, we are interested in evaluating the sum rate of the system when MRT and RZF are employed under the assumption that each intracell link forms a MIMO Rician uncorrelated fading channel. The analysis is conducted assuming that N and K grow large with a non-trivial ratio N/K under the assumption that the data transmission in each cell is affected by channel estimation errors, pilot contamination, and an arbitrary large scale attenuation. Numerical results are used to validate the asymptotic analysis in the finite system regime and to evaluate the network performance under different settings. The asymptotic results are also instrumental to get insights into the interplay among system parameters.

  15. The asymptotic convergence factor for a polygon under a perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Li, X. [Georgia Southern Univ., Statesboro, GA (United States)

    1994-12-31

    Let Ax = b be a large system of linear equations, where A {element_of} C{sup NxN}, nonsingular and b {element_of} C{sup N}. A few iterative methods for solving have recently been presented in the case where A is nonsymmetric. Many of their algorithms consist of two phases: Phase I: estimate the extreme eigenvalues of A; Phase II: construct and apply an iterative method based on the estimates. For convenience, it is rewritten as an equivalent fixed-point form, x = Tx + c. Let {Omega} be a compact set excluding 1 in the complex plane, and let its complement in the extended complex plane be simply connected. The asymptotic convergence factor (ACF) for {Omega}, denoted by {kappa}({Omega}), measures the rate of convergence for the asymptotically optimal semiiterative methods for solving, where {sigma}(T) {contained_in} {Omega}.

  16. Applications of Asymptotic Sampling on High Dimensional Structural Dynamic Problems

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Nielsen, Søren R.K.; Bucher, Christian

    2011-01-01

    The paper represents application of the asymptotic sampling on various structural models subjected to random excitations. A detailed study on the effect of different distributions of the so-called support points is performed. This study shows that the distribution of the support points has...... considerable effect on the final estimations of the method, in particular on the coefficient of variation of the estimated failure probability. Based on these observations, a simple optimization algorithm is proposed which distributes the support points so that the coefficient of variation of the method...... is minimized. Next, the method is applied on different cases of linear and nonlinear systems with a large number of random variables representing the dynamic excitation. The results show that asymptotic sampling is capable of providing good approximations of low failure probability events for very high...

  17. Asymptotic Floquet states of non-Markovian systems

    Science.gov (United States)

    Magazzú, Luca; Denisov, Sergey; Hänggi, Peter

    2017-10-01

    We propose a method to find asymptotic states of a class of periodically modulated open systems which are outside the range of validity of the Floquet theory due to the presence of memory effects. The method is based on a Floquet treatment of the time-local, memoryless dynamics taking place in a minimally enlarged state space where the original system is coupled to auxiliary—typically nonphysical—variables. A projection of the Floquet solution into the physical subspace returns the sought asymptotic state of the system. The spectral gap of the Floquet propagator acting in the enlarged state space can be used to estimate the relaxation time. We illustrate the method with a modulated quantum random walk model.

  18. Upper bound on the Abelian gauge coupling from asymptotic safety

    Science.gov (United States)

    Eichhorn, Astrid; Versteegen, Fleur

    2018-01-01

    We explore the impact of asymptotically safe quantum gravity on the Abelian gauge coupling in a model including a charged scalar, confirming indications that asymptotically safe quantum fluctuations of gravity could trigger a power-law running towards a free fixed point for the gauge coupling above the Planck scale. Simultaneously, quantum gravity fluctuations balance against matter fluctuations to generate an interacting fixed point, which acts as a boundary of the basin of attraction of the free fixed point. This enforces an upper bound on the infrared value of the Abelian gauge coupling. In the regime of gravity couplings which in our approximation also allows for a prediction of the top quark and Higgs mass close to the experimental value [1], we obtain an upper bound approximately 35% above the infrared value of the hypercharge coupling in the Standard Model.

  19. On the asymptotic expansion of the Bergman kernel

    Science.gov (United States)

    Seto, Shoo

    Let (L, h) → (M, o) be a polarized Kahler manifold. We define the Bergman kernel for H0(M, Lk), holomorphic sections of the high tensor powers of the line bundle L. In this thesis, we will study the asymptotic expansion of the Bergman kernel. We will consider the on-diagonal, near-diagonal and far off-diagonal, using L2 estimates to show the existence of the asymptotic expansion and computation of the coefficients for the on and near-diagonal case, and a heat kernel approach to show the exponential decay of the off-diagonal of the Bergman kernel for noncompact manifolds assuming only a lower bound on Ricci curvature and C2 regularity of the metric.

  20. Higher order corrections to asymptotic-de Sitter inflation

    Science.gov (United States)

    Mohsenzadeh, M.; Yusofi, E.

    2017-08-01

    Since trans-Planckian considerations can be associated with the re-definition of the initial vacuum, we investigate further the influence of trans-Planckian physics on the spectra produced by the initial quasi-de Sitter (dS) state during inflation. We use the asymptotic-dS mode to study the trans-Planckian correction of the power spectrum to the quasi-dS inflation. The obtained spectra consist of higher order corrections associated with the type of geometry and harmonic terms sensitive to the fluctuations of space-time (or gravitational waves) during inflation. As an important result, the amplitude of the power spectrum is dependent on the choice of c, i.e. the type of space-time in the period of inflation. Also, the results are always valid for any asymptotic dS space-time and particularly coincide with the conventional results for dS and flat space-time.

  1. Asymptotically Lifshitz spacetimes with universal horizons in (1 +2 ) dimensions

    Science.gov (United States)

    Basu, Sayandeb; Bhattacharyya, Jishnu; Mattingly, David; Roberson, Matthew

    2016-03-01

    Hořava gravity theory possesses global Lifshitz space as a solution and has been conjectured to provide a natural framework for Lifshitz holography. We derive the conditions on the two-derivative Hořava gravity Lagrangian that are necessary for static, asymptotically Lifshitz spacetimes with flat transverse dimensions to contain a universal horizon, which plays a similar thermodynamic role as the Killing horizon in general relativity. Specializing to z =2 in 1 +2 dimensions, we then numerically construct such regular solutions over the whole spacetime. We calculate the mass for these solutions and show that, unlike the asymptotically anti-de Sitter case, the first law applied to the universal horizon is straightforwardly compatible with a thermodynamic interpretation.

  2. Non-Tikhonov Asymptotic Properties of Cardiac Excitability

    Science.gov (United States)

    Biktashev, V. N.; Suckley, R.

    2004-10-01

    Models of electric excitability of cardiac cells can be studied by singular perturbation techniques. To do this one should take into account parameters appearing in equations in nonstandard ways. The physical reason for this is near-perfect switch behavior of ionic current gates. This leads to a definition of excitability different from the currently accepted one. The asymptotic structure revealed by our analysis can be used to devise simplified caricature models, to obtain approximate analytical solutions, and to facilitate numerical simulations.

  3. TAIL ASYMPTOTICS OF LIGHT-TAILED WEIBULL-LIKE SUMS

    DEFF Research Database (Denmark)

    Asmussen, Soren; Hashorva, Enkelejd; Laub, Patrick J.

    2017-01-01

    We consider sums of n i.i.d. random variables with tails close to exp{-x(beta)} for some beta > 1. Asymptotics developed by Rootzen (1987) and Balkema, Kluppelberg, and Resnick (1993) are discussed from the point of view of tails rather than of densities, using a somewhat different angle......, and supplemented with bounds, results on a random number N of terms, and simulation algorithms....

  4. Local asymptotic stability for nonlinear quadratic functional integral equations

    Directory of Open Access Journals (Sweden)

    Bapurao Dhage

    2008-03-01

    Full Text Available In the present study, using the characterizations of measures of noncompactness we prove a theorem on the existence and local asymptotic stability of solutions for a quadratic functional integral equation via a fixed point theorem of Darbo. The investigations are placed in the Banach space of real functions defined, continuous and bounded on an unbounded interval. An example is indicated to demonstrate the natural realizations of abstract result presented in the paper.

  5. Asymptotic behaviour of the Weyl tensor in higher dimensions

    Czech Academy of Sciences Publication Activity Database

    Ortaggio, Marcello; Pravdová, Alena

    2014-01-01

    Roč. 90, č. 10 (2014), s. 104011 ISSN 1550-7998 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : higher-dimensional gravity * asymptotic structure * classical general relativity Subject RIV: BA - General Mathematics Impact factor: 4.643, year: 2014 http://journals.aps.org/prd/abstract/10.1103/PhysRevD.90.104011

  6. Asymptotic behavior of Maxwell fields in higher dimensions

    Czech Academy of Sciences Publication Activity Database

    Ortaggio, Marcello

    2014-01-01

    Roč. 90, č. 12 (2014), s. 124020 ISSN 1550-7998 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : higher-dimensional gravity * asymptotic structure * classical general relativity Subject RIV: BA - General Mathematics Impact factor: 4.643, year: 2014 http://journals.aps.org/prd/abstract/10.1103/PhysRevD.90.124020

  7. On the accuracy of the asymptotic theory for cylindrical shells

    DEFF Research Database (Denmark)

    Niordson, Frithiof; Niordson, Christian

    1999-01-01

    We study the accuracy of the lowest-order bending theory of shells, derived from an asymptotic expansion of the three-dimensional theory of elasticity, by comparing the results of this theory for a cylindrical shell with clamped ends with the results of a solution to the three-dimensional problem....... The results are also compared with those of some commonly used engineering shell theories....

  8. On the accuracy of the asymptotic theory for cylindrical shells

    DEFF Research Database (Denmark)

    Niordson, Frithiof; Niordson, Christian

    1999-01-01

    We study the accuracy of the lowest-order bending theory of shells, derived from an asymptotic expansion of the three-dimensional theory of elasticity, by comparing the results of this shell theory for a cylindrical shell with clamped ends with the results of a solution to the three......-dimensional problem. The results are also compared with those of some commonly used engineering shell theories....

  9. Asymptotics of solutions to semilinear stochastic wave equations

    OpenAIRE

    Chow, Pao-Liu

    2006-01-01

    Large-time asymptotic properties of solutions to a class of semilinear stochastic wave equations with damping in a bounded domain are considered. First an energy inequality and the exponential bound for a linear stochastic equation are established. Under appropriate conditions, the existence theorem for a unique global solution is given. Next the questions of bounded solutions and the exponential stability of an equilibrium solution, in mean-square and the almost sure sense, are studied. Then...

  10. Framework for an asymptotically safe standard model via dynamical breaking

    Science.gov (United States)

    Abel, Steven; Sannino, Francesco

    2017-09-01

    We present a consistent embedding of the matter and gauge content of the Standard Model into an underlying asymptotically safe theory that has a well-determined interacting UV fixed point in the large color/flavor limit. The scales of symmetry breaking are determined by two mass-squared parameters with the breaking of electroweak symmetry being driven radiatively. There are no other free parameters in the theory apart from gauge couplings.

  11. Asymptotic estimation of xi^{(2n)}(1/2)

    Science.gov (United States)

    Coffey, Mark W.

    2009-06-01

    We verify a very recent conjecture of Farmer and Rhoades on the asymptotic rate of growth of the derivatives of the Riemann xi function at s=1/2 . We give two separate proofs of this result, with the more general method not restricted to s=1/2 . We briefly describe other approaches to our results, give a heuristic argument, and mention supporting numerical evidence.

  12. Gauge hierarchy problem in asymptotically safe gravity - The resurgence mechanism

    Science.gov (United States)

    Wetterich, Christof; Yamada, Masatoshi

    2017-07-01

    The gauge hierarchy problem could find a solution within the scenario of asymptotic safety for quantum gravity. We discuss a ;resurgence mechanism; where the running dimensionless coupling responsible for the Higgs scalar mass first decreases in the ultraviolet regime and subsequently increases in the infrared regime. A gravity induced large anomalous dimension plays a crucial role for the required ;self-tuned criticality; in the ultraviolet regime beyond the Planck scale.

  13. Solution branches for nonlinear problems with an asymptotic oscillation property

    Directory of Open Access Journals (Sweden)

    Lin Gong

    2015-10-01

    Full Text Available In this article we employ an oscillatory condition on the nonlinear term, to prove the existence of a connected component of solutions of a nonlinear problem, which bifurcates from infinity and asymptotically oscillates over an interval of parameter values. An interesting and immediate consequence of such oscillation property of the connected component is the existence of infinitely many solutions to the nonlinear problem for all parameter values in that interval.

  14. Bounds and asymptotics for orthogonal polynomials for varying weights

    CERN Document Server

    Levin, Eli

    2018-01-01

    This book establishes bounds and asymptotics under almost minimal conditions on the varying weights, and applies them to universality limits and entropy integrals.  Orthogonal polynomials associated with varying weights play a key role in analyzing random matrices and other topics.  This book will be of use to a wide community of mathematicians, physicists, and statisticians dealing with techniques of potential theory, orthogonal polynomials, approximation theory, as well as random matrices. .

  15. Asymptotic analysis of Lévy-driven tandem queues

    NARCIS (Netherlands)

    P.M.D. Lieshout (Pascal); M.R.H. Mandjes (Michel)

    2008-01-01

    htmlabstractWe analyze tail asymptotics of a two-node tandem queue with spectrally-positive Lévy input. A first focus lies in the tail probabilities of the type ¿(Q 1>¿ x,Q 2>(1¿¿)x), for ¿¿(0,1) and x large, and Q i denoting the steady-state workload in the ith queue. In case of light-tailed input,

  16. Non-linear and signal energy optimal asymptotic filter design

    Directory of Open Access Journals (Sweden)

    Josef Hrusak

    2003-10-01

    Full Text Available The paper studies some connections between the main results of the well known Wiener-Kalman-Bucy stochastic approach to filtering problems based mainly on the linear stochastic estimation theory and emphasizing the optimality aspects of the achieved results and the classical deterministic frequency domain linear filters such as Chebyshev, Butterworth, Bessel, etc. A new non-stochastic but not necessarily deterministic (possibly non-linear alternative approach called asymptotic filtering based mainly on the concepts of signal power, signal energy and a system equivalence relation plays an important role in the presentation. Filtering error invariance and convergence aspects are emphasized in the approach. It is shown that introducing the signal power as the quantitative measure of energy dissipation makes it possible to achieve reasonable results from the optimality point of view as well. The property of structural energy dissipativeness is one of the most important and fundamental features of resulting filters. Therefore, it is natural to call them asymptotic filters. The notion of the asymptotic filter is carried in the paper as a proper tool in order to unify stochastic and non-stochastic, linear and nonlinear approaches to signal filtering.

  17. Modeling broadband poroelastic propagation using an asymptotic approach

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, Donald W.

    2009-05-01

    An asymptotic method, valid in the presence of smoothly-varying heterogeneity, is used to derive a semi-analytic solution to the equations for fluid and solid displacements in a poroelastic medium. The solution is defined along trajectories through the porous medium model, in the manner of ray theory. The lowest order expression in the asymptotic expansion provides an eikonal equation for the phase. There are three modes of propagation, two modes of longitudinal displacement and a single mode of transverse displacement. The two longitudinal modes define the Biot fast and slow waves which have very different propagation characteristics. In the limit of low frequency, the Biot slow wave propagates as a diffusive disturbance, in essence a transient pressure pulse. Conversely, at low frequencies the Biot fast wave and the transverse mode are modified elastic waves. At intermediate frequencies the wave characteristics of the longitudinal modes are mixed. A comparison of the asymptotic solution with analytic and numerical solutions shows reasonably good agreement for both homogeneous and heterogeneous Earth models.

  18. Asymptotic Behavior of a Viscoelastic Fluid in a Closed Loop Thermosyphon: Physical Derivation, Asymptotic Analysis, and Numerical Experiments

    Directory of Open Access Journals (Sweden)

    Justine Yasappan

    2013-01-01

    Full Text Available Fluids subject to thermal gradients produce complex behaviors that arise from the competition with gravitational effects. Although such sort of systems have been widely studied in the literature for simple (Newtonian fluids, the behavior of viscoelastic fluids has not been explored thus far. We present a theoretical study of the dynamics of a Maxwell viscoelastic fluid in a closed-loop thermosyphon. This sort of fluid presents elastic-like behavior and memory effects. We study the asymptotic properties of the fluid inside the thermosyphon and the exact equations of motion in the inertial manifold that characterizes the asymptotic behavior. We derive, for the first time, the mathematical derivations of the motion of a viscoelastic fluid in the interior of a closed-loop thermosyphon under the effects of natural convection and a given external temperature gradient.

  19. Asymptotic and Numerical Methods for Rapidly Rotating Buoyant Flow

    Science.gov (United States)

    Grooms, Ian G.

    This thesis documents three investigations carried out in pursuance of a doctoral degree in applied mathematics at the University of Colorado (Boulder). The first investigation concerns the properties of rotating Rayleigh-Benard convection -- thermal convection in a rotating infinite plane layer between two constant-temperature boundaries. It is noted that in certain parameter regimes convective Taylor columns appear which dominate the dynamics, and a semi-analytical model of these is presented. Investigation of the columns and of various other properties of the flow is ongoing. The second investigation concerns the interactions between planetary-scale and mesoscale dynamics in the oceans. Using multiple-scale asymptotics the possible connections between planetary geostrophic and quasigeostrophic dynamics are investigated, and three different systems of coupled equations are derived. Possible use of these equations in conjunction with the method of superparameterization, and extension of the asymptotic methods to the interactions between mesoscale and submesoscale dynamics is ongoing. The third investigation concerns the linear stability properties of semi-implicit methods for the numerical integration of ordinary differential equations, focusing in particular on the linear stability of IMEX (Implicit-Explicit) methods and exponential integrators applied to systems of ordinary differential equations arising in the numerical solution of spatially discretized nonlinear partial differential equations containing both dispersive and dissipative linear terms. While these investigations may seem unrelated at first glance, some reflection shows that they are in fact closely linked. The investigation of rotating convection makes use of single-space, multiple-time-scale asymptotics to deal with dynamics strongly constrained by rotation. Although the context of thermal convection in an infinite layer seems somewhat removed from large-scale ocean dynamics, the asymptotic

  20. Occupational therapy evaluation

    DEFF Research Database (Denmark)

    Nielsen, Kristina Tomra; Wæhrens, Eva Ejlersen

    2015-01-01

    Background: The Occupational Therapy Intervention Process Model (OTIPM) serves to guide occupational therapists in their professional reasoning. The OTIPM prescribes evaluation of task performance based on both self-report and observation. Although this approach seems ideal, many clinicians raise...

