Numerical Asymptotic Solutions Of Differential Equations
Thurston, Gaylen A.
1992-01-01
Numerical algorithms derived and compared with classical analytical methods. In method, expansions replaced with integrals evaluated numerically. Resulting numerical solutions retain linear independence, main advantage of asymptotic solutions.
Numerical integration of asymptotic solutions of ordinary differential equations
Thurston, Gaylen A.
1989-01-01
Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.
Directory of Open Access Journals (Sweden)
G. M. N’Guérékata
2018-01-01
Full Text Available The main aim of this paper is to investigate generalized asymptotical almost periodicity and generalized asymptotical almost automorphy of solutions to a class of abstract (semilinear multiterm fractional differential inclusions with Caputo derivatives. We illustrate our abstract results with several examples and possible applications.
Asymptotic Solutions of Serial Radial Fuel Shuffling
Directory of Open Access Journals (Sweden)
Xue-Nong Chen
2015-12-01
Full Text Available In this paper, the mechanism of traveling wave reactors (TWRs is investigated from the mathematical physics point of view, in which a stationary fission wave is formed by radial fuel drifting. A two dimensional cylindrically symmetric core is considered and the fuel is assumed to drift radially according to a continuous fuel shuffling scheme. A one-group diffusion equation with burn-up dependent macroscopic coefficients is set up. The burn-up dependent macroscopic coefficients were assumed to be known as functions of neutron fluence. By introducing the effective multiplication factor keff, a nonlinear eigenvalue problem is formulated. The 1-D stationary cylindrical coordinate problem can be solved successively by analytical and numerical integrations for associated eigenvalues keff. Two representative 1-D examples are shown for inward and outward fuel drifting motions, respectively. The inward fuel drifting has a higher keff than the outward one. The 2-D eigenvalue problem has to be solved by a more complicated method, namely a pseudo time stepping iteration scheme. Its 2-D asymptotic solutions are obtained together with certain eigenvalues keff for several fuel inward drifting speeds. Distributions of the neutron flux, the neutron fluence, the infinity multiplication factor kinf and the normalized power are presented for two different drifting speeds.
An asymptotic solution of large-N QCD
Directory of Open Access Journals (Sweden)
Bochicchio Marco
2014-01-01
Full Text Available We find an asymptotic solution for two-, three- and multi-point correlators of local gauge-invariant operators, in a lower-spin sector of massless large-N QCD, in terms of glueball and meson propagators, in such a way that the solution is asymptotic in the ultraviolet to renormalization-group improved perturbation theory, by means of a new purely field-theoretical technique that we call the asymptotically-free bootstrap, based on a recently-proved asymptotic structure theorem for two-point correlators. The asymptotically-free bootstrap provides as well asymptotic S-matrix amplitudes in terms of glueball and meson propagators. Remarkably, the asymptotic S-matrix depends only on the unknown particle spectrum, but not on the anomalous dimensions, as a consequence of the LS Z reduction formulae. Very many physics consequences follow, both practically and theoretically. In fact, the asymptotic solution sets the strongest constraints on any actual solution of large-N QCD, and in particular on any string solution.
Stationary solutions and asymptotic flatness I
International Nuclear Information System (INIS)
Reiris, Martin
2014-01-01
In general relativity, a stationary isolated system is defined as an asymptotically flat (AF) stationary spacetime with compact material sources. Other definitions that are less restrictive on the type of asymptotic could in principle be possible. Between this article and its sequel, we show that under basic assumptions, asymptotic flatness indeed follows as a consequence of Einstein's theory. In particular, it is proved that any vacuum stationary spacetime-end whose (quotient) manifold is diffeomorphic to R 3 minus a ball and whose Killing field has its norm bounded away from zero, is necessarily AF with Schwarzschildian fall off. The ‘excised’ ball would contain (if any) the actual material body, but this information is unnecessary to reach the conclusion. In this first article, we work with weakly asymptotically flat (WAF) stationary ends, a notion that generalizes as much as possible that of the AF end, and prove that WAF ends are AF with Schwarzschildian fall off. Physical and mathematical implications are also discussed. (paper)
Asymptotically Almost Periodic Solutions of Evolution Equations in Banach Spaces
Ruess, W. M.; Phong, V. Q.
Tile linear abstract evolution equation (∗) u'( t) = Au( t) + ƒ( t), t ∈ R, is considered, where A: D( A) ⊂ E → E is the generator of a strongly continuous semigroup of operators in the Banach space E. Starting from analogs of Kadets' and Loomis' Theorems for vector valued almost periodic Functions, we show that if σ( A) ∩ iR is countable and ƒ: R → E is [asymptotically] almost periodic, then every bounded and uniformly continuous solution u to (∗) is [asymptotically] almost periodic, provided e-λ tu( t) has uniformly convergent means for all λ ∈ σ( A) ∩ iR. Related results on Eberlein-weakly asymptotically almost periodic, periodic, asymptotically periodic and C 0-solutions of (∗), as well as on the discrete case of solutions of difference equations are included.
The Asymptotic Solution for the Steady Variable-Viscosity Free ...
African Journals Online (AJOL)
Under an arbitrary time-dependent heating of an infinite vertical plate (or wall), the steady viscosity-dependent free convection flow of a viscous incompressible fluid is investigated. Using the asymptotic method of solution on the governing equations of motion and energy, the resulting Ordinary differential equations were ...
Asymptotic solutions of diffusion models for risk reserves
Directory of Open Access Journals (Sweden)
S. Shao
2003-01-01
Full Text Available We study a family of diffusion models for risk reserves which account for the investment income earned and for the inflation experienced on claim amounts. After we defined the process of the conditional probability of ruin over finite time and imposed the appropriate boundary conditions, classical results from the theory of diffusion processes turn the stochastic differential equation to a special class of initial and boundary value problems defined by a linear diffusion equation. Armed with asymptotic analysis and perturbation theory, we obtain the asymptotic solutions of the diffusion models (possibly degenerate governing the conditional probability of ruin over a finite time in terms of interest rate.
Periodic solutions of asymptotically linear Hamiltonian systems without twist conditions
Energy Technology Data Exchange (ETDEWEB)
Cheng Rong [Coll. of Mathematics and Physics, Nanjing Univ. of Information Science and Tech., Nanjing (China); Dept. of Mathematics, Southeast Univ., Nanjing (China); Zhang Dongfeng [Dept. of Mathematics, Southeast Univ., Nanjing (China)
2010-05-15
In dynamical system theory, especially in many fields of applications from mechanics, Hamiltonian systems play an important role, since many related equations in mechanics can be written in an Hamiltonian form. In this paper, we study the existence of periodic solutions for a class of Hamiltonian systems. By applying the Galerkin approximation method together with a result of critical point theory, we establish the existence of periodic solutions of asymptotically linear Hamiltonian systems without twist conditions. Twist conditions play crucial roles in the study of periodic solutions for asymptotically linear Hamiltonian systems. The lack of twist conditions brings some difficulty to the study. To the authors' knowledge, very little is known about the case, where twist conditions do not hold. (orig.)
An asymptotic formula for Weyl solutions of the dirac equations
International Nuclear Information System (INIS)
Misyura, T.V.
1995-01-01
In the spectral analysis of differential operators and its applications an important role is played by the investigation of the behavior of the Weyl solutions of the corresponding equations when the spectral parameter tends to infinity. Elsewhere an exact asymptotic formula for the Weyl solutions of a large class of Sturm-Liouville equations has been obtained. A decisve role in the proof of this formula has been the semiboundedness property of the corresponding Sturm-Liouville operators. In this paper an analogous formula is obtained for the Weyl solutions of the Dirac equations
Asymptotic solutions and spectral theory of linear wave equations
International Nuclear Information System (INIS)
Adam, J.A.
1982-01-01
This review contains two closely related strands. Firstly the asymptotic solution of systems of linear partial differential equations is discussed, with particular reference to Lighthill's method for obtaining the asymptotic functional form of the solution of a scalar wave equation with constant coefficients. Many of the applications of this technique are highlighted. Secondly, the methods and applications of the theory of the reduced (one-dimensional) wave equation - particularly spectral theory - are discussed. While the breadth of application and power of the techniques is emphasised throughout, the opportunity is taken to present to a wider readership, developments of the methods which have occured in some aspects of astrophysical (particularly solar) and geophysical fluid dynamics. It is believed that the topics contained herein may be of relevance to the applied mathematician or theoretical physicist interest in problems of linear wave propagation in these areas. (orig./HSI)
Asymptotic shape of solutions to the perturbed simple pendulum problems
Directory of Open Access Journals (Sweden)
Tetsutaro Shibata
2007-05-01
Full Text Available We consider the positive solution of the perturbed simple pendulum problem $$ u''(r + frac{N-1}{r}u'(r - g(u(t + lambda sin u(r = 0, $$ with $0 < r < R$, $ u'(0 = u(R = 0$. To understand well the shape of the solution $u_lambda$ when $lambda gg 1$, we establish the leading and second terms of $Vert u_lambdaVert_q$ ($1 le q < infty$ with the estimate of third term as $lambda o infty$. We also obtain the asymptotic formula for $u_lambda'(R$ as $lambda o infty$.
Asymptotic Value Distribution for Solutions of the Schroedinger Equation
International Nuclear Information System (INIS)
Breimesser, S. V.; Pearson, D. B.
2000-01-01
We consider the Dirichlet Schroedinger operator T=-(d 2 /d x 2 )+V, acting in L 2 (0,∞), where Vis an arbitrary locally integrable potential which gives rise to absolutely continuous spectrum. Without any other restrictive assumptions on the potential V, the description of asymptotics for solutions of the Schroedinger equation is carried out within the context of the theory of value distribution for boundary values of analytic functions. The large x asymptotic behaviour of the solution v(x,λ) of the equation Tf(x,λ)=λf(x,λ), for λ in the support of the absolutely continuous part μ a.c. of the spectral measure μ, is linked to the spectral properties of this measure which are determined by the boundary value of the Weyl-Titchmarsh m-function. Our main result (Theorem 1) shows that the value distribution for v'(N,λ)/v(N,λ) approaches the associated value distribution of the Herglotz function m N (z) in the limit N → ∞, where m N (z) is the Weyl-Titchmarsh m-function for the Schroedinger operator -(d 2 /d x 2 )+Vacting in L 2 (N,∞), with Dirichlet boundary condition at x=N. We will relate the analysis of spectral asymptotics for the absolutely continuous component of Schroedinger operators to geometrical properties of the upper half-plane, viewed as a hyperbolic space
Thermodynamical description of stationary, asymptotically flat solutions with conical singularities
International Nuclear Information System (INIS)
Herdeiro, Carlos; Rebelo, Carmen; Radu, Eugen
2010-01-01
We examine the thermodynamical properties of a number of asymptotically flat, stationary (but not static) solutions having conical singularities, with both connected and nonconnected event horizons, using the thermodynamical description recently proposed in [C. Herdeiro, B. Kleihaus, J. Kunz, and E. Radu, Phys. Rev. D 81, 064013 (2010).]. The examples considered are the double-Kerr solution, the black ring rotating in either S 2 or S 1 , and the black Saturn, where the balance condition is not imposed for the latter two solutions. We show that not only the Bekenstein-Hawking area law is recovered from the thermodynamical description, but also the thermodynamical angular momentum is the Arnowitt-Deser-Misner angular momentum. We also analyze the thermodynamical stability and show that, for all these solutions, either the isothermal moment of inertia or the specific heat at constant angular momentum is negative, at any point in parameter space. Therefore, all these solutions are thermodynamically unstable in the grand canonical ensemble.
Exact asymptotic expansions for solutions of multi-dimensional renewal equations
International Nuclear Information System (INIS)
Sgibnev, M S
2006-01-01
We derive expansions with exact asymptotic expressions for the remainders for solutions of multi-dimensional renewal equations. The effect of the roots of the characteristic equation on the asymptotic representation of solutions is taken into account. The resulting formulae are used to investigate the asymptotic behaviour of the average number of particles in age-dependent branching processes having several types of particles
Large time asymptotics of solutions of the equations of principal chiral field
International Nuclear Information System (INIS)
Sukhanov, V.V.
1990-01-01
Asymptotic behaviour of solutions of the equations of principal chiral field when one of the arguments tends to infinity is investigated. Asymptotics of solutions of the corresponding spectral problem is investigated as well. explicit formulas are constructed which connect the coefficients of the asymptotic decomposition of the potential with the data of the corresponding inverse problem by means of a birational transformation
Singularly perturbed hyperbolic problems on metric graphs: asymptotics of solutions
Directory of Open Access Journals (Sweden)
Golovaty Yuriy
2017-04-01
Full Text Available We are interested in the evolution phenomena on star-like networks composed of several branches which vary considerably in physical properties. The initial boundary value problem for singularly perturbed hyperbolic differential equation on a metric graph is studied. The hyperbolic equation becomes degenerate on a part of the graph as a small parameter goes to zero. In addition, the rates of degeneration may differ in different edges of the graph. Using the boundary layer method the complete asymptotic expansions of solutions are constructed and justified.
Asymptotically exact solution of a local copper-oxide model
International Nuclear Information System (INIS)
Zhang Guangming; Yu Lu.
1994-03-01
We present an asymptotically exact solution of a local copper-oxide model abstracted from the multi-band models. The phase diagram is obtained through the renormalization-group analysis of the partition function. In the strong coupling regime, we find an exactly solved line, which crosses the quantum critical point of the mixed valence regime separating two different Fermi-liquid (FL) phases. At this critical point, a many-particle resonance is formed near the chemical potential, and a marginal-FL spectrum can be derived for the spin and charge susceptibilities. (author). 15 refs, 1 fig
Asymptotics for a special solution to the second member of the Painleve I hierarchy
International Nuclear Information System (INIS)
Claeys, T
2010-01-01
We study the asymptotic behavior of a special smooth solution y(x, t) to the second member of the Painleve I hierarchy. This solution arises in random matrix theory and in the study of the Hamiltonian perturbations of hyperbolic equations. The asymptotic behavior of y(x, t) if x → ±∞ (for fixed t) is known and relatively simple, but it turns out to be more subtle when x and t tend to infinity simultaneously. We distinguish a region of algebraic asymptotic behavior and a region of elliptic asymptotic behavior, and we obtain rigorous asymptotics in both regions. We also discuss two critical transitional asymptotic regimes.
Asymptotic Behavior of Solutions of Delayed Difference Equations
Directory of Open Access Journals (Sweden)
J. Diblík
2011-01-01
Full Text Available This contribution is devoted to the investigation of the asymptotic behavior of delayed difference equations with an integer delay. We prove that under appropriate conditions there exists at least one solution with its graph staying in a prescribed domain. This is achieved by the application of a more general theorem which deals with systems of first-order difference equations. In the proof of this theorem we show that a good way is to connect two techniques—the so-called retract-type technique and Liapunov-type approach. In the end, we study a special class of delayed discrete equations and we show that there exists a positive and vanishing solution of such equations.
Asymptotic solution for heat convection-radiation equation
Energy Technology Data Exchange (ETDEWEB)
Mabood, Fazle; Ismail, Ahmad Izani Md [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Khan, Waqar A. [Department of Engineering Sciences, National University of Sciences and Technology, PN Engineering College, Karachi, 75350 (Pakistan)
2014-07-10
In this paper, we employ a new approximate analytical method called the optimal homotopy asymptotic method (OHAM) to solve steady state heat transfer problem in slabs. The heat transfer problem is modeled using nonlinear two-point boundary value problem. Using OHAM, we obtained the approximate analytical solution for dimensionless temperature with different values of a parameter ε. Further, the OHAM results for dimensionless temperature have been presented graphically and in tabular form. Comparison has been provided with existing results from the use of homotopy perturbation method, perturbation method and numerical method. For numerical results, we used Runge-Kutta Fehlberg fourth-fifth order method. It was found that OHAM produces better approximate analytical solutions than those which are obtained by homotopy perturbation and perturbation methods, in the sense of closer agreement with results obtained from the use of Runge-Kutta Fehlberg fourth-fifth order method.
Periodic Solutions and S-Asymptotically Periodic Solutions to Fractional Evolution Equations
Directory of Open Access Journals (Sweden)
Jia Mu
2017-01-01
Full Text Available This paper deals with the existence and uniqueness of periodic solutions, S-asymptotically periodic solutions, and other types of bounded solutions for some fractional evolution equations with the Weyl-Liouville fractional derivative defined for periodic functions. Applying Fourier transform we give reasonable definitions of mild solutions. Then we accurately estimate the spectral radius of resolvent operator and obtain some existence and uniqueness results.
Ground state solutions for asymptotically periodic Schrodinger equations with critical growth
Directory of Open Access Journals (Sweden)
Hui Zhang
2013-10-01
Full Text Available Using the Nehari manifold and the concentration compactness principle, we study the existence of ground state solutions for asymptotically periodic Schrodinger equations with critical growth.
Asymptotic Solution of the Theory of Shells Boundary Value Problem
Directory of Open Access Journals (Sweden)
I. V. Andrianov
2007-01-01
Full Text Available This paper provides a state-of-the-art review of asymptotic methods in the theory of plates and shells. Asymptotic methods of solving problems related to theory of plates and shells have been developed by many authors. The main features of our paper are: (i it is devoted to the fundamental principles of asymptotic approaches, and (ii it deals with both traditional approaches, and less widely used, new approaches. The authors have paid special attention to examples and discussion of results rather than to burying the ideas in formalism, notation, and technical details.
Asymptotic behavior of solutions of the damped Boussinesq equation in two space dimensions
Directory of Open Access Journals (Sweden)
Vladimir V. Varlamov
1999-01-01
classical solution is proved and the solution is constructed in the form of a series. The major term of its long-time asymptotics is calculated explicitly and a uniform in space estimate of the residual term is given.
Directory of Open Access Journals (Sweden)
Zhanhua Yu
2011-01-01
Full Text Available We study the almost surely asymptotic stability of exact solutions to neutral stochastic pantograph equations (NSPEs, and sufficient conditions are obtained. Based on these sufficient conditions, we show that the backward Euler method (BEM with variable stepsize can preserve the almost surely asymptotic stability. Numerical examples are demonstrated for illustration.
Pointwise asymptotic convergence of solutions for a phase separation model
Czech Academy of Sciences Publication Activity Database
Krejčí, Pavel; Zheng, S.
2006-01-01
Roč. 16, č. 1 (2006), s. 1-18 ISSN 1078-0947 Institutional research plan: CEZ:AV0Z10190503 Keywords : phase-field system * asymptotic phase separation * energy Subject RIV: BA - General Mathematics Impact factor: 1.087, year: 2006 http://aimsciences.org/journals/pdfs.jsp?paperID=1875&mode=full
Asymptotic Behavior of Periodic Wave Solution to the Hirota—Satsuma Equation
International Nuclear Information System (INIS)
Wu Yong-Qi
2011-01-01
The one- and two-periodic wave solutions for the Hirota—Satsuma (HS) equation are presented by using the Hirota derivative and Riemann theta function. The rigorous proofs on asymptotic behaviors of these two solutions are given such that soliton solution can be obtained from the periodic wave solution in an appropriate limiting procedure. (general)
Sharp asymptotic estimates for vorticity solutions of the 2D Navier-Stokes equation
Directory of Open Access Journals (Sweden)
Yuncheng You
2008-12-01
Full Text Available The asymptotic dynamics of high-order temporal-spatial derivatives of the two-dimensional vorticity and velocity of an incompressible, viscous fluid flow in $mathbb{R}^2$ are studied, which is equivalent to the 2D Navier-Stokes equation. It is known that for any integrable initial vorticity, the 2D vorticity solution converges to the Oseen vortex. In this paper, sharp exterior decay estimates of the temporal-spatial derivatives of the vorticity solution are established. These estimates are then used and combined with similarity and $L^p$ compactness to show the asymptotical attraction rates of temporal-spatial derivatives of generic 2D vorticity and velocity solutions by the Oseen vortices and velocity solutions respectively. The asymptotic estimates and the asymptotic attraction rates of all the derivatives obtained in this paper are independent of low or high Reynolds numbers.
Asymptotic analysis of fundamental solutions of Dirac operators on even dimensional Euclidean spaces
International Nuclear Information System (INIS)
Arai, A.
1985-01-01
We analyze the short distance asymptotic behavior of some quantities formed out of fundamental solutions of Dirac operators on even dimensional Euclidean spaces with finite dimensional matrix-valued potentials. (orig.)
An asymptotic formula for decreasing solutions to coupled nonlinear differential systems
Czech Academy of Sciences Publication Activity Database
Matucci, S.; Řehák, Pavel
2012-01-01
Roč. 22, č. 2 (2012), s. 67-75 ISSN 1064-9735 Institutional research plan: CEZ:AV0Z10190503 Keywords : system of quasilinear equations * strongly decreasing solutions * asymptotic equivalence Subject RIV: BA - General Mathematics
Asymptotics for the greatest zeros of solutions of a particular O.D.E.
Directory of Open Access Journals (Sweden)
Silvia Noschese
1994-05-01
Full Text Available This paper deals with the Liouville-Stekeloff method for approximating solutions of homogeneous linear ODE and a general result due to Tricomi which provides estimates for the zeros of functions by means of the knowledge of an asymptotic representation. From the classical tools we deduce information about the asymptotics of the greatest zeros of a class of solutions of a particular ODE, including the classical Hermite polynomials.
Self-similar cosmological solutions with dark energy. I. Formulation and asymptotic analysis
International Nuclear Information System (INIS)
Harada, Tomohiro; Maeda, Hideki; Carr, B. J.
2008-01-01
Based on the asymptotic analysis of ordinary differential equations, we classify all spherically symmetric self-similar solutions to the Einstein equations which are asymptotically Friedmann at large distances and contain a perfect fluid with equation of state p=(γ-1)μ with 0 1). However, in the latter case there is an additional parameter associated with the weak discontinuity at the sonic point and the solutions are only asymptotically 'quasi-Friedmann', in the sense that they exhibit an angle deficit at large distances. In the 0<γ<2/3 case, there is no sonic point and there exists a one-parameter family of solutions which are genuinely asymptotically Friedmann at large distances. We find eight classes of asymptotic behavior: Friedmann or quasi-Friedmann or quasistatic or constant-velocity at large distances, quasi-Friedmann or positive-mass singular or negative-mass singular at small distances, and quasi-Kantowski-Sachs at intermediate distances. The self-similar asymptotically quasistatic and quasi-Kantowski-Sachs solutions are analytically extendible and of great cosmological interest. We also investigate their conformal diagrams. The results of the present analysis are utilized in an accompanying paper to obtain and physically interpret numerical solutions
Nefedov, N. N.; Nikulin, E. I.
2018-01-01
A singularly perturbed periodic in time problem for a parabolic reaction-diffusion equation in a two-dimensional domain is studied. The case of existence of an internal transition layer under the conditions of balanced and unbalanced rapid reaction is considered. An asymptotic expansion of a solution is constructed. To justify the asymptotic expansion thus constructed, the asymptotic method of differential inequalities is used. The Lyapunov asymptotic stability of a periodic solution is investigated.
Wang, Yu-Zhu; Wei, Changhua
2018-04-01
In this paper, we investigate the initial value problem for the generalized double dispersion equation in R^n. Weighted decay estimate and asymptotic profile of global solutions are established for n≥3 . The global existence result was already proved by Kawashima and the first author in Kawashima and Wang (Anal Appl 13:233-254, 2015). Here, we show that the nonlinear term plays an important role in this asymptotic profile.
Asymptotic solution for the El Niño time delay sea—air oscillator model
International Nuclear Information System (INIS)
Mo Jia-Qi; Lin Wan-Tao; Lin Yi-Hua
2011-01-01
A sea—air oscillator model is studied using the time delay theory. The aim is to find an asymptotic solving method for the El Niño-southern oscillation (ENSO) model. Employing the perturbed method, an asymptotic solution of the corresponding problem is obtained. Thus we can obtain the prognoses of the sea surface temperature (SST) anomaly and the related physical quantities. (general)
Asymptotic properties of spherically symmetric, regular and static solutions to Yang-Mills equations
International Nuclear Information System (INIS)
Cronstrom, C.
1987-01-01
In this paper the author discusses the asymptotic properties of solutions to Yang-Mills equations with the gauge group SU(2), for spherically symmetric, regular and static potentials. It is known, that the pure Yang-Mills equations cannot have nontrivial regular solutions which vanish rapidly at space infinity (socalled finite energy solutions). So, if regular solutions exist, they must have non-trivial asymptotic properties. However, if the asymptotic behaviour of the solutions is non-trivial, then the fact must be explicitly taken into account in constructing the proper action (and energy) for the theory. The elucidation of the appropriate surface correction to the Yang-Mills action (and hence the energy-momentum tensor density) is one of the main motivations behind the present study. In this paper the author restricts to the asymptotic behaviour of the static solutions. It is shown that this asymptotic behaviour is such that surface corrections (at space-infinity) are needed in order to obtain a well-defined (classical) theory. This is of relevance in formulating a quantum Yang-Mills theory
Asymptotic solution of the non-isothermal Cahn-Hilliard system
International Nuclear Information System (INIS)
Omel'yanov, G.A.
1995-05-01
The non-isothermal Cahn-Hillard questions with a small parameter in the n-dimensional case (n = 2.3) are considered. The small parameter is proportional both to the relaxation time and to the linear scale of transition zone, so the large time process is examined. The asymptotic solution describing the free interface dynamics is constructed. As the small parameter tends to zero, the limiting solution satisfies the modified Stefan problem with corrected Gibbs-Thomson law. The justification of the asymptotic solution is proved. (author). 26 refs
Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations
International Nuclear Information System (INIS)
Kaikina, Elena I; Naumkin, Pavel I; Shishmarev, Il'ya A
2009-01-01
The large-time asymptotic behaviour of solutions of the Cauchy problem is investigated for a non-linear Sobolev-type equation with dissipation. For small initial data the approach taken is based on a detailed analysis of the Green's function of the linear problem and the use of the contraction mapping method. The case of large initial data is also closely considered. In the supercritical case the asymptotic formulae are quasi-linear. The asymptotic behaviour of solutions of a non-linear Sobolev-type equation with a critical non-linearity of the non-convective kind differs by a logarithmic correction term from the behaviour of solutions of the corresponding linear equation. For a critical convective non-linearity, as well as for a subcritical non-convective non-linearity it is proved that the leading term of the asymptotic expression for large times is a self-similar solution. For Sobolev equations with convective non-linearity the asymptotic behaviour of solutions in the subcritical case is the product of a rarefaction wave and a shock wave. Bibliography: 84 titles.
International Nuclear Information System (INIS)
Paris, R.B.; Wood, A.D.
1984-11-01
The asymptotic expansions of solutions of a class of linear ordinary differential equations of arbitrary order n, containing a factor zsup(m) multiplying the lower order derivatives, are investigated for large values of z in the complex plane. Four classes of solutions are considered which exhibit the following behaviour as /z/ → infinity in certain sectors: (i) solutions whose behaviour is either exponentially large or algebraic (involving p ( < n) algebraic expansions), (ii) solutions which are exponentially small (iii) solutions with a single algebraic expansion and (iv) solutions which are even and odd functions of z whenever n+m is even. The asymptotic expansions of these solutions in a full neigbourhood of the point at infinity are obtained by means of the theory of the solutions in the case m=O developed in a previous paper
ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR A CLASS OF DELAY DIFFERENCE EQUATION
Institute of Scientific and Technical Information of China (English)
ZhuHuiyan; HuangLihong
2005-01-01
We propose a class of delay difference equation with piecewise constant nonlinearity. Such a delay difference equation can be regarded as the discrete analog of a differential equation. The convergence of solutions and the existence of asymptotically stable periodic solutions are investigated for such a class of difference equation.
Du, Miao; Tian, Lixin; Wang, Jun; Zhang, Fubao
2016-03-01
In this paper, we are concerned with a class of Schrödinger-Poisson systems with the asymptotically linear or asymptotically 3-linear nonlinearity. Under some suitable assumptions on V , K , a , and f , we prove the existence, nonexistence, and asymptotic behavior of solutions via variational methods. In particular, the potential V is allowed to be sign-changing for the asymptotically linear case.
Asymptotic Normality of the Optimal Solution in Multiresponse Surface Mathematical Programming
Díaz-García, José A.; Caro-Lopera, Francisco J.
2015-01-01
An explicit form for the perturbation effect on the matrix of regression coeffi- cients on the optimal solution in multiresponse surface methodology is obtained in this paper. Then, the sensitivity analysis of the optimal solution is studied and the critical point characterisation of the convex program, associated with the optimum of a multiresponse surface, is also analysed. Finally, the asymptotic normality of the optimal solution is derived by the standard methods.
Asymptotic formulae for solutions of half-linear differential equations
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel
2017-01-01
Roč. 292, January (2017), s. 165-177 ISSN 0096-3003 Institutional support: RVO:67985840 Keywords : half-linear differential equation * nonoscillatory solution * regular variation Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.738, year: 2016 http://www.sciencedirect.com/science/article/pii/S0096300316304581
Asymptotic behaviour of solutions of a degenerate quasilinear hyperbolic equation
International Nuclear Information System (INIS)
Pereira, D.C.
1988-10-01
The decay as t->∞ of the solutions of equation u''(t)|A 1/2 u(t)| 2 Au(t)+Au'(t)=0 where A is a self-adjoint operator in a Hilbert space H with norm |.| is studied. A decay of algebraic rate for the energy associated to the studied equation is obtained. (author) [pt
One dimensional beam. Asymptotic and self similar solutions
International Nuclear Information System (INIS)
Feix, M.R.; Duranceau, J.L.; Besnard, D.
1982-06-01
Rescaling transformations provide a useful tool to solve nonlinear problems described by partial derivative equations. A brief review of this method is presented together with the connection with the self similar solutions obtained by compacting the independent variable with one of them (the time). The general theory is reported through examples found in Plasma Physics with a careful distinction between systems described by Hamiltonian and others where irreversible phenomena, like diffusion, are taken into account
Directory of Open Access Journals (Sweden)
Yan-Tao Bian
2014-04-01
Full Text Available In this article, we study weighted asymptotic behavior of solutions to the semilinear integro-differential equation $$ u'(t=Au(t+\\alpha\\int_{-\\infty}^{t}e^{-\\beta(t-s}Au(sds+f(t,u(t, \\quad t\\in \\mathbb{R}, $$ where $\\alpha, \\beta \\in \\mathbb{R}$, with $\\beta > 0, \\alpha \
Directory of Open Access Journals (Sweden)
Zhanhua Yu
2011-01-01
convergence theorem. It is shown that the Euler method and the backward Euler method can reproduce the almost surely asymptotic stability of exact solutions to NSDDEs under additional conditions. Numerical examples are demonstrated to illustrate the effectiveness of our theoretical results.
Weak asymptotic solution for a non-strictly hyperbolic system of conservation laws-II
Directory of Open Access Journals (Sweden)
Manas Ranjan Sahoo
2016-04-01
Full Text Available In this article we introduce a concept of entropy weak asymptotic solution for a system of conservation laws and construct the same for a prolonged system of conservation laws which is highly non-strictly hyperbolic. This is first done for Riemann type initial data by introducing $\\delta,\\delta',\\delta''$ waves along a discontinuity curve and then for general initial data by piecing together the Riemann solutions.
International Nuclear Information System (INIS)
Marczynski, Slawomir
2011-01-01
The integro-differential Berk-Breizman (BB) equation, describing the evolution of particle-driven wave mode is transformed into a simple delayed differential equation form ν∂a(τ)/∂τ=a(τ) -a 2 (τ- 1) a(τ- 2). This transformation is also applied to the two modes extension of the BB theory. The obtained solutions are presented together with the derived asymptotic analytical solutions and the numerical results.
Asymptotic behavior of solutions of linear multi-order fractional differential equation systems
Diethelm, Kai; Siegmund, Stefan; Tuan, H. T.
2017-01-01
In this paper, we investigate some aspects of the qualitative theory for multi-order fractional differential equation systems. First, we obtain a fundamental result on the existence and uniqueness for multi-order fractional differential equation systems. Next, a representation of solutions of homogeneous linear multi-order fractional differential equation systems in series form is provided. Finally, we give characteristics regarding the asymptotic behavior of solutions to some classes of line...
Tables of generalized Airy functions for the asymptotic solution of the differential equation
Nosova, L N
1965-01-01
Tables of Generalized Airy Functions for the Asymptotic Solution of the Differential Equations contains tables of the special functions, namely, the generalized Airy functions, and their first derivatives, for real and pure imaginary values. The tables are useful for calculations on toroidal shells, laminae, rode, and for the solution of certain other problems of mathematical physics. The values of the functions were computed on the ""Strela"" highspeed electronic computer.This book will be of great value to mathematicians, researchers, and students.
International Nuclear Information System (INIS)
Liu Hongzhun; Pan Zuliang; Li Peng
2006-01-01
In this article, we will derive an equality, where the Taylor series expansion around ε = 0 for any asymptotical analytical solution of the perturbed partial differential equation (PDE) with perturbing parameter ε must be admitted. By making use of the equality, we may obtain a transformation, which directly map the analytical solutions of a given unperturbed PDE to the asymptotical analytical solutions of the corresponding perturbed one. The notion of Lie-Baecklund symmetries is introduced in order to obtain more transformations. Hence, we can directly create more transformations in virtue of known Lie-Baecklund symmetries and recursion operators of corresponding unperturbed equation. The perturbed Burgers equation and the perturbed Korteweg-de Vries (KdV) equation are used as examples.
Asymptotics for Large Time of Global Solutions to the Generalized Kadomtsev-Petviashvili Equation
Hayashi, Nakao; Naumkin, Pavel I.; Saut, Jean-Claude
We study the large time asymptotic behavior of solutions to the generalized Kadomtsev-Petviashvili (KP) equations where σ= 1 or σ=- 1. When ρ= 2 and σ=- 1, (KP) is known as the KPI equation, while ρ= 2, σ=+ 1 corresponds to the KPII equation. The KP equation models the propagation along the x-axis of nonlinear dispersive long waves on the surface of a fluid, when the variation along the y-axis proceeds slowly [10]. The case ρ= 3, σ=- 1 has been found in the modeling of sound waves in antiferromagnetics [15]. We prove that if ρ>= 3 is an integer and the initial data are sufficiently small, then the solution u of (KP) satisfies the following estimates: for all t∈R, where κ= 1 if ρ= 3 and κ= 0 if ρ>= 4. We also find the large time asymptotics for the solution.
Directory of Open Access Journals (Sweden)
V. P. Gribkova
2014-01-01
Full Text Available The paper offers a new method for approximate solution of one type of singular integral equations for elasticity theory which have been studied by other authors. The approximate solution is found in the form of asymptotic polynomial function of a low degree (first approximation based on the Chebyshev second order polynomial. Other authors have obtained a solution (only in separate points using a method of mechanical quadrature and though they used also the Chebyshev polynomial of the second order they applied another system of junctures which were used for the creation of the required formulas.The suggested method allows not only to find an approximate solution for the whole interval in the form of polynomial, but it also makes it possible to obtain a remainder term in the form of infinite expansion where coefficients are linear functional of the given integral equation and basis functions are the Chebyshev polynomial of the second order. Such presentation of the remainder term of the first approximation permits to find a summand of the infinite series, which will serve as a start for fulfilling the given solution accuracy. This number is a degree of the asymptotic polynomial (second approximation, which will give the approximation to the exact solution with the given accuracy. The examined polynomial functions tend asymptotically to the polynomial of the best uniform approximation in the space C, created for the given operator.The paper demonstrates a convergence of the approximate solution to the exact one and provides an error estimation. The proposed algorithm for obtaining of the approximate solution and error estimation is easily realized with the help of computing technique and does not require considerable preliminary preparation during programming.
Directory of Open Access Journals (Sweden)
Qiong Liu
2012-01-01
Full Text Available We study the following fourth-order elliptic equations: Δ2+Δ=(,,∈Ω,=Δ=0,∈Ω, where Ω⊂ℝ is a bounded domain with smooth boundary Ω and (, is asymptotically linear with respect to at infinity. Using an equivalent version of Cerami's condition and the symmetric mountain pass lemma, we obtain the existence of multiple solutions for the equations.
On the Asymptotic Behavior of Positive Solutions of Certain Fractional Differential Equations
Said R. Grace
2015-01-01
This paper deals with the asymptotic behavior of positive solutions of certain forced fractional differential equations of the form DcαCyt=et+ft, xt, c>1, α∈0,1, where yt=atx′t′, c0=y(c)/Γ(1) =yc, and c0 is a real constant. From the obtained results, we derive a technique which can be applied to some related fractional differential equations.
International Nuclear Information System (INIS)
Yasuk, F.; Tekin, S.; Boztosun, I.
2010-01-01
In this study, the exact solutions of the d-dimensional Schroedinger equation with a position-dependent mass m(r)=1/(1+ζ 2 r 2 ) is presented for a free particle, V(r)=0, by using the method of point canonical transformations. The energy eigenvalues and corresponding wavefunctions for the effective potential which is to be a generalized Poeschl-Teller potential are obtained within the framework of the asymptotic iteration method.
Exact Asymptotic Expansion of Singular Solutions for the (2+1-D Protter Problem
Directory of Open Access Journals (Sweden)
Lubomir Dechevski
2012-01-01
Full Text Available We study three-dimensional boundary value problems for the nonhomogeneous wave equation, which are analogues of the Darboux problems in ℝ2. In contrast to the planar Darboux problem the three-dimensional version is not well posed, since its homogeneous adjoint problem has an infinite number of classical solutions. On the other hand, it is known that for smooth right-hand side functions there is a uniquely determined generalized solution that may have a strong power-type singularity at one boundary point. This singularity is isolated at the vertex of the characteristic light cone and does not propagate along the cone. The present paper describes asymptotic expansion of the generalized solutions in negative powers of the distance to this singular point. We derive necessary and sufficient conditions for existence of solutions with a fixed order of singularity and give a priori estimates for the singular solutions.
Directory of Open Access Journals (Sweden)
Mohamed Abdalla Darwish
2014-01-01
Full Text Available We study a generalized fractional quadratic functional-integral equation of Erdélyi-Kober type in the Banach space BC(ℝ+. We show that this equation has at least one asymptotically stable solution.
Asymptotic solutions of miscible displacements in geometries of large aspect ratio
International Nuclear Information System (INIS)
Yang, Z.; Yortsos, Y.C.
1997-01-01
Asymptotic solutions are developed for miscible displacements at Stokes flow conditions between parallel plates or in a cylindrical capillary, at large values of the geometric aspect ratio. The single integro-differential equation obtained is solved numerically for different values of the Pacute eclet number and the viscosity ratio. At large values of the latter, the solution consists of a symmetric finger propagating in the middle of the gap or the capillary. Constraints on conventional convection-dispersion-equation approach for studying miscible instabilities in planar Hele endash Shaw cells are obtained. The asymptotic formalism is next used to derive emdash in the limit of zero diffusion emdash a hyperbolic equation for the cross-sectionally averaged concentration, the solution of which is obtained by analytical means. This solution is valid as long as sharp shock fronts do not form. The results are compared with recent numerical simulations of the full problem and experiments of miscible displacement in a narrow capillary. copyright 1997 American Institute of Physics
Energy Technology Data Exchange (ETDEWEB)
Sukhanov, V V [Leningradskij Gosudarstvennyj Univ., Leningrad (USSR)
1990-07-01
Asymptotic behaviour of solutions of the equations of principal chiral field when one of the arguments tends to infinity is investigated. Asymptotics of solutions of the corresponding spectral problem is investigated as well. explicit formulas are constructed which connect the coefficients of the asymptotic decomposition of the potential with the data of the corresponding inverse problem by means of a birational transformation.
Asymptotic behavior of positive solutions of a semilinear Dirichlet problem in the annulus
Directory of Open Access Journals (Sweden)
Safa Dridi
2015-01-01
Full Text Available In this paper, we establish existence and asymptotic behavior of a positive classical solution to the following semilinear boundary value problem: \\[-\\Delta u=q(xu^{\\sigma }\\;\\text{in}\\;\\Omega,\\quad u_{|\\partial\\Omega}=0.\\] Here \\(\\Omega\\ is an annulus in \\(\\mathbb{R}^{n}\\, \\(n\\geq 3\\, \\(\\sigma \\lt 1\\ and \\(q\\ is a positive function in \\(\\mathcal{C}_{loc}^{\\gamma }(\\Omega \\, \\(0\\lt\\gamma \\lt 1\\, satisfying some appropriate assumptions related to Karamata regular variation theory. Our arguments combine a method of sub- and supersolutions with Karamata regular variation theory.
On the asymptotic solution to a class of linear integral equations
International Nuclear Information System (INIS)
Gautesen, A.K.
1988-01-01
The authors consider Fredholm integral equations of the first kind whose kernels are a function of the difference between two points times a large parameter. Conditions on the kernel are stated in terms of a function corresponding to a Wiener-Hopf factorization of the Fourier transform of the kernel. They give the complete asymptotic expansions of the solution to the integral equations. As applications of the author's results, the author considers the steady-state, acoustical scattering of a plane wave by both a hard strip and a soft strip. The author's results are uniform with respect to the direction of incidence
An Asymptotic Theory for the Re-Equilibration of a Micellar Surfactant Solution
Griffiths, I. M.; Bain, C. D.; Breward, C. J. W.; Chapman, S. J.; Howell, P. D.; Waters, S. L.
2012-01-01
Micellar surfactant solutions are characterized by a distribution of aggregates made up predominantly of premicellar aggregates (monomers, dimers, trimers, etc.) and a region of proper micelles close to the peak aggregation number, connected by an intermediate region containing a very low concentration of aggregates. Such a distribution gives rise to a distinct two-timescale reequilibration following a system dilution, known as the t1 and t2 processes, whose dynamics may be described by the Becker-Döring equations. We use a continuum version of these equations to develop a reduced asymptotic description that elucidates the behavior during each of these processes.© 2012 Society for Industrial and Applied Mathematics.
Hybrid resonance and long-time asymptotic of the solution to Maxwell's equations
Energy Technology Data Exchange (ETDEWEB)
Després, Bruno, E-mail: despres@ann.jussieu.fr [Laboratory Jacques Louis Lions, University Pierre et Marie Curie, Paris VI, Boîte courrier 187, 75252 Paris Cedex 05 (France); Weder, Ricardo, E-mail: weder@unam.mx [Departamento de Física Matemática, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Apartado Postal 20-126, DF 01000 (Mexico)
2016-03-22
We study the long-time asymptotic of the solutions to Maxwell's equation in the case of an upper-hybrid resonance in the cold plasma model. We base our analysis in the transfer to the time domain of the recent results of B. Després, L.M. Imbert-Gérard and R. Weder (2014) [15], where the singular solutions to Maxwell's equations in the frequency domain were constructed by means of a limiting absorption principle and a formula for the heating of the plasma in the limit of vanishing collision frequency was obtained. Currently there is considerable interest in these problems, in particular, because upper-hybrid resonances are a possible scenario for the heating of plasmas, and since they can be a model for the diagnostics involving wave scattering in plasmas. - Highlights: • The upper-hybrid resonance in the cold plasma model is considered. • The long-time asymptotic of the solutions to Maxwell's equations is studied. • A method based in a singular limiting absorption principle is proposed.
On the asymptotic of solutions of elliptic boundary value problems in domains with edges
International Nuclear Information System (INIS)
Nkemzi, B.
2005-10-01
Solutions of elliptic boundary value problems in three-dimensional domains with edges may exhibit singularities. The usual procedure to study these singularities is by the application of the classical Mellin transformation or continuous Fourier transformation. In this paper, we show how the asymptotic behavior of solutions of elliptic boundary value problems in general three-dimensional domains with straight edges can be investigated by means of discrete Fourier transformation. We apply this approach to time-harmonic Maxwell's equations and prove that the singular solutions can fully be described in terms of Fourier series. The representation here can easily be used to approximate three-dimensional stress intensity factors associated with edge singularities. (author)
A two-parameter family of exact asymptotically flat solutions to the Einstein-scalar field equations
International Nuclear Information System (INIS)
Nikonov, V V; Tchemarina, Ju V; Tsirulev, A N
2008-01-01
We consider a static spherically symmetric real scalar field, minimally coupled to Einstein gravity. A two-parameter family of exact asymptotically flat solutions is obtained by using the inverse problem method. This family includes non-singular solutions, black holes and naked singularities. For each of these solutions the respective potential is partially negative but positive near spatial infinity. (comments, replies and notes)
Butuzov, V. F.
