AGB [asymptotic giant branch]: Star evolution
International Nuclear Information System (INIS)
Asymptotic giant branch stars are red supergiant stars of low-to-intermediate mass. This class of stars is of particular interest because many of these stars can have nuclear processed material brought up repeatedly from the deep interior to the surface where it can be observed. A review of recent theoretical and observational work on stars undergoing the asymptotic giant branch phase is presented. 41 refs
Infrared studies of asymptotic giant branch stars
International Nuclear Information System (INIS)
In this thesis studies are presented of asymptotic giant branch stars, which are thought to be an important link in the evolution of the galaxy. The studies were performed on the basis of data collected by the IRAS, the infrared astronomical satelite. 233 refs.; 33 figs.; 16 tabs
Mass Losing Asymptotic Giant Branch Stars and Supergiants
Whitelock, Patricia A; Höfner, Susanne; Wittkowski, Markus; Zijlstra, Albert A
2016-01-01
This paper presents a summary of four invited and twelve contributed presentations on asymptotic giant branch stars and red supergiants, given over the course of two afternoon splinter sessions at the 19th Cool Stars Workshop. It highlights both recent observations and recent theory, with some emphasis on high spatial resolution, over a wide range of wavelengths. Topics covered include 3D models, convection, binary interactions, mass loss, dust formation and magnetic fields.
CYANOGEN IN NGC 1851 RED GIANT BRANCH AND ASYMPTOTIC GIANT BRANCH STARS: QUADRIMODAL DISTRIBUTIONS
Energy Technology Data Exchange (ETDEWEB)
Campbell, S. W.; Stancliffe, R. J.; Lattanzio, J. C.; Angelou, G. C.; D' Orazi, V. [Monash Centre for Astrophysics, P.O. Box 28M, Victoria 3800 (Australia); Yong, D.; Wylie-de Boer, E. C. [Research School of Astronomy and Astrophysics, Australian National University, Weston, ACT 2611 (Australia); Martell, S. L. [Australian Astronomical Observatory, North Ryde, NSW 2113 (Australia); Grundahl, F. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C (Denmark); Sneden, C., E-mail: simon.campbell@monash.edu, E-mail: david.yong@anu.edu.au [Department of Astronomy and McDonald Observatory, University of Texas, Austin, TX 78712 (United States)
2012-12-10
The Galactic globular cluster NGC 1851 has raised much interest since Hubble Space Telescope photometry revealed that it hosts a double subgiant branch. Here we report on our homogeneous study into the cyanogen (CN) band strengths in the red giant branch (RGB) population (17 stars) and asymptotic giant branch (AGB) population (21 stars) using AAOmega/2dF spectra with R {approx} 3000. We discover that NGC 1851 hosts a quadrimodal distribution of CN band strengths in its RGB and AGB populations. This result supports the merger formation scenario proposed for this cluster, such that the CN quadrimodality could be explained by the superposition of two 'normal' bimodal populations. A small sample overlap with an abundance catalog allowed us to tentatively explore the relationship between our CN populations and a range of elemental abundances. We found a striking correlation between CN and [O/Na]. We also found that the four CN peaks may be paired-the two CN-weaker populations being associated with low Ba and the two CN-stronger populations with high Ba. If true, then s-process abundances would be a good diagnostic for disentangling the two original clusters in the merger scenario. More observations are needed to confirm the quadrimodality and also the relationship between the subpopulations. We also report CN results for NGC 288 as a comparison. Our relatively large samples of AGB stars show that both clusters have a bias toward CN-weak AGB populations.
Chemical analysis of Asymptotic Giant Branch stars in M62
Lapenna, E; Ferraro, F R; Origlia, L; Lanzoni, B; Massari, D; Dalessandro, E
2015-01-01
We have collected UVES-FLAMES high-resolution spectra for a sample of 6 asymptotic giant branch (AGB) and 13 red giant branch (RGB) stars in the Galactic globular cluster M62 (NGC6266). Here we present the detailed abundance analysis of iron, titanium, and light-elements (O, Na, Al and Mg). For the majority (5 out 6) of the AGB targets we find that the abundances, of both iron and titanium, determined from neutral lines are significantly underestimated with respect to those obtained from ionized features, the latter being, instead, in agreement with those measured for the RGB targets. This is similar to recent findings in other clusters and may suggest the presence of Non-Local Thermodynamical Equilibrium (NLTE) effects. In the O-Na, Al-Mg and Na-Al planes, the RGB stars show the typical correlations observed for globular cluster stars. Instead, all the AGB targets are clumped in the regions where first generation stars are expected to lie, similarly to what recently found for the AGB population of NGC6752. W...
Dusty Mass Loss from Galactic Asymptotic Giant Branch Stars
Sargent, Benjamin A.; Srinivasan, Sundar; Meixner, Margaret; Kastner, Joel H.
2016-06-01
We are probing how mass loss from Asymptotic Giant Branch (AGB) stars depends upon their metallicity. Asymptotic giant branch (AGB) stars are evolved stars that eject large parts of their mass in outflows of dust and gas in the final stages of their lives. Our previous studies focused on mass loss from AGB stars in lower metallicity galaxies: the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC). In our present study, we analyze AGB star mass loss in the Galaxy, with special attention to the Bulge, to investigate how mass loss differs in an overall higher metallicity environment. We construct radiative transfer models of the spectral energy distributions (SEDs) of stars in the Galaxy identified as AGB stars from infrared and optical surveys. Our Magellanic Cloud studies found that the AGB stars with the highest mass loss rates tended to have outflows with carbon-rich dust, and that overall more carbon-rich (C-rich) dust than oxygen-rich (O-rich) was produced by AGB stars in both LMC and SMC. Our radiative transfer models have enabled us to determine reliably the dust chemistry of the AGB star from the best-fit model. For our Galactic sample, we are investigating both the dust chemistries of the AGB stars and their mass-loss rates, to compare the balance of C-rich dust to O-rich dust between the Galactic bulge and the Magellanic Clouds. We are also constructing detailed dust opacity models of AGB stars in the Galaxy for which we have infrared spectra; e.g., from the Spitzer Space Telescope Infrared Spectrograph (IRS). This detailed dust modeling of spectra informs our choice of dust properties to use in radiative transfer modeling of SEDs of Galactic AGB stars. BAS acknowledges funding from NASA ADAP grant NNX15AF15G.
An HI Imaging Survey of Asymptotic Giant Branch Stars
Matthews, L D; Gerard, E; Johnson, M C
2013-01-01
We present an imaging study of a sample of eight asymptotic giant branch (AGB) stars in the HI 21-cm line. Using observations from the Very Large Array, we have unambiguously detected HI emission associated with the extended circumstellar envelopes of six of the targets. The detected HI masses range from M_HI ~ 0.015-0.055 M_sun. The HI morphologies and kinematics are diverse, but in all cases appear to be significantly influenced by the interaction between the circumstellar envelope and the surrounding medium. Four stars (RX Lep, Y UMa, Y CVn, and V1942 Sgr) are surrounded by detached HI shells ranging from 0.36 to 0.76 pc across. We interpret these shells as resulting from material entrained in a stellar outflow being abruptly slowed at a termination shock where it meets the local medium. RX Lep and TX Psc, two stars with moderately high space velocities (V_space>56 km/s), exhibit extended gaseous wakes (~0.3 and 0.6 pc in the plane of the sky), trailing their motion through space. The other detected star, ...
Stellar yields from metal-rich asymptotic giant branch models
Karakas, Amanda I
2016-01-01
We present new theoretical stellar yields and surface abundances for three grids of metal-rich asymptotic giant branch (AGB) models. Post-processing nucleosynthesis results are presented for stellar models with initial masses between 1$M_{\\odot}$ and 7.5$M_{\\odot}$ for $Z=0.007$, and 1$M_{\\odot}$ and 8$M_{\\odot}$ for $Z=0.014$ (solar) and $Z=0.03$. We include stellar surface abundances as a function of thermal pulse on the AGB for elements from C to Bi and for a selection of isotopic ratios for elements up to Fe and Ni (e.g., $^{12}$C/$^{13}$C), which can be obtained from observations of molecules in stars and from the laboratory analysis of meteoritic stardust grains. Ratios of elemental abundances of He/H, C/O, and N/O are also included, which are useful for direct comparison to observations of AGB stars and their progeny including planetary nebulae. The integrated elemental stellar yields are presented for each model in the grid for hydrogen, helium and all stable elements from C to Bi. Yields of Li are al...
On Carbon Burning in Super Asymptotic Giant Branch Stars
Farmer, R; Timmes, F X
2015-01-01
We explore the detailed and broad properties of carbon burning in Super Asymptotic Giant Branch (SAGB) stars with 2755 MESA stellar evolution models. The location of first carbon ignition, quenching location of the carbon burning flames and flashes, angular frequency of the carbon core, and carbon core mass are studied as a function of the ZAMS mass, initial rotation rate, and mixing parameters such as convective overshoot, semiconvection, thermohaline and angular momentum transport. In general terms, we find these properties of carbon burning in SAGB models are not a strong function of the initial rotation profile, but are a sensitive function of the overshoot parameter. We quasi-analytically derive an approximate ignition density, $\\rho_{ign} \\approx 2.1 \\times 10^6$ g cm$^{-3}$, to predict the location of first carbon ignition in models that ignite carbon off-center. We also find that overshoot moves the ZAMS mass boundaries where off-center carbon ignition occurs at a nearly uniform rate of $\\Delta M_{\\rm...
Solar-Like Cycle in Asymptotic Giant Branch Stars
Soker, N
2000-01-01
I propose that the mechanism behind the formation of concentric semi-periodic shells found in several planetary nebulae (PNs) and proto-PNs, and around one asymptotic giant branch (AGB) star, is a solar-like magnetic activity cycle in the progenitor AGB stars. The time intervals between consecutive ejection events is about 200-1,000 years, which is assumed to be the cycle period (the full magnetic cycle can be twice as long, as is the 22-year period in the sun). The magnetic field has no dynamical effects; it regulates the mass loss rate by the formation of magnetic cool spots. The enhanced magnetic activity at the cycle maximum results in more magnetic cool spots, which facilitate the formation of dust, hence increasing the mass loss rate. The strong magnetic activity implies that the AGB star is spun up by a companion, via a tidal or common envelope interaction. The strong interaction with a stellar companion explains the observations that the concentric semi-periodic shells are found mainly in bipolar PNs.
Obscured Asymptotic Giant Branch Stars in the Magellanic Clouds
van Loon, J. T.
The most drastic change in the life of an intermediate mass star occurs when it approaches the tip of the Asymptotic Giant Branch (AGB). Large amplitude pulsation of the stellar photosphere and favourable conditions for dust formation cause these stars to develop heavy mass loss, leading to the star's death. The dusty circumstellar envelope (CSE) obscures the optical light from the star and re-emits at longer wavelengths, making it a very bright infrared (IR) object. The physical mechanism of the mass loss and its temporal behaviour are not understood. AGB stars can be best studied in either of the Magellanic Clouds, as these stars are all at nearly the same, well known distance to us, and suffer relatively little interstellar extinction. The Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) have metallicities a factor ~ 2 and 5 lower than the Milky Way, hence the metallicity dependence of the evolution and mass loss of AGB stars can be studied. A significant number of obscured AGB stars have been found in the Magellanic Clouds only very recently (Loup et al. 1997; Zijlstra et al. 1996; van Loon et al. 1997, 1998a; Groenewegen and Blommaert 1998). I first briefly describe our searches for AGB stars as counterparts of IRAS point sources in the Magellanic Clouds, using near-IR photometers and arrays. IR spectrophotometry and spectroscopy from the ground and from space (IRAS and ISO) are used to classify the stars as oxygen or carbon rich AGB stars. Both oxygen and carbon stars can be found at all luminosities from 6,000 to 40,000 Lo. Luminous carbon stars are the result of a reduced envelope mass due to mass loss, switching off Hot Bottom Burning. Near-IR monitoring has resulted in known periods and amplitudes for the obscured AGB stars in the Large Magellanic Cloud. The period-luminosity diagram of these Long Period Variables (LPVs) indicates the occurrence of thermal pulses. I show that the reddest stars, with the optically thickest CSEs, are not the
Melbourne, J.; Williams, B.; Dalcanton, J.; Ammons, S. M.; Max, C.; Koo, D.C.; Girardi, Leo; Dolphin, A.
2010-01-01
We investigate the utility of the asymptotic giant branch (AGB) and the red giant branch (RGB) as probes of the star formation history (SFH) of the nearby (D=2.5 Mpc) dwarf irregular galaxy, KKH 98. Near-infrared (IR) Keck Laser Guide Star Adaptive Optics (AO) images resolve 592 IR bright stars reaching over 1 magnitude below the Tip of the Red Giant Branch. Significantly deeper optical (F475W and F814W) Hubble Space Telescope images of the same field contain over 2500 stars, reaching to the ...
Asymptotic giant-branch populations in composite stellar systems
Energy Technology Data Exchange (ETDEWEB)
Cook, K.H.
1987-01-01
This dissertation presents a technique for the identification and classification of late-type stars and for the estimation of M-star metallicities. The technique uses broad-band, V and I, CCD images to identify red stars and two intermediate-band CCD images to classify these as carbon or M types. One of the intermediate passbands is centered on a TiO absorption band at 7750 A and the other is centered on a CN absorption band at 8100 A. Color-color plots of V-I versus the intermediate-band index, 77-81, clearly distinguishes carbon from M stars. Observations of both early- and late-type stars were used to define the 77-81 system based upon the intermediate-band filters. The TiO bandstrength deduced from the 77-81 color as a function of V-I color was investigated for field giants and giants in 12 globular clusters. A linear correlation between (Fe/H) and the V-I color at a given TiO bandstrength was found. The stellar population of the Sagittarius Dwarf Irregular galaxy (Sagdig) was examined using the 77-81 system. A method for estimating reddening based upon the color mode of foreground stars was developed for the analysis of the Sagdig data.
Helium enhancements in globular cluster stars from Asymptotic Giant Branch star pollution
Karakas, Amanda; Fenner, Yeshe; Sills, Alison; Campbell, Simon; Lattanzio, John
2006-01-01
Using a chemical evolution model we investigate the intriguing suggestion that there are populations of stars in some globular clusters (e.g. NGC 2808, omega Centauri) with enhanced levels of helium (Y from about 0.28 to 0.40) compared to the majority of the population that presumably have a primordial helium abundance. We assume that a previous generation of massive low-metallicity Asymptotic Giant Branch (AGB) stars has polluted the cluster gas via a slow stellar wind. We use two independen...
Neutral carbon in post-asymptotic giant branch stars and planetary nebulae
Hasegawa, TI; Kwok, S.
2003-01-01
The 492 GHz ( 3P 1 → 3P 0) fine-structure line of neutral atomic carbon (C I) has been observed in the planetary nebulae (PNe) NGC 6302, IRAS 21282+5050, and NGC 7027, and in the protoplanetary nebula (PPN) AFGL 2688. The estimated C I/CO abundance ratio is higher for a more evolved object, consistent with a trend that the C I/CO ratio increases with the evolution of a post-asymptotic giant branch system from a PPN to a PN. Nondetections are also reported on 11 PPNe and extreme carbon stars. ...
Nonlinear pulsations of stars with initial mass 3 M_\\odot on the asymptotic giant branch
Fadeyev, Yuri
2016-01-01
Pulsation period changes in Mira type variables are investigated using the stellar evolution and nonlinear stellar pulsation calculations. We considered the evolutionary sequence of stellar models with initial mass 3 Msol and population I composition. Pulsations of stars in the early stage of the asymptotic giant branch are shown to be due to instability of the fundamental mode. In the later stage of evolution when the helium shell source becomes thermally unstable the stellar oscillations arise in either the fundamental mode (for the stellar luminosity L 7e3 Lsol). Excitation of pulsations is due to the kappa-mechanism in the hydrogen ionization zone. Stars with intermediate luminosities 5.4e3 1e-3 per year take place during approx 500 years, that is nearly one hundredth of the interval between helium flashes.
FLUORINE IN THE SOLAR NEIGHBORHOOD: IS IT ALL PRODUCED IN ASYMPTOTIC GIANT BRANCH STARS?
Energy Technology Data Exchange (ETDEWEB)
Jönsson, H.; Ryde, N. [Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Box 43, SE-221 00 Lund (Sweden); Harper, G. M. [School of Physics, Trinity College, Dublin 2 (Ireland); Richter, M. J. [Physics Department, University of California, Davis, CA 95616 (United States); Hinkle, K. H., E-mail: henrikj@astro.lu.se [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726 (United States)
2014-07-10
The origin of ''cosmic'' fluorine is uncertain, but there are three proposed production sites/mechanisms for the origin: asymptotic giant branch (AGB) stars, ν nucleosynthesis in Type II supernovae, and/or the winds of Wolf-Rayet stars. The relative importance of these production sites has not been established even for the solar neighborhood, leading to uncertainties in stellar evolution models of these stars as well as uncertainties in the chemical evolution models of stellar populations. We determine the fluorine and oxygen abundances in seven bright, nearby giants with well determined stellar parameters. We use the 2.3 μm vibrational-rotational HF line and explore a pure rotational HF line at 12.2 μm. The latter has never been used before for an abundance analysis. To be able to do this, we have calculated a line list for pure rotational HF lines. We find that the abundances derived from the two diagnostics agree. Our derived abundances are well reproduced by chemical evolution models including only fluorine production in AGB stars and, therefore, we draw the conclusion that this might be the main production site of fluorine in the solar neighborhood. Furthermore, we highlight the advantages of using the 12 μm HF lines to determine the possible contribution of the ν process to the fluorine budget at low metallicities where the difference between models including and excluding this process is dramatic.
Melbourne, J; Dalcanton, J; Ammons, S M; Max, C; Koo, D C; Girardi, Leo; Dolphin, A
2010-01-01
We investigate the utility of the asymptotic giant branch (AGB) and the red giant branch (RGB) as probes of the star formation history (SFH) of the nearby (D=2.5 Mpc) dwarf irregular galaxy, KKH 98. Near-infrared (IR) Keck Laser Guide Star Adaptive Optics (AO) images resolve 592 IR bright stars reaching over 1 magnitude below the Tip of the Red Giant Branch. Significantly deeper optical (F475W and F814W) Hubble Space Telescope images of the same field contain over 2500 stars, reaching to the Red Clump and the Main Sequence turn-off for 0.5 Gyr old populations. Compared to the optical color magnitude diagram (CMD), the near-IR CMD shows significantly tighter AGB sequences, providing a good probe of the intermediate age (0.5 - 5 Gyr) populations. We match observed CMDs with stellar evolution models to recover the SFH of KKH 98. On average, the galaxy has experienced relatively constant low-level star formation (5 x 10^-4 Mo yr^-1) for much of cosmic time. Except for the youngest main sequence populations (age &...
Near-infrared Observations of SiO Maser-emitting Asymptotic Giant Branch (AGB) Stars
Chibueze, James O.; Miyahara, Takeshi; Omodaka, Toshihiro; Ohta, Takashi; Fujii, Takahiro; Tanaka, Masuo; Motohara, Kentaro; Makoto, Miyoshi
2016-02-01
Near-infrared (NIR) monitoring observations of asymptotic giant branch stars exciting bright SiO masers have been made with the 1 m telescope of Kagoshima University. In order to investigate the properties of these stars and their envelopes, we combined our NIR photometric data with mid- and far-infrared flux data obtained by the IRAS satellite, SiO maser flux data provided by the Nobeyama Radio Observatory, visual magnitude data provided by the AAVSO, and the reported data on the expansion velocities of the circumstellar envelopes. The absolute magnitudes at the K-band and the distances are estimated using the period-luminosity relation of Mira variables determined by Feast et al. Then, mass-loss rates and isotropic luminosities of an SiO maser are estimated. The mass-loss rates range from approximately 10-8 {M}⊙ \\{{yr}}-1 to over 10-5 {M}⊙ {{yr}}-1. We found that the NIR pulsation amplitudes are correlated with the pulsation periods and the observed wavelengths. We also found correlations of the isotropic luminosities of SiO masers with the mass-loss rates and absolute magnitudes at the K-band. These results will help us to understand the pumping mechanism of SiO masers. We measured, for the first time, the periods and/or NIR magnitudes of TX Cam, BW Cam, IRAS 06297+4045, IRAS 18387-0423, and RT Cep.
New light on Galactic post-asymptotic giant branch stars. I. First distance catalogue
Vickers, Shane B; Parker, Ouentin A; Bojicic, Ivan S
2014-01-01
We have commenced a detailed analysis of the known sample of Galactic post-asymptotic giant branch (PAGB) objects compiled in the Toru\\'n catalogue of Szczerba et al., and present, for the first time, homogeneously derived distance determinations for the 209 likely and 87 possible catalogued PAGB stars from that compilation. Knowing distances are essential in determining meaningful physical characteristics for these sources and this has been difficult to determine for most objects previously. The distances were determined by modelling their spectral energy distributions (SED) with multiple black-body curves, and integrating under the overall fit to determine the total distance-dependent flux. This method works because the luminosity of these central stars is very nearly constant from the tip of the AGB phase to the beginning of the white-dwarf cooling track. This then enables us to use a standard-candle luminosity to estimate the SED distances. For Galactic thin disk PAGB objects, we use three luminosity bins...
Helium enhancements in globular cluster stars from Asymptotic Giant Branch star pollution
Karakas, A I; Sills, A; Campbell, S; Lattanzio, J C; Karakas, Amanda; Fenner, Yeshe; Sills, Alison; Campbell, Simon; Lattanzio, John
2006-01-01
Using a chemical evolution model we investigate the intriguing suggestion that there are populations of stars in some globular clusters (e.g. NGC 2808, omega Centauri) with enhanced levels of helium (Y from about 0.28 to 0.40) compared to the majority of the population that presumably have a primordial helium abundance. We assume that a previous generation of massive low-metallicity Asymptotic Giant Branch (AGB) stars has polluted the cluster gas via a slow stellar wind. We use two independent sets of AGB yields computed from detailed models to follow the evolution of helium, carbon, nitrogen and oxygen in the cluster gas using a Salpeter initial mass function (IMF) and a number of top-heavy IMFs. In no case were we able to fit the observational constraints, Y > 0.30 and C+N+O approximately constant. Depending on the shape of the IMF and the yields, we either obtained Y approximately greater than 0.30 and large increases in C+N+O or Y < 0.30 and C+N+O approximately constant. These results suggest that eith...
HV2112, a Thorne-Zytkow Object or a Super Asymptotic Giant Branch Star
Tout, Christopher A; Church, Ross P; Lau, Herbert H B
2014-01-01
The very bright red star HV2112 in the Small Magellanic Cloud could be a massive Thorne-Zytkow Object, a supergiant-like star with a degenerate neutron core. With its luminosity of over $10^5\\,\\rm L_\\odot$, it could also be a super asymptotic giant branch star, a star with an oxygen/neon core supported by electron degeneracy and undergoing thermal pulses with third dredge up. Both TZOs and SAGB stars are expected to be rare. Abundances of heavy elements in HV2112's atmosphere, as observed to date, do not allow us to distinguish between the two possibilities based on the latest models. Molybdenum and rubidium can be enhanced by both the irp-process in a TZO or by the s-process in SAGB stars. Lithium can be generated by hot bottom burning at the base of the convective envelope in either. HV2112's enhanced calcium could thus be the key determinant. A SAGB star is not able to synthesise its own calcium but it may be possible to produce this in the final stages of the process that forms a TZO, when the degenerate ...
A Spitzer Space Telescope Survey of Extreme Asymptotic Giant Branch Stars in M32
Jones, O.C.; McDonald, I.; Rich, R.M.; Kemper, F.; Boyer, M.L.; Zijlstra, A.A.; Bendo, G.J.
2014-01-01
We investigate the population of cool, evolved stars in the Local Group dwarf elliptical galaxy M32, using Infrared Array Camera observations from the Spitzer Space Telescope. We construct deep mid-infrared colour-magnitude diagrams for the resolved stellar populations within 3.5 arcminutes of M32's centre, and identify those stars that exhibit infrared excess. Our data is dominated by a population of luminous, dustproducing stars on the asymptotic giant branch (AGB) and extend to approximately 3 magnitudes below the AGB tip. We detect for the first time a sizeable population of 'extreme' AGB stars, highly enshrouded by circumstellar dust and likely completely obscured at optical wavelengths. The total dust-injection rate from the extreme AGB candidates is measured to be 7.5 x 10 (sup -7) solar masses per year, corresponding to a gas mass-loss rate of 1.5 x 10 (sup -4) solar masses per year. These extreme stars may be indicative of an extended star-formation epoch between 0.2 and 5 billion years ago.
Heavy Element Nucleosynthesis in the Brightest Galactic Asymptotic Giant Branch stars
Karakas, Amanda I; Lugaro, Maria
2012-01-01
We present updated calculations of stellar evolutionary sequences and detailed nucleosynthesis predictions for the brightest asymptotic giant branch (AGB) stars in the Galaxy with masses between 5Msun to 9Msun, with an initial metallicity of Z =0.02 ([Fe/H] = 0.14). In our previous studies we used the Vassiliadis & Wood (1993) mass-loss rate, which stays low until the pulsation period reaches 500 days after which point a superwind begins. Vassiliadis & Wood noted that for stars over 2.5Msun the superwind should be delayed until P ~ 750 days at 5Msun. We calculate evolutionary sequences where we delay the onset of the superwind to pulsation periods of P ~ 700-800 days in models of M = 5, 6, and 7Msun. Post-processing nucleosynthesis calculations show that the 6 and 7Msun models produce the most Rb, with [Rb/Fe] ~ 1 dex, close to the average of most of the Galactic Rb-rich stars ([Rb/Fe] ~ 1.4 plus or minus 0.8 dex). Changing the rate of the 22Ne + alpha reactions results in variations of [Rb/Fe] as lar...
Evolution and nucleosynthesis of helium-rich asymptotic giant branch models
Shingles, Luke J; Karakas, Amanda I; Stancliffe, Richard J; Lattanzio, John C; Lugaro, Maria
2015-01-01
There is now strong evidence that some stars have been born with He mass fractions as high as $Y \\approx 0.40$ (e.g., in $\\omega$ Centauri). However, the advanced evolution, chemical yields, and final fates of He-rich stars are largely unexplored. We investigate the consequences of He-enhancement on the evolution and nucleosynthesis of intermediate-mass asymptotic giant branch (AGB) models of 3, 4, 5, and 6 M$_\\odot$ with a metallicity of $Z = 0.0006$ ([Fe/H] $\\approx -1.4$). We compare models with He-enhanced compositions ($Y=0.30, 0.35, 0.40$) to those with primordial He ($Y=0.24$). We find that the minimum initial mass for C burning and super-AGB stars with CO(Ne) or ONe cores decreases from above our highest mass of 6 M$_\\odot$ to $\\sim$ 4-5 M$_\\odot$ with $Y=0.40$. We also model the production of trans-Fe elements via the slow neutron-capture process (s-process). He-enhancement substantially reduces the third dredge-up efficiency and the stellar yields of s-process elements (e.g., 90% less Ba for 6 M$_\\o...
Ventura, P; Dell'Agli, F; García-Hernández, D A; Di Criscienzo, M
2015-01-01
We used a new generation of asymptotic giant branch (AGB) stellar models that include dust formation in the stellar winds to find the links between evolutionary models and the observed properties of a homogeneous sample of Large Magellanic Cloud (LMC) planetary nebulae (PNe). Comparison between the evolutionary yields of elements such as CNO and the corresponding observed chemical abundances is a powerful tool to shed light on evolutionary processes such as hot bottom burning (HBB) and third dredge-up (TDU). We found that the occurrence of HBB is needed to interpret the nitrogen-enriched (log(N/H)+12>8) PNe. In particular, N-rich PNe with the lowest carbon content are nicely reproduced by AGB models of mass M >=6 Mo, whose surface chemistry reflects the pure effects of HBB. PNe with log(N/H)+12<7.5 correspond to ejecta of stars that have not experienced HBB, with initial mass below about 3 Mo. Some of these stars show very large carbon abundances, owing to the many TDU episodes experienced. We found from o...
Dust-enshrouded Asymptotic Giant Branch Stars in the Solar Neighbourhood
Olivier, E A; Marang, F; Olivier, Enrico A.; Whitelock, Patricia; Marang, Fred
2001-01-01
A study is made of a sample of 58 dust-enshrouded Asymptotic Giant Branch (AGB) stars (including 2 possible post AGB stars), of which 27 are carbon-rich and 31 are oxygen-rich. These objects were originally identified by Jura & Kleinmann as nearby (within about 1 kpc of the sun) AGB stars with high mass-loss rates, greater than 1E-6 solar masses per year. Ground-based near-infrared photometry, data obtained by IRAS and kinematic data from the literature are combined to investigate the properties of these stars. The light amplitude in the near-infrared is found to be correlated with period, and this amplitude decreases with increasing wavelength. Statistical tests show that there is no reason to suspect any difference in the period distributions of the carbon- and oxygen-rich stars for periods less than 1000 days, and no carbon-rich star has a period longer than 1000 days. The colours are consistent with those of cool stars with evolved circumstellar dust-shells. Luminosities and distances are estimated us...
On the asymptotic giant branch star origin of peculiar spinel grain OC2
Lugaro, M; Nittler, L R; Alexander, O D; Hoppe, P; Lattanzio, J C
2006-01-01
Microscopic presolar grains extracted from primitive meteorites have extremely anomalous isotopic compositions revealing the stellar origin of these grains. The composition of presolar spinel grain OC2 is different from that of all other presolar spinel grains. Large excesses of the heavy Mg isotopes are present and thus an origin from an intermediate-mass (IM) asymptotic giant branch (AGB) star was previously proposed for this grain. We discuss the isotopic compositions of presolar spinel grain OC2 and compare them to theoretical predictions. We show that the isotopic composition of O, Mg and Al in OC2 could be the signature of an AGB star of IM and metallicity close to solar experiencing hot bottom burning, or of an AGB star of low mass (LM) and low metallicity suffering very efficient cool bottom processing. Large measurement uncertainty in the Fe isotopic composition prevents us from discriminating which model better represents the parent star of OC2. However, the Cr isotopic composition of the grain favo...
New light on Galactic post-asymptotic giant branch stars - I. First distance catalogue
Vickers, Shane B.; Frew, David J.; Parker, Quentin A.; Bojičić, Ivan S.
