Asymptotic Stability of Interconnected Passive Non-Linear Systems
Isidori, A.; Joshi, S. M.; Kelkar, A. G.
1999-01-01
This paper addresses the problem of stabilization of a class of internally passive non-linear time-invariant dynamic systems. A class of non-linear marginally strictly passive (MSP) systems is defined, which is less restrictive than input-strictly passive systems. It is shown that the interconnection of a non-linear passive system and a non-linear MSP system is globally asymptotically stable. The result generalizes and weakens the conditions of the passivity theorem, which requires one of the systems to be input-strictly passive. In the case of linear time-invariant systems, it is shown that the MSP property is equivalent to the marginally strictly positive real (MSPR) property, which is much simpler to check.
Asymptotic theory for weakly non-linear wave equations in semi-infinite domains
Directory of Open Access Journals (Sweden)
Chirakkal V. Easwaran
2004-01-01
Full Text Available We prove the existence and uniqueness of solutions of a class of weakly non-linear wave equations in a semi-infinite region $0le x$, $t< L/sqrt{|epsilon|}$ under arbitrary initial and boundary conditions. We also establish the asymptotic validity of formal perturbation approximations of the solutions in this region.
Non-linear and signal energy optimal asymptotic filter design
Directory of Open Access Journals (Sweden)
Josef Hrusak
2003-10-01
Full Text Available The paper studies some connections between the main results of the well known Wiener-Kalman-Bucy stochastic approach to filtering problems based mainly on the linear stochastic estimation theory and emphasizing the optimality aspects of the achieved results and the classical deterministic frequency domain linear filters such as Chebyshev, Butterworth, Bessel, etc. A new non-stochastic but not necessarily deterministic (possibly non-linear alternative approach called asymptotic filtering based mainly on the concepts of signal power, signal energy and a system equivalence relation plays an important role in the presentation. Filtering error invariance and convergence aspects are emphasized in the approach. It is shown that introducing the signal power as the quantitative measure of energy dissipation makes it possible to achieve reasonable results from the optimality point of view as well. The property of structural energy dissipativeness is one of the most important and fundamental features of resulting filters. Therefore, it is natural to call them asymptotic filters. The notion of the asymptotic filter is carried in the paper as a proper tool in order to unify stochastic and non-stochastic, linear and nonlinear approaches to signal filtering.
Analytical exact solution of the non-linear Schroedinger equation
Energy Technology Data Exchange (ETDEWEB)
Martins, Alisson Xavier; Rocha Filho, Tarcisio Marciano da [Universidade de Brasilia (UnB), DF (Brazil). Inst. de Fisica. Grupo de Fisica e Matematica
2011-07-01
Full text: In this work we present how to classify and obtain analytical solutions of the Schroedinger equation with a generic non-linearity in 1+1 dimensions. Our approach is based on the determination of Lie symmetry transformation mapping solutions into solutions, and non-classical symmetry transformations, mapping a given solution into itself. From these symmetries it is then possible to reduce the equation to a system of ordinary differential equations which can then be solved using standard methods. The generic non-linearity is handled by considering it as an additional unknown in the determining equations for the symmetry transformations. This results in an over-determined system of non-linear partial differential equations. Its solution can then be determined in some cases by reducing it to the so called involutive (triangular) form, and then solved. This reduction is very tedious and can only performed using a computer algebra system. Once the determining system is solved, we obtain the explicit form for the non-linearity admitting a Lie or non-classical symmetry. The analytical solutions are then derived by solving the reduced ordinary differential equations. The non-linear determining system for the non-classical symmetry transformations and Lie symmetry generators are obtaining using the computer algebra package SADE (symmetry analysis of differential equations), developed at our group. (author)
Non-local investigation of bifurcations of solutions of non-linear elliptic equations
Energy Technology Data Exchange (ETDEWEB)
Il' yasov, Ya Sh
2002-12-31
We justify the projective fibration procedure for functionals defined on Banach spaces. Using this procedure and a dynamical approach to the study with respect to parameters, we prove that there are branches of positive solutions of non-linear elliptic equations with indefinite non-linearities. We investigate the asymptotic behaviour of these branches at bifurcation points. In the general case of equations with p-Laplacian we prove that there are upper bounds of branches of positive solutions with respect to the parameter.
Non linear evolution: revisiting the solution in the saturation region
Contreras, Carlos; Meneses, Rodrigo
2014-01-01
In this paper we revisit the problem of the solution to Balitsky-Kovchegov equation deeply in the saturation domain. We find that solution has the form of Levin-Tuchin solution but it depends on variable $\\bar{z} = \\ln(r^2 Q^2_s) + \\mbox{Const}$ and the value of $\\mbox{Const}$ is calculated in this paper. We propose the solution for full BFKL kernel at large $z$ in the entire kinematic region that satisfies the McLerram-Venugopalan initial condition
Energy Technology Data Exchange (ETDEWEB)
Alvarez-Estrada, R.F.
1979-08-01
A comprehensive review of the inverse scattering solution of certain non-linear evolution equations of physical interest in one space dimension is presented. We explain in some detail the interrelated techniques which allow to linearize exactly the following equations: (1) the Korteweg and de Vries equation; (2) the non-linear Schrodinger equation; (3) the modified Korteweg and de Vries equation; (4) the Sine-Gordon equation. We concentrate in discussing the pairs of linear operators which accomplish such an exact linearization and the solution of the associated initial value problem. The application of the method to other non-linear evolution equations is reviewed very briefly.
Institute of Scientific and Technical Information of China (English)
陈化; 罗壮初
2002-01-01
In this paper the authors study a class of non-linear singular partial differential equation in complex domain Ct × Cnx. Under certain assumptions, they prove the existence and uniqueness of holomorphic solution near origin of Ct × Cnx.
Global search of non-linear systems periodic solutions: A rotordynamics application
Sarrouy, Emmanuelle; Thouverez, Fabrice
2010-01-01
International audience; Introducing non-linearities into models contributes towards a better reality description but leads to systems having multiple solutions. It is then legitimate to look for all the solutions of such systems, that is to have a global analysis approach. However no effective method can be found in literature for systems described by more than two or three degrees of freedom. We propose in this paper a way to find all T-periodic solutions--where T is known--of a non-linear d...
Series solutions of non-linear Riccati differential equations with fractional order
Energy Technology Data Exchange (ETDEWEB)
Cang Jie; Tan Yue; Xu Hang [School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Liao Shijun [School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China)], E-mail: sjliao@sjtu.edu.cn
2009-04-15
In this paper, based on the homotopy analysis method (HAM), a new analytic technique is proposed to solve non-linear Riccati differential equation with fractional order. Different from all other analytic methods, it provides us with a simple way to adjust and control the convergence region of solution series by introducing an auxiliary parameter h. Besides, it is proved that well-known Adomian's decomposition method is a special case of the homotopy analysis method when h = -1. This work illustrates the validity and great potential of the homotopy analysis method for the non-linear differential equations with fractional order. The basic ideas of this approach can be widely employed to solve other strongly non-linear problems in fractional calculus.
Approximate solutions of non-linear circular orbit relative motion in curvilinear coordinates
Bombardelli, Claudio; Gonzalo, Juan Luis; Roa, Javier
2017-01-01
A compact, time-explicit, approximate solution of the highly non-linear relative motion in curvilinear coordinates is provided under the assumption of circular orbit for the chief spacecraft. The rather compact, three-dimensional solution is obtained by algebraic manipulation of the individual Keplerian motions in curvilinear, rather than Cartesian coordinates, and provides analytical expressions for the secular, constant and periodic terms of each coordinate as a function of the initial relative motion conditions or relative orbital elements. Numerical test cases are conducted to show that the approximate solution can be effectively employed to extend the classical linear Clohessy-Wiltshire solution to include non-linear relative motion without significant loss of accuracy up to a limit of 0.4-0.45 in eccentricity and 40-45° in relative inclination for the follower. A very simple, quadratic extension of the classical Clohessy-Wiltshire solution in curvilinear coordinates is also presented.
Approximate solutions of non-linear circular orbit relative motion in curvilinear coordinates
Bombardelli, Claudio; Gonzalo, Juan Luis; Roa, Javier
2016-07-01
A compact, time-explicit, approximate solution of the highly non-linear relative motion in curvilinear coordinates is provided under the assumption of circular orbit for the chief spacecraft. The rather compact, three-dimensional solution is obtained by algebraic manipulation of the individual Keplerian motions in curvilinear, rather than Cartesian coordinates, and provides analytical expressions for the secular, constant and periodic terms of each coordinate as a function of the initial relative motion conditions or relative orbital elements. Numerical test cases are conducted to show that the approximate solution can be effectively employed to extend the classical linear Clohessy-Wiltshire solution to include non-linear relative motion without significant loss of accuracy up to a limit of 0.4-0.45 in eccentricity and 40-45° in relative inclination for the follower. A very simple, quadratic extension of the classical Clohessy-Wiltshire solution in curvilinear coordinates is also presented.
ON THE BOUNDEDNESS AND THE STABILITY OF SOLUTION TO THIRD ORDER NON-LINEAR DIFFERENTIAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
In this paper we investigate the global asymptotic stability,boundedness as well as the ultimate boundedness of solutions to a general third order nonlinear differential equation,using complete Lyapunov function.
Darboux Transformation for Coupled Non-Linear Schrödinger Equation and Its Breather Solutions
Feng, Lili; Yu, Fajun; Li, Li
2017-01-01
Starting from a 3×3 spectral problem, a Darboux transformation (DT) method for coupled Schrödinger (CNLS) equation is constructed, which is more complex than 2×2 spectral problems. A scheme of soliton solutions of an integrable CNLS system is realised by using DT. Then, we obtain the breather solutions for the integrable CNLS system. The method is also appropriate for more non-linear soliton equations in physics and mathematics.
Global search of non-linear systems periodic solutions: A rotordynamics application
Sarrouy, E.; Thouverez, F.
2010-08-01
Introducing non-linearities into models contributes towards a better reality description but leads to systems having multiple solutions. It is then legitimate to look for all the solutions of such systems, that is to have a global analysis approach. However no effective method can be found in literature for systems described by more than two or three degrees of freedom. We propose in this paper a way to find all T-periodic solutions—where T is known—of a non-linear dynamical system. This method is compared to three other approaches and is shown to be the most efficient on a Duffing oscillator. As a more complex example, a rotor model including a squeeze-film damper is studied and a second branch of solutions is exhibited.
Superdiffusions and positive solutions of non-linear partial differential equations
Energy Technology Data Exchange (ETDEWEB)
Dynkin, E B [Cornell University, New York (United States)
2004-02-28
By using super-Brownian motion, all positive solutions of the non-linear differential equation {delta}u=u{sup {alpha}} with 1<{alpha}{<=}2 in a bounded smooth domain E are characterized by their (fine) traces on the boundary. This solves a problem posed by the author a few years ago. The special case {alpha}=2 was treated by B. Mselati in 2002.
A solution to the non-linear equations of D=10 super Yang-Mills theory
Mafra, Carlos R
2015-01-01
In this letter, we present a formal solution to the non-linear field equations of ten-dimensional super Yang--Mills theory. It is assembled from products of linearized superfields which have been introduced as multiparticle superfields in the context of superstring perturbation theory. Their explicit form follows recursively from the conformal field theory description of the gluon multiplet in the pure spinor superstring. Furthermore, superfields of higher mass dimensions are defined and their equations of motion spelled out.
Non-linear effects on solute transfer between flowing water and a sediment bed.
Higashino, Makoto; Stefan, Heinz G
2011-11-15
A previously developed model of periodic pore water flow in space and time, and associated solute transport in a stream bed of fine sand is extended to coarse sand and fine gravel. The pore water flow immediately below the sediment/water interface becomes intermittently a non-Darcy flow. The periodic pressure and velocity fluctuations considered are induced by near-bed coherent turbulent motions in the stream flow; they penetrate from the sediment/water interface into the sediment pore system and are described by a wave number (χ) and a period (T) that are given as functions of the shear velocity (U(∗)) between the flowing water and the sediment bed. The stream bed has a flat surface without bed forms. The flow field in the sediment pore system is described by the continuity equation and a resistance law that includes both viscous (Darcy) and non-linear (inertial) effects. Simulation results show that non-linear (inertial) effects near the sediment/water interface increase flow resistance and reduce mean flow velocities. Compared to pure Darcy flow, non-linear (inertial) effects reduce solute exchange rates between overlying water and the sediment bed but only by a moderate amount (less than 50%). Turbulent coherent flow structures in the stream flow enhance solute transfer in the pore system of a stream bed compared to pure molecular diffusion, but by much less than standing surface waves or bed forms.
Surface Tension of Acid Solutions: Fluctuations beyond the Non-linear Poisson-Boltzmann Theory
Markovich, Tomer; Podgornik, Rudi
2016-01-01
We extend our previous study of surface tension of ionic solutions and apply it to the case of acids (and salts) with strong ion-surface interactions. These ion-surface interactions yield a non-linear boundary condition with an effective surface charge due to adsorption of ions from the bulk onto the interface. The calculation is done using the loop-expansion technique, where the zero-loop (mean field) corresponds of the non-linear Poisson-Boltzmann equation. The surface tension is obtained analytically to one-loop order, where the mean-field contribution is a modification of the Poisson-Boltzmann surface tension, and the one-loop contribution gives a generalization of the Onsager-Samaras result. Our theory fits well a wide range of different acids and salts, and is in accord with the reverse Hofmeister series for acids.
Rousselet, Bernard
2013-01-01
We consider {\\it small solutions} of a vibrating mechanical system with smooth non-linearities for which we provide an approximate solution by using a triple scale analysis; a rigorous proof of convergence of the triple scale method is included; for the forced response, a stability result is needed in order to prove convergence in a neighbourhood of a primary resonance. The amplitude of the response with respect to the frequency forcing is described and it is related to the frequency of a free periodic vibration.
Progress in solutions of the non-linear Boussinesq groundwater equation (Invited)
Dias, N. L.; Chor, T. L.; de Zarate, A. R.
2013-12-01
An existing truncated series solution, previously obtained from inversion techniques from the solution for the Blasius boundary-layer equation, is obtained directly for the Boussinesq equation in terms of a recurrence relation. The series is found to have a finite radius of convergence, which also explains why previous approximations to the solution of the Boussinesq equation had to resort to a combination of series/Padé expressions for small values of the independent variable and asymptotic approximations for large ones. The radius of convergence is obtained numerically to a high accuracy by means of path integration techniques that are able to identify the complex-plane singularities which determine that radius. New variable transformations are proposed for numerical integration of the equation that avoid singularities at the origin, and further asymptotic approximations, which remain necessary due to the finite radius of convergence, are also obtained. The approach can be extended to non-homogeneous boundary conditions at the origin, which is important in realistic scenarios where an aquifer discharges into a channel of finite-depth. Further recurrence relations are found for series solutions of the non-homogeneous case, as well as their radii of convergence and corresponding asymptotic approximations. Results obtained by joining ten terms of the series solution and the asymptotic approximation obtained by Heaslet and Alksne (1961).
Energy Technology Data Exchange (ETDEWEB)
Kozlowski, K.K.
2010-12-15
Starting from the form factor expansion in finite volume, we derive the multidimensional generalization of the so-called Natte series for the zero-temperature, time and distance dependent reduced density matrix in the non-linear Schroedinger model. This representation allows one to read-off straightforwardly the long-time/large-distance asymptotic behavior of this correlator. Our method of analysis reduces the complexity of the computation of the asymptotic behavior of correlation functions in the so-called interacting integrable models, to the one appearing in free fermion equivalent models. We compute explicitly the first few terms appearing in the asymptotic expansion. Part of these terms stems from excitations lying away from the Fermi boundary, and hence go beyond what can be obtained by using the CFT/Luttinger liquid based predictions. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kozlowski, K.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Terras, V. [CNRS, ENS Lyon (France). Lab. de Physique
2010-12-15
We present a new method allowing us to derive the long-time and large-distance asymptotic behavior of the correlations functions of quantum integrable models from their exact representations. Starting from the form factor expansion of the correlation functions in finite volume, we explain how to reduce the complexity of the computation in the so-called interacting integrable models to the one appearing in free fermion equivalent models. We apply our method to the time-dependent zero-temperature current-current correlation function in the non-linear Schroedinger model and compute the first few terms in its asymptotic expansion. Our result goes beyond the conformal field theory based predictions: in the time-dependent case, other types of excitations than the ones on the Fermi surface contribute to the leading orders of the asymptotics. (orig.)
Kozlowski, K K
2011-01-01
We present a new method allowing us to derive the long-time and large-distance asymptotic behavior of the correlations functions of quantum integrable models from their exact representations. Starting from the form factor expansion of the correlation functions in finite volume, we explain how to reduce the complexity of the computation in the so-called interacting integrable models to the one appearing in free fermion equivalent models. We apply our method to the time-dependent zero-temperature current-current correlation function in the non-linear Schr\\"{o}dinger model and compute the first few terms in its asymptotic expansion. Our result goes beyond the conformal field theory based predictions: in the time-dependent case, other types of excitations than the ones on the Fermi surface contribute to the leading orders of the asymptotics.
Nungesser, Ernesto
2014-01-01
We show future global non-linear stability of surface symmetric solutions of the Einstein-Vlasov system with a positive cosmological constant. Estimates of higher derivatives of the metric and the matter terms are obtained using an inductive argument. In a recent research monograph Ringstr\\"{o}m shows future non-linear stability of (not necessarily symmetric) solutions of the Einstein-Vlasov system with a non-linear scalar field if certain local estimates on the geometry and the matter terms are fulfilled. We show that these assumptions are satisfied at late times for the case under consideration here which together with Cauchy stability leads to our main conclusion.
Asymptotics of the critical non-linear wave equation for a class of non star-shaped obstacles
Shakra, Farah Abou
2012-01-01
Scattering for the energy critical non-linear wave equation for domains exterior to non trapping obstacles in 3+1 dimension is known for the star-shaped case. In this paper, we extend the scattering for a class of non star-shaped obstacles called illuminated from exterior. The main tool we use is the method of multipliers with weights that generalize the Morawetz multiplier to suit the geometry of the obstacle.
Godziek, Agnieszka; Maciejowska, Anna; Sajewicz, Mieczysław; Kowalska, Teresa
2015-03-01
This is our new study in a series of publications devoted to exploration of applicability of high-performance liquid chromatography (HPLC) to providing answers to difficult questions from the area of the reaction kinetics and mechanisms with non-linear reactions. Although an excellent analytical performance of HPLC is an indisputable fact, so far its performance as a tool in the kinetic and mechanistic studies has been tested to a lesser extent. In our earlier studies, spontaneous peptidization dynamics of amino acids in solution was demonstrated by means of HPLC upon a few amino acid examples, and on that basis a theoretical model has been developed, anticipating an interdependence of dynamics on chemical structures of amino acids involved. In order to expand the spectrum of experimentally investigated amino acid cases, in this study we present the results valid for three novel amino acids of significant life sciences importance, which differ in terms of peptidization dynamics. Experimental evidence originates from the achiral HPLC with the evaporative light scattering detection and MS detection. A conclusion is drawn that different spontaneous peptidization dynamics of amino acids may significantly influence chemical composition of proteins encountered in living organisms. Hence, a need emerges for systematic physicochemical studies on spontaneous non-linear peptidization dynamics of proteinogenic amino acids in liquid abiotic (but also in the biotic) systems.
PERIODIC SOLUTIONS OF ASYMPTOTICALLY LINEAR HAMILTONIAN SYSTEMS
Institute of Scientific and Technical Information of China (English)
FEIGUIHUA; QIUQINGJIU
1997-01-01
The authors establish the existence of nontrival periodic solutions of the asymptotically linear Hamiltomian systems in the general case that the asymptotic matrix may be degenerate and time-dependent.This is done by using the critical point theory,Galerkin approximation procedure and the Maslov-type index theory introduced and generalized by Conley,Zehnder and Long.
On generalized Nariai solutions and their asymptotics
Beyer, Florian
2009-01-01
In this paper, we consider the class of generalized Nariai solutions of Einstein's field equations in vacuum with a positive cosmological constant. According to the cosmic no-hair conjecture, generic expanding solutions isotropize and approach the de-Sitter solution asymptotically, at least locally in space. The generalized Nariai solutions, however, show quite unusual asymptotics and hence should be non-generic in some sense. In the first part of the paper, we list the necessary facts and characterize the asymptotic behavior geometrically. In the second part, we study the question of non-genericity, which we are able to confirm within the class of spatially homogeneous solutions. It turns out that perturbations of the three isometry classes of generalized Nariai solutions are related to different mass regimes of Schwarzschild de-Sitter solutions. In subsequent papers, we will continue this research in more general classes of solutions.
Energy Technology Data Exchange (ETDEWEB)
Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H. [Univ. of Texas, Austin, TX (United States)
1996-12-31
The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.
Asymptotically periodic solutions of Volterra integral equations
Directory of Open Access Journals (Sweden)
Muhammad N. Islam
2016-03-01
Full Text Available We study the existence of asymptotically periodic solutions of a nonlinear Volterra integral equation. In the process, we obtain the existence of periodic solutions of an associated nonlinear integral equation with infinite delay. Schauder's fixed point theorem is used in the analysis.
Asymptotic Methods for Solitary Solutions and Compactons
Directory of Open Access Journals (Sweden)
Ji-Huan He
2012-01-01
Full Text Available This paper is an elementary introduction to some new asymptotic methods for the search for the solitary solutions of nonlinear differential equations, nonlinear differential-difference equations, and nonlinear fractional differential equations. Particular attention is paid throughout the paper to giving an intuitive grasp for the variational approach, the Hamiltonian approach, the variational iteration method, the homotopy perturbation method, the parameter-expansion method, the Yang-Laplace transform, the Yang-Fourier transform, and ancient Chinese mathematics. Hamilton principle and variational principles are also emphasized. The reviewed asymptotic methods are easy to be followed for various applications. Some ideas on this paper are first appeared.
Non-linear and transient absorption spectroscopy of magnesium(II)-tetrabenzoporphyrin in solution
Stiel, H.; Volkmer, A.; Rückmann, I.; Zeug, A.; Ehrenberg, B.; Röder, B.
1998-10-01
The excited state properties of magnesium(II)-tetrabenzoporphyrin (Mg-TBP) were studied by using intensity dependent transmission (non-linear absorption), ps-transient absorption and time resolved luminescence spectroscopy. It was found that there is a strong excited absorption in the region around 500 nm. Because there is no or little ground state absorption in this region the dye is suitable as an optical limiter.
On the Role of Osmosis for Non-Linear Shock Waves f Pressure and Solute in Porous Media
Kanivesky, Roman; Salusti, Ettore; Caserta, Arrigo
2013-04-01
A novel non-Osanger model focusing on non-linear mechanic and chemo-poroelastic coupling of fluids and solute in porous rocks is developed based on the modern wave theory. Analyzing in 1-D a system of two adjacent rocks with different conditions we obtain two coupled non-linear equations for fluid pressure and solute (salt or pollutants) concentration, evolving under the action of strong stress from one "source" rock towards the other rock. Their solutions allow to identify quick non-linear solitary (Burgers) waves of coupled fluid pressure and solute density, that are different from diffusive or perturbative solutions found in other analyses. The strong transient waves for low permeability porous media, such as clay and shale, are analyzed in detail. For medium and high-permeability porous media (sandstones) this model is also tentatively applied. Indeed in recent works of Alexander (1990) and Hart(2009) is supported the presence of small osmotic phenomena in other rocks where osmosis was previously ignored. An attempt to apply our model to soils in Calabria (Italy), such as clastic marine and fluvial deposits as well as discontinuous remnants of Miocene and Pliocene carbonate and terrigeneous deposits, is also discussed.
Variational principle and a perturbative solution of non-linear string equations in curved space
Roshchupkin, S N
1999-01-01
String dynamics in a curved space-time is studied on the basis of an action functional including a small parameter of rescaled tension constant. A rescaled slow worldsheet time $T=\\epsilon\\tau$ is introduced, and general covariant non-linear string equation are derived. It is shown that in the first order of an $\\epsilon $-expansion these equations are reduced to the known equation for geodesic derivation but complemented by a string oscillatory term. These equations are solved for the de Sitter and Friedmann -Robertson-Walker spaces. The primary string constraints are found to be split into a chain of perturbative constraints and their conservation and consistency are proved. It is established that in the proposed realization of the perturbative approach the string dynamics in the de Sitter space is stable for a large Hubble constant $H
An implicit meshless scheme for the solution of transient non-linear Poisson-type equations
Bourantas, Georgios
2013-07-01
A meshfree point collocation method is used for the numerical simulation of both transient and steady state non-linear Poisson-type partial differential equations. Particular emphasis is placed on the application of the linearization method with special attention to the lagging of coefficients method and the Newton linearization method. The localized form of the Moving Least Squares (MLS) approximation is employed for the construction of the shape functions, in conjunction with the general framework of the point collocation method. Computations are performed for regular nodal distributions, stressing the positivity conditions that make the resulting system stable and convergent. The accuracy and the stability of the proposed scheme are demonstrated through representative and well-established benchmark problems. © 2013 Elsevier Ltd.
Large-N Solution of the Heterotic Weighted Non-Linear Sigma-Model
Koroteev, Peter; Vinci, Walter
2010-01-01
We study a heterotic two-dimensional N=(0,2) gauged non-linear sigma-model whose target space is a weighted complex projective space. We consider the case with N positively and \\tilde{N}=N_F - N negatively charged fields. This model is believed to give a description of the low-energy physics of a non-Abelian semi-local vortex in a four-dimensional N=2 supersymmetric U(N) gauge theory with N_F > N matter hypermultiplets. The supersymmetry in the latter theory is broken down to N=1 by a mass term for the adjoint fields. We solve the model in the large-N approximation and explore a two-dimensional subset of the mass parameter space for which a discrete Z_{N-\\tilde{N}} symmetry is preserved. Supersymmetry is generically broken, but it is preserved for special values of the masses where a new branch opens up and the model becomes super-conformal.
Directory of Open Access Journals (Sweden)
H. M. Abdelhafez
2016-03-01
Full Text Available The modified differential transform method (MDTM, Laplace transform and Padé approximants are used to investigate a semi-analytic form of solutions of nonlinear oscillators in a large time domain. Forced Duffing and forced van der Pol oscillators under damping effect are studied to investigate semi-analytic forms of solutions. Moreover, solutions of the suggested nonlinear oscillators are obtained using the fourth-order Runge-Kutta numerical solution method. A comparison of the result by the numerical Runge-Kutta fourth-order accuracy method is compared with the result by the MDTM and plotted in a long time domain.
Exact solutions of SO(3) non-linear sigma model in a conic space background
Bezerra, V B; Romero, C
2005-01-01
We consider a nonlinear sigma model coupled to the metric of a conic space. We obtain restrictions for a nonlinear sigma model to be a source of the conic space. We then study nonlinear sigma model in the conic space background. We find coordinate transformations which reduce the chiral fields equations in the conic space background to field equations in Minkowski spacetime. This enables us to apply the same methods for obtaining exact solutions in Minkowski spacetime to the case of a conic spacetime. In the case the solutions depend on two spatial coordinates we employ Ivanov's geometrical ansatz. We give a general analysis and also present classes of solutions in which there is dependence on three and four coordinates. We discuss with special attention the intermediate instanton and meron solutions and their analogous in the conic space. We find differences in the total actions and topological charges of these solutions and discuss the role of the deficit angle.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In this paper, we study the regularity of solutions of nonlinear stochastic partial differential equations (SPDEs) with multiplicative noises in the framework of Hilbert scales. Then we apply our abstract result to several typical nonlinear SPDEs such as stochastic Burgers and Ginzburg-Landau equations on the real line, stochastic 2D Navier-Stokes equations (SNSEs) in the whole space and a stochastic tamed 3D Navier-Stokes equation in the whole space, and obtain the existence of their smooth solutions respectively. In particular, we also get the existence of local smooth solutions for 3D SNSEs.
Directory of Open Access Journals (Sweden)
Abaker. A. Hassaballa.
2015-10-01
Full Text Available - In recent years, many more of the numerical methods were used to solve a wide range of mathematical, physical, and engineering problems linear and nonlinear. This paper applies the homotopy perturbation method (HPM to find exact solution of partial differential equation with the Dirichlet and Neumann boundary conditions.
An Efficient Implementation of Non-Linear Limit State Analysis Based on Lower-Bound Solutions
DEFF Research Database (Denmark)
Damkilde, Lars; Schmidt, Lotte Juhl
2005-01-01
Limit State analysis has been used in design for decades e.g. the yield line theory for concrete slabs or slip line solutions in geotechnics. In engineering practice manual methods have been dominating but in recent years the interest in numerical methods has been increasing. In this respect...
Explosive Solutions of Elliptic Equations with Absorption and Non-Linear Gradient Term
Indian Academy of Sciences (India)
Marius Ghergu; Constantin Niculescu; Vicenţiu Rădulescu
2002-08-01
Let be a non-decreasing $C^1$-function such that $f > 0$ on $(0, ∞), f(0) = 0, \\int_1^∞ 1/\\sqrt{F(t)}dt < ∞$ and $F(t)/f^{2/a}(t)→ 0$ as $t →∞$, where $F(t) = \\int_0^t f(s)ds$ and $a \\in (0,2]$. We prove the existence of positive large solutions to the equation $ u + q(x)|\
Asymptotic Behavior of Solutions to a Linear Volterra Integrodifferential System
Directory of Open Access Journals (Sweden)
Yue-Wen Cheng
2013-01-01
Full Text Available We investigate the asymptotic behavior of solutions to a linear Volterra integrodifferential system , We show that under some suitable conditions, there exists a solution for the above integrodifferential system, which is asymptotically equivalent to some given functions. Two examples are given to illustrate our theorem.
Asymptotic Solutions of Serial Radial Fuel Shuffling
Directory of Open Access Journals (Sweden)
Xue-Nong Chen
2015-12-01
Full Text Available In this paper, the mechanism of traveling wave reactors (TWRs is investigated from the mathematical physics point of view, in which a stationary fission wave is formed by radial fuel drifting. A two dimensional cylindrically symmetric core is considered and the fuel is assumed to drift radially according to a continuous fuel shuffling scheme. A one-group diffusion equation with burn-up dependent macroscopic coefficients is set up. The burn-up dependent macroscopic coefficients were assumed to be known as functions of neutron fluence. By introducing the effective multiplication factor keff, a nonlinear eigenvalue problem is formulated. The 1-D stationary cylindrical coordinate problem can be solved successively by analytical and numerical integrations for associated eigenvalues keff. Two representative 1-D examples are shown for inward and outward fuel drifting motions, respectively. The inward fuel drifting has a higher keff than the outward one. The 2-D eigenvalue problem has to be solved by a more complicated method, namely a pseudo time stepping iteration scheme. Its 2-D asymptotic solutions are obtained together with certain eigenvalues keff for several fuel inward drifting speeds. Distributions of the neutron flux, the neutron fluence, the infinity multiplication factor kinf and the normalized power are presented for two different drifting speeds.
Institute of Scientific and Technical Information of China (English)
WANG Rouhuai
2006-01-01
The main aim of this paper is to discuss the problem concerning the analyticity of the solutions of analytic non-linear elliptic boundary value problems.It is proved that if the corresponding first variation is regular in Lopatinski(i) sense,then the solution is analytic up to the boundary.The method of proof really covers the case that the corresponding first variation is regularly elliptic in the sense of Douglis-Nirenberg-Volevich,and hence completely generalize the previous result of C.B.Morrey.The author also discusses linear elliptic boundary value problems for systems of ellip tic partial differential equations where the boundary operators are allowed to have singular integral operators as their coefficients.Combining the standard Fourier transform technique with analytic continuation argument,the author constructs the Poisson and Green's kernel matrices related to the problems discussed and hence obtain some representation formulae to the solutions.Some a priori estimates of Schauder type and Lp type are obtained.
An asymptotic solution of large-N QCD
Directory of Open Access Journals (Sweden)
Bochicchio Marco
2014-01-01
Full Text Available We find an asymptotic solution for two-, three- and multi-point correlators of local gauge-invariant operators, in a lower-spin sector of massless large-N QCD, in terms of glueball and meson propagators, in such a way that the solution is asymptotic in the ultraviolet to renormalization-group improved perturbation theory, by means of a new purely field-theoretical technique that we call the asymptotically-free bootstrap, based on a recently-proved asymptotic structure theorem for two-point correlators. The asymptotically-free bootstrap provides as well asymptotic S-matrix amplitudes in terms of glueball and meson propagators. Remarkably, the asymptotic S-matrix depends only on the unknown particle spectrum, but not on the anomalous dimensions, as a consequence of the LS Z reduction formulae. Very many physics consequences follow, both practically and theoretically. In fact, the asymptotic solution sets the strongest constraints on any actual solution of large-N QCD, and in particular on any string solution.
Asymptotic traveling wave solution for a credit rating migration problem
Liang, Jin; Wu, Yuan; Hu, Bei
2016-07-01
In this paper, an asymptotic traveling wave solution of a free boundary model for pricing a corporate bond with credit rating migration risk is studied. This is the first study to associate the asymptotic traveling wave solution to the credit rating migration problem. The pricing problem with credit rating migration risk is modeled by a free boundary problem. The existence, uniqueness and regularity of the solution are obtained. Under some condition, we proved that the solution of our credit rating problem is convergent to a traveling wave solution, which has an explicit form. Furthermore, numerical examples are presented.
Energy Technology Data Exchange (ETDEWEB)
Cordier, S.
1995-05-01
In this work a 1-D model of electrons and ions plasma is considered. Electrons are supposed to be in Maxwell-Boltzmann thermodynamic equilibrium while ions are described with an isothermal flow model of charged particles submitted to a self-consistent electric field. A collision term between neutral particles and ions simulates the presence of neutral particles. This work demonstrates the existence of low entropy solutions for this simple model with arbitrary initial conditions. Most of the paper is devoted to the demonstration of this theorem and follows the successive steps: construction of a numerical scheme, recall of the classical properties of Riemann problem solutions using Glimm method, uniform estimations for the whole variation norm, and finally, convergence of the constructed solutions towards a low entropy solution for the non-linear Euler/Poisson system. Domains of application for this type of model are listed in the conclusion. (J.S.). 18 refs.
Uniformly Asymptotic Stability and Existence of Periodic Solutions and Almost Periodic Solutions
Institute of Scientific and Technical Information of China (English)
林发兴
1994-01-01
We introduce the concepts of uniformly stable solutions and uniformly-asymptotically stable solutions, and then give the relation between Lyapunov function and those concepts. Furthermore, we establish the theorem that an almost periodic system or periodic system has uniformly-asymptotically stable solutions and Lipschitz’ condition has an almost periodic solution or periodic solution.
Brem, G.; Brouwers, J.J.H.
1990-01-01
In Part I, analytical solutions were given for the non-linear isothermal heterogeneous conversion of a porous solid particle. Account was taken of a reaction rate of general order with respect to the gas reactant, intrinsic reaction surface area and effective pore diffusion, which change with solid
Directory of Open Access Journals (Sweden)
Chi-Chang Wang
2013-09-01
Full Text Available This paper seeks to use the proposed residual correction method in coordination with the monotone iterative technique to obtain upper and lower approximate solutions of singularly perturbed non-linear boundary value problems. First, the monotonicity of a non-linear differential equation is reinforced using the monotone iterative technique, then the cubic-spline method is applied to discretize and convert the differential equation into the mathematical programming problems of an inequation, and finally based on the residual correction concept, complex constraint solution problems are transformed into simpler questions of equational iteration. As verified by the four examples given in this paper, the method proposed hereof can be utilized to fast obtain the upper and lower solutions of questions of this kind, and to easily identify the error range between mean approximate solutions and exact solutions.
Brem, G.; Brouwers, J.J.H.
1990-01-01
Analytical description are presented for non-linear heterogeneous conversion of a porous solid particle reacting with a surrounding gas. Account has been taken of a reaction rate of general order with respect to gas concentration, intrinsic reaction surface area and pore diffusion, which change with
Nyaupane, Parashu R.; Manzanares, Carlos
2016-06-01
The thermal lens technique is applied to vibrational overtone spectroscopy of solutions of benzene. The pump and probe thermal lens technique has been found to be very sensitive for detecting samples of low concentration in transparent solvents. The C-H fifth vibrational (Δυ = 6) overtone spectrum of benzene is detected at room temperature for compositions per volume in the range (1 to 1× 10-4) using n-C_6H14 as the solvent. By detecting the absorption band in a 100 ppm solution, the peak absorption of the signal is approximately (2.2 ± 0.3)× 10-7 cm-1. The parameters that determine the magnitude of the thermal lens signal such as the pump laser power and the thermodynamic properties of the solvent and solute are discussed. A plot of normalized integrated intensity as a function of composition of benzene in solution reveals a non-linear behavior. The non-linearity cannot be explained assuming solvent enhancement at low concentrations. A two color absorption model that includes the simultaneous absorption of the pump and probe lasers could explain the enhanced magnitude and the non-linear behavior of the thermal lens signal for solutions of composition below 0.01.
Asymptotic Bifurcation Solutions for Perturbed Kuramoto-Sivashinsky Equation
Institute of Scientific and Technical Information of China (English)
HUANG Qiong-Wei; TANG Jia-Shi
2011-01-01
Stability and dynamic bifurcation in the perturbed Kuramoto-Sivashinsky (KS) equation with Dirichlet boundary condition are investigated by using central manifold reduction procedure.The result shows, as the bifurcation parameter crosses a critical value, the system undergoes a pitchfork bifurcation to produce two asymptotically stable solutions.Furthermore, when the distance from bifurcation is of comparable order ∈2 (｜∈｜ (≤) 1), the first two terms in e-expansions for the new asymptotic bifurcation solutions are derived by multiscale expansion method.Such information is useful to the bifurcation control.
EVANS FUNCTIONS AND ASYMPTOTIC STABILITY OF TRAVELING WAVE SOLUTIONS
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper studies the asymptotic stability of traveling wave solutions of nonlinear systems of integral-differential equations. It has been established that linear stability of traveling waves is equivalent to nonlinear stability and some “nice structure” of the spectrum of an associated operator implies the linear stability. By using the method of variation of parameter, the author defines some complex analytic function, called the Evans function. The zeros of the Evans function corresponds to the eigenvalues of the associated linear operator. By calculating the zeros of the Evans function, the asymptotic stability of the travling wave solutions is established.
Vu, The Manh; Sulem, Jean; Subrin, Didier; Monin, Nathalie
2013-03-01
A semi-analytical solution based on the transfer matrix technique is proposed to analyze the stresses and displacements in a two-dimensional circular opening excavated in transversely isotropic formation with non-linear behavior. A non-isotropic far field can be accounted for and the process of excavation is simulated by progressive reduction of the internal radial stress. A hyperbolic stress-strain law is proposed to take into account the non-linear behavior of the rock. The model contains seven independent parameters corresponding to the five elastic constants of an elastic material with transverse isotropy and to the friction coefficient and cohesion along the parallel joints (weakness planes). This approach is based on the discretization of the space into concentric rings. It requires the establishment of elementary solutions corresponding to the stress and displacement fields inside each ring for given conditions at its boundaries. These solutions, based on complex variable theory, are obtained in the form of infinite series. The appropriate number of terms to be kept for acceptable approximation is discussed. This non-linear model is applied to back analyze the convergence measurements of Saint-Martin-la-Porte access gallery. Short-term and long-term ground parameters are evaluated.
Energy Technology Data Exchange (ETDEWEB)
Merton, S. R.; Smedley-Stevenson, R. P. [Computational Physics Group, AWE Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Pain, C. C. [Dept. of Earth Science and Engineering, Imperial College London, London SW7 2AZ (United Kingdom)
2012-07-01
This paper describes a Non-Linear Discontinuous Petrov-Galerkin method and its application to the one-speed Boltzmann Transport Equation (BTE) for space-time problems. The purpose of the method is to remove unwanted oscillations in the transport solution which occur in the vicinity of sharp flux gradients, while improving computational efficiency and numerical accuracy. This is achieved by applying artificial dissipation in the solution gradient direction, internal to an element using a novel finite element (FE) Riemann approach. The added dissipation is calculated at each node of the finite element mesh based on local behaviour of the transport solution on both the spatial and temporal axes of the problem. Thus a different dissipation is used in different elements. The magnitude of dissipation that is used is obtained from a gradient-informed scaling of the advection velocities in the stabilisation term. This makes the method in its most general form non-linear. The method is implemented within a very general finite element Riemann framework. This makes it completely independent of choice of angular basis function allowing one to use different descriptions of the angular variation. Results show the non-linear scheme performs consistently well in demanding time-dependent multi-dimensional neutron transport problems. (authors)
Asymptotic stability of solutions to elastic systems with structural damping
Directory of Open Access Journals (Sweden)
Hongxia Fan
2014-11-01
Full Text Available In this article, we study the asymptotic stability of solutions for the initial value problems of second order evolution equations in Banach spaces, which can model elastic systems with structural damping. The discussion is based on exponentially stable semigroups theory. Applications to the vibration equation of elastic beams with structural damping are also considered.
MULTIPLE SOLUTIONS TO AN ASYMPTOTICALLY LINEAR ROBIN BOUNDARY VALUE PROBLEM
Institute of Scientific and Technical Information of China (English)
无
2012-01-01
Under some weaker conditions,we prove the existence of at least two solutions to an asymptotically linear elliptic problem with Robin boundary value condition,using truncation arguments.Our results are also valid for the case of the so-called resonance at infinity.
The Asymptotic Behavior for Numerical Solution of a Volterra Equation
Institute of Scientific and Technical Information of China (English)
Da Xu
2003-01-01
Long-time asymptotic stability and convergence properties for the numerical solution of a Volterra equation of parabolic type are studied. The methods are based on the first-second order backward difference methods. The memory term is approximated by the convolution quadrature and the interpolant quadrature. Discretization of the spatial partial differential operators by the finite element method is also considered.
Energy Technology Data Exchange (ETDEWEB)
Mahanthesh, B., E-mail: bmanths@gmail.com [Department of Mathematics, AIMS Institutes, Peenya, 560058 Bangalore (India); Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, 577451 Shimoga, Karnataka (India); Gireesha, B.J., E-mail: bjgireesu@rediffmail.com [Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, 577451 Shimoga, Karnataka (India); Department of Mechanical Engineering, Cleveland State University, Cleveland, OH (United States); Gorla, R.S. Reddy, E-mail: r.gorla@csuohio.edu [Department of Mechanical Engineering, Cleveland State University, Cleveland, OH (United States); Abbasi, F.M., E-mail: abbasisarkar@gmail.com [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Shehzad, S.A., E-mail: ali_qau70@yahoo.com [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan)
2016-11-01
Numerical solutions of three-dimensional flow over a non-linear stretching surface are developed in this article. An electrically conducting flow of viscous nanoliquid is considered. Heat transfer phenomenon is accounted under thermal radiation, Joule heating and viscous dissipation effects. We considered the variable heat flux condition at the surface of sheet. The governing mathematical equations are reduced to nonlinear ordinary differential systems through suitable dimensionless variables. A well-known shooting technique is implemented to obtain the results of dimensionless velocities and temperature. The obtained results are plotted for multiple values of pertinent parameters to discuss the salient features of these parameters on fluid velocity and temperature. The expressions of skin-friction coefficient and Nusselt number are computed and analyzed comprehensively through numerical values. A comparison of present results with the previous results in absence of nanoparticle volume fraction, mixed convection and magnetic field is computed and an excellent agreement noticed. We also computed the results for both linear and non-linear stretching sheet cases. - Highlights: • Hydromagnetic flow of nanofluid over a bidirectional non-linear stretching surface is examined. • Cu, Al{sub 2}O3 and TiO{sub 2} types nanoparticles are taken into account. • Numerical solutions have been computed and addressed. • The values of skin-friction and Nusselt number are presented.
A Note on Solutions for Asymptotically Linear Elliptic Systems
Institute of Scientific and Technical Information of China (English)
2008-01-01
In this paper, we axe concerned with the elliptic system of -△u+V(x)u=g(=x,v),x=∈RN,-△v+V(x)v=f(x, u), x∈RN, where V(x) is a continuous potential well, f, g are continuous and asymptotically linear as t→∞. The existence of a positive solution and ground state solution are established via variational methods.
DEFF Research Database (Denmark)
Larsen, Jon Steffen; Santos, Ilmar
2015-01-01
An efficient finite element scheme for solving the non-linear Reynolds equation for compressible fluid coupled to compliant structures is presented. The method is general and fast and can be used in the analysis of airfoil bearings with simplified or complex foil structure models. To illustrate...... the computational performance, it is applied to the analysis of a compliant foil bearing modelled using the simple elastic foundation model. The model is derived and perturbed using complex notation. Top foil sagging effect is added to the bump foil compliance in terms of a close-form periodic function. For a foil...... bearing utilized in an industrial turbo compressor, the influence of boundary conditions and sagging on the pressure profile, shaft equilibrium position and dynamic coefficients is numerically simulated. The proposed scheme is faster, leading to the conclusion that it is suitable, not only for steady...
Asymptotic behavior of singular solutions to semilinear fractional elliptic equations
Directory of Open Access Journals (Sweden)
Guowei Lin
2014-02-01
Full Text Available In this article we study the asymptotic behavior of positive singular solutions to the equation $$ (-\\Delta^{\\alpha} u+u^p=0\\quad\\text{in } \\Omega\\setminus\\{0\\}, $$ subject to the conditions $u=0$ in $\\Omega^c$ and $\\lim_{x\\to0}u(x=\\infty$, where $p\\geq1$, $\\Omega$ is an open bounded regular domain in $\\mathbb{R}^N$ ($N\\ge2$ containing the origin, and $(-\\Delta^\\alpha$ with $\\alpha\\in(0,1$ denotes the fractional Laplacian. We show that the asymptotic behavior of positive singular solutions is controlled by a radially symmetric solution with $\\Omega$ being a ball.