2017-06-01
We construct and justify asymptotic expansions of solutions of a singularly perturbed elliptic problem with Dirichlet boundary conditions in the case when the corresponding degenerate equation has a triple root. In contrast to the case of a simple root, the expansion is with respect to fractional (non-integral) powers of the small parameter, the boundary-layer variables have another scaling, and the boundary layer has three zones. This gives rise to essential modifications in the algorithm for constructing the boundary functions. Solutions of the elliptic problem are stationary solutions of the corresponding parabolic problem. We prove that such a stationary solution is asymptotically stable and find its global domain of attraction.
Asymptotic solutions for flow in microchannels with ridged walls and arbitrary meniscus protrusion
Kirk, Toby
2017-11-01
Flow over structured surfaces exhibiting apparent slip, such as parallel ridges, have received much attention experimentally and numerically, but analytical and asymptotic solutions that account for the microstructure have so far been limited to unbounded geometries such as shear-driven flows. Analysis for channel flows has been limited to (close to) flat interfaces spanning the grooves between ridges, but in applications the interfaces (menisci) can highly protrude and have a significant impact on the apparent slip. In this presentation, we consider pressure-driven flow through a microchannel with longitudinal ridges patterning one or both walls. With no restriction on the meniscus protrusion, we develop explicit formulae for the slip length using a formal matched asymptotic expansion. Assuming the ratio of channel height to ridge period is large, the periodicity is confined to an inner layer close to the ridges, and the expansion is found to all algebraic orders. As a result, the error is exponentially small and, under a further ``diluteness'' assumption, the explicit formulae are compared to finite element solutions. They are found to have a very wide range of validity in channel height (even when the menisci can touch the opposing wall) and so are useful for practitioners.
Asymptotic solutions of glass temperature profiles during steady optical fibre drawing
Taroni, M.
2013-03-12
In this paper we derive realistic simplified models for the high-speed drawing of glass optical fibres via the downdraw method that capture the fluid dynamics and heat transport in the fibre via conduction, convection and radiative heating. We exploit the small aspect ratio of the fibre and the relative orders of magnitude of the dimensionless parameters that characterize the heat transfer to reduce the problem to one- or two-dimensional systems via asymptotic analysis. The resulting equations may be readily solved numerically and in many cases admit exact analytic solutions. The systematic asymptotic breakdown presented is used to elucidate the relative importance of furnace temperature profile, convection, surface radiation and conduction in each portion of the furnace and the role of each in controlling the glass temperature. The models derived predict many of the qualitative features observed in real industrial processes, such as the glass temperature profile within the furnace and the sharp transition in fibre thickness. The models thus offer a desirable route to quick scenario testing, providing valuable practical information about the dependencies of the solution on the parameters and the dominant heat-transport mechanism. © 2013 Springer Science+Business Media Dordrecht.
A third-order asymptotic solution of nonlinear standing water waves in Lagrangian coordinates
International Nuclear Information System (INIS)
Yang-Yih, Chen; Hung-Chu, Hsu
2009-01-01
Asymptotic solutions up to third-order which describe irrotational finite amplitude standing waves are derived in Lagrangian coordinates. The analytical Lagrangian solution that is uniformly valid for large times satisfies the irrotational condition and the pressure p = 0 at the free surface, which is in contrast with the Eulerian solution existing under a residual pressure at the free surface due to Taylor's series expansion. In the third-order Lagrangian approximation, the explicit parametric equation and the Lagrangian wave frequency of water particles could be obtained. In particular, the Lagrangian mean level of a particle motion that is a function of vertical label is found as a part of the solution which is different from that in an Eulerian description. The dynamic properties of nonlinear standing waves in water of a finite depth, including particle trajectory, surface profile and wave pressure are investigated. It is also shown that the Lagrangian solution is superior to an Eulerian solution of the same order for describing the wave shape and the kinematics above the mean water level. (general)
Directory of Open Access Journals (Sweden)
J. Kalas
2012-01-01
Full Text Available The asymptotic behaviour for the solutions of a real two-dimensional system with a bounded nonconstant delay is studied under the assumption of instability. Our results improve and complement previous results by J. Kalas, where the sufficient conditions assuring the existence of bounded solutions or solutions tending to origin for $t$ approaching infinity are given. The method of investigation is based on the transformation of the considered real system to one equation with complex-valued coefficients. Asymptotic properties of this equation are studied by means of a suitable Lyapunov-Krasovskii functional and by virtue of the Wazewski topological principle.
Existence and asymptotic estimates of periodic solutions of El Niño mechanism of atmospheric physics
International Nuclear Information System (INIS)
Xiao-Jing, Li
2010-01-01
This paper is devoted to studying the El Niño mechanism of atmospheric physics. The existence and asymptotic estimates of periodic solutions for its model are obtained by employing the technique of upper and lower solution, and using the continuation theorem of coincidence degree theory. (general)
Asymptotic solution of the Vlasov and Poisson equations for an inhomogeneous plasma
International Nuclear Information System (INIS)
Croci, R.
1991-01-01
The asymptotic solutions to a class of inhomogeneous integral equations that reduce to algebraic equations when a parameter η goes to zero (the kernel becoming proportional to a Dirac δ function) are derived. This class includes the integral equations obtained from the system of Vlasov and Poisson equations for the Fourier transform in space and the Laplace transform in time of the electrostatic potential, when the equilibrium magnetic field is uniform and the equilibrium plasma density depends on ηx, with the co-ordinate z being the direction of the magnetic field. In this case the inhomogeneous term is given by the initial conditions and possibly by sources, and the Laplace-transform variable ω is the eigenvalue parameter. (Author)
Directory of Open Access Journals (Sweden)
Min Jia
2012-01-01
Full Text Available We study a model arising from porous media, electromagnetic, and signal processing of wireless communication system -tαx(t=f(t,x(t,x'(t,x”(t,…,x(n-2(t, 0
International Nuclear Information System (INIS)
Phan Thanh An; Phan Le Na; Ngo Quoc Chung
2004-05-01
We describe a practical implementation for finding parametric domain for asymptotic stability with probability one of zero solution of linear Ito stochastic differential equations based on Korenevskij and Mitropolskij's sufficient condition and our sufficient conditions. Numerical results show that all of these sufficient conditions are crucial in the implementation. (author)
Asymptotic behaviour of solutions of nonlinear delay difference equations in Banach spaces
Directory of Open Access Journals (Sweden)
Anna Kisiolek
2005-10-01
Full Text Available We consider the second-order nonlinear difference equations of the form ÃŽÂ”(rnÃ¢ÂˆÂ’1ÃŽÂ”xnÃ¢ÂˆÂ’1+pnf(xnÃ¢ÂˆÂ’k=hn. We show that there exists a solution (xn, which possesses the asymptotic behaviour Ã¢Â€Â–xnÃ¢ÂˆÂ’aÃ¢ÂˆÂ‘j=0nÃ¢ÂˆÂ’1(1/rj+bÃ¢Â€Â–=o(1, a,bÃ¢ÂˆÂˆÃ¢Â„Â. In this paper, we extend the results of Agarwal (1992, Dawidowski et al. (2001, Drozdowicz and Popenda (1987, M. Migda (2001, and M. Migda and J. Migda (1988. We suppose that f has values in Banach space and satisfies some conditions with respect to the measure of noncompactness and measure of weak noncompactness.
International Nuclear Information System (INIS)
Vasileva, D.P.
1993-01-01
Blow-up and global time self-similar solutions of a boundary problem for a nonlinear equation u t = Δ u σ+1 + u β are found in the case β = σ + 1. It is shown that they describe the asymptotic behavior of a wide class of initial perturbations. A numerical investigation of the solutions in the case β>σ + 1 is also made. A hypothesis is done that the behavior for large times of global time solutions is described by the self-similar solutions of the equation without source.(author). 20 refs.; 9 figs
Asymptotic formulae for solutions of the two-group integral neutron-transport equation
International Nuclear Information System (INIS)
Duracz, T.
1976-01-01
The steady-state, two-group integral neutron-transport equation is considered for two cases. First, for plane geometry, formulae for the asymptotic flux are obtained, under assumptions of homogeneous medium with isotropic scattering, extended to infinity (whole space and half-space), with sources vanishing at infinity as 0(esup(-IXI)). Next, for spherical geometry, the Milne problem is considered and formulae for the asymptotic flux are obtained. These formulae have the form of asymptotic expansions for small and large radii of the black sphere. (orig.) [de
Asymptotic Solution of a Model for Bilayer Organic Diodes and Solar Cells
Richardson, Giles
2012-11-15
Organic diodes and solar cells are constructed by placing together two organic semiconducting materials with dissimilar electron affinities and ionization potentials. The electrical behavior of such devices has been successfully modeled numerically using conventional drift diffusion together with recombination (which is usually assumed to be bimolecular) and thermal generation. Here a particular model is considered and the dark current-voltage curve and the spatial structure of the solution across the device is extracted analytically using asymptotic methods. We concentrate on the case of Shockley-Read-Hall recombination but note the extension to other recombination mechanisms. We find that there are three regimes of behavior, dependent on the total current. For small currents-i.e., at reverse bias or moderate forward bias-the structure of the solution is independent of the total current. For large currents-i.e., at strong forward bias-the current varies linearly with the voltage and is primarily controlled by drift of charges in the organic layers. There is then a narrow range of currents where the behavior undergoes a transition between the two regimes. The magnitude of the parameter that quantifies the interfacial recombination rate is critical in determining where the transition occurs. The extension of the theory to organic solar cells generating current under illumination is discussed as is the analogous current-voltage curves derived where the photo current is small. Finally, by comparing the analytic results to real experimental data, we show how the model parameters can be extracted from the shape of current-voltage curves measured in the dark. © 2012 Society for Industrial and Applied Mathematics.
Asymptotic Solution of a Model for Bilayer Organic Diodes and Solar Cells
Richardson, Giles; Please, Colin; Foster, Jamie; Kirkpatrick, James
2012-01-01
Organic diodes and solar cells are constructed by placing together two organic semiconducting materials with dissimilar electron affinities and ionization potentials. The electrical behavior of such devices has been successfully modeled numerically using conventional drift diffusion together with recombination (which is usually assumed to be bimolecular) and thermal generation. Here a particular model is considered and the dark current-voltage curve and the spatial structure of the solution across the device is extracted analytically using asymptotic methods. We concentrate on the case of Shockley-Read-Hall recombination but note the extension to other recombination mechanisms. We find that there are three regimes of behavior, dependent on the total current. For small currents-i.e., at reverse bias or moderate forward bias-the structure of the solution is independent of the total current. For large currents-i.e., at strong forward bias-the current varies linearly with the voltage and is primarily controlled by drift of charges in the organic layers. There is then a narrow range of currents where the behavior undergoes a transition between the two regimes. The magnitude of the parameter that quantifies the interfacial recombination rate is critical in determining where the transition occurs. The extension of the theory to organic solar cells generating current under illumination is discussed as is the analogous current-voltage curves derived where the photo current is small. Finally, by comparing the analytic results to real experimental data, we show how the model parameters can be extracted from the shape of current-voltage curves measured in the dark. © 2012 Society for Industrial and Applied Mathematics.
Asymptotic solution on the dynamic buckling of a column stressed by ...
African Journals Online (AJOL)
This paper analysis the dynamic stability of a dynamically oscillatory system with slowly varying time dependent parameters. It utilizes the concept of multiple times scaling in an asymptotic evaluation of the dynamic buckling load of the imperfect elastic structure under investigation. Unlike most similar investigations to date ...
Asymptotic solution of natural convection problem in a square cavity heated from below
Grundmann, M; Mojtabi, A; vantHof, B
Studies a two-dimensional natural convection in a porous, square cavity using a regular asymptotic development in powers of the Rayleigh number. Carries the approximation through to the 34th order. Analyses convergence of the resulting series for the Nusselt number in both monocellular and
Asymptotic Behavior of Solutions to Half-Linear q-Difference Equations
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel
-, - (2011), s. 986343 ISSN 1085-3375 Institutional research plan: CEZ:AV0Z10190503 Keywords : second order q-difference equation * asymptotic behavior * q-regularly varying sequence * Banach fixed point theorem Subject RIV: BA - General Mathematics Impact factor: 1.318, year: 2011 http://www.hindawi.com/journals/ aaa /2011/986343/
Maci, S.; Neto, A.
2004-01-01
This second part of a two-paper sequence deals with the uniform asymptotic description of the Green's function of an infinite slot printed between two different homogeneous dielectric media. Starting from the magnetic current derived in Part I, the dyadic green's function is first formulated in
Rigorous asymptotics of traveling-wave solutions to the thin-film equation and Tanner’s law
Giacomelli, Lorenzo; Gnann, Manuel V.; Otto, Felix
2016-09-01
We are interested in traveling-wave solutions to the thin-film equation with zero microscopic contact angle (in the sense of complete wetting without precursor) and inhomogeneous mobility {{h}3}+{λ3-n}{{h}n} , where h, λ, and n\\in ≤ft(\\frac{3}{2},\\frac{7}{3}\\right) denote film height, slip parameter, and mobility exponent, respectively. Existence and uniqueness of these solutions have been established by Maria Chiricotto and the first of the authors in previous work under the assumption of sub-quadratic growth as h\\to ∞ . In the present work we investigate the asymptotics of solutions as h\\searrow 0 (the contact-line region) and h\\to ∞ . As h\\searrow 0 we observe, to leading order, the same asymptotics as for traveling waves or source-type self-similar solutions to the thin-film equation with homogeneous mobility h n and we additionally characterize corrections to this law. Moreover, as h\\to ∞ we identify, to leading order, the logarithmic Tanner profile, i.e. the solution to the corresponding unperturbed problem with λ =0 that determines the apparent macroscopic contact angle. Besides higher-order terms, corrections turn out to affect the asymptotic law as h\\to ∞ only by setting the length scale in the logarithmic Tanner profile. Moreover, we prove that both the correction and the length scale depend smoothly on n. Hence, in line with the common philosophy, the precise modeling of liquid-solid interactions (within our model, the mobility exponent) does not affect the qualitative macroscopic properties of the film.
Russell, John
2000-11-01
A modified Orr-Sommerfeld equation that applies to the asymptotic suction boundary layer was reported by Bussmann & Münz in a wartime report dated 1942 and by Hughes & Reid in J.F.M. ( 23, 1965, p715). Fundamental systems of exact solutions of the Orr-Sommerfeld equation for this mean velocity distribution were reported by D. Grohne in an unpublished typescript dated 1950. Exact solutions of the equation of Bussmann, Münz, Hughes, & Reid were reported by P. Baldwin in Mathematika ( 17, 1970, p206). Grohne and Baldwin noticed that these exact solutions may be expressed either as Barnes integrals or as convolution integrals. In a later paper (Phil. Trans. Roy. Soc. A, 399, 1985, p321), Baldwin applied the convolution integrals in the contruction of large-Reynolds number asymptotic approximations that hold uniformly. The present talk discusses the subtleties that arise in the construction of such convolution integrals, including several not reported by Grohne or Baldwin. The aim is to recover the full set of seven solutions (one well balanced, three balanced, and three dominant-recessive) postulated by W.H. Reid in various works on the uniformly valid solutions.
International Nuclear Information System (INIS)
Hoffmann-Ostenhof, M.; Hoffmann-Ostenhof, T.; Swetina, J.
1986-01-01
Let (- Δ + V 1 - E) psi = 0 in Ωsub(R) = (x is an element of Rsup(n)| |x| > R), psi is an element of L 2 (Ωsub(R)), where E 1 (|x|) + V 2 (|x|) with V 1 , V 2 tending to zero for |x| → infinity and satisfying suitable regularity assumption. Further let (- Δ + V 2 (|x|) - E) v(|x|) = 0 for |x| > R where v > 0 and v → 0 for |x| → infinity. Previous results on the asymptotics on psi/v for n = 2 are here extended to the n-dimensional case: It is shown that psi/v (|x| x/|x|) satisfies certain regularity properties uniformly for |x| → infinity as a map from Ssup(n-1) to R. Furthermore using a certain scaling it is shown that the asymptotic behaviour of psi/v can be characterized by eigenfunctions of the isotropic (n-1)-dimensional harmonic oscillator. (Author)
Asymptotically exact solution of the multi-channel resonant-level model
International Nuclear Information System (INIS)
Zhang Guangming; Su Zhaobin; Yu Lu.
1994-01-01
An asymptotically exact partition function of the multi-channel resonant-level model is obtained through Tomonaga-Luttinger bosonization. A Fermi-liquid vs. non-Fermi-liquid transition, resulting from a competition between the Kondo and X-ray edge physics, is elucidated explicitly via the renormalization group theory. In the strong-coupling limit, the model is renormalized to the Toulouse limit. (author). 20 refs, 1 fig
A confining and asymptotically free solution for the renormalization group invariant charge
International Nuclear Information System (INIS)
Kellett, B.H.
1978-01-01
The central role of the invariant charge in applications of the renormalization group to quantum chromodynamics is discussed. The general structure of the invariant charge is examined, and it is shown to be a non-singular function of q 2 for all finite non-zero q 2 . At q 2 = 0 and q 2 = +or- infinity shows that QCD is asymptotically free. Some applications of these general results are discussed
International Nuclear Information System (INIS)
Arum Sari, Resita; Suparmi, A; Cari, C
2016-01-01
The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into the Dirac equation, then the variables are separated into radial and angular parts. The Dirac equation is solved by using an asymptotic iteration method that can reduce the second order differential equation into a differential equation with substitution variables of hypergeometry type. The relativistic energy is calculated using Matlab 2011. This study is limited to the case of spin symmetry. With the asymptotic iteration method, the energy spectra of the relativistic equations and equations of orbital quantum number l can be obtained, where both are interrelated between quantum numbers. The energy spectrum is also numerically solved using the Matlab software, where the increase in the radial quantum number n r causes the energy to decrease. The radial part and the angular part of the wave function are defined as hypergeometry functions and visualized with Matlab 2011. The results show that the disturbance of a combination of the Eckart potential and trigonometric Manning Rosen potential can change the radial part and the angular part of the wave function. (paper)
Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes
International Nuclear Information System (INIS)
Larsen, E.W.; Morel, J.E.; Miller, W.F. Jr.
1987-01-01
We present an asymptotic analysis of spatial differencing schemes for the discrete-ordinates equations, for diffusive media with spatial cells that are not optically thin. Our theoretical tool is an asymptotic expansion that has previously been used to describe the transform from analytic transport to analytic diffusion theory for such media. To introduce this expansion and its physical rationale, we first describe it for the analytic discrete-ordinates equations. Then, we apply the expansion to the spatially discretized discrete-ordinates equations, with the spatial mesh scaled in either of two physically relevant ways such that the optical thickness of the spatial cells is not small. If the result of either expansion is a legitimate diffusion description for either the cell-averaged or cell-edge fluxes, then we say that the approximate flux has the appropriate diffusion limit; otherwise, we say it does not. We consider several transport differencing schemes that are applicable in neutron transport and thermal radiation applications. We also include numerical results which demonstrate the validity of our theory and show that differencing schemes that do have a particular diffusion limit are substantially more accurate, in the regime described by the limit, than those that do not. copyright 1987 Academic Press, Inc
Aguareles, M.
2014-06-01
In this paper we consider an oscillatory medium whose dynamics are modeled by the complex Ginzburg-Landau equation. In particular, we focus on n-armed spiral wave solutions of the complex Ginzburg-Landau equation in a disk of radius d with homogeneous Neumann boundary conditions. It is well-known that such solutions exist for small enough values of the twist parameter q and large enough values of d. We investigate the effect of boundaries on the rotational frequency of the spirals, which is an unknown of the problem uniquely determined by the parameters d and q. We show that there is a threshold in the parameter space where the effect of the boundary on the rotational frequency switches from being algebraic to exponentially weak. We use the method of matched asymptotic expansions to obtain explicit expressions for the asymptotic wavenumber as a function of the twist parameter and the domain size for small values of q. © 2014 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Bloom Clifford O.
1996-01-01
Full Text Available The asymptotic behavior as λ → ∞ of the function U ( x , λ that satisfies the reduced wave equation L λ [ U ] = ∇ ⋅ ( E ( x ∇ U + λ 2 N 2 ( x U = 0 on an infinite 3-dimensional region, a Dirichlet condition on ∂ V , and an outgoing radiation condition is investigated. A function U N ( x , λ is constructed that is a global approximate solution as λ → ∞ of the problem satisfied by U ( x , λ . An estimate for W N ( x , λ = U ( x , λ − U N ( x , λ on V is obtained, which implies that U N ( x , λ is a uniform asymptotic approximation of U ( x , λ as λ → ∞ , with an error that tends to zero as rapidly as λ − N ( N = 1 , 2 , 3 , ... . This is done by applying a priori estimates of the function W N ( x , λ in terms of its boundary values, and the L 2 norm of r L λ [ W N ( x , λ ] on V . It is assumed that E ( x , N ( x , ∂ V and the boundary data are smooth, that E ( x − I and N ( x − 1 tend to zero algebraically fast as r → ∞ , and finally that E ( x and N ( x are slowly varying; ∂ V may be finite or infinite. The solution U ( x , λ can be interpreted as a scalar potential of a high frequency acoustic or electromagnetic field radiating from the boundary of an impenetrable object of general shape. The energy of the field propagates through an inhomogeneous, anisotropic medium; the rays along which it propagates may form caustics. The approximate solution (potential derived in this paper is defined on and in a neighborhood of any such caustic, and can be used to connect local “geometrical optics” type approximate solutions that hold on caustic free subsets of V .The result of this paper generalizes previous work of Bloom and Kazarinoff [C. O. BLOOM and N. D. KAZARINOFF, Short Wave Radiation Problems in Inhomogeneous Media: Asymptotic Solutions, SPRINGER VERLAG, NEW YORK, NY, 1976].
On asymptotic solutions of Regge field theory in zero transverse dimensions
International Nuclear Information System (INIS)
Bondarenko, S.; Horwitz, L.; Levitan, J.; Yahalom, A.
2013-01-01
An investigation of dynamical properties of solutions of a toy model of interacting Pomerons with triple vertex in zero transverse dimension is performed. Stable points and corresponding solutions at the limit of large rapidity are studied in the framework of a given model. It is shown that, at large rapidity, the “fan” amplitude is also a leading solution for the full RFT-0 (Regge Field Theory in zero transverse dimensions) Hamiltonian with both vertices of Pomeron splitting and merging included. An analytical form of the symmetrical solution of the equations of motion at high energy is obtained as well. For the solutions we have found, the scattering amplitude at large values of rapidity is calculated. Stability of the solutions is investigated by Lyapunov functions and the presence of closed cycles in solutions is demonstrated by the new method
International Nuclear Information System (INIS)
Messaris, Gerasimos A. T.; Hadjinicolaou, Maria; Karahalios, George T.
2016-01-01
The present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α and for such values of α there is not any analytical solution in the literature. The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach has an advantage in that it can provide physical insight to the flow mechanism. Having this in mind, we seek analytical solution to the equations of the fluid flow driven by a sinusoidal pressure gradient in a slightly curved pipe of circular cross section when the Womersley number varies from small finite to infinite values. Initially the equations of motion are expanded in terms of the curvature ratio δ and the resulting linearized equations are solved analytically in two ways. In the first, we match the solution for the main core to that for the Stokes boundary layer. This solution is valid for very large values of α. In the second, we derive a straightforward single solution valid to the entire flow region and for 8 ≤ α < ∞, a range which includes the values of α that refer to the physiological flows. Each solution contains expressions for the axial velocity, the stream function, and the wall stresses and is compared to the analogous forms presented in other studies. The two solutions give identical results to each other regarding the axial flow but differ in the secondary flow and the circumferential wall stress, due to the approximations employed in the matched asymptotic expansion process. The results on the stream function from the second solution are in agreement with analogous results from other numerical solutions. The second solution predicts that the atherosclerotic plaques may develop in any location around the cross section of the aortic wall unlike to the prescribed locations predicted by the first solution. In addition, it gives circumferential wall stresses
Energy Technology Data Exchange (ETDEWEB)
Messaris, Gerasimos A. T., E-mail: messaris@upatras.gr [Department of Physics, Division of Theoretical Physics, University of Patras, GR 265 04 Rion (Greece); School of Science and Technology, Hellenic Open University, 11 Sahtouri Street, GR 262 22 Patras (Greece); Hadjinicolaou, Maria [School of Science and Technology, Hellenic Open University, 11 Sahtouri Street, GR 262 22 Patras (Greece); Karahalios, George T. [Department of Physics, Division of Theoretical Physics, University of Patras, GR 265 04 Rion (Greece)
2016-08-15
The present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α and for such values of α there is not any analytical solution in the literature. The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach has an advantage in that it can provide physical insight to the flow mechanism. Having this in mind, we seek analytical solution to the equations of the fluid flow driven by a sinusoidal pressure gradient in a slightly curved pipe of circular cross section when the Womersley number varies from small finite to infinite values. Initially the equations of motion are expanded in terms of the curvature ratio δ and the resulting linearized equations are solved analytically in two ways. In the first, we match the solution for the main core to that for the Stokes boundary layer. This solution is valid for very large values of α. In the second, we derive a straightforward single solution valid to the entire flow region and for 8 ≤ α < ∞, a range which includes the values of α that refer to the physiological flows. Each solution contains expressions for the axial velocity, the stream function, and the wall stresses and is compared to the analogous forms presented in other studies. The two solutions give identical results to each other regarding the axial flow but differ in the secondary flow and the circumferential wall stress, due to the approximations employed in the matched asymptotic expansion process. The results on the stream function from the second solution are in agreement with analogous results from other numerical solutions. The second solution predicts that the atherosclerotic plaques may develop in any location around the cross section of the aortic wall unlike to the prescribed locations predicted by the first solution. In addition, it gives circumferential wall stresses
Messaris, Gerasimos A. T.; Hadjinicolaou, Maria; Karahalios, George T.
2016-08-01
The present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α and for such values of α there is not any analytical solution in the literature. The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach has an advantage in that it can provide physical insight to the flow mechanism. Having this in mind, we seek analytical solution to the equations of the fluid flow driven by a sinusoidal pressure gradient in a slightly curved pipe of circular cross section when the Womersley number varies from small finite to infinite values. Initially the equations of motion are expanded in terms of the curvature ratio δ and the resulting linearized equations are solved analytically in two ways. In the first, we match the solution for the main core to that for the Stokes boundary layer. This solution is valid for very large values of α. In the second, we derive a straightforward single solution valid to the entire flow region and for 8 ≤ α flows. Each solution contains expressions for the axial velocity, the stream function, and the wall stresses and is compared to the analogous forms presented in other studies. The two solutions give identical results to each other regarding the axial flow but differ in the secondary flow and the circumferential wall stress, due to the approximations employed in the matched asymptotic expansion process. The results on the stream function from the second solution are in agreement with analogous results from other numerical solutions. The second solution predicts that the atherosclerotic plaques may develop in any location around the cross section of the aortic wall unlike to the prescribed locations predicted by the first solution. In addition, it gives circumferential wall stresses augmented by approximately 100% with respect to the matched asymptotic expansions
International Nuclear Information System (INIS)
Dresner, L.
1990-07-01
This report deals with the asymptotic behavior of certain solutions of partial differential equations in one dependent and two independent variables (call them c, z, and t, respectively). The partial differential equations are invariant to one-parameter families of one-parameter affine groups of the form: c' = λ α c, t' = λ β t, z' = λz, where λ is the group parameter that labels the individual transformations and α and β are parameters that label groups of the family. The parameters α and β are connected by a linear relation, Mα + Nβ = L, where M, N, and L are numbers determined by the structure of the partial differential equation. It is shown that when L/M and N/M are L/M t -N/M for large z or small t. Some practical applications of this result are discussed. 8 refs
International Nuclear Information System (INIS)
Xu, J.J.; Woo, J.T.
1987-01-01
The steady-state flow of a conducting fluid between two coaxial rotating disks in the presence of an axial magnetic field is considered for the following conditions: (1) the gap d between two disks is very small compared with the radial extension of the disks R; (2) the angular velocity of the disks is not too high, so that the thickness of the Eckman layer δ is still larger than the gap d, (d/δ) 1 /sup // 4 2 /d 2 . Under these conditions asymptotic solutions to the problem are obtained in terms of the small parameter Epsilon = d/R. The results show that to the lowest-order approximation, the electric properties of the disks are not important to the flow field, while the magnitude of the magnetic field plays an important role in the equilibrium flow profile
Asymptotic behaviour of solutions to a system of Schrödinger equations
Czech Academy of Sciences Publication Activity Database
Carvajal, X.; Gamboa, P.; Nečasová, Šárka; Nguyen, H. H.; Vero, O.
2017-01-01
Roč. 2017, č. 171 (2017), s. 1-23 ISSN 1072-6691 R&D Projects: GA ČR GA16-03230S Institutional support: RVO:67985840 Keywords : coupled Schrodinger system * energy conservation * global solution * growth of solutions Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.954, year: 2016 https://ejde.math.txstate.edu/Volumes/2017/171/abstr.html
Tice, Ian
2018-04-01
This paper concerns the dynamics of a layer of incompressible viscous fluid lying above a rigid plane and with an upper boundary given by a free surface. The fluid is subject to a constant external force with a horizontal component, which arises in modeling the motion of such a fluid down an inclined plane, after a coordinate change. We consider the problem both with and without surface tension for horizontally periodic flows. This problem gives rise to shear-flow equilibrium solutions, and the main thrust of this paper is to study the asymptotic stability of the equilibria in certain parameter regimes. We prove that there exists a parameter regime in which sufficiently small perturbations of the equilibrium at time t=0 give rise to global-in-time solutions that return to equilibrium exponentially in the case with surface tension and almost exponentially in the case without surface tension. We also establish a vanishing surface tension limit, which connects the solutions with and without surface tension.
Exact closed-form solutions of a fully nonlinear asymptotic two-fluid model
Cheviakov, Alexei F.
2018-05-01
A fully nonlinear model of Choi and Camassa (1999) describing one-dimensional incompressible dynamics of two non-mixing fluids in a horizontal channel, under a shallow water approximation, is considered. An equivalence transformation is presented, leading to a special dimensionless form of the system, involving a single dimensionless constant physical parameter, as opposed to five parameters present in the original model. A first-order dimensionless ordinary differential equation describing traveling wave solutions is analyzed. Several multi-parameter families of physically meaningful exact closed-form solutions of the two-fluid model are derived, corresponding to periodic, solitary, and kink-type bidirectional traveling waves; specific examples are given, and properties of the exact solutions are analyzed.
Asymptotical Behavior of the Solution of a SDOF Linear Fractionally Damped Vibration System
Directory of Open Access Journals (Sweden)
Z.H. Wang
2011-01-01
Full Text Available Fractional-order derivative has been shown an adequate tool to the study of so-called "anomalous" social and physical behaviors, in reflecting their non-local, frequency- and history-dependent properties, and it has been used to model practical systems in engineering successfully, including the famous Bagley-Torvik equation modeling forced motion of a rigid plate immersed in Newtonian fluid. The solutions of the initial value problems of linear fractional differential equations are usually expressed in terms of Mittag-Leffler functions or some other kind of power series. Such forms of solutions are not good for engineers not only in understanding the solutions but also in investigation. This paper proves that for the linear SDOF oscillator with a damping described by fractional-order derivative whose order is between 1 and 2, the solution of its initial value problem free of external excitation consists of two parts, the first one is the 'eigenfunction expansion' that is similar to the case without fractional-order derivative, and the second one is a definite integral that is independent of the eigenvalues (or characteristic roots. The integral disappears in the classical linear oscillator and it can be neglected from the solution when stationary solution is addressed. Moreover, the response of the fractionally damped oscillator under harmonic excitation is calculated in a similar way, and it is found that the fractional damping with order between 1 and 2 can be used to produce oscillation with large amplitude as well as to suppress oscillation, depending on the ratio of the excitation frequency and the natural frequency.
On an asymptotic technique of solution of the inverse problem of helioseismology
International Nuclear Information System (INIS)
Brodskij, M.A.; Vorontsov, S.V.
1987-01-01
The technique for the solution of the universe problem for the solar 5-min. oscillations is proposed, which provides an independent determination of the second speed as a function of depth in solar interior and the frequency dependence of the effective phase shift for the reflection of the trapped acoustic waves from the outer layers. The preliminary numerical results are presented
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel; Matucci, S.
2014-01-01
Roč. 193, č. 3 (2014), s. 837-858 ISSN 0373-3114 Institutional support: RVO:67985840 Keywords : decreasing solution * quasilinear system * Emden-Fowler system * Lane-Emden system * regular variation Subject RIV: BA - General Mathematics Impact factor: 1.065, year: 2014 http://link.springer.com/article/10.1007%2Fs10231-012-0303-9
Directory of Open Access Journals (Sweden)
C. Avramescu
2003-07-01
Full Text Available Let $f:\\mathbb{R}\\times \\mathbb{R}^{N}\\rightarrow \\mathbb{R}^{N}$ be a continuous function and let $h:\\mathbb{R}\\rightarrow \\mathbb{R}$ be a continuous and strictly positive function. A sufficient condition such that the equation $\\dot{x}=f\\left( t,x\\right $ admits solutions $x:\\mathbb{R}\\rightarrow \\mathbb{R}^{N}$ satisfying the inequality $\\left| x\\left( t\\right \\right| \\leq k\\cdot h\\left( t\\right ,$ $t\\in \\mathbb{R},$ $k>0$, where $\\left| \\cdot \\right| $ is the euclidean norm in $\\mathbb{R}^{N},$ is given. The proof of this result is based on the use of a special function of Lyapunov type, which is often called guiding function. In the particular case $h\\equiv 1$, one obtains known results regarding the existence of bounded solutions.
Said-Houari, Belkacem
2012-03-01
In this paper, we consider a viscoelastic wave equation with an absorbing term and space-time dependent damping term. Based on the weighted energy method, and by assuming that the kernel decaying exponentially, we obtain the L2 decay rates of the solutions. More precisely, we show that the decay rates are the same as those obtained in Lin et al. (2010) [15] for the semilinear wave equation with absorption term. © 2011 Elsevier Inc.
Said-Houari, Belkacem
2012-01-01
In this paper, we consider a viscoelastic wave equation with an absorbing term and space-time dependent damping term. Based on the weighted energy method, and by assuming that the kernel decaying exponentially, we obtain the L2 decay rates of the solutions. More precisely, we show that the decay rates are the same as those obtained in Lin et al. (2010) [15] for the semilinear wave equation with absorption term. © 2011 Elsevier Inc.
International Nuclear Information System (INIS)
Cardinali, A.; Morini, L.; Castaldo, C.; Cesario, R.; Zonca, F.
2007-01-01
Knowing that the lower hybrid (LH) wave propagation in tokamak plasmas can be correctly described with a full wave approach only, based on fully numerical techniques or on semianalytical approaches, in this paper, the LH wave equation is asymptotically solved via the Wentzel-Kramers-Brillouin (WKB) method for the first two orders of the expansion parameter, obtaining governing equations for the phase at the lowest and for the amplitude at the next order. The nonlinear partial differential equation (PDE) for the phase is solved in a pseudotoroidal geometry (circular and concentric magnetic surfaces) by the method of characteristics. The associated system of ordinary differential equations for the position and the wavenumber is obtained and analytically solved by choosing an appropriate expansion parameter. The quasilinear PDE for the WKB amplitude is also solved analytically, allowing us to reconstruct the wave electric field inside the plasma. The solution is also obtained numerically and compared with the analytical solution. A discussion of the validity limits of the WKB method is also given on the basis of the obtained results
International Nuclear Information System (INIS)
Il'in, Arlen M; Suleimanov, Bulat I
2007-01-01
An asymptotic formula as t→∞ for the solution of the ordinary differential Abel's equation of the first kind u' x +u 3 -tu-x=0, which is uniform in the x-variable, is constructed and substantiated. Bibliography: 13 titles.
Asymptotic Method of Solution for a Problem of Construction of Optimal Gas-Lift Process Modes
Directory of Open Access Journals (Sweden)
Fikrat A. Aliev
2010-01-01
Full Text Available Mathematical model in oil extraction by gas-lift method for the case when the reciprocal value of well's depth represents a small parameter is considered. Problem of optimal mode construction (i.e., construction of optimal program trajectories and controls is reduced to the linear-quadratic optimal control problem with a small parameter. Analytic formulae for determining the solutions at the first-order approximation with respect to the small parameter are obtained. Comparison of the obtained results with known ones on a specific example is provided, which makes it, in particular, possible to use obtained results in realizations of oil extraction problems by gas-lift method.
ASYMPTOTIC STEADY-STATE SOLUTION TO A BOW SHOCK WITH AN INFINITE MACH NUMBER
Energy Technology Data Exchange (ETDEWEB)
Yalinewich, Almog; Sari, Re’em [Racah Institute of Physics, the Hebrew University, 91904, Jerusalem (Israel)
2016-08-01
The problem of a cold gas flowing past a stationary obstacle is considered. We study the bow shock that forms around the obstacle and show that at large distances from the obstacle the shock front forms a parabolic solid of revolution. The profiles of the hydrodynamic variables in the interior of the shock are obtained by solution of the hydrodynamic equations in parabolic coordinates. The results are verified with a hydrodynamic simulation. The drag force on the obstacle is also calculated. Finally, we use these results to model the bow shock around an isolated neutron star.
International Nuclear Information System (INIS)
Hung, Nguyen M
1999-01-01
An existence and uniqueness theorem for generalized solutions of the first initial-boundary-value problem for strongly hyperbolic systems in bounded domains is established. The question of estimates in Sobolev spaces of the derivatives with respect to time of the generalized solution is discussed. It is shown that the smoothness of generalized solutions with respect to time is independent of the structure of the boundary of the domain but depends on the coefficients of the right-hand side. Results on the smoothness of the generalized solution and its asymptotic behaviour in a neighbourhood of a conical boundary point are also obtained
Directory of Open Access Journals (Sweden)
Hai Zhang
2017-01-01
Full Text Available This paper investigates the existence and globally asymptotic stability of equilibrium solution for Riemann-Liouville fractional-order hybrid BAM neural networks with distributed delays and impulses. The factors of such network systems including the distributed delays, impulsive effects, and two different fractional-order derivatives between the U-layer and V-layer are taken into account synchronously. Based on the contraction mapping principle, the sufficient conditions are derived to ensure the existence and uniqueness of the equilibrium solution for such network systems. By constructing a novel Lyapunov functional composed of fractional integral and definite integral terms, the globally asymptotic stability criteria of the equilibrium solution are obtained, which are dependent on the order of fractional derivative and network parameters. The advantage of our constructed method is that one may directly calculate integer-order derivative of the Lyapunov functional. A numerical example is also presented to show the validity and feasibility of the theoretical results.
Thompson, P. M.; Stein, G.
1980-01-01
The behavior of the closed loop eigenstructure of a linear system with output feedback is analyzed as a single parameter multiplying the feedback gain is varied. An algorithm is presented that computes the asymptotically infinite eigenstructure, and it is shown how a system with high gain, feedback decouples into single input, single output systems. Then a synthesis algorithm is presented which uses full state feedback to achieve a desired asymptotic eigenstructure.
International Nuclear Information System (INIS)
Grant, I.P.
1982-01-01
Possible relativistic effects in low energy electron scattering from atoms or positive ions has been investigated using the Dirac hamiltonian. Single channel formula and many channel expressions indicate that asymptotic estimation of radial wavefunctions can be carried out satisfactorily for most purposes using non-relativistic methods. (U.K.)
International Nuclear Information System (INIS)
Dewar, R. L.
1995-01-01
A large part of physics consists of learning which asymptotic methods to apply where, yet physicists are not always taught asymptotics in a systematic way. Asymptotology is given using an example from aerodynamics, and a rent Phys. Rev. Letter Comment is used as a case study of one subtle way things can go wrong. It is shown that the application of local analysis leads to erroneous conclusions regarding the existence of a continuous spectrum in a simple test problem, showing that a global analysis must be used. The final section presents results on a more sophisticated example, namely the WKBJ solution of Mathieu equation. 13 refs., 2 figs
International Nuclear Information System (INIS)
Yin Chen; Xu Mingyu
2009-01-01
We set up a one-dimensional mathematical model with a Caputo fractional operator of a drug released from a polymeric matrix that can be dissolved into a solvent. A two moving boundaries problem in fractional anomalous diffusion (in time) with order α element of (0, 1] under the assumption that the dissolving boundary can be dissolved slowly is presented in this paper. The two-parameter regular perturbation technique and Fourier and Laplace transform methods are used. A dimensionless asymptotic analytical solution is given in terms of the Wright function
Model Hadron asymptotic behaviour
International Nuclear Information System (INIS)
Kralchevsky, P.; Nikolov, A.
1983-01-01
The work is devoted to the problem of solving a set of asymptotic equations describing the model hardon interaction. More specifically an interactive procedure consisting of two stages is proposed and the first stage is exhaustively studied here. The principle of contracting transformations has been applied for this purpose. Under rather general and natural assumptions, solutions in a series of metric spaces suitable for physical applications have been found. For each of these spaces a solution with unique definiteness is found. (authors)
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Medviďová-Lukáčová, M.; Nečasová, Šárka; Novotný, A.; She, Bangwei
2018-01-01
Roč. 16, č. 1 (2018), s. 150-183 ISSN 1540-3459 R&D Projects: GA ČR GA16-03230S EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : Navier-Stokes system * finite element numerical method * finite volume numerical method * asymptotic preserving schemes Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.865, year: 2016 http://epubs.siam.org/doi/10.1137/16M1094233
International Nuclear Information System (INIS)
Meyer, P.
1978-01-01
After having established the renormalization group equations and the possibilities of fixed points for the effective coupling constants the non abelian gauge theories are shown to have the property of asymptotic freedom. These results are applied to the colour gauge group of the strong interactions of quarks and gluons. The behavior of the moments of the structure functions of the deep inelastic scattering of leptons on nucleons (scaling and its logarithmic violations) is then deduced with using the Wilson's operator product expansion [fr
Generating asymptotically plane wave spacetimes
International Nuclear Information System (INIS)
Hubeny, Veronika E.; Rangamani, Mukund
2003-01-01
In an attempt to study asymptotically plane wave spacetimes which admit an event horizon, we find solutions to vacuum Einstein's equations in arbitrary dimension which have a globally null Killing field and rotational symmetry. We show that while such solutions can be deformed to include ones which are asymptotically plane wave, they do not posses a regular event horizon. If we allow for additional matter, such as in supergravity theories, we show that it is possible to have extremal solutions with globally null Killing field, a regular horizon, and which, in addition, are asymptotically plane wave. In particular, we deform the extremal M2-brane solution in 11-dimensional supergravity so that it behaves asymptotically as a 10-dimensional vacuum plane wave times a real line. (author)
Assi, I. A.; Sous, A. J.
2018-05-01
The goal of this work is to derive a new class of short-range potentials that could have a wide range of physical applications, specially in molecular physics. The tridiagonal representation approach has been developed beyond its limitations to produce new potentials by requiring the representation of the Schrödinger wave operator to be multidiagonal and symmetric. This produces a family of Hulthén potentials that has a specific structure, as mentioned in the introduction. As an example, we have solved the nonrelativistic wave equation for the new four-parameter short-range screening potential numerically using the asymptotic iteration method, where we tabulated the eigenvalues for both s -wave and arbitrary l -wave cases in tables.
Perturbed asymptotically linear problems
Bartolo, R.; Candela, A. M.; Salvatore, A.
2012-01-01
The aim of this paper is investigating the existence of solutions of some semilinear elliptic problems on open bounded domains when the nonlinearity is subcritical and asymptotically linear at infinity and there is a perturbation term which is just continuous. Also in the case when the problem has not a variational structure, suitable procedures and estimates allow us to prove that the number of distinct crtitical levels of the functional associated to the unperturbed problem is "stable" unde...
Asymptotic behaviour of Feynman integrals
International Nuclear Information System (INIS)
Bergere, M.C.
1980-01-01
In these lecture notes, we describe how to obtain the asymptotic behaviour of Feynman amplitudes; this technique has been already applied in several cases, but the general solution for any kind of asymptotic behaviour has not yet been found. From the mathematical point of view, the problem to solve is close to the following problem: find the asymptotic expansion at large lambda of the integral ∫...∫ [dx] esup(-LambdaP[x]) where P[x] is a polynomial of several variables. (orig.)
Directory of Open Access Journals (Sweden)
Imed Bachar
2014-01-01
Full Text Available We are interested in the following fractional boundary value problem: Dαu(t+atuσ=0, t∈(0,∞, limt→0t2-αu(t=0, limt→∞t1-αu(t=0, where 1<α<2, σ∈(-1,1, Dα is the standard Riemann-Liouville fractional derivative, and a is a nonnegative continuous function on (0,∞ satisfying some appropriate assumptions related to Karamata regular variation theory. Using the Schauder fixed point theorem, we prove the existence and the uniqueness of a positive solution. We also give a global behavior of such solution.
