WorldWideScience

Sample records for asymptotically ads black

  1. Quasinormal modes of asymptotically (A)dS black hole in Lovelock background

    Science.gov (United States)

    Abbasvandi, N.; Soleimani, M. J.; Abdullah, W. A. T. Wan; Radiman, Shahidan

    2017-03-01

    We study the quasinormal modes of the massless scalar field in asymptotically (A)dS black holes in Lovelock spacetime by using the sixth order of the WKB approximation. We consider the effects of the second and third order of Lovelock coupling constants on quasinormal frequencies spectrum as well as cosmological constant.

  2. Motion of particles on a four-dimensional asymptotically AdS black hole with scalar hair

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, P.A.; Olivares, Marco [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2015-10-15

    Motivated by black hole solutions with matter fields outside their horizon, we study the effect of these matter fields on the motion of massless and massive particles. We consider as background a four-dimensional asymptotically AdS black hole with scalar hair. The geodesics are studied numerically and we discuss the differences in the motion of particles between the four-dimensional asymptotically AdS black holes with scalar hair and their no-hair limit, that is, Schwarzschild AdS black holes. Mainly, we found that there are bounded orbits like planetary orbits in this background. However, the periods associated to circular orbits are modified by the presence of the scalar hair. Besides, we found that some classical tests such as perihelion precession, deflection of light, and gravitational time delay have the standard value of general relativity plus a correction term coming from the cosmological constant and the scalar hair. Finally, we found a specific value of the parameter associated to the scalar hair, in order to explain the discrepancy between the theory and the observations, for the perihelion precession of Mercury and light deflection. (orig.)

  3. Weak field black hole formation in asymptotically AdS spacetimes

    International Nuclear Information System (INIS)

    Bhattacharyya, Sayantani; Minwalla, Shiraz

    2009-01-01

    We use the AdS/CFT correspondence to study the thermalization of a strongly coupled conformal field theory that is forced out of its vacuum by a source that couples to a marginal operator. The source is taken to be of small amplitude and finite duration, but is otherwise an arbitrary function of time. When the field theory lives on R d-1,1 , the source sets up a translationally invariant wave in the dual gravitational description. This wave propagates radially inwards in AdS d+1 space and collapses to form a black brane. Outside its horizon the bulk spacetime for this collapse process may systematically be constructed in an expansion in the amplitude of the source function, and takes the Vaidya form at leading order in the source amplitude. This solution is dual to a remarkably rapid and intriguingly scale dependent thermalization process in the field theory. When the field theory lives on a sphere the resultant wave either slowly scatters into a thermal gas (dual to a glueball type phase in the boundary theory) or rapidly collapses into a black hole (dual to a plasma type phase in the field theory) depending on the time scale and amplitude of the source function. The transition between these two behaviors is sharp and can be tuned to the Choptuik scaling solution in R d,1 .

  4. Black hole thermodynamics in Lovelock gravity's rainbow with (AdS asymptote

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Hendi

    2017-01-01

    Full Text Available In this paper, we combine Lovelock gravity with gravity's rainbow to construct Lovelock gravity's rainbow. Considering the Lovelock gravity's rainbow coupled to linear and also nonlinear electromagnetic gauge fields, we present two new classes of topological black hole solutions. We compute conserved and thermodynamic quantities of these black holes (such as temperature, entropy, electric potential, charge and mass and show that these quantities satisfy the first law of thermodynamics. In order to study the thermal stability in canonical ensemble, we calculate the heat capacity and determinant of the Hessian matrix and show in what regions there are thermally stable phases for black holes. Also, we discuss the dependence of thermodynamic behavior and thermal stability of black holes on rainbow functions. Finally, we investigate the critical behavior of black holes in the extended phase space and study their interesting properties.

  5. Black hole thermodynamics in Lovelock gravity's rainbow with (A)dS asymptote

    Energy Technology Data Exchange (ETDEWEB)

    Hendi, Seyed Hossein, E-mail: hendi@shirazu.ac.ir [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Research Institute for Astrophysics and Astronomy of Maragha (RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of); Dehghani, Ali, E-mail: ali.dehghani.phys@gmail.com [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Faizal, Mir, E-mail: f2mir@uwaterloo.ca [Irving K. Barber School of Arts and Sciences, University of British Columbia – Okanagan, Kelowna, BC V1V 1V7 (Canada); Department of Physics and Astronomy, University of Lethbridge, Lethbridge, AB T1K 3M4 (Canada)

    2017-01-15

    In this paper, we combine Lovelock gravity with gravity's rainbow to construct Lovelock gravity's rainbow. Considering the Lovelock gravity's rainbow coupled to linear and also nonlinear electromagnetic gauge fields, we present two new classes of topological black hole solutions. We compute conserved and thermodynamic quantities of these black holes (such as temperature, entropy, electric potential, charge and mass) and show that these quantities satisfy the first law of thermodynamics. In order to study the thermal stability in canonical ensemble, we calculate the heat capacity and determinant of the Hessian matrix and show in what regions there are thermally stable phases for black holes. Also, we discuss the dependence of thermodynamic behavior and thermal stability of black holes on rainbow functions. Finally, we investigate the critical behavior of black holes in the extended phase space and study their interesting properties.

  6. Black hole thermodynamics in Lovelock gravity's rainbow with (A)dS asymptote

    Science.gov (United States)

    Hendi, Seyed Hossein; Dehghani, Ali; Faizal, Mir

    2017-01-01

    In this paper, we combine Lovelock gravity with gravity's rainbow to construct Lovelock gravity's rainbow. Considering the Lovelock gravity's rainbow coupled to linear and also nonlinear electromagnetic gauge fields, we present two new classes of topological black hole solutions. We compute conserved and thermodynamic quantities of these black holes (such as temperature, entropy, electric potential, charge and mass) and show that these quantities satisfy the first law of thermodynamics. In order to study the thermal stability in canonical ensemble, we calculate the heat capacity and determinant of the Hessian matrix and show in what regions there are thermally stable phases for black holes. Also, we discuss the dependence of thermodynamic behavior and thermal stability of black holes on rainbow functions. Finally, we investigate the critical behavior of black holes in the extended phase space and study their interesting properties.

  7. Asymptotically AdS spacetimes with a timelike Kasner singularity

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jie [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2016-07-21

    Exact solutions to Einstein’s equations for holographic models are presented and studied. The IR geometry has a timelike cousin of the Kasner singularity, which is the less generic case of the BKL (Belinski-Khalatnikov-Lifshitz) singularity, and the UV is asymptotically AdS. This solution describes a holographic RG flow between them. The solution’s appearance is an interpolation between the planar AdS black hole and the AdS soliton. The causality constraint is always satisfied. The entanglement entropy and Wilson loops are discussed. The boundary condition for the current-current correlation function and the Laplacian in the IR is examined. There is no infalling wave in the IR, but instead, there is a normalizable solution in the IR. In a special case, a hyperscaling-violating geometry is obtained after a dimensional reduction.

  8. Warped AdS3 black holes

    International Nuclear Information System (INIS)

    Anninos, Dionysios; Li Wei; Padi, Megha; Song Wei; Strominger, Andrew

    2009-01-01

    Three dimensional topologically massive gravity (TMG) with a negative cosmological constant -l -2 and positive Newton constant G admits an AdS 3 vacuum solution for any value of the graviton mass μ. These are all known to be perturbatively unstable except at the recently explored chiral point μl = 1. However we show herein that for every value of μl ≠ 3 there are two other (potentially stable) vacuum solutions given by SL(2,R) x U(1)-invariant warped AdS 3 geometries, with a timelike or spacelike U(1) isometry. Critical behavior occurs at μl = 3, where the warping transitions from a stretching to a squashing, and there are a pair of warped solutions with a null U(1) isometry. For μl > 3, there are known warped black hole solutions which are asymptotic to warped AdS 3 . We show that these black holes are discrete quotients of warped AdS 3 just as BTZ black holes are discrete quotients of ordinary AdS 3 . Moreover new solutions of this type, relevant to any theory with warped AdS 3 solutions, are exhibited. Finally we note that the black hole thermodynamics is consistent with the hypothesis that, for μl > 3, the warped AdS 3 ground state of TMG is holographically dual to a 2D boundary CFT with central charges c R -formula and c L -formula.

  9. Polarised Black Holes in AdS

    CERN Document Server

    Costa, Miguel S.; Oliveira, Miguel; Penedones, João; Santos, Jorge E.

    2016-05-03

    We consider solutions in Einstein-Maxwell theory with a negative cosmological constant that asymptote to global $AdS_{4}$ with conformal boundary $S^{2}\\times\\mathbb{R}_{t}$. At the sphere at infinity we turn on a space-dependent electrostatic potential, which does not destroy the asymptotic $AdS$ behaviour. For simplicity we focus on the case of a dipolar electrostatic potential. We find two new geometries: (i) an $AdS$ soliton that includes the full backreaction of the electric field on the $AdS$ geometry; (ii) a polarised neutral black hole that is deformed by the electric field, accumulating opposite charges in each hemisphere. For both geometries we study boundary data such as the charge density and the stress tensor. For the black hole we also study the horizon charge density and area, and further verify a Smarr formula. Then we consider this system at finite temperature and compute the Gibbs free energy for both $AdS$ soliton and black hole phases. The corresponding phase diagram generalizes the Hawkin...

  10. Hawking radiation from AdS black holes

    International Nuclear Information System (INIS)

    Hubeny, Veronika E; Rangamani, Mukund; Marolf, Donald

    2010-01-01

    We study Hartle-Hawking-like states of quantum field theories on asymptotically AdS black hole backgrounds, with particular regard to the phase structure of interacting theories. By a suitable analytic continuation we show that the equilibrium dynamics of field theories on large asymptotically AdS black holes can be related to the low-temperature states of the same field theory on the AdS soliton (or pure AdS) background. This allows us to gain insight into Hartle-Hawking-like states on large-radius Schwarzschild- or rotating-AdS black holes. Furthermore, we exploit the AdS/CFT correspondence to explore the physics of strongly coupled large N theories on asymptotically AdS black holes. In particular, we exhibit a plausibly complete set of phases for the M2-brane world-volume superconformal field theory on a BTZ black hole background. Our analysis partially resolves puzzles previously raised in connection with Hawking radiation on large AdS black holes.

  11. Penrose inequality for asymptotically AdS spaces

    International Nuclear Information System (INIS)

    Itkin, Igor; Oz, Yaron

    2012-01-01

    In general relativity, the Penrose inequality relates the mass and the entropy associated with a gravitational background. If the inequality is violated by an initial Cauchy data, it suggests a creation of a naked singularity, thus providing means to consider the cosmic censorship hypothesis. We propose a general form of Penrose inequality for asymptotically locally AdS spaces.

  12. Penrose inequality for asymptotically AdS spaces

    Energy Technology Data Exchange (ETDEWEB)

    Itkin, Igor [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Oz, Yaron, E-mail: yaronoz@post.tau.ac.il [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel)

    2012-02-28

    In general relativity, the Penrose inequality relates the mass and the entropy associated with a gravitational background. If the inequality is violated by an initial Cauchy data, it suggests a creation of a naked singularity, thus providing means to consider the cosmic censorship hypothesis. We propose a general form of Penrose inequality for asymptotically locally AdS spaces.

  13. Gravitational charges of transverse asymptotically AdS spacetimes

    International Nuclear Information System (INIS)

    Cebeci, Hakan; Sarioglu, Oezguer; Tekin, Bayram

    2006-01-01

    Using Killing-Yano symmetries, we construct conserved charges of spacetimes that asymptotically approach to the flat or anti-de Sitter spaces only in certain directions. In D dimensions, this allows one to define gravitational charges (such as mass and angular momenta densities) of p-dimensional branes/solitons or any other extended objects that curve the transverse space into an asymptotically flat or AdS one. Our construction answers the question of what kind of charges the antisymmetric Killing-Yano tensors lead to

  14. Black hole thermodynamics from a variational principle: asymptotically conical backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    An, Ok Song [SISSA and INFN, Sezione di Trieste,Via Bonomea 265, 34136 Trieste (Italy); Department of Physics, Kim Il Sung University,Ryongnam Dong, TaeSong District, Pyongyang, D.P.R. (Korea, Republic of); ICTP,Strada Costiera 11, 34014 Trieste (Italy); Cvetič, Mirjam [Department of Physics and Astronomy, University of Pennsylvania,209 S 33rd St, Philadelphia, PA 19104 (United States); Center for Applied Mathematics and Theoretical Physics, University of Maribor,Mladinska 3, SI2000 Maribor (Slovenia); Papadimitriou, Ioannis [SISSA and INFN, Sezione di Trieste,Via Bonomea 265, 34136 Trieste (Italy)

    2016-03-14

    The variational problem of gravity theories is directly related to black hole thermodynamics. For asymptotically locally AdS backgrounds it is known that holographic renormalization results in a variational principle in terms of equivalence classes of boundary data under the local asymptotic symmetries of the theory, which automatically leads to finite conserved charges satisfying the first law of thermodynamics. We show that this connection holds well beyond asymptotically AdS black holes. In particular, we formulate the variational problem for N=2 STU supergravity in four dimensions with boundary conditions corresponding to those obeyed by the so called ‘subtracted geometries’. We show that such boundary conditions can be imposed covariantly in terms of a set of asymptotic second class constraints, and we derive the appropriate boundary terms that render the variational problem well posed in two different duality frames of the STU model. This allows us to define finite conserved charges associated with any asymptotic Killing vector and to demonstrate that these charges satisfy the Smarr formula and the first law of thermodynamics. Moreover, by uplifting the theory to five dimensions and then reducing on a 2-sphere, we provide a precise map between the thermodynamic observables of the subtracted geometries and those of the BTZ black hole. Surface terms play a crucial role in this identification.

  15. Phases of global AdS black holes

    International Nuclear Information System (INIS)

    Basu, Pallab; Krishnan, Chethan; Subramanian, P.N. Bala

    2016-01-01

    We study the phases of gravity coupled to a charged scalar and gauge field in an asymptotically Anti-de Sitter spacetime (AdS_4) in the grand canonical ensemble. For the conformally coupled scalar, an intricate phase diagram is charted out between the four relevant solutions: global AdS, boson star, Reissner-Nordstrom black hole and the hairy black hole. The nature of the phase diagram undergoes qualitative changes as the charge of the scalar is changed, which we discuss. We also discuss the new features that arise in the extremal limit.

  16. Thermodynamics of charged Lovelock: AdS black holes

    International Nuclear Information System (INIS)

    Prasobh, C.B.; Suresh, Jishnu; Kuriakose, V.C.

    2016-01-01

    We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime. (orig.)

  17. Thermodynamics of charged Lovelock: AdS black holes

    Science.gov (United States)

    Prasobh, C. B.; Suresh, Jishnu; Kuriakose, V. C.

    2016-04-01

    We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime.

  18. Asymptotic structure of the Einstein-Maxwell theory on AdS{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Alfredo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Riquelme, Miguel [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile); Tempo, David [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Physique Théorique et Mathématique,Université Libre de Bruxelles and International Solvay Institutes,Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Troncoso, Ricardo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile)

    2016-02-02

    The asymptotic structure of AdS spacetimes in the context of General Relativity coupled to the Maxwell field in three spacetime dimensions is analyzed. Although the fall-off of the fields is relaxed with respect to that of Brown and Henneaux, the variation of the canonical generators associated to the asymptotic Killing vectors can be shown to be finite once required to span the Lie derivative of the fields. The corresponding surface integrals then acquire explicit contributions from the electromagnetic field, and become well-defined provided they fulfill suitable integrability conditions, implying that the leading terms of the asymptotic form of the electromagnetic field are functionally related. Consequently, for a generic choice of boundary conditions, the asymptotic symmetries are broken down to ℝ⊗U(1)⊗U(1). Nonetheless, requiring compatibility of the boundary conditions with one of the asymptotic Virasoro symmetries, singles out the set to be characterized by an arbitrary function of a single variable, whose precise form depends on the choice of the chiral copy. Remarkably, requiring the asymptotic symmetries to contain the full conformal group selects a very special set of boundary conditions that is labeled by a unique constant parameter, so that the algebra of the canonical generators is given by the direct sum of two copies of the Virasoro algebra with the standard central extension and U(1). This special set of boundary conditions makes the energy spectrum of electrically charged rotating black holes to be well-behaved.

  19. On thermodynamics of AdS black holes in M-theory

    International Nuclear Information System (INIS)

    Belhaj, A.; Chabab, M.; Masmar, K.; El Moumni, H.; Sedra, M.B.

    2016-01-01

    Motivated by recent work on asymptotically AdS 4 black holes in M-theory, we investigate the thermodynamics and thermodynamical geometry of AdS black holes from M2- and M5-branes. Concretely, we consider AdS black holes in AdS p+2 x S 11-p-2 , where p = 2,5 by interpreting the number of M2- (and M5-branes) as a thermodynamical variable. More precisely, we study the corresponding phase transition to examine their stabilities by calculating and discussing various thermodynamical quantities including the chemical potential. Then we compute the thermodynamical curvatures from the Quevedo metric for M2- and M5-branes geometries to reconsider the stability of such black holes. The Quevedo metric singularities recover similar stability results provided by the phase-transition program. It has been shown that similar behaviors are also present in the limit of large N. (orig.)

  20. Charge loss (or the lack thereof) for AdS black holes

    International Nuclear Information System (INIS)

    Ong, Yen Chin; Chen, Pisin

    2014-01-01

    The evolution of evaporating charged black holes is complicated to model in general, but is nevertheless important since the hints to the Information Loss Paradox and its recent firewall incarnation may lie in understanding more generic geometries than that of Schwarzschild spacetime. Fortunately, for sufficiently large asymptotically flat Reissner-Nordström black holes, the evaporation process can be modeled via a system of coupled linear ordinary differential equations, with charge loss rate governed by Schwinger pair-production process. The same model can be generalized to study the evaporation of AdS Reissner-Nordström black holes with flat horizon. It was recently found that such black holes always evolve towards extremality since charge loss is inefficient. This property is completely opposite to the asymptotically flat case in which the black hole eventually loses its charges and tends towards Schwarzschild limit. We clarify the underlying reason for this different behavior.

  1. Hawking Radiation-Quasinormal Modes Correspondence for Large AdS Black Holes

    Directory of Open Access Journals (Sweden)

    Dao-Quan Sun

    2017-01-01

    Full Text Available It is well-known that the nonstrictly thermal character of the Hawking radiation spectrum generates a natural correspondence between Hawking radiation and black hole quasinormal modes. This main issue has been analyzed in the framework of Schwarzschild black holes, Kerr black holes, and nonextremal Reissner-Nordstrom black holes. In this paper, by introducing the effective temperature, we reanalyze the nonstrictly thermal character of large AdS black holes. The results show that the effective mass corresponding to the effective temperature is approximatively the average one in any dimension. And the other effective quantities can also be obtained. Based on the known forms of frequency in quasinormal modes, we reanalyze the asymptotic frequencies of the large AdS black hole in three and five dimensions. Then we get the formulas of the Bekenstein-Hawking entropy and the horizon’s area quantization with functions of the quantum “overtone” number n.

  2. On thermodynamics of AdS black holes in M-theory

    Energy Technology Data Exchange (ETDEWEB)

    Belhaj, A. [Universite Sultan Moulay Slimane, Departement de Physique, LIRST, Faculte Polydisciplinaire, Beni Mellal (Morocco); Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, FSSM, Marrakesh (Morocco); Chabab, M.; Masmar, K. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, FSSM, Marrakesh (Morocco); El Moumni, H. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, FSSM, Marrakesh (Morocco); Universite Ibn Zohr, Departement de Physique, Faculte des Sciences, Agadir (Morocco); Sedra, M.B. [Universite Ibn Tofail, Departement de Physique, LASIMO, Faculte des Sciences, Kenitra (Morocco)

    2016-02-15

    Motivated by recent work on asymptotically AdS{sub 4} black holes in M-theory, we investigate the thermodynamics and thermodynamical geometry of AdS black holes from M2- and M5-branes. Concretely, we consider AdS black holes in AdS{sub p+2} x S{sup 11-p-2}, where p = 2,5 by interpreting the number of M2- (and M5-branes) as a thermodynamical variable. More precisely, we study the corresponding phase transition to examine their stabilities by calculating and discussing various thermodynamical quantities including the chemical potential. Then we compute the thermodynamical curvatures from the Quevedo metric for M2- and M5-branes geometries to reconsider the stability of such black holes. The Quevedo metric singularities recover similar stability results provided by the phase-transition program. It has been shown that similar behaviors are also present in the limit of large N. (orig.)

  3. Thermodynamic stability of asymptotically anti-de Sitter rotating black holes in higher dimensions

    International Nuclear Information System (INIS)

    Dolan, Brian P

    2014-01-01

    Conditions for thermodynamic stability of asymptotically anti-de Sitter (AdS) rotating black holes in D-dimensions are determined. Local thermodynamic stability requires not only positivity conditions on the specific heat and the moment of inertia tensor but it is also necessary that the adiabatic compressibility be positive. It is shown that, in the absence of a cosmological constant, neither rotation nor charge is sufficient to ensure full local thermodynamic stability of a black hole. Thermodynamic stability properties of AdS Myers–Perry black holes are investigated for both singly spinning and multi-spinning black holes. Simple expressions are obtained for the specific heat and moment of inertia tensor in any dimension. An analytic expression is obtained for the boundary of the region of parameter space in which such space-times are thermodynamically stable. (paper)

  4. Evaporation of large black holes in AdS

    International Nuclear Information System (INIS)

    Rocha, Jorge V

    2010-01-01

    The AdS/CFT correspondence offers a new perspective on the long-standing black hole information paradox. However, to be able to use the available gauge/gravity machinery one is forced to consider so-called 'large' black holes in AdS, and these objects are thermodynamically stable - they do not evaporate. We describe a simple toy model that allows large AdS black holes to decay, by coupling the emitted radiation to an external scalar field propagating in an auxiliary space. This effectively changes the properties of the boundary of AdS, making it partly absorbing. We demonstrate that the evaporation process never ceases by explicitly presenting (a) the transmission coefficient for a wave scattering from the bulk into auxiliary space and (b) the greybody factor for a black 3-brane in an AdS background. Therefore, the model provides an interesting framework to address the information paradox using AdS/CFT techniques.

  5. Asymptotic Reissner–Nordström black holes

    International Nuclear Information System (INIS)

    Hendi, S.H.

    2013-01-01

    We consider two types of Born–Infeld like nonlinear electromagnetic fields and obtain their interesting black hole solutions. The asymptotic behavior of these solutions is the same as that of a Reissner–Nordström black hole. We investigate the geometric properties of the solutions and find that depending on the value of the nonlinearity parameter, the singularity covered with various horizons. -- Highlights: •We investigate two types of the BI-like nonlinear electromagnetic fields in the Einsteinian gravity. •We analyze the effects of nonlinearity on the electromagnetic field. •We examine the influences of the nonlinearity on the geometric properties of the black hole solutions

  6. AdS Black Hole with Phantom Scalar Field

    Directory of Open Access Journals (Sweden)

    Limei Zhang

    2017-01-01

    Full Text Available We present an AdS black hole solution with Ricci flat horizon in Einstein-phantom scalar theory. The phantom scalar fields just depend on the transverse coordinates x and y, which are parameterized by the parameter α. We study the thermodynamics of the AdS phantom black hole. Although its horizon is a Ricci flat Euclidean space, we find that the thermodynamical properties of the black hole solution are qualitatively the same as those of AdS Schwarzschild black hole. Namely, there exists a minimal temperature and the large black hole is thermodynamically stable, while the smaller one is unstable, so there is a so-called Hawking-Page phase transition between the large black hole and the thermal gas solution in the AdS space-time in Poincare coordinates. We also calculate the entanglement entropy for a strip geometry dual to the AdS phantom black holes and find that the behavior of the entanglement entropy is qualitatively the same as that of the black hole thermodynamical entropy.

  7. The Thermodynamic Relationship between the RN-AdS Black Holes and the RN Black Hole in Canonical Ensemble

    Directory of Open Access Journals (Sweden)

    Yu-Bo Ma

    2017-01-01

    Full Text Available In this paper, by analyzing the thermodynamic properties of charged AdS black hole and asymptotically flat space-time charged black hole in the vicinity of the critical point, we establish the correspondence between the thermodynamic parameters of asymptotically flat space-time and nonasymptotically flat space-time, based on the equality of black hole horizon area in the two different types of space-time. The relationship between the cavity radius (which is introduced in the study of asymptotically flat space-time charged black holes and the cosmological constant (which is introduced in the study of nonasymptotically flat space-time is determined. The establishment of the correspondence between the thermodynamics parameters in two different types of space-time is beneficial to the mutual promotion of different time-space black hole research, which is helpful to understand the thermodynamics and quantum properties of black hole in space-time.

  8. Scalar hairy black holes and solitons in asymptotically flat spacetimes

    International Nuclear Information System (INIS)

    Nucamendi, Ulises; Salgado, Marcelo

    2003-01-01

    A numerical analysis shows that the Einstein field equations allow static and spherically symmetric black hole solutions with scalar-field hair in asymptotically flat spacetimes. When regularity at the origin is imposed (i.e., in the absence of a horizon) globally regular scalar solitons are found. The asymptotically flat solutions are obtained provided that the scalar potential V(φ) of the theory is not positive semidefinite and such that its local minimum is also a zero of the potential, the scalar field settling asymptotically at that minimum. The configurations, although unstable under spherically symmetric linear perturbations, are regular and thus can serve as counterexamples to the no-scalar-hair conjecture

  9. Phases of planar AdS black holes with axionic charge

    International Nuclear Information System (INIS)

    Caldarelli, Marco M.; Christodoulou, Ariana; Papadimitriou, Ioannis; Skenderis, Kostas

    2017-01-01

    Planar AdS black holes with axionic charge have finite DC conductivity due to momentum relaxation. We obtain a new family of exact asymptotically AdS 4 black branes with scalar hair, carrying magnetic and axion charge, and we study the thermodynamics and dynamic stability of these, as well as of a number of previously known electric and dyonic solutions with axion charge and scalar hair. The scalar hair for all solutions satisfy mixed boundary conditions, which lead to modified holographic Ward identities, conserved charges and free energy, relative to those following from the more standard Dirichlet boundary conditions. We show that properly accounting for the scalar boundary conditions leads to well defined first law and other thermodynamic relations. Finally, we compute the holographic quantum effective potential for the dual scalar operator and show that dynamical stability of the hairy black branes is equivalent to positivity of the energy density.

  10. Dualities in D=5, N=2 supergravity, black hole entropy, and AdS central charges

    International Nuclear Information System (INIS)

    Klemm, D.

    2001-01-01

    The issue of microstate counting for general black holes in D=5, N=2 supergravity coupled to vector multiplets is discussed from various viewpoints. The statistical entropy is computed for the near-extremal case by using the central charge appearing in the asymptotic symmetry algebra of AdS 2 . Furthermore, we show that the considered supergravity theory enjoys a duality invariance which connects electrically charged black holes and magnetically charged black strings. The near-horizon geometry of the latter turns out to be AdS 3 x S 2 , which allows a microscopic calculation of their entropy using the Brown-Hennaux central charges in Cardy's formula. In both approaches we find perfect agreement between statistical and thermodynamical entropy. (orig.)

  11. Winding strings and AdS3 black holes

    International Nuclear Information System (INIS)

    Troost, Jan

    2002-01-01

    We start a systematic study of string theory in AdS 3 black hole backgrounds. Firstly, we analyse in detail the geodesic structure of the BTZ black hole, including spacelike geodesics. Secondly, we study the spectrum for massive and massless scalar fields, paying particular attention to the connection between Sl(2,R) subgroups, the theory of special functions and global properties of the BTZ black holes. We construct classical strings that wind the black holes. Finally, we apply the general formalism to the vacuum black hole background, and formulate the boundary spacetime Virasoro algebra in terms of worldsheet operators. We moreover establish the link between a proposal for a ghost free spectrum for Sl(2,R) string propagation and the massless black hole background, thereby claryfing aspects of the AdS 3 /CFT correspondence. (author)

  12. Comparison between various notions of conserved charges in asymptotically AdS spacetimes

    International Nuclear Information System (INIS)

    Hollands, Stefan; Ishibashi, Akihiro; Marolf, Donald

    2005-01-01

    We derive Hamiltonian generators of asymptotic symmetries for general relativity with asymptotic AdS boundary conditions using the 'covariant phase space' method of Wald et al. We then compare our results with other definitions that have been proposed in the literature. We find that our definition agrees with that proposed by Ashtekar et al, with the spinor definition, and with the background-dependent definition of Henneaux and Teitelboim. Our definition disagrees with that obtained from the 'counterterm subtraction method', but the difference is found to consist only of a 'constant offset' that is determined entirely in terms of the boundary metric. We finally discuss and justify our boundary conditions by a linear perturbation analysis, and we comment on generalizations of our boundary conditions, as well as inclusion of matter fields

  13. Throat quantization of the Schwarzschild–Tangherlini(-AdS) black hole

    International Nuclear Information System (INIS)

    Kunstatter, Gabor; Maeda, Hideki

    2014-01-01

    Adopting the throat quantization pioneered by Louko and Mäkelä, we derive the mass and area spectra for the Schwarzschild–Tangherlini black hole and its anti-de Sitter (AdS) generalization in arbitrary dimensions. We find that the system can be quantized exactly in three special cases: the three-dimensional BTZ black hole, toroidal black holes in any dimension, and five-dimensional Schwarzshild–Tangherlini(-AdS) black holes. For the remaining cases the spectra are obtained for large mass using the WKB approximation. For asymptotically flat black holes, the area/entropy has an equally spaced spectrum, as expected from previous work. In the asymptotically AdS case on the other hand, it is the mass spectrum that is equally spaced. Our exact results for the BTZ black hole mass with Dirichlet boundary conditions are consistent with the spectra of the corresponding operators in the dual CFT. (paper)

  14. Phases of planar AdS black holes with axionic charge

    Energy Technology Data Exchange (ETDEWEB)

    Caldarelli, Marco M.; Christodoulou, Ariana [Mathematical Sciences and STAG Research Centre, University of Southampton,Highfield, Southampton SO17 1BJ (United Kingdom); Papadimitriou, Ioannis [SISSA and INFN - Sezione di Trieste,Via Bonomea 265, I 34136 Trieste (Italy); Skenderis, Kostas [Mathematical Sciences and STAG Research Centre, University of Southampton,Highfield, Southampton SO17 1BJ (United Kingdom)

    2017-04-03

    Planar AdS black holes with axionic charge have finite DC conductivity due to momentum relaxation. We obtain a new family of exact asymptotically AdS{sub 4} black branes with scalar hair, carrying magnetic and axion charge, and we study the thermodynamics and dynamic stability of these, as well as of a number of previously known electric and dyonic solutions with axion charge and scalar hair. The scalar hair for all solutions satisfy mixed boundary conditions, which lead to modified holographic Ward identities, conserved charges and free energy, relative to those following from the more standard Dirichlet boundary conditions. We show that properly accounting for the scalar boundary conditions leads to well defined first law and other thermodynamic relations. Finally, we compute the holographic quantum effective potential for the dual scalar operator and show that dynamical stability of the hairy black branes is equivalent to positivity of the energy density.

  15. Small AdS black holes from SYM

    International Nuclear Information System (INIS)

    Asplund, Curtis; Berenstein, David

    2009-01-01

    We provide a characterization of the set of configurations in N=4 SYM theory that are dual to small AdS black holes. Our construction shows that the black hole dual states are approximately thermal on a SU(M) subset of degrees of freedom of a SU(N) gauge theory. M is determined dynamically and the black hole degrees of freedom are dynamically insulated from the rest. These states are localized on the S 5 and have dynamical processes that correspond to matter absorption that make them behave as black objects

  16. Asymptotically flat black holes in Horndeski theory and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Babichev, E.; Charmousis, C.; Lehébel, A., E-mail: eugeny.babichev@th.u-psud.fr, E-mail: christos.charmousis@th.u-psud.fr, E-mail: antoine.lehebel@th.u-psud.fr [Laboratoire de Physique Théorique, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France)

    2017-04-01

    We find spherically symmetric and static black holes in shift-symmetric Horndeski and beyond Horndeski theories. They are asymptotically flat and sourced by a non trivial static scalar field. The first class of solutions is constructed in such a way that the Noether current associated with shift symmetry vanishes, while the scalar field cannot be trivial. This in certain cases leads to hairy black hole solutions (for the quartic Horndeski Lagrangian), and in others to singular solutions (for a Gauss-Bonnet term). Additionally, we find the general spherically symmetric and static solutions for a pure quartic Lagrangian, the metric of which is Schwarzschild. We show that under two requirements on the theory in question, any vacuum GR solution is also solution to the quartic theory. As an example, we show that a Kerr black hole with a non-trivial scalar field is an exact solution to these theories.

  17. A universal counting of black hole microstates in AdS4

    Science.gov (United States)

    Azzurli, Francesco; Bobev, Nikolay; Crichigno, P. Marcos; Min, Vincent S.; Zaffaroni, Alberto

    2018-02-01

    Many three-dimensional N=2 SCFTs admit a universal partial topological twist when placed on hyperbolic Riemann surfaces. We exploit this fact to derive a universal formula which relates the planar limit of the topologically twisted index of these SCFTs and their three-sphere partition function. We then utilize this to account for the entropy of a large class of supersymmetric asymptotically AdS4 magnetically charged black holes in M-theory and massive type IIA string theory. In this context we also discuss novel AdS2 solutions of eleven-dimensional supergravity which describe the near horizon region of large new families of supersymmetric black holes arising from M2-branes wrapping Riemann surfaces.

  18. Binary black hole initial data from matched asymptotic expansions

    International Nuclear Information System (INIS)

    Yunes, Nicolas; Owen, Benjamin J.; Tichy, Wolfgang; Bruegmann, Bernd

    2006-01-01

    We present an approximate metric for a binary black-hole spacetime to construct initial data for numerical relativity. This metric is obtained by asymptotically matching a post-Newtonian metric for a binary system to a perturbed Schwarzschild metric for each hole. In the inner zone near each hole, the metric is given by the Schwarzschild solution plus a quadrupolar perturbation corresponding to an external tidal gravitational field. In the near zone, well outside each black hole but less than a reduced wavelength from the center of mass of the binary, the metric is given by a post-Newtonian expansion including the lowest-order deviations from flat spacetime. When the near zone overlaps each inner zone in a buffer zone, the post-Newtonian and perturbed Schwarzschild metrics can be asymptotically matched to each other. By demanding matching (over a 4-volume in the buffer zone) rather than patching (choosing a particular 2-surface in the buffer zone), we guarantee that the errors are small in all zones. The resulting piecewise metric is made formally C ∞ with smooth transition functions so as to obtain the finite extrinsic curvature of a 3-slice. In addition to the metric and extrinsic curvature, we present explicit results for the lapse and the shift, which can be used as initial data for numerical simulations. This initial data is not accurate all the way to the asymptotically flat ends inside each hole, and therefore must be used with evolution codes which employ black hole excision rather than puncture methods. This paper lays the foundations of a method that can be straightforwardly iterated to obtain initial data to higher perturbative order

  19. Thermodynamics and phase transition of black hole in an asymptotically safe gravity

    International Nuclear Information System (INIS)

    Ma, Meng-Sen

    2014-01-01

    We study the effects of quantum gravitational correction on the thermodynamics of black holes in the asymptotic safety scenario. Owing to the quantum-corrected Schwarzschild metric, the thermodynamic quantities are also corrected and a Hawking–Page-type phase transition may exist. We also employ the concept of thermodynamic geometry to the black hole to characterize the phase transition. By introducing a cavity enclosing the black hole, we apply the spatially finite boundary conditions to further investigate the thermodynamic phase transition of the black hole. It is shown that the larger and small black holes are both locally stable according to heat capacity. According to free energy, we find that the quantum-corrected black hole has similar thermodynamic phase structure to that of RN–AdS black hole. In addition, we also discuss the possibility of the phase transition between the black hole and the hot curved space. Above a certain temperature T 0 , the black hole is more probable than the hot space

  20. On attractor mechanism of AdS4 black holes

    International Nuclear Information System (INIS)

    Anabalón, Andrés; Astefanesei, Dumitru

    2013-01-01

    We construct a general family of exact non-extremal 4-dimensional black holes in AdS gravity with U(1) gauge fields non-minimally coupled to a dilaton and a non-trivial dilaton potential. These black holes can have spherical, toroidal, and hyperbolic horizon topologies. We use the entropy function formalism to obtain the near horizon data in the extremal limit. Due to the non-trivial self-interaction of the scalar field, the zero temperature black holes can have a finite horizon area even if only the electric field is turned on

  1. Small black holes in global AdS spacetime

    Science.gov (United States)

    Jokela, Niko; Pönni, Arttu; Vuorinen, Aleksi

    2016-04-01

    We study the properties of two-point functions and quasinormal modes in a strongly coupled field theory holographically dual to a small black hole in global anti-de Sitter spacetime. Our results are seen to smoothly interpolate between known limits corresponding to large black holes and thermal AdS space, demonstrating that the Son-Starinets prescription works even when there is no black hole in the spacetime. Omitting issues related to the internal space, the results can be given a field theory interpretation in terms of the microcanonical ensemble, which provides access to energy densities forbidden in the canonical description.

  2. Gravitational perturbation of the BTZ black hole induced by test particles and weak cosmic censorship in AdS spacetime

    International Nuclear Information System (INIS)

    Rocha, Jorge V.; Cardoso, Vitor

    2011-01-01

    We analyze the gravitational perturbations induced by particles falling into a three dimensional, asymptotically AdS black hole geometry. More specifically, we solve the linearized perturbation equations obtained from the geodesic motion of a ringlike distribution of test particles in the BTZ background. This setup ensures that the U(1) symmetry of the background is preserved. The nonasymptotic flatness of the background raises difficulties in attributing the significance of energy and angular momentum to the conserved quantities of the test particles. This issue is well known but, to the best of our knowledge, has never been addressed in the literature. We confirm that the naive expressions for energy and angular momentum are the correct definitions. Finally, we put an asymptotically AdS version of the weak cosmic censorship to a test: by attempting to overspin the BTZ black hole with test particles it is found that the black hole cannot be spun-up past its extremal limit.

  3. The Mixed Phase of Charged AdS Black Holes

    Directory of Open Access Journals (Sweden)

    Piyabut Burikham

    2016-01-01

    Full Text Available We study the mixed phase of charged AdS black hole and radiation when the total energy is fixed below the threshold to produce a stable charged black hole branch. The coexistence conditions for the charged AdS black hole and radiation are derived for the generic case when radiation particles carry charge. The phase diagram of the mixed phase is demonstrated for both fixed potential and charge ensemble. In the dual gauge picture, they correspond to the mixed phase of quark-gluon plasma (QGP and hadron gas in the fixed chemical potential and density ensemble, respectively. In the nuclei and heavy-ion collisions at intermediate energies, the mixed phase of exotic QGP and hadron gas could be produced. The mixed phase will condense and evaporate into the hadron gas as the fireball expands.

  4. On the Thermodynamics of a Gas of AdS Black Holes and the Quark-Hadron Phase Transition

    CERN Document Server

    Ellis, Jonathan Richard; Mavromatos, Nikolaos E; Ellis, John

    1999-01-01

    We discuss the thermodynamics of a gas of black holes in five-dimensional anti-de-Sitter (AdS) space, showing that they are described by a van der Waals equation of state. Motivated by the Maldacena conjecture, we relate the energy density and pressure of this non-ideal AdS black-hole gas to those of four-dimensional gauge theory in the unconfined phase. We find that the energy density rises rapidly above the deconfinement transition temperature, whilst the pressure rises more slowly towards its asymptotic high-temperature value, in qualitative agreement with lattice simulations.

  5. Gribov ambiguity in asymptotically AdS three-dimensional gravity

    International Nuclear Information System (INIS)

    Anabalon, Andres; Canfora, Fabrizio; Giacomini, Alex; Oliva, Julio

    2011-01-01

    In this paper the zero modes of the de Donder gauge Faddeev-Popov operator for three-dimensional gravity with negative cosmological constant are analyzed. It is found that the AdS 3 vacuum produces (infinitely many) normalizable smooth zero modes of the Faddeev-Popov operator. On the other hand, it is found that the Banados-Teitelboim-Zanelli black hole (including the zero mass black hole) does not generate zero modes. This differs from the usual Gribov problem in QCD where, close to the maximally symmetric vacuum, the Faddeev-Popov determinant is positive definite while 'far enough' from the vacuum it can vanish. This suggests that the zero mass Banados-Teitelboim-Zanelli black hole could be a suitable ground state of three-dimensional gravity with negative cosmological constant. Because of the kinematic origin of this result, it also applies for other covariant gravity theories in three dimensions with AdS 3 as maximally symmetric solution, such as new massive gravity and topologically massive gravity. The relevance of these results for supersymmetry breaking is pointed out.

  6. Thermodynamics of AdS black holes in Einstein-Scalar gravity

    Energy Technology Data Exchange (ETDEWEB)

    Lü, H. [Department of Physics, Beijing Normal University,Beijing 100875 (China); Pope, C.N. [George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University,College Station, TX 77843 (United States); DAMTP, Centre for Mathematical Sciences, Cambridge University,Wilberforce Road, Cambridge CB3 OWA (United Kingdom); Wen, Qiang [Department of Physics, Renmin University of China,Beijing 100872 (China)

    2015-03-31

    We study the thermodynamics of n-dimensional static asymptotically AdS black holes in Einstein gravity coupled to a scalar field with a potential admitting a stationary point with an AdS vacuum. Such black holes with non-trivial scalar hair can exist provided that the mass-squared of the scalar field is negative, and above the Breitenlohner-Freedman bound. We use the Wald procedure to derive the first law of thermodynamics for these black holes, showing how the scalar hair (or “charge”) contributes non-trivially in the expression. We show in general that a black hole mass can be deduced by isolating an integrable contribution to the (non-integrable) variation of the Hamiltonian arising in the Wald construction, and that this is consistent with the mass calculated using the renormalised holographic stress tensor and also, in those cases where it is defined, with the mass calculated using the conformal method of Ashtekar, Magnon and Das. Similar arguments can also be given for the smooth solitonic solutions in these theories. Neither the black hole nor the soliton solutions can be constructed explicitly, and we carry out a numerical analysis to demonstrate their existence and to provide approximate checks on some of our thermodynamic results.

  7. Quasinormal frequencies of Schwarzschild black holes in anti-de Sitter spacetimes: A complete study of the overtone asymptotic behavior

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Konoplya, Roman; Lemos, Jose P. S.

    2003-01-01

    We present a thorough analysis of the quasinormal (QN) behavior associated with the decay of scalar, electromagnetic, and gravitational perturbations of Schwarzschild black holes in anti-de Sitter (AdS) spacetimes. As is known, the AdS QN spectrum crucially depends on the relative size of the black hole to the AdS radius. There are three different types of behavior depending on whether the black hole is large, intermediate, or small. The results of previous works, concerning lower overtones for large black holes, are completed here by obtaining higher overtones for all three black hole regimes. There are two major conclusions that one can draw from this work: First, asymptotically for high overtones, all the modes are evenly spaced, and this holds for all three types of regime, large, intermediate, and small black holes, independently of l, where l is the quantum number characterizing the angular distribution; second, the spacing between modes is apparently universal in that it does not depend on the field; i.e., scalar, electromagnetic, and gravitational QN modes all have the same spacing for high overtones. We are also able to prove why scalar and gravitational perturbations are isospectral, asymptotically for high overtones, by introducing appropriate superpartner potentials

  8. Enthalpy and the mechanics of AdS black holes

    International Nuclear Information System (INIS)

    Kastor, David; Traschen, Jennie; Ray, Sourya

    2009-01-01

    We present geometric derivations of the Smarr formula for static AdS black holes and an expanded first law that includes variations in the cosmological constant. These two results are further related by a scaling argument based on Euler's theorem. The key new ingredient in the constructions is a two-form potential for the static Killing field. Surface integrals of the Killing potential determine the coefficient of the variation of Λ in the first law. This coefficient is proportional to a finite, effective volume for the region outside the AdS black hole horizon, which can also be interpreted as minus the volume excluded from a spatial slice by the black hole horizon. This effective volume also contributes to the Smarr formula. Since Λ is naturally thought of as a pressure, the new term in the first law has the form of effective volume times change in pressure that arises in the variation of the enthalpy in classical thermodynamics. This and related arguments suggest that the mass of an AdS black hole should be interpreted as the enthalpy of the spacetime.

  9. Quantum Black Holes as Holograms in AdS Braneworlds

    CERN Document Server

    Emparan, R; Kaloper, Nemanja; Emparan, Roberto; Fabbri, Alessandro; Kaloper, Nemanja

    2002-01-01

    We propose a new approach for using the AdS/CFT correspondence to study quantum black hole physics. The black holes on a brane in an AdS$_{D+1}$ braneworld that solve the classical bulk equations are interpreted as duals of {\\it quantum-corrected} $D$-dimensional black holes, rather than classical ones, of a conformal field theory coupled to gravity. We check this explicitly in D=3 and D=4. In D=3 we reinterpret the existing exact solutions on a flat membrane as states of the dual 2+1 CFT. We show that states with a sufficiently large mass really are 2+1 black holes where the quantum corrections dress the classical conical singularity with a horizon and censor it from the outside. On a negatively curved membrane, we reinterpret the classical bulk solutions as quantum-corrected BTZ black holes. In D=4 we argue that the bulk solution for the brane black hole should include a radiation component in order to describe a quantum-corrected black hole in the 3+1 dual. Hawking radiation of the conformal field is then ...

  10. Configurational entropy of charged AdS black holes

    Directory of Open Access Journals (Sweden)

    Chong Oh Lee

    2017-09-01

    Full Text Available When we consider charged AdS black holes in higher dimensional spacetime and a molecule number density along coexistence curves is numerically extended to higher dimensional cases. It is found that a number density difference of a small and large black holes decrease as a total dimension grows up. In particular, we find that a configurational entropy is a concave function of a reduced temperature and reaches a maximum value at a critical (second-order phase transition point. Furthermore, the bigger a total dimension becomes, the more concave function in a configurational entropy while the more convex function in a reduced pressure.

  11. AdS5 black holes with fermionic hair

    International Nuclear Information System (INIS)

    Burrington, Benjamin A.; Liu, James T.; Sabra, W. A.

    2005-01-01

    The study of new Bogomol'nyi-Prasad-Sommerfield (BPS) objects in AdS 5 has led to a deeper understanding of AdS/CFT. To help complete this picture, and to fully explore the consequences of the supersymmetry algebra, it is also important to obtain new solutions with bulk fermions turned on. In this paper we construct superpartners of the 1/2 BPS black hole in AdS 5 using a natural set of fermion zero modes. We demonstrate that these superpartners, carrying fermionic hair, have conserved charges differing from the original bosonic counterpart. To do so, we find the R-charge and dipole moment of the new system, as well as the mass and angular momentum, defined through the boundary stress tensor. The complete set of superpartners fits nicely into a chiral representation of AdS 5 supersymmetry, and the spinning solutions have the expected gyromagnetic ratio, g=1

  12. Black hole microstates in AdS{sub 4} from supersymmetric localization

    Energy Technology Data Exchange (ETDEWEB)

    Benini, Francesco [Blackett Laboratory, Imperial College London,South Kensington Campus, London SW7 2AZ (United Kingdom); International School for Advanced Studies (SISSA),via Bonomea 265, 34136 Trieste (Italy); Hristov, Kiril [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences,Tsarigradsko Chaussee 72, 1784 Sofia (Bulgaria); Zaffaroni, Alberto [Dipartimento di Fisica, Università di Milano-Bicocca,piazza della Scienza 3, I-20126 Milano (Italy); INFN, sezione di Milano-Bicocca,piazza della Scienza 3, I-20126 Milano (Italy)

    2016-05-10

    This paper addresses a long standing problem, the counting of the microstates of supersymmetric asymptotically AdS black holes in terms of a holographically dual field theory. We focus on a class of asymptotically AdS{sub 4} static black holes preserving two real supercharges which are dual to a topologically twisted deformation of the ABJM theory. We evaluate in the large N limit the topologically twisted index of the ABJM theory and we show that it correctly reproduces the entropy of the AdS{sub 4} black holes. An extremization of the index with respect to a set of chemical potentials is required. We interpret it as the selection of the exact R-symmetry of the superconformal quantum mechanics describing the horizon of the black hole.

  13. Analyticity of event horizons of five-dimensional multi-black holes with nontrivial asymptotic structure

    International Nuclear Information System (INIS)

    Kimura, Masashi

    2008-01-01

    We show that there exist five-dimensional multi-black hole solutions which have analytic event horizons when the space-time has nontrivial asymptotic structure, unlike the case of five-dimensional multi-black hole solutions in asymptotically flat space-time.

  14. Holographic description of AdS2 black holes

    International Nuclear Information System (INIS)

    Castro, Alejandra; Larsen, Finn; Grumiller, Daniel; McNees, Robert

    2008-01-01

    We develop the holographic renormalization of AdS 2 gravity systematically. We find that a bulk Maxwell term necessitates a boundary mass term for the gauge field and verify that this unusual term is invariant under gauge transformations that preserve the boundary conditions. We determine the energy-momentum tensor and the central charge, recovering recent results by Hartman and Strominger. We show that our expressions are consistent with dimensional reduction of the AdS 3 energy-momentum tensor and the Brown-Henneaux central charge. As an application of our results we interpret the entropy of AdS 2 black holes as the ground state entropy of a dual CFT.

  15. Wilson lines for AdS5 black strings

    International Nuclear Information System (INIS)

    Hristov, Kiril; Katmadas, Stefanos

    2015-01-01

    We describe a simple method of extending AdS 5 black string solutions of 5d gauged supergravity in a supersymmetric way by addition of Wilson lines along a circular direction in space. When this direction is chosen along the string, and due to the specific form of 5d supergravity that features Chern-Simons terms, the existence of magnetic charges automatically generates conserved electric charges in a 5d analogue of the Witten effect. Therefore we find a rather generic, model-independent way of adding electric charges to already existing solutions with no backreaction from the geometry or breaking of any symmetry. We use this method to explicitly write down more general versions of the Benini-Bobev black strings (http://dx.doi.org/10.1103/PhysRevLett.110.061601, http://dx.doi.org/10.1007/JHEP06(2013)005) and comment on the implications for the dual field theory and the similarities with generalizations of the Cacciatori-Klemm black holes (http://dx.doi.org/10.1007/JHEP01(2010)085) in AdS 4 .

  16. Asymptotics of Multivariate Regression with Consecutively Added Dependent Varibles

    NARCIS (Netherlands)

    Raats, V.M.; van der Genugten, B.B.; Moors, J.J.A.

    2004-01-01

    We consider multivariate regression where new dependent variables are consecutively added during the experiment (or in time).So, viewed at the end of the experiment, the number of observations decreases with each added variable. The explanatory variables are observed throughout.In a previous paper

  17. Entanglement Entropy of AdS Black Holes

    Directory of Open Access Journals (Sweden)

    Maurizio Melis

    2010-11-01

    Full Text Available We review recent progress in understanding the entanglement entropy of gravitational configurations for anti-de Sitter gravity in two and three spacetime dimensions using the AdS/CFT correspondence. We derive simple expressions for the entanglement entropy of two- and three-dimensional black holes. In both cases, the leading term of the entanglement entropy in the large black hole mass expansion reproduces exactly the Bekenstein-Hawking entropy, whereas the subleading term behaves logarithmically. In particular, for the BTZ black hole the leading term of the entanglement entropy can be obtained from the large temperature expansion of the partition function of a broad class of 2D CFTs on the torus.

  18. Boundary stress tensor and asymptotically AdS3 non-Einstein spaces at the chiral point

    International Nuclear Information System (INIS)

    Giribet, Gaston; Goya, Andres; Leston, Mauricio

    2011-01-01

    Chiral gravity admits asymptotically AdS 3 solutions that are not locally equivalent to AdS 3 ; meaning that solutions do exist which, while obeying the strong boundary conditions usually imposed in general relativity, happen not to be Einstein spaces. In topologically massive gravity (TMG), the existence of non-Einstein solutions is particularly connected to the question about the role played by complex saddle points in the Euclidean path integral. Consequently, studying (the existence of) nonlocally AdS 3 solutions to chiral gravity is relevant to understanding the quantum theory. Here, we discuss a special family of nonlocally AdS 3 solutions to chiral gravity. In particular, we show that such solutions persist when one deforms the theory by adding the higher-curvature terms of the so-called new massive gravity. Moreover, the addition of higher-curvature terms to the gravity action introduces new nonlocally AdS 3 solutions that have no analogues in TMG. Both stationary and time-dependent, axially symmetric solutions that asymptote AdS 3 space without being locally equivalent to it appear. Defining the boundary stress tensor for the full theory, we show that these non-Einstein geometries have associated vanishing conserved charges.

  19. Near-horizon limit of the charged BTZ black hole and AdS2 quantum gravity

    International Nuclear Information System (INIS)

    Cadoni, Mariano; Setare, Mohammad R.

    2008-01-01

    We show that the 3D charged Banados-Teitelboim-Zanelli (BTZ) black hole solution interpolates between two different 2D AdS spacetimes: a near-extremal, near-horizon AdS 2 geometry with constant dilaton and U(1) field and an asymptotic AdS 2 geometry with a linear dilaton. Thus, the charged BTZ black hole can be considered as interpolating between the two different formulations proposed until now for AdS 2 quantum gravity. In both cases the theory is the chiral half of a 2D CFT and describes, respectively, Brown-Hennaux-like boundary deformations and near-horizon excitations. The central charge c as of the asymptotic CFT is determined by 3D Newton constant G and the AdS length l, c as = 3l/G, whereas that of the near-horizon CFT also depends on the U(1) charge Q, c nh ∝lQ/√G.