2015-02-01
We have commenced a detailed analysis of the known sample of Galactic post-asymptotic giant branch (PAGB) objects compiled in the Toruń catalogue of Szczerba et al., and present, for the first time, homogeneously derived distance determinations for the 209 likely and 87 possible catalogued PAGB stars from that compilation. Knowing distances are essential in determining meaningful physical characteristics for these sources and this has been difficult to determine for most objects previously. The distances were determined by modelling their spectral energy distributions (SEDs) with multiple blackbody curves, and integrating under the overall fit to determine the total distance-dependent flux. This approach was undertaken for consistency as precise spectral types, needed for more detailed fitting, were unknown in the majority of cases. The SED method works because the luminosity of these central stars is very nearly constant from the tip of the AGB phase to the beginning of the white dwarf cooling track. This then enables us to use a standard-candle luminosity to estimate the SED distances. For Galactic thin-disc PAGB objects, we use three luminosity bins based on typical observational characteristics, ranging between 3500 and 12 000 L⊙. We further adopt a default luminosity of 4000 L⊙ for bulge objects and 1700 L⊙ for the thick-disc and halo objects. We have also applied the above technique to a further sample of 54 related nebulae not in the current edition of the Toruń catalogue. In a follow-up paper, we will estimate distances to the subset of RV Tauri variables using empirical period-luminosity relations, and to the R CrB stars, allowing a population comparison of these objects with the other subclasses of PAGB stars for the first time.
Heavy elements in globular clusters: The role of asymptotic giant branch stars
International Nuclear Information System (INIS)
Recent observations of heavy elements in globular clusters reveal intriguing deviations from the standard paradigm of the early galactic nucleosynthesis. If the r-process contamination is a common feature of halo stars, s-process enhancements are found in a few globular clusters only. We show that the combined pollution of asymptotic giant branch (AGB) stars with a mass ranging between 3 to 6 M ☉ may account for most of the features of the s-process overabundance in M4 and M22. In these stars, the s process is a mixture of two very different neutron-capture nucleosynthesis episodes. The first is due to the 13C(α, n)16O reaction and takes place during the interpulse periods. The second is due to the 22Ne(α, n)25Mg reaction and takes place in the convective zones generated by thermal pulses. The production of the heaviest s elements (from Ba to Pb) requires the first neutron burst, while the second produces large overabundances of light s (Rb, Sr, Y, Zr). The first mainly operates in the less massive AGB stars, while the second dominates in the more massive. From the heavy-s/light-s ratio, we derive that the pollution phase should last for 150 ± 50 Myr, a period short enough compared to the formation timescale of the globular cluster system, but long enough to explain why the s-process pollution is observed in a few cases only. With few exceptions, our theoretical prediction provides a reasonable reproduction of the observed s-process abundances, from Sr to Hf. However, Ce is probably underproduced by our models, while Rb and Pb are overproduced. Possible solutions are discussed.
Lapenna, E; Mucciarelli, A; Salaris, M; Ferraro, F R; Lanzoni, B; Massari, D; Stetson, P B; Cassisi, S; Savino, A
2016-01-01
We derived chemical abundances for C, N, O, Na, Mg and Al in 20 asymptotic giant branch (AGB) stars in the globular cluster NGC 6752. All these elements (but Mg) show intrinsic star-to-star variations and statistically significant correlations or anticorrelations analogous to those commonly observed in red giant stars of globular clusters hosting multiple populations. This demonstrates that, at odds with previous findings, both first and second generation stars populate the AGB of NGC 6752. The comparison with the Na abundances of red giant branch stars in the same cluster reveals that second generation stars (with mild Na and He enrichment) do reach the AGB phase. The only objects that are not observed along the AGB of NGC 6752 are stars with extreme Na enhancement. This is also consistent with standard stellar evolution models, showing that highly Na and He enriched stars populate the bluest portion of the horizontal branch and, because of their low stellar masses, evolve directly to the white dwarf cooling...
Lapenna, E.; Lardo, C.; Mucciarelli, A.; Salaris, M.; Ferraro, F. R.; Lanzoni, B.; Massari, D.; Stetson, P. B.; Cassisi, S.; Savino, A.
2016-07-01
We derived chemical abundances for C, N, O, Na, Mg, and Al in 20 asymptotic giant branch (AGB) stars in the globular cluster (GC) NGC 6752. All these elements (but Mg) show intrinsic star-to-star variations and statistically significant correlations or anticorrelations analogous to those commonly observed in red giant stars of GCs hosting multiple populations. This demonstrates that, at odds with previous findings, both first- and second-generation (SG) stars populate the AGB of NGC 6752. The comparison with the Na abundances of red giant branch stars in the same cluster reveals that SG stars (with mild Na and He enrichment) do reach the AGB phase. The only objects that are not observed along the AGB of NGC 6752 are stars with extreme Na enhancement. This is also consistent with standard stellar evolution models, showing that highly Na and He enriched stars populate the bluest portion of the horizontal branch and, because of their low stellar masses, evolve directly to the white dwarf cooling sequence, skipping the AGB phase. Based on observations collected at the ESO-VLT under the program 095.D-0320(A).
Ventura, P; Dell'Agli, F; Boyer, M L; García-Hernández, D A; Di Criscienzo, M; Schneider, R
2015-01-01
We use Spitzer observations of the rich population of Asymptotic Giant Branch stars in the Large Magellanic Cloud (LMC) to test models describing the internal structure and nucleosynthesis of the most massive of these stars, i.e. those with initial mass above $\\sim 4M_{\\odot}$. To this aim, we compare Spitzer observations of LMC stars with the theoretical tracks of Asymptotic Giant Branch models, calculated with two of the most popular evolution codes, that are known to differ in particular for the treatment of convection. Although the physical evolution of the two models are significantly different, the properties of dust formed in their winds are surprisingly similar, as is their position in the colour-colour (CCD) and colour-magnitude (CMD) diagrams obtained with the Spitzer bands. This model independent result allows us to select a well defined region in the ($[3.6]-[4.5], [5.8]-[8.0]$) plane, populated by AGB stars experiencing Hot Bottom Burning, the progeny of stars with mass $M\\sim 5.5M_{\\odot}$. This...
Garcia-Hernandez, D A; Monelli, M; Cassisi, S; Stetson, P B; Zamora, O; Shetrone, M; Lucatello, S
2015-01-01
Galactic globular clusters (GCs) are known to host multiple stellar populations: a first generation with a chemical pattern typical of halo field stars and a second generation (SG) enriched in Na and Al and depleted in O and Mg. Both stellar generations are found at different evolutionary stages (e.g., the main-sequence turnoff, the subgiant branch, and the red giant branch). The non detection of SG asymptotic giant branch (AGB) stars in several metal-poor ([Fe/H] < -1) GCs suggests that not all SG stars ascend the AGB phase, and that failed AGB stars may be very common in metal-poor GCs. This observation represents a serious problem for stellar evolution and GC formation/evolution theories. We report fourteen SG-AGB stars in four metal-poor GCs (M 13, M 5, M 3, and M 2) with different observational properties: horizontal branch (HB) morphology, metallicity, and age. By combining the H-band Al abundances obtained by the APOGEE survey with ground-based optical photometry, we identify SG Al-rich AGB stars in...
International Nuclear Information System (INIS)
In an attempt to constrain evolutionary models of the asymptotic giant branch (AGB) phase at the limit of low masses and low metallicities, we have examined the luminosity functions and number ratios between AGB and red giant branch (RGB) stars from a sample of resolved galaxies from the ACS Nearby Galaxy Survey Treasury. This database provides Hubble Space Telescope optical photometry together with maps of completeness, photometric errors, and star formation histories for dozens of galaxies within 4 Mpc. We select 12 galaxies characterized by predominantly metal-poor populations as indicated by a very steep and blue RGB, and which do not present any indication of recent star formation in their color-magnitude diagrams. Thousands of AGB stars brighter than the tip of the RGB (TRGB) are present in the sample (between 60 and 400 per galaxy), hence, the Poisson noise has little impact in our measurements of the AGB/RGB ratio. We model the photometric data with a few sets of thermally pulsing AGB (TP-AGB) evolutionary models with different prescriptions for the mass loss. This technique allows us to set stringent constraints on the TP-AGB models of low-mass, metal-poor stars (with M sun, [Fe/H]∼sun. This is also in good agreement with recent observations of white dwarf masses in the M4 old globular cluster. These constraints can be added to those already derived from Magellanic Cloud star clusters as important mileposts in the arduous process of calibrating AGB evolutionary models.
Energy Technology Data Exchange (ETDEWEB)
Lapenna, E.; Mucciarelli, A.; Lanzoni, B.; Ferraro, F. R.; Dalessandro, E.; Massari, D. [Dipartimento di Fisica e Astronomia, Università degli Studi di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Origlia, L. [INAF- Osservatorio Astronomico di Bologna, Via Ranzani, 1, 40127 Bologna (Italy)
2014-12-20
We present the iron abundance of 24 asymptotic giant branch (AGB) stars, members of the globular cluster 47 Tucanae, obtained with high-resolution spectra collected with the FEROS spectrograph at the MPG/ESO 2.2 m Telescope. We find that the iron abundances derived from neutral lines (with a mean value [Fe I/H] =–0.94 ± 0.01, σ = 0.08 dex) are systematically lower than those derived from single ionized lines ([Fe II/H] =–0.83 ± 0.01, σ = 0.05 dex). Only the latter are in agreement with those obtained for a sample of red giant branch (RGB) cluster stars, for which the Fe I and Fe II lines provide the same iron abundance. This finding suggests that non-local thermodynamical equilibrium (NLTE) effects driven by overionization mechanisms are present in the atmosphere of AGB stars and significantly affect the Fe I lines while leaving Fe II features unaltered. On the other hand, the very good ionization equilibrium found for RGB stars indicates that these NLTE effects may depend on the evolutionary stage. We discuss the impact of this finding on both the chemical analysis of AGB stars and on the search for evolved blue stragglers.
Garcia-Hernandez, D A; Delgado-Inglada, G; Dell'Agli, F; Di Criscienzo, M; Yagüe, A
2016-01-01
We present nucleosynthesis predictions (HeCNOCl) from asymptotic giant branch (AGB) models, with diffusive overshooting from all the convective borders, in the metallicity range Z/4 3.5 Msun) solar/supersolar metallicity AGBs that experience hot bottom burning (HBB), but other formation channels in low-mass AGBs like extra mixing, stellar rotation, binary interaction, or He pre-enrichment cannot be disregarded until more accurate C/O ratios would be obtained. Two objects among the DC PNe show the imprint of advanced CNO processing and deep second dredge-up, suggesting progenitors masses close to the limit to evolve as core collapse supernovae (above 6 Msun). Their actual C/O ratio, if confirmed, indicate contamination from the third dredge-up, rejecting the hypothesis that the chemical composition of such high-metallicity massive AGBs is modified exclusively by HBB.
Lee, Hyun-chul; Blakeslee, John P
2009-01-01
We investigate the effects of alpha-element enhancement and the thermally pulsing-asymptotic giant branch (TP-AGB) stars on the surface brightness fluctuation (SBF) magnitudes and broadband colors of simple stellar populations and compare to the empirical calibrations. We consider a broad range of ages and metallicities using the recently updated Teramo BaSTI isochrones. We find that the alpha-element enhanced I-band SBF magnitudes are brighter and their integrated V - I colors are redder, mostly because of oxygen enhancement effects on the upper red giant branch and asymptotic giant branch. The Teramo BaSTI and Padova isochrones that include TP-AGB stars fit the I-band and near-IR SBF empirical trends better than past models. Our results indicate that alpha-enhanced SBF models may be necessary to match red massive galaxies, while solar-scaled models may be adequate to match bluer galaxies.
International Nuclear Information System (INIS)
The advection of thermonuclear ashes by magnetized domains emerging near the H shell was suggested to explain asymptotic giant branch (AGB) star abundances. Here we verify this idea quantitatively through exact MHD models. Starting with a simple two-dimensional (2D) geometry and in an inertia frame, we study plasma equilibria avoiding the complications of numerical simulations. We show that below the convective envelope of an AGB star, variable magnetic fields induce a natural expansion, permitted by the almost ideal MHD conditions, in which the radial velocity grows as the second power of the radius. We then study the convective envelope, where the complexity of macroturbulence allows only for a schematic analytical treatment. Here the radial velocity depends on the square root of the radius. We then verify the robustness of our results with 3D calculations for the velocity, showing that for both studied regions the solution previously found can be seen as a planar section of a more complex behavior, in which the average radial velocity retains the same dependency on the radius found in 2D. As a final check, we compare our results to approximate descriptions of buoyant magnetic structures. For realistic boundary conditions, the envelope crossing times are sufficient to disperse in the huge convective zone any material transported, suggesting magnetic advection as a promising mechanism for deep mixing. The mixing velocities are smaller than for convection but larger than for diffusion and adequate for extra mixing in red giants.
Energy Technology Data Exchange (ETDEWEB)
Nucci, M. C. [Department of Mathematics and Informatics, University of Perugia, via Vanvitelli 1, Perugia, I-06123 (Italy); Busso, M., E-mail: mariaclara.nucci@unipg.it, E-mail: busso@fisica.unipg.it [INFN, Section of Perugia, via Pascoli, Perugia, I-06123 (Italy)
2014-06-01
The advection of thermonuclear ashes by magnetized domains emerging near the H shell was suggested to explain asymptotic giant branch (AGB) star abundances. Here we verify this idea quantitatively through exact MHD models. Starting with a simple two-dimensional (2D) geometry and in an inertia frame, we study plasma equilibria avoiding the complications of numerical simulations. We show that below the convective envelope of an AGB star, variable magnetic fields induce a natural expansion, permitted by the almost ideal MHD conditions, in which the radial velocity grows as the second power of the radius. We then study the convective envelope, where the complexity of macroturbulence allows only for a schematic analytical treatment. Here the radial velocity depends on the square root of the radius. We then verify the robustness of our results with 3D calculations for the velocity, showing that for both studied regions the solution previously found can be seen as a planar section of a more complex behavior, in which the average radial velocity retains the same dependency on the radius found in 2D. As a final check, we compare our results to approximate descriptions of buoyant magnetic structures. For realistic boundary conditions, the envelope crossing times are sufficient to disperse in the huge convective zone any material transported, suggesting magnetic advection as a promising mechanism for deep mixing. The mixing velocities are smaller than for convection but larger than for diffusion and adequate for extra mixing in red giants.
Energy Technology Data Exchange (ETDEWEB)
Girardi, Léo [Osservatorio Astronomico di Padova-INAF, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Marigo, Paola [Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Vicolo dell' Osservatorio 3, I-35122 Padova (Italy); Bressan, Alessandro [SISSA, via Bonomea 365, I-34136 Trieste (Italy); Rosenfield, Philip [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States)
2013-11-10
In the recent controversy about the role of thermally pulsing asymptotic giant branch (TP-AGB) stars in evolutionary population synthesis (EPS) models of galaxies, one particular aspect is puzzling: TP-AGB models aimed at reproducing the lifetimes and integrated fluxes of the TP-AGB phase in Magellanic Cloud (MC) clusters, when incorporated into EPS models, are found to overestimate, to various extents, the TP-AGB contribution in resolved star counts and integrated spectra of galaxies. In this paper, we call attention to a particular evolutionary aspect, linked to the physics of stellar interiors, that in all probability is the main cause of this conundrum. As soon as stellar populations intercept the ages at which red giant branch stars first appear, a sudden and abrupt change in the lifetime of the core He-burning phase causes a temporary 'boost' in the production rate of subsequent evolutionary phases, including the TP-AGB. For a timespan of about 0.1 Gyr, triple TP-AGB branches develop at slightly different initial masses, causing their frequency and contribution to the integrated luminosity of the stellar population to increase by a factor of ∼2. The boost occurs for turn-off masses of ∼1.75 M{sub ☉}, just in the proximity of the expected peak in the TP-AGB lifetimes (for MC metallicities), and for ages of ∼1.6 Gyr. Coincidently, this relatively narrow age interval happens to contain the few very massive MC clusters that host most of the TP-AGB stars used to constrain stellar evolution and EPS models. This concomitance makes the AGB-boosting particularly insidious in the context of present EPS models. As we discuss in this paper, the identification of this evolutionary effect brings about three main consequences. First, we claim that present estimates of the TP-AGB contribution to the integrated light of galaxies derived from MC clusters are biased toward too large values. Second, the relative TP-AGB contribution of single-burst populations
Jones, O C; Sargent, B A; McDonald, I; Gielen, C; Woods, Paul M; Sloan, G C; Boyer, M L; Zijlstra, A A; Clayton, G C; Kraemer, K E; Srinivasan, S; Ruffle, P M E
2012-01-01
We investigate the occurrence of crystalline silicates in oxygen-rich evolved stars across a range of metallicities and mass-loss rates. It has been suggested that the crystalline silicate feature strength increases with increasing mass-loss rate, implying a correlation between lattice structure and wind density. To test this, we analyse Spitzer IRS and Infrared Space Observatory SWS spectra of 217 oxygen-rich asymptotic giant branch stars and 98 red supergiants in the Milky Way, the Large and Small Magellanic Clouds and Galactic globular clusters. These encompass a range of spectral morphologies from the spectrally-rich which exhibit a wealth of crystalline and amorphous silicate features to 'naked' (dust-free) stars. We combine spectroscopic and photometric observations with the GRAMS grid of radiative transfer models to derive (dust) mass-loss rates and temperature. We then measure the strength of the crystalline silicate bands at 23, 28 and 33 microns. We detect crystalline silicates in stars with dust ma...
Boyer, Martha L; van Loon, Jacco Th; Gehrz, Robert D; Woodward, Charles E
2009-01-01
We present the third and final part of a census of Asymptotic Giant Branch (AGB) stars in Local Group dwarf irregular galaxies. Papers I and II presented the results for WLM and IC 1613. Included here are Phoenix, LGS 3, DDO 210, Leo A, Pegasus dIrr, and Sextans A. Spitzer photometry at 3.6, 4.5, 5.8, and 8 are presented, along with a more thorough treatment of background galaxy contamination than was presented in papers I and II. We find that at least a small population of completely optically obscured AGB stars exists in each galaxy, regardless of the galaxy's metallicity, but that higher-metallicity galaxies tend to harbor more stars with slight IR excesses. The optical incompleteness increases for the redder AGB stars, in line with the expectation that some AGB stars are not detected in the optical due to large amounts of extinction associated with in situ dust production. Overall, there is an underrepresentation of 30% - 40% in the optical AGB within the 1 sigma errors for all of the galaxies in our samp...
Bertolami, Marcelo M Miller
2015-01-01
The Post Asymptotic Giant Branch (AGB) phase is arguably one of the least understood phases of the evolution of low- and intermediate- mass stars. The two grids of models presently available are based on outdated micro- and macro-physics and do not agree with each other. We study the timescales of post-AGB and CSPNe in the context of our present understanding of the micro- and macro-physics of stars. We want to assess whether new post-AGB models, based on the latter improvements in TP-AGB modeling, can help to understand the discrepancies between observation and theory and within theory itself. We compute a grid of post-AGB full evolutionary sequences that include all previous evolutionary stages from the Zero Age Main Sequence to the White Dwarf phase. Models are computed for initial masses between 0.8 and 4 $M_\\odot$ and for a wide range of initial metallicities ($Z_0=$0.02, 0.01, 0.001, 0.0001), this allow us to provide post-AGB timescales and properties for H-burning post-AGB objects with masses in the re...
García-Hernández, D. A.; Ventura, P.; Delgado-Inglada, G.; Dell'Agli, F.; Di Criscienzo, M.; Yagüe, A.
2016-09-01
We present nucleosynthesis predictions (HeCNOCl) from asymptotic giant branch (AGB) models, with diffusive overshooting from all the convective borders, in the metallicity range Z⊙/4 chemical pattern similar to the DC PNe. In agreement with recent literature, the DC PNe mostly descend from high-mass (M ≥ 3.5 M⊙) solar/supersolar metallicity AGBs that experience hot bottom burning (HBB), but other formation channels in low-mass AGBs like extra mixing, stellar rotation, binary interaction, or He pre-enrichment cannot be disregarded until more accurate C/O ratios would be obtained. Two objects among the DC PNe show the imprint of advanced CNO processing and deep second dredge-up, suggesting progenitors masses close to the limit to evolve as core collapse supernovae (above 6M⊙). Their actual C/O ratio, if confirmed, indicate contamination from the third dredge-up, rejecting the hypothesis that the chemical composition of such high-metallicity massive AGBs is modified exclusively by HBB.
Sloan, G C; Zijlstra, A A; Kraemer, K E; Weis, A P; Matsuura, M; Volk, K; Peeters, E; Duley, W W; Cami, J; Bernard-Salas, J; Kemper, F; Sahai, R
2014-01-01
Infrared spectra of carbon-rich objects which have evolved off the asymptotic giant branch reveal a range of dust properties, including fullerenes, polycyclic aromatic hydrocarbons (PAHs), aliphatic hydrocarbons, and several unidentified features, including the 21 um emission feature. To test for the presence of fullerenes, we used the position and width of the feature at 18.7-18.9 um and examined other features at 17.4 and 6-9 um. This method adds three new fullerene sources to the known sample, but it also calls into question three previous identifications. We confirm that the strong 11 um features seen in some sources arise primarily from SiC, which may exist as a coating around carbonaceous cores and result from photo-processing. Spectra showing the 21 um feature usually show the newly defined Class D PAH profile at 7-9 um. These spectra exhibit unusual PAH profiles at 11-14 um, with weak contributions at 12.7 um, which we define as Class D1, or show features shifted to ~11.4, 12.4, and 13.2 um, which we ...
Melbourne, J
2012-01-01
We present the near- through mid-infrared flux contribution of thermally-pulsing asymptotic giant branch (TP-AGB) and massive red super giant (RSG) stars to the luminosities of the Large and Small Magellanic Clouds (LMC and SMC, respectively). Combined, the peak contribution from these cool evolved stars occurs at ~3-4 um, where they produce 32% of the SMC light, and 25% of the LMC flux. The TP-AGB star contribution also peaks at ~3-4 um and amounts to 21% in both galaxies. The contribution from RSG stars peaks at shorter wavelengths, 2.2 um, where they provide 11% of the SMC flux, and 7% for the LMC. Both TP-AGB and RSG stars are short lived, and thus potentially impose a large stochastic scatter on the near-IR derived mass-to-light ratios of galaxies at rest-frame 1-4 um. To minimize their impact on stellar mass estimates, one can use the M/L ratio at shorter wavelengths (e.g. at 0.8 - 1 um). At longer wavelengths (>=8 um), emission from dust in the interstellar medium dominates the flux. In the LMC, which ...
García-Hernández, D. A.; Ventura, P.; Delgado-Inglada, G.; Dell'Agli, F.; Di Criscienzo, M.; Yagüe, A.
2016-06-01
We present nucleosynthesis predictions (HeCNOCl) from asymptotic giant branch (AGB) models, with diffusive overshooting from all the convective borders, in the metallicity range Z⊙/4 oxygen-dust chemistry (OC) according to the infrared dust features. Unlike the similar subsample of Galactic carbon-dust chemistry PNe recently analysed by us, here the individual abundance errors, the higher metallicity spread, and the uncertain dust types/subtypes in some PNe do not allow a clear determination of the AGB progenitor masses (and formation epochs) for both PNe samples; the comparison is thus more focussed on a object-by-object basis. The lowest metallicity OC PNe evolve from low-mass (˜1 M⊙) O-rich AGBs, while the higher metallicity ones (all with uncertain dust classifications) display a chemical pattern similar to the DC PNe. In agreement with recent literature, the DC PNe mostly descend from high-mass (M ≥3.5 M⊙) solar/supersolar metallicity AGBs that experience hot bottom burning (HBB), but other formation channels in low-mass AGBs like extra mixing, stellar rotation, binary interaction, or He pre-enrichment cannot be disregarded until more accurate C/O ratios would be obtained. Two objects among the DC PNe show the imprint of advanced CNO processing and deep second dredge-up, suggesting progenitors masses close to the limit to evolve as core collapse supernovae (above 6~M⊙). Their actual C/O ratio, if confirmed, indicate contamination from the third dredge-up, rejecting the hypothesis that the chemical composition of such high-metallicity massive AGBs is modified exclusively by HBB.
Energy Technology Data Exchange (ETDEWEB)
Sloan, G. C.; Lagadec, E. [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853-6801 (United States); Zijlstra, A. A. [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom); Kraemer, K. E. [Institute for Scientific Research, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467 (United States); Weis, A. P. [Department of Astronomy and Astrophysics, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Matsuura, M. [Astrophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Volk, K. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Peeters, E.; Cami, J. [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada); Duley, W. W. [Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 (Canada); Bernard-Salas, J. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Kemper, F. [Academia Sinica, Institute of Astronomy and Astrophysics, 11F Astronomy-Mathematics Building, NTU/AS, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, R.O.C (China); Sahai, R., E-mail: sloan@isc.astro.cornell.edu [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States)
2014-08-10
Infrared spectra of carbon-rich objects that have evolved off the asymptotic giant branch reveal a range of dust properties, including fullerenes, polycyclic aromatic hydrocarbons (PAHs), aliphatic hydrocarbons, and several unidentified features, including the 21 μm emission feature. To test for the presence of fullerenes, we used the position and width of the feature at 18.7-18.9 μm and examined other features at 17.4 and 6-9 μm. This method adds three new fullerene sources to the known sample, but it also calls into question three previous identifications. We confirm that the strong 11 μm features seen in some sources arise primarily from SiC, which may exist as a coating around carbonaceous cores and result from photo-processing. Spectra showing the 21 μm feature usually show the newly defined Class D PAH profile at 7-9 μm. These spectra exhibit unusual PAH profiles at 11-14 μm, with weak contributions at 12.7 μm, which we define as Class D1, or show features shifted to ∼11.4, 12.4, and 13.2 μm, which we define as Class D2. Alkyne hydrocarbons match the 15.8 μm feature associated with 21 μm emission. Sources showing fullerene emission but no PAHs have blue colors in the optical, suggesting a clear line of sight to the central source. Spectra with 21 μm features and Class D2 PAH emission also show photometric evidence for a relatively clear line of sight to the central source. The multiple associations of the 21 μm feature with aliphatic hydrocarbons suggest that the carrier is related to this material in some way.
Miller Bertolami, Marcelo Miguel
2016-04-01
Context. The post-asymptotic giant branch (AGB) phase is arguably one of the least understood phases of the evolution of low- and intermediate- mass stars. The two grids of models presently available are based on outdated micro- and macrophysics and do not agree with each other. Studies of the central stars of planetary nebulae (CSPNe) and post-AGB stars in different stellar populations point to significant discrepancies with the theoretical predictions of post-AGB models. Aims: We study the timescales of post-AGB and CSPNe in the context of our present understanding of the micro- and macrophysics of stars. We want to assess whether new post-AGB models, based on the latter improvements in TP-AGB modeling, can help us to understand the discrepancies between observation and theory and within theory itself. In addition, we aim to understand the impact of the previous AGB evolution for post-AGB phases. Methods: We computed a grid of post-AGB full evolutionary sequences that include all previous evolutionary stages from the zero age main sequence to the white dwarf phase. We computed models for initial masses between 0.8 and 4 M⊙ and for a wide range of initial metallicities (Z0 = 0.02, 0.01, 0.001, 0.0001). This allowed us to provide post-AGB timescales and properties for H-burning post-AGB objects with masses in the relevant range for the formation of planetary nebulae (~0.5-0.8 M⊙). We included an updated treatment of the constitutive microphysics and included an updated description of the mixing processes and winds that play a key role during the thermal pulses (TP) on the AGB phase. Results: We present a new grid of models for post-AGB stars that take into account the improvements in the modeling of AGB stars in recent decades. These new models are particularly suited to be inputs in studies of the formation of planetary nebulae and for the determination of the properties of CSPNe from their observational parameters. We find post-AGB timescales that are at
Energy Technology Data Exchange (ETDEWEB)
Blum, R. D. [NOAO, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Srinivasan, S.; Kemper, F.; Ling, B. [Academia Sinica, Institute of Astronomy and Astrophysics, 11F of Astronomy-Mathematics Building, NTU/AS, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Volk, K. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)
2014-11-01
K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ''tip'' of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ''stellar'' cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk.
Blum, R. D.; Srinivasan, S.; Kemper, F.; Ling, B.; Volk, K.
2014-11-01
K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ``tip" of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ``stellar" cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).
Rosenfield, Philip; Girardi, Léo; Dalcanton, Julianne J; Bressan, Alessandro; Williams, Benjamin F; Dolphin, Andrew
2016-01-01
Thermally-Pulsing Asymptotic Giant Branch (TP-AGB) stars are relatively short lived (less than a few Myr), yet their cool effective temperatures, high luminosities, efficient mass-loss and dust production can dramatically effect the chemical enrichment histories and the spectral energy distributions of their host galaxies. The ability to accurately model TP-AGB stars is critical to the interpretation of the integrated light of distant galaxies, especially in redder wavelengths. We continue previous efforts to constrain the evolution and lifetimes of TP-AGB stars by modeling their underlying stellar populations. Using Hubble Space Telescope (HST) optical and near-infrared photometry taken of 12 fields of 10 nearby galaxies imaged via the ACS Nearby Galaxy Survey Treasury and the near-infrared HST/SNAP follow-up campaign, we compare the model and observed TP-AGB luminosity functions as well as the number ratio of TP-AGB to red giant branch stars. We confirm the best-fitting mass-loss prescription, introduced by...
Neufeld, David A.; González-Alfonso, Eduardo; Melnick, Gary J.; Szczerba, Ryszard; Schmidt, Miroslaw; Decin, Leen; de Koter, Alex; Schöier, Fredrik; Cernicharo, José
2011-02-01
We report the results of observations of 10 rotational transitions of water vapor toward the carbon-rich asymptotic giant branch (AGB) star IRC+10216 (CW Leonis), carried out with Herschel's HIFI instrument. Each transition was securely detected by means of observations using the dual beam switch mode of HIFI. The measured line ratios imply that water vapor is present in the inner outflow at small distances (IRC+10216 remains poorly understood. We derive upper limits on the H17 2O/H16 2O and H18 2O/H16 2O isotopic abundance ratios of ~5 × 10-3 (3σ), providing additional constraints on models for the origin of the water vapor in IRC+10216. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Mishra, Ajay; Jiang, B W
2016-01-01
Over two decades ago, a prominent, mysterious emission band peaking at ~20.1 micrometer was serendipitously detected in four preplanetary nebulae (PPNe; also known as "protoplanetary nebulae"). So far, this spectral feature, designated as the "21 micrometer" feature, has been seen in 18 carbon-rich PPNe. The nature of the carriers of this feature remains unknown although many candidate materials have been proposed. The 21 micrometer sources also exhibit an equally mysterious, unidentified emission feature peaking at 30 micrometer. While the 21 micrometer feature is exclusively seen in PPNe, a short-lived evolutionary stage between the end of the asymptotic giant branch (AGB) and planetary nebula (PN) phases, the 30 micrometer feature is commonly observed in all stages of stellar evolution from the AGB through PPN to PNe phases. We derive the stellar mass loss rates (M_{loss}) of these 21 micrometer sources from their dust infrared (IR) emission, using the "2-DUST" radiative transfer code for axisymmetric dust...