Aguareles, M.
2014-01-01
In this paper we consider an oscillatory medium whose dynamics are modeled by the complex Ginzburg-Landau equation. In particular, we focus on n-armed spiral wave solutions of the complex Ginzburg-Landau equation in a disk of radius d
Rahali, Radouane
2013-03-01
In this paper, we investigate the decay property of a Timoshenko system in thermoelasticity of type III in the whole space where the heat conduction is given by the Green and Naghdi theory. Surprisingly, we show that the coupling of the Timoshenko system with the heat conduction of Green and Naghdi\\'s theory slows down the decay of the solution. In fact we show that the L-2-norm of the solution decays like (1 + t)(-1/8), while in the case of the coupling of the Timoshenko system with the Fourier or Cattaneo heat conduction, the decay rate is of the form (1 + t)(-1/4) [25]. We point out that the decay rate of (1 + t)(-1/8) has been obtained provided that the initial data are in L-1 (R) boolean AND H-s (R); (s >= 2). If the wave speeds of the fi rst two equations are di ff erent, then the decay rate of the solution is of regularity-loss type, that is in this case the previous decay rate can be obtained only under an additional regularity assumption on the initial data. In addition, by restricting the initial data to be in H-s (R) boolean AND L-1,L-gamma (R) with gamma is an element of [0; 1], we can derive faster decay estimates with the decay rate improvement by a factor of t(-gamma/4).
Qin, Yuming
2016-01-01
This book presents recent findings on the global existence, the uniqueness and the large-time behavior of global solutions of thermo(vis)coelastic systems and related models arising in physics, mechanics and materials science such as thermoviscoelastic systems, thermoelastic systems of types II and III, as well as Timoshenko-type systems with past history. Part of the book is based on the research conducted by the authors and their collaborators in recent years. The book will benefit interested beginners in the field and experts alike.
Asymptotic numbers, asymptotic functions and distributions
International Nuclear Information System (INIS)
Todorov, T.D.
1979-07-01
The asymptotic functions are a new type of generalized functions. But they are not functionals on some space of test-functions as the distributions of Schwartz. They are mappings of the set denoted by A into A, where A is the set of the asymptotic numbers introduced by Christov. On its part A is a totally-ordered set of generalized numbers including the system of real numbers R as well as infinitesimals and infinitely large numbers. Every two asymptotic functions can be multiplied. On the other hand, the distributions have realizations as asymptotic functions in a certain sense. (author)
Asymptotically free SU(5) models
International Nuclear Information System (INIS)
Kogan, Ya.I.; Ter-Martirosyan, K.A.; Zhelonkin, A.V.
1981-01-01
The behaviour of Yukawa and Higgs effective charges of the minimal SU(5) unification model is investigated. The model includes ν=3 (or more, up to ν=7) generations of quarks and leptons and, in addition, the 24-plet of heavy fermions. A number of solutions of the renorm-group equations are found, which reproduce the known data about quarks and leptons and, due to a special choice of the coupling constants at the unification point are asymptotically free in all charges. The requirement of the asymptotical freedom leads to some restrictions on the masses of particles and on their mixing angles [ru
Asymptotic analysis and boundary layers
Cousteix, Jean
2007-01-01
This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general comprehensive presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows. The advantages of SCEM are discussed in comparison with the standard Method of Matched Asymptotic Expansions. In particular, for the first time, the theory of Interactive Boundary Layer is fully justified. With its chapter summaries, detailed derivations of results, discussed examples and fully worked out problems and solutions, the book is self-contained. It is written on a mathematical level accessible to graduate and post-graduate students of engineering and physics with a good knowledge in fluid mechanics. Researchers and practitioners will estee...
Asymptotically Safe Dark Matter
DEFF Research Database (Denmark)
Sannino, Francesco; Shoemaker, Ian M.
2015-01-01
We introduce a new paradigm for dark matter (DM) interactions in which the interaction strength is asymptotically safe. In models of this type, the coupling strength is small at low energies but increases at higher energies, and asymptotically approaches a finite constant value. The resulting...... searches are the primary ways to constrain or discover asymptotically safe dark matter....
Asymptotic and geometrical quantization
International Nuclear Information System (INIS)
Karasev, M.V.; Maslov, V.P.
1984-01-01
The main ideas of geometric-, deformation- and asymptotic quantizations are compared. It is shown that, on the one hand, the asymptotic approach is a direct generalization of exact geometric quantization, on the other hand, it generates deformation in multiplication of symbols and Poisson brackets. Besides investigating the general quantization diagram, its applications to the calculation of asymptotics of a series of eigenvalues of operators possessing symmetry groups are considered
Asymptotics and Borel summability
Costin, Ovidiu
2008-01-01
Incorporating substantial developments from the last thirty years into one resource, Asymptotics and Borel Summability provides a self-contained introduction to asymptotic analysis with special emphasis on topics not covered in traditional asymptotics books. The author explains basic ideas, concepts, and methods of generalized Borel summability, transseries, and exponential asymptotics. He provides complete mathematical rigor while supplementing it with heuristic material and examples, so that some proofs may be omitted by applications-oriented readers.To give a sense of how new methods are us
Lattimore, Tor; Hutter, Marcus
2011-01-01
Artificial general intelligence aims to create agents capable of learning to solve arbitrary interesting problems. We define two versions of asymptotic optimality and prove that no agent can satisfy the strong version while in some cases, depending on discounting, there does exist a non-computable weak asymptotically optimal agent.
Asymptotic Poincare lemma and its applications
International Nuclear Information System (INIS)
Ziolkowski, R.W.; Deschamps, G.A.
1984-01-01
An asymptotic version of Poincare's lemma is defined and solutions are obtained with the calculus of exterior differential forms. They are used to construct the asymptotic approximations of multidimensional oscillatory integrals whose forms are commonly encountered, for example, in electromagnetic problems. In particular, the boundary and stationary point evaluations of these integrals are considered. The former is applied to the Kirchhoff representation of a scalar field diffracted through an aperture and simply recovers the Maggi-Rubinowicz-Miyamoto-Wolf results. Asymptotic approximations in the presence of other (standard) critical points are also discussed. Techniques developed for the asymptotic Poincare lemma are used to generate a general representation of the Leray form. All of the (differential form) expressions presented are generalizations of known (vector calculus) results. 14 references, 4 figures
Large Deviations and Asymptotic Methods in Finance
Gatheral, Jim; Gulisashvili, Archil; Jacquier, Antoine; Teichmann, Josef
2015-01-01
Topics covered in this volume (large deviations, differential geometry, asymptotic expansions, central limit theorems) give a full picture of the current advances in the application of asymptotic methods in mathematical finance, and thereby provide rigorous solutions to important mathematical and financial issues, such as implied volatility asymptotics, local volatility extrapolation, systemic risk and volatility estimation. This volume gathers together ground-breaking results in this field by some of its leading experts. Over the past decade, asymptotic methods have played an increasingly important role in the study of the behaviour of (financial) models. These methods provide a useful alternative to numerical methods in settings where the latter may lose accuracy (in extremes such as small and large strikes, and small maturities), and lead to a clearer understanding of the behaviour of models, and of the influence of parameters on this behaviour. Graduate students, researchers and practitioners will find th...
International Nuclear Information System (INIS)
Todorov, T.D.
1980-01-01
The set of asymptotic numbers A as a system of generalized numbers including the system of real numbers R, as well as infinitely small (infinitesimals) and infinitely large numbers, is introduced. The detailed algebraic properties of A, which are unusual as compared with the known algebraic structures, are studied. It is proved that the set of asymptotic numbers A cannot be isomorphically embedded as a subspace in any group, ring or field, but some particular subsets of asymptotic numbers are shown to be groups, rings, and fields. The algebraic operation, additive and multiplicative forms, and the algebraic properties are constructed in an appropriate way. It is shown that the asymptotic numbers give rise to a new type of generalized functions quite analogous to the distributions of Schwartz allowing, however, the operation multiplication. A possible application of these functions to quantum theory is discussed
Asymptotic freedom without guilt
International Nuclear Information System (INIS)
Ma, E.
1979-01-01
The notion of asymptotic freedom in quantum chromodynamics is explained on general physical grounds, without invoking the formal arguments of renormalizable quantum field theory. The related concept of quark confinement is also discussed along the same line. 5 references
Zhao, Xiaopeng; Zhu, Mingxuan
2018-04-01
In this paper, we consider the small initial data global well-posedness of solutions for the magnetohydrodynamics with Hall and ion-slip effects in R^3. In addition, we also establish the temporal decay estimates for the weak solutions. With these estimates in hand, we study the algebraic time decay for higher-order Sobolev norms of small initial data solutions.
Asymptotic stability of a catalyst particle
DEFF Research Database (Denmark)
Wedel, Stig; Michelsen, Michael L.; Villadsen, John
1977-01-01
The catalyst asymptotic stability problem is studied by means of several new methods that allow accurate solutions to be calculated where other methods have given qualitatively erroneous results. The underlying eigenvalue problem is considered in three limiting situations Le = ∞, 1 and 0. These a......The catalyst asymptotic stability problem is studied by means of several new methods that allow accurate solutions to be calculated where other methods have given qualitatively erroneous results. The underlying eigenvalue problem is considered in three limiting situations Le = ∞, 1 and 0...
Quasi-extended asymptotic functions
International Nuclear Information System (INIS)
Todorov, T.D.
1979-01-01
The class F of ''quasi-extended asymptotic functions'' is introduced. It contains all extended asymptotic functions as well as some new asymptotic functions very similar to the Schwartz distributions. On the other hand, every two quasiextended asymptotic functions can be multiplied as opposed to the Schwartz distributions; in particular, the square delta 2 of an asymptotic function delta similar to Dirac's delta-function, is constructed as an example
International Nuclear Information System (INIS)
Pratiwi, B N; Suparmi, A; Cari, C; Yunianto, M; Husein, A S
2016-01-01
We apllied asymptotic iteration method (AIM) to obtain the analytical solution of the Dirac equation in case exact pseudospin symmetry in the presence of modified Pcischl- Teller potential and trigonometric Scarf II non-central potential. The Dirac equation was solved by variables separation into one dimensional Dirac equation, the radial part and angular part equation. The radial and angular part equation can be reduced into hypergeometric type equation by variable substitution and wavefunction substitution and then transform it into AIM type equation to obtain relativistic energy eigenvalue and wavefunctions. Relativistic energy was calculated numerically by Matlab software. And then relativistic energy spectrum and wavefunctions were visualized by Matlab software. The results show that the increase in the radial quantum number n_r causes decrease in the relativistic energy spectrum. The negative value of energy is taken due to the pseudospin symmetry limit. Several quantum wavefunctions were presented in terms of the hypergeometric functions. (paper)
The asymptotic expansion method via symbolic computation
Navarro, Juan F.
2012-01-01
This paper describes an algorithm for implementing a perturbation method based on an asymptotic expansion of the solution to a second-order differential equation. We also introduce a new symbolic computation system which works with the so-called modified quasipolynomials, as well as an implementation of the algorithm on it.
The Asymptotic Expansion Method via Symbolic Computation
Directory of Open Access Journals (Sweden)
Juan F. Navarro
2012-01-01
Full Text Available This paper describes an algorithm for implementing a perturbation method based on an asymptotic expansion of the solution to a second-order differential equation. We also introduce a new symbolic computation system which works with the so-called modified quasipolynomials, as well as an implementation of the algorithm on it.
Behavior of asymptotically electro-Λ spacetimes
Saw, Vee-Liem
2017-04-01
We present the asymptotic solutions for spacetimes with nonzero cosmological constant Λ coupled to Maxwell fields, using the Newman-Penrose formalism. This extends a recent work that dealt with the vacuum Einstein (Newman-Penrose) equations with Λ ≠0 . The results are given in two different null tetrads: the Newman-Unti and Szabados-Tod null tetrads, where the peeling property is exhibited in the former but not the latter. Using these asymptotic solutions, we discuss the mass loss of an isolated electrogravitating system with cosmological constant. In a universe with Λ >0 , the physics of electromagnetic (EM) radiation is relatively straightforward compared to those of gravitational radiation: (1) It is clear that outgoing EM radiation results in a decrease to the Bondi mass of the isolated system. (2) It is also perspicuous that if any incoming EM radiation from elsewhere is present, those beyond the isolated system's cosmological horizon would eventually arrive at the spacelike I and increase the Bondi mass of the isolated system. Hence, the (outgoing and incoming) EM radiation fields do not couple with Λ in the Bondi mass-loss formula in an unusual manner, unlike the gravitational counterpart where outgoing gravitational radiation induces nonconformal flatness of I . These asymptotic solutions to the Einstein-Maxwell-de Sitter equations presented here may be used to extend a raft of existing results based on Newman-Unti's asymptotic solutions to the Einstein-Maxwell equations where Λ =0 , to now incorporate the cosmological constant Λ .
Asymptotic Expansions for Higher-Order Scalar Difference Equations
Directory of Open Access Journals (Sweden)
Ravi P. Agarwal
2007-04-01
Full Text Available We give an asymptotic expansion of the solutions of higher-order PoincarÃƒÂ© difference equation in terms of the characteristic solutions of the limiting equation. As a consequence, we obtain an asymptotic description of the solutions approaching a hyperbolic equilibrium of a higher-order nonlinear difference equation with sufficiently smooth nonlinearity. The proof is based on the inversion formula for the z -transform and the residue theorem.
Asymptotic Expansions for Higher-Order Scalar Difference Equations
Directory of Open Access Journals (Sweden)
Pituk Mihály
2007-01-01
Full Text Available We give an asymptotic expansion of the solutions of higher-order Poincaré difference equation in terms of the characteristic solutions of the limiting equation. As a consequence, we obtain an asymptotic description of the solutions approaching a hyperbolic equilibrium of a higher-order nonlinear difference equation with sufficiently smooth nonlinearity. The proof is based on the inversion formula for the z -transform and the residue theorem.
DEFF Research Database (Denmark)
Litim, Daniel F.; Sannino, Francesco
2014-01-01
We study the ultraviolet behaviour of four-dimensional quantum field theories involving non-abelian gauge fields, fermions and scalars in the Veneziano limit. In a regime where asymptotic freedom is lost, we explain how the three types of fields cooperate to develop fully interacting ultraviolet ...
Cristallini, Achille
2016-07-01
A new and intriguing machine may be obtained replacing the moving pulley of a gun tackle with a fixed point in the rope. Its most important feature is the asymptotic efficiency. Here we obtain a satisfactory description of this machine by means of vector calculus and elementary trigonometry. The mathematical model has been compared with experimental data and briefly discussed.
Asymptotics of relativistic spin networks
International Nuclear Information System (INIS)
Barrett, John W; Steele, Christopher M
2003-01-01
The stationary phase technique is used to calculate asymptotic formulae for SO(4) relativistic spin networks. For the tetrahedral spin network this gives the square of the Ponzano-Regge asymptotic formula for the SU(2) 6j-symbol. For the 4-simplex (10j-symbol) the asymptotic formula is compared with numerical calculations of the spin network evaluation. Finally, we discuss the asymptotics of the SO(3, 1) 10j-symbol
ASYMPTOTICS OF a PARTICLES TRANSPORT PROBLEM
Directory of Open Access Journals (Sweden)
Kuzmina Ludmila Ivanovna
2017-11-01
Full Text Available Subject: a groundwater filtration affects the strength and stability of underground and hydro-technical constructions. Research objectives: the study of one-dimensional problem of displacement of suspension by the flow of pure water in a porous medium. Materials and methods: when filtering a suspension some particles pass through the porous medium, and some of them are stuck in the pores. It is assumed that size distributions of the solid particles and the pores overlap. In this case, the main mechanism of particle retention is a size-exclusion: the particles pass freely through the large pores and get stuck at the inlet of the tiny pores that are smaller than the particle diameter. The concentrations of suspended and retained particles satisfy two quasi-linear differential equations of the first order. To solve the filtration problem, methods of nonlinear asymptotic analysis are used. Results: in a mathematical model of filtration of suspensions, which takes into account the dependence of the porosity and permeability of the porous medium on concentration of retained particles, the boundary between two phases is moving with variable velocity. The asymptotic solution to the problem is constructed for a small filtration coefficient. The theorem of existence of the asymptotics is proved. Analytical expressions for the principal asymptotic terms are presented for the case of linear coefficients and initial conditions. The asymptotics of the boundary of two phases is given in explicit form. Conclusions: the filtration problem under study can be solved analytically.
Global asymptotic behavior in a Lotka–Volterra competition system with spatio-temporal delays
International Nuclear Information System (INIS)
Zhang, Jia-Fang; Chen, Heshan
2014-01-01
This paper is concerned with a Lotka–Volterra competition system with spatio-temporal delays. By using the linearization method, we show the local asymptotic behavior of the nonnegative steady-state solutions. Especially, the global asymptotic stability of the positive steady-state solution is investigated by the method of upper and lower solutions. The result of global asymptotic stability implies that the system has no nonconstant positive steady-state solution
Variationally Asymptotically Stable Difference Systems
Directory of Open Access Journals (Sweden)
Goo YoonHoe
2007-01-01
Full Text Available We characterize the h-stability in variation and asymptotic equilibrium in variation for nonlinear difference systems via n∞-summable similarity and comparison principle. Furthermore we study the asymptotic equivalence between nonlinear difference systems and their variational difference systems by means of asymptotic equilibria of two systems.
Kravchenko, Vladislav V.; Torba, Sergii M.
2017-12-01
A representation for a solution u(ω, x) of the equation -u″ + q(x)u = ω2u, satisfying the initial conditions u(ω, 0) = 1, u'(ω, 0) = iω, is derived in the form u (ω ,x ) = ei ω x(1 +u/1(x ) ω +u/2(x ) ω2 )+e/-iω xu3(x ) ω2 -1/ω2 ∑n=0 ∞inαn(x ) jn(ω x ) , where um(x), m = 1, 2, 3, are given in a closed form, jn stands for a spherical Bessel function of order n, and the coefficients αn are calculated by a recurrent integration procedure. The following estimate is proved |u (ω ,x ) -uN(ω ,x ) |≤1/|ω|2 ɛ N(x ) √{sinh(2/Imω x ) Imω } for any ω ∈C {0 } , where uN(ω, x) is an approximate solution given by truncating the series in the proposed representation for u(ω, x) and ɛN(x) is a non-negative function tending to zero for all x belonging to a finite interval of interest. In particular, for ω ∈R {0 } , the estimate has the form |u (ω ,x ) -uN(ω ,x ) |≤1/|ω|2 ɛ N(x ) . A numerical illustration of application of the new representation for computing the solution u(ω, x) on large sets of values of the spectral parameter ω with an accuracy nondeteriorating (and even improving) when ω → ±∞ is given.
Extended asymptotic functions - some examples
International Nuclear Information System (INIS)
Todorov, T.D.
1981-01-01
Several examples of extended asymptotic functions of two variables are given. This type of asymptotic functions has been introduced as an extension of continuous ordinary functions. The presented examples are realizations of some Schwartz distributions delta(x), THETA(x), P(1/xsup(n)) and can be multiplied in the class of the asymptotic functions as opposed to the theory of Schwartz distributions. The examples illustrate the method of construction of extended asymptotic functions similar to the distributions. The set formed by the extended asymptotic functions is also considered. It is shown, that this set is not closed with respect to addition and multiplication
Lü, Boqiang; Shi, Xiaoding; Zhong, Xin
2018-06-01
We are concerned with the Cauchy problem of the two-dimensional (2D) nonhomogeneous incompressible Navier–Stokes equations with vacuum as far-field density. It is proved that if the initial density decays not too slow at infinity, the 2D Cauchy problem of the density-dependent Navier–Stokes equations on the whole space admits a unique global strong solution. Note that the initial data can be arbitrarily large and the initial density can contain vacuum states and even have compact support. Furthermore, we also obtain the large time decay rates of the spatial gradients of the velocity and the pressure, which are the same as those of the homogeneous case.
Exponential asymptotics of homoclinic snaking
International Nuclear Information System (INIS)
Dean, A D; Matthews, P C; Cox, S M; King, J R
2011-01-01
We study homoclinic snaking in the cubic-quintic Swift–Hohenberg equation (SHE) close to the onset of a subcritical pattern-forming instability. Application of the usual multiple-scales method produces a leading-order stationary front solution, connecting the trivial solution to the patterned state. A localized pattern may therefore be constructed by matching between two distant fronts placed back-to-back. However, the asymptotic expansion of the front is divergent, and hence should be truncated. By truncating optimally, such that the resultant remainder is exponentially small, an exponentially small parameter range is derived within which stationary fronts exist. This is shown to be a direct result of the 'locking' between the phase of the underlying pattern and its slowly varying envelope. The locking mechanism remains unobservable at any algebraic order, and can only be derived by explicitly considering beyond-all-orders effects in the tail of the asymptotic expansion, following the method of Kozyreff and Chapman as applied to the quadratic-cubic SHE (Chapman and Kozyreff 2009 Physica D 238 319–54, Kozyreff and Chapman 2006 Phys. Rev. Lett. 97 44502). Exponentially small, but exponentially growing, contributions appear in the tail of the expansion, which must be included when constructing localized patterns in order to reproduce the full snaking diagram. Implicit within the bifurcation equations is an analytical formula for the width of the snaking region. Due to the linear nature of the beyond-all-orders calculation, the bifurcation equations contain an analytically indeterminable constant, estimated in the previous work by Chapman and Kozyreff using a best fit approximation. A more accurate estimate of the equivalent constant in the cubic-quintic case is calculated from the iteration of a recurrence relation, and the subsequent analytical bifurcation diagram compared with numerical simulations, with good agreement
International Nuclear Information System (INIS)
Bailin, D.
1974-01-01
It is proved that the characteristic power deviations from scaling of the theories which are not asymptotically free should be detectable in the N.A.L. muon experiments. The Yukawa theories here considered have SU(3) non-singlet structure function moments varying as a power of -q 2 , namely (-q 2 ) at power -p. The maximum value of p is determined to be 2/3:SU3 and 1:SU2. The outstanding question is whether the Yukawa theories considered do in fact have fixed points satisfying the inequalities, and thus simultaneous (non-trivial) zeroes of β(g) and β(lambda) have to be found
High frequency asymptotic methods
International Nuclear Information System (INIS)
Bouche, D.; Dessarce, R.; Gay, J.; Vermersch, S.
1991-01-01
The asymptotic methods allow us to compute the interaction of high frequency electromagnetic waves with structures. After an outline of their foundations with emphasis on the geometrical theory of diffraction, it is shown how to use these methods to evaluate the radar cross section (RCS) of complex tri-dimensional objects of great size compared to the wave-length. The different stages in simulating phenomena which contribute to the RCS are reviewed: physical theory of diffraction, multiple interactions computed by shooting rays, research for creeping rays. (author). 7 refs., 6 figs., 3 insets
Cookbook asymptotics for spiral and scroll waves in excitable media.
Margerit, Daniel; Barkley, Dwight
2002-09-01
Algebraic formulas predicting the frequencies and shapes of waves in a reaction-diffusion model of excitable media are presented in the form of four recipes. The formulas themselves are based on a detailed asymptotic analysis (published elsewhere) of the model equations at leading order and first order in the asymptotic parameter. The importance of the first order contribution is stressed throughout, beginning with a discussion of the Fife limit, Fife scaling, and Fife regime. Recipes are given for spiral waves and detailed comparisons are presented between the asymptotic predictions and the solutions of the full reaction-diffusion equations. Recipes for twisted scroll waves with straight filaments are given and again comparisons are shown. The connection between the asymptotic results and filament dynamics is discussed, and one of the previously unknown coefficients in the theory of filament dynamics is evaluated in terms of its asymptotic expansion. (c) 2002 American Institute of Physics.
Optimization of Parameters of Asymptotically Stable Systems
Directory of Open Access Journals (Sweden)
Anna Guerman
2011-01-01
Full Text Available This work deals with numerical methods of parameter optimization for asymptotically stable systems. We formulate a special mathematical programming problem that allows us to determine optimal parameters of a stabilizer. This problem involves solutions to a differential equation. We show how to chose the mesh in order to obtain discrete problem guaranteeing the necessary accuracy. The developed methodology is illustrated by an example concerning optimization of parameters for a satellite stabilization system.
Asymptotic Safety Guaranteed in Supersymmetry
Bond, Andrew D.; Litim, Daniel F.
2017-11-01
We explain how asymptotic safety arises in four-dimensional supersymmetric gauge theories. We provide asymptotically safe supersymmetric gauge theories together with their superconformal fixed points, R charges, phase diagrams, and UV-IR connecting trajectories. Strict perturbative control is achieved in a Veneziano limit. Consistency with unitarity and the a theorem is established. We find that supersymmetry enhances the predictivity of asymptotically safe theories.
Self similar asymptotics of the drift ion acoustic waves
International Nuclear Information System (INIS)
Taranov, V.B.
2004-01-01
A 3D model for the coupled drift and ion acoustic waves is considered. It is shown that self-similar solutions can exist due to the symmetry extension in asymptotic regimes. The form of these solutions is determined in the presence of the magnetic shear as well as in the shear less case. Some of the most symmetric exact solutions are obtained explicitly. In particular, solutions describing asymptotics of zonal flow interaction with monochromatic waves are presented and corresponding frequency shifts are determined
The theory of asymptotic behaviour
International Nuclear Information System (INIS)
Ward, B.F.L.; Purdue Univ., Lafayette, IN
1978-01-01
The Green's functions of renormalizable quantum field theory are shown to violate, in general, Euler's theorem on homogeneous functions, that is to say, to violate naive dimensional analysis. The respective violations are established by explicit calculation with Feynman diagrams. These violations, when incorporated into the renormalization group, then provide the basis for an entirely new approach to asymptotic behaviour in renormalizable field theory. Specifically, the violations add new delta-function sources to the usual partial differential equations of the group when these equations are written in terms of the external momenta of the respective Green's functions. The effect of these sources is illustrated by studying the real part, Re GAMMA 6 (lambda p), of the six-point 1PI vertex of the massless scalar field with quartic self-coupling - the simplest of ranormalizable situations. Here, lambda p is symbolic for the six-momenta of GAMMA 6 . Briefly, it is found that the usual theory of characteristics is unable to satisfy the boundary condition attendant to the respective dimensional-analysis-violating sources. Thus, the method of characteristics is completely abandonded in favour of the method of separation of variables. A complete solution which satisfies the inhomogeneous group equation and all boundary conditions is then explicitly constructed. This solution possesses Laurent expansions in the scale lambda of its momentum arguments for all real values of lambda 2 except lambda 2 = 0. For |lambda 2 |→ infinity and |lambda 2 |→ 0, the solution's leading term in its respective Laurent series is proportional to lambda -2 . The limits lambda 2 →0sub(+) and lambda 2 →0sup(-) of lambda 2 ReGAMMA 6 are both nonzero and unequal. The value of the solution at lambda 2 = 0 is not simply related to the value of either of these limits. The new approach would appear to be operationally established
More asymptotic safety guaranteed
Bond, Andrew D.; Litim, Daniel F.
2018-04-01
We study interacting fixed points and phase diagrams of simple and semisimple quantum field theories in four dimensions involving non-Abelian gauge fields, fermions and scalars in the Veneziano limit. Particular emphasis is put on new phenomena which arise due to the semisimple nature of the theory. Using matter field multiplicities as free parameters, we find a large variety of interacting conformal fixed points with stable vacua and crossovers inbetween. Highlights include semisimple gauge theories with exact asymptotic safety, theories with one or several interacting fixed points in the IR, theories where one of the gauge sectors is both UV free and IR free, and theories with weakly interacting fixed points in the UV and the IR limits. The phase diagrams for various simple and semisimple settings are also given. Further aspects such as perturbativity beyond the Veneziano limit, conformal windows, and implications for model building are discussed.
Asymptotically safe grand unification
Energy Technology Data Exchange (ETDEWEB)
Bajc, Borut [J. Stefan Institute,1000 Ljubljana (Slovenia); Sannino, Francesco [CP-Origins & the Danish IAS, University of Southern Denmark,Campusvej 55, DK-5230 Odense M (Denmark); Université de Lyon, France, Université Lyon 1, CNRS/IN2P3, UMR5822 IPNL,F-69622 Villeurbanne Cedex (France)
2016-12-28
Phenomenologically appealing supersymmetric grand unified theories have large gauge representations and thus are not asymptotically free. Their ultraviolet validity is limited by the appearance of a Landau pole well before the Planck scale. One could hope that these theories save themselves, before the inclusion of gravity, by generating an interacting ultraviolet fixed point, similar to the one recently discovered in non-supersymmetric gauge-Yukawa theories. Employing a-maximization, a-theorem, unitarity bounds, as well as positivity of other central charges we nonperturbatively rule out this possibility for a broad class of prime candidates of phenomenologically relevant supersymmetric grand unified theories. We also uncover candidates passing these tests, which have either exotic matter or contain one field decoupled from the superpotential. The latter class of theories contains a model with the minimal matter content required by phenomenology.
Discrete Weighted Pseudo Asymptotic Periodicity of Second Order Difference Equations
Directory of Open Access Journals (Sweden)
Zhinan Xia
2014-01-01
Full Text Available We define the concept of discrete weighted pseudo-S-asymptotically periodic function and prove some basic results including composition theorem. We investigate the existence, and uniqueness of discrete weighted pseudo-S-asymptotically periodic solution to nonautonomous semilinear difference equations. Furthermore, an application to scalar second order difference equations is given. The working tools are based on the exponential dichotomy theory and fixed point theorem.
Renormalization group and asymptotic freedom
International Nuclear Information System (INIS)
Morris, J.R.
1978-01-01
Several field theoretic models are presented which allow exact expressions of the renormalization constants and renormalized coupling constants. These models are analyzed as to their content of asymptotic free field behavior through the use of the Callan-Symanzik renormalization group equation. It is found that none of these models possesses asymptotic freedom in four dimensions
Convergence Theorem for Finite Family of Total Asymptotically Nonexpansive Mappings
Directory of Open Access Journals (Sweden)
E.U. Ofoedu
2015-11-01
Full Text Available In this paper we introduce an explicit iteration process and prove strong convergence of the scheme in a real Hilbert space $H$ to the common fixed point of finite family of total asymptotically nonexpansive mappings which is nearest to the point $u \\in H$. Our results improve previously known ones obtained for the class of asymptotically nonexpansive mappings. As application, iterative method for: approximation of solution of variational Inequality problem, finite family of continuous pseudocontractive mappings, approximation of solutions of classical equilibrium problems and approximation of solutions of convex minimization problems are proposed. Our theorems unify and complement many recently announced results.
International Nuclear Information System (INIS)
Kimura, Masashi
2008-01-01
We show that there exist five-dimensional multi-black hole solutions which have analytic event horizons when the space-time has nontrivial asymptotic structure, unlike the case of five-dimensional multi-black hole solutions in asymptotically flat space-time.
Asymptotic behavior of discrete holomorphic maps z^c, log(z) and discrete Painleve transcedents
Agafonov, S. I.
2005-01-01
It is shown that discrete analogs of z^c and log(z) have the same asymptotic behavior as their smooth counterparts. These discrete maps are described in terms of special solutions of discrete Painleve-II equations, asymptotics of these solutions providing the behaviour of discrete z^c and log(z) at infinity.
Asymptotic expansions of Mathieu functions in wave mechanics
International Nuclear Information System (INIS)
Hunter, G.; Kuriyan, M.
1976-01-01
Solutions of the radial Schroedinger equation containing a polarization potential r -4 are expanded in a form appropriate for large values of r. These expansions of the Mathieu functions are used in association with the numerical solution of the Schroedinger equation to impose the asymptotic boundary condition in the case of bound states, and to extract phase shifts in the case of scattering states
Asymptotic Structure of the Seismic Radiation from an Explosive Column
Directory of Open Access Journals (Sweden)
Marco Rosales-Vera
2018-01-01
Full Text Available We study the structure of the seismic radiation in the far field produced by an explosive column. Using an asymptotic solution for the far field of vibration (Heelan’s solution, we find analytical expressions to the peak particle velocity (PPV diagrams. These results are extended to the case of a charge with finite velocity of detonation.
Asymptotic problems for stochastic partial differential equations
Salins, Michael
Stochastic partial differential equations (SPDEs) can be used to model systems in a wide variety of fields including physics, chemistry, and engineering. The main SPDEs of interest in this dissertation are the semilinear stochastic wave equations which model the movement of a material with constant mass density that is exposed to both determinstic and random forcing. Cerrai and Freidlin have shown that on fixed time intervals, as the mass density of the material approaches zero, the solutions of the stochastic wave equation converge uniformly to the solutions of a stochastic heat equation, in probability. This is called the Smoluchowski-Kramers approximation. In Chapter 2, we investigate some of the multi-scale behaviors that these wave equations exhibit. In particular, we show that the Freidlin-Wentzell exit place and exit time asymptotics for the stochastic wave equation in the small noise regime can be approximated by the exit place and exit time asymptotics for the stochastic heat equation. We prove that the exit time and exit place asymptotics are characterized by quantities called quasipotentials and we prove that the quasipotentials converge. We then investigate the special case where the equation has a gradient structure and show that we can explicitly solve for the quasipotentials, and that the quasipotentials for the heat equation and wave equation are equal. In Chapter 3, we study the Smoluchowski-Kramers approximation in the case where the material is electrically charged and exposed to a magnetic field. Interestingly, if the system is frictionless, then the Smoluchowski-Kramers approximation does not hold. We prove that the Smoluchowski-Kramers approximation is valid for systems exposed to both a magnetic field and friction. Notably, we prove that the solutions to the second-order equations converge to the solutions of the first-order equation in an Lp sense. This strengthens previous results where convergence was proved in probability.
Asymptotically anti-de Sitter spacetimes in topologically massive gravity
International Nuclear Information System (INIS)
Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo
2009-01-01
We consider asymptotically anti-de Sitter spacetimes in three-dimensional topologically massive gravity with a negative cosmological constant, for all values of the mass parameter μ (μ≠0). We provide consistent boundary conditions that accommodate the recent solutions considered in the literature, which may have a slower falloff than the one relevant for general relativity. These conditions are such that the asymptotic symmetry is in all cases the conformal group, in the sense that they are invariant under asymptotic conformal transformations and that the corresponding Virasoro generators are finite. It is found that, at the chiral point |μl|=1 (where l is the anti-de Sitter radius), allowing for logarithmic terms (absent for general relativity) in the asymptotic behavior of the metric makes both sets of Virasoro generators nonzero even though one of the central charges vanishes.
Asymptotic series and functional integrals in quantum field theory
International Nuclear Information System (INIS)
Shirkov, D.V.
1979-01-01
Investigations of the methods for analyzing ultra-violet and infrared asymptotics in the quantum field theory (QFT) have been reviewed. A powerful method of the QFT analysis connected with the group property of renormalized transformations has been created at the first stage. The result of the studies of the second period is the constructive solution of the problem of outgoing the framework of weak coupling. At the third stage of studies essential are the asymptotic series and functional integrals in the QFT, which are used for obtaining the asymptotic type of the power expansion coefficients in the coupling constant at high values of the exponents for a number of simple models. Further advance to higher values of the coupling constant requires surmounting the difficulties resulting from the asymptotic character of expansions and a constructive application in the region of strong coupling (g >> 1)
Asymptotic Parachute Performance Sensitivity
Way, David W.; Powell, Richard W.; Chen, Allen; Steltzner, Adam D.
2006-01-01
In 2010, the Mars Science Laboratory mission will pioneer the next generation of robotic Entry, Descent, and Landing systems by delivering the largest and most capable rover to date to the surface of Mars. In addition to landing more mass than any other mission to Mars, Mars Science Laboratory will also provide scientists with unprecedented access to regions of Mars that have been previously unreachable. By providing an Entry, Descent, and Landing system capable of landing at altitudes as high as 2 km above the reference gravitational equipotential surface, or areoid, as defined by the Mars Orbiting Laser Altimeter program, Mars Science Laboratory will demonstrate sufficient performance to land on 83% of the planet s surface. By contrast, the highest altitude landing to date on Mars has been the Mars Exploration Rover at 1.3 km below the areoid. The coupling of this improved altitude performance with latitude limits as large as 60 degrees off of the equator and a precise delivery to within 10 km of a surface target, will allow the science community to select the Mars Science Laboratory landing site from thousands of scientifically interesting possibilities. In meeting these requirements, Mars Science Laboratory is extending the limits of the Entry, Descent, and Landing technologies qualified by the Mars Viking, Mars Pathfinder, and Mars Exploration Rover missions. Specifically, the drag deceleration provided by a Viking-heritage 16.15 m supersonic Disk-Gap-Band parachute in the thin atmosphere of Mars is insufficient, at the altitudes and ballistic coefficients under consideration by the Mars Science Laboratory project, to maintain necessary altitude performance and timeline margin. This paper defines and discusses the asymptotic parachute performance observed in Monte Carlo simulation and performance analysis and its effect on the Mars Science Laboratory Entry, Descent, and Landing architecture.
Asymptotic structure of isolated systems
International Nuclear Information System (INIS)
Schmidt, B.G.
1979-01-01
The main methods to formulate asymptotic flatness conditions are introduced and motivation and basic ideas are emphasized. Any asymptotic flatness condition proposed up to now describes space-times which behave somehow like Minkowski space, and a very explicit exposition of the structure at infinity of Minkowski space is given. This structure is used to describe the asymptotic behaviour of fields on Minkowski space in a frame-dependent way. The definition of null infinity for curved space-time according to Penrose is given and attempts to define spacelike infinity are outlined. The conformal bundle approach to the formulation of asymptotic behaviour is described and its relation to null and spacelike infinity is given, as far as known. (Auth.)
Nonminimal hints for asymptotic safety
Eichhorn, Astrid; Lippoldt, Stefan; Skrinjar, Vedran
2018-01-01
In the asymptotic-safety scenario for gravity, nonzero interactions are present in the ultraviolet. This property should also percolate into the matter sector. Symmetry-based arguments suggest that nonminimal derivative interactions of scalars with curvature tensors should therefore be present in the ultraviolet regime. We perform a nonminimal test of the viability of the asymptotic-safety scenario by working in a truncation of the renormalization group flow, where we discover the existence of an interacting fixed point for a corresponding nonminimal coupling. The back-coupling of such nonminimal interactions could in turn destroy the asymptotically safe fixed point in the gravity sector. As a key finding, we observe nontrivial indications of stability of the fixed-point properties under the impact of nonminimal derivative interactions, further strengthening the case for asymptotic safety in gravity-matter systems.
Asymptotic safety of gravity with matter
Christiansen, Nicolai; Litim, Daniel F.; Pawlowski, Jan M.; Reichert, Manuel
2018-05-01
We study the asymptotic safety conjecture for quantum gravity in the presence of matter fields. A general line of reasoning is put forward explaining why gravitons dominate the high-energy behavior, largely independently of the matter fields as long as these remain sufficiently weakly coupled. Our considerations are put to work for gravity coupled to Yang-Mills theories with the help of the functional renormalization group. In an expansion about flat backgrounds, explicit results for beta functions, fixed points, universal exponents, and scaling solutions are given in systematic approximations exploiting running propagators, vertices, and background couplings. Invariably, we find that the gauge coupling becomes asymptotically free while the gravitational sector becomes asymptotically safe. The dependence on matter field multiplicities is weak. We also explain how the scheme dependence, which is more pronounced, can be handled without changing the physics. Our findings offer a new interpretation of many earlier results, which is explained in detail. The results generalize to theories with minimally coupled scalar and fermionic matter. Some implications for the ultraviolet closure of the Standard Model or its extensions are given.
Polynomial Asymptotes of the Second Kind
Dobbs, David E.
2011-01-01
This note uses the analytic notion of asymptotic functions to study when a function is asymptotic to a polynomial function. Along with associated existence and uniqueness results, this kind of asymptotic behaviour is related to the type of asymptote that was recently defined in a more geometric way. Applications are given to rational functions and…
Asymptotic conditions and conserved quantities
International Nuclear Information System (INIS)
Koul, R.K.
1990-01-01
Two problems have been investigated in this dissertation. The first one deals with the relationship between stationary space-times which are flat at null infinity and stationary space-times which are asymptotic flat at space-like infinity. It is shown that the stationary space-times which are asymptotically flat, in the Penrose sense, at null infinity, are asymptotically flat at space-like infinity in the Geroch sense and metric at space like infinity is at least C 1 . In the converse it is shown that the stationary space-times which are asymptotically flat at space like infinity, in the Beig sense, are asymptotically flat at null infinity in the Penrose sense. The second problem addressed deals with the theories of arbitrary dimensions. The theories treated are the ones which have fiber bundle structure, outside some compact region. For these theories the criterion for the choice of the background metric is specified, and the boundary condition for the initial data set (q ab , P ab ) is given in terms of the background metric. Having these boundary conditions it is shown that the symplectic structure and the constraint functionals are well defined. The conserved quantities associated with internal Killing vector fields are specified. Lastly the energy relative to a fixed background and the total energy of the theory have been given. It is also shown that the total energy of the theory is independent of the choice of the background
Scalar hairy black holes and solitons in asymptotically flat spacetimes
International Nuclear Information System (INIS)
Nucamendi, Ulises; Salgado, Marcelo
2003-01-01
A numerical analysis shows that the Einstein field equations allow static and spherically symmetric black hole solutions with scalar-field hair in asymptotically flat spacetimes. When regularity at the origin is imposed (i.e., in the absence of a horizon) globally regular scalar solitons are found. The asymptotically flat solutions are obtained provided that the scalar potential V(φ) of the theory is not positive semidefinite and such that its local minimum is also a zero of the potential, the scalar field settling asymptotically at that minimum. The configurations, although unstable under spherically symmetric linear perturbations, are regular and thus can serve as counterexamples to the no-scalar-hair conjecture
Asymptotic geometric analysis, part I
Artstein-Avidan, Shiri
2015-01-01
The authors present the theory of asymptotic geometric analysis, a field which lies on the border between geometry and functional analysis. In this field, isometric problems that are typical for geometry in low dimensions are substituted by an "isomorphic" point of view, and an asymptotic approach (as dimension tends to infinity) is introduced. Geometry and analysis meet here in a non-trivial way. Basic examples of geometric inequalities in isomorphic form which are encountered in the book are the "isomorphic isoperimetric inequalities" which led to the discovery of the "concentration phenomen
Dadhich, Naresh
2010-01-01
We show that the asymptotic large $r$ limit of all Lovelock vacuum and electrovac solutions with $\\Lambda$ is always the Einstein solution in $d \\geq 2n+1$ dimensions. It is completely free of the order $n$ of the Lovelock polynomial indicating universal asymptotic behaviour.
Asymptotically open quantum systems
International Nuclear Information System (INIS)
Westrich, M.
2008-04-01
In the present thesis we investigate the structure of time-dependent equations of motion in quantum mechanics.We start from two coupled systems with an autonomous equation of motion. A limit, in which the dynamics of one of the two systems has a decoupled evolution and imposes a non-autonomous evolution for the second system is identified. A result due to K. Hepp that provides a classical limit for dynamics turns out to be part and parcel for this limit and is generalized in our work. The method introduced by J.S. Howland for the solution of the time-dependent Schroedinger equation is interpreted as such a limit. Moreover, we associate our limit with the modern theory of quantization. (orig.)
Asymptotic solving method for sea-air coupled oscillator ENSO model
International Nuclear Information System (INIS)
Zhou Xian-Chun; Yao Jing-Sun; Mo Jia-Qi
2012-01-01
The ENSO is an interannual phenomenon involved in the tropical Pacific ocean-atmosphere interaction. In this article, we create an asymptotic solving method for the nonlinear system of the ENSO model. The asymptotic solution is obtained. And then we can furnish weather forecasts theoretically and other behaviors and rules for the atmosphere-ocean oscillator of the ENSO. (general)
Optimal Homotopy Asymptotic Method for Solving System of Fredholm Integral Equations
Directory of Open Access Journals (Sweden)
Bahman Ghazanfari
2013-08-01
Full Text Available In this paper, optimal homotopy asymptotic method (OHAM is applied to solve system of Fredholm integral equations. The effectiveness of optimal homotopy asymptotic method is presented. This method provides easy tools to control the convergence region of approximating solution series wherever necessary. The results of OHAM are compared with homotopy perturbation method (HPM and Taylor series expansion method (TSEM.
Asymptotic expansion of unsteady gravity flow of a power-law fluid ...
African Journals Online (AJOL)
We present a paper on the asymptotic expansion of unsteady non-linear rheological effects of a power-law fluid under gravity. The fluid flows through a porous medium. The asymptotic expansion is employed to obtain solution of the nonlinear problem. The results show the existence of traveling waves. It is assumed that the ...