Processing Approach of Non-linear Adjustment Models in the Space of Non-linear Models
Institute of Scientific and Technical Information of China (English)
LI Chaokui; ZHU Qing; SONG Chengfang
2003-01-01
This paper investigates the mathematic features of non-linear models and discusses the processing way of non-linear factors which contributes to the non-linearity of a nonlinear model. On the basis of the error definition, this paper puts forward a new adjustment criterion, SGPE.Last, this paper investigates the solution of a non-linear regression model in the non-linear model space and makes the comparison between the estimated values in non-linear model space and those in linear model space.
Asymptotic Reissner-Nordstr\\"om solution within nonlinear electrodynamics
Kruglov, S I
2016-01-01
A model of nonlinear electrodynamics coupled with the gravitational field is studied. We obtain the asymptotic black hole solutions at $r\\rightarrow 0$ and $r\\rightarrow \\infty$. The asymptotic at $r\\rightarrow 0$ is shown, and we find corrections to the Reissner-Nordstr\\"om solution and Coulomb's law at $r\\rightarrow\\infty$. The mass of the black hole is evaluated having the electromagnetic origin. We investigate the thermodynamics of charged black holes and their thermal stability. The critical point corresponding to the second-order phase transition (where heat capacity diverges) is found. If the mass of the black hole is greater than the critical mass, the black hole becomes unstable.
Asymptotic Reissner-Nordström solution within nonlinear electrodynamics
Kruglov, S. I.
2016-08-01
A model of nonlinear electrodynamics coupled with the gravitational field is studied. We obtain the asymptotic black hole solutions at r →0 and r →∞ . The asymptotic at r →0 is shown, and we find corrections to the Reissner-Nordström solution and Coulomb's law at r →∞ . The mass of the black hole is evaluated having the electromagnetic origin. We investigate the thermodynamics of charged black holes and their thermal stability. The critical point corresponding to the second-order phase transition (where heat capacity diverges) is found. If the mass of the black hole is greater than the critical mass, the black hole becomes unstable.
Precise asymptotic behavior of solutions to damped simple pendulum equations
Directory of Open Access Journals (Sweden)
Tetsutaro Shibata
2009-11-01
Full Text Available We consider the simple pendulum equation $$displaylines{ -u''(t + epsilon f(u'(t = lambdasin u(t, quad t in I:=(-1, 1,cr u(t > 0, quad t in I, quad u(pm 1 = 0, }$$ where $0 < epsilon le 1$, $lambda > 0$, and the friction term is either $f(y = pm|y|$ or $f(y = -y$. Note that when $f(y = -y$ and $epsilon = 1$, we have well known original damped simple pendulum equation. To understand the dependance of solutions, to the damped simple pendulum equation with $lambda gg 1$, upon the term $f(u'(t$, we present asymptotic formulas for the maximum norm of the solutions. Also we present an asymptotic formula for the time at which maximum occurs, for the case $f(u = -u$.
AN ASYMPTOTIC SOLUTION OF VELOCITY FIELD IN SHIP WAVES
Institute of Scientific and Technical Information of China (English)
WU Yun-gang; TAO Ming-de
2006-01-01
The stationary phase method in conventional Lighthill's two-stage scheme to get the expressions of the velocity field was given up in this paper. The method that Ursell had used in deducing the elevation expression of ship wave was adopted, and an asymptotic solution of velocity field of ship waves on an inviscid fluid that is perfectly fit for the region inside and outside the critical lines was obtained. It is very convenient to be used in SAR technique.
Solute transport through porous media using asymptotic dispersivity
Indian Academy of Sciences (India)
P K Sharma; Teodrose Atnafu Abgaze
2015-08-01
In this paper, multiprocess non-equilibrium transport equation has been used, which accounts for both physical and chemical non-equilibrium for reactive transport through porous media. An asymptotic distance dependent dispersivity is used to embrace the concept of scale-dependent dispersion for solute transport in heterogeneous porous media. Semi-analytical solution has been derived of the governing equations with an asymptotic distance dependent dispersivity by using Laplace transform technique and the power series method. For application of analytical model, we simulated observed experimental breakthrough curves from 1500 cm long soil column experiments conducted in the laboratory. The simulation results of break-through curves were found to deviate from the observed breakthrough curves for both mobile–immobile and multiprocess non-equilibrium transport with constant dispersion models. However, multiprocess non-equilibrium with an asymptotic dispersion model gives better fit of experimental breakthrough curves through long soil column and hence it is more useful for describing anomalous solute transport through hetero-geneous porous media. The present model is simpler than the stochastic numerical method.
DEFF Research Database (Denmark)
Webb, Garry; Sørensen, Mads Peter; Brio, Moysey
2004-01-01
the electromagnetic momentum and energy conservation laws, corresponding to the space and time translation invariance symmetries. The symmetries are used to obtain classical similarity solutions of the equations. The traveling wave similarity solutions for the case of a cubic Kerr nonlinearity, are shown to reduce...... to a single ordinary differential equation for the variable $y=E^2$, where $E$ is the electric field intensity. The differential equation has solutions $y=y(\\xi)$, where $\\xi=z-st$ is the traveling wave variable and $s$ is the velocity of the wave. These solutions exhibit new phenomena not obtainable...... by the NLS approximation. The characteristics of the solutions depends on the values of the wave velocity $s$ and the energy integration constant $\\epsilon$. Both smooth periodic traveling waves and non-smooth solutions in which the electric field gradient diverges (i.e. solutions in which $|E...
Efficient Non Linear Loudspeakers
DEFF Research Database (Denmark)
Petersen, Bo R.; Agerkvist, Finn T.
2006-01-01
Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...... by changing the voice coil layout. This deliberate non-linear design has the benefit that a smaller amplifier can be used, which has the benefit of reducing system cost as well as reducing power consumption.......Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...
Simulation of non-linear ultrasound fields
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt; Fox, Paul D.; Wilhjelm, Jens E.
2002-01-01
An approach for simulating non-linear ultrasound imaging using Field II has been implemented using the operator splitting approach, where diffraction, attenuation, and non-linear propagation can be handled individually. The method uses the Earnshaw/Poisson solution to Burgcrs' equation for the non......-linear ultrasound imaging in 3D using filters or pulse inversion for any kind of transducer, focusing, apodization, pulse emission and scattering phantom. This is done by first simulating the non-linear emitted field and assuming that the scattered field is weak and linear. The received signal is then the spatial...
Mahanthesh, B.; Gireesha, B. J.; Gorla, R. S. Reddy; Abbasi, F. M.; Shehzad, S. A.
2016-11-01
Numerical solutions of three-dimensional flow over a non-linear stretching surface are developed in this article. An electrically conducting flow of viscous nanoliquid is considered. Heat transfer phenomenon is accounted under thermal radiation, Joule heating and viscous dissipation effects. We considered the variable heat flux condition at the surface of sheet. The governing mathematical equations are reduced to nonlinear ordinary differential systems through suitable dimensionless variables. A well-known shooting technique is implemented to obtain the results of dimensionless velocities and temperature. The obtained results are plotted for multiple values of pertinent parameters to discuss the salient features of these parameters on fluid velocity and temperature. The expressions of skin-friction coefficient and Nusselt number are computed and analyzed comprehensively through numerical values. A comparison of present results with the previous results in absence of nanoparticle volume fraction, mixed convection and magnetic field is computed and an excellent agreement noticed. We also computed the results for both linear and non-linear stretching sheet cases.
Asymptotic solution for EI Nino-southern oscillation of nonlinear model
Institute of Scientific and Technical Information of China (English)
MO Jia-qi; LIN Wan-tao
2008-01-01
A class of nonlinear coupled system for E1 Nino-Southern Oscillation (ENSO) model is considered. Using the asymptotic theory and method of variational iteration, the asymptotic expansion of the solution for ENSO models is obtained.
Directory of Open Access Journals (Sweden)
Eusebio Eduardo Hernández Martinez
2013-01-01
Full Text Available In robotics, solving the direct kinematics problem (DKP for parallel robots is very often more difficult and time consuming than for their serial counterparts. The problem is stated as follows: given the joint variables, the Cartesian variables should be computed, namely the pose of the mobile platform. Most of the time, the DKP requires solving a non‐linear system of equations. In addition, given that the system could be non‐convex, Newton or Quasi‐Newton (Dogleg based solvers get trapped on local minima. The capacity of such kinds of solvers to find an adequate solution strongly depends on the starting point. A well‐known problem is the selection of such a starting point, which requires a priori information about the neighbouring region of the solution. In order to circumvent this issue, this article proposes an efficient method to select and to generate the starting point based on probabilistic learning. Experiments and discussion are presented to show the method performance. The method successfully avoids getting trapped on local minima without the need for human intervention, which increases its robustness when compared with a single Dogleg approach. This proposal can be extended to other structures, to any non‐linear system of equations, and of course, to non‐linear optimization problems.
Asymptotic solution for heat convection-radiation equation
Energy Technology Data Exchange (ETDEWEB)
Mabood, Fazle; Ismail, Ahmad Izani Md [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Khan, Waqar A. [Department of Engineering Sciences, National University of Sciences and Technology, PN Engineering College, Karachi, 75350 (Pakistan)
2014-07-10
In this paper, we employ a new approximate analytical method called the optimal homotopy asymptotic method (OHAM) to solve steady state heat transfer problem in slabs. The heat transfer problem is modeled using nonlinear two-point boundary value problem. Using OHAM, we obtained the approximate analytical solution for dimensionless temperature with different values of a parameter ε. Further, the OHAM results for dimensionless temperature have been presented graphically and in tabular form. Comparison has been provided with existing results from the use of homotopy perturbation method, perturbation method and numerical method. For numerical results, we used Runge-Kutta Fehlberg fourth-fifth order method. It was found that OHAM produces better approximate analytical solutions than those which are obtained by homotopy perturbation and perturbation methods, in the sense of closer agreement with results obtained from the use of Runge-Kutta Fehlberg fourth-fifth order method.
Energy Technology Data Exchange (ETDEWEB)
Valat, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1960-12-15
Universal stability diagrams have been calculated and experimentally checked for Hill-Meissner type equations with square-wave coefficients. The study of these equations in the phase-plane has then made it possible to extend the periodic solution calculations to the case of non-linear differential equations with periodic square-wave coefficients. This theory has been checked experimentally. For non-linear coupled systems with constant coefficients, a search was first made for solutions giving an algebraic motion. The elliptical and Fuchs's functions solve such motions. The study of non-algebraic motions is more delicate, apart from the study of nonlinear Lissajous's motions. A functional analysis shows that it is possible however in certain cases to decouple the system and to find general solutions. For non-linear coupled systems with periodic square-wave coefficients it is then possible to calculate the conditions leading to periodic solutions, if the two non-linear associated systems with constant coefficients fall into one of the categories of the above paragraph. (author) [French] Pour les equations du genre de Hill-Meissner a coefficients creneles, on a calcule des diagrammes universels de stabilite et ceux-ci ont ete verifies experimentalement. L'etude de ces equations dans le plan de phase a permis ensuite d'etendre le calcul des solutions periodiques au cas des equations differentielles non lineaires a coefficients periodiques creneles. Cette theorie a ete verifiee experimentalement. Pour Jes systemes couples non lineaires a coefficients constants, on a d'abord cherche les solutions menant a des mouvements algebriques. Les fonctions elliptiques et fuchsiennes uniformisent de tels mouvements. L'etude de mouvements non algebriques est plus delicate, a part l'etude des mouvements de Lissajous non lineaires. Une analyse fonctionnelle montre qu'il est toutefois possible dans certains cas de decoupler le systeme et de
ASYMPTOTIC ESTIMATION FOR SOLUTION OF A CLASS OF SEMI-LINEAR ROBIN PROBLEMS
Institute of Scientific and Technical Information of China (English)
Cheng Ouyang
2005-01-01
A class of semi-linear Robin problem is considered. Under appropriate assumptions, the existence and asymptotic behavior of its solution are studied more carefully. Using stretched variables, the formal asymptotic expansion of solution for the problem is constructed and the uniform validity of the solution is obtained by using the method of upper and lower solution.
Asymptotic Solution to the Rayleigh Problem of Dynamic Soaring
Bousquet, Gabriel D; Slotine, Jean-Jacques E
2015-01-01
It is believed that albatrosses power their flight through dynamic soaring, a technique where energy is extracted from horizontally blowing shear winds. The Rayleigh model of dynamic soaring, also called the two layer model, makes a 2-dimensional approximation of the wind field and glider trajectory. This note considers the "Rayleigh problem" of finding the minimum wind necessary for the existence of energy neutral gliding cycles. We utilize a 3-degree of freedom glider model with quadratic drag. Asymptotic solutions in the limit of large glide ratios are obtained. The optimal motion is a traveling trajectory constituted of a succession of small partial turns. It is over 50% more efficient at preserving airspeed than full half-turn based trajectories.
Ground state solutions for asymptotically periodic Schrodinger equations with critical growth
Directory of Open Access Journals (Sweden)
Hui Zhang
2013-10-01
Full Text Available Using the Nehari manifold and the concentration compactness principle, we study the existence of ground state solutions for asymptotically periodic Schrodinger equations with critical growth.
Levchenko, E. A.; Trifonov, A. Yu.; Shapovalov, A. V.
2015-11-01
Asymptotic solutions of the multidimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation with an influence function that is invariant with respect to a spatial shift are constructed. The asymptotic solutions are perturbations of a spatially-homogeneous quasistationary exact solution. General expressions are illustrated by the example of a two-dimensional equation with a Gaussian initial condition.
Asymptotic Behavior of Soliton Solutions with a Double Spectral Parameter for Principal Chiral Field
Institute of Scientific and Technical Information of China (English)
SONG Quan-Fu; ZHOU Zi-Xiang
2005-01-01
The soliton solutions with a double spectral parameter for the principal chiral field are derived by Darboux transformation. The asymptotic behavior of the solutions as time tends to infinity is obtained and the speeds of the peaks in the asymptotic solutions are not constants.
Ashrafi, Motahare; Arab Chamjangali, Mansour; Bagherian, Ghadamali; Goudarzi, Nasser
2017-01-01
The performance of the Nano-magnetite Fe3O4 impregnated onto walnut shell (Fe3O4-WNS), which possessed the adsorption features of walnut shell and the magnetic property of Fe3O4, was investigated for the elimination of the methyl violet and Rhodamine 6G from contaminated aqueous solutions. The effects of different experimental variables on the removal efficiency of the cited dyes were examined. Then these variables were used as the inputs to generate linear and non-linear models such as the multiple linear regression, random forest, and artificial neural network to predict the removal efficiency of these dye species at different experimental conditions. The validation studies of these models were performed using the test set, which was not present in the modeling procedure. It was found that ANN had a higher ability to predict the adsorption process under different experimental conditions, and could be applied for the development of an automated dye wastewater removal plant. Also the maximum adsorption capacity (qmax) indicated that the qmax value for Fe3O4-WNS for removal of cationic dyes was comparable or better than that for some reported adsorbents. Also it should be cited that exhausted Fe3O4-WNS was regenerated using dishwashing liquid, and reused for removal of the cited dye species from aqueous solutions.
Large Time Asymptotics for Solutions of Nonlinear Partial Differential Equations
Sachdev, PL
2010-01-01
A large number of physical phenomena are modeled by nonlinear partial differential equations, subject to appropriate initial/boundary conditions. This title presents the constructive mathematical techniques. It deals with the asymptotic methods which include self-similarity, balancing argument, and matched asymptotic expansions
Institute of Scientific and Technical Information of China (English)
Wei-hua Mao; An-hua Wan
2006-01-01
The oscillatory and asymptotic behavior of the solutions for third order nonlinear impulsive delay differential equations are investigated. Some novel criteria for all solutions to be oscillatory or be asymptotic are established. Three illustrative examples are proposed to demonstrate the effectiveness of the conditions.
Directory of Open Access Journals (Sweden)
Park Jong Yeoul
2007-01-01
Full Text Available We study the existence of global weak solutions for a hyperbolic differential inclusion with a source term, and then investigate the asymptotic stability of the solutions by using Nakao lemma.
Asymptotic behavior of solutions of the damped Boussinesq equation in two space dimensions
Directory of Open Access Journals (Sweden)
Vladimir V. Varlamov
1999-01-01
classical solution is proved and the solution is constructed in the form of a series. The major term of its long-time asymptotics is calculated explicitly and a uniform in space estimate of the residual term is given.
Asymptotic Solution of the Theory of Shells Boundary Value Problem
Directory of Open Access Journals (Sweden)
I. V. Andrianov
2007-01-01
Full Text Available This paper provides a state-of-the-art review of asymptotic methods in the theory of plates and shells. Asymptotic methods of solving problems related to theory of plates and shells have been developed by many authors. The main features of our paper are: (i it is devoted to the fundamental principles of asymptotic approaches, and (ii it deals with both traditional approaches, and less widely used, new approaches. The authors have paid special attention to examples and discussion of results rather than to burying the ideas in formalism, notation, and technical details.
On the minimal speed and asymptotics of the wave solutions for the lotka volterra system
Hou, Xiaojie
2010-01-01
e study the minimal wave speed and the asymptotics of the traveling wave solutions of a competitive Lotka Volterra system. The existence of the traveling wave solutions is derived by monotone iteration. The asymptotic behaviors of the wave solutions are derived by comparison argument and the exponential dichotomy, which seems to be the key to understand the geometry and the stability of the wave solutions. Also the uniqueness and the monotonicity of the waves are investigated via a generalized sliding domain method.
Asymptotic Properties of Solutions of Parabolic Equations Arising from Transient Diffusions
Institute of Scientific and Technical Information of China (English)
A.M. Il'in; R.Z. Khasminskii; G. Yin
2002-01-01
This work is concerned with asymptotic properties of a class of parabolic systems arising from singularly perturbed diffusions. The underlying system has a fast varying component and a slowly changing component. One of the distinct features is that the fast varying diffusion is transient. Under such a setup, this paper presents an asymptotic analysis of the solutions of such parabolic equations. Asymptotic expansions of functional satisfying the parabolic system are obtained. Error bounds are derived.
ASYMPTOTIC SOLUTION OF ACTIVATOR INHIBITOR SYSTEMS FOR NONLINEAR REACTION DIFFUSION EQUATIONS
Institute of Scientific and Technical Information of China (English)
Jiaqi MO; Wantao LIN
2008-01-01
A nonlinear reaction diffusion equations for activator inhibitor systems is considered. Under suitable conditions, firstly, the outer solution of the original problem is obtained, secondly, using the variables of multiple scales and the expanding theory of power series the formal asymptotic expansions of the solution are constructed, and finally, using the theory of differential inequalities the uniform validity and asymptotic behavior of the solution are studied.
Directory of Open Access Journals (Sweden)
Zhanhua Yu
2011-01-01
Full Text Available We study the almost surely asymptotic stability of exact solutions to neutral stochastic pantograph equations (NSPEs, and sufficient conditions are obtained. Based on these sufficient conditions, we show that the backward Euler method (BEM with variable stepsize can preserve the almost surely asymptotic stability. Numerical examples are demonstrated for illustration.
Institute of Scientific and Technical Information of China (English)
黎勇; 陈丽
2002-01-01
In this paper, we study the asymptotic behavior of global smooth solution to the initial boundary problem for the 1-D energy transport model in semiconductor science. We prove that the smooth solution of the problem converges to a stationary solution exponentially fast as t - ∞ when the initial data is a small perturbation of the stationary solution.
Sharp asymptotic estimates for vorticity solutions of the 2D Navier-Stokes equation
Directory of Open Access Journals (Sweden)
Yuncheng You
2008-12-01
Full Text Available The asymptotic dynamics of high-order temporal-spatial derivatives of the two-dimensional vorticity and velocity of an incompressible, viscous fluid flow in $mathbb{R}^2$ are studied, which is equivalent to the 2D Navier-Stokes equation. It is known that for any integrable initial vorticity, the 2D vorticity solution converges to the Oseen vortex. In this paper, sharp exterior decay estimates of the temporal-spatial derivatives of the vorticity solution are established. These estimates are then used and combined with similarity and $L^p$ compactness to show the asymptotical attraction rates of temporal-spatial derivatives of generic 2D vorticity and velocity solutions by the Oseen vortices and velocity solutions respectively. The asymptotic estimates and the asymptotic attraction rates of all the derivatives obtained in this paper are independent of low or high Reynolds numbers.
S-asymptotically -periodic Solutions of R-L Fractional Derivative-Integral Equation
Institute of Scientific and Technical Information of China (English)
WANG Bing
2015-01-01
The aim of this paper is to study the S-asymptotically ω-periodic solutions of R-L fractional derivative-integral equation:is a linear densely defined operator of sectorial type on a completed Banach space X, f is a continuous function satisfying a suitable Lipschitz type condition. We will use the contraction mapping theory to prove problem (1) and (2) has a unique S-asymptotically ω-periodic solution if the function f satisfies Lipshcitz condition.
Institute of Scientific and Technical Information of China (English)
李大鸣; 张红萍; 高永祥
2002-01-01
A method that series perturbations approximate solutions to N-S equations with boundary conditions was discussed and adopted. Then the method was proved in which the asymptotic solutions of viscous fluid flow past a sphere were deducted. By the ameliorative asymptotic expansion matched method, the matched functions are determined easily and the ameliorative curve of drag coefficient is coincident well with measured data in the case that Reynolds number is less than or equal to 40 000.
Asymptotic Stability and Balanced Growth Solution of the Singular Dynamic Input-Output System＊
Institute of Scientific and Technical Information of China (English)
ChonghuiGuo; HuanwenTang
2004-01-01
The dynamic input-output system is well known in economic theory and practice. In this paper the asymptotic stability and balanced growth solution of the dynamic input-output system are considered. Under three natural assumptions, we obtain four theorems about asymptotic stability and balanced growth solution of the dynamic input-output system and bring together in a unified manner some contributions scattered in the literature.
Asymptotics for the greatest zeros of solutions of a particular O.D.E.
Directory of Open Access Journals (Sweden)
Silvia Noschese
1994-05-01
Full Text Available This paper deals with the Liouville-Stekeloff method for approximating solutions of homogeneous linear ODE and a general result due to Tricomi which provides estimates for the zeros of functions by means of the knowledge of an asymptotic representation. From the classical tools we deduce information about the asymptotics of the greatest zeros of a class of solutions of a particular ODE, including the classical Hermite polynomials.
Self-similar cosmological solutions with dark energy. I. Formulation and asymptotic analysis
Harada, Tomohiro; Maeda, Hideki; Carr, B. J.
2008-01-01
Based on the asymptotic analysis of ordinary differential equations, we classify all spherically symmetric self-similar solutions to the Einstein equations which are asymptotically Friedmann at large distances and contain a perfect fluid with equation of state p=(γ-1)μ with 0antigravity. This extends the previous analysis of spherically symmetric self-similar solutions for fluids with positive pressure (γ>1). However, in the latter case there is an additional parameter associated with the weak discontinuity at the sonic point and the solutions are only asymptotically “quasi-Friedmann,” in the sense that they exhibit an angle deficit at large distances. In the 0<γ<2/3 case, there is no sonic point and there exists a one-parameter family of solutions which are genuinely asymptotically Friedmann at large distances. We find eight classes of asymptotic behavior: Friedmann or quasi-Friedmann or quasistatic or constant-velocity at large distances, quasi-Friedmann or positive-mass singular or negative-mass singular at small distances, and quasi-Kantowski-Sachs at intermediate distances. The self-similar asymptotically quasistatic and quasi-Kantowski-Sachs solutions are analytically extendible and of great cosmological interest. We also investigate their conformal diagrams. The results of the present analysis are utilized in an accompanying paper to obtain and physically interpret numerical solutions.
Institute of Scientific and Technical Information of China (English)
王金良; 周笠
2003-01-01
In this paper,our main aim is to study the existence and uniqueness of the periodic solution of delayed Logistic equation and its asymptotic behavior.In case the coefficients are periodic,we give some sufficient conditions for the existence and uniqueness of periodic solution.Furthermore,we also study the effect of time-delay on the solution.
Asymptotic Behavior of Solutions to the Generalized BBM-Burgers Equation
Institute of Scientific and Technical Information of China (English)
Mi-na Jiang; Yan-ling Xu
2005-01-01
We investigate the asymptotic behavior of solutions of the initial-boundary value problem for the generalized BBM-Burgers equation ut + f(u)x = uxx +uxxt on the half line with the conditions u(0, t) =u-, u(∞, t) = u+ and u- ＜ u+, where the corresponding Cauchy problem admits the rarefaction wave as an asymptotic states. In the present problem, because of the Dirichlet boundary, the asymptotic states are divided into five cases depending on the signs of the characteristic speeds f′(u±) of boundary state u- = u(0) and the far fields states u+ = u(∞). In all cases both global existence of the solution and asymptotic behavior are shown under the smallness conditions.
Mishima, T; Mishima, Takashi; Iguchi, Hideo
2006-01-01
New axisymmetric stationary solutions of the vacuum Einstein equations in five-dimensional asymptotically flat spacetimes are given by solitonic solution-generating techniques. We show the equivalence between these solutions and the four-dimensional multi-solitonic ones derived from particular class of four-dimensional Weyl solutions. The solutions constructed here include different black rings from the ones obtained by Emparan and Reall.
Portilheiro, Manuel
2010-01-01
We study a nonlinear porous medium type equation involving the infinity Laplacian operator. We first consider the problem posed on a bounded domain and prove existence of maximal nonnegative viscosity solutions. Uniqueness is obtained for strictly positive solutions with Lipschitz in time data. We also describe the asymptotic behaviour for the Dirichlet problem in the class of maximal solutions. We then discuss the Cauchy problem posed in the whole space. As in the standard porous medium equation (PME), solutions which start with compact support exhibit a free boundary propagating with finite speed, but such propagation takes place only in the direction of the spatial gradient. The description of the asymptotic behaviour of the Cauchy Problem shows that the asymptotic profile and the rates of convergence and propagation agree for large times with a one-dimensional PME.
Solutions of the Nonlinear Schrodinger Equation with Prescribed Asymptotics at Infinity
Gonzalez, John B
2009-01-01
We prove local existence and uniqueness of solutions for the one-dimensional nonlinear Schr\\"odinger (NLS) equations $iu_t + u_{xx} \\pm |u|^2 u = 0$ in classes of smooth functions that admit an asymptotic expansion at infinity in decreasing powers of $x$. We show that an asymptotic solution differs from a genuine solution by a Schwartz class function which solves a generalized version of the NLS equation. The latter equation is solved by discretization methods. The proofs closely follow previous work done by the author and others on the Korteweg-De Vries (KdV) equation and the modified KdV equations.
Berizi, Zohre; Hashemi, Seyed Yaser; Hadi, Mahdi; Azari, Ali; Mahvi, Amir Hosein
2016-01-01
Azo dyes are widely used in various industries. These substances produce toxic byproducts in aquatic environments in addition to their mutagenic and carcinogenic potential effects. In this study, the effect of magnetite nanoparticles and magnetite nanoparticles modified by sodium alginate in batch systems and nonlinear kinetic and adsorption isotherm models were investigated. Magnetite nanoparticles were synthesized by chemical co-precipitation method and then modified and used as adsorbent to adsorb Acid Red 18. After determining the optimum pH and adsorbent dose, non-equilibrium models for kinetic adsorption were tested with concentrations (25-100 mg/L) and at eight different periods of time (1-15 min) and the pseudo-first-order and pseudo-second-order non-linear models were used to describe the results. For adsorption isotherm, a contact time of 120 min was studied in different concentrations (25-100 mg/L) and the residual concentration of Acid Red 18 was obtained. The results are described by non-linear Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. The optimum amounts of pH for magnetite nanoparticles and for modified ones were 3 and 5, respectively, the efficiencies were 0.75 and 0.2 g/L, respectively. According to the results sodium alginate has a high performance in adsorption of Acid Red 18. Adjusted correlation coefficients and chi-square test showed that Freundlich isotherm and then Langmuir isotherm can well describe the experimental results. In Freundlich, the value of (Kf) was 3.231 (L/g) for magnetite nanoparticles and 21.615 (L/g) for modified adsorbent. In Langmuir, the value of (qm) was 16.259 (mg/g) for magnetite nanoparticles and 73.464 (mg/g) for modified adsorbent. Comparing the Langmuir maximum calculated adsorption capacity indicated that modified adsorbent can adsorb the pollutants 6.5 times more than the other one.
Asymptotic stability of solutions to the nonisentropic hydrodynamic model for semiconductors
Institute of Scientific and Technical Information of China (English)
XU Jiang; FANG Da-yuan
2008-01-01
In this paper, the asymptotic stability of smooth solutions to the multidimensional nonisentropic hydrodynamic model for semiconductors is established, under the assumption that the initial data are a small perturbation of the stationary solutions for the thermal equilibrium state, whose proofs mainly depend on the basic energy methods.
Asymptotic Behavior of Solutions to a Class of Systems of Delay Differential Equations
Institute of Scientific and Technical Information of China (English)
Tai Shan YI; Li Hong HUANG
2007-01-01
The authors investigate the asymptotic behavior of solutions to a class of systems of delaydifferential equations.It is shown that every bounded solution of such a class of systems tends to aconstant vector as t→∞.Our results improve and extend some corresponding ones already known.
Asymptotic Behavior of Global Solution for Nonlinear Generalized Euler-Possion-Darboux Equation
Institute of Scientific and Technical Information of China (English)
LIANGBao-song; CHENZhen
2004-01-01
J. L Lions and W. A. Stranss [1] have proved the existence of a global solution of the initial boundary value problem for nonlinear generalized Euler-Possion-Darboux equation. In this paper we are going to investigate the asymptotic behavior of the global solution by a difference inequality.
ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO SECOND ORDER IMPULSIVE DIFFERENTIAL EQUATION ON TIME SCALES
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
In this paper,we investigate a second order impulsive differential equation on time scales.Sufficient conditions are given to guarantee that the solutions tend to zero.The notable effect of impulse upon the asymptotic behavior of solutions is stressed in this paper.At last,we illustrate our results with two examples.
Directory of Open Access Journals (Sweden)
Qiong Wu
2015-01-01
Full Text Available Mild solutions generated by a a, k-regularized family to fractional stochastic relaxation equations are studied. The main objective is to establish the existence and uniqueness of square-mean asymptotically almost automorphic mild solutions to linear and semilinear case of these equations. Under different hypotheses, some new theorems concerning the main objective are derived.
Maximal admissible faces and asymptotic bounds for the normal surface solution space
Burton, Benjamin A
2010-01-01
The enumeration of normal surfaces is a key bottleneck in computational three-dimensional topology. The underlying procedure is the enumeration of admissible vertices of a high-dimensional polytope, where admissibility is a powerful but non-linear and non-convex constraint. The main results of this paper are significant improvements upon the best known asymptotic bounds on the number of admissible vertices, using polytopes in both the standard normal surface coordinate system and the streamlined quadrilateral coordinate system. To achieve these results we examine the layout of admissible points within these polytopes. We show that these points correspond to well-behaved substructures of the face lattice, and we study properties of the corresponding "admissible faces". Key lemmata include upper bounds on the number of maximal admissible faces of each dimension, and a bijection between the maximal admissible faces in the two coordinate systems mentioned above.
Non-linear finite element analysis in structural mechanics
Rust, Wilhelm
2015-01-01
This monograph describes the numerical analysis of non-linearities in structural mechanics, i.e. large rotations, large strain (geometric non-linearities), non-linear material behaviour, in particular elasto-plasticity as well as time-dependent behaviour, and contact. Based on that, the book treats stability problems and limit-load analyses, as well as non-linear equations of a large number of variables. Moreover, the author presents a wide range of problem sets and their solutions. The target audience primarily comprises advanced undergraduate and graduate students of mechanical and civil engineering, but the book may also be beneficial for practising engineers in industry.
1949-01-01
Math. Jour. 11* {191»?), pp. 83-97. k. Borel, E., Lecons sur les Series Divergentes , Geuthier- i Vlllars, 1901. 1 5. Butlewski, Z... divergentes , Annales de l’Ecole Normale Superieure, vol. 16 (1899), pp. 9-136, pp. 26 ff. 7. Boutroux, P., Lecona aur lea functions d^finlea
Asymptotic Growth of Solutions of Neutral Type Systems
Energy Technology Data Exchange (ETDEWEB)
Sklyar, G. M., E-mail: sklar@univ.szczecin.pl; Polak, P., E-mail: piotr.polak@wmf.univ.szczecin.pl [University of Szczecin, Institute of Mathematics (Poland)
2013-06-15
We consider a differential system of neutral type with distributed delay. We obtain a precise norm estimation of semigroup generated by the operator corresponding to the system in question. Our result is based on a spectral analysis of the operator and some uniform estimation of norms of the exponentials of matrices. We also discuss the stability properties of corresponding solutions and the existence of the fastest growing solution.
Serov, S A
2013-01-01
In the article correct method for the kinetic Boltzmann equation asymptotic solution is formulated, the Hilbert's and Enskog's methods are discussed. The equations system of multicomponent non-equilibrium gas dynamics is derived, that corresponds to the first order in the approximate (asymptotic) method for solution of the system of kinetic Boltzmann equations. It is shown, that the velocity distribution functions of particles, obtained by the proposed method and by Enskog's method, within Enskog's approach, are equivalent up to the infinitesimal first order terms of the asymptotic expansion, but, generally speaking, differ in the next order. Interpretation of turbulent gas flow is proposed, as stratified on components gas flow, which is described by the derived equations system of multicomponent non-equilibrium gas dynamics.
Connection Formulae for Asymptotics of Solutions of the Degenerate Third Painleve' Equation: II
Kitaev, A V
2010-01-01
The degenerate third Painleve' equation, $u"(t)=(u'(t))^2/u(t)-u'(t)/t+1/t(-8c u^2(t)+2ab)+b^2/u(t)$, where $c=+/-1$, $b>0$, and $a$ is a complex parameter, is studied via the Isomonodromy Deformation Method. Asymptotics of general regular and singular solutions $u(t)$ as $t -> +/-\\infty$ and $t -> +/-i\\infty$ are derived and parametrized in terms of the monodromy data of the associated 2X2 linear auxiliary problem introduced in the first part of this work [1]. Using these results, three-real-parameter families of solutions that have infinite sequences of zeroes and poles that are asymptotically located along the real and imaginary axes are distinguished: asymptotics of these zeroes and poles are also obtained.
S-asymptotically periodic solutions for partial differential equations with finite delay
Directory of Open Access Journals (Sweden)
William Dimbour
2011-09-01
Full Text Available In this article, we give some sufficient conditions for the existence and uniqueness of S-asymptotically periodic (mild solutions for some partial functional differential equations. To illustrate our main result, we study a diffusion equation with delay.
Asymptotic and Oscillatory Behavior of Solutions of First Order Neutral Differential Equations
Institute of Scientific and Technical Information of China (English)
王其如; 李黎
1993-01-01
This paper has made researches on first order neutral differential equations with varia-ble coefficients and several deviations.The asymptotic behavior of nonoscillatory solutions of the equations are discussed.Necessary and sufficient conditions and several sufficient conditions for the oscillations of the equations are obtained.The relevent results in [1-3] are improved and genera-lized.
Directory of Open Access Journals (Sweden)
Yan-Tao Bian
2014-04-01
Full Text Available In this article, we study weighted asymptotic behavior of solutions to the semilinear integro-differential equation $$ u'(t=Au(t+\\alpha\\int_{-\\infty}^{t}e^{-\\beta(t-s}Au(sds+f(t,u(t, \\quad t\\in \\mathbb{R}, $$ where $\\alpha, \\beta \\in \\mathbb{R}$, with $\\beta > 0, \\alpha \
Error estimates for asymptotic solutions of dynamic equations on time scales
Directory of Open Access Journals (Sweden)
Gro Hovhannisyan
2007-02-01
Full Text Available We establish error estimates for first-order linear systems of equations and linear second-order dynamic equations on time scales by using calculus on a time scales [1,4,5] and Birkhoff-Levinson's method of asymptotic solutions [3,6,8,9].
Energy Technology Data Exchange (ETDEWEB)
Sakovich, Anna, E-mail: sakovich@math.kth.s [Institutionen foer Matematik, Kungliga Tekniska Hoegskolan, 100 44 Stockholm (Sweden)
2010-12-21
We follow the approach employed by Y Choquet-Bruhat, J Isenberg and D Pollack in the case of closed manifolds and establish existence and non-existence results for constant mean curvature solutions of the Einstein-scalar field constraint equations on asymptotically hyperbolic manifolds.
Multiple Solutions for a Fourth-order Asymptotically Linear Elliptic Problem
Institute of Scientific and Technical Information of China (English)
Ai Xia QIAN; Shu Jie LI
2006-01-01
Under simple conditions, we prove the existence of three solutions for a fourth-order asymptotically linear elliptic boundary value problem. For the resonance case at infinity, we do not need to assume any more conditions to ensure the boundedness of the (PS) sequence of the corresponding functional.
Asymptotic behavior of solutions to a degenerate quasilinear parabolic equation with a gradient term
Directory of Open Access Journals (Sweden)
Huilai Li
2015-12-01
Full Text Available This article concerns the asymptotic behavior of solutions to the Cauchy problem of a degenerate quasilinear parabolic equations with a gradient term. A blow-up theorem of Fujita type is established and the critical Fujita exponent is formulated by the spacial dimension and the behavior of the coefficient of the gradient term at infinity.
Asymptotic solutions for laminar flow in a channel with uniformly accelerating rigid porous walls
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A theoretical investigation was done for the generalized Berman problem, which arises in steady laminar flow of an incompressible viscous fluid along a channel with accelerating rigid porous walls. The existence of multiple solutions and its conditions were established by taking into account exponentially small terms in matched asymptotic expansion. The correctness of the analytical predictions was verified by numerical results.
The asymptotics of a solution of a parabolic equation as time increases without bound
Energy Technology Data Exchange (ETDEWEB)
Degtyarev, Denis O; Il' in, Arlen M
2012-11-30
A boundary-value problem for a second order parabolic equation on a half-line is considered. A uniform asymptotic approximation to a solution to within any power of t{sup -1} is constructed and substantiated. Bibliography: 8 titles.
Directory of Open Access Journals (Sweden)
Zhanhua Yu
2011-01-01
convergence theorem. It is shown that the Euler method and the backward Euler method can reproduce the almost surely asymptotic stability of exact solutions to NSDDEs under additional conditions. Numerical examples are demonstrated to illustrate the effectiveness of our theoretical results.
ASYMPTOTIC BEHAVIOR OF GLOBAL SMOOTH SOLUTIONS TO THE EULER-POISSON SYSTEM IN SEMICONDUCTORS
Institute of Scientific and Technical Information of China (English)
琚强昌
2002-01-01
In this paper, we establish the global existence and the asymptotic behavior of smooth solution to the initial-boundary value problem of Euler-Poisson system which is used as the bipolar hydrodynamic model for semiconductors with the nonnegative constant doping profile.
DEFF Research Database (Denmark)
Du, Yigang
without iteration steps. The ASA is implemented in combination with Field II and extended to simulate the pulsed ultrasound fields. The simulated results from a linear array transducer are made by the ASA based on Field II, and by a released non-linear simulation program- Abersim, respectively....... The calculation speed of the ASA is increased approximately by a factor of 140. For the second harmonic point spread function the error of the full width is 1.5% at -6 dB and 6.4% at -12 dB compared to Abersim. To further investigate the linear and non-linear ultrasound fields, hydrophone measurements.......3% relative to the measurement from a 1 inch diameter transducer. A preliminary study for harmonic imaging using synthetic aperture sequential beamforming (SASB) has been demonstrated. A wire phantom underwater measurement is made by an experimental synthetic aperture real-time ultrasound scanner (SARUS...
Asymptotic property of solutions to the random cauchy problem for wave equations
Dôku, Isamu
1986-01-01
Based on the existence and uniqueness theorem for random wave equations, we consider asymptotic behaviors of solutions to the random initial value problem. We describe conditions for the equipartition of stochastic energy (or SE for short) by making use of the random spectral theory and, according to Goldstein's semigroup method, we prove the asymptotically equipartitioned SE theorem and the so-called virial theorem of classical mechanics, and also study the probabilistic characterization of the conditions for equipartition. In addition, we show at last the equipartition of SE from a finite time onwards.
Weak asymptotic solution for a non-strictly hyperbolic system of conservation laws-II
Directory of Open Access Journals (Sweden)
Manas Ranjan Sahoo
2016-04-01
Full Text Available In this article we introduce a concept of entropy weak asymptotic solution for a system of conservation laws and construct the same for a prolonged system of conservation laws which is highly non-strictly hyperbolic. This is first done for Riemann type initial data by introducing $\\delta,\\delta',\\delta''$ waves along a discontinuity curve and then for general initial data by piecing together the Riemann solutions.
Tables of generalized Airy functions for the asymptotic solution of the differential equation
Nosova, L N
1965-01-01
Tables of Generalized Airy Functions for the Asymptotic Solution of the Differential Equations contains tables of the special functions, namely, the generalized Airy functions, and their first derivatives, for real and pure imaginary values. The tables are useful for calculations on toroidal shells, laminae, rode, and for the solution of certain other problems of mathematical physics. The values of the functions were computed on the ""Strela"" highspeed electronic computer.This book will be of great value to mathematicians, researchers, and students.
TIME-ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR GENERAL NAVIER-STOKES EQUATIONS IN EVEN SPACE-DIMENSION
Institute of Scientific and Technical Information of China (English)
Xu Hongmei
2001-01-01
We study the time-asymptotic behavior of solutions to general NavierStokes equations in even and higher than two space-dimensions. Through the pointwise estimates of the Green function of the linearized system, we obtain explicit expressions of the time-asymptotic behavior of the solutions. The result coincides with weak Huygan's principle.
Directory of Open Access Journals (Sweden)
Jafar Biazar
2015-01-01
Full Text Available We combine the Adomian decomposition method (ADM and Adomian’s asymptotic decomposition method (AADM for solving Riccati equations. We investigate the approximate global solution by matching the near-field approximation derived from the Adomian decomposition method with the far-field approximation derived from Adomian’s asymptotic decomposition method for Riccati equations and in such cases when we do not find any region of overlap between the obtained approximate solutions by the two proposed methods, we connect the two approximations by the Padé approximant of the near-field approximation. We illustrate the efficiency of the technique for several specific examples of the Riccati equation for which the exact solution is known in advance.
Institute of Scientific and Technical Information of China (English)
LIU Hong-Zhun; PAN Zu-Liang; LI Peng
2006-01-01
In this article, we will derive an equality, where the Taylor series expansion around ε = 0for any asymptotical analytical solution of the perturbed partial differential equation (PDE) with perturbing parameter ε must be admitted.By making use of the equality, we may obtain a transformation, which directly map the analytical solutions of a given unperturbed PDE to the asymptotical analytical solutions of the corresponding perturbed one. The notion of Lie-B(a)cklund symmetries is introduced in order to obtain more transformations. Hence, we can directly create more transformations in virtue of known Lie-B(a)cklund symmetries and recursion operators of corresponding unperturbed equation. The perturbed Burgers equation and the perturbed Korteweg-de Vries (KdV) equation are used as examples.
Institute of Scientific and Technical Information of China (English)
Tang Zhongwei
2006-01-01
The author first analyzes the existence of ground state solutions and cylindrically symmetric solutions and then the asymptotic behavior of the ground state solution of the equation -Au = φ(r)up-1, u ＞ 0 in RN, u ∈ D1,2(RN), where N ≥ 3, x =(x',z) ∈ RK × RN-K,2 ≤ K ≤ N,r = |x'|. It is proved that for 2(N-s)/(N-2) ＜p ＜ 2* = 2N/(N - 2), 0 ＜ s ＜ 2, the above equation has a ground state solution and a cylindrically symmetric solution. For p = 2*, the above equation does not have a ground state solution but a cylindrically symmetric.solution, and when p close to 2*, the ground state solutions are not cylindrically symmetric. On the other hand, it is proved that as p close to 2*, the ground state solution up has a unique maximum point xp = (x'p, zp) and as p → 2*, |x'p| → r0 which attains the maximum of φ on RN. The asymptotic behavior ofground state solution up is also given, which also deduces that the ground state solutionis not cylindrically symmetric as p goes to 2*.
Institute of Scientific and Technical Information of China (English)
薛强; 梁冰; 刘晓丽; 李宏艳
2003-01-01
The process of contaminant transport is a problem of multicomponent and multiphase flow in unsaturated zone. Under the presupposition that gas existence affects water transport , a coupled mathematical model of contaminant transport in unsaturated zone has been established based on fluid-solid interaction mechanics theory. The asymptotical solutions to the nonlinear coupling mathematical model were accomplished by the perturbation and integral transformation method. The distribution law of pore pressure,pore water velocity and contaminant concentration in unsaturated zone has been presented under the conditions of with coupling and without coupling gas phase. An example problem was used to provide a quantitative verification and validation of the model. The asymptotical solution was compared with Faust model solution. The comparison results show reasonable agreement between asymptotical solution and Faust solution, and the gas effect and media deformation has a large impact on the contaminant transport. The theoretical basis is provided for forecasting contaminant transport and the determination of the relationship among pressure-saturation-permeability in laboratory.
Symmetries in Non-Linear Mechanics
Aldaya, Victor; López-Ruiz, Francisco F; Cossío, Francisco
2014-01-01
In this paper we exploit the use of symmetries of a physical system so as to characterize the corresponding solution manifold by means of Noether invariants. This constitutes a necessary preliminary step towards the correct quantisation in non-linear cases, where the success of Canonical Quantisation is not guaranteed in general. To achieve this task "point symmetries" of the Lagrangian are generally not enough, and the notion of contact transformations is in order. The use of the Poincar\\'e-Cartan form permits finding both the symplectic structure on the solution manifold, through the Hamilton-Jacobi transformation, and the required symmetries, realized as Hamiltonian vector fields, associated with functions on the solution manifold (thus constituting an inverse of the Noether Theorem), lifted back to the evolution space through the inverse of this Hamilton-Jacobi mapping. In this framework, solutions and symmetries are somehow identified and this correspondence is also kept at a perturbative level. We prese...