Van Loon, J T; Zijlstra, A A; Loup, C; Loon, Jacco Th. van; Cioni, Maria-Rosa L.; Zijlstra, Albert A.; Loup, Cecile
2005-01-01
We present an empirical determination of the mass-loss rate as a function of stellar luminosity and effective temperature, for oxygen-rich dust-enshrouded Asymptotic Giant Branch stars and red supergiants. To this aim we obtained optical spectra of a sample of dust-enshrouded red giants in the Large Magellanic Cloud, which we complemented with spectroscopic and infrared photometric data from the literature. Two of these turned out to be hot emission-line stars, of which one is a definite B[e] star. The mass-loss rates were measured through modelling of the spectral energy distributions. We thus obtain the mass-loss rate formula log Mdot = -5.65 + 1.05 log(L / 10,000 Lsun) -6.3 log(Teff / 3500 K), valid for dust-enshrouded red supergiants and oxygen-rich AGB stars. Despite the low metallicity of the LMC, both AGB stars and red supergiants are found at late spectral types. A comparison with galactic AGB stars and red supergiants shows excellent agreement between the mass-loss rate as predicted by our formula an...
Riffel, Rogério; Martins, Lucimara P; Rodíguez-Ardila, Alberto; Ho, Luis C; Riffel, Rogemar A; Lira, Paulina; Martin, Omaira Gonzalez; Ruschel-Dutra, Daniel; Alonso-Herrero, Almudena; Flohic, Helene; McDermid, Richard M; Almeida, Cristina Ramos; Thanjavur, Karun; Winge, Claudia
2015-01-01
We analyze the stellar absorption features in high signal-to-noise ratio near-infrared (NIR) spectra of the nuclear region of 12 nearby galaxies, mostly spirals. The features detected in some or all of the galaxies in this sample are the TiO (0.843 $\\mu$m\\ and 0.886 $\\mu$m), VO (1.048 $\\mu$m), CN (1.1 $\\mu$m\\ and 1.4 $\\mu$m), H$\\rm _2$O (1.4 $\\mu$m\\ and 1.9 $\\mu$m) and CO (1.6 $\\mu$m\\ and 2.3 $\\mu$m) bands. The C$\\rm _2$ (1.17 $\\mu$m\\ and 1.76 $\\mu$m) bands are generally weak or absent, although C$\\rm _2$ (1.76 $\\mu$m) may be weakly present in the mean galaxy spectrum. A deep feature near 0.93 $\\mu$m, likely caused by CN, TiO and/or ZrO, is also detected in all objects. Fitting a combination of stellar spectra to the mean spectrum shows that the absorption features are produced by evolved stars: cool giants and supergiant stars in the early- or thermally-pulsing asymptotic giant branch (E-AGB or TP-AGB) phases. The high luminosity of TP-AGB stars, and the appearance of VO and ZrO features in the data, suggest...
Lugaro, Maria; Karakas, Amanda I; Milazzo, Paolo M; Kaeppeler, Franz; Davis, Andrew M; Savina, Michael R
2013-01-01
We present model predictions for the Zr isotopic ratios produced by slow neutron captures in C-rich asymptotic giant branch (AGB) stars of masses 1.25 to 4 Msun and metallicities Z=0.01 to 0.03, and compare them to data from single meteoritic stardust silicon carbide (SiC) and high-density graphite grains that condensed in the outflows of these stars. We compare predictions produced using the Zr neutron-capture cross section from Bao et al. (2000) and from n_TOF experiments at CERN, and present a new evaluation for the neutron-capture cross section of the unstable isotope 95Zr, the branching point leading to the production of 96Zr. The new cross sections generally presents an improved match with the observational data, except for the 92Zr/94Zr ratios, which are on average still substantially higher than predicted. The 96Zr/94Zr ratios can be explained using our range of initial stellar masses, with the most 96Zr-depleted grains originating from AGB stars of masses 1.8 - 3 Msun, and the others from either lowe...
Energy Technology Data Exchange (ETDEWEB)
Rosenfield, Philip; Dalcanton, Julianne J.; Weisz, Daniel; Williams, Benjamin F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Marigo, Paola [Department of Physics and Astronomy G. Galilei, University of Padova, Vicolo dell' Osservatorio 3, I-35122 Padova (Italy); Girardi, Léo; Gullieuszik, Marco [Osservatorio Astronomico di Padova—INAF, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Bressan, Alessandro [Astrophysics Sector, SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Dolphin, Andrew [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Aringer, Bernhard [Department of Astrophysics, University of Vienna, Turkenschanzstraße 17, A-1180 Wien (Austria)
2014-07-20
The evolution and lifetimes of thermally pulsating asymptotic giant branch (TP-AGB) stars suffer from significant uncertainties. In this work, we analyze the numbers and luminosity functions of TP-AGB stars in six quiescent, low metallicity ([Fe/H] ≲ –0.86) galaxies taken from the ACS Nearby Galaxy Survey Treasury sample, using Hubble Space Telescope (HST) photometry in both optical and near-infrared filters. The galaxies contain over 1000 TP-AGB stars (at least 60 per field). We compare the observed TP-AGB luminosity functions and relative numbers of TP-AGB and red giant branch (RGB) stars, N{sub TP-AGB}/N{sub RGB}, to models generated from different suites of TP-AGB evolutionary tracks after adopting star formation histories derived from the HST deep optical observations. We test various mass-loss prescriptions that differ in their treatments of mass loss before the onset of dust-driven winds (pre-dust). These comparisons confirm that pre-dust mass loss is important, since models that neglect pre-dust mass loss fail to explain the observed N{sub TP-AGB}/N{sub RGB} ratio or the luminosity functions. In contrast, models with more efficient pre-dust mass loss produce results consistent with observations. We find that for [Fe/H] ≲ –0.86, lower mass TP-AGB stars (M ≲ 1 M{sub ☉}) must have lifetimes of ∼0.5 Myr and higher masses (M ≲ 3 M{sub ☉}) must have lifetimes ≲ 1.2 Myr. In addition, assuming our best-fitting mass-loss prescription, we show that the third dredge-up has no significant effect on TP-AGB lifetimes in this mass and metallicity range.
Rosenfield, Philip; Marigo, Paola; Girardi, Léo; Dalcanton, Julianne J.; Bressan, Alessandro; Williams, Benjamin F.; Dolphin, Andrew
2016-05-01
Thermally pulsing asymptotic giant branch (TP-AGB) stars are relatively short lived (less than a few Myr), yet their cool effective temperatures, high luminosities, efficient mass loss, and dust production can dramatically affect the chemical enrichment histories and the spectral energy distributions of their host galaxies. The ability to accurately model TP-AGB stars is critical to the interpretation of the integrated light of distant galaxies, especially in redder wavelengths. We continue previous efforts to constrain the evolution and lifetimes of TP-AGB stars by modeling their underlying stellar populations. Using Hubble Space Telescope (HST) optical and near-infrared photometry taken of 12 fields of 10 nearby galaxies imaged via the Advanced Camera for Surveys Nearby Galaxy Survey Treasury and the near-infrared HST/SNAP follow-up campaign, we compare the model and observed TP-AGB luminosity functions as well as the ratio of TP-AGB to red giant branch stars. We confirm the best-fitting mass-loss prescription, introduced by Rosenfield et al., in which two different wind regimes are active during the TP-AGB, significantly improves models of many galaxies that show evidence of recent star formation. This study extends previous efforts to constrain TP-AGB lifetimes to metallicities ranging -1.59 ≲ {{[Fe/H]}} ≲ -0.56 and initial TP-AGB masses up to ˜4 M ⊙, which include TP-AGB stars that undergo hot-bottom burning. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
Energy Technology Data Exchange (ETDEWEB)
Montiel, Edward J.; Clayton, Geoffrey C.; Johnson, Christopher B. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Srinivasan, Sundar [Academica Sinica, Institute of Astronomy and Astrophysics, PO Box 23-141, Taipei 10617, Taiwan, R. O. C. (China); Engelbracht, Charles W., E-mail: emonti2@lsu.edu [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)
2015-02-01
We present the first detection of 24 μm variability in 24 sources in the Local Group galaxy M33. These results are based on 4 epochs of Multiband Imaging Photometer for Spitzer observations, which are irregularly spaced over ∼750 days. We find that these sources are constrained exclusively to the Holmberg radius of the galaxy, which increases their chances of being members of M33. We have constructed spectral energy distributions (SEDs) ranging from the optical to the submillimeter to investigate the nature of these objects. We find that 23 of our objects are most likely heavily self-obscured, evolved stars, while the remaining source is the Giant H ii region, NGC 604. We believe that the observed variability is the intrinsic variability of the central star reprocessed through their circumstellar dust shells. Radiative transfer modeling was carried out to determine their likely chemical composition, luminosity, and dust production rate (DPR). As a sample, our modeling has determined an average luminosity of (3.8±0.9)×10{sup 4} L{sub ⊙} and a total DPR of (2.3±0.1)×10{sup −5} M{sub ⊙} yr{sup −1}. Most of the sources, given the high DPRs and short wavelength obscuration, are likely extreme asymptotic giant branch (XAGB) stars. Five of the sources are found to have luminosities above the classical AGB limit (M{sub bol} <−7.1 mag, L > 54,000 L{sub ⊙}), which classifies them as probable red supergiants (RSGs). Almost all of the sources are classified as oxygen-rich. As also seen in the LMC, a significant fraction of the dust in M33 is produced by a handful of XAGB and RSG stars.
Srinivasan, Sundar; Matsuura, M; Meixner, M; Kemper, F; Tielens, A G G M; Volk, K; Speck, A K; Woods, Paul M; Gordon, K; Marengo, M; Sloan, G C
2010-01-01
We present a 2Dust model for the dust shell around a LMC long-period variable (LPV) previously studied as part of the OGLE survey. OGLE LMC LPV 28579 (SAGE J051306.40-690946.3) is a carbon-rich asymptotic giant branch (AGB) star for which we have photometry and spectra from the Spitzer SAGE and SAGE-Spec programs along with UBVIJHK_s photometry. By modeling this source, we obtain a baseline set of dust properties to be used in the construction of a grid of models for carbon stars. We reproduce its spectral energy distribution using a mixture of AmC and SiC (15% by mass). The grain sizes are distributed according to the KMH model. The best-fit model has an optical depth of 0.28 for the shell at the peak of the SiC feature, with R_in~1430 R_sun or 4.4 R_star. The temperature at this inner radius is 1310 K. Assuming an expansion velocity of 10 km s^-1, we obtain a dust mass-loss rate of 2.5x10^-9 M_sun yr-1. We calculate a 15% variation in this rate by testing the fit sensitivity against variation in input param...
Rosenfield, Philip; Girardi, Leo; Dalcanton, Julianne J; Bressan, Alessandro; Gullieuszik, Marco; Weisz, Daniel; Williams, Benjamin F; Dolphin, Andrew; Aringer, Bernhard
2014-01-01
The evolution and lifetimes of thermally pulsating asymptotic giant branch (TP-AGB) stars suffer from significant uncertainties. In this work, we analyze the numbers and luminosity functions of TP-AGB stars in six quiescent, low metallicity ([Fe/H] $\\lesssim -0.86$) galaxies taken from the ANGST sample, using HST photometry in both optical and near-infrared filters. The galaxies contain over 1000 TP-AGB stars (at least 60 per field). We compare the observed TP-AGB luminosity functions and relative numbers of TP-AGB and RGB stars, to models generated from different suites of TP-AGB evolutionary tracks after adopting star formation histories (SFH) derived from the HST deep optical observations. We test various mass-loss prescriptions that differ in their treatments of mass-loss before the onset of dust-driven winds (pre-dust). These comparisons confirm that pre-dust mass-loss is important, since models that neglect pre-dust mass-loss fail to explain the observed TP-AGB/RGB ratio or the luminosity functions. In ...
Srinivasan, Sundar
2009-01-01
The asymptotic giant branch (AGB) phase is the penultimate stage of evolution for low- and intermediate-mass stars. AGB star outflows inject a significant amount of material into the interstellar medium (ISM), seeding new star formation. AGB mass loss is thus a crucial component of galactic chemical evolution. The Large Magellanic Cloud (LMC) is an excellent site for AGB studies. Over 40,000 AGB candidates have been identified using photometric data from the Spitzer Space Telescope Surveying The Agents of a Galaxy's Evolution (SAGE) mid-infrared (MIR) survey, including about 35,000 oxygen-rich, 7000 carbon-rich and 1400 "extreme" sources. For the first time, SAGE photometry reveals two distinct populations of O-rich sources in the LMC: a faint population that gradually evolves into C-rich stars and a bright, massive population that circumvents this evolution, remaining O-rich. This work aims to quantify the mass-loss return from AGB stars to the LMC, a rough estimate for which is derived from the amount of MI...
Yasuda, Yuki
2011-01-01
We investigate the formation of silicon carbide (SiC) grains in the framework of dust-driven wind around pulsating carbon-rich Asymptotic Giant Branch (C-rich AGB) stars in order to reveal not only the amount but also the size distribution. Two cases are considered for the nucleation process; one is the LTE case where the vibration temperature of SiC clusters $T_{\\rm v}$ is equal to the gas temperature as usual, and another is the non-LTE case in which $T_{\\rm v}$ is assumed to be the same as the temperature of small SiC grains. The results of hydrodynamical calculations for a model with stellar parameters of mass $M_{\\ast}$=1.0 $M_{\\odot}$, luminosity $L_{\\ast}$=10$^{4}$ $L_{\\odot}$, effective temperature $T_{\\rm eff}$=2600 K, C/O ratio=1.4, and pulsation period $P$=650 days show the followings: In the LTE case, SiC grains condense in accelerated outflowing gas after the formation of carbon grains and the resulting averaged mass ratio of SiC to carbon grains of $\\sim$ 10$^{-8}$ is too small to reproduce the ...
Sargent, Benjamin A; Meixner, M; Kemper, F; Tielens, A G G M; Speck, A K; Matsuura, M; Bernard, J -Ph; Hony, S; Gordon, Karl D; Indebetouw, R; Marengo, M; Sloan, G C; Woods, Paul M
2014-01-01
We model multi-wavelength broadband UBVIJHKs and Spitzer IRAC and MIPS photometry and IRS spectra from the SAGE and SAGE-Spec observing programs of two oxygen-rich asymptotic giant branch (O-rich AGB) stars in the Large Magellanic Cloud (LMC) using radiative transfer models of dust shells around stars. We chose a star from each of the bright and faint O-rich AGB populations found by earlier studies of the SAGE sample in order to derive a baseline set of dust properties to be used in the construction of an extensive grid of radiative transfer models of the O-rich AGB stars found in the SAGE surveys. From the bright O-rich AGB population we chose HV 5715, and from the faint O-rich AGB population we chose SSTISAGE1C J052206.92-715017.6 (SSTSAGE052206). We found the complex indices of refraction of oxygen-deficient silicates from Ossenkopf et al (1992) and a "KMH"-like grain size distribution with gamma of -3.5, a_min of 0.01 microns, and a_0 of 0.1 microns to be reasonable dust properties for these models. There...
Energy Technology Data Exchange (ETDEWEB)
Lugaro, Maria [Monash Centre for Astrophysics (MoCA), Monash University, Clayton, VIC 3800 (Australia); Tagliente, Giuseppe [Istituto Nazionale di Fisica Nucleare (INFN), Bari (Italy); Karakas, Amanda I. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Milazzo, Paolo M. [Istituto Nazionale di Fisica Nucleare (INFN), Trieste (Italy); Käppeler, Franz [Karlsruhe Institute of Technology, Campus North, D-76021 Karlsruhe (Germany); Davis, Andrew M. [The Department of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637 (United States); Savina, Michael R., E-mail: maria.lugaro@monash.edu, E-mail: giuseppe.tagliente@ba.infn.it, E-mail: amanda.karakas@anu.edu.au, E-mail: paolo.milazzo@ts.infn.it, E-mail: franz.kaeppeler@kit.edu, E-mail: a-davis@uchicago.edu, E-mail: msavina@anl.gov [Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States)
2014-01-01
We present model predictions for the Zr isotopic ratios produced by slow neutron captures in C-rich asymptotic giant branch (AGB) stars of masses 1.25-4 M {sub ☉} and metallicities Z = 0.01-0.03, and compare them to data from single meteoritic stardust silicon carbide (SiC) and high-density graphite grains that condensed in the outflows of these stars. We compare predictions produced using the Zr neutron-capture cross sections from Bao et al. and from n{sub T}OF experiments at CERN, and present a new evaluation for the neutron-capture cross section of the unstable isotope {sup 95}Zr, the branching point leading to the production of {sup 96}Zr. The new cross sections generally present an improved match with the observational data, except for the {sup 92}Zr/{sup 94}Zr ratios, which are on average still substantially higher than predicted. The {sup 96}Zr/{sup 94}Zr ratios can be explained using our range of initial stellar masses, with the most {sup 96}Zr-depleted grains originating from AGB stars of masses 1.8-3 M {sub ☉} and the others from either lower or higher masses. The {sup 90,} {sup 91}Zr/{sup 94}Zr variations measured in the grains are well reproduced by the range of stellar metallicities considered here, which is the same needed to cover the Si composition of the grains produced by the chemical evolution of the Galaxy. The {sup 92}Zr/{sup 94}Zr versus {sup 29}Si/{sup 28}Si positive correlation observed in the available data suggests that stellar metallicity rather than rotation plays the major role in covering the {sup 90,} {sup 91,} {sup 92}Zr/{sup 94}Zr spread.
Montiel, Edward J; Clayton, Geoffrey C; Engelbracht, Charles W; Johnson, Christopher B
2014-01-01
We present the first detection of 24 {\\mu}m variability in 24 sources in the Local Group galaxy M33. These results are based on 4 epochs of MIPS observations, which are irregularly spaced over ~750 days. We find that these sources are constrained exclusively to the Holmberg radius of the galaxy, which increases their chances of being members of M33. We have constructed spectral energy distributions (SEDs) ranging from the optical to the sub-mm to investigate the nature of these objects. We find that 23 of our objects are most likely heavily self-obscured, evolved stars; while the remaining source is the Giant HII region, NGC 604. We believe that the observed variability is the intrinsic variability of the central star reprocessed through their circumstellar dust shells. Radiative transfer modeling was carried out to determine their likely chemical composition, luminosity, and dust production rate (DPR). As a sample, our modeling has determined an average luminosity of (3.8 $\\pm$ 0.9) x 10$^4$ L$_\\odot$ and a ...
Energy Technology Data Exchange (ETDEWEB)
Avila, Janaina N.; Ireland, Trevor R.; Holden, Peter [Research School of Earth Sciences, Australian National University, Canberra ACT 0200 (Australia); Lugaro, Maria [Monash Centre for Astrophysics, Monash University, Clayton, VIC 3800 (Australia); Gyngard, Frank; Zinner, Ernst [Laboratory for Space Sciences and the Department of Physics, Washington University, One Brookings Drive, St. Louis, MO 63130 (United States); Cristallo, Sergio [Osservatorio Astronomico di Collurania, INAF, via Maggini snc, Teramo I-64100 (Italy); Rauscher, Thomas, E-mail: janaina.avila@anu.edu.au [Centre for Astrophysics Research, School of Physics, Astronomy, and Mathematics, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom)
2013-05-01
Individual mainstream stardust silicon carbide (SiC) grains and a SiC-enriched bulk sample from the Murchison carbonaceous meteorite have been analyzed by the Sensitive High Resolution Ion Microprobe-Reverse Geometry for Eu isotopes. The mainstream grains are believed to have condensed in the outflows of {approx}1.5-3 M{sub Sun} carbon-rich asymptotic giant branch (AGB) stars with close-to-solar metallicity. The {sup 151}Eu fractions [fr({sup 151}Eu) = {sup 151}Eu/({sup 151}Eu+{sup 153}Eu)] derived from our measurements are compared with previous astronomical observations of carbon-enhanced metal-poor stars enriched in elements made by slow neutron captures (the s-process). Despite the difference in metallicity between the parent stars of the grains and the metal-poor stars, the fr({sup 151}Eu) values derived from our measurements agree well with fr({sup 151}Eu) values derived from astronomical observations. We have also compared the SiC data with theoretical predictions of the evolution of Eu isotopic ratios in the envelope of AGB stars. Because of the low Eu abundances in the SiC grains, the fr({sup 151}Eu) values derived from our measurements show large uncertainties, in most cases being larger than the difference between solar and predicted fr({sup 151}Eu) values. The SiC aggregate yields a fr({sup 151}Eu) value within the range observed in the single grains and provides a more precise result (fr({sup 151}Eu) = 0.54 {+-} 0.03, 95% conf.), but is approximately 12% higher than current s-process predictions. The AGB models can match the SiC data if we use an improved formalism to evaluate the contribution of excited nuclear states in the calculation of the {sup 151}Sm(n, {gamma}) stellar reaction rate.
Mishra, Ajay; Li, Aigen; Jiang, B. W.
2016-07-01
Over two decades ago, a prominent, mysterious emission band peaking at ∼20.1 μm was serendipitously detected in four preplanetary nebulae (PPNe; also known as “protoplanetary nebulae”). To date, this spectral feature, designated as the “21 μm” feature, has been seen in 27 carbon-rich PPNe in the Milky Way and the Magellanic Clouds. The nature of its carriers remains unknown although many candidate materials have been proposed. The 21 μm sources also exhibit an equally mysterious, unidentified emission feature peaking at 30 μm. While the 21 μm feature is exclusively seen in PPNe, a short-lived evolutionary stage between the end of the asymptotic giant branch (AGB) and planetary nebula (PN) phases, the 30 μm feature is more commonly observed in all stages of stellar evolution from the AGB through PPN to PN phases. We derive the stellar mass-loss rates (\\dot{M}) of these sources from their infrared (IR) emission, using the “2-DUST” radiative transfer code for axisymmetric dusty systems which allows one to distinguish the mass-loss rates of the AGB phase ({\\dot{M}}{AGB}) from that of the superwind ({\\dot{M}}{SW}) phase. We examine the correlation between {\\dot{M}}{AGB} or {\\dot{M}}{SW} and the fluxes emitted from the 21 and 30 μm features. We find that both features tend to correlate with {\\dot{M}}{AGB}, suggesting that their carriers are probably formed in the AGB phase. The nondetection of the 21 μm feature in AGB stars suggests that, unlike the 30 μm feature, the excitation of the carriers of the 21 μm feature may require ultraviolet photons which are available in PPNe but not in AGB stars.
Melbourne, J.; Boyer, Martha L.
2013-01-01
We present the near-through mid-infrared flux contribution of thermally-pulsing asymptotic giant branch (TP-AGB) and massive red supergiant (RSG) stars to the luminosities of the Large and Small Magellanic Clouds (LMC and SMC, respectively). Combined, the peak contribution from these cool evolved stars occurs at approx 3 - 4 micron, where they produce 32% of the SMC light, and 25% of the LMC flux. The TP-AGB star contribution also peaks at approx 3 - 4 micron and amounts to 21% in both galaxies. The contribution from RSG stars peaks at shorter wavelengths, 2.2 micron, where they provide 11% of the SMC flux, and 7% for the LMC. Both TP-AGB and RSG stars are short lived, and thus potentially impose a large stochastic scatter on the near-IR derived mass-to-light (M/L) ratios of galaxies at rest-frame 1 - 4 micron. To minimize their impact on stellar mass estimates, one can use the M/L ratio at shorter wavelengths (e.g., at 0.8 - 1 micron). At longer wavelengths (much > 8 micron), emission from dust in the interstellar medium dominates the flux. In the LMC, which shows strong polycyclic aromatic hydrocarbon (PAH) emission at 8 micron, TP-AGB and RSG contribute less than 4% of the 8 micron flux. However, 19% of the SMC 8 micron flux is from evolved stars, nearly half of which is produced by the rarest, dustiest, carbon-rich TP-AGB stars. Thus, star formation rates of galaxies, based on an 8 micron flux (e.g., observed-frame 24 micron at z = 2), may be biased modestly high, especially for galaxies with little PAH emission.
Indian Academy of Sciences (India)
Jiang Zhang; Fang Zhao; Yanping Chen; Wenyuan Cui; Bo Zhang
2013-12-01
CEMP-r/s stars at low metallicity are known as double-enhanced stars that show enhancements of both r-process and s-process elements. The chemical abundances of these very metal-poor stars provide us a lot of information for putting new restraints on models of neutron-capture processes. In this article, we put forward an accreted scenario in which the double enrichment of r-process and s-process elements is caused by a former intermediate-mass Asymptotic Giant Branch (AGB) companion in a detached binary system. As the AGB superwind is only present at the ultimate phase of AGB stars, there is thus a lot of potential that the degenerate-core mass of an intermediate-mass AGB star reaches the Chandrasekhar limit before the AGB superwind. In these circumstances, both s-process elements produced in the AGB shell and r-process elements synthesized in the subsequent explosion would be sprayed contemporaneously and accreted by its companion. Despite similarity to physical conditions of a core-collapse supernova, a major focus in this scenario is the degenerate C–O core surrounded by an envelope of a former intermediate-mass AGB donor that may collapse and explode. Due to the existence of an outer envelope, r-process nucleosynthesis is expected to occur. Hypothesizing the material-rich europium (Eu) accreted by the secondary via the wind from the supernova to be in proportion to the geometric fraction of the companion with respect to the exploding donor star, we find that the estimated yield of Eu (as representative of r-process elements) per AGB supernova event is about 1 × 10-9⊙ ∼ 5 × 10-9⊙. Using the yields of Eu, the overabundance of r-process elements in CEMP-r/s stars can be accounted for. The calculated results show that the value of parameter , standing for efficiency of wind pollution from the AGB supernova, will reach about 104, which means that the enhanced factor is much larger than unity due to the impact of gravity of the donor and the result of the
He, J J; Ma, S B; Hu, J; Zhang, L Y; Fu, C B; Zhang, N T; Lian, G; Su, J; Li, Y J; Yan, S Q; Shen, Y P; Hou, S Q; Jia, B L; Zhang, T; Zhang, X P; Guo, B; Kubono, S; Liu, W P
2016-01-01
In 2014, the National Natural Science Foundation of China (NSFC) approved the Jinping Underground Nuclear Astrophysics laboratory (JUNA) project, which aims at direct cross-section measurements of four key stellar nuclear reactions right down to the Gamow windows. In order to solve the observed fluorine overabundances in Asymptotic Giant Branch (AGB) stars, measuring the key $^{19}$F($p$,$\\alpha$)$^{16}$O reaction at effective burning energies (i.e., at Gamow window) is established as one of the scientific research sub-projects. The present paper describes this sub-project in details, including motivation, status, experimental setup, yield and background estimation, aboveground test, as well as other relevant reactions.
He, JianJun; Xu, ShiWei; Ma, ShaoBo; Hu, Jun; Zhang, LiYong; Fu, ChangBo; Zhang, NingTao; Lian, Gang; Su, Jun; Li, YunJu; Yan, ShengQuan; Shen, YangPing; Hou, SuQing; Jia, BaoLu; Zhang, Tao; Zhang, XiaoPeng; Guo, Bing; Kubono, Shigeru; Liu, WeiPing
2016-05-01
In 2014, the National Natural Science Foundation of China (NSFC) approved the Jinping Underground Nuclear Astrophysics laboratory (JUNA) project, which aims at direct cross-section measurements of four key stellar nuclear reactions right down to the Gamow windows. In order to solve the observed fluorine overabundances in Asymptotic Giant Branch (AGB) stars, measuring the key 19F(p,α)16O reaction at effective burning energies (i.e., at Gamow window) is established as one of the scientific research sub-projects. The present paper describes this sub-project in details, including motivation, status, experimental setup, yield and background estimation, aboveground test, as well as other relevant reactions.
Willacy, K.
2004-01-01
Fischer-Tropsch catalysis has been suggested as a means of driving hydrocarbon chemistry in oxygen rich regions such as the protosolar nebula. In addition to producing hydrocarbons, Fischer-Tropsch catalysis also produces water, and it is therefore possible that such processes could account for the recent observations of water in the circumstellar envelope of asymptotic giant branch star IRC +10216.
On the red giant branch mass loss in 47 Tucanae: Constraints from the horizontal branch morphology
Salaris, Maurizio; Pietrinferni, Adriano
2016-01-01
We obtain stringent constraints on the actual efficiency of mass loss for red giant branch stars in the Galactic globular cluster 47 Tuc, by comparing synthetic modeling based on stellar evolution tracks with the observed distribution of stars along the horizontal branch in the colour-magnitude-diagram. We confirm that the observed, wedge-shaped distribution of the horizontal branch can be reproduced only by accounting for a range of initial He abundances --in agreement with inferences from the analysis of the main sequence-- and a red giant branch mass loss with a small dispersion. We have carefully investigated several possible sources of uncertainty that could affect the results of the horizontal branch modeling, stemming from uncertainties in both stellar model computations and the cluster properties such as heavy element abundances, reddening and age. We determine a firm lower limit of ~0.17$Mo for the mass lost by red giant branch stars, corresponding to horizontal branch stellar masses between ~0.65Mo ...
Testing the core of red-giant-branch stars using the period spacing of gravity modes
Lagarde, Nadège; Diego, Bossini; Miglio, Andrea
2015-08-01
The blooming of asteroseismology of red-giant stars with the CoRoT and Kepler space missions paves the way to a better understanding of the stellar structure and physical processes occurring in low-mass-giant stars.We investigate the effect of rotation on the asymptotic period spacing of gravity modes (DP) and on the coupling strength between acoustic and gravity modes. We focus on red-giant-branch stars (RGB) which ignite He in degenerate conditions (Mstars below the RGB bump, additional transport processes of chemicals have an impact on DP, hence on the determination of the stellar mass when DP is used as a constraint. Moreover we show that the coupling strength gives a direct signature of rotation occuring in red-giant stars. Whether this signature can be inferred from current data needs however to be investigated further. Finally we show that, irrespective of additional transport processes occurring during the main sequence, the period spacing of red-giant stars brighter than the RGB bump is an accurate proxy for the stellar luminosity, due to the well known relation between MHecore and luminosity.
Cyanogen in NGC 1851 Red Giant Branch and Asymptotic Giant Branch Stars: Quadrimodal Distributions
DEFF Research Database (Denmark)
Campbell, S. W.; Yong, D.; Wylie-de Boer, E. C.;
2012-01-01
could be explained by the superposition of two "normal" bimodal populations. A small sample overlap with an abundance catalog allowed us to tentatively explore the relationship between our CN populations and a range of elemental abundances. We found a striking correlation between CN and [O/Na]. We also...