  1. Transposition and Time-Scale Invariant Geometric Music Retrieval

    Science.gov (United States)

    Lemström, Kjell

    This paper considers how to adapt geometric algorithms, developed for content-based music retrieval of symbolically encoded music, to be robust against time deformations required by real-world applications. In this setting, music is represented by sets of points in plane. A matching, pertinent to the application, involves two such sets of points and invariances under translations and time scalings. We give an algorithm for finding exact occurrences, under such a setting, of a given query point set, of size m, within a database point set, of size n, with running time O(mn 2logn); partial occurrences are found in O(m 2 n 2logn) time. The algorithms resemble the sweepline algorithm introduced in [1].

  2. Scale-invariant properties of public-debt growth

    Science.gov (United States)

    Petersen, A. M.; Podobnik, B.; Horvatic, D.; Stanley, H. E.

    2010-05-01

    Public debt is one of the important economic variables that quantitatively describes a nation's economy. Because bankruptcy is a risk faced even by institutions as large as governments (e.g., Iceland), national debt should be strictly controlled with respect to national wealth. Also, the problem of eliminating extreme poverty in the world is closely connected to the study of extremely poor debtor nations. We analyze the time evolution of national public debt and find "convergence": initially less-indebted countries increase their debt more quickly than initially more-indebted countries. We also analyze the public debt-to-GDP ratio {\\cal R} , a proxy for default risk, and approximate the probability density function P({\\cal R}) with a Gamma distribution, which can be used to establish thresholds for sustainable debt. We also observe "convergence" in {\\cal R} : countries with initially small {\\cal R} increase their {\\cal R} more quickly than countries with initially large {\\cal R} . The scaling relationships for debt and {\\cal R} have practical applications, e.g. the Maastricht Treaty requires members of the European Monetary Union to maintain {\\cal R} < 0.6 .

  3. Scale invariance properties of rainfall in AMMA-CATCH observatory ...

    African Journals Online (AJOL)

    صﺧﻟﻣﻟا. تﯾرﺟأ. هذھ. ﺔﺳاردﻟا. ﯽﻟﻋ. ﺔﻧﺳ نﯾﺑ رﺎطﻣﻷا طﻗﺎﺳﺗﻟ ﺔﻧﯾﻌﻣ تﺎﻗوأ ﻲﻓ تﺎﯾطﻌﻣ. 1999. -. 2012. نﯾﺛﻼﺛﺑ. ﺔطﺣﻣ. AMMA-CACTH. -. Benin . دﺟوﺗ. تﺎظﺣﻟﻟا نﯾﺑ ةدﯾطو ﺔﻗﻼﻋ. ﺔﯾﺋﺎﺻﺣﻹا. تﺎﻧﺎﯾﺑﻟ. لوطھ. رﺎطﻣﻷا. ﺎﮭطﻗﺎﺳﺗ ةدﻣو . كﺎﻧھ. كوﻟﺳ. نﯾﺑ سﺎﯾﻘﻣﻟا تﺎﺑﺛ نﯾﺑﯾ. تﺎظﺣﻟﻟا. ﺔﯾﺋﺎﺻﺣﻹا. تارﺗﻓو. لوطﮭﺑ ﺔﺻﺎﺧﻟا ﺔﻌﺑﺎﺗﻣﻟا. ،رﺎطﻣﻷا. ﻊﻣ. سﻷا. تﺎﺑﺛ. ﯽﻟﻋ. قﺎطﻧ. ﺔﯾﺑﻟﺗو. مدﻋ. ةاوﺎﺳﻣﻟا. : 0.5. > n. > 1. صﺋﺎﺻﺧﻟا. ﺔﯾﺋﺎﺻﺣﻹا. لوطﮭﻟ.

  4. Analysis and modeling of scale-invariance in plankton abundance

    CERN Document Server

    Pelletier, J D

    1996-01-01

    The power spectrum, $S$, of horizontal transects of plankton abundance are often observed to have a power-law dependence on wavenumber, $k$, with exponent close to $-2$: $S(k)\\propto k^{-2}$ over a wide range of scales. I present power spectral analyses of aircraft lidar measurements of phytoplankton abundance from scales of 1 to 100 km. A power spectrum $S(k)\\propto k^{-2}$ is obtained. As a model for this observation, I consider a stochastic growth equation where the rate of change of plankton abundance is determined by turbulent mixing, modeled as a diffusion process in two dimensions, and exponential growth with a stochastically variable net growth rate representing a fluctuating environment. The model predicts a lognormal distribution of abundance and a power spectrum of horizontal transects $S(k)\\propto k^{-1.8}$, close to the observed spectrum. The model equation predicts that the power spectrum of variations in abundance in time at a point in space is $S(f)\\propto f^{-1.5}$ (where $f$ is the frequency...

  5. A Scale Invariant Distribution of the Prime Numbers

    Directory of Open Access Journals (Sweden)

    Wayne S. Kendal

    2015-10-01

    Full Text Available The irregular distribution of prime numbers amongst the integers has found multiple uses, from engineering applications of cryptography to quantum theory. The degree to which this distribution can be predicted thus has become a subject of current interest. Here, we present a computational analysis of the deviations between the actual positions of the prime numbers and their predicted positions from Riemann’s counting formula, focused on the variance function of these deviations from sequential enumerative bins. We show empirically that these deviations can be described by a class of probabilistic models known as the Tweedie exponential dispersion models that are characterized by a power law relationship between the variance and the mean, known by biologists as Taylor’s power law and by engineers as fluctuation scaling. This power law behavior of the prime number deviations is remarkable in that the same behavior has been found within the distribution of genes and single nucleotide polymorphisms (SNPs within the human genome, the distribution of animals and plants within their habitats, as well as within many other biological and physical processes. We explain the common features of this behavior through a statistical convergence effect related to the central limit theorem that also generates 1/f noise.

  6. Scale invariance properties of rainfall in AMMA-CATCH observatory ...

    African Journals Online (AJOL)

    on real rainfall data and the number of such investigations is still rather low. Recent investigations have mostly dealt with either radar data (e.g. [6-8,10-13]), or rainfall time series (e.g. [1,14,15]). In spite of recent advances in the investigation of the scaling properties of hydrological fields, very few studies from different ...

  7. Scale invariance in the 2003 2005 Iraq conflict

    Science.gov (United States)

    Alvarez-Ramirez, Jose; Rodriguez, Eduardo; Urrea, Rafael

    2007-04-01

    The number of reported social systems that apparently display power-law correlations (i.e., scale-free patterns) has increased dramatically in recent years, ranging from city growth and economics to global terrorism. Using the set of violence events in the 2003-2005 Iraq stabilization phase (i.e., from May 1, 2005), existence of scale-free patterns in event fatalities is shown. This property is also present in the tail of distributions of events divided into groups based on the type of used weapon. Lognormal distribution description was also tried, showing the superiority of the power-law function to describe the behavior of heavy tails. Time series for civilian and military fatalities were studied using the so-called detrended fluctuation analysis. Civilian fatalities showed uncorrelated behavior, implying a lack of memory effects on the evolution of daily civilian fatalities. In contrast, military fatalities displayed long-range correlated behavior.

  8. Curing Black Hole Singularities with Local Scale Invariance

    Directory of Open Access Journals (Sweden)

    Predrag Dominis Prester

    2016-01-01

    Full Text Available We show that Weyl-invariant dilaton gravity provides a description of black holes without classical space-time singularities. Singularities appear due to the ill behaviour of gauge fixing conditions, one example being the gauge in which theory is classically equivalent to standard General Relativity. The main conclusions of our analysis are as follows: (1 singularities signal a phase transition from broken to unbroken phase of Weyl symmetry; (2 instead of a singularity, there is a “baby universe” or a white hole inside a black hole; (3 in the baby universe scenario, there is a critical mass after which reducing mass makes the black hole larger as viewed by outside observers; (4 if a black hole could be connected with white hole through the “singularity,” this would require breakdown of (classical geometric description; (5 the singularity of Schwarzschild BH solution is nongeneric and so it is dangerous to rely on it in deriving general results. Our results may have important consequences for resolving issues related to information loss puzzle. Though quantum effects are still crucial and may change the proposed classical picture, a position of building quantum theory around essentially regular classical solutions normally provides a much better starting point.

  9. Duality and scale invariant magnetic fields from bouncing universes

    DEFF Research Database (Denmark)

    Chowdhury, Debika; Sriramkumar, L.; Jain, Rajeev Kumar

    2016-01-01

    of such models. We illustrate that, for cosmological scales which have wave numbers much smaller than the wave number associated with the bounce, the shape of the spectrum is preserved across the bounce. Using the analytic solutions obtained, we also illustrate that the problem of backreaction is severe...

  10. Asymptotics of work distributions in a stochastically driven system

    Science.gov (United States)

    Manikandan, Sreekanth K.; Krishnamurthy, Supriya

    2017-12-01

    We determine the asymptotic forms of work distributions at arbitrary times T, in a class of driven stochastic systems using a theory developed by Nickelsen and Engel (EN theory) [D. Nickelsen and A. Engel, Eur. Phys. J. B 82, 207 (2011)], which is based on the contraction principle of large deviation theory. In this paper, we extend the theory, previously applied in the context of deterministically driven systems, to a model in which the driving is stochastic. The models we study are described by overdamped Langevin equations and the work distributions in path integral form, are characterised by having quadratic augmented actions. We first illustrate EN theory, for a deterministically driven system - the breathing parabola model, and show that within its framework, the Crooks fluctuation theorem manifests itself as a reflection symmetry property of a certain characteristic polynomial, which also determines the exact moment-generating-function at arbitrary times. We then extend our analysis to a stochastically driven system, studied in references [S. Sabhapandit, EPL 89, 60003 (2010); A. Pal, S. Sabhapandit, Phys. Rev. E 87, 022138 (2013); G. Verley, C. Van den Broeck, M. Esposito, New J. Phys. 16, 095001 (2014)], for both equilibrium and non-equilibrium steady state initial distributions. In both cases we obtain new analytic solutions for the asymptotic forms of (dissipated) work distributions at arbitrary T. For dissipated work in the steady state, we compare the large T asymptotic behaviour of our solution to the functional form obtained in reference [New J. Phys. 16, 095001 (2014)]. In all cases, special emphasis is placed on the computation of the pre-exponential factor and the results show excellent agreement with numerical simulations. Our solutions are exact in the low noise (β → ∞) limit.

  11. Exploring central opacity and asymptotic scenarios in elastic hadron scattering

    Science.gov (United States)

    Fagundes, D. A.; Menon, M. J.; Silva, P. V. R. G.

    2016-02-01

    In the absence of a global description of the experimental data on elastic and soft diffractive scattering from the first principles of QCD, model-independent analyses may provide useful phenomenological insights for the development of the theory in the soft sector. With that in mind, we present an empirical study on the energy dependence of the ratio X between the elastic and total cross sections; a quantity related to the evolution of the hadronic central opacity. The dataset comprises all the experimental information available on proton-proton and antiproton-proton scattering in the c.m. energy interval 5 GeV-8 TeV. Generalizing previous works, we discuss four model-independent analytical parameterizations for X, consisting of sigmoid functions composed with elementary functions of the energy and three distinct asymptotic scenarios: either the standard black disk limit or scenarios above or below that limit. Our two main conclusions are the following: (1) although consistent with the experimental data, the black disk does not represent an unique solution; (2) the data reductions favor a semi-transparent scenario, with asymptotic average value for the ratio X bar = 0.30 ± 0.12. In this case, within the uncertainty, the asymptotic regime may already be reached around 1000 TeV. We present a comparative study of the two scenarios, including predictions for the inelastic channel (diffraction dissociation) and the ratio associated with the total cross-section and the elastic slope. Details on the selection of our empirical ansatz for X and physical aspects related to a change of curvature in this quantity at 80-100 GeV, indicating the beginning of a saturation effect, are also presented and discussed.

  12. On selfdual spin-connections and asymptotic safety

    Directory of Open Access Journals (Sweden)

    U. Harst

    2016-02-01

    Full Text Available We explore Euclidean quantum gravity using the tetrad field together with a selfdual or anti-selfdual spin-connection as the basic field variables. Setting up a functional renormalization group (RG equation of a new type which is particularly suitable for the corresponding theory space we determine the non-perturbative RG flow within a two-parameter truncation suggested by the Holst action. We find that the (anti-selfdual theory is likely to be asymptotically safe. The existing evidence for its non-perturbative renormalizability is comparable to that of Einstein–Cartan gravity without the selfduality condition.

  13. Subexponential loss rate asymptotics for Lévy processes

    DEFF Research Database (Denmark)

    Andersen, Lars Nørvang

    2011-01-01

    We consider a Lévy process reflected in barriers at 0 and K > 0. The loss rate is the mean of the local time at K at time 1 when the process is started in stationarity, and is a natural continuous-time analogue of the stationary expected loss rate for a reflected random walk. We derive asymptotics...... for the loss rate when K tends to infinity, when the mean of the Lévy process is negative and the positive jumps are subexponential. In the course of this derivation, we achieve a formula, which is a generalization of the celebrated Pollaczeck-Khinchine formula....

  14. Asymptotic Behavior for a Class of Nonclassical Parabolic Equations

    OpenAIRE

    Yanjun Zhang; Qiaozhen Ma

    2013-01-01

    This paper is devoted to the qualitative analysis of a class of nonclassical parabolic equations ut-εΔut-ωΔu+f(u)=g(x) with critical nonlinearity, where ε∈[0,1] and ω>0 are two parameters. Firstly, we establish some uniform decay estimates for the solutions of the problem for g(x)∈H-1(Ω), which are independent of the parameter ε. Secondly, some uniformly (with respect to ε∈[0,1]) asymptotic regularity about the solutions has been established for g(x)∈L2(Ω), which shows that the solutions are ...

  15. Singularly perturbed hyperbolic problems on metric graphs: asymptotics of solutions

    Directory of Open Access Journals (Sweden)

    Golovaty Yuriy

    2017-04-01

    Full Text Available We are interested in the evolution phenomena on star-like networks composed of several branches which vary considerably in physical properties. The initial boundary value problem for singularly perturbed hyperbolic differential equation on a metric graph is studied. The hyperbolic equation becomes degenerate on a part of the graph as a small parameter goes to zero. In addition, the rates of degeneration may differ in different edges of the graph. Using the boundary layer method the complete asymptotic expansions of solutions are constructed and justified.

  16. Asymptotic shape of solutions to the perturbed simple pendulum problems

    Directory of Open Access Journals (Sweden)

    Tetsutaro Shibata

    2007-05-01

    Full Text Available We consider the positive solution of the perturbed simple pendulum problem $$ u''(r + frac{N-1}{r}u'(r - g(u(t + lambda sin u(r = 0, $$ with $0 < r < R$, $ u'(0 = u(R = 0$. To understand well the shape of the solution $u_lambda$ when $lambda gg 1$, we establish the leading and second terms of $Vert u_lambdaVert_q$ ($1 le q < infty$ with the estimate of third term as $lambda o infty$. We also obtain the asymptotic formula for $u_lambda'(R$ as $lambda o infty$.

  17. Asymptotic formulae for likelihood-based tests of new physics

    Science.gov (United States)

    Cowan, Glen; Cranmer, Kyle; Gross, Eilam; Vitells, Ofer

    2011-02-01

    We describe likelihood-based statistical tests for use in high energy physics for the discovery of new phenomena and for construction of confidence intervals on model parameters. We focus on the properties of the test procedures that allow one to account for systematic uncertainties. Explicit formulae for the asymptotic distributions of test statistics are derived using results of Wilks and Wald. We motivate and justify the use of a representative data set, called the "Asimov data set", which provides a simple method to obtain the median experimental sensitivity of a search or measurement as well as fluctuations about this expectation.

  18. Asymptotic formulae for likelihood-based tests of new physics

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Glen [Royal Holloway, University of London, Physics Department, Egham (United Kingdom); Cranmer, Kyle [New York University, Physics Department, New York, NY (United States); Gross, Eilam; Vitells, Ofer [Weizmann Institute of Science, Rehovot (Israel)

    2011-02-15

    We describe likelihood-based statistical tests for use in high energy physics for the discovery of new phenomena and for construction of confidence intervals on model parameters. We focus on the properties of the test procedures that allow one to account for systematic uncertainties. Explicit formulae for the asymptotic distributions of test statistics are derived using results of Wilks and Wald. We motivate and justify the use of a representative data set, called the ''Asimov data set'', which provides a simple method to obtain the median experimental sensitivity of a search or measurement as well as fluctuations about this expectation. (orig.)

  19. Shrinkage singularities of amplitudes and weak interaction cross- section asymptotic

    CERN Document Server

    Dolgov, A D; Okun, Lev Borisovich

    1972-01-01

    The so called shrinkage singularities of amplitudes caused by shrinkage of diffraction peak at asymptotically high energies are discussed given the condition that the amplitude singularities are not stronger than t/sup 2/ ln t (as is case for neutrino pair exchange diagrams) then total cross-section sigma /sub tot/ cannot increase faster at s to infinity than s/sup 1/3/. If shrinkage singularities are absent then sigma /sub tot/ cannot increase as any power of s. All the conclusions are valid, if the dispersion relations with finite number of subtractions exist at t

  20. Weighted Asymptotically Periodic Solutions of Linear Volterra Difference Equations

    Directory of Open Access Journals (Sweden)

    Josef Diblík

    2011-01-01

    Full Text Available A linear Volterra difference equation of the form x(n+1=a(n+b(nx(n+∑i=0nK(n,ix(i, where x:N0→R, a:N0→R, K:N0×N0→R and b:N0→R∖{0} is ω-periodic, is considered. Sufficient conditions for the existence of weighted asymptotically periodic solutions of this equation are obtained. Unlike previous investigations, no restriction on ∏j=0ω-1b(j is assumed. The results generalize some of the recent results.

  1. Asymptotic modelling of a thermopiezoelastic anisotropic smart plate

    Science.gov (United States)

    Long, Yufei

    Motivated by the requirement of modelling for space flexible reflectors as well as other applications of plate structures in engineering, a general anisotropic laminated thin plate model and a monoclinic Reissner-Mindlin plate model with thermal deformation, two-way coupled piezoelectric effect and pyroelectric effect is constructed using the variational asymptotic method, without any ad hoc assumptions. Total potential energy contains strain energy, electric potential energy and energy caused by temperature change. Three-dimensional strain field is built based on the concept of warping function and decomposition of the rotation tensor. The feature of small thickness and large in-plane dimension of plate structure helped to asymptotically simplify the three-dimensional analysis to a two-dimensional analysis on the reference surface and a one-dimensional analysis through the thickness. For the zeroth-order approximation, the asymptotically correct expression of energy is derived into the form of energetic equation in classical laminated plate theory, which will be enough to predict the behavior of plate structures as thin as a space flexible reflector. A through-the-thickness strain field can be expressed in terms of material constants and two-dimensional membrane and bending strains, while the transverse normal and shear stresses are not predictable yet. In the first-order approximation, the warping functions are further disturbed into a high order and an asymptotically correct energy expression with derivatives of the two-dimensional strains is acquired. For the convenience of practical use, the expression is transformed into a Reissner-Mindlin form with optimization implemented to minimize the error. Transverse stresses and strains are recovered using the in-plane strain variables. Several numerical examples of different laminations and shapes are studied with the help of analytical solutions or shell elements in finite element codes. The constitutive relation is

  2. Asymptotic behavior of observables in the asymmetric quantum Rabi model

    Science.gov (United States)

    Semple, J.; Kollar, M.