The tanh-coth method combined with the Riccati equation for solving non-linear equation
Energy Technology Data Exchange (ETDEWEB)
Bekir, Ahmet [Dumlupinar University, Art-Science Faculty, Department of Mathematics, Kuetahya (Turkey)], E-mail: abekir@dumlupinar.edu.tr
2009-05-15
In this work, we established abundant travelling wave solutions for some non-linear evolution equations. This method was used to construct solitons and traveling wave solutions of non-linear evolution equations. The tanh-coth method combined with Riccati equation presents a wider applicability for handling non-linear wave equations.
Bahadur Zada, Mian; Sarwar, Muhammad; Radenović, Stojan
2017-01-01
In this article, we apply common fixed point results in incomplete metric spaces to examine the existence of a unique common solution for the following systems of Urysohn integral equations and Volterra-Hammerstein integral equations, respectively: [Formula: see text] where [Formula: see text]; [Formula: see text] and [Formula: see text], [Formula: see text] and [Formula: see text] where [Formula: see text], [Formula: see text], u, [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text], are real-valued measurable functions both in s and r on [Formula: see text].
Asymptotic solution for a class of weakly nonlinear singularly perturbed reaction diffusion problem
Institute of Scientific and Technical Information of China (English)
TANG Rong-rong
2009-01-01
Under appropriate conditions, with the perturbation method and the theory of differential inequalities, a class of weakly nonlinear singularly perturbed reaction diffusion problem is considered. The existence of solution of the original problem is proved by constructing the auxiliary functions. The uniformly valid asymptotic expansions of the solution for arbitrary mth order approximation are obtained through constructing the formal solutions of the original problem, expanding the nonlinear terms to the power in small parameter e and comparing the coefficient for the same powers of ε. Finally, an example is provided, resulting in the error of O(ε2).
Institute of Scientific and Technical Information of China (English)
郭柏灵; 苗长兴
1995-01-01
The final value problem for the classical coupled Klein-Gordon-Schrodinger equations is studied in . This leads to the construction of the modified wave operator Ω, for certain scattered data. When initial functions belong to (Ω) which denotes the range domain of Ω, the global existence and asymptotic behavior of solutions of Cauchy problem tor the coupled Klein-Gordon-Schrodinger equations are proved.
On asymptotic time decay of solutions to a parabolic equation in unbounded domains
Directory of Open Access Journals (Sweden)
P. Maremonti
1991-05-01
Full Text Available Estimates on the asymptotic behaviour of solutions to a parabolic equation are given, when the I.B.V.P. is posed in particular domains. More precisely, the domain Ω is unbounded, unbounded in any direction, and Ω is enclosed in a wedge or in a cone of two or three-dimensional Euclidean space. It is proved that the order of decay is increasing for decreasing opening of the wedge or of the cone.
Asymptotically Almost Periodic Solutions for a Class of Stochastic Functional Differential Equations
Directory of Open Access Journals (Sweden)
Aimin Liu
2014-01-01
Full Text Available This work is concerned with the quadratic-mean asymptotically almost periodic mild solutions for a class of stochastic functional differential equations dxt=Atxt+Ft,xt,xtdt+H(t,xt,xt∘dW(t. A new criterion ensuring the existence and uniqueness of the quadratic-mean asymptotically almost periodic mild solutions for the system is presented. The condition of being uniformly exponentially stable of the strongly continuous semigroup {Tt}t≥0 is essentially removed, which is generated by the linear densely defined operator A∶D(A⊂L2(ℙ,ℍ→L2(ℙ,ℍ, only using the exponential trichotomy of the system, which reflects a deeper analysis of the behavior of solutions of the system. In this case the asymptotic behavior is described through the splitting of the main space into stable, unstable, and central subspaces at each point from the flow’s domain. An example is also given to illustrate our results.
Directory of Open Access Journals (Sweden)
Jacqueline Fleckinger
2001-12-01
Full Text Available We study the asymptotic behavior of positive solutions $u$ of $$ -Delta_p u(x = V(x u(x^{p-1}, quad p>1; x in Omega,$$ and related partial differential inequalities, as well as conditions for existence of such solutions. Here, $Omega$ contains the exterior of a ball in $mathbb{R}^N$ $1
Ritchie, R.H.; Sakakura, A.Y.
1956-01-01
The formal solutions of problems involving transient heat conduction in infinite internally bounded cylindrical solids may be obtained by the Laplace transform method. Asymptotic series representing the solutions for large values of time are given in terms of functions related to the derivatives of the reciprocal gamma function. The results are applied to the case of the internally bounded infinite cylindrical medium with, (a) the boundary held at constant temperature; (b) with constant heat flow over the boundary; and (c) with the "radiation" boundary condition. A problem in the flow of gas through a porous medium is considered in detail.
Asymptotic solution for high vorticity regions in incompressible 3D Euler equations
Agafontsev, D S; Mailybaev, A A
2016-01-01
Incompressible 3D Euler equations develop high vorticity in very thin pancake-like regions from generic large-scale initial conditions. In this work we propose an exact solution of the Euler equations for the asymptotic pancake evolution. This solution combines a shear flow aligned with an asymmetric straining flow, and is characterized by a single asymmetry parameter and an arbitrary transversal vorticity profile. The analysis is based on detailed comparison with numerical simulations performed using a pseudo-spectral method in anisotropic grids of up to 972 x 2048 x 4096.
Asymptotic Smoothing Effect of Solutions to Davey-Stewartson Systems on the Whole Plane
Institute of Scientific and Technical Information of China (English)
Cai Di ZHAO; Yong Sheng LI; Sheng Fan ZHOU
2007-01-01
This paper discusses the Cauchy problem of elliptic-elliptic-type Davey-Stewartson systems with zero-order dissipation on R2. Making use of the Fourier spectral projector, together with a long time comparison between the solutions to the Davey-Stewartson systems and to an auxiliary problem,we prove that the global attractor in H1 (R2) for the addressed Davey-Stewartson systems is a compact subset of H2(R2), and thus reveal the asymptotic smoothing effect of the solutions for the systems.
Asymptotic analysis of singular solutions of the scalar and mean curvature equations
Directory of Open Access Journals (Sweden)
Gonzalo García
2005-01-01
Full Text Available We show that positive solutions of a semilinear elliptic problem in the Sobolev critical exponent with Newmann conditions, related to conformal deformation of metrics in ℝ+n, are asymptotically symmetric in a neighborhood of the origin. As a consequence, we prove for a related problem of conformal deformation of metrics in ℝ+n that if a solution satisfies a Kazdan-Warner-type identity, then the conformal metric can be realized as a smooth metric on S+n.
STABILITY OF SOLUTIONS TO CERTAIN FOURTH-ORDER DELAY DIFFERENTIAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
By the Lyapunov functional approach, some better results on the asymptotic stabiBy the Lyapunov functional approach, some better results on the asymptotic stability and global asymptotic stability of zero solution to a certain fourth-order non-linear differential equation with delay are obtained.
Exact Asymptotic Expansion of Singular Solutions for the (2+1-D Protter Problem
Directory of Open Access Journals (Sweden)
Lubomir Dechevski
2012-01-01
Full Text Available We study three-dimensional boundary value problems for the nonhomogeneous wave equation, which are analogues of the Darboux problems in ℝ2. In contrast to the planar Darboux problem the three-dimensional version is not well posed, since its homogeneous adjoint problem has an infinite number of classical solutions. On the other hand, it is known that for smooth right-hand side functions there is a uniquely determined generalized solution that may have a strong power-type singularity at one boundary point. This singularity is isolated at the vertex of the characteristic light cone and does not propagate along the cone. The present paper describes asymptotic expansion of the generalized solutions in negative powers of the distance to this singular point. We derive necessary and sufficient conditions for existence of solutions with a fixed order of singularity and give a priori estimates for the singular solutions.
Asymptotic Behaviors of the Solutions to Scalar Viscous Conservation Laws on Bounded Interval
Institute of Scientific and Technical Information of China (English)
Quansen Jiu; Tao Pan
2003-01-01
This paper concerns the asymptotic behaviors of the solutions to the initial-boundary value problem for scalar viscous conservations laws ut + f(u)x = uxx on [0, 1], with the boundary condition u(0, t) =u_,u(1,t) = u+ and the initial data u(x, 0) = u0(x), where u_ ≠ u+ and f is a given function satisfying f″ (u) ＞ 0 for u under consideration. By means of energy estimates method and under some more regular conditions on the initial data, both the global existence and the asymptotic behavior are obtained. When u_ ＜ u+, which corresponds to rarefaction waves in inviscid conservation laws, no smallness conditions are needed. While for u_ ＞ u+, which corresponds to shock waves in inviscid conservation laws, it is established for weak shock waves, which means that |u_ - u+| is small. Moreover, exponential decay rates are both given.
de Jong, Roelof
2005-07-01
This program incorporates a number of tests to analyse the count rate dependent non-linearity seen in NICMOS spectro-photometric observations. In visit 1 we will observe a few fields with stars of a range in luminosity in NGC1850 with NICMOS in NIC1 in F090M, F110W and F160W and NIC2 F110W, F160W, and F180W. We will repeat the observations with flatfield lamp on, creating artificially high count-rates, allowing tests of NICMOS linearity as function of count rate. To access the effect of charge trapping and persistence, we first take darks {so there is not too much charge already trapped}, than take exposures with the lamp off, exposures with the lamp on, and repeat at the end with lamp off. Finally, we continue with taking darks during occultation. In visit 2 we will observe spectro-photometric standard P041C using the G096 and G141 grisms in NIC3, and repeat the lamp off/on/off test to artificially create a high background. In visits 3&4 we repeat photometry measurements of faint standard stars SNAP-2 and WD1657+343, on which the NICMOS non-linearity was originally discovered using grism observations. These measurements are repeated, because previous photometry was obtained with too short exposure times, hence substantially affected by charge trapping non-linearity. Measurements will be made with NIC1: Visit 5 forms the persistence test of the program. The bright star GL-390 {used in a previous persistence test} will iluminate the 3 NICMOS detectors in turn for a fixed time, saturating the center many times, after which a series of darks will be taken to measure the persistence {i.e. trapped electrons and the decay time of the traps}. To determine the wavelength dependence of the trap chance, exposures of the bright star in different filters will be taken, as well as one in the G096 grism with NIC3. Most exposures will be 128s long, but two exposures in the 3rd orbit will be 3x longer, to seperate the effects of count rate versus total counts of the trap
The global non-linear stability of the Kerr-de Sitter family of black holes
Hintz, Peter
2016-01-01
We establish the full global non-linear stability of the Kerr-de Sitter family of black holes, as solutions of the initial value problem for the Einstein vacuum equations with positive cosmological constant, for small angular momenta, and without any symmetry assumptions on the initial data. We achieve this by extending the linear and non-linear analysis on black hole spacetimes described in a sequence of earlier papers by the authors: We develop a general framework which enables us to deal systematically with the diffeomorphism invariance of Einstein's equations. In particular, the iteration scheme used to solve Einstein's equations automatically finds the parameters of the Kerr-de Sitter black hole that the solution is asymptotic to, the exponentially decaying tail of the solution, and the gauge in which we are able to find the solution; the gauge here is a wave map/DeTurck type gauge, modified by source terms which are treated as unknowns, lying in a suitable finite-dimensional space.
Grava, T
2012-01-01
We study numerically the small dispersion limit for the Korteweg-de Vries (KdV) equation $u_t+6uu_x+\\epsilon^{2}u_{xxx}=0$ for $\\epsilon\\ll1$ and give a quantitative comparison of the numerical solution with various asymptotic formulae for small $\\epsilon$ in the whole $(x,t)$-plane. The matching of the asymptotic solutions is studied numerically.
Asymptotic solution of the turbulent mixing layer for velocity ratio close to unity
Higuera, F. J.; Jimenez, J.; Linan, A.
1996-01-01
The equations describing the first two terms of an asymptotic expansion of the solution of the planar turbulent mixing layer for values of the velocity ratio close to one are obtained. The first term of this expansion is the solution of the well-known time-evolving problem and the second, which includes the effects of the increase of the turbulence scales in the stream-wise direction, obeys a linear system of equations. Numerical solutions of these equations for a two-dimensional reacting mixing layer show that the correction to the time-evolving solution may explain the asymmetry of the entrainment and the differences in product generation observed in flip experiments.
Directory of Open Access Journals (Sweden)
Zhihe Jin
2011-12-01
Full Text Available This work investigates transient heat conduction in a functionally graded plate (FGM plate subjected to gradual cooling/heating at its boundaries. The thermal properties of the FGM are assumed to be continuous and piecewise differentiable functions of the coordinate in the plate thickness direction. A linear ramp function describes the cooling/heating rates at the plate boundaries. A multi-layered material model and Laplace transform are employed to obtain the transformed temperatures at the interfaces between the layers. An asymptotic analysis and an integration technique are then used to obtain a closed form asymptotic solution of the temperature field in the FGM plate for short times. The thermal stress intensity factor (TSIF for an edge crack in the FGM plate calculated based on the asymptotic temperature solution shows that the asymptotic solution can capture the peak TSIFs under the finite cooling rate conditions.
Institute of Scientific and Technical Information of China (English)
Zhang Zhijiun
2008-01-01
By Karamata regular variation theory and constructing comparison functions, the author shows the existence and global optimal asymptotic behaviour of solutions for a semilinear elliptic problem △u = k(x)g(u),u>0, x∈Ω, u|(e)Ω = +∞, where Ω is a bounded domain with smooth boundary in RN; g ∈ C1[0,∞), g(0) = g'(0) = 0, and there exists p > 1, such that lims→∞ g(sξ)/g(s)=ξp, (A)ξ > 0, and k∈Cαloc(Ω) is non-negative non-trivial in Ω which may be singular on the boundary.
An Asymptotic Theory for the Re-Equilibration of a Micellar Surfactant Solution
Griffiths, I. M.
2012-01-01
Micellar surfactant solutions are characterized by a distribution of aggregates made up predominantly of premicellar aggregates (monomers, dimers, trimers, etc.) and a region of proper micelles close to the peak aggregation number, connected by an intermediate region containing a very low concentration of aggregates. Such a distribution gives rise to a distinct two-timescale reequilibration following a system dilution, known as the t1 and t2 processes, whose dynamics may be described by the Becker-Döring equations. We use a continuum version of these equations to develop a reduced asymptotic description that elucidates the behavior during each of these processes.© 2012 Society for Industrial and Applied Mathematics.
Pullback Asymptotic Behavior of Solutions for a 2D Non-autonomous Non-Newtonian Fluid
Liu, Guowei
2016-10-01
This paper studies the pullback asymptotic behavior of solutions for the non-autonomous incompressible non-Newtonian fluid in 2D bounded domains. Firstly, with a little high regularity of the force, the semigroup method and ɛ -regularity method are used to establish the existence of compact pullback absorbing sets. Then, with a minimal regularity of the force, by verifying the flattening property also known as the "Condition (C)", the author proves the existence of pullback attractors for the universe of fixed bounded sets and for the another universe given by a tempered condition. Furthermore, the regularity of pullback attractors is given.
Asymptotic L1-decay of solutions of the porous medium equation to self-similarity
Carrillo de la Plata, José Antonio; G. Toscani
2000-01-01
We consider the flow of gas in an N-dimensional porous medium with initial density v0(x) ≥ 0. The density v(x, t) then satisfies the nonlinear degenerate parabolic equation vt = ∆vm where m > 1 is a physical constant. Assuming that R (1 + |x|2)v0(x) dx < ∞, we prove that v(x, t) behaves asymptotically, as t → ∞, like the Barenblatt-Pattle solution V (|x|, t). We prove that the L1-distance decays at a rate t1/((N+2)m−N). Moreover, if N = 1, we obtain an explicit time decay for the L∞-distance ...
Hybrid resonance and long-time asymptotic of the solution to Maxwell's equations
Energy Technology Data Exchange (ETDEWEB)
Després, Bruno, E-mail: despres@ann.jussieu.fr [Laboratory Jacques Louis Lions, University Pierre et Marie Curie, Paris VI, Boîte courrier 187, 75252 Paris Cedex 05 (France); Weder, Ricardo, E-mail: weder@unam.mx [Departamento de Física Matemática, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Apartado Postal 20-126, DF 01000 (Mexico)
2016-03-22
We study the long-time asymptotic of the solutions to Maxwell's equation in the case of an upper-hybrid resonance in the cold plasma model. We base our analysis in the transfer to the time domain of the recent results of B. Després, L.M. Imbert-Gérard and R. Weder (2014) [15], where the singular solutions to Maxwell's equations in the frequency domain were constructed by means of a limiting absorption principle and a formula for the heating of the plasma in the limit of vanishing collision frequency was obtained. Currently there is considerable interest in these problems, in particular, because upper-hybrid resonances are a possible scenario for the heating of plasmas, and since they can be a model for the diagnostics involving wave scattering in plasmas. - Highlights: • The upper-hybrid resonance in the cold plasma model is considered. • The long-time asymptotic of the solutions to Maxwell's equations is studied. • A method based in a singular limiting absorption principle is proposed.
Budd, Christopher J
2015-01-01
We study the asymptotic behaviour of sharp front solutions arising from the nonlinear diffusion equation \\theta_t = (D(\\theta)\\theta_x)_x, where the diffusivity is an exponential function D({\\theta}) = D_o exp(\\beta\\theta). This problem arises in the study of unsaturated flow in porous media where {\\theta} represents the liquid saturation. For the physical parameters corresponding to actual porous media, the diffusivity at the residual saturation is D(0) = D_o << 1 so that the diffusion problem is nearly degenerate. Such problems are characterised by wetting fronts that sharply delineate regions of saturated and unsaturated flow, and that propagate with a well-defined speed. Using matched asymptotic expansions in the limit of large {\\beta}, we derive an analytical description of the solution that is uniformly valid throughout the wetting front. This is in contrast with most other related analyses that instead truncate the solution at some specific wetting front location, which is then calculated as part...
An inhomogeneous wave equation and non-linear Diophantine approximation
DEFF Research Database (Denmark)
Beresnevich, V.; Dodson, M. M.; Kristensen, S.;
2008-01-01
A non-linear Diophantine condition involving perfect squares and arising from an inhomogeneous wave equation on the torus guarantees the existence of a smooth solution. The exceptional set associated with the failure of the Diophantine condition and hence of the existence of a smooth solution...... is studied. Both the Lebesgue and Hausdorff measures of this set are obtained....
A two-parameter family of exact asymptotically flat solutions to the Einstein-scalar field equations
Energy Technology Data Exchange (ETDEWEB)
Nikonov, V V; Tchemarina, Ju V; Tsirulev, A N [Department of Mathematics, Tver State University, Sadovyi per. 35, Tver 170002 (Russian Federation)], E-mail: tsirulev@tversu.ru
2008-07-07
We consider a static spherically symmetric real scalar field, minimally coupled to Einstein gravity. A two-parameter family of exact asymptotically flat solutions is obtained by using the inverse problem method. This family includes non-singular solutions, black holes and naked singularities. For each of these solutions the respective potential is partially negative but positive near spatial infinity. (comments, replies and notes)
On the non-linear scale of cosmological perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Blas, Diego [Theory Division, CERN, 1211 Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas, E-mail: diego.blas@cern.ch, E-mail: mathias.garny@desy.de, E-mail: Thomas.Konstandin@desy.de [DESY, Notkestr. 85, 22607 Hamburg (Germany)
2013-09-01
We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections at any order in perturbation theory. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.
On the non-linear scale of cosmological perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Blas, Diego [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-04-15
We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.
Asymptotic self-similar solutions with a characteristic time-scale
Waxman, Eli
2010-01-01
For a wide variety of initial and boundary conditions, adiabatic one dimensional flows of an ideal gas approach self-similar behavior when the characteristic length scale over which the flow takes place, $R$, diverges or tends to zero. It is commonly assumed that self-similarity is approached since in the $R\\to\\infty(0)$ limit the flow becomes independent of any characteristic length or time scales. In this case the flow fields $f(r,t)$ must be of the form $f(r,t)=t^{\\alpha_f}F(r/R)$ with $R\\propto(\\pm t)^\\alpha$. We show that requiring the asymptotic flow to be independent only of characteristic length scales imply a more general form of self-similar solutions, $f(r,t)=R^{\\delta_f}F(r/R)$ with $\\dot{R}\\propto R^\\delta$, which includes the exponential ($\\delta=1$) solutions, $R\\propto e^{t/\\tau}$. We demonstrate that the latter, less restrictive, requirement is the physically relevant one by showing that the asymptotic behavior of accelerating blast-waves, driven by the release of energy at the center of a co...
Asymptotic solutions of glass temperature profiles during steady optical fibre drawing
Taroni, M.
2013-03-12
In this paper we derive realistic simplified models for the high-speed drawing of glass optical fibres via the downdraw method that capture the fluid dynamics and heat transport in the fibre via conduction, convection and radiative heating. We exploit the small aspect ratio of the fibre and the relative orders of magnitude of the dimensionless parameters that characterize the heat transfer to reduce the problem to one- or two-dimensional systems via asymptotic analysis. The resulting equations may be readily solved numerically and in many cases admit exact analytic solutions. The systematic asymptotic breakdown presented is used to elucidate the relative importance of furnace temperature profile, convection, surface radiation and conduction in each portion of the furnace and the role of each in controlling the glass temperature. The models derived predict many of the qualitative features observed in real industrial processes, such as the glass temperature profile within the furnace and the sharp transition in fibre thickness. The models thus offer a desirable route to quick scenario testing, providing valuable practical information about the dependencies of the solution on the parameters and the dominant heat-transport mechanism. © 2013 Springer Science+Business Media Dordrecht.
Hybrid resonance and long-time asymptotic of the solution to Maxwell's equations
Després, Bruno
2015-01-01
We study the long-time asymptotic of the solutions to Maxwell's equation in the case of a hybrid resonance in the cold plasma model. We base our analysis in the transfer to the time domain of the recent results of B. Despr\\'es, L.M. Imbert-G\\'erard and R. Weder, J. Math. Pures Appl. {\\bf 101} ( 2014) 623-659, where the singular solutions to Maxwell's equations in the frequency domain where constructed by means of a limiting absorption principle and a formula for the heating of the plasma in the limit of vanishing collision frequency was obtained. Currently there is considerable interest in these problems because hybrid resonances are a possible scenario for the heating of plasmas in the future ITER Tokamak.
A remark on the asymptotic form of BPS multi-dyon solutions and their conserved charges
Constantinidis, C. P.; Ferreira, L. A.; Luchini, G.
2015-12-01
We evaluate the gauge invariant, dynamically conserved charges, recently obtained from the integral form of the Yang-Mills equations, for the BPS multi-dyon solutions of a Yang-Mills-Higgs theory associated to any compact semi-simple gauge group G. Those charges are shown to correspond to the eigenvalues of the next-to-leading term of the asymptotic form of the Higgs field at spatial infinity, and so coinciding with the usual topological charges of those solutions. Such results show that many of the topological charges considered in the literature are in fact dynamical charges, which conservation follows from the global properties of classical Yang-Mills theories encoded into their integral dynamical equations. The conservation of those charges can not be obtained from the differential form of Yang-Mills equations.
A remark on the asymptotic form of BPS multi-dyon solutions and their conserved charges
Constantinidis, C P; Luchini, G
2015-01-01
We evaluate the gauge invariant, dynamically conserved charges, recently obtained from the integral form of the Yang-Mills equations, for the BPS multi-dyon solutions of a Yang-Mills-Higgs theory associated to any compact semi-simple gauge group G. Those charges are shown to correspond to the eigenvalues of the next-to-leading term of the asymptotic form of the Higgs field at spatial infinity, and so coinciding with the usual topological charges of those solutions. Such results show that many of the topological charges considered in the literature are in fact dynamical charges, which conservation follows from the global properties of classical Yang-Mills theories encoded into their integral dynamical equations. The conservation of those charges can not be obtained from the differential form of Yang-Mills equations.
Hybrid resonance and long-time asymptotic of the solution to Maxwell's equations
Després, Bruno; Weder, Ricardo
2016-03-01
We study the long-time asymptotic of the solutions to Maxwell's equation in the case of an upper-hybrid resonance in the cold plasma model. We base our analysis in the transfer to the time domain of the recent results of B. Després, L.M. Imbert-Gérard and R. Weder (2014) [15], where the singular solutions to Maxwell's equations in the frequency domain were constructed by means of a limiting absorption principle and a formula for the heating of the plasma in the limit of vanishing collision frequency was obtained. Currently there is considerable interest in these problems, in particular, because upper-hybrid resonances are a possible scenario for the heating of plasmas, and since they can be a model for the diagnostics involving wave scattering in plasmas.
An algorithm for earthwork allocation considering non-linear factors
Institute of Scientific and Technical Information of China (English)
WANG Ren-chao; LIU Jin-fei
2008-01-01
For solving the optimization model of earthwork allocation considering non-linear factors, a hybrid al-gorithm combined with the ant algorithm (AA) and particle swarm optimization (PSO) is proposed in this pa-per. Then the proposed method and the LP method are used respectively in solving a linear allocation model of a high rockfill dam project. Results obtained by these two methods are compared each other. It can be conclu-ded that the solution got by the proposed method is extremely approximate to the analytic solution of LP method. The superiority of the proposed method over the LP method in solving a non-linear allocation model is illustrated by a non-linear case. Moreover, further researches on improvement of the algorithm and the allocation model are addressed.
Institute of Scientific and Technical Information of China (English)
Yong-ping Liu; Gui-qiao Xu
2002-01-01
The classes of the multivariate functions with bounded moduli on Rd and Td are given and their average a-widths and non-linear n-widths are discussed. The weak asymptotic behaviors are established for the corresponding quantities.
Asymptotically anti-de Sitter Proca Stars
Duarte, Miguel
2016-01-01
We show that complex, massive spin-1 fields minimally coupled to Einstein's gravity with a negative cosmological constant, admit asymptotically anti-de Sitter self-gravitating solutions. Focusing on 4-dimensional spacetimes, we start by obtaining analytical solutions in the test-field limit, where the Proca field equations can be solved in a fixed anti-de Sitter background, and then find fully non-linear solutions numerically. These solutions are a natural extension of the recently found asymptotically flat Proca stars and share similar properties with scalar boson stars. In particular, we show that they are stable against spherically symmetric linear perturbations for a range of fundamental frequencies limited by their point of maximum mass. We finish with an overview of the behavior of Proca stars in $5$ dimensions.
Neural Networks for Non-linear Control
DEFF Research Database (Denmark)
Sørensen, O.
1994-01-01
This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....
Non-linear finite element modeling
DEFF Research Database (Denmark)
Mikkelsen, Lars Pilgaard
The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...... on the governing equations and methods of implementing....
Chen, Y.-Y.; Zhang, Y.; Liu, C.-L.; Wei, P.
2016-12-01
This paper deals with two-dimensional and three-dimensional cooperative control of multiple agents formation tracking a set of given closed orbits, where each agent has intrinsic second-order non-linear dynamics and the communication topology among agents is directed. By using our previous curve extension method, the cooperative control system can be regarded as a cascade system composed of the orbit-tracking subsystem and the formation subsystem with the orbit-tracking error as input. A novel solution is established by separatively designing the orbit-tracking control law and the formation control protocol ignoring the perturbation at first and then applying input-to-state stability theory to analyse the asymptotic stability of the cascade system. It is shown that the closed-loop system is asymptotic stability if the directed communication topology contains a directed spanning tree. The effectiveness of the analytical results is verified by numerical simulations.
Asymptotic analysis of outwardly propagating spherical flames
Institute of Scientific and Technical Information of China (English)
Yun-Chao Wu; Zheng Chen
2012-01-01
Asymptotic analysis is conducted for outwardly propagating spherical flames with large activation energy.The spherical flame structure consists of the preheat zone,reaction zone,and equilibrium zone.Analytical solutions are separately obtained in these three zones and then asymptotically matched.In the asymptotic analysis,we derive a correlation describing the spherical flame temperature and propagation speed changing with the flame radius.This correlation is compared with previous results derived in the limit of infinite value of activation energy.Based on this correlation,the properties of spherical flame propagation are investigated and the effects of Lewis number on spherical flame propagation speed and extinction stretch rate are assessed.Moreover,the accuracy and performance of different models used in the spherical flame method are examined.It is found that in order to get accurate laminar flame speed and Markstein length,non-linear models should be used.
Institute of Scientific and Technical Information of China (English)
Zhi-zhong Sun; Long-Jun Shen
2003-01-01
In this paper, the solution of back-Euler implicit difference scheme for a semi-linearparabolic equation is proved to converge to the solution of difference scheme for the corre-sponding semi-linear elliptic equation as t tends to infinity. The long asymptotic behaviorof its discrete solution is obtained which is analogous to that of its continuous solution. Atlast, a few results are also presented for Crank-Nicolson scheme.
Institute of Scientific and Technical Information of China (English)
Wenrong DAI
2006-01-01
In this paper, we study the asymptotic behavior of global classical solutions of the Cauchy problem for general quasilinear hyperbolic systems with constant multiple and weakly linearly degenerate characteristic fields. Based on the existence of global classical solution proved by Zhou Yi et al., we show that, when t tends to infinity, the solution approaches a combination of C1 travelling wave solutions, provided that the total variation and the L1 norm of initial data are sufficiently small.
Non-Linear Sigma Model on Conifolds
Parthasarathy, R
2002-01-01
Explicit solutions to the conifold equations with complex dimension $n=3,4$ in terms of {\\it{complex coordinates (fields)}} are employed to construct the Ricci-flat K\\"{a}hler metrics on these manifolds. The K\\"{a}hler 2-forms are found to be closed. The complex realization of these conifold metrics are used in the construction of 2-dimensional non-linear sigma model with the conifolds as target spaces. The action for the sigma model is shown to be bounded from below. By a suitable choice of the 'integration constants', arising in the solution of Ricci flatness requirement, the metric and the equations of motion are found to be {\\it{non-singular}}. As the target space is Ricci flat, the perturbative 1-loop counter terms being absent, the model becomes topological. The inherent U(1) fibre over the base of the conifolds is shown to correspond to a gauge connection in the sigma model. The same procedure is employed to construct the metric for the resolved conifold, in terms of complex coordinates and the action ...
Qandalji, K Rasem
2011-01-01
We show that based on the general solution, given by Corrigan, Olive, Fairlie and Nuyts, in the region outside the monopole's core; the equations of motion in the Higgs vacuum (i.e. outside the monopole's core) will not allow asymptotically non-singular extended non-trivial non-Dyonic (including, also, all static) solutions of the 't Hooft-Polyakov monopole. In other words, unless the monopole's magnetic charge is shielded (by some mechanism), the Dirac string is inevitable asymptotically, in the region outside the monopole's core, for all non-Dyonic solutions that are admissible by the equations of motion. That we show that the non-dyonic solutions (based on Corrigan et al) will include all "admissible" static solutions and their gauge transform might be interpreted as that all admissible dyonic solutions (based on Corrigan et al) are composite solutions.
Behzadan, A
2015-01-01
In this article we consider the conformal decomposition of Einstein's constraint equations introduced by Lichnerowicz, Choquet-Bruhat, and York, on asymptotically flat (AF) manifolds. Using the non-CMC fixed-point framework developed in 2009 by Holst, Nagy, and Tsogtgerel and by Maxwell, we establish existence of coupled non-CMC weak solutions for AF manifolds. As is the case for the analogous existence results for non-CMC solutions on closed manifolds and compact manifolds with boundary, our results here avoid the near-CMC assumption by assuming that the freely specifiable part of the data given by the traceless-transverse part of the rescaled extrinsic curvature and the matter fields are sufficiently small. The non-CMC rough solutions results here for AF manifolds may be viewed as extending to AF manifolds the 2009 and 2014 results on rough far-from-CMC positive Yamabe solutions for closed and compact manifolds with boundary. Similarly, our results may be viewed as extending the recent 2014 results for AF m...
The Importance of Non-Linearity on Turbulent Fluxes
DEFF Research Database (Denmark)
Rokni, Masoud
2007-01-01
Two new non-linear models for the turbulent heat fluxes are derived and developed from the transport equation of the scalar passive flux. These models are called as non-linear eddy diffusivity and non-linear scalar flux. The structure of these models is compared with the exact solution which...... is derived from the Cayley-Hamilton theorem and contains a three term-basis plus a non-linear term due to scalar fluxes. In order to study the performance of the model itself, all other turbulent quantities are taken from a DNS channel flow data-base and thus the error source has been minimized. The results...... are compared with the DNS channel flow and good agreement is achieved. It has been shown that the non-linearity parts of the models are important to capture the true path of the streamwise scalar fluxes. It has also been shown that one of model constant should have negative sign rather than positive, which had...
Directory of Open Access Journals (Sweden)
Majda Chaieb
2016-01-01
Full Text Available Let \\(\\Omega\\ be a bounded domain in \\(\\mathbb{R}^{n}\\ (\\(n\\geq 2\\ with a smooth boundary \\(\\partial \\Omega\\. We discuss in this paper the existence and the asymptotic behavior of positive solutions of the following semilinear elliptic system \\[\\begin{aligned} -\\Delta u&=a_{1}(xu^{\\alpha}v^{r}\\quad\\text{in}\\;\\Omega ,\\;\\;\\,u|_{\\partial\\Omega}=0,\\\\ -\\Delta v&=a_{2}(xv^{\\beta}u^{s}\\quad\\text{in}\\;\\Omega ,\\;\\;\\,v|_{\\partial\\Omega }=0.\\end{aligned}\\] Here \\(r,s\\in \\mathbb{R}\\, \\(\\alpha,\\beta \\lt 1\\ such that \\(\\gamma :=(1-\\alpha(1-\\beta-rs\\gt 0\\ and the functions \\(a_{i}\\ (\\(i=1,2\\ are nonnegative and satisfy some appropriate conditions with reference to Karamata regular variation theory.
Asymptotic profiles for a travelling front solution of a biological equation
Chapuisat, Guillemette
2010-01-01
We are interested in the existence of depolarization waves in the human brain. These waves propagate in the grey matter and are absorbed in the white matter. We consider a two-dimensional model $u_t=\\Delta u + f(u) \\1_{|y|\\leq R} - \\alpha u \\1_{|y|>R}$, with $f$ a bistable nonlinearity taking effect only on the domain $\\Rm\\times [-R,R]$, which represents the grey matter layer. We study the existence, the stability and the energy of non-trivial asymptotic profiles of possible travelling fronts. For this purpose, we present dynamical systems technics and graphic criteria based on Sturm-Liouville theory and apply them to the above equation. This yields three different behaviours of the solution $u$ after stimulation, depending of the thickness $R$ of the grey matter. This may partly explain the difficulties to observe depolarization waves in the human brain and the failure of several therapeutic trials.
Kiselev, O M
1999-01-01
The asymptotic solution for the Painleve-2 equation with small parameter is considered. The solution has algebraic behavior before point $t_*$ and fast oscillating behavior after the point $t_*$. In the transition layer the behavior of the asymptotic solution is more complicated. The leading term of the asymptotics satisfies the Painleve-1 equation and some elliptic equation with constant coefficients, where the solution of the Painleve-1 equation has poles. The uniform smooth asymptotics are constructed in the interval, containing the critical point $t_*$.
Directory of Open Access Journals (Sweden)
Min Jia
2012-01-01
Full Text Available We study a model arising from porous media, electromagnetic, and signal processing of wireless communication system -tαx(t=f(t,x(t,x'(t,x”(t,…,x(n-2(t, 0
Institute of Scientific and Technical Information of China (English)
Cuimei ZHANG; Wencheng CHEN; Yu YANG
2006-01-01
In this paper, we study the existence and global asymptotic stability of positive periodic solutions of a delayed periodic predator-prey system with Holling Ⅱ type functional response. By use of the continuation theorem of coincidence degree theory and the method of Lyapunov function, some sufficient conditions are obtained.
Qin, Yuming; Zhang, Jianlin
2016-12-01
In this paper, we establish the global existence, uniqueness and asymptotic behavior of cylindrically symmetric solutions for the 3D infrarelativistic model with radiation in H^i× (H^i)^3× H^i× H^{i+1}(i=1,2,4) . The key point is that the smallness of initial data is not needed.
Non-linear effects for cylindrical gravitational two-soliton
Tomizawa, Shinya
2015-01-01
Using a cylindrical soliton solution to the four-dimensional vacuum Einstein equation, we study non-linear effects of gravitational waves such as Faraday rotation and time shift phenomenon. In the previous work, we analyzed the single-soliton solution constructed by the Pomeransky's improved inverse scattering method. In this work, we construct a new two-soliton solution with complex conjugate poles, by which we can avoid light-cone singularities unavoidable in a single soliton case. In particular, we compute amplitudes of such non-linear gravitational waves and time-dependence of the polarizations. Furthermore, we consider the time shift phenomenon for soliton waves, which means that a wave packet can propagate at slower velocity than light.
Directory of Open Access Journals (Sweden)
Javed Ali
2012-01-01
Full Text Available We solve some higher-order boundary value problems by the optimal homotopy asymptotic method (OHAM. The proposed method is capable to handle a wide variety of linear and nonlinear problems effectively. The numerical results given by OHAM are compared with the exact solutions and the solutions obtained by Adomian decomposition (ADM, variational iteration (VIM, homotopy perturbation (HPM, and variational iteration decomposition method (VIDM. The results show that the proposed method is more effective and reliable.
An asymptotic solution of large-$N$ $QCD$, and of large-$N$ $\\mathcal{N}=1$ $SUSY$ $QCD$
Bochicchio, Marco
2014-01-01
We find an asymptotic solution for two- and three-point correlators of local gauge-invariant operators, in a lower-spin sector of massless large-$N$ $QCD$ (and of massless large-$N$ $\\cal{N}$ $=1$ $SUSY$ $QCD$), in terms of glueball and meson propagators (and of their $SUSY$ partners), by means of a new purely field-theoretical technique that we call the asymptotically-free bootstrap. The asymptotically-free bootstrap exploits the lowest-order conformal invariance of connected correlators of gauge invariant composite operators in perturbation theory, the renormalization-group improvement, and a recently-proved asymptotic structure theorem for glueball and meson propagators (and for their $SUSY$ partners), that involves the unknown particle spectrum and the anomalous dimension of operators for fixed spin. In principle the asymptotically-free bootstrap extends to all the higher-spin two- and three-point correlators whose lowest-order conformal limit is non-vanishing in perturbation theory, and by means of the o...
Directory of Open Access Journals (Sweden)
Tongqing Lu
2014-01-01
Full Text Available In a thin film-substrate system in-plane compressive stress is commonly generated in the film due to thermal mismatch in operation or fabrication process. If the stress exceeds a critical value, part of the film may buckle out of plane along the defective interface. After buckling delamination, the interface crack at the ends may propagate. In the whole process, the compliance of the substrate compared with the film plays an important role. In this work, we study a circular film subject to compressive stress on an infinitely thick substrate. We study the effects of compliance of the substrate by modeling the system as a plate on an elastic foundation. The critical buckling condition is formulated. The asymptotic solutions of post-buckling deformation and the corresponding energy release rate of the interface crack are obtained with perturbation methods. The results show that the more compliant the substrate is, the easier for the film to buckle and easier for the interface crack to propagate after buckling.
Directory of Open Access Journals (Sweden)
Bezyaev Vladimir Ivanovich
2014-09-01
Full Text Available The authors present an efficient algorithm different from the previously known to construct the asymptotics of solutions of nonautonomous systems of ordinary differential equations with meromorphic matrix. Schrödinger equation, Dirac system, Lippman-Schwinger equation and other equations of quantum mechanics with spherically symmetric and meromorphic potentials may be reduced to such systems. The Schrödinger equation and the Dirac system describe the stationary states of an electron in a Coulomb field with a fixed point charge in the description of the relativistic and nonrelativistic hydrogen atom. The Lippman-Schwinger equation of scattering theory describes the results of collision and interaction of quantum-mechanical particles in mathematical language after these particles have already diverged a long way from one another and ceased to interact. The observed algorithm supplements the known results and allows you to approach the analysis of the problems of this type with a fairly simple and at the same time, a universal point of view.
Non-Linear Relativity in Position Space
Kimberly, D; Medeiros-Neto, J F; Kimberly, Dagny; Magueijo, João; Medeiros, João
2003-01-01
We propose two methods for obtaining the dual of non-linear relativity as previously formulated in momentum space. In the first we allow for the (dual) position space to acquire a non-linear representation of the Lorentz group independently of the chosen representation in momentum space. This requires a non-linear definition for the invariant contraction between momentum and position spaces. The second approach, instead, respects the linearity of the invariant contraction. This fully fixes the dual of momentum space and dictates a set of energy-dependent space-time Lorentz transformations. We discuss a variety of physical implications that would distinguish these two strategies. We also show how they point to two rather distinct formulations of theories of gravity with an invariant energy and/or length scale.
Correlations and Non-Linear Probability Models
DEFF Research Database (Denmark)
Breen, Richard; Holm, Anders; Karlson, Kristian Bernt
2014-01-01
the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models....
2013-01-01
This book consists of twenty seven chapters, which can be divided into three large categories: articles with the focus on the mathematical treatment of non-linear problems, including the methodologies, algorithms and properties of analytical and numerical solutions to particular non-linear problems; theoretical and computational studies dedicated to the physics and chemistry of non-linear micro-and nano-scale systems, including molecular clusters, nano-particles and nano-composites; and, papers focused on non-linear processes in medico-biological systems, including mathematical models of ferments, amino acids, blood fluids and polynucleic chains.
Holst, Michael
2014-01-01
In this article we further develop the solution theory for the Einstein constraint equations on an n-dimensional, asymptotically Euclidean manifold M with interior boundary S. Building on recent results for both the asymptotically Euclidean and compact with boundary settings, we show existence of far-from-CMC and near-CMC solutions to the conformal formulation of the Einstein constraints when nonlinear Robin boundary conditions are imposed on S, similar to those analyzed previously by Dain (2004), by Maxwell (2004, 2005), and by Holst and Tsogtgerel (2013) as a model of black holes in various CMC settings, and by Holst, Meier, and Tsogtgerel (2013) in the setting of far-from-CMC solutions on compact manifolds with boundary. These "marginally trapped surface" Robin conditions ensure that the expansion scalars along null geodesics perpendicular to the boundary region S are non-positive, which is considered the correct mathematical model for black holes in the context of the Einstein constraint equations. Assumi...
Asymptotic Solution of a Model for Bilayer Organic Diodes and Solar Cells
Richardson, Giles
2012-11-15
Organic diodes and solar cells are constructed by placing together two organic semiconducting materials with dissimilar electron affinities and ionization potentials. The electrical behavior of such devices has been successfully modeled numerically using conventional drift diffusion together with recombination (which is usually assumed to be bimolecular) and thermal generation. Here a particular model is considered and the dark current-voltage curve and the spatial structure of the solution across the device is extracted analytically using asymptotic methods. We concentrate on the case of Shockley-Read-Hall recombination but note the extension to other recombination mechanisms. We find that there are three regimes of behavior, dependent on the total current. For small currents-i.e., at reverse bias or moderate forward bias-the structure of the solution is independent of the total current. For large currents-i.e., at strong forward bias-the current varies linearly with the voltage and is primarily controlled by drift of charges in the organic layers. There is then a narrow range of currents where the behavior undergoes a transition between the two regimes. The magnitude of the parameter that quantifies the interfacial recombination rate is critical in determining where the transition occurs. The extension of the theory to organic solar cells generating current under illumination is discussed as is the analogous current-voltage curves derived where the photo current is small. Finally, by comparing the analytic results to real experimental data, we show how the model parameters can be extracted from the shape of current-voltage curves measured in the dark. © 2012 Society for Industrial and Applied Mathematics.
Asymptotic solutions of the axisymmetric moist Hadley circulation in a model with two vertical modes
Energy Technology Data Exchange (ETDEWEB)
Burns, Samuel P. [Columbia University, Department of Applied Physics and Applied Mathematics, New York, NY (United States); New York University, Courant Institute, New York, NY (United States); Sobel, Adam H.; Polvani, Lorenzo M. [Columbia University, Department of Applied Physics and Applied Mathematics, New York, NY (United States)
2006-11-15
A simplified model of the moist axisymmetric Hadley circulation is examined in the asymptotic limit in which surface drag is strong and the meridional wind is weak compared to the zonal wind. Our model consists of the quasi-equilibrium tropical circulation model (QTCM) equations on an axisymmetric aquaplanet equatorial beta-plane. This model includes two vertical momentum modes, one baroclinic and one barotropic. Prior studies use either continuous stratification, or a shallow water system best viewed as representing the upper troposphere. The analysis here focuses on the interaction of the baroclinic and barotropic modes, and the way in which this interaction allows the constraints on the circulation known from the fully stratified case to be satisfied in an approximate way. The dry equations, with temperature forced by Newtonian relaxation towards a prescribed radiative equilibrium, are solved first. To leading order, the resulting circulation has a zonal wind profile corresponding to uniform angular momentum at a level near the tropopause, and zero zonal surface wind, owing to the cancelation of the barotropic and baroclinic modes there. The weak surface winds are calculated from the first-order corrections. The broad features of these solutions are similar to those obtained in previous studies of the dry Hadley circulation. The moist equations are solved next, with a fixed sea surface temperature at the lower boundary and simple parameterizations of surface fluxes, deep convection, and radiative transfer. The solutions yield the structure of the barotropic and baroclinic winds, as well as the temperature and moisture fields. In addition, we derive expressions for the width and strength of the equatorial precipitating region (ITCZ) and the width of the entire Hadley circulation. The ITCZ width is on the order of a few degrees in the absence of any horizontal diffusion and is relatively insensitive to parameter variations. (orig.)
Non-linear high-frequency waves in the magnetosphere
Indian Academy of Sciences (India)
S Moolla; R Bharuthram; S V Singh; G S Lakhina
2003-12-01
Using ﬂuid theory, a set of equations is derived for non-linear high-frequency waves propagating oblique to an external magnetic ﬁeld in a three-component plasma consisting of hot electrons, cold electrons and cold ions. For parameters typical of the Earth’s magnetosphere, numerical solutions of the governing equations yield sinusoidal, sawtooth or bipolar wave-forms for the electric ﬁeld.