The s-Process in Rotating Asymptotic Giant Branch Stars
Herwig, F; Lugaro, M
2003-01-01
(abridged) We model the nucleosynthesis during the thermal pulse phase of a rotating, solar metallicity AGB star of 3M_sun. Rotationally induced mixing during the thermal pulses produces a layer (~2E-5M_sun) on top of the CO-core where large amounts of protons and C12 co-exist. We follow the abundance evolution in this layer, in particular that of the neutron source C13 and of the neutron poison N14. In our AGB model mixing persists during the entire interpulse phase due to the steep angular velocity gradient at the core-envelope interface. We follow the neutron production during the interpulse phase, and find a resulting maximum neutron exposure of tau_max =0.04 mbarn^-1, which is too small to produce any significant s-process. In parametric models, we then investigate the combined effects of diffusive overshooting from the convective envelope and rotationally induced mixing. Models with overshoot and weaker interpulse mixing - as perhaps expected from more slowly rotating stars - yield larger neutron exposu...
Evolution and nucleosynthesis in low mass Asymptotic Giant Branch stars
Cristallo, S
2008-01-01
People usually smile when astrophysicists assert that we are sons of the stars, but human life confirms this sentence: about 65% of the mass of our body is made up of oxygen, carbon occurs in all organic life and is the basis of organic chemistry, nitrogen is an essential part of amino acids and nucleic acids, calcium is a major component of our bones. Moreover, phosphorus plays a major role in biological molecules such as DNA and RNA (where the chemical codes of life is written) and our blood carries oxygen to tissues by means of the hemoglobin (an iron pigment of red blood cells). All these elements have been created in stars. I just list some examples related to human body, but also common element such as aluminum, nickel, gold, silver and lead come from a pristine generation of stars. The abundances in the Solar System are in fact due to the mixing of material ejected from stars that polluted the Universe in different epochs before the Sun formation, occurred about 5 billion years ago, after the gravitati...
The Impact of LSST on Asymptotic Giant Branch Star Research
Ivezic, Z
2007-01-01
(Abridged) The Large Synoptic Survey Telescope (LSST) is currently by far the most ambitious proposed ground-based optical survey. The main science themes that drive the LSST system design are Dark Energy and Matter, the Solar System Inventory, Transient Optical Sky and the Milky Way Mapping. The LSST system, with its 8.4m telescope and 3,200 Megapixel camera, will be sited at Cerro Pachon in northern Chile, with the first light scheduled for 2013. In a continuous observing campaign, LSST will cover the entire available sky every three nights in two photometric bands to a depth of V=25 per visit (two 15 second exposures), with exquisitely accurate astrometry and photometry. Over the proposed survey lifetime of 10 years, each sky location would be observed about 1000 times, with the total exposure time of 8 hours distributed over six broad photometric bandpasses (ugrizY). This campaign will open a movie-like window on objects that change brightness, or move, on timescales ranging from 10 seconds to 10 years. T...
The astrosphere of the Asymptotic Giant Branch star CIT 6
Sahai, Raghvendra
2014-01-01
We have discovered two extended half-ring structures in a far-ultraviolet image taken with the GALEX satellite of the well-known mass-losing carbon star CIT 6 (RW LMi). The northern (southern) ring is brighter (fainter) with a diameter of about 15 arcmin (18 arcmin). These structures most likely represent the astrosphere resulting from the shock interaction of CIT 6's molecular wind with the Warm Interstellar Medium, as it moves through the latter. These data provide a direct estimate of the size of CIT 6's circumstellar envelope that is a factor ~20 larger than previous estimates based on CO millimeter-wave line data. We find that CIT 6 has been undergoing heavy mass-loss for at least 93,000 yr and the total envelope mass is 0.29 Msun or larger, assuming a constant mass-loss rate of 3.2 x 10^(-6) Msun/yr. Assuming that the shock front has reached a steady-state and CIT 6's motion relative to the ISM is in the sky-plane, we measure the termination-shock standoff distance directly from the image and find that ...
Pulsation at the tip of the first giant branch?
Ita, Y; Matsunaga, N; Nakajima, Y; Nagashima, C; Nagayama, T; Kato, D; Kurita, M; Nagata, T; Sato, S; Tamura, M; Nakaya, H; Nakada, Y; Ita, Yoshifusa; Tanab\\'{e}, Toshihiko; Matsunaga, Noriyuki; Nakajima, Yasushi; Nagashima, Chie; Nagayama, Takahiro; Kato, Daisuke; Kurita, Mikio; Nagata, Tetsuya; Sato, Shuji; Tamura, Motohide; Nakaya, Hidehiko; Nakada, Yoshikazu
2002-01-01
The first results of our ongoing near-infrared (NIR) survey of the variable red giants in the Large Magellanic Cloud, using the Infrared Survey Facility (IRSF) and the SIRIUS infrared camera, are presented. Many very red stars were detected and found that most of them are variables. In the observed colour-magnitude diagram ($J-K, K$) and the stellar $K$ magnitude distribution, the tip of the first giant branch (TRGB), where helium burning in the core starts, is clearly seen. Apart from the genuine AGB variables, we found many variable stars at luminosities around the TRGB. From this result, we infer that a substantial fraction of them are RGB variables.
Pulsation at the tip of the first giant branch?
Ita, Yoshifusa; Tanabé, Toshihiko; Matsunaga, Noriyuki; Nakajima, Yasushi; Nagashima, Chie; Nagayama, Takahiro; Kato, Daisuke; Kurita, Mikio; Nagata, Tetsuya; Sato, Shuji; Tamura, Motohide; Nakaya, Hidehiko; Nakada, Yoshikazu
2002-01-01
The first results of our ongoing near-infrared (NIR) survey of the variable red giants in the Large Magellanic Cloud, using the Infrared Survey Facility (IRSF) and the SIRIUS infrared camera, are presented. Many very red stars were detected and found that most of them are variables. In the observed colour-magnitude diagram ($J-K, K$) and the stellar $K$ magnitude distribution, the tip of the first giant branch (TRGB), where helium burning in the core starts, is clearly seen. Apart from the ge...
The Red Giant Branch in the Tycho-2 Catalogue
Gontcharov, George
2016-01-01
Based on multicolor photometry from the 2MASS and Tycho-2 catalogues, we have produced a sample of 38 368 branch red giants that has less than 1\\% of admixtures and is complete within 500 pc of the Sun. The sample includes 30 671 K giants, 7544 M giants, 49 C giants, and 104 suspected supergiants or S stars. The photometric distances have been calculated for K, M, and C stars with an accuracy of 40\\%. Tycho-2 proper motions and PCRV radial velocities are used to analyze the stellar kinematics. The decrease in the stellar distribution density with distance from the Galactic equator approximated by the barometric law, contrary to the Besancon model of the Galaxy, and the kinematic parameters calculated using the Ogorodnikov--Milne model characterize the overwhelming majority of the selected K and M giants as disk stars with ages of more than 3 Gyr. A small number of K and M giants are extremely young or, conversely, thick-disk ones. The latter show a nonuniform distribution in the phase space of coordinates and...
An asymptotic analysis of closed queueing networks with branching populations
Bayer, N.; Coffman, E.G.; Kogan, Y.A.
1995-01-01
Closed queueing networks have proven to be valuable tools for system performance analysis. In this paper, we broaden the applications of such networks by incorporating populations of {em branching customers: whenever a customer completes service at some node of the network, it is replaced by N>=0 cu
Asymptotic normality of the size of the giant component in a random hypergraph
Bollobas, Bela
2011-01-01
Recently, we adapted random walk arguments based on work of Nachmias and Peres, Martin-L\\"of, Karp and Aldous to give a simple proof of the asymptotic normality of the size of the giant component in the random graph $G(n,p)$ above the phase transition. Here we show that the same method applies to the analogous model of random $k$-uniform hypergraphs, establishing asymptotic normality throughout the (sparse) supercritical regime. Previously, asymptotic normality was known only towards the two ends of this regime.
Foretellings of Ragnar\\"ok: World-engulfing Asymptotic Giants and the Inheritance of White Dwarfs
Mustill, Alexander James
2012-01-01
The search for planets around White Dwarf stars, and evidence for dynamical instability around them in the form of atmospheric pollution and circumstellar discs, raises questions about the nature of planetary systems that can survive the vicissitudes of the Asymptotic Giant Branch (AGB). We study the competing effects, on planets at several AU from the star, of strong tidal forces arising from the star's large convective envelope, and of the planets' orbital expansion due to stellar mass-loss. We, for the first time, study the evolution of planets while following each thermal pulse on the AGB. For Jovian planets, tidal forces are strong, and can pull into the envelope planets initially at ~3 AU for a 1M_Sol star and ~5 AU for a 5M_Sol star. Lower-mass planets feel weaker tidal forces, and Terrestrial planets initially within 1.5-3 AU enter the stellar envelope. Thus, low-mass planets that begin inside the maximum stellar radius can survive, as their orbits expand due to mass-loss. The inclusion of a moderate ...
Pulsation at the tip of the first giant branch?
Ita, Yoshifusa; Tanabé, Toshihiko; Matsunaga, Noriyuki; Nakajima, Yasushi; Nagashima, Chie; Nagayama, Takahiro; Kato, Daisuke; Kurita, Mikio; Nagata, Tetsuya; Sato, Shuji; Tamura, Motohide; Nakaya, Hidehiko; Nakada, Yoshikazu
2002-12-01
The first results of our ongoing near-infrared (NIR) survey of the variable red giants in the Large Magellanic Cloud, using the Infrared Survey Facility (IRSF) and the SIRIUS infrared camera, are presented. Many very red stars were detected and we found that most of them are variables. In the observed colour-magnitude diagram (J-K, K) and the stellar K magnitude distribution, the tip of the first giant branch (TRGB), where helium burning in the core starts, is clearly seen. Apart from the genuine AGB variables, we found many variable stars at luminosities around the TRGB. From this result, we infer that a substantial fraction of them are RGB variables.
The Presence of Two Distinct Red Giant Branches in the Globular Cluster NGC 1851
Han, Sang-Il; Joo, Seok-Joo; Sohn, Sangmo Tony; Yoon, Suk-Jin; Kim, Hak-Sub; Lee, Jae-Woo
2009-01-01
There is a growing body of evidence for the presence of multiple stellar populations in some globular clusters, including NGC 1851. For most of these peculiar globular clusters, however, the evidence for the multiple red giant-branches (RGBs) having different heavy elemental abundances as observed in Omega Centauri is hitherto lacking, although spreads in some lighter elements are reported. It is therefore not clear whether they also share the suggested dwarf galaxy origin of Omega Cen or not. Here we show from the CTIO 4m UVI photometry of the globular cluster NGC 1851 that its RGB is clearly split into two in the U - I color. The two distinct RGB populations are also clearly separated in the abundance of heavy elements as traced by Calcium, suggesting that the type II supernovae enrichment is also responsible, in addition to the pollutions of lighter elements by intermediate mass asymptotic giant branch stars or fast-rotating massive stars. The RGB split, however, is not shown in the V - I color, as indicat...
FORETELLINGS OF RAGNAROeK: WORLD-ENGULFING ASYMPTOTIC GIANTS AND THE INHERITANCE OF WHITE DWARFS
Energy Technology Data Exchange (ETDEWEB)
Mustill, Alexander J.; Villaver, Eva, E-mail: alex.mustill@uam.es [Departamento de Fisica Teorica, Universidad Autonoma de Madrid, Cantoblanco, E-28049 Madrid (Spain)
2012-12-20
The search for planets around white dwarf stars, and evidence for dynamical instability around them in the form of atmospheric pollution and circumstellar disks, raises questions about the nature of planetary systems that can survive the vicissitudes of the asymptotic giant branch (AGB). We study the competing effects, on planets at several AU from the star, of strong tidal forces arising from the star's large convective envelope, and of the planets' orbital expansion due to stellar mass loss. We study, for the first time, the evolution of planets while following each thermal pulse on the AGB. For Jovian planets, tidal forces are strong, and can pull into the envelope planets initially at {approx}3 AU for a 1 M{sub Sun} star and {approx}5 AU for a 5 M{sub Sun} star. Lower-mass planets feel weaker tidal forces, and terrestrial planets initially within 1.5-3 AU enter the stellar envelope. Thus, low-mass planets that begin inside the maximum stellar radius can survive, as their orbits expand due to mass loss. The inclusion of a moderate planetary eccentricity slightly strengthens the tidal forces experienced by Jovian planets. Eccentric terrestrial planets are more at risk, since their eccentricity does not decay and their small pericenter takes them inside the stellar envelope. We also find the closest radii at which planets will be found around white dwarfs, assuming that any planet entering the stellar envelope is destroyed. Planets are in that case unlikely to be found inside {approx}1.5 AU of a white dwarf with a 1 M{sub Sun} progenitor and {approx}10 AU of a white dwarf with a 5 M{sub Sun} progenitor.
Robust Estimation in Multitype Branching Processes Based on their Asymptotic Properties
Stoimenova, Vessela; Atanasov, Dimitar
2011-01-01
2000 Mathematics Subject Classification: 60J80. In this work we propose two procedures for robust estimation of the individual distributions of multitype discrete-time Galton-Watson branching processes with an increasing number of ancestors, using the relative frequencies of the process and their asymptotic distributions. The study is based on simulations and numerical results. The research was partially supported by appropriated state funds for research allocated to Sofia University (c...
Asymptotic regimes for the partition into colonies of a branching process with emigration
Bertoin, Jean
2009-01-01
We consider a spatial branching process with emigration in which children either remain at the same site as their parents or migrate to new locations and then found their own colonies. We are interested in asymptotics of the partition of the total population into colonies for large populations with rare migrations. Under appropriate regimes, we establish weak convergence of the rescaled partition to some random measure that is constructed from the restriction of a Poisson point measure to a certain random region, and whose cumulant solves a simple integral equation.
Konstantinova-Antova, Renada; Aurière, Michel; Charbonnel, Corinne; Drake, Natalia; Wade, Gregg; Tsvetkova, Svetla; Petit, Pascal; Schröder, Klaus-Peter; Lèbre, Agnes
2014-08-01
We present our first results on a new sample containing all single G, K and M giants down to V = 4 mag in the Solar vicinity, suitable for spectropolarimetric (Stokes V) observations with Narval at TBL, France. For detection and measurement of the magnetic field (MF), the Least Squares Deconvolution (LSD) method was applied (Donati et al. 1997) that in the present case enables detection of large-scale MFs even weaker than the solar one (the typical precision of our longitudinal MF measurements is 0.1-0.2 G). The evolutionary status of the stars is determined on the basis of the evolutionary models with rotation (Lagarde et al. 2012; Charbonnel et al., in prep.) and fundamental parameters given by Massarotti et al. (1998). The stars appear to be in the mass range 1-4 M ⊙, situated at different evolutionary stages after the Main Sequence (MS), up to the Asymptotic Giant Branch (AGB). The sample contains 45 stars. Up to now, 29 stars are observed (that is about 64% of the sample), each observed at least twice. For 2 stars in the Hertzsprung gap, one is definitely Zeeman detected. Only 5 G and K giants, situated mainly at the base of the Red Giant Branch (RGB) and in the He-burning phase are detected. Surprisingly, a lot of stars ascending towards the RGB tip and in early AGB phase are detected (8 of 13 observed stars). For all Zeeman detected stars v sin i is redetermined and appears in the interval 2-3 km/s, but few giants with MF possess larger v sin i.
Asymptotic normality of the size of the giant component via a random walk
Bollobas, Bela
2010-01-01
In this paper we give a simple new proof of a result of Pittel and Wormald concerning the asymptotic value and (suitably rescaled) limiting distribution of the number of vertices in the giant component of $G(n,p)$ above the scaling window of the phase transition. Nachmias and Peres used martingale arguments to study Karp's exploration process, obtaining a simple proof of a weak form of this result. Here we use slightly different martingale arguments to obtain the full result of Pittel and Wormald with little extra work.
Veras, Dimitri; Gaensicke, Boris T
2015-01-01
The discovery of over 50 planets around evolved stars and more than 35 debris discs orbiting white dwarfs highlight the increasing need to understand small body evolution around both early and asymptotic giant branch (GB) stars. Pebbles and asteroids are susceptible to strong accelerations from the intense luminosity and winds of GB stars. Here, we establish equations that can model time-varying GB stellar radiation, wind drag and mass loss. We derive the complete three-dimensional equations of motion in orbital elements due to (1) the Epstein and Stokes regimes of stellar wind drag, (2) Poynting-Robertson drag, and (3) the Yarkovsky drift with seasonal and diurnal components. We prove through averaging that the potential secular eccentricity and inclination excitation due to Yarkovsky drift can exceed that from Poynting-Robertson drag and radiation pressure by at least three orders of magnitude, possibly flinging asteroids which survive YORP spin-up into a widely dispersed cloud around the resulting white dw...
Konstantinova-Antova, R; Charbonnel, C; Drake, N A; Wade, G; Tsvetkova, S; Petit, P; Schröder, K -P; Lèbre, A
2013-01-01
We present our first results on a new sample containing all single G,K and M giants down to V = 4 mag in the Solar vicinity, suitable for spectropolarimetric (Stokes V) observations with Narval at TBL, France. For detection and measurement of the magnetic field (MF), the Least Squares Deconvolution (LSD) method was applied (Donati et al. 1997) that in the present case enables detection of large-scale MFs even weaker than the solar one (the typical precision of our longitudinal MF measurements is 0.1-0.2 G). The evolutionary status of the stars is determined on the basis of the evolutionary models with rotation (Lagarde et al. 2012; Charbonnel et al., in prep.) and fundamental parameters given by Massarotti et al. (1998). The stars appear to be in the mass range 1-4 M_sun, situated at different evolutionary stages after the Main Sequence (MS), up to the Asymptotic Giant Branch (AGB). The sample contains 45 stars. Up to now, 29 stars are observed (that is about 64 % of the sample), each observed at least twice....
Buysschaert, B; Corsaro, E; Christensen-Dalsgaard, J; Aerts, C; Arentoft, T; Kjeldsen, H; García, R A; Aguirre, V Silva; Degroote, P
2016-01-01
Dipole mixed pulsation modes of consecutive radial order have been detected for thousands of low-mass red-giant stars with the NASA space telescope Kepler. Such modes have the potential to reveal information on the physics of the deep stellar interior. Different methods have been proposed to derive an observed value for the gravity-mode period spacing, the most prominent one relying on a relation derived from asymptotic pulsation theory applied to the gravity-mode character of the mixed modes. Our aim is to compare results based on this asymptotic relation with those derived from an empirical approach for three pulsating red-giant stars. We developed a data-driven method to perform frequency extraction and mode identification. Next, we used the identified dipole mixed modes to determine the gravity-mode period spacing by means of an empirical method and by means of the asymptotic relation. In our methodology, we consider the phase offset, $\\epsilon_{\\mathrm{g}}$, of the asymptotic relation as a free parameter...
Jang, In Sung
2014-01-01
M74 (NGC 628) is a famous face-on spiral galaxy, hosting three core-collapse supernovae (SNe):SN Ic 2002ap, SN II-P 2003gd, SN II-P 2013ej. However its distance is not well known. We present distance estimation for this galaxy based on the Tip of the Red Giant Branch (TRGB) method. We obtain photometry of the resolved stars in the arm-free region of M74 from F555W and F814W images in the Hubble Space Telescope archive. The color-magnitude diagram of the resolved stars shows a dominant red giant branch (RGB) as well as blue main sequence stars, red helium burning stars, and asymptotic giant branch stars. The I-band luminosity function of the RGB stars shows the TRGB to be at I_TRGB = 26.13 pm 0.03 mag, and T_RGB = 25.97 pm 0.03. From this we derive the distance modulus to M74 to be 30.04 pm 0.04 (random) pm 0.12 (systematic) (corresponding to a linear distance, 10.19 pm 0.14 pm 0.56 Mpc). With this distance estimate, we calibrate the standardized candle method for SNe II-P. From the absolute magnitudes of SN 2...
New Exact and Asymptotic Results of Dual-Branch MRC over Correlated Nakagami-m Fading Channels
Alquwaiee, Hessa
2015-05-01
We present in this paper a new performance analysis results of dual-branch maximal-ratio combining over correlated Nakagami-m fading channels with arbitrary fading parameter. In particular, we derive exact closed-form expressions of the outage probability, the average bit error rate, and the ergodic capacity in terms of the extended generalized bivariate Meijer G- function. Moreover, we also provide simple closed- form asymptotic expressions in the high signal-to- noise ratio regime of these three fundamental performance measures. © 2015 IEEE.
Mucciarelli, A.; Salaris, M.; Bonifacio, P.
2012-01-01
The discrepancy between cosmological Li abundance inferred from Population II dwarf stars and that derived from big bang nucleosynthesis calculations is still far from being satisfactorily solved. We investigated, as an alternative route, the use of Li abundances in Population II lower red giant branch stars as empirical diagnostic of the cosmological Li. Both theory and observations suggest that the surface Li abundance in metal-poor red giants after the completion of the first dredge-up and before the red giant branch bump is significantly less sensitive to the efficiency of atomic diffusion, compared with dwarf stars. The surface Li abundances in these objects - after the dilution caused by the first dredge-up - are predicted to be sensitive to the total Li content left in the star, i.e. they are affected only by the total amount of Li eventually burned during the previous main-sequence phase. Standard stellar models computed under different physical assumptions show that the inclusion of the atomic diffusion has an impact of about 0.07 dex in the determination of the primordial Li abundance - much smaller than the case of metal-poor main-sequence turnoff stars - and it is basically unaffected by reasonable variations of other parameters (overshooting, age, initial He abundance and mixing length). We have determined from spectroscopy the surface Li content of 17 halo lower red giant branch stars, in the metallicity range between [Fe/H] ˜- 3.4 and ˜- 1.4 dex, evolving before the extramixing episode that sets in at the red giant branch bump. The initial Li (customarily taken as estimate of the cosmological Li abundance A(Li)0) has then been inferred by accounting for the difference between initial and post-dredge-up Li abundances in the appropriate stellar models. It depends mainly on the Teff scale adopted in the spectroscopic analysis, and is only weakly sensitive to the efficiency of atomic diffusion in the models, so long as one neglects Li destruction
On Lithium-Rich Red Giants. II. Engulfment on the Giant Branch of Trumpler 20
Aguilera-Gómez, Claudia; Pinsonneault, Marc H; Carlberg, Joleen K
2016-01-01
The Gaia-ESO survey recently reported on a large sample of lithium (Li) abundance determinations for evolved stars in the rich open cluster Trumpler 20. They argue for a scenario where virtually all stars experience post main sequence mixing and Li is preserved in only two objects. We present an alternate explanation, where Li is normal in the vast majority of cluster stars and anomalously high in these two cases. We demonstrate that the Li upper limits in the red giants can be explained with a combination of main sequence depletion and standard dredge-up, and that they are close to the detected levels in other systems of similar age. In our framework, the two detected giants are anomalously Li-rich, and we propose that both could have been produced by the engulfment of a substellar mass companion of 14+-8M_J. This would imply that ~5% of 1.8 solar mass stars in this system, and by extension elsewhere, should have substellar mass companions of high mass that could be engulfed at some point in their lifetimes....
Asymptotic behavior of critical primitive multi-type branching processes with immigration
Ispány, Márton
2012-01-01
Under natural assumptions a Feller type diffusion approximation is derived for critical multi-type branching processes with immigration when the offspring mean matrix is primitive (in other words, positively regular). Namely, it is proved that a sequence of appropriately scaled random step functions formed from a sequence of critical primitive multi-type branching processes with immigration converges weakly towards a squared Bessel process supported by a ray determined by the Perron vector of the offspring mean matrix.
Energy Technology Data Exchange (ETDEWEB)
Sung Jang, In; Gyoon Lee, Myung, E-mail: isjang@astro.snu.ac.kr, E-mail: mglee@astro.snu.ac.kr [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul 151-742 (Korea, Republic of)
2014-09-01
M74 (NGC 628) is a famous face-on spiral galaxy, hosting three core-collapse supernovae (SNe): SN Ic 2002ap, SN II-P 2003gd, and SN II-P 2013ej. However, its distance is not well known. We present a distance estimation for this galaxy based on the Tip of the Red Giant Branch (TRGB) method. We obtain photometry of the resolved stars in the arm-free region of M74 from F555W and F814W images in the Hubble Space Telescope archive. The color-magnitude diagram of the resolved stars shows a dominant red giant branch (RGB) as well as blue main sequence stars, red helium burning stars, and asymptotic giant branch stars. The I-band luminosity function of the RGB stars shows the TRGB to be at I {sub TRGB} = 26.13 ± 0.03 mag, and T {sub RGB} = 25.97 ± 0.03. From this, we derive the distance modulus to M74 to be 30.04 ± 0.04 (random) ± 0.12 (systematic) (corresponding to a linear distance of 10.19 ± 0.14 ± 0.56 Mpc). With this distance estimate, we calibrate the standardized candle method for SNe II-P. From the absolute magnitudes of SN 2003gd, we derive a value of the Hubble constant, H {sub 0} = 72 ± 6 (random) ± 7 (systematic) km s{sup –1} Mpc{sup –1}. It is similar to recent estimates based on the luminosity calibration of Type Ia supernovae.
TRANSMISSION ELECTRON MICROSCOPY OF Al-RICH SILICATE STARDUST FROM ASYMPTOTIC GIANT BRANCH STARS
Energy Technology Data Exchange (ETDEWEB)
Vollmer, Christian [Institute for Mineralogy, University of Muenster, Correnssstr. 24, D-48149 Muenster (Germany); Hoppe, Peter [Max Planck Institute for Chemistry, Particle Chemistry Department, Hahn-Meitner-Weg 1, D-55128 Mainz (Germany); Brenker, Frank E., E-mail: christian.vollmer@wwu.de [Institute of Geoscience/Mineralogy, Goethe-University Frankfurt, Altenhoeferallee 1, D-60438 Frankfurt (Germany)
2013-05-20
We report on transmission electron microscopy (TEM) investigations of two mineralogically unusual stardust silicates to constrain their circumstellar condensation conditions. Both grains were identified by high spatial resolution nano secondary ion mass spectrometry (NanoSIMS) in the Acfer 094 meteorite, one of the most pristine carbonaceous chondrites available for study. One grain is a highly crystalline, highly refractory (Fe content < 0.5 at%), structurally undisturbed orthopyroxene (MgSiO{sub 3}) with an unusually high Al content (1.8 {+-} 0.5 at%). This is the first TEM documentation of a single crystal pyroxene within the complete stardust silicate data set. We interpret the microstructure and chemistry of this grain as being a direct condensate from a gas of locally non-solar composition (i.e., with a higher-than-solar Al content and most likely also a lower-than-solar Mg/Si ratio) at (near)-equilibrium conditions. From the overabundance of crystalline olivine (six reported grains to date) compared to crystalline pyroxene (only documented as a single crystal in this work) we infer that formation of olivine over pyroxene is favored in circumstellar environments, in agreement with expectations from condensation theory and experiments. The second stardust silicate consists of an amorphous Ca-Si rich material which lacks any crystallinity based on TEM observations in which tiny (<20 nm) hibonite nanocrystallites are embedded. This complex assemblage therefore attests to the fast cooling and rapidly changing chemical environments under which dust grains in circumstellar shells form.
Evolution of oxygen-rich and carbon stars on the asymptotic giant branch
Kwok, Sun; Chan, S. Josephine; Volk, Kevine M.
1989-01-01
The transition from oxygen-rich (M) stars to S stars and then to C stars is examined using data on the chemical properties of the stars. The photospheric and circumstellar spectral characteristics of M and C stars are summarized. Consideration is given to the color distributions of carbon stars, visual carbon stars as transition objects, and radio observations of visual carbon stars. The chemical characteristics of S stars, the evolution of oxygen-rich stars on the AGB, and the transition between AGB stars and planetary nebulae are discussed. IRAS data are used to construct an evolutionary scenario for AGB stars, in which some mass-losing M stars remain oxygen rich, while others become carbon rich.
Evolution of Thermally Pulsing Asymptotic Giant Branch Stars I. The COLIBRI Code
Marigo, Paola; Nanni, Ambra; Girardi, Leo; Pumo, Maria Letizia
2013-01-01
We present the COLIBRI code for computing the evolution of stars along the TP-AGB phase. Compared to purely synthetic TP-AGB codes, COLIBRI relaxes a significant part of their analytic formalism in favour of a detailed physics applied to a complete envelope model, in which the stellar structure equations are integrated from the atmosphere down to the bottom of the hydrogen-burning shell. This allows to predict self-consistently: (i) the effective temperature, and more generally the convective envelope and atmosphere structures, correctly coupled to the changes in the surface chemical abundances and gas opacities; (ii) sphericity effects in the atmospheres; (iii) the core mass-luminosity relation and its break-down due to hot bottom burning (HBB) in the most massive AGB stars, (iv) the HBB nucleosynthesis via the solution of a complete nuclear network (pp chains, and the CNO, NeNa, MgAl cycles), including also the production of 7Li via the Cameron-Fowler beryllium transport mechanism; (v) the chemical composit...
BVI Photometry and the Red Giant Branch Luminosity Function of M15
Feuillet, Diane K; Chaboyer, Brian
2014-01-01
We present new $BVI$ photometry containing 40,000 stars of the Galactic globular cluster M15 (NGC 7078) covering a $25 \\times 25$ arcminute area centered on the cluster with a magnitude range from the tip of the Red Giant Branch to three magnitudes below the main sequence turn-off. Using $\\alpha$-enhanced Dartmouth Stellar Evolution Program models, we find an age of $13.0 \\ \\pm \\ 1.0$ Gyr and distance modulus of $(m-M)_V = 15.4 \\pm 0.1$ through isochrone fitting. Unlike previous works, we find good agreement between the observed completeness-corrected stellar luminosity function and models.
Pade approximants for functions with branch points - strong asymptotics of Nuttall-Stahl polynomials
Aptekarev, Alexander I
2011-01-01
Let f be a germ of an analytic function at infinity that can be analytically continued along any path in the complex plane deprived of a finite set of points, f \\in\\mathcal{A}(\\bar{\\C} \\setminus A), \\sharp A <\\infty. J. Nuttall has put forward the important relation between the maximal domain of f where the function has a single-valued branch and the domain of convergence of the diagonal Pade approximants for f. The Pade approximants, which are rational functions and thus single-valued, approximate a holomorphic branch of f in the domain of their convergence. At the same time most of their poles tend to the boundary of the domain of convergence and the support of their limiting distribution models the system of cuts that makes the function f single-valued. Nuttall has conjectured (and proved for many important special cases) that this system of cuts has minimal logarithmic capacity among all other systems converting the function f to a single-valued branch. Thus the domain of convergence corresponds to the...