    2018-01-01

    The asymmetric quantum Rabi model with broken parity invariance shows spectral degeneracies in the integer case, that is when the asymmetry parameter equals an integer multiple of half the oscillator frequency, thus hinting at a hidden symmetry and accompanying integrability of the model. We study the expectation values of spin observables for each eigenstate and observe characteristic differences between the integer and noninteger cases for the asymptotics in the deep strong coupling regime, which can be understood from a perturbative expansion in the qubit splitting. We also construct a parent Hamiltonian whose exact eigenstates possess the same symmetries as the perturbative eigenstates of the asymmetric quantum Rabi model in the integer case.

  3. Asymptotic Analysis and Spatial Coupling of Counter Braids

    OpenAIRE

    Rosnes, Eirik; Amat, Alexandre Graell i

    2016-01-01

    A counter braid (CB) is a novel counter architecture introduced by Lu et al. in 2007 for per-flow measurements on high-speed links. CBs achieve an asymptotic compression rate (under optimal decoding) that matches the entropy lower bound of the flow size distribution. In this paper, we apply the concept of spatial coupling to CBs to improve their belief propagation (BP) threshold, and analyze the performance of the resulting spatially-coupled CBs (SC-CBs). We introduce an equivalent bipartite ...

  4. Asymptotic geometry in higher products of rank one Hadamard spaces

    OpenAIRE

    Link, Gabriele

    2013-01-01

    Given a product X of locally compact rank one Hadamard spaces, we study asymptotic properties of certain discrete isometry groups. First we give a detailed description of the structure of the geometric limit set and relate it to the limit cone; moreover, we show that the action of the group on a quotient of the regular geometric boundary of X is minimal and proximal. This is completely analogous to the case of Zariski dense discrete subgroups of semi-simple Lie groups acting on the associated...

  5. Asymptotics of Rydberg states for the hydrogen atom

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, L.E. [Virginia Univ., Charlottesville, VA (United States). Dept. of Mathematics; Villegas-Blas, C. [Universidad Nacional Autonoma de Mexico, Instituto de Matematicas, Unidad Cuernavaca, A. P. 273-3 Admon. 3, Cuernavaca Morelos 62251 (Mexico)

    1997-08-01

    The asymptotics of Rydberg states, i.e., highly excited bound states of the hydrogen atom Hamiltonian, and various expectations involving these states are investigated. We show that suitable linear combinations of these states, appropriately rescaled and regarded as functions either in momentum space or configuration space, are highly concentrated on classical momentum space or configuration space Kepler orbits respectively, for large quantum numbers. Expectations of momentum space or configuration space functions with respect to these states are related to time-averages of these functions over Kepler orbits. (orig.)

  6. Asymptotic Theory for the Probability Density Functions in Burgers Turbulence

    CERN Document Server

    Weinan, E; Eijnden, Eric Vanden

    1999-01-01

    A rigorous study is carried out for the randomly forced Burgers equation in the inviscid limit. No closure approximations are made. Instead the probability density functions of velocity and velocity gradient are related to the statistics of quantities defined along the shocks. This method allows one to compute the anomalies, as well as asymptotics for the structure functions and the probability density functions. It is shown that the left tail for the probability density function of the velocity gradient has to decay faster than $|\\xi|^{-3}$. A further argument confirms the prediction of E et al., Phys. Rev. Lett. {\\bf 78}, 1904 (1997), that it should decay as $|\\xi|^{-7/2}$.

  7. Joint Asymptotic Distributions of Smallest and Largest Insurance Claims

    Directory of Open Access Journals (Sweden)

    Hansjörg Albrecher

    2014-07-01

    Full Text Available Assume that claims in a portfolio of insurance contracts are described by independent and identically distributed random variables with regularly varying tails and occur according to a near mixed Poisson process. We provide a collection of results pertaining to the joint asymptotic Laplace transforms of the normalised sums of the smallest and largest claims, when the length of the considered time interval tends to infinity. The results crucially depend on the value of the tail index of the claim distribution, as well as on the number of largest claims under consideration.

  8. Asymptotic Limits for Transport in Binary Stochastic Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Prinja, A. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-01

    The Karhunen-Loeve stochastic spectral expansion of a random binary mixture of immiscible fluids in planar geometry is used to explore asymptotic limits of radiation transport in such mixtures. Under appropriate scalings of mixing parameters - correlation length, volume fraction, and material cross sections - and employing multiple- scale expansion of the angular flux, previously established atomic mix and diffusion limits are reproduced. When applied to highly contrasting material properties in the small cor- relation length limit, the methodology yields a nonstandard reflective medium transport equation that merits further investigation. Finally, a hybrid closure is proposed that produces both small and large correlation length limits of the closure condition for the material averaged equations.

  9. Asymptotic Behavior of the Maximum Entropy Routing in Computer Networks

    Directory of Open Access Journals (Sweden)

    Milan Tuba

    2013-01-01

    Full Text Available Maximum entropy method has been successfully used for underdetermined systems. Network design problem, with routing and topology subproblems, is an underdetermined system and a good candidate for maximum entropy method application. Wireless ad-hoc networks with rapidly changing topology and link quality, where the speed of recalculation is of crucial importance, have been recently successfully investigated by maximum entropy method application. In this paper we prove a theorem that establishes asymptotic properties of the maximum entropy routing solution. This result, besides being theoretically interesting, can be used to direct initial approximation for iterative optimization algorithms and to speed up their convergence.

  10. Nonspherically Symmetric Collapse in Asymptotically AdS Spacetimes

    Science.gov (United States)

    Bantilan, Hans; Figueras, Pau; Kunesch, Markus; Romatschke, Paul

    2017-11-01

    We numerically simulate gravitational collapse in asymptotically anti-de Sitter spacetimes away from spherical symmetry. Starting from initial data sourced by a massless real scalar field, we solve the Einstein equations with a negative cosmological constant in five spacetime dimensions and obtain a family of nonspherically symmetric solutions, including those that form two distinct black holes on the axis. We find that these configurations collapse faster than spherically symmetric ones of the same mass and radial compactness. Similarly, they require less mass to collapse within a fixed time.

  11. Asymptotics of weakly collapsing solutions of nonlinear Schroedinger equation

    CERN Document Server

    Ovchinnikov, Yu N

    2001-01-01

    One studied possible types of asymptotic behavior of weakly collapsing solution of the 3-rd nonlinear Schroedinger equation. It is shown that within left brace A, C sub 1 right brace parameter space there are two neighboring lines along which the amplitude of oscillation terms is exponentially small as to C sub 1 parameter. The same lines locates values of left brace A, C sub 1 right brace parameters at which the energy is equal to zero. With increase of C sub 1 parameter the accuracy of numerical determination of points with zero energy drops abruptly

  12. Application of the Asymptotic Taylor Expansion Method to Bistable Potentials

    Directory of Open Access Journals (Sweden)

    Okan Ozer

    2013-01-01

    Full Text Available A recent method called asymptotic Taylor expansion (ATEM is applied to determine the analytical expression for eigenfunctions and numerical results for eigenvalues of the Schrödinger equation for the bistable potentials. Optimal truncation of the Taylor series gives a best possible analytical expression for eigenfunctions and numerical results for eigenvalues. It is shown that the results are obtained by a simple algorithm constructed for a computer system using symbolic or numerical calculation. It is observed that ATEM produces excellent results consistent with the existing literature.

  13. Asymptotically Efficient Identification of Known-Sensor Hidden Markov Models

    Science.gov (United States)

    Mattila, Robert; Rojas, Cristian R.; Krishnamurthy, Vikram; Wahlberg, Bo

    2017-12-01

    We consider estimating the transition probability matrix of a finite-state finite-observation alphabet hidden Markov model with known observation probabilities. The main contribution is a two-step algorithm; a method of moments estimator (formulated as a convex optimization problem) followed by a single iteration of a Newton-Raphson maximum likelihood estimator. The two-fold contribution of this letter is, firstly, to theoretically show that the proposed estimator is consistent and asymptotically efficient, and secondly, to numerically show that the method is computationally less demanding than conventional methods - in particular for large data sets.

  14. Asymptotic Stability for a Class of Nonlinear Difference Equations

    Directory of Open Access Journals (Sweden)

    Chang-you Wang

    2010-01-01

    Full Text Available We study the global asymptotic stability of the equilibrium point for the fractional difference equation xn+1=(axn-lxn-k/(α+bxn-s+cxn-t, n=0,1,…, where the initial conditions x-r,x-r+1,…,x1,x0 are arbitrary positive real numbers of the interval (0,α/2a,l,k,s,t are nonnegative integers, r=max⁡⁡{l,k,s,t} and α,a,b,c are positive constants. Moreover, some numerical simulations are given to illustrate our results.

  15. Asymptotic Ergodic Capacity Analysis of Composite Lognormal Shadowed Channels

    KAUST Repository

    Ansari, Imran Shafique

    2015-05-01

    Capacity analysis of composite lognormal (LN) shadowed links, such as Rician-LN, Gamma-LN, and Weibull-LN, is addressed in this work. More specifically, an exact closed-form expression for the moments of the end-to-end signal-to-noise ratio (SNR) of a single composite link transmission system is presented in terms of well- known elementary functions. Capitalizing on these new moments expressions, we present asymptotically tight lower bounds for the ergodic capacity at high SNR. All the presented results are verified via computer-based Monte-Carlo simulations. © 2015 IEEE.

  16. Gravitational geons in asymptotically anti-de Sitter spacetimes

    Science.gov (United States)

    Martinon, Grégoire; Fodor, Gyula; Grandclément, Philippe; Forgács, Peter

    2017-06-01

    We report on numerical constructions of fully non-linear geons in asymptotically anti-de Sitter (AdS) spacetimes in four dimensions. Our approach is based on 3  +  1 formalism and spectral methods in a gauge combining maximal slicing and spatial harmonic coordinates. We are able to construct several families of geons seeded by different families of spherical harmonics. We can reach unprecedentedly high amplitudes, with mass of order  ∼1/2 of the AdS length, and with deviations of the order of 50% compared to third order perturbative approaches. The consistency of our results with numerical resolution is carefully checked and we give extensive precision monitoring techniques. All global quantities, such as mass and angular momentum, are computed using two independent frameworks that agree with each other at the 0.1% level. We also provide strong evidence for the existence of ‘excited’ (i.e. with one radial node) geon solutions of Einstein equations in asymptotically AdS spacetimes by constructing them numerically.

  17. Asymptotic behavior for a quadratic nonlinear Schrodinger equation

    Directory of Open Access Journals (Sweden)

    Pavel I. Naumkin

    2008-02-01

    Full Text Available We study the initial-value problem for the quadratic nonlinear Schrodinger equation $$displaylines{ iu_{t}+frac{1}{2}u_{xx}=partial _{x}overline{u}^{2},quad xin mathbb{R},; t>1, cr u(1,x=u_{1}(x,quad xin mathbb{R}. }$$ For small initial data $u_{1}in mathbf{H}^{2,2}$ we prove that there exists a unique global solution $uin mathbf{C}([1,infty ;mathbf{H}^{2,2}$ of this Cauchy problem. Moreover we show that the large time asymptotic behavior of the solution is defined in the region $|x|leq Csqrt{t}$ by the self-similar solution $frac{1}{sqrt{t}}MS(frac{x}{sqrt{t}}$ such that the total mass $$ frac{1}{sqrt{t}}int_{mathbb{R}}MS(frac{x}{sqrt{t}} dx=int_{mathbb{R}}u_{1}(xdx, $$ and in the far region $|x|>sqrt{t}$ the asymptotic behavior of solutions has rapidly oscillating structure similar to that of the cubic nonlinear Schrodinger equations.

  18. Testing autocorrelation and partial autocorrelation: Asymptotic methods versus resampling techniques.

    Science.gov (United States)

    Ke, Zijun; Zhang, Zhiyong Johnny

    2017-09-12

    Autocorrelation and partial autocorrelation, which provide a mathematical tool to understand repeating patterns in time series data, are often used to facilitate the identification of model orders of time series models (e.g., moving average and autoregressive models). Asymptotic methods for testing autocorrelation and partial autocorrelation such as the 1/T approximation method and the Bartlett's formula method may fail in finite samples and are vulnerable to non-normality. Resampling techniques such as the moving block bootstrap and the surrogate data method are competitive alternatives. In this study, we use a Monte Carlo simulation study and a real data example to compare asymptotic methods with the aforementioned resampling techniques. For each resampling technique, we consider both the percentile method and the bias-corrected and accelerated method for interval construction. Simulation results show that the surrogate data method with percentile intervals yields better performance than the other methods. An R package pautocorr is used to carry out tests evaluated in this study. © 2017 The British Psychological Society.

  19. Asymptotically simple spacetimes and mass loss due to gravitational waves

    Science.gov (United States)

    Saw, Vee-Liem

    The cosmological constant Λ used to be a freedom in Einstein’s theory of general relativity (GR), where one had a proclivity to set it to zero purely for convenience. The signs of Λ or Λ being zero would describe universes with different properties. For instance, the conformal structure of spacetime directly depends on Λ: null infinity ℐ is a spacelike, null, or timelike hypersurface, if Λ > 0, Λ = 0, or Λ 0 in Einstein’s theory of GR. A quantity that depends on the conformal structure of spacetime, especially on the nature of ℐ, is the Bondi mass which in turn dictates the mass loss of an isolated gravitating system due to energy carried away by gravitational waves. This problem of extending the Bondi mass to a universe with Λ > 0 has spawned intense research activity over the past several years. Some aspects include a closer inspection on the conformal properties, working with linearization, attempts using a Hamiltonian formulation based on “linearized” asymptotic symmetries, as well as obtaining the general asymptotic solutions of de Sitter-like spacetimes. We consolidate on the progress thus far from the various approaches that have been undertaken, as well as discuss the current open problems and possible directions in this area.

  20. Ultraviolet asymptotics for quasiperiodic AdS_4 perturbations

    CERN Document Server

    Craps, Ben; Jai-akson, Puttarak; Vanhoof, Joris

    2015-01-01

    Spherically symmetric perturbations in AdS-scalar field systems of small amplitude epsilon approximately periodic on time scales of order 1/epsilon^2 (in the sense that no significant transfer of energy between the AdS normal modes occurs) have played an important role in considerations of AdS stability. They are seen as anchors of stability islands where collapse of small perturbations to black holes does not occur. (This collapse, if it happens, typically develops on time scales of the order 1/epsilon^2.) We construct an analytic treatment of the frequency spectra of such quasiperiodic perturbations, paying special attention to the large frequency asymptotics. For the case of a self-interacting phi^4 scalar field in a non-dynamical AdS background, we arrive at a fairly complete analytic picture involving quasiperiodic spectra with an exponential suppression modulated by a power law at large mode numbers. For the case of dynamical gravity, the structure of the large frequency asymptotics is more complicated....

  1. arXiv Naturalness of asymptotically safe Higgs

    CERN Document Server

    Pelaggi, Giulio Maria; Strumia, Alessandro; Vigiani, Elena

    2017-01-01

    We extend the list of theories featuring a rigorous interacting ultraviolet fixed point by constructing the first theory featuring a Higgs-like scalar with gauge, Yukawa and quartic interactions. We show that the theory enters a perturbative asymptotically safe regime at energies above a physical scale $\\Lambda$. We determine the salient properties of the theory and use it as a concrete example to test whether scalars masses unavoidably receive quantum correction of order $\\Lambda$. Having at our dispose a calculable model allowing us to precisely relate the IR and UV of the theory we demonstrate that the scalars can be lighter than $\\Lambda$. Although we do not have an answer to whether the Standard Model hypercharge coupling growth towards a Landau pole at around $\\Lambda \\sim 10^{40}$ GeV can be tamed by non-perturbative asymptotic safety, our results indicate that such a possibility is worth exploring. In fact, if successful, it might also offer an explanation for the unbearable lightness of the Higgs.

  2. Quantum gravity on foliated spacetimes: Asymptotically safe and sound

    Science.gov (United States)

    Biemans, Jorn; Platania, Alessia; Saueressig, Frank

    2017-04-01

    Asymptotic safety provides a mechanism for constructing a consistent and predictive quantum theory of gravity valid on all length scales. Its key ingredient is a non-Gaussian fixed point of the gravitational renormalization group flow which controls the scaling of couplings and correlation functions at high energy. In this work we use a functional renormalization group equation adapted to the Arnowitt-Deser-Misner formalism for evaluating the gravitational renormalization group flow on a cosmological Friedmann-Robertson-Walker background. Besides possessing the non-Gaussian fixed-point characteristic for asymptotic safety the setting exhibits a second family of non-Gaussian fixed points with a positive Newton's constant and real critical exponents. The presence of these new fixed points alters the phase diagram in such a way that all renormalization group trajectories connected to classical general relativity are well defined on all length scales. In particular a positive cosmological constant is dynamically driven to zero in the deep infrared. Moreover, the scaling dimensions associated with the universality classes emerging within the causal setting exhibit qualitative agreement with results found within the ɛ -expansion around two dimensions, Monte Carlo simulations based on lattice quantum gravity, and the discretized Wheeler-DeWitt equation.

  3. The asymptotic behavior of Buneman instability in dissipative plasma

    Science.gov (United States)

    Rostomyan, Eduard V.

    2017-10-01

    The problem of time evolution of initial perturbation excited at the development of the Buneman instability (BI) in plasma with dissipation is solved. Developing fields are presented in the form of a wave train with slowly varying amplitude. It is shown that the evolution of the initial pulse in space and time is given by the differential equation of third order. The equation is solved and the expression for the asymptotic pulse shape is obtained. The expression gives the most complete information on the instability: the space-time distribution of the fields, growth rates, velocities of unstable perturbations, the influence of the collisions/dissipation on the instability, its character, (absolute/convective), etc. All these characteristics of the BI are carried out by analyzing the expression for the shape. The obtained results may be applied to any system in which the red-shifted electron stream oscillations resonantly interact with ions. Asymptotic shapes of the BI are presented for various levels of dissipation.