Asymptotic behavior of tidal damping in alluvial estuaries
Cai, H.; Savenije, H.H.G.
2013-01-01
Tidal wave propagation can be described analytically by a set of four implicit equations, i.e., the phase lag equation, the scaling equation, the damping equation, and the celerity equation. It is demonstrated that this system of equations has an asymptotic solution for an infinite channel,
Asymptotics and Numerics for Laminar Flow over Finite Flat Plate
Dijkstra, D.; Kuerten, J.G.M.; Kaper, Hans G.; Garbey, Mare; Pieper, Gail W.
1992-01-01
A compilation of theoretical results from the literature on the finite flat-plate flow at zero incidence is presented. This includes the Blasius solution, the Triple Deck at the trailing edge, asymptotics in the wake, and properties near the edges of the plate. In addition, new formulas for skin
Asymptotic behavior of second-order impulsive differential equations
Directory of Open Access Journals (Sweden)
Haifeng Liu
2011-02-01
Full Text Available In this article, we study the asymptotic behavior of all solutions of 2-th order nonlinear delay differential equation with impulses. Our main tools are impulsive differential inequalities and the Riccati transformation. We illustrate the results by an example.
Formal matched asymptotics for degenerate Ricci flow neckpinches
International Nuclear Information System (INIS)
Angenent, Sigurd B; Isenberg, James; Knopf, Dan
2011-01-01
Gu and Zhu (2008 Commun. Anal. Geom. 16 467–94) have shown that type-II Ricci flow singularities develop from nongeneric rotationally symmetric Riemannian metrics on S n+1 (n≥2). In this paper, we describe and provide plausibility arguments for a detailed asymptotic profile and rate of curvature blow-up that we predict such solutions exhibit
Asymptotic methods in mechanics of solids
Bauer, Svetlana M; Smirnov, Andrei L; Tovstik, Petr E; Vaillancourt, Rémi
2015-01-01
The construction of solutions of singularly perturbed systems of equations and boundary value problems that are characteristic for the mechanics of thin-walled structures are the main focus of the book. The theoretical results are supplemented by the analysis of problems and exercises. Some of the topics are rarely discussed in the textbooks, for example, the Newton polyhedron, which is a generalization of the Newton polygon for equations with two or more parameters. After introducing the important concept of the index of variation for functions special attention is devoted to eigenvalue problems containing a small parameter. The main part of the book deals with methods of asymptotic solutions of linear singularly perturbed boundary and boundary value problems without or with turning points, respectively. As examples, one-dimensional equilibrium, dynamics and stability problems for rigid bodies and solids are presented in detail. Numerous exercises and examples as well as vast references to the relevant Russi...
Methods in half-linear asymptotic theory
Directory of Open Access Journals (Sweden)
Pavel Rehak
2016-10-01
Full Text Available We study the asymptotic behavior of eventually positive solutions of the second-order half-linear differential equation $$ (r(t|y'|^{\\alpha-1}\\hbox{sgn} y''=p(t|y|^{\\alpha-1}\\hbox{sgn} y, $$ where r(t and p(t are positive continuous functions on $[a,\\infty$, $\\alpha\\in(1,\\infty$. The aim of this article is twofold. On the one hand, we show applications of a wide variety of tools, like the Karamata theory of regular variation, the de Haan theory, the Riccati technique, comparison theorems, the reciprocity principle, a certain transformation of dependent variable, and principal solutions. On the other hand, we solve open problems posed in the literature and generalize existing results. Most of our observations are new also in the linear case.
The PN theory as an asymptotic limit of transport theory in planar geometry. 1
International Nuclear Information System (INIS)
Larsen, E.W.; Pomraning, G.C.
1991-01-01
In this paper the P N theory is shown to be an asymptotic limit of transport theory for an optically thick planar-geometry system with small absorption and highly anisotropic scattering. The asymptotic analysis shows that the solution in the interior of the system is described by the standard P N equations for which initial, boundary, and interface conditions are determined by asymptotic initial, boundary layer, and interface layer calculations. The asymptotic initial, (reflecting) boundary, and interface conditions for the P N equations agree with conventional formulations. However, at a boundary having a prescribed incident flux, the asymptotic boundary layer analysis yields P N boundary conditions that differ from previous formulations. Numerical transport and P N results are presented to substantiate this asymptotic theory
Ruin problems and tail asymptotics
DEFF Research Database (Denmark)
Rønn-Nielsen, Anders
The thesis Ruin Problems and Tail Asymptotics provides results on ruin problems for several classes of Markov processes. For a class of diffusion processes with jumps an explicit expression for the joint Laplace transform of the first passage time and the corresponding undershoot is derived...
Asymptotic Expansions - Methods and Applications
International Nuclear Information System (INIS)
Harlander, R.
1999-01-01
Different viewpoints on the asymptotic expansion of Feynman diagrams are reviewed. The relations between the field theoretic and diagrammatic approaches are sketched. The focus is on problems with large masses or large external momenta. Several recent applications also for other limiting cases are touched upon. Finally, the pros and cons of the different approaches are briefly discussed. (author)
Naturalness of asymptotically safe Higgs
DEFF Research Database (Denmark)
Pelaggi, Giulio M.; Sannino, Francesco; Strumia, Alessandro
2017-01-01
that the scalars can be lighter than Λ. Although we do not have an answer to whether the Standard Model hypercharge coupling growth toward a Landau pole at around Λ ~ 1040GeV can be tamed by non-perturbative asymptotic safety, our results indicate that such a possibility is worth exploring. In fact, if successful...
Thermodynamics of asymptotically safe theories
DEFF Research Database (Denmark)
Rischke, Dirk H.; Sannino, Francesco
2015-01-01
We investigate the thermodynamic properties of a novel class of gauge-Yukawa theories that have recently been shown to be completely asymptotically safe, because their short-distance behaviour is determined by the presence of an interacting fixed point. Not only do all the coupling constants freeze...
Asymptotic analysis of spatial discretizations in implicit Monte Carlo
International Nuclear Information System (INIS)
Densmore, Jeffery D.
2009-01-01
We perform an asymptotic analysis of spatial discretizations in Implicit Monte Carlo (IMC). We consider two asymptotic scalings: one that represents a time step that resolves the mean-free time, and one that corresponds to a fixed, optically large time step. We show that only the latter scaling results in a valid spatial discretization of the proper diffusion equation, and thus we conclude that IMC only yields accurate solutions when using optically large spatial cells if time steps are also optically large. We demonstrate the validity of our analysis with a set of numerical examples.
Contact mechanics of articular cartilage layers asymptotic models
Argatov, Ivan
2015-01-01
This book presents a comprehensive and unifying approach to articular contact mechanics with an emphasis on frictionless contact interaction of thin cartilage layers. The first part of the book (Chapters 1–4) reviews the results of asymptotic analysis of the deformational behavior of thin elastic and viscoelastic layers. A comprehensive review of the literature is combined with the authors’ original contributions. The compressible and incompressible cases are treated separately with a focus on exact solutions for asymptotic models of frictionless contact for thin transversely isotropic layers bonded to rigid substrates shaped like elliptic paraboloids. The second part (Chapters 5, 6, and 7) deals with the non-axisymmetric contact of thin transversely isotropic biphasic layers and presents the asymptotic modelling methodology for tibio-femoral contact. The third part of the book consists of Chapter 8, which covers contact problems for thin bonded inhomogeneous transversely isotropic elastic layers, and Cha...
Heat Kernel Asymptotics of Zaremba Boundary Value Problem
Energy Technology Data Exchange (ETDEWEB)
Avramidi, Ivan G. [Department of Mathematics, New Mexico Institute of Mining and Technology (United States)], E-mail: iavramid@nmt.edu
2004-03-15
The Zaremba boundary-value problem is a boundary value problem for Laplace-type second-order partial differential operators acting on smooth sections of a vector bundle over a smooth compact Riemannian manifold with smooth boundary but with discontinuous boundary conditions, which include Dirichlet boundary conditions on one part of the boundary and Neumann boundary conditions on another part of the boundary. We study the heat kernel asymptotics of Zaremba boundary value problem. The construction of the asymptotic solution of the heat equation is described in detail and the heat kernel is computed explicitly in the leading approximation. Some of the first nontrivial coefficients of the heat kernel asymptotic expansion are computed explicitly.
The unusual asymptotics of three-sided prudent polygons
International Nuclear Information System (INIS)
Beaton, Nicholas R; Guttmann, Anthony J; Flajolet, Philippe
2010-01-01
We have studied the area-generating function of prudent polygons on the square lattice. Exact solutions are obtained for the generating function of two-sided and three-sided prudent polygons, and a functional equation is found for four-sided prudent polygons. This is used to generate series coefficients in polynomial time, and these are analysed to determine the asymptotics numerically. A careful asymptotic analysis of the three-sided polygons produces a most surprising result. A transcendental critical exponent is found, and the leading amplitude is not quite a constant, but is a constant plus a small oscillatory component with an amplitude approximately 10 -8 times that of the leading amplitude. This effect cannot be seen by any standard numerical analysis, but it may be present in other models. If so, it changes our whole view of the asymptotic behaviour of lattice models. (fast track communication)
Airy asymptotics: the logarithmic derivative and its reciprocal
International Nuclear Information System (INIS)
Kearney, Michael J; Martin, Richard J
2009-01-01
We consider the asymptotic expansion of the logarithmic derivative of the Airy function Ai'(z)/Ai(z), and also its reciprocal Ai(z)/Ai'(z), as |z| → ∞. We derive simple, closed-form solutions for the coefficients which appear in these expansions, which are of interest since they are encountered in a wide variety of problems. The solutions are presented as Mellin transforms of given functions; this fact, together with the methods employed, suggests further avenues for research.
International Nuclear Information System (INIS)
Misguich, J.H.
1978-09-01
The physical meaning of perturbed trajectories in turbulent fields is analysed. Special care is devoted to the asymptotic description of average trajectories for long time intervals, as occuring in many recent plasma turbulence theories. Equivalence is proved between asymptotic average trajectories described as well (i) by the propagators V(t,t-tau) for retrodiction and Wsub(J)(t,t+tau) for prediction, and (ii) by the long time secular behavior of the solution of the equations of motion. This confirms the equivalence between perturbed orbit theories and renormalized theories, including non-Markovian contributions
Directory of Open Access Journals (Sweden)
R. Fares
2012-01-01
Full Text Available We study the nonsteady Stokes flow in a thin tube structure composed by two thin rectangles with lateral elastic boundaries which are connected by a domain with rigid boundaries. After a variational approach of the problem which gives us existence, uniqueness, regularity results, and some a priori estimates, we construct an asymptotic solution. The existence of a junction region between the two rectangles imposes to consider, as part of the asymptotic solution, some boundary layer correctors that correspond to this region. We present and solve the problems for all the terms of the asymptotic expansion. For two different cases, we describe the order of steps of the algorithm of solving the problem and we construct the main term of the asymptotic expansion. By means of the a priori estimates, we justify our asymptotic construction, by obtaining a small error between the exact and the asymptotic solutions.
Asymptotic functions and multiplication of distributions
International Nuclear Information System (INIS)
Todorov, T.D.
1979-01-01
Considered is a new type of generalized asymptotic functions, which are not functionals on some space of test functions as the Schwartz distributions. The definition of the generalized asymptotic functions is given. It is pointed out that in future the particular asymptotic functions will be used for solving some topics of quantum mechanics and quantum theory
Asymptotic structure of isolated systems
International Nuclear Information System (INIS)
Beig, R.
1988-01-01
I discuss the general ideas underlying the subject of ''asymptotics'' in general relativity and describe the current status of the concepts resulting from these ideas. My main concern will be the problem of consistency. By this I mean the question as to whether the geometric assumptions inherent in these concepts are compatible with the dynamics of the theory, as determined by Einstein's equations. This rather strong bias forces me to leave untouched several issues related to asymptotics, discussed in the recent literature, some of which are perhaps thought equally, or more important, by other workers in the field. In addition I shall, for coherence of presentation, mainly consider Einstein's equations in vacuo. When attention is confined to small neighbourhoods of null and spacelike infinity, this restriction is not important, but is surely relevant for more global issues. (author)
Asymptotic freedom and Zweig's rule
International Nuclear Information System (INIS)
Appelquist, Th.
1977-01-01
Some theoretical aspects of applying short distance physics (asymptotic freedom) are discussed to prove the correctness of the quantum chromodynamics. Properties of new particles that depend only on short distance physics can be dealt with perturbatively. The new mesons are assumed to be CantiC bound states, where C is a new heavy quark. With this in mind some comments are made on the calculation of total widths for the direct decay of different CantiC states into ordinary hadrons
Asymptotic dynamics of QCD, coherent states and the quark form factor
International Nuclear Information System (INIS)
Steiner, F.; Dahmen, H.D.
1980-05-01
The method of asymptotic dynamics for large times developed by Kulish and Fadde'ev for QED is applied to QCD. We study the solution and calculate the on shell quark form factor in leading logarithmic order. (orig.)
Asymptotic Reissner–Nordström black holes
International Nuclear Information System (INIS)
Hendi, S.H.
2013-01-01
We consider two types of Born–Infeld like nonlinear electromagnetic fields and obtain their interesting black hole solutions. The asymptotic behavior of these solutions is the same as that of a Reissner–Nordström black hole. We investigate the geometric properties of the solutions and find that depending on the value of the nonlinearity parameter, the singularity covered with various horizons. -- Highlights: •We investigate two types of the BI-like nonlinear electromagnetic fields in the Einsteinian gravity. •We analyze the effects of nonlinearity on the electromagnetic field. •We examine the influences of the nonlinearity on the geometric properties of the black hole solutions
From asymptotic safety to dark energy
International Nuclear Information System (INIS)
Ahn, Changrim; Kim, Chanju; Linder, Eric V.
2011-01-01
We consider renormalization group flow applied to the cosmological dynamical equations. A consistency condition arising from energy-momentum conservation links the flow parameters to the cosmological evolution, restricting possible behaviors. Three classes of cosmological fixed points for dark energy plus a barotropic fluid are found: a dark energy dominated universe, which can be either accelerating or decelerating depending on the RG flow parameters, a barotropic dominated universe where dark energy fades away, and solutions where the gravitational and potential couplings cease to flow. If the IR fixed point coincides with the asymptotically safe UV fixed point then the dark energy pressure vanishes in the first class, while (only) in the de Sitter limit of the third class the RG cutoff scale becomes the Hubble scale.
Asymptotic stability of steady compressible fluids
Padula, Mariarosaria
2011-01-01
This volume introduces a systematic approach to the solution of some mathematical problems that arise in the study of the hyperbolic-parabolic systems of equations that govern the motions of thermodynamic fluids. It is intended for a wide audience of theoretical and applied mathematicians with an interest in compressible flow, capillarity theory, and control theory. The focus is particularly on recent results concerning nonlinear asymptotic stability, which are independent of assumptions about the smallness of the initial data. Of particular interest is the loss of control that sometimes results when steady flows of compressible fluids are upset by large disturbances. The main ideas are illustrated in the context of three different physical problems: (i) A barotropic viscous gas in a fixed domain with compact boundary. The domain may be either an exterior domain or a bounded domain, and the boundary may be either impermeable or porous. (ii) An isothermal viscous gas in a domain with free boundaries. (iii) A h...
Asymptotic theory of two-dimensional trailing-edge flows
Melnik, R. E.; Chow, R.
1975-01-01
Problems of laminar and turbulent viscous interaction near trailing edges of streamlined bodies are considered. Asymptotic expansions of the Navier-Stokes equations in the limit of large Reynolds numbers are used to describe the local solution near the trailing edge of cusped or nearly cusped airfoils at small angles of attack in compressible flow. A complicated inverse iterative procedure, involving finite-difference solutions of the triple-deck equations coupled with asymptotic solutions of the boundary values, is used to accurately solve the viscous interaction problem. Results are given for the correction to the boundary-layer solution for drag of a finite flat plate at zero angle of attack and for the viscous correction to the lift of an airfoil at incidence. A rational asymptotic theory is developed for treating turbulent interactions near trailing edges and is shown to lead to a multilayer structure of turbulent boundary layers. The flow over most of the boundary layer is described by a Lighthill model of inviscid rotational flow. The main features of the model are discussed and a sample solution for the skin friction is obtained and compared with the data of Schubauer and Klebanoff for a turbulent flow in a moderately large adverse pressure gradient.
Asymptotics of the filtration problem for suspension in porous media
Directory of Open Access Journals (Sweden)
Kuzmina Ludmila Ivanovna
2015-01-01
Full Text Available The mechanical-geometric model of the suspension filtering in the porous media is considered. Suspended solid particles of the same size move with suspension flow through the porous media - a solid body with pores - channels of constant cross section. It is assumed that the particles pass freely through the pores of large diameter and are stuck at the inlet of pores that are smaller than the particle size. It is considered that one particle can clog only one small pore and vice versa. The particles stuck in the pores remain motionless and form a deposit. The concentrations of suspended and retained particles satisfy a quasilinear hyperbolic system of partial differential equations of the first order, obtained as a result of macro-averaging of micro-stochastic diffusion equations. Initially the porous media contains no particles and both concentrations are equal to zero; the suspension supplied to the porous media inlet has a constant concentration of suspended particles. The flow of particles moves in the porous media with a constant speed, before the wave front the concentrations of suspended and retained particles are zero. Assuming that the filtration coefficient is small we construct an asymptotic solution of the filtration problem over the concentration front. The terms of the asymptotic expansions satisfy linear partial differential equations of the first order and are determined successively in an explicit form. It is shown that in the simplest case the asymptotics found matches the known asymptotic expansion of the solution near the concentration front.
Asymptotic integration of differential and difference equations
Bodine, Sigrun
2015-01-01
This book presents the theory of asymptotic integration for both linear differential and difference equations. This type of asymptotic analysis is based on some fundamental principles by Norman Levinson. While he applied them to a special class of differential equations, subsequent work has shown that the same principles lead to asymptotic results for much wider classes of differential and also difference equations. After discussing asymptotic integration in a unified approach, this book studies how the application of these methods provides several new insights and frequent improvements to results found in earlier literature. It then continues with a brief introduction to the relatively new field of asymptotic integration for dynamic equations on time scales. Asymptotic Integration of Differential and Difference Equations is a self-contained and clearly structured presentation of some of the most important results in asymptotic integration and the techniques used in this field. It will appeal to researchers i...
Modeling broadband poroelastic propagation using an asymptotic approach
Energy Technology Data Exchange (ETDEWEB)
Vasco, Donald W.
2009-05-01
An asymptotic method, valid in the presence of smoothly-varying heterogeneity, is used to derive a semi-analytic solution to the equations for fluid and solid displacements in a poroelastic medium. The solution is defined along trajectories through the porous medium model, in the manner of ray theory. The lowest order expression in the asymptotic expansion provides an eikonal equation for the phase. There are three modes of propagation, two modes of longitudinal displacement and a single mode of transverse displacement. The two longitudinal modes define the Biot fast and slow waves which have very different propagation characteristics. In the limit of low frequency, the Biot slow wave propagates as a diffusive disturbance, in essence a transient pressure pulse. Conversely, at low frequencies the Biot fast wave and the transverse mode are modified elastic waves. At intermediate frequencies the wave characteristics of the longitudinal modes are mixed. A comparison of the asymptotic solution with analytic and numerical solutions shows reasonably good agreement for both homogeneous and heterogeneous Earth models.
Asymptotics for Associated Random Variables
Oliveira, Paulo Eduardo
2012-01-01
The book concerns the notion of association in probability and statistics. Association and some other positive dependence notions were introduced in 1966 and 1967 but received little attention from the probabilistic and statistics community. The interest in these dependence notions increased in the last 15 to 20 years, and many asymptotic results were proved and improved. Despite this increased interest, characterizations and results remained essentially scattered in the literature published in different journals. The goal of this book is to bring together the bulk of these results, presenting
Caustics, counting maps and semi-classical asymptotics
International Nuclear Information System (INIS)
Ercolani, N M
2011-01-01
This paper develops a deeper understanding of the structure and combinatorial significance of the partition function for Hermitian random matrices. The coefficients of the large N expansion of the logarithm of this partition function, also known as the genus expansion (and its derivatives), are generating functions for a variety of graphical enumeration problems. The main results are to prove that these generating functions are, in fact, specific rational functions of a distinguished irrational (algebraic) function, z 0 (t). This distinguished function is itself the generating function for the Catalan numbers (or generalized Catalan numbers, depending on the choice of weight of the parameter t). It is also a solution of the inviscid Burgers equation for certain initial data. The shock formation, or caustic, of the Burgers characteristic solution is directly related to the poles of the rational forms of the generating functions. As an intriguing application, one gains new insights into the relation between certain derivatives of the genus expansion, in a double-scaling limit, and the asymptotic expansion of the first Painlevé transcendent. This provides a precise expression of the Painlevé asymptotic coefficients directly in terms of the coefficients of the partial fractions expansion of the rational form of the generating functions established in this paper. Moreover, these insights point towards a more general program relating the first Painlevé hierarchy to the higher order structure of the double-scaling limit through the specific rational structure of generating functions in the genus expansion. The paper closes with a discussion of the relation of this work to recent developments in understanding the asymptotics of graphical enumeration. As a by-product, these results also yield new information about the asymptotics of recurrence coefficients for orthogonal polynomials with respect to exponential weights, the calculation of correlation functions for certain
Caustics, counting maps and semi-classical asymptotics
Ercolani, N. M.
2011-02-01
This paper develops a deeper understanding of the structure and combinatorial significance of the partition function for Hermitian random matrices. The coefficients of the large N expansion of the logarithm of this partition function, also known as the genus expansion (and its derivatives), are generating functions for a variety of graphical enumeration problems. The main results are to prove that these generating functions are, in fact, specific rational functions of a distinguished irrational (algebraic) function, z0(t). This distinguished function is itself the generating function for the Catalan numbers (or generalized Catalan numbers, depending on the choice of weight of the parameter t). It is also a solution of the inviscid Burgers equation for certain initial data. The shock formation, or caustic, of the Burgers characteristic solution is directly related to the poles of the rational forms of the generating functions. As an intriguing application, one gains new insights into the relation between certain derivatives of the genus expansion, in a double-scaling limit, and the asymptotic expansion of the first Painlevé transcendent. This provides a precise expression of the Painlevé asymptotic coefficients directly in terms of the coefficients of the partial fractions expansion of the rational form of the generating functions established in this paper. Moreover, these insights point towards a more general program relating the first Painlevé hierarchy to the higher order structure of the double-scaling limit through the specific rational structure of generating functions in the genus expansion. The paper closes with a discussion of the relation of this work to recent developments in understanding the asymptotics of graphical enumeration. As a by-product, these results also yield new information about the asymptotics of recurrence coefficients for orthogonal polynomials with respect to exponential weights, the calculation of correlation functions for certain
Asymptotically flat black holes in Horndeski theory and beyond
Energy Technology Data Exchange (ETDEWEB)
Babichev, E.; Charmousis, C.; Lehébel, A., E-mail: eugeny.babichev@th.u-psud.fr, E-mail: christos.charmousis@th.u-psud.fr, E-mail: antoine.lehebel@th.u-psud.fr [Laboratoire de Physique Théorique, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France)
2017-04-01
We find spherically symmetric and static black holes in shift-symmetric Horndeski and beyond Horndeski theories. They are asymptotically flat and sourced by a non trivial static scalar field. The first class of solutions is constructed in such a way that the Noether current associated with shift symmetry vanishes, while the scalar field cannot be trivial. This in certain cases leads to hairy black hole solutions (for the quartic Horndeski Lagrangian), and in others to singular solutions (for a Gauss-Bonnet term). Additionally, we find the general spherically symmetric and static solutions for a pure quartic Lagrangian, the metric of which is Schwarzschild. We show that under two requirements on the theory in question, any vacuum GR solution is also solution to the quartic theory. As an example, we show that a Kerr black hole with a non-trivial scalar field is an exact solution to these theories.
Numerical relativity and asymptotic flatness
International Nuclear Information System (INIS)
Deadman, E; Stewart, J M
2009-01-01
It is highly plausible that the region of spacetime far from an isolated gravitating body is, in some sense, asymptotically Minkowskian. However theoretical studies of the full nonlinear theory, initiated by Bondi et al (1962 Proc. R. Soc. A 269 21-51), Sachs (1962 Proc. R. Soc. A 270 103-26) and Newman and Unti (1962 J. Math. Phys. 3 891-901), rely on careful, clever, a priori choices of a chart (and tetrad) and so are not readily accessible to the numerical relativist, who chooses her/his chart on the basis of quite different grounds. This paper seeks to close this gap. Starting from data available in a typical numerical evolution, we construct a chart and tetrad which are, asymptotically, sufficiently close to the theoretical ones, so that the key concepts of the Bondi news function, Bondi mass and its rate of decrease can be estimated. In particular, these estimates can be expressed in the numerical relativist's chart as numerical relativity recipes.
Asymptotic twistor theory and the Kerr theorem
International Nuclear Information System (INIS)
Newman, Ezra T
2006-01-01
We first review asymptotic twistor theory with its real subspace of null asymptotic twistors: a five-dimensional CR manifold. This is followed by a description of the Kerr theorem (the identification of shear-free null congruences, in Minkowski space, with the zeros of holomorphic functions of three variables) and an asymptotic version of the Kerr theorem that produces regular asymptotically shear-free null geodesic congruences in arbitrary asymptotically flat Einstein or Einstein-Maxwell spacetimes. A surprising aspect of this work is the role played by analytic curves in H-space, each curve generating an asymptotically flat null geodesic congruence. Also there is a discussion of the physical space realizations of the two associated five- and three-dimensional CR manifolds
Asymptotic density and effective negligibility
Astor, Eric P.
In this thesis, we join the study of asymptotic computability, a project attempting to capture the idea that an algorithm might work correctly in all but a vanishing fraction of cases. In collaboration with Hirschfeldt and Jockusch, broadening the original investigation of Jockusch and Schupp, we introduce dense computation, the weakest notion of asymptotic computability (requiring only that the correct answer is produced on a set of density 1), and effective dense computation, where every computation halts with either the correct answer or (on a set of density 0) a symbol denoting uncertainty. A few results make more precise the relationship between these notions and work already done with Jockusch and Schupp's original definitions of coarse and generic computability. For all four types of asymptotic computation, including generic computation, we demonstrate that non-trivial upper cones have measure 0, building on recent work of Hirschfeldt, Jockusch, Kuyper, and Schupp in which they establish this for coarse computation. Their result transfers to yield a minimal pair for relative coarse computation; we generalize their method and extract a similar result for relative dense computation (and thus for its corresponding reducibility). However, all of these notions of near-computation treat a set as negligible iff it has asymptotic density 0. Noting that this definition is not computably invariant, this produces some failures of intuition and a break with standard expectations in computability theory. For instance, as shown by Hamkins and Miasnikov, the halting problem is (in some formulations) effectively densely computable, even in polynomial time---yet this result appears fragile, as indicated by Rybalov. In independent work, we respond to this by strengthening the approach of Jockusch and Schupp to avoid such phenomena; specifically, we introduce a new notion of intrinsic asymptotic density, invariant under computable permutation, with rich relations to both
On the accuracy of the asymptotic theory for cylindrical shells
DEFF Research Database (Denmark)
Niordson, Frithiof; Niordson, Christian
1999-01-01
We study the accuracy of the lowest-order bending theory of shells, derived from an asymptotic expansion of the three-dimensional theory of elasticity, by comparing the results of this shell theory for a cylindrical shell with clamped ends with the results of a solution to the three......-dimensional problem. The results are also compared with those of some commonly used engineering shell theories....
On the accuracy of the asymptotic theory for cylindrical shells
DEFF Research Database (Denmark)
Niordson, Frithiof; Niordson, Christian
1999-01-01
We study the accuracy of the lowest-order bending theory of shells, derived from an asymptotic expansion of the three-dimensional theory of elasticity, by comparing the results of this theory for a cylindrical shell with clamped ends with the results of a solution to the three-dimensional problem....... The results are also compared with those of some commonly used engineering shell theories....
Asymptotic safety, emergence and minimal length
International Nuclear Information System (INIS)
Percacci, Roberto; Vacca, Gian Paolo
2010-01-01
There seems to be a common prejudice that asymptotic safety is either incompatible with, or at best unrelated to, the other topics in the title. This is not the case. In fact, we show that (1) the existence of a fixed point with suitable properties is a promising way of deriving emergent properties of gravity, and (2) there is a sense in which asymptotic safety implies a minimal length. In doing so we also discuss possible signatures of asymptotic safety in scattering experiments.
Nonlocal Reformulations of Water and Internal Waves and Asymptotic Reductions
Ablowitz, Mark J.
2009-09-01
Nonlocal reformulations of the classical equations of water waves and two ideal fluids separated by a free interface, bounded above by either a rigid lid or a free surface, are obtained. The kinematic equations may be written in terms of integral equations with a free parameter. By expressing the pressure, or Bernoulli, equation in terms of the surface/interface variables, a closed system is obtained. An advantage of this formulation, referred to as the nonlocal spectral (NSP) formulation, is that the vertical component is eliminated, thus reducing the dimensionality and fixing the domain in which the equations are posed. The NSP equations and the Dirichlet-Neumann operators associated with the water wave or two-fluid equations can be related to each other and the Dirichlet-Neumann series can be obtained from the NSP equations. Important asymptotic reductions obtained from the two-fluid nonlocal system include the generalizations of the Benney-Luke and Kadomtsev-Petviashvili (KP) equations, referred to as intermediate-long wave (ILW) generalizations. These 2+1 dimensional equations possess lump type solutions. In the water wave problem high-order asymptotic series are obtained for two and three dimensional gravity-capillary solitary waves. In two dimensions, the first term in the asymptotic series is the well-known hyperbolic secant squared solution of the KdV equation; in three dimensions, the first term is the rational lump solution of the KP equation.
Asymptotic behaviour in field theory
Energy Technology Data Exchange (ETDEWEB)
Banerjee, H.
1980-07-01
Asymptotic behaviour in field theory has been studied and the anomalies are pointed out in two specific cases, (i) the infrared and fixed angle high energy behaviour in the non-trivial case of the 'box' amplitude in a scalar-scalar theory and (ii) high energy behaviour of a sixth order Yang-Mills diagram. A set of rules are presented for writing down the precise leading infrared behaviour of an arbitrary generalised ladder diagram (GLD) in QED. These rules are the final result of a detailed analysis of the relevant amplitudes in the Feynman parameter space. The connection between the infrared and fixed angle high energy limits of generalised ladder diagrams is explained. It is argued that the same set of rules yield the fixed angle high energy limit.
Asymptotical representation of discrete groups
International Nuclear Information System (INIS)
Mishchenko, A.S.; Mohammad, N.
1995-08-01
If one has a unitary representation ρ: π → U(H) of the fundamental group π 1 (M) of the manifold M then one can do may useful things: 1. To construct a natural vector bundle over M; 2. To construct the cohomology groups with respect to the local system of coefficients; 3. To construct the signature of manifold M with respect to the local system of coefficients; and others. In particular, one can write the Hirzebruch formula which compares the signature with the characteristic classes of the manifold M, further based on this, find the homotopy invariant characteristic classes (i.e. the Novikov conjecture). Taking into account that the family of known representations is not sufficiently large, it would be interesting to extend this family to some larger one. Using the ideas of A.Connes, M.Gromov and H.Moscovici a proper notion of asymptotical representation is defined. (author). 7 refs
Global asymptotical ω-periodicity of a fractional-order non-autonomous neural networks.
Chen, Boshan; Chen, Jiejie
2015-08-01
We study the global asymptotic ω-periodicity for a fractional-order non-autonomous neural networks. Firstly, based on the Caputo fractional-order derivative it is shown that ω-periodic or autonomous fractional-order neural networks cannot generate exactly ω-periodic signals. Next, by using the contraction mapping principle we discuss the existence and uniqueness of S-asymptotically ω-periodic solution for a class of fractional-order non-autonomous neural networks. Then by using a fractional-order differential and integral inequality technique, we study global Mittag-Leffler stability and global asymptotical periodicity of the fractional-order non-autonomous neural networks, which shows that all paths of the networks, starting from arbitrary points and responding to persistent, nonconstant ω-periodic external inputs, asymptotically converge to the same nonconstant ω-periodic function that may be not a solution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Stark resonances: asymptotics and distributional Borel sum
International Nuclear Information System (INIS)
Caliceti, E.; Grecchi, V.; Maioli, M.
1993-01-01
We prove that the Stark effect perturbation theory of a class of bound states uniquely determines the position and the width of the resonances by Distributional Borel Sum. In particular the small field asymptotics of the width is uniquely related to the large order asymptotics of the perturbation coefficients. Similar results apply to all the ''resonances'' of the anharmonic and double well oscillators. (orig.)
Asymptotics of Laplace-Dirichlet integrals
International Nuclear Information System (INIS)
Kozlov, S.M.
1990-01-01
Here we consider the problem of the asymptotic expansion of the Laplace-Dirichlet integral. In homogenization theory such an integral represents the energy, and in general depends on the cohomology class. Here the asymptotic behaviour of this integral is found. The full text will appear in Functional Analysis and Applications, 1990, No.2. (author). 3 refs
A method for summing nonalternating asymptotic series
International Nuclear Information System (INIS)
Kazakov, D.I.
1980-01-01
A method for reconstructing a function from its nonalternating asymptotic series is proposed. It can also be applied when only a limited number of coefficients and their high order asymptotic behaviour are known. The method is illustrated by examples of the ordinary simple integral simulating a functional integral in a theory with degenerate minimum and of the double-well unharmonic oscillator
Wijsman Orlicz Asymptotically Ideal -Statistical Equivalent Sequences
Directory of Open Access Journals (Sweden)
Bipan Hazarika
2013-01-01
in Wijsman sense and present some definitions which are the natural combination of the definition of asymptotic equivalence, statistical equivalent, -statistical equivalent sequences in Wijsman sense. Finally, we introduce the notion of Cesaro Orlicz asymptotically -equivalent sequences in Wijsman sense and establish their relationship with other classes.
8. Asymptotically Flat and Regular Cauchy Data
Dain, Sergio
I describe the construction of a large class of asymptotically flat initial data with non-vanishing mass and angular momentum for which the metric and the extrinsic curvature have asymptotic expansions at space-like infinity in terms of powers of a radial coordinate. I emphasize the motivations and the main ideas behind the proofs.
On Parametric Gevrey Asymptotics for Some Cauchy Problems in Quasiperiodic Function Spaces
Directory of Open Access Journals (Sweden)
A. Lastra
2014-01-01
Full Text Available We investigate Gevrey asymptotics for solutions to nonlinear parameter depending Cauchy problems with 2π-periodic coefficients, for initial data living in a space of quasiperiodic functions. By means of the Borel-Laplace summation procedure, we construct sectorial holomorphic solutions which are shown to share the same formal power series as asymptotic expansion in the perturbation parameter. We observe a small divisor phenomenon which emerges from the quasiperiodic nature of the solutions space and which is the origin of the Gevrey type divergence of this formal series. Our result rests on the classical Ramis-Sibuya theorem which asks to prove that the difference of any two neighboring constructed solutions satisfies some exponential decay. This is done by an asymptotic study of a Dirichlet-like series whose exponents are positive real numbers which accumulate to the origin.
Journal Afrika Statistika ISSN 0852-0305 Asymptotic representation ...
African Journals Online (AJOL)
Asymptotic representation theorems for poverty indices ... Statistical asymptotic laws for these indices, particularly asymptotic normality, on which statistical inference on the ... population of individuals, each of which having a random income or ...
Asymptotic estimation of reactor fueling optimal strategy
International Nuclear Information System (INIS)
Simonov, V.D.
1985-01-01
The problem of improving the technical-economic factors of operating. and designed nuclear power plant blocks by developino. internal fuel cycle strategy (reactor fueling regime optimization), taking into account energy system structural peculiarities altogether, is considered. It is shown, that in search of asymptotic solutions of reactor fueling planning tasks the model of fuel energy potential (FEP) is the most ssuitable and effective. FEP represents energy which may be produced from the fuel in a reactor with real dimensions and power, but with hypothetical fresh fuel supply, regime, providing smilar burnup of all the fuel, passing through the reactor, and continuous overloading of infinitely small fuel portion under fule power, and infinitely rapid mixing of fuel in the reactor core volume. Reactor fuel run with such a standard fuel cycle may serve as FEP quantitative measure. Assessment results of optimal WWER-440 reactor fresh fuel supply periodicity are given as an example. The conclusion is drawn that with fuel enrichment x=3.3% the run which is 300 days, is economically justified, taking into account that the cost of one energy unit production is > 3 cop/KW/h
Asymptotic scalings of developing curved pipe flow
Ault, Jesse; Chen, Kevin; Stone, Howard
2015-11-01
Asymptotic velocity and pressure scalings are identified for the developing curved pipe flow problem in the limit of small pipe curvature and high Reynolds numbers. The continuity and Navier-Stokes equations in toroidal coordinates are linearized about Dean's analytical curved pipe flow solution (Dean 1927). Applying appropriate scaling arguments to the perturbation pressure and velocity components and taking the limits of small curvature and large Reynolds number yields a set of governing equations and boundary conditions for the perturbations, independent of any Reynolds number and pipe curvature dependence. Direct numerical simulations are used to confirm these scaling arguments. Fully developed straight pipe flow is simulated entering a curved pipe section for a range of Reynolds numbers and pipe-to-curvature radius ratios. The maximum values of the axial and secondary velocity perturbation components along with the maximum value of the pressure perturbation are plotted along the curved pipe section. The results collapse when the scaling arguments are applied. The numerically solved decay of the velocity perturbation is also used to determine the entrance/development lengths for the curved pipe flows, which are shown to scale linearly with the Reynolds number.
Experimental tests of asymptotic freedom
International Nuclear Information System (INIS)
Bethke, S.
1996-09-01
Measurements which probe the energy dependence of α s , the coupling strength of the strong interaction, are reviewed. Jet counting in e + e - annihilation, combining results obtained in the centre of mass energy range from 22 to 133 GeV, provides direct evidence for an asymptotically free coupling, without the need to determine explicit values of α s . Recent results from jet production in e p and in p p collisions, obtained in single experiments spanning large ranges of momentum transfer, Q 2 , are in good agreement with the running of α s as predicted by QCD. Mass spectra of hadronic decays of τ-leptons are analysed to probe the running α s in the very low energy domain, 0.7 GeV 2 2 2 τ . An update of the world summary of measurements of α s (Q 2 ) consistently proves the energy dependence of α s and results in a combined average of α s (M Z 0 =0.118±0.006). (orig.)
Asymptotic Conservation Laws in Classical Field Theory
International Nuclear Information System (INIS)
Anderson, I.M.; Torre, C.G.
1996-01-01
A new, general, field theoretic approach to the derivation of asymptotic conservation laws is presented. In this approach asymptotic conservation laws are constructed directly from the field equations according to a universal prescription which does not rely upon the existence of Noether identities or any Lagrangian or Hamiltonian formalisms. The resulting general expressions of the conservation laws enjoy important invariance properties and synthesize all known asymptotic conservation laws, such as the Arnowitt-Deser-Misner energy in general relativity. copyright 1996 The American Physical Society
Asymptotic work distributions in driven bistable systems
International Nuclear Information System (INIS)
Nickelsen, D; Engel, A
2012-01-01
The asymptotic tails of the probability distributions of thermodynamic quantities convey important information about the physics of nanoscopic systems driven out of equilibrium. We apply a recently proposed method to analytically determine the asymptotics of work distributions in Langevin systems to an one-dimensional model of single-molecule force spectroscopy. The results are in excellent agreement with numerical simulations, even in the centre of the distributions. We compare our findings with a recent proposal for an universal form of the asymptotics of work distributions in single-molecule experiments.
On extracting physical content from asymptotically flat spacetime metrics
International Nuclear Information System (INIS)
Kozameh, C; Newman, E T; Silva-Ortigoza, G
2008-01-01
A major issue in general relativity, from its earliest days to the present, is how to extract physical information from any solution or class of solutions to the Einstein equations. Though certain information can be obtained for arbitrary solutions, e.g., via geodesic deviation, in general, because of the coordinate freedom, it is often hard or impossible to do. Most of the time information is found from special conditions, e.g. degenerate principle null vectors, weak fields close to Minkowski space (using coordinates close to Minkowski coordinates), or from solutions that have symmetries or approximate symmetries. In the present work, we will be concerned with asymptotically flat spacetimes where the approximate symmetry is the Bondi-Metzner-Sachs group. For these spaces the Bondi 4-momentum vector and its evolution, found from the Weyl tensor at infinity, describes the total energy-momentum of the interior source and the energy-momentum radiated. By generalizing the structures (shear-free null geodesic congruences) associated with the algebraically special metrics to asymptotically shear-free null geodesic congruences, which are available in all asymptotically flat spacetimes, we give kinematic meaning to the Bondi 4-momentum. In other words, we describe the Bondi vector and its evolution in terms of a center of mass position vector, its velocity and a spin vector, all having clear geometric meaning. Among other items, from dynamic arguments, we define a unique (at our level of approximation) total angular momentum and extract its evolution equation in the form of a conservation law with an angular momentum flux
Asymptotic behavior for a quadratic nonlinear Schrodinger equation
Directory of Open Access Journals (Sweden)
Pavel I. Naumkin
2008-02-01
Full Text Available We study the initial-value problem for the quadratic nonlinear Schrodinger equation $$displaylines{ iu_{t}+frac{1}{2}u_{xx}=partial _{x}overline{u}^{2},quad xin mathbb{R},; t>1, cr u(1,x=u_{1}(x,quad xin mathbb{R}. }$$ For small initial data $u_{1}in mathbf{H}^{2,2}$ we prove that there exists a unique global solution $uin mathbf{C}([1,infty ;mathbf{H}^{2,2}$ of this Cauchy problem. Moreover we show that the large time asymptotic behavior of the solution is defined in the region $|x|leq Csqrt{t}$ by the self-similar solution $frac{1}{sqrt{t}}MS(frac{x}{sqrt{t}}$ such that the total mass $$ frac{1}{sqrt{t}}int_{mathbb{R}}MS(frac{x}{sqrt{t}} dx=int_{mathbb{R}}u_{1}(xdx, $$ and in the far region $|x|>sqrt{t}$ the asymptotic behavior of solutions has rapidly oscillating structure similar to that of the cubic nonlinear Schrodinger equations.
Asymptotic Likelihood Distribution for Correlated & Constrained Systems
Agarwal, Ujjwal
2016-01-01
It describes my work as summer student at CERN. The report discusses the asymptotic distribution of the likelihood ratio for total no. of parameters being h and 2 out of these being are constrained and correlated.
EMC effect: asymptotic freedom with nuclear targets
International Nuclear Information System (INIS)
West, G.B.
1984-01-01
General features of the EMC effect are discussed within the framework of quantum chromodynamics as expressed via the operator product expansion and asymptotic freedom. These techniques are reviewed with emphasis on the target dependence. 22 references
Spectral asymptotic in the large coupling limit
Bruneau, V
2002-01-01
In this paper, we study a singular perturbation of an eigenvalues problem related to supra-conductor wave guides. Using boundary layer tools we perform a complete asymptotic expansion of the eigenvalues as the conductivity tends to $+\\infty$.
Particularities of asymptotically free QCD
International Nuclear Information System (INIS)
Ragiadakos, Christos.
1978-01-01
Using a convenient form of the solution of the renormalization group equations we find special forms for the vertex and Green functions of Quantum Chromatodynamics which permit us to compare it with-dimensional Quantum Electrodynamics
Asymptotic behavior of the warm inflation scenario with viscous pressure
International Nuclear Information System (INIS)
Mimoso, Jose P.; Nunes, Ana; Pavon, Diego
2006-01-01
We analyze the dynamics of models of warm inflation with general dissipative effects. We consider phenomenological terms both for the inflaton decay rate and for viscous effects within matter. We provide a classification of the asymptotic behavior of these models and show that the existence of a late-time scaling regime depends not only on an asymptotic behavior of the scalar field potential, but also on an appropriate asymptotic behavior of the inflaton decay rate. There are scaling solutions whenever the latter evolves to become proportional to the Hubble rate of expansion regardless of the steepness of the scalar field exponential potential. We show from thermodynamic arguments that the scaling regime is associated with a power-law dependence of the matter-radiation temperature on the scale factor, which allows a mild variation of the temperature of the matter/radiation fluid. We also show that the late-time contribution of the dissipative terms alleviates the depletion of matter, and increases the duration of inflation
Asymptotic expansion of the Keesom integral
International Nuclear Information System (INIS)
Abbott, Paul C
2007-01-01
The asymptotic evaluation and expansion of the Keesom integral, K(a), is discussed at some length in Battezzati and Magnasco (2004 J. Phys. A: Math. Gen. 37 9677; 2005 J. Phys. A: Math. Gen. 38 6715). Here, using standard identities, it is shown that this triple integral can be reduced to a single integral from which the asymptotic behaviour is readily obtained using Laplace's method. (comment)
Composite asymptotic expansions and scaling wall turbulence.