  20. Thermodynamic and classical instability of AdS black holes in fourth-order gravity

    International Nuclear Information System (INIS)

    Myung, Yun Soo; Moon, Taeyoon

    2014-01-01

    We study thermodynamic and classical instability of AdS black holes in fourth-order gravity. These include the BTZ black hole in new massive gravity, Schwarzschild-AdS black hole, and higher-dimensional AdS black holes in fourth-order gravity. All thermodynamic quantities which are computed using the Abbot-Deser-Tekin method are used to study thermodynamic instability of AdS black holes. On the other hand, we investigate the s-mode Gregory-Laflamme instability of the massive graviton propagating around the AdS black holes. We establish the connection between the thermodynamic instability and the GL instability of AdS black holes in fourth-order gravity. This shows that the Gubser-Mitra conjecture holds for AdS black holes found from fourth-order gravity

  1. Smooth causal patches for AdS black holes

    Science.gov (United States)

    Raju, Suvrat

    2017-06-01

    We review the paradox of low energy excitations of a black hole in anti-de Sitter space (AdS). An appropriately chosen unitary operator in the boundary theory can create a locally strong excitation near the black hole horizon, whose global energy is small as a result of the gravitational redshift. The paradox is that this seems to violate a general rule of statistical mechanics, which states that an operator with energy parametrically smaller than k T cannot create a significant excitation in a thermal system. When we carefully examine the position dependence of the boundary unitary operator that produces the excitation and the bulk observable necessary to detect the anomalously large effect, we find that they do not both fit in a single causal patch. This follows from a remarkable property of position-space AdS correlators that we establish explicitly and resolves the paradox in a generic state of the system, since no combination of observers can both create the excitation and observe its effect. As a special case of our analysis, we show how this resolves the "Born rule" paradox of Marolf and Polchinski [J. High Energy Phys. 01 (2016) 008, 10.1007/JHEP01(2016)008] and we verify our solution using an independent calculation. We then consider boundary states that are finely tuned to display a spontaneous excitation outside the causal patch of the infalling observer, and we propose a version of causal patch complementarity in AdS/CFT that resolves the paradox for such states as well.

  2. Large N phase transitions and the fate of small Schwarzschild-AdS black holes

    Science.gov (United States)

    Yaffe, Laurence G.

    2018-01-01

    Sufficiently small Schwarzschild-AdS black holes in asymptotically global AdS5×S5 spacetime are known to become dynamically unstable toward deformation of the internal S5 geometry. The resulting evolution of such an unstable black hole is related, via holography, to the dynamics of supercooled plasma which has reached the limit of metastability in maximally supersymmetric large-N Yang-Mills theory on R ×S3. Puzzles related to the resulting dynamical evolution are discussed, with a key issue involving differences between the large-N limit in the dual field theory and typical large volume thermodynamic limits.

  3. AdS-like spectrum of the asymptotically Goedel space-times

    International Nuclear Information System (INIS)

    Konoplya, R. A.; Zhidenko, A.

    2011-01-01

    A black hole immersed in a rotating universe, described by the Gimon-Hashimoto solution, is tested on stability against scalar field perturbations. Unlike the previous studies on perturbations of this solution, which dealt only with the limit of slow universe rotation j, we managed to separate variables in the perturbation equation for the general case of arbitrary rotation. This leads to qualitatively different dynamics of perturbations, because the exact effective potential does not allow for Schwarzschild-like asymptotic of the wave function in the form of purely outgoing waves. The Dirichlet boundary conditions are allowed instead, which result in a totally different spectrum of asymptotically Goedel black holes: the spectrum of quasinormal frequencies is similar to the one of asymptotically anti-de Sitter black holes. At large and intermediate overtones N, the spectrum is equidistant in N. In the limit of small black holes, quasinormal modes (QNMs) approach the normal modes of the empty Goedel space-time. There is no evidence of instability in the found frequencies, which supports the idea that the existence of closed timelike curves (CTCs) and the onset of instability correlate (if at all) not in a straightforward way.

  4. Lumpy AdS5× S5 black holes and black belts

    International Nuclear Information System (INIS)

    Dias, Óscar J.C.; Santos, Jorge E.; Way, Benson

    2015-01-01

    Sufficiently small Schwarzschild black holes in global AdS 5 ×S 5 are Gregory-Laflamme unstable. We construct new families of black hole solutions that bifurcate from the onset of this instability and break the full SO(6) symmetry group of the S 5 down to SO(5). These new “lumpy" solutions are labelled by the harmonics ℓ. We find evidence that the ℓ=1 branch never dominates the microcanonical/canonical ensembles and connects through a topology-changing merger to a localised black hole solution with S 8 topology. We argue that these S 8 black holes should become the dominant phase in the microcanonical ensemble for small enough energies, and that the transition to Schwarzschild black holes is first order. Furthermore, we find two branches of solutions with ℓ=2. We expect one of these branches to connect to a solution containing two localised black holes, while the other branch connects to a black hole solution with horizon topology S 4 ×S 4 which we call a “black belt”.

  5. On thermodynamics of charged AdS black holes in extended phases space via M2-branes background

    International Nuclear Information System (INIS)

    Chabab, M.; Masmar, K.; El Moumni, H.

    2016-01-01

    Motivated by a recent work on asymptotically AdS 4 black holes in M-theory, we investigate both thermodynamics and the thermodynamical geometry of Reissner-Nordstrom-AdS black holes from M2-branes. More precisely, we study AdS black holes in AdS 4 x S 7 , with the number of M2-branes interpreted as a thermodynamical variable. In this context, we calculate various thermodynamical quantities including the chemical potential, and examine their phase transitions along with the corresponding stability behaviors. In addition, we also evaluate the thermodynamical curvatures of the Weinhold, Ruppeiner, and Quevedo metrics for M2-branes geometry to study the stability of such a black object. We show that the singularities of these scalar curvature's metrics reproduce similar stability results to those obtained by the phase transition diagram via the heat capacities in different ensembles either when the number of the M2 branes or the charge is held fixed. Also, we note that all results derived in Belhaj et al. (Eur Phys J C 76(2):73, 2016) are recovered in the limit of the vanishing charge. (orig.)

  6. Asymptotic Delay Analysis for Cross-Layer Delay-Based Routing in Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Philippe Jacquet

    2007-01-01

    Full Text Available This paper addresses the problem of the evaluation of the delay distribution via analytical means in IEEE 802.11 wireless ad hoc networks. We show that the asymptotic delay distribution can be expressed as a power law. Based on the latter result, we present a cross-layer delay estimation protocol and we derive new delay-distribution-based routing algorithms, which are well adapted to the QoS requirements of real-time multimedia applications. In fact, multimedia services are not sensitive to average delays, but rather to the asymptotic delay distributions. Indeed, video streaming applications drop frames when they are received beyond a delay threshold, determined by the buffer size. Although delay-distribution-based routing is an NP-hard problem, we show that it can be solved in polynomial time when the delay threshold is large, because of the asymptotic power law distribution of the link delays.

  7. Stability of Horava-Lifshitz black holes in the context of AdS/CFT

    International Nuclear Information System (INIS)

    Ong, Yen Chin; Chen, Pisin

    2011-01-01

    The anti-de Sitter/conformal field theory (AdS/CFT) correspondence is a powerful tool that promises to provide new insights toward a full understanding of field theories under extreme conditions, including but not limited to quark-gluon plasma, Fermi liquid, and superconductor. In many such applications, one typically models the field theory with asymptotically AdS black holes. These black holes are subjected to stringy effects that might render them unstable. Horava-Lifshitz gravity, in which space and time undergo different transformations, has attracted attention due to its power-counting renormalizability. In terms of AdS/CFT correspondence, Horava-Lifshitz black holes might be useful to model holographic superconductors with Lifshitz scaling symmetry. It is thus interesting to study the stringy stability of Horava-Lifshitz black holes in the context of AdS/CFT. We find that uncharged topological black holes in λ=1 Horava-Lifshitz theory are nonperturbatively stable, unlike their counterparts in Einstein gravity, with the possible exceptions of negatively curved black holes with detailed balance parameter ε close to unity. Sufficiently charged flat black holes for ε close to unity, and sufficiently charged positively curved black holes with ε close to zero, are also unstable. The implication to the Horava-Lifshitz holographic superconductor is discussed.

  8. Black p-branes versus black holes in non-asymptotically flat Einstein-Yang-Mills theory

    Science.gov (United States)

    Habib Mazharimousavi, S.; Halilsoy, M.

    2016-09-01

    We present a class of non-asymptotically flat (NAF) charged black p-branes (BpB) with p-compact dimensions in higher-dimensional Einstein-Yang-Mills theory. Asymptotically the NAF structure manifests itself as an anti-de sitter spacetime. We determine the total mass/energy enclosed in a thin shell located outside the event horizon. By comparing the entropies of BpB with those of black holes in the same dimensions we derive transition criteria between the two types of black objects. Given certain conditions satisfied, our analysis shows that BpB can be considered excited states of black holes. An event horizon r+ versus charge square Q2 plot for the BpB reveals such a transition where r+ is related to the horizon radius rh of the black hole (BH) both with the common charge Q.

  9. Conserved charges for black holes in Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in AdS space

    International Nuclear Information System (INIS)

    Miskovic, Olivera; Olea, Rodrigo

    2011-01-01

    Motivated by possible applications within the framework of anti-de Sitter gravity/conformal field theory correspondence, charged black holes with AdS asymptotics, which are solutions to Einstein-Gauss-Bonnet gravity in D dimensions, and whose electric field is described by nonlinear electrodynamics are studied. For a topological static black hole ansatz, the field equations are exactly solved in terms of the electromagnetic stress tensor for an arbitrary nonlinear electrodynamic Lagrangian in any dimension D and for arbitrary positive values of Gauss-Bonnet coupling. In particular, this procedure reproduces the black hole metric in Born-Infeld and conformally invariant electrodynamics previously found in the literature. Altogether, it extends to D>4 the four-dimensional solution obtained by Soleng in logarithmic electrodynamics, which comes from vacuum polarization effects. Falloff conditions for the electromagnetic field that ensure the finiteness of the electric charge are also discussed. The black hole mass and vacuum energy as conserved quantities associated to an asymptotic timelike Killing vector are computed using a background-independent regularization of the gravitational action based on the addition of counterterms which are a given polynomial in the intrinsic and extrinsic curvatures.

  10. Black hole shadow in an asymptotically flat, stationary, and axisymmetric spacetime: The Kerr-Newman and rotating regular black holes

    Science.gov (United States)

    Tsukamoto, Naoki

    2018-03-01

    The shadow of a black hole can be one of the strong observational evidences for stationary black holes. If we see shadows at the center of galaxies, we would say whether the observed compact objects are black holes. In this paper, we consider a formula for the contour of a shadow in an asymptotically-flat, stationary, and axisymmetric black hole spacetime. We show that the formula is useful for obtaining the contour of the shadow of several black holes such as the Kerr-Newman black hole and rotating regular black holes. Using the formula, we can obtain new examples of the contour of the shadow of rotating black holes if assumptions are satisfied.

  11. Aspects of AdS, CFT. Black solutions in gauged supergravity and holographic conductivities

    International Nuclear Information System (INIS)

    Barisch-Dick, Susanne

    2013-01-01

    We have met some interesting results within the wide subject of the AdS/CFT correspondence. We have seen how to apply AdS/CFT techniques to calculate the frequency dependent conductivity tensor for field theories dual to a black hole in Einstein-Yang-Mills theory with SU(2) gauge group. Further, we have constructed several new black solutions in N=2 U(1) gauged supergravity in four and five dimensions. The larger part of these solutions behave asymptotically like AdS which makes them interesting within the AdS/CFT context. In addition we found extremal black branes with zero entropy density - the Nernst branes. Nonetheless we are left with some yet unsolved problems. It is very interesting to see what causes the negative entropy production rate we found in chapter 4 for the normal state of the field theory. The next task is to see whether we can find an instability on the gravity side looking at the full Einstein-Yang-Mills equations. Also our work on supergravity solutions in four and five dimension exhibits some ''loose ends''. Since all our four-dimensional Nernst solutions were axion-free it would be nice to find one with axions excited. Moreover, it would be interesting to see whether the singular solutions with flowing γ could be cured by taking into account higher derivative corrections or whether there exist non-singular solutions with non-constant γ. In five dimensions we met problems when adding electric charge. At present we could not find a dyonic solution and we had the impression that having electric charges and having magnetic fields seemed to be somehow complementary to each other. We saw these difficulties even at the beginning when we performed the first-order rewriting since the first-order rewriting in chapter 6 leads to flow equations for the scalars X A which only contain magnetic fields and fluxes but no electric charges. The latter only influence the equations of motion for the X A in an indirect way. However it is possible to find

  12. Joule-Thomson expansion of the charged AdS black holes

    International Nuclear Information System (INIS)

    Oekcue, Oezguer; Aydiner, Ekrem

    2017-01-01

    In this paper, we study Joule-Thomson effects for charged AdS black holes. We obtain inversion temperatures and curves. We investigate similarities and differences between van der Waals fluids and charged AdS black holes for the expansion. We obtain isenthalpic curves for both systems in the T-P plane and determine the cooling-heating regions. (orig.)

  13. Joule-Thomson expansion of the charged AdS black holes

    Energy Technology Data Exchange (ETDEWEB)

    Oekcue, Oezguer; Aydiner, Ekrem [Istanbul University, Department of Physics, Faculty of Science, Vezneciler, Istanbul (Turkey)

    2017-01-15

    In this paper, we study Joule-Thomson effects for charged AdS black holes. We obtain inversion temperatures and curves. We investigate similarities and differences between van der Waals fluids and charged AdS black holes for the expansion. We obtain isenthalpic curves for both systems in the T-P plane and determine the cooling-heating regions. (orig.)

  14. Thermodynamic geometry and phase transitions of AdS braneworld black holes

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, Pankaj, E-mail: cpankaj@iitk.ac.in; Sengupta, Gautam, E-mail: sengupta@iitk.ac.in

    2017-02-10

    The thermodynamics and phase transitions of charged RN–AdS and rotating Kerr–AdS black holes in a generalized Randall–Sundrum braneworld are investigated in the framework of thermodynamic geometry. A detailed analysis of the thermodynamics, stability and phase structures in the canonical and the grand canonical ensembles for these AdS braneworld black holes are described. The thermodynamic curvatures for both these AdS braneworld black holes are computed and studied as a function of the thermodynamic variables. Through this analysis we illustrate an interesting dependence of the phase structures on the braneworld parameter for these black holes.

  15. Thermodynamic stability of warped AdS3 black holes

    International Nuclear Information System (INIS)

    Birmingham, Danny; Mokhtari, Susan

    2011-01-01

    We study the thermodynamic stability of warped black holes in three-dimensional topologically massive gravity. The spacelike stretched black hole is parametrized by its mass and angular momentum. We determine the local and global stability properties in the canonical and grand canonical ensembles. The presence of a Hawking-Page type transition is established, and the critical temperature is determined. The thermodynamic metric of Ruppeiner is computed, and the curvature is shown to diverge in the extremal limit. The consequences of these results for the classical stability properties of warped black holes are discussed within the context of the correlated stability conjecture.

  16. A note on physical mass and the thermodynamics of AdS-Kerr black holes

    Energy Technology Data Exchange (ETDEWEB)

    McInnes, Brett [Department of Mathematics, National University of Singapore, 10, Lower Kent Ridge Road, 119076 (Singapore); Ong, Yen Chin, E-mail: matmcinn@nus.edu.sg, E-mail: yenchin.ong@nordita.org [Nordic Institute for Theoretical Physics, KTH Royal Institute of Technology Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden)

    2015-11-01

    As with any black hole, asymptotically anti-de Sitter Kerr black holes are described by a small number of parameters, including a ''mass parameter'' M that reduces to the AdS-Schwarzschild mass in the limit of vanishing angular momentum. In sharp contrast to the asymptotically flat case, the horizon area of such a black hole increases with the angular momentum parameter a if one fixes M; this appears to mean that the Penrose process in this case would violate the Second Law of black hole thermodynamics. We show that the correct procedure is to fix not M but rather the ''physical'' mass E=M/(1−a{sup 2}/L{sup 2}){sup 2}; this is motivated by the First Law. For then the horizon area decreases with a. We recommend that E always be used as the mass in physical processes: for example, in attempts to ''over-spin'' AdS-Kerr black holes.

  17. An asymptotically consistent approximant for the equatorial bending angle of light due to Kerr black holes

    Science.gov (United States)

    Barlow, Nathaniel S.; Weinstein, Steven J.; Faber, Joshua A.

    2017-07-01

    An accurate closed-form expression is provided to predict the bending angle of light as a function of impact parameter for equatorial orbits around Kerr black holes of arbitrary spin. This expression is constructed by assuring that the weak- and strong-deflection limits are explicitly satisfied while maintaining accuracy at intermediate values of impact parameter via the method of asymptotic approximants (Barlow et al 2017 Q. J. Mech. Appl. Math. 70 21-48). To this end, the strong deflection limit for a prograde orbit around an extremal black hole is examined, and the full non-vanishing asymptotic behavior is determined. The derived approximant may be an attractive alternative to computationally expensive elliptical integrals used in black hole simulations.

  18. An asymptotically consistent approximant for the equatorial bending angle of light due to Kerr black holes

    International Nuclear Information System (INIS)

    Barlow, Nathaniel S; Faber, Joshua A; Weinstein, Steven J

    2017-01-01

    An accurate closed-form expression is provided to predict the bending angle of light as a function of impact parameter for equatorial orbits around Kerr black holes of arbitrary spin. This expression is constructed by assuring that the weak- and strong-deflection limits are explicitly satisfied while maintaining accuracy at intermediate values of impact parameter via the method of asymptotic approximants (Barlow et al 2017 Q. J. Mech. Appl. Math . 70 21–48). To this end, the strong deflection limit for a prograde orbit around an extremal black hole is examined, and the full non-vanishing asymptotic behavior is determined. The derived approximant may be an attractive alternative to computationally expensive elliptical integrals used in black hole simulations. (paper)

  19. Black holes and asymptotics of 2+1 gravity coupled to a scalar field

    International Nuclear Information System (INIS)

    Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo; Zanelli, Jorge

    2002-01-01

    We consider 2+1 gravity minimally coupled to a self-interacting scalar field. The case in which the fall-off of the fields at infinity is slower than that of a localized distribution of matter is analyzed. It is found that the asymptotic symmetry group remains the same as in pure gravity (i.e., the conformal group). The generators of the asymptotic symmetries, however, acquire a contribution from the scalar field, but the algebra of the canonical generators possesses the standard central extension. In this context, new massive black hole solutions with a regular scalar field are found for a one-parameter family of potentials. These black holes are continuously connected to the standard zero mass black hole

  20. Global dynamics of asymptotically locally AdS spacetimes with negative mass

    Science.gov (United States)

    Dold, Dominic

    2018-05-01

    The Einstein vacuum equations in 5D with negative cosmological constant are studied in biaxial Bianchi IX symmetry. We show that if initial data of Eguchi–Hanson type, modelled after the 4D Riemannian Eguchi–Hanson space, have negative mass, the future maximal development does not contain horizons, i. e. the complement of the causal past of null infinity is empty. In particular, perturbations of Eguchi–Hanson–AdS spacetimes within the biaxial Bianchi IX symmetry class cannot form horizons, suggesting that such spacetimes are potential candidates for a naked singularity to form. The proof relies on an extension principle proven for this system and a priori estimates following from the monotonicity of the Hawking mass.

  1. Thermodynamics of Higher Spin Black Holes in AdS3

    NARCIS (Netherlands)

    de Boer, J.; Jottar, J.I.

    2014-01-01

    We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL(N, R) × SL(N, R) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with WN

  2. Geometrothermodynamics of phantom AdS black holes

    Energy Technology Data Exchange (ETDEWEB)

    Quevedo, Hernando [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico (Mexico); Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica ed ICRANet, Rome (Italy); Quevedo, Maria N. [Facultad de Ciencias Basicas, Universidad Militar Nueva Granada, Departamento de Matematicas, Bogota (Colombia); Sanchez, Alberto [CIIDET, Departamento de Posgrado, Queretaro (Mexico)

    2016-03-15

    We show that to investigate the thermodynamic properties of charged phantom spherically symmetric anti-de Sitter black holes, it is necessary to consider the cosmological constant as a thermodynamic variable so that the corresponding fundamental equation is a homogeneous function defined on an extended equilibrium space. We explore all the thermodynamic properties of this class of black holes by using the classical physical approach, based upon the analysis of the fundamental equation, and the alternative mathematical approach as proposed in geometrothermodynamics. We show that both approaches are compatible and lead to equivalent results. (orig.)

  3. Aspects of AdS, CFT. Black solutions in gauged supergravity and holographic conductivities

    Energy Technology Data Exchange (ETDEWEB)

    Barisch-Dick, Susanne

    2013-04-26

    We have met some interesting results within the wide subject of the AdS/CFT correspondence. We have seen how to apply AdS/CFT techniques to calculate the frequency dependent conductivity tensor for field theories dual to a black hole in Einstein-Yang-Mills theory with SU(2) gauge group. Further, we have constructed several new black solutions in N=2 U(1) gauged supergravity in four and five dimensions. The larger part of these solutions behave asymptotically like AdS which makes them interesting within the AdS/CFT context. In addition we found extremal black branes with zero entropy density - the Nernst branes. Nonetheless we are left with some yet unsolved problems. It is very interesting to see what causes the negative entropy production rate we found in chapter 4 for the normal state of the field theory. The next task is to see whether we can find an instability on the gravity side looking at the full Einstein-Yang-Mills equations. Also our work on supergravity solutions in four and five dimension exhibits some ''loose ends''. Since all our four-dimensional Nernst solutions were axion-free it would be nice to find one with axions excited. Moreover, it would be interesting to see whether the singular solutions with flowing γ could be cured by taking into account higher derivative corrections or whether there exist non-singular solutions with non-constant γ. In five dimensions we met problems when adding electric charge. At present we could not find a dyonic solution and we had the impression that having electric charges and having magnetic fields seemed to be somehow complementary to each other. We saw these difficulties even at the beginning when we performed the first-order rewriting since the first-order rewriting in chapter 6 leads to flow equations for the scalars X{sup A} which only contain magnetic fields and fluxes but no electric charges. The latter only influence the equations of motion for the X{sup A} in an indirect way. However

  4. Extremal static AdS black hole/CFT correspondence in gauged supergravities

    International Nuclear Information System (INIS)

    Lue, H.; Mei Jianwei; Pope, C.N.; Vazquez-Poritz, Justin F.

    2009-01-01

    A recently proposed holographic duality allows the Bekenstein-Hawking entropy of extremal rotating black holes to be calculated microscopically, by applying the Cardy formula to the two-dimensional chiral CFTs associated with certain reparameterisations of azimuthal angular coordinates in the solutions. The central charges are proportional to the angular momenta of the black hole, and so the method degenerates in the case of static (non-rotating) black holes. We show that the method can be extended to encompass such charged static extremal AdS black holes by using consistent Kaluza-Klein sphere reduction ansatze to lift them to exact solutions in the low-energy limits of string theory or M-theory, where the electric charges become reinterpreted as angular momenta associated with internal rotations in the reduction sphere. We illustrate the procedure for the examples of extremal charged static AdS black holes in four, five, six and seven dimensions

  5. Supersymmetric black holes in AdS4 from very special geometry

    International Nuclear Information System (INIS)

    Gnecchi, Alessandra; Halmagyi, Nick

    2014-01-01

    Supersymmetric black holes in AdS spacetime are inherently interesting for the AdS/CFT correspondence. Within a four dimensional gauged supergravity theory coupled to vector multiplets, the only analytic solutions for regular, supersymmetric, static black holes in AdS 4 are those in the STU-model due to Cacciatori and Klemm. We study a class of U(1)-gauged supergravity theories coupled to vector multiplets which have a cubic prepotential, the scalar manifold is then a very special Kähler manifold. When the resulting very special Kähler manifold is a homogeneous space, we find analytic solutions for static, supersymmetric AdS 4 black holes with vanishing axions. The horizon geometries of our solutions are constant curvature Riemann surfaces of arbitrary genus

  6. Black holes in the dilatonic Einstein-Gauss-Bonnet theory in various dimensions. 1. Asymptotically flat black holes

    International Nuclear Information System (INIS)

    Guo, Zong-Kuan; Ohta, Nobuyoshi; Torii, Takashi

    2008-01-01

    We study spherically symmetric, asymptotically flat black hole solutions in the low-energy effective heterotic string theory, which is the Einstein gravity with Gauss-Bonnet term and the dilaton, in various dimensions. We derive the field equations for suitable ansatz for general D dimensions and construct black hole solutions of various masses numerically in D=4,5,6 and 10 dimensional spacetime with (D-2)-dimensional hypersurface with positive constant curvature. A detailed comparison with the non-dilatonic solutions is made. We also examine the thermodynamic properties of the solutions. It is found that the dilaton has significant effects on the black hole solutions, and we discuss physical consequences. (author)

  7. Mass, angular momentum and thermodynamics in four-dimensional Kerr-AdS black holes

    Energy Technology Data Exchange (ETDEWEB)

    Olea, Rodrigo [Departamento de Fisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile)

    2005-06-01

    In this paper, the connection between the Lorentz-covariant counterterms that regularize the four-dimensional AdS gravity action and topological invariants is explored. It is shown that demanding the spacetime to have a negative constant curvature in the asymptotic region permits the explicit construction of such series of boundary terms. The orthonormal frame is adapted to appropriately describe the boundary geometry and, as a result, the boundary term can be expressed as a functional of the boundary metric, extrinsic curvature and intrinsic curvature. This choice also allows to write down the background-independent Noether charges associated to asymptotic symmetries in standard tensorial formalism. The absence of the Gibbons-Hawking term is a consequence of an action principle based on a boundary condition different than Dirichlet on the metric. This argument makes plausible the idea of regarding this approach as an alternative regularization scheme for AdS gravity in all even dimensions, different than the standard counterterms prescription. As an illustration of the finiteness of the charges and the euclidean action in this framework, the conserved quantities and black hole entropy for four-dimensional Kerr-AdS are computed.

  8. Finite temperature effective action, AdS5 black holes, and 1/N expansion

    International Nuclear Information System (INIS)

    Alvarez-Gaume, Luis; Gomez, Cesar; Liu Hong; Wadia, Spenta R.

    2005-01-01

    We propose a phenomenological matrix model to study string theory in AdS 5 xS 5 in the canonical ensemble. The model reproduces all the known qualitative features of the theory. In particular, it gives a simple effective potential description of Euclidean black hole nucleation and the tunneling between thermal anti-de Sitter (AdS) and the big black hole. It also has some interesting predictions. We find that there exists a critical temperature at which the Euclidean small black hole undergoes a Gross-Witten phase transition. We identify the phase transition with the Horowitz-Polchinski point where the black hole horizon size becomes comparable to the string scale. The appearance of the Hagedorn divergence of thermal AdS is due to the merger of saddle points corresponding to the Euclidean small black hole and thermal AdS. The merger can be described in terms of a cusp (A 3 ) catastrophe and divergences at the perturbative string level are smoothed out at finite string coupling using standard techniques of catastrophe theory

  9. Delay-dependent asymptotic stability of mobile ad-hoc networks: A descriptor system approach

    International Nuclear Information System (INIS)

    Yang Juan; Yang Dan; Zhang Xiao-Hong; Huang Bin; Luo Jian-Lu

    2014-01-01

    In order to analyze the capacity stability of the time-varying-propagation and delay-dependent of mobile ad-hoc networks (MANETs), in this paper, a novel approach is proposed to explore the capacity asymptotic stability for the delay-dependent of MANETs based on non-cooperative game theory, where the delay-dependent conditions are explicitly taken into consideration. This approach is based on the Lyapunov—Krasovskii stability theory for functional differential equations and the linear matrix inequality (LMI) technique. A corresponding Lyapunov—Krasovskii functional is introduced for the stability analysis of this system with use of the descriptor and “neutral-type” model transformation without producing any additional dynamics. The delay-dependent stability criteria are derived for this system. Conditions are given in terms of linear matrix inequalities, and for the first time referred to neutral systems with the time-varying propagation and delay-dependent stability for capacity analysis of MANETs. The proposed criteria are less conservative since they are based on an equivalent model transformation. Furthermore, we also provide an effective and efficient iterative algorithm to solve the constrained stability control model. Simulation experiments have verified the effectiveness and efficiency of our algorithm. (general)

  10. Critical Phenomena in Higher Curvature Charged AdS Black Holes

    Directory of Open Access Journals (Sweden)

    Arindam Lala

    2013-01-01

    Full Text Available In this paper, we have studied the critical phenomena in higher curvature charged AdS black holes. We have considered Lovelock-Born-Infeld-AdS black hole as an example. The thermodynamics of the black hole have been studied which reveals the onset of a higher-order phase transition in the black hole in the canonical ensemble (fixed charge ensemble framework. We have analytically derived the critical exponents associated with these thermodynamic quantities. We find that our results fit well with the thermodynamic scaling laws and consistent with the mean field theory approximation. The suggestive values of the other two critical exponents associated with the correlation function and correlation length on the critical surface have been derived.

  11. Entropy of near-extremal black holes in AdS_5

    NARCIS (Netherlands)

    Balasubramanian, V.; de Boer, J.; Jejjala, V.; Simón, J.

    2008-01-01

    We construct the microstates of near-extremal black holes in AdS_5 x S^5 as gases of defects distributed in heavy BPS operators in the dual SU(N) Yang-Mills theory. These defects describe open strings on spherical D3-branes in the S^5, and we show that they dominate the entropy by directly

  12. Hawking radiation, entanglement, and teleportation in the background of an asymptotically flat static black hole

    International Nuclear Information System (INIS)

    Pan Qiyuan; Jing Jiliang

    2008-01-01

    The effect of the Hawking temperature on the entanglement and teleportation for the scalar field in a most general, static, and asymptotically flat black hole with spherical symmetry has been investigated. It has been shown that the same 'initial entanglement' for the state parameter α and its 'normalized partners'√(1-α 2 ) will be degraded by the Hawking effect with increasing Hawking temperature along two different trajectories except for the maximally entangled state. In the infinite Hawking temperature limit, corresponding to the case of the black hole evaporating completely, the state no longer has distillable entanglement for any α. It is interesting to note that the mutual information in this limit is equal to just half of the 'initially mutual information'. It has also been demonstrated that the fidelity of teleportation decreases as the Hawking temperature increases, which indicates the degradation of entanglement.

  13. Static BPS black holes in AdS{sub 4} with general dyonic charges

    Energy Technology Data Exchange (ETDEWEB)

    Halmagyi, Nick [Sorbonne Universités, UPMC Paris 06, UMR 7589, LPTHE,75005, Paris (France); CNRS, UMR 7589, LPTHE,75005, Paris (France)

    2015-03-06

    We complete the study of static BPS, asymptotically AdS{sub 4} black holes within N=2 FI-gauged supergravity and where the scalar manifold is a symmetric very special Kähler manifold. We find the analytic form for the general solution to the BPS equations, the horizon appears as a double root of a particular quartic polynomial whereas in previous work this quartic polynomial further factored into a pair of double roots. A new and distinguishing feature of our solutions is that the phase of the supersymmetry parameter varies throughout the black hole. The general solution has 2n{sub v} independent parameters; there are two algebraic constraints on 2n{sub v}+2 charges, matching our previous analysis on BPS solutions of the form AdS{sub 2}×Σ{sub g}. As a consequence we have proved that every BPS geometry of this form can arise as the horizon geometry of a BPS AdS{sub 4} black hole. When specialized to the STU-model our solutions uplift to M-theory and describe a stack of M2-branes wrapped on a Riemman surface in a Calabi-Yau fivefold with internal angular momentum.

  14. First law of AdS black holes in higher curvature gravity

    International Nuclear Information System (INIS)

    Koga, Jun-ichirou

    2005-01-01

    We consider the first law of black hole thermodynamics in an asymptotically anti-de Sitter spacetime in the class of gravitational theories whose gravitational Lagrangian is an arbitrary function of the Ricci scalar. We first show that the conserved quantities in this class of gravitational theories constructed through conformal completion remain unchanged under the conformal transformation into the Einstein frame. We then prove that the mass and the angular momenta defined by these conserved quantities, along with the entropy defined by the Noether charge, satisfy the first law of black hole thermodynamics, not only in Einstein gravity but also in the higher curvature gravity within the class under consideration. We also point out that it is naturally understood in the symplectic formalism that the mass satisfying the first law should be necessarily defined associated with the timelike Killing vector nonrotating at infinity. Finally, a possible generalization into a wider class of gravitational theories is discussed

  15. Localized AdS_{5}×S^{5} Black Holes.

    Science.gov (United States)

    Dias, Óscar J C; Santos, Jorge E; Way, Benson

    2016-10-07

    According to heuristic arguments, global AdS_{5}×S^{5} black holes are expected to undergo a phase transition in the microcanonical ensemble. At high energies, one expects black holes that respect the symmetries of the S^{5}; at low energies, one expects "localized" black holes that appear pointlike on the S^{5}. According to anti-de Sitter/conformal field theory correspondence, N=4 supersymmetric Yang-Mills (SYM) theory on a 3-sphere should therefore exhibit spontaneous R-symmetry breaking at strong coupling. In this Letter, we numerically construct these localized black holes. We extrapolate the location of this phase transition, and compute the expectation value of the broken scalar operator with lowest conformal dimension. Via the correspondence, these results offer quantitative predictions for N=4 SYM theory.

  16. Two-Phase Equilibrium Properties in Charged Topological Dilaton AdS Black Holes

    Directory of Open Access Journals (Sweden)

    Hui-Hua Zhao

    2016-01-01

    Full Text Available We discuss phase transition of the charged topological dilaton AdS black holes by Maxwell equal area law. The two phases involved in the phase transition could coexist and we depict the coexistence region in P-v diagrams. The two-phase equilibrium curves in P-T diagrams are plotted, the Clapeyron equation for the black hole is derived, and the latent heat of isothermal phase transition is investigated. We also analyze the parameters of the black hole that could have an effect on the two-phase coexistence. The results show that the black holes may go through a small-large phase transition similar to that of a usual nongravity thermodynamic system.

  17. Logarithmic corrections to entropy of magnetically charged AdS4 black holes

    Directory of Open Access Journals (Sweden)

    Imtak Jeon

    2017-11-01

    Full Text Available Logarithmic terms are quantum corrections to black hole entropy determined completely from classical data, thus providing a strong check for candidate theories of quantum gravity purely from physics in the infrared. We compute these terms in the entropy associated to the horizon of a magnetically charged extremal black hole in AdS×4S7 using the quantum entropy function and discuss the possibility of matching against recently derived microscopic expressions.

  18. Constant curvature black holes in Einstein AdS gravity: Euclidean action and thermodynamics

    Science.gov (United States)

    Guilleminot, Pablo; Olea, Rodrigo; Petrov, Alexander N.

    2018-03-01

    We compute the Euclidean action for constant curvature black holes (CCBHs), as an attempt to associate thermodynamic quantities to these solutions of Einstein anti-de Sitter (AdS) gravity. CCBHs are gravitational configurations obtained by identifications along isometries of a D -dimensional globally AdS space, such that the Riemann tensor remains constant. Here, these solutions are interpreted as extended objects, which contain a (D -2 )-dimensional de-Sitter brane as a subspace. Nevertheless, the computation of the free energy for these solutions shows that they do not obey standard thermodynamic relations.

  19. Critical phenomena of static charged AdS black holes in conformal gravity

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2014-09-01

    Full Text Available The extended thermodynamics of static charged AdS black holes in conformal gravity is analyzed. The P–V criticality of these black holes has some unusual features. There exists a single critical point with critical temperature Tc and critical pressure Pc. At fixed T>Tc (or at fixed P>Pc, there are two zeroth order phase transition points but no first order phase transition points. The systems favors large pressure states at constant T, or high temperature states at constant P.

  20. Thermodynamics of higher spin black holes in AdS3

    International Nuclear Information System (INIS)

    Boer, Jan de; Jottar, Juan I.

    2014-01-01

    We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL(N,ℝ)×SL(N,ℝ) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with W N symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural definitions of the thermodynamically conjugate variables that follow from careful examination of the variational principle, and moreover agree with those obtained via canonical methods. Building on this intuition, we derive general expressions for the higher spin black hole entropy and free energy which are written entirely in terms of the Chern-Simons connections, and are valid for both static and rotating solutions. We compare our results to other proposals in the literature, and provide a new and efficient way to determine the generalization of the Cardy formula to a situation with higher spin charges

  1. Thermodynamics of higher spin black holes in AdS3

    Science.gov (United States)

    de Boer, Jan; Jottar, Juan I.

    2014-01-01

    We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL( N, ) × SL( N, ) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with WN symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural definitions of the thermodynamically conjugate variables that follow from careful examination of the variational principle, and moreover agree with those obtained via canonical methods. Building on this intuition, we derive general expressions for the higher spin black hole entropy and free energy which are written entirely in terms of the Chern-Simons connections, and are valid for both static and rotating solutions. We compare our results to other proposals in the literature, and provide a new and efficient way to determine the generalization of the Cardy formula to a situation with higher spin charges.

  2. Exact microstate counting for dyonic black holes in AdS4

    Science.gov (United States)

    Benini, Francesco; Hristov, Kiril; Zaffaroni, Alberto

    2017-08-01

    We present a counting of microstates of a class of dyonic BPS black holes in AdS4 which precisely reproduces their Bekenstein-Hawking entropy. The counting is performed in the dual boundary description, that provides a non-perturbative definition of quantum gravity, in terms of a twisted and mass-deformed ABJM theory. We evaluate its twisted index and propose an extremization principle to extract the entropy, which reproduces the attractor mechanism in gauged supergravity.

  3. Exact microstate counting for dyonic black holes in AdS4

    Directory of Open Access Journals (Sweden)

    Francesco Benini

    2017-08-01

    Full Text Available We present a counting of microstates of a class of dyonic BPS black holes in AdS4 which precisely reproduces their Bekenstein–Hawking entropy. The counting is performed in the dual boundary description, that provides a non-perturbative definition of quantum gravity, in terms of a twisted and mass-deformed ABJM theory. We evaluate its twisted index and propose an extremization principle to extract the entropy, which reproduces the attractor mechanism in gauged supergravity.

  4. Perturbative calculation of quasinormal modes of AdS Schwarzschild black holes

    International Nuclear Information System (INIS)

    Musiri, Suphot; Ness, Scott; Siopsis, George

    2006-01-01

    We calculate analytically quasinormal modes of AdS Schwarzschild black holes including first-order corrections. We consider massive scalar, gravitational and electromagnetic perturbations. Our results are in good agreement with numerical calculations. In the case of electromagnetic perturbations, ours is the first calculation to provide an analytic expression for quasinormal frequencies, because the effective potential vanishes at zeroth order. We show that the first-order correction is logarithmic

  5. Sound modes in holographic hydrodynamics for charged AdS black hole

    International Nuclear Information System (INIS)

    Matsuo, Yoshinori; Sin, Sang-Jin; Takeuchi, Shingo; Tsukioka, Takuya; Yoo, Chul-Moon

    2009-01-01

    In the previous paper we studied the transport coefficients of quark-gluon plasma in finite temperature and finite density in vector and tensor modes. In this paper, we extend it to the scalar modes. We work out the decoupling problem and hydrodynamic analysis for the sound mode in charged AdS black hole and calculate the sound velocity, the charge susceptibility and the electrical conductivity. We find that Einstein relation among the conductivity, the diffusion constant and the susceptibility holds exactly.

  6. Thermodynamic geometry and phase transitions of dyonic charged AdS black holes

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, Pankaj; Sengupta, Gautam [Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Das, Anirban [Tata Institute of Fundamental Research, Department of Theoretical Physics, Mumbai (India)

    2017-02-15

    We investigate phase transitions and critical phenomena of four dimensional dyonic charged AdS black holes in the framework of thermodynamic geometry. In a mixed canonical-grand canonical ensemble with a fixed electric charge and varying magnetic charge these black holes exhibit a liquid-gas like first order phase transition culminating in a second order critical point similar to the van der Waals gas. We show that the thermodynamic scalar curvature R for these black holes follow our proposed geometrical characterization of the R-crossing Method for the first order liquid-gas like phase transition and exhibits a divergence at the second order critical point. The pattern of R crossing and divergence exactly corresponds to those of a van der Waals gas described by us in an earlier work. (orig.)

  7. Black hole formation in AdS Einstein-Gauss-Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    Deppe, Nils [Cornell Center for Astrophysics and Planetary Science andDepartment of Physics, Cornell University,122 Sciences Drive, Ithaca, New York 14853 (United States); Kolly, Allison [Department of Atmospheric and Oceanic Sciences, McGill University,805 Sherbrooke Street West, Montréal, Québec H3A 0B9 (Canada); Frey, Andrew R.; Kunstatter, Gabor [Department of Physics and Winnipeg Institute for Theoretical Physics, University of Winnipeg,515 Portage Avenue, Winnipeg, Manitoba R3B 2E9 (Canada)

    2016-10-17

    AdS spacetime has been shown numerically to be unstable against a large class of arbitrarily small perturbations. In http://dx.doi.org/10.1103/PhysRevLett.114.071102, the authors presented a preliminary study of the effects on stability of changing the local dynamics by adding a Gauss-Bonnet term to the Einstein action. Here we provide further details as well as new results with improved numerical methods. In particular, we elucidate new structure in Choptuik scaling plots. We also provide evidence of chaotic behavior at the transition between immediate horizon formation and horizon formation after the matter pulse reflects from the AdS conformal boundary. Finally, we present data suggesting the formation of naked singularities in spacetimes with ADM mass below the algebraic bound for black hole formation.

  8. Particle collisions near a three-dimensional warped AdS black hole

    Science.gov (United States)

    Bécar, Ramón; González, P. A.; Vásquez, Yerko

    2018-04-01

    In this paper we consider the warped AdS3 black hole solution of topologically massive gravity with a negative cosmological constant, and we study the possibility that it acts as a particle accelerator by analyzing the energy in the center of mass (CM) frame of two colliding particles in the vicinity of its horizon, which is known as the Bañnados, Silk and West (BSW) process. Mainly, we show that the critical angular momentum (L_c) of the particle decreases when the warping parameter(ν ) increases. Also, we show that despite the particle with L_c being able to exist for certain values of the conserved energy outside the horizon, it will never reach the event horizon; therefore, the black hole cannot act as a particle accelerator with arbitrarily high CM energy on the event horizon. However, such a particle could also exist inside the outer horizon, with the BSW process being possible on the inner horizon. On the other hand, for the extremal warped AdS3 black hole, the particle with L_c and energy E could exist outside the event horizon and, the CM energy blows up on the event horizon if its conserved energy fulfills the condition E2>(ν 2+3)l2/3(ν ^{2-1)}, with the BSW process being possible.

  9. Critical phenomena and chemical potential of a charged AdS black hole

    Science.gov (United States)

    Wei, Shao-Wen; Liang, Bin; Liu, Yu-Xiao

    2017-12-01

    Inspired by the interpretation of the cosmological constant from the boundary gauge theory, we here treat it as the number of colors N and its conjugate quantity as the associated chemical potential μ in the black hole side. Then the thermodynamics and the chemical potential for a five-dimensional charged AdS black hole are studied. It is found that there exists a small-large black hole phase transition of van der Waals type. The critical phenomena are investigated in the N2-μ chart. The result implies that the phase transition can occur for large number of colors N , while is forbidden for small number. This to some extent implies that the interaction of the system increases with the number. In particular, in the reduced parameter space, all the thermodynamic quantities can be rescaled with the black hole charge such that these reduced quantities are charge-independent. Then we obtain the coexistence curve and the phase diagram. The latent heat is also numerically calculated. Moreover, the heat capacity and the thermodynamic scalar are studied. The result indicates that the information of the first-order black hole phase transition is encoded in the heat capacity and scalar. However, the phase transition point cannot be directly calculated with them. Nevertheless, the critical point linked to a second-order phase transition can be determined by either the heat capacity or the scalar. In addition, we calculate the critical exponents of the heat capacity and the scalar for the saturated small and large black holes near the critical point.

  10. Pair of accelerated black holes in an anti-de Sitter background: The AdS C metric

    International Nuclear Information System (INIS)

    Dias, Oscar J.C.; Lemos, Jose P.S.

    2003-01-01

    The anti-de Sitter C metric (AdS C metric) is characterized by a quite interesting new feature when compared with the C metric in flat or de Sitter backgrounds. Indeed, contrary to what happens in these two last exact solutions, the AdS C metric only describes a pair of accelerated black holes if the acceleration parameter satisfies A>1/l, where l is the cosmological length. The two black holes cannot interact gravitationally and their acceleration is totally provided by the pressure exerted by a strut that pushes the black holes apart. Our analysis is based on the study of the causal structure, on the description of the solution in the AdS 4-hyperboloid in a 5D Minkowski spacetime, and on the physics of the strut. We also analyze the cases A=1/l and A<1/l that represent a single accelerated black hole in the AdS background

  11. Two-terminal reliability of a mobile ad hoc network under the asymptotic spatial distribution of the random waypoint model

    International Nuclear Information System (INIS)

    Chen, Binchao; Phillips, Aaron; Matis, Timothy I.

    2012-01-01

    The random waypoint (RWP) mobility model is frequently used in describing the movement pattern of mobile users in a mobile ad hoc network (MANET). As the asymptotic spatial distribution of nodes under a RWP model exhibits central tendency, the two-terminal reliability of the MANET is investigated as a function of the source node location. In particular, analytical expressions for one and two hop connectivities are developed as well as an efficient simulation methodology for two-terminal reliability. A study is then performed to assess the effect of nodal density and network topology on network reliability.

  12. Joule-Thomson expansion of Kerr-AdS black holes

    Energy Technology Data Exchange (ETDEWEB)

    Oekcue, Oezguer; Aydiner, Ekrem [Istanbul University, Department of Physics, Faculty of Science, Istanbul (Turkey)

    2018-02-15

    In this paper, we study Joule-Thomson expansion for Kerr-AdS black holes in the extended phase space. A Joule-Thomson expansion formula of Kerr-AdS black holes is derived. We investigate both isenthalpic and numerical inversion curves in the T-P plane and demonstrate the cooling-heating regions for Kerr-AdS black holes. We also calculate the ratio between minimum inversion and critical temperatures for Kerr-AdS black holes. (orig.)

  13. A detailed analytic study of the asymptotic quasinormal modes of Schwarzschild-anti de Sitter black holes

    International Nuclear Information System (INIS)

    Daghigh, Ramin G; Green, Michael D

    2009-01-01

    We analyze analytically the asymptotic regions of the quasinormal mode frequency spectra with infinitely large overtone numbers for D-dimensional Schwarzschild black holes in anti de Sitter spacetimes. In this limit, we confirm the analytic results obtained previously in the literature using different methods. In addition, we show that in certain spacetime dimensions these techniques imply the existence of other regions of the asymptotic quasinormal mode frequency spectrum which have not previously appeared in the literature. For large black holes, some of these modes have a damping rate of 1.2T H , where T H is the Hawking temperature. This is less than the damping rate of the lowest overtone quasinormal mode calculated by other authors. It is not completely clear whether these modes actually exist or are an artifact of an unknown flaw in the analytic techniques being used. We discuss the possibility of the existence of these modes and explore some of the consequences. We also examine the possible connection between the asymptotic quasinormal modes of Schwarzschild-anti de Sitter black holes and the quantum level spacing of their horizon area spectrum.

  14. Q ‑ Φ criticality and microstructure of charged AdS black holes in f(R) gravity

    Science.gov (United States)

    Deng, Gao-Ming; Huang, Yong-Chang

    2017-12-01

    The phase transition and critical behaviors of charged AdS black holes in f(R) gravity with a conformally invariant Maxwell (CIM) source and constant curvature are further investigated. As a highlight, this research is carried out by employing new state parameters (T,Q, Φ) and contributes to deeper understanding of the thermodynamics and phase structure of black holes. Our analyses manifest that the charged f(R)-CIM AdS black hole undergoes a first-order small-large black hole phase transition, and the critical behaviors qualitatively behave like a Van der Waals liquid-vapor system. However, differing from the case in Einstein’s gravity, phase structures of the black holes in f(R) theory exhibit an interesting dependence on gravity modification parameters. Moreover, we adopt the thermodynamic geometry to probe the black hole microscopic properties. The results show that, on the one hand, both the Ruppeiner curvature and heat capacity diverge exactly at the critical point, on the other hand, the f(R)-CIM AdS black hole possesses the property as ideal Fermi gases. Of special interest, we discover a microscopic similarity between the black holes and a Van der Waals liquid-vapor system.

  15. Holographic fermionic spectrum from Born–Infeld AdS black hole

    Directory of Open Access Journals (Sweden)

    Jian-Pin Wu

    2016-07-01

    Full Text Available In this letter, we systematically explore the holographic (non-relativistic fermionic spectrum without/with dipole coupling dual to Born–Infeld anti-de Sitter (BI-AdS black hole. For the relativistic fermionic fixed point, this holographic fermionic system exhibits non-Fermi liquid behavior. Also, with the increase of BI parameter γ, the non-Fermi liquid becomes even “more non-Fermi”. When the dipole coupling term is included, we find that the BI term makes it a lot tougher to form the gap. While for the non-relativistic fermionic system with large dipole coupling in BI-AdS background, with the increase of BI parameter, the gap comes into being again.

  16. Complexity growth rates for AdS black holes in massive gravity and f(R) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Wen-Di; Wei, Shao-Wen; Li, Yan-Yan; Liu, Yu-Xiao [Lanzhou University, Institute of Theoretical Physics, Lanzhou (China)

    2017-12-15

    The ''complexity = action'' duality states that the quantum complexity is equal to the action of the stationary AdS black hole within the Wheeler-DeWitt patch at late time approximation. We compute the action growth rates of the neutral and charged black holes in massive gravity and the neutral, charged and Kerr-Newman black holes in f(R) gravity to test this conjecture. Besides, we investigate the effects of the massive graviton terms, higher derivative terms and the topology of the black hole horizon on the complexity growth rate. (orig.)

  17. A rotating hairy AdS3 black hole with the metric having only one Killing vector field

    International Nuclear Information System (INIS)

    Iizuka, Norihiro; Ishibashi, Akihiro; Maeda, Kengo

    2015-01-01

    We perturbatively construct a three-dimensional rotating AdS black hole with a real scalar hair. We choose the mass of a scalar field slightly above the Breitenlohner-Freedman bound and impose a general boundary condition for the bulk scalar field at AdS infinity. We first show that rotating BTZ black holes are unstable against scalar field perturbations under our more general boundary condition. Next we construct a rotating hairy black hole perturbatively with respect to a small amplitude ϵ of the scalar field, up to O(ϵ 4 ). Our hairy black hole is stationary and exhibits no dissipation, but the lumps of the non-linearly perturbed geometry break axial symmetry, thus providing the first example of a rotating black hole whose metric admits only one Killing vector field. Furthermore, we numerically show that the entropy of our hairy black hole is larger than that of the BTZ black hole with the same energy and the angular momentum. We briefly discuss if our rotating hairy black hole in lumpy geometry could be the endpoint of the instability.

  18. Reentrant phase transitions of higher-dimensional AdS black holes in dRGT massive gravity

    International Nuclear Information System (INIS)

    Zou, De-Cheng; Yue, Ruihong; Zhang, Ming

    2017-01-01

    We study the P-V criticality and phase transition in the extended phase space of anti-de Sitter (AdS) black holes in higher-dimensional de Rham, Gabadadze and Tolley (dRGT) massive gravity, treating the cosmological constant as pressure and the corresponding conjugate quantity is interpreted as thermodynamic volume. Besides the usual small/large black hole phase transitions, the interesting thermodynamic phenomena of reentrant phase transitions (RPTs) are observed for black holes in all d ≥ 6-dimensional spacetime when the coupling coefficients c_im"2 of massive potential satisfy some certain conditions. (orig.)

  19. Reentrant phase transitions of higher-dimensional AdS black holes in dRGT massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Zou, De-Cheng; Yue, Ruihong [Yangzhou University, College of Physical Science and Technology, Yangzhou (China); Zhang, Ming [Xi' an Aeronautical University, Faculty of Science, Xi' an (China)

    2017-04-15

    We study the P-V criticality and phase transition in the extended phase space of anti-de Sitter (AdS) black holes in higher-dimensional de Rham, Gabadadze and Tolley (dRGT) massive gravity, treating the cosmological constant as pressure and the corresponding conjugate quantity is interpreted as thermodynamic volume. Besides the usual small/large black hole phase transitions, the interesting thermodynamic phenomena of reentrant phase transitions (RPTs) are observed for black holes in all d ≥ 6-dimensional spacetime when the coupling coefficients c{sub i}m{sup 2} of massive potential satisfy some certain conditions. (orig.)

  20. Phase transition and thermodynamical geometry for Schwarzschild AdS black hole in AdS_5×S"5 spacetime

    International Nuclear Information System (INIS)

    Zhang, Jia-Lin; Cai, Rong-Gen; Yu, Hongwei

    2015-01-01

    We study the thermodynamics and thermodynamic geometry of a five-dimensional Schwarzschild AdS black hole in AdS_5×S"5 spacetime by treating the cosmological constant as the number of colors in the boundary gauge theory and its conjugate quantity as the associated chemical potential. It is found that the chemical potential is always negative in the stable branch of black hole thermodynamics and it has a chance to be positive, but appears in the unstable branch. We calculate the scalar curvatures of the thermodynamical Weinhold metric, Ruppeiner metric and Quevedo metric, respectively and we find that the scalar curvature in the Weinhold metric is always vanishing, while in the Ruppeiner metric the divergence of the scalar curvature is related to the divergence of the heat capacity with fixed chemical potential, and in the Quevedo metric the divergence of the scalar curvature is related to the divergence of the heat capacity with fixed number of colors and to the vanishing of the heat capacity with fixed chemical potential.