  4. Asymptotic Expansions and Bootstrapping Distributions for Dependent Variables: A Martingale Approach

    OpenAIRE

    Mykland, Per Aslak

    1992-01-01

    The paper develops a one-step triangular array asymptotic expansion for continuous martingales which are asymptotically normal. Mixing conditions are not required, but the quadratic variations of the martingales must satisfy a law of large numbers and a central limit type condition. From this result we derive expansions for the distributions of estimators in asymptotically ergodic differential equation models, and also for the bootstrapping estimators of these distributions.

  5. On the asymptotic behavior of the Durbin-Watson statistic for ARX processes in adaptive tracking

    OpenAIRE

    Bercu, Bernard; Portier, Bruno; Vazquez, V.

    2012-01-01

    International audience; A wide literature is available on the asymptotic behavior of the Durbin-Watson statistic for autoregressive models. However, it is impossible to find results on the Durbin-Watson statistic for autoregressive models with adaptive control. Our purpose is to fill the gap by establishing the asymptotic behavior of the Durbin Watson statistic for ARX models in adaptive tracking. On the one hand, we show the almost sure convergence as well as the asymptotic normality of the ...

  6. Coulomb-distorted plane wave: Partial wave expansion and asymptotic forms

    Science.gov (United States)

    Hornyak, I.; Kruppa, A. T.

    2013-05-01

    Partial wave expansion of the Coulomb-distorted plane wave is determined and studied. Dominant and sub-dominant asymptotic expansion terms are given and leading order three-dimensional asymptotic form is derived. The generalized hypergeometric function 2F2(a, a; a + l + 1, a - l; z) is expressed with the help of confluent hypergeometric functions and the asymptotic expansion of 2F2(a, a; a + l + 1, a - l; z) is simplified.

  7. Test of the second order asymptotic theory with low degree solar gravity modes

    Energy Technology Data Exchange (ETDEWEB)

    Barry, C.T.; Rosenwald, R.D.; Gu, Y.; Hill, H.A

    1988-01-01

    Further testing of first and second order asymptotic theory predictions for solar gravity modes is possible with the work of gu and Hill in which the number of classified low-degree gravity mode multiplets was increased from 31 to 53. In an extension of the work where the properties of 31 multiplets were analyzed in the framework of first order asymptotic theory, a new analysis has been performed using the properties of the 53 classified multiplets. The result of this analysis again shows the inadequacy of first order asymptotic theory for describing the eigenfrequency spectrum and clearly demonstrates the necessity of using second order asymptotic theory. 30 refs.

  8. Ground state solutions for asymptotically periodic Schrodinger equations with critical growth

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2013-10-01

    Full Text Available Using the Nehari manifold and the concentration compactness principle, we study the existence of ground state solutions for asymptotically periodic Schrodinger equations with critical growth.

  9. Time-asymptotic interactions of two ensembles of Cucker-Smale flocking particles

    Science.gov (United States)

    Ha, Seung-Yeal; Ko, Dongnam; Zhang, Xiongtao; Zhang, Yinglong

    2017-07-01

    We study the time-asymptotic interactions of two ensembles of Cucker-Smale flocking particles. For this, we use a coupled hydrodynamic Cucker-Smale system and discuss two frameworks, leading to mono-cluster and bi-cluster flockings asymptotically depending on initial configurations, coupling strengths, and the far-field decay property of communication weights. Under the proposed two frameworks, we show that mono-cluster and bi-cluster flockings emerge asymptotically exponentially fast and algebraically slow, respectively. Our asymptotic analysis uses the Lyapunov functional approach and a Lagrangian formulation of the coupled system.

  10. Elastohydrodynamic lubrication for line and point contacts asymptotic and numerical approaches

    CERN Document Server

    Kudish, Ilya I

    2013-01-01

    Elastohydrodynamic Lubrication for Line and Point Contacts: Asymptotic and Numerical Approaches describes a coherent asymptotic approach to the analysis of lubrication problems for heavily loaded line and point contacts. This approach leads to unified asymptotic equations for line and point contacts as well as stable numerical algorithms for the solution of these elastohydrodynamic lubrication (EHL) problems. A Unique Approach to Analyzing Lubrication Problems for Heavily Loaded Line and Point Contacts The book presents a robust combination of asymptotic and numerical techniques to solve EHL p

  11. Occupant Controlled Lighting

    DEFF Research Database (Denmark)

    Logadóttir, Ásta

    2011-01-01

    The studies presented in this thesis explore opportunities and limitations of using the method of adjustment for occupant controlled lighting. The method of adjustment is studied with respect to occupant preferences and energy efficiency. The work presents three types of studies using the method...... of adjustment. Firstly, there was preliminary laboratory study exploring the influence of daylight on occupant controlled dynamic lighting in a laboratory office environment. Secondly, there was non-daylit laboratory study on occupant preferences for illuminance, and thirdly a scale model study on occupant...... preferences for correlated colour temperature (CCT). The results suggest that the method of adjustment, previously used in the lighting literature, is not adequate to generalize about occupant preferences for illuminance or CCT. Factors that influence occupants’ lighting preference when applying the method...

  12. OCCUPATIONAL EXPOSURE AND COPD

    DEFF Research Database (Denmark)

    Würtz, Else Toft

    Chronic Obstructive Pulmonary Disease (COPD) is a common disease. The main risk factor is smoking although 15% of the COPD cases are expected to be preventable if the occupational exposures from vapour, gas, dust, and fume were eliminated; the population attributable fraction (PAF). The thesis...... addresses the association between occupational exposure and COPD in a population-based cohort of Danes aged 45-84-years. 4717 participants were included at baseline and 2624 at the four year follow-up. COPD was defined by spirometry and the occupational exposure was based on specialist defined jobs...... and questionnaires. The main occupational exposure was organic dust and 49% reported no lifetime occupational exposure. The results suggest occupational exposures to be associated to COPD also in never smokers and women. We found an exposure-response relation in the cross sectional analyses. The results...

  13. Essential Occupational Health Services.

    Directory of Open Access Journals (Sweden)

    Yucel Demiral,Ali Naci Yildiz

    2010-12-01

    Full Text Available Coverage of the occupational health services varies between 15%-90% of the workforce. Available services do not always fit the requirements of the occupational health necessities. Moreover, the need for the occupational health services has been growing while the working life has changed in the globalization era. International Labor Office instruments and World Health Organisation primary health care approach and health for all strategy have suggested universal and comprehensive occupational health services. From this point of view, World Health Organisation / International Labor Office and International Commission on Occupational Health jointly developed and proposed basic occupational health services to tackle this challenge. [TAF Prev Med Bull 2010; 9(6.000: 673-676

  14. Optimal Variational Asymptotic Method for Nonlinear Fractional Partial Differential Equations.

    Science.gov (United States)

    Baranwal, Vipul K; Pandey, Ram K; Singh, Om P

    2014-01-01

    We propose optimal variational asymptotic method to solve time fractional nonlinear partial differential equations. In the proposed method, an arbitrary number of auxiliary parameters γ 0, γ 1, γ 2,… and auxiliary functions H 0(x), H 1(x), H 2(x),… are introduced in the correction functional of the standard variational iteration method. The optimal values of these parameters are obtained by minimizing the square residual error. To test the method, we apply it to solve two important classes of nonlinear partial differential equations: (1) the fractional advection-diffusion equation with nonlinear source term and (2) the fractional Swift-Hohenberg equation. Only few iterations are required to achieve fairly accurate solutions of both the first and second problems.

  15. Thermodynamical description of stationary, asymptotically flat solutions with conical singularities

    CERN Document Server

    Herdeiro, Carlos; Rebelo, Carmen

    2010-01-01

    We examine the thermodynamical properties of a number of asymptotically flat, stationary (but not static) solutions having conical singularities, with both connected and non-connected event horizons, using the thermodynamical description recently proposed in arXiv:0912.3386 [gr-qc]. The examples considered are the double-Kerr solution, the black ring rotating in either S^2 or S^1 and the black Saturn, where the balance condition is not imposed for the latter two solutions. We show that not only the Bekenstein-Hawking area law is recovered from the thermodynamical description but also the thermodynamical angular momentum is the ADM angular momentum. We also analyse the thermodynamical stability and show that, for all these solutions, either the isothermal moment of inertia or the specific heat at constant angular momentum is negative, at any point in parameter space. Therefore, all these solutions are thermodynamically unstable in the grand canonical ensemble.

  16. Asymptotic analysis of downlink MISO systems over Rician fading channels

    KAUST Repository

    Falconet, Hugo

    2016-06-24

    In this work, we focus on the ergodic sum rate in the downlink of a single-cell large-scale multi-user MIMO system in which the base station employs N antennas to communicate with K single-antenna user equipments. A regularized zero-forcing (RZF) scheme is used for precoding under the assumption that each link forms a spatially correlated MIMO Rician fading channel. The analysis is conducted assuming N and K grow large with a non trivial ratio and perfect channel state information is available at the base station. Recent results from random matrix theory and large system analysis are used to compute an asymptotic expression of the signal-to-interference-plus-noise ratio as a function of the system parameters, the spatial correlation matrix and the Rician factor. Numerical results are used to evaluate the performance gap in the finite system regime under different operating conditions. © 2016 IEEE.

  17. Asymptotic approximation method of force reconstruction: Proof of concept

    Science.gov (United States)

    Sanchez, J.; Benaroya, H.

    2017-08-01

    An important problem in engineering is the determination of the system input based on the system response. This type of problem is difficult to solve as it is often ill-defined, and produces inaccurate or non-unique results. Current reconstruction techniques typically involve the employment of optimization methods or additional constraints to regularize the problem, but these methods are not without their flaws as they may be sub-optimally applied and produce inadequate results. An alternative approach is developed that draws upon concepts from control systems theory, the equilibrium analysis of linear dynamical systems with time-dependent inputs, and asymptotic approximation analysis. This paper presents the theoretical development of the proposed method. A simple application of the method is presented to demonstrate the procedure. A more complex application to a continuous system is performed to demonstrate the applicability of the method.

  18. Asymptotic coherence of gluons and of q-bosons

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C.A.

    1993-12-31

    In theoretical physics one of the most important aspects of coherent states is that they can often be simply and reliably used to investigate the quantum coherence and correlation properties of new dynamical, quantum field theories. First, this paper reviews the coherent/degenerate state treatment of the infra-red dynamics of perturbative QCD. This based on the asymptotic behavior of the Hamiltonian operator as {vert_bar}t{vert_bar} {yields} {infinity} in the interaction representation. Second, the paper reviews the usage of q-analogue coherent states {vert_bar}z>{sub q} to deduce coherence and uncertainty properties of the q-analogue quantized radiation field in the {vert_bar}z>{sub q} ``classical limit`` where {vert_bar}z{vert_bar} is large. Third, for future applications, a new ``projector`` definition of the usual coherent states and of the squeezed states is reported.

  19. The large Reynolds number - Asymptotic theory of turbulent boundary layers.

    Science.gov (United States)

    Mellor, G. L.

    1972-01-01

    A self-consistent, asymptotic expansion of the one-point, mean turbulent equations of motion is obtained. Results such as the velocity defect law and the law of the wall evolve in a relatively rigorous manner, and a systematic ordering of the mean velocity boundary layer equations and their interaction with the main stream flow are obtained. The analysis is extended to the turbulent energy equation and to a treatment of the small scale equilibrium range of Kolmogoroff; in velocity correlation space the two-thirds power law is obtained. Thus, the two well-known 'laws' of turbulent flow are imbedded in an analysis which provides a great deal of other information.

  20. Asymptotic freedom in the Hamiltonian approach to binding of color

    Directory of Open Access Journals (Sweden)

    Gómez-Rocha María

    2017-01-01

    Full Text Available We derive asymptotic freedom and the SU(3 Yang-Mills β-function using the renormalization group procedure for effective particles. In this procedure, the concept of effective particles of size s is introduced. Effective particles in the Fock space build eigenstates of the effective Hamiltonian Hs, which is a matrix written in a basis that depend on the scale (or size parameter s. The effective Hamiltonians Hs and the (regularized canonical Hamiltonian H0 are related by a similarity transformation. We calculate the effective Hamiltonian by solving its renormalization-group equation perturbatively up to third order and calculate the running coupling from the three-gluon-vertex function in the effective Hamiltonian operator.

  1. Asymptotic freedom in the Hamiltonian approach to binding of color

    Science.gov (United States)

    Gómez-Rocha, María

    2017-03-01

    We derive asymptotic freedom and the SU(3) Yang-Mills β-function using the renormalization group procedure for effective particles. In this procedure, the concept of effective particles of size s is introduced. Effective particles in the Fock space build eigenstates of the effective Hamiltonian Hs, which is a matrix written in a basis that depend on the scale (or size) parameter s. The effective Hamiltonians Hs and the (regularized) canonical Hamiltonian H0 are related by a similarity transformation. We calculate the effective Hamiltonian by solving its renormalization-group equation perturbatively up to third order and calculate the running coupling from the three-gluon-vertex function in the effective Hamiltonian operator.

  2. Optimal Variational Asymptotic Method for Nonlinear Fractional Partial Differential Equations

    Science.gov (United States)

    Baranwal, Vipul K.; Pandey, Ram K.

    2014-01-01

    We propose optimal variational asymptotic method to solve time fractional nonlinear partial differential equations. In the proposed method, an arbitrary number of auxiliary parameters γ 0, γ 1, γ 2,… and auxiliary functions H 0(x), H 1(x), H 2(x),… are introduced in the correction functional of the standard variational iteration method. The optimal values of these parameters are obtained by minimizing the square residual error. To test the method, we apply it to solve two important classes of nonlinear partial differential equations: (1) the fractional advection-diffusion equation with nonlinear source term and (2) the fractional Swift-Hohenberg equation. Only few iterations are required to achieve fairly accurate solutions of both the first and second problems. PMID:27437484

  3. Asymptotic Waveform Evaluation (AWE) Technique for Frequency Domain Electromagnetic Analysis

    Science.gov (United States)

    Cockrell, C. R.; Beck, F. B.

    1996-01-01

    The Asymptotic Waveform Evaluation (AWE) technique is applied to a generalized frequency domain electromagnetic problem. Most of the frequency domain techniques in computational electromagnetics result in a matrix equation, which is solved at a single frequency. In the AWE technique, the Taylor series expansion around that frequency is applied to the matrix equation. The coefficients of the Taylor's series are obtained in terms of the frequency derivatives of the matrices evaluated at the expansion frequency. The coefficients hence obtained will be used to predict the frequency response of the system over a frequency range. The detailed derivation of the coefficients (called 'moments') is given along with an illustration for electric field integral equation (or Method of Moments) technique. The radar cross section (RCS) frequency response of a square plate is presented using the AWE technique and is compared with the exact solution at various frequencies.

  4. Sharp asymptotics for Einstein-$\\lambda$-dust flows

    CERN Document Server

    Friedrich, Helmut

    2016-01-01

    We consider the Einstein-dust equations with positive cosmological constant $\\lambda$ on manifolds with time slices diffeomorphic to an orientable, compact 3-manifold $S$. It is shown that the set of standard Cauchy data for the Einstein-$\\lambda$-dust equations on $S$ contains an open (in terms of suitable Sobolev norms) subset of data that develop into solutions which admit at future time-like infinity a space-like conformal boundary ${\\cal J}^+$ that is $C^{\\infty}$ if the data are of class $C^{\\infty}$ and of correspondingly lower smoothness otherwise. As a particular case follows a strong stability result for FLRW solutions. The solutions can conveniently be characterized in terms of their asymptotic end data induced on ${\\cal J}^+$, only a linear equation must be solved to construct such data. In the case where the energy density $\\hat{\\rho}$ is everywhere positive such data can be constructed without solving any differential equation at all.

  5. Solution of internal erosion equations by asymptotic expansion

    Directory of Open Access Journals (Sweden)

    Dubujet P.

    2012-07-01

    Full Text Available One dimensional coupled soil internal erosion and consolidation equations are considered in this work for the special case of well determined sand and clay mixtures with a small proportion of clay phase. An enhanced modelling of the effect of erosion on elastic soil behavior was introduced through damage mechanics concepts. A modified erosion law was proposed. The erosion phenomenon taking place inside the soil was shown to act like a perturbation affecting the classical soil consolidation equation. This interpretation has enabled considering an asymptotic expansion of the coupled erosion consolidation equations in terms of a perturbation parameter linked to the maximum expected internal erosion. A robust analytical solution was obtained via direct integration of equations at order zero and an adequate finite difference scheme that was applied at order one.

  6. Asymptotic analysis of radiation extinction of stretched premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Y.; Masuya, G. [Tohoku Univ., Sendai (Japan). Dept. of Aeronautics and Space Engineering; Liu, F. [National Research Council, Ottawa, Ontario (Canada). Inst. for Chemical Prpcess and Environmental Technology; Hattori, Yuji [Tohoku Univ., Sendai (Japan). Inst. of Fluid Science; Riechelmann, D. [Ishikawajima-Harima Heavy Industry, Tokyo (Japan). Research Inst.

    2000-01-01

    The flammability limit, radiation extinction of stretched premixed flame and effect of non-unity Lewis numbers are analyzed by the large-activated-energy asymptotic method. Particular attention is paid to the effect of Lewis number, the upstream and downstream radiation heat losses as well as the non-linearity of radiation. Explicit expressions for the flame temperature, extinction limit and flammability limit are obtained. The C-shaped extinction curve is reproduced. The dependence of radiation heat loss and the Lewis number effect on the stretch rate and flame separation distance is investigated. The effects of fuel Lewis number, oxidizer Lewis number, upstream radiation heat loss and the non-linearity of radiation on the C-shaped extinction curve are also examined. The results demonstrate a significant influence of these parameters on the radiation extinction and flammability limit and provide a good explanation to the experimental results and numerical simulations. (Author)

  7. An introduction to covariant quantum gravity and asymptotic safety

    CERN Document Server

    Percacci, Roberto

    2017-01-01

    This book covers recent developments in the covariant formulation of quantum gravity. Developed in the 1960s by Feynman and DeWitt, by the 1980s this approach seemed to lead nowhere due to perturbative non-renormalizability. The possibility of non-perturbative renormalizability or "asymptotic safety," originally suggested by Weinberg but largely ignored for two decades, was revived towards the end of the century by technical progress in the field of the renormalization group. It is now a very active field of research, providing an alternative to other approaches to quantum gravity. Written by one of the early contributors to this subject, this book provides a gentle introduction to the relevant ideas and calculational techniques. Several explicit calculations gradually bring the reader close to the current frontier of research. The main difficulties and present lines of development are also outlined.

  8. An asymptotic state of the critical ionization velocity phenomenon

    Science.gov (United States)

    Goertz, C. K.; Machida, S.; Smith, R. A.