Quasi-integrability in the modified defocusing non-linear Schr\\"odinger model and dark solitons
Blas, H
2015-01-01
The concept of quasi-integrability has been examined in the context of deformations of the defocusing non-linear Schr\\"odinger model (NLS). Our results show that the quasi-integrability concept, recently discussed in the context of deformations of the sine-Gordon, Bullough-Dodd and focusing NLS models, holds for the modified defocusing NLS model with dark soliton solutions and it exhibits the new feature of an infinite sequence of alternating conserved and asymptotically conserved charges. For the special case of two dark soliton solutions, where the field components are eigenstates of a space-reflection symmetry, the first four and the sequence of even order charges are exactly conserved in the scattering process of the solitons. Such results are obtained through analytical and numerical methods, and employ adaptations of algebraic techniques used in integrable field theories. We perform extensive numerical simulations and consider the scattering of dark solitons for the cubic-quintic NLS model with potentia...
Exact Solution of Klein-Gordon Equation by Asymptotic Iteration Method
Institute of Scientific and Technical Information of China (English)
Eser Ol(g)ar
2008-01-01
Using the asymptotic iteration method (AIM) we obtain the spectrum of the Klein-Gordon equation for some choices of scalar and vector potentials. In particular, it is shown that the AIM exactly reproduces the spectrum of some solvable potentials.
Controller reconfiguration for non-linear systems
Kanev, S.; Verhaegen, M.
2000-01-01
This paper outlines an algorithm for controller reconfiguration for non-linear systems, based on a combination of a multiple model estimator and a generalized predictive controller. A set of models is constructed, each corresponding to a different operating condition of the system. The interacting m
Non-Linear Logging Parameters Inversion
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
The non-linear logging parameters inversion is based on the field theory, information optimization and predication theory. It uses seismic charaoters,geological model and logging data as a restriction to inverse 2D, 3D logging parameters data volume. Using this method,
Non linear system become linear system
Directory of Open Access Journals (Sweden)
Petre Bucur
2007-01-01
Full Text Available The present paper refers to the theory and the practice of the systems regarding non-linear systems and their applications. We aimed the integration of these systems to elaborate their response as well as to highlight some outstanding features.
Non-linear dendrites can tune neurons
Directory of Open Access Journals (Sweden)
Romain Daniel Cazé
2014-03-01
Full Text Available A signature of visual, auditory, and motor cortices is the presence of neurons tuned to distinct features of the environment. While neuronal tuning can be observed in most brain areas, its origin remains enigmatic, and new calcium imaging data complicate this problem. Dendritic calcium signals, in a L2/3 neuron from the mouse visual cortex, display a wide range of tunings that could be different from the neuronal tuning (Jia et al 2010. To elucidate this observation we use multi-compartmental models of increasing complexity, from a binary to a realistic biophysical model of L2/3 neuron. These models possess non-linear dendritic subunits inside which the result of multiple excitatory inputs is smaller than their arithmetic sum. While dendritic non-linear subunits are ad-hoc in the binary model, non-linearities in the realistic model come from the passive saturation of synaptic currents. Because of these non-linearities our neuron models are scatter sensitive: the somatic membrane voltage is higher when presynaptic inputs target different dendrites than when they target a single dendrite. This spatial bias in synaptic integration is, in our models, the origin of neuronal tuning. Indeed, assemblies of presynaptic inputs encode the stimulus property through an increase in correlation or activity, and only the assembly that encodes the preferred stimulus targets different dendrites. Assemblies coding for the non-preferred stimuli target single dendrites, explaining the wide range of observed tunings and the possible difference between dendritic and somatic tuning. We thus propose, in accordance with the latest experimental observations, that non-linear integration in dendrites can generate neuronal tuning independently of the coding regime.
Directory of Open Access Journals (Sweden)
Zhijun Zhang
2006-08-01
Full Text Available We show the exact asymptotic behaviour near the boundary for the classical solution to the Dirichler problem $$ -Delta =k(xg(u+lambda |abla u|^q, quad u>0,; xin Omega,quad uig|_{partial{Omega}}=0, $$ where $Omega$ is a bounded domain with smooth boundary in $mathbb R^N$. We use the Karamata regular varying theory, a perturbed argument, and constructing comparison functions.
Non-linear stochastic response of a shallow cable
DEFF Research Database (Denmark)
Larsen, Jesper Winther; Nielsen, Søren R.K.
2004-01-01
The paper considers the stochastic response of geometrical non-linear shallow cables. Large rain-wind induced cable oscillations with non-linear interactions have been observed in many large cable stayed bridges during the last decades. The response of the cable is investigated for a reduced two......, the chord elongation is modelled as a narrow-banded Gaussian stochastic process, and it is shown that all the indicated harmonic solutions now become instable with probability one. Instead, the cable jumps randomly back and forth between the two in-plane and the whirling mode of vibration. A theory...... component of the support point motion relative to a safe domain determined from the harmonic analysis of the problem....
NON-LINEAR FINITE ELEMENT MODELING OF DEEP DRAWING PROCESS
Directory of Open Access Journals (Sweden)
Hasan YILDIZ
2004-03-01
Full Text Available Deep drawing process is one of the main procedures used in different branches of industry. Finding numerical solutions for determination of the mechanical behaviour of this process will save time and money. In die surfaces, which have complex geometries, it is hard to determine the effects of parameters of sheet metal forming. Some of these parameters are wrinkling, tearing, and determination of the flow of the thin sheet metal in the die and thickness change. However, the most difficult one is determination of material properties during plastic deformation. In this study, the effects of all these parameters are analyzed before producing the dies. The explicit non-linear finite element method is chosen to be used in the analysis. The numerical results obtained for non-linear material and contact models are also compared with the experiments. A good agreement between the numerical and the experimental results is obtained. The results obtained for the models are given in detail.
Luo, Tao; Xin, Zhouping; Zeng, Huihui
2016-11-01
The nonlinear asymptotic stability of Lane-Emden solutions is proved in this paper for spherically symmetric motions of viscous gaseous stars with the density dependent shear and bulk viscosities which vanish at the vacuum, when the adiabatic exponent {γ} lies in the stability regime {(4/3, 2)}, by establishing the global-in-time regularity uniformly up to the vacuum boundary for the vacuum free boundary problem of the compressible Navier-Stokes-Poisson systems with spherical symmetry, which ensures the global existence of strong solutions capturing the precise physical behavior that the sound speed is {C^{{1}/{2}}}-Hölder continuous across the vacuum boundary, the large time asymptotic uniform convergence of the evolving vacuum boundary, density and velocity to those of Lane-Emden solutions with detailed convergence rates, and the detailed large time behavior of solutions near the vacuum boundary. Those uniform convergence are of fundamental importance in the study of vacuum free boundary problems which are missing in the previous results for global weak solutions. Moreover, the results obtained in this paper apply to much broader cases of viscosities than those in Fang and Zhang (Arch Ration Mech Anal 191:195-243, 2009) for the theory of weak solutions when the adiabatic exponent {γ} lies in the most physically relevant range. Finally, this paper extends the previous local-in-time theory for strong solutions to a global-in-time one.
Non-Linear Dynamics and Fundamental Interactions
Khanna, Faqir
2006-01-01
The book is directed to researchers and graduate students pursuing an advanced degree. It provides details of techniques directed towards solving problems in non-linear dynamics and chos that are, in general, not amenable to a perturbative treatment. The consideration of fundamental interactions is a prime example where non-perturbative techniques are needed. Extension of these techniques to finite temperature problems is considered. At present these ideas are primarily used in a perturbative context. However, non-perturbative techniques have been considered in some specific cases. Experts in the field on non-linear dynamics and chaos and fundamental interactions elaborate the techniques and provide a critical look at the present status and explore future directions that may be fruitful. The text of the main talks will be very useful to young graduate students who are starting their studies in these areas.
Non-linear dynamics in pulse combustor: A review
Indian Academy of Sciences (India)
Sirshendu Mondal; Achintya Kukhopadhyay; Swarnendu Sen
2015-03-01
The state of the art of non-linear dynamics applied to pulse combustor theoretically and experimentally is reviewed. Pulse combustors are a class of air-breathing engines in which pulsations in combustion are utilized to improve the performance. As no analytical solution can be obtained for most of the nonlinear systems, the whole set of solutions can be investigated with the help of dynamical system theory. Many studies have been carried out on pulse combustors whose dynamics include limit cycle behaviour, Hopf bifurcation and period-doubling bifurcation. The dynamic signature has also been used for early prediction of extinction.
Weak non-linear surface charging effects in electrolytic films
Dean, D. S.; Horgan, R. R.
2002-01-01
A simple model of soap films with nonionic surfactants stabilized by added electrolyte is studied. The model exhibits charge regularization due to the incorporation of a physical mechanism responsible for the formation of a surface charge. We use a Gaussian field theory in the film but the full non-linear surface terms which are then treated at a one-loop level by calculating the mean-field Poisson-Boltzmann solution and then the fluctuations about this solution. We carefully analyze the reno...
Fliess, Michel; Sira-Ramirez, Hebertt
2007-01-01
Non-linear state estimation and some related topics, like parametric estimation, fault diagnosis, and perturbation attenuation, are tackled here via a new methodology in numerical differentiation. The corresponding basic system theoretic definitions and properties are presented within the framework of differential algebra, which permits to handle system variables and their derivatives of any order. Several academic examples and their computer simulations, with on-line estimations, are illustrating our viewpoint.
Asymptotic solution of natural convection problem in a square cavity heated from below
Grundmann, M; Mojtabi, A; vantHof, B
1996-01-01
Studies a two-dimensional natural convection in a porous, square cavity using a regular asymptotic development in powers of the Rayleigh number. Carries the approximation through to the 34th order. Analyses convergence of the resulting series for the Nusselt number in both monocellular and multicell
Institute of Scientific and Technical Information of China (English)
马西奎; 韩社教
2002-01-01
Based on the multipole expansion theory of the potential, a satisfactory interpretation is put forward of the exact nature of the approximations of asymptotic boundary condition (called the ABC) techniques for the numerical solutions of open-boundary static electromagnetic-field problems, and a definite physical meaning is bestowed on ABC, which provide a powerful theoretical background for laying down the operating rules and the key to the derivation of asymptotic boundary conditions. This paper is also intended to reveal the shortcomings of the conventional higher-order ABC, and at the same time to give the concept of a new type of higher-order ABC, and to present a somewhat different formulation of the new nth-order ABC. In order to test its feasibility, several simple problems of electrostatic potentials are analyzed. The results are found to be much better than those of conventional higher-order ABCs.
Directory of Open Access Journals (Sweden)
Liaqat Ali
2016-09-01
Full Text Available In this research work a new version of Optimal Homotopy Asymptotic Method is applied to solve nonlinear boundary value problems (BVPs in finite and infinite intervals. It comprises of initial guess, auxiliary functions (containing unknown convergence controlling parameters and a homotopy. The said method is applied to solve nonlinear Riccati equations and nonlinear BVP of order two for thin film flow of a third grade fluid on a moving belt. It is also used to solve nonlinear BVP of order three achieved by Mostafa et al. for Hydro-magnetic boundary layer and micro-polar fluid flow over a stretching surface embedded in a non-Darcian porous medium with radiation. The obtained results are compared with the existing results of Runge-Kutta (RK-4 and Optimal Homotopy Asymptotic Method (OHAM-1. The outcomes achieved by this method are in excellent concurrence with the exact solution and hence it is proved that this method is easy and effective.
AN APPLICATION OF DOUBLE-SCALE METHOD TO THE STUDY OF NON-LINEAR DISSIPATIVE WAVES IN JEFFREYS MEDIA
Directory of Open Access Journals (Sweden)
Adelina Georgescu
2011-07-01
Full Text Available In previous papers we sketched out the general use of the doublescalemethod to nonlinear hyperbolic partial differential equations(PDEs in order to study the asymptotic waves and as an examplethe model governing the motion of a rheological medium (Maxwellmedium with one mechanical internal variable was studied. In thispaper the double scale method is applied to investigate non-linear dissipative waves in viscoanelastic media without memory of order one(Jeffreys media, that were studied by one of the authors (L. R. inmore classical way. For these media the equations of motion includesecond order derivative terms multiplied by a very small parameter. We give a physical interpretation of the new (fast variable, related to the surfaces across which the solutions or/and some of their derivatives vary steeply. The paper concludes with one-dimensional application containing original results.
Fast simulation of non-linear pulsed ultrasound fields using an angular spectrum approach
DEFF Research Database (Denmark)
Du, Yigang; Jensen, Jørgen Arendt
2013-01-01
A fast non-linear pulsed ultrasound field simulation is presented. It is implemented based on an angular spectrum approach (ASA), which analytically solves the non-linear wave equation. The ASA solution to the Westervelt equation is derived in detail. The calculation speed is significantly...... increased compared to a numerical solution using an operator splitting method (OSM). The ASA has been modified and extended to pulsed non-linear ultrasound fields in combination with Field II, where any array transducer with arbitrary geometry, excitation, focusing and apodization can be simulated...
Rigorous asymptotics of traveling-wave solutions to the thin-film equation and Tanner’s law
Giacomelli, Lorenzo; Gnann, Manuel V.; Otto, Felix
2016-09-01
We are interested in traveling-wave solutions to the thin-film equation with zero microscopic contact angle (in the sense of complete wetting without precursor) and inhomogeneous mobility {{h}3}+{λ3-n}{{h}n} , where h, λ, and n\\in ≤ft(\\frac{3}{2},\\frac{7}{3}\\right) denote film height, slip parameter, and mobility exponent, respectively. Existence and uniqueness of these solutions have been established by Maria Chiricotto and the first of the authors in previous work under the assumption of sub-quadratic growth as h\\to ∞ . In the present work we investigate the asymptotics of solutions as h\\searrow 0 (the contact-line region) and h\\to ∞ . As h\\searrow 0 we observe, to leading order, the same asymptotics as for traveling waves or source-type self-similar solutions to the thin-film equation with homogeneous mobility h n and we additionally characterize corrections to this law. Moreover, as h\\to ∞ we identify, to leading order, the logarithmic Tanner profile, i.e. the solution to the corresponding unperturbed problem with λ =0 that determines the apparent macroscopic contact angle. Besides higher-order terms, corrections turn out to affect the asymptotic law as h\\to ∞ only by setting the length scale in the logarithmic Tanner profile. Moreover, we prove that both the correction and the length scale depend smoothly on n. Hence, in line with the common philosophy, the precise modeling of liquid-solid interactions (within our model, the mobility exponent) does not affect the qualitative macroscopic properties of the film.
Garbarz, Alan; Vásquez, Yerko
2008-01-01
We study exact solutions to Cosmological Topologically Massive Gravity (CTMG) coupled to Topologically Massive Electrodynamics (TME) at special values of the coupling constants. For the particular case of the so called chiral point l\\mu_G=1, vacuum solutions (with vanishing gauge field) are exhibited. These correspond to a one-parameter deformation of GR solutions, and are continuously connected to the extremal Banados-Teitelboim-Zanelli black hole (BTZ) with bare constants J=-lM. In CTMG this extremal BTZ turns out to be massless, and thus it can be regarded as a kind of ground state. For certain range of parameters, our solution exhibits an event horizon located at finite geodesic distance. Although the solution is not asymptotically AdS_3 in the sense of Brown-Henneaux boundary conditions, it does obey the weakened asymptotic recently proposed by Grumiller and Johansson. Consequently, we discuss the computation of the conserved chages in terms of the stress-tensor in the boundary, and we find that the sign...
Efficent Estimation of the Non-linear Volatility and Growth Model
2009-01-01
Ramey and Ramey (1995) introduced a non-linear model relating volatility to growth. The solution of this model by generalised computer algorithms for non-linear maximum likelihood estimation encounters the usual difficulties and is, at best, tedious. We propose an algebraic solution for the model that provides fully efficient estimators and is elementary to implement as a standard ordinary least squares procedure. This eliminates issues such as the ‘guesstimation’ of initial values and mul...
Nal, P L
2002-01-01
We consider the asymptotic stability and the boundedness with probability one of solutions of linear lto stochastic differential equations not reduced to the Cauchy form and give some numerical examples to show that our sufficient conditions for the asymptotic stability with probability one of solutions are more general and more effective than those of Korenevskij and Mitropoloshij. Moreover, our results can also be applied to the case when the unperturbed linear deterministic system is not assumed to be stable.
Dai, Hui-Hui
2011-01-01
A polymer network can imbibe water, forming an aggregate called hydrogel, and undergo large and inhomogeneous deformation with external mechanical constraint. Due to the large deformation, nonlinearity plays a crucial role, which also causes the mathematical difficulty for obtaining analytical solutions. Based on an existing model for equilibrium states of a swollen hydrogel with a core-shell structure, this paper seeks analytical solutions of the deformations by perturbation methods for three cases, i.e. free-swelling, nearly free-swelling and general inhomogeneous swelling. Particularly for the general inhomogeneous swelling, we introduce an extended method of matched asymptotics to construct the analytical solution of the governing nonlinear second-order variable-coefficient differential equation. The analytical solution captures the boundary layer behavior of the deformation. Also, analytical formulas for the radial and hoop stretches and stresses are obtained at the two boundary surfaces of the shell, ma...
Limits on Non-Linear Electrodynamics
Fouché, M; Rizzo, C
2016-01-01
In this paper we set a framework in which experiments whose goal is to test QED predictions can be used in a more general way to test non-linear electrodynamics (NLED) which contains low-energy QED as a special case. We review some of these experiments and we establish limits on the different free parameters by generalizing QED predictions in the framework of NLED. We finally discuss the implications of these limits on bound systems and isolated charged particles for which QED has been widely and successfully tested.
BRST structure of non-linear superalgebras
Asorey, M; Radchenko, O V; Sugamoto, A
2008-01-01
In this paper we analyse the structure of the BRST structure of nonlinear superalgebras. We consider quadratic non-linear superalgebras where a commutator (in terms of (super) Poisson brackets) of the generators is a quadratic polynomial of the generators. We find the explicit form of the BRST charge up to cubic order in Faddeev-Popov ghost fields for arbitrary quadratic nonlinear superalgebras. We point out the existence of constraints on structure constants of the superalgebra when the nilpotent BRST charge is quadratic in Faddeev-Popov ghost fields. The general results are illustrated by simple examples of superalgebras.
Non Linear Behaviour in Learning Processes
Manfredi, Paolo; Manfredi, Vicenzo Rosario
2003-01-01
This article is mainly based on R. E. Kahn's contribution to the book Non Linear Dynamics in Human Behavior. As stressed by Bronowski, both in art and in science, a person becomes creative by finding "a new unity" that is a link between things which were not thought alike before. Indeed the creative mind is a mind that looks for unexpected likeness finding a more profound unity, a pattern behind chaotic phenomena. In the context of scientific discovery, it can also be argued that creativi...
Institute of Scientific and Technical Information of China (English)
M·T·穆斯塔法; K·玛苏德
2009-01-01
应用Lie对称法,当弹性能具有三阶非调和修正项时,分析纵向变形的非线性弹性波动方程.通过不同对称下的恒等条件,寻找对称代数,并将它简化为二阶常微分方程.对该简化的常微分方程作进一步分析后,获得若干个显式的精确解.分析Apostol的研究成果(Apostol B F.on a non-linear wave equation in elasticity.Phys Lett A,2003,318(6):545-552)发现,非调和修正项通常导致解在有限时间内具有时间相关奇异性.除了得到时间相关奇异性的解外,还得到无法显示时间相关奇异性的解.
Non-linear feedback neural networks VLSI implementations and applications
Ansari, Mohd Samar
2014-01-01
This book aims to present a viable alternative to the Hopfield Neural Network (HNN) model for analog computation. It is well known that the standard HNN suffers from problems of convergence to local minima, and requirement of a large number of neurons and synaptic weights. Therefore, improved solutions are needed. The non-linear synapse neural network (NoSyNN) is one such possibility and is discussed in detail in this book. This book also discusses the applications in computationally intensive tasks like graph coloring, ranking, and linear as well as quadratic programming. The material in the book is useful to students, researchers and academician working in the area of analog computation.
Axial Non-linear Dynamic Soil-Pile Interaction - Keynote
Directory of Open Access Journals (Sweden)
Holeyman A.
2014-01-01
Full Text Available This keynote lecture describes recent analytical and numerical advances in the modeling of the axial nonlinear dynamic interaction between a single pile and its embedding soil. On one hand, analytical solutions are developed for assessing the nonlinear axial dynamic response of the shaft of a pile subjected to dynamic loads, and in particular to vibratory loads. Radial inhomogeneity arising from shear modulus degradation is evaluated over a range of parameters and compared with those obtained by other authors and by a numerical radial discrete model simulating the pile and soil movements from integration of the laws of motion. New approximate non linear solutions for axial pile shaft behaviour developed from general elastodynamic equations are presented and compared to existing linear solutions. The soil non linear behaviour and its ability to dissipate mechanical energy upon cyclic loading are shown to have a significant influence on the mechanical impedance provided by the surrounding soil against pile shaft movement. The limitations of over-simplified modelling of pile response are highlighted.
Institute of Scientific and Technical Information of China (English)
Ying-hui ZHANG; Zhong TAN
2011-01-01
In this paper,we are concerned with the asymptotic behaviour of a weak solution to the NavierStokes equations for compressible barotropic flow in two space dimensions with the pressure function satisfying p(ρ) =a(ρ)logd(ρ) for large (ρ).Here d ＞ 2,a ＞ 0.We introduce useful tools from the theory of Orlicz spaces and construct a suitable function which approximates the density for time going to infinity.Using properties of this function,we can prove the strong convergence of the density to its limit state.The behaviour of the velocity field and kinetic energy is also briefly discussed.
Institute of Scientific and Technical Information of China (English)
Hideo KUBO; K(o)ji KUBOTA
2006-01-01
This paper is concerned with a class of semilinear hyperbolic systems in odd space dimensions. Our main aim is to prove the existence of a small amplitude solution which is asymptotic to the free solution as t → -∞ in the energy norm, and to show it has a free profile as t → +∞. Our approach is based on the work of [11]. Namely we use a weighted L∞ norm to get suitable a priori estimates. This can be done by restricting our attention to radially symmetric solutions. Corresponding initial value problem is also considered in an analogous framework. Besides, we give an extended result of [14] for three space dimensional case in Section 5, which is prepared independently of the other parts of the paper.
Directory of Open Access Journals (Sweden)
Edgardo Alvarez
2016-10-01
Full Text Available We study weighted pseudo almost automorphic solutions for the nonlinear fractional difference equation $$ \\Delta^{\\alpha}u(n=Au(n+1+f(n, u(n,\\quad n\\in \\mathbb{Z}, $$ for $0<\\alpha \\leq 1$, where A is the generator of an $\\alpha$-resolvent sequence $\\{S_{\\alpha}(n\\}_{n\\in\\mathbb{N}_0}$ in $\\mathcal{B}(X$. We prove the existence and uniqueness of a weighted pseudo almost automorphic solution assuming that f(.,. is weighted almost automorphic in the first variable and satisfies a Lipschitz (local and global type condition in the second variable. An analogous result is also proved for $\\mathcal{S}$-asymptotically $\\omega$-periodic solutions.
Messaris, Gerasimos A. T.; Hadjinicolaou, Maria; Karahalios, George T.
2016-08-01
The present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α and for such values of α there is not any analytical solution in the literature. The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach has an advantage in that it can provide physical insight to the flow mechanism. Having this in mind, we seek analytical solution to the equations of the fluid flow driven by a sinusoidal pressure gradient in a slightly curved pipe of circular cross section when the Womersley number varies from small finite to infinite values. Initially the equations of motion are expanded in terms of the curvature ratio δ and the resulting linearized equations are solved analytically in two ways. In the first, we match the solution for the main core to that for the Stokes boundary layer. This solution is valid for very large values of α. In the second, we derive a straightforward single solution valid to the entire flow region and for 8 ≤ α stresses and is compared to the analogous forms presented in other studies. The two solutions give identical results to each other regarding the axial flow but differ in the secondary flow and the circumferential wall stress, due to the approximations employed in the matched asymptotic expansion process. The results on the stream function from the second solution are in agreement with analogous results from other numerical solutions. The second solution predicts that the atherosclerotic plaques may develop in any location around the cross section of the aortic wall unlike to the prescribed locations predicted by the first solution. In addition, it gives circumferential wall stresses augmented by approximately 100% with respect to the matched asymptotic expansions, a factor that may contribute jointly with other pathological factors to the faster aging of the
SOME PROBLEMS CONCERNING FREE NON-LINEAR VIBRATIONS OF BEAM STRUCTURES
Directory of Open Access Journals (Sweden)
S. V. Bosakov
2008-01-01
Full Text Available The paper analyzes an influence of physical non-linearity material account on vibrations of single beams with various support fixing. The authors also analyze power criteria for existing stable periodic vibrations and dependence of vibration period on initial power is determined in the paper. Accurate values of an amplitude and non-linear bending vibration period of beams have been also determined as a conservative system with due account of initial conditions. A number of examples are given that clearly illustrate the obtained solutions and show an influence rate of the mentioned effects on amplitude-frequency characteristics of non-linear systems.
The two-phase issue in the O(n) non-linear $\\sigma$-model: A Monte Carlo study
Alles, B.; Buonanno, A.; Cella, G.
1996-01-01
We have performed a high statistics Monte Carlo simulation to investigate whether the two-dimensional O(n) non-linear sigma models are asymptotically free or they show a Kosterlitz- Thouless-like phase transition. We have calculated the mass gap and the magnetic susceptibility in the O(8) model with standard action and the O(3) model with Symanzik action. Our results for O(8) support the asymptotic freedom scenario.
Non-Linear Dynamics of Saturn's Rings
Esposito, L. W.
2015-12-01
Non-linear processes can explain why Saturn's rings are so active and dynamic. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average: 2-10x is possible. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like 'straw' that can explain the halo structure and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; Surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km); We propose 'straw', as observed ny Cassini cameras. Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing. Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn's rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. This confirms the triple architecture of ring particles: a broad size distribution of particles; these aggregate into temporary rubble piles; coated by a regolith of dust. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from
Black Hole Hair Removal: Non-linear Analysis
Jatkar, Dileep P; Srivastava, Yogesh K
2009-01-01
BMPV black holes in flat transverse space and in Taub-NUT space have identical near horizon geometries but different microscopic degeneracies. It has been proposed that this difference can be accounted for by different contribution to the degeneracies of these black holes from hair modes, -- degrees of freedom living outside the horizon. In this paper we explicitly construct the hair modes of these two black holes as finite bosonic and fermionic deformations of the black hole solution satisfying the full non-linear equations of motion of supergravity and preserving the supersymmetry of the original solutions. Special care is taken to ensure that these solutions do not have any curvature singularity at the future horizon when viewed as the full ten dimensional geometry. We show that after removing the contribution due to the hair degrees of freedom from the microscopic partition function, the partition functions of the two black holes agree.
Black hole hair removal: non-linear analysis
Jatkar, Dileep P.; Sen, Ashoke; Srivastava, Yogesh K.
2010-02-01
BMPV black holes in flat transverse space and in Taub-NUT space have identical near horizon geometries but different microscopic degeneracies. It has been proposed that this difference can be accounted for by different contribution to the degeneracies of these black holes from hair modes, — degrees of freedom living outside the horizon. In this paper we explicitly construct the hair modes of these two black holes as finite bosonic and fermionic deformations of the black hole solution satisfying the full non-linear equations of motion of supergravity and preserving the supersymmetry of the original solutions. Special care is taken to ensure that these solutions do not have any curvature singularity at the future horizon when viewed as the full ten dimensional geometry. We show that after removing the contribution due to the hair degrees of freedom from the microscopic partition function, the partition functions of the two black holes agree.
Chaotic Discrimination and Non-Linear Dynamics
Directory of Open Access Journals (Sweden)
Partha Gangopadhyay
2005-01-01
Full Text Available This study examines a particular form of price discrimination, known as chaotic discrimination, which has the following features: sellers quote a common price but, in reality, they engage in secret and apparently unsystematic price discounts. It is widely held that such forms of price discrimination are seriously inconsistent with profit maximization by sellers.. However, there is no theoretical salience to support this kind of price discrimination. By straining the logic of non-linear dynamics this study explains why such secret discounts are chaotic in the sense that sellers fail to adopt profit-maximising price discounts. A model is developed to argue that such forms of discrimination may derive from the regions of instability of a dynamic model of price discounts.
Optimal non-linear health insurance.
Blomqvist, A
1997-06-01
Most theoretical and empirical work on efficient health insurance has been based on models with linear insurance schedules (a constant co-insurance parameter). In this paper, dynamic optimization techniques are used to analyse the properties of optimal non-linear insurance schedules in a model similar to one originally considered by Spence and Zeckhauser (American Economic Review, 1971, 61, 380-387) and reminiscent of those that have been used in the literature on optimal income taxation. The results of a preliminary numerical example suggest that the welfare losses from the implicit subsidy to employer-financed health insurance under US tax law may be a good deal smaller than previously estimated using linear models.
Risks of non-linear climate change
Energy Technology Data Exchange (ETDEWEB)
Van Ham, J.; Van Beers, R.J.; Builtjes, P.J.H.; Koennen, G.P.; Oerlemans, J.; Roemer, M.G.M. [TNO-SCMO, Delft (Netherlands)
1995-12-31
Climate forcing as a result of increased concentrations of greenhouse gases has been primarily addressed as a problem of a possibly warmer climate. So far, such change has been obscured in observations, possibly as a result of natural climate variability and masking by aerosols. Consequently, projections of the effect of climate forcing have to be based on modelling, more specifically by applying Global Circulation Models GCMs. These GCMs do not cover all possible feedbacks; neither do they address all specific possible effects of climate forcing. The investigation reviews possible non-linear climate change which does not fall within the coverage of present GCMs. The review includes the potential relevance of changes in biogeochemical cycles, aerosol and cloud feedback, albedo instability, ice-flow instability, changes in the thermohaline circulation and changes resulting from stratospheric cooling. It is noted that these changes may have different time horizons. Three from the investigated issues provide indications for a possible non-linear change. On the decadal scale stratospheric cooling, which is the result of the enhanced greenhouse effect, in combination with a depleted ozone layer, could provide a positive feedback to further ozone depletion, in particular in the Arctic. Decreasing albedo on the Greenland ice sheet may enhance the runoff from this ice sheet significantly in case of warming on a timescale of a few centuries. Changes in ocean circulation in the North Atlantic could seasonally more than compensate a global warming of 3C in North-West Europe on a timescale of centuries to a millennium. 263 refs.
Non-linear optical titanyl arsenates: Crystal growth and properties
Nordborg, Jenni Eva Louise
Crystals are appreciated not only for their appearance, but also for their unique physical properties which are utilized by the photonic industry in appliances that we come across every day. An important part of enabling the technical use of optical devices is the manufacture of crystals. This dissertation deals with a specific group of materials called the potassium titanyl phosphate (KIP) family, known for their non-linear optical and ferroelectric properties. The isomorphs vary in their linear optical and dielectric properties, which can be tuned to optimize device performance by forming solid solutions of the different materials. Titanyl arsenates have a wide range of near-infrared transmission which makes them useful for tunable infrared lasers. The isomorphs examined in the present work were primarily RbTiOASO4 (RTA) and CsTiOAsO4 (CTA) together with the mixtures RbxCs 1-xTiOAsO4 (RCTA). Large-scale crystals were grown by top seeding solution growth utilizing a three-zone furnace with excellent temperature control. Sufficiently slow cooling and constant upward lifting produced crystals with large volumes useable for technical applications. Optical quality RTA crystals up to 10 x 12 x 20 mm were grown. The greater difficulty in obtaining good crystals of CTA led to the use of mixed RCTA materials. The mixing of rubidium and cesium in RCTA is more favorable to crystal growth than the single components in pure RTA and CTA. Mixed crystals are rubidium-enriched and contain only 20-30% of the cesium concentration in the flux. The cesium atoms show a preference for the larger cation site. The network structure is very little affected by the cation substitution; consequently, the non-linear optical properties of the Rb-rich isomorphic mixtures of RTA and CTA can be expected to remain intact. Crystallographic methods utilizing conventional X-ray tubes, synchrotron radiation and neutron diffraction have been employed to investigate the properties of the atomic
Aguareles, M.
2014-06-01
In this paper we consider an oscillatory medium whose dynamics are modeled by the complex Ginzburg-Landau equation. In particular, we focus on n-armed spiral wave solutions of the complex Ginzburg-Landau equation in a disk of radius d with homogeneous Neumann boundary conditions. It is well-known that such solutions exist for small enough values of the twist parameter q and large enough values of d. We investigate the effect of boundaries on the rotational frequency of the spirals, which is an unknown of the problem uniquely determined by the parameters d and q. We show that there is a threshold in the parameter space where the effect of the boundary on the rotational frequency switches from being algebraic to exponentially weak. We use the method of matched asymptotic expansions to obtain explicit expressions for the asymptotic wavenumber as a function of the twist parameter and the domain size for small values of q. © 2014 Elsevier B.V. All rights reserved.
MCMC for non-linear state space models using ensembles of latent sequences
2013-01-01
Non-linear state space models are a widely-used class of models for biological, economic, and physical processes. Fitting these models to observed data is a difficult inference problem that has no straightforward solution. We take a Bayesian approach to the inference of unknown parameters of a non-linear state model; this, in turn, requires the availability of efficient Markov Chain Monte Carlo (MCMC) sampling methods for the latent (hidden) variables and model parameters. Using the ensemble ...
Institute of Scientific and Technical Information of China (English)
郝世峰; 楼茂园; 杨诗芳; 李超; 孔照林; 裘薇
2015-01-01
To solve atmospheric primitive equations, the finite difference approach would result in numerous problems, com-pared to the differential equations. Taking the semi-Lagrange model as an example, there exist two diﬃcult prob-lems——the particle trajectory computation and the solutions of the Helmholtz equations. In this study, based on the substitution of atmosphere pressure, the atmospheric primitive equations are linearized within an integral time step, which are broadly seen as ordinary differential equations and can be derived as semi-analytical solutions (SASs). The variables of SASs are continuous functions of time and discretized in a special direction, so the gradient and divergence terms are solved by the difference method. Since the numerical solution of the SASs can be calculated via a highly pre-cise numerical computational method of exponential matrix——the precise integration method, the numerical solution of SASs at any time in the future can be obtained via step-by-step integration procedure. For the SAS methodology, the pressure, as well as the wind vector and displacement, can be obtained without solving the Helmholtz formulations. Compared to the extrapolated method, the SAS is more reasonable as the displacements of the particle are solved via time integration. In order to test the validity of the algorithms, the SAS model is constructed and the same experi-ment of a non-linear density current as reported by Straka in 1993 is implemented, which contains non-linear dynamics, transient features and fine-scale structures of the fluid flow. The results of the experiment with 50 m spatial resolution show that the SAS model can capture the characters of generation and development process of the Kelvin-Helmholtz shear instability vortex; the structures of the perturbation potential temperature field are very close to the benchmark solutions given by Straka, as well as the structures of the simulated atmosphere pressure and wind field. To further
Directory of Open Access Journals (Sweden)
Bloom Clifford O.
1996-01-01
Full Text Available The asymptotic behavior as λ → ∞ of the function U ( x , λ that satisfies the reduced wave equation L λ [ U ] = ∇ ⋅ ( E ( x ∇ U + λ 2 N 2 ( x U = 0 on an infinite 3-dimensional region, a Dirichlet condition on ∂ V , and an outgoing radiation condition is investigated. A function U N ( x , λ is constructed that is a global approximate solution as λ → ∞ of the problem satisfied by U ( x , λ . An estimate for W N ( x , λ = U ( x , λ − U N ( x , λ on V is obtained, which implies that U N ( x , λ is a uniform asymptotic approximation of U ( x , λ as λ → ∞ , with an error that tends to zero as rapidly as λ − N ( N = 1 , 2 , 3 , ... . This is done by applying a priori estimates of the function W N ( x , λ in terms of its boundary values, and the L 2 norm of r L λ [ W N ( x , λ ] on V . It is assumed that E ( x , N ( x , ∂ V and the boundary data are smooth, that E ( x − I and N ( x − 1 tend to zero algebraically fast as r → ∞ , and finally that E ( x and N ( x are slowly varying; ∂ V may be finite or infinite. The solution U ( x , λ can be interpreted as a scalar potential of a high frequency acoustic or electromagnetic field radiating from the boundary of an impenetrable object of general shape. The energy of the field propagates through an inhomogeneous, anisotropic medium; the rays along which it propagates may form caustics. The approximate solution (potential derived in this paper is defined on and in a neighborhood of any such caustic, and can be used to connect local “geometrical optics” type approximate solutions that hold on caustic free subsets of V .The result of this paper generalizes previous work of Bloom and Kazarinoff [C. O. BLOOM and N. D. KAZARINOFF, Short Wave Radiation Problems in Inhomogeneous Media: Asymptotic Solutions, SPRINGER VERLAG, NEW YORK, NY, 1976].
Application of non-linear discretetime feedback regulators with assignable closed-loop dynamics
Directory of Open Access Journals (Sweden)
Dubljević Stevan
2003-01-01
Full Text Available In the present work the application of a new approach is demonstrated to a discrete-time state feedback regulator synthesis with feedback linearization and pole-placement for non-linear discrete-time systems. Under the simultaneous implementation of a non-linear coordinate transformation and a non-linear state feedback law computed through the solution of a system of non-linear functional equations, both the feedback linearization and pole-placement design objectives were accomplished. The non-linear state feedback regulator synthesis method was applied to a continuous stirred tank reactor (CSTR under non-isothermal operating conditions that exhibits steady-state multiplicity. The control objective was to regulate the reactor at the middle unstable steady state by manipulating the rate of input heat in the reactor. Simulation studies were performed to evaluate the performance of the proposed non-linear state feedback regulator, as it was shown a non-linear state feedback regulator clearly outperformed a standard linear one, especially in the presence of adverse disturbance under which linear regulation at the unstable steady state was not feasible.
Kazinski, P. O.; Shipulya, M. A.
2011-06-01
We present a study of planar physical solutions to the Lorentz-Dirac equation in a constant electromagnetic field. In this case, we reduced the Lorentz-Dirac equation to one second-order differential equation. We obtained the asymptotics of physical solutions to this equation at large proper times. It turns out that, in a crossed constant uniform electromagnetic field with vanishing invariants, a charged particle enters a universal regime at large times. We found that the ratios of momentum components that tend to constants are determined only by the external field. This effect is essentially due to a radiation reaction. There is no such effect for the Lorentz equation in this field.
Kazinski, P O
2010-01-01
We present a study of planar physical solutions to the Lorentz-Dirac equation in a constant electromagnetic field. In this case, we reduced the Lorentz-Dirac equation to the one second order differential equation. We found the asymptotics of physical solutions to this equation at large proper times. It turns out that, in the crossed constant uniform electromagnetic field with vanishing invariants, a charged particle goes to a universal regime at large times. We found the ratio of momentum components which tends to a constant determined only by the external field. This effect is essentially due to a radiation reaction. There is no such an effect for the Lorentz equation in this field.
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
We determine the asymptotic order of entropy number and optimal non - linear approximations of anisotropic periodic Besov class of Brpθ(Td) (1≤p≤∞, 1≤θ≤∞ ) by manifolds of finite pseudo-dimension in the metric Lq (Td), 1≤ q≤∞, where Td is the d-dimensional torus.
Application of homotopy-perturbation to non-linear partial differential equations
Energy Technology Data Exchange (ETDEWEB)
Cveticanin, L. [Faculty of Technical Sciences, 21000 Novi Sad, Trg D. Obradovica 6 (Serbia)], E-mail: cveticanin@uns.ns.ac.yu
2009-04-15
In this paper He's homotopy perturbation method has been adopted for solving non-linear partial differential equations. An approximate solution of the differential equation which describes the longitudinal vibration of a beam is obtained. The solution is compared with that found using the variational iteration method introduced by He. The difference between the two solutions is negligible.
Asymptotic solutions of forced nonlinear second order differential equations and their extensions
Directory of Open Access Journals (Sweden)
Angelo B. Mingarelli
2007-03-01
Full Text Available Using a modified version of Schauder's fixed point theorem, measures of non-compactness and classical techniques, we provide new general results on the asymptotic behavior and the non-oscillation of second order scalar nonlinear differential equations on a half-axis. In addition, we extend the methods and present new similar results for integral equations and Volterra-Stieltjes integral equations, a framework whose benefits include the unification of second order difference and differential equations. In so doing, we enlarge the class of nonlinearities and in some cases remove the distinction between superlinear, sublinear, and linear differential equations that is normally found in the literature. An update of papers, past and present, in the theory of Volterra-Stieltjes integral equations is also presented.
Asymptotic behavior of solutions to nonlinear parabolic equation with nonlinear boundary conditions
Directory of Open Access Journals (Sweden)
Diabate Nabongo
2008-01-01
Full Text Available We show that solutions of a nonlinear parabolic equation of second order with nonlinear boundary conditions approach zero as t approaches infinity. Also, under additional assumptions, the solutions behave as a function determined here.
Dobbs, David E.
2010-01-01
This note develops and implements the theory of polynomial asymptotes to (graphs of) rational functions, as a generalization of the classical topics of horizontal asymptotes and oblique/slant asymptotes. Applications are given to hyperbolic asymptotes. Prerequisites include the division algorithm for polynomials with coefficients in the field of…
Non-linear dynamics of a spur gear pair
Kahraman, A.; Singh, R.
1990-10-01
Non-linear frequency response characteristics of a spur gear pair with backlash are examined in this paper for both external and internal excitations. The internal excitation is of importance from the high frequency noise and vibration control viewpoint and it represents the overall kinematic or static transmission error. Such problems may be significantly different from the rattle problems associated with external, low frequency torque excitation. Two solution methods, namely the digital simulation technique and the method of harmonic balance, have been used to develop the steady state solutions for the internal sinusoidal excitation. Difficulties associated with the determination of the multiple solutions at a given frequency in the digital simulation technique have been resolved, as one must search the entire initial conditions map. Such solutions and the transition frequencies for various impact situations are easily found by the method of harmonic balance. Further, the principle of superposition can be employed to analyze the periodic transmission error excitation and/or combined excitation problems provided that the excitation frequencies are sufficiently apart from each other. Our analytical predictions match satisfactorily with the limited experimental data available in the literature. Using the digital simulation, we have also observed that the chaotic and subharmonic resonances may exist in a gear pair depending upon the mean or design load, mean to alternating force ratio, damping and backlash. Specifically, the mean load determines the conditions for no impacts, single-sided impacts and double-sided impacts. Our results are different from the frequency response characteristics of the conventional, single-degree-of-freedom, clearance type non-linear system. Our formulation should form the basis of further analytical and experimental work in the geared rotor dynamics area.
Institute of Scientific and Technical Information of China (English)
Li Xiao-Jing
2008-01-01
This paper studies a time delay equation for sea-air oscillator model. The existence and asymptotic estimates of periodic solutions of corresponding problem are obtained by employing the technique of upper and lower solution, and by using the continuation theorem of coincidence degree theory.
Polycarbonate-Based Blends for Optical Non-linear Applications
Stanculescu, F.; Stanculescu, A.
2016-02-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.
Polycarbonate-Based Blends for Optical Non-linear Applications.
Stanculescu, F; Stanculescu, A
2016-12-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.
Energy Technology Data Exchange (ETDEWEB)
Garcia Velarde, M.
1977-07-01
Thermo convective instabilities in horizontal fluid layers are discussed with emphasis on the Rayleigh-Bernard model problem. Steady solutions and time-dependent phenomena (relaxation oscillations and transition to turbulence) are studied within the nonlinear Boussinesq-Oberbeck approximation. Homogeneous steady solutions, limit cycles, and inhomogeneous (ordered) spatial structures are also studied in simple reaction-diffusion systems. Lastly, the non-periodic attractor that appears at large Rayleigh numbers in the truncated Boussinesq-Oberbeck model of Lorenz, is constructed, and a discussion of turbulent behavior is given. (Author) 105 refs.
Non-Linear Electrohydrodynamics in Microfluidic Devices
Directory of Open Access Journals (Sweden)
Jun Zeng
2011-03-01
Full Text Available Since the inception of microfluidics, the electric force has been exploited as one of the leading mechanisms for driving and controlling the movement of the operating fluid and the charged suspensions. Electric force has an intrinsic advantage in miniaturized devices. Because the electrodes are placed over a small distance, from sub-millimeter to a few microns, a very high electric field is easy to obtain. The electric force can be highly localized as its strength rapidly decays away from the peak. This makes the electric force an ideal candidate for precise spatial control. The geometry and placement of the electrodes can be used to design electric fields of varying distributions, which can be readily realized by Micro-Electro-Mechanical Systems (MEMS fabrication methods. In this paper, we examine several electrically driven liquid handling operations. The emphasis is given to non-linear electrohydrodynamic effects. We discuss the theoretical treatment and related numerical methods. Modeling and simulations are used to unveil the associated electrohydrodynamic phenomena. The modeling based investigation is interwoven with examples of microfluidic devices to illustrate the applications.
Energy Technology Data Exchange (ETDEWEB)
Ravi Kanth, A.S.V. [Applied Mathematics Division, School of Science and Humanities, V.I.T. University, Vellore-632 014, Tamil Nadu (India)], E-mail: asvravikanth@yahoo.com; Aruna, K. [Applied Mathematics Division, School of Science and Humanities, V.I.T. University, Vellore-632 014, Tamil Nadu (India)
2008-11-17
In this Letter, we propose a reliable algorithm to develop exact and approximate solutions for the linear and non-linear systems of partial differential equations. The approach rest mainly on two-dimensional differential transform method which is one of the approximate methods. The method can easily be applied to many linear and non-linear problems and is capable of reducing the size of computational work. Exact solutions can also be achieved by the known forms of the series solutions. Several illustrative examples are given to demonstrate the effectiveness of the present method.