  1. Critical behavior and microscopic structure of charged AdS black holes via an alternative phase space

    Directory of Open Access Journals (Sweden)

    Amin Dehyadegari

    2017-05-01

    Full Text Available It has been argued that charged Anti-de Sitter (AdS black holes have similar thermodynamic behavior as the Van der Waals fluid system, provided one treats the cosmological constant as a thermodynamic variable (pressure in an extended phase space. In this paper, we disclose the deep connection between charged AdS black holes and Van der Waals fluid system from an alternative point of view. We consider the mass of an AdS black hole as a function of square of the charge Q2 instead of the standard Q, i.e. M=M(S,Q2,P. We first justify such a change of view mathematically and then ask if a phase transition can occur as a function of Q2 for fixed P. Therefore, we write the equation of state as Q2=Q2(T,Ψ where Ψ (conjugate of Q2 is the inverse of the specific volume, Ψ=1/v. This allows us to complete the analogy of charged AdS black holes with Van der Waals fluid system and derive the phase transition as well as critical exponents of the system. We identify a thermodynamic instability in this new picture with real analogy to Van der Waals fluid with physically relevant Maxwell construction. We therefore study the critical behavior of isotherms in Q2–Ψ diagram and deduce all the critical exponents of the system and determine that the system exhibits a small–large black hole phase transition at the critical point (Tc,Qc2,Ψc. This alternative view is important as one can imagine such a change for a given single black hole i.e. acquiring charge which induces the phase transition. Finally, we disclose the microscopic properties of charged AdS black holes by using thermodynamic geometry. Interestingly, we find that scalar curvature has a gap between small and large black holes, and this gap becomes exceedingly large as one moves away from the critical point along the transition line. Therefore, we are able to attribute the sudden enlargement of the black hole to the strong repulsive nature of the internal constituents at the phase transition.

  2. A consistent and unified picture for critical phenomena of f(R) AdS black holes

    International Nuclear Information System (INIS)

    Mo, Jie-Xiong; Li, Gu-Qiang; Wu, Yu-Cheng

    2016-01-01

    A consistent and unified picture for critical phenomena of charged AdS black holes in f ( R ) gravity is drawn in this paper. Firstly, we investigate the phase transition in canonical ensemble. We derive the explicit solutions corresponding to the divergence of C Q . The two solutions merge into one when the condition Q c =√(−1/3 R 0 ) is satisfied. The curve of specific heat for Q < Q c has two divergent points and can be divided into three regions. Both the large radius region and the small radius region are thermodynamically stable with positive specific heat while the medium radius region is unstable with negative specific heat. However, when Q > Q c , the specific heat is always positive, implying the black holes are locally stable and no phase transition will take place. Secondly, both the T − r + curve and T − S curve f ( R ) AdS black holes are investigated and they exhibit Van der Vaals like behavior as the P − v curve in the former research. Critical physical quantities are obtained and they are consistent with those derived from the specific heat analysis. We carry out numerical check of Maxwell equal area law for the cases Q =0.2 Q c , 0.4 Q c , 0.6 Q c , 0.8 Q c . The relative errors are amazingly small and can be negligible. So the Maxwell equal area law holds for T − S curve of f ( R ) black holes. Thirdly, we establish geometrothermodynamics for f ( R ) AdS black hole to examine the phase structure. It is shown that the Legendre invariant scalar curvature R would diverge exactly where the specific heat diverges. To summarize, the above three perspectives are consistent with each other, thus providing a unified picture which deepens the understanding of critical phenomena of f ( R ) AdS black holes.

  3. Asymptotic symmetries, holography and topological hair

    Science.gov (United States)

    Mishra, Rashmish K.; Sundrum, Raman

    2018-01-01

    Asymptotic symmetries of AdS4 quantum gravity and gauge theory are derived by coupling the holographically dual CFT3 to Chern-Simons gauge theory and 3D gravity in a "probe" (large-level) limit. Despite the fact that the three-dimensional AdS4 boundary as a whole is consistent with only finite-dimensional asymptotic symmetries, given by AdS isometries, infinite-dimensional symmetries are shown to arise in circumstances where one is restricted to boundary subspaces with effectively two-dimensional geometry. A canonical example of such a restriction occurs within the 4D subregion described by a Wheeler-DeWitt wavefunctional of AdS4 quantum gravity. An AdS4 analog of Minkowski "super-rotation" asymptotic symmetry is probed by 3D Einstein gravity, yielding CFT2 structure (in a large central charge limit), via AdS3 foliation of AdS4 and the AdS3/CFT2 correspondence. The maximal asymptotic symmetry is however probed by 3D conformal gravity. Both 3D gravities have Chern-Simons formulation, manifesting their topological character. Chern-Simons structure is also shown to be emergent in the Poincare patch of AdS4, as soft/boundary limits of 4D gauge theory, rather than "put in by hand" as an external probe. This results in a finite effective Chern-Simons level. Several of the considerations of asymptotic symmetry structure are found to be simpler for AdS4 than for Mink4, such as non-zero 4D particle masses, 4D non-perturbative "hard" effects, and consistency with unitarity. The last of these in particular is greatly simplified because in some set-ups the time dimension is explicitly shared by each level of description: Lorentzian AdS4, CFT3 and CFT2. Relatedly, the CFT2 structure clarifies the sense in which the infinite asymptotic charges constitute a useful form of "hair" for black holes and other complex 4D states. An AdS4 analog of Minkowski "memory" effects is derived, but with late-time memory of earlier events being replaced by (holographic) "shadow" effects. Lessons

  4. Validity of Maxwell equal area law for black holes conformally coupled to scalar fields in AdS5 spacetime

    International Nuclear Information System (INIS)

    Miao, Yan-Gang; Xu, Zhen-Ming

    2017-01-01

    We investigate the P - V criticality and the Maxwell equal area law for a five-dimensional spherically symmetric AdS black hole with a scalar hair in the absence of and in the presence of a Maxwell field, respectively. Especially in the charged case, we give the exact P - V critical values. More importantly, we analyze the validity and invalidity of the Maxwell equal area law for the AdS hairy black hole in the scenarios without and with charges, respectively. Within the scope of validity of the Maxwell equal area law, we point out that there exists a representative van der Waals-type oscillation in the P - V diagram. This oscillating part, which indicates the phase transition from a small black hole to a large one, can be replaced by an isobar. The small and large black holes have the same Gibbs free energy. We also give the distribution of the critical points in the parameter space both without and with charges, and we obtain for the uncharged case the fitting formula of the co-existence curve. Meanwhile, the latent heat is calculated, which gives the energy released or absorbed between the small and large black hole phases in the isothermal-isobaric procedure. (orig.)

  5. Hairy black holes and the endpoint of AdS{sub 4} charged superradiance

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Óscar J.C.; Masachs, Ramon [STAG research centre and Mathematical Sciences, University of Southampton,Southampton (United Kingdom)

    2017-02-24

    We construct hairy black hole solutions that merge with the anti-de Sitter (AdS{sub 4}) Reissner-Nordström black hole at the onset of superradiance. These hairy black holes have, for a given mass and charge, higher entropy than the corresponding AdS{sub 4}-Reissner-Nordström black hole. Therefore, they are natural candidates for the endpoint of the charged superradiant instability. On the other hand, hairy black holes never dominate the canonical and grand-canonical ensembles. The zero-horizon radius of the hairy black holes is a soliton (i.e. a boson star under a gauge transformation). We construct our solutions perturbatively, for small mass and charge, so that the properties of hairy black holes can be used to testify and compare with the endpoint of initial value simulations. We further discuss the near-horizon scalar condensation instability which is also present in global AdS{sub 4}-Reissner-Nordström black holes. We highlight the different nature of the near-horizon and superradiant instabilities and that hairy black holes ultimately exist because of the non-linear instability of AdS.

  6. Holographic Lovelock gravities and black holes

    NARCIS (Netherlands)

    de Boer, J.; Kulaxizi, M.; Parnachev, A.

    2010-01-01

    We study holographic implications of Lovelock gravities in AdS spacetimes. For a generic Lovelock gravity in arbitrary spacetime dimensions we formulate the existence condition of asymptotically AdS black holes. We consider small fluctuations around these black holes and determine the constraint on

  7. Hairy AdS black holes with a toroidal horizon in 4D Einstein-nonlinear omega-model system

    Czech Academy of Sciences Publication Activity Database

    Astorino, M.; Canfora, F.; Giacomini, A.; Ortaggio, Marcello

    2018-01-01

    Roč. 776, 10 January (2018), s. 236-241 ISSN 0370-2693 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : AdS black holes * nonlinear sigma model Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.807, year: 2016 http://www.sciencedirect.com/science/article/pii/S0370269317309437

  8. Hairy AdS black holes with a toroidal horizon in 4D Einstein-nonlinear omega-model system

    Czech Academy of Sciences Publication Activity Database

    Astorino, M.; Canfora, F.; Giacomini, A.; Ortaggio, Marcello

    2018-01-01

    Roč. 776, 10 January (2018), s. 236-241 ISSN 0370-2693 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : AdS black holes * nonlinear sigma model Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.807, year: 2016 http://www.sciencedirect.com/science/ article /pii/S0370269317309437

  9. Chaos in charged AdS black hole extended phase space

    Science.gov (United States)

    Chabab, M.; El Moumni, H.; Iraoui, S.; Masmar, K.; Zhizeh, S.

    2018-06-01

    We present an analytical study of chaos in a charged black hole in the extended phase space in the context of the Poincare-Melnikov theory. Along with some background on dynamical systems, we compute the relevant Melnikov function and find its zeros. Then we analyse these zeros either to identify the temporal chaos in the spinodal region, or to observe spatial chaos in the small/large black hole equilibrium configuration. As a byproduct, we derive a constraint on the Black hole' charge required to produce chaotic behaviour. To the best of our knowledge, this is the first endeavour to understand the correlation between chaos and phase picture in black holes.

  10. Small hairy black holes in AdS(5) x S-5

    NARCIS (Netherlands)

    Bhattacharyya, Sayantani; Minwalla, Shiraz; Papadodimas, Kyriakos

    2011-01-01

    We study small hairy black holes in a consistent truncation of N = 8 gauged supergravity that consists of a single charged scalar field interacting with the metric and a U(1) gauge field. Small very near extremal RNAdS black holes in this system are unstable to decay by superradiant emission. The

  11. Small hairy black holes in AdS(5) x S-5

    NARCIS (Netherlands)

    Bhattacharyya, Sayantani; Minwalla, Shiraz; Papadodimas, Kyriakos

    We study small hairy black holes in a consistent truncation of N = 8 gauged supergravity that consists of a single charged scalar field interacting with the metric and a U(1) gauge field. Small very near extremal RNAdS black holes in this system are unstable to decay by superradiant emission. The

  12. AdS charged black holes in Einstein–Yang–Mills gravity's rainbow: Thermal stability and P−V criticality

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Hendi

    2018-02-01

    Full Text Available Motivated by the interesting non-abelian gauge field, in this paper, we look for the analytical solutions of Yang–Mills theory in the context of gravity's rainbow. Regarding the trace of quantum gravity in black hole thermodynamics, we examine the first law of thermodynamics and also thermal stability in the canonical ensemble. We show that although the rainbow functions and Yang–Mills charge modify the solutions, the first law of thermodynamics is still valid. Based on the phenomenological similarities between the adS black holes and van der Waals liquid/gas systems, we study the critical behavior of the Yang–Mills black holes in the extended phase space thermodynamics. We also investigate the effects of various parameters on thermal instability as well as critical properties by using appropriate figures.

  13. AdS charged black holes in Einstein-Yang-Mills gravity's rainbow: Thermal stability and P - V criticality

    Science.gov (United States)

    Hendi, Seyed Hossein; Momennia, Mehrab

    2018-02-01

    Motivated by the interesting non-abelian gauge field, in this paper, we look for the analytical solutions of Yang-Mills theory in the context of gravity's rainbow. Regarding the trace of quantum gravity in black hole thermodynamics, we examine the first law of thermodynamics and also thermal stability in the canonical ensemble. We show that although the rainbow functions and Yang-Mills charge modify the solutions, the first law of thermodynamics is still valid. Based on the phenomenological similarities between the adS black holes and van der Waals liquid/gas systems, we study the critical behavior of the Yang-Mills black holes in the extended phase space thermodynamics. We also investigate the effects of various parameters on thermal instability as well as critical properties by using appropriate figures.

  14. Einstein-Katz action, variational principle, Noether charges and the thermodynamics of AdS-black holes

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias,Universidad Adolfo Ibáñez, Viña del Mar (Chile); Deruelle, Nathalie; Julié, Félix-Louis [APC, Université Paris Diderot, CNRS, CEA, Observatoire de Paris,Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet,F-75205 Paris CEDEX 13 (France)

    2016-08-08

    In this paper we describe 4-dimensional gravity coupled to scalar and Maxwell fields by the Einstein-Katz action, that is, the covariant version of the “Gamma-Gamma − Gamma-Gamma' part of the Hilbert action supplemented by the divergence of a generalized “Katz vector'. We consider static solutions of Einstein’s equations, parametrized by some integration constants, which describe an ensemble of asymptotically AdS black holes. Instead of the usual Dirichlet boundary conditions, which aim at singling out a specific solution within the ensemble, we impose that the variation of the action vanishes on shell for the broadest possible class of solutions. We will see that, when a long-range scalar “hair' is present, only sub-families of the solutions can obey that criterion. The Katz-Bicak-Lynden-Bell (“KBL') superpotential built on this (generalized) vector will then give straightforwardly the Noether charges associated with the spacetime symmetries (that is, in the static case, the mass). Computing the action on shell, we will see next that the solutions which obey the imposed variational principle, and with Noether charges given by the KBL superpotential, satisfy the Gibbs relation, the Katz vectors playing the role of “counterterms'. Finally, we show on the specific example of dyonic black holes that the sub-class selected by our variational principle satisfies the first law of thermodynamics when their mass is defined by the KBL superpotential.

  15. Black holes in a box: Toward the numerical evolution of black holes in AdS space-times

    International Nuclear Information System (INIS)

    Witek, Helvi; Nerozzi, Andrea; Cardoso, Vitor; Herdeiro, Carlos; Sperhake, Ulrich; Zilhao, Miguel

    2010-01-01

    The evolution of black holes in ''confining boxes'' is interesting for a number of reasons, particularly because it mimics the global structure of anti-de Sitter geometries. These are nonglobally hyperbolic space-times and the Cauchy problem may only be well defined if the initial data are supplemented by boundary conditions at the timelike conformal boundary. Here, we explore the active role that boundary conditions play in the evolution of a bulk black hole system, by imprisoning a black hole binary in a box with mirrorlike boundary conditions. We are able to follow the post-merger dynamics for up to two reflections off the boundary of the gravitational radiation produced in the merger. We estimate that about 15% of the radiation energy is absorbed by the black hole per interaction, whereas transfer of angular momentum from the radiation to the black hole is observed only in the first interaction. We discuss the possible role of superradiant scattering for this result. Unlike the studies with outgoing boundary conditions, both of the Newman-Penrose scalars Ψ 4 and Ψ 0 are nontrivial in our setup, and we show that the numerical data verifies the expected relations between them.

  16. Phase transition and thermodynamic geometry of f (R ) AdS black holes in the grand canonical ensemble

    Science.gov (United States)

    Li, Gu-Qiang; Mo, Jie-Xiong

    2016-06-01

    The phase transition of a four-dimensional charged AdS black hole solution in the R +f (R ) gravity with constant curvature is investigated in the grand canonical ensemble, where we find novel characteristics quite different from that in the canonical ensemble. There exists no critical point for T -S curve while in former research critical point was found for both the T -S curve and T -r+ curve when the electric charge of f (R ) black holes is kept fixed. Moreover, we derive the explicit expression for the specific heat, the analog of volume expansion coefficient and isothermal compressibility coefficient when the electric potential of f (R ) AdS black hole is fixed. The specific heat CΦ encounters a divergence when 0 b . This finding also differs from the result in the canonical ensemble, where there may be two, one or no divergence points for the specific heat CQ . To examine the phase structure newly found in the grand canonical ensemble, we appeal to the well-known thermodynamic geometry tools and derive the analytic expressions for both the Weinhold scalar curvature and Ruppeiner scalar curvature. It is shown that they diverge exactly where the specific heat CΦ diverges.

  17. On attractor mechanism of AdS{sub 4} black holes

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar (Chile); Université de Lyon, Laboratoire de Physique, UMR 5672, CNRS, École Normale Supérieure de Lyon, 46 allé d' Italie, F-69364 Lyon Cedex 07 (France); Astefanesei, Dumitru [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile)

    2013-12-18

    We construct a general family of exact non-extremal 4-dimensional black holes in AdS gravity with U(1) gauge fields non-minimally coupled to a dilaton and a non-trivial dilaton potential. These black holes can have spherical, toroidal, and hyperbolic horizon topologies. We use the entropy function formalism to obtain the near horizon data in the extremal limit. Due to the non-trivial self-interaction of the scalar field, the zero temperature black holes can have a finite horizon area even if only the electric field is turned on.

  18. Effects of dark energy on the efficiency of charged AdS black holes as heat engines

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hang [Nankai University, School of Physics, Tianjin (China); Meng, Xin-He [Nankai University, School of Physics, Tianjin (China); Chinese Academy of Science, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China)

    2017-08-15

    In this paper, we study the heat engine where a charged AdS black hole surrounded by dark energy is the working substance and the mechanical work is done via the PdV term in the first law of black hole thermodynamics in the extended phase space. We first investigate the effects of a kind of dark energy (quintessence field in this paper) on the efficiency of the RN-AdS black holes as the heat engine defined as a rectangular closed path in the P-V plane. We get the exact efficiency formula and find that the quintessence field can improve the heat engine efficiency, which will increase as the field density ρ{sub q} grows. At some fixed parameters, we find that a larger volume difference between the smaller black holes(V{sub 1}) and the bigger black holes(V{sub 2}) will lead to a lower efficiency, while the bigger pressure difference P{sub 1} - P{sub 4} will make the efficiency higher, but it is always smaller than 1 and will never be beyond the Carnot efficiency, which is the maximum value of the efficiency constrained by thermodynamics laws; this is consistent to the heat engine in traditional thermodynamics. After making some special choices for the thermodynamical quantities, we find that the increase of the electric charge Q and the normalization factor a can also promote the heat engine efficiency, which would infinitely approach the Carnot limit when Q or a goes to infinity. (orig.)

  19. Greybody factors for d-dimensional black holes

    DEFF Research Database (Denmark)

    Harmark, Troels; Natário, José; Schiappa, Ricardo

    2010-01-01

    Gravitational greybody factors are analytically computed for static, spherically symmetric black holes in d-dimensions, including black holes with charge and in the presence of a cosmological constant (where a proper definition of greybody factors for both asymptotically de Sitter and anti...... of the details of the black hole. For asymptotically de Sitter black holes the greybody factor is different for even or odd spacetime dimension, and proportional to the ratio of the areas of the event and cosmological horizons. For asymptotically Ads black holes the greybody factor has a rich structure in which...... universality is hidden in the transmission and reflection coefficients. For either charged or asymptotically de Sitter black holes the greybody factors are given by non-trivial functions, while for asymptotically Ads black holes the greybody factor precisely equals one (corresponding to pure blackbody emission)....

  20. Angular momentum independence of the entropy sum and entropy product for AdS rotating black holes in all dimensions

    Directory of Open Access Journals (Sweden)

    Hang Liu

    2016-08-01

    Full Text Available In this paper, we investigate the angular momentum independence of the entropy sum and product for AdS rotating black holes based on the first law of thermodynamics and a mathematical lemma related to Vandermonde determinant. The advantage of this method is that the explicit forms of the spacetime metric, black hole mass and charge are not needed but the Hawking temperature and entropy formula on the horizons are necessary for static black holes, while our calculations require the expressions of metric and angular velocity formula. We find that the entropy sum is always independent of angular momentum for all dimensions and the angular momentum-independence of entropy product only holds for the dimensions d>4 with at least one rotation parameter ai=0, while the mass-free of entropy sum and entropy product for rotating black holes only stand for higher dimensions (d>4 and for all dimensions, respectively. On the other hand, we find that the introduction of a negative cosmological constant does not affect the angular momentum-free of entropy sum and product but the criterion for angular momentum-independence of entropy product will be affected.

  1. Internal structure of black holes

    International Nuclear Information System (INIS)

    Cvetic, Mirjam

    2013-01-01

    Full text: We review recent progress that sheds light on the internal structure of general black holes. We first summarize properties of general multi-charged rotating black holes both in four and five dimensions. We show that the asymptotic boundary conditions of these general asymptotically flat black holes can be modified such that a conformal symmetry emerges. These subtracted geometries preserve the thermodynamic properties of the original black holes and are of the Lifshitz type, thus describing 'a black hole in the asymptotically conical box'. Recent efforts employ solution generating techniques to construct interpolating geometries between the original black hole and their subtracted geometries. Upon lift to one dimension higher, these geometries lift to AdS 3 times a sphere, and thus provide a microscopic interpretation of the black hole entropy in terms of dual two-dimensional conformal field theory. (author)

  2. The Quantization of a Kerr-AdS Black Hole

    Directory of Open Access Journals (Sweden)

    Claus Gerhardt

    2018-01-01

    Full Text Available We apply our model of quantum gravity to a Kerr-AdS space-time of dimension 2m+1, m≥2, where all rotational parameters are equal, resulting in a wave equation in a quantum space-time which has a sequence of solutions that can be expressed as a product of stationary and temporal eigenfunctions. The stationary eigenfunctions can be interpreted as radiation and the temporal ones as gravitational waves. The event horizon corresponds in the quantum model to a Cauchy hypersurface that can be crossed by causal curves in both directions such that the information paradox does not occur. We also prove that the Kerr-AdS space-time can be maximally extended by replacing in a generalized Boyer-Lindquist coordinate system the r variable by ρ=r2 such that the extended space-time has a timelike curvature singularity in ρ=-a2.

  3. Thermodynamic stability of modified Schwarzschild-AdS black hole in rainbow gravity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong-Wan [Chonbuk National University, Research Institute of Physics and Chemistry, Jeonju (Korea, Republic of); Kim, Seung Kook [Seonam University, Department of Physical Therapy, Namwon (Korea, Republic of); Park, Young-Jai [Sogang University, Department of Physics, Seoul (Korea, Republic of)

    2016-10-15

    In this paper, we have extended the previous study of the thermodynamics and phase transition of the Schwarzschild black hole in the rainbow gravity to the Schwarzschild-AdS black hole where metric depends on the energy of a probe. Making use of the Heisenberg uncertainty principle and the modified dispersion relation, we have obtained the modified local Hawking temperature and thermodynamic quantities in an isothermal cavity. Moreover, we carry out the analysis of constant temperature slices of a black hole. As a result, we have shown that there also exists another Hawking-Page-like phase transition in which case a locally stable small black hole tunnels into a globally stable large black hole as well as the standard Hawking-Page phase transition from a hot flat space to a black hole. (orig.)

  4. Thermodynamic instability of charged dilaton black holes in AdS spaces

    International Nuclear Information System (INIS)

    Sheykhi, A.; Dehghani, M. H.; Hendi, S. H.

    2010-01-01

    We study thermodynamic instability of a class of (n+1)-dimensional charged dilatonic spherically symmetric black holes in the background of the anti-de Sitter universe. We calculate the quasilocal mass of the anti-de Sitter dilaton black hole through the use of the subtraction method of Brown and York. We find a Smarr-type formula and perform a stability analysis in the canonical ensemble and disclose the effect of the dilaton field on the thermal stability of the solutions. Our study shows that the solutions are thermally stable for small α, while for large α the system has an unstable phase, where α is a coupling constant between the dilaton and matter field.

  5. van der Waals criticality in AdS black holes: A phenomenological study

    Science.gov (United States)

    Bhattacharya, Krishnakanta; Majhi, Bibhas Ranjan; Samanta, Saurav

    2017-10-01

    Anti-de Sitter black holes exhibit van der Waals-type phase transition. In the extended phase-space formalism, the critical exponents for any spacetime metric are identical to the standard ones. Motivated by this fact, we give a general expression for the Helmholtz free energy near the critical point, which correctly reproduces these exponents. The idea is similar to the Landau model, which gives a phenomenological description of the usual second-order phase transition. Here, two main inputs are taken into account for the analysis: (a) black holes should have van der Waals-like isotherms, and (b) free energy can be expressed solely as a function of thermodynamic volume and horizon temperature. Resulting analysis shows that the form of Helmholtz free energy correctly encapsulates the features of the Landau function. We also discuss the isolated critical point accompanied by nonstandard values of critical exponents. The whole formalism is then extended to two other criticalities, namely, Y -X and T -S (based on the standard; i.e., nonextended phase space), where X and Y are generalized force and displacement, whereas T and S are the horizon temperature and entropy. We observe that in the former case Gibbs free energy plays the role of Landau function, whereas in the later case, that role is played by the internal energy (here, it is the black hole mass). Our analysis shows that, although the existence of a van der Waals phase transition depends on the explicit form of the black hole metric, the values of the critical exponents are universal in nature.

  6. Quasinormal modes of Gauss-Bonnet-AdS black holes: towards holographic description of finite coupling

    Science.gov (United States)

    Konoplya, R. A.; Zhidenko, A.

    2017-09-01

    Here we shall show that there is no other instability for the Einstein-Gauss-Bonnet-anti-de Sitter (AdS) black holes, than the eikonal one and consider the features of the quasinormal spectrum in the stability sector in detail. The obtained quasinormal spectrum consists from the two essentially different types of modes: perturbative and non-perturbative in the Gauss-Bonnet coupling α. The sound and hydrodynamic modes of the perturbative branch can be expressed through their Schwazrschild-AdS limits by adding a linear in α correction to the damping rates: ω≈Re ω SAdS -Im ω SAdS(1- α·(( D+1)( D-4) /2 R 2)) i, where R is the AdS radius. The non-perturbative branch of modes consists of purely imaginary modes, whose damping rates unboundedly increase when α goes to zero. When the black hole radius is much larger than the anti-de Sitter radius R, the regime of the black hole with planar horizon (black brane) is reproduced. If the Gauss-Bonnet coupling α (or used in holography λGB) is not small enough, then the black holes and branes suffer from the instability, so that the holographic interpretation of perturbation of such black holes becomes questionable, as, for example, the claimed viscosity bound violation in the higher derivative gravity. For example, D = 5 black brane is unstable at |λGB| > 1 /8 and has anomalously large relaxation time when approaching the threshold of instability.

  7. Brick walls for black holes in AdS/CFT

    Directory of Open Access Journals (Sweden)

    Norihiro Iizuka

    2015-06-01

    Full Text Available We study the 't Hooft's brick wall model for black holes in a holographic context. The brick wall model suggests that without an appropriate near horizon IR cut-off, the free energy of the probe fields shows the divergence due to the large degenerate states near the horizons. After studying the universal nature of the divergence in various holographic settings in various dimensions, we interpret the nature of the divergence in a holographic context. The free energy divergence is due to the large degeneracy and continuity of the low energy spectrum in the boundary theory at the deconfinement phase. These divergence and continuity should be removed by finite N effects, which make the spectrum discrete even at the deconfinement phase. On the other hand, in the bulk, these degenerate states are localized near the horizon, and the universal divergence of these degenerate states implies that the naive counting of the degrees of freedom in bulk should be modified once we take into account the non-perturbative quantum gravity effects near the horizon. Depending on the microscopic degrees of freedom, the position, where the effective field theory description to count the states breaks down, has different Planck scale dependence. It also implies the difficulty to have an electron like gauge-singlet elementary field in the boundary theory Lagrangian. These singlet fields are at most composite fields, because they show divergent free energy, suggesting a positive power of N at the deconfinement phase.

  8. Equal Area Laws and Latent Heat for d-Dimensional RN-AdS Black Hole

    International Nuclear Information System (INIS)

    Ma, Meng-Sen; Zhao, Ren; Zhang, Li-Chun; Zhao, Hui-Hua

    2014-01-01

    We study the equal area laws of d-dimensional RN-AdS black hole. We choose two kinds of phase diagrams, P-V and T-S. We employ the equal area laws to find an isobar which is the real two-phase coexistence line. Our calculation is much simpler to derive the critical value of the thermodynamic quantities. According to the thermodynamic quantities, we also study the latent heat of the black hole

  9. Dyonic (A)dS black holes in Einstein-Born-Infeld theory in diverse dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shoulong [School of Physics, Beijing Institute of Technology,5 South Zhongguancun Street, Beijing 100081 (China); Lü, H. [Center for Advanced Quantum Studies,Department of Physics, Beijing Normal University,19 Xinjiekouwai Street, Beijing 100875 (China); Wei, Hao [School of Physics, Beijing Institute of Technology,5 South Zhongguancun Street, Beijing 100081 (China)

    2016-07-01

    We study Einstein-Born-Infeld gravity and construct the dyonic (A)dS planar black holes in general even dimensions, that carry both the electric charge and magnetic fluxes along the planar space. In four dimensions, the solution can be constructed with also spherical and hyperbolic topologies. We study the black hole thermodynamics and obtain the first law. We also classify the singularity structure.

  10. Ghettoizing outdoor advertising: disadvantage and ad panel density in black neighborhoods.

    Science.gov (United States)

    Kwate, Naa Oyo A; Lee, Tammy H

    2007-01-01

    This study investigated correlates of outdoor advertising panel density in predominantly African American neighborhoods in New York City. Research shows that black neighborhoods have more outdoor advertising space than white neighborhoods, and these spaces disproportionately market alcohol and tobacco advertisements. Thus, understanding the factors associated with outdoor advertising panel density has important implications for public health. We linked 2000 census data with property data at the census block group level to investigate two neighborhood-level determinants of ad density: income level and physical decay. Results showed that block groups were exposed to an average of four ad spaces per 1,000 residents and that vacant lot square footage was a significant positive predictor of ad density. An inverse relationship between median household income and ad density did not reach significance, suggesting that relative affluence did not protect black neighborhoods from being targeted for outdoor advertisements.

  11. Revisiting the phase transition of AdS-Maxwell-power-Yang-Mills black holes via AdS/CFT tools

    Science.gov (United States)

    El Moumni, H.

    2018-01-01

    In the present work we investigate the Van der Waals-like phase transition of AdS black hole solution in the Einstein-Maxwell-power-Yang-Mills gravity (EMPYM) via different approaches. After reconsidering this phase structure in the entropy-thermal plane, we recall the nonlocal observables such as holographic entanglement entropy and two point correlation function to show that the both observables exhibit a Van der Waals-like behavior as the case of the thermal entropy. By checking the Maxwell's equal area law and calculating the critical exponent for different values of charge C and nonlinearity parameter q we confirm that the first and the second order phases persist in the holographic framework. Also the validity of the Maxwell law is governed by the proximity to the critical point.

  12. Revisiting the phase transition of AdS-Maxwell–power-Yang–Mills black holes via AdS/CFT tools

    Directory of Open Access Journals (Sweden)

    H. El Moumni

    2018-01-01

    Full Text Available In the present work we investigate the Van der Waals-like phase transition of AdS black hole solution in the Einstein–Maxwell–power-Yang–Mills gravity (EMPYM via different approaches. After reconsidering this phase structure in the entropy-thermal plane, we recall the nonlocal observables such as holographic entanglement entropy and two point correlation function to show that the both observables exhibit a Van der Waals-like behavior as the case of the thermal entropy. By checking the Maxwell's equal area law and calculating the critical exponent for different values of charge C and nonlinearity parameter q we confirm that the first and the second order phases persist in the holographic framework. Also the validity of the Maxwell law is governed by the proximity to the critical point.

  13. The Black Hole Firewall and Top-Down Constructions of AdS/CFT

    Science.gov (United States)

    Almheiri, Ahmed Eid Khamis Thani

    In the first part of this dissertation we argue that the following statements cannot be all true: (i) Black hole formation and evaporation is a unitary process as viewed by external observers, (ii) Physics outside some microscopic distance away from the event horizon is described by local effective quantum field theory, (iii) A black hole is a quantum system with a finite number of states given by the exponential of the Bekenstein Hawking entropy, and (iv) An infalling observer's experience in the vicinity of the horizon is well described by local effective quantum field theory in the infalling reference frame. We argue that the most conservative resolution is that an infalling observer will see drastic violations of effective field theory far away from the singularity, and encounter high energy quanta, a firewall, just behind the black hole event horizon. We address counter proposals to the firewall which involve, in one way or another, radical modifications of quantum mechanics or locality, and argue that they are unsatisfactory in their current formulation. We conclude this part with an investigation into the existence of firewalls in the two dimensional Einstein-dilaton gravity model of CGHS. We find that black holes in such models do not develop firewalls, but rather evaporate down to form small mass remnants. We elaborate on why this is inevitable in two dimensions and argue against a similar conclusion in higher dimensions. In the second part of this dissertation we construct AdS2 and AdS3 magnetic brane solutions within the abelian truncations of AdS4 x orbifolded S7 and AdS5 x S5 supergravity. We find a class of supersymmetric solutions of the bulk theory to assure stability. We perform a preliminary analysis demonstrating the stability of some nonsupersymmetric embeddings. We identify the dual field theory and compare the thermal entropies across the duality. We end with an investigatation into the effects of backreaction on holography in AdS2. We study a

  14. A Maxwell-vector p-wave holographic superconductor in a particular background AdS black hole metric

    Directory of Open Access Journals (Sweden)

    Dan Wen

    2018-05-01

    Full Text Available We study the p-wave holographic superconductor for AdS black holes with planar event horizon topology for a particular Lovelock gravity, in which the action is characterized by a self-interacting scalar field nonminimally coupled to the gravity theory which is labeled by an integer k. As the Lovelock theory of gravity is the most general metric theory of gravity based on the fundamental assumptions of general relativity, it is a desirable theory to describe the higher dimensional spacetime geometry. The present work is devoted to studying the properties of the p-wave holographic superconductor by including a Maxwell field which nonminimally couples to a complex vector field in a higher dimensional background metric. In the probe limit, we find that the critical temperature decreases with the increase of the index k of the background black hole metric, which shows that a larger k makes it harder for the condensation to form. We also observe that the index k affects the conductivity and the gap frequency of the holographic superconductors.

  15. A Maxwell-vector p-wave holographic superconductor in a particular background AdS black hole metric

    Science.gov (United States)

    Wen, Dan; Yu, Hongwei; Pan, Qiyuan; Lin, Kai; Qian, Wei-Liang

    2018-05-01

    We study the p-wave holographic superconductor for AdS black holes with planar event horizon topology for a particular Lovelock gravity, in which the action is characterized by a self-interacting scalar field nonminimally coupled to the gravity theory which is labeled by an integer k. As the Lovelock theory of gravity is the most general metric theory of gravity based on the fundamental assumptions of general relativity, it is a desirable theory to describe the higher dimensional spacetime geometry. The present work is devoted to studying the properties of the p-wave holographic superconductor by including a Maxwell field which nonminimally couples to a complex vector field in a higher dimensional background metric. In the probe limit, we find that the critical temperature decreases with the increase of the index k of the background black hole metric, which shows that a larger k makes it harder for the condensation to form. We also observe that the index k affects the conductivity and the gap frequency of the holographic superconductors.

  16. AdS5 magnetized solutions in minimal gauged supergravity

    Directory of Open Access Journals (Sweden)

    Jose Luis Blázquez-Salcedo

    2017-08-01

    Full Text Available We construct a generalization of the AdS charged rotating black holes with two equal magnitude angular momenta in five-dimensional minimal gauged supergravity. In addition to the mass, electric charge and angular momentum, the new solutions possess an extra-parameter associated with a non-zero magnitude of the magnetic potential at infinity. In contrast with the known cases, these new black holes possess a non-trivial zero-horizon size limit which describes a one parameter family of spinning charged solitons. All configurations reported in this work approach asymptotically an AdS5 spacetime in global coordinates and are free of pathologies.

  17. The Cardy-Verlinde formula and topological AdS-Schwarzschild black holes

    International Nuclear Information System (INIS)

    Youm, Donam

    2001-05-01

    We consider the brane universe in the background of the topological AdS-Schwarzschild black holes. The induced geometry of the brane is that of a flat or an open radiation dominated FRW-universe. Just like the case of a closed radiation dominated FRW-universe, the temperature and entropy are simply expressed in terms of the Hubble parameter and its time derivative when the brane crosses the black hole horizon. We propose the modified Cardy-Verlinde formula which is valid for any values of the curvature parameter k in the Friedmann equations. (author)

  18. One-Loop Test of Quantum Black Holes in anti-de Sitter Space

    Science.gov (United States)

    Liu, James T.; Pando Zayas, Leopoldo A.; Rathee, Vimal; Zhao, Wenli

    2018-06-01

    Within 11-dimensional supergravity we compute the logarithmic correction to the entropy of magnetically charged asymptotically AdS4 black holes with arbitrary horizon topology. We find perfect agreement with the expected microscopic result arising from the dual field theory computation of the topologically twisted index. Our result relies crucially on a particular limit to the extremal black hole case and clarifies some aspects of quantum corrections in asymptotically AdS spacetimes.

  19. Hairy black hole stability in AdS, quantum mechanics on the half-line and holography

    International Nuclear Information System (INIS)

    Anabalón, Andrés; Astefanesei, Dumitru; Oliva, Julio

    2015-01-01

    We consider the linear stability of 4-dimensional hairy black holes with mixed boundary conditions in Anti-de Sitter spacetime. We focus on the mass of scalar fields around the maximally supersymmetric vacuum of the gauged N=8 supergravity in four dimensions, m"2=−2l"−"2. It is shown that the Schrödinger operator on the half-line, governing the S"2, H"2 or ℝ"2 invariant mode around the hairy black hole, allows for non-trivial self-adjoint extensions and each of them corresponds to a class of mixed boundary conditions in the gravitational theory. Discarding the self-adjoint extensions with a negative mode impose a restriction on these boundary conditions. The restriction is given in terms of an integral of the potential in the Schrödinger operator resembling the estimate of Simon for Schrödinger operators on the real line. In the context of AdS/CFT duality, our result has a natural interpretation in terms of the field theory dual effective potential.

  20. Hairy black hole stability in AdS, quantum mechanics on the half-line and holography

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés [Departamento de Ciencias, Facultad de Artes Liberales yFacultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,Av. Padre Hurtado 750, Viña del Mar (Chile); Astefanesei, Dumitru [Instituto de Física, Pontificia Universidad Católica de Valparaíso,Casilla 4059, Valparaíso (Chile); Oliva, Julio [Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile)

    2015-10-09

    We consider the linear stability of 4-dimensional hairy black holes with mixed boundary conditions in Anti-de Sitter spacetime. We focus on the mass of scalar fields around the maximally supersymmetric vacuum of the gauged N=8 supergravity in four dimensions, m{sup 2}=−2l{sup −2}. It is shown that the Schrödinger operator on the half-line, governing the S{sup 2}, H{sup 2} or ℝ{sup 2} invariant mode around the hairy black hole, allows for non-trivial self-adjoint extensions and each of them corresponds to a class of mixed boundary conditions in the gravitational theory. Discarding the self-adjoint extensions with a negative mode impose a restriction on these boundary conditions. The restriction is given in terms of an integral of the potential in the Schrödinger operator resembling the estimate of Simon for Schrödinger operators on the real line. In the context of AdS/CFT duality, our result has a natural interpretation in terms of the field theory dual effective potential.

  1. Universal regularization prescription for Lovelock AdS gravity

    International Nuclear Information System (INIS)

    Kofinas, Georgios; Olea, Rodrigo

    2007-01-01

    A definite form for the boundary term that produces the finiteness of both the conserved quantities and Euclidean action for any Lovelock gravity with AdS asymptotics is presented. This prescription merely tells even from odd bulk dimensions, regardless the particular theory considered, what is valid even for Einstein-Hilbert and Einstein-Gauss-Bonnet AdS gravity. The boundary term is a given polynomial of the boundary extrinsic and intrinsic curvatures (also referred to as Kounterterms series). Only the coupling constant of the boundary term changes accordingly, such that it always preserves a well-posed variational principle for boundary conditions suitable for asymptotically AdS spaces. The background-independent conserved charges associated to asymptotic symmetries are found. In odd bulk dimensions, this regularization produces a generalized formula for the vacuum energy in Lovelock AdS gravity. The standard entropy for asymptotically AdS black holes is recovered directly from the regularization of the Euclidean action, and not only from the first law of thermodynamics associated to the conserved quantities

  2. Behavior of quasinormal modes and high dimension RN-AdS black hole phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Chabab, M.; Iraoui, S.; Masmar, K. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, Faculty of Science Semlalia, Marrakesh (Morocco); El Moumni, H. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, Faculty of Science Semlalia, Marrakesh (Morocco); Ibn Zohr University, LMTI, Physics Department, Faculty of Sciences, Agadir (Morocco)

    2016-12-15

    In this work we use the quasinormal frequencies of a massless scalar perturbation to probe the phase transition of the high dimension charged AdS black hole. The signature of the critical behavior of this black hole solution is detected in the isobaric as well as in isothermal process. This paper is a natural generalization of Liu et al. (JHEP 1409:179, 2014) to higher dimensional spacetime. More precisely our study shows a clear signal for any dimension d in the isobaric process. As to the isothermal case, we find that this signature can be affected by other parameters like the pressure and the horizon radius. We conclude that the quasinormal modes can be an efficient tool to investigate the first-order phase transition, but fail to disclose the signature of the second-order phase transition. (orig.)

  3. A COMPREHENSIVE SURVEY ON DETECTING BLACK HOLE ATTACK IN MOBILE AD-HOC NETWORK (MANET

    Directory of Open Access Journals (Sweden)

    Pascal Maniriho

    2018-01-01

    Full Text Available The infrastructure-less nature and mobility of nodes in mobile ad-hoc network (MANET make it to be very susceptible to various attacks. Besides, owing to its flexibility and simplicity, there is no predefined time or permission set for nodes to leave or join the network and each node can act as a client or server.  Nevertheless, securing communication between nodes has become a challenging problem than in other types of network. Attacks in MANET range into different categories. Black hole attack is one of the attacks that has been addressed by many researchers in the recent years. It does occur when a harmful mobile node called black hole becomes a part of the network and tries to use its malicious behaviors by sending fake route reply packets (RREP for any received route request packets (RREQ. When these faked packets arrive to the source node, it does reply to them by sending data packet via the established route. Once the packets are received by the black hole, it drops them before reaching the destination.  Hence, preventing the source node from reaching the intended destination. In this paper, we present an overview of a wide range of techniques suggested in the literature for detecting and preventing black hole attacks in mobile ad hoc network. Additionally, the effect of each approach on the network performance is also presented.

  4. Asymptotically warped anti-de Sitter spacetimes in topologically massive gravity

    International Nuclear Information System (INIS)

    Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo

    2011-01-01

    Asymptotically warped AdS spacetimes in topologically massive gravity with negative cosmological constant are considered in the case of spacelike stretched warping, where black holes have been shown to exist. We provide a set of asymptotic conditions that accommodate solutions in which the local degree of freedom (the ''massive graviton'') is switched on. An exact solution with this property is explicitly exhibited and possesses a slower falloff than the warped AdS black hole. The boundary conditions are invariant under the semidirect product of the Virasoro algebra with a u(1) current algebra. We show that the canonical generators are integrable and finite. When the graviton is not excited, our analysis is compared and contrasted with earlier results obtained through the covariant approach to conserved charges. In particular, we find agreement with the conserved charges of the warped AdS black holes as well as with the central charges in the algebra.

  5. Clapeyron equation and phase equilibrium properties in higher dimensional charged topological dilaton AdS black holes with a nonlinear source

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huai-Fan; Zhao, Hui-Hua; Zhang, Li-Chun; Zhao, Ren [Shanxi Datong University, Institute of Theoretical Physics, Datong (China); Shanxi Datong University, Department of Physics, Datong (China)

    2017-05-15

    Using Maxwell's equal area law, we discuss the phase transition of higher dimensional charged topological dilaton AdS black hole with a nonlinear source. The coexisting region of the two phases is found and we depict the coexistence region in the P-v diagrams. The two-phase equilibrium curves in the P-T diagrams are plotted, and we take the first order approximation of volume v in the calculation. To better compare with a general thermodynamic system, the Clapeyron equation is derived for a higher dimensional charged topological black hole with a nonlinear source. The latent heat of an isothermal phase transition is investigated. We also study the effect of the parameters of the black hole on the region of two-phase coexistence. The results show that the black hole may go through a small-large phase transition similar to those of usual non-gravity thermodynamic systems. (orig.)

  6. Thermodynamics of the Schwarzschild-AdS Black Hole with a Minimal Length

    Directory of Open Access Journals (Sweden)

    Yan-Gang Miao

    2017-01-01

    Full Text Available Using the mass-smeared scheme of black holes, we study the thermodynamics of black holes. Two interesting models are considered. One is the self-regular Schwarzschild-AdS black hole whose mass density is given by the analogue to probability densities of quantum hydrogen atoms. The other model is the same black hole but whose mass density is chosen to be a rational fractional function of radial coordinates. Both mass densities are in fact analytic expressions of the δ-function. We analyze the phase structures of the two models by investigating the heat capacity at constant pressure and the Gibbs free energy in an isothermal-isobaric ensemble. Both models fail to decay into the pure thermal radiation even with the positive Gibbs free energy due to the existence of a minimal length. Furthermore, we extend our analysis to a general mass-smeared form that is also associated with the δ-function and indicate the similar thermodynamic properties for various possible mass-smeared forms based on the δ-function.

  7. Thermodynamic studies of different black holes with modifications of entropy

    Science.gov (United States)

    Haldar, Amritendu; Biswas, Ritabrata

    2018-02-01

    In recent years, the thermodynamic properties of black holes are topics of interests. We investigate the thermodynamic properties like surface gravity and Hawking temperature on event horizon of regular black holes viz. Hayward Class and asymptotically AdS (Anti-de Sitter) black holes. We also analyze the thermodynamic volume and naive geometric volume of asymptotically AdS black holes and show that the entropy of these black holes is simply the ratio of the naive geometric volume to thermodynamic volume. We plot the different graphs and interpret them physically. We derive the `cosmic-Censorship-Inequality' for both type of black holes. Moreover, we calculate the thermal heat capacity of aforesaid black holes and study their stabilities in different regimes. Finally, we compute the logarithmic correction to the entropy for both the black holes considering the quantum fluctuations around the thermal equilibrium and study the corresponding thermodynamics.

  8. Bulk-boundary thermodynamic equivalence, and the Bekenstein and cosmic-censorship bounds for rotating charged AdS black holes

    International Nuclear Information System (INIS)

    Gibbons, G.W.; Perry, M.J.; Pope, C.N.

    2005-01-01

    We show that one may pass from bulk to boundary thermodynamic quantities for rotating anti-de Sitter (AdS) black holes in arbitrary dimensions so that if the bulk quantities satisfy the first law of thermodynamics then so do the boundary conformal field theory (CFT) quantities. This corrects recent claims that boundary CFT quantities satisfying the first law may only be obtained using bulk quantities measured with respect to a certain frame rotating at infinity, and which therefore do not satisfy the first law. We show that the bulk black-hole thermodynamic variables, or equivalently therefore the boundary CFT variables, do not always satisfy a Cardy-Verlinde type formula, but they do always satisfy an AdS-Bekenstein bound. The universal validity of the Bekenstein bound is a consequence of the more fundamental cosmic-censorship bound, which we find to hold in all cases examined. We also find that at fixed entropy, the temperature of a rotating black hole is bounded above by that of a nonrotating black hole, in four and five dimensions, but not in six or more dimensions. We find evidence for universal upper bounds for the area of cosmological event horizons and black-hole horizons in rotating black-hole spacetimes with a positive cosmological constant

  9. Insight into the microscopic structure of an AdS black hole from a thermodynamical phase transition.

    Science.gov (United States)

    Wei, Shao-Wen; Liu, Yu-Xiao

    2015-09-11

    Comparing with an ordinary thermodynamic system, we investigate the possible microscopic structure of a charged anti-de Sitter black hole completely from the thermodynamic viewpoint. The number density of the black hole molecules is introduced to measure the microscopic degrees of freedom of the black hole. We found that the number density suffers a sudden change accompanied by a latent heat when the black hole system crosses the small-large black hole coexistence curve, while when the system passes the critical point, it encounters a second-order phase transition with a vanishing latent heat due to the continuous change of the number density. Moreover, the thermodynamic scalar curvature suggests that there is a weak attractive interaction between two black hole molecules. These phenomena might cast new insight into the underlying microscopic structure of a charged anti-de Sitter black hole.

  10. On conserved charges and thermodynamics of the AdS{sub 4} dyonic black hole

    Energy Technology Data Exchange (ETDEWEB)

    Cárdenas, Marcela [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile); Fuentealba, Oscar; Matulich, Javier [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile)

    2016-05-02

    We consider four-dimensional gravity in the presence of a dilatonic scalar field and an Abelian gauge field. This theory corresponds to the bosonic sector of a Kaluza-Klein reduction of eleven-dimensional supergravity which induces a specific self-interacting potential for the scalar field. We compute the conserved charges and carry out the thermodynamics of an anti-de Sitter (AdS) dyonic black hole solution that was proposed recently. The charges coming from symmetries of the action are computed using the Regge-Teitelboim Hamiltonian approach. They correspond to the mass, which acquires contributions from the scalar field, and the electric charge. We introduce integrability conditions because the scalar field leads to non-integrable terms in the variation of the mass. These conditions are generically solved by introducing boundary conditions that relate the leading and subleading terms of the scalar field fall-off. The Hamiltonian Euclidean action, computed in the grand canonical ensemble, is obtained by demanding the action to have an extremum. Its value is given by a radial boundary term plus an additional polar angle boundary term due to the presence of a magnetic monopole. Remarkably, the magnetic charge can be identified from the variation of the additional polar angle boundary term, confirming that the first law of black hole thermodynamics is a consequence of having a well-defined and finite Hamiltonian action principle, even if the charge does not come from a symmetry of the action. The temperature and electrostatic potential are determined by demanding regularity of the black hole solution, whereas the value of the magnetic potential is determined by the variation of the additional polar angle boundary term. Consequently, the first law of black hole thermodynamics is identically satisfied by construction.

  11. Behavior of quasinormal modes and Van der Waals-like phase transition of charged AdS black holes in massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Zou, De-Cheng; Yue, Ruihong [Yangzhou University, Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou (China); Liu, Yunqi [Huazhong University of Science and Technology, School of Physics, Wuhan (China)

    2017-06-15

    In this work, we utilize the quasinormal modes (QNMs) of a massless scalar perturbation to probe the Van der Waals-like small and large black holes (SBH/LBH) phase transition of charged topological Anti-de Sitter (AdS) black holes in four-dimensional massive gravity. We find that the signature of this SBH/LBH phase transition is detected in the isobaric as well as in the isothermal process. This further supports the idea that the QNMs can be an efficient tool to investigate the thermodynamical phase transition. (orig.)

  12. A Killing tensor for higher dimensional Kerr-AdS black holes with NUT charge

    International Nuclear Information System (INIS)

    Davis, Paul

    2006-01-01

    In this paper, we study the recently discovered family of higher dimensional Kerr-AdS black holes with an extra NUT-like parameter. We show that the inverse metric is additively separable after multiplication by a simple function. This allows us to separate the Hamilton-Jacobi equation, showing that geodesic motion is integrable on this background. The separation of the Hamilton-Jacobi equation is intimately linked to the existence of an irreducible Killing tensor, which provides an extra constant of motion. We also demonstrate that the Klein-Gordon equation for this background is separable

  13. Study of process frozen dough of steamed bread added black rice

    International Nuclear Information System (INIS)

    Liu Shuang; Wang Chonglin

    2014-01-01

    The aim of the present work is to extent the storage period of wheat steamed bread added black rice. Based on index of sensory evaluation steamed bread. Effects of the use of film, Effects of electron beam irradiation on processing characteristics of wheat flour, yeast content, fermentation time before frozen, second fermentation time before steaming, combination of differerent additives on bread properties of frozen dough were investigate. The result showed that: the best frozen dough recipe were film processing, l% yeast, 1 h fermentation time before frozen , 45 min second fermentation time before steaming, 0.075% CMC, O.21 % Vc, 0.35% GMS. (authors)

  14. Einstein black holes, free scalars, and AdS/CFT correspondence

    International Nuclear Information System (INIS)

    Louko, Jorma; Wisniewski, Jacek

    2004-01-01

    We investigate AdS/CFT correspondence for two families of Einstein black holes in d≥4 dimensions, modeling the boundary conformal field theory by a free conformal scalar field and evaluating the boundary two-point function in the bulk geodesic approximation. For the d≥4 counterpart of the nonrotating Banados-Teitelboim-Zanelli hole and for its Z 2 quotient, the boundary state is thermal in the expected sense, and its stress-energy reflects the properties of the bulk geometry and suggests a novel definition for the mass of the hole. For the generalized Schwarzschild-AdS hole with a flat horizon of topology R d-2 , the boundary stress-energy has a thermal form with energy density proportional to the hole Arnowitt-Deser-Misner mass, but stress-energy corrections from compactified horizon dimensions cannot be consistently included at least for d=5

  15. Acceleration of the charged particles due to chaotic scattering in the combined black hole gravitational field and asymptotically uniform magnetic field

    International Nuclear Information System (INIS)

    Stuchlik, Zdenek; Kolos, Martin

    2016-01-01

    To test the role of large-scale magnetic fields in accretion processes, we study the dynamics of the charged test particles in the vicinity of a black hole immersed into an asymptotically uniform magnetic field. Using the Hamiltonian formalism of the charged particle dynamics, we examine chaotic scattering in the effective potential related to the black hole gravitational field combined with the uniform magnetic field. Energy interchange between the translational and oscillatory modes of the charged particle dynamics provides a mechanism for charged particle acceleration along the magnetic field lines. This energy transmutation is an attribute of the chaotic charged particle dynamics in the combined gravitational and magnetic fields only, the black hole rotation is not necessary for such charged particle acceleration. The chaotic scatter can cause a transition to the motion along the magnetic field lines with small radius of the Larmor motion or vanishing Larmor radius, when the speed of the particle translational motion is largest and it can be ultra-relativistic. We discuss the consequences of the model of ionization of test particles forming a neutral accretion disc, or heavy ions following off-equatorial circular orbits, and we explore the fate of heavy charged test particles after ionization where no kick of heavy ions is assumed and only the switch-on effect of the magnetic field is relevant. We demonstrate that acceleration and escape of the ionized particles can be efficient along the Kerr black hole symmetry axis parallel to the magnetic field lines. We show that a strong acceleration of the ionized particles to ultra-relativistic velocities is preferred in the direction close to the magnetic field lines. Therefore, the process of ionization of Keplerian discs around the Kerr black holes can serve as a model of relativistic jets. (orig.)