Panton, Ronald L
2007-03-15
In this article, the assumptions and reasoning that yield composite asymptotic expansions for wall turbulence are discussed. Particular attention is paid to the scaling quantities that are used to render the variables non-dimensional and of order one. An asymptotic expansion is proposed for the streamwise Reynolds stress that accounts for the active and inactive turbulence by using different scalings. The idea is tested with the data from the channel flows and appears to have merit.
AGB [asymptotic giant branch]: Star evolution
International Nuclear Information System (INIS)
Becker, S.A.
1987-01-01
Asymptotic giant branch stars are red supergiant stars of low-to-intermediate mass. This class of stars is of particular interest because many of these stars can have nuclear processed material brought up repeatedly from the deep interior to the surface where it can be observed. A review of recent theoretical and observational work on stars undergoing the asymptotic giant branch phase is presented. 41 refs
Trinucleon asymptotic normalization constants including Coulomb effects
International Nuclear Information System (INIS)
Friar, J.L.; Gibson, B.F.; Lehman, D.R.; Payne, G.L.
1982-01-01
Exact theoretical expressions for calculating the trinucleon S- and D-wave asymptotic normalization constants, with and without Coulomb effects, are presented. Coordinate-space Faddeev-type equations are used to generate the trinucleon wave functions, and integral relations for the asymptotic norms are derived within this framework. The definition of the asymptotic norms in the presence of the Coulomb interaction is emphasized. Numerical calculations are carried out for the s-wave NN interaction models of Malfliet and Tjon and the tensor force model of Reid. Comparison with previously published results is made. The first estimate of Coulomb effects for the D-wave asymptotic norm is given. All theoretical values are carefully compared with experiment and suggestions are made for improving the experimental situation. We find that Coulomb effects increase the 3 He S-wave asymptotic norm by less than 1% relative to that of 3 H, that Coulomb effects decrease the 3 He D-wave asymptotic norm by approximately 8% relative to that of 3 H, and that the distorted-wave Born approximation D-state parameter, D 2 , is only 1% smaller in magnitude for 3 He than for 3 H due to compensating Coulomb effects
Stable Asymptotically Free Extensions (SAFEs) of the Standard Model
International Nuclear Information System (INIS)
Holdom, Bob; Ren, Jing; Zhang, Chen
2015-01-01
We consider possible extensions of the standard model that are not only completely asymptotically free, but are such that the UV fixed point is completely UV attractive. All couplings flow towards a set of fixed ratios in the UV. Motivated by low scale unification, semi-simple gauge groups with elementary scalars in various representations are explored. The simplest model is a version of the Pati-Salam model. The Higgs boson is truly elementary but dynamical symmetry breaking from strong interactions may be needed at the unification scale. A hierarchy problem, much reduced from grand unified theories, is still in need of a solution.
Asymptotic theory of circular polarization memory.
Dark, Julia P; Kim, Arnold D
2017-09-01
We establish a quantitative theory of circular polarization memory, which is the unexpected persistence of the incident circular polarization state in a strongly scattering medium. Using an asymptotic analysis of the three-dimensional vector radiative transfer equation (VRTE) in the limit of strong scattering, we find that circular polarization memory must occur in a boundary layer near the portion of the boundary on which polarized light is incident. The boundary layer solution satisfies a one-dimensional conservative scattering VRTE. Through a spectral analysis of this boundary layer problem, we introduce the dominant mode, which is the slowest-decaying mode in the boundary layer. To observe circular polarization memory for a particular set of optical parameters, we find that this dominant mode must pass three tests: (1) this dominant mode is given by the largest, discrete eigenvalue of a reduced problem that corresponds to Fourier mode k=0 in the azimuthal angle, and depends only on Stokes parameters U and V; (2) the polarization state of this dominant mode is largely circular polarized so that |V|≫|U|; and (3) the circular polarization of this dominant mode is maintained for all directions so that V is sign-definite. By applying these three tests to numerical calculations for monodisperse distributions of Mie scatterers, we determine the values of the size and relative refractive index when circular polarization memory occurs. In addition, we identify a reduced, scalar-like problem that provides an accurate approximation for the dominant mode when circular polarization memory occurs.
Asymptotically AdS spacetimes with a timelike Kasner singularity
Energy Technology Data Exchange (ETDEWEB)
Ren, Jie [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel)
2016-07-21
Exact solutions to Einstein’s equations for holographic models are presented and studied. The IR geometry has a timelike cousin of the Kasner singularity, which is the less generic case of the BKL (Belinski-Khalatnikov-Lifshitz) singularity, and the UV is asymptotically AdS. This solution describes a holographic RG flow between them. The solution’s appearance is an interpolation between the planar AdS black hole and the AdS soliton. The causality constraint is always satisfied. The entanglement entropy and Wilson loops are discussed. The boundary condition for the current-current correlation function and the Laplacian in the IR is examined. There is no infalling wave in the IR, but instead, there is a normalizable solution in the IR. In a special case, a hyperscaling-violating geometry is obtained after a dimensional reduction.
Conference on Boundary and Interior Layers : Computational and Asymptotic Methods
Stynes, Martin; Zhang, Zhimin
2017-01-01
This volume collects papers associated with lectures that were presented at the BAIL 2016 conference, which was held from 14 to 19 August 2016 at Beijing Computational Science Research Center and Tsinghua University in Beijing, China. It showcases the variety and quality of current research into numerical and asymptotic methods for theoretical and practical problems whose solutions involve layer phenomena. The BAIL (Boundary And Interior Layers) conferences, held usually in even-numbered years, bring together mathematicians and engineers/physicists whose research involves layer phenomena, with the aim of promoting interaction between these often-separate disciplines. These layers appear as solutions of singularly perturbed differential equations of various types, and are common in physical problems, most notably in fluid dynamics. This book is of interest for current researchers from mathematics, engineering and physics whose work involves the accurate app roximation of solutions of singularly perturbed diffe...
More on asymptotically anti-de Sitter spaces in topologically massive gravity
International Nuclear Information System (INIS)
Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo
2010-01-01
Recently, the asymptotic behavior of three-dimensional anti-de Sitter (AdS) gravity with a topological mass term was investigated. Boundary conditions were given that were asymptotically invariant under the two dimensional conformal group and that included a falloff of the metric sufficiently slow to consistently allow pp-wave type of solutions. Now, pp waves can have two different chiralities. Above the chiral point and at the chiral point, however, only one chirality can be considered, namely, the chirality that has the milder behavior at infinity. The other chirality blows up faster than AdS and does not define an asymptotically AdS spacetime. By contrast, both chiralities are subdominant with respect to the asymptotic behavior of AdS spacetime below the chiral point. Nevertheless, the boundary conditions given in the earlier treatment only included one of the two chiralities (which could be either one) at a time. We investigate in this paper whether one can generalize these boundary conditions in order to consider simultaneously both chiralities below the chiral point. We show that this is not possible if one wants to keep the two-dimensional conformal group as asymptotic symmetry group. Hence, the boundary conditions given in the earlier treatment appear to be the best possible ones compatible with conformal symmetry. In the course of our investigations, we provide general formulas controlling the asymptotic charges for all values of the topological mass (not just below the chiral point).
Ullah, Hakeem; Islam, Saeed; Khan, Ilyas; Shafie, Sharidan; Fiza, Mehreen
2015-01-01
In this paper we applied a new analytic approximate technique Optimal Homotopy Asymptotic Method (OHAM) for treatment of coupled differential- difference equations (DDEs). To see the efficiency and reliability of the method, we consider Relativistic Toda coupled nonlinear differential-difference equation. It provides us a convenient way to control the convergence of approximate solutions when it is compared with other methods of solution found in the literature. The obtained solutions show that OHAM is effective, simpler, easier and explicit. PMID:25874457
Ullah, Hakeem; Islam, Saeed; Khan, Ilyas; Shafie, Sharidan; Fiza, Mehreen
2015-01-01
In this paper we applied a new analytic approximate technique Optimal Homotopy Asymptotic Method (OHAM) for treatment of coupled differential-difference equations (DDEs). To see the efficiency and reliability of the method, we consider Relativistic Toda coupled nonlinear differential-difference equation. It provides us a convenient way to control the convergence of approximate solutions when it is compared with other methods of solution found in the literature. The obtained solutions show that OHAM is effective, simpler, easier and explicit.
A quantum kinematics for asymptotically flat gravity
Campiglia, Miguel; Varadarajan, Madhavan
2015-07-01
We construct a quantum kinematics for asymptotically flat gravity based on the Koslowski-Sahlmann (KS) representation. The KS representation is a generalization of the representation underlying loop quantum gravity (LQG) which supports, in addition to the usual LQG operators, the action of ‘background exponential operators’, which are connection dependent operators labelled by ‘background’ su(2) electric fields. KS states have, in addition to the LQG state label corresponding to one dimensional excitations of the triad, a label corresponding to a ‘background’ electric field that describes three dimensional excitations of the triad. Asymptotic behaviour in quantum theory is controlled through asymptotic conditions on the background electric fields that label the states and the background electric fields that label the operators. Asymptotic conditions on the triad are imposed as conditions on the background electric field state label while confining the LQG spin net graph labels to compact sets. We show that KS states can be realised as wave functions on a quantum configuration space of generalized connections and that the asymptotic behaviour of each such generalized connection is determined by that of the background electric fields which label the background exponential operators. Similar to the spatially compact case, the Gauss law and diffeomorphism constraints are then imposed through group averaging techniques to obtain a large sector of gauge invariant states. It is shown that this sector supports a unitary action of the group of asymptotic rotations and translations and that, as anticipated by Friedman and Sorkin, for appropriate spatial topology, this sector contains states that display fermionic behaviour under 2π rotations.
Diffusion on Viscous Fluids, Existence and Asymptotic Properties of Solutions,
1983-09-01
Matematica - Politecuico di Milano (1982). 11.* P. Secchi "On the Initial Value ProbleM for the Nquations of Notion of Viscous Incompressible Fluids In...of two viscous Incompressible Fluids’, preprint DepartLmento dl matematica - Politecuico di Milano (1982). -15- 11. P. Secchi 00n the XnitiaI Value
Asymptotic behaviour of Robinson-Trautman pure radiation solutions
International Nuclear Information System (INIS)
Bicak, J.; Perjes, Z.
1986-08-01
It is shown that spherical Robinson-Trautman space-times filled with a homogeneous time-varying radiation field approach the Vaidya metric as the retarded time goes to infinity. This is a generalization of an earlier result on the vacuum Robinson-Trautman space-times. (author)
Asymptotic behavior of solutions of forced fractional differential equations
Directory of Open Access Journals (Sweden)
Said Grace
2016-09-01
where $y(t=\\left( a(tx^{\\prime }(t\\right ^{\\prime }$, $c_{0}=\\frac{y(c}{\\Gamma (1}=y(c$, and $c_{0}$ is a real constant. The technique used in obtaining their results will apply to related fractional differential equations with Caputo derivatives of any order. Examples illustrate the results obtained in this paper.
Asymptotic Behavior of Solutions for Nonlinear Volterra Discrete Equations
Directory of Open Access Journals (Sweden)
E. Messina
2008-01-01
Full Text Available We consider nonlinear difference equations of unbounded order of the form xi=bi−∑j=0iai,jfi−j(xj, i=0,1,2,…, where fj(x (j=0,…,i are suitable functions. We establish sufficient conditions for the boundedness and the convergence of xi as i→+∞. Some of these conditions are interesting mainly for studying stability of numerical methods for Volterra integral equations.
Solute transport through porous media using asymptotic dispersivity
Indian Academy of Sciences (India)
ber of processes and porous media properties including convective transport .... existence of regions within the porous medium in which there is minimum advective flow. .... concentration at x = L. The initial and the exit boundary conditions can be .... rial was cleaned, washed and dried to ensure that the material free from ...
Directions for model building from asymptotic safety
Bond, Andrew D.; Hiller, Gudrun; Kowalska, Kamila; Litim, Daniel F.
2017-08-01
Building on recent advances in the understanding of gauge-Yukawa theories we explore possibilities to UV-complete the Standard Model in an asymptotically safe manner. Minimal extensions are based on a large flavor sector of additional fermions coupled to a scalar singlet matrix field. We find that asymptotic safety requires fermions in higher representations of SU(3) C × SU(2) L . Possible signatures at colliders are worked out and include R-hadron searches, diboson signatures and the evolution of the strong and weak coupling constants.
On the asymptotics of dimers on tori
Kenyon, Richard W.; Sun, Nike; Wilson, David B.
2013-01-01
We study asymptotics of the dimer model on large toric graphs. Let $\\mathbb L$ be a weighted $\\mathbb{Z}^2$-periodic planar graph, and let $\\mathbb{Z}^2 E$ be a large-index sublattice of $\\mathbb{Z}^2$. For $\\mathbb L$ bipartite we show that the dimer partition function on the quotient $\\mathbb{L}/(\\mathbb{Z}^2 E)$ has the asymptotic expansion $\\exp[A f_0 + \\text{fsc} + o(1)]$, where $A$ is the area of $\\mathbb{L}/(\\mathbb{Z}^2 E)$, $f_0$ is the free energy density in the bulk, and $\\text{fsc...
Dujardin, G. M.
2009-08-12
This paper deals with the asymptotic behaviour of the solutions of linear initial boundary value problems with constant coefficients on the half-line and on finite intervals. We assume that the boundary data are periodic in time and we investigate whether the solution becomes time-periodic after sufficiently long time. Using Fokas\\' transformation method, we show that, for the linear Schrödinger equation, the linear heat equation and the linearized KdV equation on the half-line, the solutions indeed become periodic for large time. However, for the same linear Schrödinger equation on a finite interval, we show that the solution, in general, is not asymptotically periodic; actually, the asymptotic behaviour of the solution depends on the commensurability of the time period T of the boundary data with the square of the length of the interval over. © 2009 The Royal Society.
Oscillation and asymptotic stability of a delay differential equation with Richard's nonlinearity
Directory of Open Access Journals (Sweden)
Leonid Berezansky
2005-04-01
Full Text Available We obtain sufficient conditions for oscillation of solutions, and for asymptotical stability of the positive equilibrium, of the scalar nonlinear delay differential equation $$ frac{dN}{dt} = r(tN(tBig[a-Big(sum_{k=1}^m b_k N(g_k(tBig^{gamma}Big], $$ where $ g_k(tleq t$.
A asymptotic numerical method for the steady-state convection diffusion equation
International Nuclear Information System (INIS)
Wu Qiguang
1988-01-01
In this paper, A asymptotic numerical method for the steady-state Convection diffusion equation is proposed, which need not take very fine mesh size in the neighbourhood of the boundary layer. Numerical computation for model problem show that we can obtain the numerical solution in the boundary layer with moderate step size
Asymptotic freedom in the early big bang and the isotropy of the cosmic microwave background
Stecker, F. W.
1980-01-01
It is suggested that a superunified field theory incorporating gravity and possessing asymptotic freedom could provide a solution to the problem of the isotropy of the universal 3 K background radiation. Thermal equilibrium could be established in this context through interactions occurring in a temporally indefinite pre-Planckian era.
Asymptotic freedom in the early big-bang and the isotropy of the cosmic microwave background
Stecker, F. W.
1979-01-01
The isotropy of the universal 3K background radiation is discussed and a superunified field theory incorporating gravity and possessing asymptotic freedom is suggested to provide a solution to the problem. Thermal equilibrium is established in this context through interactions occurring in a temporally indefinite preplanckian era.
The General Iterative Methods for Asymptotically Nonexpansive Semigroups in Banach Spaces
Directory of Open Access Journals (Sweden)
Rabian Wangkeeree
2012-01-01
Full Text Available We introduce the general iterative methods for finding a common fixed point of asymptotically nonexpansive semigroups which is a unique solution of some variational inequalities. We prove the strong convergence theorems of such iterative scheme in a reflexive Banach space which admits a weakly continuous duality mapping. The main result extends various results existing in the current literature.
Asymptotic integration of a linear fourth order differential equation of Poincaré type
Directory of Open Access Journals (Sweden)
Anibal Coronel
2015-11-01
Full Text Available This article deals with the asymptotic behavior of nonoscillatory solutions of fourth order linear differential equation where the coefficients are perturbations of constants. We define a change of variable and deduce that the new variable satisfies a third order nonlinear differential equation. We assume three hypotheses. The first hypothesis is related to the constant coefficients and set up that the characteristic polynomial associated with the fourth order linear equation has simple and real roots. The other two hypotheses are related to the behavior of the perturbation functions and establish asymptotic integral smallness conditions of the perturbations. Under these general hypotheses, we obtain four main results. The first two results are related to the application of a fixed point argument to prove that the nonlinear third order equation has a unique solution. The next result concerns with the asymptotic behavior of the solutions of the nonlinear third order equation. The fourth main theorem is introduced to establish the existence of a fundamental system of solutions and to precise the formulas for the asymptotic behavior of the linear fourth order differential equation. In addition, we present an example to show that the results introduced in this paper can be applied in situations where the assumptions of some classical theorems are not satisfied.
An Extension of the Optimal Homotopy Asymptotic Method to Coupled Schrödinger-KdV Equation
Directory of Open Access Journals (Sweden)
Hakeem Ullah
2014-01-01
Full Text Available We consider the approximate solution of the coupled Schrödinger-KdV equation by using the extended optimal homotopy asymptotic method (OHAM. We obtained the extended OHAM solution of the problem and compared with the exact, variational iteration method (VIM and homotopy perturbation method (HPM solutions. The obtained solution shows that extended OHAM is effective, simpler, easier, and explicit and gives a suitable way to control the convergence of the approximate solution.
Derivative analyticity relations and asymptotic energies
International Nuclear Information System (INIS)
Fischer, J.
1976-01-01
On the basis of general principles of the S-matrix theory theorems are derived showing that derivative analyticity relations analogous to those of Bronzen, Kane and Sukhatme hold at asymptotic energies if the high-energy limits of certain physical quantities exist
Renormalization and asymptotic freedom in quantum gravity
International Nuclear Information System (INIS)
Tomboulis, E.T.
1984-01-01
The article reviews some recent attempts to construct satisfactory theories of quantum gravity within the framework of local, continuum field theory. Quantum gravity; the renormalization group and its fixed points; fixed points and dimensional continuation in gravity; and quantum gravity at d=4-the 1/N expansion-asymptotic freedom; are all discussed. (U.K.)
Supersymmetric asymptotic safety is not guaranteed
DEFF Research Database (Denmark)
Intriligator, Kenneth; Sannino, Francesco
2015-01-01
in supersymmetric theories, and use unitarity bounds, and the a-theorem, to rule it out in broad classes of theories. The arguments apply without assuming perturbation theory. Therefore, the UV completion of a non-asymptotically free susy theory must have additional, non-obvious degrees of freedom, such as those...
Large degree asymptotics of generalized Bessel polynomials
J.L. López; N.M. Temme (Nico)
2011-01-01
textabstractAsymptotic expansions are given for large values of $n$ of the generalized Bessel polynomials $Y_n^\\mu(z)$. The analysis is based on integrals that follow from the generating functions of the polynomials. A new simple expansion is given that is valid outside a compact neighborhood of the
Asymptotic expansions for the Gaussian unitary ensemble
DEFF Research Database (Denmark)
Haagerup, Uffe; Thorbjørnsen, Steen
2012-01-01
Let g : R ¿ C be a C8-function with all derivatives bounded and let trn denote the normalized trace on the n × n matrices. In Ref. 3 Ercolani and McLaughlin established asymptotic expansions of the mean value ¿{trn(g(Xn))} for a rather general class of random matrices Xn, including the Gaussian U...
Asymptotic Translation Length in the Curve Complex
Valdivia, Aaron D.
2013-01-01
We show that when the genus and punctures of a surface are directly proportional by some rational number the minimal asymptotic translation length in the curve complex has behavior inverse to the square of the Euler characteristic. We also show that when the genus is fixed and the number of punctures varies the behavior is inverse to the Euler characteristic.
Asymptotic inversion of the Erlang B formula
Leeuwaarden, van J.S.H.; Temme, N.M.
2008-01-01
The Erlang B formula represents the steady-state blocking probability in the Erlang loss model or M=M=s=s queue. We derive asymptotic expansions for the offered load that matches, for a given number of servers, a certain blocking probability. In addressing this inversion problem we make use of
Asymptotic analysis of the Forward Search
DEFF Research Database (Denmark)
Johansen, Søren; Nielsen, Bent
The Forward Search is an iterative algorithm concerned with detection of outliers and other unsuspected structures in data. This approach has been suggested, analysed and applied for regression models in the monograph Atkinson and Riani (2000). An asymptotic analysis of the Forward Search is made...
On iterative procedures of asymptotic inference
K.O. Dzhaparidze (Kacha)
1983-01-01
textabstractAbstract An informal discussion is given on performing an unconstrained maximization or solving non‐linear equations of statistics by iterative methods with the quadratic termination property. It is shown that if a miximized function, e.g. likelihood, is asymptotically quadratic, then
Asymptotic evolution of quantum Markov chains
Energy Technology Data Exchange (ETDEWEB)
Novotny, Jaroslav [FNSPE, CTU in Prague, 115 19 Praha 1 - Stare Mesto (Czech Republic); Alber, Gernot [Institut fuer Angewandte Physik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany)
2012-07-01
The iterated quantum operations, so called quantum Markov chains, play an important role in various branches of physics. They constitute basis for many discrete models capable to explore fundamental physical problems, such as the approach to thermal equilibrium, or the asymptotic dynamics of macroscopic physical systems far from thermal equilibrium. On the other hand, in the more applied area of quantum technology they also describe general characteristic properties of quantum networks or they can describe different quantum protocols in the presence of decoherence. A particularly, an interesting aspect of these quantum Markov chains is their asymptotic dynamics and its characteristic features. We demonstrate there is always a vector subspace (typically low-dimensional) of so-called attractors on which the resulting superoperator governing the iterative time evolution of quantum states can be diagonalized and in which the asymptotic quantum dynamics takes place. As the main result interesting algebraic relations are presented for this set of attractors which allow to specify their dual basis and to determine them in a convenient way. Based on this general theory we show some generalizations concerning the theory of fixed points or asymptotic evolution of random quantum operations.
Infrared studies of asymptotic giant branch stars
International Nuclear Information System (INIS)
Willems, F.J.
1987-01-01
In this thesis studies are presented of asymptotic giant branch stars, which are thought to be an important link in the evolution of the galaxy. The studies were performed on the basis of data collected by the IRAS, the infrared astronomical satelite. 233 refs.; 33 figs.; 16 tabs
Asymptotic behaviour of firmly non expansive sequences
International Nuclear Information System (INIS)
Rouhani, B.D.
1993-04-01
We introduce the notion of firmly non expansive sequences in a Banach space and present several results concerning their asymptotic behaviour extending previous results and giving an affirmative answer to an open question raised by S. Reich and I. Shafir. Applications to averaged mappings are also given. (author). 16 refs
An asymptotic problem in renewal theory
Klamkin, M.S.; van Lint, J.H.
1972-01-01
A special problem in renewal theory is considered. The asymptotic behavior of the renewal function was studied by W. L. Smith. Here we show that his result with an exponentially small remainder term follows from a theorem of De Bruijn on Volterra integral equations.
Asymptotics for the minimum covariance determinant estimator
Butler, R.W.; Davies, P.L.; Jhun, M.
1993-01-01
Consistency is shown for the minimum covariance determinant (MCD) estimators of multivariate location and scale and asymptotic normality is shown for the former. The proofs are made possible by showing a separating ellipsoid property for the MCD subset of observations. An analogous property is shown
Asymptotically Safe Standard Model via Vectorlike Fermions
Mann, R. B.; Meffe, J. R.; Sannino, F.; Steele, T. G.; Wang, Z. W.; Zhang, C.
2017-12-01
We construct asymptotically safe extensions of the standard model by adding gauged vectorlike fermions. Using large number-of-flavor techniques we argue that all gauge couplings, including the hypercharge and, under certain conditions, the Higgs coupling, can achieve an interacting ultraviolet fixed point.
Asymptotic symmetries, holography and topological hair
Mishra, Rashmish K.; Sundrum, Raman
2018-01-01
Asymptotic symmetries of AdS4 quantum gravity and gauge theory are derived by coupling the holographically dual CFT3 to Chern-Simons gauge theory and 3D gravity in a "probe" (large-level) limit. Despite the fact that the three-dimensional AdS4 boundary as a whole is consistent with only finite-dimensional asymptotic symmetries, given by AdS isometries, infinite-dimensional symmetries are shown to arise in circumstances where one is restricted to boundary subspaces with effectively two-dimensional geometry. A canonical example of such a restriction occurs within the 4D subregion described by a Wheeler-DeWitt wavefunctional of AdS4 quantum gravity. An AdS4 analog of Minkowski "super-rotation" asymptotic symmetry is probed by 3D Einstein gravity, yielding CFT2 structure (in a large central charge limit), via AdS3 foliation of AdS4 and the AdS3/CFT2 correspondence. The maximal asymptotic symmetry is however probed by 3D conformal gravity. Both 3D gravities have Chern-Simons formulation, manifesting their topological character. Chern-Simons structure is also shown to be emergent in the Poincare patch of AdS4, as soft/boundary limits of 4D gauge theory, rather than "put in by hand" as an external probe. This results in a finite effective Chern-Simons level. Several of the considerations of asymptotic symmetry structure are found to be simpler for AdS4 than for Mink4, such as non-zero 4D particle masses, 4D non-perturbative "hard" effects, and consistency with unitarity. The last of these in particular is greatly simplified because in some set-ups the time dimension is explicitly shared by each level of description: Lorentzian AdS4, CFT3 and CFT2. Relatedly, the CFT2 structure clarifies the sense in which the infinite asymptotic charges constitute a useful form of "hair" for black holes and other complex 4D states. An AdS4 analog of Minkowski "memory" effects is derived, but with late-time memory of earlier events being replaced by (holographic) "shadow" effects. Lessons
Binary black hole initial data from matched asymptotic expansions
International Nuclear Information System (INIS)
Yunes, Nicolas; Owen, Benjamin J.; Tichy, Wolfgang; Bruegmann, Bernd
2006-01-01
We present an approximate metric for a binary black-hole spacetime to construct initial data for numerical relativity. This metric is obtained by asymptotically matching a post-Newtonian metric for a binary system to a perturbed Schwarzschild metric for each hole. In the inner zone near each hole, the metric is given by the Schwarzschild solution plus a quadrupolar perturbation corresponding to an external tidal gravitational field. In the near zone, well outside each black hole but less than a reduced wavelength from the center of mass of the binary, the metric is given by a post-Newtonian expansion including the lowest-order deviations from flat spacetime. When the near zone overlaps each inner zone in a buffer zone, the post-Newtonian and perturbed Schwarzschild metrics can be asymptotically matched to each other. By demanding matching (over a 4-volume in the buffer zone) rather than patching (choosing a particular 2-surface in the buffer zone), we guarantee that the errors are small in all zones. The resulting piecewise metric is made formally C ∞ with smooth transition functions so as to obtain the finite extrinsic curvature of a 3-slice. In addition to the metric and extrinsic curvature, we present explicit results for the lapse and the shift, which can be used as initial data for numerical simulations. This initial data is not accurate all the way to the asymptotically flat ends inside each hole, and therefore must be used with evolution codes which employ black hole excision rather than puncture methods. This paper lays the foundations of a method that can be straightforwardly iterated to obtain initial data to higher perturbative order
Rotating spacetimes with asymptotic nonflat structure and the gyromagnetic ratio
International Nuclear Information System (INIS)
Aliev, Alikram N.
2008-01-01
In general relativity, the gyromagnetic ratio for all stationary, axisymmetric, and asymptotically flat Einstein-Maxwell fields is known to be g=2. In this paper, we continue our previous works of examination of this result for rotating charged spacetimes with asymptotic nonflat structure. We first consider two instructive examples of these spacetimes: The spacetime of a Kerr-Newman black hole with a straight cosmic string on its axis of symmetry and the Kerr-Newman Taub-NUT (Newman-Unti-Tamburino) spacetime. We show that for both spacetimes the gyromagnetic ratio g=2 independent of their asymptotic structure. We also extend this result to a general class of metrics which admit separation of variables for the Hamilton-Jacobi and wave equations. We proceed with the study of the gyromagnetic ratio in higher dimensions by considering the general solution for rotating charged black holes in minimal five-dimensional gauged supergravity. We obtain the analytic expressions for two distinct gyromagnetic ratios of these black holes that are associated with their two independent rotation parameters. These expressions reveal the dependence of the gyromagnetic ratio on both the curvature radius of the AdS background and the parameters of the black holes: The mass, electric charge, and two rotation parameters. We explore some special cases of interest and show that when the two rotation parameters are equal to each other and the rotation occurs at the maximum angular velocity, the gyromagnetic ratio g=4 regardless of the value of the electric charge. This agrees precisely with our earlier result obtained for general Kerr-AdS black holes with a test electric charge. We also show that in the Bogomol'nyi-Prasad-Sommerfield (BPS) limit the gyromagnetic ratio for a supersymmetric black hole with equal rotation parameters ranges between 2 and 4
Nefedov, Nikolay
2017-02-01
This is an extended variant of the paper presented at MURPHYS-HSFS 2016 conference in Barcelona. We discuss further development of the asymptotic method of differential inequalities to investigate existence and stability of sharp internal layers (fronts) for nonlinear singularly perturbed periodic parabolic problems and initial boundary value problems with blow-up of fronts for reaction-diffusion-advection equations. In particular, we consider periodic solutions with internal layer in the case of balanced reaction. For the initial boundary value problems we prove the existence of fronts and give their asymptotic approximation including the new case of blowing-up fronts. This case we illustrate by the generalised Burgers equation.
Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence
International Nuclear Information System (INIS)
Zhang Tailei; Teng Zhidong
2008-01-01
In this paper, the asymptotic behavior of solutions of an autonomous SEIRS epidemic model with the saturation incidence is studied. Using the method of Liapunov-LaSalle invariance principle, we obtain the disease-free equilibrium is globally stable if the basic reproduction number is not greater than one. Moreover, we show that the disease is permanent if the basic reproduction number is greater than one. Furthermore, the sufficient conditions of locally and globally asymptotically stable convergence to an endemic equilibrium are obtained base on the permanence
Laminar flow and convective transport processes scaling principles and asymptotic analysis
Brenner, Howard
1992-01-01
Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis presents analytic methods for the solution of fluid mechanics and convective transport processes, all in the laminar flow regime. This book brings together the results of almost 30 years of research on the use of nondimensionalization, scaling principles, and asymptotic analysis into a comprehensive form suitable for presentation in a core graduate-level course on fluid mechanics and the convective transport of heat. A considerable amount of material on viscous-dominated flows is covered.A unique feat
Asymptotic behavior of monodromy singularly perturbed differential equations on a Riemann surface
Simpson, Carlos
1991-01-01
This book concerns the question of how the solution of a system of ODE's varies when the differential equation varies. The goal is to give nonzero asymptotic expansions for the solution in terms of a parameter expressing how some coefficients go to infinity. A particular classof families of equations is considered, where the answer exhibits a new kind of behavior not seen in most work known until now. The techniques include Laplace transform and the method of stationary phase, and a combinatorial technique for estimating the contributions of terms in an infinite series expansion for the solution. Addressed primarily to researchers inalgebraic geometry, ordinary differential equations and complex analysis, the book will also be of interest to applied mathematicians working on asymptotics of singular perturbations and numerical solution of ODE's.
Cosmic censorship, persistent curvature and asymptotic causal pathology
International Nuclear Information System (INIS)
Newman, R.P.A.C.
1984-01-01
The paper examines cosmic censorship in general relativity theory. Conformally flat space-times; persistent curvature; weakly asymptotically simple and empty asymptotes; censorship conditions; and the censorship theorem; are all discussed. (U.K.)
Induction motor IFOC based speed-controlled drive with asymptotic disturbance compensation
Directory of Open Access Journals (Sweden)
Stojić Đorđe M.
2012-01-01
Full Text Available This paper presents the design of digitally controlled speed electrical drive, with the asymptotic compensation of external disturbances, implemented by using the IFOC (Indirect Field Oriented Control torque controlled induction motor. The asymptotic disturbance compensation is achieved by using the DOB (Disturbance Observer with the IMP (Internal Model Principle. When compared to the existing IMP-based DOB solutions, in this paper the robust stability and disturbance compensation are improved by implementing the minimal order DOB filter. Also, the IMP-based DOB design is improved by employing the asymptotic compensation of all elemental or more complex external disturbances. The dynamic model of the IFOC torque electrical drive is, also, included in the speed-controller and DOB section design. The simulation and experimental measurements presented in the paper illustrate the effectiveness and robustness of the proposed control scheme.
The BFKL high energy asymptotic in the next-to-leading approximation
International Nuclear Information System (INIS)
Levin, Eugene
1999-01-01
We discuss the high energy asymptotic in the next-to-leading (NLO) BFKL equation. We find a general solution for the Green functions and consider two properties of the NLO BFKL kernel: running QCD coupling and large NLO corrections to the conformal part of the kernel. Both these effects lead to Regge-BFKL asymptotic only in the limited range of energy (y = ln(s/qq 0 ) ≤ (α S ) ((-5)/(3)) ) and change the energy behaviour of the amplitude for higher values of energy. We confirm the oscillation in the total cross section found by D.A. Ross [SHEP-98-06, hep-ph/9804332] in the NLO BFKL asymptotic, which shows that the NLO BFKL has a serious pathology
Nonlinear mechanics of thin-walled structures asymptotics, direct approach and numerical analysis
Vetyukov, Yury
2014-01-01
This book presents a hybrid approach to the mechanics of thin bodies. Classical theories of rods, plates and shells with constrained shear are based on asymptotic splitting of the equations and boundary conditions of three-dimensional elasticity. The asymptotic solutions become accurate as the thickness decreases, and the three-dimensional fields of stresses and displacements can be determined. The analysis includes practically important effects of electromechanical coupling and material inhomogeneity. The extension to the geometrically nonlinear range uses the direct approach based on the principle of virtual work. Vibrations and buckling of pre-stressed structures are studied with the help of linearized incremental formulations, and direct tensor calculus rounds out the list of analytical techniques used throughout the book. A novel theory of thin-walled rods of open profile is subsequently developed from the models of rods and shells, and traditionally applied equations are proven to be asymptotically exa...
Gerbi, Sté phane; Said-Houari, Belkacem
2011-01-01
In this paper we consider a multi-dimensional wave equation with dynamic boundary conditions, related to the KelvinVoigt damping. Global existence and asymptotic stability of solutions starting in a stable set are proved. Blow up for solutions of the problem with linear dynamic boundary conditions with initial data in the unstable set is also obtained. © 2011 Elsevier Ltd. All rights reserved.
Gerbi, Stéphane
2011-12-01
In this paper we consider a multi-dimensional wave equation with dynamic boundary conditions, related to the KelvinVoigt damping. Global existence and asymptotic stability of solutions starting in a stable set are proved. Blow up for solutions of the problem with linear dynamic boundary conditions with initial data in the unstable set is also obtained. © 2011 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Yahiaoui, S.-A.; Bentaiba, M.
2011-01-01
We present a method for obtaining the quasi-exact solutions of the Rabi Hamiltonian in the framework of the asymptotic iteration method (AIM). The energy eigenvalues, the eigenfunctions and the associated Bender-Dunne orthogonal polynomials are deduced. We show (i) that orthogonal polynomials are generated from the upper limit (i.e., truncation limit) of polynomial solutions deduced from AIM, and (ii) prove to have nonpositive norm. (authors)
Asymptotically simple spacetimes and mass loss due to gravitational waves
Saw, Vee-Liem
The cosmological constant Λ used to be a freedom in Einstein’s theory of general relativity (GR), where one had a proclivity to set it to zero purely for convenience. The signs of Λ or Λ being zero would describe universes with different properties. For instance, the conformal structure of spacetime directly depends on Λ: null infinity ℐ is a spacelike, null, or timelike hypersurface, if Λ > 0, Λ = 0, or Λ 0 in Einstein’s theory of GR. A quantity that depends on the conformal structure of spacetime, especially on the nature of ℐ, is the Bondi mass which in turn dictates the mass loss of an isolated gravitating system due to energy carried away by gravitational waves. This problem of extending the Bondi mass to a universe with Λ > 0 has spawned intense research activity over the past several years. Some aspects include a closer inspection on the conformal properties, working with linearization, attempts using a Hamiltonian formulation based on “linearized” asymptotic symmetries, as well as obtaining the general asymptotic solutions of de Sitter-like spacetimes. We consolidate on the progress thus far from the various approaches that have been undertaken, as well as discuss the current open problems and possible directions in this area.
Asymptotic safety of quantum gravity beyond Ricci scalars
Falls, Kevin; King, Callum R.; Litim, Daniel F.; Nikolakopoulos, Kostas; Rahmede, Christoph
2018-04-01
We investigate the asymptotic safety conjecture for quantum gravity including curvature invariants beyond Ricci scalars. Our strategy is put to work for families of gravitational actions which depend on functions of the Ricci scalar, the Ricci tensor, and products thereof. Combining functional renormalization with high order polynomial approximations and full numerical integration we derive the renormalization group flow for all couplings and analyse their fixed points, scaling exponents, and the fixed point effective action as a function of the background Ricci curvature. The theory is characterized by three relevant couplings. Higher-dimensional couplings show near-Gaussian scaling with increasing canonical mass dimension. We find that Ricci tensor invariants stabilize the UV fixed point and lead to a rapid convergence of polynomial approximations. We apply our results to models for cosmology and establish that the gravitational fixed point admits inflationary solutions. We also compare findings with those from f (R ) -type theories in the same approximation and pin-point the key new effects due to Ricci tensor interactions. Implications for the asymptotic safety conjecture of gravity are indicated.
Asymptotic analysis of discrete schemes for non-equilibrium radiation diffusion
International Nuclear Information System (INIS)
Cui, Xia; Yuan, Guang-wei; Shen, Zhi-jun
2016-01-01
Motivated by providing well-behaved fully discrete schemes in practice, this paper extends the asymptotic analysis on time integration methods for non-equilibrium radiation diffusion in [2] to space discretizations. Therein studies were carried out on a two-temperature model with Larsen's flux-limited diffusion operator, both the implicitly balanced (IB) and linearly implicit (LI) methods were shown asymptotic-preserving. In this paper, we focus on asymptotic analysis for space discrete schemes in dimensions one and two. First, in construction of the schemes, in contrast to traditional first-order approximations, asymmetric second-order accurate spatial approximations are devised for flux-limiters on boundary, and discrete schemes with second-order accuracy on global spatial domain are acquired consequently. Then by employing formal asymptotic analysis, the first-order asymptotic-preserving property for these schemes and furthermore for the fully discrete schemes is shown. Finally, with the help of manufactured solutions, numerical tests are performed, which demonstrate quantitatively the fully discrete schemes with IB time evolution indeed have the accuracy and asymptotic convergence as theory predicts, hence are well qualified for both non-equilibrium and equilibrium radiation diffusion. - Highlights: • Provide AP fully discrete schemes for non-equilibrium radiation diffusion. • Propose second order accurate schemes by asymmetric approach for boundary flux-limiter. • Show first order AP property of spatially and fully discrete schemes with IB evolution. • Devise subtle artificial solutions; verify accuracy and AP property quantitatively. • Ideas can be generalized to 3-dimensional problems and higher order implicit schemes.
Criteria for exponential asymptotic stability in the large of ...
African Journals Online (AJOL)
The purpose of this study is to provide necessary and sufficient conditions for exponential asymptotic stability in the large and uniform asymptotic stability of perturbations of linear systems with unbounded delays. A strong relationship is established between the two types of asymptotic stability. It is found that if the ...
International Nuclear Information System (INIS)
Eleonskij, V.M.; Kulagin, N.E.; Novozhilova, N.S.; Silin, V.P.
1984-01-01
The reasons which prevent the existence of periodic in time and self-localised in space solutions of the nonlinear wave equation u=F (u) are determined by the methods of qualitative theory of dynamical systems. The correspondence between the qualitative behaviour of special (separatrix) trajectories in the phase space and asymptotic solutions of the nonlinear wave equation is analysed
Energy Technology Data Exchange (ETDEWEB)
Kaikina, Elena I., E-mail: ekaikina@matmor.unam.mx [Centro de Ciencias Matemáticas, UNAM Campus Morelia, AP 61-3 (Xangari), Morelia CP 58089, Michoacán (Mexico)
2013-11-15
We consider the inhomogeneous Dirichlet initial-boundary value problem for the nonlinear Schrödinger equation, formulated on a half-line. We study traditionally important problems of the theory of nonlinear partial differential equations, such as global in time existence of solutions to the initial-boundary value problem and the asymptotic behavior of solutions for large time.
International Nuclear Information System (INIS)
Kaikina, Elena I.
2013-01-01
We consider the inhomogeneous Dirichlet initial-boundary value problem for the nonlinear Schrödinger equation, formulated on a half-line. We study traditionally important problems of the theory of nonlinear partial differential equations, such as global in time existence of solutions to the initial-boundary value problem and the asymptotic behavior of solutions for large time
Directory of Open Access Journals (Sweden)
Youliang Fu
2016-01-01
Full Text Available This paper is concerned with the asymptotic properties of solutions to a third-order nonlinear neutral delay differential equation with distributed deviating arguments. Several new theorems are obtained which ensure that every solution to this equation either is oscillatory or tends to zero. Two illustrative examples are included.
The Asymptotic Safety Scenario in Quantum Gravity.
Niedermaier, Max; Reuter, Martin
2006-01-01
The asymptotic safety scenario in quantum gravity is reviewed, according to which a renormalizable quantum theory of the gravitational field is feasible which reconciles asymptotically safe couplings with unitarity. The evidence from symmetry truncations and from the truncated flow of the effective average action is presented in detail. A dimensional reduction phenomenon for the residual interactions in the extreme ultraviolet links both results. For practical reasons the background effective action is used as the central object in the quantum theory. In terms of it criteria for a continuum limit are formulated and the notion of a background geometry self-consistently determined by the quantum dynamics is presented. Self-contained appendices provide prerequisites on the background effective action, the effective average action, and their respective renormalization flows.
Asymptotic properties of a simple random motion
International Nuclear Information System (INIS)
Ravishankar, K.
1988-01-01
A random walker in R/sup N/ is considered. At each step the walker picks a point in R/sup N/ from a fixed finite set of destination points. Having chosen the point, the walker moves a fraction r (r < 1) of the distance toward the point along a straight line. Assuming that the successive destination points are chosen independently, it is shown that the asymptotic distribution of the walker's position has the same mean as the destination point distribution. An estimate is obtained for the fraction of time the walker stays within a ball centered at the mean value for almost every destination sequence. Examples show that the asymptotic distribution could have intricate structure
Asymptotic mass degeneracies in conformal field theories
International Nuclear Information System (INIS)
Kani, I.; Vafa, C.
1990-01-01
By applying a method of Hardy and Ramanujan to characters of rational conformal field theories, we find an asymptotic expansion for degeneracy of states in the limit of large mass which is exact for strings propagating in more than two uncompactified space-time dimensions. Moreover we explore how the rationality of the conformal theory is reflected in the degeneracy of states. We also consider the one loop partition function for strings, restricted to physical states, for arbitrary (irrational) conformal theories, and obtain an asymptotic expansion for it in the limit that the torus degenerates. This expansion depends only on the spectrum of (physical and unphysical) relevant operators in the theory. We see how rationality is consistent with the smoothness of mass degeneracies as a function of moduli. (orig.)
Asymptotic normalization coefficients and astrophysical factors
International Nuclear Information System (INIS)
Mukhamedzhanov, A.M.; Azhari, A.; Clark, H.L.; Gagliardi, C.A.; Lui, Y.-W.; Sattarov, A.; Trache, L.; Tribble, R.E.; Burjan, V.; Kroha, V.; Carstoiu, F.