Light Element Chemistry and the Double Red Giant Branch in the Galactic Globular Cluster NGC 288
Hsyu, Tiffany; Lee, Young-Wook; Rich, R Michael
2014-01-01
The globular cluster NGC 288 was previously reported to exhibit two distinct red giant branches (RGBs) in the narrow-band Calcium (HK) and Str\\"omgren b and y band passes. In order to investigate this phenomenon further, we obtained moderate resolution (R$\\sim$18,000) spectra of 27 RGB stars in NGC 288 with the Hydra multifiber spectrograph on the Blanco 4m telescope at Cerro Tololo Inter-American Observatory. From these data we derive iron ($\\langle$[Fe/H]$\\rangle$=-1.19; $\\sigma$=0.12), oxygen ($\\langle$[O/Fe]$\\rangle$=$+$0.25; $\\sigma$=0.13), and sodium ($\\langle$[Na/Fe]$\\rangle$=$+$0.15; $\\sigma$=0.26) abundances using standard equivalent width and spectrum synthesis techniques. Combining these data with those available in the literature indicates that the two giant branches have distinctly different light element chemistry but do not exhibit a significant spread in [Fe/H]. A new transmission tracing for the CTIO Ca filter, obtained for this project, shows that CN contamination is the primary spectral fea...
Marino, A F; Casagrande, L; Collet, R; Dotter, A; Johnson, C I; Lind, K; Bedin, L R; Jerjen, H; Aparicio, A; Sbordone, L
2016-01-01
The globular cluster 47 Tuc exhibits a complex sub-giant branch (SGB) with a faint-SGB comprising only about the 10% of the cluster mass and a bright-SGB hosting at least two distinct populations.We present a spectroscopic analysis of 62 SGB stars including 21 faint-SGB stars. We thus provide the first chemical analysis of the intriguing faint-SGB population and compare its abundances with those of the dominant populations. We have inferred abundances of Fe, representative light elements C, N, Na, and Al, {\\alpha} elements Mg and Si for individual stars. Oxygen has been obtained by co-adding spectra of stars on different sequences. In addition, we have analysed 12 stars along the two main RGBs of 47 Tuc. Our principal results are: (i) star-to-star variations in C/N/Na among RGB and bright-SGB stars; (ii) substantial N and Na enhancements for the minor population corresponding to the faint-SGB; (iii) no high enrichment in C+N+O for faint-SGB stars. Specifically, the C+N+O of the faint-SGB is a factor of 1.1 hi...
Institute of Scientific and Technical Information of China (English)
YAO Gui-Jin; SONG Ruo-Long; WANG Ke-Xie
2008-01-01
We obtaln an asymptotic solution to the vertical branch-cut integral of shear waves excited by an impulsive pressure point source in a fluid-filled borehole,by taking the effect of the infinite singularity of the Hankel functions related to shear waves in the integrand at the shear branch point into account and using the method of steepest-descent to expand the vertical branch-cut integral of shear waves.It is theoretically proven that the saddle point of the integrand is locared at ks-i/z,where ks and z are the shear branch point and the offset.The continuous and smooth amplitude spectra and the resonant peaks of shear waves are numerically calculated from the asymptotic solution.These asymptotic results are generally in agreement with the numerical integral results.It is also found by the comparison and analysis of two results that the resonant factor and the effect of the normal and leaking mode poles around the shear branch point lead to the two-peak characteristics of the amplitude spectra of shear waves in the resonant peak zones from the numerical integral calculations.
A Bayesian Approach to Locating the Red Giant Branch Tip Magnitude (Part I)
Conn, A R; Ibata, R A; Parker, Q A; Zucker, D B; McConnachie, A W; Martin, N F; Irwin, M J; Tanvir, N; Fardal, M A; Ferguson, A M N
2011-01-01
We present a new approach for identifying the Tip of the Red Giant Branch (TRGB) which, as we show, works robustly even on sparsely populated targets. Moreover, the approach is highly adaptable to the available data for the stellar population under study, with prior information readily incorporable into the algorithm. The uncertainty in the derived distances is also made tangible and easily calculable from posterior probability distributions. We provide an outline of the development of the algorithm and present the results of tests designed to characterize its capabilities and limitations. We then apply the new algorithm to three M31 satellites: Andromeda I, Andromeda II and the fainter Andromeda XXIII, using data from the Pan-Andromeda Archaeological Survey (PAndAS), and derive their distances as $731^{(+ 5) + 18}_{(- 4) - 17}$ kpc, $634^{(+ 2) + 15}_{(- 2) - 14}$ kpc and $733^{(+ 13)+ 23}_{(- 11) - 22}$ kpc respectively, where the errors appearing in parentheses are the components intrinsic to the method, w...
NGC 362: another globular cluster with a split red giant branch
Carretta, E; Gratton, R G; Lucatello, S; D'Orazi, V; Bellazzini, M; Catanzaro, G; Leone, F; Momany, Y; Sollima, A
2013-01-01
We obtained FLAMES GIRAFFE+UVES spectra for both first and second-generation red giant branch (RGB) stars in the globular cluster (GC) NGC 362 and used them to derive abundances of 21 atomic species for a sample of 92 stars. The surveyed elements include proton-capture (O, Na, Mg, Al, Si), alpha-capture (Ca, Ti), Fe-peak (Sc, V, Mn, Co, Ni, Cu), and neutron-capture elements (Y, Zr, Ba, La, Ce, Nd, Eu, Dy). The analysis is fully consistent with that presented for twenty GCs in previous papers of this series. Stars in NGC 362 seem to be clustered into two discrete groups along the Na-O anti-correlation, with a gap at [O/Na] 0 dex. Na-rich, second generation stars show a trend to be more centrally concentrated, although the level of confidence is not very high. When compared to the classical second-parameter twin NGC 288, with similar metallicity, but different horizontal branch type and much lower total mass, the proton-capture processing in stars of NGC 362 seems to be more extreme, confirming previous analysi...
Infrared tip of the red giant branch and distances to the MAFFEI/IC 342 group
Energy Technology Data Exchange (ETDEWEB)
Wu, Po-Feng; Tully, R. Brent; Jacobs, Bradley A. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, HI 96822 (United States); Rizzi, Luca [W. M. Keck Observatory, 65-1120 Mamalahoa Hwy, Kamuela, HI 96743 (United States); Dolphin, Andrew E. [Raytheon, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Karachentsev, Igor D. [Special Astrophysical Observatory, Russian Academy of Sciences, Nizhnij Arkhyz, Karachai-Cherkessian Republic 369167 (Russian Federation)
2014-07-01
In this paper, we extend the use of the tip of the red giant branch (TRGB) method to near-infrared wavelengths from the previously used I-band, using the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3). Upon calibration of a color dependency of the TRGB magnitude, the IR TRGB yields a random uncertainty of ∼5% in relative distance. The IR TRGB methodology has an advantage over the previously used Advance Camera for Surveys F606W and F814W filter set for galaxies that suffer from severe extinction. Using the IR TRGB methodology, we obtain distances toward three principal galaxies in the Maffei/IC 342 complex, which are located at low Galactic latitudes. New distance estimates using the TRGB method are 3.45{sub −0.13}{sup +0.13} Mpc for IC 342, 3.37{sub −0.23}{sup +0.32} Mpc for Maffei 1, and 3.52{sub −0.30}{sup +0.32} Mpc for Maffei 2. The uncertainties are dominated by uncertain extinction, especially for Maffei 1 and Maffei 2. Our IR calibration demonstrates the viability of the TRGB methodology for observations with the James Webb Space Telescope.
Near-infrared observations of the Fornax dwarf galaxy. I. The red giant branch
Gullieuszik, M; Rizzi, L; Saviane, I; Momany, Y; Ortolani, S
2007-01-01
We present a study of the evolved stellar populations in the dwarf spheroidal galaxy Fornax based on JHK imaging photometry. The observations cover an 18.5x18.5 arcmin central area with a mosaic of NTT/SOFI images. Our data sample all the red giant branch for the whole area. Deeeper observations reaching the red clump of helium-burning stars have also been obtained for a 4.5 x 4.5 arcmin region. Near-infrared photometry led to measurements of the distance to Fornax based on the K-band location of the RGB tip and the red clump. Once corrected for the mean age of the stellar populations in the galaxy, the derived distance modulus is 20.74 corresponding to a distance of 141 Kpc, in good agreement with estimates from optical data. By taking age effects into account, we have derived a distribution function of global metallicity [M/H] from optical-infrared colors of individual stars. Our photometric Metallicity Distribution Function covers the range -2.0<[M/H]<-0.6, with a main peak at [M/H]~-0.9 and a long t...
Infrared Tip of the Red Giant Branch and Distances to the Maffei/IC 342 Group
Wu, Po-Feng; Rizzi, Luca; Dolphin, Andrew E; Jacobs, Bradley A; Karachentsev, Igor D
2014-01-01
In this paper, we extend the use of the tip of the red giant branch (TRGB) method to near-infrared wavelengths from previously-used $I$-band, using the \\textit{Hubble Space Telescope (HST)} Wide Field Camera 3 (WFC3). Upon calibration of a color dependency of the TRGB magnitude, the IR TRGB yields a random uncertainty of $\\sim 5%$ in relative distance. The IR TRGB methodology has an advantage over the previously-used ACS $F606W$ and $F814W$ filter set for galaxies that suffer from severe extinction. Using the IR TRGB methodology, we obtain distances toward three principal galaxies in the Maffei/IC 342 complex, which are located at low Galactic latitudes. New distance estimates using the TRGB method are 3.45$^{+0.13}_{-0.13}$ Mpc for IC 342, 3.37$^{+0.32}_{-0.23}$ Mpc for Maffei 1 and 3.52$^{+0.32}_{-0.30}$ Mpc for Maffei 2. The uncertainties are dominated by uncertain extinction, especially for Maffei 1 and Maffei 2. Our IR calibration demonstrates the viability of the TRGB methodology for observations with t...
The Tip of the Red Giant Branch and Distance of the Magellanic Clouds
Cioni, M R L; Loup, C; Habing, H J; Cioni, Maria-Rosa. L.; Marel, Roeland P. van der; Loup, Cecile; Habing, Harm J.
2000-01-01
We present a precise determination of the apparent magnitude of the tip of the red giant branch (TRGB) in the I (0.8 micron), J (1.25 micron), and K_S (2.15 micron) bands from the luminosity function of a sample of data extracted from the DENIS catalogue towards the Magellanic Clouds (Cioni et al. 2000). From the J and Ks magnitudes we derive bolometric magnitudes m_bol. We present a new algorithm for the determination of the TRGB magnitude, which we describe in detail and test extensively using Monte-Carlo simulations. We note that any method that searches for a peak in the first derivative (used by most authors) or the second derivative (used by us) of the observed luminosity function does not yield an unbiased estimate for the actual magnitude of the TRGB discontinuity. We stress the importance of correcting for this bias, which is not generally done. We combine the results of our algorithm with theoretical predictions to derive the distance modulus of the Magellanic Clouds. We obtain m-M = 18.55 (0.04 for...
Infrared tip of the red giant branch and distances to the MAFFEI/IC 342 group
International Nuclear Information System (INIS)
In this paper, we extend the use of the tip of the red giant branch (TRGB) method to near-infrared wavelengths from the previously used I-band, using the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3). Upon calibration of a color dependency of the TRGB magnitude, the IR TRGB yields a random uncertainty of ∼5% in relative distance. The IR TRGB methodology has an advantage over the previously used Advance Camera for Surveys F606W and F814W filter set for galaxies that suffer from severe extinction. Using the IR TRGB methodology, we obtain distances toward three principal galaxies in the Maffei/IC 342 complex, which are located at low Galactic latitudes. New distance estimates using the TRGB method are 3.45−0.13+0.13 Mpc for IC 342, 3.37−0.23+0.32 Mpc for Maffei 1, and 3.52−0.30+0.32 Mpc for Maffei 2. The uncertainties are dominated by uncertain extinction, especially for Maffei 1 and Maffei 2. Our IR calibration demonstrates the viability of the TRGB methodology for observations with the James Webb Space Telescope.
Hekker, S; Basu, S; Mazumdar, A; Aguirre, V Silva; Chaplin, W J
2013-01-01
Asteroseismology, i.e. the study of the internal structures of stars via their global oscillations, is a valuable tool to obtain stellar parameters such as mass, radius, surface gravity and mean density. These parameters can be obtained using certain scaling relations which are based on an asymptotic approximation. Usually the observed oscillation parameters are assumed to follow these scaling relations. Recently, it has been questioned whether this is a valid approach, i.e., whether the order of the observed oscillation modes are high enough to be approximated with an asymptotic theory. In this work we use stellar models to investigate whether the differences between observable oscillation parameters and their asymptotic estimates are indeed significant. We compute the asymptotic values directly from the stellar models and derive the observable values from adiabatic pulsation calculations of the same models. We find that the extent to which the atmosphere is included in the models is a key parameter. Conside...
Kalirai, Jasonjot S.; Bergeron, P.; Hansen, Brad M. S.; Kelson, Daniel D.; Reitzel, David B.; Rich, R. Michael; Richer, Harvey B.
2007-01-01
We present the first detailed study of the properties (temperatures, gravities, and masses) of the NGC 6791 white dwarf population. This unique stellar system is both one of the oldest (8 Gyr) and most metal-rich ([Fe/H] ~ 0.4) open clusters in our Galaxy, and has a color-magnitude diagram (CMD) that exhibits both a red giant clump and a much hotter extreme horizontal branch. Fitting the Balmer lines of the white dwarfs in the cluster, using Keck/LRIS spectra, suggests that most of these star...
Johnson, Christian I.; Caldwell, Nelson; Rich, R. Michael; Pilachowski, Catherine A.; Hsyu, Tiffany
2016-01-01
We present radial velocities and chemical abundances for red giant branch stars in the Galactic bulge globular clusters NGC 6342 and NGC 6366. The velocities and abundances are based on measurements of high resolution (R > 20,000) spectra obtained with the MMT-Hectochelle and WIYN-Hydra spectrographs. We find that NGC 6342 has a heliocentric radial velocity of +112.5 km/s (sigma = 8.6 km/s), NGC 6366 has a heliocentric radial velocity of -122.3 km/s (sigma = 1.5 km/s), and that both clusters ...
Vlemmings, W H T; Lindqvist, M; Mohamed, S; Olofsson, H; Ramstedt, S; Brunner, M; Groenewegen, M A T; Kerschbaum, F; Wittkowski, M
2013-01-01
[abridged] The 12CO/13CO ratio is often used as a measure of the 12C/13C ratio in the circumstellar environment, carrying important information about the stellar nucleosynthesis. External processes can change the 12CO and 13CO abundances, and spatially resolved studies of the 12CO/13CO ratio are needed to quantify the effect of these processes on the globally determined values. Additionally, such studies provide important information on the conditions in the circumstellar environment. The detached-shell source R Scl, displaying CO emission from recent mass loss, in a binary-induced spiral structure as well as in a clumpy shell produced during a thermal pulse, provides a unique laboratory for studying the differences in CO isotope abundances throughout its recent evolution. We observed both the 12CO(J=3-2) and the 13CO(J=3-2) line using ALMA. We find significant variations in the 12CO/13CO intensity ratios and consequently in the abundance ratios. The average CO isotope abundance ratio is at least a factor thr...
A Large Group of Asymptotic Giant Branch Stars in the Disk of M31: A Missing Piece of the Puzzle?
Davidge, T J
2012-01-01
The properties of a stellar grouping that is ~ 3.5 kpc to the north east of the center of M31 is examined. This structure has (1) a surface brightness that is lower than the surrounding disk, (2) a more-or-less round appearance, (3) a size of ~ 300 arcsec (~ 1 kpc), and (4) an integrated brightness M_K = 6.5. It is populated by stars with ages > 100 Myr and J-K colors that tend to be bluer than those of stars in the surrounding disk. Comparisons with model luminosity functions suggest that the star formation rate in this object has changed twice in the past few hundred Myr. Fitting a Sersic function to the light profile reveals a power-law index and effective surface brightness that are similar to those of dwarf galaxies with the same integrated brightness. Two possible origins for this object are considered: (1) it is a heretofore undiscovered satellite of M31 that is seen against/in/through the M31 disk, or (2) it is a fossil star-forming region in the M31 disk.
Górski, Marek; Pietrzyński, Grzegorz; Gieren, Wolfgang; Catelan, Márcio; Pilecki, Bogumił; Karczmarek, Paulina; Suchomska, Ksenia; Graczyk, Dariusz; Konorski, Piotr; Zgirski, Bartłomiej; Wielgórski, Piotr
2016-06-01
We present a precise optical and near-infrared determination of the tip of the red giant branch (TRGB) brightness in the Large and Small Magellanic Clouds (respectively, LMC and SMC). The commonly used calibrations of the absolute magnitude of the TRGB lead to an overestimation of the distance to the LMC and SMC in the K band, and an underestimation of the distance in the optical I band for both galaxies. Reported discrepancies are at the level of 0.2 mag, with respect to the very accurate distance determinations to both MCs based on late-type eclipsing binaries. The differential distances between the LMC and SMC obtained in the J and K bands, and for the bolometric brightness are consistent with each other, and with the results obtained from eclipsing binaries and other distance indicators.
Gorski, Marek; Gieren, Wolfgang; Catelan, Marcio; Pilecki, Bogumil; Karczmarek, Paulina; Suchomska, Ksenia; Graczyk, Dariusz; Konorski, Piotr; Zgirski, Bartlomiej; Wielgorski, Piotr
2016-01-01
We present a precise optical and near-infrared determination of the Tip of the Red Giant Branch (TRGB) brightness in the Large and Small Magellanic Clouds (respectively LMC and SMC). The commonly used calibrations of the absolute magnitude of the TRGB lead to an overestimation of the distance to the LMC and SMC in the K band, and an underestimation of the distance in the optical I band for both galaxies. Reported discrepancies are at the level of 0.2 mag, with respect to the very accurate distance determinations to both Clouds based on late-type eclipsing binaries. The differential distances between the LMC and SMC obtained in the J and K bands, and for the bolometric brightness are consistent with each other, and with the results obtained from eclipsing binaries and other distance indicators.
Energy Technology Data Exchange (ETDEWEB)
Simmerer, Jennifer; Ivans, Inese I.; Filler, Dan [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Francois, Patrick [Paris-Meudon Observatory, France and Universite de Picardie Jules Verne, F-80080 Amiens (France); Charbonnel, Corinne [Geneva Observatory, University of Geneva, Chemin des Maillettes 51, CH-1290 Versoix (Switzerland); Monier, Richard [Laboratoire Hippolyte Fizeau, Universite Nice Sophia Antipolis, Parc Valrose, F-06000 Nice (France); James, Gaeel, E-mail: jennifer@physics.utah.edu, E-mail: iii@physics.utah.edu, E-mail: dan.filler@utah.edu, E-mail: patrick.francois@obspm.fr, E-mail: corinne.charbonnel@unige.ch, E-mail: richard.monier@unice.fr, E-mail: gjames@eso.org [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Munchen (Germany)
2013-02-10
We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.
International Nuclear Information System (INIS)
We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.
Simmerer, Jennifer; Ivans, Inese I.; Filler, Dan; Francois, Patrick; Charbonnel, Corinne; Monier, Richard; James, Gaël
2013-02-01
We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.
A new analysis of the Red Giant Branch "Tip" distance scale and the value of the Hubble constant
Salaris, M
1998-01-01
The theoretical evaluations of the Red Giant Branch Tip (TRGB) luminosity presented in Salaris & Cassisi (1997) are extended to higher metallicities, and compared with analogous independent results recently published. The comparison between our ZAHB and TRGB distance scales for galactic globular clusters presented in Salaris & Cassisi (1997) is now supplemented with a comparison with the HIPPARCOS distance scale set by local subdwarfs with accurate parallax determinations. The overall agreement between ZAHB and HIPPARCOS distances is quite good. The ZAHB and TRGB distances to resolved galaxies are in good agreement, whereas the comparison between TRGB and Cepheid distances, computed by using the calibration suggested by Madore & Freedman (1991), reveals a systematic discrepancy of the order of 0.12 mag. The TRGB distances are systematically longer in comparison with the Cepheid ones. This result supports the case for a revision of the zero point of the Cepheid distance scale, as already suggested ...
Cohen, Roger E; Mauro, Francesco; Geisler, Douglas; Alonso-Garcia, Javier; Kinemuchi, Karen
2015-01-01
We present wide field near-infrared photometry of 12 Galactic globular clusters, typically extending from the tip of the cluster red giant branch (RGB) to the main sequence turnoff. Using recent homogenous values of cluster distance, reddening and metallicity, the resulting photometry is directly compared to the predictions of several recent libraries of stellar evolutionary models. Of the sets of models investigated, Dartmouth and Victoria-Regina models best reproduce the observed RGB morphology, albeit with offsets in J-Ks color which vary in their significance in light of all sources of observational uncertainty. Therefore, we also present newly recalibrated relations between near-IR photometric indices describing the upper RGB versus cluster iron abundance as well as global metallicity. The influence of enhancements in alpha elements and helium are analyzed, finding that the former affect the morphology of the upper RGB in accord with model predictions. Meanwhile, the empirical relations we derive are in ...
Keppens, R.; Solanki, S. K.; Charbonnel, C.
2000-01-01
Using the model by Keppens (1997), we investigate the angular momentum (AM) evolution in asymmetric binary star systems from Zero-Age Main Sequence times until at least one component has ascended the giant branch. We concentrate on stars ranging in mass from 0.9 M. - 1.7 M. in almost synchronous, sh
Cassisi, Santi; Pietrinferni, Adriano
2015-01-01
We performed a detailed study of the evolution of the luminosity of He-ignition stage and of the red giant branch bump luminosity during the red giant branch phase transition for various metallicities. To this purpose we calculated a grid of stellar models that sample the mass range of the transition with a fine mass step equal to ${\\rm 0.01M_\\odot}$. We find that for a stellar population with a given initial chemical composition, there is a critical age (of 1.1-1.2~Gyr) around which a decrease in age of just 20-30 million years causes a drastic drop in the red giant branch tip brightness. We also find a narrow age range (a few $10^7$ yr) around the transition, characterized by the luminosity of the red giant branch bump being brighter than the luminosity of He ignition. We discuss a possible link between this occurrence and observations of Li-rich core He-burning stars.
McDonald, Iain
2015-01-01
The impact of metallicity on the mass-loss rate from red giant branch (RGB) stars is studied through its effect on the parameters of horizontal branch (HB) stars. The scaling factors from Reimers (1975) and Schroder & Cuntz (2005) are determined for 56 well-studied Galactic globular clusters (GCs). The median values among clusters are, respectively, {\\eta}_R = 0.477 +/- 0.070 (+0.050/-0.062) and {\\eta}_SC = 0.172 +/- 0.024 (+0.018/-0.023) (standard deviation and systematic uncertainties, respectively). Mass-loss mechanisms on the RGB have very little metallicity dependence: over a factor of 200 in iron abundance, {\\eta} varies by <~30 per cent, within the current systematic uncertainties on cluster ages and evolution models. Since {\\eta} incorporates cluster age, the low standard deviation of {\\eta} among clusters (~14 per cent) suggests that age can almost entirely account for the "second parameter problem". The remaining spread in {\\eta} correlates with cluster mass and density, suggesting helium enr...
Networks of highly branched stigmarian rootlets developed on the first giant trees.
Hetherington, Alexander J; Berry, Christopher M; Dolan, Liam
2016-06-14
Lycophyte trees, up to 50 m in height, were the tallest in the Carboniferous coal swamp forests. The similarity in their shoot and root morphology led to the hypothesis that their rooting (stigmarian) systems were modified leafy shoot systems, distinct from the roots of all other plants. Each consists of a branching main axis covered on all sides by lateral structures in a phyllotactic arrangement; unbranched microphylls developed from shoot axes, and largely unbranched stigmarian rootlets developed from rhizomorphs axes. Here, we reexamined the morphology of extinct stigmarian systems preserved as compression fossils and in coal balls from the Carboniferous period. Contrary to the long-standing view of stigmarian systems, where shoot-like rhizomorph axes developed largely unbranched, root-hairless rootlets, here we report that stigmarian rootlets were highly branched, developed at a density of ∼25,600 terminal rootlets per meter of rhizomorph, and were covered in root hairs. Furthermore, we show that this architecture is conserved among their only extant relatives, herbaceous plants in the Isoetes genus. Therefore, despite the difference in stature and the time that has elapsed, we conclude that both extant and extinct rhizomorphic lycopsids have the same rootlet system architecture. PMID:27226309
Conn, Anthony R; Lewis, Geraint F; Parker, Quentin A; Zucker, Daniel B; Martin, Nicolas F; McConnachie, Alan W; Irwin, Mike J; Tanvir, Nial; Fardal, Mark A; Ferguson, Annette M N; Chapman, Scott C; Valls-Gabaud, David
2012-01-01
In `A Bayesian Approach to Locating the Red Giant Branch Tip Magnitude (PART I),' a new technique was introduced for obtaining distances using the TRGB standard candle. Here we describe a useful complement to the technique with the potential to further reduce the uncertainty in our distance measurements by incorporating a matched-filter weighting scheme into the model likelihood calculations. In this scheme, stars are weighted according to their probability of being true object members. We then re-test our modified algorithm using random-realization artificial data to verify the validity of the generated posterior probability distributions (PPDs) and proceed to apply the algorithm to the satellite system of M31, culminating in a 3D view of the system. Further to the distributions thus obtained, we apply a satellite-specific prior on the satellite distances to weight the resulting distance posterior distributions, based on the halo density profile. Thus in a single publication, using a single method, a compreh...
Johnson, Christian I; Rich, R Michael; Pilachowski, Catherine A; Hsyu, Tiffany
2016-01-01
We present radial velocities and chemical abundances for red giant branch stars in the Galactic bulge globular clusters NGC 6342 and NGC 6366. The velocities and abundances are based on measurements of high resolution (R > 20,000) spectra obtained with the MMT-Hectochelle and WIYN-Hydra spectrographs. We find that NGC 6342 has a heliocentric radial velocity of +112.5 km/s (sigma = 8.6 km/s), NGC 6366 has a heliocentric radial velocity of -122.3 km/s (sigma = 1.5 km/s), and that both clusters have nearly identical metallicities ([Fe/H] ~ -0.55). NGC 6366 shows evidence of a moderately extended O-Na anti-correlation, but more data are needed for NGC 6342 to determine if this cluster also exhibits the typical O-Na relation likely found in all other Galactic globular clusters. The two clusters are distinguished from similar metallicity field stars as having larger [Na/Fe] spreads and enhanced [La/Fe] ratios, but we find that NGC 6342 and NGC 6366 display alpha and Fe-peak element abundance patterns that are typic...
Johnson, Christian I.; Caldwell, Nelson; Rich, R. Michael; Pilachowski, Catherine A.; Hsyu, Tiffany
2016-07-01
We present radial velocities and chemical abundances for red giant branch stars in the Galactic bulge globular clusters NGC 6342 and NGC 6366. The velocities and abundances are based on measurements of high-resolution (R ≳ 20,000) spectra obtained with the MMT-Hectochelle and WIYN-Hydra spectrographs. We find that NGC 6342 has a heliocentric radial velocity of +112.5 km s-1 (σ = 8.6 km s-1), NGC 6366 has a heliocentric radial velocity of -122.3 km s-1 (σ = 1.5 km s-1), and both clusters have nearly identical metallicities ([Fe/H] ≈ -0.55). NGC 6366 shows evidence of a moderately extended O-Na anti-correlation, but more data are needed for NGC 6342 to determine if this cluster also exhibits the typical O-Na relation likely found in all other Galactic globular clusters. The two clusters are distinguished from similar metallicity field stars as having larger [Na/Fe] spreads and enhanced [La/Fe] ratios, but we find that NGC 6342 and NGC 6366 display α and Fe-peak element abundance patterns that are typical of other metal-rich ([Fe/H] > -1) inner Galaxy clusters. However, the median [La/Fe] abundance may vary from cluster-to-cluster.
Goudfrooij, Paul; Rosenfield, Philip; Bressan, Alessandro; Marigo, Paola; Correnti, Matteo; Puzia, Thomas H
2015-01-01
Recent high-quality photometry of many star clusters in the Magellanic Clouds with ages of 1$\\,-\\,$2 Gyr revealed main sequence turnoffs (MSTOs) that are significantly wider than can be accounted for by a simple stellar population (SSP). Such extended MSTOs (eMSTOs) are often interpreted in terms of an age spread of several $10^8$ yr, challenging the traditional view of star clusters as being formed in a single star formation episode. Li et al. and Bastian & Niederhofer recently investigated the sub-giant branches (SGBs) of NGC 1651, NGC 1806, and NGC 1846, three star clusters in the Large Magellanic Cloud (LMC) that exhibit an eMSTO. They argued that the SGB of these star clusters can be explained only by a SSP. We study these and two other similar star clusters in the LMC, using extensive simulations of SSPs including unresolved binaries. We find that the shapes of the cross-SGB profiles of all star clusters in our sample are in fact consistent with their cross-MSTO profiles when the latter are interpre...
Tolstoy, E; Cole, A A; Pasquini, L; Gilmozzi, R; Gallagher, J S; Tolstoy, Eline; Irwin, Michael J.; Cole, Andrew A.
2001-01-01
Spectroscopic abundance determinations for stars spanning a Hubble time in age are necessary in order to unambiguously determine the evolutionary histories of galaxies. Using FORS1 in Multi-Object Spectroscopy mode on ANTU (UT1) at the ESO-VLT on Paranal we obtained near infrared spectra from which we measured the equivalent widths of the two strongest Ca II triplet lines to determine metal abundances for a sample of Red Giant Branch stars, selected from ESO-NTT optical (I, V-I) photometry of three nearby, Local Group, galaxies: the Sculptor Dwarf Spheroidal, the Fornax Dwarf Spheroidal and the Dwarf Irregular NGC 6822. The summed equivalent width of the two strongest lines in the Ca II triplet absorption line feature, centered at 8500A, can be readily converted into an [Fe/H] abundance using the previously established calibrations by Armandroff & Da Costa (1991) and Rutledge, Hesser & Stetson (1997). We measured metallicities for 37 stars in Sculptor, 32 stars in Fornax, and 23 stars in NGC 6822, yie...
Institute of Scientific and Technical Information of China (English)
王汉兴; 赵飞; 卢金余
2006-01-01
In this paper, we investigate Galton-Watson branching processes in random environments. In the case where the environmental process is a Markov chain which is positive recurrent or has a transition matrix Q (θ,α) such that supθ Q (θ,α)> 0 for some α, we prove that the model has the asymptotic behavior being similar to that of Galton-Watson branching processes. In other case where the environments are non-stationary independent, the sufficient conditions are obtained for certain extinction and uncertain extinction for the model.
DEFF Research Database (Denmark)
Miglio, A.; Brogaard, Karsten Frank; Stello, D.;
2012-01-01
Mass-loss of red giant branch (RGB) stars is still poorly determined, despite its crucial role in the chemical enrichment of galaxies. Thanks to the recent detection of solar-like oscillations in G–K giants in open clusters with Kepler, we can now directly determine stellar masses for a statistic......Mass-loss of red giant branch (RGB) stars is still poorly determined, despite its crucial role in the chemical enrichment of galaxies. Thanks to the recent detection of solar-like oscillations in G–K giants in open clusters with Kepler, we can now directly determine stellar masses...... for a statistically significant sample of stars in the old open clusters NGC 6791 and 6819. The aim of this work is to constrain the integrated RGB mass-loss by comparing the average mass of stars in the red clump (RC) with that of stars in the low-luminosity portion of the RGB [i.e. stars with L≲L(RC)]. Stellar...... distance determination. In the near future, additional constraints from frequencies of individual pulsation modes and spectroscopic effective temperatures will allow further stringent tests of the Δν and νmax scaling relations, which provide a novel, and potentially very accurate, means of determining...