  16. Acceleration of the charged particles due to chaotic scattering in the combined black hole gravitational field and asymptotically uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Stuchlik, Zdenek; Kolos, Martin [Silesian University in Opava, Faculty of Philosophy and Science, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Opava (Czech Republic)

    2016-01-15

    To test the role of large-scale magnetic fields in accretion processes, we study the dynamics of the charged test particles in the vicinity of a black hole immersed into an asymptotically uniform magnetic field. Using the Hamiltonian formalism of the charged particle dynamics, we examine chaotic scattering in the effective potential related to the black hole gravitational field combined with the uniform magnetic field. Energy interchange between the translational and oscillatory modes of the charged particle dynamics provides a mechanism for charged particle acceleration along the magnetic field lines. This energy transmutation is an attribute of the chaotic charged particle dynamics in the combined gravitational and magnetic fields only, the black hole rotation is not necessary for such charged particle acceleration. The chaotic scatter can cause a transition to the motion along the magnetic field lines with small radius of the Larmor motion or vanishing Larmor radius, when the speed of the particle translational motion is largest and it can be ultra-relativistic. We discuss the consequences of the model of ionization of test particles forming a neutral accretion disc, or heavy ions following off-equatorial circular orbits, and we explore the fate of heavy charged test particles after ionization where no kick of heavy ions is assumed and only the switch-on effect of the magnetic field is relevant. We demonstrate that acceleration and escape of the ionized particles can be efficient along the Kerr black hole symmetry axis parallel to the magnetic field lines. We show that a strong acceleration of the ionized particles to ultra-relativistic velocities is preferred in the direction close to the magnetic field lines. Therefore, the process of ionization of Keplerian discs around the Kerr black holes can serve as a model of relativistic jets. (orig.)

  17. A proposal of the gauge theory description of the small Schwarzschild black hole in AdS5×S5

    International Nuclear Information System (INIS)

    Hanada, Masanori; Maltz, Jonathan

    2017-01-01

    Based on 4d N=4 SYM on ℝ 1 ×S 3 , a gauge theory description of a small black hole in AdS 5 ×S 5 is proposed. The change of the number of dynamical degrees of freedom associated with the emission of the scalar fields’ eigenvalues plays a crucial role in this description. By analyzing the microcanonical ensemble, the Hagedorn behavior of long strings at low energy is obtained. Modulo an assumption based on the AdS/CFT duality for a large black hole, the energy of the small ten-dimensional Schwarzschild black hole E∼1/(G 10,N T 7 ) is derived. A heuristic gauge theory argument supporting this assumption is also given. The same argument applied to the ABJM theory correctly reproduces the relation for the eleven-dimensional Schwarzschild black hole. One of the consequences of our proposal is that the small and large black holes are very similar when seen from the gauge theory point of view.

  18. Revisiting van der Waals like behavior of f(R AdS black holes via the two point correlation function

    Directory of Open Access Journals (Sweden)

    Jie-Xiong Mo

    2017-05-01

    Full Text Available Van der Waals like behavior of f(R AdS black holes is revisited via two point correlation function, which is dual to the geodesic length in the bulk. The equation of motion constrained by the boundary condition is solved numerically and both the effect of boundary region size and f(R gravity are probed. Moreover, an analogous specific heat related to δL is introduced. It is shown that the T−δL graphs of f(R AdS black holes exhibit reverse van der Waals like behavior just as the T−S graphs do. Free energy analysis is carried out to determine the first order phase transition temperature T⁎ and the unstable branch in T−δL curve is removed by a bar T=T⁎. It is shown that the first order phase transition temperature is the same at least to the order of 10−10 for different choices of the parameter b although the values of free energy vary with b. Our result further supports the former finding that charged f(R AdS black holes behave much like RN-AdS black holes. We also check the analogous equal area law numerically and find that the relative errors for both the cases θ0=0.1 and θ0=0.2 are small enough. The fitting functions between log⁡|T−Tc| and log⁡|δL−δLc| for both cases are also obtained. It is shown that the slope is around 3, implying that the critical exponent is about 2/3. This result is in accordance with those in former literatures of specific heat related to the thermal entropy or entanglement entropy.

  19. Holographic research on phase transitions for a five dimensional AdS black hole with conformally coupled scalar hair

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui-Ling, E-mail: LHL51759@126.com [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, 610054 (China); College of Physics Science and Technology, Shenyang Normal University, Shenyang 110034 (China); Yang, Shu-Zheng, E-mail: szyangcwnu@126.com [Institute of Theoretical Physics, China West Normal University, Nanchong 637002 (China); Zu, Xiao-Tao, E-mail: xtzu@uestc.edu.cn [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, 610054 (China)

    2017-01-10

    In the framework of holography, we survey the phase structure for a higher dimensional hairy black hole including the effects of the scalar field hair. It is worth emphasizing that, not only black hole entropy, but also entanglement entropy and two point correlation function exhibit the Van der Waals-like phase transition in a fixed scalar charge ensemble. Furthermore, by making use of numerical computation, we show that the Maxwell's equal area law is valid for the first order phase transition. In addition, we also discuss how the hair parameter affects the black hole's phase transition.

  20. Thermodynamics of noncommutative high-dimensional AdS black holes with non-Gaussian smeared matter distributions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yan-Gang [Nankai University, School of Physics, Tianjin (China); Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, P.O. Box 2735, Beijing (China); CERN, PH-TH Division, Geneva 23 (Switzerland); Xu, Zhen-Ming [Nankai University, School of Physics, Tianjin (China)

    2016-04-15

    Considering non-Gaussian smeared matter distributions, we investigate the thermodynamic behaviors of the noncommutative high-dimensional Schwarzschild-Tangherlini anti-de Sitter black hole, and we obtain the condition for the existence of extreme black holes. We indicate that the Gaussian smeared matter distribution, which is a special case of non-Gaussian smeared matter distributions, is not applicable for the six- and higher-dimensional black holes due to the hoop conjecture. In particular, the phase transition is analyzed in detail. Moreover, we point out that the Maxwell equal area law holds for the noncommutative black hole whose Hawking temperature is within a specific range, but fails for one whose the Hawking temperature is beyond this range. (orig.)

  1. Thermodynamics of noncommutative high-dimensional AdS black holes with non-Gaussian smeared matter distributions

    CERN Document Server

    Miao, Yan-Gang

    2016-01-01

    Considering non-Gaussian smeared matter distributions, we investigate thermodynamic behaviors of the noncommutative high-dimensional Schwarzschild-Tangherlini anti-de Sitter black hole, and obtain the condition for the existence of extreme black holes. We indicate that the Gaussian smeared matter distribution, which is a special case of non-Gaussian smeared matter distributions, is not applicable for the 6- and higher-dimensional black holes due to the hoop conjecture. In particular, the phase transition is analyzed in detail. Moreover, we point out that the Maxwell equal area law maintains for the noncommutative black hole with the Hawking temperature within a specific range, but fails with the Hawking temperature beyond this range.

  2. Greybody Factors for d-Dimensional Black Holes

    CERN Document Server

    Harmark, Troels; Schiappa, Ricardo

    2007-01-01

    Gravitational greybody factors are analytically computed for static, spherically symmetric black holes in d-dimensions, including black holes with charge and in the presence of a cosmological constant (where a proper definition of greybody factors for both asymptotically dS and AdS spacetimes is provided). This calculation includes both the low-energy case --where the frequency of the scattered wave is small and real-- and the asymptotic case --where the frequency of the scattered wave is very large along the imaginary axis-- addressing gravitational perturbations as described by the Ishibashi-Kodama master equations, and yielding full transmission and reflection scattering coefficients for all considered spacetime geometries. At low frequencies a general method is developed, which can be employed for all three types of spacetime asymptotics, and which is independent of the details of the black hole. For asymptotically dS black holes the greybody factor is different for even or odd spacetime dimension, and pr...

  3. Asymptotic Eigenstructures

    Science.gov (United States)

    Thompson, P. M.; Stein, G.

    1980-01-01

    The behavior of the closed loop eigenstructure of a linear system with output feedback is analyzed as a single parameter multiplying the feedback gain is varied. An algorithm is presented that computes the asymptotically infinite eigenstructure, and it is shown how a system with high gain, feedback decouples into single input, single output systems. Then a synthesis algorithm is presented which uses full state feedback to achieve a desired asymptotic eigenstructure.

  4. Rotating spacetimes with asymptotic nonflat structure and the gyromagnetic ratio

    International Nuclear Information System (INIS)

    Aliev, Alikram N.

    2008-01-01

    In general relativity, the gyromagnetic ratio for all stationary, axisymmetric, and asymptotically flat Einstein-Maxwell fields is known to be g=2. In this paper, we continue our previous works of examination of this result for rotating charged spacetimes with asymptotic nonflat structure. We first consider two instructive examples of these spacetimes: The spacetime of a Kerr-Newman black hole with a straight cosmic string on its axis of symmetry and the Kerr-Newman Taub-NUT (Newman-Unti-Tamburino) spacetime. We show that for both spacetimes the gyromagnetic ratio g=2 independent of their asymptotic structure. We also extend this result to a general class of metrics which admit separation of variables for the Hamilton-Jacobi and wave equations. We proceed with the study of the gyromagnetic ratio in higher dimensions by considering the general solution for rotating charged black holes in minimal five-dimensional gauged supergravity. We obtain the analytic expressions for two distinct gyromagnetic ratios of these black holes that are associated with their two independent rotation parameters. These expressions reveal the dependence of the gyromagnetic ratio on both the curvature radius of the AdS background and the parameters of the black holes: The mass, electric charge, and two rotation parameters. We explore some special cases of interest and show that when the two rotation parameters are equal to each other and the rotation occurs at the maximum angular velocity, the gyromagnetic ratio g=4 regardless of the value of the electric charge. This agrees precisely with our earlier result obtained for general Kerr-AdS black holes with a test electric charge. We also show that in the Bogomol'nyi-Prasad-Sommerfield (BPS) limit the gyromagnetic ratio for a supersymmetric black hole with equal rotation parameters ranges between 2 and 4

  5. Logarithmic entropy of Kehagias-Sfetsos black hole with self-gravitation in asymptotically flat IR modified Horava gravity

    International Nuclear Information System (INIS)

    Liu Molin; Lu Junwang

    2011-01-01

    Motivated by recent logarithmic entropy of Horava-Lifshitz gravity, we investigate Hawking radiation for Kehagias-Sfetsos black hole from tunneling perspective. After considering the effect of self-gravitation, we calculate the emission rate and entropy of quantum tunneling by using Kraus-Parikh-Wilczek method. Meanwhile, both massless and massive particles are considered in this Letter. Interestingly, two types tunneling particles have the same emission rate Γ and entropy S b whose analytical formulae are Γ=exp[π(r in 2 -r out 2 )/2+π/αlnr in /r out ] and S b =A/4+π/αln(A/4), respectively. Here, α is the Horava-Lifshitz field parameter. The results show that the logarithmic entropy of Horava-Lifshitz gravity could be explained well by the self-gravitation, which is totally different from other methods. The study of this semiclassical tunneling process may shed light on understanding the Horava-Lifshitz gravity.

  6. Asymptotically spacelike warped anti-de Sitter spacetimes in generalized minimal massive gravity

    International Nuclear Information System (INIS)

    Setare, M R; Adami, H

    2017-01-01

    In this paper we show that warped AdS 3 black hole spacetime is a solution of the generalized minimal massive gravity (GMMG) and introduce suitable boundary conditions for asymptotically warped AdS 3 spacetimes. Then we find the Killing vector fields such that transformations generated by them preserve the considered boundary conditions. We calculate the conserved charges which correspond to the obtained Killing vector fields and show that the algebra of the asymptotic conserved charges is given as the semi direct product of the Virasoro algebra with U (1) current algebra. We use a particular Sugawara construction to reconstruct the conformal algebra. Thus, we are allowed to use the Cardy formula to calculate the entropy of the warped black hole. We demonstrate that the gravitational entropy of the warped black hole exactly coincides with what we obtain via Cardy’s formula. As we expect, the warped Cardy formula also gives us exactly the same result as we obtain from the usual Cardy’s formula. We calculate mass and angular momentum of the warped black hole and then check that obtained mass, angular momentum and entropy to satisfy the first law of the black hole mechanics. According to the results of this paper we believe that the dual theory of the warped AdS 3 black hole solution of GMMG is a warped CFT. (paper)

  7. Asymptotic freedom

    International Nuclear Information System (INIS)

    Meyer, P.

    1978-01-01

    After having established the renormalization group equations and the possibilities of fixed points for the effective coupling constants the non abelian gauge theories are shown to have the property of asymptotic freedom. These results are applied to the colour gauge group of the strong interactions of quarks and gluons. The behavior of the moments of the structure functions of the deep inelastic scattering of leptons on nucleons (scaling and its logarithmic violations) is then deduced with using the Wilson's operator product expansion [fr

  8. Aspects of warped AdS3/CFT2 correspondence

    Science.gov (United States)

    Chen, Bin; Zhang, Jia-Ju; Zhang, Jian-Dong; Zhong, De-Liang

    2013-04-01

    In this paper we apply the thermodynamics method to investigate the holographic pictures for the BTZ black hole, the spacelike and the null warped black holes in three-dimensional topologically massive gravity (TMG) and new massive gravity (NMG). Even though there are higher derivative terms in these theories, the thermodynamics method is still effective. It gives consistent results with the ones obtained by using asymptotical symmetry group (ASG) analysis. In doing the ASG analysis we develop a brute-force realization of the Barnich-Brandt-Compere formalism with Mathematica code, which also allows us to calculate the masses and the angular momenta of the black holes. In particular, we propose the warped AdS3/CFT2 correspondence in the new massive gravity, which states that quantum gravity in the warped spacetime could holographically dual to a two-dimensional CFT with {c_R}={c_L}=24 /{Gm{β^2√{{2( {21-4{β^2}} )}}}}.

  9. Van der Waals black hole

    Directory of Open Access Journals (Sweden)

    Aruna Rajagopal

    2014-10-01

    Full Text Available In the context of extended phase space, where the negative cosmological constant is treated as a thermodynamic pressure in the first law of black hole thermodynamics, we find an asymptotically AdS metric whose thermodynamics matches exactly that of the Van der Waals fluid. We show that as a solution of Einstein's equations, the corresponding stress energy tensor obeys (at least for certain range of metric parameters all three weak, strong, and dominant energy conditions.

  10. Thermodynamic variables of first-order entropy corrected Lovelock-AdS black holes: P{-}V criticality analysis

    Science.gov (United States)

    Haldar, Amritendu; Biswas, Ritabrata

    2018-06-01

    We investigate the effect of thermal fluctuations on the thermodynamics of a Lovelock-AdS black hole. Taking the first order logarithmic correction term in entropy we analyze the thermodynamic potentials like Helmholtz free energy, enthalpy and Gibbs free energy. We find that all the thermodynamic potentials are decreasing functions of correction coefficient α . We also examined this correction coefficient must be positive by analysing P{-}V diagram. Further we study the P{-}V criticality and stability and find that presence of logarithmic correction in it is necessary to have critical points and stable phases. When P{-}V criticality appears, we calculate the critical volume V_c, critical pressure P_c and critical temperature T_c using different equations and show that there is no critical point for this black hole without thermal fluctuations. We also study the geometrothermodynamics of this kind of black holes. The Ricci scalar of the Ruppeiner metric is graphically analysed.

  11. Q-Φ criticality in the extended phase space of (n + 1)-dimensional RN-AdS black holes

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yu-Bo [Beijing Normal University, Department of Astronomy, Beijing (China); Shanxi Datong University, School of Physics, Datong (China); Zhao, Ren [Shanxi Datong University, School of Physics, Datong (China); Cao, Shuo [Beijing Normal University, Department of Astronomy, Beijing (China)

    2016-12-15

    In order to achieve a deeper understanding of gravity theories, i.e., the quantum properties of gravity theories and the statistical explanation of gravitational entropy, it is important to further investigate the thermodynamic properties of a black hole at the critical point, besides the phase transition and critical behaviors. In this paper, by using Maxwell's equal area law, we choose T, Q, Φ as the state parameters and study the phase equilibrium problem of a general (n + 1)-dimensional RN-AdS black holes thermodynamic system. The boundary of the two-phase coexistence region and its isotherm and isopotential lines are presented, which may provide a theoretical foundation for studying the phase transition and phase structure of black hole systems. (orig.)

  12. Kerr black holes are not fragile

    Energy Technology Data Exchange (ETDEWEB)

    McInnes, Brett, E-mail: matmcinn@nus.edu.sg [Centro de Estudios Cientificos (CECs), Valdivia (Chile); National University of Singapore (Singapore)

    2012-04-21

    Certain AdS black holes are 'fragile', in the sense that, if they are deformed excessively, they become unstable to a fundamental non-perturbative stringy effect analogous to Schwinger pair-production [of branes]. Near-extremal topologically spherical AdS-Kerr black holes, which are natural candidates for string-theoretic models of the very rapidly rotating black holes that have actually been observed to exist, do represent a very drastic deformation of the AdS-Schwarzschild geometry. One therefore has strong reason to fear that these objects might be 'fragile', which in turn could mean that asymptotically flat rapidly rotating black holes might be fragile in string theory. Here we show that this does not happen: despite the severe deformation implied by near-extremal angular momenta, brane pair-production around topologically spherical AdS-Kerr-Newman black holes is always suppressed.

  13. Classical and quantum gravity of brane black holes

    International Nuclear Information System (INIS)

    Gregory, Ruth; Ross, Simon F.; Zegers, Robin

    2008-01-01

    We test the holographic conjecture of brane black holes: that a full classical 5D solution will correspond to a quantum corrected 4D black hole. Using the Schwarzschild-AdS black string, we compare the braneworld back reaction at strong coupling with the calculation of the quantum stress tensor on Schwarzschild-AdS 4 at weak coupling. The two calculations give different results and provide evidence that the stress tensor at strong coupling is indeed different to the weak coupling calculations, and hence does not conform to our notion of a quantum corrected black hole. We comment on the implications for an asymptotically flat black hole.

  14. Thermodynamic stability of warped AdS{sub 3} black holes

    Energy Technology Data Exchange (ETDEWEB)

    Birmingham, Danny, E-mail: dbirmingham@pacific.ed [Department of Physics, University of the Pacific, Stockton, CA 95211 (United States); Mokhtari, Susan, E-mail: susan@science.csustan.ed [Department of Physics, California State University Stanislaus, Turlock, CA 95382 (United States)

    2011-02-21

    We study the thermodynamic stability of warped black holes in three-dimensional topologically massive gravity. The spacelike stretched black hole is parametrized by its mass and angular momentum. We determine the local and global stability properties in the canonical and grand canonical ensembles. The presence of a Hawking-Page type transition is established, and the critical temperature is determined. The thermodynamic metric of Ruppeiner is computed, and the curvature is shown to diverge in the extremal limit. The consequences of these results for the classical stability properties of warped black holes are discussed within the context of the correlated stability conjecture.

  15. Near horizon geometry of rotating black holes in five dimensions

    International Nuclear Information System (INIS)

    Cvetic, M.; Larsen, F.

    1998-01-01

    We interpret the general rotating black holes in five dimensions as rotating black strings in six dimensions. In the near-horizon limit the geometry is locally AdS 3 x S 3 , as in the non-rotating case. However, the global structure couples the AdS 3 and the S 3 , giving angular velocity to the S 3 . The asymptotic geometry is exploited to count the microstates and recover the precise value of the Bekenstein-Hawking entropy, with rotation taken properly into account. We discuss the perturbation spectrum of the rotating black hole, and its relation to the underlying conformal field theory. (orig.)

  16. Combined effects of added beta glucan and black tea in breads on starch functionality.

    Science.gov (United States)

    Jalil, Abbe Maleyki M; Edwards, Christine A; Combet, Emilie; Ibrahim, Muhammad; Garcia, Ada L

    2015-03-01

    Bread and tea are usually consumed separately, but there may be different food-matrix interactions and changes in starch characteristics when they are combined in bread. This study developed breads (white bread, WF; black tea, BT; beta glucan, βG; beta glucan plus black tea, βGBT) and determined their starch functionalities. Breads were developed using a standard baking recipe and determined their starch characteristics. There was no significant difference in starch hydrolysis between BT and WF but βGBT reduced early (10 min) starch hydrolysis compared with βG. The starch granules in βG and βGBT were elliptical and closely packed together. These results suggest that the addition of beta glucan and black tea to bread preserved the elliptical starch granules and lowered short-term starch hydrolysis.

  17. Superradiant instabilities in the Kerr-mirror and Kerr-AdS black holes with Robin boundary conditions

    Science.gov (United States)

    Ferreira, Hugo R. C.; Herdeiro, Carlos A. R.

    2018-04-01

    It has been recently observed that a scalar field with Robin boundary conditions (RBCs) can trigger both a superradiant and a bulk instability for a Bañados-Teitelboim-Zanelli (BTZ) black hole (BH) [1]. To understand the generality and scrutinize the origin of this behavior, we consider here the superradiant instability of a Kerr BH confined either in a mirrorlike cavity or in anti-de Sitter (AdS) space, triggered also by a scalar field with RBCs. These boundary conditions are the most general ones that ensure the cavity/AdS space is an isolated system and include, as a particular case, the commonly considered Dirichlet boundary conditions (DBCs). Whereas the superradiant modes for some RBCs differ only mildly from the ones with DBCs, in both cases, we find that as we vary the RBCs the imaginary part of the frequency may attain arbitrarily large positive values. We interpret this growth as being sourced by a bulk instability of both confined geometries when certain RBCs are imposed to either the mirrorlike cavity or the AdS boundary, rather than by energy extraction from the BH, in analogy with the BTZ behavior.

  18. Conserved charges and black holes in the Einstein-Maxwell theory on AdS{sub 3} reconsidered

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Alfredo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Riquelme, Miguel [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile); Tempo, David [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Université Libre de Bruxelles and International Solvay Institutes,ULB Campus Plaine C.P.231, B-1050 Bruxelles (Belgium); Troncoso, Ricardo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile)

    2015-10-26

    Stationary circularly symmetric solutions of General Relativity with negative cosmological constant coupled to the Maxwell field are analyzed in three spacetime dimensions. Taking into account that the fall-off of the fields is slower than the standard one for a localized distribution of matter, it is shown that, by virtue of a suitable choice of the electromagnetic Lagrange multiplier, the action attains a bona fide extremum provided the asymptotic form of the electromagnetic field fulfills a nontrivial integrability condition. As a consequence, the mass and the angular momentum become automatically finite, without the need of any regularization procedure, and they generically acquire contributions from the electromagnetic field. Therefore, unlike the higher-dimensional case, it is found that the precise value of the mass and the angular momentum explicitly depends on the choice of boundary conditions. It can also be seen that requiring compatibility of the boundary conditions with the Lorentz and scaling symmetries of the class of stationary solutions, singles out a very special set of “holographic boundary conditions” that is described by a single parameter. Remarkably, in stark contrast with the somewhat pathological behaviour found in the standard case, for the holographic boundary conditions (i) the energy spectrum of an electrically charged (rotating) black hole is nonnegative, and (ii) for a fixed value of the mass, the electric charge is bounded from above.

  19. On the thermodynamics of hairy black holes

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar (Chile); Astefanesei, Dumitru [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Choque, David, E-mail: brst1010123@gmail.com [Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso (Chile)

    2015-04-09

    We investigate the thermodynamics of a general class of exact 4-dimensional asymptotically Anti-de Sitter hairy black hole solutions and show that, for a fixed temperature, there are small and large hairy black holes similar to the Schwarzschild–AdS black hole. The large black holes have positive specific heat and so they can be in equilibrium with a thermal bath of radiation at the Hawking temperature. The relevant thermodynamic quantities are computed by using the Hamiltonian formalism and counterterm method. We explicitly show that there are first order phase transitions similar to the Hawking–Page phase transition.

  20. Extraction of high value added gelatin biopolymer from black tilapia (Oreochromis mossambicus) head bones

    Science.gov (United States)

    Sockalingam, K.; Abdullah, H. Z.

    2015-07-01

    Black tilapia (Oreochromis mossambicus) fish head bones were evaluated for its possibilities in extracting gelatin. Head bones were subjected to pre-treatment with 3% of hydrochloric acid (HCl) for demineralization before undergoes thermal extraction process. The raw head bones were characterized via Scanning Electron Microscopy (SEM) in order to investigate the external and internal surface morphology. SEM images also reveal the presence of collagen fiber with 1 µm diameter in the head bone. The black tilapia fish head bones yields 5.75 % of gelatin in wet weight basis, indicating the possibility of this fish species as sources of gelatin. Further characterizations were done on both raw head bones and extracted gelatin through Fourier Transform Infrared Spectroscopy (FTIR) and proximate analysis. The head bones gelatin shows high protein (10.55%) and ash (3.11 %) content with low moisture. This further proves the effectiveness of demineralization and extraction method used. The black tilapia fish head bones are found to be a prospective source of gelatin with good chemical and functional properties.

  1. Extraction of high value added gelatin biopolymer from black tilapia (Oreochromis mossambicus) head bones

    International Nuclear Information System (INIS)

    Sockalingam, K.; Abdullah, H. Z.

    2015-01-01

    Black tilapia (Oreochromis mossambicus) fish head bones were evaluated for its possibilities in extracting gelatin. Head bones were subjected to pre-treatment with 3% of hydrochloric acid (HCl) for demineralization before undergoes thermal extraction process. The raw head bones were characterized via Scanning Electron Microscopy (SEM) in order to investigate the external and internal surface morphology. SEM images also reveal the presence of collagen fiber with 1 µm diameter in the head bone. The black tilapia fish head bones yields 5.75 % of gelatin in wet weight basis, indicating the possibility of this fish species as sources of gelatin. Further characterizations were done on both raw head bones and extracted gelatin through Fourier Transform Infrared Spectroscopy (FTIR) and proximate analysis. The head bones gelatin shows high protein (10.55%) and ash (3.11 %) content with low moisture. This further proves the effectiveness of demineralization and extraction method used. The black tilapia fish head bones are found to be a prospective source of gelatin with good chemical and functional properties

  2. Extraction of high value added gelatin biopolymer from black tilapia (Oreochromis mossambicus) head bones

    Energy Technology Data Exchange (ETDEWEB)

    Sockalingam, K., E-mail: gd130106@siswa.uthm.edu.my; Abdullah, H. Z., E-mail: hasan@uthm.edu.my [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor (Malaysia)

    2015-07-22

    Black tilapia (Oreochromis mossambicus) fish head bones were evaluated for its possibilities in extracting gelatin. Head bones were subjected to pre-treatment with 3% of hydrochloric acid (HCl) for demineralization before undergoes thermal extraction process. The raw head bones were characterized via Scanning Electron Microscopy (SEM) in order to investigate the external and internal surface morphology. SEM images also reveal the presence of collagen fiber with 1 µm diameter in the head bone. The black tilapia fish head bones yields 5.75 % of gelatin in wet weight basis, indicating the possibility of this fish species as sources of gelatin. Further characterizations were done on both raw head bones and extracted gelatin through Fourier Transform Infrared Spectroscopy (FTIR) and proximate analysis. The head bones gelatin shows high protein (10.55%) and ash (3.11 %) content with low moisture. This further proves the effectiveness of demineralization and extraction method used. The black tilapia fish head bones are found to be a prospective source of gelatin with good chemical and functional properties.

  3. A black hole with torsion in 5D Lovelock gravity

    Science.gov (United States)

    Cvetković, B.; Simić, D.

    2018-03-01

    We analyze static spherically symmetric solutions of five dimensional (5D) Lovelock gravity in the first order formulation. In the Riemannian sector, when torsion vanishes, the Boulware–Deser black hole represents a unique static spherically symmetric black hole solution for the generic choice of the Lagrangian parameters. We show that a special choice of the Lagrangian parameters, different from the Lovelock Chern–Simons gravity, leads to the existence of a static black hole solution with torsion, the metric of which is asymptotically anti-de Sitter (AdS). We calculate the conserved charges and thermodynamical quantities of this black hole solution.

  4. A cardy formula for three-point coefficients or how the black hole got its spots

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Per [Department of Physics and Astronomy, University of California,Los Angeles, CA 90095 (United States); Maloney, Alexander [Physics Department, McGill University,Montréal, QC H3A 2T8 (Canada)

    2017-05-31

    Modular covariance of torus one-point functions constrains the three point function coefficients of a two dimensional CFT. This leads to an asymptotic formula for the average value of light-heavy-heavy three point coefficients, generalizing Cardy’s formula for the high energy density of states. The derivation uses certain asymptotic properties of one-point conformal blocks on the torus. Our asymptotic formula matches a dual AdS{sub 3} computation of one point functions in a black hole background. This is evidence that the BTZ black hole geometry emerges upon course-graining over a suitable family of heavy microstates.

  5. Effect of adding Black seeds, Nigella Sativa, in growing lambs diets on their performance

    International Nuclear Information System (INIS)

    Saleh, S.A.

    2006-01-01

    Eighteen growing male lambs, four months old, were randomly divided into two equal groups, nine in each. Animals of each group were fed on one of the two tested diets. The first group fed on the basal diet as a control, while the other one fed the basal diet supplemented daily with 5 grams/head of black seeds. Wheat straw and concentrate feed mixture (CFM) were used at the ratio of 30:70, respectively. Lambs were weighed at the beginning of the experimental period then at three weeks intervals till the end of the experiment, which lasted for 118 days. At the end of experimental period, four animals from each group were used to evaluate the digestibility and nutritive values of the two experimental diets. Rumen liquor samples were taken from three animals of each group. Blood samples were withdrawn from the jugular vein of each animal in the morning before feeding once each three weeks. The results showed that lambs fed diet supplemented with Black seed had significant higher digestibility values for CP, EE and NFE than those fed control diet. The percentage of apparent nitrogen utilization showed similar trend. In addition, the total VFAs was also affected by supplementation while the values of ph and ammonia-N were not affected by treatment diet. Average daily weight gain (ADG) and feed efficiency (Kg DMI/Kg gain) were better for treated group than control group. Significant differences were found also in total protein, albumin, globulin, urea, total cholesterol, triglycerides and T3 values. These Results indicated that Black seeds could be successfully used in formulating the concentrate feed mixture of growing lambs up to 5 grams/head without any negative effects on their performance and health

  6. Anti-de Sitter black holes in gauged supergravity. Supergravity flow, thermodynamics and phase transitions

    NARCIS (Netherlands)

    Toldo, C.

    2014-01-01

    This thesis is devoted to the analysis of asymptotically Anti-de Sitter (AdS) black holes arising as solutions of theories of gauged Supergravity in four spacetime dimensions. After a brief recap of the main features of gauged supergravity, the first part of the thesis deals with the explicit

  7. The Cardy limit of the topologically twisted index and black strings in AdS{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Seyed Morteza; Nedelin, Anton; Zaffaroni, Alberto [Dipartimento di Fisica, Università di Milano-Bicocca,I-20126 Milano (Italy); INFN, Sezione di Milano-Bicocca,I-20126 Milano (Italy)

    2017-04-04

    We evaluate the topologically twisted index of a general four-dimensional N=1 gauge theory in the “high-temperature' limit. The index is the partition function for N=1 theories on S{sup 2}×T{sup 2}, with a partial topological twist along S{sup 2}, in the presence of background magnetic fluxes and fugacities for the global symmetries. We show that the logarithm of the index is proportional to the conformal anomaly coefficient of the two-dimensional N=(0,2) SCFTs obtained from the compactification on S{sup 2}. We also present a universal formula for extracting the index from the four-dimensional conformal anomaly coefficient and its derivatives. We give examples based on theories whose holographic duals are black strings in type IIB backgrounds AdS{sub 5}×SE{sub 5}, where SE{sub 5} are five-dimensional Sasaki-Einstein spaces.

  8. Thermodynamics and stability of flat anti-de Sitter black strings

    International Nuclear Information System (INIS)

    Chen Si; Schleich, Kristin; Witt, Donald M.

    2008-01-01

    We examine the thermodynamics and stability of 5-dimensional flat anti-de Sitter (AdS) black strings, locally asymptotically anti-de Sitter spacetimes whose spatial sections are AdS black holes with Ricci flat horizons. We find that there is a phase transition for the flat AdS black string when the AdS soliton string is chosen as the thermal background. We find that this bulk phase transition corresponds to a 4-dimensional flat AdS black hole to AdS soliton phase transition on the boundary Karch-Randall branes. We compute the possibility of a phase transition from a flat AdS black string to a 5-dimensional AdS soliton and show that, though possible for certain thin black strings, the transition to the AdS soliton string is preferred. In contrast to the case of the Schwarzschild-AdS black string, we find that the specific heat of the flat AdS black string is always positive; hence it is thermodynamically stable. We show numerically that both the flat AdS black string and AdS soliton string are free of a Gregory-Laflamme instability for all values of the mass parameter. Therefore thermodynamic stability implies perturbative stability for this spacetime. This may indicate that a generalization of the Gubser-Mitra conjecture, in which the assumption of a translational killing vector is weakened to that of a conformal killing vector of translational form, holds under certain conditions.

  9. Asymptotic numbers, asymptotic functions and distributions

    International Nuclear Information System (INIS)

    Todorov, T.D.

    1979-07-01

    The asymptotic functions are a new type of generalized functions. But they are not functionals on some space of test-functions as the distributions of Schwartz. They are mappings of the set denoted by A into A, where A is the set of the asymptotic numbers introduced by Christov. On its part A is a totally-ordered set of generalized numbers including the system of real numbers R as well as infinitesimals and infinitely large numbers. Every two asymptotic functions can be multiplied. On the other hand, the distributions have realizations as asymptotic functions in a certain sense. (author)

  10. Supersymmetry of anti-de Sitter black holes

    International Nuclear Information System (INIS)

    Caldarelli, Marco M.; Klemm, Dietmar

    1999-01-01

    We examine supersymmetry of four-dimensional asymptotically anti-de Sitter (AdS) dyonic black holes in the context of gauged N = 2 supergravity. Our calculations concentrate on black holes with unusual topology and their rotating generalizations, but we also reconsider the spherical rotating dyonic Ker-Newman-AdS black hole, whose supersymmetry properties have previously been investigated by Kostelecky and Perry within another approach. We find that in the case of spherical, toroidal or cylindrical event horizon topology, the black holes must rotate in order to preserve some supersymmetry; the non-rotating supersymmetric configurations representing naked singularities. However, we show that this is no more true for black holes whose event horizons are Riemann surfaces of genus g > 1, where we find a non-rotating extremal solitonic black hole carrying magnetic charge and permitting one Killing spinor. For the non-rotating supersymmetric configurations of various topologies, all Killing spinors are explicitly constructed

  11. Validity of Maxwell equal area law for black holes conformally coupled to scalar fields in AdS{sub 5} spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yan-Gang; Xu, Zhen-Ming [Nankai University, School of Physics, Tianjin (China)

    2017-06-15

    We investigate the P - V criticality and the Maxwell equal area law for a five-dimensional spherically symmetric AdS black hole with a scalar hair in the absence of and in the presence of a Maxwell field, respectively. Especially in the charged case, we give the exact P - V critical values. More importantly, we analyze the validity and invalidity of the Maxwell equal area law for the AdS hairy black hole in the scenarios without and with charges, respectively. Within the scope of validity of the Maxwell equal area law, we point out that there exists a representative van der Waals-type oscillation in the P - V diagram. This oscillating part, which indicates the phase transition from a small black hole to a large one, can be replaced by an isobar. The small and large black holes have the same Gibbs free energy. We also give the distribution of the critical points in the parameter space both without and with charges, and we obtain for the uncharged case the fitting formula of the co-existence curve. Meanwhile, the latent heat is calculated, which gives the energy released or absorbed between the small and large black hole phases in the isothermal-isobaric procedure. (orig.)

  12. Finite action for Chern-Simons Ads gravity

    Energy Technology Data Exchange (ETDEWEB)

    Mora, P.; Olea, R.; Troncoso, R.; Zanelli, J. E-mail: jz@cecs.cl

    2004-06-01

    A finite principle for Chern-Simons AdS gravity is presented. The construction is carried out in detail first in five dimensions, where the bulk action is given by a particular combination of the Einstein-Hilbert action with negative cosmological constant and a Gauss-Bonnet term; and is then generalized for arbitrary odd dimensions. The boundary term needed to render the action finite is singled out demanding the action to attain an extremum for an appropriate set of boundary conditions. The boundary term is a local function of the fields at the boundary and is sufficient to render the action finite for asymptotically AdS solutions, without requiring background fields. It is shown that the Euclidean continuation of the action correctly describes black hole thermodynamics in the canonical ensemble. Additionally, background independent conserved charges associated with the asymptotic symmetries can be written as surface integrals by direct application of Noether's theorem. (author)

  13. Asymptotically Safe Dark Matter

    DEFF Research Database (Denmark)

    Sannino, Francesco; Shoemaker, Ian M.

    2015-01-01

    We introduce a new paradigm for dark matter (DM) interactions in which the interaction strength is asymptotically safe. In models of this type, the coupling strength is small at low energies but increases at higher energies, and asymptotically approaches a finite constant value. The resulting...... searches are the primary ways to constrain or discover asymptotically safe dark matter....

  14. Hairy AdS solitons

    International Nuclear Information System (INIS)

    Anabalón, Andrés; Astefanesei, Dumitru; Choque, David

    2016-01-01

    We construct exact hairy AdS soliton solutions in Einstein-dilaton gravity theory. We examine their thermodynamic properties and discuss the role of these solutions for the existence of first order phase transitions for hairy black holes. The negative energy density associated to hairy AdS solitons can be interpreted as the Casimir energy that is generated in the dual filed theory when the fermions are antiperiodic on the compact coordinate.

  15. Hairy AdS solitons

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés, E-mail: andres.anabalon@uai.cl [Departamento de Ciencias, Facultad de Artes Liberales and Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar (Chile); Astefanesei, Dumitru, E-mail: dumitru.astefanesei@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Choque, David, E-mail: brst1010123@gmail.com [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile)

    2016-11-10

    We construct exact hairy AdS soliton solutions in Einstein-dilaton gravity theory. We examine their thermodynamic properties and discuss the role of these solutions for the existence of first order phase transitions for hairy black holes. The negative energy density associated to hairy AdS solitons can be interpreted as the Casimir energy that is generated in the dual filed theory when the fermions are antiperiodic on the compact coordinate.

  16. AdS2 holographic dictionary

    International Nuclear Information System (INIS)

    Cvetič, Mirjam; Papadimitriou, Ioannis

    2016-01-01

    We construct the holographic dictionary for both running and constant dilaton solutions of the two dimensional Einstein-Maxwell-Dilaton theory that is obtained by a circle reduction from Einstein-Hilbert gravity with negative cosmological constant in three dimensions. This specific model ensures that the dual theory has a well defined ultraviolet completion in terms of a two dimensional conformal field theory, but our results apply qualitatively to a wider class of two dimensional dilaton gravity theories. For each type of solutions we perform holographic renormalization, compute the exact renormalized one-point functions in the presence of arbitrary sources, and derive the asymptotic symmetries and the corresponding conserved charges. In both cases we find that the scalar operator dual to the dilaton plays a crucial role in the description of the dynamics. Its source gives rise to a matter conformal anomaly for the running dilaton solutions, while its expectation value is the only non trivial observable for constant dilaton solutions. The role of this operator has been largely overlooked in the literature. We further show that the only non trivial conserved charges for running dilaton solutions are the mass and the electric charge, while for constant dilaton solutions only the electric charge is non zero. However, by uplifting the solutions to three dimensions we show that constant dilaton solutions can support non trivial extended symmetry algebras, including the one found by Compère, Song and Strominger http://dx.doi.org/10.1007/JHEP05(2013)152, in agreement with the results of Castro and Song http://arxiv.org/abs/1411.1948. Finally, we demonstrate that any solution of this specific dilaton gravity model can be uplifted to a family of asymptotically AdS 2 ×S 2 or conformally AdS 2 ×S 2 solutions of the STU model in four dimensions, including non extremal black holes. The four dimensional solutions obtained by uplifting the running dilaton solutions coincide

  17. Asymptotic and geometrical quantization

    International Nuclear Information System (INIS)

    Karasev, M.V.; Maslov, V.P.

    1984-01-01

    The main ideas of geometric-, deformation- and asymptotic quantizations are compared. It is shown that, on the one hand, the asymptotic approach is a direct generalization of exact geometric quantization, on the other hand, it generates deformation in multiplication of symbols and Poisson brackets. Besides investigating the general quantization diagram, its applications to the calculation of asymptotics of a series of eigenvalues of operators possessing symmetry groups are considered

  18. Current status of AdS instability

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    arXiv:1403.6471 and thoroughly developed in arXiv:1407.6273. On the other hand the negative cosmological constant allows for the existence of stable, time-periodic, asymptotically AdS solutions of Einstein equations [arXiv:1303.3186].

  19. Asymptotics and Borel summability

    CERN Document Server

    Costin, Ovidiu

    2008-01-01

    Incorporating substantial developments from the last thirty years into one resource, Asymptotics and Borel Summability provides a self-contained introduction to asymptotic analysis with special emphasis on topics not covered in traditional asymptotics books. The author explains basic ideas, concepts, and methods of generalized Borel summability, transseries, and exponential asymptotics. He provides complete mathematical rigor while supplementing it with heuristic material and examples, so that some proofs may be omitted by applications-oriented readers.To give a sense of how new methods are us

  20. Asymptotically Optimal Agents

    OpenAIRE

    Lattimore, Tor; Hutter, Marcus

    2011-01-01

    Artificial general intelligence aims to create agents capable of learning to solve arbitrary interesting problems. We define two versions of asymptotic optimality and prove that no agent can satisfy the strong version while in some cases, depending on discounting, there does exist a non-computable weak asymptotically optimal agent.

  1. The Phase Transition of Higher Dimensional Charged Black Holes

    International Nuclear Information System (INIS)

    Li, Huaifan; Zhao, Ren; Zhang, Lichun; Guo, Xiongying

    2016-01-01

    We have studied phase transitions of higher dimensional charge black hole with spherical symmetry. We calculated the local energy and local temperature and find that these state parameters satisfy the first law of thermodynamics. We analyze the critical behavior of black hole thermodynamic system by taking state parameters (Q,Φ) of black hole thermodynamic system, in accordance with considering the state parameters (P,V) of van der Waals system, respectively. We obtain the critical point of black hole thermodynamic system and find that the critical point is independent of the dual independent variables we selected. This result for asymptotically flat space is consistent with that for AdS spacetime and is intrinsic property of black hole thermodynamic system.

  2. Aspects of hairy black holes

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés, E-mail: andres.anabalon-at@uai.cl [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar (Chile); Astefanesei, Dumitru [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile)

    2015-03-26

    We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.

  3. Asymptotic numbers: Pt.1

    International Nuclear Information System (INIS)

    Todorov, T.D.

    1980-01-01

    The set of asymptotic numbers A as a system of generalized numbers including the system of real numbers R, as well as infinitely small (infinitesimals) and infinitely large numbers, is introduced. The detailed algebraic properties of A, which are unusual as compared with the known algebraic structures, are studied. It is proved that the set of asymptotic numbers A cannot be isomorphically embedded as a subspace in any group, ring or field, but some particular subsets of asymptotic numbers are shown to be groups, rings, and fields. The algebraic operation, additive and multiplicative forms, and the algebraic properties are constructed in an appropriate way. It is shown that the asymptotic numbers give rise to a new type of generalized functions quite analogous to the distributions of Schwartz allowing, however, the operation multiplication. A possible application of these functions to quantum theory is discussed

  4. Asymptotic freedom without guilt

    International Nuclear Information System (INIS)

    Ma, E.

    1979-01-01

    The notion of asymptotic freedom in quantum chromodynamics is explained on general physical grounds, without invoking the formal arguments of renormalizable quantum field theory. The related concept of quark confinement is also discussed along the same line. 5 references

  5. Asymptotically Safe Standard Model via Vectorlike Fermions

    Science.gov (United States)

    Mann, R. B.; Meffe, J. R.; Sannino, F.; Steele, T. G.; Wang, Z. W.; Zhang, C.

    2017-12-01

    We construct asymptotically safe extensions of the standard model by adding gauged vectorlike fermions. Using large number-of-flavor techniques we argue that all gauge couplings, including the hypercharge and, under certain conditions, the Higgs coupling, can achieve an interacting ultraviolet fixed point.

  6. Mass, entropy, and holography in asymptotically de Sitter spaces

    International Nuclear Information System (INIS)

    Balasubramanian, Vijay; Boer, Jan de; Minic, Djordje

    2002-01-01

    We propose a novel prescription for computing the boundary stress tensor and charges of asymptotically de Sitter (dS) spacetimes from data at early or late time infinity. If there is a holographic dual to dS spaces, defined analogously to the AdS/conformal field theory correspondence, our methods compute the (Euclidean) stress tensor of the dual. We compute the masses of Schwarzschild-de Sitter black holes in four and five dimensions, and the masses and angular momenta of Kerr-de Sitter spaces in three dimensions. All these spaces are less massive than de Sitter space, a fact which we use to qualitatively and quantitatively relate de Sitter entropy to the degeneracy of possible dual field theories. Our results in general dimensions lead to a conjecture: Any asymptotically de Sitter spacetime with mass greater than de Sitter space has a cosmological singularity. Finally, if a dual to de Sitter space exists, the trace of our stress tensor computes the renormalized group (RG) equation of the dual field theory. Cosmological time evolution corresponds to RG evolution in the dual. The RG evolution of the c function is then related to changes in accessible degrees of freedom in an expanding universe

  7. Hydro-elastic complementarity in black branes at large D

    Energy Technology Data Exchange (ETDEWEB)

    Emparan, Roberto [ICREA, Passeig Lluís Companys 23, E-08010 Barcelona (Spain); Departament de Física Fonamental, Institut de Ciències del Cosmos, Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain); Izumi, Keisuke; Luna, Raimon [Departament de Física Fonamental, Institut de Ciències del Cosmos, Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain); Suzuki, Ryotaku [Department of Physics, Osaka City University, Osaka 558-8585 (Japan); Tanabe, Kentaro [Theory Center, Institute of Particles and Nuclear Studies, KEK,Tsukuba, Ibaraki, 305-0801 (Japan)

    2016-06-21

    We obtain the effective theory for the non-linear dynamics of black branes — both neutral and charged, in asymptotically flat or Anti-deSitter spacetimes — to leading order in the inverse-dimensional expansion. We find that black branes evolve as viscous fluids, but when they settle down they are more naturally viewed as solutions of an elastic soap-bubble theory. The two views are complementary: the same variable is regarded in one case as the energy density of the fluid, in the other as the deformation of the elastic membrane. The large-D theory captures finite-wavelength phenomena beyond the conventional reach of hydrodynamics. For asymptotically flat charged black branes (either Reissner-Nordstrom or p-brane-charged black branes) it yields the non-linear evolution of the Gregory-Laflamme instability at large D and its endpoint at stable non-uniform black branes. For Reissner-Nordstrom AdS black branes we find that sound perturbations do not propagate (have purely imaginary frequency) when their wavelength is below a certain charge-dependent value. We also study the polarization of black branes induced by an external electric field.

  8. Lorentzian AdS, Wormholes and Holography

    CERN Document Server

    Arias, Raul E; Silva, Guillermo A

    2011-01-01

    We investigate the structure of two point functions for the QFT dual to an asymptotically Lorentzian AdS-wormhole. The bulk geometry is a solution of 5-dimensional second order Einstein Gauss Bonnet gravity and causally connects two asymptotically AdS space times. We revisit the GKPW prescription for computing two-point correlation functions for dual QFT operators O in Lorentzian signature and we propose to express the bulk fields in terms of the independent boundary values phi_0^\\pm at each of the two asymptotic AdS regions, along the way we exhibit how the ambiguity of normalizable modes in the bulk, related to initial and final states, show up in the computations. The independent boundary values are interpreted as sources for dual operators O^\\pm and we argue that, apart from the possibility of entanglement, there exists a coupling between the degrees of freedom leaving at each boundary. The AdS_(1+1) geometry is also discussed in view of its similar boundary structure. Based on the analysis, we propose a ...

  9. Black hole thermodynamics, conformal couplings, and R 2 terms

    Science.gov (United States)

    Chernicoff, Mariano; Galante, Mario; Giribet, Gaston; Goya, Andres; Leoni, Matias; Oliva, Julio; Perez-Nadal, Guillem

    2016-06-01

    Lovelock theory provides a tractable model of higher-curvature gravity in which several questions can be studied analytically. This is the reason why, in the last years, this theory has become the favorite arena to study the effects of higher-curvature terms in the context of AdS/CFT correspondence. Lovelock theory also admits extensions that permit to accommodate matter coupled to gravity in a non-minimal way. In this setup, problems such as the backreaction of matter on the black hole geometry can also be solved exactly. In this paper, we study the thermodynamics of black holes in theories of gravity of this type, which include both higher-curvature terms, U(1) gauge fields, and conformal couplings with matter fields in D dimensions. These charged black hole solutions exhibit a backreacting scalar field configuration that is regular everywhere outside and on the horizon, and may exist both in asymptotically flat and asymptotically Anti-de Sitter (AdS) spaces. We work out explicitly the boundary action for this theory, which renders the variational problem well-posed and suffices to regularize the Euclidean action in AdS. We also discuss several interrelated properties of the theory, such as its duality symmetry under field redefinition and how it acts on black holes and gravitational wave solutions.

  10. Black hole thermodynamics, conformal couplings, and R2 terms

    International Nuclear Information System (INIS)

    Chernicoff, Mariano; Galante, Mario; Giribet, Gaston; Goya, Andres; Leoni, Matias; Oliva, Julio; Perez-Nadal, Guillem

    2016-01-01

    Lovelock theory provides a tractable model of higher-curvature gravity in which several questions can be studied analytically. This is the reason why, in the last years, this theory has become the favorite arena to study the effects of higher-curvature terms in the context of AdS/CFT correspondence. Lovelock theory also admits extensions that permit to accommodate matter coupled to gravity in a non-minimal way. In this setup, problems such as the backreaction of matter on the black hole geometry can also be solved exactly. In this paper, we study the thermodynamics of black holes in theories of gravity of this type, which include both higher-curvature terms, U(1) gauge fields, and conformal couplings with matter fields in D dimensions. These charged black hole solutions exhibit a backreacting scalar field configuration that is regular everywhere outside and on the horizon, and may exist both in asymptotically flat and asymptotically Anti-de Sitter (AdS) spaces. We work out explicitly the boundary action for this theory, which renders the variational problem well-posed and suffices to regularize the Euclidean action in AdS. We also discuss several interrelated properties of the theory, such as its duality symmetry under field redefinition and how it acts on black holes and gravitational wave solutions.

  11. Quasi-extended asymptotic functions

    International Nuclear Information System (INIS)

    Todorov, T.D.

    1979-01-01

    The class F of ''quasi-extended asymptotic functions'' is introduced. It contains all extended asymptotic functions as well as some new asymptotic functions very similar to the Schwartz distributions. On the other hand, every two quasiextended asymptotic functions can be multiplied as opposed to the Schwartz distributions; in particular, the square delta 2 of an asymptotic function delta similar to Dirac's delta-function, is constructed as an example

  12. Eikonal instability of Gauss-Bonnet-(anti-)-de Sitter black holes

    Science.gov (United States)

    Konoplya, R. A.; Zhidenko, A.

    2017-05-01

    Here we have shown that asymptotically anti-de Sitter (AdS) black holes in the Einstein-Gauss-Bonnet (GB) theory are unstable under linear perturbations of space-time in some region of parameters. This (eikonal) instability develops at high multipole numbers. We found the exact parametric regions of the eikonal instability and extended this consideration to asymptotically flat and de Sitter cases. The approach to the threshold of instability is driven by purely imaginary quasinormal modes, which are similar to those found recently in Grozdanov, Kaplis, and Starinets, [J. High Energy Phys. 07 (2016) 151, 10.1007/JHEP07(2016)151] for the higher curvature corrected black hole with the planar horizon. The found instability may indicate limits of holographic applicability of the GB-AdS backgrounds. Recently, through the analysis of critical behavior in AdS space-time in the presence of the Gauss-Bonnet term, it was shown [Deppe et al, Phys. Rev. Lett. 114, 071102 (2015), 10.1103/PhysRevLett.114.071102], that, if the total energy content of the AdS space-time is small, then no black holes can be formed with mass less than some critical value. A similar mass gap was also found when considering collapse of mass shells in asymptotically flat Gauss-Bonnet theories [Frolov, Phys. Rev. Lett. 115, 051102 (2015), 10.1103/PhysRevLett.115.051102]. The found instability of all sufficiently small Einstein-Gauss-Bonnet-AdS, dS and asymptotically flat black holes may explain the existing mass gaps in their formation.

  13. Chern–Simons dilaton black holes in 2 + 1 dimensions

    International Nuclear Information System (INIS)

    Moussa, Karim Ait; Clément, Gérard; Guennoune, Hakim

    2016-01-01

    We construct rotating magnetic solutions to the three-dimensional Einstein–Maxwell–Chern–Simons-dilaton theory with a Liouville potential. These include a class of black hole solutions which generalize the warped AdS black holes. The regular black holes belong to two disjointed sectors. The first sector includes black holes which have a positive mass and are co-rotating, while the black holes of the second sector have a negative mass and are counter-rotating. We also show that a particular, non-black hole, subfamily of our three-dimensional solutions may be uplifted to new regular non-asymptotically flat solutions of five-dimensional Einstein–Maxwell–Chern–Simons theory. (paper)

  14. Perils of Asymptotics

    International Nuclear Information System (INIS)

    Dewar, R. L.