Traytak, Sergey D
2014-06-14
The anisotropic 3D equation describing the pointlike particles diffusion in slender impermeable tubes of revolution with cross section smoothly depending on the longitudinal coordinate is the object of our study. We use singular perturbations approach to find the rigorous asymptotic expression for the local particles concentration as an expansion in the ratio of the characteristic transversal and longitudinal diffusion relaxation times. The corresponding leading-term approximation is a generalization of well-known Fick-Jacobs approximation. This result allowed us to delineate the conditions on temporal and spatial scales under which the Fick-Jacobs approximation is valid. A striking analogy between solution of our problem and the method of inner-outer expansions for low Knudsen numbers gas kinetic theory is established. With the aid of this analogy we clarify the physical and mathematical meaning of the obtained results.
Energy Technology Data Exchange (ETDEWEB)
Traytak, Sergey D., E-mail: sergtray@mail.ru [Centre de Biophysique Moléculaire, CNRS-UPR4301, Rue C. Sadron, 45071 Orléans (France); Le STUDIUM (Loire Valley Institute for Advanced Studies), 3D av. de la Recherche Scientifique, 45071 Orléans (France); Semenov Institute of Chemical Physics RAS, 4 Kosygina St., 117977 Moscow (Russian Federation)
2014-06-14
The anisotropic 3D equation describing the pointlike particles diffusion in slender impermeable tubes of revolution with cross section smoothly depending on the longitudinal coordinate is the object of our study. We use singular perturbations approach to find the rigorous asymptotic expression for the local particles concentration as an expansion in the ratio of the characteristic transversal and longitudinal diffusion relaxation times. The corresponding leading-term approximation is a generalization of well-known Fick-Jacobs approximation. This result allowed us to delineate the conditions on temporal and spatial scales under which the Fick-Jacobs approximation is valid. A striking analogy between solution of our problem and the method of inner-outer expansions for low Knudsen numbers gas kinetic theory is established. With the aid of this analogy we clarify the physical and mathematical meaning of the obtained results.
On de Sitter solutions in asymptotically safe $f(R)$ theories
Falls, Kevin; Nikolakopoulos, Kostas; Rahmede, Christoph
2016-01-01
The availability of scaling solutions in renormalisation group improved versions of cosmology are investigated in the high-energy limit. We adopt $f(R)$-type models of quantum gravity which display an interacting ultraviolet fixed point at shortest distances. Expanding the gravitational fixed point action to very high order in the curvature scalar, we detect a convergence-limiting singularity in the complex field plane. Resummation techniques including Pad\\'e approximants as well as infinite order approximations of the effective action are used to maximise the domain of validity. We find that the theory displays near de Sitter solutions as well as an anti-de Sitter solution in the UV whereas real de Sitter solutions, for small curvature, appear to be absent. The significance of our results for inflation, and implications for more general models of quantum gravity are discussed.
Phase Structure of the Non-Linear σ-MODEL with Oscillator Representation Method
Mishchenko, Yuriy; Ji, Chueng-R.
2004-03-01
Non-Linear σ-model plays an important role in many areas of theoretical physics. Been initially uintended as a simple model for chiral symmetry breaking, this model exhibits such nontrivial effects as spontaneous symmetry breaking, asymptotic freedom and sometimes is considered as an effective field theory for QCD. Besides, non-linear σ-model can be related to the strong-coupling limit of O(N) ϕ4-theory, continuous limit of N-dim. system of quantum spins, fermion gas and many others and takes important place in undertanding of how symmetries are realized in quantum field theories. Because of this variety of connections, theoretical study of the critical properties of σ-model is interesting and important. Oscillator representation method is a theoretical tool for studying the phase structure of simple QFT models. It is formulated in the framework of the canonical quantization and is based on the view of the unitary non-equivalent representations as possible phases of a QFT model. Successfull application of the ORM to ϕ4 and ϕ6 theories in 1+1 and 2+1 dimensions motivates its study in more complicated models such as non-linear σ-model. In our talk we introduce ORM, establish its connections with variational approach in QFT. We then present results of ORM in non-linear σ-model and try to interprete them from the variational point of view. Finally, we point out possible directions for further research in this area.
Directory of Open Access Journals (Sweden)
Zhoujin Cui
2007-01-01
Full Text Available This paper investigates the local existence of the nonnegative solution and the finite time blow-up of solutions and boundary layer profiles of diffusion equations with nonlocal reaction sources; we also study the global existence and that the rate of blow-up is uniform in all compact subsets of the domain, the blow-up rate of |u(t|∞ is precisely determined.
Non-linear scalable TFETI domain decomposition based contact algorithm
Dobiáš, J.; Pták, S.; Dostál, Z.; Vondrák, V.; Kozubek, T.
2010-06-01
The paper is concerned with the application of our original variant of the Finite Element Tearing and Interconnecting (FETI) domain decomposition method, called the Total FETI (TFETI), to solve solid mechanics problems exhibiting geometric, material, and contact non-linearities. The TFETI enforces the prescribed displacements by the Lagrange multipliers, so that all the subdomains are 'floating', the kernels of their stiffness matrices are known a priori, and the projector to the natural coarse grid is more effective. The basic theory and relationships of both FETI and TFETI are briefly reviewed and a new version of solution algorithm is presented. It is shown that application of TFETI methodology to the contact problems converts the original problem to the strictly convex quadratic programming problem with bound and equality constraints, so that the effective, in a sense optimal algorithms is to be applied. Numerical experiments show that the method exhibits both numerical and parallel scalabilities.
Classical non-linear wave dynamics and gluon spin operator in SU(2) QCD
Kim, Youngman; Tsukioka, Takuya; Zhang, P M
2016-01-01
We study various types of classical non-linear wave solutions with mass scale parameters in a pure SU(2) quantum chromodynamics. It has been shown that there are two gauge non-equivalent solutions for non-linear plane waves with a mass parameter. One of them corresponds to embedding \\lambda \\phi^4 theory into the SU(2) Yang-Mills theory, another represents essentially Yang-Mills type solution. We describe a wide class of stationary and non-stationary wave solutions among which kink like solitons and non-linear wave packet solutions have been found. A regular stationary monopole like solution with a finite energy density is proposed. The solution can be treated as a Wu-Yang monopole dressed in off-diagonal gluons. All non-linear wave solutions have common features: presence of a mass scale parameter, non-vanishing projection of the color magnetic field along the propagation direction and a total spin zero. Gauge invariant and Lorentz frame independent definitions of the gluon spin operator are considered.
Institute of Scientific and Technical Information of China (English)
张海丘; 高广运; 雷丹
2015-01-01
Most analytical solutions of sand and wick drains are combined with onedimensional consolidationtheory.The soil is considered as a linear poroelastic solid.But researches show that,under the isotropicconsolidation,the average effective stress and permeability coefficient both have semilogarithmic relationships withthe void ratio.At the same time,experiments show that the permeability around PVD in smear zone is distributed inparabolic form.Therefore,to consider the effects of these three nonlinear relationships,the analytical solution tothis problem is derived in this paper.Correctness of this analytical solution is verified through degradation method.In addition,effects of parameters of Cc /Ck and κon consolidation are analyzed.The results show that the rate ofconsolidation under Cc /Ck1 ;and the rate of consolidation decreases with the growthof κ.%大部分砂井及排水板固结解析解理论结合了太沙基一维固结理论，把土体考虑成线弹性问题，而研究发现，软土在等向固结条件下平均有效应力和水平渗透系数与孔隙比成半对数线性关系。同时，实验表明，在塑料排水板周围的涂抹区中水平渗透系数成抛物线状分布。因此，为了充分考虑这些非线性的影响，推导出了该问题的解析解，并通过退化验证了该解析解的正确性。同时，还对参数 Cc／Ck和κ对固结速率的影响进行了分析，结果表明：当 Cc／Ck＜1时，固结速率较快；当Cc／Ck＞1时，固结速率较慢；参数κ增加，固结速率逐渐变小。
Asymptotic analysis of ultra-relativistic charge
Burton, D A; Tucker, R W; Burton, David A.; Gratus, Jonathan; Tucker, Robin W.
2006-01-01
This article offers a new approach for analysing the dynamic behaviour of distributions of charged particles in an electromagnetic field. After discussing the limitations inherent in the Lorentz-Dirac equation for a single point particle a simple model is proposed for a charged continuum interacting self-consistently with the Maxwell field in vacuo. The model is developed using intrinsic tensor field theory and exploits to the full the symmetry and light-cone structure of Minkowski spacetime. This permits the construction of a regular stress-energy tensor whose vanishing divergence determines a system of non-linear partial differential equations for the velocity and self-fields of accelerated charge. Within this covariant framework a particular perturbation scheme is motivated by an exact class of solutions to this system describing the evolution of a charged fluid under the combined effects of both self and external electromagnetic fields. The scheme yields an asymptotic approximation in terms of inhomogeneo...
Energy Technology Data Exchange (ETDEWEB)
Khanzhin, V.G.; Nikulin, S.A. [Moscow State Inst. of Steel and Alloys (Russian Federation)
2005-06-01
A study of stress-corrosion cracking (SCC) of copper in 0.1M NaNO{sub 2} aqueous solution is presented. The fracture kinetics was monitored by measuring the acoustic emission (AE) signals. Macro- and micro-fractography analysis, using scanning electron microscopy (SEM), was employed to investigate the fracture mechanisms. Estimates of stress intensity factor, KI, and J-integral were derived in order to assess the resistance of copper to stress corrosion cracking. Two kinds of SCC tests under continuous circulation of the corrosive solution were employed in the present study: 1. Constant extension rate (2x10{sup -6}/s) tests on pre-cracked, middle tension (MT) panel specimens. 2. Tests on pre-cracked, compact tension (CT) specimens at a fixed (by a fixing bolt) opening of the crack walls ({delta} = 0.3 mm, K{sub i} = 27 MPax{radical}m). The time base for these tests was about two months. After the completion of the SCC test, the CT specimen was additionally tested, under a constant-rate (0.02 mm/s) off-center extension. In the both kinds of tests, the SCC fracture kinetics is found to exhibit two typical stages: Stage 1: SCC initiation stage (after a certain incubation period, T{sub i}, measured to be T{sub i} {approx_equal} 3-4 hours for MT specimens under constant extension, the corresponding stress was {sigma} {approx_equal} 40-70 MPa, and T{sub i} {approx_equal} 200 hours for CT specimens under a fixed crack wall opening). Stage 2: Active fracture process (SCC macro-fracture) distinguished by strong AE pulses (which are registered after time T{sub 2} {approx_equal} 8 hours for MT specimens and T{sub 2} {approx_equal} 800 hours for CT specimens). Fractography analysis has shown that the zone of SCC fracture in MT specimens extends to approximately 1,500 {mu}m. A 400-700 {mu}m deep zone of brittle transgranular fracture, which included small areas showing characteristic SCC 'striations', was observed adjacent to the fatigue pre-crack area. At higher
ASYMPTOTIC PROPERTY OF THE TIME-DEPENDENT SOLUTION OF A RELIABILITY MODEL
Institute of Scientific and Technical Information of China (English)
Geni Gupur; GUO Baozhu
2005-01-01
We discuss a transfer line consisting of a reliable machine, an unreliable machine and a storage buffer. This transfer line can be described by a group of partial differential equations with integral boundary conditions. First we show that the operator corresponding to these equations generates a positive contraction C0-semigroup T(t), and prove that T(t) is a quasi-compact operator. Next we verify that 0 is an eigenvalue of this operator and its adjoint operator with geometric multiplicity one. Last, by using the above results we obtain that the time-dependent solution of these equations converges strongly to their steady-state solution.
Cosmic neutrinos: dispersive and non-linear
Inman, Derek
2016-01-01
We present a description of cosmic neutrinos as a dispersive fluid. In this approach, the neutrino phase space is reduced to density and velocity fields alongside a scale-dependent sound speed. This sound speed depends on redshift, the initial neutrino phase space density and the cold dark matter gravitational potential. The latter is a new coupling between neutrinos and large scale structure not described by previous fluid approaches. We compute the sound speed in linear theory and find that it asymptotes to constants at small and large scales regardless of the gravitational potential. By comparing with neutrino N-body simulations, we measure the small scale sound speed and find it to be lower than linear theory predictions. This allows for an explanation of the discrepency between N-body and linear response predictions for the neutrino power spectrum: neutrinos are still driven predominantly by the cold dark matter, but the sound speed on small scales is not stable to perturbations and decreases. Finally, w...
Non-Linear Unit Root Properties of Crude Oil Production
Svetlana Maslyuk; Russell Smyth
2007-01-01
While there is good reason to expect crude oil production to be non-linear, previous studies that have examined the stochastic properties of crude oil production have assumed that crude oil production follows a linear process. If crude oil production is a non-linear process, conventional unit root tests, which assume linear and systematic adjustment, could interpret departure from linearity as permanent stochastic disturbances. The objective of this paper is to test for non-linearities and un...
ON THE ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF CERTAIN FIFTH-ORDER ORDINARY DIFFERENTIAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
Cemil Tunc
2003-01-01
The sufficient conditions are given for all solutions of certain non-autonomous differential equation to be uniformly bounded and convergence to zero as t →∞ . The result given includes and improves that result obtained by Abou-El-Ela & Sadek.
Asymptotically simple solutions of the vacuum Einstein equations in even dimensions
Anderson, M T; Anderson, Michael T.; Chrusciel, Piotr T.
2004-01-01
We show that a set of conformally invariant equations derived from the Fefferman-Graham tensor can be used to construct global solutions of the vacuum Einstein equations, in all even dimensions. This gives, in particular, a new, simple proof of Friedrich's result on the future hyperboloidal stability of Minkowski space-time, and extends its validity to even dimensions.
On the asymptotic behavior of solutions of certain third-order nonlinear differential equations
Directory of Open Access Journals (Sweden)
Cemil Tunç
2005-01-01
Full Text Available We establish sufficient conditions under which all solutions of the third-order nonlinear differential equation x ⃛+ψ(x,x˙,x¨x¨+f(x,x˙=p(t,x,x˙,x¨ are bounded and converge to zero as t→∞.
Said-Houari, Belkacem
2012-03-01
In this paper, we consider a viscoelastic wave equation with an absorbing term and space-time dependent damping term. Based on the weighted energy method, and by assuming that the kernel decaying exponentially, we obtain the L2 decay rates of the solutions. More precisely, we show that the decay rates are the same as those obtained in Lin et al. (2010) [15] for the semilinear wave equation with absorption term. © 2011 Elsevier Inc.
Tsuboi, Zengo
2012-01-01
We consider a class of asymptotic representations of the Borel subalgebra of the quantum affine superalgebra U_q(gl(M|N)^). This is characterized by Drinfeld rational fractions. In particular, we consider contractions of U_q(gl(M|N))in the FRT formulation and obtain explicit solutions of the graded Yang-Baxter equation in terms of q-oscillator superalgebras. These solutions correspond to L-operators for Baxter Q operators. We define model independent universal Q-operators as the supertrace of the universal R-matrix and write universal T-operators in terms of these Q-operators based on shift operators on the supercharacters. These include our previous work on U_q(sl(2|1)^) case [arXiv:0805.4274] in part, and also give a cue for operator realization of our Wronskian-like formulas on T-and Q-functions in [arXiv:0906.2039, arXiv:1109.5524].
Directory of Open Access Journals (Sweden)
Lijuan Zhang
2014-01-01
Full Text Available An iterative algorithm for finding a common element of the set of common fixed points of a finite family of asymptotically nonextensive nonself mappings and the set of solutions for equilibrium problems is discussed. A strong convergence theorem of common element is established in a uniformly smooth and uniformly convex Banach space.
Institute of Scientific and Technical Information of China (English)
黄家寅
2004-01-01
By using "the method of modified two-variable ", "the method of mixing perturbation" and introducing four small parameters, the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate with linear variable thickness is studied. And the uniformly valid asymptotic solution of Nth- order for ε 1 and Mth- order for ε 2of the deflection functions and stress function are obtained.
Asymptotic Steady State Solution to a Bow Shock with an Infinite Mach Number
Yalinewich, Almog
2015-01-01
The problem of a cold gas flowing past a stationary object is considered. It is shown that at large distances from the obstacle the shock front forms a parabolic solid of revolution. The interior of the shock front is obtained by solution of the hydrodynamic equations in parabolic coordinates. The results are verified with a hydrodynamic simulation. The drag force and expected spectra are calculated for such shock, both in case of an optically thin and thick media. Finally, relations to astrophysical bow shocks and other analytic works on oblique shocks are discussed.
Non-linear model for compression tests on articular cartilage.
Grillo, Alfio; Guaily, Amr; Giverso, Chiara; Federico, Salvatore
2015-07-01
Hydrated soft tissues, such as articular cartilage, are often modeled as biphasic systems with individually incompressible solid and fluid phases, and biphasic models are employed to fit experimental data in order to determine the mechanical and hydraulic properties of the tissues. Two of the most common experimental setups are confined and unconfined compression. Analytical solutions exist for the unconfined case with the linear, isotropic, homogeneous model of articular cartilage, and for the confined case with the non-linear, isotropic, homogeneous model. The aim of this contribution is to provide an easily implementable numerical tool to determine a solution to the governing differential equations of (homogeneous and isotropic) unconfined and (inhomogeneous and isotropic) confined compression under large deformations. The large-deformation governing equations are reduced to equivalent diffusive equations, which are then solved by means of finite difference (FD) methods. The solution strategy proposed here could be used to generate benchmark tests for validating complex user-defined material models within finite element (FE) implementations, and for determining the tissue's mechanical and hydraulic properties from experimental data.
Non-linear equation: energy conservation and impact parameter dependence
Kormilitzin, Andrey
2010-01-01
In this paper we address two questions: how energy conservation affects the solution to the non-linear equation, and how impact parameter dependence influences the inclusive production. Answering the first question we solve the modified BK equation which takes into account energy conservation. In spite of the fact that we used the simplified kernel, we believe that the main result of the paper: the small ($\\leq 40%$) suppression of the inclusive productiondue to energy conservation, reflects a general feature. This result leads us to believe that the small value of the nuclear modification factor is of a non-perturbative nature. In the solution a new scale appears $Q_{fr} = Q_s \\exp(-1/(2 \\bas))$ and the production of dipoles with the size larger than $2/Q_{fr}$ is suppressed. Therefore, we can expect that the typical temperature for hadron production is about $Q_{fr}$ ($ T \\approx Q_{fr}$). The simplified equation allows us to obtain a solution to Balitsky-Kovchegov equation taking into account the impact pa...
Non-linear DSGE Models and The Central Difference Kalman Filter
DEFF Research Database (Denmark)
Andreasen, Martin Møller
solved up to third order. A Monte Carlo study shows that this QML estimator is basically unbiased and normally distributed infi…nite samples for DSGE models solved using a second order or a third order approximation. These results hold even when structural shocks are Gaussian, Laplace distributed......This paper introduces a Quasi Maximum Likelihood (QML) approach based on the Cen- tral Difference Kalman Filter (CDKF) to estimate non-linear DSGE models with potentially non-Gaussian shocks. We argue that this estimator can be expected to be consistent and asymptotically normal for DSGE models...
On form factors of the conjugated field in the non-linear Schroedinger model
Energy Technology Data Exchange (ETDEWEB)
Kozlowski, K.K.
2011-05-15
Izergin-Korepin's lattice discretization of the non-linear Schroedinger model along with Oota's inverse problem provides one with determinant representations for the form factors of the lattice discretized conjugated field operator. We prove that these form factors converge, in the zero lattice spacing limit, to those of the conjugated field operator in the continuous model. We also compute the large-volume asymptotic behavior of such form factors in the continuous model. These are in particular characterized by Fredholm determinants of operators acting on closed contours. We provide a way of defining these Fredholm determinants in the case of generic paramaters. (orig.)
Asymptotic properties of solutions of the Maxwell Klein Gordon equation with small data
Bieri, Lydia; Shahshahani, Sohrab
2014-01-01
We prove peeling estimates for the small data solutions of the Maxwell Klein Gordon equations with non-zero charge and with a non-compactly supported scalar field, in $(3+1)$ dimensions. We obtain the same decay rates as in an earlier work by Lindblad and Sterbenz, but giving a simpler proof. In particular we dispense with the fractional Morawetz estimates for the electromagnetic field, as well as certain space-time estimates. In the case that the scalar field is compactly supported we can avoid fractional Morawetz estimates for the scalar field as well. All of our estimates are carried out using the double null foliation and in a gauge invariant manner.
Algorithms for non-linear M-estimation
DEFF Research Database (Denmark)
Madsen, Kaj; Edlund, O; Ekblom, H
1997-01-01
In non-linear regression, the least squares method is most often used. Since this estimator is highly sensitive to outliers in the data, alternatives have became increasingly popular during the last decades. We present algorithms for non-linear M-estimation. A trust region approach is used, where...
Non Linear Gauge Fixing for FeynArts
Gajdosik, Thomas
2007-01-01
We review the non-linear gauge-fixing for the Standard Model, proposed by F. Boudjema and E. Chopin, and present our implementation of this non-linear gauge-fixing to the Standard Model and to the minimal supersymmetric Standard Model in FeynArts.
Identification of Non-Linear Structures using Recurrent Neural Networks
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.
Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....
Identification of Non-Linear Structures using Recurrent Neural Networks
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.
1995-01-01
Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....
Non-linear Frequency Scaling Algorithm for FMCW SAR Data
Meta, A.; Hoogeboom, P.; Ligthart, L.P.
2006-01-01
This paper presents a novel approach for processing data acquired with Frequency Modulated Continuous Wave (FMCW) dechirp-on-receive systems by using a non-linear frequency scaling algorithm. The range frequency non-linearity correction, the Doppler shift induced by the continuous motion and the ran
Non-linear wave packet dynamics of coherent states
Indian Academy of Sciences (India)
J Banerji
2001-02-01
We have compared the non-linear wave packet dynamics of coherent states of various symmetry groups and found that certain generic features of non-linear evolution are present in each case. Thus the initial coherent structures are quickly destroyed but are followed by Schrödinger cat formation and revival. We also report important differences in their evolution.
Amirkhanov, I V; Zhidkova, I E; Vasilev, S A
2000-01-01
Asymptotics of eigenfunctions and eigenvalues has been obtained for a singular perturbated relativistic analog of Schr`dinger equation. A singular convergence of asymptotic expansions of the boundary problems to degenerated problems is shown for a nonrelativistic Schr`dinger equation. The expansions obtained are in a good agreement with a numeric experiment.
Directory of Open Access Journals (Sweden)
Le Thi Phuong Ngoc
2016-01-01
Full Text Available This paper is devoted to the study of a nonlinear Carrier wave equation in an annular membrane associated with Robin-Dirichlet conditions. Existence and uniqueness of a weak solution are proved by using the linearization method for nonlinear terms combined with the Faedo-Galerkin method and the weak compact method. Furthermore, an asymptotic expansion of a weak solution of high order in a small parameter is established.
Non-linear dynamics of wind turbine wings
DEFF Research Database (Denmark)
Larsen, Jesper Winther; Nielsen, Søren R.K.
2006-01-01
by the rotation of the aerodynamic load and the curvature, as well as inertial induced non-linearities caused by the support point motion. The non-linear partial differential equations of motion in the moving frame of reference have been discretized, using the fixed base eigenmodes as a functional basis......The paper deals with the formulation of non-linear vibrations of a wind turbine wing described in a wing fixed moving coordinate system. The considered structural model is a Bernoulli-Euler beam with due consideration to axial twist. The theory includes geometrical non-linearities induced....... Important non-linear couplings between the fundamental blade mode and edgewise modes have been identified based on a resonance excitation of the wing, caused by a harmonically varying support point motion with the circular frequency omega. Assuming that the fundamental blade and edgewise eigenfrequencies...
Analytical Solutions to Non-linear Mechanical Oscillation Problems
DEFF Research Database (Denmark)
Kaliji, H. D.; Ghadimi, M.; Barari, Amin
2011-01-01
In this paper, the Max-Min Method is utilized for solving the nonlinear oscillation problems. The proposed approach is applied to three systems with complex nonlinear terms in their motion equations. By means of this method, the dynamic behavior of oscillation systems can be easily approximated u...
Non-linear dynamics of a geared rotor-bearing system with multiple clearances
Kahraman, A.; Singh, R.
1991-02-01
Non-linear frequency response characteristics of a geared rotor-bearing system are examined in this paper. A three-degree-of-freedom dynamic model is developed which includes non-linearities associated with radial clearances in the radial rolling element bearings and backlash between a spur gear pair; linear time-invariant gear meshing stiffness is assumed. The corresponding linear system problem is also solved, and predicted natural frequencies and modes match with finite element method results. The bearing non-linear stiffness function is approximated for the sake of convenience by a simple model which is identical to that used for the gear mesh. This approximate bearing model has been verified by comparing steady state frequency spectra. Applicability of both analytical and numerical solution techniques to the multi-degree-of-freedom non-linear problem is investigated. Satisfactory agreement has been found between our theory and available experimental data. Several key issues such as non-linear modal interactions and differences between internal static transmission error excitation and external torque excitation are discussed. Additionally, parametric studies are performed to understand the effect of system parameters such as bearing stiffness to gear mesh stiffness ratio, alternating to mean force ratio and radial bearing preload to mean force ratio on the non-linear dynamic behavior. A criterion used to classify the steady state solutions is presented, and the conditions for chaotic, quasi-periodic and subharmonic steady state solutions are determined. Two typical routes to chaos observed in this geared system are also identified.
Non-linear vorticity upsurge in Burgers flow
Lam, F
2016-01-01
We demonstrate that numerical solutions of Burgers' equation can be obtained by a scale-totality algorithm for fluids of small viscosity (down to one billionth). Two sets of initial data, modelling simple shears and wall boundary layers, are chosen for our computations. Most of the solutions are carried out well into the fully turbulent regime over finely-resolved scales in space and in time. It is found that an abrupt spatio-temporal concentration in shear constitutes an essential part during the flow evolution. The vorticity surge has been instigated by the non-linearity complying with instantaneous enstrophy production while ad hoc disturbances play no role in the process. In particular, the present method predicts the precipitous vorticity re-distribution and accumulation, predominantly over localised regions of minute dimension. The growth rate depends on viscosity and is a strong function of initial data. Nevertheless, the long-time energy decay is history-independent and is inversely proportional to ti...
Asymptotic solutions for the case of nearly symmetric gravitational lens systems
Wertz, O.; Pelgrims, V.; Surdej, J.
2012-08-01
Gravitational lensing provides a powerful tool to determine the Hubble parameter H0 from the measurement of the time delay Δt between two lensed images of a background variable source. Nevertheless, knowledge of the deflector mass distribution constitutes a hurdle. We propose in the present work interesting solutions for the case of nearly symmetric gravitational lens systems. For the case of a small misalignment between the source, the deflector and the observer, we first consider power-law (ɛ) axially symmetric models for which we derive an analytical relation between the amplification ratio and source position which is independent of the power-law slope ɛ. According to this relation, we deduce an expression for H0 also irrespective of the value ɛ. Secondly, we consider the power-law axially symmetric lens models with an external large-scale gravitational field, the shear γ, resulting in the so-called ɛ-γ models, for which we deduce simple first-order equations linking the model parameters and the lensed image positions, the latter being observable quantities. We also deduce simple relations between H0 and observables quantities only. From these equations, we may estimate the value of the Hubble parameter in a robust way. Nevertheless, comparison between the ɛ-γ and singular isothermal ellipsoid (SIE) models leads to the conclusion that these models remain most often distinct. Therefore, even for the case of a small misalignment, use of the first-order equations and precise astrometric measurements of the positions of the lensed images with respect to the centre of the deflector enables one to discriminate between these two families of models. Finally, we confront the models with numerical simulations to evaluate the intrinsic error of the first-order expressions used when deriving the model parameters under the assumption of a quasi-alignment between the source, the deflector and the observer. From these same simulations, we estimate for the case of the
Lipschitz Operators and the Solvability of Non-linear Operator Equations
Institute of Scientific and Technical Information of China (English)
Huai Xin CAO; Zong Ben XU
2004-01-01
Let U and V be Banach spaces, L and N be non-linear operators from U into V. L is some basic properties of Lipschitz operators and then discuss the unique solvability, exact solvability,approximate solvability of the operator equations Lx = y and Lx + Nx = y. Under some conditions we prove the equivalence of these solvabilities. We also give an estimation for the relative-errors of the solutions of these two systems and an application of our method to a non-linear control system.
Quantum Local Symmetry of the D-Dimensional Non-Linear Sigma Model: A Functional Approach
Directory of Open Access Journals (Sweden)
Andrea Quadri
2014-04-01
Full Text Available We summarize recent progress on the symmetric subtraction of the Non-Linear Sigma Model in D dimensions, based on the validity of a certain Local Functional Equation (LFE encoding the invariance of the SU(2 Haar measure under local left transformations. The deformation of the classical non-linearly realized symmetry at the quantum level is analyzed by cohomological tools. It is shown that all the divergences of the one-particle irreducible (1-PI amplitudes (both on-shell and off-shell can be classified according to the solutions of the LFE. Applications to the non-linearly realized Yang-Mills theory and to the electroweak theory, which is directly relevant to the model-independent analysis of LHC data, are briefly addressed.
Energy Technology Data Exchange (ETDEWEB)
Russell, Steven J. [Los Alamos National Laboratory; Carlsten, Bruce E. [Los Alamos National Laboratory
2012-06-26
We will quickly go through the history of the non-linear transmission lines (NLTLs). We will describe how they work, how they are modeled and how they are designed. Note that the field of high power, NLTL microwave sources is still under development, so this is just a snap shot of their current state. Topics discussed are: (1) Introduction to solitons and the KdV equation; (2) The lumped element non-linear transmission line; (3) Solution of the KdV equation; (4) Non-linear transmission lines at microwave frequencies; (5) Numerical methods for NLTL analysis; (6) Unipolar versus bipolar input; (7) High power NLTL pioneers; (8) Resistive versus reactive load; (9) Non-lineaer dielectrics; and (10) Effect of losses.
Reproducing Kernel Particle Method for Non-Linear Fracture Analysis
Institute of Scientific and Technical Information of China (English)
Cao Zhongqing; Zhou Benkuan; Chen Dapeng
2006-01-01
To study the non-linear fracture, a non-linear constitutive model for piezoelectric ceramics was proposed, in which the polarization switching and saturation were taken into account. Based on the model, the non-linear fracture analysis was implemented using reproducing kernel particle method (RKPM). Using local J-integral as a fracture criterion, a relation curve of fracture loads against electric fields was obtained. Qualitatively, the curve is in agreement with the experimental observations reported in literature. The reproducing equation, the shape function of RKPM, and the transformation method to impose essential boundary conditions for meshless methods were also introduced. The computation was implemented using object-oriented programming method.
Modeling and Stability Analysis for Non-linear Network Control System Based on T-S Fuzzy Model
Institute of Scientific and Technical Information of China (English)
ZHANG Hong; FANG Huajing
2007-01-01
Based on the T-S fuzzy model, this paper presents a new model of non-linear network control system with stochastic transfer delay. Sufficient criterion is proposed to guarantee globally asymptotically stability of this two-levels T-S fuzzy model. Also a T-S fuzzy observer of NCS is designed base on this two-levels T-S fuzzy model. All these results present a new approach for networked control system analysis and design.
Sharp Asymptotics for Einstein-{λ}-Dust Flows
Friedrich, Helmut
2017-03-01
We consider the Einstein-dust equations with positive cosmological constant {λ} on manifolds with time slices diffeomorphic to an orientable, compact 3-manifold {S}. It is shown that the set of standard Cauchy data for the Einstein-{λ}-dust equations on {S} contains an open (in terms of suitable Sobolev norms) subset of data which develop into solutions that admit at future time-like infinity a space-like conformal boundary J^+ that is C^{∞} if the data are of class C^{∞} and of correspondingly lower smoothness otherwise. The class of solutions considered here comprises non-linear perturbations of FLRW solutions as very special cases. It can conveniently be characterized in terms of asymptotic end data induced on J^+. These data must only satisfy a linear differential equation. If the energy density is everywhere positive they can be constructed without solving differential equations at all.
Adaptive set-point tracking of the Lorenz chaotic system using non-linear feedback
Energy Technology Data Exchange (ETDEWEB)
Haghighatdar, F. [Department of Electronic Engineering, University of Isfahan, Hezar-Jerib St., Postal code: 8174673441, Isfahan (Iran, Islamic Republic of)], E-mail: fr_haghighat@yahoo.com; Ataei, M. [Department of Electronic Engineering, University of Isfahan, Hezar-Jerib St., Postal code: 8174673441, Isfahan (Iran, Islamic Republic of)], E-mail: mataei1971@yahoo.com
2009-05-30
In this paper, an adaptive control method for set-point tracking of the Lorenz chaotic system by using non-linear feedback is proposed. The design procedure of the proposed controller is accomplished in two steps. At the first step, using Lyapunov's direct method, a non-linear state feedback is selected so that without any need to apply identification techniques, in despite of the uncertain parameters existence in the system state equations, the asymptotic stability of the general Lorenz system is guaranteed in a stochastic point of the manifold containing general system equilibrium points. At the second step, a linear state feedback with adaptive gain is added to the prior controller to eliminate the tracking error. In order to guarantee the system asymptotic stability at desired set-point, the indirect Lyapunov's method is used. Finally, to show the effectiveness of the proposed methodology, the simulation results of different experiments including system parameters changes and set-point variation are provided.
Directory of Open Access Journals (Sweden)
Carlos A Bustamante Chaverra
2013-03-01
Full Text Available Un método sin malla es desarrollado para solucionar una versión genérica de la ecuación no lineal de convección-difusión-reacción en dominios bidimensionales. El método de Interpolación Local Hermítica (LHI es empleado para la discretización espacial, y diferentes estrategias son implementadas para solucionar el sistema de ecuaciones no lineales resultante, entre estas iteración de Picard, método de Newton-Raphson y el Método de Homotopía truncado (HAM. En el método LHI las Funciones de Base Radial (RBFs son empleadas para construir una función de interpolación. A diferencia del Método de Kansa, el LHI es aplicado localmente y los operadores diferenciales de las condiciones de frontera y la ecuación gobernante son utilizados para construir la función de interpolación, obteniéndose una matriz de colocación simétrica. El método de Newton-Rapshon se implementa con matriz Jacobiana analítica y numérica, y las derivadas de la ecuación gobernante con respecto al paramétro de homotopía son obtenidas analíticamente. El esquema numérico es veriﬁcado mediante la comparación de resultados con las soluciones analíticas de las ecuaciones de Burgers en una dimensión y Richards en dos dimensiones. Similares resultados son obtenidos para todos los solucionadores que se probaron, pero mejores ratas de convergencia son logradas con el método de Newton-Raphson en doble iteración.A meshless numerical scheme is developed for solving a generic version of the non-linear convection-diﬀusion-reaction equation in two-dim-ensional domains. The Local Hermitian Interpolation (LHI method is employed for the spatial discretization and several strategies are implemented for the solution of the resulting non-linear equation system, among them the Picard iteration, the Newton Raphson method and a truncated version of the Homotopy Analysis Method (HAM. The LHI method is a local collocation strategy in which Radial Basis Functions (RBFs
The weakly non-linear density-velocity relation
Chodorowski, Michal J.; Lokas, Ewa L.
1997-05-01
We rigorously derive up to third order in perturbation theory the weakly non-linear relation between the cosmic density and velocity fields. The density field is described by the mass density contrast, delta. The velocity field is described by the variable theta proportional to the velocity divergence, theta=-f (Omega)^-1H ^-1_0∇. v, where f (Omega)~=Omega^0.6, Omega is the cosmological density parameter and H_0 is the Hubble constant. Our calculations show that mean delta given theta is a third-order polynomial in theta, --_theta=a _1theta+a_2(theta ^2-sigma^2_theta)+ a_3theta^3. This result constitutes an extension of the formula --_theta=theta+a _2(theta^2-sigma^2 _theta) found by Bernardeau which involved second-order perturbative solutions. Third-order perturbative corrections introduce the cubic term. They also, however, cause the coefficient a_1 to depart from unity, in contrast with the linear theory prediction. We compute the values of the coefficients a_p for scale-free power spectra, as well as for standard cold dark matter (CDM), for Gaussian smoothing. The coefficients obey a hierarchy a_3Ganon et al. The results provide a method for breaking the Omega-bias degeneracy in comparisons of cosmic density and velocity fields such as IRAS-potent.
NON-LINEAR FORCED VIBRATION OF AXIALLY MOVING VISCOELASTIC BEAMS
Institute of Scientific and Technical Information of China (English)
Yang Xiaodong; Chen Li-Qun
2006-01-01
The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is derived from the dynamical, constitutive equations and geometrical relations. By referring to the quasi-static stretch assumption, the partial-differential non-linearity is reduced to an integro-partial-differential one. The method of multiple scales is directly applied to the governing equations with the two types of non-linearity, respectively. The amplitude of near- and exact-resonant steady state is analyzed by use of the solvability condition of eliminating secular terms. Numerical results are presented to show the contributions of foundation vibration amplitude, viscoelastic damping, and nonlinearity to the response amplitude for the first and the second mode.
Bolla Pittaluga, M.; Nobile, G.; Seminara, G.
2007-12-01
We develop a three dimensional non linear asymptotic theory for flow and bed topography in meandering channels able to describe finite amplitude perturbations of bottom topography. The model extends a previous analysis on the equilibrium finite bed deformations, accounting here for arbitrary, yet slow, variations of channel curvature. This approach then allows us to formulate a non-linear bend instability theory, which predicts several characteristic features of the actual meandering process and extends results obtained by classical linear bend theories. In agreement with previous weakly non linear findings and consistently with field observations, the bend growth rate turns out to have a peak at some value of the meander wavenumber, typically larger than the resonant value of linear stability theory. Moreover, a feature typical of non linear waves arises: the selected wavenumber depends on the amplitude of the initial perturbation and, in particular, larger wavelengths are associated with larger amplitudes. The picture offered by results obtained through the present theory seems fully satisfactory and consistent with field observations as well as previous theoretical findings. Further substantiation of the model has been achieved by comparing predictions obtained for a test case (a reach of the Cecina river, Italy) with field observations. Finally the model is also extended to follow the evolution of bed deformations in time in order to investigate the morphological response of the river to a sequence of flood events characterized by a slow temporal variation of flow and sediment supply. Such an investigation would possibly provide a rational interpretation of the as yet loosely defined notion of formative discharge of an alluvial river.
GDTM-Padé technique for the non-linear differential-difference equation
Directory of Open Access Journals (Sweden)
Lu Jun-Feng
2013-01-01
Full Text Available This paper focuses on applying the GDTM-Padé technique to solve the non-linear differential-difference equation. The bell-shaped solitary wave solution of Belov-Chaltikian lattice equation is considered. Comparison between the approximate solutions and the exact ones shows that this technique is an efficient and attractive method for solving the differential-difference equations.
Towards a non-linear theory for induced seismicity in shales
Salusti, Ettore; Droghei, Riccardo
2014-05-01
We here analyze the pore transmission of fluid pressure pand solute density ρ in porous rocks, within the framework of the Biot theory of poroelasticity extended to include physico-chemical interactions. In more details we here analyze the effect of a strong external stress on the non-linear evolution of p and ρ in a porous rock. We here focus on the consequent deformation of the rock pores, relative to a non-linear Hooke equation among strain, linear/quadratic pressure and osmosis in 1-D. We in particular analyze cases with a large pressure, but minor than the 'rupture point'. All this gives relations similar to those discussed by Shapiro et al. (2013), which assume a pressure dependent permeability. Thus we analyze the external stress necessary to originate quick non-linear transients of combined fluid pressure and solute density in a porous matrix, which perturb in a mild (i.e. a linear diffusive phenomenon) or a more dramatic non-linear way (Burgers solitons) the rock structure. All this gives a novel, more realistic insight about the rock evolution, fracturing and micro-earthquakes under a large external stress.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper presents a method on non-linear correction of broadband LFMCW signal utilizing its relativenonlinear error. The deriving procedure and the results simulated by a computer and tested by a practical system arealso introduced. The method has two obvious advantages compared with the previous methods: (1) Correction has norelation with delay time td and sweep bandwidth B; (2) The inherent non-linear error of VCO has no influence on thecorrection and its last results.
Massive Neutrinos and the Non-linear Matter Power Spectrum
Bird, Simeon; Haehnelt, Martin G
2011-01-01
We perform an extensive suite of N-body simulations of the matter power spectrum, incorporating massive neutrinos in the range M = 0.15-0.6 eV, probing the non-linear regime at scales k < 10 hMpc-1 at z < 3. We extend the widely used HALOFIT approximation (Smith et al. 2003) to account for the effect of massive neutrinos on the power spectrum. In the strongly non-linear regime HALOFIT systematically over-predicts the suppression due to the free-streaming of the neutrinos. The maximal discrepancy occurs at k \\sim 1hMpc-1, and is at the level of 10% of the total suppression. Most published constraints on neutrino masses based on HALOFIT are not affected, as they rely on data probing the matter power spectrum in the linear or mildly non-linear regime. However, predictions for future galaxy, Lyman-alpha forest and weak lensing surveys extending to more non-linear scales will benefit from the improved approximation to the non-linear matter power spectrum we provide. Our approximation reproduces the induced n...
Describing Adequacy of cure with maximum hardness ratios and non-linear regression.
Bouschlicher, Murray; Berning, Kristen; Qian, Fang
2008-01-01
Knoop Hardness (KH) ratios (HR) > or = 80% are commonly used as criteria for the adequate cure of a composite. These per-specimen HRs can be misleading, as both numerator and denominator may increase concurrently, prior to reaching an asymptotic, top-surface maximum hardness value (H(MAX)). Extended cure times were used to establish H(MAX) and descriptive statistics, and non-linear regression analysis were used to describe the relationship between exposure duration and HR and predict the time required for HR-H(MAX) = 80%. Composite samples 2.00 x 5.00 mm diameter (n = 5/grp) were cured for 10 seconds, 20 seconds, 40 seconds, 60 seconds, 90 seconds, 120 seconds, 180 seconds and 240 seconds in a 2-composite x 2-light curing unit design. A microhybrid (Point 4, P4) or microfill resin (Heliomolar, HM) composite was cured with a QTH or LED light curing unit and then stored in the dark for 24 hours prior to KH testing. Non-linear regression was calculated with: H = (H(MAX)-c)(1-e(-kt)) +c, H(MAX) = maximum hardness (a theoretical asymptotic value), c = constant (t = 0), k = rate constant and t = exposure duration describes the relationship between radiant exposure (irradiance x time) and HRs. Exposure durations for HR-H(MAX) = 80% were calculated. Two-sample t-tests for pairwise comparisons evaluated relative performance of the light curing units for similar surface x composite x exposure (10-90s). A good measure of goodness-of-fit of the non-linear regression, r2, ranged from 0.68-0.95. (mean = 0.82). Microhybrid (P4) exposure to achieve HR-H(MAX = 80% was 21 seconds for QTH and 34 seconds for the LED light curing unit. Corresponding values for microfill (HM) were 71 and 74 seconds, respectively. P4 HR-H(MAX) of LED vs QTH was statistically similar for 10 to 40 seconds, while HM HR-H(MAX) of LED was significantly lower than QTH for 10 to 40 seconds. It was concluded that redefined hardness ratios based on maximum hardness used in conjunction with non-linear regression
AMABILI, M.; PELLICANO, F.; PAÏDOUSSIS, M. P.
1999-08-01
The study presented is an investigation of the non-linear dynamics and stability of simply supported, circular cylindrical shells containing inviscid incompressible fluid flow. Non-linearities due to large-amplitude shell motion are considered by using the non-linear Donnell's shallow shell theory, with account taken of the effect of viscous structural damping. Linear potential flow theory is applied to describe the fluid-structure interaction. The system is discretiszd by Galerkin's method, and is investigated by using a model involving seven degrees of freedom, allowing for travelling wave response of the shell and shell axisymmetric contraction. Two different boundary conditions are applied to the fluid flow beyond the shell, corresponding to: (i) infinite baffles (rigid extensions of the shell), and (ii) connection with a flexible wall of infinite extent in the longitudinal direction, permitting solution by separation of variables; they give two different kinds of dynamical behaviour of the system, as a consequence of the fact that axisymmetric contraction, responsible for the softening non-linear dynamical behaviour of shells, is not allowed if the fluid flow beyond the shell is constrained by rigid baffles. Results show that the system loses stability by divergence.
Non-linear modal analysis of structural components subjected to unilateral constraints
Attar, M.; Karrech, A.; Regenauer-Lieb, K.
2017-02-01
In this paper, we present a detailed numerical study of the non-linear dynamics in structural components under unilateral contact constraints. Here, the unilateral term characterises the constitutive law of the restoring force in the constraints as they only sustain elastic reactions in one direction, either compressive or tensile. Thus, the non-differentiability of the contact law at the discontinuity point is the only source of non-linearity. In our approach, the discrete lattice method (DLM) is used to treat the continuous system as a piecewise linear model. Thus, the trajectory of each node in the discrete model would be a sequence of smooth solutions with the switching times between them. The application of the one-step integration scheme allows us to detect the occurrence of contact (i.e. the instants that the lattice nodes cross the discontinuity boundary) and consequently update the active constraints. We also consider embedding the bisection algorithm into the time integration procedure to localise the instants at which the nodes cross the boundary and minimise the accumulative error. Subsequently, the resulting unconditionally stable integration scheme is utilised as the modelling tool in combination with the shooting technique to perform a novel non-smooth modal analysis. In analogy with the smooth non-linear systems, the evolution of non-smooth periodic motions is presented in the frequency-stiffness plots. We apply our method to obtain non-linear normal modes (NNMs) for a number of representative problems, including a bar-obstacle system, a beam-substrate system and a granular chain with tensionless interactions. These numerical examples demonstrate the efficiency of the solution procedure to trace the family of energy-independent non-linear modes across the range of contact stiffnesses. Moreover, the stability analysis of the modes on the plot backbone reveal that they may become unstable due to the interaction with the higher modes or bifurcation of
Directory of Open Access Journals (Sweden)
A. D. Pataraya
Full Text Available Non-linear α-ω; dynamo waves existing in an incompressible medium with the turbulence dissipative coefficients depending on temperature are studied in this paper. We investigate of α-ω solar non-linear dynamo waves when only the first harmonics of magnetic induction components are included. If we ignore the second harmonics in the non-linear equation, the turbulent magnetic diffusion coefficient increases together with the temperature, the coefficient of turbulent viscosity decreases, and for an interval of time the value of dynamo number is greater than 1. In these conditions a stationary solution of the non-linear equation for the dynamo wave's amplitude exists; meaning that the magnetic field is sufficiently excited. The amplitude of the dynamo waves oscillates and becomes stationary. Using these results we can explain the existence of Maunder's minimum.