2000-01-01
The S factor for the direct capture reaction 7 Be(p,γ) 8 B can be found at astrophysical energies from the asymptotic normalization coefficients (ANC's) which provide the normalization of the tails of the overlap functions for 8 B → 7 Be + p. Peripheral transfer reactions offer a technique to determine these ANC's. Using this technique, the 10 B( 7 Be, 8 B) 9 Be and 14 N( 7 Be, 8 B) 13 C reactions have been used to measure the asymptotic normalization coefficient for 7 Be(p, γ) 8 B. These results provide an indirect determination of S 17 (0). Analysis of the existing 9 Be(p, γ) 10 B experimental data within the framework of the R-matrix method demonstrates that experimentally measured ANC's can provide a reasonable determination of direct radiative capture rates. (author)
The Asymptotic Safety Scenario in Quantum Gravity
Directory of Open Access Journals (Sweden)
Niedermaier Max
2006-12-01
Full Text Available The asymptotic safety scenario in quantum gravity is reviewed, according to which a renormalizable quantum theory of the gravitational field is feasible which reconciles asymptotically safe couplings with unitarity. The evidence from symmetry truncations and from the truncated flow of the effective average action is presented in detail. A dimensional reduction phenomenon for the residual interactions in the extreme ultraviolet links both results. For practical reasons the background effective action is used as the central object in the quantum theory. In terms of it criteria for a continuum limit are formulated and the notion of a background geometry self-consistently determined by the quantum dynamics is presented. Self-contained appendices provide prerequisites on the background effective action, the effective average action, and their respective renormalization flows.
Asymptotic adaptive bipartite entanglement-distillation protocol
International Nuclear Information System (INIS)
Hostens, Erik; Dehaene, Jeroen; De Moor, Bart
2006-01-01
We present an asymptotic bipartite entanglement-distillation protocol that outperforms all existing asymptotic schemes. This protocol is based on the breeding protocol with the incorporation of two-way classical communication. Like breeding, the protocol starts with an infinite number of copies of a Bell-diagonal mixed state. Breeding can be carried out as successive stages of partial information extraction, yielding the same result: one bit of information is gained at the cost (measurement) of one pure Bell state pair (ebit). The basic principle of our protocol is at every stage to replace measurements on ebits by measurements on a finite number of copies, whenever there are two equiprobable outcomes. In that case, the entropy of the global state is reduced by more than one bit. Therefore, every such replacement results in an improvement of the protocol. We explain how our protocol is organized as to have as many replacements as possible. The yield is then calculated for Werner states
Theorems for asymptotic safety of gauge theories
Energy Technology Data Exchange (ETDEWEB)
Bond, Andrew D.; Litim, Daniel F. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)
2017-06-15
We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasised. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated. (orig.)
Mass loss on the Asymptotic Giant Branch
Zijlstra, Albert
2006-01-01
Mass loss on the Asymptotic Giant Branch provides the origin of planetary nebulae. This paper reviews several relevant aspects of AGB evolution: pulsation properties, mass loss formalisms and time variable mass loss, evidence for asymmetries on the AGB, binarity, ISM interaction, and mass loss at low metallicity. There is growing evidence that mass loss on the AGB is already asymmetric, but with spherically symmetric velocity fields. The origin of the rings may be in pulsational instabilities...
Asymptotic elastic energy in simple metals
International Nuclear Information System (INIS)
Khalifeh, J.M.
1983-07-01
The asymptotic form of the elastic binding energy ΔEsup(as)(R) between two Mg atoms in Al is expressed as a product of a lattice Green function and the dipole force tensor P. The quantity P is obtained by a nearly free electron model in which the impurity effect is introduced by a screened Ashcroft pseudopotential characterized by an excess charge ΔZ and a core radius rsub(j). (author)
Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models
International Nuclear Information System (INIS)
Hsu, Cheng-Hsiung; Yang, Tzi-Sheng
2013-01-01
The purpose of this work is to investigate the existence, uniqueness, monotonicity and asymptotic behaviour of travelling wave solutions for a general epidemic model arising from the spread of an epidemic by oral–faecal transmission. First, we apply Schauder's fixed point theorem combining with a supersolution and subsolution pair to derive the existence of positive monotone monostable travelling wave solutions. Then, applying the Ikehara's theorem, we determine the exponential rates of travelling wave solutions which converge to two different equilibria as the moving coordinate tends to positive infinity and negative infinity, respectively. Finally, using the sliding method, we prove the uniqueness result provided the travelling wave solutions satisfy some boundedness conditions. (paper)
Avoidance of singularities in asymptotically safe Quantum Einstein Gravity
Energy Technology Data Exchange (ETDEWEB)
Kofinas, Georgios [Research Group of Geometry, Dynamical Systems and Cosmology, Department of Information and Communication Systems Engineering, University of the Aegean, Karlovassi 83200, Samos (Greece); Zarikas, Vasilios, E-mail: gkofinas@aegean.gr, E-mail: vzarikas@teilam.gr [Department of Electrical Engineering, Theory Division, ATEI of Central Greece, 35100 Lamia (Greece)
2015-10-01
New general spherically symmetric solutions have been derived with a cosmological ''constant'' Λ as a source. This Λ term is not constant but it satisfies the properties of the asymptotically safe gravity at the ultraviolet fixed point. The importance of these solutions comes from the fact that they may describe the near to the centre region of black hole spacetimes as this is modified by the Renormalization Group scaling behaviour of the fields. The consistent set of field equations which respect the Bianchi identities is derived and solved. One of the solutions (with conventional sign of temporal-radial metric components) is timelike geodesically complete, and although there is still a curvature divergent origin, this is never approachable by an infalling massive particle which is reflected at a finite distance due to the repulsive origin. Another family of solutions (of both signatures) range from a finite radius outwards, they cannot be extended to the centre of spherical symmetry, and the curvature invariants are finite at the minimum radius.
Avoidance of singularities in asymptotically safe Quantum Einstein Gravity
Energy Technology Data Exchange (ETDEWEB)
Kofinas, Georgios [Research Group of Geometry, Dynamical Systems and Cosmology,Department of Information and Communication Systems Engineering,University of the Aegean, Karlovassi 83200, Samos (Greece); Zarikas, Vasilios [Department of Electrical Engineering, Theory Division, ATEI of Central Greece,35100 Lamia (Greece); Department of Physics, Aristotle University of Thessaloniki,54124 Thessaloniki (Greece)
2015-10-30
New general spherically symmetric solutions have been derived with a cosmological “constant” Λ as a source. This Λ term is not constant but it satisfies the properties of the asymptotically safe gravity at the ultraviolet fixed point. The importance of these solutions comes from the fact that they may describe the near to the centre region of black hole spacetimes as this is modified by the Renormalization Group scaling behaviour of the fields. The consistent set of field equations which respect the Bianchi identities is derived and solved. One of the solutions (with conventional sign of temporal-radial metric components) is timelike geodesically complete, and although there is still a curvature divergent origin, this is never approachable by an infalling massive particle which is reflected at a finite distance due to the repulsive origin. Another family of solutions (of both signatures) range from a finite radius outwards, they cannot be extended to the centre of spherical symmetry, and the curvature invariants are finite at the minimum radius.
Polynomial asymptotic stability of damped stochastic differential equations
Directory of Open Access Journals (Sweden)
John Appleby
2004-08-01
Full Text Available The paper studies the polynomial convergence of solutions of a scalar nonlinear It\\^{o} stochastic differential equation\\[dX(t = -f(X(t\\,dt + \\sigma(t\\,dB(t\\] where it is known, {\\it a priori}, that $\\lim_{t\\rightarrow\\infty} X(t=0$, a.s. The intensity of the stochastic perturbation $\\sigma$ is a deterministic, continuous and square integrable function, which tends to zero more quickly than a polynomially decaying function. The function $f$ obeys $\\lim_{x\\rightarrow 0}\\mbox{sgn}(xf(x/|x|^\\beta = a$, for some $\\beta>1$, and $a>0$.We study two asymptotic regimes: when $\\sigma$ tends to zero sufficiently quickly the polynomial decay rate of solutions is the same as for the deterministic equation (when $\\sigma\\equiv0$. When $\\sigma$ decays more slowly, a weaker almost sure polynomial upper bound on the decay rate of solutions is established. Results which establish the necessity for $\\sigma$ to decay polynomially in order to guarantee the almost sure polynomial decay of solutions are also proven.
Energy Technology Data Exchange (ETDEWEB)
Hahn, Y.K., E-mail: ykhahn22@verizon.net
2014-12-15
The self-consistent field theory of collisions is formulated, incorporating the unique dynamics generated by the self-averaged potentials. The bound state Hartree–Fock approach is extended for the first time to scattering states, by properly resolving the principal difficulties of non-integrable continuum orbitals and imposing complex asymptotic conditions. The recently developed asymptotic source theory provides the natural theoretical basis, as the asymptotic conditions are completely transferred to the source terms and the new scattering function is made fullyintegrable. The scattering solutions can then be directly expressed in terms of bound state HF configurations, establishing the relationship between the bound and scattering state solutions. Alternatively, the integrable spin orbitals are generated by constructing the individual orbital equations that contain asymptotic sources and self-averaged potentials. However, the orbital energies are not determined by the equations, and a special channel energy fixing procedure is developed to secure the solutions. It is also shown that the variational construction of the orbital equations has intrinsic ambiguities that are generally associated with the self-consistent approach. On the other hand, when a small subset of open channels is included in the source term, the solutions are only partiallyintegrable, but the individual open channels can then be treated more simply by properly selecting the orbital energies. The configuration mixing and channel coupling are then necessary to complete the solution. The new theory improves the earlier continuum HF model. - Highlights: • First extension of HF to scattering states, with proper asymptotic conditions. • Orbital equations with asymptotic sources and integrable orbital solutions. • Construction of self-averaged potentials, and orbital energy fixing. • Channel coupling and configuration mixing, involving the new orbitals. • Critical evaluation of the
Callan-Symanzik equation and asymptotic freedom in the Marr-Shimamoto model
International Nuclear Information System (INIS)
Scarfone, Leonard M.
2010-01-01
The exactly soluble nonrelativistic Marr-Shimamoto model was introduced in 1964 as an example of the Lee model with a propagator and a nontrivial vertex function. An exactly soluble relativistic version of this model, known as the Zachariasen model, has been found to be asymptotically free in terms of coupling constant renormalization at an arbitrary spacelike momentum and on the basis of exact solutions of the Gell-Mann-Low equations. This is accomplished with conventional cut-off regularization by setting up the Yukawa and Fermi coupling constants at Euclidean momenta in terms of on mass-shell couplings and then taking the asymptotic limit. In view of this background, it may be expected that an investigation of the nonrelativistic Marr-Shimamoto theory may also exhibit asymptotic freedom in view of its manifest mathematical similarity to that of the Zachariasen model. To prove this point, the present paper prefers to examine asymptotic freedom in the nonrelativistic Marr-Shimamoto theory using the powerful concepts of the renormalization group and the Callan-Symanzik equation, in conjunction with the specificity of dimensional regularization and on-shell renormalization. This approach is based on calculations of the Callan-Symanzik coefficients and determinations of the effective coupling constants. It is shown that the Marr-Shimamoto theory is asymptotically free for dimensions D 3 occurring in periodic intervals over the range of 0< D<27 of particular interest. This differs from the original Lee model which has been shown by several authors, using these same concepts, to be asymptotically free only for D<4.
Chiral symmetry breaking in asymptotically free and non-asymptotically free gauge theories
International Nuclear Information System (INIS)
Gusynin, V.P.; Miranskij, V.A.
1986-01-01
An essential distinction in the realization of the PCAC-dynamics in vector-like asymptotically free and non-asymptotically free (with a non-trival ultraviolet stable fixed point) gauge theories is revealed. For the latter theories an analytical expression for the condensate is obtained in the two-loop approximation and the arguments in support of a soft behaviour at small distances of composite operators are given. The problem of factorizing the low-energy region for the Wess-Zumino-Witten action is discussed
Local fields for asymptotic matching in multidimensional mode conversion
International Nuclear Information System (INIS)
Tracy, E. R.; Kaufman, A. N.; Jaun, A.
2007-01-01
The problem of resonant mode conversion in multiple spatial dimensions is considered. Using phase space methods, a complete theory is developed for constructing matched asymptotic expansions that fit incoming and outgoing WKB solutions. These results provide, for the first time, a complete and practical method for including multidimensional conversion in ray tracing algorithms. The paper provides a self-contained description of the following topics: (1) how to use eikonal (also known as ray tracing or WKB) methods to solve vector wave equations and how to detect conversion regions while following rays; (2) once conversion is detected, how to fit to a generic saddle structure in ray phase space associated with the most common type of conversion; (3) given the saddle structure, how to carry out a local projection of the full vector wave equation onto a local two-component normal form that governs the two resonantly interacting waves. This determines both the uncoupled dispersion functions and the coupling constant, which in turn determine the uncoupled WKB solutions; (4) given the normal form of the local two-component wave equation, how to find the particular solution that matches the amplitude, phase, and polarization of the incoming ray, to the amplitude, phase, and polarization of the two outgoing rays: the transmitted and converted rays
Asymptotic Co- and Post-seismic displacements in a homogeneous Maxwell sphere
Tang, He; Sun, Wenke
2018-05-01
The deformations of the Earth caused by internal and external forces are usually expressed through Green's functions or the superposition of normal modes, i.e. via numerical methods, which are applicable for computing both co- and post-seismic deformations. It is difficult to express these deformations in an analytical form, even for a uniform viscoelastic sphere. In this study, we present a set of asymptotic solutions for computing co- and post-seismic displacements; these solutions can be further applied to solving co- and post-seismic geoid, gravity, and strain changes. Expressions are derived for a uniform Maxwell Earth by combining the reciprocity theorem, which links earthquake, tidal, shear and loading deformations, with the asymptotic solutions of these three external forces (tidal, shear and loading) and analytical inverse Laplace transformation formulae. Since the asymptotic solutions are given in a purely analytical form without series summations or extra convergence skills, they can be practically applied in an efficient way, especially when computing post-seismic deformations and glacial isotactic adjustments of the Earth over long timescales.
Lectures on the asymptotic theory of ideals
Rees, D
1988-01-01
In this book Professor Rees introduces and proves some of the main results of the asymptotic theory of ideals. The author's aim is to prove his Valuation Theorem, Strong Valuation Theorem, and Degree Formula, and to develop their consequences. The last part of the book is devoted to mixed multiplicities. Here the author develops his theory of general elements of ideals and gives a proof of a generalised degree formula. The reader is assumed to be familiar with basic commutative algebra, as covered in the standard texts, but the presentation is suitable for advanced graduate students. The work
Asymptotic density and the Ershov hierarchy
Downey, Rod; Jockusch, Carl; McNicholl, Timothy H.; Schupp, Paul
2013-01-01
We classify the asymptotic densities of the $\\Delta^0_2$ sets according to their level in the Ershov hierarchy. In particular, it is shown that for $n \\geq 2$, a real $r \\in [0,1]$ is the density of an $n$-c.e.\\ set if and only if it is a difference of left-$\\Pi_2^0$ reals. Further, we show that the densities of the $\\omega$-c.e.\\ sets coincide with the densities of the $\\Delta^0_2$ sets, and there are $\\omega$-c.e.\\ sets whose density is not the density of an $n$-c.e. set for any $n \\in \\ome...
Asymptotic freedom in extended conformal supergravities
International Nuclear Information System (INIS)
Fradkin, E.S.; Tseytlin, A.A.
1982-01-01
We present the calculation of the one-loop β-function in extended conformal supergravities. N = 1, 2, 3 theories (free or coupled to the Einstein supergravities) are found to the asymptotically free (like the N = 0 Weyl theory) while the N = 4 theory becomes finite under some plausible hypothesis. The results support the possibility to solve the problem of ghosts in these theories. The obtained sequence of SU(N) β-functions appears to be in remarkable correspondence with that for gauged O(N) supergravity theories. (orig.)
Asymptotically Free Natural Supersymmetric Twin Higgs Model
Badziak, Marcin; Harigaya, Keisuke
2018-05-01
Twin Higgs (TH) models explain the absence of new colored particles responsible for natural electroweak symmetry breaking (EWSB). All known ultraviolet completions of TH models require some nonperturbative dynamics below the Planck scale. We propose a supersymmetric model in which the TH mechanism is introduced by a new asymptotically free gauge interaction. The model features natural EWSB for squarks and gluino heavier than 2 TeV even if supersymmetry breaking is mediated around the Planck scale, and has interesting flavor phenomenology including the top quark decay into the Higgs boson and the up quark which may be discovered at the LHC.
Asymptotics with a positive cosmological constant II
Kesavan, Aruna; Ashtekar, Abhay; Bonga, Beatrice
2015-04-01
The study of isolated systems has been vastly successful in the context of vanishing cosmological constant, Λ = 0 . However, there is no physically useful notion of asymptotics for the universe we inhabit with Λ > 0 . This means that presently there is no fundamental understanding of gravitational waves in our own universe. The full non-linear framework is still under development, but some interesting results at the linearized level have been obtained. In particular, I will discuss the quadrupole formula for gravitational radiation and its implications.
Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes
Cortazar, C.; Elgueta, M.; Quiros, F.; Wolanski, N.
2011-01-01
The paper deals with the asymptotic behavior of solutions to a non-local diffusion equation, $u_t=J*u-u:=Lu$, in an exterior domain, $\\Omega$, which excludes one or several holes, and with zero Dirichlet data on $\\mathbb{R}^N\\setminus\\Omega$. When the space dimension is three or more this behavior is given by a multiple of the fundamental solution of the heat equation away from the holes. On the other hand, if the solution is scaled according to its decay factor, close to the holes it behaves...
Application of the optimal homotopy asymptotic method to nonlinear Bingham fluid dampers
Directory of Open Access Journals (Sweden)
Marinca Vasile
2017-10-01
Full Text Available Dynamic response time is an important feature for determining the performance of magnetorheological (MR dampers in practical civil engineering applications. The objective of this paper is to show how to use the Optimal Homotopy Asymptotic Method (OHAM to give approximate analytical solutions of the nonlinear differential equation of a modified Bingham model with non-viscous exponential damping. Our procedure does not depend upon small parameters and provides us with a convenient way to optimally control the convergence of the approximate solutions. OHAM is very efficient in practice for ensuring very rapid convergence of the solution after only one iteration and with a small number of steps.
Application of the optimal homotopy asymptotic method to nonlinear Bingham fluid dampers
Marinca, Vasile; Ene, Remus-Daniel; Bereteu, Liviu
2017-10-01
Dynamic response time is an important feature for determining the performance of magnetorheological (MR) dampers in practical civil engineering applications. The objective of this paper is to show how to use the Optimal Homotopy Asymptotic Method (OHAM) to give approximate analytical solutions of the nonlinear differential equation of a modified Bingham model with non-viscous exponential damping. Our procedure does not depend upon small parameters and provides us with a convenient way to optimally control the convergence of the approximate solutions. OHAM is very efficient in practice for ensuring very rapid convergence of the solution after only one iteration and with a small number of steps.
Kasner asymptotics of mixmaster Horava-Witten and pre-big-bang cosmologies
International Nuclear Information System (INIS)
Dabrowski, Mariusz P.
2001-01-01
We discuss various superstring effective actions and, in particular, their common sector which leads to the so-called pre-big-bang cosmology (cosmology in a weak coupling limit of heterotic superstring theory. Using the conformal relationship between these two theories we present Kasner asymptotic solutions of Bianchi type IX geometries within these theories and make predictions about possible emergence of chaos. Finally, we present a possible method of generating Horava-Witten cosmological solutions out of the well-known general relativistic or pre-big-bang solutions
Optimal homotopy asymptotic method for solving fractional relaxation-oscillation equation
Directory of Open Access Journals (Sweden)
Mohammad Hamarsheh
2015-11-01
Full Text Available In this paper, an approximate analytical solution of linear fractional relaxation-oscillation equations in which the fractional derivatives are given in the Caputo sense, is obtained by the optimal homotopy asymptotic method (OHAM. The studied OHAM is based on minimizing the residual error. The results given by OHAM are compared with the exact solutions and the solutions obtained by generalized Taylor matrix method. The reliability and efficiency of the proposed approach are demonstrated in three examples with the aid of the symbolic algebra program Maple.
International Nuclear Information System (INIS)
Omel'yanov, G.A.
1995-07-01
The non-isothermal Cahn-Hilliard equations in the n-dimensional case (n = 2,3) are considered. The interaction length is proportional to a small parameter, and the relaxation time is proportional to a constant. The asymptotic solutions describing two metastable processes are constructed and justified. The soliton type solution describes the first stage of separation in alloy, when a set of ''superheated liquid'' appears inside the ''solid'' part. The Van der Waals type solution describes the free interface dynamics for large time. The smoothness of temperature is established for large time and the Mullins-Sekerka problem describing the free interface is derived. (author). 46 refs
Holcman, David
2018-01-01
This is a monograph on the emerging branch of mathematical biophysics combining asymptotic analysis with numerical and stochastic methods to analyze partial differential equations arising in biological and physical sciences. In more detail, the book presents the analytic methods and tools for approximating solutions of mixed boundary value problems, with particular emphasis on the narrow escape problem. Informed throughout by real-world applications, the book includes topics such as the Fokker-Planck equation, boundary layer analysis, WKB approximation, applications of spectral theory, as well as recent results in narrow escape theory. Numerical and stochastic aspects, including mean first passage time and extreme statistics, are discussed in detail and relevant applications are presented in parallel with the theory. Including background on the classical asymptotic theory of differential equations, this book is written for scientists of various backgrounds interested in deriving solutions to real-world proble...
Asymptotically warped anti-de Sitter spacetimes in topologically massive gravity
International Nuclear Information System (INIS)
Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo
2011-01-01
Asymptotically warped AdS spacetimes in topologically massive gravity with negative cosmological constant are considered in the case of spacelike stretched warping, where black holes have been shown to exist. We provide a set of asymptotic conditions that accommodate solutions in which the local degree of freedom (the ''massive graviton'') is switched on. An exact solution with this property is explicitly exhibited and possesses a slower falloff than the warped AdS black hole. The boundary conditions are invariant under the semidirect product of the Virasoro algebra with a u(1) current algebra. We show that the canonical generators are integrable and finite. When the graviton is not excited, our analysis is compared and contrasted with earlier results obtained through the covariant approach to conserved charges. In particular, we find agreement with the conserved charges of the warped AdS black holes as well as with the central charges in the algebra.
Transport of radionuclides in stochastic media. Pt. 1: The quasi-asymptotic approximation
International Nuclear Information System (INIS)
Devooght, J.; Smidts, O.F.
1996-01-01
A three-dimensional quasi-asymptotic approximate equation is developed for the transport of radionuclides in a stochastic velocity field. This approximation is derived from an integro-differential equation of transport in stochastic media, commonly encountered in hydrogeology. The quasi-asymptotic equation turns out to be a generalised Telegrapher's equation as found by Williams in the particular context of fractured media. We obtain the Telegrapher's equation without specifying the causes responsible for the random velocity field. Our model may thus be applied in porous media as well as in fractured media. We give the developments leading to the analytical solution of the three-dimensional Telegrapher's equation for constant parameters. This solution is then visualised for a source in the form of a square wave. (Author)
Integrable theories that are asymptotically CFT
Evans, J M; Jonathan M Evans; Timothy J Hollowood
1995-01-01
A series of sigma models with torsion are analysed which generate their mass dynamically but whose ultra-violet fixed points are non-trivial conformal field theories -- in fact SU(2) WZW models at level k. In contrast to the more familiar situation of asymptotically free theories in which the fixed points are trivial, the sigma models considered here may be termed ``asymptotically CFT''. These theories have previously been conjectured to be quantum integrable; we confirm this by proposing a factorizable S-matrix to describe their infra-red behaviour and then carrying out a stringent test of this proposal. The test involves coupling the theory to a conserved charge and evaluating the response of the free-energy both in perturbation theory to one loop and directly from the S-matrix via the Thermodynamic Bethe Ansatz with a chemical potential at zero temperature. Comparison of these results provides convincing evidence in favour of the proposed S-matrix; it also yields the universal coefficients of the beta-func...
International Nuclear Information System (INIS)
Andrianov, I.V.; Danishevsky, V.V.
1994-01-01
Asymptotic approaches for nonlinear dynamics of continual system are developed well for the infinite in spatial variables. For the systems with finite sizes we have an infinite number of resonance, and Poincare-Lighthill-Go method does riot work. Using of averaging procedure or method of multiple scales leads to the infinite systems of nonlinear algebraic or ordinary differential equations systems and then using truncation method. which does not gives possibility to obtain all important properties of the solutions
Asymptotic estimates and exponential stability for higher-order monotone difference equations
Directory of Open Access Journals (Sweden)
Pituk Mihály
2005-01-01
Full Text Available Asymptotic estimates are established for higher-order scalar difference equations and inequalities the right-hand sides of which generate a monotone system with respect to the discrete exponential ordering. It is shown that in some cases the exponential estimates can be replaced with a more precise limit relation. As corollaries, a generalization of discrete Halanay-type inequalities and explicit sufficient conditions for the global exponential stability of the zero solution are given.
Asymptotic estimates and exponential stability for higher-order monotone difference equations
Directory of Open Access Journals (Sweden)
Mihály Pituk
2005-03-01
Full Text Available Asymptotic estimates are established for higher-order scalar difference equations and inequalities the right-hand sides of which generate a monotone system with respect to the discrete exponential ordering. It is shown that in some cases the exponential estimates can be replaced with a more precise limit relation. As corollaries, a generalization of discrete Halanay-type inequalities and explicit sufficient conditions for the global exponential stability of the zero solution are given.
Directory of Open Access Journals (Sweden)
Liang-cai Zhao
2012-01-01
Full Text Available The purpose of this paper is to introduce a class of total quasi-ϕ-asymptotically nonexpansive-nonself mappings and to study the strong convergence under a limit condition only in the framework of Banach spaces. As an application, we utilize our results to study the approximation problem of solution to a system of equilibrium problems. The results presented in the paper extend and improve the corresponding results announced by some authors recently.
Calculation of anisotropic few-group constants in asymptotic cells: the code ANICELL
International Nuclear Information System (INIS)
Devenyi, A.
1985-10-01
The theoretical background of the ANICELL computer program together with a user's manual is presented. ANICELL is a nuclear reactor neutron transport code which solves the traditional asymptotic and the so-called tilted flux transport problems in one-dimensional cylindrical geometry using linearly anisotropic scattering. The method of solution used is the first flight collision probability technique. Few-group constants including radial and axial diffusion coefficients for the cell are also prepared by the program. (author)
On conformal-invariant behaviour of four-point theories in ultraviolet asymptotics
International Nuclear Information System (INIS)
Ushveridze, A.G.
1977-01-01
A method is presented to obtain scale- and conformal-invariant solutions of four-point field theories in the ultraviolet asymptotics by means of reduction to the three-point problem. To do this a supplementary sigma field without a kinetic term is introduced and the Lagrangian is modified correspondingly. For the three-point problems the equations in form of the generalized unitarity conditions are solved further
On possibility of the conformal infrared asymptotics in nonabelian Yang-Mills theories
International Nuclear Information System (INIS)
Vasil'ev, A.N.; Perekalin, M.M.; Pis'mak, Yu.M.
1983-01-01
A possibility of the conformal-invariant infrared asymptotics in nonabelian Yang-Mills theories is discussed. In the framework of the conformal bootstrap method it is shown that the hypothesis about the exact conformal invariance contradicts the transversality of the polarization operator i.e. the Ward identities. However, it is still possible to use the conformal theory as an approximate solution to the bootstrap equations
Coulomb string tension, asymptotic string tension, and the gluon chain
Greensite, Jeff; Szczepaniak, Adam P.
2014-01-01
We compute, via numerical simulations, the non-perturbative Coulomb potential of pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.
Asymptotic Theory for Regressions with Smoothly Changing Parameters
DEFF Research Database (Denmark)
Hillebrand, Eric Tobias; Medeiros, Marcelo C.; Xu, Junyue
We derive asymptotic properties of the quasi maximum likelihood estimator of smooth transition regressions when time is the transition variable. The consistency of the estimator and its asymptotic distribution are examined. It is shown that the estimator converges at the usual square-root-of-T rate...... and has an asymptotically normal distribution. Finite sample properties of the estimator are explored in simulations. We illustrate with an application to US inflation and output data....
Asymptotic theory for regressions with smoothly changing parameters
DEFF Research Database (Denmark)
Hillebrand, Eric; Medeiros, Marcelo; Xu, Junyue
2013-01-01
We derive asymptotic properties of the quasi maximum likelihood estimator of smooth transition regressions when time is the transition variable. The consistency of the estimator and its asymptotic distribution are examined. It is shown that the estimator converges at the usual pT-rate and has...... an asymptotically normal distribution. Finite sample properties of the estimator are explored in simulations. We illustrate with an application to US inflation and output data....
The positive action conjecture and asymptotically euclidean metrics in quantum gravity
International Nuclear Information System (INIS)
Gibbons, G.W.; Pope, C.N.
1979-01-01
The positive action conjecture requires that the action of any asymptotically Euclidean 4-dimensional Riemannian metric be positive, vanishing if and only if the space is flat. Because any Ricci flat, asymptotically Euclidean metric has zero action and is local extremum of the action which is a local minimum at flat space, the conjecture requires that there are no Ricci flat asymptotically Euclidean metrics other than flat space, which would establish that flat space is the only local minimum. We prove this for metrics on R 4 and a large class of more complicated topologies and for self-dual metrics. We show that if Rsupμsubμ >= 0 there are no bound states of the Dirac equation and discuss the relevance to possible baryon non-conserving processes mediated by gravitational instantons. We conclude that these are forbidden in the lowest stationary phase approximation. We give a detailed discussion of instantons invariant under an SU(2) or SO(3) isometry group. We find all regular solutions, none of which is asymptotically Euclidean and all of which possess a further Killing vector. In an appendix we construct an approximate self-dual metric on K3 - the only simply connected compact manifold which admits a self-dual metric. (orig.) [de
Asymptotic theory of double layer and shielding of electric field at the edge of illuminated plasma
Energy Technology Data Exchange (ETDEWEB)
Benilov, M. S. [Departamento de Física, CCCEE, Universidade da Madeira, Largo do Município, 9000 Funchal (Portugal); Thomas, D. M. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom)
2014-04-15
The method of matched asymptotic expansions is applied to the problem of a collisionless plasma generated by UV illumination localized in a central part of the plasma in the limiting case of small Debye length λ{sub D}. A second-approximation asymptotic solution is found for the double layer positioned at the boundary of the illuminated region and for the un-illuminated plasma for the plane geometry. Numerical calculations for different values of λ{sub D} are reported and found to confirm the asymptotic results. The net integral space charge of the double layer is asymptotically small, although in the plane geometry it is just sufficient to shield the ambipolar electric field existing in the illuminated region and thus to prevent it from penetrating into the un-illuminated region. The double layer has the same mathematical nature as the intermediate transition layer separating an active plasma and a collisionless sheath, and the underlying physics is also the same. In essence, the two layers represent the same physical object: a transonic layer.
On maximal surfaces in asymptotically flat space-times
International Nuclear Information System (INIS)
Bartnik, R.; Chrusciel, P.T.; O Murchadha, N.
1990-01-01
Existence of maximal and 'almost maximal' hypersurfaces in asymptotically flat space-times is established under boundary conditions weaker than those considered previously. We show in particular that every vacuum evolution of asymptotically flat data for Einstein equations can be foliated by slices maximal outside a spatially compact set and that every (strictly) stationary asymptotically flat space-time can be foliated by maximal hypersurfaces. Amongst other uniqueness results, we show that maximal hypersurface can be used to 'partially fix' an asymptotic Poincare group. (orig.)
Asymptotic variance of grey-scale surface area estimators
DEFF Research Database (Denmark)
Svane, Anne Marie
Grey-scale local algorithms have been suggested as a fast way of estimating surface area from grey-scale digital images. Their asymptotic mean has already been described. In this paper, the asymptotic behaviour of the variance is studied in isotropic and sufficiently smooth settings, resulting...... in a general asymptotic bound. For compact convex sets with nowhere vanishing Gaussian curvature, the asymptotics can be described more explicitly. As in the case of volume estimators, the variance is decomposed into a lattice sum and an oscillating term of at most the same magnitude....
Asymptotic expansions for high-contrast elliptic equations
Calo, Victor M.; Efendiev, Yalchin R.; Galvis, Juan
2014-01-01
In this paper, we present a high-order expansion for elliptic equations in high-contrast media. The background conductivity is taken to be one and we assume the medium contains high (or low) conductivity inclusions. We derive an asymptotic expansion with respect to the contrast and provide a procedure to compute the terms in the expansion. The computation of the expansion does not depend on the contrast which is important for simulations. The latter allows avoiding increased mesh resolution around high conductivity features. This work is partly motivated by our earlier work in [Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model Simul. 8 (2010) 1461-1483] where we design efficient numerical procedures for solving high-contrast problems. These multiscale approaches require local solutions and our proposed high-order expansion can be used to approximate these local solutions inexpensively. In the case of a large-number of inclusions, the proposed analysis can help to design localization techniques for computing the terms in the expansion. In the paper, we present a rigorous analysis of the proposed high-order expansion and estimate the remainder of it. We consider both high-and low-conductivity inclusions. © 2014 World Scientific Publishing Company.
Bulk viscous matter-dominated Universes: asymptotic properties
Energy Technology Data Exchange (ETDEWEB)
Avelino, Arturo [Departamento de Física, Campus León, Universidad de Guanajuato, León, Guanajuato (Mexico); García-Salcedo, Ricardo [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada - Legaria del IPN, México D.F. (Mexico); Gonzalez, Tame [Departamento de Ingeniería Civil, División de Ingeniería, Universidad de Guanajuato, Guanajuato (Mexico); Nucamendi, Ulises [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP. 58040 Morelia, Michoacán (Mexico); Quiros, Israel, E-mail: avelino@fisica.ugto.mx, E-mail: rigarcias@ipn.mx, E-mail: tamegc72@gmail.com, E-mail: ulises@ifm.umich.mx, E-mail: iquiros6403@gmail.com [Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Corregidora 500 S.R., Universidad de Guadalajara, 44420 Guadalajara, Jalisco (Mexico)
2013-08-01
By means of a combined use of the type Ia supernovae and H(z) data tests, together with the study of the asymptotic properties in the equivalent phase space — through the use of the dynamical systems tools — we demonstrate that the bulk viscous matter-dominated scenario is not a good model to explain the accepted cosmological paradigm, at least, under the parametrization of bulk viscosity considered in this paper. The main objection against such scenarios is the absence of conventional radiation and matter-dominated critical points in the phase space of the model. This entails that radiation and matter dominance are not generic solutions of the cosmological equations, so that these stages can be implemented only by means of unique and very specific initial conditions, i. e., of very unstable particular solutions. Such a behavior is in marked contradiction with the accepted cosmological paradigm which requires of an earlier stage dominated by relativistic species, followed by a period of conventional non-relativistic matter domination, during which the cosmic structure we see was formed. Also, we found that the bulk viscosity is positive just until very late times in the cosmic evolution, around z < 1. For earlier epochs it is negative, been in tension with the local second law of thermodynamics.
Asymptotic expansions for high-contrast elliptic equations
Calo, Victor M.
2014-03-01
In this paper, we present a high-order expansion for elliptic equations in high-contrast media. The background conductivity is taken to be one and we assume the medium contains high (or low) conductivity inclusions. We derive an asymptotic expansion with respect to the contrast and provide a procedure to compute the terms in the expansion. The computation of the expansion does not depend on the contrast which is important for simulations. The latter allows avoiding increased mesh resolution around high conductivity features. This work is partly motivated by our earlier work in [Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model Simul. 8 (2010) 1461-1483] where we design efficient numerical procedures for solving high-contrast problems. These multiscale approaches require local solutions and our proposed high-order expansion can be used to approximate these local solutions inexpensively. In the case of a large-number of inclusions, the proposed analysis can help to design localization techniques for computing the terms in the expansion. In the paper, we present a rigorous analysis of the proposed high-order expansion and estimate the remainder of it. We consider both high-and low-conductivity inclusions. © 2014 World Scientific Publishing Company.
Directory of Open Access Journals (Sweden)
S. A. Kaschenko
2014-01-01
Full Text Available We study the dynamics of finite-difference approximation on spatial variables of a logistic equation with delay and diffusion. It is assumed that the diffusion coefficient is small and the Malthusian coefficient is large. The question of the existence and asymptotic behavior of attractors was studied with special asymptotic methods. It is shown that there is a rich array of different types of attractors in the phase space: leading centers, spiral waves, etc. The main asymptotic characteristics of all solutions from the corresponding attractors are adduced in this work. Typical graphics of wave fronts motion of different structures are represented in the article.
Asymptotic theory of weakly dependent random processes
Rio, Emmanuel
2017-01-01
Presenting tools to aid understanding of asymptotic theory and weakly dependent processes, this book is devoted to inequalities and limit theorems for sequences of random variables that are strongly mixing in the sense of Rosenblatt, or absolutely regular. The first chapter introduces covariance inequalities under strong mixing or absolute regularity. These covariance inequalities are applied in Chapters 2, 3 and 4 to moment inequalities, rates of convergence in the strong law, and central limit theorems. Chapter 5 concerns coupling. In Chapter 6 new deviation inequalities and new moment inequalities for partial sums via the coupling lemmas of Chapter 5 are derived and applied to the bounded law of the iterated logarithm. Chapters 7 and 8 deal with the theory of empirical processes under weak dependence. Lastly, Chapter 9 describes links between ergodicity, return times and rates of mixing in the case of irreducible Markov chains. Each chapter ends with a set of exercises. The book is an updated and extended ...
Chiral fermions in asymptotically safe quantum gravity.
Meibohm, J; Pawlowski, J M
2016-01-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.
Asymptotic representation of relaxation oscillations in lasers
Grigorieva, Elena V
2017-01-01
In this book we analyze relaxation oscillations in models of lasers with nonlinear elements controlling light dynamics. The models are based on rate equations taking into account periodic modulation of parameters, optoelectronic delayed feedback, mutual coupling between lasers, intermodal interaction and other factors. With the aim to study relaxation oscillations we present the special asymptotic method of integration for ordinary differential equations and differential-difference equations. As a result, they are reduced to discrete maps. Analyzing the maps we describe analytically such nonlinear phenomena in lasers as multistability of large-amplitude relaxation cycles, bifurcations of cycles, controlled switching of regimes, phase synchronization in an ensemble of coupled systems and others. The book can be fruitful for students and technicians in nonlinear laser dynamics and in differential equations.
Asymptotically safe non-minimal inflation
Energy Technology Data Exchange (ETDEWEB)
Tronconi, Alessandro, E-mail: Alessandro.Tronconi@bo.infn.it [Dipartimento di Fisica e Astronomia and INFN, Via Irnerio 46,40126 Bologna (Italy)
2017-07-01
We study the constraints imposed by the requirement of Asymptotic Safety on a class of inflationary models with an inflaton field non-minimally coupled to the Ricci scalar. The critical surface in the space of theories is determined by the improved renormalization group flow which takes into account quantum corrections beyond the one loop approximation. The combination of constraints deriving from Planck observations and those from theory puts severe bounds on the values of the parameters of the model and predicts a quite large tensor to scalar ratio. We finally comment on the dependence of the results on the definition of the infrared energy scale which parametrises the running on the critical surface.
UV conformal window for asymptotic safety
Bond, Andrew D.; Litim, Daniel F.; Vazquez, Gustavo Medina; Steudtner, Tom
2018-02-01
Interacting fixed points in four-dimensional gauge theories coupled to matter are investigated using perturbation theory up to three loop order. It is shown how fixed points, scaling exponents, and anomalous dimensions are obtained as a systematic power series in a small parameter. The underlying ordering principle is explained and contrasted with conventional perturbation theory and Weyl consistency conditions. We then determine the conformal window with asymptotic safety from the complete next-to-next-to-leading order in perturbation theory. Limits for the conformal window arise due to fixed point mergers, the onset of strong coupling, or vacuum instability. A consistent picture is uncovered by comparing various levels of approximation. The theory remains perturbative in the entire conformal window, with vacuum stability dictating the tightest constraints. We also speculate about a secondary conformal window at strong coupling and estimate its lower limit. Implications for model building and cosmology are indicated.
Quantum defect theory and asymptotic methods
International Nuclear Information System (INIS)
Seaton, M.J.
1982-01-01
It is shown that quantum defect theory provides a basis for the development of various analytical methods for the examination of electron-ion collision phenomena, including di-electronic recombination. Its use in conjuction with ab initio calculations is shown to be restricted by problems which arise from the presence of long-range non-Coulomb potentials. Empirical fitting to some formulae can be efficient in the use of computer time but extravagant in the use of person time. Calculations at a large number of energy points which make no use of analytical formulae for resonance structures may be made less extravagant in computer time by the development of more efficient asymptotic methods. (U.K.)
Grassmann scalar fields and asymptotic freedom
Energy Technology Data Exchange (ETDEWEB)
Palumbo, F [INFN, Laboratori Nazionali di Frascati, Rome (Italy)
1996-03-01
The authors extend previous results about scalar fields whose Fourier components are even elements of a Grassmann algebra with given index of nilpotency. Their main interest in particle physics is related to the possibility that they describe fermionic composites analogous to the Copper pairs of superconductivity. The authors evaluate the free propagators for arbitrary index of nilpotency and they investigate a {phi}{sup 4} model to one loop. Due to the nature of the integral over even Grassmann fields such as a model exists for repulsive as well as attractive self interaction. In the first case the {beta}-function is equal to that of the ordinary theory, while in the second one the model is asymptotically free. The bare mass has a peculiar dependence on the cutoff, being quadratically decreasing/increasing for attractive/repulsive self interaction.
Asymptotic Sharpness of Bounds on Hypertrees
Directory of Open Access Journals (Sweden)
Lin Yi
2017-08-01
Full Text Available The hypertree can be defined in many different ways. Katona and Szabó introduced a new, natural definition of hypertrees in uniform hypergraphs and investigated bounds on the number of edges of the hypertrees. They showed that a k-uniform hypertree on n vertices has at most (nk−1$\\left( {\\matrix{n \\cr {k - 1} } } \\right$ edges and they conjectured that the upper bound is asymptotically sharp. Recently, Szabó verified that the conjecture holds by recursively constructing an infinite sequence of k-uniform hypertrees and making complicated analyses for it. In this note we give a short proof of the conjecture by directly constructing a sequence of k-uniform k-hypertrees.
Asymptotic safety, singularities, and gravitational collapse
International Nuclear Information System (INIS)
Casadio, Roberto; Hsu, Stephen D.H.; Mirza, Behrouz
2011-01-01
Asymptotic safety (an ultraviolet fixed point with finite-dimensional critical surface) offers the possibility that a predictive theory of quantum gravity can be obtained from the quantization of classical general relativity. However, it is unclear what becomes of the singularities of classical general relativity, which, it is hoped, might be resolved by quantum effects. We study dust collapse with a running gravitational coupling and find that a future singularity can be avoided if the coupling becomes exactly zero at some finite energy scale. The singularity can also be avoided (pushed off to infinite proper time) if the coupling approaches zero sufficiently rapidly at high energies. However, the evolution deduced from perturbation theory still implies a singularity at finite proper time.
Asymptotic limits of a statistical transport description
International Nuclear Information System (INIS)
Malvagi, F.; Levermore, C.D.; Pomraning, G.C.; Department of Mathematics, University of Arizona, Tucson, AZ 85721)
1989-01-01
We consider three different asymptotic limits of a model describing linear particle transport in a stochastic medium consisting of two randomly mixed immiscible fluids. These three limits are: (1) the fluid packets are small compared to the particle mean free path in the packet; (2) a small amount of large cross section fluid is admixed with a large amount of small cross section fluid; and (3) the angular dependence of the intensity (angular flux) is nearly isotropic. The first two limits reduce the underlying model, which consists of two coupled transport equations, to a single transport equation of the usual form. The third limit yields a two-equation diffusion approximation, and a boundary layer analysis gives boundary conditions for these two coupled diffusion equations
Charge exchange with ion excitation: asymptotic theory
International Nuclear Information System (INIS)
Ivakin, I.A.; Karbovanets, M.I.; Ostrovskii, V.N.
1987-01-01
There is developed an asymptotic (with respect to the large internuclear separation R) theory for computing the matrix element of the exchange interaction between states of quasimolecules, which is responsible for charge transfer with ion excitation: B + +A→B+A + *. A semiclassical approximation is used, which enables one to apply the theory to processes with the participation of multiply charged ions. The case of s--s transitions for excitation of the ion A + →A + *, where it is appropriate to take into account the distortion of the wave functions of the ion A + by the particle B, is treated separately. Calculations of cross sections and comparison with the results of experiments for He + --Cd and Ne + --Mg collisions at thermal energies are given. It is shown that it is impossible to explain the experimental data by the interaction of terms of the quasimolecules at large R only, and a possible mechanism for populating at small R is proposed
Directory of Open Access Journals (Sweden)
Masato Shinjo
2015-12-01
Full Text Available The Hankel determinant appears in representations of solutions to several integrable systems. An asymptotic expansion of the Hankel determinant thus plays a key role in the investigation of asymptotic analysis of such integrable systems. This paper presents an asymptotic expansion formula of a certain Casorati determinant as an extension of the Hankel case. This Casorati determinant is then shown to be associated with the solution to the discrete hungry Lotka–Volterra (dhLV system, which is an integrable variant of the famous prey–predator model in mathematical biology. Finally, the asymptotic behavior of the dhLV system is clarified using the expansion formula for the Casorati determinant.