    1995-01-01

    A large part of physics consists of learning which asymptotic methods to apply where, yet physicists are not always taught asymptotics in a systematic way. Asymptotology is given using an example from aerodynamics, and a rent Phys. Rev. Letter Comment is used as a case study of one subtle way things can go wrong. It is shown that the application of local analysis leads to erroneous conclusions regarding the existence of a continuous spectrum in a simple test problem, showing that a global analysis must be used. The final section presents results on a more sophisticated example, namely the WKBJ solution of Mathieu equation. 13 refs., 2 figs

  15. Black holes in quasi-topological gravity and conformal couplings

    Science.gov (United States)

    Chernicoff, Mariano; Fierro, Octavio; Giribet, Gaston; Oliva, Julio

    2017-02-01

    Lovelock theory of gravity provides a tractable model to investigate the effects of higher-curvature terms in the context of AdS/CFT. Yielding second order, ghost-free field equations, this theory represents a minimal setup in which higher-order gravitational couplings in asymptotically Anti-de Sitter (AdS) spaces, including black holes, can be solved analytically. This however has an obvious limitation as in dimensions lower than seven, the contribution from cubic or higher curvature terms is merely topological. Therefore, in order to go beyond quadratic order and study higher terms in AdS5 analytically, one is compelled to look for other toy models. One such model is the so-called quasi-topological gravity, which, despite being a higher-derivative theory, provides a tractable setup with R 3 and R 4 terms. In this paper, we investigate AdS5 black holes in quasi-topological gravity. We consider the theory conformally coupled to matter and in presence of Abelian gauge fields. We show that charged black holes in AdS5 which, in addition, exhibit a backreaction of the matter fields on the geometry can be found explicitly in this theory. These solutions generalize the black hole solution of quasi-topological gravity and exist in a region of the parameter spaces consistent with the constraints coming from causality and other consistency conditions. They have finite conserved charges and exhibit non-trivial thermodynamical properties.

  16. Black holes in quasi-topological gravity and conformal couplings

    International Nuclear Information System (INIS)

    Chernicoff, Mariano; Fierro, Octavio; Giribet, Gaston; Oliva, Julio

    2017-01-01

    Lovelock theory of gravity provides a tractable model to investigate the effects of higher-curvature terms in the context of AdS/CFT. Yielding second order, ghost-free field equations, this theory represents a minimal setup in which higher-order gravitational couplings in asymptotically Anti-de Sitter (AdS) spaces, including black holes, can be solved analytically. This however has an obvious limitation as in dimensions lower than seven, the contribution from cubic or higher curvature terms is merely topological. Therefore, in order to go beyond quadratic order and study higher terms in AdS 5 analytically, one is compelled to look for other toy models. One such model is the so-called quasi-topological gravity, which, despite being a higher-derivative theory, provides a tractable setup with R 3 and R 4 terms. In this paper, we investigate AdS 5 black holes in quasi-topological gravity. We consider the theory conformally coupled to matter and in presence of Abelian gauge fields. We show that charged black holes in AdS 5 which, in addition, exhibit a backreaction of the matter fields on the geometry can be found explicitly in this theory. These solutions generalize the black hole solution of quasi-topological gravity and exist in a region of the parameter spaces consistent with the constraints coming from causality and other consistency conditions. They have finite conserved charges and exhibit non-trivial thermodynamical properties.

  17. Asymptotic safety guaranteed

    DEFF Research Database (Denmark)

    Litim, Daniel F.; Sannino, Francesco

    2014-01-01

    We study the ultraviolet behaviour of four-dimensional quantum field theories involving non-abelian gauge fields, fermions and scalars in the Veneziano limit. In a regime where asymptotic freedom is lost, we explain how the three types of fields cooperate to develop fully interacting ultraviolet ...

  18. An asymptotical machine

    Science.gov (United States)

    Cristallini, Achille

    2016-07-01

    A new and intriguing machine may be obtained replacing the moving pulley of a gun tackle with a fixed point in the rope. Its most important feature is the asymptotic efficiency. Here we obtain a satisfactory description of this machine by means of vector calculus and elementary trigonometry. The mathematical model has been compared with experimental data and briefly discussed.

  19. Asymptotics of relativistic spin networks

    International Nuclear Information System (INIS)

    Barrett, John W; Steele, Christopher M

    2003-01-01

    The stationary phase technique is used to calculate asymptotic formulae for SO(4) relativistic spin networks. For the tetrahedral spin network this gives the square of the Ponzano-Regge asymptotic formula for the SU(2) 6j-symbol. For the 4-simplex (10j-symbol) the asymptotic formula is compared with numerical calculations of the spin network evaluation. Finally, we discuss the asymptotics of the SO(3, 1) 10j-symbol

  20. Variationally Asymptotically Stable Difference Systems

    Directory of Open Access Journals (Sweden)

    Goo YoonHoe

    2007-01-01

    Full Text Available We characterize the h-stability in variation and asymptotic equilibrium in variation for nonlinear difference systems via n∞-summable similarity and comparison principle. Furthermore we study the asymptotic equivalence between nonlinear difference systems and their variational difference systems by means of asymptotic equilibria of two systems.

  1. w∞ algebras, conformal mechanics and black holes

    Science.gov (United States)

    Cacciatori, Sergio; Klemm, Dietmar; Zanon, Daniela

    2000-04-01

    We discuss BPS solitons in gauged icons/Journals/Common/calN" ALT="calN" ALIGN="TOP"/> = 2, D = 4 supergravity. The solitons represent extremal black holes interpolating between different vacua of anti-de Sitter spaces. The isometry superalgebras are determined and the motion of a superparticle in the extremal black hole background is studied and confronted with superconformal mechanics. We show that the Virasoro symmetry of conformal mechanics, which describes the dynamics of the superparticle near the horizon of the extremal black hole under consideration, extends to a symmetry under the wicons/Journals/Common/infty" ALT="infty" ALIGN="MIDDLE"/> algebra of area-preserving diffeomorphisms. We find that a Virasoro subalgebra of wicons/Journals/Common/infty" ALT="infty" ALIGN="MIDDLE"/> can be associated with the Virasoro algebra of the asymptotic symmetries of AdS 2 . In this way spacetime diffeomorphisms of AdS 2 translate into diffeomorphisms in phase space: our system offers an explicit realization of the AdS 2 /CFT 1 correspondence. Using the dimensionally reduced action, the central charge is computed. Finally, we also present generalizations of superconformal mechanics which are invariant under icons/Journals/Common/calN" ALT="calN" ALIGN="TOP"/> = 1 and icons/Journals/Common/calN" ALT="calN" ALIGN="TOP"/> = 2 superextensions of wicons/Journals/Common/infty" ALT="infty" ALIGN="MIDDLE"/> .

  2. Perturbed asymptotically linear problems

    OpenAIRE

    Bartolo, R.; Candela, A. M.; Salvatore, A.

    2012-01-01

    The aim of this paper is investigating the existence of solutions of some semilinear elliptic problems on open bounded domains when the nonlinearity is subcritical and asymptotically linear at infinity and there is a perturbation term which is just continuous. Also in the case when the problem has not a variational structure, suitable procedures and estimates allow us to prove that the number of distinct crtitical levels of the functional associated to the unperturbed problem is "stable" unde...

  3. Model Hadron asymptotic behaviour

    International Nuclear Information System (INIS)

    Kralchevsky, P.; Nikolov, A.

    1983-01-01

    The work is devoted to the problem of solving a set of asymptotic equations describing the model hardon interaction. More specifically an interactive procedure consisting of two stages is proposed and the first stage is exhaustively studied here. The principle of contracting transformations has been applied for this purpose. Under rather general and natural assumptions, solutions in a series of metric spaces suitable for physical applications have been found. For each of these spaces a solution with unique definiteness is found. (authors)

  4. Extended asymptotic functions - some examples

    International Nuclear Information System (INIS)

    Todorov, T.D.

    1981-01-01

    Several examples of extended asymptotic functions of two variables are given. This type of asymptotic functions has been introduced as an extension of continuous ordinary functions. The presented examples are realizations of some Schwartz distributions delta(x), THETA(x), P(1/xsup(n)) and can be multiplied in the class of the asymptotic functions as opposed to the theory of Schwartz distributions. The examples illustrate the method of construction of extended asymptotic functions similar to the distributions. The set formed by the extended asymptotic functions is also considered. It is shown, that this set is not closed with respect to addition and multiplication

  5. Changes in Black Carbon Deposition to Antarctica from Two Ice Core Records, A.D. 1850-2000

    Science.gov (United States)

    Bisiaux, Marion M.; Edward, Ross; McConnell, Joseph R.; Curran, Mark A. J.; VanOmmen, Tas D.; Smith, Andrew M.; Neumann, Thomas A.; Pasteris, Daniel R.; Penner, Joyce E.; Taylor, Kendrick

    2012-01-01

    Continuous flow analysis was based on a steady sample flow and in-line detection of BC and other chemical substances as described in McConnell et al. (2007). In the cold room, previously cut one meter ice core sticks of 3x3cm, are melted continuously on a heated melter head specifically designed to eliminate contamination from the atmosphere or by the external parts of the ice. The melted ice from the most inner part of the ice stick is continuously pumped by a peristaltic pump and carried to a clean lab by Teflon lines. The recorded signal is continuous, integrating a sample volume of about 0.05 mL, for which the temporal resolution depends on the speed of melting, ice density and snow accumulation rate at the ice core drilling site. For annual accumulation derived from the WAIS and Law Dome ice cores, we assumed 3.1 cm water equivalent uncertainty in each year's accumulation from short scale spatial variability (glaciological noise) which was determined from several measurements of annual accumulation in multiple parallel ice cores notably from the WAIS Divide ice core site (Banta et al., 2008) and from South Pole site (McConnell et al., 1997; McConnell et al., 2000). Refractory black carbon (rBC) concentrations were determined using the same method as in (Bisiaux et al., 2011) and adapted to continuous flow measurements as described by (McConnell et al., 2007). The technique uses a single particle intracavity laser induced incandescence photometer (SP2, Droplet Measurement Technologies, Boulder, Colorado) coupled to an ultrasonic nebulizer/desolvation (CETAC UT5000) Flow Injection Analysis (FIA). All analyses, sample preparation etc, were performed in a class 100 cleanroom using anti contamination "clean techniques". The samples were not acidified.

  6. Canonical structure of BHT massive gravity in warped AdS3 sector

    Directory of Open Access Journals (Sweden)

    Davood Mahdavian Yekta

    2016-08-01

    Full Text Available We investigate the asymptotic structure of the three dimensional Warped Anti-de Sitter (WAdS3 black holes in the Bergshoeff–Hohm–Townsend (BHT massive gravity using the canonical Hamiltonian formalism. We define the canonical asymptotic gauge generators, which produce the conserved charges and the asymptotic symmetry group for the WAdS3 black holes. The attained symmetry group is described by a semi-direct sum of a Virasoro and a Kač–Moody algebra. Using the Sugawara construction, we obtain a direct sum of two Virasoro algebras. We show that not only the asymptotic conserved charges satisfy the first law of black hole thermodynamics, but also they lead to the expected Smarr formula for the WAdS3 black holes. We also show that the black hole's entropy obeys the Cardy formula of the dual conformal field theory (CFT.

  7. A new cubic theory of gravity in five dimensions: black hole, Birkhoff's theorem and C-function

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, Julio [Instituto de Fisica, Facultad de Ciencias, Universidad Austral de Chile, Valdivia (Chile); Ray, Sourya, E-mail: julio.oliva@docentes.uach.c, E-mail: ray@cecs.c [Centro de Estudios CientIficos (CECS), Casilla 1469, Valdivia (Chile)

    2010-11-21

    We present a new cubic theory of gravity in five dimensions which has second-order traced field equations, analogous to BHT new massive gravity in three dimensions. Moreover, for static spherically symmetric spacetimes all the field equations are of second order, and the theory admits a new asymptotically locally flat black hole. Furthermore, we prove the uniqueness of this solution, study its thermodynamical properties and show the existence of a C-function for the theory following the arguments of Anber and Kastor (2008 J. High Energy Phys. JHEP05(2008)061 (arXiv:0802.1290 [hep-th])) in pure Lovelock theories. Finally, we include the Einstein-Gauss-Bonnet and cosmological terms and find new asymptotically AdS black holes at the point where the three maximally symmetric solutions of the theory coincide. These black holes may also possess a Cauchy horizon.

  8. Higher derivative corrections to BPS black hole attractors in 4d gauged supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Hristov, Kiril [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tsarigradsko Chaussee 72, 1784 Sofia (Bulgaria); Katmadas, Stefanos [Dipartimento di Fisica, Università di Milano-Bicocca,I-20126 Milano (Italy); INFN, Sezione di Milano-Bicocca,I-20126 Milano (Italy); Lodato, Ivano [Department of Physics, IISER Pune,Homi Bhaba Road, Pashan, Pune (India)

    2016-05-30

    We analyze BPS black hole attractors in 4d gauged supergravity in the presence of higher derivative supersymmetric terms, including a Weyl-squared-type action, and determine the resulting corrections to the Bekenstein-Hawking entropy. The near-horizon geometry AdS{sub 2}×S{sup 2} (or other Riemann surface) preserves half of the supercharges in N=2 supergravity with Fayet-Iliopoulos gauging. We derive a relation between the entropy and the black hole charges that suggests via AdS/CFT how subleading corrections contribute to the supersymmetric index in the dual microscopic picture. Depending on the model, the attractors are part of full black hole solutions with different asymptotics, such as Minkowski, AdS{sub 4}, and hvLif{sub 4}. We give explicit examples for each of the asymptotic cases and comment on the implications. Among other results, we find that the Weyl-squared terms spoil the exact two-derivative relation to non-BPS asymptotically flat black holes in ungauged supergravity.

  9. D0-branes in black hole attractors

    International Nuclear Information System (INIS)

    Gaiotto, Davide; Simons, Aaron; Strominger, Andrew; Yin Xi

    2006-01-01

    Configurations of N probe D0-branes in a Calabi-Yau black hole are studied. A large degeneracy of near-horizon bound states are found which can be described as lowest Landau levels tiling the horizon of the black hole. These states preserve some of the enhanced supersymmetry of the near-horizon AdS 2 x S 2 x CY 3 attractor geometry, but not of the full asymptotically flat solution. Supersymmetric non-abelian configurations are constructed which, via the Myers effect, develop charges associated with higher-dimensional branes wrapping CY 3 cycles. An SU(1,1/2) superconformal quantum mechanics describing D0-branes in the attractor geometry is explicitly constructed

  10. Asymptotic near freedom

    International Nuclear Information System (INIS)

    Bailin, D.

    1974-01-01

    It is proved that the characteristic power deviations from scaling of the theories which are not asymptotically free should be detectable in the N.A.L. muon experiments. The Yukawa theories here considered have SU(3) non-singlet structure function moments varying as a power of -q 2 , namely (-q 2 ) at power -p. The maximum value of p is determined to be 2/3:SU3 and 1:SU2. The outstanding question is whether the Yukawa theories considered do in fact have fixed points satisfying the inequalities, and thus simultaneous (non-trivial) zeroes of β(g) and β(lambda) have to be found

  11. High frequency asymptotic methods

    International Nuclear Information System (INIS)

    Bouche, D.; Dessarce, R.; Gay, J.; Vermersch, S.

    1991-01-01

    The asymptotic methods allow us to compute the interaction of high frequency electromagnetic waves with structures. After an outline of their foundations with emphasis on the geometrical theory of diffraction, it is shown how to use these methods to evaluate the radar cross section (RCS) of complex tri-dimensional objects of great size compared to the wave-length. The different stages in simulating phenomena which contribute to the RCS are reviewed: physical theory of diffraction, multiple interactions computed by shooting rays, research for creeping rays. (author). 7 refs., 6 figs., 3 insets

  12. Hoffmann-Infeld black-hole solutions in Lovelock gravity

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, MatIas [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Instituto de AstronomIa y Fisica del Espacio, C.C. 67, Suc. 28, 1428 Buenos Aires (Argentina); Ferraro, Rafael [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Instituto de AstronomIa y Fisica del Espacio, C.C. 67, Suc. 28, 1428 Buenos Aires (Argentina); Giribet, Gaston [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Departamento de Fisica, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina)

    2005-07-07

    Five-dimensional black holes are studied in Lovelock gravity coupled to Hoffmann-Infeld nonlinear electrodynamics. It is shown that some of these solutions present a double peak behaviour of the temperature as a function of the horizon radius. This feature suggests that the evaporation process, though drastic for a period, leads to an eternal black-hole remnant. In fact, the form of the caloric curve corresponds to the existence of a plateau in the evaporation rate, which implies that black holes of intermediate scales turn out to be unstable. The geometrical aspects, such as the absence of conical singularity, the structure of horizons, etc are also discussed. In particular, solutions that are asymptotically AdS arise for special choices of the parameters, corresponding to charged solutions of five-dimensional Chern-Simons gravity.

  13. Hoffmann-Infeld black-hole solutions in Lovelock gravity

    International Nuclear Information System (INIS)

    Aiello, MatIas; Ferraro, Rafael; Giribet, Gaston

    2005-01-01

    Five-dimensional black holes are studied in Lovelock gravity coupled to Hoffmann-Infeld nonlinear electrodynamics. It is shown that some of these solutions present a double peak behaviour of the temperature as a function of the horizon radius. This feature suggests that the evaporation process, though drastic for a period, leads to an eternal black-hole remnant. In fact, the form of the caloric curve corresponds to the existence of a plateau in the evaporation rate, which implies that black holes of intermediate scales turn out to be unstable. The geometrical aspects, such as the absence of conical singularity, the structure of horizons, etc are also discussed. In particular, solutions that are asymptotically AdS arise for special choices of the parameters, corresponding to charged solutions of five-dimensional Chern-Simons gravity

  14. Rotating Dilaton Black Strings Coupled to Exponential Nonlinear Electrodynamics

    Directory of Open Access Journals (Sweden)

    Ahmad Sheykhi

    2014-01-01

    Full Text Available We construct a new class of charged rotating black string solutions coupled to dilaton and exponential nonlinear electrodynamic fields with cylindrical or toroidal horizons in the presence of a Liouville-type potential for the dilaton field. Due to the presence of the dilaton field, the asymptotic behaviors of these solutions are neither flat nor (AdS. We analyze the physical properties of the solutions in detail. We compute the conserved and thermodynamic quantities of the solutions and verify the first law of thermodynamics on the black string horizon. When the nonlinear parameter β2 goes to infinity, our results reduce to those of black string solutions in Einstein-Maxwell-dilaton gravity.

  15. Black hole thermodynamics, conformal couplings, and R{sup 2} terms

    Energy Technology Data Exchange (ETDEWEB)

    Chernicoff, Mariano [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México,A.P. 70-542, México D.F. 04510 (Mexico); Galante, Mario [Departamento de Física, Universidad de Buenos Aires and IFIBA-CONICET,Ciudad Universitaria, pabellón 1 (1428) Buenos Aires (Argentina); Van Swidenderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Giribet, Gaston [Departamento de Física, Universidad de Buenos Aires and IFIBA-CONICET,Ciudad Universitaria, pabellón 1 (1428) Buenos Aires (Argentina); Université Libre de Bruxelles and International Solvay Institutes,Campus Plaine C.P. 231 B-1050, Bruxelles (Belgium); Instituto de Física, Pontificia Universidad Católica de Valparaíso,Casilla 4950, Valparaíso (Chile); Goya, Andres; Leoni, Matias [Departamento de Física, Universidad de Buenos Aires and IFIBA-CONICET,Ciudad Universitaria, pabellón 1 (1428) Buenos Aires (Argentina); Oliva, Julio [Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile); Perez-Nadal, Guillem [Departamento de Física, Universidad de Buenos Aires and IFIBA-CONICET,Ciudad Universitaria, pabellón 1 (1428) Buenos Aires (Argentina)

    2016-06-27

    Lovelock theory provides a tractable model of higher-curvature gravity in which several questions can be studied analytically. This is the reason why, in the last years, this theory has become the favorite arena to study the effects of higher-curvature terms in the context of AdS/CFT correspondence. Lovelock theory also admits extensions that permit to accommodate matter coupled to gravity in a non-minimal way. In this setup, problems such as the backreaction of matter on the black hole geometry can also be solved exactly. In this paper, we study the thermodynamics of black holes in theories of gravity of this type, which include both higher-curvature terms, U(1) gauge fields, and conformal couplings with matter fields in D dimensions. These charged black hole solutions exhibit a backreacting scalar field configuration that is regular everywhere outside and on the horizon, and may exist both in asymptotically flat and asymptotically Anti-de Sitter (AdS) spaces. We work out explicitly the boundary action for this theory, which renders the variational problem well-posed and suffices to regularize the Euclidean action in AdS. We also discuss several interrelated properties of the theory, such as its duality symmetry under field redefinition and how it acts on black holes and gravitational wave solutions.

  16. Asymptotic Safety Guaranteed in Supersymmetry

    Science.gov (United States)

    Bond, Andrew D.; Litim, Daniel F.

    2017-11-01

    We explain how asymptotic safety arises in four-dimensional supersymmetric gauge theories. We provide asymptotically safe supersymmetric gauge theories together with their superconformal fixed points, R charges, phase diagrams, and UV-IR connecting trajectories. Strict perturbative control is achieved in a Veneziano limit. Consistency with unitarity and the a theorem is established. We find that supersymmetry enhances the predictivity of asymptotically safe theories.

  17. Asymptotic symmetries on the Kerr-Newman horizon without the anomaly of diffeomorphism invariance

    International Nuclear Information System (INIS)

    Koga, Jun-ichirou

    2008-01-01

    We analyze asymptotic symmetries on the Killing horizon of the four-dimensional Kerr-Newman black hole. We first derive the asymptotic Killing vectors on the Killing horizon, which describe the asymptotic symmetries, and find that the general form of these asymptotic Killing vectors is the universal one possessed by arbitrary Killing horizons. We then construct the phase space associated with the asymptotic symmetries. It is shown that the phase space of an extreme black hole either has the size comparable with a non-extreme black hole, or is small enough to exclude degeneracy, depending on whether or not the global structure of a Killing horizon particular to an extreme black hole is respected. We also show that the classical central charge in the Poisson brackets algebra of these asymptotic symmetries vanishes, which implies that there is not an anomaly of diffeomorphism invariance. By taking into account other results in the literature, we argue that the vanishing central charge on a black hole horizon, in an effective theory, looks consistent with the thermal feature of a black hole. We furthermore argue that the vanishing central charge implies that there are sufficiently many classical configurations that constitute a single macroscopic state, while these configurations are distinguished physically

  18. Kerr–anti-de Sitter/de Sitter black hole in perfect fluid dark matter background

    Science.gov (United States)

    Xu, Zhaoyi; Hou, Xian; Wang, Jiancheng

    2018-06-01

    We obtain the Kerr–anti-de-sitter (Kerr–AdS) and Kerr–de-sitter (Kerr–dS) black hole (BH) solutions to the Einstein field equation in the perfect fluid dark matter background using the Newman–Janis method and Mathematica package. We discuss in detail the black hole properties and obtain the following main results: (i) From the horizon equation g rr   =  0, we derive the relation between the perfect fluid dark matter parameter α and the cosmological constant Λ when the cosmological horizon exists. For , we find that α is in the range for and for . For positive cosmological constant Λ (Kerr–AdS BH), decreases if , and increases if . For negative cosmological constant (Kerr–dS BH), increases if and decreases if ; (ii) An ergosphere exists between the event horizon and the outer static limit surface. The size of the ergosphere evolves oppositely for and , while decreasing with the increasing . When there is sufficient dark matter around the black hole, the black hole spacetime changes remarkably; (iii) The singularity of these black holes is the same as that of rotational black holes. In addition, we study the geodesic motion using the Hamilton–Jacobi formalism and find that when α is in the above ranges for , stable orbits exist. Furthermore, the rotational velocity of the black hole in the equatorial plane has different behaviour for different α and the black hole spin a. It is asymptotically flat and independent of α if while is asymptotically flat only when α is close to zero if . We anticipate that Kerr–Ads/dS black holes could exist in the universe and our future work will focus on the observational effects of the perfect fluid dark matter on these black holes.

  19. More asymptotic safety guaranteed

    Science.gov (United States)

    Bond, Andrew D.; Litim, Daniel F.

    2018-04-01

    We study interacting fixed points and phase diagrams of simple and semisimple quantum field theories in four dimensions involving non-Abelian gauge fields, fermions and scalars in the Veneziano limit. Particular emphasis is put on new phenomena which arise due to the semisimple nature of the theory. Using matter field multiplicities as free parameters, we find a large variety of interacting conformal fixed points with stable vacua and crossovers inbetween. Highlights include semisimple gauge theories with exact asymptotic safety, theories with one or several interacting fixed points in the IR, theories where one of the gauge sectors is both UV free and IR free, and theories with weakly interacting fixed points in the UV and the IR limits. The phase diagrams for various simple and semisimple settings are also given. Further aspects such as perturbativity beyond the Veneziano limit, conformal windows, and implications for model building are discussed.

  20. Asymptotically safe grand unification

    Energy Technology Data Exchange (ETDEWEB)

    Bajc, Borut [J. Stefan Institute,1000 Ljubljana (Slovenia); Sannino, Francesco [CP-Origins & the Danish IAS, University of Southern Denmark,Campusvej 55, DK-5230 Odense M (Denmark); Université de Lyon, France, Université Lyon 1, CNRS/IN2P3, UMR5822 IPNL,F-69622 Villeurbanne Cedex (France)

    2016-12-28

    Phenomenologically appealing supersymmetric grand unified theories have large gauge representations and thus are not asymptotically free. Their ultraviolet validity is limited by the appearance of a Landau pole well before the Planck scale. One could hope that these theories save themselves, before the inclusion of gravity, by generating an interacting ultraviolet fixed point, similar to the one recently discovered in non-supersymmetric gauge-Yukawa theories. Employing a-maximization, a-theorem, unitarity bounds, as well as positivity of other central charges we nonperturbatively rule out this possibility for a broad class of prime candidates of phenomenologically relevant supersymmetric grand unified theories. We also uncover candidates passing these tests, which have either exotic matter or contain one field decoupled from the superpotential. The latter class of theories contains a model with the minimal matter content required by phenomenology.

  1. Acute effects of mustard, horseradish, black pepper and ginger on energy expenditure, appetite, ad libitum energy intake and energy balance in human subjects

    DEFF Research Database (Denmark)

    Gregersen, Nikolaj Ture; Belza, Anita; Jensen, M.G.

    2013-01-01

    Chilli peppers have been shown to enhance diet-induced thermogenesis (DIT) and reduce energy intake (EI) in some studies, but there are few data on other pungent spices. The primary aim of the present study was to test the acute effects of black pepper (pepper), ginger, horseradish and mustard...... randomly assigned to receive a brunch meal with either pepper (1·3 g), ginger (20 g), horseradish (8·3 g), mustard (21 g) or no spices (placebo). The amounts of spices were chosen from pre-testing to make the meal spicy but palatable. No significant treatment effects were observed on DIT, but mustard...... produced DIT, which tended to be larger than that of placebo (14 %, 59 (se 3) v. 52 (se 2) kJ/h, respectively, P = 0·08). No other spice induced thermogenic effects approaching statistical significance. Subjective measures of appetite (P>0·85), ad libitum EI (P = 0·63) and energy balance (P = 0·67) also...

  2. Renormalization group and asymptotic freedom

    International Nuclear Information System (INIS)

    Morris, J.R.

    1978-01-01

    Several field theoretic models are presented which allow exact expressions of the renormalization constants and renormalized coupling constants. These models are analyzed as to their content of asymptotic free field behavior through the use of the Callan-Symanzik renormalization group equation. It is found that none of these models possesses asymptotic freedom in four dimensions

  3. Mass and free energy of Lovelock black holes

    International Nuclear Information System (INIS)

    Kastor, David; Traschen, Jennie; Ray, Sourya

    2011-01-01

    An explicit formula for the ADM mass of an asymptotically AdS black hole in a generic Lovelock gravity theory is presented, identical in form to that in Einstein gravity, but multiplied by a function of the Lovelock coupling constants and the AdS curvature radius. A Gauss' law-type formula relates the mass, which is an integral at infinity, to an expression depending instead on the horizon radius. This and other thermodynamic quantities, such as the free energy, are then analyzed in the limits of small and large horizon radius, yielding results that are independent of the detailed choice of Lovelock couplings. In even dimensions, the temperature diverges in both limits, implying the existence of a minimum temperature for black holes. The negative free energy of sufficiently large black holes implies the existence of a Hawking-Page transition. In odd dimensions, the temperature still diverges for large black holes, which again have negative free energy. However, the temperature vanishes as the horizon radius tends to zero and sufficiently small black holes have positive specific heat.

  4. Holographic description of AdS cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Hertog, Thomas [Department of Physics, UCSB, Santa Barbara, CA 93106 (United States); Horowitz, Gary T. [Department of Physics, UCSB, Santa Barbara, CA 93106 (United States)

    2005-04-01

    To gain insight in the quantum nature of the big bang, we study the dual field theory description of asymptotically anti-de Sitter solutions of supergravity that have cosmological singularities. The dual theories do not appear to have a stable ground state. One regularization of the theory causes the cosmological singularities in the bulk to turn into giant black holes with scalar hair. We interpret these hairy black holes in the dual field theory and use them to compute a finite temperature effective potential. In our study of the field theory evolution, we find no evidence for a 'bounce' from a big crunch to a big bang. Instead, it appears that the big bang is a rare fluctuation from a generic equilibrium quantum gravity state.

  5. Holographic description of AdS cosmologies

    International Nuclear Information System (INIS)

    Hertog, Thomas; Horowitz, Gary T.

    2005-01-01

    To gain insight in the quantum nature of the big bang, we study the dual field theory description of asymptotically anti-de Sitter solutions of supergravity that have cosmological singularities. The dual theories do not appear to have a stable ground state. One regularization of the theory causes the cosmological singularities in the bulk to turn into giant black holes with scalar hair. We interpret these hairy black holes in the dual field theory and use them to compute a finite temperature effective potential. In our study of the field theory evolution, we find no evidence for a 'bounce' from a big crunch to a big bang. Instead, it appears that the big bang is a rare fluctuation from a generic equilibrium quantum gravity state

  6. Centrally extended symmetry algebra of asymptotically Goedel spacetimes

    International Nuclear Information System (INIS)

    Compere, Geoffrey; Detournay, Stephane

    2007-01-01

    We define an asymptotic symmetry algebra for three-dimensional Goedel spacetimes supported by a gauge field which turns out to be the semi-direct sum of the diffeomorphisms on the circle with two loop algebras. A class of fields admitting this asymptotic symmetry algebra and leading to well-defined conserved charges is found. The covariant Poisson bracket of the conserved charges is then shown to be centrally extended to the semi-direct sum of a Virasoro algebra and two affine algebras. The subsequent analysis of three-dimensional Goedel black holes indicates that the Virasoro central charge is negative

  7. Thermodynamics, stability and Hawking-Page transition of Kerr black holes from Renyi statistics

    Energy Technology Data Exchange (ETDEWEB)

    Czinner, Viktor G. [University of Lisbon, Multidisciplinary Center for Astrophysics and Department of Physics, Instituto Superior Tecnico, Lisboa (Portugal); HAS Wigner Research Centre for Physics, Budapest (Hungary); Iguchi, Hideo [Nihon University, Laboratory of Physics, College of Science and Technology, Funabashi, Chiba (Japan)

    2017-12-15

    Thermodynamics of rotating black holes described by the Renyi formula as equilibrium and zeroth law compatible entropy function is investigated. We show that similarly to the standard Boltzmann approach, isolated Kerr black holes are stable with respect to axisymmetric perturbations in the Renyi model. On the other hand, when the black holes are surrounded by a bath of thermal radiation, slowly rotating black holes can also be in stable equilibrium with the heat bath at a fixed temperature, in contrast to the Boltzmann description. For the question of possible phase transitions in the system, we show that a Hawking-Page transition and a first order small black hole/large black hole transition occur, analogous to the picture of rotating black holes in AdS space. These results confirm the similarity between the Renyi-asymptotically flat and Boltzmann-AdS approaches to black hole thermodynamics in the rotating case as well. We derive the relations between the thermodynamic parameters based on this correspondence. (orig.)

  8. Asymptotic behaviour of Feynman integrals

    International Nuclear Information System (INIS)

    Bergere, M.C.

    1980-01-01

    In these lecture notes, we describe how to obtain the asymptotic behaviour of Feynman amplitudes; this technique has been already applied in several cases, but the general solution for any kind of asymptotic behaviour has not yet been found. From the mathematical point of view, the problem to solve is close to the following problem: find the asymptotic expansion at large lambda of the integral ∫...∫ [dx] esup(-LambdaP[x]) where P[x] is a polynomial of several variables. (orig.)

  9. Asymptotic Parachute Performance Sensitivity

    Science.gov (United States)

    Way, David W.; Powell, Richard W.; Chen, Allen; Steltzner, Adam D.

    2006-01-01

    In 2010, the Mars Science Laboratory mission will pioneer the next generation of robotic Entry, Descent, and Landing systems by delivering the largest and most capable rover to date to the surface of Mars. In addition to landing more mass than any other mission to Mars, Mars Science Laboratory will also provide scientists with unprecedented access to regions of Mars that have been previously unreachable. By providing an Entry, Descent, and Landing system capable of landing at altitudes as high as 2 km above the reference gravitational equipotential surface, or areoid, as defined by the Mars Orbiting Laser Altimeter program, Mars Science Laboratory will demonstrate sufficient performance to land on 83% of the planet s surface. By contrast, the highest altitude landing to date on Mars has been the Mars Exploration Rover at 1.3 km below the areoid. The coupling of this improved altitude performance with latitude limits as large as 60 degrees off of the equator and a precise delivery to within 10 km of a surface target, will allow the science community to select the Mars Science Laboratory landing site from thousands of scientifically interesting possibilities. In meeting these requirements, Mars Science Laboratory is extending the limits of the Entry, Descent, and Landing technologies qualified by the Mars Viking, Mars Pathfinder, and Mars Exploration Rover missions. Specifically, the drag deceleration provided by a Viking-heritage 16.15 m supersonic Disk-Gap-Band parachute in the thin atmosphere of Mars is insufficient, at the altitudes and ballistic coefficients under consideration by the Mars Science Laboratory project, to maintain necessary altitude performance and timeline margin. This paper defines and discusses the asymptotic parachute performance observed in Monte Carlo simulation and performance analysis and its effect on the Mars Science Laboratory Entry, Descent, and Landing architecture.

  10. Globally regular instability of AdS_3

    OpenAIRE

    Bizon, P.; Jałmużna, J.

    2013-01-01

    We consider three-dimensional AdS gravity minimally coupled to a massless scalar field and study numerically the evolution of small smooth circularly symmetric perturbations of the $AdS_3$ spacetime. As in higher dimensions, for a large class of perturbations, we observe a turbulent cascade of energy to high frequencies which entails instability of $AdS_3$. However, in contrast to higher dimensions, the cascade cannot be terminated by black hole formation because small perturbations have ener...

  11. Semiclassical S-matrix for black holes

    CERN Document Server

    Bezrukov, Fedor; Sibiryakov, Sergey

    2015-01-01

    We propose a semiclassical method to calculate S-matrix elements for two-stage gravitational transitions involving matter collapse into a black hole and evaporation of the latter. The method consistently incorporates back-reaction of the collapsing and emitted quanta on the metric. We illustrate the method in several toy models describing spherical self-gravitating shells in asymptotically flat and AdS space-times. We find that electrically neutral shells reflect via the above collapse-evaporation process with probability exp(-B), where B is the Bekenstein-Hawking entropy of the intermediate black hole. This is consistent with interpretation of exp(B) as the number of black hole states. The same expression for the probability is obtained in the case of charged shells if one takes into account instability of the Cauchy horizon of the intermediate Reissner-Nordstrom black hole. Our semiclassical method opens a new systematic approach to the gravitational S-matrix in the non-perturbative regime.

  12. Asymptotic structure of isolated systems

    International Nuclear Information System (INIS)

    Schmidt, B.G.

    1979-01-01

    The main methods to formulate asymptotic flatness conditions are introduced and motivation and basic ideas are emphasized. Any asymptotic flatness condition proposed up to now describes space-times which behave somehow like Minkowski space, and a very explicit exposition of the structure at infinity of Minkowski space is given. This structure is used to describe the asymptotic behaviour of fields on Minkowski space in a frame-dependent way. The definition of null infinity for curved space-time according to Penrose is given and attempts to define spacelike infinity are outlined. The conformal bundle approach to the formulation of asymptotic behaviour is described and its relation to null and spacelike infinity is given, as far as known. (Auth.)

  13. Nonminimal hints for asymptotic safety

    Science.gov (United States)

    Eichhorn, Astrid; Lippoldt, Stefan; Skrinjar, Vedran

    2018-01-01

    In the asymptotic-safety scenario for gravity, nonzero interactions are present in the ultraviolet. This property should also percolate into the matter sector. Symmetry-based arguments suggest that nonminimal derivative interactions of scalars with curvature tensors should therefore be present in the ultraviolet regime. We perform a nonminimal test of the viability of the asymptotic-safety scenario by working in a truncation of the renormalization group flow, where we discover the existence of an interacting fixed point for a corresponding nonminimal coupling. The back-coupling of such nonminimal interactions could in turn destroy the asymptotically safe fixed point in the gravity sector. As a key finding, we observe nontrivial indications of stability of the fixed-point properties under the impact of nonminimal derivative interactions, further strengthening the case for asymptotic safety in gravity-matter systems.

  14. Generating asymptotically plane wave spacetimes

    International Nuclear Information System (INIS)

    Hubeny, Veronika E.; Rangamani, Mukund

    2003-01-01

    In an attempt to study asymptotically plane wave spacetimes which admit an event horizon, we find solutions to vacuum Einstein's equations in arbitrary dimension which have a globally null Killing field and rotational symmetry. We show that while such solutions can be deformed to include ones which are asymptotically plane wave, they do not posses a regular event horizon. If we allow for additional matter, such as in supergravity theories, we show that it is possible to have extremal solutions with globally null Killing field, a regular horizon, and which, in addition, are asymptotically plane wave. In particular, we deform the extremal M2-brane solution in 11-dimensional supergravity so that it behaves asymptotically as a 10-dimensional vacuum plane wave times a real line. (author)

  15. Holographic reconstruction and renormalization in asymptotically Ricci-flat spacetimes

    NARCIS (Netherlands)

    Caldeira Costa, R.N.

    2012-01-01

    In this work we elaborate on an extension of the AdS/CFT framework to a sub-class of gravitational theories with vanishing cosmological constant. By building on earlier ideas, we construct a correspondence between Ricci-flat spacetimes admitting asymptotically hyperbolic hypersurfaces and a family

  16. More on asymptotically anti-de Sitter spaces in topologically massive gravity

    International Nuclear Information System (INIS)

    Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo

    2010-01-01

    Recently, the asymptotic behavior of three-dimensional anti-de Sitter (AdS) gravity with a topological mass term was investigated. Boundary conditions were given that were asymptotically invariant under the two dimensional conformal group and that included a falloff of the metric sufficiently slow to consistently allow pp-wave type of solutions. Now, pp waves can have two different chiralities. Above the chiral point and at the chiral point, however, only one chirality can be considered, namely, the chirality that has the milder behavior at infinity. The other chirality blows up faster than AdS and does not define an asymptotically AdS spacetime. By contrast, both chiralities are subdominant with respect to the asymptotic behavior of AdS spacetime below the chiral point. Nevertheless, the boundary conditions given in the earlier treatment only included one of the two chiralities (which could be either one) at a time. We investigate in this paper whether one can generalize these boundary conditions in order to consider simultaneously both chiralities below the chiral point. We show that this is not possible if one wants to keep the two-dimensional conformal group as asymptotic symmetry group. Hence, the boundary conditions given in the earlier treatment appear to be the best possible ones compatible with conformal symmetry. In the course of our investigations, we provide general formulas controlling the asymptotic charges for all values of the topological mass (not just below the chiral point).

  17. Polynomial Asymptotes of the Second Kind

    Science.gov (United States)

    Dobbs, David E.

    2011-01-01

    This note uses the analytic notion of asymptotic functions to study when a function is asymptotic to a polynomial function. Along with associated existence and uniqueness results, this kind of asymptotic behaviour is related to the type of asymptote that was recently defined in a more geometric way. Applications are given to rational functions and…

  18. Black holes with su(N) gauge field hair and superconducting horizons

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, Ben L.; Winstanley, Elizabeth [Consortium for Fundamental Physics, School of Mathematics and Statistics,The University of Sheffield,Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2017-01-16

    We present new planar dyonic black hole solutions of the su(N) Einstein-Yang-Mills equations in asymptotically anti-de Sitter space-time, focussing on su(2) and su(3) gauge groups. The magnetic part of the gauge field forms a condensate close to the planar event horizon. We compare the free energy of a non-Abelian hairy black hole with that of an embedded Reissner-Nordström-anti-de Sitter (RN-AdS) black hole having the same Hawking temperature and electric charge. We find that the hairy black holes have lower free energy. We present evidence that there is a phase transition at a critical temperature, above which the only solutions are embedded RN-AdS black holes. At the critical temperature, an RN-AdS black hole can decay into a hairy black hole, and it is thermodynamically favourable to do so. Working in the probe limit, we compute the frequency-dependent conductivity, and find that enlarging the gauge group from su(2) to su(3) eliminates a divergence in the conductivity at nonzero frequency.

  19. Black holes with su(N) gauge field hair and superconducting horizons

    International Nuclear Information System (INIS)

    Shepherd, Ben L.; Winstanley, Elizabeth

    2017-01-01

    We present new planar dyonic black hole solutions of the su(N) Einstein-Yang-Mills equations in asymptotically anti-de Sitter space-time, focussing on su(2) and su(3) gauge groups. The magnetic part of the gauge field forms a condensate close to the planar event horizon. We compare the free energy of a non-Abelian hairy black hole with that of an embedded Reissner-Nordström-anti-de Sitter (RN-AdS) black hole having the same Hawking temperature and electric charge. We find that the hairy black holes have lower free energy. We present evidence that there is a phase transition at a critical temperature, above which the only solutions are embedded RN-AdS black holes. At the critical temperature, an RN-AdS black hole can decay into a hairy black hole, and it is thermodynamically favourable to do so. Working in the probe limit, we compute the frequency-dependent conductivity, and find that enlarging the gauge group from su(2) to su(3) eliminates a divergence in the conductivity at nonzero frequency.

  20. Magnetically-charged black branes and viscosity/entropy ratios

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hai-Shan [Institute for Advanced Physics & Mathematics,Zhejiang University of Technology, Hangzhou 310023 (China); George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University, College Station, TX 77843 (United States); Lü, H. [Department of Physics, Beijing Normal University,Beijing 100875 (China); Pope, C.N. [George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University, College Station, TX 77843 (United States); DAMTP, Centre for Mathematical Sciences,Cambridge University, Wilberforce Road, Cambridge CB3 OWA (United Kingdom)

    2016-12-19

    We consider asymptotically-AdS n-dimensional black brane solutions in a theory of gravity coupled to a set of Np-form field strengths, in which the field strengths carry magnetic charges. For appropriately chosen charges, the metrics are isotropic in the (n−2) transverse directions. However, in general the field strength configurations break the full Euclidean symmetry of the (n−2)-dimensional transverse space, and the shear viscosity tensor in the dual theory is no longer isotropic. We study the linearised equations for transverse traceless metric perturbations in these backgrounds, and by employing the Kubo formula we obtain expressions for the ratios η/S of the shear viscosity components divided by the entropy density. We find that the KSS bound on the ratios η/S is generally violated in these solutions. We also extend the discussion by including a dilatonic scalar field in the theory, leading to solutions that are asymptotically Lifshitz with hyperscaling violation.

  1. Asymptotic conditions and conserved quantities

    International Nuclear Information System (INIS)

    Koul, R.K.

    1990-01-01

    Two problems have been investigated in this dissertation. The first one deals with the relationship between stationary space-times which are flat at null infinity and stationary space-times which are asymptotic flat at space-like infinity. It is shown that the stationary space-times which are asymptotically flat, in the Penrose sense, at null infinity, are asymptotically flat at space-like infinity in the Geroch sense and metric at space like infinity is at least C 1 . In the converse it is shown that the stationary space-times which are asymptotically flat at space like infinity, in the Beig sense, are asymptotically flat at null infinity in the Penrose sense. The second problem addressed deals with the theories of arbitrary dimensions. The theories treated are the ones which have fiber bundle structure, outside some compact region. For these theories the criterion for the choice of the background metric is specified, and the boundary condition for the initial data set (q ab , P ab ) is given in terms of the background metric. Having these boundary conditions it is shown that the symplectic structure and the constraint functionals are well defined. The conserved quantities associated with internal Killing vector fields are specified. Lastly the energy relative to a fixed background and the total energy of the theory have been given. It is also shown that the total energy of the theory is independent of the choice of the background

  2. Holography in Lovelock Chern-Simons AdS gravity

    Science.gov (United States)

    Cvetković, Branislav; Miskovic, Olivera; Simić, Dejan

    2017-08-01

    We analyze holographic field theory dual to Lovelock Chern-Simons anti-de Sitter (AdS) gravity in higher dimensions using first order formalism. We first find asymptotic symmetries in the AdS sector showing that they consist of local translations, local Lorentz rotations, dilatations and non-Abelian gauge transformations. Then, we compute 1-point functions of energy-momentum and spin currents in a dual conformal field theory and write Ward identities. We find that the holographic theory possesses Weyl anomaly and also breaks non-Abelian gauge symmetry at the quantum level.

  3. Topological black holes dressed with a conformally coupled scalar field and electric charge

    International Nuclear Information System (INIS)

    Martinez, Cristian; Troncoso, Ricardo; Staforelli, Juan Pablo

    2006-01-01

    Electrically charged solutions for gravity with a conformally coupled scalar field are found in four dimensions in the presence of a cosmological constant. If a quartic self-interaction term for the scalar field is considered, there is a solution describing an asymptotically locally AdS charged black hole dressed with a scalar field that is regular on and outside the event horizon, which is a surface of negative constant curvature. This black hole can have negative mass, which is bounded from below for the extremal case, and its causal structure shows that the solution describes a ''black hole inside a black hole''. The thermodynamics of the nonextremal black hole is analyzed in the grand canonical ensemble. The entropy does not follow the area law, and there is an effective Newton constant which depends on the value of the scalar field at the horizon. If the base manifold is locally flat, the solution has no electric charge, and the scalar field has a vanishing stress-energy tensor so that it dresses a locally AdS spacetime with a nut at the origin. In the case of vanishing self interaction, the solutions also dress locally AdS spacetimes, and if the base manifold is of negative constant curvature a massless electrically charged hairy black hole is obtained. The thermodynamics of this black hole is also analyzed. It is found that the bounds for the black holes parameters in the conformal frame obtained from requiring the entropy to be positive are mapped into the ones that guarantee cosmic censorship in the Einstein frame

  4. Asymptotic analysis and boundary layers

    CERN Document Server

    Cousteix, Jean

    2007-01-01

    This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general comprehensive presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows. The advantages of SCEM are discussed in comparison with the standard Method of Matched Asymptotic Expansions. In particular, for the first time, the theory of Interactive Boundary Layer is fully justified. With its chapter summaries, detailed derivations of results, discussed examples and fully worked out problems and solutions, the book is self-contained. It is written on a mathematical level accessible to graduate and post-graduate students of engineering and physics with a good knowledge in fluid mechanics. Researchers and practitioners will estee...

  5. Asymptotic geometric analysis, part I

    CERN Document Server

    Artstein-Avidan, Shiri

    2015-01-01

    The authors present the theory of asymptotic geometric analysis, a field which lies on the border between geometry and functional analysis. In this field, isometric problems that are typical for geometry in low dimensions are substituted by an "isomorphic" point of view, and an asymptotic approach (as dimension tends to infinity) is introduced. Geometry and analysis meet here in a non-trivial way. Basic examples of geometric inequalities in isomorphic form which are encountered in the book are the "isomorphic isoperimetric inequalities" which led to the discovery of the "concentration phenomen

  6. Asymptotically free SU(5) models

    International Nuclear Information System (INIS)

    Kogan, Ya.I.; Ter-Martirosyan, K.A.; Zhelonkin, A.V.

    1981-01-01

    The behaviour of Yukawa and Higgs effective charges of the minimal SU(5) unification model is investigated. The model includes ν=3 (or more, up to ν=7) generations of quarks and leptons and, in addition, the 24-plet of heavy fermions. A number of solutions of the renorm-group equations are found, which reproduce the known data about quarks and leptons and, due to a special choice of the coupling constants at the unification point are asymptotically free in all charges. The requirement of the asymptotical freedom leads to some restrictions on the masses of particles and on their mixing angles [ru

  7. Holographic probes of collapsing black holes

    International Nuclear Information System (INIS)

    Hubeny, Veronika E.; Maxfield, Henry

    2014-01-01

    We continue the programme of exploring the means of holographically decoding the geometry of spacetime inside a black hole using the gauge/gravity correspondence. To this end, we study the behaviour of certain extremal surfaces (focusing on those relevant for equal-time correlators and entanglement entropy in the dual CFT) in a dynamically evolving asymptotically AdS spacetime, specifically examining how deep such probes reach. To highlight the novel effects of putting the system far out of equilibrium and at finite volume, we consider spherically symmetric Vaidya-AdS, describing black hole formation by gravitational collapse of a null shell, which provides a convenient toy model of a quantum quench in the field theory. Extremal surfaces anchored on the boundary exhibit rather rich behaviour, whose features depend on dimension of both the spacetime and the surface, as well as on the anchoring region. The main common feature is that they reach inside the horizon even in the post-collapse part of the geometry. In 3-dimensional spacetime, we find that for sub-AdS-sized black holes, the entire spacetime is accessible by the restricted class of geodesics whereas in larger black holes a small region near the imploding shell cannot be reached by any boundary-anchored geodesic. In higher dimensions, the deepest reach is attained by geodesics which (despite being asymmetric) connect equal time and antipodal boundary points soon after the collapse; these can attain spacetime regions of arbitrarily high curvature and simultaneously have smallest length. Higher-dimensional surfaces can penetrate the horizon while anchored on the boundary at arbitrarily late times, but are bounded away from the singularity. We also study the details of length or area growth during thermalization. While the area of extremal surfaces increases monotonically, geodesic length is neither monotonic nor continuous

  8. Asymptotic formulae for solutions of the two-group integral neutron-transport equation

    International Nuclear Information System (INIS)

    Duracz, T.

    1976-01-01

    The steady-state, two-group integral neutron-transport equation is considered for two cases. First, for plane geometry, formulae for the asymptotic flux are obtained, under assumptions of homogeneous medium with isotropic scattering, extended to infinity (whole space and half-space), with sources vanishing at infinity as 0(esup(-IXI)). Next, for spherical geometry, the Milne problem is considered and formulae for the asymptotic flux are obtained. These formulae have the form of asymptotic expansions for small and large radii of the black sphere. (orig.) [de

  9. Hairy Lovelock black holes and Stueckelberg mechanism for Weyl symmetry

    International Nuclear Information System (INIS)

    Chernicoff, Mariano; Giribet, Gaston; Oliva, Julio

    2016-01-01

    Lovelock theory of gravity -and, in particular, Einstein theory- admits black hole solutions that can be equipped with a hair by conformally coupling the theory to a real scalar field. This is a secondary hair, meaning that it does not endow the black hole with new quantum numbers. It rather consists of a non-trivial scalar field profile of fixed intensity which turns out to be regular everywhere outside and on the horizon and, provided the cosmological constant is negative, behaves at large distance in a way compatible with the Anti-de Sitter (AdS) asymptotic. In this paper, we review the main features of these hairy black hole solutions, such as their geometrical and thermodynamical properties. The conformal coupling to matter in dimension D > 4 in principle includes higher-curvature terms. These couplings are obtained from the Lovelock action through the Stueckelberg strategy. As a consequence, the resulting scalar-tensor theory exhibits a self-duality under field redefinition that resembles T-duality. Through this field redefinition, the matter content of the theory transforms into a Lovelock action for a dual geometry. Since the hairy black holes only exist for special relations between the dual Lovelock coupling constants, it is natural to compare those relations with the causality bounds coming from AdS/CFT. We observe that, while the lower causality bound is always obeyed, the upper causality bound is violated. The latter, however, is saturated in the large D limit. (paper)

  10. Hairy Lovelock black holes and Stueckelberg mechanism for Weyl symmetry

    Science.gov (United States)

    Chernicoff, Mariano; Giribet, Gaston; Oliva, Julio

    2016-10-01

    Lovelock theory of gravity -and, in particular, Einstein theory- admits black hole solutions that can be equipped with a hair by conformally coupling the theory to a real scalar field. This is a secondary hair, meaning that it does not endow the black hole with new quantum numbers. It rather consists of a non-trivial scalar field profile of fixed intensity which turns out to be regular everywhere outside and on the horizon and, provided the cosmological constant is negative, behaves at large distance in a way compatible with the Anti-de Sitter (AdS) asymptotic. In this paper, we review the main features of these hairy black hole solutions, such as their geometrical and thermodynamical properties. The conformal coupling to matter in dimension D > 4 in principle includes higher-curvature terms. These couplings are obtained from the Lovelock action through the Stueckelberg strategy. As a consequence, the resulting scalar-tensor theory exhibits a self-duality under field redefinition that resembles T-duality. Through this field redefinition, the matter content of the theory transforms into a Lovelock action for a dual geometry. Since the hairy black holes only exist for special relations between the dual Lovelock coupling constants, it is natural to compare those relations with the causality bounds coming from AdS/CFT. We observe that, while the lower causality bound is always obeyed, the upper causality bound is violated. The latter, however, is saturated in the large D limit.