Pattern formation due to non-linear vortex diffusion
Wijngaarden, Rinke J.; Surdeanu, R.; Huijbregtse, J. M.; Rector, J. H.; Dam, B.; Einfeld, J.; Wördenweber, R.; Griessen, R.
Penetration of magnetic flux in YBa 2Cu 3O 7 superconducting thin films in an external magnetic field is visualized using a magneto-optic technique. A variety of flux patterns due to non-linear vortex diffusion is observed: (1) Roughening of the flux front with scaling exponents identical to those observed in burning paper including two distinct regimes where respectively spatial disorder and temporal disorder dominate. In the latter regime Kardar-Parisi-Zhang behavior is found. (2) Fractal penetration of flux with Hausdorff dimension depending on the critical current anisotropy. (3) Penetration as ‘flux-rivers’. (4) The occurrence of commensurate and incommensurate channels in films with anti-dots as predicted in numerical simulations by Reichhardt, Olson and Nori. It is shown that most of the observed behavior is related to the non-linear diffusion of vortices by comparison with simulations of the non-linear diffusion equation appropriate for vortices.
Non-linear system identification in flow-induced vibration
Energy Technology Data Exchange (ETDEWEB)
Spanos, P.D.; Zeldin, B.A. [Rice Univ., Houston, TX (United States); Lu, R. [Hudson Engineering Corp., Houston, TX (United States)
1996-12-31
The paper introduces a method of identification of non-linear systems encountered in marine engineering applications. The non-linearity is accounted for by a combination of linear subsystems and known zero-memory non-linear transformations; an equivalent linear multi-input-single-output (MISO) system is developed for the identification problem. The unknown transfer functions of the MISO system are identified by assembling a system of linear equations in the frequency domain. This system is solved by performing the Cholesky decomposition of a related matrix. It is shown that the proposed identification method can be interpreted as a {open_quotes}Gram-Schmidt{close_quotes} type of orthogonal decomposition of the input-output quantities of the equivalent MISO system. A numerical example involving the identification of unknown parameters of flow (ocean wave) induced forces on offshore structures elucidates the applicability of the proposed method.
Change-Of-Bases Abstractions for Non-Linear Systems
Sankaranarayanan, Sriram
2012-01-01
We present abstraction techniques that transform a given non-linear dynamical system into a linear system or an algebraic system described by polynomials of bounded degree, such that, invariant properties of the resulting abstraction can be used to infer invariants for the original system. The abstraction techniques rely on a change-of-basis transformation that associates each state variable of the abstract system with a function involving the state variables of the original system. We present conditions under which a given change of basis transformation for a non-linear system can define an abstraction. Furthermore, the techniques developed here apply to continuous systems defined by Ordinary Differential Equations (ODEs), discrete systems defined by transition systems and hybrid systems that combine continuous as well as discrete subsystems. The techniques presented here allow us to discover, given a non-linear system, if a change of bases transformation involving degree-bounded polynomials yielding an alge...
Controlling ultrafast currents by the non-linear photogalvanic effect
Wachter, Georg; Lemell, Christoph; Tong, Xiao-Min; Yabana, Kazuhiro; Burgdörfer, Joachim
2015-01-01
We theoretically investigate the effect of broken inversion symmetry on the generation and control of ultrafast currents in a transparent dielectric (SiO2) by strong femto-second optical laser pulses. Ab-initio simulations based on time-dependent density functional theory predict ultrafast DC currents that can be viewed as a non-linear photogalvanic effect. Most surprisingly, the direction of the current undergoes a sudden reversal above a critical threshold value of laser intensity I_c ~ 3.8*10^13 W/cm2. We trace this switching to the transition from non-linear polarization currents to the tunneling excitation regime. We demonstrate control of the ultrafast currents by the time delay between two laser pulses. We find the ultrafast current control by the non-linear photogalvanic effect to be remarkably robust and insensitive to laser-pulse shape and carrier-envelope phase.
Generalized non-linear strength theory and transformed stress space
Institute of Scientific and Technical Information of China (English)
YAO Yangping; LU Dechun; ZHOU Annan; ZOU Bo
2004-01-01
Based on the test data of frictional materials and previous research achievements in this field, a generalized non-linear strength theory (GNST) is proposed. It describes non-linear strength properties on the π-plane and the meridian plane using a unified formula, and it includes almost all the present non-linear strength theories, which can be used in just one material. The shape of failure function of the GNST is a smooth curve between the SMP criterion and the Mises criterion on the π-plane, and an exponential curve on the meridian plane. Through the transformed stress space based on the GNST, the combination of the GNST and various constitutive models using p and q as stress parameters can be realized simply and rationally in three-dimensional stress state.
Non-linear Growth Models in Mplus and SAS.
Grimm, Kevin J; Ram, Nilam
2009-10-01
Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included.
Non-linear effects in bunch compressor of TARLA
Yildiz, Hüseyin; Aksoy, Avni; Arikan, Pervin
2016-03-01
Transport of a beam through an accelerator beamline is affected by high order and non-linear effects such as space charge, coherent synchrotron radiation, wakefield, etc. These effects damage form of the beam, and they lead particle loss, emittance growth, bunch length variation, beam halo formation, etc. One of the known non-linear effects on low energy machine is space charge effect. In this study we focus on space charge effect for Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) machine which is designed to drive InfraRed Free Electron Laser covering the range of 3-250 µm. Moreover, we discuss second order effects on bunch compressor of TARLA.
Comparison of Simulated and Measured Non-linear Ultrasound Fields
DEFF Research Database (Denmark)
Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt
2011-01-01
In this paper results from a non-linear AS (angular spectrum) based ultrasound simulation program are compared to water-tank measurements. A circular concave transducer with a diameter of 1 inch (25.4 mm) is used as the emitting source. The measured pulses are rst compared with the linear...... simulation program Field II, which will be used to generate the source for the AS simulation. The generated non-linear ultrasound eld is measured by a hydrophone in the focal plane. The second harmonic component from the measurement is compared with the AS simulation, which is used to calculate both...
Foundations of the non-linear mechanics of continua
Sedov, L I
1966-01-01
International Series of Monographs on Interdisciplinary and Advanced Topics in Science and Engineering, Volume 1: Foundations of the Non-Linear Mechanics of Continua deals with the theoretical apparatus, principal concepts, and principles used in the construction of models of material bodies that fill space continuously. This book consists of three chapters. Chapters 1 and 2 are devoted to the theory of tensors and kinematic applications, focusing on the little-known theory of non-linear tensor functions. The laws of dynamics and thermodynamics are covered in Chapter 3.This volume is suitable
Realization of non-linear coherent states by photonic lattices
Directory of Open Access Journals (Sweden)
Shahram Dehdashti
2015-06-01
Full Text Available In this paper, first, by introducing Holstein-Primakoff representation of α-deformed algebra, we achieve the associated non-linear coherent states, including su(2 and su(1, 1 coherent states. Second, by using waveguide lattices with specific coupling coefficients between neighbouring channels, we generate these non-linear coherent states. In the case of positive values of α, we indicate that the Hilbert size space is finite; therefore, we construct this coherent state with finite channels of waveguide lattices. Finally, we study the field distribution behaviours of these coherent states, by using Mandel Q parameter.
Non-linear growth and condensation in multiplex networks
Nicosia, Vincenzo; Latora, Vito; Barthelemy, Marc
2013-01-01
Different types of interactions coexist and coevolve to shape the structure and function of a multiplex network. We propose here a general class of growth models in which the various layers of a multiplex network coevolve through a set of non-linear preferential attachment rules. We show, both numerically and analytically, that by tuning the level of non-linearity these models allow to reproduce either homogeneous or heterogeneous degree distributions, together with positive or negative degree correlations across layers. In particular, we derive the condition for the appearance of a condensed state in which a single node connects to nearly all other nodes of a layer.
A method for solving systems of non-linear differential equations with moving singularities
Gousheh, S S; Ghafoori-Tabrizi, K
2003-01-01
We present a method for solving a class of initial valued, coupled, non-linear differential equations with `moving singularities' subject to some subsidiary conditions. We show that this type of singularities can be adequately treated by establishing certain `moving' jump conditions across them. We show how a first integral of the differential equations, if available, can also be used for checking the accuracy of the numerical solution.
Implementation of neural network based non-linear predictive control
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole
1999-01-01
of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...
Numerical simulation of non-linear phenomena in geotechnical engineering
DEFF Research Database (Denmark)
Sørensen, Emil Smed
Geotechnical problems are often characterized by the non-linear behavior of soils and rock which are strongly linked to the inherent properties of the porous structure of the material as well as the presence and possible flow of any surrounding fluids. Dynamic problems involving such soil-fluid i...
Quantum-dot-based integrated non-linear sources
DEFF Research Database (Denmark)
Bernard, Alice; Mariani, Silvia; Andronico, Alessio
2015-01-01
The authors report on the design and the preliminary characterisation of two active non-linear sources in the terahertz and near-infrared range. The former is associated to difference-frequency generation between whispering gallery modes of an AlGaAs microring resonator, whereas the latter is gra...
Development and Control of a Non Linear Magnetic Levitation System
Directory of Open Access Journals (Sweden)
A Sanjeevi Gandhi
2013-06-01
Full Text Available Nowadays, studies to develop and control non linear systems is of great significance. Magnetic Levitation System has gained considerable interests due to its great practical importance in different engineering fields In this paper an electromagnetic levitation system was developed and mathematical model for the system was derived. The developed system was controlled manually.
Non-Linear Interactive Stories in Computer Games
DEFF Research Database (Denmark)
Bangsø, Olav; Jensen, Ole Guttorm; Kocka, Tomas
2003-01-01
The paper introduces non-linear interactive stories (NOLIST) as a means to generate varied and interesting stories for computer games automatically. We give a compact representation of a NOLIST based on the specification of atomic stories, and show how to build an object-oriented Bayesian network...
Range non-linearities correction in FMCW SAR
Meta, A.; Hoogeboom, P.; Ligthart, L.P.
2006-01-01
The limiting factor to the use of Frequency Modulated Continuous Wave (FMCW) technology with Synthetic Aperture Radar (SAR) techniques to produce lightweight, cost effective, low power consuming imaging sensors with high resolution, is the well known presence of non-linearities in the transmitted si
On the non-linearity of the subsidiary systems
Friedrich, H
2005-01-01
In hyperbolic reductions of the Einstein equations the evolution of gauge conditions or constraint quantities is controlled by subsidiary systems. We point out a class of non-linearities in these systems which may have the potential of generating catastrophic growth of gauge resp. constraint violations in numerical calculations.
Locally supersymmetric D=3 non-linear sigma models
Wit, B. de; Tollsten, A. K.; Nicolai, H.
1992-01-01
We study non-linear sigma models with N local supersymmetries in three space-time dimensions. For N=1 and 2 the target space of these models is Riemannian or Kahler, respectively. All N>2 theories are associated with Einstein spaces. For N=3 the target space is quaternionic, while for N=4 it general
Non-Linear Vibration of Euler-Bernoulli Beams
DEFF Research Database (Denmark)
Barari, Amin; Kaliji, H. D.; Domairry, G.;
2011-01-01
In this paper, variational iteration (VIM) and parametrized perturbation (PPM)methods have been used to investigate non-linear vibration of Euler-Bernoulli beams subjected to the axial loads. The proposed methods do not require small parameter in the equation which is difficult to be found...
Note About Hamiltonian Structure of Non-Linear Massive Gravity
Kluson, J
2011-01-01
We perform the Hamiltonian analysis of non-linear massive gravity action studied recently in arXiv:1106.3344 [hep-th]. We show that the Hamiltonian constraint is the second class constraint. As a result the theory possesses an odd number of the second class constraints and hence all non physical degrees of freedom cannot be eliminated.
Non-Linear Langmuir Wave Modulation in Collisionless Plasmas
DEFF Research Database (Denmark)
Dysthe, K. B.; Pécseli, Hans
1977-01-01
A non-linear Schrodinger equation for Langmuir waves is presented. The equation is derived by using a fluid model for the electrons, while both a fluid and a Vlasov formulation are considered for the ion dynamics. The two formulations lead to significant differences in the final results, especially...
Applications of non-linear methods in astronomy
Martens, P.C.H.
1984-01-01
In this review I discuss catastrophes, bifurcations and strange attractors in a non-mathematical manner by giving very simple examples that st ill contain the essence of the phenomenon. The salientresults of the applications of these non-linear methods in astrophysics are reviewed and include such d
Kumar, P; Kumar, Dinesh; Rai, K N
2016-08-01
In this article, a non-linear dual-phase-lag (DPL) bio-heat transfer model based on temperature dependent metabolic heat generation rate is derived to analyze the heat transfer phenomena in living tissues during thermal ablation treatment. The numerical solution of the present non-linear problem has been done by finite element Runge-Kutta (4,5) method which combines the essence of Runge-Kutta (4,5) method together with finite difference scheme. Our study demonstrates that at the thermal ablation position temperature predicted by non-linear and linear DPL models show significant differences. A comparison has been made among non-linear DPL, thermal wave and Pennes model and it has been found that non-linear DPL and thermal wave bio-heat model show almost same nature whereas non-linear Pennes model shows significantly different temperature profile at the initial stage of thermal ablation treatment. The effect of Fourier number and Vernotte number (relaxation Fourier number) on temperature profile in presence and absence of externally applied heat source has been studied in detail and it has been observed that the presence of externally applied heat source term highly affects the efficiency of thermal treatment method.
Institute of Scientific and Technical Information of China (English)
王文彬; 刘淑梅
2005-01-01
In this paper, we study the asymptotic behavior of the solutions to the initial boundary value problem for unipolar drift diffusion equations for semiconductors. Under the proper assumptions on doping profile and initial value, we prove that the smooth solutions to these evolutionary problems tend to the unique stationary solution exponentially as time tends to infinity.
Non-Linear Second-Order Periodic Systems with Non-Smooth Potential
Indian Academy of Sciences (India)
Evgenia H Papageorgiou; Nikolaos S, Papageorgiou
2004-08-01
In this paper we study second order non-linear periodic systems driven by the ordinary vector -Laplacian with a non-smooth, locally Lipschitz potential function. Our approach is variational and it is based on the non-smooth critical point theory. We prove existence and multiplicity results under general growth conditions on the potential function. Then we establish the existence of non-trivial homoclinic (to zero) solutions. Our theorem appears to be the first such result (even for smooth problems) for systems monitored by the -Laplacian. In the last section of the paper we examine the scalar non-linear and semilinear problem. Our approach uses a generalized Landesman–Lazer type condition which generalizes previous ones used in the literature. Also for the semilinear case the problem is at resonance at any eigenvalue.
A conformal approach for the analysis of the non-linear stability of radiation cosmologies
Energy Technology Data Exchange (ETDEWEB)
Luebbe, Christian, E-mail: c.luebbe@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Department of Mathematics, University of Leicester, University Road, LE1 8RH (United Kingdom); Valiente Kroon, Juan Antonio, E-mail: j.a.valiente-kroon@qmul.ac.uk [School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)
2013-01-15
The conformal Einstein equations for a trace-free (radiation) perfect fluid are derived in terms of the Levi-Civita connection of a conformally rescaled metric. These equations are used to provide a non-linear stability result for de Sitter-like trace-free (radiation) perfect fluid Friedman-Lemaitre-Robertson-Walker cosmological models. The solutions thus obtained exist globally towards the future and are future geodesically complete. - Highlights: Black-Right-Pointing-Pointer We study the Einstein-Euler system in General Relativity using conformal methods. Black-Right-Pointing-Pointer We analyze the structural properties of the associated evolution equations. Black-Right-Pointing-Pointer We establish the non-linear stability of pure radiation cosmological models.
Non-linear aeroelastic prediction for aircraft applications
de C. Henshaw, M. J.; Badcock, K. J.; Vio, G. A.; Allen, C. B.; Chamberlain, J.; Kaynes, I.; Dimitriadis, G.; Cooper, J. E.; Woodgate, M. A.; Rampurawala, A. M.; Jones, D.; Fenwick, C.; Gaitonde, A. L.; Taylor, N. V.; Amor, D. S.; Eccles, T. A.; Denley, C. J.
2007-05-01
Current industrial practice for the prediction and analysis of flutter relies heavily on linear methods and this has led to overly conservative design and envelope restrictions for aircraft. Although the methods have served the industry well, it is clear that for a number of reasons the inclusion of non-linearity in the mathematical and computational aeroelastic prediction tools is highly desirable. The increase in available and affordable computational resources, together with major advances in algorithms, mean that non-linear aeroelastic tools are now viable within the aircraft design and qualification environment. The Partnership for Unsteady Methods in Aerodynamics (PUMA) Defence and Aerospace Research Partnership (DARP) was sponsored in 2002 to conduct research into non-linear aeroelastic prediction methods and an academic, industry, and government consortium collaborated to address the following objectives: To develop useable methodologies to model and predict non-linear aeroelastic behaviour of complete aircraft. To evaluate the methodologies on real aircraft problems. To investigate the effect of non-linearities on aeroelastic behaviour and to determine which have the greatest effect on the flutter qualification process. These aims have been very effectively met during the course of the programme and the research outputs include: New methods available to industry for use in the flutter prediction process, together with the appropriate coaching of industry engineers. Interesting results in both linear and non-linear aeroelastics, with comprehensive comparison of methods and approaches for challenging problems. Additional embryonic techniques that, with further research, will further improve aeroelastics capability. This paper describes the methods that have been developed and how they are deployable within the industrial environment. We present a thorough review of the PUMA aeroelastics programme together with a comprehensive review of the relevant research
Non-Linear Aeroelastic Stability of Wind Turbines
DEFF Research Database (Denmark)
Zhang, Zili; Sichani, Mahdi Teimouri; Li, Jie;
2013-01-01
As wind turbines increase in magnitude without a proportional increase in stiffness, the risk of dynamic instability is believed to increase. Wind turbines are time dependent systems due to the coupling between degrees of freedom defined in the fixed and moving frames of reference, which may...... trigger off internal resonances. Further, the rotational speed of the rotor is not constant due to the stochastic turbulence, which may also influence the stability. In this paper, a robust measure of the dynamic stability of wind turbines is suggested, which takes the collective blade pitch control...... and non-linear aero-elasticity into consideration. The stability of the wind turbine is determined by the maximum Lyapunov exponent of the system, which is operated directly on the non-linear state vector differential equations. Numerical examples show that this approach is promising for stability...
Non-linear irreversible thermodynamics of single-molecule experiments
Santamaria-Holek, I; Hidalgo-Soria, M; Perez-Madrid, A
2015-01-01
Irreversible thermodynamics of single-molecule experiments subject to external constraining forces of a mechanical nature is presented. Extending Onsager's formalism to the non-linear case of systems under non-equilibrium external constraints, we are able to calculate the entropy production and the general non-linear kinetic equations for the variables involved. In particular, we analyze the case of RNA stretching protocols obtaining critical oscillations between di?erent con?gurational states when forced by external means to remain in the unstable region of its free-energy landscape, as observed in experiments. We also calculate the entropy produced during these hopping events, and show how resonant phenomena in stretching experiments of single RNA macromolecules may arise. We also calculate the hopping rates using Kramer's approach obtaining a good comparison with experiments.
Integration of non-linear cellular mechanisms regulating microvascular perfusion.
Griffith, T M; Edwards, D H
1999-01-01
It is becoming increasingly evident that interactions between the different cell types present in the vessel wall and the physical forces that result from blood flow are highly complex. This short article will review evidence that irregular fluctuations in vascular resistance are generated by non-linearity in the control mechanisms intrinsic to the smooth muscle cell and can be classified as chaotic. Non-linear systems theory has provided insights into the mechanisms involved at the cellular level by allowing the identification of dominant control variables and the construction of one-dimensional iterative maps to model vascular dynamics. Experiments with novel peptide inhibitors of gap junctions have shown that the coordination of aggregate responses depends on direct intercellular communication. The sensitivity of chaotic trajectories to perturbation may nevertheless generate a high degree of variability in the response to pharmacological interventions and altered perfusion conditions.
Parametric Analysis of Fiber Non-Linearity in Optical systems
Directory of Open Access Journals (Sweden)
Abhishek Anand
2013-06-01
Full Text Available With the advent of technology Wavelength Division Multiplexing (WDM is always an area of interest in the field of optical communication. When combined with Erbium Doped Fiber Amplifier (EDFA, it provides high data transmission rate and low attenuation. But due to fiber non-linearity such as Self Phase Modulation (SPM and Cross Phase Modulation (XPM the system performance has degraded. This non-linearity depends on different parameters of an optical system such as channel spacing, power of the channel and length of the fiber section. The degradation can be seen in terms of phase deviation and Bit Error Rate (BER performance. Even after dispersion compensation at the fiber end, residual pulse broadening still exists due to cross talk penalty.
The linear-non-linear frontier for the Goldstone Higgs
Gavela, M B; Machado, P A N; Saa, S
2016-01-01
The minimal $SO(5)/SO(4)$ sigma model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone boson ancestry. Varying the $\\sigma$ mass allows to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy fermion ultraviolet completions. In addition, one particular fermionic compl...
Non-linear Behavior of Curved Sandwich Panels
DEFF Research Database (Denmark)
Berggreen, Carl Christian; Jolma, P.; Karjalainen, J. P.;
2003-01-01
In this paper the non-linear behavior of curved sandwich panels is investigated both numerically and experimentally. Focus is on various aspects of finite element modeling and calculation procedures. A simply supported, singly curved, CFRP/PVC sandwich panel is analyzed under uniform pressure load...... and results are compared to test data. A novel test arrangement utilizing a water filled cushion to create the uniform pressure load on curved panel specimen is used to obtain the experimental data. The panel is modeled with three different commercial finite element codes. Two implicit and one explicit code...... are used with various element types, modeling approaches and material models. The results show that the theoretical and experimental methods generally show fair agreement in panel non-linear behavior before collapse. It is also shown that special attention to detail has to be taken, because the predicted...
A non-linear model of economic production processes
Ponzi, A.; Yasutomi, A.; Kaneko, K.
2003-06-01
We present a new two phase model of economic production processes which is a non-linear dynamical version of von Neumann's neoclassical model of production, including a market price-setting phase as well as a production phase. The rate of an economic production process is observed, for the first time, to depend on the minimum of its input supplies. This creates highly non-linear supply and demand dynamics. By numerical simulation, production networks are shown to become unstable when the ratio of different products to total processes increases. This provides some insight into observed stability of competitive capitalist economies in comparison to monopolistic economies. Capitalist economies are also shown to have low unemployment.
SSNN toolbox for non-linear system identification
Luzar, Marcel; Czajkowski, Andrzej
2015-11-01
The aim of this paper is to develop and design a State Space Neural Network toolbox for a non-linear system identification with an artificial state-space neural networks, which can be used in a model-based robust fault diagnosis and control. Such toolbox is implemented in the MATLAB environment and it uses some of its predefined functions. It is designed in the way that any non-linear multi-input multi-output system is identified and represented in the classical state-space form. The novelty of the proposed approach is that the final result of the identification process is the state, input and output matrices, not only the neural network parameters. Moreover, the toolbox is equipped with the graphical user interface, which makes it useful for the users not familiar with the neural networks theory.
Non-linear Young's double-slit experiment.
San Roman, Julio; Ruiz, Camilo; Perez, Jose Antonio; Delgado, Diego; Mendez, Cruz; Plaja, Luis; Roso, Luis
2006-04-01
The Young's double slit experiment is recreated using intense and short laser pulses. Our experiment evidences the role of the non-linear Kerr effect in the formation of interference patterns. In particular, our results evidence a mixed mechanism in which the zeroth diffraction order of each slit are mainly affected by self-focusing and self-phase modulation, while the higher orders propagate linearly. Despite of the complexity of the general problem of non-linear propagation, we demonstrate that this experiment retains its simplicity and allows for a geometrical interpretation in terms of simple optical paths. In consequence, our results may provide key ideas on experiments on the formation of interference patterns with intense laser fields in Kerr media.
Neural Generalized Predictive Control of a non-linear Process
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole
1998-01-01
The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability...... detail and discuss the implementation difficulties. The neural generalized predictive controller is tested on a pneumatic servo sys-tem....
Control of Non-linear Marine Cooling System
DEFF Research Database (Denmark)
Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon
2011-01-01
We consider the problem of designing control laws for a marine cooling system used for cooling the main engine and auxiliary components aboard several classes of container vessels. We focus on achieving simple set point control for the system and do not consider compensation of the non......-linearities, closed circuit flow dynamics or transport delays that are present in the system. Control laws are therefore designed using classical control theory and the performance of the design is illustrated through two simulation examples....
Adaptive spectral identification techniques in presence of undetected non linearities
Cella, G; Guidi, G M
2002-01-01
The standard procedure for detection of gravitational wave coalescing binaries signals is based on Wiener filtering with an appropriate bank of template filters. This is the optimal procedure in the hypothesis of addictive Gaussian and stationary noise. We study the possibility of improving the detection efficiency with a class of adaptive spectral identification techniques, analyzing their effect in presence of non stationarities and undetected non linearities in the noise
Non-linear dark matter collapse under diffusion
Velten, Hermano E S
2014-01-01
Diffusion is one of the physical processes allowed for describing the large scale dark matter dynamics. At the same time, it can be seen as a possible mechanism behind the interacting cosmologies. We study the non-linear spherical "top-hat" collapse of dark matter which undergoes velocity diffusion into a solvent dark energy field. We show constraints on the maximum magnitude allowed for the dark matter diffusion. Our results reinforce previous analysis concerning the linear perturbation theory.
Likelihood inference for discretely observed non-linear diffusions
1998-01-01
This paper is concerned with the Bayesian estimation of non-linear stochastic differential equations when observations are discretely sampled. The estimation framework relies on the introduction of latent auxiliary data to complete the missing diffusion between each pair of measurements. Tuned Markov chain Monte Carlo (MCMC) methods based on the Metropolis-Hastings algorithm, in conjunction with the Euler-Maruyama discretization scheme, are used to sample the posterior distribution of the lat...
Linear Algebraic Method for Non-Linear Map Analysis
Energy Technology Data Exchange (ETDEWEB)
Yu,L.; Nash, B.
2009-05-04
We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.
The coupling of non-linear supersymmetry to supergravity
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, Ignatios [Sorbonne Universites, UPMC Paris 6, LPTHE, UMR CNRS 7589, Paris (France); University of Bern, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland); Markou, Chrysoula [Sorbonne Universites, UPMC Paris 6, LPTHE, UMR CNRS 7589, Paris (France)
2015-12-15
We study the coupling of non-linear supersymmetry to supergravity. The goldstino nilpotent superfield of global supersymmetry coupled to supergravity is described by a geometric action of the chiral curvature superfield R subject to the constraint (R - λ){sup 2} = 0 with an appropriate constant λ. This constraint can be found as the decoupling limit of the scalar partner of the goldstino in a class of f(R) supergravity theories. (orig.)
The coupling of non-linear supersymmetry to supergravity
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, Ignatios, E-mail: antoniad@lpthe.jussieu.fr [LPTHE, UMR CNRS 7589, Sorbonne Universités, UPMC Paris 6, 75005, Paris (France); Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlestrasse 5, 3012, Bern (Switzerland); Markou, Chrysoula, E-mail: chrysoula@lpthe.jussieu.fr [LPTHE, UMR CNRS 7589, Sorbonne Universités, UPMC Paris 6, 75005, Paris (France)
2015-12-09
We study the coupling of non-linear supersymmetry to supergravity. The goldstino nilpotent superfield of global supersymmetry coupled to supergravity is described by a geometric action of the chiral curvature superfield R subject to the constraint (R-λ){sup 2}=0 with an appropriate constant λ. This constraint can be found as the decoupling limit of the scalar partner of the goldstino in a class of f(R) supergravity theories.
On the non-linear stability of scalar field cosmologies
Energy Technology Data Exchange (ETDEWEB)
Alho, Artur; Mena, Filipe C [Centro de Matematica, Universidade do Minho, 4710-057 Braga (Portugal); Kroon, Juan A Valiente, E-mail: aalho@math.uminho.pt, E-mail: fmena@math.uminho.pt, E-mail: jav@maths.qmul.ac.uk [School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS (United Kingdom)
2011-09-22
We review recent work on the stability of flat spatially homogeneous and isotropic backgrounds with a self-interacting scalar field. We derive a first order quasi-linear symmetric hyperbolic system for the Einstein-nonlinear-scalar field system. Then, using the linearized system, we show how to obtain necessary and sufficient conditions which ensure the exponential decay to zero of small non-linear perturbations.
Non-linear Higgs portal to Dark Matter
Bajo, Rocío del Rey
2016-01-01
The Higgs portal to scalar Dark Matter is considered in the context of non-linearly realised electroweak symmetry breaking. We determine the interactions of gauge bosons and the physical Higgs particle $h$ to a scalar singlet Dark Matter candidate $S$ in an effective description. The main phenomenological differences with respect to the standard scenario can be seen in the Dark Matter relic abundance, in direct/indirect searches and in signals at colliders.
Generalized Ghost Dark Energy with Non-Linear Interaction
Ebrahimi, E; Mehrabi, A; Movahed, S M S
2016-01-01
In this paper we investigate ghost dark energy model in the presence of non-linear interaction between dark energy and dark matter. The functional form of dark energy density in the generalized ghost dark energy (GGDE) model is $\\rho_D\\equiv f(H, H^2)$ with coefficient of $H^2$ represented by $\\zeta$ and the model contains three free parameters as $\\Omega_D, \\zeta$ and $b^2$ (the coupling coefficient of interactions). We propose three kinds of non-linear interaction terms and discuss the behavior of equation of state, deceleration and dark energy density parameters of the model. We also find the squared sound speed and search for signs of stability of the model. To compare the interacting GGDE model with observational data sets, we use more recent observational outcomes, namely SNIa, gamma-ray bursts, baryonic acoustic oscillation and the most relevant CMB parameters including, the position of acoustic peaks, shift parameters and redshift to recombination. For GGDE with the first non-linear interaction, the j...
Testing non-linear vacuum electrodynamics with Michelson interferometry
Schellstede, Gerold O; Lämmerzahl, Claus
2015-01-01
We discuss the theoretical foundations for testing non-linear vacuum electrodynamics with Michelson interferometry. Apart from some non-degeneracy conditions to be imposed, our discussion applies to all non-linear electrodynamical theories of the Pleba\\'nski class, i.e., to all Lagrangians that depend only on the two Lorentz-invariant scalars quadratic in the field strength. The main idea of the experiment proposed here is to use the fact that, according to non-linear electrodynamics, the phase velocity of light should depend on the strength and on the direction of an electromagnetic background field. There are two possible experimental set-ups for testing this prediction with Michelson interferometry. The first possibility is to apply a strong electromagnetic field to the beam in one arm of the interferometer and to compare the situation where the field is switched on with the situation where it is switched off. The second possibility is to place the whole interferometer in a strong electromagnetic field and...
Non-linear Q-clouds around Kerr black holes
Directory of Open Access Journals (Sweden)
Carlos Herdeiro
2014-12-01
Full Text Available Q-balls are regular extended ‘objects’ that exist for some non-gravitating, self-interacting, scalar field theories with a global, continuous, internal symmetry, on Minkowski spacetime. Here, analogous objects are also shown to exist around rotating (Kerr black holes, as non-linear bound states of a test scalar field. We dub such configurations Q-clouds. We focus on a complex massive scalar field with quartic plus hexic self-interactions. Without the self-interactions, linear clouds have been shown to exist, in synchronous rotation with the black hole horizon, along 1-dimensional subspaces – existence lines – of the Kerr 2-dimensional parameter space. They are zero modes of the superradiant instability. Non-linear Q-clouds, on the other hand, are also in synchronous rotation with the black hole horizon; but they exist on a 2-dimensional subspace, delimited by a minimal horizon angular velocity and by an appropriate existence line, wherein the non-linear terms become irrelevant and the Q-cloud reduces to a linear cloud. Thus, Q-clouds provide an example of scalar bound states around Kerr black holes which, generically, are not zero modes of the superradiant instability. We describe some physical properties of Q-clouds, whose backreaction leads to a new family of hairy black holes, continuously connected to the Kerr family.
Fitting and forecasting non-linear coupled dark energy
Casas, Santiago; Baldi, Marco; Pettorino, Valeria; Vollmer, Adrian
2015-01-01
We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range $z=0-1.6$ and wave modes below $k=10 \\text{h/Mpc}$. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and w...
Non-linear HRV indices under autonomic nervous system blockade.
Bolea, Juan; Pueyo, Esther; Laguna, Pablo; Bailón, Raquel
2014-01-01
Heart rate variability (HRV) has been studied as a non-invasive technique to characterize the autonomic nervous system (ANS) regulation of the heart. Non-linear methods based on chaos theory have been used during the last decades as markers for risk stratification. However, interpretation of these nonlinear methods in terms of sympathetic and parasympathetic activity is not fully established. In this work we study linear and non-linear HRV indices during ANS blockades in order to assess their relation with sympathetic and parasympathetic activities. Power spectral content in low frequency (0.04-0.15 Hz) and high frequency (0.15-0.4 Hz) bands of HRV, as well as correlation dimension, sample and approximate entropies were computed in a database of subjects during single and dual ANS blockade with atropine and/or propranolol. Parasympathetic blockade caused a significant decrease in the low and high frequency power of HRV, as well as in correlation dimension and sample and approximate entropies. Sympathetic blockade caused a significant increase in approximate entropy. Sympathetic activation due to postural change from supine to standing caused a significant decrease in all the investigated non-linear indices and a significant increase in the normalized power in the low frequency band. The other investigated linear indices did not show significant changes. Results suggest that parasympathetic activity has a direct relation with sample and approximate entropies.
Carro, Adrian; Miguel, Maxi San
2012-01-01
We study a model for continuous-opinion dynamics under bounded confidence. In particular, we analyze the importance of the initial distribution of opinions in determining the asymptotic configuration. Thus, we sketch the structure of attractors of the dynamical system, by means of the numerical computation of the time evolution of the agents density. We show that, for a given bound of confidence, a consensus can be encouraged or prevented by certain initial conditions. Furthermore, a noisy perturbation is added to the system with the purpose of modeling the free will of the agents. As a consequence, the importance of the initial condition is partially replaced by that of the statistical distribution of the noise. Nevertheless, we still find evidence of the influence of the initial state upon the final configuration for a short range of the bound of confidence parameter.
The non-linear evolution of edge localized modes
Energy Technology Data Exchange (ETDEWEB)
Wenninger, Ronald
2013-01-09
Edge localized modes (ELMs) are instabilities in the edge of tokamak plasmas in the high confinement regime (H-mode). Without them the edge transport in ordinary H-mode plasmas is too low to establish a stationary situation. However in a future device large unmitigated ELMs are believed to cause divertor power flux densities far in excess of tolerable material limits. Hence the size of energy loss per ELM and the resulting ELM frequency must be controlled. To proceed in understanding how the ELM size is determined and how ELM mitigation methods work it is necessary to characterize the non-linear evolution of pedestal erosion. In order to achieve this experimental data is compared to the results of ELM simulations with the code JOREK (reduced MHD, non-linear) applying a specially developed synthetic magnetic diagnostic. The experimental data are acquired by several fast sampling diagnostics at the experiments ASDEX Upgrade and TCV at a large number of toroidal/poloidal positions. A central element of the presented work is the detailed characterization of dominant magnetic perturbations during ELMs. These footprints of the instability can be observed most intensely in close temporal vicinity to the onset of pedestal erosion. Dominant magnetic perturbations are caused by current perturbations located at or inside the last closed flux surface. In ASDEX Upgrade under certain conditions dominant magnetic perturbations like other H-mode edge instabilities display a similarity to solitons. Furthermore - as expected - they are often observed to be correlated to a perturbation of electron temperature. In TCV it is possible to characterize the evolution of the toroidal structure of dominant magnetic perturbations. Between growing above the level of background fluctuations and the maximum perturbation level for all time instance a similar toroidal structure is observed. This rigid mode-structure is an indication for non-linear coupling. Most frequently the dominant toroidal
Non-linear absorption for concentrated solar energy transport
Energy Technology Data Exchange (ETDEWEB)
Jaramillo, O. A; Del Rio, J.A; Huelsz, G [Centro de Investigacion de Energia, UNAM, Temixco, Morelos (Mexico)
2000-07-01
In order to determine the maximum solar energy that can be transported using SiO{sub 2} optical fibers, analysis of non-linear absorption is required. In this work, we model the interaction between solar radiation and the SiO{sub 2} optical fiber core to determine the dependence of the absorption of the radioactive intensity. Using Maxwell's equations we obtain the relation between the refractive index and the electric susceptibility up to second order in terms of the electric field intensity. This is not enough to obtain an explicit expression for the non-linear absorption. Thus, to obtain the non-linear optical response, we develop a microscopic model of an harmonic driven oscillators with damp ing, based on the Drude-Lorentz theory. We solve this model using experimental information for the SiO{sub 2} optical fiber, and we determine the frequency-dependence of the non-linear absorption and the non-linear extinction of SiO{sub 2} optical fibers. Our results estimate that the average value over the solar spectrum for the non-linear extinction coefficient for SiO{sub 2} is k{sub 2}=10{sup -}29m{sup 2}V{sup -}2. With this result we conclude that the non-linear part of the absorption coefficient of SiO{sub 2} optical fibers during the transport of concentrated solar energy achieved by a circular concentrator is negligible, and therefore the use of optical fibers for solar applications is an actual option. [Spanish] Con el objeto de determinar la maxima energia solar que puede transportarse usando fibras opticas de SiO{sub 2} se requiere el analisis de absorcion no linear. En este trabajo modelamos la interaccion entre la radiacion solar y el nucleo de la fibra optica de SiO{sub 2} para determinar la dependencia de la absorcion de la intensidad radioactiva. Mediante el uso de las ecuaciones de Maxwell obtenemos la relacion entre el indice de refraccion y la susceptibilidad electrica hasta el segundo orden en terminos de intensidad del campo electrico. Esto no es
Towards a non-linear theory for fluid pressure and osmosis in shales
Droghei, Riccardo; Salusti, Ettore
2015-04-01
In exploiting deep hydrocarbon reservoirs, often injections of fluid and/or solute are used. To control and avoid troubles as fluid and gas unexpected diffusions, a reservoir characterization can be obtained also from observations of space and time evolution of micro-earthquake clouds resulting from such injections. This is important since several among the processes caused by fluid injections can modify the deep matrix. Information about the evolution of such micro-seismicity clouds therefore plays a realistic role in the reservoir analyses. To reach a better insight about such processes, and obtain a better system control, we here analyze the initial stress necessary to originate strong non linear transients of combined fluid pressure and solute density (osmosis) in a porous matrix. All this can indeed perturb in a mild (i.e. a linear diffusion) or dramatic non linear way the rock structure, till inducing rock deformations, micro-earthquakes or fractures. I more detail we here assume first a linear Hooke law relating strain, stress, solute density and fluid pressure, and analyze their effect in the porous rock dynamics. Then we analyze its generalization, i.e. the further non linear effect of a stronger external pressure, also in presence of a trend of pressure or solute in the whole region. We moreover characterize the zones where a sudden arrival of such a front can cause micro-earthquakes or fractures. All this allows to reach a novel, more realistic insight about the control of rock evolution in presence of strong pressure fronts. We thus obtain a more efficient reservoir control to avoid large geological perturbations. It is of interest that our results are very similar to those found by Shapiro et al.(2013) with a different approach.
Institute of Scientific and Technical Information of China (English)
梁保松; 陈振
2004-01-01
J. L Lions and W. A. Stranss [1] have proved the existence of a global solution of the initial boundary value problem for nonlinear generalized Euler-Possion-Darboux equation. In this paper we are going to investigate the asymptotic behavior of the global solution by a difference inequality.
An analytical dynamo solution for large-scale magnetic fields of galaxies
Chamandy, Luke
2016-01-01
We present an effectively global analytical asymptotic galactic dynamo solution for the regular magnetic field of an axisymmetric thin disc in the saturated state. This solution is constructed by combining two well-known types of local galactic dynamo solution, parameterized by the disc radius. Namely, the critical (zero growth) solution obtained by treating the dynamo equation as a perturbed diffusion equation is normalized using a non-linear solution that makes use of the `no-$z$' approximation and the dynamical $\\alpha$-quenching non-linearity. This overall solution is found to be reasonably accurate when compared with detailed numerical solutions. It is thus potentially useful as a tool for predicting observational signatures of magnetic fields of galaxies. In particular, such solutions could be painted onto galaxies in cosmological simulations to enable the construction of synthetic polarized synchrotron and Faraday rotation measure (RM) datasets. Further, we explore the properties of our numerical solut...
Kyriakos, Alexander G.
2004-01-01
The present paper is the continuity of the previous papers "Non-linear field theory" I and II. Here on the basis of the electromagnetic representation of Dirac's electron theory we consider the geometrical distribution of the electromagnetic fields of the electron-positron. This gives the posibility to obtain the explanation and solution of many fundamental problems of the QED.
Mártin, Daniel A; 10.1103/PhysRevE.80.056601
2012-01-01
We study evolution equations for electric and magnetic field amplitudes in a ring cavity with plane mirrors. The cavity is filled with a positive or negative refraction index material with third order effective electric and magnetic non-linearities. Two coupled non-linear equations for the electric and magnetic amplitudes are obtained. We prove that the description can be reduced to one Lugiato Lefever equation with generalized coefficients. A stability analysis of the homogeneous solution, complemented with numerical integration, shows that any combination of the parameters should correspond to one of three characteristic behaviors.
DEFF Research Database (Denmark)
Pedersen, Preben Terndrup; Jensen, Jørgen Juncher
2009-01-01
-induced loads are evaluated for specific operational profiles. Non-linearity in the wave bending moment is modeled using results derived from a second-order strip theory and water entry solutions for wedge type sections. Hence, bow flare slamming is accounted for through a momentum type of approach....... The stochastic properties of this non-linear response are calculated through a monotonic Hermite transformation. In addition, the impulse loading due to e.g. bottom slamming or a rapid change in bow flare is included using a modal expansion in the two lowest vertical vibration modes. These whipping vibrations...
Kumar, K Vasanth; Sivanesan, S
2005-08-31
Comparison analysis of linear least square method and non-linear method for estimating the isotherm parameters was made using the experimental equilibrium data of safranin onto activated carbon at two different solution temperatures 305 and 313 K. Equilibrium data were fitted to Freundlich, Langmuir and Redlich-Peterson isotherm equations. All the three isotherm equations showed a better fit to the experimental equilibrium data. The results showed that non-linear method could be a better way to obtain the isotherm parameters. Redlich-Peterson isotherm is a special case of Langmuir isotherm when the Redlich-Peterson isotherm constant g was unity.
Directory of Open Access Journals (Sweden)
Kim Gaik Tay
2010-04-01
Full Text Available In the present work, by considering the artery as a prestressed thin-walled elastic tube with a symmetrical stenosis and the blood as an incompressible viscous fluid, we have studied the amplitude modulation of nonlinear waves in such a composite medium through the use of the reductive perturbation method [23]. The governing evolutions can be reduced to the dissipative non-linear Schrodinger (NLS equation with variable coefficient. The progressive wave solution to the above non-linear evolution equation is then sought.
Mustafa, M.; Khan, Junaid Ahmad
2015-07-01
Present work deals with the magneto-hydro-dynamic flow and heat transfer of Casson nanofluid over a non-linearly stretching sheet. Non-linear temperature distribution across the sheet is considered. More physically acceptable model of passively controlled wall nanoparticle volume fraction is accounted. The arising mathematical problem is governed by interesting parameters which include Casson fluid parameter, magnetic field parameter, power-law index, Brownian motion parameter, thermophoresis parameter, Prandtl number and Schmidt number. Numerical solutions are computed through fourth-fifth-order-Runge-Kutta integration approach combined with the shooting technique. Both temperature and nanoparticle volume fraction are increasing functions of Casson fluid parameter.
Grooms, Ian
2014-01-01
The non-hydrostatic, quasigeostrophic approximation for rapidly rotating Rayleigh-B\\'enard convection admits a class of exact `single mode' solutions. These solutions correspond to steady laminar convection with a separable structure consisting of a horizontal planform characterized by a single wavenumber multiplied by a vertical amplitude profile, with the latter given as the solution of a nonlinear boundary value problem. The heat transport associated with these solutions is studied in the regime of strong thermal forcing (large reduced Rayleigh number $\\widetilde{Ra}$). It is shown that the Nusselt number $Nu$, a nondimensional measure of the efficiency of heat transport by convection, for this class of solutions is bounded below by $Nu\\gtrsim \\widetilde{Ra}^{3/2}$, independent of the Prandtl number, in the limit of large reduced Rayleigh number. Matching upper bounds include only logarithmic corrections, showing the accuracy of the estimate. Numerical solutions of the nonlinear boundary value problem for ...
Spectral coupling issues in a two-degree-of-freedom system with clearance non-linearities
Padmanabhan, C.; Singh, R.