Lattice quantum gravity and asymptotic safety
Laiho, J.; Bassler, S.; Coumbe, D.; Du, D.; Neelakanta, J. T.
2017-09-01
We study the nonperturbative formulation of quantum gravity defined via Euclidean dynamical triangulations (EDT) in an attempt to make contact with Weinberg's asymptotic safety scenario. We find that a fine-tuning is necessary in order to recover semiclassical behavior. Such a fine-tuning is generally associated with the breaking of a target symmetry by the lattice regulator; in this case we argue that the target symmetry is the general coordinate invariance of the theory. After introducing and fine-tuning a nontrivial local measure term, we find no barrier to taking a continuum limit, and we find evidence that four-dimensional, semiclassical geometries are recovered at long distance scales in the continuum limit. We also find that the spectral dimension at short distance scales is consistent with 3 /2 , a value that could resolve the tension between asymptotic safety and the holographic entropy scaling of black holes. We argue that the number of relevant couplings in the continuum theory is one, once symmetry breaking by the lattice regulator is accounted for. Such a theory is maximally predictive, with no adjustable parameters. The cosmological constant in Planck units is the only relevant parameter, which serves to set the lattice scale. The cosmological constant in Planck units is of order 1 in the ultraviolet and undergoes renormalization group running to small values in the infrared. If these findings hold up under further scrutiny, the lattice may provide a nonperturbative definition of a renormalizable quantum field theory of general relativity with no adjustable parameters and a cosmological constant that is naturally small in the infrared.
Dujardin, G. M.
2009-01-01
This paper deals with the asymptotic behaviour of the solutions of linear initial boundary value problems with constant coefficients on the half-line and on finite intervals. We assume that the boundary data are periodic in time and we investigate
Directory of Open Access Journals (Sweden)
Cai Gang
2009-01-01
Full Text Available We introduce two modifications of the Mann iteration, by using the hybrid methods, for equilibrium and fixed point problems for an infinite family of asymptotically nonexpansive mappings in a Hilbert space. Then, we prove that such two sequences converge strongly to a common element of the set of solutions of an equilibrium problem and the set of common fixed points of an infinite family of asymptotically nonexpansive mappings. Our results improve and extend the results announced by many others.
Numerical algorithms for uniform Airy-type asymptotic expansions
N.M. Temme (Nico)
1997-01-01
textabstractAiry-type asymptotic representations of a class of special functions are considered from a numerical point of view. It is well known that the evaluation of the coefficients of the asymptotic series near the transition point is a difficult problem. We discuss two methods for computing
H. David Politzer, Asymptotic Freedom, and Strong Interaction
dropdown arrow Site Map A-Z Index Menu Synopsis H. David Politzer, Asymptotic Freedom, and Strong Interaction Resources with Additional Information H. David Politzer Photo Credit: California Institute of Technology H. David Politzer has won the 2004 Nobel Prize in Physics 'for the discovery of asymptotic freedom
Conformal Phase Diagram of Complete Asymptotically Free Theories
DEFF Research Database (Denmark)
Pica, Claudio; Ryttov, Thomas A.; Sannino, Francesco
2017-01-01
function. We provide the general conditions that the beta function coefficients must abide for the theory to be completely asymptotically free while simultaneously possessing an infrared stable fixed point. We also uncover special trajectories in coupling space along which some couplings are both...... asymptotically safe and infrared conformal....
Regge asymptotics of scattering with flavour exchange in QCD
International Nuclear Information System (INIS)
Kirschner, R.
1994-06-01
The contribution to the perturbative Regge asymptotics of the exchange of two reggeized fermions with opposite helicity is investigated. The methods of conformal symmetry known for the case of gluon exchange are extended to this case where double-logarithmic contributions dominate the asymptotics. The Regge trajectories at large momentum transfer are calculated. (orig.)
Asymptotic expansions for high-contrast linear elasticity
Poveda, Leonardo A.; Huepo, Sebastian; Calo, Victor M.; Galvis, Juan
2015-01-01
We study linear elasticity problems with high contrast in the coefficients using asymptotic limits recently introduced. We derive an asymptotic expansion to solve heterogeneous elasticity problems in terms of the contrast in the coefficients. We study the convergence of the expansion in the H1 norm. © 2015 Elsevier B.V.
Error estimates in horocycle averages asymptotics: challenges from string theory
Cardella, M.A.
2010-01-01
For modular functions of rapid decay, a classical result connects the error estimate in their long horocycle average asymptotic to the Riemann hypothesis. We study similar asymptotics, for modular functions with not that mild growing conditions, such as of polynomial growth and of exponential growth
An asymptotic formula of the divergent bilateral basic hypergeometric series
Morita, Takeshi
2012-01-01
We show an asymptotic formula of the divergent bilateral basic hypergeometric series ${}_1\\psi_0 (a;-;q,\\cdot)$ with using the $q$-Borel-Laplace method. We also give the limit $q\\to 1-0$ of our asymptotic formula.
Asymptotic representation theorems for poverty indices | Lo | Afrika ...
African Journals Online (AJOL)
Abstract. We set general conditions under which the general poverty index, which summarizes all the available indices, is asymptotically represented with some empirical processes. This representation theorem offers a general key, in most directions, for the asymptotic of the bulk of poverty indices and issues in poverty ...
Some asymptotic properties of functions holomorphic in tubular domains
International Nuclear Information System (INIS)
Zavialov, B.I.
1988-10-01
For the function holomorphic in curved tubular domain the connection between asymptotic behaviour of real part of its boundary value at a given point of base manifold and asymptotic behaviour of the whole function from the inside of this domain is studied. (author). 3 refs
Asymptotic expansions for high-contrast linear elasticity
Poveda, Leonardo A.
2015-03-01
We study linear elasticity problems with high contrast in the coefficients using asymptotic limits recently introduced. We derive an asymptotic expansion to solve heterogeneous elasticity problems in terms of the contrast in the coefficients. We study the convergence of the expansion in the H1 norm. © 2015 Elsevier B.V.
Asymptotic time dependent neutron transport in multidimensional systems
International Nuclear Information System (INIS)
Nagy, M.E.; Sawan, M.E.; Wassef, W.A.; El-Gueraly, L.A.
1983-01-01
A model which predicts the asymptotic time behavior of the neutron distribution in multi-dimensional systems is presented. The model is based on the kernel factorization method used for stationary neutron transport in a rectangular parallelepiped. The accuracy of diffusion theory in predicting the asymptotic time dependence is assessed. The use of neutron pulse experiments for predicting the diffusion parameters is also investigated
Inverted hierarchy and asymptotic freedom in grand unified supersymmetric theories
International Nuclear Information System (INIS)
Aratyn, H.
1983-01-01
The interrelation between an inverted hierarchy mechanism and asymptotic freedom in supersymmetric theories is analyzed in two models for which we performed a detailed analysis of the effective potentials and effective couplings. We find it difficult to accommodate an inverted hierarchy together with asymptotic freedom for the matter-Yukawa couplings. (orig.)
Szegö Kernels and Asymptotic Expansions for Legendre Polynomials
Directory of Open Access Journals (Sweden)
Roberto Paoletti
2017-01-01
Full Text Available We present a geometric approach to the asymptotics of the Legendre polynomials Pk,n+1, based on the Szegö kernel of the Fermat quadric hypersurface, leading to complete asymptotic expansions holding on expanding subintervals of [-1,1].
On asymptotic continuity of functions of quantum states
International Nuclear Information System (INIS)
Synak-Radtke, Barbara; Horodecki, Michal
2006-01-01
A useful kind of continuity of quantum states functions in asymptotic regime is so-called asymptotic continuity. In this letter, we provide general tools for checking if a function possesses this property. First we prove equivalence of asymptotic continuity with so-called robustness under admixture. This allows us to show that relative entropy distance from a convex set including a maximally mixed state is asymptotically continuous. Subsequently, we consider arrowing-a way of building a new function out of a given one. The procedure originates from constructions of intrinsic information and entanglement of formation. We show that arrowing preserves asymptotic continuity for a class of functions (so-called subextensive ones). The result is illustrated by means of several examples. (letter to the editor)
Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices
Böttcher, A.; Bogoya, J. M.; Grudsky, S. M.; Maximenko, E. A.
2017-11-01
Analysis of the asymptotic behaviour of the spectral characteristics of Toeplitz matrices as the dimension of the matrix tends to infinity has a history of over 100 years. For instance, quite a number of versions of Szegő's theorem on the asymptotic behaviour of eigenvalues and of the so-called strong Szegő theorem on the asymptotic behaviour of the determinants of Toeplitz matrices are known. Starting in the 1950s, the asymptotics of the maximum and minimum eigenvalues were actively investigated. However, investigation of the individual asymptotics of all the eigenvalues and eigenvectors of Toeplitz matrices started only quite recently: the first papers on this subject were published in 2009-2010. A survey of this new field is presented here. Bibliography: 55 titles.
An Optimal Homotopy Asymptotic Approach Applied to Nonlinear MHD Jeffery-Hamel Flow
Directory of Open Access Journals (Sweden)
Vasile Marinca
2011-01-01
Full Text Available A simple and effective procedure is employed to propose a new analytic approximate solution for nonlinear MHD Jeffery-Hamel flow. This technique called the Optimal Homotopy Asymptotic Method (OHAM does not depend upon any small/large parameters and provides us with a convenient way to control the convergence of the solution. The examples given in this paper lead to the conclusion that the accuracy of the obtained results is growing along with increasing the number of constants in the auxiliary function, which are determined using a computer technique. The results obtained through the proposed method are in very good agreement with the numerical results.
Asymptotic equivalence of neutron diffusion and transport in time-independent reactor systems
International Nuclear Information System (INIS)
Borysiewicz, M.; Mika, J.; Spiga, G.
1982-01-01
Presented in this paper is the asymptotic analysis of the time-independent neutron transport equation in the second-order variational formulation. The small parameter introduced into the equation is an estimate of the ratio of absorption and leakage to scattering in the system considered. When the ratio tends to zero, the weak solution to the transport problem tends to the weak solution of the diffusion problem, including properly defined boundary conditions. A formula for the diffusion coefficient different from that based on averaging the transport mean-free-path is derived
Asymptotic and numerical studies of a differential-delay system
Semak, Matthew Richard
A singularly-perturbed differential-delay equation is studied the form of which is seen in various fields. Relaxation effects are combined with nonlinear driving from the past in this system. Having an infinite dimensional phase space, this flow is capable of very interesting behavior. Among the rich aspects of the dynamics of such a relation, period doubling can be observed as parameters are varied. Rigorous proofs concerning the existence of such periodic solutions can be found in the literature. Attention is given to the (first) Hopf bifurcation as the periodic structure is born. Key questions concern the limit of fast relaxation. In this limit, one can analytically understand the development of the periodic solution in the neighborhood of the bifurcation along with the frequency shift which is encountered. This limit also reveals the underlying mapping structure present. In the model studied, this is the logistic map the behavior of which is well-known. Convergence of periodic solutions to the mapping's square wave involves central issues in this work. An analogue to Gibb's phenomenon presents itself as the mapping structure is approached for a certain range of parameters. Transition layers also exist and, together with the latter, present a challenge to various computational approaches. A highly accurate and efficient spectral numerical technique is introduced to properly resolve such behavior in the limit studied. This scheme is used to measure the period's dependence on the relaxation rate in this region of parameter space. Also, numerically assisted asymptotic analysis develops relations for the layers. Moreover, regimes of parameter values have been identified for which there exist extremely long-lived transient states of arbitrarily complex form. Finally, initial interval states are designed which lead to specific long-lived multi-layer patterns of significant complexity. Layer-layer interactions are considered concerning the formation and lifetime of
AdS-like spectrum of the asymptotically Goedel space-times
International Nuclear Information System (INIS)
Konoplya, R. A.; Zhidenko, A.
2011-01-01
A black hole immersed in a rotating universe, described by the Gimon-Hashimoto solution, is tested on stability against scalar field perturbations. Unlike the previous studies on perturbations of this solution, which dealt only with the limit of slow universe rotation j, we managed to separate variables in the perturbation equation for the general case of arbitrary rotation. This leads to qualitatively different dynamics of perturbations, because the exact effective potential does not allow for Schwarzschild-like asymptotic of the wave function in the form of purely outgoing waves. The Dirichlet boundary conditions are allowed instead, which result in a totally different spectrum of asymptotically Goedel black holes: the spectrum of quasinormal frequencies is similar to the one of asymptotically anti-de Sitter black holes. At large and intermediate overtones N, the spectrum is equidistant in N. In the limit of small black holes, quasinormal modes (QNMs) approach the normal modes of the empty Goedel space-time. There is no evidence of instability in the found frequencies, which supports the idea that the existence of closed timelike curves (CTCs) and the onset of instability correlate (if at all) not in a straightforward way.
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Larsen, Edward W.
2004-01-01
The equations of nonlinear, time-dependent radiative transfer are known to yield the equilibrium diffusion equation as the leading-order solution of an asymptotic analysis when the mean-free path and mean-free time of a photon become small. We apply this same analysis to the Fleck-Cummings, Carter-Forest, and N'kaoua Monte Carlo approximations for grey (frequency-independent) radiative transfer. Although Monte Carlo simulation usually does not require the discretizations found in deterministic transport techniques, Monte Carlo methods for radiative transfer require a time discretization due to the nonlinearities of the problem. If an asymptotic analysis of the equations used by a particular Monte Carlo method yields an accurate time-discretized version of the equilibrium diffusion equation, the method should generate accurate solutions if a time discretization is chosen that resolves temperature changes, even if the time steps are much larger than the mean-free time of a photon. This analysis is of interest because in many radiative transfer problems, it is a practical necessity to use time steps that are large compared to a mean-free time. Our asymptotic analysis shows that: (i) the N'kaoua method has the equilibrium diffusion limit, (ii) the Carter-Forest method has the equilibrium diffusion limit if the material temperature change during a time step is small, and (iii) the Fleck-Cummings method does not have the equilibrium diffusion limit. We include numerical results that verify our theoretical predictions
Asymptotic Behaviour and Extinction of Delay Lotka-Volterra Model with Jump-Diffusion
Directory of Open Access Journals (Sweden)
Dan Li
2014-01-01
Full Text Available This paper studies the effect of jump-diffusion random environmental perturbations on the asymptotic behaviour and extinction of Lotka-Volterra population dynamics with delays. The contributions of this paper lie in the following: (a to consider delay stochastic differential equation with jumps, we introduce a proper initial data space, in which the initial data may be discontinuous function with downward jumps; (b we show that the delay stochastic differential equation with jumps associated with our model has a unique global positive solution and give sufficient conditions that ensure stochastically ultimate boundedness, moment average boundedness in time, and asymptotic polynomial growth of our model; (c the sufficient conditions for the extinction of the system are obtained, which generalized the former results and showed that the sufficiently large random jump magnitudes and intensity (average rate of jump events arrival may lead to extinction of the population.
Large-degree asymptotics of rational Painlevé-II functions: noncritical behaviour
International Nuclear Information System (INIS)
Buckingham, Robert J; Miller, Peter D
2014-01-01
Rational solutions of the inhomogeneous Painlevé-II equation and of a related coupled Painlevé-II system have recently arisen in studies of fluid vortices and of the sine-Gordon equation. For the sine-Gordon application in particular it is of interest to understand the large-degree asymptotic behaviour of the rational Painlevé-II functions. We explicitly compute the leading-order large-degree asymptotics of these two families of rational functions valid in the whole complex plane with the exception of a neighbourhood of a certain piecewise-smooth closed curve. We obtain rigorous error bounds by using the Deift–Zhou nonlinear steepest-descent method for Riemann–Hilbert problems. (paper)
Asymptotic conformal invariance in a non-Abelian Chern-Simons-matter model
Energy Technology Data Exchange (ETDEWEB)
Acebal, J.L. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Campos e Particulas]. E-mail: acebal@cbpf.br
2002-08-01
One shows here the existence of solutions to the Callan-Symanzik equation for the non-Abelian SU(2) Chern-Simons-matter model which exhibits asymptotic conformal invariance to every order in perturbative theory. The conformal symmetry in the classical domain is shown to hold by means of a local criteria based on the trace of the energy-momentum tensor. By using recently exhibited regimes for the dependence between the several couplings in which the set of {beta}-functions vanish, the asymptotic conformal invariance of the model appears to be valid in the quantum domain. By considering the SU (n) case the possible non validity of the proof for a particular {eta} would be merely accidental. (author)
Asymptotic expansions for solitary gravity-capillary waves in two and three dimensions
International Nuclear Information System (INIS)
Ablowitz, M J; Haut, T S
2010-01-01
High-order asymptotic series are obtained for gravity-capillary solitary waves, where the first term in the series is the well-known sech 2 solution of the KdV equation. The asymptotic series is used, with nine terms included, to investigate the effects of surface tension on the height and energy of large amplitude waves, and waves close to the solitary version of Stokes' extreme wave. In particular, for surface tension below a critical value, the solitary wave with the maximum energy is obtained. For large surface tension, the series is also used to study the energy related to the solitary waves of depression. Energy considerations suggest that, for large enough surface tension, there are solitary waves that can get close to the fluid bottom. Comparisons are also made with recent experiments.
Black holes and asymptotics of 2+1 gravity coupled to a scalar field
International Nuclear Information System (INIS)
Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo; Zanelli, Jorge
2002-01-01
We consider 2+1 gravity minimally coupled to a self-interacting scalar field. The case in which the fall-off of the fields at infinity is slower than that of a localized distribution of matter is analyzed. It is found that the asymptotic symmetry group remains the same as in pure gravity (i.e., the conformal group). The generators of the asymptotic symmetries, however, acquire a contribution from the scalar field, but the algebra of the canonical generators possesses the standard central extension. In this context, new massive black hole solutions with a regular scalar field are found for a one-parameter family of potentials. These black holes are continuously connected to the standard zero mass black hole
Boundary asymptotics for a non-neutral electrochemistry model with small Debye length
Lee, Chiun-Chang; Ryham, Rolf J.
2018-04-01
This article addresses the boundary asymptotics of the electrostatic potential in non-neutral electrochemistry models with small Debye length in bounded domains. Under standard physical assumptions motivated by non-electroneutral phenomena in oxidation-reduction reactions, we show that the electrostatic potential asymptotically blows up at boundary points with respect to the bulk reference potential as the scaled Debye length tends to zero. The analysis gives a lower bound for the blow-up rate with respect to the model parameters. Moreover, the maximum potential difference over any compact subset of the physical domain vanishes exponentially in the zero-Debye-length limit. The results mathematically confirm the physical description that electrolyte solutions are electrically neutral in the bulk and are strongly electrically non-neutral near charged surfaces.
Zhang, Zhengqiu; Liu, Wenbin; Zhou, Dongming
2012-01-01
In this paper, we first discuss the existence of a unique equilibrium point of a generalized Cohen-Grossberg BAM neural networks of neutral type delays by means of the Homeomorphism theory and inequality technique. Then, by applying the existence result of an equilibrium point and constructing a Lyapunov functional, we study the global asymptotic stability of the equilibrium solution to the above Cohen-Grossberg BAM neural networks of neutral type. In our results, the hypothesis for boundedness in the existing paper, which discussed Cohen-Grossberg neural networks of neutral type on the activation functions, are removed. Finally, we give an example to demonstrate the validity of our global asymptotic stability result for the above neural networks. Copyright © 2011 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Abrashkevich, A.G.; Puzynin, I.V.; Vinitskij, S.I.
1997-01-01
A FORTRAN 77 program is presented which calculates asymptotics of potential curves and adiabatic potentials with an accuracy of O(ρ -2 ) in the framework of the hyperspherical adiabatic (HSA) approach. It is shown that matrix elements of the equivalent operator corresponding to the perturbation ρ -2 have a simple form in the basis of the Coulomb parabolic functions in the body-fixed frame and can be easily computed for high values of total orbital momentum and threshold number. The second-order corrections to the adiabatic curves are obtained as the solutions of the corresponding secular equation. The asymptotic potentials obtained can be used for the calculation of the energy levels and radial wave functions of two-electron systems in the adiabatic and coupled-channel approximations of the HSA approach
A multiscale asymptotic analysis of time evolution equations on the complex plane
Energy Technology Data Exchange (ETDEWEB)
Braga, Gastão A., E-mail: gbraga@mat.ufmg.br [Departamento de Matemática, Universidade Federal de Minas Gerais, Caixa Postal 702, 30161-970 Belo Horizonte, MG (Brazil); Conti, William R. P., E-mail: wrpconti@gmail.com [Departamento de Ciências do Mar, Universidade Federal de São Paulo, Rua Dr. Carvalho de Mendonça 144, 11070-100 Santos, SP (Brazil)
2016-07-15
Using an appropriate norm on the space of entire functions, we extend to the complex plane the renormalization group method as developed by Bricmont et al. The method is based upon a multiscale approach that allows for a detailed description of the long time asymptotics of solutions to initial value problems. The time evolution equation considered here arises in the study of iterations of the block spin renormalization group transformation for the hierarchical N-vector model. We show that, for initial conditions belonging to a certain Fréchet space of entire functions of exponential type, the asymptotics is universal in the sense that it is dictated by the fixed point of a certain operator acting on the space of initial conditions.
Asymptotic behavior of equilibrium states of reaction-diffusion systems with mass conservation
Chern, Jann-Long; Morita, Yoshihisa; Shieh, Tien-Tsan
2018-01-01
We deal with a stationary problem of a reaction-diffusion system with a conservation law under the Neumann boundary condition. It is shown that the stationary problem turns to be the Euler-Lagrange equation of an energy functional with a mass constraint. When the domain is the finite interval (0 , 1), we investigate the asymptotic profile of a strictly monotone minimizer of the energy as d, the ratio of the diffusion coefficient of the system, tends to zero. In view of a logarithmic function in the leading term of the potential, we get to a scaling parameter κ satisfying the relation ε : =√{ d } =√{ log κ } /κ2. The main result shows that a sequence of minimizers converges to a Dirac mass multiplied by the total mass and that by a scaling with κ the asymptotic profile exhibits a parabola in the nonvanishing region. We also prove the existence of an unstable monotone solution when the mass is small.
Comments on the asymptotic treatment of tokamak MHD-stability at large aspect ratio
International Nuclear Information System (INIS)
Rebhan, E.
1980-01-01
In the asymptotic treatment of tokamak MHD stability at small inverse aspect ratio epsilon, the special case of poloidal wave number m=0 has been treated improperly in the literature for both axisymmetric and non-axisymmetric modes. In axisymmetric stability, a contribution to the perturbational vacuum field is either omitted or cancelled. In a variational stability analysis this field contribution provides σ 2 W with a correction term proportional to (1nepsilon) -1 , which may change the asymptotic range of stability and improve agreement with numerical finite-aspect-ratio results. In non-axisymmetric stability, for the perturbational vacuum field of the m=0 modes, usually the wrong of two possible solutions is chosen. It is shown why in many cases this wrong choice has no consequences on the correctness of the stability results, and circumstances are pointed out under which consequences may arise. (author)
DEFF Research Database (Denmark)
Jensen, Tom Nørgaard; Wisniewski, Rafal
2014-01-01
An industrial case study involving a large-scale hydraulic network underlying a district heating system subject to structural changes is considered. The problem of controlling the pressure drop across the so-called end-user valves in the network to a designated vector of reference values under...... directional actuator constraints is addressed. The proposed solution consists of a set of decentralized positively constrained proportional control actions. The results show that the closed-loop system always has a globally asymptotically stable equilibrium point independently on the number of end......-users. Furthermore, by a proper design of controller gains the closed-loop equilibrium point can be designed to belong to an arbitrarily small neighborhood of the desired equilibrium point. Since there exists a globally asymptotically stable equilibrium point independently on the number of end-users in the system...
Asymptotic analysis to the effect of temperature gradient on the propagation of triple flames
Al-Malki, Faisal
2018-05-01
We study asymptotically in this paper the influence of the temperature gradient across the mixing layer on the propagation triple flames formed inside a porous wall channel. The study begins by formulating the problem mathematically using the thermo-diffusive model and then presents a thorough asymptotic analysis of the problem in the limit of large activation energy and thin flames. Analytical formulae for the local burning speed, the flame shape and the propagation speed in terms of the temperature gradient parameter have been derived. It was shown that varying the feed temperatures can significantly enhance the burning of the reactants up to a critical threshold, beyond which no solutions can be obtained. In addition, the study showed that increasing the temperature at the boundaries will modify the usual triple structure of the flame by inverting the upper premixed branch and extending it to the boundary, which may have great implications on the safety of the adopted combustion chambers.
International Nuclear Information System (INIS)
Hoenselaers, C.; Kinnersley, W.; Xanthopoulos, B.C.
1979-01-01
A new series of transformations is presented for generating stationary axially symmetric asymptotically flat vacuum solutions of Einstein's equations. The application requires only algebraic manipulations to be performed. Several examples are given of new stationary axisymmetric solutions obtained in this way. It is conjectured that the transformations, applied to the genral Weyl metric, can be used to generate systematically all stationary metrics with axial symmetry
The time-dependent simplified P2 equations: Asymptotic analyses and numerical experiments
International Nuclear Information System (INIS)
Shin, U.; Miller, W.F. Jr.
1998-01-01
Using an asymptotic expansion, the authors found that the modified time-dependent simplified P 2 (SP 2 ) equations are robust, high-order, asymptotic approximations to the time-dependent transport equation in a physical regime in which the conventional time-dependent diffusion equation is the leading-order approximation. Using diffusion limit analysis, they also asymptotically compared three competitive time-dependent equations (the telegrapher's equation, the time-dependent SP 2 equations, and the time-dependent simplified even-parity equation). As a result, they found that the time-dependent SP 2 equations contain higher-order asymptotic approximations to the time-dependent transport equation than the other competitive equations. The numerical results confirm that, in the vast majority of cases, the time-dependent SP 2 solutions are significantly more accurate than the time-dependent diffusion and the telegrapher's solutions. They have also shown that the time-dependent SP 2 equations have excellent characteristics such as rotational invariance (which means no ray effect), good diffusion limit behavior, guaranteed positivity in diffusive regimes, and significant accuracy, even in deep-penetration problems. Through computer-running-time tests, they have shown that the time-dependent SP 2 equations can be solved with significantly less computational effort than the conventionally used, time-dependent S N equations (for N > 2) and almost as fast as the time-dependent diffusion equation. From all these results, they conclude that the time-dependent SP 2 equations should be considered as an important competitor for an improved approximately transport equations solver. Such computationally efficient time-dependent transport models are important for problems requiring enhanced computational efficiency, such as neutronics/fluid-dynamics coupled problems that arise in the analyses of hypothetical nuclear reactor accidents
Asymptotic analysis of an ion extraction model
International Nuclear Information System (INIS)
Ben Abdallah, N.; Mas-Gallic, S.; Raviart, P.A.
1993-01-01
A simple model for ion extraction from a plasma is analyzed. The order of magnitude of the plasma parameters leads to a singular perturbation problem for a semilinear elliptic equation. We first prove existence of solutions for the perturbed problem and uniqueness under certain conditions. Then we prove the convergence of these solutions, when the parameters go to zero, towards the solution of a Child-Langmuir problem
Asymptotics of quantum weighted Hurwitz numbers
Harnad, J.; Ortmann, Janosch
2018-06-01
This work concerns both the semiclassical and zero temperature asymptotics of quantum weighted double Hurwitz numbers. The partition function for quantum weighted double Hurwitz numbers can be interpreted in terms of the energy distribution of a quantum Bose gas with vanishing fugacity. We compute the leading semiclassical term of the partition function for three versions of the quantum weighted Hurwitz numbers, as well as lower order semiclassical corrections. The classical limit is shown to reproduce the simple single and double Hurwitz numbers studied by Okounkov and Pandharipande (2000 Math. Res. Lett. 7 447–53, 2000 Lett. Math. Phys. 53 59–74). The KP-Toda τ-function that serves as generating function for the quantum Hurwitz numbers is shown to have the τ-function of Okounkov and Pandharipande (2000 Math. Res. Lett. 7 447–53, 2000 Lett. Math. Phys. 53 59–74) as its leading term in the classical limit, and, with suitable scaling, the same holds for the partition function, the weights and expectations of Hurwitz numbers. We also compute the zero temperature limit of the partition function and quantum weighted Hurwitz numbers. The KP or Toda τ-function serving as generating function for the quantum Hurwitz numbers are shown to give the one for Belyi curves in the zero temperature limit and, with suitable scaling, the same holds true for the partition function, the weights and the expectations of Hurwitz numbers.
ASYMPTOTIC STRUCTURE OF POYNTING-DOMINATED JETS
International Nuclear Information System (INIS)
Lyubarsky, Yuri
2009-01-01
In relativistic, Poynting-dominated outflows, acceleration and collimation are intimately connected. An important point is that the Lorentz force is nearly compensated by the electric force; therefore the acceleration zone spans a large range of scales. We derived the asymptotic equations describing relativistic, axisymmetric magnetohydrodynamic flows far beyond the light cylinder. These equations do not contain either intrinsic small scales (like the light cylinder radius) or terms that nearly cancel each other (like the electric and magnetic forces); therefore they could be easily solved numerically. They also suit well for qualitative analysis of the flow and, in many cases, they could even be solved analytically or semianalytically. We show that there are generally two collimation regimes. In the first regime, the residual of the hoop stress and the electric force is counterbalanced by the pressure of the poloidal magnetic field so that, at any distance from the source, the structure of the flow is the same as the structure of an appropriate cylindrical equilibrium configuration. In the second regime, the pressure of the poloidal magnetic field is negligibly small so that the flow could be conceived as composed from coaxial magnetic loops. In the two collimation regimes, the flow is accelerated in different ways. We study in detail the structure of jets confined by the external pressure with a power-law profile. In particular, we obtained simple scalings for the extent of the acceleration zone, for the terminal Lorentz factor, and for the collimation angle.
Asymptotic laws for random knot diagrams
Chapman, Harrison
2017-06-01
We study random knotting by considering knot and link diagrams as decorated, (rooted) topological maps on spheres and pulling them uniformly from among sets of a given number of vertices n, as first established in recent work with Cantarella and Mastin. The knot diagram model is an exciting new model which captures both the random geometry of space curve models of knotting as well as the ease of computing invariants from diagrams. We prove that unknot diagrams are asymptotically exponentially rare, an analogue of Sumners and Whittington’s landmark result for self-avoiding polygons. Our proof uses the same key idea: we first show that knot diagrams obey a pattern theorem, which describes their fractal structure. We examine how quickly this behavior occurs in practice. As a consequence, almost all diagrams are asymmetric, simplifying sampling from this model. We conclude with experimental data on knotting in this model. This model of random knotting is similar to those studied by Diao et al, and Dunfield et al.
Wall roughness induces asymptotic ultimate turbulence
Zhu, Xiaojue; Verschoof, Ruben A.; Bakhuis, Dennis; Huisman, Sander G.; Verzicco, Roberto; Sun, Chao; Lohse, Detlef
2018-04-01
Turbulence governs the transport of heat, mass and momentum on multiple scales. In real-world applications, wall-bounded turbulence typically involves surfaces that are rough; however, characterizing and understanding the effects of wall roughness on turbulence remains a challenge. Here, by combining extensive experiments and numerical simulations, we examine the paradigmatic Taylor-Couette system, which describes the closed flow between two independently rotating coaxial cylinders. We show how wall roughness greatly enhances the overall transport properties and the corresponding scaling exponents associated with wall-bounded turbulence. We reveal that if only one of the walls is rough, the bulk velocity is slaved to the rough side, due to the much stronger coupling to that wall by the detaching flow structures. If both walls are rough, the viscosity dependence is eliminated, giving rise to asymptotic ultimate turbulence—the upper limit of transport—the existence of which was predicted more than 50 years ago. In this limit, the scaling laws can be extrapolated to arbitrarily large Reynolds numbers.
Qualitative and Asymptotic Theory of Detonations
Faria, Luiz
2014-11-09
Shock waves in reactive media possess very rich dynamics: from formation of cells in multiple dimensions to oscillating shock fronts in one-dimension. Because of the extreme complexity of the equations of combustion theory, most of the current understanding of unstable detonation waves relies on extensive numerical simulations of the reactive compressible Euler/Navier-Stokes equations. Attempts at a simplified theory have been made in the past, most of which are very successful in describing steady detonation waves. In this work we focus on obtaining simplified theories capable of capturing not only the steady, but also the unsteady behavior of detonation waves. The first part of this thesis is focused on qualitative theories of detonation, where ad hoc models are proposed and analyzed. We show that equations as simple as a forced Burgers equation can capture most of the complex phenomena observed in detonations. In the second part of this thesis we focus on rational theories, and derive a weakly nonlinear model of multi-dimensional detonations. We also show, by analysis and numerical simulations, that the asymptotic equations provide good quantitative predictions.
Asymptotics of Heavy-Meson Form Factors
Grozin, A.G.; Grozin, Andrey G.; Neubert, Matthias
1997-01-01
Using methods developed for hard exclusive QCD processes, we calculate the asymptotic behaviour of heavy-meson form factors at large recoil. It is determined by the leading- and subleading-twist meson wave functions. For $1\\ll |v\\cdot v'|\\ll m_Q/\\Lambda$, the form factors are dominated by the Isgur--Wise function, which is determined by the interference between the wave functions of leading and subleading twist. At $|v\\cdot v'|\\gg m_Q/\\Lambda$, they are dominated by two functions arising at order $1/m_Q$ in the heavy-quark expansion, which are determined by the leading-twist wave function alone. The sum of these contributions describes the form factors in the whole region $|v\\cdot v'|\\gg 1$. As a consequence, there is an exact zero in the form factor for the scattering of longitudinally polarized $B^*$ mesons at some value $v\\cdot v'\\sim m_b/\\Lambda$, and an approximate zero in the form factor of $B$ mesons in the timelike region ($v\\cdot v'\\sim -m_b/\\Lambda$). We obtain the evolution equations and sum rules ...
Special solutions of neutral functional differential equations
Directory of Open Access Journals (Sweden)
Győri István
2001-01-01
Full Text Available For a system of nonlinear neutral functional differential equations we prove the existence of an -parameter family of "special solutions" which characterize the asymptotic behavior of all solutions at infinity. For retarded functional differential equations the special solutions used in this paper were introduced by Ryabov.
Global asymptotic stability of density dependent integral population projection models.
Rebarber, Richard; Tenhumberg, Brigitte; Townley, Stuart
2012-02-01
Many stage-structured density dependent populations with a continuum of stages can be naturally modeled using nonlinear integral projection models. In this paper, we study a trichotomy of global stability result for a class of density dependent systems which include a Platte thistle model. Specifically, we identify those systems parameters for which zero is globally asymptotically stable, parameters for which there is a positive asymptotically stable equilibrium, and parameters for which there is no asymptotically stable equilibrium. Copyright © 2011 Elsevier Inc. All rights reserved.
Asymptotically double lacunry equivalent sequences defined by Orlicz functions
Directory of Open Access Journals (Sweden)
Ayhan Esi
2014-04-01
Full Text Available This paper presents the following definition which is natural combition of the definition for asymptotically equivalent and Orlicz function. The two nonnegative double sequences x=(x_{k,l} and y=(y_{k,l} are said to be M-asymptotically double equivalent to multiple L provided that for every ε>0, P-lim_{k,l}M(((|((x_{k,l}/(y_{k,l}-L|/ρ=0, for some ρ>0, (denoted by x∽y and simply M-asymptotically double equivalent if L=1. Also we give some new concepts related to this definition and some inclusion theorems.
Asymptotic failure rate of a continuously monitored system
International Nuclear Information System (INIS)
Grall, A.; Dieulle, L.; Berenguer, C.; Roussignol, M.
2006-01-01
This paper deals with a perfectly continuously monitored system which gradually and stochastically deteriorates. The system is renewed by a delayed maintenance operation, which is triggered when the measured deterioration level exceeds an alarm threshold. A mathematical model is developed to study the asymptotic behavior of the reliability function. A procedure is proposed which allows us to identify the asymptotic failure rate of the maintained system. Numerical experiments illustrate the efficiency of the proposed procedure and emphasize the relevance of the asymptotic failure rate as an interesting indicator for the evaluation of the control-limit preventive replacement policy
Asymptotic failure rate of a continuously monitored system
Energy Technology Data Exchange (ETDEWEB)
Grall, A. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: antoine.grall@utt.fr; Dieulle, L. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: laurence.dieulle@utt.fr; Berenguer, C. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: christophe.berenguer@utt.fr; Roussignol, M. [Laboratoire d' Analyse et de Mathematiques Appliquees, Universite de Marne la Vallee, 5 bd Descartes, Champs sur Marne, 77454 Marne la Vallee, Cedex 2 (France)]. E-mail: michel.roussignol@univ-mlv.fr
2006-02-01
This paper deals with a perfectly continuously monitored system which gradually and stochastically deteriorates. The system is renewed by a delayed maintenance operation, which is triggered when the measured deterioration level exceeds an alarm threshold. A mathematical model is developed to study the asymptotic behavior of the reliability function. A procedure is proposed which allows us to identify the asymptotic failure rate of the maintained system. Numerical experiments illustrate the efficiency of the proposed procedure and emphasize the relevance of the asymptotic failure rate as an interesting indicator for the evaluation of the control-limit preventive replacement policy.
On asymptotic analysis of spectral problems in elasticity
Directory of Open Access Journals (Sweden)
S.A. Nazarov
Full Text Available The three-dimensional spectral elasticity problem is studied in an anisotropic and inhomogeneous solid with small defects, i.e., inclusions, voids, and microcracks. Asymptotics of eigenfrequencies and the corresponding elastic eigenmodes are constructed and justified. New technicalities of the asymptotic analysis are related to variable coefficients of differential operators, vectorial setting of the problem, and usage of intrinsic integral characteristics of defects. The asymptotic formulae are developed in a form convenient for application in shape optimization and inverse problems.
Asymptotics for the Kummer function of Bose plasmas
International Nuclear Information System (INIS)
Kowalenko, V.; Frankel, N.E.
1993-01-01
The asymptotic expansions for the Kummer function obtained in the study of the linear response of magnetised Bose plasmas at T = 0 K are presented for large and small values of its parameter, thereby displaying the function's asymptotic non-uniformity. The large parameter expansion plays a determining role in the behaviour of these Bose systems in the limit that the external magnetic field B →0. This particular expansion is generalised herein and its validity tested by determining the asymptotic expansion for the Hurwitz zeta function. 18 refs., 1 tab., 2 figs
Asymptotic properties of solvable PT-symmetric potentials
International Nuclear Information System (INIS)
Levai, G.
2010-01-01
states. The examples included the Scarf II potential V(x) = - V 1 /cosh 2 x + iV 2 sinhx/cosh 2 x; (1) the Rosen-Morse II potential V(x) -V 1 /cosh 2 (x) + iV 3 tanh(x) (2) and the Coulomb potential V(x) = iZ/t + l(l + 1)/t 2 . (3) Potentials (1) and (2) are both defined on the real x axis, and their real components have the same form, while potential (3) is defined on a U-shaped trajectory running on both sides of the imaginary x axis encircling the origin. Despite these circumstances, we found that the bound-state properties of potential (1) show more similarity with those of (3) than with those of (2). The former two systems possess strictly negative-energy bound states that are characterized by the q = ±1 quantum number. Reaching a critical value of V 2 - V 1 and l the spontaneous breakdown of PT symmetry occurs and the bound states with opposite q merge pairwise and their energy eigenvalues turn complex for arbitrary value of the n principal quantum number. In contrast, the energy eigenvalues of potential (2) stay real for arbitrary value of V 1 and V 3 and do not carry the q quantum number. The spontaneous breakdown of PT symmetry does not occur in this case, rather with increasing non-hermeticity the energy eigenvalues are gradually shifted to the positive domain. The properties of potential (2) are reminiscent of the purely imaginary ix 3 potential, the classic example of PT-symmetric quantum mechanics. The marked differences described above, which, however, do not show up in the scattering solutions, might be due to the asymptotically dominant and non-vanishing imaginary component in (2).
Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes
Cortázar, Carmen; Elgueta, Manuel; Quirós, Fernando; Wolanski, Noemí
2012-08-01
The paper deals with the asymptotic behavior of solutions to a non-local diffusion equation, u t = J* u- u := Lu, in an exterior domain, Ω, which excludes one or several holes, and with zero Dirichlet data on {R^NsetminusΩ} . When the space dimension is three or more this behavior is given by a multiple of the fundamental solution of the heat equation away from the holes. On the other hand, if the solution is scaled according to its decay factor, close to the holes it behaves like a function that is L-harmonic, Lu = 0, in the exterior domain and vanishes in its complement. The height of such a function at infinity is determined through a matching procedure with the multiple of the fundamental solution of the heat equation representing the outer behavior. The inner and the outer behaviors can be presented in a unified way through a suitable global approximation.
One Monopole-Antimonopole Pair Solutions
International Nuclear Information System (INIS)
Teh, Rosy; Wong, K.-M.
2009-01-01
We present new classical generalized one monopole-antimonopole pair solutions of the SU(2) Yang-Mills-Higgs theory with the Higgs field in the adjoint representation. We show that in general the one monopole-antimonopole solution need not be solved by imposing mθ-winding number to be integer greater than one. We also show that this solution can be solved when m = 1 by transforming the large distance asymptotic solutions to general solutions that depend on a parameter p. Secondly we show that these large distance asymptotic solutions can be further generalized to the Jacobi elliptic functions. We focus our numerical calculation on the Jacobi elliptic functions solution when the nφ-winding number is one and show that this generalized Jacobi elliptic 1-MAP solution possesses lower energy. All these solutions are numerical finite energy non-BPS solutions of the Yang-Mills-Higgs field theory.
On approach to double asymptotic scaling at low x
International Nuclear Information System (INIS)
Choudhury, D.K.
1994-10-01
We obtain the finite x correlations to the gluon structure function which exhibits double asymptotic scaling at low x. The technique used is the GLAP equation for gluon approximated at low x by a Taylor expansion. (author). 27 refs
Confinement and asymptotic freedom seen with a golden eye
International Nuclear Information System (INIS)
Elokaby, A.
2009-01-01
The present short note is an attempt to reconcile the current conventional understanding of quarks confinement and asymptotic freedom with the results found by El Naschie using the exact renormalization equation of his quantum golden field theory.
Asymptotic distribution of products of sums of independent random ...
Indian Academy of Sciences (India)
integrable random variables (r.v.) are asymptotically log-normal. This fact ... the product of the partial sums of i.i.d. positive random variables as follows. .... Now define ..... by Henan Province Foundation and Frontier Technology Research Plan.
Preheating in an asymptotically safe quantum field theory
DEFF Research Database (Denmark)
Svendsen, Ole; Moghaddam, Hossein Bazrafshan; Brandenberger, Robert
2016-01-01
. High Energy Phys. 01 (2016) 081]. These theories allow for an inflationary phase in the very early universe. Inflation ends with a period of reheating. Since the models contain many scalar fields which are intrinsically coupled to the inflaton there is the possibility of parametric resonance...... fluctuations induced by the parametrically amplified entropy modes do not exceed the upper observational bounds puts a lower bound on the number of fields which the model followed in [D. F. Litim and F. Sannino, Asymptotic safety guaranteed, J. High Energy Phys. 12 (2014) 178; D. F. Litim, M. Mojaza, and F......We consider reheating in a class of asymptotically safe quantum field theories recently studied in [D. F. Litim and F. Sannino, Asymptotic safety guaranteed, J. High Energy Phys. 12 (2014) 178; D. F. Litim, M. Mojaza, and F. Sannino, Vacuum stability of asymptotically safe gauge-Yukawa theories, J...
Pseudo-random number generator based on asymptotic deterministic randomness
Wang, Kai; Pei, Wenjiang; Xia, Haishan; Cheung, Yiu-ming
2008-06-01
A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks.
Pseudo-random number generator based on asymptotic deterministic randomness
International Nuclear Information System (INIS)
Wang Kai; Pei Wenjiang; Xia Haishan; Cheung Yiuming
2008-01-01
A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks
Asymptotic behavior of quark masses induced by instantons
International Nuclear Information System (INIS)
Carneiro, C.E.I.; Frenkel, J.