  11. Transition from AdS universe to DS universe in the BPP model

    International Nuclear Information System (INIS)

    Kim, Wontae; Yoon, Myungseok

    2007-01-01

    It can be shown that in the BPP model the smooth phase transition from the asymptotically decelerated AdS universe to the asymptotically accelerated DS universe is possible by solving the modified semiclassical equations of motion. This transition comes from noncommutative Poisson algebra, which gives the constant curvature scalars asymptotically. The decelerated expansion of the early universe is due to the negative energy density with the negative pressure induced by quantum back reaction, and the accelerated late-time universe comes from the positive energy and the negative pressure which behave like dark energy source in recent cosmological models

  12. Ruin problems and tail asymptotics

    DEFF Research Database (Denmark)

    Rønn-Nielsen, Anders

    The thesis Ruin Problems and Tail Asymptotics provides results on ruin problems for several classes of Markov processes. For a class of diffusion processes with jumps an explicit expression for the joint Laplace transform of the first passage time and the corresponding undershoot is derived...

  13. Asymptotic Expansions - Methods and Applications

    International Nuclear Information System (INIS)

    Harlander, R.

    1999-01-01

    Different viewpoints on the asymptotic expansion of Feynman diagrams are reviewed. The relations between the field theoretic and diagrammatic approaches are sketched. The focus is on problems with large masses or large external momenta. Several recent applications also for other limiting cases are touched upon. Finally, the pros and cons of the different approaches are briefly discussed. (author)

  14. Naturalness of asymptotically safe Higgs

    DEFF Research Database (Denmark)

    Pelaggi, Giulio M.; Sannino, Francesco; Strumia, Alessandro

    2017-01-01

    that the scalars can be lighter than Λ. Although we do not have an answer to whether the Standard Model hypercharge coupling growth toward a Landau pole at around Λ ~ 1040GeV can be tamed by non-perturbative asymptotic safety, our results indicate that such a possibility is worth exploring. In fact, if successful...

  15. Thermodynamics of asymptotically safe theories

    DEFF Research Database (Denmark)

    Rischke, Dirk H.; Sannino, Francesco

    2015-01-01

    We investigate the thermodynamic properties of a novel class of gauge-Yukawa theories that have recently been shown to be completely asymptotically safe, because their short-distance behaviour is determined by the presence of an interacting fixed point. Not only do all the coupling constants freeze...

  16. Pressure and Compressibility of Conformal Field Theories from the AdS/CFT Correspondence

    Directory of Open Access Journals (Sweden)

    Brian P. Dolan

    2016-05-01

    Full Text Available The equation of state associated with N = 4 supersymmetric Yang–Mills in four dimensions, for S U ( N in the large N limit, is investigated using the AdS/CFT correspondence. An asymptotically AdS black-hole on the gravity side provides a thermal background for the Yang–Mills theory on the boundary in which the cosmological constant is equivalent to a volume. The thermodynamic variable conjugate to the cosmological constant is a pressure, and the P - V diagram of the quark-gluon plasma is studied. It is known that there is a critical point where the heat capacity diverges, and this is reflected in the isothermal compressibility. Critical exponents are derived and found to be mean field in the large N limit. The same analysis applied to three- and six-dimensional conformal field theories again yields mean field exponents associated with the compressibility at the critical point.

  17. Hairy black holes in N=2 gauged supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Faedo, Federico [Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133 Milano (Italy); Klemm, Dietmar; Nozawa, Masato [Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133 Milano (Italy); INFN, Sezione di Milano, Via Celoria 16, 20133 Milano (Italy)

    2015-11-06

    We construct black holes with scalar hair in a wide class of four-dimensional N=2 Fayet-Iliopoulos gauged supergravity theories that are characterized by a prepotential containing one free parameter. Considering the truncated model in which only a single real scalar survives, the theory is reduced to an Einstein-scalar system with a potential, which admits at most two AdS critical points and is expressed in terms of a real superpotential. Our solution is static, admits maximally symmetric horizons, asymptotically tends to AdS space corresponding to an extremum of the superpotential, but is disconnected from the Schwarzschild-AdS family. The condition under which the spacetime admits an event horizon is addressed for each horizon topology. It turns out that for hyperbolic horizons the black holes can be extremal. In this case, the near-horizon geometry is AdS{sub 2}×H{sup 2}, where the scalar goes to the other, non-supersymmetric, critical point of the potential. Our solution displays fall-off behaviours different from the standard one, due to the fact that the mass parameter m{sup 2}=−2ℓ{sup −2} at the supersymmetric vacuum lies in a characteristic range m{sub BF}{sup 2}≤m{sup 2}asymptotic cosmological constant alone, as one would expect in absence of electromagnetic charges and angular momentum. Our solution shows qualitatively the same thermodynamic behaviour as the Schwarzschild-AdS black hole, but the entropy is always smaller for a given mass and AdS curvature radius. We also find that our spherical black holes are unstable against radial perturbations.

  18. CFT duals for extreme black holes

    International Nuclear Information System (INIS)

    Hartman, Thomas; Strominger, Andrew; Murata, Keiju; Nishioka, Tatsuma

    2009-01-01

    It is argued that the general four-dimensional extremal Kerr-Newman-AdS-dS black hole is holographically dual to a (chiral half of a) two-dimensional CFT, generalizing an argument given recently for the special case of extremal Kerr. Specifically, the asymptotic symmetries of the near-horizon region of the general extremal black hole are shown to be generated by a Virasoro algebra. Semiclassical formulae are derived for the central charge and temperature of the dual CFT as functions of the cosmological constant, Newton's constant and the black hole charges and spin. We then show, assuming the Cardy formula, that the microscopic entropy of the dual CFT precisely reproduces the macroscopic Bekenstein-Hawking area law. This CFT description becomes singular in the extreme Reissner-Nordstrom limit where the black hole has no spin. At this point a second dual CFT description is proposed in which the global part of the U(1) gauge symmetry is promoted to a Virasoro algebra. This second description is also found to reproduce the area law. Various further generalizations including higher dimensions are discussed.

  19. New black holes in five dimensions

    International Nuclear Information System (INIS)

    Lue, H.; Mei Jianwei; Pope, C.N.

    2009-01-01

    We construct new stationary Ricci-flat metrics of cohomogeneity 2 in five dimensions, which generalise the Myers-Perry rotating black hole metrics by adding a further non-trivial parameter. We obtain them via a construction that is analogous to the construction by Plebanski and Demianski in four dimensions of the most general type D metrics. Limiting cases of the new metrics contain not only the general Myers-Perry black hole with independent angular momenta, but also the single rotation black ring of Emparan and Reall. In another limit, we obtain new static metrics that describe black holes whose horizons are distorted lens spaces L(n;m)=S 3 /Γ(n;m), where m≥n+2≥3. They are asymptotic to Minkowski spacetime factored by Γ(m;n). In the general stationary case, by contrast, the new metrics describe spacetimes with a horizon and with a periodicity condition on the time coordinate; these examples can be thought of as five-dimensional analogues of the four-dimensional Taub-NUT metrics

  20. Spherical and planar three-dimensional anti-de Sitter black holes

    International Nuclear Information System (INIS)

    Zanchin, Vilson T; Miranda, Alex S

    2004-01-01

    The technique of dimensional reduction was used in a recent paper (Zanchin V T, Kleber A and Lemos J P S 2002 Phys. Rev. D 66 064022) where a three-dimensional (3D) Einstein-Maxwell-dilaton theory was built from the usual four-dimensional (4D) Einstein-Maxwell-Hilbert action for general relativity. Starting from a class of 4D toroidal black holes in asymptotically anti-de Sitter (AdS) spacetimes several 3D black holes were obtained and studied in such a context. In the present work we choose a particular case of the 3D action which presents Maxwell field, dilaton field and an extra scalar field, besides gravity field and a negative cosmological constant, and obtain new 3D static black hole solutions whose horizons may have spherical or planar topology. We show that there is a 3D static spherically symmetric solution analogous to the 4D Reissner-Nordstroem-AdS black hole, and obtain other new 3D black holes with planar topology. From the static spherical solutions, new rotating 3D black holes are also obtained and analysed in some detail

  1. 4D scattering amplitudes and asymptotic symmetries from 2D CFT

    Science.gov (United States)

    Cheung, Clifford; de la Fuente, Anton; Sundrum, Raman

    2017-01-01

    We reformulate the scattering amplitudes of 4D flat space gauge theory and gravity in the language of a 2D CFT on the celestial sphere. The resulting CFT structure exhibits an OPE constructed from 4D collinear singularities, as well as infinite-dimensional Kac-Moody and Virasoro algebras encoding the asymptotic symmetries of 4D flat space. We derive these results by recasting 4D dynamics in terms of a convenient foliation of flat space into 3D Euclidean AdS and Lorentzian dS geometries. Tree-level scattering amplitudes take the form of Witten diagrams for a continuum of (A)dS modes, which are in turn equivalent to CFT correlators via the (A)dS/CFT dictionary. The Ward identities for the 2D conserved currents are dual to 4D soft theorems, while the bulk-boundary propagators of massless (A)dS modes are superpositions of the leading and subleading Weinberg soft factors of gauge theory and gravity. In general, the massless (A)dS modes are 3D Chern-Simons gauge fields describing the soft, single helicity sectors of 4D gauge theory and gravity. Consistent with the topological nature of Chern-Simons theory, Aharonov-Bohm effects record the "tracks" of hard particles in the soft radiation, leading to a simple characterization of gauge and gravitational memories. Soft particle exchanges between hard processes define the Kac-Moody level and Virasoro central charge, which are thereby related to the 4D gauge coupling and gravitational strength in units of an infrared cutoff. Finally, we discuss a toy model for black hole horizons via a restriction to the Rindler region.

  2. Lattice quantum gravity and asymptotic safety

    Science.gov (United States)

    Laiho, J.; Bassler, S.; Coumbe, D.; Du, D.; Neelakanta, J. T.

    2017-09-01

    We study the nonperturbative formulation of quantum gravity defined via Euclidean dynamical triangulations (EDT) in an attempt to make contact with Weinberg's asymptotic safety scenario. We find that a fine-tuning is necessary in order to recover semiclassical behavior. Such a fine-tuning is generally associated with the breaking of a target symmetry by the lattice regulator; in this case we argue that the target symmetry is the general coordinate invariance of the theory. After introducing and fine-tuning a nontrivial local measure term, we find no barrier to taking a continuum limit, and we find evidence that four-dimensional, semiclassical geometries are recovered at long distance scales in the continuum limit. We also find that the spectral dimension at short distance scales is consistent with 3 /2 , a value that could resolve the tension between asymptotic safety and the holographic entropy scaling of black holes. We argue that the number of relevant couplings in the continuum theory is one, once symmetry breaking by the lattice regulator is accounted for. Such a theory is maximally predictive, with no adjustable parameters. The cosmological constant in Planck units is the only relevant parameter, which serves to set the lattice scale. The cosmological constant in Planck units is of order 1 in the ultraviolet and undergoes renormalization group running to small values in the infrared. If these findings hold up under further scrutiny, the lattice may provide a nonperturbative definition of a renormalizable quantum field theory of general relativity with no adjustable parameters and a cosmological constant that is naturally small in the infrared.

  3. Boundary causality versus hyperbolicity for spherical black holes in Gauss–Bonnet gravity

    International Nuclear Information System (INIS)

    Andrade, Tomás; Cáceres, Elena; Keeler, Cynthia

    2017-01-01

    We explore the constraints boundary causality places on the allowable Gauss–Bonnet gravitational couplings in asymptotically AdS spaces, specifically considering spherical black hole solutions. We additionally consider the hyperbolicity properties of these solutions, positing that hyperbolicity-violating solutions are sick solutions whose causality properties provide no information about the theory they reside in. For both signs of the Gauss–Bonnet coupling, spherical black holes violate boundary causality at smaller absolute values of the coupling than planar black holes do. For negative coupling, as we tune the Gauss–Bonnet coupling away from zero, both spherical and planar black holes violate hyperbolicity before they violate boundary causality. For positive coupling, the only hyperbolicity-respecting spherical black holes which violate boundary causality do not do so appreciably far from the planar bound. Consequently, eliminating hyperbolicity-violating solutions means the bound on Gauss–Bonnet couplings from the boundary causality of spherical black holes is no tighter than that from planar black holes. (paper)

  4. Asymptotic functions and multiplication of distributions

    International Nuclear Information System (INIS)

    Todorov, T.D.

    1979-01-01

    Considered is a new type of generalized asymptotic functions, which are not functionals on some space of test functions as the Schwartz distributions. The definition of the generalized asymptotic functions is given. It is pointed out that in future the particular asymptotic functions will be used for solving some topics of quantum mechanics and quantum theory

  5. Gravitational Quasinormal Modes of Regular Phantom Black Hole

    Directory of Open Access Journals (Sweden)

    Jin Li

    2017-01-01

    Full Text Available We investigate the gravitational quasinormal modes (QNMs for a type of regular black hole (BH known as phantom BH, which is a static self-gravitating solution of a minimally coupled phantom scalar field with a potential. The studies are carried out for three different spacetimes: asymptotically flat, de Sitter (dS, and anti-de Sitter (AdS. In order to consider the standard odd parity and even parity of gravitational perturbations, the corresponding master equations are derived. The QNMs are discussed by evaluating the temporal evolution of the perturbation field which, in turn, provides direct information on the stability of BH spacetime. It is found that in asymptotically flat, dS, and AdS spacetimes the gravitational perturbations have similar characteristics for both odd and even parities. The decay rate of perturbation is strongly dependent on the scale parameter b, which measures the coupling strength between phantom scalar field and the gravity. Furthermore, through the analysis of Hawking radiation, it is shown that the thermodynamics of such regular phantom BH is also influenced by b. The obtained results might shed some light on the quantum interpretation of QNM perturbation.

  6. Asymptotic structure of isolated systems

    International Nuclear Information System (INIS)

    Beig, R.

    1988-01-01

    I discuss the general ideas underlying the subject of ''asymptotics'' in general relativity and describe the current status of the concepts resulting from these ideas. My main concern will be the problem of consistency. By this I mean the question as to whether the geometric assumptions inherent in these concepts are compatible with the dynamics of the theory, as determined by Einstein's equations. This rather strong bias forces me to leave untouched several issues related to asymptotics, discussed in the recent literature, some of which are perhaps thought equally, or more important, by other workers in the field. In addition I shall, for coherence of presentation, mainly consider Einstein's equations in vacuo. When attention is confined to small neighbourhoods of null and spacelike infinity, this restriction is not important, but is surely relevant for more global issues. (author)

  7. AdS3: the NHEK generation

    International Nuclear Information System (INIS)

    Bena, Iosif; Heurtier, Lucien; Puhm, Andrea

    2016-01-01

    It was argued in http://dx.doi.org/10.1007/JHEP03(2013)028 that the five-dimensional near-horizon extremal Kerr (NHEK) geometry can be embedded in String Theory as the infrared region of an infinite family of non-supersymmetric geometries that have D1, D5, momentum and KK monopole charges. We show that there exists a method to embed these geometries into asymptotically-AdS 3 ×S 3 /ℤ N solutions, and hence to obtain infinite families of flows whose infrared is NHEK. This indicates that the CFT dual to the NHEK geometry is the IR fixed point of a Renormalization Group flow from a known local UV CFT and opens the door to its explicit construction.

  8. Asymptotic freedom and Zweig's rule

    International Nuclear Information System (INIS)

    Appelquist, Th.

    1977-01-01

    Some theoretical aspects of applying short distance physics (asymptotic freedom) are discussed to prove the correctness of the quantum chromodynamics. Properties of new particles that depend only on short distance physics can be dealt with perturbatively. The new mesons are assumed to be CantiC bound states, where C is a new heavy quark. With this in mind some comments are made on the calculation of total widths for the direct decay of different CantiC states into ordinary hadrons

  9. Microscopic Calabi-Yau black holes in string theory

    International Nuclear Information System (INIS)

    Ansari, Saeid

    2011-01-01

    In this thesis we study microscopic aspects of Calabi-Yau black holes in string theory. We compute the absorption cross-section of the space-time massless scalars by the worldvolume of D2-branes, wrapped on the S 2 of an AdS 2 x S 2 x CY 3 geometry of a fourdimensional D4-D0 Calabi-Yau black hole. The D2-brane can also have a generic D0 probe-brane charge. However, we restrict ourselves to D2-branes with small D0-charge so that the perturbation theory is applicable. According to the proposed AdS 2 /QM correspondence the candidate for the dual theory is the quantum mechanics of a set of probe D0-branes in the AdS 2 geometry. For small but non-zero probe D0-charge we find the quantum mechanical absorption cross-section seen by an asymptotic anti-de Sitter observer. We repeat the calculations for vanishing probe D0-charge as well and discuss our result by comparing with the classical absorption cross-section. In other project, for a given fourdimensional Calabi-Yau black hole with generic D6-D4-D2-D0 charges we identify a set of supersymmetric branes, which are static or stationary in the global coordinates, of the corresponding eleven-dimensional near horizon geometry. The set of these BPS states, which include the branes partially or fully wrap the horizon, should play a role in understanding the partition function of black holes with D6-charge. (orig.)

  10. Black holes in quasi-topological gravity and conformal couplings

    Energy Technology Data Exchange (ETDEWEB)

    Chernicoff, Mariano [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México,A.P. 70-542, México D.F. 04510 (Mexico); Fierro, Octavio [Departamento de Matemática y Física Aplicadas,Universidad Católica de la Santísima Concepción,Alonso de Rivera 2850, Concepción (Chile); Giribet, Gaston [Martin Fisher School of Physics, Brandeis University,Waltham, Massachusetts 02453 (United States); Departamento de Física, Universidad de Buenos Aires FCEN-UBA and IFIBA-CONICET, Ciudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina); Oliva, Julio [Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile)

    2017-02-02

    Lovelock theory of gravity provides a tractable model to investigate the effects of higher-curvature terms in the context of AdS/CFT. Yielding second order, ghost-free field equations, this theory represents a minimal setup in which higher-order gravitational couplings in asymptotically Anti-de Sitter (AdS) spaces, including black holes, can be solved analytically. This however has an obvious limitation as in dimensions lower than seven, the contribution from cubic or higher curvature terms is merely topological. Therefore, in order to go beyond quadratic order and study higher terms in AdS{sub 5} analytically, one is compelled to look for other toy models. One such model is the so-called quasi-topological gravity, which, despite being a higher-derivative theory, provides a tractable setup with R{sup 3} and R{sup 4} terms. In this paper, we investigate AdS{sub 5} black holes in quasi-topological gravity. We consider the theory conformally coupled to matter and in presence of Abelian gauge fields. We show that charged black holes in AdS{sub 5} which, in addition, exhibit a backreaction of the matter fields on the geometry can be found explicitly in this theory. These solutions generalize the black hole solution of quasi-topological gravity and exist in a region of the parameter spaces consistent with the constraints coming from causality and other consistency conditions. They have finite conserved charges and exhibit non-trivial thermodynamical properties.

  11. Will black holes eventually engulf the Universe?

    International Nuclear Information System (INIS)

    Martin-Moruno, Prado; Jimenez Madrid, Jose A.; Gonzalez-Diaz, Pedro F.

    2006-01-01

    The Babichev-Dokuchaev-Eroshenko model for the accretion of dark energy onto black holes has been extended to deal with black holes with non-static metrics. The possibility that for an asymptotic observer a black hole with large mass will rapidly increase and eventually engulf the Universe at a finite time in the future has been studied by using reasonable values for astronomical parameters. It is concluded that such a phenomenon is forbidden for all black holes in quintessential cosmological models

  12. Fermionic halos at finite temperature in AdS/CFT

    Science.gov (United States)

    Argüelles, Carlos R.; Grandi, Nicolás E.

    2018-05-01

    We explore the gravitational backreaction of a system consisting in a very large number of elementary fermions at finite temperature, in asymptotically AdS space. We work in the hydrodynamic approximation, and solve the Tolman-Oppenheimer-Volkoff equations with a perfect fluid whose equation of state takes into account both the relativistic effects of the fermionic constituents, as well as its finite temperature effects. We find a novel dense core-diluted halo structure for the density profiles in the AdS bulk, similarly as recently reported in flat space, for the case of astrophysical dark matter halos in galaxies. We further study the critical equilibrium configurations above which the core undergoes gravitational collapse towards a massive black hole, and calculate the corresponding critical central temperatures, for two qualitatively different central regimes of the fermions: the diluted-Fermi case, and the degenerate case. As a probe for the dual CFT, we construct the holographic two-point correlator of a scalar operator with large conformal dimension in the worldline limit, and briefly discuss on the boundary CFT effects at the critical points.

  13. Lifshitz topological black holes

    International Nuclear Information System (INIS)

    Mann, R.B.

    2009-01-01

    I find a class of black hole solutions to a (3+1) dimensional theory gravity coupled to abelian gauge fields with negative cosmological constant that has been proposed as the dual theory to a Lifshitz theory describing critical phenomena in (2+1) dimensions. These black holes are all asymptotic to a Lifshitz fixed point geometry and depend on a single parameter that determines both their area (or size) and their charge. Most of the solutions are obtained numerically, but an exact solution is also obtained for a particular value of this parameter. The thermodynamic behaviour of large black holes is almost the same regardless of genus, but differs considerably for small black holes. Screening behaviour is exhibited in the dual theory for any genus, but the critical length at which it sets in is genus-dependent for small black holes.

  14. Asymptotic integration of differential and difference equations

    CERN Document Server

    Bodine, Sigrun

    2015-01-01

    This book presents the theory of asymptotic integration for both linear differential and difference equations. This type of asymptotic analysis is based on some fundamental principles by Norman Levinson. While he applied them to a special class of differential equations, subsequent work has shown that the same principles lead to asymptotic results for much wider classes of differential and also difference equations. After discussing asymptotic integration in a unified approach, this book studies how the application of these methods provides several new insights and frequent improvements to results found in earlier literature. It then continues with a brief introduction to the relatively new field of asymptotic integration for dynamic equations on time scales. Asymptotic Integration of Differential and Difference Equations is a self-contained and clearly structured presentation of some of the most important results in asymptotic integration and the techniques used in this field. It will appeal to researchers i...

  15. An Evaluation of Social Work Practice in the Northern Ireland Guardian Ad Litem Agency in Working with Children and Families from Black Minority Ethnic Communities

    Science.gov (United States)

    Nicholl, Patricia; Devine, Patricia; Sheldon, John; Best, Sarah

    2016-01-01

    Research in the area of working with ethnic minorities in the care system remains limited. The primary objective of this study was to consider the volume of cases referred to the Northern Ireland Guardian Ad Litem Agency (NIGALA) from ethnic minority families in 2013/14 and to generate knowledge from the cases about cultural competency in the…

  16. Thermodynamics and gauge/gravity duality for Lifshitz black holes in the presence of exponential electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zangeneh, M. Kord; Dehyadegari, A. [Physics Department and Biruni Observatory, College of Sciences, Shiraz University,Eram Square, Shiraz, P.O. Box 71454 (Iran, Islamic Republic of); Sheykhi, A.; Dehghani, M.H. [Physics Department and Biruni Observatory, College of Sciences, Shiraz University,Eram Square, Shiraz, P.O. Box 71454 (Iran, Islamic Republic of); Research Institute for Astrophysics and Astronomy of Maragha (RIAAM),P.O. Box 55134-441, Maragha (Iran, Islamic Republic of)

    2016-03-07

    In this paper, we construct a new class of topological black hole Lifshitz solutions in the presence of nonlinear exponential electrodynamics for Einstein-dilaton gravity. We show that the reality of Lifshitz supporting Maxwell matter fields exclude the negative horizon curvature solutions except for the asymptotic AdS case. Calculating the conserved and thermodynamical quantities, we obtain a Smarr type formula for the mass and confirm that thermodynamics first law is satisfied on the black hole horizon. Afterward, we study the thermal stability of our solutions and figure out the effects of different parameters on the stability of solutions under thermal perturbations. Next, we apply the gauge/gravity duality in order to calculate the ratio of shear viscosity to entropy for a three-dimensional hydrodynamic system by using the pole method. Furthermore, we study the behavior of holographic conductivity for two-dimensional systems such as graphene. We consider linear Maxwell and nonlinear exponential electrodynamics separately and disclose the effect of nonlinearity on holographic conductivity. We indicate that holographic conductivity vanishes for z>3 in the case of nonlinear electrodynamics while it does not in the linear Maxwell case. Finally, we solve perturbative additional field equations numerically and plot the behaviors of real and imaginary parts of conductivity for asymptotic AdS and Lifshitz cases. We present experimental results match with our numerical ones.

  17. Quasilocal energy for three-dimensional massive gravity solutions with chiral deformations of AdS{sub 3} boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Garbarz, Alan, E-mail: alan-at@df.uba.ar [Departamento de Física, Universidad de Buenos Aires FCEN-UBA, IFIBA-CONICET, Ciudad Universitaria, Pabellón I, 1428, Buenos Aires, Argentina and Instituto de Física de La Plata, Universidad Nacional de La Plata IFLP-UNLP, C.C. 67 (Argentina); Giribet, Gaston, E-mail: gaston-at@df.uba.ar, E-mail: af.goya-at@df.uba.ar; Goya, Andrés, E-mail: gaston-at@df.uba.ar, E-mail: af.goya-at@df.uba.ar [Departamento de Física, Universidad de Buenos Aires FCEN-UBA, IFIBA-CONICET, Ciudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina); Leston, Mauricio, E-mail: mauricio-at@iafe.uba.ar [Instituto de Astronomía y Física del Espacio IAFE-CONICET, Ciudad Universitaria, C.C. 67 Suc. 28, 1428, Buenos Aires (Argentina)

    2015-03-26

    We consider critical gravity in three dimensions; that is, the New Massive Gravity theory formulated about Anti-de Sitter (AdS) space with the specific value of the graviton mass for which it results dual to a two-dimensional conformai field theory with vanishing central charge. As it happens with Kerr black holes in four-dimensional critical gravity, in three-dimensional critical gravity the Bañados-Teitelboim-Zanelli black holes have vanishing mass and vanishing angular momentum. However, provided suitable asymptotic conditions are chosen, the theory may also admit solutions carrying non-vanishing charges. Here, we give simple examples of exact solutions that exhibit falling-off conditions that are even weaker than those of the so-called Log-gravity. For such solutions, we define the quasilocal stress-tensor and use it to compute conserved charges. Despite the drastic deformation of AdS{sub 3} asymptotic, these solutions have finite mass and angular momentum, which are shown to be non-zero.

  18. Tunneling across dilaton coupled black holes in anti de Sitter spacetime

    International Nuclear Information System (INIS)

    Ghosh, Tanwi; SenGupta, Soumitra

    2011-01-01

    Considering generalised action for dilaton coupled Maxwell-Einstein theory in four dimensions, Gao and Zhang obtained black holes solutions for asymptotically anti de Sitter (Ads) and de Sitter (ds) spacetimes. We study the Hawking radiation in Parikh-Wilczek's tunneling formalism as well as using Bogoliubov transformations. We compare the expression of the Hawking temperature obtained from these two different approaches. Stability and the extremality conditions for such black holes are discussed. The exact dependences of the Hawking temperature and flux on the dilaton coupling parameter are determined. It is shown that the Hawking flux increases with the dilaton coupling parameter. Finally we show that the expression for the Hawking flux obtained using Bogoliubov transformation matches exactly with flux calculated via chiral gauge and gravitational anomalies. This establishes a correspondence among all these different approaches of estimating Hawking radiation from these classes of black holes.

  19. Extremal vacuum black holes in higher dimensions

    International Nuclear Information System (INIS)

    Figueras, Pau; Lucietti, James; Rangamani, Mukund; Kunduri, Hari K.

    2008-01-01

    We consider extremal black hole solutions to the vacuum Einstein equations in dimensions greater than five. We prove that the near-horizon geometry of any such black hole must possess an SO(2,1) symmetry in a special case where one has an enhanced rotational symmetry group. We construct examples of vacuum near-horizon geometries using the extremal Myers-Perry black holes and boosted Myers-Perry strings. The latter lead to near-horizon geometries of black ring topology, which in odd spacetime dimensions have the correct number of rotational symmetries to describe an asymptotically flat black object. We argue that a subset of these correspond to the near-horizon limit of asymptotically flat extremal black rings. Using this identification we provide a conjecture for the exact 'phase diagram' of extremal vacuum black rings with a connected horizon in odd spacetime dimensions greater than five.

  20. Asymptotics for Associated Random Variables

    CERN Document Server

    Oliveira, Paulo Eduardo

    2012-01-01

    The book concerns the notion of association in probability and statistics. Association and some other positive dependence notions were introduced in 1966 and 1967 but received little attention from the probabilistic and statistics community. The interest in these dependence notions increased in the last 15 to 20 years, and many asymptotic results were proved and improved. Despite this increased interest, characterizations and results remained essentially scattered in the literature published in different journals. The goal of this book is to bring together the bulk of these results, presenting

  1. Canonical structure of BHT massive gravity in warped AdS{sub 3} sector

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavian Yekta, Davood, E-mail: d.mahdavian@hsu.ac.ir

    2016-08-10

    We investigate the asymptotic structure of the three dimensional Warped Anti-de Sitter (WAdS{sub 3}) black holes in the Bergshoeff–Hohm–Townsend (BHT) massive gravity using the canonical Hamiltonian formalism. We define the canonical asymptotic gauge generators, which produce the conserved charges and the asymptotic symmetry group for the WAdS{sub 3} black holes. The attained symmetry group is described by a semi-direct sum of a Virasoro and a Kač–Moody algebra. Using the Sugawara construction, we obtain a direct sum of two Virasoro algebras. We show that not only the asymptotic conserved charges satisfy the first law of black hole thermodynamics, but also they lead to the expected Smarr formula for the WAdS{sub 3} black holes. We also show that the black hole's entropy obeys the Cardy formula of the dual conformal field theory (CFT).

  2. Numerical relativity and asymptotic flatness

    International Nuclear Information System (INIS)

    Deadman, E; Stewart, J M

    2009-01-01

    It is highly plausible that the region of spacetime far from an isolated gravitating body is, in some sense, asymptotically Minkowskian. However theoretical studies of the full nonlinear theory, initiated by Bondi et al (1962 Proc. R. Soc. A 269 21-51), Sachs (1962 Proc. R. Soc. A 270 103-26) and Newman and Unti (1962 J. Math. Phys. 3 891-901), rely on careful, clever, a priori choices of a chart (and tetrad) and so are not readily accessible to the numerical relativist, who chooses her/his chart on the basis of quite different grounds. This paper seeks to close this gap. Starting from data available in a typical numerical evolution, we construct a chart and tetrad which are, asymptotically, sufficiently close to the theoretical ones, so that the key concepts of the Bondi news function, Bondi mass and its rate of decrease can be estimated. In particular, these estimates can be expressed in the numerical relativist's chart as numerical relativity recipes.

  3. Asymptotic twistor theory and the Kerr theorem

    International Nuclear Information System (INIS)

    Newman, Ezra T

    2006-01-01

    We first review asymptotic twistor theory with its real subspace of null asymptotic twistors: a five-dimensional CR manifold. This is followed by a description of the Kerr theorem (the identification of shear-free null congruences, in Minkowski space, with the zeros of holomorphic functions of three variables) and an asymptotic version of the Kerr theorem that produces regular asymptotically shear-free null geodesic congruences in arbitrary asymptotically flat Einstein or Einstein-Maxwell spacetimes. A surprising aspect of this work is the role played by analytic curves in H-space, each curve generating an asymptotically flat null geodesic congruence. Also there is a discussion of the physical space realizations of the two associated five- and three-dimensional CR manifolds

  4. Asymptotic density and effective negligibility

    Science.gov (United States)

    Astor, Eric P.

    In this thesis, we join the study of asymptotic computability, a project attempting to capture the idea that an algorithm might work correctly in all but a vanishing fraction of cases. In collaboration with Hirschfeldt and Jockusch, broadening the original investigation of Jockusch and Schupp, we introduce dense computation, the weakest notion of asymptotic computability (requiring only that the correct answer is produced on a set of density 1), and effective dense computation, where every computation halts with either the correct answer or (on a set of density 0) a symbol denoting uncertainty. A few results make more precise the relationship between these notions and work already done with Jockusch and Schupp's original definitions of coarse and generic computability. For all four types of asymptotic computation, including generic computation, we demonstrate that non-trivial upper cones have measure 0, building on recent work of Hirschfeldt, Jockusch, Kuyper, and Schupp in which they establish this for coarse computation. Their result transfers to yield a minimal pair for relative coarse computation; we generalize their method and extract a similar result for relative dense computation (and thus for its corresponding reducibility). However, all of these notions of near-computation treat a set as negligible iff it has asymptotic density 0. Noting that this definition is not computably invariant, this produces some failures of intuition and a break with standard expectations in computability theory. For instance, as shown by Hamkins and Miasnikov, the halting problem is (in some formulations) effectively densely computable, even in polynomial time---yet this result appears fragile, as indicated by Rybalov. In independent work, we respond to this by strengthening the approach of Jockusch and Schupp to avoid such phenomena; specifically, we introduce a new notion of intrinsic asymptotic density, invariant under computable permutation, with rich relations to both

  5. Asymptotics with a positive cosmological constant: I. Basic framework

    Science.gov (United States)

    Ashtekar, Abhay; Bonga, Béatrice; Kesavan, Aruna

    2015-01-01

    The asymptotic structure of the gravitational field of isolated systems has been analyzed in great detail in the case when the cosmological constant Λ is zero. The resulting framework lies at the foundation of research in diverse areas in gravitational science. Examples include: (i) positive energy theorems in geometric analysis; (ii) the coordinate invariant characterization of gravitational waves in full, nonlinear general relativity; (iii) computations of the energy-momentum emission in gravitational collapse and binary mergers in numerical relativity and relativistic astrophysics; and (iv) constructions of asymptotic Hilbert spaces to calculate S-matrices and analyze the issue of information loss in the quantum evaporation of black holes. However, by now observations have led to a strong consensus that Λ is positive in our universe. In this paper we show that, unfortunately, the standard framework does not extend from the Λ =0 case to the Λ \\gt 0 case in a physically useful manner. In particular, we do not have positive energy theorems, nor an invariant notion of gravitational waves in the nonlinear regime, nor asymptotic Hilbert spaces in dynamical situations of semi-classical gravity. A suitable framework to address these conceptual issues of direct physical importance is developed in subsequent papers.

  6. Black hole enthalpy and an entropy inequality for the thermodynamic volume

    International Nuclear Information System (INIS)

    Cvetic, M.; Gibbons, G. W.; Kubiznak, D.; Pope, C. N.

    2011-01-01

    In a theory where the cosmological constant Λ or the gauge coupling constant g arises as the vacuum expectation value, its variation should be included in the first law of thermodynamics for black holes. This becomes dE=TdS+Ω i dJ i +Φ α dQ α +ΘdΛ, where E is now the enthalpy of the spacetime, and Θ, the thermodynamic conjugate of Λ, is proportional to an effective volume V=-(16πΘ/D-2)''inside the event horizon.'' Here we calculate Θ and V for a wide variety of D-dimensional charged rotating asymptotically anti-de Sitter (AdS) black hole spacetimes, using the first law or the Smarr relation. We compare our expressions with those obtained by implementing a suggestion of Kastor, Ray, and Traschen, involving Komar integrals and Killing potentials, which we construct from conformal Killing-Yano tensors. We conjecture that the volume V and the horizon area A satisfy the inequality R≡ ((D-1)V/A D-2 ) 1/(D-1) (A D-2 /A) 1/(D-2) ≥1, where A D-2 is the volume of the unit (D-2) sphere, and we show that this is obeyed for a wide variety of black holes, and saturated for Schwarzschild-AdS. Intriguingly, this inequality is the ''inverse'' of the isoperimetric inequality for a volume V in Euclidean (D-1) space bounded by a surface of area A, for which R≤1. Our conjectured reverse isoperimetric inequality can be interpreted as the statement that the entropy inside a horizon of a given ''volume''V is maximized for Schwarzschild-AdS. The thermodynamic definition of V requires a cosmological constant (or gauge coupling constant). However, except in seven dimensions, a smooth limit exists where Λ or g goes to zero, providing a definition of V even for asymptotically flat black holes.

  7. Quantum aspects of black hole entropy

    Indian Academy of Sciences (India)

    Four dimensional supersymmetric extremal black holes in string-based ... elements in the construction of black holes are our concepts of space and time. They are, thus, almost by definition, the most perfect macroscopic objects there are in ... Appealing to the Cardy formula for the asymptotic degeneracy of these states, one.

  8. Black holes and the weak cosmic censorship

    International Nuclear Information System (INIS)

    Krolak, A.

    1984-01-01

    A theory of black holes is developed under the assumption of the weak cosmic censorship. It includes Hawking's theory of black holes in the future asymptotically predictable space-times as a special case but it also applies to the cosmological situations including models with nonzero cosmological constant of both signs. (author)

  9. Black holes and the strong cosmic censorship

    International Nuclear Information System (INIS)

    Krolak, A.

    1984-01-01

    The theory of black holes developed by Hawking in asymptotically flat space-times is generalized so that black holes in the cosmological situations are included. It is assumed that the strong version of the Penrose cosmic censorship hypothesis holds. (author)

  10. Asymptotic safety, emergence and minimal length

    International Nuclear Information System (INIS)

    Percacci, Roberto; Vacca, Gian Paolo

    2010-01-01

    There seems to be a common prejudice that asymptotic safety is either incompatible with, or at best unrelated to, the other topics in the title. This is not the case. In fact, we show that (1) the existence of a fixed point with suitable properties is a promising way of deriving emergent properties of gravity, and (2) there is a sense in which asymptotic safety implies a minimal length. In doing so we also discuss possible signatures of asymptotic safety in scattering experiments.

  11. Thermodynamical description of stationary, asymptotically flat solutions with conical singularities

    International Nuclear Information System (INIS)

    Herdeiro, Carlos; Rebelo, Carmen; Radu, Eugen

    2010-01-01

    We examine the thermodynamical properties of a number of asymptotically flat, stationary (but not static) solutions having conical singularities, with both connected and nonconnected event horizons, using the thermodynamical description recently proposed in [C. Herdeiro, B. Kleihaus, J. Kunz, and E. Radu, Phys. Rev. D 81, 064013 (2010).]. The examples considered are the double-Kerr solution, the black ring rotating in either S 2 or S 1 , and the black Saturn, where the balance condition is not imposed for the latter two solutions. We show that not only the Bekenstein-Hawking area law is recovered from the thermodynamical description, but also the thermodynamical angular momentum is the Arnowitt-Deser-Misner angular momentum. We also analyze the thermodynamical stability and show that, for all these solutions, either the isothermal moment of inertia or the specific heat at constant angular momentum is negative, at any point in parameter space. Therefore, all these solutions are thermodynamically unstable in the grand canonical ensemble.

  12. Quantum tunneling from three-dimensional black holes

    International Nuclear Information System (INIS)

    Ejaz, Asiya; Gohar, H.; Lin, Hai; Saifullah, K.; Yau, Shing-Tung

    2013-01-01

    We study Hawking radiation from three-dimensional black holes. For this purpose the emission of charged scalar and charged fermionic particles is investigated from charged BTZ black holes, with and without rotation. We use the quantum tunneling approach incorporating WKB approximation and spacetime symmetries. Another class of black holes which is asymptotic to a Sol three-manifold has also been investigated. This procedure gives us the tunneling probability of outgoing particles, and we compute the temperature of the radiation for these black holes. We also consider the quantum tunneling of particles from black hole asymptotic to Sol geometry

  13. Numerical Asymptotic Solutions Of Differential Equations

    Science.gov (United States)

    Thurston, Gaylen A.

    1992-01-01

    Numerical algorithms derived and compared with classical analytical methods. In method, expansions replaced with integrals evaluated numerically. Resulting numerical solutions retain linear independence, main advantage of asymptotic solutions.

  14. Are black holes springlike?

    Science.gov (United States)

    Good, Michael R. R.; Ong, Yen Chin

    2015-02-01

    A (3 +1 )-dimensional asymptotically flat Kerr black hole angular speed Ω+ can be used to define an effective spring constant, k =m Ω+2. Its maximum value is the Schwarzschild surface gravity, k =κ , which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: 2 π T =κ -k . Hooke's law, in the extremal limit, provides the force F =1 /4 , which is consistent with the conjecture of maximum force in general relativity.

  15. Superfluid Black Holes.

    Science.gov (United States)

    Hennigar, Robie A; Mann, Robert B; Tjoa, Erickson

    2017-01-13

    We present what we believe is the first example of a "λ-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid ^{4}He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  16. (Anti-)Evaporation of Schwarzschild-de Sitter Black Holes

    OpenAIRE

    Bousso, Raphael; Hawking, Stephen

    1997-01-01

    We study the quantum evolution of black holes immersed in a de Sitter background space. For black holes whose size is comparable to that of the cosmological horizon, this process differs significantly from the evaporation of asymptotically flat black holes. Our model includes the one-loop effective action in the s-wave and large N approximation. Black holes of the maximal mass are in equilibrium. Unexpectedly, we find that nearly maximal quantum Schwarzschild-de Sitter black holes anti-evapor...

  17. AdS{sub 2} holographic dictionary

    Energy Technology Data Exchange (ETDEWEB)

    Cvetič, Mirjam [Department of Physics and Astronomy, University of Pennsylvania,Philadelphia, PA 19104-6396 (United States); Center for Applied Mathematics and Theoretical Physics,University of Maribor, SI2000 Maribor (Slovenia); Papadimitriou, Ioannis [SISSA and INFN - Sezione di Trieste,Via Bonomea 265, 34136 Trieste (Italy)

    2016-12-02

    We construct the holographic dictionary for both running and constant dilaton solutions of the two dimensional Einstein-Maxwell-Dilaton theory that is obtained by a circle reduction from Einstein-Hilbert gravity with negative cosmological constant in three dimensions. This specific model ensures that the dual theory has a well defined ultraviolet completion in terms of a two dimensional conformal field theory, but our results apply qualitatively to a wider class of two dimensional dilaton gravity theories. For each type of solutions we perform holographic renormalization, compute the exact renormalized one-point functions in the presence of arbitrary sources, and derive the asymptotic symmetries and the corresponding conserved charges. In both cases we find that the scalar operator dual to the dilaton plays a crucial role in the description of the dynamics. Its source gives rise to a matter conformal anomaly for the running dilaton solutions, while its expectation value is the only non trivial observable for constant dilaton solutions. The role of this operator has been largely overlooked in the literature. We further show that the only non trivial conserved charges for running dilaton solutions are the mass and the electric charge, while for constant dilaton solutions only the electric charge is non zero. However, by uplifting the solutions to three dimensions we show that constant dilaton solutions can support non trivial extended symmetry algebras, including the one found by Compère, Song and Strominger http://dx.doi.org/10.1007/JHEP05(2013)152, in agreement with the results of Castro and Song http://arxiv.org/abs/1411.1948. Finally, we demonstrate that any solution of this specific dilaton gravity model can be uplifted to a family of asymptotically AdS{sub 2}×S{sup 2} or conformally AdS{sub 2}×S{sup 2} solutions of the STU model in four dimensions, including non extremal black holes. The four dimensional solutions obtained by uplifting the running dilaton

  18. Asymptotic behaviour in field theory

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, H.

    1980-07-01

    Asymptotic behaviour in field theory has been studied and the anomalies are pointed out in two specific cases, (i) the infrared and fixed angle high energy behaviour in the non-trivial case of the 'box' amplitude in a scalar-scalar theory and (ii) high energy behaviour of a sixth order Yang-Mills diagram. A set of rules are presented for writing down the precise leading infrared behaviour of an arbitrary generalised ladder diagram (GLD) in QED. These rules are the final result of a detailed analysis of the relevant amplitudes in the Feynman parameter space. The connection between the infrared and fixed angle high energy limits of generalised ladder diagrams is explained. It is argued that the same set of rules yield the fixed angle high energy limit.

  19. Asymptotical representation of discrete groups

    International Nuclear Information System (INIS)

    Mishchenko, A.S.; Mohammad, N.

    1995-08-01

    If one has a unitary representation ρ: π → U(H) of the fundamental group π 1 (M) of the manifold M then one can do may useful things: 1. To construct a natural vector bundle over M; 2. To construct the cohomology groups with respect to the local system of coefficients; 3. To construct the signature of manifold M with respect to the local system of coefficients; and others. In particular, one can write the Hirzebruch formula which compares the signature with the characteristic classes of the manifold M, further based on this, find the homotopy invariant characteristic classes (i.e. the Novikov conjecture). Taking into account that the family of known representations is not sufficiently large, it would be interesting to extend this family to some larger one. Using the ideas of A.Connes, M.Gromov and H.Moscovici a proper notion of asymptotical representation is defined. (author). 7 refs

  20. Qualitative and Asymptotic Theory of Detonations

    KAUST Repository

    Faria, Luiz

    2014-11-09

    Shock waves in reactive media possess very rich dynamics: from formation of cells in multiple dimensions to oscillating shock fronts in one-dimension. Because of the extreme complexity of the equations of combustion theory, most of the current understanding of unstable detonation waves relies on extensive numerical simulations of the reactive compressible Euler/Navier-Stokes equations. Attempts at a simplified theory have been made in the past, most of which are very successful in describing steady detonation waves. In this work we focus on obtaining simplified theories capable of capturing not only the steady, but also the unsteady behavior of detonation waves. The first part of this thesis is focused on qualitative theories of detonation, where ad hoc models are proposed and analyzed. We show that equations as simple as a forced Burgers equation can capture most of the complex phenomena observed in detonations. In the second part of this thesis we focus on rational theories, and derive a weakly nonlinear model of multi-dimensional detonations. We also show, by analysis and numerical simulations, that the asymptotic equations provide good quantitative predictions.

  1. Exponential asymptotics of homoclinic snaking

    International Nuclear Information System (INIS)

    Dean, A D; Matthews, P C; Cox, S M; King, J R

    2011-01-01

    We study homoclinic snaking in the cubic-quintic Swift–Hohenberg equation (SHE) close to the onset of a subcritical pattern-forming instability. Application of the usual multiple-scales method produces a leading-order stationary front solution, connecting the trivial solution to the patterned state. A localized pattern may therefore be constructed by matching between two distant fronts placed back-to-back. However, the asymptotic expansion of the front is divergent, and hence should be truncated. By truncating optimally, such that the resultant remainder is exponentially small, an exponentially small parameter range is derived within which stationary fronts exist. This is shown to be a direct result of the 'locking' between the phase of the underlying pattern and its slowly varying envelope. The locking mechanism remains unobservable at any algebraic order, and can only be derived by explicitly considering beyond-all-orders effects in the tail of the asymptotic expansion, following the method of Kozyreff and Chapman as applied to the quadratic-cubic SHE (Chapman and Kozyreff 2009 Physica D 238 319–54, Kozyreff and Chapman 2006 Phys. Rev. Lett. 97 44502). Exponentially small, but exponentially growing, contributions appear in the tail of the expansion, which must be included when constructing localized patterns in order to reproduce the full snaking diagram. Implicit within the bifurcation equations is an analytical formula for the width of the snaking region. Due to the linear nature of the beyond-all-orders calculation, the bifurcation equations contain an analytically indeterminable constant, estimated in the previous work by Chapman and Kozyreff using a best fit approximation. A more accurate estimate of the equivalent constant in the cubic-quintic case is calculated from the iteration of a recurrence relation, and the subsequent analytical bifurcation diagram compared with numerical simulations, with good agreement

  2. Supersymmetric warped AdS in extended topologically massive supergravity

    International Nuclear Information System (INIS)

    Deger, N.S.; Kaya, A.; Samtleben, H.; Sezgin, E.

    2014-01-01

    We determine the most general form of off-shell N=(1,1) supergravity field configurations in three dimensions by requiring that at least one off-shell Killing spinor exists. We then impose the field equations of the topologically massive off-shell supergravity and find a class of solutions whose properties crucially depend on the norm of the auxiliary vector field. These are spacelike-squashed and timelike-stretched AdS 3 for the spacelike and timelike norms, respectively. At the transition point where the norm vanishes, the solution is null warped AdS 3 . This occurs when the coefficient of the Lorentz–Chern–Simons term is related to the AdS radius by μℓ=2. We find that the spacelike-squashed AdS 3 can be modded out by a suitable discrete subgroup of the isometry group, yielding an extremal black hole solution which avoids closed timelike curves

  3. Black to Black

    DEFF Research Database (Denmark)

    Langkjær, Michael Alexander

    2012-01-01

    Pop musicians performing in black stage costume take advantage of cultural traditions relating to matters black. Stylistically, black is a paradoxical color: although a symbol of melancholy, pessimism, and renunciation, black also expresses minimalist modernity and signifies exclusivity (as is hi...

  4. Stark resonances: asymptotics and distributional Borel sum

    International Nuclear Information System (INIS)

    Caliceti, E.; Grecchi, V.; Maioli, M.

    1993-01-01

    We prove that the Stark effect perturbation theory of a class of bound states uniquely determines the position and the width of the resonances by Distributional Borel Sum. In particular the small field asymptotics of the width is uniquely related to the large order asymptotics of the perturbation coefficients. Similar results apply to all the ''resonances'' of the anharmonic and double well oscillators. (orig.)

  5. Asymptotics of Laplace-Dirichlet integrals

    International Nuclear Information System (INIS)

    Kozlov, S.M.

    1990-01-01

    Here we consider the problem of the asymptotic expansion of the Laplace-Dirichlet integral. In homogenization theory such an integral represents the energy, and in general depends on the cohomology class. Here the asymptotic behaviour of this integral is found. The full text will appear in Functional Analysis and Applications, 1990, No.2. (author). 3 refs

  6. A method for summing nonalternating asymptotic series

    International Nuclear Information System (INIS)

    Kazakov, D.I.

    1980-01-01

    A method for reconstructing a function from its nonalternating asymptotic series is proposed. It can also be applied when only a limited number of coefficients and their high order asymptotic behaviour are known. The method is illustrated by examples of the ordinary simple integral simulating a functional integral in a theory with degenerate minimum and of the double-well unharmonic oscillator

  7. Wijsman Orlicz Asymptotically Ideal -Statistical Equivalent Sequences

    Directory of Open Access Journals (Sweden)

    Bipan Hazarika

    2013-01-01

    in Wijsman sense and present some definitions which are the natural combination of the definition of asymptotic equivalence, statistical equivalent, -statistical equivalent sequences in Wijsman sense. Finally, we introduce the notion of Cesaro Orlicz asymptotically -equivalent sequences in Wijsman sense and establish their relationship with other classes.

  8. 8. Asymptotically Flat and Regular Cauchy Data

    Science.gov (United States)

    Dain, Sergio

    I describe the construction of a large class of asymptotically flat initial data with non-vanishing mass and angular momentum for which the metric and the extrinsic curvature have asymptotic expansions at space-like infinity in terms of powers of a radial coordinate. I emphasize the motivations and the main ideas behind the proofs.

  9. Integral method for the calculation of Hawking radiation in dispersive media. II. Asymmetric asymptotics.

    Science.gov (United States)

    Robertson, Scott

    2014-11-01

    Analog gravity experiments make feasible the realization of black hole space-times in a laboratory setting and the observational verification of Hawking radiation. Since such analog systems are typically dominated by dispersion, efficient techniques for calculating the predicted Hawking spectrum in the presence of strong dispersion are required. In the preceding paper, an integral method in Fourier space is proposed for stationary 1+1-dimensional backgrounds which are asymptotically symmetric. Here, this method is generalized to backgrounds which are different in the asymptotic regions to the left and right of the scattering region.

  10. Gravitational lensing by a Horndeski black hole

    Energy Technology Data Exchange (ETDEWEB)

    Badia, Javier [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Eiroa, Ernesto F. [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2017-11-15

    In this article we study gravitational lensing by non-rotating and asymptotically flat black holes in Horndeski theory. By adopting the strong deflection limit, we calculate the deflection angle, from which we obtain the positions and the magnifications of the relativistic images. We compare our results with those corresponding to black holes in General Relativity. We analyze the astrophysical consequences in the case of the nearest supermassive black holes. (orig.)

  11. Gravitational lensing by a Horndeski black hole

    International Nuclear Information System (INIS)

    Badia, Javier; Eiroa, Ernesto F.

    2017-01-01

    In this article we study gravitational lensing by non-rotating and asymptotically flat black holes in Horndeski theory. By adopting the strong deflection limit, we calculate the deflection angle, from which we obtain the positions and the magnifications of the relativistic images. We compare our results with those corresponding to black holes in General Relativity. We analyze the astrophysical consequences in the case of the nearest supermassive black holes. (orig.)

  12. Observability of Quantum State of Black Hole

    CERN Document Server

    David, J R; Mandal, G; Wadia, S R; David, Justin R.; Dhar, Avinash; Mandal, Gautam; Wadia, Spenta R.

    1997-01-01

    We analyze terms subleading to Rutherford in the $S$-matrix between black hole and probes of successively high energies. We show that by an appropriate choice of the probe one can read off the quantum state of the black hole from the S-matrix, staying asymptotically far from the BH all the time. We interpret the scattering experiment as scattering off classical stringy backgrounds which explicitly depend on the internal quantum numbers of the black hole.

  13. The large dimension limit of a small black hole instability in anti-de Sitter space

    Science.gov (United States)

    Herzog, Christopher P.; Kim, Youngshin

    2018-02-01

    We study the dynamics of a black hole in an asymptotically AdS d × S d space-time in the limit of a large number of dimensions, d → ∞. Such a black hole is known to become dynamically unstable below a critical radius. We derive the dispersion relation for the quasinormal mode that governs this instability in an expansion in 1 /d. We also provide a full nonlinear analysis of the instability at leading order in 1 /d. We find solutions that resemble the lumpy black spots and black belts previously constructed numerically for small d, breaking the SO( d + 1) rotational symmetry of the sphere down to SO( d). We are also able to follow the time evolution of the instability. Due possibly to limitations in our analysis, our time dependent simulations do not settle down to stationary solutions. This work has relevance for strongly interacting gauge theories; through the AdS/CFT correspondence, the special case d = 5 corresponds to maximally supersymmetric Yang-Mills theory on a spatial S 3 in the microcanonical ensemble and in a strong coupling and large number of colors limit.