    1985-01-01

    The paper considers the problem of how the momentum of ions created by electron impact ionization of neutrals moving at a speed v(0) perpendicular to the magnetic field through a background plasma is coupled to this plasma. It has been found that the plasma accelerates, and the relative velocity between neutrals and plasma decreases. If this decrease is rapid and large enough, the critical ionization velocity (CIV) phenomenon may turn off. Equations for the evolution of plasma density, electron and ion thermal energy, and plasma velocity have been derived. It was found that the CIV process reaches an asymptotic quasi-steady state, in which the ionization rate reaches a constant value which depends on the properties of the surrounding medium and the value of v(0).

  9. Conference on Boundary and Interior Layers : Computational and Asymptotic Methods

    CERN Document Server

    Stynes, Martin; Zhang, Zhimin

    2017-01-01

    This volume collects papers associated with lectures that were presented at the BAIL 2016 conference, which was held from 14 to 19 August 2016 at Beijing Computational Science Research Center and Tsinghua University in Beijing, China. It showcases the variety and quality of current research into numerical and asymptotic methods for theoretical and practical problems whose solutions involve layer phenomena. The BAIL (Boundary And Interior Layers) conferences, held usually in even-numbered years, bring together mathematicians and engineers/physicists whose research involves layer phenomena, with the aim of promoting interaction between these often-separate disciplines. These layers appear as solutions of singularly perturbed differential equations of various types, and are common in physical problems, most notably in fluid dynamics. This book is of interest for current researchers from mathematics, engineering and physics whose work involves the accurate app roximation of solutions of singularly perturbed diffe...

  10. The complex dynamics of products and its asymptotic properties.

    Directory of Open Access Journals (Sweden)

    Orazio Angelini

    Full Text Available We analyse global export data within the Economic Complexity framework. We couple the new economic dimension Complexity, which captures how sophisticated products are, with an index called logPRODY, a measure of the income of the respective exporters. Products' aggregate motion is treated as a 2-dimensional dynamical system in the Complexity-logPRODY plane. We find that this motion can be explained by a quantitative model involving the competition on the markets, that can be mapped as a scalar field on the Complexity-logPRODY plane and acts in a way akin to a potential. This explains the movement of products towards areas of the plane in which the competition is higher. We analyse market composition in more detail, finding that for most products it tends, over time, to a characteristic configuration, which depends on the Complexity of the products. This market configuration, which we called asymptotic, is characterized by higher levels of competition.

  11. Sharp Asymptotics for Einstein-{λ}-Dust Flows

    Science.gov (United States)

    Friedrich, Helmut

    2017-03-01

    We consider the Einstein-dust equations with positive cosmological constant {λ} on manifolds with time slices diffeomorphic to an orientable, compact 3-manifold {S}. It is shown that the set of standard Cauchy data for the Einstein-{λ}-dust equations on {S} contains an open (in terms of suitable Sobolev norms) subset of data which develop into solutions that admit at future time-like infinity a space-like conformal boundary J^+ that is C^{∞} if the data are of class C^{∞} and of correspondingly lower smoothness otherwise. The class of solutions considered here comprises non-linear perturbations of FLRW solutions as very special cases. It can conveniently be characterized in terms of asymptotic end data induced on J^+. These data must only satisfy a linear differential equation. If the energy density is everywhere positive they can be constructed without solving differential equations at all.

  12. Bulk Viscous Matter-dominated Universes: Asymptotic Properties

    CERN Document Server

    Avelino, Arturo; Gonzalez, Tame; Nucamendi, Ulises; Quiros, Israel

    2013-01-01

    By means of a combined study of the type Ia supernovae test,together with a study of the asymptotic properties in the equivalent phase space -- through the use of the dynamical systems tools -- we demonstrate that the bulk viscous matter-dominated scenario is not a good model to explain the accepted cosmological paradigm, at least, under the parametrization of bulk viscosity considered in this paper. The main objection against such scenarios is the absence of conventional radiation and matter-dominated critical points in the phase space of the model. This entails that radiation and matter dominance are not generic solutions of the cosmological equations, so that these stages can be implemented only by means of very particular solutions. Such a behavior is in marked contradiction with the accepted cosmological paradigm which requires of an earlier stage dominated by relativistic species, followed by a period of conventional non-relativistic matter domination, during which the cosmic structure we see was formed...

  13. Fields Institute International Symposium on Asymptotic Methods in Stochastics

    CERN Document Server

    Kulik, Rafal; Haye, Mohamedou; Szyszkowicz, Barbara; Zhao, Yiqiang

    2015-01-01

    This book contains articles arising from a conference in honour of mathematician-statistician Miklόs Csörgő on the occasion of his 80th birthday, held in Ottawa in July 2012. It comprises research papers and overview articles, which provide a substantial glimpse of the history and state-of-the-art of the field of asymptotic methods in probability and statistics, written by leading experts. The volume consists of twenty articles on topics on limit theorems for self-normalized processes, planar processes, the central limit theorem and laws of large numbers, change-point problems, short and long range dependent time series, applied probability and stochastic processes, and the theory and methods of statistics. It also includes Csörgő’s list of publications during more than 50 years, since 1962.

  14. Asymptotically AdS spacetimes with a timelike Kasner singularity

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jie [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2016-07-21

    Exact solutions to Einstein’s equations for holographic models are presented and studied. The IR geometry has a timelike cousin of the Kasner singularity, which is the less generic case of the BKL (Belinski-Khalatnikov-Lifshitz) singularity, and the UV is asymptotically AdS. This solution describes a holographic RG flow between them. The solution’s appearance is an interpolation between the planar AdS black hole and the AdS soliton. The causality constraint is always satisfied. The entanglement entropy and Wilson loops are discussed. The boundary condition for the current-current correlation function and the Laplacian in the IR is examined. There is no infalling wave in the IR, but instead, there is a normalizable solution in the IR. In a special case, a hyperscaling-violating geometry is obtained after a dimensional reduction.

  15. Turbomachinery computational fluid dynamics: asymptotes and paradigm shifts.

    Science.gov (United States)

    Dawes, W N

    2007-10-15

    This paper reviews the development of computational fluid dynamics (CFD) specifically for turbomachinery simulations and with a particular focus on application to problems with complex geometry. The review is structured by considering this development as a series of paradigm shifts, followed by asymptotes. The original S1-S2 blade-blade-throughflow model is briefly described, followed by the development of two-dimensional then three-dimensional blade-blade analysis. This in turn evolved from inviscid to viscous analysis and then from steady to unsteady flow simulations. This development trajectory led over a surprisingly small number of years to an accepted approach-a 'CFD orthodoxy'. A very important current area of intense interest and activity in turbomachinery simulation is in accounting for real geometry effects, not just in the secondary air and turbine cooling systems but also associated with the primary path. The requirements here are threefold: capturing and representing these geometries in a computer model; making rapid design changes to these complex geometries; and managing the very large associated computational models on PC clusters. Accordingly, the challenges in the application of the current CFD orthodoxy to complex geometries are described in some detail. The main aim of this paper is to argue that the current CFD orthodoxy is on a new asymptote and is not in fact suited for application to complex geometries and that a paradigm shift must be sought. In particular, the new paradigm must be geometry centric and inherently parallel without serial bottlenecks. The main contribution of this paper is to describe such a potential paradigm shift, inspired by the animation industry, based on a fundamental shift in perspective from explicit to implicit geometry and then illustrate this with a number of applications to turbomachinery.

  16. Teacher's Guide to Occupational Orientation.

    Science.gov (United States)

    National Evaluation Systems, Inc., Amherst, MA.

    This guide is specifically designed to accompany materials developed for occupational orientation (particularly in Illinois) in the following five cluster areas: Applied biological and agricultural occupations; personal and public service occupations; health occupations; business, marketing, and management occupations; and industrial oriented…

  17. Leadership and Occupational Stress

    Science.gov (United States)

    Stickle, Fred E.; Scott, Kelly

    2016-01-01

    In a leadership position, it is important to understand what stress is and how it affects others. In an occupational setting, stressors vary according to personality types, gender, and occupational rank. The purpose of this manuscript is to review the foundations of stress and to explore how personality characteristics influence stress.…

  18. [Hand and occupational diseases].

    Science.gov (United States)

    Bensefa-Colas, Lynda; Choudat, Dominique

    2013-12-01

    Hand is frequently the site of work accidents or occupational diseases. The musculoskeletal upper limb is the first recognized occupational disease and carpal tunnel syndrome is the most common of them. The most common location of occupational dermatoses is the hand. Their causes are often multifactorial, involving chemical irritants, physical, allergens and endogenous factors (mainly atopic dermatitis). Occupational exposure to microtrauma and iterative use of vibrating tools may also be the cause of hypothenar hammer syndrome and acrosyndromes. The frequent chronicity and functional impairment induced by these attacks can cause lasting disabilities, an inability to source workstation. Occupational physician is a focal point for helping to maintain the position and the prevention of socioprofessional disinsertion. Many pathologies of the hand related to professional activity may benefit from a statement in occupational disease and thus allow the patient to obtain compensation and employment protection. Prevention of occupational hand diseases should be made by all health actors, especially in occupations and industries at risk. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. Occupational Mortality, Background on

    DEFF Research Database (Denmark)

    Lynge, Elsebeth

    2016-01-01

    The study of occupational mortality involves the systematic tabulation of mortality by occupational or socioeconomic groups. Three main methods are used to conduct these studies: cross-sectional studies, death certificate studies, and follow-up studies. Cross-sectional studies were undertaken in ...... the mortality rates of blue- and white-collar workers....

  20. The American Occupational Structure.

    Science.gov (United States)

    Blau, Peter M.; Duncan, Otis Dudley

    The objective of this book is to present a systematic analysis of the American occupational structure, and, thus, of the major foundation of the stratification system in this society. Processes of social mobility from one generation to the next and from career beginnings to occupational destinations are considered to reflect the dynamics of the…

  1. Dimensions of Occupational Prestige

    Science.gov (United States)

    Haug, Marie R.; Widdison, Harold A.

    1975-01-01

    Eight dimensions of occupational prestige are examined for their effect on the general prestige ratings accorded various occupations within the medical profession. Stepwise multiple regression analyzes the relative weight of these dimension among 410 persons. The findings suggested that public stereotypes exert a normative pressure on individual…

  2. Delay-dependent asymptotic stability for neural networks with time-varying delays

    Directory of Open Access Journals (Sweden)

    Xiaofeng Liao

    2006-01-01

    ensure local and global asymptotic stability of the equilibrium of the neural network. Our results are applied to a two-neuron system with delayed connections between neurons, and some novel asymptotic stability criteria are also derived. The obtained conditions are shown to be less conservative and restrictive than those reported in the known literature. Some numerical examples are included to demonstrate our results.

  3. Asymptotic description of a test particle around a Schwarzschild black hole

    Science.gov (United States)

    Rosales-Vera, Marco

    2018-03-01

    In this paper, the movement of a test particle around a Schwarzschild black hole is revisited. Using matched asymptotic expansions, approximate analytical expressions for the orbit of the test particle in the case of large eccentricity are found. The asymptotic solutions are compared with numerical and analytical results.

  4. Asymptotic expansion of unsteady gravity flow of a power-law fluid ...

    African Journals Online (AJOL)

    We present a paper on the asymptotic expansion of unsteady non-linear rheological effects of a power-law fluid under gravity. The fluid flows through a porous medium. The asymptotic expansion is employed to obtain solution of the nonlinear problem. The results show the existence of traveling waves. It is assumed that the ...

  5. On the tail asymptotics of the area swept under the Brownian storage graph

    NARCIS (Netherlands)

    Arendarczyk, M.; Dȩbicki, K.; Mandjes, M.

    2014-01-01

    In this paper, the area swept under the workload graph is analyzed: with {Q(t): t≥0} denoting the stationary workload process, the asymptotic behavior of πT(u)(u):=P(∫T(u)0Q(r)dr>u) is analyzed. Focusing on regulated Brownian motion, first the exact asymptotics of πT(u)(u) are given for the case

  6. On the asymptotic structure of a Navier-Stokes flow past a rotating body

    OpenAIRE

    Kyed, Mads

    2014-01-01

    Consider a rigid body moving with a prescribed constant non-zero velocity and rotating with a prescribed constant non-zero angular velocity in a three-dimensional Navier-Stokes liquid. The asymptotic structure of a steady-state solution to the corresponding equations of motion is analyzed. In particular, an asymptotic expansion of the corresponding velocity field is obtained.

  7. Optimal Homotopy Asymptotic Method for Solving System of Fredholm Integral Equations

    Directory of Open Access Journals (Sweden)

    Bahman Ghazanfari

    2013-08-01

    Full Text Available In this paper, optimal homotopy asymptotic method (OHAM is applied to solve system of Fredholm integral equations. The effectiveness of optimal homotopy asymptotic method is presented. This method provides easy tools to control the convergence region of approximating solution series wherever necessary. The results of OHAM are compared with homotopy perturbation method (HPM and Taylor series expansion method (TSEM.

  8. Explanation of Second-Order Asymptotic Theory Via Information Spectrum Method

    Science.gov (United States)

    Hayashi, Masahito

    We explain second-order asymptotic theory via the information spectrum method. From a unified viewpoint based on the generality of the information spectrum method, we consider second-order asymptotic theory for use in fixed-length data compression, uniform random number generation, and channel coding. Additionally, we discuss its application to quantum cryptography, folklore in source coding, and security analysis.

  9. Assessing model fit in latent class analysis when asymptotics do not hold

    NARCIS (Netherlands)

    van Kollenburg, Geert H.; Mulder, Joris; Vermunt, Jeroen K.

    2015-01-01

    The application of latent class (LC) analysis involves evaluating the LC model using goodness-of-fit statistics. To assess the misfit of a specified model, say with the Pearson chi-squared statistic, a p-value can be obtained using an asymptotic reference distribution. However, asymptotic p-values

  10. Asymptotic Dichotomy in a Class of Odd-Order Nonlinear Differential Equations with Impulses

    Directory of Open Access Journals (Sweden)

    Kunwen Wen

    2013-01-01

    Full Text Available We investigate the oscillatory and asymptotic behavior of a class of odd-order nonlinear differential equations with impulses. We obtain criteria that ensure every solution is either oscillatory or (nonoscillatory and zero convergent. We provide several examples to show that impulses play an important role in the asymptotic behaviors of these equations.

  11. On Robustness of the Normal-Theory Based Asymptotic Distributions of Three Reliability Coefficient Estimates.

    Science.gov (United States)

    Yuan, Ke-Hai; Bentler, Peter M.

    2002-01-01

    Examined the asymptotic distributions of three reliability coefficient estimates: (1) sample coefficient alpha; (2) reliability estimate of a composite score following factor analysis; and (3) maximal reliability of a linear combination of item scores after factor analysis. Findings show that normal theory based asymptotic distributions for these…

  12. Almost Surely Asymptotic Stability of Exact and Numerical Solutions for Neutral Stochastic Pantograph Equations

    Directory of Open Access Journals (Sweden)

    Zhanhua Yu

    2011-01-01

    Full Text Available We study the almost surely asymptotic stability of exact solutions to neutral stochastic pantograph equations (NSPEs, and sufficient conditions are obtained. Based on these sufficient conditions, we show that the backward Euler method (BEM with variable stepsize can preserve the almost surely asymptotic stability. Numerical examples are demonstrated for illustration.

  13. An asymptotic expansion for product integration applied to Cauchy principal value integrals

    NARCIS (Netherlands)

    Wesseling, P.

    1975-01-01

    Product integration methods for Cauchy principal value integrals based on piecewise Lagrangian interpolation are studied. It is shown that for this class of quadrature methods the truncation error has an asymptotic expansion in integer powers of the step-size, and that a method with an asymptotic

  14. Occupational stress among dentists

    DEFF Research Database (Denmark)

    Moore, Rod

    2011-01-01

    Dentists report a high degree of occupational stress.(Cooper, Mallinger, and Kahn, 1978;Coster, Carstens, and Harris, 1987;DiMatteo, Shugars, and Hays, 1993;Hakeberg et al., 1992;Möller and Spangenberg, 1996;Moore, 2000;Myers and Myers, 2004;O'Shea, Corah, and Ayer, 1984) This chapter reviews...... the literature of studies that elaborate on the circumstances of occupational stress of dentists. These will include the frequency of occurrence of occupational stress among dentists in several countries, frequency and intensity of identified stressors specific to dentistry, as well as the consequences...... of this occupational stress. The literature on consequences includes effects on dentists' physical health, personal and occupational performance, including "burnout" phenomena, as well as topics of alcohol or substance abuse and reports of suicidal behaviour among dentists. One specific and less conventionally...

  15. Occupational medicine and toxicology

    Directory of Open Access Journals (Sweden)

    Fischer Axel

    2006-02-01

    Full Text Available Abstract This editorial is to announce the Journal of Occupational Medicine and Toxicology, a new Open Access, peer-reviewed, online journal published by BioMed Central. Occupational medicine and toxicology belong to the most wide ranging disciplines of all medical specialties. The field is devoted to the diagnosis, prevention, management and scientific analysis of diseases from the fields of occupational and environmental medicine and toxicology. It also covers the promotion of occupational and environmental health. The complexity of modern industrial processes has dramatically changed over the past years and today's areas include effects of atmospheric pollution, carcinogenesis, biological monitoring, ergonomics, epidemiology, product safety and health promotion. We hope that the launch of the Journal of Occupational Medicine and Toxicology will aid in the advance of these important areas of research bringing together multi-disciplinary research findings.

  16. The Occupations of Literacy: Occupational Therapy's Role

    Science.gov (United States)

    Frolek Clark, Gloria

    2016-01-01

    Nationally, student proficiency in reading and writing is very low and requires ongoing focus from state and local agencies. With almost 25% of occupational therapists working in early intervention and school settings (AOTA, 2015), their role of facilitating literacy (e.g., reading, writing, speaking and listening) is critical. Occupational…

  17. Occupational Accidents Aboard Merchant Ships

    National Research Council Canada - National Science Library

    H. L. Hansen; D. Nielsen; M. Frydenberg

    2002-01-01

    Objectives: To investigate the frequency, circumstances, and causes of occupational accidents aboard merchant ships in international trade, and to identify risk factors for the occurrence of occupational...

  18. Alcoholism and occupation.

    Science.gov (United States)

    Olkinuora, M

    1984-12-01

    Occupational roles are a dominant force in many aspects of social life. Occupation signifies a complex of social and psychological factors that reflect intelligence, education, personality, ambition, social status, and life-style. The consumption of alcohol and alcoholism have many correlations with occupational roles. Mortality from cirrhosis of the liver reflects the per capita consumption of alcohol. In certain occupations such mortality rates are clearly above average. The highest risk is found in occupations associated with the serving of food and beverages. A Finnish study has shown that the alcohol-related use of health services among males is the highest among unskilled workers, painters, seamen, and construction workers and the lowest among executives and farmers. Many population studies have shown that blue-collar workers and laborers have the highest level of drinking. This pattern is not necessarily true among females. The risk factors associated with occupation include the availability of alcohol at work, social pressure to drink on the job, separation from normal social relationships, and freedom from supervision. The opportunity to obtain alcoholic beverages relatively inexpensively, when combined with social pressure by peers to drink heavily, is an especially powerful explanation for high rates of alcoholism within an occupation.