1984-02-01
A simple argument which shows that the dynamical mass induced by interactions of massless quarks with pseudo-particle configurations, behaves like p -6 for asymptotically large quark momenta is presented. (Author) [pt
Robust methods and asymptotic theory in nonlinear econometrics
Bierens, Herman J
1981-01-01
This Lecture Note deals with asymptotic properties, i.e. weak and strong consistency and asymptotic normality, of parameter estimators of nonlinear regression models and nonlinear structural equations under various assumptions on the distribution of the data. The estimation methods involved are nonlinear least squares estimation (NLLSE), nonlinear robust M-estimation (NLRME) and non linear weighted robust M-estimation (NLWRME) for the regression case and nonlinear two-stage least squares estimation (NL2SLSE) and a new method called minimum information estimation (MIE) for the case of structural equations. The asymptotic properties of the NLLSE and the two robust M-estimation methods are derived from further elaborations of results of Jennrich. Special attention is payed to the comparison of the asymptotic efficiency of NLLSE and NLRME. It is shown that if the tails of the error distribution are fatter than those of the normal distribution NLRME is more efficient than NLLSE. The NLWRME method is appropriate ...
Path integral representation of Lorentzian spinfoam model, asymptotics and simplicial geometries
International Nuclear Information System (INIS)
Han, Muxin; Krajewski, Thomas
2014-01-01
A new path integral representation of Lorentzian Engle–Pereira–Rovelli–Livine spinfoam model is derived by employing the theory of unitary representation of SL(2,C). The path integral representation is taken as a starting point of semiclassical analysis. The relation between the spinfoam model and classical simplicial geometry is studied via the large-spin asymptotic expansion of the spinfoam amplitude with all spins uniformly large. More precisely, in the large-spin regime, there is an equivalence between the spinfoam critical configuration (with certain nondegeneracy assumption) and a classical Lorentzian simplicial geometry. Such an equivalence relation allows us to classify the spinfoam critical configurations by their geometrical interpretations, via two types of solution-generating maps. The equivalence between spinfoam critical configuration and simplical geometry also allows us to define the notion of globally oriented and time-oriented spinfoam critical configuration. It is shown that only at the globally oriented and time-oriented spinfoam critical configuration, the leading-order contribution of spinfoam large-spin asymptotics gives precisely an exponential of Lorentzian Regge action of General Relativity. At all other (unphysical) critical configurations, spinfoam large-spin asymptotics modifies the Regge action at the leading-order approximation. (paper)
Asymptotics for moist deep convection I: refined scalings and self-sustaining updrafts
Hittmeir, Sabine; Klein, Rupert
2018-04-01
Moist processes are among the most important drivers of atmospheric dynamics, and scale analysis and asymptotics are cornerstones of theoretical meteorology. Accounting for moist processes in systematic scale analyses therefore seems of considerable importance for the field. Klein and Majda (Theor Comput Fluid Dyn 20:525-551, 2006) proposed a scaling regime for the incorporation of moist bulk microphysics closures in multiscale asymptotic analyses of tropical deep convection. This regime is refined here to allow for mixtures of ideal gases and to establish consistency with a more general multiple scales modeling framework for atmospheric flows. Deep narrow updrafts, the so-called hot towers, constitute principal building blocks of larger scale storm systems. They are analyzed here in a sample application of the new scaling regime. A single quasi-one-dimensional upright columnar cloud is considered on the vertical advective (or tower life cycle) time scale. The refined asymptotic scaling regime is essential for this example as it reveals a new mechanism for the self-sustainance of such updrafts. Even for strongly positive convectively available potential energy, a vertical balance of buoyancy forces is found in the presence of precipitation. This balance induces a diagnostic equation for the vertical velocity, and it is responsible for the generation of self-sustained balanced updrafts. The time-dependent updraft structure is encoded in a Hamilton-Jacobi equation for the precipitation mixing ratio. Numerical solutions of this equation suggest that the self-sustained updrafts may strongly enhance hot tower life cycles.
Asymptotics for the Fredholm determinant of the sine kernel on a union of intervals
Widom, Harold
1995-07-01
In the bulk scaling limit of the Gaussian Unitary Ensemble of hermitian matrices the probability that an interval of length s contains no eigenvalues is the Fredholm determinant of the sine kernel{sin (x - y)}/{π (x - y)} over this interval. A formal asymptotic expansion for the determinant as s tends to infinity was obtained by Dyson. In this paper we replace a single interval of length s by sJ, where J is a union of m intervals and present a proof of the asymptotics up to second order. The logarithmic derivative with respect to s of the determinant equals a constant (expressible in terms of hyperelliptic integrals) times s, plus a bounded oscillatory function of s (zero if m=1, periodic if m=2, and in general expressible in terms of the solution of a Jacobi inversion problem), plus o(1). Also determined are the asymptotics of the trace of the resolvent operator, which is the ratio in the same model of the probability that the set contains exactly one eigenvalue to the probability that it contains none. The proofs use ideas from orthogonal polynomial theory.
Asymptotically Safe Standard Model Extensions arXiv
Pelaggi, Giulio Maria; Salvio, Alberto; Sannino, Francesco; Smirnov, Juri; Strumia, Alessandro
We consider theories with a large number NF of charged fermions and compute the renormalisation group equations for the gauge, Yukawa and quartic couplings resummed at leading order in NF. We construct extensions of the Standard Model where SU(2) and/or SU(3) are asymptotically safe. When the same procedure is applied to the Abelian U(1) factor, we find that the Higgs quartic can not be made asymptotically safe and stay perturbative at the same time.
Asymptotical behaviour of pion electromagnetic form factor in QCD
International Nuclear Information System (INIS)
Efremov, A.V.; Radyushkin, A.V.
1978-01-01
In the framework of the renormalizable quantum field theory a new approach is developed to the investigation of asymptotical behaviour of two-particle bound state electromagnetic form factor. It is shown that the behaviour of the pion EM form factor in quantum chromodynamics at sufficiently large momentum transfers is controlled by the short-distance dynamics only. The formula is obtained which expresses the asymptotical behaviour of the pion form factor in terms of the fundamental constants of the theory
Non-Asymptotic Confidence Sets for Circular Means
Directory of Open Access Journals (Sweden)
Thomas Hotz
2016-10-01
Full Text Available The mean of data on the unit circle is defined as the minimizer of the average squared Euclidean distance to the data. Based on Hoeffding’s mass concentration inequalities, non-asymptotic confidence sets for circular means are constructed which are universal in the sense that they require no distributional assumptions. These are then compared with asymptotic confidence sets in simulations and for a real data set.
Global asymptotic stability of delayed Cohen-Grossberg neural networks
International Nuclear Information System (INIS)
Wu Wei; Cui Baotong; Huang Min
2007-01-01
In this letter, the global asymptotic stability of a class of Cohen-Grossberg neural networks with time-varying delays is discussed. A new set of sufficient conditions for the neural networks are proposed to guarantee the global asymptotic convergence. Our criteria represent an extension of the existing results in literatures. An example is also presented to compare our results with the previous results
Asymptotic freedom and the symplectic and G2 groups
International Nuclear Information System (INIS)
Chaichian, M; Kolmakov, Yu. N.; Nelipa, N. F.
1978-01-01
It is shown that the symplectic Sp(4), Sp(6) and the exceptional G 2 gauge field theories with complete Spontaneous symmetry breaking through the Higgs mechanism are not asymptotically free. This, together with earlier results for other groups, hints at the existence of a general theorem according to which it would no longer be possible for asymptotic freedom to coexist with the absence of infrared divergences. (author)
Asymptotic stability of a genetic network under impulsive control
International Nuclear Information System (INIS)
Li Fangfei; Sun Jitao
2010-01-01
The study of the stability of genetic network is an important motif for the understanding of the living organism at both molecular and cellular levels. In this Letter, we provide a theoretical method for analyzing the asymptotic stability of a genetic network under impulsive control. And the sufficient conditions of its asymptotic stability under impulsive control are obtained. Finally, an example is given to illustrate the effectiveness of the obtained method.
Ratio asymptotics of Hermite-Pade polynomials for Nikishin systems
International Nuclear Information System (INIS)
Aptekarev, A I; Lopez, Guillermo L; Rocha, I A
2005-01-01
The existence of ratio asymptotics is proved for a sequence of multiple orthogonal polynomials with orthogonality relations distributed among a system of m finite Borel measures with support on a bounded interval of the real line which form a so-called Nikishin system. For m=1 this result reduces to Rakhmanov's celebrated theorem on the ratio asymptotics for orthogonal polynomials on the real line.
arXiv Asymptotically Safe Standard Model Extensions?
Pelaggi, Giulio Maria; Salvio, Alberto; Sannino, Francesco; Smirnov, Juri; Strumia, Alessandro
2018-05-15
We consider theories with a large number NF of charged fermions and compute the renormalization group equations for the gauge, Yukawa and quartic couplings resummed at leading order in 1/NF. We construct extensions of the standard model where SU(2) and/or SU(3) are asymptotically safe. When the same procedure is applied to the Abelian U(1) factor, we find that the Higgs quartic can not be made asymptotically safe and stay perturbative at the same time.
The asymptotic variance of departures in critically loaded queues
Al Hanbali, Ahmad; Mandjes, M.R.H.; Nazarathy, Y.; Whitt, W.
2011-01-01
We consider the asymptotic variance of the departure counting process D(t) of the GI/G/1 queue; D(t) denotes the number of departures up to time t. We focus on the case where the system load ϱ equals 1, and prove that the asymptotic variance rate satisfies limt→∞varD(t) / t = λ(1 - 2 / π)(ca2 +
STARDUST FROM ASYMPTOTIC GIANT BRANCH STARS
International Nuclear Information System (INIS)
Gail, H.-P.; Zhukovska, S. V.; Hoppe, P.; Trieloff, M.
2009-01-01
The formation of dust in the outflows of low- and intermediate-mass stars on the first giant branch and asymptotic giant branch (AGB) is studied and the relative contributions of stars of different initial masses and metallicities to the interstellar medium (ISM) at the instant of solar system formation are derived. These predictions are compared with the characteristics of the parent stars of presolar dust grains found in primitive meteorites and interplanetary dust particles (IDPs) inferred from their isotopic compositions. For this purpose, model calculations for dust condensation in stellar outflows are combined with synthetic models of stellar evolution on the first giant branch and AGB and an evolution model of the Milky Way for the solar neighborhood. The dust components considered are olivine, pyroxene, carbon, SiC, and iron. The corresponding dust production rates are derived for the solar vicinity. From these rates and taking into account dust destruction by supernova shocks in the ISM, the contributions to the inventory of presolar dust grains in the solar system are derived for stars of different initial masses and metallicities. It is shown that stars on the first giant branch and the early AGB are not expected to form dust, in accord with astronomical observations. Dust formation is concentrated in the last phase of evolution, the thermally pulsing AGB. Due to the limited lifetime of dust grains in the ISM only parent stars from a narrow range of metallicities are expected to contribute to the population of presolar dust grains. Silicate and silicon carbide dust grains are predicted to come from parent stars with metallicities not less than about Z ∼ 0.008 (0.6 x solar). This metallicity limit is higher than that inferred from presolar SiC grain isotope data. The population of presolar carbon dust grains is predicted to originate from a wider range of metallicities, down to Z ∼ 0.004. Masses of AGB stars that produce C-rich dust are in the range
Loop quantum gravity in asymptotically flat spaces
International Nuclear Information System (INIS)
Arnsdorf, M.
2000-01-01
This thesis describes applications and extensions of the loop variable approach to non-perturbative quantum gravity. The common theme of the work presented, is the need to generalise loop quantum gravity to be applicable in cases where space is asymptotically flat, and no longer compact as is usually assumed. This is important for the study of isolated gravitational systems. It also presents a natural context in which to search for the semi-classical limit, one of the main outstanding problems in loop quantum gravity. In the first part of the thesis we study how isolated gravitational systems can be attributed particle-like properties. In particular, we show how spinorial states can arise in pure loop quantum gravity if spatial topology is non-trivial, thus confirming an old conjecture of Friedman and Sorkin. Heuristically, this corresponds to the idea that we can rotate isolated regions of spatial topology relative to the environment at infinity, and that only a 4π-rotation will take us back to the original configuration. To do this we extend the standard loop quantum gravity formalism by introducing a compactification of our non-compact spatial manifold, and study the knotting of embedded graphs. The second part of the thesis takes a more systematic approach to the study of loop quantum gravity on non-compact spaces. We look for new representations of the loop algebra, which give rise to quantum theories that are inequivalent to the standard one. These theories naturally describe excitations of a fiducial background state, which is specified via the choice of its vacuum expectation values. In particular, we can choose background states that describe the geometries of non-compact manifolds. We also discuss how suitable background states can be constructed that can approximate classical phase space data, in our case holonomies along embedded paths and geometrical quantities related to areas and volumes. These states extend the notion of the weave and provide a
Asymptotic integration of some nonlinear differential equations with fractional time derivative
International Nuclear Information System (INIS)
Baleanu, Dumitru; Agarwal, Ravi P; Mustafa, Octavian G; Cosulschi, Mirel
2011-01-01
We establish that, under some simple integral conditions regarding the nonlinearity, the (1 + α)-order fractional differential equation 0 D α t (x') + f(t, x) = 0, t > 0, has a solution x element of C([0,+∞),R) intersection C 1 ((0,+∞),R), with lim t→0 [t 1-α x'(t)] element of R, which can be expanded asymptotically as a + bt α + O(t α-1 ) when t → +∞ for given real numbers a, b. Our arguments are based on fixed point theory. Here, 0 D α t designates the Riemann-Liouville derivative of order α in (0, 1).
Low and high frequency asymptotics acoustic, electromagnetic and elastic wave scattering
Varadan, VK
2013-01-01
This volume focuses on asymptotic methods in the low and high frequency limits for the solution of scattering and propagation problems. Each chapter is pedagogical in nature, starting with the basic foundations and ending with practical applications. For example, using the Geometrical Theory of Diffraction, the canonical problem of edge diffraction is first solved and then used in solving the problem of diffraction by a finite crack. In recent times, the crack problem has been of much interest for its applications to Non-Destructive Evaluation (NDE) of flaws in structural materials.
AVACOM-ETAP, Availability and Element Transient and Asymptotic Repair Process
International Nuclear Information System (INIS)
Reina, G.
1987-01-01
1 - Description of program or function: In reliability theory, the term 'availability' generally indicates the probability of the proper functioning of a system or of a component at a general time t when various possible replacement or repair policies are considered. AVACOM-ETARP calculates the transient and asymptotic availability of a component subject to a repair process with generic failure and repair laws. Five of the most commonly used distributions have been included as options: exponential, normal; lognormal; gamma; Weibull. 2 - Method of solution: The used mathematical model considers the failure-restoration process as a 2-state non-homogeneous Markov process containing the homogeneous Markov one as a particular case
Asymptotically linear Schrodinger equation with zero on the boundary of the spectrum
Directory of Open Access Journals (Sweden)
Dongdong Qin
2015-08-01
Full Text Available This article concerns the Schr\\"odinger equation $$\\displaylines{ -\\Delta u+V(xu=f(x, u, \\quad \\text{for } x\\in\\mathbb{R}^N,\\cr u(x\\to 0, \\quad \\text{as } |x| \\to \\infty, }$$ where V and f are periodic in x, and 0 is a boundary point of the spectrum $\\sigma(-\\Delta+V$. Assuming that f(x,u is asymptotically linear as $|u|\\to\\infty$, existence of a ground state solution is established using some new techniques.
Disturbed solution of the El Niño-southern oscillation sea—air delayed oscillator
International Nuclear Information System (INIS)
Xie Feng; Lin Wan-Tao; Lin Yi-Hua; Mo Jia-Qi
2011-01-01
A class of delayed oscillators of El Niño-southern oscillation (ENSO) models is considered. Using the delayed theory, the perturbed theory and other methods, the asymptotic expansions of the solutions for ENSO models are obtained and the asymptotic behaviour of solution of corresponding problem is studied. (general)
Asymptotic Expansion Homogenization for Multiscale Nuclear Fuel Analysis
International Nuclear Information System (INIS)
2015-01-01
Engineering scale nuclear fuel performance simulations can benefit by utilizing high-fidelity models running at a lower length scale. Lower length-scale models provide a detailed view of the material behavior that is used to determine the average material response at the macroscale. These lower length-scale calculations may provide insight into material behavior where experimental data is sparse or nonexistent. This multiscale approach is especially useful in the nuclear field, since irradiation experiments are difficult and expensive to conduct. The lower length-scale models complement the experiments by influencing the types of experiments required and by reducing the total number of experiments needed. This multiscale modeling approach is a central motivation in the development of the BISON-MARMOT fuel performance codes at Idaho National Laboratory. These codes seek to provide more accurate and predictive solutions for nuclear fuel behavior. One critical aspect of multiscale modeling is the ability to extract the relevant information from the lower length-scale sim- ulations. One approach, the asymptotic expansion homogenization (AEH) technique, has proven to be an effective method for determining homogenized material parameters. The AEH technique prescribes a system of equations to solve at the microscale that are used to compute homogenized material constants for use at the engineering scale. In this work, we employ AEH to explore the effect of evolving microstructural thermal conductivity and elastic constants on nuclear fuel performance. We show that the AEH approach fits cleanly into the BISON and MARMOT codes and provides a natural, multidimensional homogenization capability.
Methods in half-linear asymptotic theory
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel
2016-01-01
Roč. 2016, Č. 267 (2016), s. 1-27 ISSN 1072-6691 Institutional support: RVO:67985840 Keywords : half-linear differential equation * nonoscillatory solution * regular variation Subject RIV: BA - General Mathematics Impact factor: 0.954, year: 2016 http://ejde.math.txstate.edu/Volumes/2016/267/abstr.html
Asymptotic behavior of the plasma equation
International Nuclear Information System (INIS)
Kwong, Y.C.
1984-01-01
This paper is concerned with the plasma equation on a bounded smooth domain the N-dimensional Euclidean Space, with non-negative initial data and a homogenous Dirichlet boundary condition. It is known that there exists a finite extinction time T such that the solution decays to zero at T. Berryman and Holland investigated the stability of the profile of the solution as t is approaching T. However, they obtained their results at the expense of some very strong regularity assumptions. By invoking both the nonlinear semi-group theory and a standard regularizing scheme for the equation, the same results are proved without those assumptions by measuring the rate of decay of the solution and estimates are obtained on the time derivative as t is approaching T. As motivated by the regularity assumptions, both the interior and boundary regularities of the solution are studied. Finally, the nonlinearity of the plasma equation is perturbed and the same aspects for the perturbed equation are studied
Size Matters: Individual Variation in Ectotherm Growth and Asymptotic Size.
Directory of Open Access Journals (Sweden)
Richard B King
Full Text Available Body size, and, by extension, growth has impacts on physiology, survival, attainment of sexual maturity, fecundity, generation time, and population dynamics, especially in ectotherm animals that often exhibit extensive growth following attainment of sexual maturity. Frequently, growth is analyzed at the population level, providing useful population mean growth parameters but ignoring individual variation that is also of ecological and evolutionary significance. Our long-term study of Lake Erie Watersnakes, Nerodia sipedon insularum, provides data sufficient for a detailed analysis of population and individual growth. We describe population mean growth separately for males and females based on size of known age individuals (847 captures of 769 males, 748 captures of 684 females and annual growth increments of individuals of unknown age (1,152 males, 730 females. We characterize individual variation in asymptotic size based on repeated measurements of 69 males and 71 females that were each captured in five to nine different years. The most striking result of our analyses is that asymptotic size varies dramatically among individuals, ranging from 631-820 mm snout-vent length in males and from 835-1125 mm in females. Because female fecundity increases with increasing body size, we explore the impact of individual variation in asymptotic size on lifetime reproductive success using a range of realistic estimates of annual survival. When all females commence reproduction at the same age, lifetime reproductive success is greatest for females with greater asymptotic size regardless of annual survival. But when reproduction is delayed in females with greater asymptotic size, lifetime reproductive success is greatest for females with lower asymptotic size when annual survival is low. Possible causes of individual variation in asymptotic size, including individual- and cohort-specific variation in size at birth and early growth, warrant further
Size Matters: Individual Variation in Ectotherm Growth and Asymptotic Size
King, Richard B.
2016-01-01
Body size, and, by extension, growth has impacts on physiology, survival, attainment of sexual maturity, fecundity, generation time, and population dynamics, especially in ectotherm animals that often exhibit extensive growth following attainment of sexual maturity. Frequently, growth is analyzed at the population level, providing useful population mean growth parameters but ignoring individual variation that is also of ecological and evolutionary significance. Our long-term study of Lake Erie Watersnakes, Nerodia sipedon insularum, provides data sufficient for a detailed analysis of population and individual growth. We describe population mean growth separately for males and females based on size of known age individuals (847 captures of 769 males, 748 captures of 684 females) and annual growth increments of individuals of unknown age (1,152 males, 730 females). We characterize individual variation in asymptotic size based on repeated measurements of 69 males and 71 females that were each captured in five to nine different years. The most striking result of our analyses is that asymptotic size varies dramatically among individuals, ranging from 631–820 mm snout-vent length in males and from 835–1125 mm in females. Because female fecundity increases with increasing body size, we explore the impact of individual variation in asymptotic size on lifetime reproductive success using a range of realistic estimates of annual survival. When all females commence reproduction at the same age, lifetime reproductive success is greatest for females with greater asymptotic size regardless of annual survival. But when reproduction is delayed in females with greater asymptotic size, lifetime reproductive success is greatest for females with lower asymptotic size when annual survival is low. Possible causes of individual variation in asymptotic size, including individual- and cohort-specific variation in size at birth and early growth, warrant further investigation. PMID
Asymptotics of bivariate generating functions with algebraic singularities
Greenwood, Torin
Flajolet and Odlyzko (1990) derived asymptotic formulae the coefficients of a class of uni- variate generating functions with algebraic singularities. Gao and Richmond (1992) and Hwang (1996, 1998) extended these results to classes of multivariate generating functions, in both cases by reducing to the univariate case. Pemantle and Wilson (2013) outlined new multivariate ana- lytic techniques and used them to analyze the coefficients of rational generating functions. After overviewing these methods, we use them to find asymptotic formulae for the coefficients of a broad class of bivariate generating functions with algebraic singularities. Beginning with the Cauchy integral formula, we explicity deform the contour of integration so that it hugs a set of critical points. The asymptotic contribution to the integral comes from analyzing the integrand near these points, leading to explicit asymptotic formulae. Next, we use this formula to analyze an example from current research. In the following chapter, we apply multivariate analytic techniques to quan- tum walks. Bressler and Pemantle (2007) found a (d + 1)-dimensional rational generating function whose coefficients described the amplitude of a particle at a position in the integer lattice after n steps. Here, the minimal critical points form a curve on the (d + 1)-dimensional unit torus. We find asymptotic formulae for the amplitude of a particle in a given position, normalized by the number of steps n, as n approaches infinity. Each critical point contributes to the asymptotics for a specific normalized position. Using Groebner bases in Maple again, we compute the explicit locations of peak amplitudes. In a scaling window of size the square root of n near the peaks, each amplitude is asymptotic to an Airy function.
Boundary stress tensor and asymptotically AdS3 non-Einstein spaces at the chiral point
International Nuclear Information System (INIS)
Giribet, Gaston; Goya, Andres; Leston, Mauricio
2011-01-01
Chiral gravity admits asymptotically AdS 3 solutions that are not locally equivalent to AdS 3 ; meaning that solutions do exist which, while obeying the strong boundary conditions usually imposed in general relativity, happen not to be Einstein spaces. In topologically massive gravity (TMG), the existence of non-Einstein solutions is particularly connected to the question about the role played by complex saddle points in the Euclidean path integral. Consequently, studying (the existence of) nonlocally AdS 3 solutions to chiral gravity is relevant to understanding the quantum theory. Here, we discuss a special family of nonlocally AdS 3 solutions to chiral gravity. In particular, we show that such solutions persist when one deforms the theory by adding the higher-curvature terms of the so-called new massive gravity. Moreover, the addition of higher-curvature terms to the gravity action introduces new nonlocally AdS 3 solutions that have no analogues in TMG. Both stationary and time-dependent, axially symmetric solutions that asymptote AdS 3 space without being locally equivalent to it appear. Defining the boundary stress tensor for the full theory, we show that these non-Einstein geometries have associated vanishing conserved charges.
International Nuclear Information System (INIS)
Wu Shiliang; Li Wantong
2009-01-01
This paper deals with the global asymptotic stability and uniqueness (up to translation) of bistable traveling fronts in a class of reaction-diffusion systems. The known results do not apply in solving these problems because the reaction terms do not satisfy the required monotone condition. To overcome the difficulty, a weak monotone condition is proposed for the reaction terms, which is called interval monotone condition. Under such a weak monotone condition, the existence and comparison theorem of solutions is first established for reaction-diffusion systems on R by appealing to the theory of abstract differential equations. The global asymptotic stability and uniqueness (up to translation) of bistable traveling fronts are then proved by the elementary super- and sub-solution comparison and squeezing methods for nonlinear evolution equations. Finally, these abstract results are applied to a two species competition-diffusion model and a system modeling man-environment-man epidemics.
Large gauge symmetries and asymptotic states in QED
Energy Technology Data Exchange (ETDEWEB)
Gabai, Barak; Sever, Amit [School of Physics and Astronomy, Tel Aviv University,Ramat Aviv 69978 (Israel)
2016-12-19
Large Gauge Transformations (LGT) are gauge transformations that do not vanish at infinity. Instead, they asymptotically approach arbitrary functions on the conformal sphere at infinity. Recently, it was argued that the LGT should be treated as an infinite set of global symmetries which are spontaneously broken by the vacuum. It was established that in QED, the Ward identities of their induced symmetries are equivalent to the Soft Photon Theorem. In this paper we study the implications of LGT on the S-matrix between physical asymptotic states in massive QED. In appose to the naively free scattering states, physical asymptotic states incorporate the long range electric field between asymptotic charged particles and were already constructed in 1970 by Kulish and Faddeev. We find that the LGT charge is independent of the particles’ momenta and may be associated to the vacuum. The soft theorem’s manifestation as a Ward identity turns out to be an outcome of not working with the physical asymptotic states.
Asymptotic strength of thermal pulses in the helium shell burning
Energy Technology Data Exchange (ETDEWEB)
Fujimoto, M Y [Niigata Univ. (Japan); Sugimoto, D
1979-03-01
Secular growth in the strength of the recurrent thermal pulses of helium shell burning is discussed for the purpose of determining its asymptotic strength. It is shown that the pulse grows stronger if the helium zone has been cooled more before the initiation of the pulse. The secular growth of the pulse is related with the increasing degree of cooling. Thermal pulses are computed for an initial model corresponding to the maximum possible cooling, i.e., for a model in which the steady-state entropy distribution was realized in the helium zone. Such thermal pulses are shown to give an upper bound to the asymptotic strength, which is close enough to the asymptotic strength itself for relatively large core masses. Numerical results are given for the core mass of 1.07 M sub(sun), for which the asymptotic strength is found to be 9 x 10/sup 6/ L sub(sun). Thermal pulses are also computed for an initial model which has been cooled artificially more than the steady-state model. The first pulse results in a much greater strength than in the normal model, but a later pulse approaches the normal asymptotic value. Such models are also discussed in relation to the shell flashes on accreting white dwarfs.
Black hole thermodynamics from a variational principle: asymptotically conical backgrounds
Energy Technology Data Exchange (ETDEWEB)
An, Ok Song [SISSA and INFN, Sezione di Trieste,Via Bonomea 265, 34136 Trieste (Italy); Department of Physics, Kim Il Sung University,Ryongnam Dong, TaeSong District, Pyongyang, D.P.R. (Korea, Republic of); ICTP,Strada Costiera 11, 34014 Trieste (Italy); Cvetič, Mirjam [Department of Physics and Astronomy, University of Pennsylvania,209 S 33rd St, Philadelphia, PA 19104 (United States); Center for Applied Mathematics and Theoretical Physics, University of Maribor,Mladinska 3, SI2000 Maribor (Slovenia); Papadimitriou, Ioannis [SISSA and INFN, Sezione di Trieste,Via Bonomea 265, 34136 Trieste (Italy)
2016-03-14
The variational problem of gravity theories is directly related to black hole thermodynamics. For asymptotically locally AdS backgrounds it is known that holographic renormalization results in a variational principle in terms of equivalence classes of boundary data under the local asymptotic symmetries of the theory, which automatically leads to finite conserved charges satisfying the first law of thermodynamics. We show that this connection holds well beyond asymptotically AdS black holes. In particular, we formulate the variational problem for N=2 STU supergravity in four dimensions with boundary conditions corresponding to those obeyed by the so called ‘subtracted geometries’. We show that such boundary conditions can be imposed covariantly in terms of a set of asymptotic second class constraints, and we derive the appropriate boundary terms that render the variational problem well posed in two different duality frames of the STU model. This allows us to define finite conserved charges associated with any asymptotic Killing vector and to demonstrate that these charges satisfy the Smarr formula and the first law of thermodynamics. Moreover, by uplifting the theory to five dimensions and then reducing on a 2-sphere, we provide a precise map between the thermodynamic observables of the subtracted geometries and those of the BTZ black hole. Surface terms play a crucial role in this identification.
Directory of Open Access Journals (Sweden)
Wei-Qi Deng
2013-01-01
Full Text Available Based on an original idea, namely, a specific way of choosing the indexes of the involved mappings, we propose a new hybrid shrinking iteration scheme for approximating some common fixed points of a countable family of asymptotically strictly quasi-ϕ-pseudocontractions and obtain a strong convergence theorem in the framework of Banach space. Our result extends other authors, related results existing in the current literature. As application, an iterative solution to a system of equilibrium problems is provided.
Arkhincheev, V E
2017-03-01
The new asymptotic behavior of the survival probability of particles in a medium with absorbing traps in an electric field has been established in two ways-by using the scaling approach and by the direct solution of the diffusion equation in the field. It has shown that at long times, this drift mechanism leads to a new temporal behavior of the survival probability of particles in a medium with absorbing traps.
Stability and square integrability of solutions of nonlinear fourth order differential equations
Directory of Open Access Journals (Sweden)
Moussadek Remili
2016-05-01
Full Text Available The aim of the present paper is to establish a new result, which guarantees the asymptotic stability of zero solution and square integrability of solutions and their derivatives to nonlinear differential equations of fourth order.
Smooth Gowdy-symmetric generalized Taub–NUT solutions
International Nuclear Information System (INIS)
Beyer, Florian; Hennig, Jörg
2012-01-01
We study a class of S 3 -Gowdy vacuum models with a regular past Cauchy horizon which we call smooth Gowdy-symmetric generalized Taub–NUT solutions. In particular, we prove the existence of such solutions by formulating a singular initial value problem with asymptotic data on the past Cauchy horizon. We prove that also a future Cauchy horizon exists for generic asymptotic data, and derive an explicit expression for the metric on the future Cauchy horizon in terms of the asymptotic data on the past horizon. This complements earlier results about S 1 ×S 2 -Gowdy models. (paper)
Applications of Asymptotic Sampling on High Dimensional Structural Dynamic Problems
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Nielsen, Søren R.K.; Bucher, Christian
2011-01-01
The paper represents application of the asymptotic sampling on various structural models subjected to random excitations. A detailed study on the effect of different distributions of the so-called support points is performed. This study shows that the distribution of the support points has consid...... dimensional reliability problems in structural dynamics.......The paper represents application of the asymptotic sampling on various structural models subjected to random excitations. A detailed study on the effect of different distributions of the so-called support points is performed. This study shows that the distribution of the support points has...... is minimized. Next, the method is applied on different cases of linear and nonlinear systems with a large number of random variables representing the dynamic excitation. The results show that asymptotic sampling is capable of providing good approximations of low failure probability events for very high...
Asymptotic chaos expansions in finance theory and practice
Nicolay, David
2014-01-01
Stochastic instantaneous volatility models such as Heston, SABR or SV-LMM have mostly been developed to control the shape and joint dynamics of the implied volatility surface. In principle, they are well suited for pricing and hedging vanilla and exotic options, for relative value strategies or for risk management. In practice however, most SV models lack a closed form valuation for European options. This book presents the recently developed Asymptotic Chaos Expansions methodology (ACE) which addresses that issue. Indeed its generic algorithm provides, for any regular SV model, the pure asymptotes at any order for both the static and dynamic maps of the implied volatility surface. Furthermore, ACE is programmable and can complement other approximation methods. Hence it allows a systematic approach to designing, parameterising, calibrating and exploiting SV models, typically for Vega hedging or American Monte-Carlo. Asymptotic Chaos Expansions in Finance illustrates the ACE approach for single underlyings (suc...
Asymptotic Analysis in MIMO MRT/MRC Systems
Directory of Open Access Journals (Sweden)
Zhou Quan
2006-01-01
Full Text Available Through the analysis of the probability density function of the squared largest singular value of a complex Gaussian matrix at the origin and tail, we obtain two asymptotic results related to the multi-input multi-output (MIMO maximum-ratio-transmission/maximum-ratio-combining (MRT/MRC systems. One is the asymptotic error performance (in terms of SNR in a single-user system, and the other is the asymptotic system capacity (in terms of the number of users in the multiuser scenario when multiuser diversity is exploited. Similar results are also obtained for two other MIMO diversity schemes, space-time block coding and selection combining. Our results reveal a simple connection with system parameters, providing good insights for the design of MIMO diversity systems.
Watermelon configurations with wall interaction: exact and asymptotic results
Energy Technology Data Exchange (ETDEWEB)
Krattenthaler, C [Institut Camille Jordan, Universite Claude Bernard Lyon-I, 21, avenue Claude Bernard, F-69622 Villeurbanne Cedex (France)
2006-06-15
We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature.
Watermelon configurations with wall interaction: exact and asymptotic results
International Nuclear Information System (INIS)
Krattenthaler, C
2006-01-01
We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature
Watermelon configurations with wall interaction: exact and asymptotic results
Krattenthaler, C.
2006-06-01
We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature.
On the asymptotic stability of nonlinear mechanical switched systems
Platonov, A. V.
2018-05-01
Some classes of switched mechanical systems with dissipative and potential forces are considered. The case, where either dissipative or potential forces are essentially nonlinear, is studied. It is assumed that the zero equilibrium position of the system is asymptotically stable at least for one operating mode. We will look for sufficient conditions which guarantee the preservation of asymptotic stability of the equilibrium position under the switching of modes. The Lyapunov direct method is used. A Lyapunov function for considered system is constructed, which satisfies the differential inequality of special form for every operating mode. This inequality is nonlinear for the chosen mode with asymptotically stable equilibrium position, and it is linear for the rest modes. The correlations between the intervals of activity of the pointed mode and the intervals of activity of the rest modes are obtained which guarantee the required properties.
Polymers and Random graphs: Asymptotic equivalence to branching processes
International Nuclear Information System (INIS)
Spouge, J.L.
1985-01-01
In 1974, Falk and Thomas did a computer simulation of Flory's Equireactive RA/sub f/ Polymer model, rings forbidden and rings allowed. Asymptotically, the Rings Forbidden model tended to Stockmayer's RA/sub f/ distribution (in which the sol distribution ''sticks'' after gelation), while the Rings Allowed model tended to the Flory version of the RA/sub f/ distribution. In 1965, Whittle introduced the Tree and Pseudomultigraph models. We show that these random graphs generalize the Falk and Thomas models by incorporating first-shell substitution effects. Moreover, asymptotically the Tree model displays postgelation ''sticking.'' Hence this phenomenon results from the absence of rings and occurs independently of equireactivity. We also show that the Pseudomultigraph model is asymptotically identical to the Branching Process model introduced by Gordon in 1962. This provides a possible basis for the Branching Process model in standard statistical mechanics
Asymptotic stability estimates near an equilibrium point
Dumas, H. Scott; Meyer, Kenneth R.; Palacián, Jesús F.; Yanguas, Patricia
2017-07-01
We use the error bounds for adiabatic invariants found in the work of Chartier, Murua and Sanz-Serna [3] to bound the solutions of a Hamiltonian system near an equilibrium over exponentially long times. Our estimates depend only on the linearized system and not on the higher order terms as in KAM theory, nor do we require any steepness or convexity conditions as in Nekhoroshev theory. We require that the equilibrium point where our estimate applies satisfy a type of formal stability called Lie stability.
Asymptotic boundary value problems for evolution inclusions
Directory of Open Access Journals (Sweden)
Fürst Tomáš
2006-01-01
Full Text Available When solving boundary value problems on infinite intervals, it is possible to use continuation principles. Some of these principles take advantage of equipping the considered function spaces with topologies of uniform convergence on compact subintervals. This makes the representing solution operators compact (or condensing, but, on the other hand, spaces equipped with such topologies become more complicated. This paper shows interesting applications that use the strength of continuation principles and also presents a possible extension of such continuation principles to partial differential inclusions.
Asymptotic boundary value problems for evolution inclusions
Directory of Open Access Journals (Sweden)
Tomáš Fürst
2006-02-01
Full Text Available When solving boundary value problems on infinite intervals, it is possible to use continuation principles. Some of these principles take advantage of equipping the considered function spaces with topologies of uniform convergence on compact subintervals. This makes the representing solution operators compact (or condensing, but, on the other hand, spaces equipped with such topologies become more complicated. This paper shows interesting applications that use the strength of continuation principles and also presents a possible extension of such continuation principles to partial differential inclusions.
Asymptotic behaviour in polarized and half-polarized U(1) symmetric vacuum spacetimes
International Nuclear Information System (INIS)
Isenberg, James; Moncrief, Vincent
2002-01-01
We use the Fuchsian algorithm to study the behaviour near the singularity of certain families of U(1) symmetric solutions of the vacuum Einstein equations (with the U(1) isometry group acting spatially). We consider an analytic family of polarized solutions with the maximum number of arbitrary functions consistent with the polarization condition (one of the 'gravitational degrees of freedom' is turned off) and show that all members of this family are asymptotically velocity term dominated (AVTD) as one approaches the singularity. We show that the same AVTD behaviour holds for a family of 'half-polarized' solutions, which is defined by adding one extra arbitrary function to those characterizing the polarized solutions. (The full set of nonpolarized solutions involves two extra arbitrary functions.) Using SL(2, R) Geroch transformations, we produce a further class of U(1) symmetric solutions with AVTD behaviour. We begin to address the issue of whether AVTD behaviour is independent of the choice of time foliation by showing that indeed AVTD behaviour is seen for a wide class of choices of harmonic time in the polarized and half-polarized (U(1) symmetric vacuum) solutions discussed here
Asymptotic tracking and disturbance rejection of the blood glucose regulation system.
Ashley, Brandon; Liu, Weijiu
2017-07-01
Type 1 diabetes patients need external insulin to maintain blood glucose within a narrow range from 65 to 108 mg/dl (3.6 to 6.0 mmol/l). A mathematical model for the blood glucose regulation is required for integrating a glucose monitoring system into insulin pump technology to form a closed-loop insulin delivery system on the feedback of the blood glucose, the so-called "artificial pancreas". The objective of this paper is to treat the exogenous glucose from food as a glucose disturbance and then develop a closed-loop feedback and feedforward control system for the blood glucose regulation system subject to the exogenous glucose disturbance. For this, a mathematical model for the glucose disturbance is proposed on the basis of experimental data, and then incorporated into an existing blood glucose regulation model. Because all the eigenvalues of the disturbance model have zero real parts, the center manifold theory is used to establish blood glucose regulator equations. We then use their solutions to synthesize a required feedback and feedforward controller to reject the disturbance and asymptotically track a constant glucose reference of 90 mg/dl. Since the regulator equations are nonlinear partial differential equations and usually impossible to solve analytically, a linear approximation solution is obtained. Our numerical simulations show that, under the linear approximate feedback and feedforward controller, the blood glucose asymptotically tracks its desired level of 90 mg/dl approximately. Copyright © 2017 Elsevier Inc. All rights reserved.
Asymptotically spacelike warped anti-de Sitter spacetimes in generalized minimal massive gravity
International Nuclear Information System (INIS)
Setare, M R; Adami, H
2017-01-01
In this paper we show that warped AdS 3 black hole spacetime is a solution of the generalized minimal massive gravity (GMMG) and introduce suitable boundary conditions for asymptotically warped AdS 3 spacetimes. Then we find the Killing vector fields such that transformations generated by them preserve the considered boundary conditions. We calculate the conserved charges which correspond to the obtained Killing vector fields and show that the algebra of the asymptotic conserved charges is given as the semi direct product of the Virasoro algebra with U (1) current algebra. We use a particular Sugawara construction to reconstruct the conformal algebra. Thus, we are allowed to use the Cardy formula to calculate the entropy of the warped black hole. We demonstrate that the gravitational entropy of the warped black hole exactly coincides with what we obtain via Cardy’s formula. As we expect, the warped Cardy formula also gives us exactly the same result as we obtain from the usual Cardy’s formula. We calculate mass and angular momentum of the warped black hole and then check that obtained mass, angular momentum and entropy to satisfy the first law of the black hole mechanics. According to the results of this paper we believe that the dual theory of the warped AdS 3 black hole solution of GMMG is a warped CFT. (paper)
ADM Mass for Asymptotically de Sitter Space-Time
International Nuclear Information System (INIS)
Huang Shiming; Yue Ruihong; Jia Dongyan
2010-01-01
In this paper, an ADM mass formula for asymptotically de Sitter(dS) space-time is derived from the energy-momentum tensor. We take the vacuum dS space as the background and investigate the ADM mass of the (d + 3)-dimensional sphere-symmetric space with a positive cosmological constant, and find that the ADM mass of asymptotically dS space is based on the ADM mass of Schwarzschild field and the cosmological background brings some small mass contribution as well. (general)
Selected asymptotic methods with applications to electromagnetics and antennas
Fikioris, George; Bakas, Odysseas N
2013-01-01
This book describes and illustrates the application of several asymptotic methods that have proved useful in the authors' research in electromagnetics and antennas. We first define asymptotic approximations and expansions and explain these concepts in detail. We then develop certain prerequisites from complex analysis such as power series, multivalued functions (including the concepts of branch points and branch cuts), and the all-important gamma function. Of particular importance is the idea of analytic continuation (of functions of a single complex variable); our discussions here include som
New rigorous asymptotic theorems for inverse scattering amplitudes
International Nuclear Information System (INIS)
Lomsadze, Sh.Yu.; Lomsadze, Yu.M.
1984-01-01
The rigorous asymptotic theorems both of integral and local types obtained earlier and establishing logarithmic and in some cases even power correlations aetdeen the real and imaginary parts of scattering amplitudes Fsub(+-) are extended to the inverse amplitudes 1/Fsub(+-). One also succeeds in establishing power correlations of a new type between the real and imaginary parts, both for the amplitudes themselves and for the inverse ones. All the obtained assertions are convenient to be tested in high energy experiments when the amplitudes show asymptotic behaviour
Centrally extended symmetry algebra of asymptotically Goedel spacetimes
International Nuclear Information System (INIS)
Compere, Geoffrey; Detournay, Stephane
2007-01-01
We define an asymptotic symmetry algebra for three-dimensional Goedel spacetimes supported by a gauge field which turns out to be the semi-direct sum of the diffeomorphisms on the circle with two loop algebras. A class of fields admitting this asymptotic symmetry algebra and leading to well-defined conserved charges is found. The covariant Poisson bracket of the conserved charges is then shown to be centrally extended to the semi-direct sum of a Virasoro algebra and two affine algebras. The subsequent analysis of three-dimensional Goedel black holes indicates that the Virasoro central charge is negative
Asymptotic inverse periods of reflected reactors above prompt critical
International Nuclear Information System (INIS)
Spriggs, G.D.; Busch, R.D.
1995-01-01
It is commonly assumed that the kinetic behavior of reflected and unreflected reactors is identical. In particular, it is often accepted that a given reactivity change in either type of system will result in an identical asymptotic inverse period. This is generally true for reactivities below prompt critical. For reactivities above prompt critical, however, the asymptotic inverse period can vary in a highly nonlinear fashion with system reactivity depending on the reflector return fraction, the neutron lifetime in the core, and the neutron lifetime in the reflector
Gravitational charges of transverse asymptotically AdS spacetimes
International Nuclear Information System (INIS)
Cebeci, Hakan; Sarioglu, Oezguer; Tekin, Bayram
2006-01-01
Using Killing-Yano symmetries, we construct conserved charges of spacetimes that asymptotically approach to the flat or anti-de Sitter spaces only in certain directions. In D dimensions, this allows one to define gravitational charges (such as mass and angular momenta densities) of p-dimensional branes/solitons or any other extended objects that curve the transverse space into an asymptotically flat or AdS one. Our construction answers the question of what kind of charges the antisymmetric Killing-Yano tensors lead to