  14. Holography in asymptotically flat spacetimes and the BMS group

    International Nuclear Information System (INIS)

    Arcioni, Giovanni; Dappiaggi, Claudio

    2004-01-01

    In a previous paper (Arcioni G and Dappiaggi C 2003 Preprint hep-th/0306142) we have started to explore the holographic principle in the case of asymptotically flat spacetimes and analysed, in particular, different aspects of the Bondi-Metzner-Sachs (BMS) group, namely the asymptotic symmetry group of any asymptotically flat spacetime. We continue this investigation in this paper. Having in mind an S-matrix approach with future and past null infinity playing the role of holographic screens on which the BMS group acts, we connect the IR sectors of the gravitational field with the representation theory of the BMS group. We analyse the (complicated) mapping between bulk and boundary symmetries pointing out differences with respect to the anti-de Sitter (AdS)/CFT set up. Finally, we construct a BMS phase space and a free Hamiltonian for fields transforming with respect to BMS representations. The last step is supposed to be an explorative investigation of the boundary data living on the degenerate null manifold at infinity

  15. Journal Afrika Statistika ISSN 0852-0305 Asymptotic representation ...

    African Journals Online (AJOL)

    Asymptotic representation theorems for poverty indices ... Statistical asymptotic laws for these indices, particularly asymptotic normality, on which statistical inference on the ... population of individuals, each of which having a random income or ...

  16. The Cardy-Verlinde formula and entropy of topological Kerr-Newman black holes in de Sitter spaces

    International Nuclear Information System (INIS)

    Setare, M.R.; Altaie, M.B.

    2003-01-01

    In this paper we show that the entropy of a cosmological horizon in 4-dimensional topological Kerr-Newman-de Sitter spaces can be described by the Cardy-Verlinde formula, which is supposed to be an entropy formula of conformal field theory in any number of dimensions. Furthermore, we find that the entropy of a black hole horizon can also be rewritten in terms of the Cardy-Verlinde formula for these black holes in de Sitter spaces, if we use the definition due to Abbott and Deser for conserved charges in asymptotically de Sitter spaces. Such results presume a well-defined dS/CFT correspondence, which has not yet attained the credibility of its AdS analogue. (orig.)

  17. Experimental tests of asymptotic freedom

    International Nuclear Information System (INIS)

    Bethke, S.

    1996-09-01

    Measurements which probe the energy dependence of α s , the coupling strength of the strong interaction, are reviewed. Jet counting in e + e - annihilation, combining results obtained in the centre of mass energy range from 22 to 133 GeV, provides direct evidence for an asymptotically free coupling, without the need to determine explicit values of α s . Recent results from jet production in e p and in p p collisions, obtained in single experiments spanning large ranges of momentum transfer, Q 2 , are in good agreement with the running of α s as predicted by QCD. Mass spectra of hadronic decays of τ-leptons are analysed to probe the running α s in the very low energy domain, 0.7 GeV 2 2 2 τ . An update of the world summary of measurements of α s (Q 2 ) consistently proves the energy dependence of α s and results in a combined average of α s (M Z 0 =0.118±0.006). (orig.)

  18. Supertranslations and Superrotations at the Black Hole Horizon.

    Science.gov (United States)

    Donnay, Laura; Giribet, Gaston; González, Hernán A; Pino, Miguel

    2016-03-04

    We show that the asymptotic symmetries close to nonextremal black hole horizons are generated by an extension of supertranslations. This group is generated by a semidirect sum of Virasoro and Abelian currents. The charges associated with the asymptotic Killing symmetries satisfy the same algebra. When considering the special case of a stationary black hole, the zero mode charges correspond to the angular momentum and the entropy at the horizon.

  19. Supersymmetric black holes with lens-space topology.

    Science.gov (United States)

    Kunduri, Hari K; Lucietti, James

    2014-11-21

    We present a new supersymmetric, asymptotically flat, black hole solution to five-dimensional supergravity. It is regular on and outside an event horizon of lens-space topology L(2,1). It is the first example of an asymptotically flat black hole with lens-space topology. The solution is characterized by a charge, two angular momenta, and a magnetic flux through a noncontractible disk region ending on the horizon, with one constraint relating these.

  20. Phase transition for black holes with scalar hair and topological black holes

    International Nuclear Information System (INIS)

    Myung, Yun Soo

    2008-01-01

    We study phase transitions between black holes with scalar hair and topological black holes in asymptotically anti-de Sitter spacetimes. As the ground state solutions, we introduce the non-rotating BTZ black hole in three dimensions and topological black hole with hyperbolic horizon in four dimensions. For the temperature matching only, we show that the phase transition between black hole with scalar hair (Martinez-Troncoso-Zanelli black hole) and topological black hole is second-order by using differences between two free energies. However, we do not identify what order of the phase transition between scalar and non-rotating BTZ black holes occurs in three dimensions, although there exists a possible decay of scalar black hole to non-rotating BTZ black hole

  1. Asymptotic Conservation Laws in Classical Field Theory

    International Nuclear Information System (INIS)

    Anderson, I.M.; Torre, C.G.

    1996-01-01

    A new, general, field theoretic approach to the derivation of asymptotic conservation laws is presented. In this approach asymptotic conservation laws are constructed directly from the field equations according to a universal prescription which does not rely upon the existence of Noether identities or any Lagrangian or Hamiltonian formalisms. The resulting general expressions of the conservation laws enjoy important invariance properties and synthesize all known asymptotic conservation laws, such as the Arnowitt-Deser-Misner energy in general relativity. copyright 1996 The American Physical Society

  2. Asymptotic work distributions in driven bistable systems

    International Nuclear Information System (INIS)

    Nickelsen, D; Engel, A

    2012-01-01

    The asymptotic tails of the probability distributions of thermodynamic quantities convey important information about the physics of nanoscopic systems driven out of equilibrium. We apply a recently proposed method to analytically determine the asymptotics of work distributions in Langevin systems to an one-dimensional model of single-molecule force spectroscopy. The results are in excellent agreement with numerical simulations, even in the centre of the distributions. We compare our findings with a recent proposal for an universal form of the asymptotics of work distributions in single-molecule experiments.

  3. Phase transitions and critical behaviour for charged black holes

    International Nuclear Information System (INIS)

    Carlip, S; Vaidya, S

    2003-01-01

    We investigate the thermodynamics of a four-dimensional charged black hole in a finite cavity in asymptotically flat and asymptotically de Sitter spaces. In each case, we find a Hawking-Page-like phase transition between a black hole and a thermal gas very much like the known transition in asymptotically anti-de Sitter space. For a 'supercooled' black hole - a thermodynamically unstable black hole below the critical temperature for the Hawking-Page phase transition - the phase diagram has a line of first-order phase transitions that terminates in a second-order point. For the asymptotically flat case, we calculate the critical exponents at the second-order phase transition and find that they exactly match the known results for a charged black hole in anti-de Sitter space. We find strong evidence for similar phase transitions for the de Sitter black hole as well. Thus many of the thermodynamic features of charged anti-de Sitter black holes do not really depend on asymptotically anti-de Sitter boundary conditions; the thermodynamics of charged black holes is surprisingly universal

  4. Questioning the quark model. Strong interaction, gravitation and time arrows. An approach to asymptotic freedom

    International Nuclear Information System (INIS)

    Basini, G.

    2003-01-01

    Asymptotic freedom, as a natural result of a theory based on a general approach, derived by a new interpretation of phenomena like the EPR paradox, the black-hole formation and the absence of primary cosmic antimatter is presented. In this approach, conservation laws are considered always and absolutely valid, leading to the possibility of topology changes, and recovering the mutual influence between fundamental forces. Moreover, a new consideration of time arrows leads to asymptotic freedom as a necessary consequence. In fact, asymptotic freedom of strong interactions seems to be a feature common also to gravitational interaction, if induced-gravity theories (t → ∞) are taken into account and a symmetric-time dynamics is recovered in the light of a general conservation principle. (authors)

  5. Questioning the quark model. Strong interaction, gravitation and time arrows. An approach to asymptotic freedom

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G. [Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati; Capozziello, S. [E.R. Caianiello, Dipt. di Fisica, Roma (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Universita di Salerno, Boronissi, SA (Italy)

    2003-09-01

    Asymptotic freedom, as a natural result of a theory based on a general approach, derived by a new interpretation of phenomena like the EPR paradox, the black-hole formation and the absence of primary cosmic antimatter is presented. In this approach, conservation laws are considered always and absolutely valid, leading to the possibility of topology changes, and recovering the mutual influence between fundamental forces. Moreover, a new consideration of time arrows leads to asymptotic freedom as a necessary consequence. In fact, asymptotic freedom of strong interactions seems to be a feature common also to gravitational interaction, if induced-gravity theories (t {yields} {infinity}) are taken into account and a symmetric-time dynamics is recovered in the light of a general conservation principle. (authors)

  6. Black hole microstates and attractor without supersymmetry

    International Nuclear Information System (INIS)

    Dabholkar, Atish; Trivedi, Sandip P.; Sen, Ashoke

    2007-01-01

    Due to the attractor mechanism, the entropy of an extremal black hole does not vary continuously as we vary the asymptotic values of various moduli fields. Using this fact we argue that the entropy of an extremal black hole in string theory, calculated for a range of values of the asymptotic moduli for which the microscopic theory is strongly coupled, should match the statistical entropy of the same system calculated for a range of values of the asymptotic moduli for which the microscopic theory is weakly coupled. This argument does not rely on supersymmetry and applies equally well to nonsupersymmetric extremal black holes. We discuss several examples which support this argument and also several caveats which could invalidate this argument

  7. Microscopic Calabi-Yau black holes in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Saeid

    2011-07-22

    In this thesis we study microscopic aspects of Calabi-Yau black holes in string theory. We compute the absorption cross-section of the space-time massless scalars by the worldvolume of D2-branes, wrapped on the S{sup 2} of an AdS{sub 2} x S{sup 2} x CY{sub 3} geometry of a fourdimensional D4-D0 Calabi-Yau black hole. The D2-brane can also have a generic D0 probe-brane charge. However, we restrict ourselves to D2-branes with small D0-charge so that the perturbation theory is applicable. According to the proposed AdS{sub 2}/QM correspondence the candidate for the dual theory is the quantum mechanics of a set of probe D0-branes in the AdS{sub 2} geometry. For small but non-zero probe D0-charge we find the quantum mechanical absorption cross-section seen by an asymptotic anti-de Sitter observer. We repeat the calculations for vanishing probe D0-charge as well and discuss our result by comparing with the classical absorption cross-section. In other project, for a given fourdimensional Calabi-Yau black hole with generic D6-D4-D2-D0 charges we identify a set of supersymmetric branes, which are static or stationary in the global coordinates, of the corresponding eleven-dimensional near horizon geometry. The set of these BPS states, which include the branes partially or fully wrap the horizon, should play a role in understanding the partition function of black holes with D6-charge. (orig.)

  8. Black hole gravitohydromagnetics

    CERN Document Server

    Punsly, Brian

    2008-01-01

    Black hole gravitohydromagnetics (GHM) is developed from the rudiments to the frontiers of research in this book. GHM describes plasma interactions that combine the effects of gravity and a strong magnetic field, in the vicinity (ergosphere) of a rapidly rotating black hole. This topic was created in response to the astrophysical quest to understand the central engines of radio loud extragalactic radio sources. The theory describes a "torsional tug of war" between rotating ergospheric plasma and the distant asymptotic plasma that extracts the rotational inertia of the black hole. The recoil from the struggle between electromagnetic and gravitational forces near the event horizon is manifested as a powerful pair of magnetized particle beams (jets) that are ejected at nearly the speed of light. These bipolar jets feed large-scale magnetized plasmoids on scales as large as millions of light years (the radio lobes of extragalactic radio sources). This interaction can initiate jets that transport energy fluxes exc...

  9. The theory of asymptotic behaviour

    International Nuclear Information System (INIS)

    Ward, B.F.L.; Purdue Univ., Lafayette, IN

    1978-01-01

    The Green's functions of renormalizable quantum field theory are shown to violate, in general, Euler's theorem on homogeneous functions, that is to say, to violate naive dimensional analysis. The respective violations are established by explicit calculation with Feynman diagrams. These violations, when incorporated into the renormalization group, then provide the basis for an entirely new approach to asymptotic behaviour in renormalizable field theory. Specifically, the violations add new delta-function sources to the usual partial differential equations of the group when these equations are written in terms of the external momenta of the respective Green's functions. The effect of these sources is illustrated by studying the real part, Re GAMMA 6 (lambda p), of the six-point 1PI vertex of the massless scalar field with quartic self-coupling - the simplest of ranormalizable situations. Here, lambda p is symbolic for the six-momenta of GAMMA 6 . Briefly, it is found that the usual theory of characteristics is unable to satisfy the boundary condition attendant to the respective dimensional-analysis-violating sources. Thus, the method of characteristics is completely abandonded in favour of the method of separation of variables. A complete solution which satisfies the inhomogeneous group equation and all boundary conditions is then explicitly constructed. This solution possesses Laurent expansions in the scale lambda of its momentum arguments for all real values of lambda 2 except lambda 2 = 0. For |lambda 2 |→ infinity and |lambda 2 |→ 0, the solution's leading term in its respective Laurent series is proportional to lambda -2 . The limits lambda 2 →0sub(+) and lambda 2 →0sup(-) of lambda 2 ReGAMMA 6 are both nonzero and unequal. The value of the solution at lambda 2 = 0 is not simply related to the value of either of these limits. The new approach would appear to be operationally established

  10. Integrability and black-hole microstate geometries

    Science.gov (United States)

    Bena, Iosif; Turton, David; Walker, Robert; Warner, Nicholas P.

    2017-11-01

    We examine some recently-constructed families of asymptotically-AdS3 × S^3 supergravity solutions that have the same charges and mass as supersymmetric D1-D5- P black holes, but that cap off smoothly with no horizon. These solutions, known as superstrata, are quite complicated, however we show that, for an infinite family of solutions, the null geodesic problem is completely integrable, due to the existence of a non-trivial conformal Killing tensor that provides a quadratic conservation law for null geodesics. This implies that the massless scalar wave equation is separable. For another infinite family of solutions, we find that there is a non-trivial conformal Killing tensor only when the left-moving angular momentum of the massless scalar is zero. We also show that, for both these families, the metric degrees of freedom have the form they would take if they arose from a consistent truncation on S^3 down to a (2 + 1)-dimensional space-time. We discuss some of the broader consequences of these special properties for the physics of these black-hole microstate geometries.

  11. Asymptotic Likelihood Distribution for Correlated & Constrained Systems

    CERN Document Server

    Agarwal, Ujjwal

    2016-01-01

    It describes my work as summer student at CERN. The report discusses the asymptotic distribution of the likelihood ratio for total no. of parameters being h and 2 out of these being are constrained and correlated.

  12. Asymptotic Poincare lemma and its applications

    International Nuclear Information System (INIS)

    Ziolkowski, R.W.; Deschamps, G.A.

    1984-01-01

    An asymptotic version of Poincare's lemma is defined and solutions are obtained with the calculus of exterior differential forms. They are used to construct the asymptotic approximations of multidimensional oscillatory integrals whose forms are commonly encountered, for example, in electromagnetic problems. In particular, the boundary and stationary point evaluations of these integrals are considered. The former is applied to the Kirchhoff representation of a scalar field diffracted through an aperture and simply recovers the Maggi-Rubinowicz-Miyamoto-Wolf results. Asymptotic approximations in the presence of other (standard) critical points are also discussed. Techniques developed for the asymptotic Poincare lemma are used to generate a general representation of the Leray form. All of the (differential form) expressions presented are generalizations of known (vector calculus) results. 14 references, 4 figures

  13. EMC effect: asymptotic freedom with nuclear targets

    International Nuclear Information System (INIS)

    West, G.B.

    1984-01-01

    General features of the EMC effect are discussed within the framework of quantum chromodynamics as expressed via the operator product expansion and asymptotic freedom. These techniques are reviewed with emphasis on the target dependence. 22 references

  14. Spectral asymptotic in the large coupling limit

    CERN Document Server

    Bruneau, V

    2002-01-01

    In this paper, we study a singular perturbation of an eigenvalues problem related to supra-conductor wave guides. Using boundary layer tools we perform a complete asymptotic expansion of the eigenvalues as the conductivity tends to $+\\infty$.

  15. Large Deviations and Asymptotic Methods in Finance

    CERN Document Server

    Gatheral, Jim; Gulisashvili, Archil; Jacquier, Antoine; Teichmann, Josef

    2015-01-01

    Topics covered in this volume (large deviations, differential geometry, asymptotic expansions, central limit theorems) give a full picture of the current advances in the application of asymptotic methods in mathematical finance, and thereby provide rigorous solutions to important mathematical and financial issues, such as implied volatility asymptotics, local volatility extrapolation, systemic risk and volatility estimation. This volume gathers together ground-breaking results in this field by some of its leading experts. Over the past decade, asymptotic methods have played an increasingly important role in the study of the behaviour of (financial) models. These methods provide a useful alternative to numerical methods in settings where the latter may lose accuracy (in extremes such as small and large strikes, and small maturities), and lead to a clearer understanding of the behaviour of models, and of the influence of parameters on this behaviour. Graduate students, researchers and practitioners will find th...

  16. Asymptotic expansion of the Keesom integral

    International Nuclear Information System (INIS)

    Abbott, Paul C

    2007-01-01

    The asymptotic evaluation and expansion of the Keesom integral, K(a), is discussed at some length in Battezzati and Magnasco (2004 J. Phys. A: Math. Gen. 37 9677; 2005 J. Phys. A: Math. Gen. 38 6715). Here, using standard identities, it is shown that this triple integral can be reduced to a single integral from which the asymptotic behaviour is readily obtained using Laplace's method. (comment)

  17. Composite asymptotic expansions and scaling wall turbulence.

    Science.gov (United States)

    Panton, Ronald L

    2007-03-15

    In this article, the assumptions and reasoning that yield composite asymptotic expansions for wall turbulence are discussed. Particular attention is paid to the scaling quantities that are used to render the variables non-dimensional and of order one. An asymptotic expansion is proposed for the streamwise Reynolds stress that accounts for the active and inactive turbulence by using different scalings. The idea is tested with the data from the channel flows and appears to have merit.

  18. AGB [asymptotic giant branch]: Star evolution

    International Nuclear Information System (INIS)

    Becker, S.A.

    1987-01-01

    Asymptotic giant branch stars are red supergiant stars of low-to-intermediate mass. This class of stars is of particular interest because many of these stars can have nuclear processed material brought up repeatedly from the deep interior to the surface where it can be observed. A review of recent theoretical and observational work on stars undergoing the asymptotic giant branch phase is presented. 41 refs

  19. Adding Ajax

    CERN Document Server

    Powers, Shelley

    2007-01-01

    Ajax can bring many advantages to an existing web application without forcing you to redo the whole thing. This book explains how you can add Ajax to enhance, rather than replace, the way your application works. For instance, if you have a traditional web application based on submitting a form to update a table, you can enhance it by adding the capability to update the table with changes to the form fields, without actually having to submit the form. That's just one example.Adding Ajax is for those of you more interested in extending existing applications than in creating Rich Internet Applica

  20. New Massive Gravity and AdS4 Counterterms

    International Nuclear Information System (INIS)

    Jatkar, Dileep P.; Sinha, Aninda

    2011-01-01

    We show that the recently proposed Dirac-Born-Infeld extension of new massive gravity emerges naturally as a counterterm in four-dimensional anti-de Sitter space (AdS 4 ). The resulting on-shell Euclidean action is independent of the cutoff at zero temperature. We also find that the same choice of counterterm gives the usual area law for the AdS 4 Schwarzschild black hole entropy in a cutoff-independent manner. The parameter values of the resulting counterterm action correspond to a c=0 theory in the context of the duality between AdS 3 gravity and two-dimensional conformal field theory. We rewrite this theory in terms of the gauge field that is used to recast 3D gravity as a Chern-Simons theory.

  1. Trinucleon asymptotic normalization constants including Coulomb effects

    International Nuclear Information System (INIS)

    Friar, J.L.; Gibson, B.F.; Lehman, D.R.; Payne, G.L.

    1982-01-01

    Exact theoretical expressions for calculating the trinucleon S- and D-wave asymptotic normalization constants, with and without Coulomb effects, are presented. Coordinate-space Faddeev-type equations are used to generate the trinucleon wave functions, and integral relations for the asymptotic norms are derived within this framework. The definition of the asymptotic norms in the presence of the Coulomb interaction is emphasized. Numerical calculations are carried out for the s-wave NN interaction models of Malfliet and Tjon and the tensor force model of Reid. Comparison with previously published results is made. The first estimate of Coulomb effects for the D-wave asymptotic norm is given. All theoretical values are carefully compared with experiment and suggestions are made for improving the experimental situation. We find that Coulomb effects increase the 3 He S-wave asymptotic norm by less than 1% relative to that of 3 H, that Coulomb effects decrease the 3 He D-wave asymptotic norm by approximately 8% relative to that of 3 H, and that the distorted-wave Born approximation D-state parameter, D 2 , is only 1% smaller in magnitude for 3 He than for 3 H due to compensating Coulomb effects

  2. Entropy of charged dilaton-axion black hole

    International Nuclear Information System (INIS)

    Ghosh, Tanwi; SenGupta, Soumitra

    2008-01-01

    Using the brick wall method, the entropy of the charged dilaton-axion black hole is determined for both asymptotically flat and nonflat cases. The entropy turns out to be proportional to the horizon area of the black hole confirming the Bekenstein-Hawking area-entropy formula for black holes. The leading order logarithmic corrections to the entropy are also derived for such black holes.

  3. Loop quantum gravity and black hole entropy quantization

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Using the spin networks and the asymptotic quasinormal mode frequencies of black holes given by loop quantum gravity,the minimum horizon area gap is obtained.Then the quantum area spectrum of black holes is derived and the black hole entropy is a realized quantization.The results show that the black hole entropy given by loop quantum gravity is in full accord with the Bekenstein-Hawking entropy with a suitable Immirzi.

  4. Physically asymptotic Hartree-Fock stationary-phase approximant to the many-body S-matrix

    International Nuclear Information System (INIS)

    Griffin, J.J.; Dworzecka, M.

    1982-01-01

    The Asymptotic Hartree-Fock Approximant replaces the physically non-asymptotic (and dynamically nontrivial) external translation of the FISP result with the asymptotic and dynamically trivial translational evolution of Dirac-TDHF by adding an explicit restriction upon the acceptable channel states. It is therefore preferable under the principle of commensurability, which judges the expected output of physical descriptions in terms of the physical assumptions they incorporate. Further insight into the relationship between the TDSHF and FISP methods will reward careful comparison of the respective expressions, in specific cases

  5. Caged black holes: Black holes in compactified spacetimes. I. Theory

    International Nuclear Information System (INIS)

    Kol, Barak; Sorkin, Evgeny; Piran, Tsvi

    2004-01-01

    In backgrounds with compact dimensions there may exist several phases of black objects including a black hole and a black string. The phase transition between them raises questions and touches on fundamental issues such as topology change, uniqueness, and cosmic censorship. No analytic solution is known for the black hole, and moreover one can expect approximate solutions only for very small black holes, while phase transition physics happens when the black hole is large. Hence we turn to numerical solutions. Here some theoretical background to the numerical analysis is given, while the results will appear in a subsequent paper. The goals for a numerical analysis are set. The scalar charge and tension along the compact dimension are defined and used as improved order parameters which put both the black hole and the black string at finite values on the phase diagram. The predictions for small black holes are presented. The differential and the integrated forms of the first law are derived, and the latter (Smarr's formula) can be used to estimate the 'overall numerical error'. Field asymptotics and expressions for physical quantities in terms of the numerical values are supplied. The techniques include the 'method of equivalent charges', free energy, dimensional reduction, and analytic perturbation for small black holes

  6. Phases of Kaluza-Klein black holes

    DEFF Research Database (Denmark)

    Elvang, Henriette; Obers, Niels; Harmark, Troels

    2004-01-01

    We review the latest progress in understanding the phase structure of static and neutral Kaluza-Klein black holes, i.e. static and neutral solutions of pure gravity with an event horizon and with asymptotics Md × S1, Md being d-dimensional Minkowski space.......We review the latest progress in understanding the phase structure of static and neutral Kaluza-Klein black holes, i.e. static and neutral solutions of pure gravity with an event horizon and with asymptotics Md × S1, Md being d-dimensional Minkowski space....

  7. Nonextremal black holes in gauged supergravity and the real formulation of special geometry II

    International Nuclear Information System (INIS)

    Klemm, Dietmar; Vaughan, Owen

    2013-01-01

    In Klemm and Vaughan (2012 arXiv:1207.2679), a new prescription for finding nonextremal black hole solutions to N=2, D = 4 Fayet–Iliopoulos gauged supergravity was presented, and explicit solutions of various models containing one vector multiplet were constructed. Here, we use the same method to find new nonextremal black holes to more complicated models. We also provide a general recipe to construct non-BPS extremal solutions for an arbitrary prepotential, as long as an axion-free condition holds. These follow from a set of first-order conditions, and are related to the corresponding supersymmetric black holes by a multiplication of the charge vector with a constant field rotation matrix S. The fake superpotential driving this first-order flow is nothing else than Hamilton’s characteristic function in a Hamilton–Jacobi formalism, and coincides in the supersymmetric case (when S is plus or minus the identity) with the superpotential proposed by Dall’Agata and Gnecchi (2011 J. High Energy Phys.JHEP03(2011)037). For the nonextremal black holes that asymptote to (magnetic) AdS, we compute both the mass coming from holographic renormalization and the one appearing in the superalgebra. The latter correctly vanishes in the BPS case, but also for certain values of the parameters that do not correspond to any known supersymmetric solution of N=2 gauged supergravity. We finally show that the product of all horizon areas depends only on the charges and the asymptotic value of the cosmological constant. (paper)

  8. Radiatively induced symmetry breaking and the conformally coupled magnetic monopole in AdS space

    Science.gov (United States)

    Edery, Ariel; Graham, Noah

    2013-11-01

    We implement quantum corrections for a magnetic monopole in a classically conformally invariant theory containing gravity. This yields the trace (conformal) anomaly and introduces a length scale in a natural fashion via the process of renormalization. We evaluate the one-loop effective potential and extract the vacuum expectation value (VEV) from it; spontaneous symmetry breaking is radiatively induced. The VEV is set at the renormalization scale M and we exchange the dimensionless scalar coupling constant for the dimensionful VEV via dimensional transmutation. The asymptotic (background) spacetime is anti-de Sitter (AdS) and its Ricci scalar is determined entirely by the VEV. We obtain analytical asymptotic solutions to the coupled set of equations governing gravitational, gauge and scalar fields that yield the magnetic monopole in an AdS spacetime.

  9. A two-parameter family of exact asymptotically flat solutions to the Einstein-scalar field equations

    International Nuclear Information System (INIS)

    Nikonov, V V; Tchemarina, Ju V; Tsirulev, A N

    2008-01-01

    We consider a static spherically symmetric real scalar field, minimally coupled to Einstein gravity. A two-parameter family of exact asymptotically flat solutions is obtained by using the inverse problem method. This family includes non-singular solutions, black holes and naked singularities. For each of these solutions the respective potential is partially negative but positive near spatial infinity. (comments, replies and notes)

  10. Anyon black holes

    Science.gov (United States)

    Aghaei Abchouyeh, Maryam; Mirza, Behrouz; Karimi Takrami, Moein; Younesizadeh, Younes

    2018-05-01

    We propose a correspondence between an Anyon Van der Waals fluid and a (2 + 1) dimensional AdS black hole. Anyons are particles with intermediate statistics that interpolates between a Fermi-Dirac statistics and a Bose-Einstein one. A parameter α (0 quasi Fermi-Dirac statistics for α >αc, but a quasi Bose-Einstein statistics for α quasi Bose-Einstein statistics. For α >αc and a range of values of the cosmological constant, there is, however, no event horizon so there is no black hole solution. Thus, for these values of cosmological constants, the AdS Anyon Van der Waals black holes have only quasi Bose-Einstein statistics.

  11. Holographic entanglement entropy and entanglement thermodynamics of 'black' non-susy D3 brane

    Science.gov (United States)

    Bhattacharya, Aranya; Roy, Shibaji

    2018-06-01

    Like BPS D3 brane, the non-supersymmetric (non-susy) D3 brane of type IIB string theory is also known to have a decoupling limit and leads to a non-supersymmetric AdS/CFT correspondence. The throat geometry in this case represents a QFT which is neither conformal nor supersymmetric. The 'black' version of the non-susy D3 brane in the decoupling limit describes a QFT at finite temperature. Here we first compute the entanglement entropy for small subsystem of such QFT from the decoupled geometry of 'black' non-susy D3 brane using holographic technique. Then we study the entanglement thermodynamics for the weakly excited states of this QFT from the asymptotically AdS geometry of the decoupled 'black' non-susy D3 brane. We observe that for small subsystem this background indeed satisfies a first law like relation with a universal (entanglement) temperature inversely proportional to the size of the subsystem and an (entanglement) pressure normal to the entangling surface. Finally we show how the entanglement entropy makes a cross-over to the thermal entropy at high temperature.

  12. Thermodynamics of Charged Rotating Dilaton Black Branes Coupled to Logarithmic Nonlinear Electrodynamics

    Directory of Open Access Journals (Sweden)

    A. Sheykhi

    2016-01-01

    Full Text Available We construct a new class of charged rotating black brane solutions in the presence of logarithmic nonlinear electrodynamics with complete set of the rotation parameters in arbitrary dimensions. The topology of the horizon of these rotating black branes is flat, while due to the presence of the dilaton field the asymptotic behavior of them is neither flat nor (anti-de Sitter [(AdS]. We investigate the physical properties of the solutions. The mass and angular momentum of the spacetime are obtained by using the counterterm method inspired by AdS/CFT correspondence. We derive temperature, electric potential, and entropy associated with the horizon and check the validity of the first law of thermodynamics on the black brane horizon. We study thermal stability of the solutions in both canonical and grand-canonical ensemble and disclose the effects of the rotation parameter, nonlinearity of electrodynamics, and dilaton field on the thermal stability conditions. We find the solutions are thermally stable for α1 the solutions may encounter an unstable phase, where α is dilaton-electromagnetic coupling constant.

  13. Generalized Asymptotically Almost Periodic and Generalized Asymptotically Almost Automorphic Solutions of Abstract Multiterm Fractional Differential Inclusions

    Directory of Open Access Journals (Sweden)

    G. M. N’Guérékata

    2018-01-01

    Full Text Available The main aim of this paper is to investigate generalized asymptotical almost periodicity and generalized asymptotical almost automorphy of solutions to a class of abstract (semilinear multiterm fractional differential inclusions with Caputo derivatives. We illustrate our abstract results with several examples and possible applications.

  14. Black holes with Yang-Mills hair

    International Nuclear Information System (INIS)

    Kleihaus, B.; Kunz, J.; Sood, A.; Wirschins, M.

    1998-01-01

    In Einstein-Maxwell theory black holes are uniquely determined by their mass, their charge and their angular momentum. This is no longer true in Einstein-Yang-Mills theory. We discuss sequences of neutral and charged SU(N) Einstein-Yang-Mills black holes, which are static spherically symmetric and asymptotically flat, and which carry Yang-Mills hair. Furthermore, in Einstein-Maxwell theory static black holes are spherically symmetric. We demonstrate that, in contrast, SU(2) Einstein-Yang-Mills theory possesses a sequence of black holes, which are static and only axially symmetric

  15. ASYMPTOTICS OF a PARTICLES TRANSPORT PROBLEM

    Directory of Open Access Journals (Sweden)

    Kuzmina Ludmila Ivanovna

    2017-11-01

    Full Text Available Subject: a groundwater filtration affects the strength and stability of underground and hydro-technical constructions. Research objectives: the study of one-dimensional problem of displacement of suspension by the flow of pure water in a porous medium. Materials and methods: when filtering a suspension some particles pass through the porous medium, and some of them are stuck in the pores. It is assumed that size distributions of the solid particles and the pores overlap. In this case, the main mechanism of particle retention is a size-exclusion: the particles pass freely through the large pores and get stuck at the inlet of the tiny pores that are smaller than the particle diameter. The concentrations of suspended and retained particles satisfy two quasi-linear differential equations of the first order. To solve the filtration problem, methods of nonlinear asymptotic analysis are used. Results: in a mathematical model of filtration of suspensions, which takes into account the dependence of the porosity and permeability of the porous medium on concentration of retained particles, the boundary between two phases is moving with variable velocity. The asymptotic solution to the problem is constructed for a small filtration coefficient. The theorem of existence of the asymptotics is proved. Analytical expressions for the principal asymptotic terms are presented for the case of linear coefficients and initial conditions. The asymptotics of the boundary of two phases is given in explicit form. Conclusions: the filtration problem under study can be solved analytically.

  16. Black holes in a cubic Galileon universe

    Energy Technology Data Exchange (ETDEWEB)

    Babichev, E.; Charmousis, C.; Lehébel, A.; Moskalets, T., E-mail: eugeny.babichev@th.u-psud.fr, E-mail: christos.charmousis@th.u-psud.fr, E-mail: antoine.lehebel@th.u-psud.fr, E-mail: tetiana.moskalets@th.u-psud.fr [Laboratoire de Physique Théorique, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France)

    2016-09-01

    We find and study the properties of black hole solutions for a subclass of Horndeski theory including the cubic Galileon term. The theory under study has shift symmetry but not reflection symmetry for the scalar field. The Galileon is assumed to have linear time dependence characterized by a velocity parameter. We give analytic 3-dimensional solutions that are akin to the BTZ solutions but with a non-trivial scalar field that modifies the effective cosmological constant. We then study the 4-dimensional asymptotically flat and de Sitter solutions. The latter present three different branches according to their effective cosmological constant. For two of these branches, we find families of black hole solutions, parametrized by the velocity of the scalar field. These spherically symmetric solutions, obtained numerically, are different from GR solutions close to the black hole event horizon, while they have the same de-Sitter asymptotic behavior. The velocity parameter represents black hole primary hair.

  17. Accretion onto some well-known regular black holes

    International Nuclear Information System (INIS)

    Jawad, Abdul; Shahzad, M.U.

    2016-01-01

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes. (orig.)

  18. Upper bound on the radii of black-hole photonspheres

    International Nuclear Information System (INIS)

    Hod, Shahar

    2013-01-01

    One of the most remarkable predictions of the general theory of relativity is the existence of black-hole “photonspheres”, compact null hypersurfaces on which massless particles can orbit the central black hole. We prove that every spherically-symmetric asymptotically flat black-hole spacetime is characterized by a photonsphere whose radius is bounded from above by r γ ⩽3M, where M is the total ADM mass of the black-hole spacetime. It is shown that hairy black-hole configurations conform to this upper bound. In particular, the null circular geodesic of the (bald) Schwarzschild black-hole spacetime saturates the bound

  19. Accretion onto some well-known regular black holes

    Energy Technology Data Exchange (ETDEWEB)

    Jawad, Abdul; Shahzad, M.U. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan)

    2016-03-15

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes. (orig.)

  20. Accretion onto some well-known regular black holes

    Science.gov (United States)

    Jawad, Abdul; Shahzad, M. Umair

    2016-03-01

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes.

  1. Observables and microscopic entropy of higher spin black holes

    Science.gov (United States)

    Compère, Geoffrey; Jottar, Juan I.; Song, Wei

    2013-11-01

    In the context of recently proposed holographic dualities between higher spin theories in AdS3 and (1 + 1)-dimensional CFTs with symmetry algebras, we revisit the definition of higher spin black hole thermodynamics and the dictionary between bulk fields and dual CFT operators. We build a canonical formalism based on three ingredients: a gauge-invariant definition of conserved charges and chemical potentials in the presence of higher spin black holes, a canonical definition of entropy in the bulk, and a bulk-to-boundary dictionary aligned with the asymptotic symmetry algebra. We show that our canonical formalism shares the same formal structure as the so-called holomorphic formalism, but differs in the definition of charges and chemical potentials and in the bulk-to-boundary dictionary. Most importantly, we show that it admits a consistent CFT interpretation. We discuss the spin-2 and spin-3 cases in detail and generalize our construction to theories based on the hs[ λ] algebra, and on the sl( N,[InlineMediaObject not available: see fulltext.]) algebra for any choice of sl(2 ,[InlineMediaObject not available: see fulltext.]) embedding.

  2. Black hole final state conspiracies

    International Nuclear Information System (INIS)

    McInnes, Brett

    2009-01-01

    The principle that unitarity must be preserved in all processes, no matter how exotic, has led to deep insights into boundary conditions in cosmology and black hole theory. In the case of black hole evaporation, Horowitz and Maldacena were led to propose that unitarity preservation can be understood in terms of a restriction imposed on the wave function at the singularity. Gottesman and Preskill showed that this natural idea only works if one postulates the presence of 'conspiracies' between systems just inside the event horizon and states at much later times, near the singularity. We argue that some AdS black holes have unusual internal thermodynamics, and that this may permit the required 'conspiracies' if real black holes are described by some kind of sum over all AdS black holes having the same entropy

  3. A quantum kinematics for asymptotically flat gravity

    Science.gov (United States)

    Campiglia, Miguel; Varadarajan, Madhavan

    2015-07-01

    We construct a quantum kinematics for asymptotically flat gravity based on the Koslowski-Sahlmann (KS) representation. The KS representation is a generalization of the representation underlying loop quantum gravity (LQG) which supports, in addition to the usual LQG operators, the action of ‘background exponential operators’, which are connection dependent operators labelled by ‘background’ su(2) electric fields. KS states have, in addition to the LQG state label corresponding to one dimensional excitations of the triad, a label corresponding to a ‘background’ electric field that describes three dimensional excitations of the triad. Asymptotic behaviour in quantum theory is controlled through asymptotic conditions on the background electric fields that label the states and the background electric fields that label the operators. Asymptotic conditions on the triad are imposed as conditions on the background electric field state label while confining the LQG spin net graph labels to compact sets. We show that KS states can be realised as wave functions on a quantum configuration space of generalized connections and that the asymptotic behaviour of each such generalized connection is determined by that of the background electric fields which label the background exponential operators. Similar to the spatially compact case, the Gauss law and diffeomorphism constraints are then imposed through group averaging techniques to obtain a large sector of gauge invariant states. It is shown that this sector supports a unitary action of the group of asymptotic rotations and translations and that, as anticipated by Friedman and Sorkin, for appropriate spatial topology, this sector contains states that display fermionic behaviour under 2π rotations.

  4. Supersymmetric black holes in N = 2 supergravity theory

    International Nuclear Information System (INIS)

    Aichelburg, P.C.

    1982-01-01

    We present an exact, asymptotically flat, stationary solution of the field equations of O(2) extended supergravity theory. This solution has a mass, central electric charge as well as a supercharge and constitutes the first exact, supersymmetric generalization of the black hole geometries. The solution generalizes the extreme Reissner-Nordstroem black holes. (Author)

  5. Asymptotic stability of a catalyst particle

    DEFF Research Database (Denmark)

    Wedel, Stig; Michelsen, Michael L.; Villadsen, John

    1977-01-01

    The catalyst asymptotic stability problem is studied by means of several new methods that allow accurate solutions to be calculated where other methods have given qualitatively erroneous results. The underlying eigenvalue problem is considered in three limiting situations Le = ∞, 1 and 0. These a......The catalyst asymptotic stability problem is studied by means of several new methods that allow accurate solutions to be calculated where other methods have given qualitatively erroneous results. The underlying eigenvalue problem is considered in three limiting situations Le = ∞, 1 and 0...

  6. Directions for model building from asymptotic safety

    Science.gov (United States)

    Bond, Andrew D.; Hiller, Gudrun; Kowalska, Kamila; Litim, Daniel F.

    2017-08-01

    Building on recent advances in the understanding of gauge-Yukawa theories we explore possibilities to UV-complete the Standard Model in an asymptotically safe manner. Minimal extensions are based on a large flavor sector of additional fermions coupled to a scalar singlet matrix field. We find that asymptotic safety requires fermions in higher representations of SU(3) C × SU(2) L . Possible signatures at colliders are worked out and include R-hadron searches, diboson signatures and the evolution of the strong and weak coupling constants.

  7. On the asymptotics of dimers on tori

    OpenAIRE

    Kenyon, Richard W.; Sun, Nike; Wilson, David B.

    2013-01-01

    We study asymptotics of the dimer model on large toric graphs. Let $\\mathbb L$ be a weighted $\\mathbb{Z}^2$-periodic planar graph, and let $\\mathbb{Z}^2 E$ be a large-index sublattice of $\\mathbb{Z}^2$. For $\\mathbb L$ bipartite we show that the dimer partition function on the quotient $\\mathbb{L}/(\\mathbb{Z}^2 E)$ has the asymptotic expansion $\\exp[A f_0 + \\text{fsc} + o(1)]$, where $A$ is the area of $\\mathbb{L}/(\\mathbb{Z}^2 E)$, $f_0$ is the free energy density in the bulk, and $\\text{fsc...

  8. Quantum information erasure inside black holes

    International Nuclear Information System (INIS)

    Lowe, David A.; Thorlacius, Larus

    2015-01-01

    An effective field theory for infalling observers in the vicinity of a quasi-static black hole is given in terms of a freely falling lattice discretization. The lattice model successfully reproduces the thermal spectrum of outgoing Hawking radiation, as was shown by Corley and Jacobson, but can also be used to model observations made by a typical low-energy observer who enters the black hole in free fall at a prescribed time. The explicit short distance cutoff ensures that, from the viewpoint of the infalling observer, any quantum information that entered the black hole more than a scrambling time earlier has been erased by the black hole singularity. This property, combined with the requirement that outside observers need at least of order the scrambling time to extract quantum information from the black hole, ensures that a typical infalling observer does not encounter drama upon crossing the black hole horizon in a theory where black hole information is preserved for asymptotic observers.

  9. On the outside of cold black holes

    International Nuclear Information System (INIS)

    Bicak, J.

    1978-01-01

    Some general features of the behaviour of fields and particles around extreme (or nearly extreme) black holes are outlined, with emphasis on their simplicity. Simple solutions representing interacting electromagnetic and gravitational perturbations of an extreme Reissner-Nordstroem black hole are presented. The motion of the hole in an asymptotically uniform weak electric field is examined as an application and ''Newton's second law'' is thus explicitly verified for a geometrodynamical object. (author)

  10. Some astrophysical processes around magnetized black hole

    Science.gov (United States)

    Kološ, M.; Tursunov, A.; Stuchlík, Z.

    2018-01-01

    We study the dynamics of charged test particles in the vicinity of a black hole immersed into an asymptotically uniform external magnetic field. A real magnetic field around a black hole will be far away from to be completely regular and uniform, a uniform magnetic field is used as linear approximation. Ionized particle acceleration, charged particle oscillations and synchrotron radiation of moving charged particle have been studied.

  11. Stable black strings in anti-de sitter space

    International Nuclear Information System (INIS)

    Hirayama, Takayuki

    2002-01-01

    In my talk I show a black string which is a foliation of anti-de Sitter (AdS) Schwarzschild black hole becomes classically stable if the size of black hole horizon is larger than the AdS radius even if the black string extends infinitely. I will also give a comment on the relation with the Gubser-Mitra conjecture. This talk is based on our paper (Phys. Rev. D64: 064010, 2001) which is a collaboration with Gungwon Kang

  12. Magnetized black holes and black rings in the higher dimensional dilaton gravity

    International Nuclear Information System (INIS)

    Yazadjiev, Stoytcho S.

    2006-01-01

    In this paper we consider magnetized black holes and black rings in the higher dimensional dilaton gravity. Our study is based on exact solutions generated by applying a Harrison transformation to known asymptotically flat black hole and black ring solutions in higher dimensional spacetimes. The explicit solutions include the magnetized version of the higher dimensional Schwarzschild-Tangherlini black holes, Myers-Perry black holes, and five-dimensional (dipole) black rings. The basic physical quantities of the magnetized objects are calculated. We also discuss some properties of the solutions and their thermodynamics. The ultrarelativistic limits of the magnetized solutions are briefly discussed and an explicit example is given for the D-dimensional magnetized Schwarzschild-Tangherlini black holes

  13. New geometries for black hole horizons

    Energy Technology Data Exchange (ETDEWEB)

    Armas, Jay [Physique Théorique et Mathématique,Université Libre de Bruxelles and International Solvay Institutes, ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Blau, Matthias [Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland)

    2015-07-10

    We construct several classes of worldvolume effective actions for black holes by integrating out spatial sections of the worldvolume geometry of asymptotically flat black branes. This provides a generalisation of the blackfold approach for higher-dimensional black holes and yields a map between different effective theories, which we exploit by obtaining new hydrodynamic and elastic transport coefficients via simple integrations. Using Euclidean minimal surfaces in order to decouple the fluid dynamics on different sections of the worldvolume, we obtain local effective theories for ultraspinning Myers-Perry branes and helicoidal black branes, described in terms of a stress-energy tensor, particle currents and non-trivial boost vectors. We then study in detail and present novel compact and non-compact geometries for black hole horizons in higher-dimensional asymptotically flat space-time. These include doubly-spinning black rings, black helicoids and helicoidal p-branes as well as helicoidal black rings and helicoidal black tori in D≥6.

  14. Asymptotic symmetries of Rindler space at the horizon and null infinity

    International Nuclear Information System (INIS)

    Chung, Hyeyoun

    2010-01-01

    We investigate the asymptotic symmetries of Rindler space at null infinity and at the event horizon using both systematic and ad hoc methods. We find that the approaches that yield infinite-dimensional asymptotic symmetry algebras in the case of anti-de Sitter and flat spaces only give a finite-dimensional algebra for Rindler space at null infinity. We calculate the charges corresponding to these symmetries and confirm that they are finite, conserved, and integrable, and that the algebra of charges gives a representation of the asymptotic symmetry algebra. We also use relaxed boundary conditions to find infinite-dimensional asymptotic symmetry algebras for Rindler space at null infinity and at the event horizon. We compute the charges corresponding to these symmetries and confirm that they are finite and integrable. We also determine sufficient conditions for the charges to be conserved on-shell, and for the charge algebra to give a representation of the asymptotic symmetry algebra. In all cases, we find that the central extension of the charge algebra is trivial.

  15. Non-Abelian black holes in D=5 maximal gauged supergravity

    International Nuclear Information System (INIS)

    Cvetic, M.; Lue, H.; Pope, C. N.

    2010-01-01

    We investigate static non-Abelian black hole solutions of anti-de Sitter (AdS) Einstein-Yang-Mills-dilaton gravity, which is obtained as a consistent truncation of five-dimensional maximal gauged supergravity. If the dilaton is (consistently) set to zero, the remaining equations of motion, with a spherically-symmetric ansatz, may be derived from a superpotential. The associated first-order equations admit an explicit solution supported by a non-Abelian SU(2) gauge potential, which has a logarithmically growing mass term. In an extremal limit the horizon geometry becomes AdS 2 xS 3 . If the dilaton is also excited, the equations of motion cannot easily be solved explicitly, but we obtain the asymptotic form of the more general non-Abelian black holes in this case. An alternative consistent truncation, in which the Yang-Mills fields are set to zero, also admits a description in terms of a superpotential. This allows us to construct explicit wormhole solutions (neutral spherically-symmetric domain walls). These solutions may be generalized to dimensions other than five.

  16. Black holes with halos

    Science.gov (United States)

    Monten, Ruben; Toldo, Chiara

    2018-02-01

    We present new AdS4 black hole solutions in N =2 gauged supergravity coupled to vector and hypermultiplets. We focus on a particular consistent truncation of M-theory on the homogeneous Sasaki–Einstein seven-manifold M 111, characterized by the presence of one Betti vector multiplet. We numerically construct static and spherically symmetric black holes with electric and magnetic charges, corresponding to M2 and M5 branes wrapping non-contractible cycles of the internal manifold. The novel feature characterizing these nonzero temperature configurations is the presence of a massive vector field halo. Moreover, we verify the first law of black hole mechanics and we study the thermodynamics in the canonical ensemble. We analyze the behavior of the massive vector field condensate across the small-large black hole phase transition and we interpret the process in the dual field theory.

  17. Bubbling AdS3

    International Nuclear Information System (INIS)

    Martelli, Dario; Morales, Jose Francisco

    2005-01-01

    In the light of the recent Lin, Lunin, Maldacena (LLM) results, we investigate 1/2-BPS geometries in minimal (and next to minimal) supergravity in D = 6 dimensions. In the case of minimal supergravity, solutions are given by fibrations of a two-torus T 2 specified by two harmonic functions. For a rectangular torus the two functions are related by a non-linear equation with rare solutions: AdS 3 x S 3 , the pp-wave and the multi-center string. 'Bubbling', i.e. superpositions of droplets, is accommodated by allowing the complex structure of the T 2 to vary over the base. The analysis is repeated in the presence of a tensor multiplet and similar conclusions are reached, with generic solutions describing D1D5 (or their dual fundamental string-momentum) systems. In this framework, the profile of the dual fundamental string-momentum system is identified with the boundaries of the droplets in a two-dimensional plane. (author)

  18. Critical phenomena of regular black holes in anti-de Sitter space-time

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Zhong-Ying [Peking University, Center for High Energy Physics, Beijing (China)

    2017-04-15

    In General Relativity, addressing coupling to a non-linear electromagnetic field, together with a negative cosmological constant, we obtain the general static spherical symmetric black hole solution with magnetic charges, which is asymptotic to anti-de Sitter (AdS) space-times. In particular, for a degenerate case the solution becomes a Hayward-AdS black hole, which is regular everywhere in the full space-time. The existence of such a regular black hole solution preserves the weak energy condition, while the strong energy condition is violated. We then derive the first law and the Smarr formula of the black hole solution. We further discuss its thermodynamic properties and study the critical phenomena in the extended phase space where the cosmological constant is treated as a thermodynamic variable as well as the parameter associated with the non-linear electrodynamics. We obtain many interesting results such as: the Maxwell equal area law in the P-V (or S-T) diagram is violated and consequently the critical point (T{sub *},P{sub *}) of the first order small-large black hole transition does not coincide with the inflection point (T{sub c},P{sub c}) of the isotherms; the Clapeyron equation describing the coexistence curve of the Van der Waals (vdW) fluid is no longer valid; the heat capacity at constant pressure is finite at the critical point; the various exponents near the critical point are also different from those of the vdW fluid. (orig.)

  19. Derivative analyticity relations and asymptotic energies

    International Nuclear Information System (INIS)

    Fischer, J.

    1976-01-01

    On the basis of general principles of the S-matrix theory theorems are derived showing that derivative analyticity relations analogous to those of Bronzen, Kane and Sukhatme hold at asymptotic energies if the high-energy limits of certain physical quantities exist

  20. Stationary solutions and asymptotic flatness I

    International Nuclear Information System (INIS)

    Reiris, Martin

    2014-01-01

    In general relativity, a stationary isolated system is defined as an asymptotically flat (AF) stationary spacetime with compact material sources. Other definitions that are less restrictive on the type of asymptotic could in principle be possible. Between this article and its sequel, we show that under basic assumptions, asymptotic flatness indeed follows as a consequence of Einstein's theory. In particular, it is proved that any vacuum stationary spacetime-end whose (quotient) manifold is diffeomorphic to R 3 minus a ball and whose Killing field has its norm bounded away from zero, is necessarily AF with Schwarzschildian fall off. The ‘excised’ ball would contain (if any) the actual material body, but this information is unnecessary to reach the conclusion. In this first article, we work with weakly asymptotically flat (WAF) stationary ends, a notion that generalizes as much as possible that of the AF end, and prove that WAF ends are AF with Schwarzschildian fall off. Physical and mathematical implications are also discussed. (paper)

  1. Renormalization and asymptotic freedom in quantum gravity

    International Nuclear Information System (INIS)

    Tomboulis, E.T.

    1984-01-01

    The article reviews some recent attempts to construct satisfactory theories of quantum gravity within the framework of local, continuum field theory. Quantum gravity; the renormalization group and its fixed points; fixed points and dimensional continuation in gravity; and quantum gravity at d=4-the 1/N expansion-asymptotic freedom; are all discussed. (U.K.)

  2. Supersymmetric asymptotic safety is not guaranteed

    DEFF Research Database (Denmark)

    Intriligator, Kenneth; Sannino, Francesco

    2015-01-01

    in supersymmetric theories, and use unitarity bounds, and the a-theorem, to rule it out in broad classes of theories. The arguments apply without assuming perturbation theory. Therefore, the UV completion of a non-asymptotically free susy theory must have additional, non-obvious degrees of freedom, such as those...

  3. The asymptotic expansion method via symbolic computation

    OpenAIRE

    Navarro, Juan F.

    2012-01-01

    This paper describes an algorithm for implementing a perturbation method based on an asymptotic expansion of the solution to a second-order differential equation. We also introduce a new symbolic computation system which works with the so-called modified quasipolynomials, as well as an implementation of the algorithm on it.

  4. The Asymptotic Expansion Method via Symbolic Computation

    Directory of Open Access Journals (Sweden)

    Juan F. Navarro

    2012-01-01

    Full Text Available This paper describes an algorithm for implementing a perturbation method based on an asymptotic expansion of the solution to a second-order differential equation. We also introduce a new symbolic computation system which works with the so-called modified quasipolynomials, as well as an implementation of the algorithm on it.

  5. Large degree asymptotics of generalized Bessel polynomials

    NARCIS (Netherlands)

    J.L. López; N.M. Temme (Nico)

    2011-01-01

    textabstractAsymptotic expansions are given for large values of $n$ of the generalized Bessel polynomials $Y_n^\\mu(z)$. The analysis is based on integrals that follow from the generating functions of the polynomials. A new simple expansion is given that is valid outside a compact neighborhood of the

  6. Asymptotic expansions for the Gaussian unitary ensemble

    DEFF Research Database (Denmark)

    Haagerup, Uffe; Thorbjørnsen, Steen

    2012-01-01

    Let g : R ¿ C be a C8-function with all derivatives bounded and let trn denote the normalized trace on the n × n matrices. In Ref. 3 Ercolani and McLaughlin established asymptotic expansions of the mean value ¿{trn(g(Xn))} for a rather general class of random matrices Xn, including the Gaussian U...