Dobbs, David E.
2010-01-01
This note develops and implements the theory of polynomial asymptotes to (graphs of) rational functions, as a generalization of the classical topics of horizontal asymptotes and oblique/slant asymptotes. Applications are given to hyperbolic asymptotes. Prerequisites include the division algorithm for polynomials with coefficients in the field of…
Dobrovolskas, V.; Kučinskas, A.; Steffen, M.; Ludwig, H.-G.; Prakapavičius, D.; Klevas, J.; Caffau, E.; Bonifacio, P.
2013-11-01
Aims: We utilize state-of-the-art three-dimensional (3D) hydrodynamical and classical 1D stellar model atmospheres to study the influence of convection on the formation properties of various atomic and molecular spectral lines in the atmospheres of four red giant stars, located close to the base of the red giant branch, RGB (Teff ≈ 5000 K, log g = 2.5), and characterized by four different metallicities, [M/H] = 0.0, -1.0, -2.0, -3.0. Methods: The role of convection in the spectral line formation is assessed with the aid of abundance corrections, i.e., the differences in abundances predicted for a given equivalent width of a particular spectral line with the 3D and 1D model atmospheres. The 3D hydrodynamical and classical 1D model atmospheres used in this study were calculated with the CO5BOLD and 1D LHD codes, respectively. Identical atmospheric parameters, chemical composition, equation of state, and opacities were used with both codes, therefore allowing a strictly differential analysis of the line formation properties in the 3D and 1D models. Results: We find that for lines of certain neutral atoms, such as Mg i, Ti i, Fe i, and Ni i, the abundance corrections strongly depend both on the metallicity of a given model atmosphere and the line excitation potential, χ. While abundance corrections for all lines of both neutral and ionized elements tend to be small at solar metallicity (≤±0.1 dex), for lines of neutral elements with low ionization potential and low-to-intermediate χ they quickly increase with decreasing metallicity, reaching in their extremes -0.6 to -0.8 dex. In all such cases the large abundance corrections are due to horizontal temperature fluctuations in the 3D hydrodynamical models. Lines of neutral elements with higher ionization potentials (Eion ≳ 10 eV) generally behave very similarly to lines of ionized elements characterized by low ionization potentials (Eion ≲ 6 eV). In the latter case, the abundance corrections are small
Konstantinova-Antova, R.; Aurière, M.; Charbonnel, C.; Drake, N.A; Wade, G.; Tsvetkova, S.; Petit, P.; Schröder, K. -P.; Lèbre, A.
2013-01-01
We present our first results on a new sample containing all single G,K and M giants down to V = 4 mag in the Solar vicinity, suitable for spectropolarimetric (Stokes V) observations with Narval at TBL, France. For detection and measurement of the magnetic field (MF), the Least Squares Deconvolution (LSD) method was applied (Donati et al. 1997) that in the present case enables detection of large-scale MFs even weaker than the solar one (the typical precision of our longitudinal MF measurements...
Jones, D S
1997-01-01
Many branches of science and engineering involve applications of mathematical analysis. An important part of applied analysis is asymptotic approximation which is, therefore, an active area of research with new methods and publications being found constantly. This book gives an introduction to the subject sufficient for scientists and engineers to grasp the fundamental techniques, both those which have been known for some time and those which have been discovered more recently. The asymptotic approximation of both integrals and differential equations is discussed and the discussion includes hy
Lithium-Rich Giants in Globular Clusters
Kirby, Evan N; Zhang, Andrew J; Hong, Jerry; Guo, Michelle; Guo, Rachel; Cohen, Judith G; Cunha, Katia
2016-01-01
Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron-Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 +/- 0.1)% for the RGB, (1.6 +/- 1.1)% for the AGB, and (0.3 +/- 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propo...
Kučinskas, A.; Dobrovolskas, V.; Lazauskaitė, R.; Tanabé, T.
We derive new calibrations that relate the mean J-Ks photometric colors of red giant branch (RGB) stars at MKs=-5.5 and -5.0 with cluster metallicity. The new calibrations are derived using a sample of intermediate age (1--8 Gyr) clusters in the Large and Small Magellanic Clouds, with the JHKs photometry taken from the SIRIUS photometric survey of the Magellanic Clouds. Cluster metallicities are literature data, obtained either from the high resolution or infrared calcium triplet spectroscopy of individual RGB stars. We find systematic differences between the RGB color vs. metallicity relations derived in this work and those determined by Valenti et al. (2004), the latter ones obtained for a sample of old Galactic globular clusters. In terms of age, this discrepancy corresponds to ˜ 5 Gyr and therefore can be attributed to the age difference between the two cluster samples used in the derivation of the corresponding RGB color vs. metallicity relations.
Energy Technology Data Exchange (ETDEWEB)
Carretta, E., E-mail: eugenio.carretta@oabo.inaf.it [INAF, Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy)
2014-11-10
We present the homogeneous reanalysis of Mg and Al abundances from high resolution UVES/FLAMES spectra for 31 red giants in the globular cluster NGC 2808. We found a well defined Mg-Al anticorrelation reaching a regime of subsolar Mg abundance ratios, with a spread of about 1.4 dex in [Al/Fe]. The main result from the improved statistics of our sample is that the distribution of stars is not continuous along the anticorrelation because they are neatly clustered into three distinct clumps, each with different chemical compositions. One group (P) shows a primordial composition of field stars of similar metallicity, and the other two (I and E) have increasing abundances of Al and decreasing abundances of Mg. The fraction of stars we found in the three components (P: 68%, I: 19%, E: 13%) is in excellent agreement with the ratios computed for the three distinct main sequences in NGC 2808: for the first time there is a clear correspondence between discrete photometric sequences of dwarfs and distinct groups of giants with homogeneous chemistry. The composition of the I group cannot be reproduced by mixing of matter with extreme processing in hot H-burning and gas with pristine, unprocessed composition, as also found in the recent analysis of three discrete groups in NGC 6752. This finding suggests that different classes of polluters were probably at work in NGC 2808 as well.
Asymptotic behavior of generalized functions
Pilipović, Stevan; Vindas, Jasson
2012-01-01
The asymptotic analysis has obtained new impulses with the general development of various branches of mathematical analysis and their applications. In this book, such impulses originate from the use of slowly varying functions and the asymptotic behavior of generalized functions. The most developed approaches related to generalized functions are those of Vladimirov, Drozhinov and Zavyalov, and that of Kanwal and Estrada. The first approach is followed by the authors of this book and extended in the direction of the S-asymptotics. The second approach — of Estrada, Kanwal and Vindas — is related to moment asymptotic expansions of generalized functions and the Ces'aro behavior. The main features of this book are the uses of strong methods of functional analysis and applications to the analysis of asymptotic behavior of solutions to partial differential equations, Abelian and Tauberian type theorems for integral transforms as well as for the summability of Fourier series and integrals. The book can be used by...
Seismic Evidence for a Rapidly Rotating Core in a Lower-giant-branch Star Observed with Kepler
Deheuvels, S.; García, R. A.; Chaplin, W. J.; Basu, S.; Antia, H. M.; Appourchaux, T.; Benomar, O.; Davies, G. R.; Elsworth, Y.; Gizon, L.; Goupil, M. J.; Reese, D. R.; Regulo, C.; Schou, J.; Stahn, T.; Casagrande, L.; Christensen-Dalsgaard, J.; Fischer, D.; Hekker, S.; Kjeldsen, H.; Mathur, S.; Mosser, B.; Pinsonneault, M.; Valenti, J.; Christiansen, J. L.; Kinemuchi, K.; Mullally, F.
2012-09-01
Rotation is expected to have an important influence on the structure and the evolution of stars. However, the mechanisms of angular momentum transport in stars remain theoretically uncertain and very complex to take into account in stellar models. To achieve a better understanding of these processes, we desperately need observational constraints on the internal rotation of stars, which until very recently was restricted to the Sun. In this paper, we report the detection of mixed modes—i.e., modes that behave both as g modes in the core and as p modes in the envelope—in the spectrum of the early red giant KIC 7341231, which was observed during one year with the Kepler spacecraft. By performing an analysis of the oscillation spectrum of the star, we show that its non-radial modes are clearly split by stellar rotation and we are able to determine precisely the rotational splittings of 18 modes. We then find a stellar model that reproduces very well the observed atmospheric and seismic properties of the star. We use this model to perform inversions of the internal rotation profile of the star, which enables us to show that the core of the star is rotating at least five times faster than the envelope. This will shed new light on the processes of transport of angular momentum in stars. In particular, this result can be used to place constraints on the angular momentum coupling between the core and the envelope of early red giants, which could help us discriminate between the theories that have been proposed over the last few decades.
Charbonnel, C
2016-01-01
Long-lived stars in GCs exhibit chemical peculiarities with respect to their halo counterparts. In particular, Na-enriched stars are identified as belonging to a 2d stellar population born from cluster material contaminated by the H-burning ashes of a 1st stellar population. Their presence and numbers in different locations of the CMDs provide important constraints on the self-enrichment scenarios. In particular, the ratio of Na-poor to Na-rich stars on the AGB has recently been found to vary strongly from cluster to cluster, while it is relatively constant on the RGB. We investigate the impact of both age and metallicity on the theoretical Na spread along the AGB within the framework of the fast rotating massive stars scenario for GC self-enrichment. (tb continued)
Hydrodynamic Simulations of the Interaction between Giant Stars and Planets
Staff, Jan E; Wood, Peter; Galaviz, Pablo; Passy, Jean-Claude
2016-01-01
We present the results of hydrodynamic simulations of the interaction between a 10 Jupiter mass planet and a red or asymptotic giant branch stars, both with a zero-age main sequence mass of 3.5 $M_\\odot$. Dynamic in-spiral timescales are of the order of few years and a few decades for the red and asymptotic giant branch stars, respectively. The planets will eventually be destroyed at a separation from the core of the giants smaller than the resolution of our simulations, either through evaporation or tidal disruption. As the planets in-spiral, the giant stars' envelopes are somewhat puffed up. Based on relatively long timescales and even considering the fact that further in-spiral should take place before the planets are destroyed, we predict that the merger would be difficult to observe, with only a relatively small, slow brightening. Very little mass is unbound in the process. These conclusions may change if the planet's orbit enhances the star's main pulsation modes. Based on the angular momentum transfer,...
Sobeck, Jennifer S.; Kraft, Robert P.; Sneden, Christopher; Preston, George W.; Cowan, John J.; Smith, Graeme H.; Thompson, Ian B.; Shectman, Stephen A.; Burley, Gregory S.
2011-06-01
The globular cluster M15 is unique in its display of star-to-star variations in the neutron-capture elements. Comprehensive abundance surveys have been previously conducted for handfuls of M15 red giant branch (RGB) and red horizontal branch (RHB) stars. No attempt has been made to perform a single, self-consistent analysis of these stars, which exhibit a wide range in atmospheric parameters. In the current effort, a new comparative abundance derivation is presented for three RGB and six RHB members of the cluster. The analysis employs an updated version of the line transfer code MOOG, which now appropriately treats coherent, isotropic scattering. The apparent discrepancy in the previously reported values for the metallicity of M15 RGB and RHB stars is addressed and a resolute disparity of Δ(RHB - RGB) ≈ 0.1 dex in the iron abundance was found. The anti-correlative behavior of the light neutron-capture elements (Sr, Y, Zr) is clearly demonstrated with both Ba and Eu, standard markers of the s- and r-process, respectively. No conclusive detection of Pb was made in the RGB targets. Consequently for the M15 cluster, this suggests that the main component of the s-process has made a negligible contribution to those elements normally dominated by this process in solar system material. Additionally for the M15 sample, a large Eu abundance spread is confirmed, which is comparable to that of the halo field at the same metallicity. These abundance results are considered in the discussion of the chemical inhomogeneity and nucleosynthetic history of M15.
Seismic evidence for a rapidly rotating core in a lower-giant-branch star observed with Kepler
Deheuvels, S; Chaplin, W J; Basu, S; Antia, H M; Appourchaux, T; Benomar, O; Davies, G R; Elsworth, Y; Gizon, L; Goupil, M J; Reese, D R; Regulo, C; Schou, J; Stahn, T; Casagrande, L; Christensen-Dalsgaard, J; Fischer, D; Hekker, S; Kjeldsen, H; Mathur, S; Mosser, B; Pinsonneault, M; Valenti, J; Christiansen, J L; Kinemuchi, K; Mullally, F
2012-01-01
Rotation is expected to have an important influence on the structure and the evolution of stars. However, the mechanisms of angular momentum transport in stars remain theoretically uncertain and very complex to take into account in stellar models. To achieve a better understanding of these processes, we desperately need observational constraints on the internal rotation of stars, which until very recently were restricted to the Sun. In this paper, we report the detection of mixed modes - i.e. modes that behave both as g modes in the core and as p modes in the envelope - in the spectrum of the early red giant KIC7341231, which was observed during one year with the Kepler spacecraft. By performing an analysis of the oscillation spectrum of the star, we show that its non-radial modes are clearly split by stellar rotation and we are able to determine precisely the rotational splittings of 18 modes. We then find a stellar model that reproduces very well the observed atmospheric and seismic properties of the star. ...
Carretta, Eugenio
2014-01-01
We present the homogeneous reanalysis of Mg and Al abundances from high resolution UVES/FLAMES spectra for 31 red giants in the globular cluster NGC 2808. We found a well defined Mg-Al anticorrelation reaching a regime of subsolar Mg abundance ratios, with a spread of about 1.4 dex in [Al/Fe]. The main result from the improved statistics of our sample is that the distribution of stars is not continuous along the anticorrelation as they are neatly clustered into three distinct clumps each with different chemical composition. One group (P) shows the primordial composition of field stars of similar metallicity, and the other two (I and E) have increasing abundances of Al and decreasing abundances of Mg. The fraction of stars we found in the three components (P: 68%, I: 19%, E: 13%) is in excellent agreement with the number ratios computed for the three distinct main sequences in NGC 2808: for the first time there is a clear correspondence between discrete photometric sequences of dwarfs and distinct groups of gi...
Cuntz, M; Schroeder, K -P; Bounama, C; Franck, S
2011-01-01
In a previous study published in Astrobiology, we focused on the evolution of habitability of a 10 M_E super-Earth planet orbiting a star akin to the Sun. This study was based on a concept of planetary habitability in accordance to the integrated system approach that describes the photosynthetic biomass production taking into account a variety of climatological, biogeochemical, and geodynamical processes. In the present study, we pursue a significant augmentation of our previous work by considering stars with zero-age main sequence masses between 0.5 and 2.0 M_sun with special emphasis on models of 0.8, 0.9, 1.2 and 1.5 M_sun. Our models of habitability consider again geodynamical processes during the main-sequence stage of these stars as well as during their red giant branch evolution. Pertaining to the different types of stars, we identify so-called photosynthesis-sustaining habitable zones (pHZ) determined by the limits of biological productivity on the planetary surface. We obtain various sets of solution...
Bastian, Nate
2015-01-01
A recent surprise in stellar cluster research, made possible through the precision of Hubble Space Telescope photometry, was that some intermediate age (1-2 Gyr) clusters in the Large and Small Magellanic Clouds have main sequence turn-off (MSTO) widths that are significantly broader than would be expected for a simple stellar population (SSP). One interpretation of these extended MSTOs (eMSTOs) is that age spreads of the order of ~500 Myr exist within the clusters, radically redefining our view of stellar clusters, which are traditionally thought of as single age, single metallicity stellar populations. Here we test this interpretation by studying other regions of the CMD that should also be affected by such large age spreads, namely the width of the sub-giant branch (SGB) and the red clump (RC). We study two massive clusters in the LMC that display the eMSTO phenomenon (NGC 1806 & NGC 1846) and show that both have SGB and RC morphologies that are in conflict with expectations if large age spreads exist ...
Monelli, M; Fabrizio, M; Bono, G; Stetson, P B; Walker, A R; Cassisi, S; Gallart, C; Nonino, M; Aparicio, A; Buonanno, R; Dall'Ora, M; Ferraro, I; Iannicola, G; Pulone, L; Thévenin, F
2014-01-01
We present an analysis of photometric and spectroscopic data of the Carina dSph galaxy, testing a new approach similar to that used to disentangle multiple populations in Galactic globular clusters (GCs). We show that a proper colour combination is able to separate a significant fraction of the red giant branch (RGB) of the two main Carina populations (the old one, \\sim 12 Gyr, and the intermediate-age one, 4-8 Gyr). In particular, the c_UBI=(U-B)-(B-I) pseudo-colour allows us to follow the RGB of both populations along a relevant portion of the RGB. We find that the oldest stars have more negative c_UBI pseudo-colour than intermediate-age ones. We correlate the pseudo-colour of RGB stars with their chemical properties, finding a significant trend between the iron content and the c_UBI. Stars belonging to the old population are systematically more metal poor ([Fe/H]=-2.32\\pm0.08 dex) than the intermediate-age ones ([Fe/H]=-1.82\\pm0.03 dex). This gives solid evidence on the chemical evolution history of this g...
Chaplin, W J; Davies, G R; Campante, T L; Handberg, R; Miglio, A; Basu, S
2014-01-01
We consider the prospects for detecting solar-like oscillations in the "super-Nyquist" regime of long-cadence (LC) Kepler photometry, i.e., above the associated Nyquist frequency of approximately 283 {\\mu}Hz. Targets of interest are cool, evolved subgiants and stars lying at the base of the red-giant branch. These stars would ordinarily be studied using the short-cadence (SC) data, since the associated SC Nyquist frequency lies well above the frequencies of the detectable oscillations. However, the number of available SC target slots is quite limited. This imposes a severe restriction on the size of the ensemble available for SC asteroseismic study.We find that archival Kepler LC data from the nominal Mission may be utilized for asteroseismic studies of targets whose dominant oscillation frequencies lie as high as approximately 500 {\\mu}Hz, i.e., about 1.75- times the LC Nyquist frequency. The frequency detection threshold for the shorter-duration science campaigns of the re-purposed Kepler Mission, K2, is lo...
Dettmann, Carl P.
2002-01-01
Recent advances in the periodic orbit theory of stochastically perturbed systems have permitted a calculation of the escape rate of a noisy chaotic map to order 64 in the noise strength. Comparison with the usual asymptotic expansions obtained from integrals and with a previous calculation of the electrostatic potential of exactly selfsimilar fractal charge distributions, suggests a remarkably accurate form for the late terms in the expansion, with parameters determined independently from the...
Spectroscopy of Six Red Giants in the Draco Dwarf Spheroidal Galaxy
Smith, Graeme H.; Siegel, Michael H.; Shetrone, Matthew D.; Winnick, Rebeccah
2006-10-01
Keck Observatory LRIS-B (Low Resolution Imaging Spectrometer) spectra are reported for six red giant stars in the Draco dwarf spheroidal galaxy and several comparison giants in the globular cluster M13. Indexes that quantify the strengths of the Ca II H and K lines, the λ3883 and λ4215 CN bands, and the λ4300 G band have been measured. These data confirm evidence of metallicity inhomogeneity within Draco obtained by previous authors. The four brightest giants in the sample have absolute magnitudes in the range -2.6intermediate-mass asymptotic giant branch stars to enrich the interstellar medium while star formation was still occurring. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
Energy Technology Data Exchange (ETDEWEB)
Monelli, M.; Milone, A. P.; Gallart, C.; Aparicio, A. [Instituto de Astrofísica de Canarias, Calle Via Lactea s/n, E-38205 La Laguna, Tenerife (Spain); Fabrizio, M.; Cassisi, S.; Buonanno, R. [Istituto Nazionale di Astrofisica-Osservatorio Astronomico Collurania, Via M. Maggini, I-64100 Teramo (Italy); Bono, G. [Dipartimento di Fisica, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Rome (Italy); Stetson, P. B. [Dominion Astrophysical Observatory, NRC-Herzberg, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Walker, A. R. [Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena (Chile); Nonino, M. [Istituto Nazionale di Astrofisica-Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, I-40131 Trieste (Italy); Dall' Ora, M. [INAF—Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, I-80131 Napoli (Italy); Ferraro, I.; Iannicola, G.; Pulone, L. [Istituto Nazionale di Astrofisica-Osservatorio Astronomico di Roma, Via Frascati 33, Monte Porzio Catone, I-00044 Rome (Italy); Thévenin, F., E-mail: monelli@iac.es [Université de Nice Sophia-antipolis, CNRS, Observatoire de la Côte d' Azur, Laboratoire Lagrange, BP 4229, F-06304 Nice (France)
2014-12-01
We present an analysis of photometric and spectroscopic data of the Carina dSph galaxy, testing a new approach similar to that used to disentangle multiple populations in Galactic globular clusters (GCs). We show that a proper color combination is able to separate a significant fraction of the red giant branch (RGB) of the two main Carina populations (the old one, ∼12 Gyr, and the intermediate-age one, 4-8 Gyr). In particular, the c {sub U,} {sub B,} {sub I} = (U – B) – (B – I) pseudo-color allows us to follow the RGB of both populations along a relevant portion of the RGB. We find that the oldest stars have a more negative c {sub U,} {sub B,} {sub I} pseudo-color than intermediate-age ones. We correlate the pseudo-color of RGB stars with their chemical properties, finding a significant trend between the iron content and the c {sub U,} {sub B,} {sub I}. Stars belonging to the old population are systematically more metal-poor ([Fe/H] =–2.32 ± 0.08 dex) than the intermediate-age ones ([Fe/H] =–1.82 ± 0.03 dex). This gives solid evidence of the chemical evolution history of this galaxy, and we have a new diagnostic that can allow us to break the age-metallicity degeneracy of H-burning advanced evolutionary phases. We compared the distribution of stars in the c {sub U,} {sub B,} {sub I} plane with theoretical isochrones, finding that no satisfactory agreement can be reached with models developed in a theoretical framework based on standard heavy element distributions. Finally, we discuss possible systematic differences when compared with multiple populations in GCs.
International Nuclear Information System (INIS)
In this paper, we discuss the properties of color-magnitude diagrams, age, metallicity, and radial velocities of eight massive Large Magellanic Cloud (LMC) clusters using data taken from the FORS2 multiobject spectrograph at the 8.2 m Very Large Telescope/Unit Telescope 1. The strong near-infrared Ca II triplet lines of red giant branch stars obtained from the high signal-to-noise ratio spectra are used to determine the metallicity and radial velocity of cluster members. We report for the first time spectroscopically determined metallicity values for four clusters based on the mean [Fe/H] value of ∼10 cluster members each. We found two concentrations in the distribution of ages of the target clusters. Six have ages between 0.8 Gyr and 2.2 Gyr and the other two, NGC 1754 and NGC 1786, are very old. The metallicity of the six intermediate-age clusters, with a mean age of 1.5 Gyr, is -0.49 with a scatter of only 0.04. This tight distribution suggests that a close encounter between the LMC and Small Magellanic Cloud may have caused not only the restart of cluster formation in the LMC but also the generation of the central bar. The metallicity for the two old clusters is similar to that of the other old, metal-poor LMC clusters. We find that the LMC cluster system exhibits disk-like rotation with no clusters appearing to have halo kinematics and there is no evidence of a metallicity gradient in the LMC, in contrast with the stellar population of the Milky Way and M33, where the metallicity decreases as galactocentric distance increases. The LMC's stellar bar may be the factor responsible for the dilution of any kind of gradient in the LMC.
International Nuclear Information System (INIS)
We present an analysis of photometric and spectroscopic data of the Carina dSph galaxy, testing a new approach similar to that used to disentangle multiple populations in Galactic globular clusters (GCs). We show that a proper color combination is able to separate a significant fraction of the red giant branch (RGB) of the two main Carina populations (the old one, ∼12 Gyr, and the intermediate-age one, 4-8 Gyr). In particular, the c U, B, I = (U – B) – (B – I) pseudo-color allows us to follow the RGB of both populations along a relevant portion of the RGB. We find that the oldest stars have a more negative c U, B, I pseudo-color than intermediate-age ones. We correlate the pseudo-color of RGB stars with their chemical properties, finding a significant trend between the iron content and the c U, B, I. Stars belonging to the old population are systematically more metal-poor ([Fe/H] =–2.32 ± 0.08 dex) than the intermediate-age ones ([Fe/H] =–1.82 ± 0.03 dex). This gives solid evidence of the chemical evolution history of this galaxy, and we have a new diagnostic that can allow us to break the age-metallicity degeneracy of H-burning advanced evolutionary phases. We compared the distribution of stars in the c U, B, I plane with theoretical isochrones, finding that no satisfactory agreement can be reached with models developed in a theoretical framework based on standard heavy element distributions. Finally, we discuss possible systematic differences when compared with multiple populations in GCs.
METAL-POOR LITHIUM-RICH GIANTS IN THE RADIAL VELOCITY EXPERIMENT SURVEY
Energy Technology Data Exchange (ETDEWEB)
Ruchti, Gregory R.; Fulbright, Jon P.; Wyse, Rosemary F. G. [Bloomberg Center for Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Gilmore, Gerard F. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Grebel, Eva K. [Astronomisches Rechen-Institut, Zentrum fuer Astronomie der Universitaet Heidelberg, Moenchhofstr. 12-14, D-69120 Heidelberg (Germany); Bienayme, Olivier; Siebert, Arnaud [Observatoire de Strasbourg, 11 Rue de l' Universite, F-67000 Strasbourg (France); Bland-Hawthorn, Joss [Sydney Institute for Astronomy, School of Physics A28, University of Sydney, NSW 2006 (Australia); Freeman, Ken C. [RSAA Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Creek, Canberra, ACT 2611 (Australia); Gibson, Brad K. [Jeremiah Horrocks Institute for Astrophysics and Super-computing, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Munari, Ulisse [INAF Osservatorio Astronomico di Padova, Via dell' Osservatorio 8, I-36012 Asiago (Italy); Navarro, Julio F. [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Station CSC, Victoria, BC V8W 3P6 (Canada); Parker, Quentin A.; Watson, Fred G. [Australian Astronomical Observatory, Coonabarabran, NSW 2357 (Australia); Reid, Warren [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Seabroke, George M. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking RH5 6NT (United Kingdom); Siviero, Alessandro [Department of Astronomy, Padova University, Vicolo dell' Osservatorio 2, I-35122 Padova (Italy); Steinmetz, Matthias; Williams, Mary [Leibniz-Institut fuer Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Zwitter, Tomaz, E-mail: gruchti@mpa-garching.mpg.de [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SK-1000 Ljubljana (Slovenia)
2011-12-20
We report the discovery of eight lithium-rich field giants found in a high-resolution spectroscopic sample of over 700 metal-poor stars ([Fe/H] < -0.5) selected from the Radial Velocity Experiment survey. The majority of the Li-rich giants in our sample are very metal-poor ([Fe/H] {approx}< -1.9), and have a Li abundance (in the form of {sup 7}Li), A(Li) = log (n(Li)/n(H)) + 12, between 2.30 and 3.63, well above the typical upper red giant branch (RGB) limit, A(Li) < 0.5, while two stars, with A(Li) {approx} 1.7-1.8, show similar lithium abundances to normal giants at the same gravity. We further included two metal-poor, Li-rich globular cluster giants in our sample, namely the previously discovered M3-IV101 and newly discovered (in this work) M68-A96. This comprises the largest sample of metal-poor Li-rich giants to date. We performed a detailed abundance analysis of all stars, finding that the majority of our sample stars have elemental abundances similar to that of Li-normal halo giants. Although the evolutionary phase of each Li-rich giant cannot be definitively determined, the Li-rich phase is likely connected to extra mixing at the RGB bump or early asymptotic giant branch that triggers cool bottom processing in which the bottom of the outer convective envelope is connected to the H-burning shell in the star. The surface of a star becomes Li-enhanced as {sup 7}Be (which burns to {sup 7}Li) is transported to the stellar surface via the Cameron-Fowler mechanism. We discuss and discriminate among several models for the extra mixing that can cause Li production, given the detailed abundances of the Li-rich giants in our sample.
Period spacings in red giants. II. Automated measurement
Vrard, M.; Mosser, B.; Samadi, R.
2016-04-01
Context. The space missions CoRoT and Kepler have provided photometric data of unprecedented quality for asteroseismology. A very rich oscillation pattern has been discovered for red giants, including mixed modes that are used to decipher the red giants' interiors. They carry information on the radiative core of red giant stars and bring strong constraints on stellar evolution. Aims: Since more than 15 000 red giant light curves have been observed by Kepler, we have developed a simple and efficient method for automatically characterizing the mixed-mode pattern and measuring the asymptotic period spacing. Methods: With the asymptotic expansion of the mixed modes, we have revealed the regularity of the gravity-mode pattern. The stretched periods were used to study the evenly space periods with a Fourier analysis and to measure the gravity period spacing, even when rotation severely complicates the oscillation spectra. Results: We automatically measured gravity period spacing for more than 6100 Kepler red giants. The results confirm and extend previous measurements made by semi-automated methods. We also unveil the mass and metallicity dependence of the relation between the frequency spacings and the period spacings for stars on the red giant branch. Conclusions: The delivery of thousands of period spacings combined with all other seismic and non-seismic information provides a new basis for detailed ensemble asteroseismology. Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A87
Carbon in Red Giants in Globular Clusters and Dwarf Spheroidal Galaxies
Kirby, Evan N; Zhang, Andrew J; Deng, Michelle; Cohen, Judith G; Guhathakurta, Puragra; Shetrone, Matthew D; Lee, Young Sun; Rizzi, Luca
2015-01-01
We present carbon abundances of red giants in Milky Way globular clusters and dwarf spheroidal galaxies (dSphs). Our sample includes measurements of carbon abundances for 154 giants in the clusters NGC 2419, M68, and M15 and 398 giants in the dSphs Sculptor, Fornax, Ursa Minor, and Draco. This sample doubles the number of dSph stars with measurements of [C/Fe]. The [C/Fe] ratio in the clusters decreases with increasing luminosity above log(L/L_sun) ~= 1.6, which can be explained by deep mixing in evolved giants. The same decrease is observed in dSphs, but the initial [C/Fe] of the dSph giants is not uniform. Stars in dSphs at lower metallicities have larger [C/Fe] ratios. We hypothesize that [C/Fe] (corrected to the initial carbon abundance) declines with increasing [Fe/H] due to the metallicity dependence of the carbon yield of asymptotic giant branch stars and due to the increasing importance of Type Ia supernovae at higher metallicities. We also identified 11 very carbon-rich giants (8 previously known) in...