1992-06-01
In an earlier study [14], the frequency response characteristics of a multi-degree-of-freedom system with clearance non-linearities were presented. The current study is an extension of this prior work and deals specifically with the issue of dynamic interactions between resonances. The harmonic balance method, digital solutions and analog computer simulation are used to investigate a two-degree-of-freedom system under a mean load, when subjected to sinusoidal excitations. The existence of harmonic, periodic and chaotic solutions is demonstrated using digital simulation. The method of harmonic balance is employed to construct approximate solutions at the excitation frequency which are then used to classify weak, moderate and strong non-linear spectral interactions. The effects of parameters such as damping ratio, mean load, alternating load and frequency spacing between the resonances have been quantified. The applicability of the methodology is demonstrated through the following practical examples: (i) neutral gear rattle in an automotive transmission system; and (ii) steady state characteristics of a spur gear pair with backlash. In the second case, measured dynamic transmission error data at the gear mesh frequency are used to investigate spectral interactions. Limitations associated with solution methods and interaction classification schemes are also discussed.
Global non-linear effect of temperature on economic production.
Burke, Marshall; Hsiang, Solomon M; Miguel, Edward
2015-11-12
Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.
Global non-linear effect of temperature on economic production
Burke, Marshall; Hsiang, Solomon M.; Miguel, Edward
2015-11-01
Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.
Institute of Scientific and Technical Information of China (English)
张佳华; 王成洋
2015-01-01
On the basis of upper bound theorem, non-associated flow rule and non-linear failure criterion were considered together. The modified shear strength parameters of materials were obtained with the help of the tangent method. Employing the virtual power principle and strength reduction technique, the effects of dilatancy of materials, non-linear failure criterion, pore water pressure, surface loads and buried depth, on the stability of shallow tunnel were studied. In order to validate the effectiveness of the proposed approach, the solutions in the present work agree well with the existing results when the non-associated flow rule is reduced to the associated flow rule and the non-linear failure criterion is degenerated to the linear failure criterion. Compared with dilatancy of materials, the non-linear failure criterion exerts greater impact on the stability of shallow tunnels. The safety factor of shallow tunnels decreases and the failure surface expands outward when the dilatancy coefficient decreases. While the increase of nonlinear coefficient, the pore water pressure coefficient, the surface load and the buried depth results in the small safety factor. Therefore, the dilatancy as well as non-linear failure criterion should be taken into account in the design of shallow tunnel supporting structure. The supporting structure must be reinforced promptly to prevent potential mud from gushing or collapse accident in the areas with abundant pore water, large surface load or buried depth.
Non-linear DSGE Models and The Optimized Particle Filter
DEFF Research Database (Denmark)
Andreasen, Martin Møller
This paper improves the accuracy and speed of particle filtering for non-linear DSGE models with potentially non-normal shocks. This is done by introducing a new proposal distribution which i) incorporates information from new observables and ii) has a small optimization step that minimizes...... the distance to the optimal proposal distribution. A particle filter with this proposal distribution is shown to deliver a high level of accuracy even with relatively few particles, and this filter is therefore much more efficient than the standard particle filter....
Hierarchical Non-linear Image Registration Integrating Deformable Segmentation
Institute of Scientific and Technical Information of China (English)
RAN Xin; QI Fei-hu
2005-01-01
A hierarchical non-linear method for image registration was presented, which integrates image segmentation and registration under a variational framework. An improved deformable model is used to simultaneously segment and register feature from multiple images. The objects in the image pair are segmented by evolving a single contour and meanwhile the parameters of affine registration transformation are found out. After that, a contour-constrained elastic registration is applied to register the images correctly. The experimental results indicate that the proposed approach is effective to segment and register medical images.
Non-Linear Dynamics of Saturn’s Rings
Esposito, Larry W.
2015-11-01
Non-linear processes can explain why Saturn’s rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states.Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit.Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like ‘straw’ that can explain the halo structure and spectroscopy: This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn’s rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects
A non-linear UAV altitude PSO-PD control
Orlando, Calogero
2015-12-01
In this work, a nonlinear model based approach is presented for the altitude stabilization of a hexarotor unmanned aerial vehicle (UAV). The mathematical model and control of the hexacopter airframe is presented. To stabilize the system along the vertical direction, a Proportional Derivative (PD) control is taken into account. A particle swarm optimization (PSO) approach is used in this paper to select the optimal parameters of the control algorithm taking into account different objective functions. Simulation sets are performed to carry out the results for the non-linear system to show how the PSO tuned PD controller leads to zero the error of the position along Z earth direction.
Studies for an alternative LHC non-linear collimation system
Lari, L; Boccone, V; Cerutti, F; Versaci, R; Vlachoudis, V; Mereghetti, A; Faus-Golfe, A; Resta-Lopez, J
2012-01-01
A LHC non-linear betatron cleaning collimation system would allow larger gap for the mechanical jaws, reducing as a consequence the collimator-induced impedance, which may limit the LHC beam intensity. In this paper, the performance of the proposed system is analyzed in terms of beam losses distribution around the LHC ring and cleaning efficiency in stable physics condition at 7TeV for Beam1. Moreover, the energy deposition distribution on the machine elements is compared to the present LHC Betatron cleaning collimation system in the Point 7 Insertion Region (IR).
Linear and non-linear perturbations in dark energy models
Escamilla-Rivera, Celia; Fabris, Julio C; Alcaniz, Jailson S
2016-01-01
In this work we discuss observational aspects of three time-dependent parameterisations of the dark energy equation of state $w(z)$. In order to determine the dynamics associated with these models, we calculate their background evolution and perturbations in a scalar field representation. After performing a complete treatment of linear perturbations, we also show that the non-linear contribution of the selected $w(z)$ parameterisations to the matter power spectra is almost the same for all scales, with no significant difference from the predictions of the standard $\\Lambda$CDM model.
S-AMP for non-linear observation models
DEFF Research Database (Denmark)
Cakmak, Burak; Winther, Ole; Fleury, Bernard H.
2015-01-01
Recently we presented the S-AMP approach, an extension of approximate message passing (AMP), to be able to handle general invariant matrix ensembles. In this contribution we extend S-AMP to non-linear observation models. We obtain generalized AMP (GAMP) as the special case when the measurement...... matrix has zero-mean iid Gaussian entries. Our derivation is based upon 1) deriving expectation-propagation-(EP)-like equations from the stationary-points equations of the Gibbs free energy under first- and second-moment constraints and 2) applying additive free convolution in free probability theory...
Non-linear theory of elasticity and optimal design
Ratner, LW
2003-01-01
In order to select an optimal structure among possible similar structures, one needs to compare the elastic behavior of the structures. A new criterion that describes elastic behavior is the rate of change of deformation. Using this criterion, the safe dimensions of a structure that are required by the stress distributed in a structure can be calculated. The new non-linear theory of elasticity allows one to determine the actual individual limit of elasticity/failure of a structure using a simple non-destructive method of measurement of deformation on the model of a structure while presently it
Non-linear Calibration Leads to Improved Correspondence between Uncertainties
DEFF Research Database (Denmark)
Andersen, Jens Enevold Thaulov
2007-01-01
an investigation of an uncomplicated expression of the non-linear working curve that is well suited to an assessment of predicted uncertainties. At small concentrations, the working curve reduces to a straight line that corresponds to the conventional calibration line. If no interferences were disturbing...... limit theorem, an excellent correspondence was obtained between predicted uncertainties and measured uncertainties. In order to validate the method, experiments were applied of flame atomic absorption spectrometry (FAAS) for the analysis of Co and Pt, and experiments of electrothermal atomic absorption...
Structure/property relationships in non-linear optical materials
Energy Technology Data Exchange (ETDEWEB)
Cole, J.M. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)]|[Durham Univ. (United Kingdom); Howard, J.A.K. [Durham Univ. (United Kingdom); McIntyre, G.J. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.
Non linear analyses of speech and prosody in Asperger's syndrome
DEFF Research Database (Denmark)
Fusaroli, Riccardo; Bang, Dan; Weed, Ethan
and explain this oddness of speech pattern. In this project, we quantify how the speech patterns of people with Asperger’s Syndrome (AS) differ from that of matched controls. To do so, we employed both traditional measures (pitch range and standard deviation, pause duration, and so on) and 2) non......-linear techniques measuring the structure (regularity and complexity) of verbal, prosodic and fluency behaviour. Our aims were (1) to achieve a more fine-grained understanding of the speech patterns in AS than has previously been achieved using traditional, linear measures of prosody and fluency, and (2) to employ...
A discrete homotopy perturbation method for non-linear Schrodinger equation
Directory of Open Access Journals (Sweden)
H. A. Wahab
2015-12-01
Full Text Available A general analysis is made by homotopy perturbation method while taking the advantages of the initial guess, appearance of the embedding parameter, different choices of the linear operator to the approximated solution to the non-linear Schrodinger equation. We are not dependent upon the Adomian polynomials and find the linear forms of the components without these calculations. The discretised forms of the nonlinear Schrodinger equation allow us whether to apply any numerical technique on the discritisation forms or proceed for perturbation solution of the problem. The discretised forms obtained by constructed homotopy provide the linear parts of the components of the solution series and hence a new discretised form is obtained. The general discretised form for the NLSE allows us to choose any initial guess and the solution in the closed form.
Thermodynamic analysis of non-linear Reissner-Nordstrom black holes
Cembranos, Jose A R; Jarillo, Javier
2015-01-01
In the present article we study the Inverse Electrodynamics Model. This model is a gauge and parity invariant non-linear Electrodynamics theory, which respects the conformal invariance of standard Electrodynamics. This modified Electrodynamics model, when minimally coupled to General Relativity, is compatible with static and spherically symmetric Reissner-Nordstrom-like black-hole solutions. However, these black-hole solutions present more complex thermodynamic properties than their Reissner-Nordstrom black-hole solutions counterparts in standard Electrodynamics. In particular, in the Inverse Model a new stability region, with both the heat capacity and the free energy negative, arises. Moreover, unlike the scenario in standard Electrodynamics, a sole transition phase is possible for a suitable choice in the set of parameters of these solutions.
Non-linear waves in heterogeneous elastic rods via homogenization
Quezada de Luna, Manuel
2012-03-01
We consider the propagation of a planar loop on a heterogeneous elastic rod with a periodic microstructure consisting of two alternating homogeneous regions with different material properties. The analysis is carried out using a second-order homogenization theory based on a multiple scale asymptotic expansion. © 2011 Elsevier Ltd. All rights reserved.
Composite asymptotic expansions
Fruchard, Augustin
2013-01-01
The purpose of these lecture notes is to develop a theory of asymptotic expansions for functions involving two variables, while at the same time using functions involving one variable and functions of the quotient of these two variables. Such composite asymptotic expansions (CAsEs) are particularly well-suited to describing solutions of singularly perturbed ordinary differential equations near turning points. CAsEs imply inner and outer expansions near turning points. Thus our approach is closely related to the method of matched asymptotic expansions. CAsEs offer two unique advantages, however. First, they provide uniform expansions near a turning point and away from it. Second, a Gevrey version of CAsEs is available and detailed in the lecture notes. Three problems are presented in which CAsEs are useful. The first application concerns canard solutions near a multiple turning point. The second application concerns so-called non-smooth or angular canard solutions. Finally an Ackerberg-O’Malley resonance pro...
Uniqueness of non-linear ground states for fractional Laplacians in R
DEFF Research Database (Denmark)
Frank, Rupert L.; Lenzmann, Enno
2013-01-01
We prove uniqueness of ground state solutions Q = Q(|x|) ≥ 0 of the non-linear equation (−Δ)sQ+Q−Qα+1=0inR,where 0 ... recently raised by Kenig–Martel–Robbiano and we generalize (by completely different techniques) the specific uniqueness result obtained by Amick and Toland for s=12 and α = 1 in [5] for the Benjamin–Ono equation. As a technical key result in this paper, we show that the associated linearized operator L...... Benjamin–Ono (BO) and Benjamin–Bona–Mahony (BBM) water wave equations....
On the theory of a non-linear neutral scalar field with spontaneously broken symmetry
Poluektov, Yu M
2015-01-01
On the example of a real scalar field, an approach to quantization of non-linear fields and construction of the perturbation theory with account of spontaneous symmetry breaking is proposed. The method is based on using as the main approximation of the relativistic self-consistent field model, in which the influence of vacuum fluctuations is taken into account in constructing the one-particle states. The solutions of the self-consistent equations determine possible states, which also include the states with broken symmetries. Different states of the field are matched to particles, whose masses are determined by both parameters of the Lagrangian and vacuum fluctuations.
Scaling effects in a non-linear electromagnetic energy harvester for wearable sensors
Geisler, M.; Boisseau, S.; Perez, M.; Ait-Ali, I.; Perraud, S.
2016-11-01
In the field of inertial energy harvesters targeting human mechanical energy, the ergonomics of the solutions impose to find the best compromise between dimensions reduction and electrical performance. In this paper, we study the properties of a non-linear electromagnetic generator at different scales, by performing simulations based on an experimentally validated model and real human acceleration recordings. The results display that the output power of the structure is roughly proportional to its scaling factor raised to the power of five, which indicates that this system is more relevant at lengths over a few centimetres.
Integral Invariance and Non-linearity Reduction for Proliferating Vorticity Scales in Fluid Dynamics
Lam, F
2013-01-01
A vorticity theory for incompressible fluid flows in the absence of solid boundaries is proposed. Some apriori bounds are established. They are used in an interpolation theory to show the well-posedness of the vorticity Cauchy problem. A non-linear integral equation for vorticity is derived and its solution is expressed in an expansion. Interpretations of flow evolutions starting from given initial data are given and elaborated. The kinetic theory for Maxwellian molecules with cut-off is revisited in order to link microscopic properties to flow characters on the continuum.
An Adaptive Non-Linear Map and Its Application
Institute of Scientific and Technical Information of China (English)
YAN Xuefeng
2006-01-01
A novel adaptive non-linear mapping (ANLM),integrating an adaptive mapping error (AME) with a chaosgenetic algorithm (CGA) including chaotic variable, was proposed to overcome the deficiencies of non-linear mapping (NLM). The value of AME weight factor is determined according to the relative deviation square of distance between the two mapping points and the corresponding original objects distance. The larger the relative deviation square between two distances is, the larger the value of the corresponding weight factor is. Due to chaotic mapping operator, the evolutional process of CGA makes the individuals of subgenerations distributed ergodically in the defined space and circumvents the premature of the individuals of subgenerations. The comparison results demonstrated that the whole performance of CGA is better than that of traditional genetic algorithm. Furthermore, a typical example of mapping eight-dimensional olive oil samples onto two-dimensional plane was employed to verify the effectiveness of ANLM. The results showed that the topology-preserving map obtained by ANLM can well represent the classification of original objects and is much better than that obtained by NLM.
Non-linear leak currents affect mammalian neuron physiology
Directory of Open Access Journals (Sweden)
Shiwei eHuang
2015-11-01
Full Text Available In their seminal works on squid giant axons, Hodgkin and Huxley approximated the membrane leak current as Ohmic, i.e. linear, since in their preparation, sub-threshold current rectification due to the influence of ionic concentration is negligible. Most studies on mammalian neurons have made the same, largely untested, assumption. Here we show that the membrane time constant and input resistance of mammalian neurons (when other major voltage-sensitive and ligand-gated ionic currents are discounted varies non-linearly with membrane voltage, following the prediction of a Goldman-Hodgkin-Katz-based passive membrane model. The model predicts that under such conditions, the time constant/input resistance-voltage relationship will linearize if the concentration differences across the cell membrane are reduced. These properties were observed in patch-clamp recordings of cerebellar Purkinje neurons (in the presence of pharmacological blockers of other background ionic currents and were more prominent in the sub-threshold region of the membrane potential. Model simulations showed that the non-linear leak affects voltage-clamp recordings and reduces temporal summation of excitatory synaptic input. Together, our results demonstrate the importance of trans-membrane ionic concentration in defining the functional properties of the passive membrane in mammalian neurons as well as other excitable cells.
Non-linear Plasma Wake Growth of Electron Holes
Hutchinson, I H; Zhou, C
2015-01-01
An object's wake in a plasma with small Debye length that drifts \\emph{across} the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind wake and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable...
Left-Right Non-Linear Dynamical Higgs
Shu, Jing; Yepes, Juan
2016-12-01
All the possible CP-conserving non-linear operators up to the p4-order in the Lagrangian expansion are analysed here for the left-right symmetric model in the non-linear electroweak chiral context coupled to a light dynamical Higgs. The low energy effects will be triggered by an emerging new physics field content in the nature, more specifically, from spin-1 resonances sourced by the straightforward extension of the SM local gauge symmetry to the larger local group SU(2)L × SU(2)R × U(1)B-L. Low energy phenomenology will be altered by integrating out the resonances from the physical spectrum, being manifested through induced corrections onto the left handed operators. Such modifications are weighted by powers of the scales ratio implied by the symmetries of the model and will determine the size of the effective operator basis to be used. The recently observed diboson excess around the invariant mass 1.8 TeV-2 TeV entails a scale suppression that suggests to encode the low energy effects via a much smaller set of effective operators. J. Y. also acknowledges KITPC financial support during the completion of this work
Non Linear Analysis of MPPT for Power Quality Improvement
Directory of Open Access Journals (Sweden)
S. Sankar
2015-08-01
Full Text Available In this study the conventional inverter interfacing renewable energy sources with the grid, without any additional hardware cost. Here, the main idea is the maximum utilization of inverter rating which is most of the time underutilized due to intermittent nature of RES. Based on the non-linear characteristics of PV, these thesis designs a VSS controller to realize the maximum power output of PV arrays. The output power from renewable energy sources fluctuates because of weather variations. This study proposes an effective power quality control strategy of renewable energy sources connected to power system using Photovoltaic (PV array. If the main controller used is a PR controller, any dc offset in a control loop will propagate through the system and the inverter terminal voltage will have a nonzero average value. In this strategy both load and inverter current sensing is required to compensate the load current harmonics. The non-linear load current harmonics may result in voltage harmonics and can create a serious PQ problem in the power system network.
Charged relativistic fluids and non-linear electrodynamics
Dereli, T.; Tucker, R. W.
2010-01-01
The electromagnetic fields in Maxwell's theory satisfy linear equations in the classical vacuum. This is modified in classical non-linear electrodynamic theories. To date there has been little experimental evidence that any of these modified theories are tenable. However with the advent of high-intensity lasers and powerful laboratory magnetic fields this situation may be changing. We argue that an approach involving the self-consistent relativistic motion of a smooth fluid-like distribution of matter (composed of a large number of charged or neutral particles) in an electromagnetic field offers a viable theoretical framework in which to explore the experimental consequences of non-linear electrodynamics. We construct such a model based on the theory of Born and Infeld and suggest that a simple laboratory experiment involving the propagation of light in a static magnetic field could be used to place bounds on the fundamental coupling in that theory. Such a framework has many applications including a new description of the motion of particles in modern accelerators and plasmas as well as phenomena in astrophysical contexts such as in the environment of magnetars, quasars and gamma-ray bursts.
Primordial black holes in linear and non-linear regimes
Allahyari, Alireza; Abolhasani, Ali Akbar
2016-01-01
Using the concept of apparent horizon for dynamical black holes, we revisit the formation of primordial black holes (PBH) in the early universe for both linear and non-linear regimes. First, we develop the perturbation theory for spherically symmetric spacetimes to study the formation of spherical PBHs in linear regime and we fix two gauges. We also introduce a well defined gauge invariant quantity for the expansion. Using this quantity, we argue that PBHs do not form in the linear regime. Finally, we study the non-linear regime. We adopt the spherical collapse picture by taking a closed FRW model in the radiation dominated era to investigate PBH formation. Taking the initial condition of the spherical collapse from the linear theory of perturbations, we allow for both density and velocity perturbations. Our model gives a constraint on the velocity perturbation. This model also predicts that the apparent horizon of PBHs forms when $\\delta > 3$. Applying the sound horizon constraint, we have shown the threshol...
Parameter Scaling in Non-Linear Microwave Tomography
DEFF Research Database (Denmark)
Jensen, Peter Damsgaard; Rubæk, Tonny; Talcoth, Oskar;
2012-01-01
Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when the imag......Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when...... the imaging problem is formulated. Under such conditions, microwave imaging systems will most often be considerably more sensitive to changes in the electromagnetic properties in certain regions of the breast. The result is that the parameters might not be reconstructed correctly in the less sensitive regions...... introduced as a measure of the sensitivity. The scaling of the parameters is shown to improve performance of the microwave imaging system when applied to reconstruction of images from 2-D simulated data and measurement data....
The Linear-Non-Linear Frontier for the Goldstone Higgs
Energy Technology Data Exchange (ETDEWEB)
Gavela, M. B. [Madrid, IFT; Kanshin, K. [Padua U.; Machado, P. A.N. [Madrid, IFT; Saa, S. [Madrid, IFT
2016-10-25
The minimal $SO(5)/SO(4)$ sigma model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone boson ancestry. Varying the $\\sigma$ mass allows to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy fermion ultraviolet completions. In addition, one particular fermionic completion is explored in detail, obtaining the corresponding leading low-energy fermionic operators.
Perturbative Treatment of the Non-Linear q-Schrödinger and q-Klein–Gordon Equations
Directory of Open Access Journals (Sweden)
Javier Zamora
2016-12-01
Full Text Available Interesting non-linear generalization of both Schrödinger’s and Klein–Gordon’s equations have been recently advanced by Tsallis, Rego-Monteiro and Tsallis (NRT in Nobre et al. (Phys. Rev. Lett. 2011, 106, 140601. There is much current activity going on in this area. The non-linearity is governed by a real parameter q. Empiric hints suggest that the ensuing non-linear q-Schrödinger and q-Klein–Gordon equations are a natural manifestations of very high energy phenomena, as verified by LHC-experiments. This happens for q − values close to unity (Plastino et al. (Nucl. Phys. A 2016, 955, 16–26, Nucl. Phys. A 2016, 948, 19–27. It might thus be difficult for q-values close to unity to ascertain whether one is dealing with solutions to the ordinary Schrödinger equation (whose free particle solutions are exponentials and for which q = 1 or with its NRT non-linear q-generalizations, whose free particle solutions are q-exponentials. In this work, we provide a careful analysis of the q ∼ 1 instance via a perturbative analysis of the NRT equations.
Khachatryan, Kh A.
2015-04-01
We study certain classes of non-linear Hammerstein integral equations on the semi-axis and the whole line. These classes of equations arise in the theory of radiative transfer in nuclear reactors, in the kinetic theory of gases, and for travelling waves in non-linear Richer competition systems. By combining special iteration methods with the methods of construction of invariant cone segments for the appropriate non-linear operator, we are able to prove constructive existence theorems for positive solutions in various function spaces. We give illustrative examples of equations satisfying all the hypotheses of our theorems.
Non-linear dimensionality reduction of signaling networks
Directory of Open Access Journals (Sweden)
Ivakhno Sergii
2007-06-01
Full Text Available Abstract Background Systems wide modeling and analysis of signaling networks is essential for understanding complex cellular behaviors, such as the biphasic responses to different combinations of cytokines and growth factors. For example, tumor necrosis factor (TNF can act as a proapoptotic or prosurvival factor depending on its concentration, the current state of signaling network and the presence of other cytokines. To understand combinatorial regulation in such systems, new computational approaches are required that can take into account non-linear interactions in signaling networks and provide tools for clustering, visualization and predictive modeling. Results Here we extended and applied an unsupervised non-linear dimensionality reduction approach, Isomap, to find clusters of similar treatment conditions in two cell signaling networks: (I apoptosis signaling network in human epithelial cancer cells treated with different combinations of TNF, epidermal growth factor (EGF and insulin and (II combination of signal transduction pathways stimulated by 21 different ligands based on AfCS double ligand screen data. For the analysis of the apoptosis signaling network we used the Cytokine compendium dataset where activity and concentration of 19 intracellular signaling molecules were measured to characterise apoptotic response to TNF, EGF and insulin. By projecting the original 19-dimensional space of intracellular signals into a low-dimensional space, Isomap was able to reconstruct clusters corresponding to different cytokine treatments that were identified with graph-based clustering. In comparison, Principal Component Analysis (PCA and Partial Least Squares – Discriminant analysis (PLS-DA were unable to find biologically meaningful clusters. We also showed that by using Isomap components for supervised classification with k-nearest neighbor (k-NN and quadratic discriminant analysis (QDA, apoptosis intensity can be predicted for different
Directory of Open Access Journals (Sweden)
J. Diblík
2012-01-01
Full Text Available We study a frequently investigated class of linear difference equations Δv(n=−p(nv(n−k with a positive coefficient p(n and a single delay k. Recently, it was proved that if the function p(n is bounded above by a certain function, then there exists a positive vanishing solution of the considered equation, and the upper bound was found. Here we improve this result by finding even the lower bound for the positive solution, supposing the function p(n is bounded above and below by certain functions.
Directory of Open Access Journals (Sweden)
Imed Bachar
2014-01-01
Full Text Available We are interested in the following fractional boundary value problem: Dαu(t+atuσ=0, t∈(0,∞, limt→0t2-αu(t=0, limt→∞t1-αu(t=0, where 1<α<2, σ∈(-1,1, Dα is the standard Riemann-Liouville fractional derivative, and a is a nonnegative continuous function on (0,∞ satisfying some appropriate assumptions related to Karamata regular variation theory. Using the Schauder fixed point theorem, we prove the existence and the uniqueness of a positive solution. We also give a global behavior of such solution.
Implicit objective integration for sensitivity analysis in non-linear solid mechanics
Leu, Liang-Jeno; Mukherjee, Subrata
1994-11-01
Incrementally objective integration schemes are proposed for the accurate and efficient determination of design sensitivity coefficients (DSCs) for solid mechanics problems with both material and geometrical non-linearities. The derivation of these schemes are based on the direct differentiation of objective schemes that are used in stress analysis for problems of this class. Two widely used objective stress rates, the Jaumann rate and the Green-Naghdi rate, are considered here within the only minor changes of the integration scheme. Numerical results are presented for a simple shear problem with different material consititutive laws, including a hypoelastic model and a isotropic viscoplastic model, for these two objective rates. The num0rical results are compared with analytical solutions or direct integration solutions. The close agreement among these solutions demonstrates the accuracy and efficiency of the proposed scheme.
Non-linear diffusion in RD and in Hilbert Spaces, a Cylindrical/Functional Integral Study
Botelho, Luiz Carlos Lobato
2010-01-01
We present a proof for the existence and uniqueness of weak solutions for a cut-off and non cut-off model of non-linear diffusion equation in finite-dimensional space RD useful for modelling flows on porous medium with saturation, turbulent advection, etc. - and subject to deterministic or stochastic (white noise) stirrings. In order to achieve such goal, we use the powerful results of compacity on functional Lp spaces (the Aubin-Lion Theorem). We use such results to write a path-integral solution for this problem. Additionally, we present the rigourous functional integral solutions for the Linear Diffussion equation defined in Infinite-Dimensional Spaces (Separable Hilbert Spaces). These further results are presented in order to be useful to understand Polymer cylindrical surfaces probability distributions and functionals on String theory.
Galiev, Sh. U.
2003-08-01
A non-linear theory of transresonant wave phenomena based on consideration of perturbed wave equations is presented. In particular, the waves in a surface layer of a porous compressible viscoelastoplastic material are considered. For such layers the 3-D equations of deformable media are reduced to 1-D or 2-D perturbed wave equations. A set of approximate, closed-form, general solutions of these equations are presented, which take into account non-linear, dissipative, dispersive, topographic and boundary effects. Then resonant, site and liquefaction effects are analysed. Resonance is considered as a global parameter. Transresonant evolution of the equations is studied. Within the resonant band, utt~a20∇2u and the perturbed wave equations transform into non-linear diffusion equations, either to a basic highly non-linear ordinary differential equation or to the basic algebraic equation for travelling waves. Resonances can destroy predictability and wave reversibility. Surface topography (valleys, islands, etc.) is considered as a series of earthquake-induced resonators. A non-linear transresonant evolution of smooth seismic waves into shock-, jet- and mushroom-like waves and vortices is studied. The amplitude of the resonant waves may be of the order of the square or cube root of the exciting amplitude. Therefore, seismic waves with a moderate amplitude can be amplified very strongly in natural resonators, whereas strong seismic waves can be attenuated. Reports of the 1835 February 20 Chilean earthquake given by Charles Darwin are qualitatively examined using the non-linear theory. The theory qualitatively describes the `shivering' of islands and ridges, volcano spouts and generation of tsunami-like waves and supports Darwin's opinion that these events were part of a single phenomenon. Same-day earthquake/eruption events and catastrophic amplification of seismic waves near the edge of sediment layers are discussed. At the same time the theory can account for recent
Bhardwaj, Anupam; Kanbur, Shashi M.; Macri, Lucas M.; Singh, Harinder P.; Ngeow, Chow-Choong; Ishida, Emille E. O.
2016-04-01
We present a detailed statistical analysis of possible non-linearities in the period-luminosity (PL), period-Wesenheit (PW) and period-colour (PC) relations for Cepheid variables in the Large Magellanic Cloud (LMC) at optical (VI) and near-infrared (JHKs) wavelengths. We test for the presence of possible non-linearities and determine their statistical significance by applying a variety of robust statistical tests (F-test, random-walk, testimator and the Davies test) to optical data from third phase of the Optical Gravitational Lensing Experiment and near-infrared data from Large Magellanic Cloud Near-Infrared Synoptic Survey. For fundamental-mode Cepheids, we find that the optical PL, PW and PC relations are non-linear at 10 d. The near-infrared PL and the W^H_{V,I} relations are non-linear around 18 d; this break is attributed to a distinct variation in mean Fourier amplitude parameters near this period for longer wavelengths as compared to optical bands. The near-infrared PW relations are also non-linear except for the W_{H,K_s} relation. For first-overtone mode Cepheids, a significant change in the slope of PL, PW and PC relations is found around 2.5 d only at optical wavelengths. We determine a global slope of -3.212 ± 0.013 for the W^H_{V,I} relation by combining our LMC data with observations of Cepheids in Supernovae host galaxies. We find this slope to be consistent with the corresponding LMC relation at short periods, and significantly different to the long-period value. We do not find any significant difference in the slope of the global-fit solution using a linear or non-linear LMC PL relation as calibrator, but the linear version provides a two times better constraint on the slope and metallicity coefficient.
Asymptotically hyperbolic connections
Fine, Joel; Krasnov, Kirill; Scarinci, Carlos
2015-01-01
General Relativity in 4 dimensions can be equivalently described as a dynamical theory of SO(3)-connections rather than metrics. We introduce the notion of asymptotically hyperbolic connections, and work out an analog of the Fefferman-Graham expansion in the language of connections. As in the metric setup, one can solve the arising "evolution" equations order by order in the expansion in powers of the radial coordinate. The solution in the connection setting is arguably simpler, and very straightforward algebraic manipulations allow one to see how the obstruction appears at third order in the expansion. Another interesting feature of the connection formulation is that the "counter terms" required in the computation of the renormalised volume all combine into the Chern-Simons functional of the restriction of the connection to the boundary. As the Chern-Simons invariant is only defined modulo large gauge transformations, the requirement that the path integral over asymptotically hyperbolic connections is well-d...
Responding to non-linear internationalisation of public policy
DEFF Research Database (Denmark)
Daugbjerg, Carsten
2016-01-01
The transfer of regulatory authority to international organisations can initiate domestic policy reform. The internationalisation process can be a one-off transfer of authority to international institutions or an ongoing process. In the latter situation, the level of internationalisation may...... be gradually increased by expanding the regulatory scope of the regime or by deepening it. However, internationalisation processes may also involve stalemate or even reversal. How do domestic policy makers respond to such non-linear internationalisation? To answer this question, this paper analyzes...... the relationship between developments in the GATT and WTO farm trade negotiations and the reform trajectory of the EU's Common Agricultural Policy (CAP) from the early 1990s to 2013. Until 2008, the EU gradually changed the support instruments of the CAP to limit their trade distorting impact. After the Doha Round...
Non linear prompt neutron kinetics in multigroup diffusion theory
Energy Technology Data Exchange (ETDEWEB)
Ghatak, Ajoy Kumar
1963-06-15
It is shown that in the usual point kinetics formulation of the Fuch's model the assumption that the basic quantity is the ratio of prompt negative temperature coefficient to prompt neutron lifetime is correct in the limit that the higher mode effects can be neglected. The criticality calculation needed to calculate this coefficient is defined. The effect on the Fuch's model when the heat capacity and temperature coefficient vary linearly with temperature and delayed neutrons are taken into account is considered. The higher mode contributions in the presence of temperature feed-back effects are estimated. A method for calculating the space-dependent effects in non-linear kinetics is outlined. An analysis of the transient behavior of the TREAT reactor is also given. (C.E.S.)
Non-linear rheology in a model biological tissue
Matoz-Fernandez, D A; Barrat, Jean-Louis; Bertin, Eric; Martens, Kirsten
2016-01-01
Mechanical signaling plays a key role in biological processes like embryo development and cancer growth. One prominent way to probe mechanical properties of tissues is to study their response to externally applied forces. Using a particle-based model featuring random apoptosis and environment-dependent division rates, we evidence a crossover from linear flow to a shear-thinning regime with increasing shear rate. To rationalize this non-linear flow we derive a theoretical mean-field scenario that accounts for the interplay of mechanical and active noise in local stresses. These noises are respectively generated by the elastic response of the cell matrix to cell rearrangements and by the internal activity.
Robust C subroutines for non-linear optimization
DEFF Research Database (Denmark)
Brock, Pernille; Madsen, Kaj; Nielsen, Hans Bruun
2004-01-01
This report presents a package of robust and easy-to-use C subroutines for solving unconstrained and constrained non-linear optimization problems. The intention is that the routines should use the currently best algorithms available. All routines have standardized calls, and the user does not have...... by changing 1 to 0. The present report is a new and updated version of a previous report NI-91-03 with the same title, [16]. Both the previous and the present report describe a collection of subroutines, which have been translated from Fortran to C. The reason for writing the present report is that some...... of the C subroutines have been replaced by more effective and robust versions translated from the original Fortran subroutines to C by the Bandler Group, see [1]. Also the test examples have been modi ed to some extent. For a description of the original Fortran subroutines see the report [17]. The software...
Non Linear Lorentz Transformation and Doubly Special Relativity
Atehortua, A N; Mira, J M; Vanegas, N
2012-01-01
We generate non-linear representations of the Lorentz Group by unitary transformation over the Lorentz generators. To do that we use deformed scale transformations by introducing momentum-depending parameters. The momentum operator transformation is found to be equivalent to a particle momentum transformation. The configuration space transformation is found to depend on the old momentum operator and we show that this transformation generates models with two scales, one for the velocity ($c$) and another one for the energy. A Lagrangian formalism is proposed for these models and an effective metric for the deformed Minkowski space is found. We show that the Smolin model is one in a family of doubly special relativity. Finally we construct an ansatz for the quantization of such theories.
Non-linear PIC simulation in a penning trap
Energy Technology Data Exchange (ETDEWEB)
Delzanno, G. L. (Gian L.); Lapenta, G. M. (Giovanni M.); Finn, J. M. (John M.)
2001-01-01
We study the non-linear dynamics of a Penning trap plasma, including the effect of the finite length and end curvature of the plasma column. A new cylindrical PIC code, called KANDINSKY, has been implemented by using a new interpolation scheme. The principal idea is to calculate the volume of each cell from a particle volume, in the same manner as it is done for the cell charge. With this new method, the density is conserved along streamlines and artificial sources of compressibility are avoided. The code has been validated with a reference Eulerian fluid code. We compare the dynamics of three different models: a model with compression effects, the standard Euler model and a geophysical fluid dynamics model. The results of our investigation prove that Penning traps can really be used to simulate geophysical fluids.
Non-Gaussianity vs. non-linearity of cosmological perturbations
Verde, L
2001-01-01
Following the discovery of the CMB, the hot big-bang model has become the standard cosmological model. In this theory, small primordial fluctuations are subsequently amplified by gravity to form the large-scale structure seen today. Different theories for unified models of particle physics, lead to different predictions for the statistical properties of the primordial fluctuations, that can be divided in two classes: gaussian and non-gaussian. Convincing evidence against or for gaussian initial conditions would rule out many scenarios and point us towards a physical theory for the origin of structures. The statistical distribution of cosmological perturbations, as we observe them, can deviate from the gaussian distribution in several different ways. Even if perturbations start off gaussian, non-linear gravitational evolution can introduce non-gaussian features. Additionally, our knowledge of the Universe comes principally from the study of luminous material such as galaxies, but these might not be faithful tr...
The mathematics of non-linear metrics for nested networks
Wu, Rui-Jie; Shi, Gui-Yuan; Zhang, Yi-Cheng; Mariani, Manuel Sebastian
2016-10-01
Numerical analysis of data from international trade and ecological networks has shown that the non-linear fitness-complexity metric is the best candidate to rank nodes by importance in bipartite networks that exhibit a nested structure. Despite its relevance for real networks, the mathematical properties of the metric and its variants remain largely unexplored. Here, we perform an analytic and numeric study of the fitness-complexity metric and a new variant, called minimal extremal metric. We rigorously derive exact expressions for node scores for perfectly nested networks and show that these expressions explain the non-trivial convergence properties of the metrics. A comparison between the fitness-complexity metric and the minimal extremal metric on real data reveals that the latter can produce improved rankings if the input data are reliable.
An empirical evaluation of non-linear trading rules.
Directory of Open Access Journals (Sweden)
Sosvilla-Rivero, Simón
2003-01-01
Full Text Available In this paper we investigate the profitability of non-linear trading rules based on nearest neighbour (NN predictors. Applying this investment strategy to the New York Stock Exchange, our results suggest that, taking into account transaction costs, the NN-based trading rule is superior to both a riskadjusted buy-and-hold strategy and a linear ARIMA-based strategy in terms of returns for all of the years studied (1997-2002. Regarding other profitability measures, the NN-based trading rule yields higher Sharpe ratios than the ARIMA-based strategy for all of the years in the sample except for 2001. As for 2001, in 36 out of the 101 cases considered, the ARIMA-based strategy gives higher Sharpe ratios than those from the NN-trading rule, in 18 cases the opposite is true, and in the remaining 36 cases both strategies yield the same ratios.
Non-linear Kalman filters for calibration in radio interferometry
Tasse, Cyril
2014-01-01
We present a new calibration scheme based on a non-linear version of Kalman filter that aims at estimating the physical terms appearing in the Radio Interferometry Measurement Equation (RIME). We enrich the filter's structure with a tunable data representation model, together with an augmented measurement model for regularization. We show using simulations that it can properly estimate the physical effects appearing in the RIME. We found that this approach is particularly useful in the most extreme cases such as when ionospheric and clock effects are simultaneously present. Combined with the ability to provide prior knowledge on the expected structure of the physical instrumental effects (expected physical state and dynamics), we obtain a fairly cheap algorithm that we believe to be robust, especially in low signal-to-noise regime. Potentially the use of filters and other similar methods can represent an improvement for calibration in radio interferometry, under the condition that the effects corrupting visib...
Hans Hinterreiter’s non-linear transformations
DEFF Research Database (Denmark)
Makovicky, Emil
Hans Hinterreiter (1902-1989) was a Swiss painter, belonging to the Constructivist movement, who spent most of his life in Ibiza, Spain. Since 1930 he occupied himself with the laws of form and colour. Parallel to Escher, he discovered laws of coloured symmetry before crystallographers started...... poster illustrates four different cases of this process, starting always with a plane-group pattern and showing both the application of non-linear transformations and coloured symmetry. In his more complex patterns, two of which are shown on the poster, Hinterreiter created domains of affinely......-step approach that combines plane group patterns with the principles of coloured symmetry and nonlinear transformations, his understanding of crystallographic and non-crystallographic symmetry and a meticulous application of these principles even to the most complex patterns produced a legacy close to the heart...
Hitting probabilities for non-linear systems of stochastic waves
Dalang, Robert C
2012-01-01
We consider a $d$-dimensional random field $u = \\{u(t,x)\\}$ that solves a non-linear system of stochastic wave equations in spatial dimensions $k \\in \\{1,2,3\\}$, driven by a spatially homogeneous Gaussian noise that is white in time. We mainly consider the case where the spatial covariance is given by a Riesz kernel with exponent $\\beta$. Using Malliavin calculus, we establish upper and lower bounds on the probabilities that the random field visits a deterministic subset of $\\IR^d$, in terms, respectively, of Hausdorff measure and Newtonian capacity of this set. The dimension that appears in the Hausdorff measure is close to optimal, and shows that when $d(2-\\beta) > 2(k+1)$, points are polar for $u$. Conversely, in low dimensions $d$, points are not polar. There is however an interval in which the question of polarity of points remains open.
Biometric Authentication System using Non-Linear Chaos
Directory of Open Access Journals (Sweden)
Dr.N.Krishnan
2010-08-01
Full Text Available A major concern nowadays for any Biometric Credential Management System is its potential vulnerability to protect its information sources; i.e. protecting a genuine user’s template from both internal and external threats. These days’ biometric authentication systems face various risks. One of the most serious threats is the ulnerability of the template's database. An attacker with access to a reference template could try to impersonate a legitimate user by reconstructing the biometric sample and by creating a physical spoof.Susceptibility of the database can have a disastrous impact on the whole authentication system. The potential disclosure of digitally stored biometric data raises serious concerns about privacy and data protection. Therefore, we propose a method which would integrate conventional cryptography techniques with biometrics. In this work, we present a biometric crypto system which encrypts the biometric template and the encryption is done by generating pseudo random numbers, based on non-linear dynamics.
Linear and non-linear bias: predictions vs. measurements
Hoffmann, Kai; Gaztanaga, Enrique
2016-01-01
We study the linear and non-linear bias parameters which determine the mapping between the distributions of galaxies and the full matter density fields, comparing different measurements and predictions. Accociating galaxies with dark matter haloes in the MICE Grand Challenge N-body simulation we directly measure the bias parameters by comparing the smoothed density fluctuations of halos and matter in the same region at different positions as a function of smoothing scale. Alternatively we measure the bias parameters by matching the probablility distributions of halo and matter density fluctuations, which can be applied to observations. These direct bias measurements are compared to corresponding measurements from two-point and different third-order correlations, as well as predictions from the peak-background model, which we presented in previous articles using the same data. We find an overall variation of the linear bias measurements and predictions of $\\sim 5 \\%$ with respect to results from two-point corr...
Computational models of signalling networks for non-linear control.
Fuente, Luis A; Lones, Michael A; Turner, Alexander P; Stepney, Susan; Caves, Leo S; Tyrrell, Andy M
2013-05-01
Artificial signalling networks (ASNs) are a computational approach inspired by the signalling processes inside cells that decode outside environmental information. Using evolutionary algorithms to induce complex behaviours, we show how chaotic dynamics in a conservative dynamical system can be controlled. Such dynamics are of particular interest as they mimic the inherent complexity of non-linear physical systems in the real world. Considering the main biological interpretations of cellular signalling, in which complex behaviours and robust cellular responses emerge from the interaction of multiple pathways, we introduce two ASN representations: a stand-alone ASN and a coupled ASN. In particular we note how sophisticated cellular communication mechanisms can lead to effective controllers, where complicated problems can be divided into smaller and independent tasks.
Non-linear Oscillations of Compact Stars and Gravitational Waves
Passamonti, A
2006-01-01
This thesis investigates in the time domain a particular class of second order perturbations of a perfect fluid non-rotating compact star: those arising from the coupling between first order radial and non-radial perturbations. This problem has been treated by developing a gauge invariant formalism based on the 2-parameter perturbation theory (Sopuerta, Bruni and Gualtieri, 2004) where the radial and non-radial perturbations have been separately parameterized. The non-linear perturbations obey inhomogeneous partial differential equations, where the structure of the differential operator is given by the previous perturbative orders and the source terms are quadratic in the first order perturbations. In the exterior spacetime the sources vanish, thus the gravitational wave properties are completely described by the second order Zerilli and Regge-Wheeler functions. As main initial configuration we have considered a first order differentially rotating and radially pulsating star. Although at first perturbative or...
New holographic dark energy model with non-linear interaction
Oliveros, A
2014-01-01
In this paper the cosmological evolution of a holographic dark energy model with a non-linear interaction between the dark energy and dark matter components in a FRW type flat universe is analysed. In this context, the deceleration parameter $q$ and the equation state $w_{\\Lambda}$ are obtained. We found that, as the square of the speed of sound remains positive, the model is stable under perturbations since early times; it also shows that the evolution of the matter and dark energy densities are of the same order for a long period of time, avoiding the so--called coincidence problem. We have also made the correspondence of the model with the dark energy densities and pressures for the quintessence and tachyon fields. From this correspondence we have reconstructed the potential of scalar fields and their dynamics.
Ferrite core non-linearity in coils for magnetic neurostimulation.
RamRakhyani, Anil Kumar; Lazzi, Gianluca
2014-10-01
The need to correctly predict the voltage across terminals of mm-sized coils, with ferrite core, to be employed for magnetic stimulation of the peripheral neural system is the motivation for this work. In such applications, which rely on a capacitive discharge on the coil to realise a transient voltage curve of duration and strength suitable for neural stimulation, the correct modelling of the non-linearity of the ferrite core is critical. A demonstration of how a finite-difference model of the considered coils, which include a model of the current-controlled inductance in the coil, can be used to correctly predict the time-domain voltage waveforms across the terminals of a test coil is presented. Five coils of different dimensions, loaded with ferrite cores, have been fabricated and tested: the measured magnitude and width of the induced pulse are within 10% of simulated values.