  7. Asymptotic Translation Length in the Curve Complex

    OpenAIRE

    Valdivia, Aaron D.

    2013-01-01

    We show that when the genus and punctures of a surface are directly proportional by some rational number the minimal asymptotic translation length in the curve complex has behavior inverse to the square of the Euler characteristic. We also show that when the genus is fixed and the number of punctures varies the behavior is inverse to the Euler characteristic.

  8. Asymptotic inversion of the Erlang B formula

    NARCIS (Netherlands)

    Leeuwaarden, van J.S.H.; Temme, N.M.

    2008-01-01

    The Erlang B formula represents the steady-state blocking probability in the Erlang loss model or M=M=s=s queue. We derive asymptotic expansions for the offered load that matches, for a given number of servers, a certain blocking probability. In addressing this inversion problem we make use of

  9. Asymptotic analysis of the Forward Search

    DEFF Research Database (Denmark)

    Johansen, Søren; Nielsen, Bent

    The Forward Search is an iterative algorithm concerned with detection of outliers and other unsuspected structures in data. This approach has been suggested, analysed and applied for regression models in the monograph Atkinson and Riani (2000). An asymptotic analysis of the Forward Search is made...

  10. On iterative procedures of asymptotic inference

    NARCIS (Netherlands)

    K.O. Dzhaparidze (Kacha)

    1983-01-01

    textabstractAbstract  An informal discussion is given on performing an unconstrained maximization or solving non‐linear equations of statistics by iterative methods with the quadratic termination property. It is shown that if a miximized function, e.g. likelihood, is asymptotically quadratic, then

  11. Asymptotic evolution of quantum Markov chains

    Energy Technology Data Exchange (ETDEWEB)

    Novotny, Jaroslav [FNSPE, CTU in Prague, 115 19 Praha 1 - Stare Mesto (Czech Republic); Alber, Gernot [Institut fuer Angewandte Physik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany)

    2012-07-01

    The iterated quantum operations, so called quantum Markov chains, play an important role in various branches of physics. They constitute basis for many discrete models capable to explore fundamental physical problems, such as the approach to thermal equilibrium, or the asymptotic dynamics of macroscopic physical systems far from thermal equilibrium. On the other hand, in the more applied area of quantum technology they also describe general characteristic properties of quantum networks or they can describe different quantum protocols in the presence of decoherence. A particularly, an interesting aspect of these quantum Markov chains is their asymptotic dynamics and its characteristic features. We demonstrate there is always a vector subspace (typically low-dimensional) of so-called attractors on which the resulting superoperator governing the iterative time evolution of quantum states can be diagonalized and in which the asymptotic quantum dynamics takes place. As the main result interesting algebraic relations are presented for this set of attractors which allow to specify their dual basis and to determine them in a convenient way. Based on this general theory we show some generalizations concerning the theory of fixed points or asymptotic evolution of random quantum operations.

  12. Infrared studies of asymptotic giant branch stars

    International Nuclear Information System (INIS)

    Willems, F.J.

    1987-01-01

    In this thesis studies are presented of asymptotic giant branch stars, which are thought to be an important link in the evolution of the galaxy. The studies were performed on the basis of data collected by the IRAS, the infrared astronomical satelite. 233 refs.; 33 figs.; 16 tabs

  13. Asymptotic behaviour of firmly non expansive sequences

    International Nuclear Information System (INIS)

    Rouhani, B.D.

    1993-04-01

    We introduce the notion of firmly non expansive sequences in a Banach space and present several results concerning their asymptotic behaviour extending previous results and giving an affirmative answer to an open question raised by S. Reich and I. Shafir. Applications to averaged mappings are also given. (author). 16 refs

  14. An asymptotic problem in renewal theory

    NARCIS (Netherlands)

    Klamkin, M.S.; van Lint, J.H.

    1972-01-01

    A special problem in renewal theory is considered. The asymptotic behavior of the renewal function was studied by W. L. Smith. Here we show that his result with an exponentially small remainder term follows from a theorem of De Bruijn on Volterra integral equations.

  15. Asymptotics for the minimum covariance determinant estimator

    NARCIS (Netherlands)

    Butler, R.W.; Davies, P.L.; Jhun, M.

    1993-01-01

    Consistency is shown for the minimum covariance determinant (MCD) estimators of multivariate location and scale and asymptotic normality is shown for the former. The proofs are made possible by showing a separating ellipsoid property for the MCD subset of observations. An analogous property is shown

  16. Behavior of asymptotically electro-Λ spacetimes

    Science.gov (United States)

    Saw, Vee-Liem

    2017-04-01

    We present the asymptotic solutions for spacetimes with nonzero cosmological constant Λ coupled to Maxwell fields, using the Newman-Penrose formalism. This extends a recent work that dealt with the vacuum Einstein (Newman-Penrose) equations with Λ ≠0 . The results are given in two different null tetrads: the Newman-Unti and Szabados-Tod null tetrads, where the peeling property is exhibited in the former but not the latter. Using these asymptotic solutions, we discuss the mass loss of an isolated electrogravitating system with cosmological constant. In a universe with Λ >0 , the physics of electromagnetic (EM) radiation is relatively straightforward compared to those of gravitational radiation: (1) It is clear that outgoing EM radiation results in a decrease to the Bondi mass of the isolated system. (2) It is also perspicuous that if any incoming EM radiation from elsewhere is present, those beyond the isolated system's cosmological horizon would eventually arrive at the spacelike I and increase the Bondi mass of the isolated system. Hence, the (outgoing and incoming) EM radiation fields do not couple with Λ in the Bondi mass-loss formula in an unusual manner, unlike the gravitational counterpart where outgoing gravitational radiation induces nonconformal flatness of I . These asymptotic solutions to the Einstein-Maxwell-de Sitter equations presented here may be used to extend a raft of existing results based on Newman-Unti's asymptotic solutions to the Einstein-Maxwell equations where Λ =0 , to now incorporate the cosmological constant Λ .

  17. Numerical simulations of generalized Langevin equations with deeply asymptotic parameters

    International Nuclear Information System (INIS)

    Bao Jingdong; Li Rongwu; Wu Wei

    2004-01-01

    A unified algorithm for solving Langevin equations with deeply asymptotic parameters is proposed and tested. The method consists of identifying solvable linear friction and implementing the force evaluations by use of the Runge-Kutta method. We apply the present scheme to the periodic motion of an overdamped particle subjected to a multiplicative white noise. The accurate calculations for the temporal velocity of the particle and its correlation function can be realized by introducing an inertial term. It is shown that the fluctuation around the steady quantity increases with decreasing time step in the overdamped white-noise algorithm, however, a massive white-noise technique greatly reduces this spurious drift, and the result can converge to the correct value if the added inertia approaches zero. The other application is the simulation of generalized Langevin equation with an exponential memory friction, this allows us to treat a weak non-Markovian process

  18. Angular momentum in general relativity. 1. Definition and asymptotic behaviour. [axisymmetric space-times, infinity, conservation law, spin coefficient formalism

    Energy Technology Data Exchange (ETDEWEB)

    Prior, C R [Cambridge Univ. (UK). Dept. of Applied Mathematics and Theoretical Physics

    1977-06-27

    Angular momentum in axisymmetric space-times is investigated. The conclusions lead to a general definition suitable for all asymptotically-flat spaces which is valid both at infinity and on the event horizon of a black hole. This first paper restricts attention to considerations at infinity. Working in terms of the spin coefficient formalism, the field equations are solved asymptotically at large distances and the definition is evaluated. A conservation law is derived and finally the effect on the angular momentum of a supertranslation of the coordinates is discussed.

  19. Supersymmetric AdS{sub 2} x Σ{sub 2} solutions from tri-sasakian truncation

    Energy Technology Data Exchange (ETDEWEB)

    Karndumri, Parinya [Chulalongkorn University, String Theory and Supergravity Group, Department of Physics, Faculty of Science, Bangkok (Thailand)

    2017-10-15

    A class of AdS{sub 2} x Σ{sub 2}, with Σ{sub 2} being a two-sphere or a hyperbolic space, solutions within four-dimensional N = 4 gauged supergravity coupled to three-vector multiplets with dyonic gauging is identified. The gauged supergravity has a non-semisimple SO(3) x (T{sup 3}, T{sup 3}) gauge group and can be obtained from a consistent truncation of 11-dimensional supergravity on a tri-sasakian manifold. The maximally symmetric vacua contain AdS{sub 4} geometries with N = 1, 3 supersymmetry corresponding to N = 1 and N = 3 superconformal field theories (SCFTs) in three dimensions. We find supersymmetric solutions of the form AdS{sub 2} x Σ{sub 2} preserving two supercharges. These solutions describe twisted compactifications of the dual N = 1 and N = 3 SCFTs and should arise as near horizon geometries of dyonic black holes in asymptotically AdS{sub 4} space-time. Most solutions AdS{sub 2} x Σ{sub 2} geometries with known M-theory origin. (orig.)

  20. Perturbative entanglement thermodynamics for AdS spacetime: renormalization

    International Nuclear Information System (INIS)

    Mishra, Rohit; Singh, Harvendra

    2015-01-01

    We study the effect of charged excitations in the AdS spacetime on the first law of entanglement thermodynamics. It is found that ‘boosted’ AdS black holes give rise to a more general form of first law which includes chemical potential and charge density. To obtain this result we have to resort to a second order perturbative calculation of entanglement entropy for small size subsystems. At first order the form of entanglement law remains unchanged even in the presence of charged excitations. But the thermodynamic quantities have to be appropriately ‘renormalized’ at the second order due to the corrections. We work in the perturbative regime where T thermal ≪T E .

  1. Black rings

    International Nuclear Information System (INIS)

    Emparan, Roberto; Reall, Harvey S

    2006-01-01

    A black ring is a five-dimensional black hole with an event horizon of topology S 1 x S 2 . We provide an introduction to the description of black rings in general relativity and string theory. Novel aspects of the presentation include a new approach to constructing black ring coordinates and a critical review of black ring microscopics. (topical review)

  2. Cosmic censorship, persistent curvature and asymptotic causal pathology

    International Nuclear Information System (INIS)

    Newman, R.P.A.C.

    1984-01-01

    The paper examines cosmic censorship in general relativity theory. Conformally flat space-times; persistent curvature; weakly asymptotically simple and empty asymptotes; censorship conditions; and the censorship theorem; are all discussed. (U.K.)

  3. Black hole mass and angular momentum in topologically massive gravity

    International Nuclear Information System (INIS)

    Bouchareb, Adel; Clement, Gerard

    2007-01-01

    We extend the Abbott-Deser-Tekin approach to the computation of the Killing charge for a solution of topologically massive gravity (TMG) linearized around an arbitrary background. This is then applied to evaluate the mass and angular momentum of black hole solutions of TMG with non-constant curvature asymptotics. The resulting values, together with the appropriate black hole entropy, fit nicely into the first law of black hole thermodynamics

  4. Black hole mass and angular momentum in topologically massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bouchareb, Adel; Clement, Gerard [Laboratoire de Physique Theorique LAPTH (CNRS), BP 110, F-74941 Annecy-le-Vieux cedex (France)

    2007-11-21

    We extend the Abbott-Deser-Tekin approach to the computation of the Killing charge for a solution of topologically massive gravity (TMG) linearized around an arbitrary background. This is then applied to evaluate the mass and angular momentum of black hole solutions of TMG with non-constant curvature asymptotics. The resulting values, together with the appropriate black hole entropy, fit nicely into the first law of black hole thermodynamics.

  5. Stability of black holes in de Sitter space

    International Nuclear Information System (INIS)

    Mellor, F.; Moss, I.

    1990-01-01

    The theory of black-hole perturbations is extended to charged black holes in de Sitter space. These spacetimes have wormholes connecting different asymptotic regions. It appears that, at least in some cases, these holes are stable even at the Cauchy horizon. It follows that they violate cosmic censorship and an observer could in principle travel through the black hole to another universe. The stability of these spacetimes also implies the existence of a cosmological ''no hair'' theorem

  6. An infalling observer in AdS/CFT

    NARCIS (Netherlands)

    Papadodimas, Kyriakos; Raju, Suvrat

    2013-01-01

    We describe the experience of an observer falling into a black hole using the AdS/CFT correspondence. In order to do this, we reconstruct the local bulk operators measured by the observer along his trajectory outside the black hole. We then extend our construction beyond the black hole horizon. We

  7. The phase structure of higher-dimensional black rings and black holes

    International Nuclear Information System (INIS)

    Emparan, Roberto; Harmark, Troels; Niarchos, Vasilis; Obers, Niels A.; RodrIguez, Maria J.

    2007-01-01

    We construct an approximate solution for an asymptotically flat, neutral, thin rotating black ring in any dimension D ≥ 5 by matching the near-horizon solution for a bent boosted black string, to a linearized gravity solution away from the horizon. The rotating black ring solution has a regular horizon of topology S 1 x S D-3 and incorporates the balancing condition of the ring as a zero-tension condition. For D = 5 our method reproduces the thin ring limit of the exact black ring solution. For D ≥ 6 we show that the black ring has a higher entropy than the Myers-Perry black hole in the ultra-spinning regime. By exploiting the correspondence between ultra-spinning black holes and black membranes on a two-torus, we take steps towards qualitatively completing the phase diagram of rotating blackfolds with a single angular momentum. We are led to propose a connection between MP black holes and black rings, and between MP black holes and black Saturns, through merger transitions involving two kinds of 'pinched' black holes. More generally, the analogy suggests an infinite number of pinched black holes of spherical topology leading to a complicated pattern of connections and mergers between phases

  8. Black ringoids: spinning balanced black objects in d≥5 dimensions — the codimension-two case

    International Nuclear Information System (INIS)

    Kleihaus, Burkhard; Kunz, Jutta; Radu, Eugen

    2015-01-01

    We propose a general framework for the study of asymptotically flat black objects with k+1 equal magnitude angular momenta in d≥5 spacetime dimensions (with 0≤k≤[((d−5)/2)]). In this approach, the dependence on all angular coordinates but one is factorized, which leads to a codimension-two problem. This framework can describe black holes with spherical horizon topology, the simplest solutions corresponding to a class of Myers-Perry black holes. A different set of solutions describes balanced black objects with S"n"+"1×S"2"k"+"1 horizon topology. The simplest members of this family are the black rings (k=0). The solutions with k>0 are dubbed black ringoids. Based on the nonperturbative numerical results found for several values of (n,k), we propose a general picture for the properties and the phase diagram of these solutions and the associated black holes with spherical horizon topology: n=1 black ringoids repeat the k=0 pattern of black rings and Myers-Perry black holes in 5 dimensions, whereas n>1 black ringoids follow the pattern of higher dimensional black rings associated with ‘pinched’ black holes and Myers-Perry black holes.

  9. Covariant anomalies and Hawking radiation from Kaluza–Klein AdS ...

    Indian Academy of Sciences (India)

    the 4D KK-AdS black hole solution was generalized to the one in arbitrary dimensions. [28]. After obtaining a black hole solution, it is very important to compute its thermodynam- ical quantities, such as the mass, the charge, the angular momentum, the entropy and the temperature. All these quantities are presented in ref.

  10. Criteria for exponential asymptotic stability in the large of ...

    African Journals Online (AJOL)

    The purpose of this study is to provide necessary and sufficient conditions for exponential asymptotic stability in the large and uniform asymptotic stability of perturbations of linear systems with unbounded delays. A strong relationship is established between the two types of asymptotic stability. It is found that if the ...

  11. Black holes

    International Nuclear Information System (INIS)

    Feast, M.W.

    1981-01-01

    This article deals with two questions, namely whether it is possible for black holes to exist, and if the answer is yes, whether we have found any yet. In deciding whether black holes can exist or not the central role in the shaping of our universe played by the forse of gravity is discussed, and in deciding whether we are likely to find black holes in the universe the author looks at the way stars evolve, as well as white dwarfs and neutron stars. He also discusses the problem how to detect a black hole, possible black holes, a southern black hole, massive black holes, as well as why black holes are studied

  12. The Asymptotic Safety Scenario in Quantum Gravity.

    Science.gov (United States)

    Niedermaier, Max; Reuter, Martin

    2006-01-01

    The asymptotic safety scenario in quantum gravity is reviewed, according to which a renormalizable quantum theory of the gravitational field is feasible which reconciles asymptotically safe couplings with unitarity. The evidence from symmetry truncations and from the truncated flow of the effective average action is presented in detail. A dimensional reduction phenomenon for the residual interactions in the extreme ultraviolet links both results. For practical reasons the background effective action is used as the central object in the quantum theory. In terms of it criteria for a continuum limit are formulated and the notion of a background geometry self-consistently determined by the quantum dynamics is presented. Self-contained appendices provide prerequisites on the background effective action, the effective average action, and their respective renormalization flows.

  13. Asymptotic properties of a simple random motion

    International Nuclear Information System (INIS)

    Ravishankar, K.

    1988-01-01

    A random walker in R/sup N/ is considered. At each step the walker picks a point in R/sup N/ from a fixed finite set of destination points. Having chosen the point, the walker moves a fraction r (r < 1) of the distance toward the point along a straight line. Assuming that the successive destination points are chosen independently, it is shown that the asymptotic distribution of the walker's position has the same mean as the destination point distribution. An estimate is obtained for the fraction of time the walker stays within a ball centered at the mean value for almost every destination sequence. Examples show that the asymptotic distribution could have intricate structure

  14. Asymptotic mass degeneracies in conformal field theories

    International Nuclear Information System (INIS)

    Kani, I.; Vafa, C.

    1990-01-01

    By applying a method of Hardy and Ramanujan to characters of rational conformal field theories, we find an asymptotic expansion for degeneracy of states in the limit of large mass which is exact for strings propagating in more than two uncompactified space-time dimensions. Moreover we explore how the rationality of the conformal theory is reflected in the degeneracy of states. We also consider the one loop partition function for strings, restricted to physical states, for arbitrary (irrational) conformal theories, and obtain an asymptotic expansion for it in the limit that the torus degenerates. This expansion depends only on the spectrum of (physical and unphysical) relevant operators in the theory. We see how rationality is consistent with the smoothness of mass degeneracies as a function of moduli. (orig.)

  15. Asymptotic normalization coefficients and astrophysical factors

    International Nuclear Information System (INIS)

    Mukhamedzhanov, A.M.; Azhari, A.; Clark, H.L.; Gagliardi, C.A.; Lui, Y.-W.; Sattarov, A.; Trache, L.; Tribble, R.E.; Burjan, V.; Kroha, V.; Carstoiu, F.

    2000-01-01

    The S factor for the direct capture reaction 7 Be(p,γ) 8 B can be found at astrophysical energies from the asymptotic normalization coefficients (ANC's) which provide the normalization of the tails of the overlap functions for 8 B → 7 Be + p. Peripheral transfer reactions offer a technique to determine these ANC's. Using this technique, the 10 B( 7 Be, 8 B) 9 Be and 14 N( 7 Be, 8 B) 13 C reactions have been used to measure the asymptotic normalization coefficient for 7 Be(p, γ) 8 B. These results provide an indirect determination of S 17 (0). Analysis of the existing 9 Be(p, γ) 10 B experimental data within the framework of the R-matrix method demonstrates that experimentally measured ANC's can provide a reasonable determination of direct radiative capture rates. (author)

  16. The Asymptotic Safety Scenario in Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Niedermaier Max

    2006-12-01

    Full Text Available The asymptotic safety scenario in quantum gravity is reviewed, according to which a renormalizable quantum theory of the gravitational field is feasible which reconciles asymptotically safe couplings with unitarity. The evidence from symmetry truncations and from the truncated flow of the effective average action is presented in detail. A dimensional reduction phenomenon for the residual interactions in the extreme ultraviolet links both results. For practical reasons the background effective action is used as the central object in the quantum theory. In terms of it criteria for a continuum limit are formulated and the notion of a background geometry self-consistently determined by the quantum dynamics is presented. Self-contained appendices provide prerequisites on the background effective action, the effective average action, and their respective renormalization flows.

  17. Asymptotic adaptive bipartite entanglement-distillation protocol

    International Nuclear Information System (INIS)

    Hostens, Erik; Dehaene, Jeroen; De Moor, Bart

    2006-01-01

    We present an asymptotic bipartite entanglement-distillation protocol that outperforms all existing asymptotic schemes. This protocol is based on the breeding protocol with the incorporation of two-way classical communication. Like breeding, the protocol starts with an infinite number of copies of a Bell-diagonal mixed state. Breeding can be carried out as successive stages of partial information extraction, yielding the same result: one bit of information is gained at the cost (measurement) of one pure Bell state pair (ebit). The basic principle of our protocol is at every stage to replace measurements on ebits by measurements on a finite number of copies, whenever there are two equiprobable outcomes. In that case, the entropy of the global state is reduced by more than one bit. Therefore, every such replacement results in an improvement of the protocol. We explain how our protocol is organized as to have as many replacements as possible. The yield is then calculated for Werner states

  18. Slowly balding black holes

    International Nuclear Information System (INIS)

    Lyutikov, Maxim; McKinney, Jonathan C.

    2011-01-01

    The 'no-hair' theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively ''frozen in'' the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes N B =eΦ ∞ /(πc(ℎ/2π)), where Φ ∞ ≅2π 2 B NS R NS 3 /(P NS c) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole's magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.

  19. Optimization of Parameters of Asymptotically Stable Systems

    Directory of Open Access Journals (Sweden)

    Anna Guerman

    2011-01-01

    Full Text Available This work deals with numerical methods of parameter optimization for asymptotically stable systems. We formulate a special mathematical programming problem that allows us to determine optimal parameters of a stabilizer. This problem involves solutions to a differential equation. We show how to chose the mesh in order to obtain discrete problem guaranteeing the necessary accuracy. The developed methodology is illustrated by an example concerning optimization of parameters for a satellite stabilization system.

  20. Theorems for asymptotic safety of gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Andrew D.; Litim, Daniel F. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)

    2017-06-15

    We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasised. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated. (orig.)

  1. Mass loss on the Asymptotic Giant Branch

    OpenAIRE

    Zijlstra, Albert

    2006-01-01

    Mass loss on the Asymptotic Giant Branch provides the origin of planetary nebulae. This paper reviews several relevant aspects of AGB evolution: pulsation properties, mass loss formalisms and time variable mass loss, evidence for asymmetries on the AGB, binarity, ISM interaction, and mass loss at low metallicity. There is growing evidence that mass loss on the AGB is already asymmetric, but with spherically symmetric velocity fields. The origin of the rings may be in pulsational instabilities...

  2. Asymptotic elastic energy in simple metals

    International Nuclear Information System (INIS)

    Khalifeh, J.M.

    1983-07-01

    The asymptotic form of the elastic binding energy ΔEsup(as)(R) between two Mg atoms in Al is expressed as a product of a lattice Green function and the dipole force tensor P. The quantity P is obtained by a nearly free electron model in which the impurity effect is introduced by a screened Ashcroft pseudopotential characterized by an excess charge ΔZ and a core radius rsub(j). (author)

  3. Black hole entropy, universality, and horizon constraints

    International Nuclear Information System (INIS)

    Carlip, Steven

    2006-01-01

    To ask a question about a black hole in quantum gravity, one must restrict initial or boundary data to ensure that a black hole is actually present. For two-dimensional dilaton gravity, and probably a much wider class of theories, I show that the imposition of a 'stretched horizon' constraint modifies the algebra of symmetries at the horizon, allowing the use of conformal field theory techniques to determine the asymptotic density of states. The result reproduces the Bekenstein-Hawking entropy without any need for detailed assumptions about the microscopic theory. Horizon symmetries may thus offer an answer to the problem of universality of black hole entropy

  4. Black hole entropy, universality, and horizon constraints

    Energy Technology Data Exchange (ETDEWEB)

    Carlip, Steven [Department of Physics, University of California, Davis, CA 95616 (United States)

    2006-03-01

    To ask a question about a black hole in quantum gravity, one must restrict initial or boundary data to ensure that a black hole is actually present. For two-dimensional dilaton gravity, and probably a much wider class of theories, I show that the imposition of a 'stretched horizon' constraint modifies the algebra of symmetries at the horizon, allowing the use of conformal field theory techniques to determine the asymptotic density of states. The result reproduces the Bekenstein-Hawking entropy without any need for detailed assumptions about the microscopic theory. Horizon symmetries may thus offer an answer to the problem of universality of black hole entropy.

  5. New class of accelerating black hole solutions

    International Nuclear Information System (INIS)

    Camps, Joan; Emparan, Roberto

    2010-01-01

    We construct several new families of vacuum solutions that describe black holes in uniformly accelerated motion. They generalize the C metric to the case where the energy density and tension of the strings that pull (or push) on the black holes are independent parameters. These strings create large curvatures near their axis and when they have infinite length they modify the asymptotic properties of the spacetime, but we discuss how these features can be dealt with physically, in particular, in terms of 'wiggly cosmic strings'. We comment on possible extensions and extract lessons for the problem of finding higher-dimensional accelerating black hole solutions.

  6. Asymptotic safety of gravity with matter

    Science.gov (United States)

    Christiansen, Nicolai; Litim, Daniel F.; Pawlowski, Jan M.; Reichert, Manuel

    2018-05-01

    We study the asymptotic safety conjecture for quantum gravity in the presence of matter fields. A general line of reasoning is put forward explaining why gravitons dominate the high-energy behavior, largely independently of the matter fields as long as these remain sufficiently weakly coupled. Our considerations are put to work for gravity coupled to Yang-Mills theories with the help of the functional renormalization group. In an expansion about flat backgrounds, explicit results for beta functions, fixed points, universal exponents, and scaling solutions are given in systematic approximations exploiting running propagators, vertices, and background couplings. Invariably, we find that the gauge coupling becomes asymptotically free while the gravitational sector becomes asymptotically safe. The dependence on matter field multiplicities is weak. We also explain how the scheme dependence, which is more pronounced, can be handled without changing the physics. Our findings offer a new interpretation of many earlier results, which is explained in detail. The results generalize to theories with minimally coupled scalar and fermionic matter. Some implications for the ultraviolet closure of the Standard Model or its extensions are given.

  7. A nonsingular rotating black hole

    International Nuclear Information System (INIS)

    Ghosh, Sushant G.

    2015-01-01

    The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)

  8. Black-hole driven winds

    International Nuclear Information System (INIS)

    Punsly, B.M.

    1988-01-01

    This dissertation is a study of the physical mechanism that allows a large scale magnetic field to torque a rapidly rotating, supermassive black hole. This is an interesting problem as it has been conjectured that rapidly rotating black holes are the central engines that power the observed extragalactic double radio sources. Axisymmetric solutions of the curved space-time version of Maxwell's equations in the vacuum do not torque black holes. Plasma must be introduced for the hole to mechanically couple to the field. The dynamical aspect of rotating black holes that couples the magnetic field to the hole is the following. A rotating black hole forces the external geometry of space-time to rotate (the dragging of inertial frames). Inside of the stationary limit surface, the ergosphere, all physical particle trajectories must appear to rotate in the same direction as the black hole as viewed by the stationary observers at asymptotic infinity. In the text, it is demonstrated how plasma that is created on field lines that thread both the ergosphere and the equatorial plane will be pulled by gravity toward the equator. By the aforementioned properties of the ergosphere, the disk must rotate. Consequently, the disk acts like a unipolar generator. It drives a global current system that supports the toroidal magnetic field in an outgoing, magnetically dominated wind. This wind carries energy (mainly in the form of Poynting flux) and angular momentum towards infinity. The spin down of the black hole is the ultimate source of this energy and angular momentum flux

  9. Holographic complexity and fidelity susceptibility as holographic information dual to different volumes in AdS

    Directory of Open Access Journals (Sweden)

    N.S. Mazhari

    2017-03-01

    Full Text Available The holographic complexity and fidelity susceptibility have been defined as new quantities dual to different volumes in AdS. In this paper, we will use these new proposals to calculate both of these quantities for a variety of interesting deformations of AdS. We obtain the holographic complexity and fidelity susceptibility for an AdS black hole, Janus solution, a solution with cylindrical symmetry, an inhomogeneous background and a hyperscaling violating background. It is observed that the holographic complexity depends on the size of the subsystem for all these solutions and the fidelity susceptibility does not have any such dependence.

  10. Holographic complexity and fidelity susceptibility as holographic information dual to different volumes in AdS

    Energy Technology Data Exchange (ETDEWEB)

    Mazhari, N.S., E-mail: najmemazhari86@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Momeni, Davood, E-mail: davoodmomeni78@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Bahamonde, Sebastian, E-mail: sebastian.beltran.14@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Faizal, Mir, E-mail: mirfaizalmir@googlemail.com [Irving K. Barber School of Arts and Sciences, University of British Columbia - Okanagan, 3333 University Way, Kelowna, British Columbia, V1V 1V7 (Canada); Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta, T1K 3M4 (Canada); Myrzakulov, Ratbay, E-mail: rmyrzakulov@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan)

    2017-03-10

    The holographic complexity and fidelity susceptibility have been defined as new quantities dual to different volumes in AdS. In this paper, we will use these new proposals to calculate both of these quantities for a variety of interesting deformations of AdS. We obtain the holographic complexity and fidelity susceptibility for an AdS black hole, Janus solution, a solution with cylindrical symmetry, an inhomogeneous background and a hyperscaling violating background. It is observed that the holographic complexity depends on the size of the subsystem for all these solutions and the fidelity susceptibility does not have any such dependence.

  11. Resurgence of the dressing phase for AdS5 × S5

    Science.gov (United States)

    Arutyunov, Gleb; Dorigoni, Daniele; Savin, Sergei

    2017-01-01

    We discuss the resummation of the strong coupling asymptotic expansion of the dressing phase of the AdS5 × S5 superstring. The dressing phase proposed by Beisert, Eden and Staudacher can be recovered from a modified Borel-Ecalle resummation of this asymptotic expansion only by completing it with new, non-perturbative and exponentially suppressed terms that can be organized into different sectors labelled by an instanton-like number. We compute the contribution to the dressing phase coming from the sum over all the instanton sectors and show that it satisfies the homogeneous crossing symmetry equation. We comment on the semiclassical origin of the non-perturbative terms from the world-sheet theory point of view even though their precise explanation remains still quite mysterious.

  12. The use of the asymptotic expansion to speed up the computation of a series of spherical harmonics

    NARCIS (Netherlands)

    de Munck, J.C.; de Munck, J.C.; Hämäläinen, M.S.; Peters, M.J.

    1991-01-01

    When a function is expressed as an infinite series of spherical harmonics the convergence can be accelerated by subtracting its asymptotic expansion and adding it in analytically closed form. In the present article this technique is applied to two biophysical cases: to the potential distribution in

  13. Black Alcoholism.

    Science.gov (United States)

    Watts, Thomas D.; Wright, Roosevelt

    1988-01-01

    Examines some aspects of the problem of alcoholism among Blacks, asserting that Black alcoholism can best be considered in an ecological, environmental, sociocultural, and public health context. Notes need for further research on alcoholism among Blacks and for action to reduce the problem of Black alcoholism. (NB)

  14. Black holes

    OpenAIRE

    Brügmann, B.; Ghez, A. M.; Greiner, J.

    2001-01-01

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries.

  15. Quantitative approaches to information recovery from black holes

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, Vijay [David Rittenhouse Laboratory, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Czech, Bartlomiej, E-mail: vijay@physics.upenn.edu, E-mail: czech@phas.ubc.ca [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada)

    2011-08-21

    The evaporation of black holes into apparently thermal radiation poses a serious conundrum for theoretical physics: at face value, it appears that in the presence of a black hole, quantum evolution is non-unitary and destroys information. This information loss paradox has its seed in the presence of a horizon causally separating the interior and asymptotic regions in a black hole spacetime. A quantitative resolution of the paradox could take several forms: (a) a precise argument that the underlying quantum theory is unitary, and that information loss must be an artifact of approximations in the derivation of black hole evaporation, (b) an explicit construction showing how information can be recovered by the asymptotic observer, (c) a demonstration that the causal disconnection of the black hole interior from infinity is an artifact of the semiclassical approximation. This review summarizes progress on all these fronts. (topical review)

  16. On non-linear magnetic-charged black hole surrounded by quintessence

    Science.gov (United States)

    Nam, Cao H.

    2018-06-01

    We derive a non-linear magnetic-charged black hole surrounded by quintessence, which behaves asymptotically like the Schwarzschild black hole surrounded by quintessence but at the short distances like the dS geometry. The horizon properties of this black hole are investigated in detail. The thermodynamics of the black hole is studied in the local and global views. Finally, by calculating the heat capacity and the free energy, we point to that the black hole may undergo a thermal phase transition, between a larger unstable black hole and a smaller stable black hole, at a critical temperature.

  17. Logarithmic black hole entropy corrections and holographic Renyi entropy

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Subhash [The Institute of Mathematical Sciences, Chennai (India); KU Leuven - KULAK, Department of Physics, Kortrijk (Belgium)

    2018-01-15

    The entanglement and Renyi entropies for spherical entangling surfaces in CFTs with gravity duals can be explicitly calculated by mapping these entropies first to the thermal entropy on hyperbolic space and then, using the AdS/CFT correspondence, to the Wald entropy of topological black holes. Here we extend this idea by taking into account corrections to the Wald entropy. Using the method based on horizon symmetries and the asymptotic Cardy formula, we calculate corrections to the Wald entropy and find that these corrections are proportional to the logarithm of the area of the horizon. With the corrected expression for the entropy of the black hole, we then find corrections to the Renyi entropies. We calculate these corrections for both Einstein and Gauss-Bonnet gravity duals. Corrections with logarithmic dependence on the area of the entangling surface naturally occur at the order G{sub D}{sup 0}. The entropic c-function and the inequalities of the Renyi entropy are also satisfied even with the correction terms. (orig.)

  18. Logarithmic black hole entropy corrections and holographic Renyi entropy

    International Nuclear Information System (INIS)

    Mahapatra, Subhash

    2018-01-01

    The entanglement and Renyi entropies for spherical entangling surfaces in CFTs with gravity duals can be explicitly calculated by mapping these entropies first to the thermal entropy on hyperbolic space and then, using the AdS/CFT correspondence, to the Wald entropy of topological black holes. Here we extend this idea by taking into account corrections to the Wald entropy. Using the method based on horizon symmetries and the asymptotic Cardy formula, we calculate corrections to the Wald entropy and find that these corrections are proportional to the logarithm of the area of the horizon. With the corrected expression for the entropy of the black hole, we then find corrections to the Renyi entropies. We calculate these corrections for both Einstein and Gauss-Bonnet gravity duals. Corrections with logarithmic dependence on the area of the entangling surface naturally occur at the order G D 0 . The entropic c-function and the inequalities of the Renyi entropy are also satisfied even with the correction terms. (orig.)

  19. Shock wave collisions and thermalization in AdS5

    International Nuclear Information System (INIS)

    Kovchegov, Yuri V.

    2011-01-01

    We study heavy ion collisions at strong 't Hooft coupling using AdS/CFT correspondence. According to the AdS/CFT dictionary heavy ion collisions correspond to gravitational shock wave collisions in AdS 5 . We construct the metric in the forward light cone after the collision perturbatively through expansion of Einstein equations in graviton exchanges. We obtain an analytic expression for the metric including all-order graviton exchanges with one shock wave, while keeping the exchanges with another shock wave at the lowest order. We read off the corresponding energy-momentum tensor of the produced medium. Unfortunately this energy-momentum tensor does not correspond to ideal hydrodynamics, indicating that higher order graviton exchanges are needed to construct the full solution of the problem. We also show that shock waves must completely stop almost immediately after the collision in AdS 5 , which, on the field theory side, corresponds to complete nuclear stopping due to strong coupling effects, likely leading to Landau hydrodynamics. Finally, we perform trapped surface analysis of the shock wave collisions demonstrating that a bulk black hole, corresponding to ideal hydrodynamics on the boundary, has to be created in such collisions, thus constructing a proof of thermalization in heavy ion collisions at strong coupling. (author)

  20. Avoidance of singularities in asymptotically safe Quantum Einstein Gravity

    Energy Technology Data Exchange (ETDEWEB)

    Kofinas, Georgios [Research Group of Geometry, Dynamical Systems and Cosmology, Department of Information and Communication Systems Engineering, University of the Aegean, Karlovassi 83200, Samos (Greece); Zarikas, Vasilios, E-mail: gkofinas@aegean.gr, E-mail: vzarikas@teilam.gr [Department of Electrical Engineering, Theory Division, ATEI of Central Greece, 35100 Lamia (Greece)

    2015-10-01

    New general spherically symmetric solutions have been derived with a cosmological ''constant'' Λ as a source. This Λ term is not constant but it satisfies the properties of the asymptotically safe gravity at the ultraviolet fixed point. The importance of these solutions comes from the fact that they may describe the near to the centre region of black hole spacetimes as this is modified by the Renormalization Group scaling behaviour of the fields. The consistent set of field equations which respect the Bianchi identities is derived and solved. One of the solutions (with conventional sign of temporal-radial metric components) is timelike geodesically complete, and although there is still a curvature divergent origin, this is never approachable by an infalling massive particle which is reflected at a finite distance due to the repulsive origin. Another family of solutions (of both signatures) range from a finite radius outwards, they cannot be extended to the centre of spherical symmetry, and the curvature invariants are finite at the minimum radius.

  1. Avoidance of singularities in asymptotically safe Quantum Einstein Gravity

    Energy Technology Data Exchange (ETDEWEB)

    Kofinas, Georgios [Research Group of Geometry, Dynamical Systems and Cosmology,Department of Information and Communication Systems Engineering,University of the Aegean, Karlovassi 83200, Samos (Greece); Zarikas, Vasilios [Department of Electrical Engineering, Theory Division, ATEI of Central Greece,35100 Lamia (Greece); Department of Physics, Aristotle University of Thessaloniki,54124 Thessaloniki (Greece)

    2015-10-30

    New general spherically symmetric solutions have been derived with a cosmological “constant” Λ as a source. This Λ term is not constant but it satisfies the properties of the asymptotically safe gravity at the ultraviolet fixed point. The importance of these solutions comes from the fact that they may describe the near to the centre region of black hole spacetimes as this is modified by the Renormalization Group scaling behaviour of the fields. The consistent set of field equations which respect the Bianchi identities is derived and solved. One of the solutions (with conventional sign of temporal-radial metric components) is timelike geodesically complete, and although there is still a curvature divergent origin, this is never approachable by an infalling massive particle which is reflected at a finite distance due to the repulsive origin. Another family of solutions (of both signatures) range from a finite radius outwards, they cannot be extended to the centre of spherical symmetry, and the curvature invariants are finite at the minimum radius.

  2. String Theory on AdS Spaces

    NARCIS (Netherlands)

    de Boer, J.

    2000-01-01

    In these notes we discuss various aspects of string theory in AdS spaces. We briefly review the formulation in terms of Green-Schwarz, NSR, and Berkovits variables, as well as the construction of exact conformal field theories with AdS backgrounds. Based on lectures given at the Kyoto YITP Workshop

  3. Black holes and Higgs stability

    CERN Document Server

    Tetradis, Nikolaos

    2016-09-20

    We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppression of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.

  4. Position space analysis of the AdS (in)stability problem

    NARCIS (Netherlands)

    Dimitrakopoulos, F.V.; Freivogel, B.; Lippert, M.; Yang, I.S.

    2015-01-01

    We investigate whether arbitrarily small perturbations in global AdS space are generically unstable and collapse into black holes on the time scale set by gravitational interactions. We argue that current evidence, combined with our analysis, strongly suggests that a set of nonzero measure in the

  5. Chiral symmetry breaking in asymptotically free and non-asymptotically free gauge theories

    International Nuclear Information System (INIS)

    Gusynin, V.P.; Miranskij, V.A.

    1986-01-01

    An essential distinction in the realization of the PCAC-dynamics in vector-like asymptotically free and non-asymptotically free (with a non-trival ultraviolet stable fixed point) gauge theories is revealed. For the latter theories an analytical expression for the condensate is obtained in the two-loop approximation and the arguments in support of a soft behaviour at small distances of composite operators are given. The problem of factorizing the low-energy region for the Wess-Zumino-Witten action is discussed

  6. Asymptotic problems for stochastic partial differential equations

    Science.gov (United States)

    Salins, Michael

    Stochastic partial differential equations (SPDEs) can be used to model systems in a wide variety of fields including physics, chemistry, and engineering. The main SPDEs of interest in this dissertation are the semilinear stochastic wave equations which model the movement of a material with constant mass density that is exposed to both determinstic and random forcing. Cerrai and Freidlin have shown that on fixed time intervals, as the mass density of the material approaches zero, the solutions of the stochastic wave equation converge uniformly to the solutions of a stochastic heat equation, in probability. This is called the Smoluchowski-Kramers approximation. In Chapter 2, we investigate some of the multi-scale behaviors that these wave equations exhibit. In particular, we show that the Freidlin-Wentzell exit place and exit time asymptotics for the stochastic wave equation in the small noise regime can be approximated by the exit place and exit time asymptotics for the stochastic heat equation. We prove that the exit time and exit place asymptotics are characterized by quantities called quasipotentials and we prove that the quasipotentials converge. We then investigate the special case where the equation has a gradient structure and show that we can explicitly solve for the quasipotentials, and that the quasipotentials for the heat equation and wave equation are equal. In Chapter 3, we study the Smoluchowski-Kramers approximation in the case where the material is electrically charged and exposed to a magnetic field. Interestingly, if the system is frictionless, then the Smoluchowski-Kramers approximation does not hold. We prove that the Smoluchowski-Kramers approximation is valid for systems exposed to both a magnetic field and friction. Notably, we prove that the solutions to the second-order equations converge to the solutions of the first-order equation in an Lp sense. This strengthens previous results where convergence was proved in probability.

  7. Novel platinum black electroplating technique improving mechanical stability.

    Science.gov (United States)

    Kim, Raeyoung; Nam, Yoonkey

    2013-01-01

    Platinum black microelectrodes are widely used as an effective neural signal recording sensor. The simple fabrication process, high quality signal recording and proper biocompatibility are the main advantages of platinum black microelectrodes. When microelectrodes are exposed to actual biological system, various physical stimuli are applied. However, the porous structure of platinum black is vulnerable to external stimuli and destroyed easily. The impedance level of the microelectrode increases when the microelectrodes are damaged resulting in decreased recording performance. In this study, we developed mechanically stable platinum black microelectrodes by adding polydopamine. The polydopamine layer was added between the platinum black structures by electrodeposition method. The initial impedance level of platinum black only microelectrodes and polydopamine added microelectrodes were similar but after applying ultrasonication the impedance value dramatically increased for platinum black only microelectrodes, whereas polydopamine added microelectrodes showed little increase which were nearly retained initial values. Polydopamine added platinum black microelectrodes are expected to extend the availability as neural sensors.

  8. Lectures on the asymptotic theory of ideals

    CERN Document Server

    Rees, D

    1988-01-01

    In this book Professor Rees introduces and proves some of the main results of the asymptotic theory of ideals. The author's aim is to prove his Valuation Theorem, Strong Valuation Theorem, and Degree Formula, and to develop their consequences. The last part of the book is devoted to mixed multiplicities. Here the author develops his theory of general elements of ideals and gives a proof of a generalised degree formula. The reader is assumed to be familiar with basic commutative algebra, as covered in the standard texts, but the presentation is suitable for advanced graduate students. The work

  9. Asymptotic density and the Ershov hierarchy

    OpenAIRE

    Downey, Rod; Jockusch, Carl; McNicholl, Timothy H.; Schupp, Paul

    2013-01-01

    We classify the asymptotic densities of the $\\Delta^0_2$ sets according to their level in the Ershov hierarchy. In particular, it is shown that for $n \\geq 2$, a real $r \\in [0,1]$ is the density of an $n$-c.e.\\ set if and only if it is a difference of left-$\\Pi_2^0$ reals. Further, we show that the densities of the $\\omega$-c.e.\\ sets coincide with the densities of the $\\Delta^0_2$ sets, and there are $\\omega$-c.e.\\ sets whose density is not the density of an $n$-c.e. set for any $n \\in \\ome...

  10. Asymptotic freedom in extended conformal supergravities

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Tseytlin, A.A.

    1982-01-01

    We present the calculation of the one-loop β-function in extended conformal supergravities. N = 1, 2, 3 theories (free or coupled to the Einstein supergravities) are found to the asymptotically free (like the N = 0 Weyl theory) while the N = 4 theory becomes finite under some plausible hypothesis. The results support the possibility to solve the problem of ghosts in these theories. The obtained sequence of SU(N) β-functions appears to be in remarkable correspondence with that for gauged O(N) supergravity theories. (orig.)

  11. Asymptotically Free Natural Supersymmetric Twin Higgs Model

    Science.gov (United States)

    Badziak, Marcin; Harigaya, Keisuke

    2018-05-01

    Twin Higgs (TH) models explain the absence of new colored particles responsible for natural electroweak symmetry breaking (EWSB). All known ultraviolet completions of TH models require some nonperturbative dynamics below the Planck scale. We propose a supersymmetric model in which the TH mechanism is introduced by a new asymptotically free gauge interaction. The model features natural EWSB for squarks and gluino heavier than 2 TeV even if supersymmetry breaking is mediated around the Planck scale, and has interesting flavor phenomenology including the top quark decay into the Higgs boson and the up quark which may be discovered at the LHC.

  12. Asymptotics with a positive cosmological constant II

    Science.gov (United States)

    Kesavan, Aruna; Ashtekar, Abhay; Bonga, Beatrice

    2015-04-01

    The study of isolated systems has been vastly successful in the context of vanishing cosmological constant, Λ = 0 . However, there is no physically useful notion of asymptotics for the universe we inhabit with Λ > 0 . This means that presently there is no fundamental understanding of gravitational waves in our own universe. The full non-linear framework is still under development, but some interesting results at the linearized level have been obtained. In particular, I will discuss the quadrupole formula for gravitational radiation and its implications.

  13. An alternative path to the boundary: The CFT as the Fourier space of AdS

    Science.gov (United States)

    Tolfree, Ian M.

    2009-12-01

    In this thesis we shed new light on the conjectured duality between an n + 1 dimensional theory of gravity in anti de Sitter space (AdS) and an n dimensional conformal field theory (CFT) by showing that the CFT can be interpreted as the Fourier space of AdS. We then make use of this to gain insight into the nature of black hole entropy. In the first part of this thesis, we give an introduction to the ideas of and review the basics of the AdS/CFT. In the next section we make use of well known integral geometry techniques to derive the Fourier transformation of a function on AdS and see it is a function with compact support on the boundary. Comparing this to the literature, we find that the Green's functions from the literature are actually the Fourier weights of the transformation and that the boundary values of fields appearing in the correspondence are the Fourier coefficients of the transformation. One is thus left to interpret the CFT as the quantized version of a classical theory in AdS and the dual operator as the Fourier coefficients. Group theoretic considerations are discussed in relation to the transformation and its potential use in constructing QCD like theories. In the last section, we then build upon this to study the BTZ black hole. Named after its authors, Banados, Teitelboim and Zanelli, the BTZ black hole is a three dimensional (two space plus one time dimension) black hole in anti de Sitter space. Following standard procedures for modifying Fourier Transformations to accommodate quotient spaces we arrive at a mapping in a black hole background consistent with known results that yields the exact micro-states of a scalar field in a black hole background. We find that the micro-states are the Fourier coefficients on the boundary, which transform under the principal series representation of SL(2, R). Using the knowledge of how to represent a bulk scalar field in the CFT, and knowing how a black hole interacts with a scalar field, we deduce the

  14. Quantum tunneling radiation from self-dual black holes

    International Nuclear Information System (INIS)

    Silva, C.A.S.; Brito, F.A.

    2013-01-01

    Black holes are considered as objects that can reveal quantum aspects of spacetime. Loop Quantum Gravity (LQG) is a theory that propose a way to model the quantum spacetime behavior revealed by a black hole. One recent prediction of this theory is the existence of sub-Planckian black holes, which have the interesting property of self-duality. This property removes the black hole singularity and replaces it with another asymptotically flat region. In this work, we obtain the thermodynamical properties of this kind of black holes, called self-dual black holes, using the Hamilton–Jacobi version of the tunneling formalism. Moreover, using the tools of the tunneling approach, we investigate the emission spectrum of self-dual black holes, and investigate if some information about the black hole initial state can be recovered during the evaporation process. Back-reaction effects are included

  15. Instability of black holes with a Gauss-Bonnet term

    International Nuclear Information System (INIS)

    Ahn, Wha-Keun; Gwak, Bogeun; Lee, Wonwoo; Lee, Bum-Hoon

    2015-01-01

    We investigate the fragmentation instability of hairy black holes in the theory with a Gauss-Bonnet (GB) term in asymptotically flat spacetime. Our approach is through the non-perturbative fragmentation instability. By this approach, we investigate whether the initial black hole can be broken into two black holes by comparing the entropy of the initial black hole with the sum of those of two fragmented black holes. The relation between the black hole instability and the GB coupling with dilaton hair are presented. We describe the phase diagrams with respect to the mass of the black hole solutions and coupling constants. We find that a perturbatively stable black hole can be unstable under fragmentation. (orig.)

  16. Plasma horizons of a charged black hole

    International Nuclear Information System (INIS)

    Hanni, R.S.

    1977-01-01

    The most promising way of detecting black holes seems to be through electromagnetic radiation emitted by nearby charged particles. The nature of this radiation depends strongly on the local electromagnetic field, which varies with the charge of the black hole. It has often been purported that a black hole with significant charge will not be observed, because, the dominance of the Coulomb interaction forces its neutralization through selective accretion. This paper shows that it is possible to balance the electric attraction of particles whose charge is opposite that of the black hole with magnetic forces and (assuming an axisymmetric, stationary solution) covariantly define the regions in which this is possible. A Kerr-Newman hole in an asymptotically uniform magnetic field and a current ring centered about a Reissner-Nordstroem hole are used as examples, because of their relevance to processes through which black holes may be observed. (Auth.)

  17. Magnetized black holes and nonlinear electrodynamics

    Science.gov (United States)

    Kruglov, S. I.

    2017-08-01

    A new model of nonlinear electrodynamics with two parameters is proposed. We study the phenomenon of vacuum birefringence, the causality and unitarity in this model. There is no singularity of the electric field in the center of pointlike charges and the total electrostatic energy is finite. We obtain corrections to the Coulomb law at r →∞. The weak, dominant and strong energy conditions are investigated. Magnetized charged black hole is considered and we evaluate the mass, metric function and their asymptotic at r →∞ and r → 0. The magnetic mass of the black hole is calculated. The thermodynamic properties and thermal stability of regular black holes are discussed. We calculate the Hawking temperature of black holes and show that there are first-order and second-order phase transitions. The parameters of the model when the black hole is stable are found.

  18. Phases of Kaluza-Klein Black Holes

    DEFF Research Database (Denmark)

    Harmark, Troels; Obers, N. A.

    2005-01-01

    We review the latest progress in understanding the phase structure of static and neutral Kaluza-Klein black holes, i.e. static and neutral solutions of pure gravity with an event horizon that asymptote to a d-dimensional Minkowski-space times a circle. We start by reviewing the (mu,n) phase diagram...... and the split-up of the phase structure into solutions with an internal SO(d-1) symmetry and solutions with Kaluza-Klein bubbles. We then discuss the uniform black string, non-uniform black string and localized black hole phases, and how those three phases are connected, involving issues such as classical...... instability and horizon-topology changing transitions. Finally, we review the bubble-black hole sequences, their place in the phase structure and interesting aspects such as the continuously infinite non-uniqueness of solutions for a given mass and relative tension....

  19. Partition functions for quantum gravity, black holes, elliptic genera and Lie algebra homologies

    Energy Technology Data Exchange (ETDEWEB)

    Bonora, L., E-mail: bonora@sissa.it [International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste (Italy); Bytsenko, A.A., E-mail: abyts@uel.br [Departamento de Fisica, Universidade Estadual de Londrina, Caixa Postal 6001, Londrina (Brazil)

    2011-11-11

    There is a remarkable connection between quantum generating functions of field theory and formal power series associated with dimensions of chains and homologies of suitable Lie algebras. We discuss the homological aspects of this connection with its applications to partition functions of the minimal three-dimensional gravities in the space-time asymptotic to AdS{sub 3}, which also describe the three-dimensional Euclidean black holes, the pure N=1 supergravity, and a sigma model on N-fold generalized symmetric products. We also consider in the same context elliptic genera of some supersymmetric sigma models. These examples can be considered as a straightforward application of the machinery of modular forms and spectral functions (with values in the congruence subgroup of SL(2,Z)) to partition functions represented by means of formal power series that encode Lie algebra properties.

  20. Stationary black holes as holographs

    Energy Technology Data Exchange (ETDEWEB)

    Racz, Istvan [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-01 (Japan); MTA KFKI, Reszecske- es Magfizikai Kutatointezet, H-1121 Budapest, Konkoly Thege Miklos ut 29-33 (Hungary)

    2007-11-21

    Smooth spacetimes possessing a (global) one-parameter group of isometries and an associated Killing horizon in Einstein's theory of gravity are investigated. No assumption concerning the asymptotic structure is made; thereby, the selected spacetimes may be considered as generic distorted stationary black holes. First, spacetimes of arbitrary dimension, n {>=} 3, with matter satisfying the dominant energy condition and allowing a non-zero cosmological constant are investigated. In this part, complete characterization of the topology of the event horizon of 'distorted' black holes is given. It is shown that the topology of the event horizon of 'distorted' black holes is allowed to possess a much larger variety than that of the isolated black hole configurations. In the second part, four-dimensional (non-degenerate) electrovac distorted black hole spacetimes are considered. It is shown that the spacetime geometry and the electromagnetic field are uniquely determined in the black hole region once the geometry of the bifurcation surface and one of the electromagnetic potentials are specified there. Conditions guaranteeing the same type of determinacy, in a neighbourhood of the event horizon, on the domain of outer communication side are also investigated. In particular, they are shown to be satisfied in the analytic case.