Thermohaline mixing and the photospheric composition of low-mass giant stars
Wachlin, F C; Althaus, L G
2011-01-01
Aims. We test by means of numerical simulations and different recipes the efficiency of thermohaline mixing as a process to alter the surface abundances in low-mass giant stars. Methods. We compute full evolutionary sequences of red giant branch stars close to the luminosity bump by including state of the art composition transport prescriptions for the thermohaline mixing regimes. In particular we adopt a self-consistent double-diffusive convection theory, that allows to handle the instabilities that arise when thermal and composition gradients compete against each other, and a very recent empirically motivated and parameter free asymptotic scaling law for thermohaline composition transport. Results. In agreement with previous works, we find that during the red giant stage, a thermohaline instability sets in shortly after the hydrogen burning shell (HBS) encounters the chemical discontinuity left behind by the first dredge-up. We also find that the thermohaline unstable region, initially appearing at the exte...
The CH(G) Index as a New Criterion for Selecting Red Giant Stars
Chen, Y Q; Carrell, K; Zhao, J K; Tan, K F
2013-01-01
We have measured the CH G band (CH(G)) index for evolved stars in the globular cluster M3 based on the Sloan Digital Sky Survey (SDSS) spectroscopic survey. It is found that there is a useful way to select red giant branch (RGB) stars from the contamination of other evolved stars such as asymptotic giant branch (AGB) and red horizontal branch (RHB) stars by using the CH(G) index versus (g-r) diagram if the metallicity is known from the spectra. When this diagram is applied to field giant stars with similar metallicity, we establish a calibration of CH(G)=1.625(g-r)-1.174(g-r)^2-0.934. This method is confirmed by stars with [Fe/H]~2.3 where spectra of member stars in globular clusters M15 and M92 are available in the SDSS database. We thus extend this kind of calibration to every individual metallicity bin ranging from [Fe/H] ~ -3.0 to [Fe/H] ~ 0.0 by using field red giant stars with 0.4 < (g-r) < 1.0. The metallicity-dependent calibrations give CH(G) =1.625(g-r)-1.174(g-r)^2+ 0.060[Fe/H]-0.830 for -3.0 ...
Radial velocity curves of ellipsoidal red giant binaries in the Large Magellanic Cloud
Energy Technology Data Exchange (ETDEWEB)
Nie, J. D. [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Wood, P. R., E-mail: jdnie@bao.ac.cn, E-mail: peter.wood@anu.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia)
2014-12-01
Ellipsoidal red giant binaries are close binary systems where an unseen, relatively close companion distorts the red giant, leading to light variations as the red giant moves around its orbit. These binaries are likely to be the immediate evolutionary precursors of close binary planetary nebula and post-asymptotic giant branch and post-red giant branch stars. Due to the MACHO and OGLE photometric monitoring projects, the light variability nature of these ellipsoidal variables has been well studied. However, due to the lack of radial velocity curves, the nature of their masses, separations, and other orbital details has so far remained largely unknown. In order to improve this situation, we have carried out spectral monitoring observations of a large sample of 80 ellipsoidal variables in the Large Magellanic Cloud and we have derived radial velocity curves. At least 12 radial velocity points with good quality were obtained for most of the ellipsoidal variables. The radial velocity data are provided with this paper. Combining the photometric and radial velocity data, we present some statistical results related to the binary properties of these ellipsoidal variables.
Asymptotically Safe Dark Matter
DEFF Research Database (Denmark)
Sannino, Francesco; Shoemaker, Ian M.
2015-01-01
We introduce a new paradigm for dark matter (DM) interactions in which the interaction strength is asymptotically safe. In models of this type, the coupling strength is small at low energies but increases at higher energies, and asymptotically approaches a finite constant value. The resulting...... searches are the primary ways to constrain or discover asymptotically safe dark matter....
Can Life develop in the expanded habitable zones around Red Giant Stars?
López, B; Danchi, W C; Lopez, Bruno; Schneider, Jean; Danchi, William C.
2005-01-01
We present some new ideas about the possibility of life developing around sub-giant and red giant stars. Our study concerns the temporal evolution of the habitable zone. The distance between the star and the habitable zone, as well as its width, increases with time as a consequence of stellar evolution. The habitable zone moves outward after the star leaves the main sequence, sweeping a wider range of distances from the star until the star reaches the tip of the asymptotic giant branch. If life could form and evolve over time intervals from $5 \\times 10^8$ to $10^9$ years, then there could be habitable planets with life around red giant stars. For a 1 M$_{\\odot}$ star at the first stages of its post main-sequence evolution, the temporal transit of the habitable zone is estimated to be of several 10$^9$ years at 2 AU and around 10$^8$ years at 9 AU. Under these circumstances life could develop at distances in the range 2-9 AU in the environment of sub-giant or giant stars and in the far distant future in the e...
Superstars and Giant Gravitons
Myers, R C; Myers, Robert C.; Tafjord, Oyvind
2001-01-01
We examine a family of BPS solutions of ten-dimensional type IIb supergravity. These solutions asymptotically approach AdS_5 X S^5 and carry internal `angular' momentum on the five-sphere. While a naked singularity appears at the center of the anti-de Sitter space, we show that it has a natural physical interpretation in terms of a collection of giant gravitons. We calculate the distribution of giant gravitons from the dipole field induced in the Ramond-Ramond five-form, and show that these sources account for the entire internal momentum carried by the BPS solutions.
Asymptotics and Borel summability
Costin, Ovidiu
2008-01-01
Incorporating substantial developments from the last thirty years into one resource, Asymptotics and Borel Summability provides a self-contained introduction to asymptotic analysis with special emphasis on topics not covered in traditional asymptotics books. The author explains basic ideas, concepts, and methods of generalized Borel summability, transseries, and exponential asymptotics. He provides complete mathematical rigor while supplementing it with heuristic material and examples, so that some proofs may be omitted by applications-oriented readers.To give a sense of how new methods are us
Asymptotics of Random Contractions
Hashorva, Enkelejd; Tang, Qihe
2010-01-01
In this paper we discuss the asymptotic behaviour of random contractions $X=RS$, where $R$, with distribution function $F$, is a positive random variable independent of $S\\in (0,1)$. Random contractions appear naturally in insurance and finance. Our principal contribution is the derivation of the tail asymptotics of $X$ assuming that $F$ is in the max-domain of attraction of an extreme value distribution and the distribution function of $S$ satisfies a regular variation property. We apply our result to derive the asymptotics of the probability of ruin for a particular discrete-time risk model. Further we quantify in our asymptotic setting the effect of the random scaling on the Conditional Tail Expectations, risk aggregation, and derive the joint asymptotic distribution of linear combinations of random contractions.
Origlia, L.; Ferraro, F. R.; Fabbri, S.; Fusi Pecci, F.; Dalessandro, E.; Rich, R. M.; Valenti, E.
2014-04-01
Aims: The main aim of the present work is to derive an empirical mass-loss (ML) law for Population II stars in first and second ascent red giant branches. Methods: We used the Spitzer InfraRed Array Camera (IRAC) photometry obtained in the 3.6-8 μm range of a carefully chosen sample of 15 Galactic globular clusters spanning the entire metallicity range and sampling the vast zoology of horizontal branch (HB) morphologies. We complemented the IRAC photometry with near-infrared data to build suitable color-magnitude and color-color diagrams and identify mass-losing giant stars. Results: We find that while the majority of stars show colors typical of cool giants, some stars show an excess of mid-infrared light that is larger than expected from their photospheric emission and that is plausibly due to dust formation in mass flowing from them. For these stars, we estimate dust and total (gas + dust) ML rates and timescales. We finally calibrate an empirical ML law for Population II red and asymptotic giant branch stars with varying metallicity. We find that at a given red giant branch luminosity only a fraction of the stars are losing mass. From this, we conclude that ML is episodic and is active only a fraction of the time, which we define as the duty cycle. The fraction of mass-losing stars increases by increasing the stellar luminosity and metallicity. The ML rate, as estimated from reasonable assumptions for the gas-to-dust ratio and expansion velocity, depends on metallicity and slowly increases with decreasing metallicity. In contrast, the duty cycle increases with increasing metallicity, with the net result that total ML increases moderately with increasing metallicity, about 0.1 M⊙ every dex in [Fe/H]. For Population II asymptotic giant branch stars, we estimate a total ML of ≤0.1 M⊙, nearly constant with varying metallicity. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory
ASYMPTOTIC QUANTIZATION OF PROBABILITY DISTRIBUTIONS
Institute of Scientific and Technical Information of China (English)
Klaus P(o)tzelberger
2003-01-01
We give a brief introduction to results on the asymptotics of quantization errors.The topics discussed include the quantization dimension,asymptotic distributions of sets of prototypes,asymptotically optimal quantizations,approximations and random quantizations.
Energy Technology Data Exchange (ETDEWEB)
Smith, Verne V.; Cunha, Katia [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Shetrone, Matthew D. [Department of Astronomy and McDonald Observatory, University of Texas, Austin, TX 78712 (United States); Meszaros, Szabolcs; Allende Prieto, Carlos [Instituto d' Astrofisica de Canarias, E-38205, La Laguna, Tenerife (Spain); Bizyaev, Dmitry [Apache Point Observatory, Sunspot, NM 88349 (United States); Garcia Perez, Ana; Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Schiavon, Ricardo [Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5UX (United Kingdom); Holtzman, Jon [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Johnson, Jennifer A., E-mail: vsmith@noao.edu [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States)
2013-03-01
High-resolution H-band spectra of five bright field K, M, and MS giants, obtained from the archives of the Kitt Peak National Observatory Fourier transform spectrometer, are analyzed to determine chemical abundances of 16 elements. The abundances were derived via spectrum synthesis using the detailed linelist prepared for the Sloan Digital Sky Survey III Apache Point Galactic Evolution Experiment (APOGEE), which is a high-resolution near-infrared spectroscopic survey to derive detailed chemical abundance distributions and precise radial velocities for 100,000 red giants sampling all Galactic stellar populations. The red giant sample studied here was chosen to probe which chemical elements can be derived reliably from the H-band APOGEE spectral region. These red giants consist of two K-giants ({alpha} Boo and {mu} Leo), two M-giants ({beta} And and {delta} Oph), and one thermally pulsing asymptotic giant branch (TP-AGB) star of spectral type MS (HD 199799). Measured chemical abundances include the cosmochemically important isotopes {sup 12}C, {sup 13}C, {sup 14}N, and {sup 16}O, along with Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. The K and M giants exhibit the abundance signature of the first dredge-up of CN-cycle material, while the TP-AGB star shows clear evidence of the addition of {sup 12}C synthesized during {sup 4}He-burning thermal pulses and subsequent third dredge-up. A comparison of the abundances derived here with published values for these stars reveals consistent results to {approx}0.1 dex. The APOGEE spectral region and linelist is thus well suited for probing both Galactic chemical evolution, as well as internal nucleosynthesis and mixing in populations of red giants via high-resolution spectroscopy.
Weakly asymptotically hyperbolic manifolds
Allen, Paul T; Lee, John M; Allen, Iva Stavrov
2015-01-01
We introduce a class of "weakly asymptotically hyperbolic" geometries whose sectional curvatures tend to $-1$ and are $C^0$, but are not necessarily $C^1$, conformally compact. We subsequently investigate the rate at which curvature invariants decay at infinity, identifying a conformally invariant tensor which serves as an obstruction to "higher order decay" of the Riemann curvature operator. Finally, we establish Fredholm results for geometric elliptic operators, extending the work of Rafe Mazzeo and John M. Lee to this setting. As an application, we show that any weakly asymptotically hyperbolic metric is conformally related to a weakly asymptotically hyperbolic metric of constant negative curvature.
The discovery of a planetary candidate around the evolved low-mass Kepler giant star HD 175370 ★
Hrudková, M.; Hatzes, A.; Karjalainen, R.; Lehmann, H.; Hekker, S.; Hartmann, M.; Tkachenko, A.; Prins, S.; Van Winckel, H.; De Nutte, R.; Dumortier, L.; Frémat, Y.; Hensberge, H.; Jorissen, A.; Lampens, P.; Laverick, M.; Lombaert, R.; Pápics, P. I.; Raskin, G.; Sódor, Á.; Thoul, A.; Van Eck, S.; Waelkens, C.
2016-09-01
We report on the discovery of a planetary companion candidate with a minimum mass M sin i = 4.6 ± 1.0 MJupiter orbiting the K2 III giant star HD 175370 (KIC 007940959). This star was a target in our program to search for planets around a sample of 95 giant stars observed with Kepler. This detection was made possible using precise stellar radial velocity measurements of HD 175370 taken over five years and four months using the coudé echelle spectrograph of the 2-m Alfred Jensch Telescope and the fibre-fed echelle spectrograph HERMES of the 1.2-m Mercator Telescope. Our radial velocity measurements reveal a periodic (349.5 ± 4.5 days) variation with a semi-amplitude K = 133 ± 25 ms-1, superimposed on a long-term trend. A low-mass stellar companion with an orbital period of ˜88 years in a highly eccentric orbit and a planet in a Keplerian orbit with an eccentricity e = 0.22 are the most plausible explanation of the radial velocity variations. However, we cannot exclude the existence of stellar envelope pulsations as a cause for the low-amplitude radial velocity variations and only future continued monitoring of this system may answer this uncertainty. From Kepler photometry we find that HD 175370 is most likely a low-mass red-giant branch or asymptotic-giant branch star.
Quasi-extended asymptotic functions
International Nuclear Information System (INIS)
The class F of ''quasi-extended asymptotic functions'' is introduced. It contains all extended asymptotic functions as well as some new asymptotic functions very similar to the Schwartz distributions. On the other hand, every two quasiextended asymptotic functions can be multiplied as opposed to the Schwartz distributions; in particular, the square delta2 of an asymptotic function delta similar to Dirac's delta-function, is constructed as an example
Selected asymptotic methods with applications to electromagnetics and antennas
Fikioris, George; Bakas, Odysseas N
2013-01-01
This book describes and illustrates the application of several asymptotic methods that have proved useful in the authors' research in electromagnetics and antennas. We first define asymptotic approximations and expansions and explain these concepts in detail. We then develop certain prerequisites from complex analysis such as power series, multivalued functions (including the concepts of branch points and branch cuts), and the all-important gamma function. Of particular importance is the idea of analytic continuation (of functions of a single complex variable); our discussions here include som
Thermohaline mixing and the photospheric composition of low-mass giant stars
Wachlin, F. C.; Miller Bertolami, M. M.; Althaus, L. G.
2011-09-01
Aims: By means of numerical simulations and different recipes, we test the efficiency of thermohaline mixing as a process to alter the surface abundances in low-mass giant stars. Methods: We compute full evolutionary sequences of red giant branch stars close to the luminosity bump by including state-of-the-art composition transport prescriptions for the thermohaline mixing regimes. In particular, we adopt a self-consistent double-diffusive convection theory that allows handling both instabilities that arise when thermal and composition gradients compete against each other and a very recent empirically motivated and parameter-free asymptotic scaling law for thermohaline composition transport. Results: In agreement with previous works, we find that, during the red giant stage, a thermohaline instability sets in shortly after the hydrogen burning shell (HBS) encounters the chemical discontinuity left behind by the first dredge-up. We also find that the thermohaline unstable region, which initially appears on the exterior wing of the HBS, is unable to reach the outer convective envelope, with the consequence that no mixing of elements occurs that produces a noncanonical modification of the stellar surface abundances. Also in agreement with previous works, we find that artificially increasing the mixing efficiency of thermohaline regions makes it possible to connect both unstable regions, thus affecting the photospheric composition. However, we find that to reproduce the observed abundances of red giant branch stars close to the luminosity bump, thermohaline mixing efficiency has to be artificially increased by about four orders of magnitude from what is predicted by recent 3D numerical simulations of thermohaline convection close to astrophysical environments. From this we conclude that the chemical abundance anomalies of red giant stars cannot be explained on the basis of thermohaline mixing alone.
Puschnigg, Michael
1996-01-01
The aim of cyclic cohomology theories is the approximation of K-theory by cohomology theories defined by natural chain complexes. The basic example is the approximation of topological K-theory by de Rham cohomology via the classical Chern character. A cyclic cohomology theory for operator algebras is developed in the book, based on Connes' work on noncommutative geometry. Asymptotic cyclic cohomology faithfully reflects the basic properties and features of operator K-theory. It thus becomes a natural target for a Chern character. The central result of the book is a general Grothendieck-Riemann-Roch theorem in noncommutative geometry with values in asymptotic cyclic homology. Besides this, the book contains numerous examples and calculations of asymptotic cyclic cohomology groups.
tuoc, Trinh Khanh
2010-01-01
The Virk asymptote is shown to be similar in nature to the Karman buffer layer profile and does not represent a new log-law with a modified mixing-length. It is simply part of the wall layer velocity profile but is extended because of the increase in wall layer thickness in drag reduction flows. The friction factors at the maximum drag reduction asymptote correspond to velocity profiles consisting of a wall layer and a law of the wake sub-region. Maximum drag reduction results in the suppression of the law of the wake and full relaminarisation of the flow.
Asymptotic freedom, asymptotic flatness and cosmology
Kiritsis, Elias
2013-01-01
Holographic RG flows in some cases are known to be related to cosmological solutions. In this paper another example of such correspondence is provided. Holographic RG flows giving rise to asymptotically-free $\\beta$-functions have been analyzed in connection with holographic models of QCD. They are shown upon Wick rotation to provide a large class of inflationary models with logarithmically soft inflaton potentials. The scalar spectral index is universal and depends only on the number of e-foldings. The ratio of tensor to scalar power depends on the single extra real parameter that defines this class of models. The Starobinsky inflationary model as well as the recently proposed models of T-inflation are members of this class. The holographic setup gives a completely new (and contrasting) view to the stability and other problems of such inflationary models.
DEFF Research Database (Denmark)
Litim, Daniel F.; Sannino, Francesco
2014-01-01
We study the ultraviolet behaviour of four-dimensional quantum field theories involving non-abelian gauge fields, fermions and scalars in the Veneziano limit. In a regime where asymptotic freedom is lost, we explain how the three types of fields cooperate to develop fully interacting ultraviolet ...
On Asymptotically Orthonormal Sequences
Fricain, Emmanuel; Rupam, Rishika
2016-01-01
An asymptotically orthonormal sequence is a sequence which is 'nearly' orthonormal in the sense that it satisfies the Parseval equality up to two constants close to one. In this paper, we explore such sequences formed by normalized reproducing kernels of model spaces and de Branges Rovnyak spaces.
Cristallini, Achille
2016-07-01
A new and intriguing machine may be obtained replacing the moving pulley of a gun tackle with a fixed point in the rope. Its most important feature is the asymptotic efficiency. Here we obtain a satisfactory description of this machine by means of vector calculus and elementary trigonometry. The mathematical model has been compared with experimental data and briefly discussed.
Gehan, Charlotte; Michel, Eric
2016-01-01
Stellar oscillations give seismic information on the internal properties of stars. Red giants are targets of interest since they present mixed modes, which behave as pressure modes in the convective envelope and as gravity modes in the radiative core. Mixed modes thus directly probe red giant cores, and allow in particular the study of their mean core rotation. The high-quality data obtained by CoRoT and Kepler satellites represent an unprecedented perspective to obtain thousands of measurements of red giant core rotation, in order to improve our understanding of stellar physics in deep stellar interiors. We developed an automated method to obtain such core rotation measurements and validated it for stars on the red giant branch. In this work, we particularly focus on the specific application of this method to red giants having a rapid core rotation. They show complex spectra where it is tricky to disentangle rotational splittings from mixed-mode period spacings. We demonstrate that the method based on the id...
Optimistic Agents are Asymptotically Optimal
Sunehag, Peter; Hutter, Marcus
2012-01-01
We use optimism to introduce generic asymptotically optimal reinforcement learning agents. They achieve, with an arbitrary finite or compact class of environments, asymptotically optimal behavior. Furthermore, in the finite deterministic case we provide finite error bounds.
The Kr85 s-process Branching and the Mass of Carbon Stars
Abia, C; Gallino, R; Dominguez, I; Straniero, O; Isern, J
2001-01-01
We present new spectroscopic observations for a sample of C(N)-type red giants. These objects belong to the class of Asymptotic Giant Branch stars, experiencing thermal instabilities in the He-burning shell (thermal pulses). Mixing episodes called third dredge-up enrich the photosphere with newly synthesized C12 in the He-rich zone, and this is the source of the high observed ratio between carbon and oxygen (C/O > 1 by number). Our spectroscopic abundance estimates confirm that, in agreement with the general understanding of the late evolutionary stages of low and intermediate mass stars, carbon enrichment is accompanied by the appearance of s-process elements in the photosphere. We discuss the details of the observations and of the derived abundances, focusing in particular on rubidium, a neutron-density sensitive element, and on the s-elements Sr, Y and Zr belonging to the first s-peak. The critical reaction branching at Kr85, which determines the relative enrichment of the studied species, is discussed. Su...
Exploring masses and CNO surface abundances of red giant stars
Halabi, Ghina M
2015-01-01
A grid of evolutionary sequences of stars in the mass range $1.2$-$7$ M$_{\\odot}$, with solar-like initial composition is presented. We focus on this mass range in order to estimate the masses and calculate the CNO surface abundances of a sample of observed red giants. The stellar models are calculated from the zero-age main sequence till the early asymptotic giant branch (AGB) phase. Stars of M $\\leqslant$ $2.2$M$_{\\odot}$ are evolved through the core helium flash. In this work, an approach is adopted that improves the mass determination of an observed sample of 21 RGB and early AGB stars. This approach is based on comparing the observationally derived effective temperatures and absolute magnitudes with the calculated values based on our evolutionary tracks in the Hertzsprung-Russell diagram. A more reliable determination of the stellar masses is achieved by using evolutionary tracks extended to the range of observation. In addition, the predicted CNO surface abundances are compared to the observationally in...
Asymptotic Flatness in Rainbow Gravity
Hackett, Jonathan
2005-01-01
A construction of conformal infinity in null and spatial directions is constructed for the Rainbow-flat space-time corresponding to doubly special relativity. From this construction a definition of asymptotic DSRness is put forward which is compatible with the correspondence principle of Rainbow gravity. Furthermore a result equating asymptotically flat space-times with asymptotically DSR spacetimes is presented.
Asymptotically hyperbolic connections
Fine, Joel; Krasnov, Kirill; Scarinci, Carlos
2015-01-01
General Relativity in 4 dimensions can be equivalently described as a dynamical theory of SO(3)-connections rather than metrics. We introduce the notion of asymptotically hyperbolic connections, and work out an analog of the Fefferman-Graham expansion in the language of connections. As in the metric setup, one can solve the arising "evolution" equations order by order in the expansion in powers of the radial coordinate. The solution in the connection setting is arguably simpler, and very straightforward algebraic manipulations allow one to see how the obstruction appears at third order in the expansion. Another interesting feature of the connection formulation is that the "counter terms" required in the computation of the renormalised volume all combine into the Chern-Simons functional of the restriction of the connection to the boundary. As the Chern-Simons invariant is only defined modulo large gauge transformations, the requirement that the path integral over asymptotically hyperbolic connections is well-d...
Asymptotically hyperbolic connections
Fine, Joel; Herfray, Yannick; Krasnov, Kirill; Scarinci, Carlos
2016-09-01
General relativity in four-dimensions can be equivalently described as a dynamical theory of {SO}(3)˜ {SU}(2)-connections rather than metrics. We introduce the notion of asymptotically hyperbolic connections, and work out an analogue of the Fefferman-Graham expansion in the language of connections. As in the metric setup, one can solve the arising ‘evolution’ equations order by order in the expansion in powers of the radial coordinate. The solution in the connection setting is arguably simpler, and very straightforward algebraic manipulations allow one to see how the unconstrained by Einstein equations ‘stress-energy tensor’ appears at third order in the expansion. Another interesting feature of the connection formulation is that the ‘counter terms’ required in the computation of the renormalised volume all combine into the Chern-Simons functional of the restriction of the connection to the boundary. As the Chern-Simons invariant is only defined modulo large gauge transformations, the requirement that the path integral over asymptotically hyperbolic connections is well-defined requires the cosmological constant to be quantised. Finally, in the connection setting one can deform the 4D Einstein condition in an interesting way, and we show that asymptotically hyperbolic connection expansion is universal and valid for any of the deformed theories.
International Nuclear Information System (INIS)
When the Sun ascends the red giant branch (RGB), its luminosity will increase and all the planets will receive much greater irradiation than they do now. Jupiter, in particular, might end up more highly irradiated than the hot Neptune GJ 436b and, hence, could appropriately be termed a 'hot Jupiter'. When their stars go through the RGB or asymptotic giant branch stages, many of the currently known Jupiter-mass planets in several-AU orbits will receive levels of irradiation comparable to the hot Jupiters, which will transiently increase their atmospheric temperatures to ∼1000 K or more. Furthermore, massive planets around post-main-sequence stars could accrete a non-negligible amount of material from the enhanced stellar winds, thereby significantly altering their atmospheric chemistry as well as causing a significant accretion luminosity during the epochs of most intense stellar mass loss. Future generations of infrared observatories might be able to probe the thermal and chemical structure of such hot Jupiters' atmospheres. Finally, we argue that, unlike their main-sequence analogs (whose zonal winds are thought to be organized in only a few broad, planetary-scale jets), red-giant hot Jupiters should have multiple, narrow jets of zonal winds and efficient day-night redistribution.
The Horizontal Branch of the Sculptor Dwarf galaxy
Salaris, Maurizio; Tolstoy, Eline; Fiorentino, Giuliana; Cassisi, Santi
2013-01-01
We have performed the first detailed simulation of the horizontal branch of the Sculptor dwarf spheroidal galaxy by means of synthetic modelling techniques,taking consistently into account the star formation history and metallicity evolution as determined from the main sequence and red giant branch spectroscopic observations. The only free parameter in the whole analysis is the integrated mass loss of red giant branch stars. This is the first time that synthetic horizontal branch models, consistent with the complex star formation history of a galaxy, are calculated and matched to the observations. We find that the metallicity range covered by the star formation history, as constrained by observations, plus a simple mass loss law, enable us to cover both the full magnitude and colour range of HB stars. In addition the number count distribution along the observed horizontal branch, can be also reproduced, provided that the red giant branch mass loss is mildly metallicity dependent, with a very small dispersion ...
Ho, Pei-Ming
2016-01-01
Following earlier works on the KMY model of black-hole formation and evaporation, we construct the metric for a matter sphere in gravitational collapse, with the back-reaction of pre-Hawking radiation taken into consideration. The mass distribution and collapsing velocity of the matter sphere are allowed to have an arbitrary radial dependence. We find that a generic gravitational collapse asymptote to a universal configuration which resembles a black hole but without horizon. This approach clarifies several misunderstandings about black-hole formation and evaporation, and provides a new model for black-hole-like objects in the universe.
Chemical Abundances for 855 Giants in the Globular Cluster Omega Centauri (NGC 5139)
Johnson, Christian I
2010-01-01
We present elemental abundances for 855 red giant branch (RGB) stars in the globular cluster Omega Centauri (w Cen) from spectra obtained with the Blanco 4m telescope and Hydra multifiber spectrograph. The sample includes nearly all RGB stars brighter than V=13.5, and span's w Cen's full metallicity range. The heavy alpha elements (Si, Ca, and Ti) are generally enhanced by ~+0.3 dex, and exhibit a metallicity dependent morphology that may be attributed to mass and metallicity dependent Type II supernova (SN) yields. The heavy alpha and Fe-peak abundances suggest minimal contributions from Type Ia SNe. The light elements (O, Na, and Al) exhibit >0.5 dex abundance dispersions at all metallicities, and a majority of stars with [Fe/H]>-1.6 have [O/Fe], [Na/Fe], and [Al/Fe] abundances similar to those in monometallic globular clusters, as well as O-Na, O-Al anticorrelations and the Na-Al correlation in all but the most metal-rich stars. A combination of pollution from intermediate mass asymptotic giant branch (AGB...
Asteroseismology of Red Giants from the First Four Months of Kepler Data
DEFF Research Database (Denmark)
Huber, Daniel; Bedding, Timothy R.; Stello, Dennis;
2010-01-01
01/Δν have opposite trends as a function of Δν. The data show a narrowing of the l = 1 ridge toward lower νmax, in agreement with models predicting more efficient mode trapping in stars with higher luminosity. We investigate the offset epsilon in the asymptotic relation and find a clear correlation......We have studied solar-like oscillations in ~800 red giant stars using Kepler long-cadence photometry. The sample includes stars ranging in evolution from the lower part of the red giant branch to the helium main sequence. We investigate the relation between the large frequency separation (Δν......) and the frequency of maximum power (νmax) and show that it is different for red giants than for main-sequence stars, which is consistent with evolutionary models and scaling relations. The distributions of νmax and Δν are in qualitative agreement with a simple stellar population model of the Kepler field, including...
Exploring masses and CNO surface abundances of red giant stars
Halabi, Ghina M.; Eid, Mounib El
2015-08-01
A grid of evolutionary sequences of stars in the mass range 1.2-7M⊙, with solar-like initial composition is presented. We focus on this mass range in order to estimate the masses and calculate the CNO surface abundances of a sample of observed red giants. The stellar models are calculated from the zero-age main sequence till the early asymptotic giant branch (AGB) phase. Stars of M ≤ 2.2M⊙ are evolved through the core helium flash. In this work, an approach is adopted that improves the mass determination of an observed sample of 21 RGB and early AGB stars. This approach is based on comparing the observationally derived effective temperatures and absolute magnitudes with the calculated values based on our evolutionary tracks in the Hertzsprung-Russell diagram. A more reliable determination of the stellar masses is achieved by using evolutionary tracks extended to the range of observation. In addition, the predicted CNO surface abundances are compared to the observationally inferred values in order to show how far standard evolutionary calculation can be used to interpret available observations and to illustrate the role of convective mixing. We find that extra mixing beyond the convective boundary determined by the Schwarzschild criterion is needed to explain the observational oxygen isotopic ratios in low-mass stars. The effect of recent determinations of proton capture reactions and their uncertainties on the 16O/17O and 14N/15N ratios is also shown. It is found that the 14N( p, γ)15O reaction is important for predicting the 14N/15N ratio in red giants.
An HST/WFC3 view of stellar populations on the Horizontal Branch of NGC 2419
Di Criscienzo, M; Milone, A P; D'Antona, F; Ventura, P; Dotter, A; Brocato, E
2015-01-01
We use images acquired with the Hubble Space Telescope Wide Field Camera 3 and new models to probe the Horizontal Branch (HB) population of the We use images acquired with the Hubble Space Telescope Wide Field Camera 3 and new models to probe the horizontal branch (HB) population of the Galactic globular cluster (GC) NGC 2419. A detailed analysis of the composite HB highlights three populations:(1) the blue luminous HB, hosting standard helium stars (Y=0.25) with a very small spread of mass, (2) a small population of stars with intermediate helium content (0.26
Regular Variation and Smile Asymptotics
Benaim, Shalom; Friz, Peter
2006-01-01
We consider risk-neutral returns and show how their tail asymptotics translate directly to asymptotics of the implied volatility smile, thereby sharpening Roger Lee's celebrated moment formula. The theory of regular variation provides the ideal mathematical framework to formulate and prove such results. The practical value of our formulae comes from the vast literature on tail asymptotics and our conditions are often seen to be true by simple inspection of known results.