  19. Occupational skin cancers

    Energy Technology Data Exchange (ETDEWEB)

    Gawkrodger, D.J. [Royal Hallamshire Hospital, Sheffield (United Kingdom). Dept. of Dermatology

    2004-10-01

    Skin cancer due to occupation is more common than is generally recognized, although it is difficult to obtain an accurate estimate of its prevalence. Over the past two centuries, occupational skin cancers have particularly been due to industrial exposure of men (it seems more so than women) to chemical carcinogens such as polycyclic hydrocarbons (e.g. from coal tar products) or to arsenic. Industrial processes have improved in most Western countries to limit this type of exposure, but those with outdoor occupations are still exposed to solar ultraviolet irradiation without this being widely recognized as an industrial hazard. Ionizing radiation such as X-rays can also cause skin cancer. Occupational skin cancers often resemble skin tumours found in non-occupational subjects, e.g. basal cell carcinoma, squamous cell carcinoma and malignant melanoma, but some pre-malignant lesions can be more specific and point to an occupational origin, e.g. tar keratoses or arsenical keratoses. An uncommon but well-recognized cause of occupational skin cancer is that which results from scar formation following an industrial burn. In the future it will be necessary to focus on preventative measures, e.g. for outdoor workers, the need to cover up in the sun and use sun protective creams and a campaign for earlier recognition of skin cancers, which are usually curable if treated in their early stages.

  20. Occupational cancer in Britain

    Science.gov (United States)

    Chen, Yiqun; Osman, John

    2012-01-01

    Although only a relatively small proportion of cancer is attributable to occupational exposure to carcinogenic agents, the estimated number of deaths due to occupational cancer is high when compared to other deaths due to work-related ill health and injury. However, risk from occupational exposure to carcinogens can be minimised through proportionate but effective risk management. The Health and Safety Executive (HSE) is the regulator of workplace health and safety in Great Britain. As part of its aim to reduce ill health arising from failures to control properly exposure to hazards at work, HSE commissioned the research presented elsewhere in this supplement to enable it to identify priorities for preventing occupational cancer. The research has shown that occupational cancer remains a key health issue and that low-level exposure of a large number of workers to carcinogens is important. The finding that a small number of carcinogens have been responsible for the majority of the burden of occupational cancer provides key evidence in the development of priorities for significant reduction of occupational cancer. Although the research presented in this supplement reflects the consequences of past exposures to carcinogens, occupational cancer remains a problem. The potential for exposure to the agents considered in this research is still present in the workplace and the findings are relevant to prevention of future disease. In this article, the principle approaches for risk reduction are described. It provides supporting information on some of the initiatives already being undertaken, or those being put in place, to reduce occupational cancer in Great Britain. The need also for systematic collection of exposure information and the importance of raising awareness and changing behaviours are discussed. PMID:22710673

  1. Asymptotic performance of regularized quadratic discriminant analysis based classifiers

    KAUST Repository

    Elkhalil, Khalil

    2017-12-13

    This paper carries out a large dimensional analysis of the standard regularized quadratic discriminant analysis (QDA) classifier designed on the assumption that data arise from a Gaussian mixture model. The analysis relies on fundamental results from random matrix theory (RMT) when both the number of features and the cardinality of the training data within each class grow large at the same pace. Under some mild assumptions, we show that the asymptotic classification error converges to a deterministic quantity that depends only on the covariances and means associated with each class as well as the problem dimensions. Such a result permits a better understanding of the performance of regularized QDA and can be used to determine the optimal regularization parameter that minimizes the misclassification error probability. Despite being valid only for Gaussian data, our theoretical findings are shown to yield a high accuracy in predicting the performances achieved with real data sets drawn from popular real data bases, thereby making an interesting connection between theory and practice.

  2. 3D face recognition with asymptotic cones based principal curvatures

    KAUST Repository

    Tang, Yinhang

    2015-05-01

    The classical curvatures of smooth surfaces (Gaussian, mean and principal curvatures) have been widely used in 3D face recognition (FR). However, facial surfaces resulting from 3D sensors are discrete meshes. In this paper, we present a general framework and define three principal curvatures on discrete surfaces for the purpose of 3D FR. These principal curvatures are derived from the construction of asymptotic cones associated to any Borel subset of the discrete surface. They describe the local geometry of the underlying mesh. First two of them correspond to the classical principal curvatures in the smooth case. We isolate the third principal curvature that carries out meaningful geometric shape information. The three principal curvatures in different Borel subsets scales give multi-scale local facial surface descriptors. We combine the proposed principal curvatures with the LNP-based facial descriptor and SRC for recognition. The identification and verification experiments demonstrate the practicability and accuracy of the third principal curvature and the fusion of multi-scale Borel subset descriptors on 3D face from FRGC v2.0.

  3. Avoidance of singularities in asymptotically safe Quantum Einstein Gravity

    Energy Technology Data Exchange (ETDEWEB)

    Kofinas, Georgios [Research Group of Geometry, Dynamical Systems and Cosmology,Department of Information and Communication Systems Engineering,University of the Aegean, Karlovassi 83200, Samos (Greece); Zarikas, Vasilios [Department of Electrical Engineering, Theory Division, ATEI of Central Greece,35100 Lamia (Greece); Department of Physics, Aristotle University of Thessaloniki,54124 Thessaloniki (Greece)

    2015-10-30

    New general spherically symmetric solutions have been derived with a cosmological “constant” Λ as a source. This Λ term is not constant but it satisfies the properties of the asymptotically safe gravity at the ultraviolet fixed point. The importance of these solutions comes from the fact that they may describe the near to the centre region of black hole spacetimes as this is modified by the Renormalization Group scaling behaviour of the fields. The consistent set of field equations which respect the Bianchi identities is derived and solved. One of the solutions (with conventional sign of temporal-radial metric components) is timelike geodesically complete, and although there is still a curvature divergent origin, this is never approachable by an infalling massive particle which is reflected at a finite distance due to the repulsive origin. Another family of solutions (of both signatures) range from a finite radius outwards, they cannot be extended to the centre of spherical symmetry, and the curvature invariants are finite at the minimum radius.

  4. Asymptotic expansions for high-contrast elliptic equations

    KAUST Repository

    Calo, Victor M.

    2014-03-01

    In this paper, we present a high-order expansion for elliptic equations in high-contrast media. The background conductivity is taken to be one and we assume the medium contains high (or low) conductivity inclusions. We derive an asymptotic expansion with respect to the contrast and provide a procedure to compute the terms in the expansion. The computation of the expansion does not depend on the contrast which is important for simulations. The latter allows avoiding increased mesh resolution around high conductivity features. This work is partly motivated by our earlier work in [Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model Simul. 8 (2010) 1461-1483] where we design efficient numerical procedures for solving high-contrast problems. These multiscale approaches require local solutions and our proposed high-order expansion can be used to approximate these local solutions inexpensively. In the case of a large-number of inclusions, the proposed analysis can help to design localization techniques for computing the terms in the expansion. In the paper, we present a rigorous analysis of the proposed high-order expansion and estimate the remainder of it. We consider both high-and low-conductivity inclusions. © 2014 World Scientific Publishing Company.

  5. Asymptote Misconception on Graphing Functions: Does Graphing Software Resolve It?

    Directory of Open Access Journals (Sweden)

    Mehmet Fatih Öçal

    2017-01-01

    Full Text Available Graphing function is an important issue in mathematics education due to its use in various areas of mathematics and its potential roles for students to enhance learning mathematics. The use of some graphing software assists students’ learning during graphing functions. However, the display of graphs of functions that students sketched by hand may be relatively different when compared to the correct forms sketched using graphing software. The possible misleading effects of this situation brought a discussion of a misconception (asymptote misconception on graphing functions. The purpose of this study is two- fold. First of all, this study investigated whether using graphing software (GeoGebra in this case helps students to determine and resolve this misconception in calculus classrooms. Second, the reasons for this misconception are sought. The multiple case study was utilized in this study. University students in two calculus classrooms who received instructions with (35 students or without GeoGebra assisted instructions (32 students were compared according to whether they fell into this misconception on graphing basic functions (1/x, lnx, ex. In addition, students were interviewed to reveal the reasons behind this misconception. Data were analyzed by means of descriptive and content analysis methods. The findings indicated that those who received GeoGebra assisted instruction were better in resolving it. In addition, the reasons behind this misconception were found to be teacher-based, exam-based and some other factors.

  6. Quantum learning: asymptotically optimal classification of qubit states

    Science.gov (United States)

    Guţă, Mădălin; Kotłowski, Wojciech

    2010-12-01

    Pattern recognition is a central topic in learning theory, with numerous applications such as voice and text recognition, image analysis and computer diagnosis. The statistical setup in classification is the following: we are given an i.i.d. training set (X1, Y1), ... , (Xn, Yn), where Xi represents a feature and Yiin{0, 1} is a label attached to that feature. The underlying joint distribution of (X, Y) is unknown, but we can learn about it from the training set, and we aim at devising low error classifiers f: X→Y used to predict the label of new incoming features. In this paper, we solve a quantum analogue of this problem, namely the classification of two arbitrary unknown mixed qubit states. Given a number of 'training' copies from each of the states, we would like to 'learn' about them by performing a measurement on the training set. The outcome is then used to design measurements for the classification of future systems with unknown labels. We found the asymptotically optimal classification strategy and show that typically it performs strictly better than a plug-in strategy, which consists of estimating the states separately and then discriminating between them using the Helstrom measurement. The figure of merit is given by the excess risk equal to the difference between the probability of error and the probability of error of the optimal measurement for known states. We show that the excess risk scales as n-1 and compute the exact constant of the rate.

  7. Subordinated diffusion and continuous time random walk asymptotics.

    Science.gov (United States)

    Dybiec, Bartłomiej; Gudowska-Nowak, Ewa

    2010-12-01

    Anomalous transport is usually described either by models of continuous time random walks (CTRWs) or, otherwise, by fractional Fokker-Planck equations (FFPEs). The asymptotic relation between properly scaled CTRW and fractional diffusion process has been worked out via various approaches widely discussed in literature. Here, we focus on a correspondence between CTRWs and time and space fractional diffusion equation stemming from two different methods aimed to accurately approximate anomalous diffusion processes. One of them is the Monte Carlo simulation of uncoupled CTRW with a Lévy α-stable distribution of jumps in space and a one-parameter Mittag-Leffler distribution of waiting times. The other is based on a discretized form of a subordinated Langevin equation in which the physical time defined via the number of subsequent steps of motion is itself a random variable. Both approaches are tested for their numerical performance and verified with known analytical solutions for the Green function of a space-time fractional diffusion equation. The comparison demonstrates a trade off between precision of constructed solutions and computational costs. The method based on the subordinated Langevin equation leads to a higher accuracy of results, while the CTRW framework with a Mittag-Leffler distribution of waiting times provides efficiently an approximate fundamental solution to the FFPE and converges to the probability density function of the subordinated process in a long-time limit. © 2010 American Institute of Physics.

  8. Photodetachment cross-section evaluation using asymptotic considerations

    Science.gov (United States)

    Babilotte, Philippe; Vandevraye, Mickael

    2017-06-01

    Mathematical calculations are given concerning the evaluation of the negative ions photodetachment cross-section σ , into a so-called saturation regime. The interaction between a negative ion particle beam and a laser beam is examined under theoretical aspects. A quantitative criterion S is proposed to define the saturation threshold between the linear and the saturated domains, which are both present in this saturation regime. The asymptotic behaviours extracted at the low and high energy limits are used to determine this threshold quantitative criterion S and to evaluate also the photodetachment cross-section σ . The case of a symmetric gaussian photodetachment laser beam shape is examined according to the proposed formalism, which can be used either for the photo-detachment or photo-ionization processes, and could be potentially used into technological solutions for negative ion neutralisation processes (such as neutral beam injector) in the future fusion energy devices. Estimations onto the errors related to the use of this methodology are given.

  9. Physical renormalization schemes and asymptotic safety in quantum gravity

    Science.gov (United States)

    Falls, Kevin

    2017-12-01

    The methods of the renormalization group and the ɛ -expansion are applied to quantum gravity revealing the existence of an asymptotically safe fixed point in spacetime dimensions higher than two. To facilitate this, physical renormalization schemes are exploited where the renormalization group flow equations take a form which is independent of the parameterisation of the physical degrees of freedom (i.e. the gauge fixing condition and the choice of field variables). Instead the flow equation depends on the anomalous dimensions of reference observables. In the presence of spacetime boundaries we find that the required balance between the Einstein-Hilbert action and Gibbons-Hawking-York boundary term is preserved by the beta functions. Exploiting the ɛ -expansion near two dimensions we consider Einstein gravity coupled to matter. Scheme independence is generically obscured by the loop-expansion due to breaking of two-dimensional Weyl invariance. In schemes which preserve two-dimensional Weyl invariance we avoid the loop expansion and find a unique ultraviolet (UV) fixed point. At this fixed point the anomalous dimensions are large and one must resum all loop orders to obtain the critical exponents. Performing the resummation a set of universal scaling dimensions are found. These scaling dimensions show that only a finite number of matter interactions are relevant. This is a strong indication that quantum gravity is renormalizable.

  10. Quasinormal modes of asymptotically flat rotating black holes

    Science.gov (United States)

    Dias, Óscar J. C.; Hartnett, Gavin S.; Santos, Jorge E.

    2014-12-01

    We study the main properties of general linear perturbations of rotating black holes (BHs) in asymptotically flat higher-dimensional spacetimes. In particular, we determine the quasinormal mode (QNM) spectrum of singly spinning and equal angular momenta Myers-Perry BHs (MP BHs). Emphasis is also given to the timescale of the ultraspinning and bar-mode instabilities in these two families of MP BHs. For the bar-mode instabilities in the singly spinning MP BH, we find excellent agreement with our linear analysis and the nonlinear time evolution of Shibata and Yoshino for d = 6,7 spacetime dimensions. We find that d = 5 singly spinning BHs are linearly stable. In the context of studying general relativity in the large dimension limit, we obtain the QNM spectrum of Schwarzschild BHs and rotating MP BHs for large dimensions. We identify two classes of modes. For large dimensions, we find that in the limit of zero rotation, unstable modes of the MP BHs connect to a class of Schwarzschild QNMs that saturate to finite values.

  11. Viscous asymptotically flat Reissner-Nordström black branes

    Energy Technology Data Exchange (ETDEWEB)

    Gath, Jakob; Pedersen, Andreas Vigand [Niels Bohr Institute, University of Copenhagen,Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark)

    2014-03-12

    We study electrically charged asymptotically flat black brane solutions whose world-volume fields are slowly varying with the coordinates. Using familiar techniques, we compute the transport coefficients of the fluid dynamic derivative expansion to first order. We show how the shear and bulk viscosities are modified in the presence of electric charge and we compute the charge diffusion constant which is not present for the neutral black p-brane. We compute the first order dispersion relations of the effective fluid. For small values of the charge the speed of sound is found to be imaginary and the brane is thus Gregory-Laflamme unstable as expected. For sufficiently large values of the charge, the sound mode becomes stable, however, in this regime the hydrodynamic mode associated with charge diffusion is found to be unstable. The electrically charged brane is thus found to be (classically) unstable for all values of the charge density in agreement with general thermodynamic arguments. Finally, we show that the shear viscosity to entropy bound is saturated, as expected, while the proposed bounds for the bulk viscosity to entropy can be violated in certain regimes of the charge of the brane.

  12. Viscous asymptotically flat Reissner-Nordström black branes

    Science.gov (United States)

    Gath, Jakob; Pedersen, Andreas Vigand

    2014-03-01

    We study electrically charged asymptotically flat black brane solutions whose world-volume fields are slowly varying with the coordinates. Using familiar techniques, we compute the transport coefficients of the fluid dynamic derivative expansion to first order. We show how the shear and bulk viscosities are modified in the presence of electric charge and we compute the charge diffusion constant which is not present for the neutral black p-brane. We compute the first order dispersion relations of the effective fluid. For small values of the charge the speed of sound is found to be imaginary and the brane is thus Gregory-Laflamme unstable as expected. For sufficiently large values of the charge, the sound mode becomes stable, however, in this regime the hydrodynamic mode associated with charge diffusion is found to be unstable. The electrically charged brane is thus found to be (classically) unstable for all values of the charge density in agreement with general thermodynamic arguments. Finally, we show that the shear viscosity to entropy bound is saturated, as expected, while the proposed bounds for the bulk viscosity to entropy can be violated in certain regimes of the charge of the brane.

  13. Bulk viscous matter-dominated Universes: asymptotic properties

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, Arturo [Departamento de Física, Campus León, Universidad de Guanajuato, León, Guanajuato (Mexico); García-Salcedo, Ricardo [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada - Legaria del IPN, México D.F. (Mexico); Gonzalez, Tame [Departamento de Ingeniería Civil, División de Ingeniería, Universidad de Guanajuato, Guanajuato (Mexico); Nucamendi, Ulises [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP. 58040 Morelia, Michoacán (Mexico); Quiros, Israel, E-mail: avelino@fisica.ugto.mx, E-mail: rigarcias@ipn.mx, E-mail: tamegc72@gmail.com, E-mail: ulises@ifm.umich.mx, E-mail: iquiros6403@gmail.com [Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Corregidora 500 S.R., Universidad de Guadalajara, 44420 Guadalajara, Jalisco (Mexico)

    2013-08-01

    By means of a combined use of the type Ia supernovae and H(z) data tests, together with the study of the asymptotic properties in the equivalent phase space — through the use of the dynamical systems tools — we demonstrate that the bulk viscous matter-dominated scenario is not a good model to explain the accepted cosmological paradigm, at least, under the parametrization of bulk viscosity considered in this paper. The main objection against such scenarios is the absence of conventional radiation and matter-dominated critical points in the phase space of the model. This entails that radiation and matter dominance are not generic solutions of the cosmological equations, so that these stages can be implemented only by means of unique and very specific initial conditions, i. e., of very unstable particular solutions. Such a behavior is in marked contradiction with the accepted cosmological paradigm which requires of an earlier stage dominated by relativistic species, followed by a period of conventional non-relativistic matter domination, during which the cosmic structure we see was formed. Also, we found that the bulk viscosity is positive just until very late times in the cosmic evolution, around z < 1. For earlier epochs it is negative, been in tension with the local second law of thermodynamics.