Considering Complexity: Toward A Strategy for Non-linear Analysis
Directory of Open Access Journals (Sweden)
Ken Hatt
2009-01-01
Full Text Available This paper explores complexity and a strategy for non-linear analysis with a consistent ontological, epistemological and methodological orientation. Complexity is defined and approaches in the natural sciences, ecosystems research, discursive studies and the social sciences are reviewed. In social science, theoretical efforts associated with problems of social order (Luhmann, critical sociology (Byrne and post-structuralism (Cilliers as well as representative studies are examined. The review concludes that there is need for an approach that will address morphogenesis and facilitate analysis of multilateral mutual causal relations. The remainder of the paper approaches these matters by outlining Archer’s approach to morphogenesis, Maruyama’s morphogenetic casual-loop model of epistemology and illustrating Maruyama’s method for analysis which employs both positive and negative feedback loops. The result is a strategy based on morphogenetic causal loop models that can be used to analyze structuring and the connections through which structures may be reproduced or transformed.
STABILITY, BIFURCATIONS AND CHAOS IN UNEMPLOYMENT NON-LINEAR DYNAMICS
Directory of Open Access Journals (Sweden)
Pagliari Carmen
2013-07-01
Full Text Available The traditional analysis of unemployment in relation to real output dynamics is based on some empirical evidences deducted from Okun’s studies. In particular the so called Okun’s Law is expressed in a linear mathematical formulation, which cannot explain the fluctuation of the variables involved. Linearity is an heavy limit for macroeconomic analysis and especially for every economic growth study which would consider the unemployment rate among the endogenous variables. This paper deals with an introductive study about the role of non-linearity in the investigation of unemployment dynamics. The main idea is the existence of a non-linear relation between the unemployment rate and the gap of GDP growth rate from its trend. The macroeconomic motivation of this idea moves from the consideration of two concatenate effects caused by a variation of the unemployment rate on the real output growth rate. These two effects are concatenate because there is a first effect that generates a secondary one on the same variable. When the unemployment rate changes, the first effect is the variation in the level of production in consequence of the variation in the level of such an important factor as labour force; the secondary effect is a consecutive variation in the level of production caused by the variation in the aggregate demand in consequence of the change of the individual disposal income originated by the previous variation of production itself. In this paper the analysis of unemployment dynamics is carried out by the use of the logistic map and the conditions for the existence of bifurcations (cycles are determined. The study also allows to find the range of variability of some characteristic parameters that might be avoided for not having an absolute unpredictability of unemployment dynamics (deterministic chaos: unpredictability is equivalent to uncontrollability because of the total absence of information about the future value of the variable to
NOLB : Non-linear rigid block normal mode analysis method.
Hoffmann, Alexandre; Grudinin, Sergei
2017-04-05
We present a new conceptually simple and computationally efficient method for non-linear normal mode analysis called NOLB. It relies on the rotations-translations of blocks (RTB) theoretical basis developed by Y.-H. Sanejouand and colleagues. We demonstrate how to physically interpret the eigenvalues computed in the RTB basis in terms of angular and linear velocities applied to the rigid blocks and how to construct a non-linear extrapolation of motion out of these velocities. The key observation of our method is that the angular velocity of a rigid block can be interpreted as the result of an implicit force, such that the motion of the rigid block can be considered as a pure rotation about a certain center. We demonstrate the motions produced with the NOLB method on three different molecular systems and show that some of the lowest frequency normal modes correspond to the biologically relevant motions. For example, NOLB detects the spiral sliding motion of the TALE protein, which is capable of rapid diffusion along its target DNA. Overall, our method produces better structures compared to the standard approach, especially at large deformation amplitudes, as we demonstrate by visual inspection, energy and topology analyses, and also by the MolProbity service validation. Finally, our method is scalable and can be applied to very large molecular systems, such as ribosomes. Standalone executables of the NOLB normal mode analysis method are available at https://team.inria.fr/nano-d/software/nolb-normal-modes. A graphical user interfaces created for the SAMSON software platform will be made available at https: //www.samson-connect.net.
On the formation of shocks of electromagnetic plane waves in non-linear crystals
Christodoulou, Demetrios
2015-01-01
An influential result of F. John states that no genuinely non-linear strictly hyperbolic quasi-linear first order system of partial differential equations in two variables has a global $C^2$-solution for small enough initial data. Inspired by recent work of D. Christodoulou, we revisit John's original proof and extract a more precise description of the behaviour of solutions at the time of shock. We show that John's singular first order quantity, when expressed in characteristic coordinates, remains bounded until the final time, which is then characterised by an inverse density of characteristics tending to zero in one point. Moreover, we study the derivatives of second order, showing again their boundedness when expressed in appropriate coordinates. We also recover John's upper bound for the time of shock formation and complement it with a lower bound. Finally, we apply these results to electromagnetic plane waves in a crystal with no magnetic properties and cubic electric non-linearity in the energy density...
On the formation of shocks of electromagnetic plane waves in non-linear crystals
Christodoulou, Demetrios; Perez, Daniel Raoul
2016-08-01
An influential result of F. John states that no genuinely non-linear strictly hyperbolic quasi-linear first order system of partial differential equations in two variables has a global C2-solution for small enough initial data. Inspired by recent work of D. Christodoulou, we revisit John's original proof and extract a more precise description of the behaviour of solutions at the time of shock. We show that John's singular first order quantity, when expressed in characteristic coordinates, remains bounded until the final time, which is then characterised by an inverse density of characteristics tending to zero in one point. Moreover, we study the derivatives of second order, showing again their boundedness when expressed in appropriate coordinates. We also recover John's upper bound for the time of shock formation and complement it with a lower bound. Finally, we apply these results to electromagnetic plane waves in a crystal with no magnetic properties and cubic electric non-linearity in the energy density, assuming no dispersion.
A finite element perspective on non-linear FFT-based micromechanical simulations
Zeman, Jan; Vondřejc, Jaroslav; Peerlings, Ron H J; Geers, Marc G D
2016-01-01
Fourier solvers have become efficient tools to establish structure-property relations in heterogeneous materials. Introduced as an alternative to the Finite Element (FE) method, they are based on fixed-point solutions of the Lippmann-Schwinger type integral equation. Their computational efficiency results from handling the kernel of this equation by the Fast Fourier Transform (FFT). However, the kernel is derived from an auxiliary homogeneous linear problem, which renders the extension of FFT-based schemes to non-linear problems conceptually difficult. This paper aims to establish a link between FE- and FFT-based methods, in order to develop a solver applicable to general history- and time-dependent material models. For this purpose, we follow the standard steps of the FE method, starting from the weak form, proceeding to the Galerkin discretization and the numerical quadrature, up to the solution of non-linear equilibrium equations by an iterative Newton-Krylov solver. No auxiliary linear problem is thus nee...
Keesman, K.J.
2006-01-01
In this short paper for the panel discussion on ¿Experience and challenges in identification of non-linear systems¿ some major issues with respect to identification of non-linear biochemical and environmental systems are presented.
Rahali, Radouane
2013-03-01
In this paper, we investigate the decay property of a Timoshenko system in thermoelasticity of type III in the whole space where the heat conduction is given by the Green and Naghdi theory. Surprisingly, we show that the coupling of the Timoshenko system with the heat conduction of Green and Naghdi\\'s theory slows down the decay of the solution. In fact we show that the L-2-norm of the solution decays like (1 + t)(-1/8), while in the case of the coupling of the Timoshenko system with the Fourier or Cattaneo heat conduction, the decay rate is of the form (1 + t)(-1/4) [25]. We point out that the decay rate of (1 + t)(-1/8) has been obtained provided that the initial data are in L-1 (R) boolean AND H-s (R); (s >= 2). If the wave speeds of the fi rst two equations are di ff erent, then the decay rate of the solution is of regularity-loss type, that is in this case the previous decay rate can be obtained only under an additional regularity assumption on the initial data. In addition, by restricting the initial data to be in H-s (R) boolean AND L-1,L-gamma (R) with gamma is an element of [0; 1], we can derive faster decay estimates with the decay rate improvement by a factor of t(-gamma/4).
Asymptotically Almost Periodic Mild Solutions of Neutral Differential Equations%一类中立型微分方程的渐近概周期温和解
Institute of Scientific and Technical Information of China (English)
姚慧丽; 李雪鑫; 付作娴
2012-01-01
The research of almost periodic type function is aroused by mathematical workers at home and broad. Especially, it is applied to differential equation. In this paper, the existence of asymptotically almost periodic mild solution for a class of neutral differential equation is discussed by fixed theorem and some knowledge on C0-semigroup. The research is made on the basis of some literature for almost periodic mild solution. Then we expand the scope of the equations and applied the conclusions to more general problems.%概周期型函数的研究受到了国内外越来越多数学工作者的关注,特别是将其应用到微分方程中.利用不动点定理,结合算子半群有关理论,讨论了一类中立型微分方程的渐近概周期温和解的存在性.本文的研究问题是在一些文献对这类方程的概周期温和解研究的基础上进行的,扩大了方程解的范围,这样能够使结论应用到更一般的问题中.
Institute of Scientific and Technical Information of China (English)
张长海; 梁久祯; 刘明珠
2000-01-01
This paper deals with the stability analysis of numerical solutionof linear -methods for delay differential equations. We focuson the linear test equation x(t)=ax(t)+bx(［t］), where a,b areconstants and ［t］ is the largest-integer function. Sufficent conditionsare given for the numerical solution to be asymptotic stable
State-variable analysis of non-linear circuits with a desk computer
Cohen, E.
1981-01-01
State variable analysis was used to analyze the transient performance of non-linear circuits on a desk top computer. The non-linearities considered were not restricted to any circuit element. All that is required for analysis is the relationship defining each non-linearity be known in terms of points on a curve.
Asymptotics of the QMLE for General ARCH(q) Models
DEFF Research Database (Denmark)
Kristensen, Dennis; Rahbek, Anders Christian
2009-01-01
Asymptotics of the QMLE for Non-Linear ARCH Models Dennis Kristensen, Columbia University Anders Rahbek, University of Copenhagen Abstract Asymptotic properties of the quasi-maximum likelihood estimator (QMLE) for non-linear ARCH(q) models -- including for example Asymmetric Power ARCH and log......-ARCH -- are derived. Strong consistency is established under the assumptions that the ARCH process is geometrically ergodic, the conditional variance function has a finite log-moment, and finite second moment of the rescaled error. Asymptotic normality of the estimator is established under the additional assumption...... that certain ratios involving the conditional variance function are suitably bounded, and that the rescaled errors have little more than fourth moment. We verify our general conditions, including identification, for a wide range of leading specific ARCH models....
Qin, Yuming
2016-01-01
This book presents recent findings on the global existence, the uniqueness and the large-time behavior of global solutions of thermo(vis)coelastic systems and related models arising in physics, mechanics and materials science such as thermoviscoelastic systems, thermoelastic systems of types II and III, as well as Timoshenko-type systems with past history. Part of the book is based on the research conducted by the authors and their collaborators in recent years. The book will benefit interested beginners in the field and experts alike.
Asymptotic freedom, asymptotic flatness and cosmology
Kiritsis, Elias
2013-01-01
Holographic RG flows in some cases are known to be related to cosmological solutions. In this paper another example of such correspondence is provided. Holographic RG flows giving rise to asymptotically-free $\\beta$-functions have been analyzed in connection with holographic models of QCD. They are shown upon Wick rotation to provide a large class of inflationary models with logarithmically soft inflaton potentials. The scalar spectral index is universal and depends only on the number of e-foldings. The ratio of tensor to scalar power depends on the single extra real parameter that defines this class of models. The Starobinsky inflationary model as well as the recently proposed models of T-inflation are members of this class. The holographic setup gives a completely new (and contrasting) view to the stability and other problems of such inflationary models.
Robust MPC for a non-linear system - a neural network approach
Luzar, Marcel; Witczak, Marcin
2014-12-01
The aim of the paper is to design a robust actuator fault-tolerant control for a non-linear discrete-time system. Considered system is described by the Linear Parameter-Varying (LPV) model obtained with recurrent neural network. The proposed solution starts with a discretetime quasi-LPV system identification using artificial neural network. Subsequently, the robust controller is proposed, which does not take into account actuator saturation level and deals with the previously estimated faults. To check if the compensation problem is feasible, the robust invariant set is employed, which takes into account actuator saturation level. When the current state does not belong to the set, then a predictive control is performed in order to make such set larger. This makes it possible to increase the domain of attraction, which makes the proposed methodology an efficient solution for the fault-tolerant control. The last part of the paper presents an experimental results regarding wind turbines.
Asymptotically hyperbolic connections
Fine, Joel; Herfray, Yannick; Krasnov, Kirill; Scarinci, Carlos
2016-09-01
General relativity in four-dimensions can be equivalently described as a dynamical theory of {SO}(3)˜ {SU}(2)-connections rather than metrics. We introduce the notion of asymptotically hyperbolic connections, and work out an analogue of the Fefferman-Graham expansion in the language of connections. As in the metric setup, one can solve the arising ‘evolution’ equations order by order in the expansion in powers of the radial coordinate. The solution in the connection setting is arguably simpler, and very straightforward algebraic manipulations allow one to see how the unconstrained by Einstein equations ‘stress-energy tensor’ appears at third order in the expansion. Another interesting feature of the connection formulation is that the ‘counter terms’ required in the computation of the renormalised volume all combine into the Chern-Simons functional of the restriction of the connection to the boundary. As the Chern-Simons invariant is only defined modulo large gauge transformations, the requirement that the path integral over asymptotically hyperbolic connections is well-defined requires the cosmological constant to be quantised. Finally, in the connection setting one can deform the 4D Einstein condition in an interesting way, and we show that asymptotically hyperbolic connection expansion is universal and valid for any of the deformed theories.
Non-linear controls on the persistence of La Nina
Di Nezio, P. N.; Deser, C.
2013-12-01
Non-linear controls on the persistence of La Nina Pedro DiNezio and Clara Deser Up to half of the observed La Nina events last for two years or more. Most El Nino events, in contrast, last no longer than one year. The physical processes causing this asymmetry in the duration of warm and cold ENSO events is unknown. The persistence of La Nina, not only exacerbates the climate impacts, especially in regions prone to drought, but also is highly unpredictable. In this talk we will explore the nonlinear processes that generate the persistence of La Nina in observations and in CCSM4 - a coupled climate model that simulates this feature realistically. First, we develop a non-linear delayed-oscillator model (nonlinDO) based on CCSM4's heat budget. All positive and negative feedbacks of nonlinDO capture the nonlinear and seasonal dependence exhibited by CCSM4. The nonlinear behavior is due to: 1) weaker atmospheric damping of cold events with respect to warm events, 2) stronger wind response for large warm events, and 3) weaker coupling between thermocline and sea-surface temperature anomalies when the thermocline deepens. We force the simple model with white Gaussian noise resulting in seasonal modulation of variance and skewness, and a spectral peak, that are in agreement with CCSM4. Sensitivity experiments with nonlinDO show that the thermocline nonlinearity (3) is the sole process controlling the duration of La Nina events. Linear ENSO theory indicates that La Nina events drive a delayed thermocline deepening that leads to their demise. However, the thermocline nonlinearity (3) renders this response ineffective as La Nina events become stronger. This diminishing of the delayed-thermocline feedback prevents the equatorial Pacific from returning to neutral or warm conditions and cold conditions persist for a second year. Observations show evidence for this thermocline nonlinearity suggesting that this process could be at work in the real world. Last, we show evidence that
Non-linear evolution of the cosmic neutrino background
Energy Technology Data Exchange (ETDEWEB)
Villaescusa-Navarro, Francisco; Viel, Matteo [INAF/Osservatorio Astronomico di Trieste, Via Tiepolo 11, 34143, Trieste (Italy); Bird, Simeon [Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ, 08540 (United States); Peña-Garay, Carlos, E-mail: villaescusa@oats.inaf.it, E-mail: spb@ias.edu, E-mail: penya@ific.uv.es, E-mail: viel@oats.inaf.it [Instituto de Física Corpuscular, CSIC-UVEG, E-46071, Paterna, Valencia (Spain)
2013-03-01
We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations which incorporate cold dark matter (CDM) and neutrinos as independent particle species. Our set of simulations explore the properties of neutrinos in a reference ΛCDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass 10{sup 11}−10{sup 15} h{sup −1}M{sub s}un, over a redshift range z = 0−2. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula, once the neutrino contribution to the total matter is removed. More importantly, we focus on the CDM and neutrino properties of the density and peculiar velocity fields in the cosmological volume, inside and in the outskirts of virialized haloes. The dynamical state of the neutrino particles depends strongly on their momentum: whereas neutrinos in the low velocity tail behave similarly to CDM particles, neutrinos in the high velocity tail are not affected by the clustering of the underlying CDM component. We find that the neutrino (linear) unperturbed momentum distribution is modified and mass and redshift dependent deviations from the expected Fermi-Dirac distribution are in place both in the cosmological volume and inside haloes. The neutrino density profiles around virialized haloes have been carefully investigated and a simple fitting formula is provided. The neutrino profile, unlike the cold dark matter one, is found to be cored with core size and central density that depend on the neutrino mass, redshift and mass of the halo, for halos of masses larger than ∼ 10{sup 13.5}h{sup −1}M{sub s}un. For lower masses the neutrino profile is best fitted by a simple power-law relation in the range probed by the simulations. The results we obtain are numerically converged in terms of neutrino profiles at the 10% level for scales above ∼ 200 h{sup −1}kpc at z = 0, and are stable with
Analyses of non-linear systems and their application to biology: a review.
Sato, S
1994-01-01
In this review article, Wiener's analyses of non-linear systems and other topics on non-linear noise and non-stationary signals are introduced. Firstly, application and limitation of linear aspects on a biological system and a background of introduction of the Wiener's theory to non-linear analysis are briefly mentioned. The practical applications, however, were not so successful for several reasons. We shall see how these problems are solved under collaboration between biologists and engineers who have a knowledge of the subject and utilizing computational facility. Several aspects of the methodology involving non-linear systems, non-linear noise and non-stationary signals are also reviewed.
Non-linear Imaging using an Experimental Synthetic Aperture Real Time Ultrasound Scanner
DEFF Research Database (Denmark)
Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt
2011-01-01
This paper presents the first non-linear B-mode image of a wire phantom using pulse inversion attained via an experimental synthetic aperture real-time ultrasound scanner (SARUS). The purpose of this study is to implement and validate non-linear imaging on SARUS for the further development of new...... non-linear techniques. This study presents non-linear and linear B-mode images attained via SARUS and an existing ultrasound system as well as a Field II simulation. The non-linear image shows an improved spatial resolution and lower full width half max and -20 dB resolution values compared to linear...
Carlberg, Kevin
2010-10-28
A Petrov-Galerkin projection method is proposed for reducing the dimension of a discrete non-linear static or dynamic computational model in view of enabling its processing in real time. The right reduced-order basis is chosen to be invariant and is constructed using the Proper Orthogonal Decomposition method. The left reduced-order basis is selected to minimize the two-norm of the residual arising at each Newton iteration. Thus, this basis is iteration-dependent, enables capturing of non-linearities, and leads to the globally convergent Gauss-Newton method. To avoid the significant computational cost of assembling the reduced-order operators, the residual and action of the Jacobian on the right reduced-order basis are each approximated by the product of an invariant, large-scale matrix, and an iteration-dependent, smaller one. The invariant matrix is computed using a data compression procedure that meets proposed consistency requirements. The iteration-dependent matrix is computed to enable the least-squares reconstruction of some entries of the approximated quantities. The results obtained for the solution of a turbulent flow problem and several non-linear structural dynamics problems highlight the merit of the proposed consistency requirements. They also demonstrate the potential of this method to significantly reduce the computational cost associated with high-dimensional non-linear models while retaining their accuracy. © 2010 John Wiley & Sons, Ltd.
Non-linear dense core formation in the dark cloud L1517
Heigl, S.; Burkert, A.; Hacar, A.
2016-09-01
We present a solution for the observed core fragmentation of filaments in the Taurus L1517 dark cloud which previously could not be explained (Hacar & Tafalla 2011). Core fragmentation is a vital step for the formation of stars. Observations suggest a connection to the filamentary structure of the cloud gas, but it remains unclear which process is responsible. We show that the gravitational instability process of an infinite, isothermal cylinder can account for the exhibited fragmentation under the assumption that the perturbation grows on the dominant wavelength. We use numerical simulations with the code RAMSES, estimate observed column densities and line-of-sight velocities, and compare them to the observations. A critical factor for the observed fragmentation is that cores grow by redistributing mass within the filament and thus the density between the cores decreases over the fragmentation process. This often leads to wrong dominant wavelength estimates, as it is strongly dependent on the initial central density. We argue that non-linear effects also play an important role on the evolution of the fragmentation. Once the density perturbation grows above the critical line-mass, non-linearity leads to an enhancement of the central core density in comparison to the analytical prediction. Choosing the correct initial conditions with perturbation strengths of around 20%, leads to inclination corrected line-of-sight velocities and central core densities within the observational measurement error in a realistic evolution time.
Non-Linear Dynamic Response of a Spur Gear Pair: Modelling and Experimental Comparisons
PARKER, R. G.; VIJAYAKAR, S. M.; IMAJO, T.
2000-10-01
The dynamic response of a spur gear pair is investigated using a finite element/contact mechanics model that offers significant advantages for dynamic gear analyses. The gear pair is analyzed across a wide range of operating speeds and torques. Comparisons are made to other researchers' published experiments that reveal complex non-linear phenomena. The non-linearity source is contact loss of the meshing teeth, which, in contrast to the prevailing understanding, occurs even for large torques despite the use of high-precision gears. A primary feature of the modelling is that dynamic mesh forces are calculated using a detailed contact analysis at each time step as the gears roll through the mesh; there is no need to externally specify the excitation in the form of time-varying mesh stiffness, static transmission error input, or the like. A semi-analytical model near the tooth surface is matched to a finite element solution away from the tooth surface, and the computational efficiency that results permits dynamic analysis. Two-single-degree-of-freedom models are also studied. While one gives encouragingly good results, the other, which appears to have better mesh stiffness modelling, gives poor comparisons with experiments. The results indicate the sensitivity of such models to the Fourier spectrum of the changing mesh stiffness.
Non-linear analysis and the design of Pumpkin Balloons: stress, stability and viscoelasticity
Rand, J. L.; Wakefield, D. S.
Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures Founded upon their inTENS finite element analysis suite these activities have broadened to encompass lighter than air structures such as aerostats hybrid air-vehicles and stratospheric balloons Winzen Engineering couple many years of practical balloon design and fabrication experience with both academic and practical knowledge of the characterisation of the non-linear viscoelastic response of the polymeric films typically used for high-altitude scientific balloons Both companies have provided consulting services to the NASA Ultra Long Duration Balloon ULDB Program Early implementations of pumpkin balloons have shown problems of geometric instability characterised by improper deployment and these difficulties have been reproduced numerically using inTENS The solution lies in both the shapes of the membrane lobes and also the need to generate a biaxial stress field in order to mobilise in-plane shear stiffness Balloons undergo significant temperature and pressure variations in flight The different thermal characteristics between tendons and film can lead to significant meridional stress Fabrication tolerances can lead to significant local hoop stress concentrations particularly adjacent to the base and apex end fittings The non-linear viscoelastic response of the envelope film acts positively to help dissipate stress concentrations However creep over time may produce lobe geometry variations that may
Solving Directly Two Point Non Linear Boundary Value Problems Using Direct Adams Moulton Method
Directory of Open Access Journals (Sweden)
Zanariah A. Majid
2011-01-01
Full Text Available Problem statement: In this study, a direct method of Adams Moulton type was developed for solving non linear two point Boundary Value Problems (BVPs directly. Most of the existence researches involving BVPs will reduced the problem to a system of first order Ordinary Differential Equations (ODEs. This approach is very well established but it obviously will enlarge the systems of first order equations. However, the direct method in this research will solved the second order BVPs directly without reducing it to first order ODEs. Approach: Lagrange interpolation polynomial was applied in the derivation of the proposed method. The method was implemented using constant step size via shooting technique in order to determine the approximated solutions. The shooting technique will employ the Newtons method for checking the convergent of the guessing values for the next iteration. Results: Numerical results confirmed that the direct method gave better accuracy and converged faster compared to the existing method. Conclusion: The proposed direct method is suitable for solving two point non linear boundary value problems.
Non-linear Least Squares Fitting in IDL with MPFIT
Markwardt, Craig B
2009-01-01
MPFIT is a port to IDL of the non-linear least squares fitting program MINPACK-1. MPFIT inherits the robustness of the original FORTRAN version of MINPACK-1, but is optimized for performance and convenience in IDL. In addition to the main fitting engine, MPFIT, several specialized functions are provided to fit 1-D curves and 2-D images; 1-D and 2-D peaks; and interactive fitting from the IDL command line. Several constraints can be applied to model parameters, including fixed constraints, simple bounding constraints, and "tying" the value to another parameter. Several data weighting methods are allowed, and the parameter covariance matrix is computed. Extensive diagnostic capabilities are available during the fit, via a call-back subroutine, and after the fit is complete. Several different forms of documentation are provided, including a tutorial, reference pages, and frequently asked questions. The package has been translated to C and Python as well. The full IDL and C packages can be found at http://purl.co...
Non-linear modulation of short wavelength compressional Alfven eigenmodes
Energy Technology Data Exchange (ETDEWEB)
Fredrickson, E. D.; Gorelenkov, N. N.; Podesta, M.; Gerhardt, S. P.; Bell, R. E.; Diallo, A.; LeBlanc, B. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Bortolon, A. [University of California, Irvine, California 92697 (United States); Crocker, N. A. [University of California, Los Angeles, California 90095 (United States); Levinton, F. M.; Yuh, H. [Nova Photonics, Princeton, New Jersey 08543 (United States)
2013-04-15
Most Alfvenic activity in the frequency range between toroidal Alfven eigenmodes and roughly one half of the ion cyclotron frequency on National Spherical Torus eXperiment [Ono et al., Nucl. Fusion 40, 557 (2000)], that is, approximately 0.3 MHz up to Almost-Equal-To 1.2 MHz, are modes propagating counter to the neutral beam ions. These have been modeled as Compressional and Global Alfven Eigenmodes (CAE and GAE) and are excited through a Doppler-shifted cyclotron resonance with the beam ions. There is also a class of co-propagating modes at higher frequency than the counter-propagating CAE and GAE. These modes have been identified as CAE, and are seen mostly in the company of a low frequency, n = 1 kink-like mode. In this paper, we present measurements of the spectrum of these high frequency CAE (hfCAE) and their mode structure. We compare those measurements to a simple model of CAE and present a predator-prey type model of the curious non-linear coupling of the hfCAE and the low frequency kink-like mode.
Non-linear calibration models for near infrared spectroscopy.
Ni, Wangdong; Nørgaard, Lars; Mørup, Morten
2014-02-27
Different calibration techniques are available for spectroscopic applications that show nonlinear behavior. This comprehensive comparative study presents a comparison of different nonlinear calibration techniques: kernel PLS (KPLS), support vector machines (SVM), least-squares SVM (LS-SVM), relevance vector machines (RVM), Gaussian process regression (GPR), artificial neural network (ANN), and Bayesian ANN (BANN). In this comparison, partial least squares (PLS) regression is used as a linear benchmark, while the relationship of the methods is considered in terms of traditional calibration by ridge regression (RR). The performance of the different methods is demonstrated by their practical applications using three real-life near infrared (NIR) data sets. Different aspects of the various approaches including computational time, model interpretability, potential over-fitting using the non-linear models on linear problems, robustness to small or medium sample sets, and robustness to pre-processing, are discussed. The results suggest that GPR and BANN are powerful and promising methods for handling linear as well as nonlinear systems, even when the data sets are moderately small. The LS-SVM is also attractive due to its good predictive performance for both linear and nonlinear calibrations.
Are oil markets chaotic? A non-linear dynamic analysis
Energy Technology Data Exchange (ETDEWEB)
Panas, E.; Ninni, V. [Athens University of Economics and Business, Athens (Greece)
2000-10-01
The analysis of products' price behaviour continues to be an important empirical issue. This study contributes to the current literature on price dynamics of products by examining for the presence of chaos and non-linear dynamics in daily oil products for the Rotterdam and Mediterranean petroleum markets. Previous studies using only one invariant, such as the correlation dimension may not effectively determine the chaotic structure of the underlying time series. To obtain better information on the time series structure, a framework is developed, where both invariant and non-invariant quantities were also examined. In this paper various invariants for detecting a chaotic time series were analysed along with the associated Brock's theorem and Eckman-Ruelle condition, to return series for the prices of oil products. An additional non-invariant quantity, the BDS statistic, was also examined. The correlation dimension, entropies and Lyapunov exponents show strong evidence of chaos in a number of oil products considered. 30 refs.
Non-linear evolution of the cosmic neutrino background
Villaescusa-Navarro, Francisco; Peña-Garay, Carlos; Viel, Matteo
2012-01-01
We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations. Our set of simulations explore the properties of neutrinos in a reference $\\Lambda$CDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass $10^{11}-10^{15}$ $h^{-1}$M$_{\\odot}$, over a redshift range $z=0-2$. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula. More importantly, we focus on the CDM and neutrino properties of the density and peculiar velocity fields in the cosmological volume, inside and in the outskirts of virialized haloes. The dynamical state of the neutrino particles depends strongly on their momentum: whereas neutrinos in the low velocity tail behave similarly to CDM particles, neutrinos in the high velocity tail are not affected by the clustering of the underlying CDM component. We find that the neutrino (linear) unperturbed momentum distribution is modified ...
NLHB : A Non-Linear Hopper Blum Protocol
Madhavan, Mukundan; Sankarasubramaniam, Yogesh; Viswanathan, Kapali
2010-01-01
In this paper, we propose a light-weight provably-secure authentication protocol called the NLHB protocol, which is a variant of the HB protocol. The HB protocol uses the complexity of decoding linear codes for security against passive attacks. In contrast, security for the NLHB protocol is proved by reducing passive attacks to the problem of decoding a class of non-linear codes\\footnote that are provably hard. We demonstrate that the existing passive attacks on the HB protocol family, which have contributed to considerable reduction in its effective key-size, are ineffective against the NLHB protocol. From the evidence, we conclude that smaller-key sizes are sufficient for the NLHB protocol to achieve the same level of passive attack security as the HB Protocol. Further, for this choice of parameters, we provide an implementation instance for the NLHB protocol for which the Prover/Verifier complexity is lower than the HB protocol, enabling authentication on very low-cost devices like RFID tags. Finally, in t...
Non-linear controllers in ship tracking control system
Institute of Scientific and Technical Information of China (English)
LESZEK M
2005-01-01
The cascade systems which stabilize the transverse deviation of the ship in relation to the set path is presented. The ship's path is determined as a broken line with specified coordinates of way points. Three controllers are used in the system. The main primary controller is the trajectory controller. The set value of heading for the course control system or angular velocity for the turning control system is generated. The course control system is used on the straight line of the set trajectory while the turning controller is used during a change of the set trajectory segment. The characteristics of the non-linear controllers are selected in such a way that the properties of the control system with the rate of turn controller are modelled by the first-order inertia, while the system with the course keeping controller is modelled by a second-order linear term. The presented control system is tested in computer simulation. Some results of simulation tests are presented and discussed.
Non-linear BFKL dynamics: color screening vs. gluon fusion
Fiore, R; Zoller, V R
2012-01-01
A feasible mechanism of unitarization of amplitudes of deep inelastic scattering at small values of Bjorken $x$ is the gluon fusion. However, its efficiency depends crucially on the vacuum color screening effect which accompanies the multiplication and the diffusion of BFKL gluons from small to large distances. From the fits to lattice data on field strength correlators the propagation length of perturbative gluons is $R_c\\simeq 0.2-0.3$ fermi. The probability to find a perturbative gluon with short propagation length at large distances is suppressed exponentially. It changes the pattern of (dif)fusion dramatically. The magnitude of the fusion effect appears to be controlled by the new dimensionless parameter $\\sim R_c^2/8B$, with the diffraction cone slope $B$ standing for the characteristic size of the interaction region. It should slowly $\\propto 1/\\ln Q^2$ decrease at large $Q^2$. Smallness of the ratio $R_c^2/8B$ makes the non-linear effects rather weak even at lowest Bjorken $x$ available at HERA. We re...
Non-linear Constitutive Model for the Oligocarbonate Polyurethane Material
Institute of Scientific and Technical Information of China (English)
Marek Pawlikowski
2014-01-01
The polyurethane,which was the subject of the constitutive research presented in the paper,was based on oligocarbonate diols Desmophen C2100 produced by Bayer@.The constitutive modelling was performed with a view to applying the material as the inlay of intervertebral disc prostheses.The polyurethane was assumed to be non-linearly viscohyperelastic,isotropic and incompressible.The constitutive equation was derived from the postulated strain energy function.The elastic and rheological constants were identified on the basis of experimental tests,i.e.relaxation tests and monotonic uniaxial tests at two different strain rates,i.e.λ =0.1 min-1 and λ =1.0 min-1.The stiffness tensor was derived and introduced to Abaqus@finite element (FE) software in order to numerically validate the constitutive model.The results of the constants identification and numerical implementation show that the derived constitutive equation is fully adequate to model stress-strain behavior of the polyurethane material.
Non-linear Dynamics in ETG Mode Saturation and Beam-Plasma Instabilities
Tokluoglu, Erinc K.
fields generated by beam-plasma instabilities can be responsible for defocusing and distorting beams propagating in background plasma. This can be problematic in inertial fusion applications where the beam is intended to propagate ballistically as the background plasma neutralizes the beam space charge and current. We used particle-in-cell (PIC) code LSP to numerically investigate the defocusing effects in an ion beam propagating in background plasma experiences as it is exposed to the non-linear fields generated by Two-Stream instability between beam ions and plasma electrons. Supported by theory and benchmarked by the numerical solutions of governing E&M equations, the simulations were used to find and check scaling laws for the defocusing forces in the parameter space of beam and plasma density as well as the beam ion mass. A transition region where the defocusing fields peak has been identified, which should be avoided in the design of experimental devices. We further proposed a diagnostic tool to identify the presence of the two-stream instability in a system with parameters similar to the National Drift Compression Experiment II (NDCX-II) and conducted proof-of concept simulations. In the case of electron beam propagating in background plasma instability driven collisionless scattering and plasma heating is observed. 1-D simulations conducted in EDIPIC were benchmarked in LSP to study the excitation and time-evolution of electron-electron Two-Stream instability. Coupling of electron dynamics via non-linear ponderomotive force created by instability generated fields with ion cavities and Ion-Acoustic mode excitation was observed. Furthermore 2-D simulations of an electron-beam in a background plasma was performed. Many of the effects in observed in 1-D simulations were replicated. Morever generation of oblique modes with transverse wave numbers were observed in the simulations, which resulted in significant transverse scattering of beam electrons and the time
GROWTH ANALYSIS IN RABBIT USING GOMPERTZ NON-LINEAR MODEL
Directory of Open Access Journals (Sweden)
A. Setiaji
2014-10-01
Full Text Available An experiment was conducted to compare the growth curve of rabbit. Three breeds of rabbit,namely Indonesian Local Rabbit (IL, Flamish Giant (FG and Rex (R were used in the study.Individual body weights of each breed was measured from birth to 63 days of age with 3-days interval.Those periodical data were separated into different sex, be then it was averaged to analysis growthpattern. Growth curve parameters were estimated to fit growth data. There was no difference in bodyweight between sexs within breed. Indonesian local rabbit had the lowest body weight. The resultsshowed that growth curve paramaters among three breeds were significantly different (P<0.05 for bothsexes. FG had the highest value of asymptotic mature weight, followed by R and IL. In conclusion,Gompertz model was excellent fit for the growth data in rabbit with a high coefficient determination (R2= 0.999.
Linear and non-linear bias: predictions versus measurements
Hoffmann, K.; Bel, J.; Gaztañaga, E.
2017-02-01
We study the linear and non-linear bias parameters which determine the mapping between the distributions of galaxies and the full matter density fields, comparing different measurements and predictions. Associating galaxies with dark matter haloes in the Marenostrum Institut de Ciències de l'Espai (MICE) Grand Challenge N-body simulation, we directly measure the bias parameters by comparing the smoothed density fluctuations of haloes and matter in the same region at different positions as a function of smoothing scale. Alternatively, we measure the bias parameters by matching the probability distributions of halo and matter density fluctuations, which can be applied to observations. These direct bias measurements are compared to corresponding measurements from two-point and different third-order correlations, as well as predictions from the peak-background model, which we presented in previous papers using the same data. We find an overall variation of the linear bias measurements and predictions of ∼5 per cent with respect to results from two-point correlations for different halo samples with masses between ∼1012and1015 h-1 M⊙ at the redshifts z = 0.0 and 0.5. Variations between the second- and third-order bias parameters from the different methods show larger variations, but with consistent trends in mass and redshift. The various bias measurements reveal a tight relation between the linear and the quadratic bias parameters, which is consistent with results from the literature based on simulations with different cosmologies. Such a universal relation might improve constraints on cosmological models, derived from second-order clustering statistics at small scales or higher order clustering statistics.
Non-linear pattern formation in bone growth and architecture.
Salmon, Phil
2014-01-01
The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here - chaotic non-linear pattern formation (NPF) - which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of "group intelligence" exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called "particle swarm optimization" (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating "socially" in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or "feedback" between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the emergent
ANALYSIS OF HIGH FIELD NON-LINEAR LOSSES ON SRF SURFACES DUE TO SPECIFIC TOPOGRAPHIC ROUGHNESS
Energy Technology Data Exchange (ETDEWEB)
Chen Xu,Charles Reece,Michael Kelley
2012-07-01
The high-field performance of SRF cavities will eventually be limited by the realization of fundamental material limits, whether it is Hc1 or Hsh, or some derivative thereof, at which the superconductivity is lost. Before reaching this fundamental field limit at the macro level, it must be encountered at localized, perhaps microscopic, sites of field enhancement due to local topography. If such sites are small enough, they may produce thermally stabilized normal-conducting regions which contribute non-linear losses when viewed from the macro resonant field perspective, and thus produce degradation in Q0. We have undertaken a calculation of local surface magnetic field enhancement from specific fine topographic structure by conformal mapping method and numerically. A solution of the resulting normal conducting volume has been derived and the corresponding RF Ohmic loss simulated.
Tracing Analytic Ray Curves for Light and Sound Propagation in Non-Linear Media.
Mo, Qi; Yeh, Hengchin; Manocha, Dinesh
2016-11-01
The physical world consists of spatially varying media, such as the atmosphere and the ocean, in which light and sound propagates along non-linear trajectories. This presents a challenge to existing ray-tracing based methods, which are widely adopted to simulate propagation due to their efficiency and flexibility, but assume linear rays. We present a novel algorithm that traces analytic ray curves computed from local media gradients, and utilizes the closed-form solutions of both the intersections of the ray curves with planar surfaces, and the travel distance. By constructing an adaptive unstructured mesh, our algorithm is able to model general media profiles that vary in three dimensions with complex boundaries consisting of terrains and other scene objects such as buildings. Our analytic ray curve tracer with the adaptive mesh improves the efficiency considerably over prior methods. We highlight the algorithm's application on simulation of visual and sound propagation in outdoor scenes.
KPP reaction-diffusion equations with a non-linear loss inside a cylinder
Giletti, Thomas
2010-01-01
We consider in this paper a reaction-diffusion system in presence of a flow and under a KPP hypothesis. While the case of a single-equation has been extensively studied since the pioneering Kolmogorov-Petrovski-Piskunov paper, the study of the corresponding system with a Lewis number not equal to 1 is still quite open. Here, we will prove some results about the existence of travelling fronts and generalized travelling fronts solutions of such a system with the presence of a non-linear spacedependent loss term inside the domain. In particular, we will point out the existence of a minimal speed, above which any real value is an admissible speed. We will also give some spreading results for initial conditions decaying exponentially at infinity.
A New Class of Non-Linear, Finite-Volume Methods for Vlasov Simulation
Energy Technology Data Exchange (ETDEWEB)
Banks, J W; Hittinger, J A
2009-11-24
Methods for the numerical discretization of the Vlasov equation should efficiently use the phase space discretization and should introduce only enough numerical dissipation to promote stability and control oscillations. A new high-order, non-linear, finite-volume algorithm for the Vlasov equation that discretely conserves particle number and controls oscillations is presented. The method is fourth-order in space and time in well-resolved regions, but smoothly reduces to a third-order upwind scheme as features become poorly resolved. The new scheme is applied to several standard problems for the Vlasov-Poisson system, and the results are compared with those from other finite-volume approaches, including an artificial viscosity scheme and the Piecewise Parabolic Method. It is shown that the new scheme is able to control oscillations while preserving a higher degree of fidelity of the solution than the other approaches.
Numerical estimation of 3D mechanical forces exerted by cells on non-linear materials.
Palacio, J; Jorge-Peñas, A; Muñoz-Barrutia, A; Ortiz-de-Solorzano, C; de Juan-Pardo, E; García-Aznar, J M
2013-01-04
The exchange of physical forces in both cell-cell and cell-matrix interactions play a significant role in a variety of physiological and pathological processes, such as cell migration, cancer metastasis, inflammation and wound healing. Therefore, great interest exists in accurately quantifying the forces that cells exert on their substrate during migration. Traction Force Microscopy (TFM) is the most widely used method for measuring cell traction forces. Several mathematical techniques have been developed to estimate forces from TFM experiments. However, certain simplifications are commonly assumed, such as linear elasticity of the materials and/or free geometries, which in some cases may lead to inaccurate results. Here, cellular forces are numerically estimated by solving a minimization problem that combines multiple non-linear FEM solutions. Our simulations, free from constraints on the geometrical and the mechanical conditions, show that forces are predicted with higher accuracy than when using the standard approaches.
Hybrid Model Representation of a TLP Including Flexible Topsides in Non-Linear Regular Waves
Directory of Open Access Journals (Sweden)
Christof Wehmeyer
2014-08-01
Full Text Available The rising demand for renewable energy solutions is forcing the established industries to expand and continue evolving. For the wind energy sector, the vast resources in deep sea locations have encouraged research towards the installation of turbines in deeper waters. One of the most promising technologies able to solve this challenge is the floating wind turbine foundation. For the ultimate limit state, where higher order wave loads have a significant influence, a design tool that couples non-linear excitations with structural dynamics is required. To properly describe the behavior of such a structure, a numerical model is proposed and validated by physical test results. The model is applied to a case study of a tension leg platform with a flexible topside mimicking the tower and a lumped mass mimicking the rotor-nacelle assembly. The model is additionally compared to current commercial software, where the need for the coupled higher order dynamics proposed in this paper becomes evident.
Dyja, Robert; van der Zee, Kristoffer G
2016-01-01
We present an adaptive methodology for the solution of (linear and) non-linear time dependent problems that is especially tailored for massively parallel computations. The basic concept is to solve for large blocks of space-time unknowns instead of marching sequentially in time. The methodology is a combination of a computationally efficient implementation of a parallel-in-space-time finite element solver coupled with a posteriori space-time error estimates and a parallel mesh generator. This methodology enables, in principle, simultaneous adaptivity in both space and time (within the block) domains. We explore this basic concept in the context of a variety of time-steppers including $\\Theta$-schemes and Backward Differentiate Formulas. We specifically illustrate this framework with applications involving time dependent linear, quasi-linear and semi-linear diffusion equations. We focus on investigating how the coupled space-time refinement indicators for this class of problems affect spatial adaptivity. Final...
Non-linear interactions in a cosmological background in the DGP braneworld
Koyama, K; Koyama, Kazuya; Silva, Fabio P
2007-01-01
We study quasi-static perturbations in a cosmological background in the Dvali-Gabadadze-Porrati (DGP) braneworld model. We identify the Vainshtein radius at which the non-linear interactions of the brane bending mode become important in a cosmological background. The Vainshtein radius in the early universe is much smaller than the one in the Minkowski background, but in a self-accelerating universe it is the same as the Minkowski background. Our result shows that the perturbative approach is applicable beyond the Vainshtein radius for weak gravity by taking into account the second order effects of the brane bending mode. The linearised cosmological perturbations are shown to be smoothly matched to the solutions inside the Vainshtein radius. We emphasize the importance of imposing a regularity condition in the bulk by solving the 5D perturbations and we highlight the problem of ad hoc assumptions on the bulk gravity that lead to different conclusions.
Superfast non-linear diffusion: Capillary transport in particulate porous media
Lukyanov, A V; Baines, M J; Theofanous, T G
2013-01-01
The migration of liquids in porous media, such as sand, has been commonly considered at high saturation levels with liquid pathways at pore dimensions. In this letter we reveal a low saturation regime observed in our experiments with droplets of extremely low volatility liquids deposited on sand. In this regime the liquid is mostly found within the grain surface roughness and in the capillary bridges formed at the contacts between the grains. The bridges act as variable-volume reservoirs and the flow is driven by the capillary pressure arising at the wetting front according to the roughness length scales. We propose that this migration (spreading) is the result of interplay between the bridge volume adjustment to this pressure distribution and viscous losses of a creeping flow within the roughness. The net macroscopic result is a special case of non-linear diffusion described by a superfast diffusion equation (SFDE) for saturation with distinctive mathematical character. We obtain solutions to a moving bounda...
Bifurcation for non linear ordinary differential equations with singular perturbation
Directory of Open Access Journals (Sweden)
Safia Acher Spitalier
2016-10-01
Full Text Available We study a family of singularly perturbed ODEs with one parameter and compare their solutions to the ones of the corresponding reduced equations. The interesting characteristic here is that the reduced equations have more than one solution for a given set of initial conditions. Then we consider how those solutions are organized for different values of the parameter. The bifurcation associated to this situation is studied using a minimal set of tools from non standard analysis.
Non-linearity parameter / of binary liquid mixtures at elevated pressures
Indian Academy of Sciences (India)
J D Pandey; J Chhabra; R Dey; V Sanguri; R Verma
2000-09-01
When sound waves of high amplitude propagate, several non-linear effects occur. Ultrasonic studies in liquid mixtures provide valuable information about structure and interaction in such systems. The present investigation comprises of theoretical evaluation of the acoustic non-linearity parameter / of four binary liquid mixtures using Tong and Dong equation at high pressures and = 303.15 K. Thermodynamic method has also been used to calculate the non-linearity parameter after making certain approximations.