  14. Asymptotic behavior of local dipolar fields in thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, G.J., E-mail: gjb@phys.soton.ac.uk [School of Physics and Astronomy, University of Southampton, SO17 1BJ (United Kingdom); Stenning, G.B.G., E-mail: Gerrit.vanderlaan@diamond.ac.uk [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Laan, G. van der, E-mail: gavin.stenning@stfc.ac.uk [ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)

    2016-10-15

    A simple method, based on layer by layer direct summation, is used to determine the local dipolar fields in uniformly magnetized thin films. The results show that the dipolar constants converge ~1/m where the number of spins in a square film is given by (2m+1){sup 2}. Dipolar field results for sc, bcc, fcc, and hexagonal lattices are presented and discussed. The results can be used to calculate local dipolar fields in films with either ferromagnetic, antiferromagnetic, spiral, exponential decay behavior, provided the magnetic order only changes normal to the film. Differences between the atomistic (local fields) and macroscopic fields (Maxwellian) are also examined. For the latter, the macro B-field inside the film is uniform and falls to zero sharply outside, in accord with Maxwell boundary conditions. In contrast, the local field for the atomistic point dipole model is highly non-linear inside and falls to zero at about three lattice spacing outside the film. Finally, it is argued that the continuum field B (used by the micromagnetic community) and the local field B{sub loc}(r) (used by the FMR community) will lead to differing values for the overall demagnetization energy. - Highlights: • Point-dipolar fields in uniformly magnetized thin films are characterized by just three numbers. • Maxwell's boundary condition is partially violated in the point-dipole approximation. • Asymptotic values of point dipolar fields in circular monolayers scale as π/r.

  15. Polynomial asymptotic stability of damped stochastic differential equations

    Directory of Open Access Journals (Sweden)

    John Appleby

    2004-08-01

    Full Text Available The paper studies the polynomial convergence of solutions of a scalar nonlinear It\\^{o} stochastic differential equation\\[dX(t = -f(X(t\\,dt + \\sigma(t\\,dB(t\\] where it is known, {\\it a priori}, that $\\lim_{t\\rightarrow\\infty} X(t=0$, a.s. The intensity of the stochastic perturbation $\\sigma$ is a deterministic, continuous and square integrable function, which tends to zero more quickly than a polynomially decaying function. The function $f$ obeys $\\lim_{x\\rightarrow 0}\\mbox{sgn}(xf(x/|x|^\\beta = a$, for some $\\beta>1$, and $a>0$.We study two asymptotic regimes: when $\\sigma$ tends to zero sufficiently quickly the polynomial decay rate of solutions is the same as for the deterministic equation (when $\\sigma\\equiv0$. When $\\sigma$ decays more slowly, a weaker almost sure polynomial upper bound on the decay rate of solutions is established. Results which establish the necessity for $\\sigma$ to decay polynomially in order to guarantee the almost sure polynomial decay of solutions are also proven.

  16. Gossip and Occupational Ideology

    Science.gov (United States)

    Rysman, Alexander R.

    1976-01-01

    Defines the transmission of gossip as an essential social process reflecting a shared group membership and discusses the ways in which gossip supports ideologies held by members of a specific occupation. (MH)

  17. Occupants' window opening behaviour

    DEFF Research Database (Denmark)

    Fabi, Valentina; Andersen, Rune Korsholm; Corgnati, Stefano

    2012-01-01

    and office buildings. The analysis of the literature highlights how a shared approach on identifying the driving forces for occupants' window opening and closing behaviour has not yet been reached. However, the reporting of variables found not to be drivers may reveal contradictions in the obtained results......Energy consumption in buildings is influenced by several factors related to the building properties and the building controls, some of them highly connected to the behaviour of their occupants.In this paper, a definition of items referring to occupant behaviour related to the building control...... systems is proposed, based on studies presented in literature and a general process leading to the effects on energy consumptions is identified.Existing studies on the topic of window opening behaviour are highlighted and a theoretical framework to deal with occupants' interactions with building controls...

  18. Occupational Noise Exposure

    Science.gov (United States)

    Powered by Translate UNITED STATES DEPARTMENT OF LABOR Facebook Twitter Instagram RSS Subscribe Search A TO Z INDEX UNITED STATES DEPARTMENT OF LABOR Facebook Twitter Instagram RSS Subscribe Occupational Safety and Health Administration English | ...

  19. Occupational health in Mexico.

    Science.gov (United States)

    Carreón, Tania; Santos-Burgoa, Carlos; Baron, Sherry; Hernández, Sendy

    2002-01-01

    The authors discuss the maquiladoras and child labor, and offer an overview of the history of occupational safety and health in Mexico that covers laws and regulations, social security, unions, and enforcement of legislation. The organization and structure of the various institutions responsible for occupational safety and health (OSH), as well as administrative procedures, are described. This article concludes with a list of the new challenges for OSH in Mexico.

  20. A note on asymptotically anti-de Sitter quantum spacetimes in loop quantum gravity

    CERN Document Server

    Bodendorfer, Norbert

    2015-01-01

    A framework conceptually based on the conformal techniques employed to study the structure of the gravitational field at infinity is set up in the context of loop quantum gravity to describe asymptotically anti-de Sitter quantum spacetimes. A conformal compactification of the spatial slice is performed, which, in terms of the rescaled metric, has now finite volume, and can thus be conveniently described by spin networks states. The conformal factor used is a physical scalar field, which has the necessary asymptotics for many asymptotically AdS black hole solutions.

  1. Occupational stressors in nursing

    Directory of Open Access Journals (Sweden)

    N. Nikpeyma

    2009-04-01

    Full Text Available Background and aimsNursing provides a wide range of potential workplace stressors as it is  a profession that requires a high level of skill, teamworking in a variety of situations and provision  of 24-hour delivery of care .Occupational stress is a major factor of Staff sickness an  absenteeism.This study investigates the main occupational stressors in nursing profession in the  hope of identification and reducing it.MethodsIn this study a questionnaire consisting of three parts:demoghraphic data,the nurses  background and questions about occupational stress from Revised index fulfilled by 140 nurses.ResultsLack of reward for work well done(48/6%, Heavy workload(46/4% ,lack of Participation in decisions (39/3% , poor Control of work place(38/4%and lack of job  development (36/4% have been the main sources of Occupational stress for nurses.chronic  diseases, Night Shift working and working hours were positively associated with occupstional  stress.Conclusion Analysis indicated that effects of work factors on occupational stress are more than demoghraphic data. The findings of this study can assist health service organisations to provide an attractive working climate in order to decrease side effects and consequences of occupational stress. Furthermore, understanding this situation can help to develop coping strategies in order to reduce work-related stress.

  2. Professional Differentiation and Occupational Earnings.

    Science.gov (United States)

    Cullen, John B.

    1985-01-01

    "Professional" and other occupational characteristics were selected as variables for predicting the earnings of occupational groups. Task complexity and education were significant predictors of occupational earnings. In support of some power theorists, the data suggested that some occupational groups derive additional earnings by influencing their…

  3. Occupational Employment Projections to 2010.

    Science.gov (United States)

    Hecker, Daniel E.

    2001-01-01

    Employment in professional and related occupations and service occupations will increase the fastest and add the most jobs from 2000 to 2010. Changes in technology or business operations will cause the largest declines in occupational demand. Occupations requiring a postsecondary award or academic degree will account for 42 percent of total job…

  4. Secondary Health Occupations Education Curriculum.

    Science.gov (United States)

    Matzen, Shelley; Muhl, V. Jane

    This color coded curriculum guide for secondary health occupations in Iowa provides units for the first phase of the curriculum, career exploration of the health occupations. The nine units cover the following topics: (1) introduction to health occupations; (2) health occupations career exploration; (3) communication skills; (4) self-care and…

  5. Occupational therapists' perception of the concept of occupational balance.

    Science.gov (United States)

    Yazdani, Farzaneh; Harb, Alia; Rassafiani, Mehdi; Nobakht, Laya; Yazdani, Nastaran

    2017-05-10

    Occupational balance is one of the concepts used by occupational therapists with no consensus on its definition. Literature demonstrates different perspectives when this concept is applied in practice and in its link to other concepts such as health and well-being. This study aims to explore how the concept of occupational balance is perceived and practised by occupational therapy practitioners. A qualitative methodology was employed. Fourteen occupational therapists volunteered for the study. Nine occupational therapy practitioners were interviewed individually and five attended a focus group. Thematic analysis was applied to analyze the data. Six themes were identified as follows: (1) occupational balance: what it is; (2) how occupational balance is formed; (3) occupational balance and well-being (4); subjective and objective representations of occupational balance (5); what disrupts/affects occupational balance; and (6) occupational balance/imbalance and occupational therapy practice. Both objective and subjective experiences of occupational balance need to be considered in order to make an informed decision in practice. The right occupational balance for each individual should be based on his/her values but with consideration of the principal of no harm to others.

  6. Occupational health in Brazil.

    Science.gov (United States)

    Bedrikow, B; Algranti, E; Buschinelli, J T; Morrone, L C

    1997-01-01

    Brazil is a recently industrialised country with marked contrasts in social and economic development. The availability of public/private services in its different regions also varies. Health indicators follow these trends. Occupational health is a vast new field, as in other developing countries. Occupational medicine is a required subject in graduation courses for physicians. Specialisation courses for university graduated professionals have more than 700 hours of lectures and train occupational health physicians, safety engineers and nursing staff. At the technical level, there are courses with up to 1300 hours for the training of safety inspectors. Until 1986 about 19,000 occupational health physicians, 18,000 safety engineers and 51,000 safety inspectors had been officially registered. Although in its infancy, postgraduation has attracted professionals at university level, through residence programmes as well as masters and doctors degrees, whereby at least a hundred good-quality research studies have been produced so far. Occupational health activities are controlled by law. Undertakings with higher risks and larger number of employees are required to hire specialised technical staff. In 1995 the Ministry of Labour demanded programmes of medical control of occupational health (PCMSO) for every worker as well as a programme of prevention of environmental hazards (PPRA). This was considered as a positive measure for the improvement of working conditions and health at work. Physicians specialising in occupational medicine are the professionals more often hired by the enterprises. Reference centres (CRSTs) for workers' health are connected to the State or City Health Secretariat primary health care units. They exist in more populated areas and are accepted by workers as the best way to accomplish the diagnosis of occupational diseases. There is important participation by the trade unions in the management of these reference centres. For 30 years now employers

  7. Occupational Experience, Mobility, and Wages

    DEFF Research Database (Denmark)

    Groes, Fane

    In this paper we present how occupational tenure relates to wage growth and occupational mobility in Danish data. We show that the Danish data produces qualitatively similar results as found in U.S. data with respect to an increase in average wages when experience in an occupation increases. In a...... also is true for workers switching occupation and rm. After ve years of experience in an occupation the average probability of switching any type of occupation, including occupation and rm switches, has fallen from 25% to 12%....

  8. Population Health and Occupational Therapy.

    Science.gov (United States)

    Braveman, Brent

    2016-01-01

    Occupational therapy practitioners play an important role in improving the health of populations through the development of occupational therapy interventions at the population level and through advocacy to address occupational participation and the multiple determinants of health. This article defines and explores population health as a concept and describes the appropriateness of occupational therapy practice in population health. Support of population health practice as evidenced in the official documents of the American Occupational Therapy Association and the relevance of population health for occupational therapy as a profession are reviewed. Recommendations and directions for the future are included related to celebration of the achievements of occupational therapy practitioners in the area of population health, changes to the Occupational Therapy Practice Framework and educational accreditation standards, and the importance of supporting, recognizing, rewarding, and valuing occupational therapy practitioners who assume roles in which direct care is not their primary function. Copyright © 2016 by the American Occupational Therapy Association, Inc.

  9. Numerical Simulations of Asymptotically AdS Spacetimes

    Science.gov (United States)

    Bantilan, Hans

    In this dissertation, we introduce a numerical scheme to construct asymptotically anti-de Sitter spacetimes with Lorentzian signature, focusing on cases that preserve five-dimensional axisymmetry. We study the field theories that are dual to these spacetimes by appealing to the AdS/CFT correspondence in the regime where the gravity dual is completely described by Einstein gravity. The numerical scheme is based on generalized harmonic evolution, and we begin by obtaining initial data defined on some Cauchy hypersurface. For the study described in this dissertation, we use a scalar field to source deviations from pure AdS5, and obtain data that correspond to highly deformed black holes. We evolve this initial data forward in time, and follow the subsequent ringdown. What is novel about this study is that the initial horizon geometry cannot be considered a small perturbation of the final static horizon, and hence we are probing an initial non-linear phase of the evolution of the bulk spacetime. On the boundary, we find that the dual CFT stress tensor behaves like that of a thermalized N = 4 SYM fluid. We find that the equation of state of this fluid is consistent with conformal invariance, and that its transport coefficients match those previously calculated for an N = 4 SYM fluid via holographic methods. Modulo a brief transient that is numerical in nature, this matching appears to hold from the initial time onwards. We transform these solutions computed in global AdS onto a Minkowski piece of the boundary, and examine the temperature of the corresponding fluid flows. Under this transformation, the spatial profile of temperature at the initial time resembles a Lorentz-flattened pancake centered at the origin of Minkowski space. By interpreting the direction along which the data is flattened as the beam-line direction, our initial data can be thought of as approximating a head-on heavy ion collision at its moment of impact.

  10. Generalized multiplicative error models: Asymptotic inference and empirical analysis

    Science.gov (United States)

    Li, Qian

    This dissertation consists of two parts. The first part focuses on extended Multiplicative Error Models (MEM) that include two extreme cases for nonnegative series. These extreme cases are common phenomena in high-frequency financial time series. The Location MEM(p,q) model incorporates a location parameter so that the series are required to have positive lower bounds. The estimator for the location parameter turns out to be the minimum of all the observations and is shown to be consistent. The second case captures the nontrivial fraction of zero outcomes feature in a series and combines a so-called Zero-Augmented general F distribution with linear MEM(p,q). Under certain strict stationary and moment conditions, we establish a consistency and asymptotic normality of the semiparametric estimation for these two new models. The second part of this dissertation examines the differences and similarities between trades in the home market and trades in the foreign market of cross-listed stocks. We exploit the multiplicative framework to model trading duration, volume per trade and price volatility for Canadian shares that are cross-listed in the New York Stock Exchange (NYSE) and the Toronto Stock Exchange (TSX). We explore the clustering effect, interaction between trading variables, and the time needed for price equilibrium after a perturbation for each market. The clustering effect is studied through the use of univariate MEM(1,1) on each variable, while the interactions among duration, volume and price volatility are captured by a multivariate system of MEM(p,q). After estimating these models by a standard QMLE procedure, we exploit the Impulse Response function to compute the calendar time for a perturbation in these variables to be absorbed into price variance, and use common statistical tests to identify the difference between the two markets in each aspect. These differences are of considerable interest to traders, stock exchanges and policy makers.

  11. Methods and Algorithms for Approximating the Gamma Function and Related Functions. A survey. Part I: Asymptotic Series

    Directory of Open Access Journals (Sweden)

    Cristinel Mortici

    2015-01-01

    Full Text Available In this survey we present our recent results on analysis of gamma function and related functions. The results obtained are in the theory of asymptotic analysis, approximation of gamma and polygamma functions, or in the theory of completely monotonic functions. The motivation of this first part is the work of C. Mortici [Product Approximations via Asymptotic Integration Amer. Math. Monthly 117 (2010 434-441] where a simple strategy for constructing asymptotic series is presented. The classical asymptotic series associated to Stirling, Wallis, Glaisher-Kinkelin are rediscovered. In the second section we discuss some new inequalities related to Landau constants and we establish some asymptotic formulas.

  12. Renormalized asymptotic solutions of the Burgers equation and the Korteweg-de Vries equation

    OpenAIRE

    Zakharov, Sergei V.

    2015-01-01

    The Cauchy problem for the Burgers equation and the Korteweg-de Vries equation is considered. Uniform renormalized asymptotic solutions are constructed in cases of a large initial gradient and a perturbed initial weak discontinuity.

  13. Asymptotic behavior of solutions of the damped Boussinesq equation in two space dimensions

    Directory of Open Access Journals (Sweden)

    Vladimir V. Varlamov

    1999-01-01

    classical solution is proved and the solution is constructed in the form of a series. The major term of its long-time asymptotics is calculated explicitly and a uniform in space estimate of the residual term is given.

  14. On the Convergence of Implicit Iterative Processes for Asymptotically Pseudocontractive Mappings in the Intermediate Sense

    Directory of Open Access Journals (Sweden)

    Xiaolong Qin

    2011-01-01

    Full Text Available An implicit iterative process is considered. Strong and weak convergence theorems of common fixed points of a finite family of asymptotically pseudocontractive mappings in the intermediate sense are established in a real Hilbert space.

  15. Holography and Colliding gravitational shock waves in asymptotically AdS5 spacetime.

    Science.gov (United States)

    Chesler, Paul M; Yaffe, Laurence G

    2011-01-14

    Using holography, we study the collision of planar shock waves in strongly coupled N=4 supersymmetric Yang-Mills theory. This requires the numerical solution of a dual gravitational initial value problem in asymptotically anti-de Sitter spacetime.

  16. Holography and Colliding Gravitational Shock Waves in Asymptotically AdS5 Spacetime

    Science.gov (United States)

    Chesler, Paul M.; Yaffe, Laurence G.

    2011-01-01

    Using holography, we study the collision of planar shock waves in strongly coupled N=4 supersymmetric Yang-Mills theory. This requires the numerical solution of a dual gravitational initial value problem in asymptotically anti-de Sitter spacetime.

  17. Global asymptotical ω-periodicity of a fractional-order non-autonomous neural networks.

    Science.gov (United States)

    Chen, Boshan; Chen, Jiejie

    2015-08-01

    We study the global asymptotic ω-periodicity for a fractional-order non-autonomous neural networks. Firstly, based on the Caputo fractional-order derivative it is shown that ω-periodic or autonomous fractional-order neural networks cannot generate exactly ω-periodic signals. Next, by using the contraction mapping principle we discuss the existence and uniqueness of S-asymptotically ω-periodic solution for a class of fractional-order non-autonomous neural networks. Then by using a fractional-order differential and integral inequality technique, we study global Mittag-Leffler stability and global asymptotical periodicity of the fractional-order non-autonomous neural networks, which shows that all paths of the networks, starting from arbitrary points and responding to persistent, nonconstant ω-periodic external inputs, asymptotically converge to the same nonconstant ω-periodic function that may be not a solution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Sharp asymptotic estimates for vorticity solutions of the 2D Navier-Stokes equation

    Directory of Open Access Journals (Sweden)

    Yuncheng You

    2008-12-01

    Full Text Available The asymptotic dynamics of high-order temporal-spatial derivatives of the two-dimensional vorticity and velocity of an incompressible, viscous fluid flow in $mathbb{R}^2$ are studied, which is equivalent to the 2D Navier-Stokes equation. It is known that for any integrable initial vorticity, the 2D vorticity solution converges to the Oseen vortex. In this paper, sharp exterior decay estimates of the temporal-spatial derivatives of the vorticity solution are established. These estimates are then used and combined with similarity and $L^p$ compactness to show the asymptotical attraction rates of temporal-spatial derivatives of generic 2D vorticity and velocity solutions by the Oseen vortices and velocity solutions respectively. The asymptotic estimates and the asymptotic attraction rates of all the derivatives obtained in this paper are independent of low or high Reynolds numbers.

  19. Asymptotic expansion for the functional of Markovian evolution in Rd in the circuit of diffusion approximation

    Directory of Open Access Journals (Sweden)

    I. V. Samoilenko

    2005-01-01

    Full Text Available We study the asymptotic expansion for solution of singularly perturbed equation for functional of Markovian evolution in Rd. The view of regular and singular parts of solution is found.

  20. A Multivariate Asymmetric Long Memory Conditional Volatility Model with X, Regularity and Asymptotics

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2016-01-01

    textabstractThe paper derives a Multivariate Asymmetric Long Memory conditional volatility model with Exogenous Variables (X), or the MALMX model, with dynamic conditional correlations, appropriate regularity conditions, and associated asymptotic theory. This enables checking of internal consistency

  1. An Asymptotic Formula for r-Bell Numbers with Real Arguments

    OpenAIRE

    Corcino, Cristina B.; Corcino, Roberto B.

    2013-01-01

    The r-Bell numbers are generalized using the concept of the Hankel contour. Some properties parallel to those of the ordinary Bell numbers are established. Moreover, an asymptotic approximation for r-Bell numbers with real arguments is obtained.

  2. Asymptotic stability of a coupled advection-diffusion-reaction system arising in bioreactor processes

    Directory of Open Access Journals (Sweden)

    Maria Crespo

    2017-08-01

    Full Text Available In this work, we present an asymptotic analysis of a coupled system of two advection-diffusion-reaction equations with Danckwerts boundary conditions, which models the interaction between a microbial population (e.g., bacteria, called biomass, and a diluted organic contaminant (e.g., nitrates, called substrate, in a continuous flow bioreactor. This system exhibits, under suitable conditions, two stable equilibrium states: one steady state in which the biomass becomes extinct and no reaction is produced, called washout, and another steady state, which corresponds to the partial elimination of the substrate. We use the linearization method to give sufficient conditions for the linear asymptotic stability of the two stable equilibrium configurations. Finally, we compare our asymptotic analysis with the usual asymptotic analysis associated to the continuous bioreactor when it is modeled with ordinary differential equations.

  3. Globally Asymptotic Stability of Stochastic Nonlinear Systems by the Output Feedback

    Directory of Open Access Journals (Sweden)

    Wenwen Cheng

    2015-01-01

    the traditional mathematical induction method. Indeed, we develop a new method to study the globally asymptotic stability by introducing a series of specific inequalities. Moreover, an example and its simulations are given to illustrate the theoretical result.

  4. Modeling of the long-time asymptotic dynamics of a point-like object

    CERN Document Server

    Ribaric, Marijan

    2012-01-01

    We introduce the first-ever mathematical framework for modeling of the long-time asymptotic behavior of acceleration of such a point-like object whose velocity eventually stops changing after the cessations of the external force. For the small and slowly changing external force we approximate its long-time asymptotic acceleration by a relativistic polynomial in time-derivatives of the external force. Without knowing the equation of motion for such a point-like object, an approximation of this kind enables us to model the long-time asymptotic behavior of its dynamics, and access its long-time asymptotic kinetic constants, which supplement mass and charge. We give various examples.

  5. Approaching the Asymptotic Regime of Rapidly Rotating Convection: Boundary Layers vs Interior Dynamics

    CERN Document Server

    Stellmach, S; Julien, K; Vasil, G; Cheng, J S; Ribeiro, A; King, E M; Aurnou, J M

    2014-01-01

    Rapidly rotating Rayleigh-B\\'enard convection is studied by combining results from direct numerical simulations (DNS), laboratory experiments and asymptotic modeling. The asymptotic theory is shown to provide a good description of the bulk dynamics at low, but finite Rossby number. However, large deviations from the asymptotically predicted heat transfer scaling are found, with laboratory experiments and DNS consistently yielding much larger Nusselt numbers than expected. These deviations are traced down to dynamically active Ekman boundary layers, which are shown to play an integral part in controlling heat transfer even for Ekman numbers as small as $10^{-7}$. By adding an analytical parameterization of the Ekman transport to simulations using stress-free boundary conditions, we demonstrate that the heat transfer jumps from values broadly compatible with the asymptotic theory to states of strongly increased heat transfer, in good quantitative agreement with no-slip DNS and compatible with the experimental d...

  6. Asymptotic behavior for a dissipative plate equation in $R^N$ with periodic coefficients

    Directory of Open Access Journals (Sweden)

    Eleni Bisognin

    2008-03-01

    Full Text Available In this work we study the asymptotic behavior of solutions of a dissipative plate equation in $mathbb{R}^N$ with periodic coefficients. We use the Bloch waves decomposition and a convenient Lyapunov function to derive a complete asymptotic expansion of solutions as $to infty$. In a first approximation, we prove that the solutions for the linear model behave as the homogenized heat kernel.

  7. Asymptotics of Pattern Avoidance in the Klazar Set Partition and Permutation-Tuple Settings

    OpenAIRE

    Gunby, Benjamin; Pálvölgyi, Dömötör

    2017-01-01

    We consider asymptotics of set partition pattern avoidance in the sense of Klazar. Our main result derives the asymptotics of the number of set partitions avoiding a given set partition within an exponential factor, which leads to a classification of possible growth rates of set partition pattern classes. We further define a notion of permutation-tuple avoidance, which generalizes notions of Aldred et al. and the usual permutation pattern setting, and similarly determine the number of permuta...

  8. Asymptotic expansions of integral means and applications to the ratio of gamma functions

    OpenAIRE

    Elezović, Neven; Vukšić, Lenka

    2013-01-01

    Integral means are important class of bivariate means. In this paper we prove the very general algorithm for calculation of coefficients in asymptotic expansion of integral mean. It is based on explicit solving the equation of the form $B(A(x))=C(x)$, where $B$ and $C$ have known asymptotic expansions. The results are illustrated by calculation of some important integral means connected with gamma and digamma functions.

  9. Null Geodesic Congruences, Asymptotically-Flat Spacetimes and Their Physical Interpretation

    Directory of Open Access Journals (Sweden)

    Timothy M. Adamo

    2012-01-01

    Full Text Available A priori, there is nothing very special about shear-free or asymptotically shear-free null geodesic congruences. Surprisingly, however, they turn out to possess a large number of fascinating geometric properties and to be closely related, in the context of general relativity, to a variety of physically significant effects. It is the purpose of this paper to try to fully develop these issues. This work starts with a detailed exposition of the theory of shear-free and asymptotically shear-free null geodesic congruences, i.e., congruences with shear that vanishes at future conformal null infinity. A major portion of the exposition lies in the analysis of the space of regular shear-free and asymptotically shear-free null geodesic congruences. This analysis leads to the space of complex analytic curves in an auxiliary four-complex dimensional space, H-space. They in turn play a dominant role in the applications. The applications center around the problem of extracting interior physical properties of an asymptotically-flat spacetime directly from the asymptotic gravitational (and Maxwell field itself, in analogy with the determination of total charge by an integral over the Maxwell field at infinity or the identification of the interior mass (and its loss by (Bondi's integrals of the Weyl tensor, also at infinity. More specifically, we will see that the asymptotically shear-free congruences lead us to an asymptotic definition of the center-of-mass and its equations of motion. This includes a kinematic meaning, in terms of the center-of-mass motion, for the Bondi three-momentum. In addition, we obtain insights into intrinsic spin and, in general, angular momentum, including an angular-momentum--conservation law with well-defined flux terms. When a Maxwell field is present, the asymptotically shear-free congruences allow us to determine/define at infinity a center-of-charge world line and intrinsic magnetic dipole moment.

  10. Null Geodesic Congruences, Asymptotically-Flat Spacetimes and Their Physical Interpretation

    Directory of Open Access Journals (Sweden)

    Timothy M. Adamo

    2009-09-01

    Full Text Available A priori, there is nothing very special about shear-free or asymptotically shear-free null geodesic congruences. Surprisingly, however, they turn out to possess a large number of fascinating geometric properties and to be closely related, in the context of general relativity, to a variety of physically significant effects. It is the purpose of this paper to try to fully develop these issues. This work starts with a detailed exposition of the theory of shear-free and asymptotically shear-free null geodesic congruences, i.e., congruences with shear that vanishes at future conformal null infinity. A major portion of the exposition lies in the analysis of the space of regular shear-free and asymptotically shear-free null geodesic congruences. This analysis leads to the space of complex analytic curves in complex Minkowski space. They in turn play a dominant role in the applications. The applications center around the problem of extracting interior physical properties of an asymptotically-flat spacetime directly from the asymptotic gravitational (and Maxwell field itself, in analogy with the determination of total charge by an integral over the Maxwell field at infinity or the identification of the interior mass (and its loss by (Bondi’s integrals of the Weyl tensor, also at infinity. More specifically, we will see that the asymptotically shear-free congruences lead us to an asymptotic definition of the center-of-mass and its equations of motion. This includes a kinematic meaning, in terms of the center-of-mass motion, for the Bondi three-momentum. In addition, we obtain insights into intrinsic spin and, in general, angular momentum, including an angular-momentum–conservation law with well-defined flux terms. When a Maxwell field is present, the asymptotically shear-free congruences allow us to determine/define at infinity a center-of-charge world line and intrinsic magnetic dipole moment.

  11. Improving the Asymptotic Properties of Discrete System Zeros in Fractional-Order Hold Case

    OpenAIRE

    Zeng, Cheng; Liang, Shan; Su, Yingying

    2013-01-01

    Remarkable improvements in the asymptotic properties of discrete system zeros may be achieved by properly adjusted fractional-order hold (FROH) circuit. This paper analyzes asymptotic properties of the limiting zeros, as the sampling period $T$ tends to zero, of the sampled-data models on the basis of the normal form representation of the continuous-time systems with FROH. Moreover, when the relative degree of the continuous-time system is equal to one or two, an approximate expression of the...

  12. Asymptotic behavior of the likelihood function of covariance matrices of spatial Gaussian processes

    DEFF Research Database (Denmark)

    Zimmermann, Ralf

    2010-01-01

    The covariance structure of spatial Gaussian predictors (aka Kriging predictors) is generally modeled by parameterized covariance functions; the associated hyperparameters in turn are estimated via the method of maximum likelihood. In this work, the asymptotic behavior of the maximum likelihood...... of spatial Gaussian predictor models as a function of its hyperparameters is investigated theoretically. Asymptotic sandwich bounds for the maximum likelihood function in terms of the condition number of the associated covariance matrix are established. As a consequence, the main result is obtained...

  13. Adaptive Asymptotical Synchronization for Stochastic Complex Networks with Time-Delay and Markovian Switching

    Directory of Open Access Journals (Sweden)

    Xueling Jiang

    2014-01-01

    Full Text Available The problem of adaptive asymptotical synchronization is discussed for the stochastic complex dynamical networks with time-delay and Markovian switching. By applying the stochastic analysis approach and the M-matrix method for stochastic complex networks, several sufficient conditions to ensure adaptive asymptotical synchronization for stochastic complex networks are derived. Through the adaptive feedback control techniques, some suitable parameters update laws are obtained. Simulation result is provided to substantiate the effectiveness and characteristics of the proposed approach.

  14. Asymptotic Parameter Estimation for a Class of Linear Stochastic Systems Using Kalman-Bucy Filtering

    Directory of Open Access Journals (Sweden)

    Xiu Kan

    2012-01-01

    Full Text Available The asymptotic parameter estimation is investigated for a class of linear stochastic systems with unknown parameter θ:dXt=(θα(t+β(tXtdt+σ(tdWt. Continuous-time Kalman-Bucy linear filtering theory is first used to estimate the unknown parameter θ based on Bayesian analysis. Then, some sufficient conditions on coefficients are given to analyze the asymptotic convergence of the estimator. Finally, the strong consistent property of the estimator is discussed by comparison theorem.

  15. Asymptotic Solutions of Time-Space Fractional Coupled Systems by Residual Power Series Method

    Directory of Open Access Journals (Sweden)

    Wenjin Li

    2017-01-01

    Full Text Available This paper focuses on the asymptotic solutions to time-space fractional coupled systems, where the fractional derivative and integral are described in the sense of Caputo derivative and Riemann-Liouville integral. We introduce the Residual Power Series (for short RPS method to construct the desired asymptotic solutions. Furthermore, we apply this method to some time-space fractional coupled systems. The simplicity and efficiency of RPS method are shown by the application.

  16. Asymptotic SER performance comparison of MPSK and MDPSK in wireless fading channels

    KAUST Repository

    Song, Xuegui

    2015-02-01

    We propose a general framework to investigate asymptotic relative performance between M-ary phase-shift keying (MPSK) and M-ary differential phase-shift keying (MDPSK) in wireless fading channels. Using this framework, we provide an alternative derivation for the closed-form expression of the asymptotic performance loss of MDPSK w.r.t. MPSK in an additive white Gaussian noise channel. The same performance loss is also shown to be true for the lognormal fading channels.

  17. Zoonoses as occupational diseases

    Directory of Open Access Journals (Sweden)

    Giorgio Battelli

    2008-12-01

    Full Text Available Zoonoses are discussed as occupational diseases, with special reference to animal husbandry and related activities. After quoting some historical references, occupational zoonoses are examined in relation to the evolution of the concept of occupational zoonosis, the involvement of the World Health Organization in this field, their socio-economic significance, the principal working activities, zoonoses of greatest importance (with special reference to the Mediterranean region, the evaluation of damage and risks. An outline is made of the transmission of zoonoses from farm workers to animals and the biological hazards from the environment. The present situation of occupational zoonoses and related risks in industrialised and traditional farming activities are presented and the importance of some emerging and re-emerging zoonoses for the health of workers is highlighted. The author concludes by stressing that the prevention of occupational zoonoses must be implemented jointly by both veterinary and medical services through preventive measures and epidemiological surveillance of human and animal health, risk evaluation, diagnosis of infections and prompt reporting. It is hoped that the future will offer better inter-disciplinary collaboration and that legislation will be timely and better tailored to safeguard working health and safety.

  18. Self-similar cosmological solutions with dark energy. I. Formulation and asymptotic analysis

    Science.gov (United States)

    Harada, Tomohiro; Maeda, Hideki; Carr, B. J.

    2008-01-01

    Based on the asymptotic analysis of ordinary differential equations, we classify all spherically symmetric self-similar solutions to the Einstein equations which are asymptotically Friedmann at large distances and contain a perfect fluid with equation of state p=(γ-1)μ with 0antigravity. This extends the previous analysis of spherically symmetric self-similar solutions for fluids with positive pressure (γ>1). However, in the latter case there is an additional parameter associated with the weak discontinuity at the sonic point and the solutions are only asymptotically “quasi-Friedmann,” in the sense that they exhibit an angle deficit at large distances. In the 0<γ<2/3 case, there is no sonic point and there exists a one-parameter family of solutions which are genuinely asymptotically Friedmann at large distances. We find eight classes of asymptotic behavior: Friedmann or quasi-Friedmann or quasistatic or constant-velocity at large distances, quasi-Friedmann or positive-mass singular or negative-mass singular at small distances, and quasi-Kantowski-Sachs at intermediate distances. The self-similar asymptotically quasistatic and quasi-Kantowski-Sachs solutions are analytically extendible and of great cosmological interest. We also investigate their conformal diagrams. The results of the present analysis are utilized in an accompanying paper to obtain and physically interpret numerical solutions.

  19. Asymptotic analysis of discrete schemes for non-equilibrium radiation diffusion

    Science.gov (United States)

    Cui, Xia; Yuan, Guang-wei; Shen, Zhi-jun

    2016-05-01

    Motivated by providing well-behaved fully discrete schemes in practice, this paper extends the asymptotic analysis on time integration methods for non-equilibrium radiation diffusion in [2] to space discretizations. Therein studies were carried out on a two-temperature model with Larsen's flux-limited diffusion operator, both the implicitly balanced (IB) and linearly implicit (LI) methods were shown asymptotic-preserving. In this paper, we focus on asymptotic analysis for space discrete schemes in dimensions one and two. First, in construction of the schemes, in contrast to traditional first-order approximations, asymmetric second-order accurate spatial approximations are devised for flux-limiters on boundary, and discrete schemes with second-order accuracy on global spatial domain are acquired consequently. Then by employing formal asymptotic analysis, the first-order asymptotic-preserving property for these schemes and furthermore for the fully discrete schemes is shown. Finally, with the help of manufactured solutions, numerical tests are performed, which demonstrate quantitatively the fully discrete schemes with IB time evolution indeed have the accuracy and asymptotic convergence as theory predicts, hence are well qualified for both non-equilibrium and equilibrium radiation diffusion.

  20. Asymptotic structure of the Einstein-Maxwell theory on AdS{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Alfredo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Riquelme, Miguel [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile); Tempo, David [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Physique Théorique et Mathématique,Université Libre de Bruxelles and International Solvay Institutes,Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Troncoso, Ricardo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile)

    2016-02-02

    The asymptotic structure of AdS spacetimes in the context of General Relativity coupled to the Maxwell field in three spacetime dimensions is analyzed. Although the fall-off of the fields is relaxed with respect to that of Brown and Henneaux, the variation of the canonical generators associated to the asymptotic Killing vectors can be shown to be finite once required to span the Lie derivative of the fields. The corresponding surface integrals then acquire explicit contributions from the electromagnetic field, and become well-defined provided they fulfill suitable integrability conditions, implying that the leading terms of the asymptotic form of the electromagnetic field are functionally related. Consequently, for a generic choice of boundary conditions, the asymptotic symmetries are broken down to ℝ⊗U(1)⊗U(1). Nonetheless, requiring compatibility of the boundary conditions with one of the asymptotic Virasoro symmetries, singles out the set to be characterized by an arbitrary function of a single variable, whose precise form depends on the choice of the chiral copy. Remarkably, requiring the asymptotic symmetries to contain the full conformal group selects a very special set of boundary conditions that is labeled by a unique constant parameter, so that the algebra of the canonical generators is given by the direct sum of two copies of the Virasoro algebra with the standard central extension and U(1). This special set of boundary conditions makes the energy spectrum of electrically charged rotating black holes to be well-behaved.