Kissin, Yevgeni; Thompson, Christopher
2015-01-01
The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5 and $5\\,M_\\odot$, taking into account mass loss on the giant branches. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag along with the exc...
Guillot, Tristan
2014-01-01
We review the interior structure and evolution of Jupiter, Saturn, Uranus and Neptune, and giant exoplanets with particular emphasis on constraining their global composition. Compared to the first edition of this review, we provide a new discussion of the atmospheric compositions of the solar system giant planets, we discuss the discovery of oscillations of Jupiter and Saturn, the significant improvements in our understanding of the behavior of material at high pressures and the consequences for interior and evolution models. We place the giant planets in our Solar System in context with the trends seen for exoplanets.
Biggins, J D
2010-01-01
Results on the behaviour of the rightmost particle in the $n$th generation in the branching random walk are reviewed and the phenomenon of anomalous spreading speeds, noticed recently in related deterministic models, is considered. The relationship between such results and certain coupled reaction-diffusion equations is indicated.
A random walk with a branching system in random environments
Institute of Scientific and Technical Information of China (English)
Ying-qiu LI; Xu LI; Quan-sheng LIU
2007-01-01
We consider a branching random walk in random environments, where the particles are reproduced as a branching process with a random environment (in time), and move independently as a random walk on Z with a random environment (in locations). We obtain the asymptotic properties on the position of the rightmost particle at time n, revealing a phase transition phenomenon of the system.
Asymptotically Safe Grand Unification
Bajc, Borut
2016-01-01
Phenomenologically appealing supersymmetric grand unified theories have large gauge representations and thus are not asymptotically free. Their ultraviolet validity is limited by the appearance of a Landau pole well before the Planck scale. One could hope that these theories save themselves, before the inclusion of gravity, by generating an interacting ultraviolet fixed point, similar to the one recently discovered in non-supersymmetric gauge-Yukawa theories. Employing a-maximization, a-theorem, unitarity bounds, as well as positivity of other central charges we nonperturbatively rule out this possibility for a broad class of prime candidates of phenomenologically relevant supersymmetric grand unified theories. We also uncover candidates passing these tests, which have either exotic matter or contain one field decoupled from the superpotential. The latter class of theories contains a model with the minimal matter content required by phenomenology.
On asymptotics for difference equations
Rafei, M.
2012-01-01
In this thesis a class of nonlinear oscillator equations is studied. Asymptotic approximations of first integrals for nonlinear difference equations are constructed by using the recently developed perturbation method based on invariance vectors. The asymptotic approximations of the solutions of the
Energy Technology Data Exchange (ETDEWEB)
Sheffield, Allyson A.; Johnston, Kathryn V. [Department of Astronomy, Columbia University, Mail Code 5246, New York, NY 10027 (United States); Majewski, Steven R.; Damke, Guillermo; Richardson, Whitney; Beaton, Rachael [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Rocha-Pinto, Helio J., E-mail: asheffield@astro.columbia.edu, E-mail: kvj@astro.columbia.edu, E-mail: srm4n@virginia.edu, E-mail: gjd3r@virginia.edu, E-mail: wwr2u@virginia.edu, E-mail: rlb9n@virginia.edu, E-mail: helio@astro.ufrj.br [Observatório do Valongo, Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil)
2014-09-20
As large-scale stellar surveys have become available over the past decade, the ability to detect and characterize substructures in the Galaxy has increased dramatically. These surveys have revealed the Triangulum-Andromeda (TriAnd) region to be rich with substructures in the distance range 20-30 kpc, and the relation of these features to each other, if any, remains unclear. An exploration using Two Micron All Sky Survey (2MASS) photometry reveals not only the faint sequence in M giants detected by Rocha-Pinto et al. spanning the range 100° < l < 160° and –50° < b < –15°, but, in addition, a second, brighter and more densely populated sequence. These sequences are likely associated with the distinct main sequences (MSs) discovered (and labeled TriAnd1 and TriAnd2) by Martin et al. in an optical survey in the direction of M31, where TriAnd2 is the optical counterpart of the fainter red giant branch (RGB)/asymptotic giant branch sequence of Rocha-Pinto et al. Here, the age, distance, and metallicity ranges for TriAnd1 and TriAnd2 are estimated by simultaneously fitting isochrones to the 2MASS RGB tracks and the optical MS/MS turn-off features. The two populations are clearly distinct in age and distance: the brighter sequence (TriAnd1) is younger (6-10 Gyr) and closer (distance of ∼15-21 kpc), whereas the fainter sequence (TriAnd2) is older (10-12 Gyr) and at an estimated distance of ∼24-32 kpc. A comparison with simulations demonstrates that the differences and similarities between TriAnd1 and TriAnd2 can simultaneously be explained if they represent debris originating from the disruption of the same dwarf galaxy, but torn off during two distinct pericentric passages.
The Horizontal Branch of the Sculptor Dwarf galaxy
Salaris, Maurizio; Boer, Thomas de; Tolstoy, Eline; Fiorentino, Giuliana; Cassisi, Santi
2013-01-01
We have performed the first detailed simulation of the horizontal branch of the Sculptor dwarf spheroidal galaxy by means of synthetic modelling techniques, taking consistently into account the star formation history and metallicity evolution as determined from the main sequence and red giant branch
Carbon in Red Giants in Globular Clusters and Dwarf Spheroidal Galaxies
Kirby, Evan N.; Guo, Michelle; Zhang, Andrew J.; Deng, Michelle; Cohen, Judith G.; Guhathakurta, Puragra; Shetrone, Matthew D.; Lee, Young Sun; Rizzi, Luca
2015-03-01
We present carbon abundances of red giants in Milky Way (MW) globular clusters and dwarf spheroidal galaxies (dSphs). Our sample includes measurements of carbon abundances for 154 giants in the clusters NGC 2419, M68, and M15 and 398 giants in the dSphs Sculptor, Fornax, Ursa Minor, and Draco. This sample doubles the number of dSph stars with measurements of [C/Fe]. The [C/Fe] ratio in the clusters decreases with increasing luminosity above log (L/{{L}})≃ 1.6, which can be explained by deep mixing in evolved giants. The same decrease is observed in dSphs, but the initial [C/Fe] of the dSph giants is not uniform. Stars in dSphs at lower metallicities have larger [C/Fe] ratios. We hypothesize that [C/Fe] (corrected to the initial carbon abundance) declines with increasing [Fe/H] due to the metallicity dependence of the carbon yield of asymptotic giant branch stars and due to the increasing importance of SNe Ia at higher metallicities. We also identified 11 very carbon-rich giants (eight previously known) in three dSphs. However, our selection biases preclude a detailed comparison to the carbon-enhanced fraction of the MW stellar halo. Nonetheless, the stars with [C/Fe]\\lt +1 in dSphs follow a different [C/Fe] track with [Fe/H] than the halo stars. Specifically, [C/Fe] in dSphs begins to decline at lower [Fe/H] than in the halo. The difference in the metallicity of the [C/Fe] “knee” adds to the evidence from [α/Fe] distributions that the progenitors of the halo had a shorter timescale for chemical enrichment than the surviving dSphs. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
A Note on Asymptotic Contractions
Directory of Open Access Journals (Sweden)
Marina Arav
2006-12-01
Full Text Available We provide sufficient conditions for the iterates of an asymptotic contraction on a complete metric space X to converge to its unique fixed point, uniformly on each bounded subset of X.
A Note on Asymptotic Contractions
Directory of Open Access Journals (Sweden)
Castillo Santos Francisco Eduardo
2007-01-01
Full Text Available We provide sufficient conditions for the iterates of an asymptotic contraction on a complete metric space to converge to its unique fixed point, uniformly on each bounded subset of .
Asymptotic algebra of quantum electrodynamics
Herdegen, Andrzej
2004-01-01
The Staruszkiewicz quantum model of the long-range structure in electrodynamics is reviewed in the form of a Weyl algebra. This is followed by a personal view on the asymptotic structure of quantum electrodynamics.
Asymptotic Dynamics of Monopole Walls
Cross, R
2015-01-01
We determine the asymptotic dynamics of the U(N) doubly periodic BPS monopole in Yang-Mills-Higgs theory, called a monopole wall, by exploring its Higgs curve using the Newton polytope and amoeba. In particular, we show that the monopole wall splits into subwalls when any of its moduli become large. The long-distance gauge and Higgs field interactions of these subwalls are abelian, allowing us to derive an asymptotic metric for the monopole wall moduli space.
Exponential asymptotics and gravity waves
Chapman, S. J.; Vanden-Broeck, J.
2006-01-01
The problem of irrotational inviscid incompressible free-surface flow is examined in the limit of small Froude number. Since this is a singular perturbation, singularities in the flow field (or its analytic continuation) such as stagnation points, or corners in submerged objects or on rough beds, lead to a divergent asymptotic expansion, with associated Stokes lines. Recent techniques in exponential asymptotics are employed to observe the switching on of exponentially small gravity waves acro...
Polynomial Asymptotes of the Second Kind
Dobbs, David E.
2011-01-01
This note uses the analytic notion of asymptotic functions to study when a function is asymptotic to a polynomial function. Along with associated existence and uniqueness results, this kind of asymptotic behaviour is related to the type of asymptote that was recently defined in a more geometric way. Applications are given to rational functions and…
The Keck Aperture Masking Experiment: Dust Enshrouded Red Giants
Blasius, T D; Tuthill, P G; Danchi, W C; Anderson, M
2012-01-01
While the importance of dusty asymptotic giant branch (AGB) stars to galactic chemical enrichment is widely recognised, a sophisticated understanding of the dust formation and wind-driving mechanisms has proven elusive due in part to the difficulty in spatially-resolving the dust formation regions themselves. We have observed twenty dust-enshrouded AGB stars as part of the Keck Aperture Masking Experiment, resolving all of them in multiple near-infrared bands between 1.5 microns and 3.1 microns. We find 45% of the targets to show measurable elongations that, when correcting for the greater distances of the targets, would correspond to significantly asymmetric dust shells on par with the well-known cases of IRC+10216 or CIT6. Using radiative transfer models, we find the sublimation temperature of 1130 +- 90 K and 1170 +- 60 K for silicates and amorphous carbon respectively, both somewhat lower than expected from laboratory measurements and vastly below temperatures inferred from the inner edge of YSO disks. Th...
Minimum disparity estimation in controlled branching processes
Gonzalez, Miguel; Minuesa, Carmen; del Puerto, Ines
2015-01-01
Minimum disparity estimation in controlled branching processes is dealt with by assuming that the offspring law belongs to a general parametric family. Under some regularity conditions it is proved that the minimum disparity estimators proposed -based on the nonparametric maximum likelihood estimator of the offspring law when the entire family tree is observed- are consistent and asymptotic normally distributed. Moreover, it is discussed the robustness of the estimators proposed. Through a si...
Growth of Preferential Attachment Random Graphs Via Continuous-Time Branching Processes
Indian Academy of Sciences (India)
Krishna B Athreya; Arka P Ghosh; Sunder Sethuraman
2008-08-01
Some growth asymptotics of a version of `preferential attachment’ random graphs are studied through an embedding into a continuous-time branching scheme. These results complement and extend previous work in the literature.
Asymptotic analysis and boundary layers
Cousteix, Jean
2007-01-01
This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general comprehensive presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows. The advantages of SCEM are discussed in comparison with the standard Method of Matched Asymptotic Expansions. In particular, for the first time, the theory of Interactive Boundary Layer is fully justified. With its chapter summaries, detailed derivations of results, discussed examples and fully worked out problems and solutions, the book is self-contained. It is written on a mathematical level accessible to graduate and post-graduate students of engineering and physics with a good knowledge in fluid mechanics. Researchers and practitioners will estee...
Asymptotics for restricted integer compositions
Malandro, Martin E
2011-01-01
We study the compositions of an integer n where the part sizes of the compositions are restricted to lie in a finite set. We obtain asymptotic formulas for the number of such compositions, the total and average number of parts among all such compositions, and the total and average number of times a particular part size appears among all such compositions. Several of our asymptotics have the additional property that their absolute errors---not just their percentage errors---go to 0 as n goes to infinity. Along the way we also obtain recurrences and generating functions for calculating several of these quantities. Our asymptotic formulas come from the meromorphic analysis of our generating functions. Our results also apply to questions about certain kinds of tilings and rhythm patterns.
Origin of lithium enrichment in K giants
Kumar, Yerra Bharat; Lambert, David L
2011-01-01
In this Letter, we report on a low-resolution spectroscopic survey for Li-rich K giants among 2000 low mass (M = 3.2) were discovered. A significant finding is that there is a concentration of Li-rich K giants at the luminosity of the clump or red horizontal branch. This new finding is partly a consequence of the fact that our low-resolution survey is the first large survey to include giants well below and above the RGB bump and clump locations in the HR diagram. Origin of the lithium enrichment may be plausibly attributed to the conversion of 3He via 7Be to 7Li by the Cameron-Fowler mechanism but the location for onset of the conversion is uncertain. Two possible opportunities to effect this conversion are discussed: the bump in the first ascent of the red giant branch (RGB) and the He-core flash at the tip of the RGB. The finite luminosity spread of the Li-rich giants serves to reject the idea that Li enhancement is, in general, a consequence of a giant swallowing a large planet.
Ruin problems and tail asymptotics
DEFF Research Database (Denmark)
Rønn-Nielsen, Anders
The thesis Ruin Problems and Tail Asymptotics provides results on ruin problems for several classes of Markov processes. For a class of diffusion processes with jumps an explicit expression for the joint Laplace transform of the first passage time and the corresponding undershoot is derived...... by an underlying Harris recurrent Markov process some asymptotic results for the ruin probability are derived. Finally, a paper, which is separate in content from the rest of the thesis, treats a RESTART problem in the situation, where failures occur with decreasing intensity....
Asymptotic freedom for nonrelativistic confinement
International Nuclear Information System (INIS)
Some aspects of asymptotic freedom are discussed in the context of a simple two-particle nonrelativistic confining potential model. In this model, asymptotic freedom follows from the similarity of the free-particle and bound state radial wave functions at small distances and for the same angular momentum and the same large energy. This similarity, which can be understood using simple quantum mechanical arguments, can be used to show that the exact response function approaches that obtained when final state interactions are ignored. A method of calculating corrections to this limit is given, and explicit examples are given for the case of a harmonic oscillator
Asymptotic risks of Viterbi segmentation
Kuljus, Kristi
2010-01-01
We consider the maximum likelihood (Viterbi) alignment of a hidden Markov model (HMM). In an HMM, the underlying Markov chain is usually hidden and the Viterbi alignment is often used as the estimate of it. This approach will be referred to as the Viterbi segmentation. The goodness of the Viterbi segmentation can be measured by several risks. In this paper, we prove the existence of asymptotic risks. Being independent of data, the asymptotic risks can be considered as the characteristics of the model that illustrate the long-run behavior of the Viterbi segmentation.
Comment on Asymptotically Safe Inflation
Tye, S -H Henry
2010-01-01
We comment on Weinberg's interesting analysis of asymptotically safe inflation (arXiv:0911.3165). We find that even if the gravity theory exhibits an ultraviolet fixed point, the energy scale during inflation is way too low to drive the theory close to the fixed point value. We choose the specific renormalization groupflow away from the fixed point towards the infrared region that reproduces the Newton's constant and today's cosmological constant. We follow this RG flow path to scales below the Planck scale to study the stability of the inflationary scenario. Again, we find that some fine tuning is necessary to get enough efolds of infflation in the asymptotically safe inflationary scenario.
Star-planet interactions: II. Is planet engulfment the origin of fast rotating red giants?
Privitera, Giovanni; Meynet, Georges; Eggenberger, Patrick; Vidotto, Aline A.; Villaver, Eva; Bianda, Michele
2016-01-01
Context. Fast rotating red giants in the upper part of the red giant branch have surface velocities that cannot be explained by single star evolution. Aims. We check whether tides between a star and a planet followed by planet engulfment can indeed accelerate the surface rotation of red giants for a sufficient long time in order to produce these fast rotating red giants. Methods. Using rotating stellar models, accounting for the redistribution of the angular momentum inside the star by differ...
Institute of Scientific and Technical Information of China (English)
Yan Xia REN
2008-01-01
The global supports of super-Poisson processes and super-random walks with a branching mechanism ψ(z)=z2 and constant branching rate are known to be noncompact. It turns out that, for any spatially dependent branching rate, this property remains true. However, the asymptotic extinction property for these two kinds of superprocesses depends on the decay rate of the branching-rate function at infinity.
Asymptotic expansions of Jacobi functions
International Nuclear Information System (INIS)
The author presents an asymptotic expansion of the Jacobi polynomials which is based on the fact, that these polynomials are special hypergeometric functions. He uses an integral representation of these functions and expands the integrand in a power series. He derives explicit error bounds on this expansion. (HSI)
Asymptotics of weighted random sums
DEFF Research Database (Denmark)
Corcuera, José Manuel; Nualart, David; Podolskij, Mark
2014-01-01
In this paper we study the asymptotic behaviour of weighted random sums when the sum process converges stably in law to a Brownian motion and the weight process has continuous trajectories, more regular than that of a Brownian motion. We show that these sums converge in law to the integral of the...
Inaccurate usage of asymptotic formulas
Maj, R; Maj, Radoslaw; Mrowczynski, Stanislaw
2004-01-01
The asymptotic form of the plane-wave decomposition into spherical waves, which is often used, in particular, to express the scattering amplitude through the phase shifts, is incorrect. We precisely explain why it is incorrect and show how to circumvent mathematical inconsistency.
On Asymptotically Efficient Estimation in Semiparametric Models
Schick, Anton
1986-01-01
A general method for the construction of asymptotically efficient estimates in semiparametric models is presented. It improves and modifies Bickel's (1982) construction of adaptive estimates and obtains asymptotically efficient estimates under conditions weaker than those in Bickel.
The Orbital Evolution of Gas Giant Planets around Giant Stars
Villaver, Eva; Livio, Mario
2009-01-01
Recent surveys have revealed a lack of close-in planets around evolved stars more massive than 1.2 Msun. Such planets are common around solar-mass stars. We have calculated the orbital evolution of planets around stars with a range of initial masses, and have shown how planetary orbits are affected by the evolution of the stars all the way to the tip of the Red Giant Branch (RGB). We find that tidal interaction can lead to the engulfment of close-in planets by evolved stars. The engulfment is...
Branching diffusions in random environment
Böinghoff, Christian
2011-01-01
We consider the diffusion approximation of branching processes in random environment (BPREs). This diffusion approximation is similar to and mathematically more tractable than BPREs. We obtain the exact asymptotic behavior of the survival probability. As in the case of BPREs, there is a phase transition in the subcritical regime due to different survival opportunities. In addition, we characterize the process conditioned to never go extinct and establish a backbone construction. In the strongly subcritical regime, mean offspring numbers are increased but still subcritical in the process conditioned to never go extinct. Here survival is solely due to an immortal individual, whose offspring are the ancestors of additional families. In the weakly subcritical regime, the mean offspring number is supercritical in the process conditioned to never go extinct. Thus this process survives with positive probability even if there was no immortal individual.
Asymptotic safety goes on shell
International Nuclear Information System (INIS)
It is well known in quantum field theory that the off-shell effective action depends on the gauge choice and field parametrization used in calculating it. Nevertheless, the typical scheme in which the scenario of asymptotically safe gravity is investigated is an off-shell version of the functional renormalization group equation. Working with the Einstein-Hilbert truncation as a test bed, we develop a new scheme for the analysis of asymptotically safe gravity in which the on-shell part of the effective action is singled out and we show that the beta function for the essential coupling has no explicit gauge dependence. In order to reach our goal, we introduce several technical novelties, including a different decomposition of the metric fluctuations, a new implementation of the ghost sector and a new cut-off scheme. We find a nontrivial fixed point, with a value of the cosmological constant that is independent of the gauge-fixing parameters. (paper)
Asymptotic safety goes on shell
Benedetti, Dario
2012-01-01
It is well known in quantum field theory that the off-shell effective action depends on the gauge choice and field parametrization used in calculating it. Nevertheless, the typical scheme in which the scenario of asymptotically safe gravity is investigated is an off-shell version of the functional renormalization group equation. Working with the Einstein-Hilbert truncation as a test bed, we develop a new scheme for the analysis of asymptotically safe gravity in which the on-shell part of the effective action is singled out and we show that the beta function for the essential coupling has no explicit gauge dependence. In order to reach our goal, we introduce several technical novelties, including a different decomposition of the metric fluctuations, a new implementation of the ghost sector and a new cut-off scheme. We find a nontrivial fixed point, with a value of the cosmological constant that is independent of the gauge-fixing parameters.
Exponential asymptotics and capillary waves
Chapman, S. J.; Vanden-Broeck, J.
2002-01-01
Recently developed techniques in exponential asymptotics beyond all orders are employed on the problem of potential flows with a free surface and small surface tension, in the absence of gravity. Exponentially small capillary waves are found to be generated on the free surface where the equipotentials from singularities in the flow (for example, stagnation points and corners) meet it. The amplitude of these waves is determined, and the implications are considered for many quite general flows....
Thermodynamics of asymptotically safe theories
DEFF Research Database (Denmark)
Rischke, Dirk H.; Sannino, Francesco
2015-01-01
We investigate the thermodynamic properties of a novel class of gauge-Yukawa theories that have recently been shown to be completely asymptotically safe, because their short-distance behaviour is determined by the presence of an interacting fixed point. Not only do all the coupling constants freeze...... degrees of freedom of these theories to next-to-next-to-leading order in the coupling constants....
Asymptotic Excisions of Metric Spaces and Ideals of Asymptotic Coarse Roe Algebras
Institute of Scientific and Technical Information of China (English)
LI Jin-xiu; WANG Qin
2006-01-01
We introduce in this note the notions of asymptotic excision of proper metric spaces and asymptotic equivalence relation for subspaces of metric spaces, which are relevant in characterizing spatial ideals of the asymptotic coarse Roe algebras. We show that the lattice of the asymptotic equivalence classes of the subspaces of a proper metric space is isomorphic to the lattice of the spatial ideals of the asymptotic Roe algebra. For asymptotic excisions of the metric space, we also establish a Mayer-Vietoris sequence in K-theory of the asymptotic coarse Roe algebras.
Asymptotic integration of differential and difference equations
Bodine, Sigrun
2015-01-01
This book presents the theory of asymptotic integration for both linear differential and difference equations. This type of asymptotic analysis is based on some fundamental principles by Norman Levinson. While he applied them to a special class of differential equations, subsequent work has shown that the same principles lead to asymptotic results for much wider classes of differential and also difference equations. After discussing asymptotic integration in a unified approach, this book studies how the application of these methods provides several new insights and frequent improvements to results found in earlier literature. It then continues with a brief introduction to the relatively new field of asymptotic integration for dynamic equations on time scales. Asymptotic Integration of Differential and Difference Equations is a self-contained and clearly structured presentation of some of the most important results in asymptotic integration and the techniques used in this field. It will appeal to researchers i...
Javadi, Atefeh; Mirtorabi, Mohammad Taghi
2010-01-01
We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). The main aim was to identify stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. The most extensive dataset was obtained in the K-band with the UIST instrument for the central 4'x 4' (1 square kpc) - this contains the nuclear star cluster and inner disc. These data, taken during the period 2003-2007, were complemented by J- and H-band images. Photometry was obtained for 18,398 stars in this region; of these, 812 stars were found to be variable, most of which are Asymptotic Giant Branch (AGB) stars. Our data were matched to optical catalogues of variable stars and carbon stars, and to mid-infrared photometry from the Spitzer Space Telescope. In this first of a series of papers, we present the methodology of the va...
Lagarde, N; Charbonnel, C; Eggenberger, P; Ekström, S; Palacios, A
2012-01-01
The availability of asteroseismic constraints for a large sample of stars from the missions CoRoT and Kepler paves the way for various statistical studies of the seismic properties of stellar populations. In this paper, we evaluate the impact of rotation-induced mixing and thermohaline instability on the global asteroseismic parameters at different stages of the stellar evolution from the Zero Age Main Sequence to the Thermally Pulsating Asymptotic Giant Branch to distinguish stellar populations. We present a grid of stellar evolutionary models for four metallicities (Z = 0.0001, 0.002, 0.004, and 0.014) in the mass range between 0.85 to 6.0 Msun. The models are computed either with standard prescriptions or including both thermohaline convection and rotation-induced mixing. For the whole grid we provide the usual stellar parameters (luminosity, effective temperature, lifetimes, ...), together with the global seismic parameters, i.e. the large frequency separation and asymptotic relations, the frequency corre...
Asymptotics of robust utility maximization
Knispel, Thomas
2012-01-01
For a stochastic factor model we maximize the long-term growth rate of robust expected power utility with parameter $\\lambda\\in(0,1)$. Using duality methods the problem is reformulated as an infinite time horizon, risk-sensitive control problem. Our results characterize the optimal growth rate, an optimal long-term trading strategy and an asymptotic worst-case model in terms of an ergodic Bellman equation. With these results we propose a duality approach to a "robust large deviations" criterion for optimal long-term investment.
Asymptotics for Associated Random Variables
Oliveira, Paulo Eduardo
2012-01-01
The book concerns the notion of association in probability and statistics. Association and some other positive dependence notions were introduced in 1966 and 1967 but received little attention from the probabilistic and statistics community. The interest in these dependence notions increased in the last 15 to 20 years, and many asymptotic results were proved and improved. Despite this increased interest, characterizations and results remained essentially scattered in the literature published in different journals. The goal of this book is to bring together the bulk of these results, presenting
Asymptotic black hole quasinormal frequencies
Motl, Lubos; Neitzke, Andrew
2003-01-01
We give a new derivation of the quasinormal frequencies of Schwarzschild black holes in d greater than or equal to 4 and Reissner-Nordstrom black holes in d = 4, in the limit of infinite damping. For Schwarzschild in d greater than or equal to 4 we find that the asymptotic real part is THawkinglog(3) for scalar perturbations and for some gravitational perturbations; this confirms a result previously obtained by other means in the case d = 4. For Reissner-Nordstrom in d = 4 w...
The maximum drag reduction asymptote
Choueiri, George H.; Hof, Bjorn
2015-11-01
Addition of long chain polymers is one of the most efficient ways to reduce the drag of turbulent flows. Already very low concentration of polymers can lead to a substantial drag and upon further increase of the concentration the drag reduces until it reaches an empirically found limit, the so called maximum drag reduction (MDR) asymptote, which is independent of the type of polymer used. We here carry out a detailed experimental study of the approach to this asymptote for pipe flow. Particular attention is paid to the recently observed state of elasto-inertial turbulence (EIT) which has been reported to occur in polymer solutions at sufficiently high shear. Our results show that upon the approach to MDR Newtonian turbulence becomes marginalized (hibernation) and eventually completely disappears and is replaced by EIT. In particular, spectra of high Reynolds number MDR flows are compared to flows at high shear rates in small diameter tubes where EIT is found at Re < 100. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° [291734].
The maximum drag reduction asymptote
Choueiri, George H.; Hof, Bjorn
2015-11-01
Addition of long chain polymers is one of the most efficient ways to reduce the drag of turbulent flows. Already very low concentration of polymers can lead to a substantial drag and upon further increase of the concentration the drag reduces until it reaches an empirically found limit, the so called maximum drag reduction (MDR) asymptote, which is independent of the type of polymer used. We here carry out a detailed experimental study of the approach to this asymptote for pipe flow. Particular attention is paid to the recently observed state of elasto-inertial turbulence (EIT) which has been reported to occur in polymer solutions at sufficiently high shear. Our results show that upon the approach to MDR Newtonian turbulence becomes marginalized (hibernation) and eventually completely disappears and is replaced by EIT. In particular, spectra of high Reynolds number MDR flows are compared to flows at high shear rates in small diameter tubes where EIT is found at Re Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° [291734].
Asymptotically Free Gauge Theories. I
Wilczek, Frank; Gross, David J.
1973-07-01
Asymptotically free gauge theories of the strong interactions are constructed and analyzed. The reasons for doing this are recounted, including a review of renormalization group techniques and their application to scaling phenomena. The renormalization group equations are derived for Yang-Mills theories. The parameters that enter into the equations are calculated to lowest order and it is shown that these theories are asymptotically free. More specifically the effective coupling constant, which determines the ultraviolet behavior of the theory, vanishes for large space-like momenta. Fermions are incorporated and the construction of realistic models is discussed. We propose that the strong interactions be mediated by a "color" gauge group which commutes with SU(3)xSU(3). The problem of symmetry breaking is discussed. It appears likely that this would have a dynamical origin. It is suggested that the gauge symmetry might not be broken, and that the severe infrared singularities prevent the occurrence of non-color singlet physical states. The deep inelastic structure functions, as well as the electron position total annihilation cross section are analyzed. Scaling obtains up to calculable logarithmic corrections, and the naive lightcone or parton model results follow. The problems of incorporating scalar mesons and breaking the symmetry by the Higgs mechanism are explained in detail.
Asymptotic black hole quasinormal frequencies
Motl, L; Motl, Lubos; Neitzke, Andrew
2003-01-01
We give a simple derivation of the quasinormal frequencies of Schwarzschild black holes in d>=4 and non-extremal Reissner-Nordstrom black holes in d=4, in the limit of infinite damping. For Schwarzschild in d=4 the asymptotic real part of the frequency is (T_Hawking)log(1+2cos(pi.j)), where j is the spin of the perturbation; this confirms a result previously obtained by other means. For Schwarzschild in d>4 we find that the asymptotic real part is (T_Hawking)log(3) for scalar perturbations. For non-extremal Reissner-Nordstrom in d=4 we find a specific but generally aperiodic behavior for the quasinormal frequencies, both for scalar perturbations and for axial electromagnetic-gravitational perturbations; there is nevertheless a hint that the value (T_Hawking)log(2) may be special in this case. The formulae are obtained by studying the monodromy of the perturbation analytically continued to the complex plane.
Asymptotic safety goes on shell
Benedetti, Dario
2011-01-01
It is well known in quantum field theory that the off-shell effective action depends on the gauge choice and field parametrization used in calculating it. Nevertheless, the typical scheme in which the scenario of asymptotically safe gravity is investigated is an off-shell version of the functional renormalization group equation. Working with the Einstein-Hilbert truncation as a test bed, we develop a new scheme for the analysis of asymptotically safe gravity in which the on-shell part of the effective action is singled out and we show that the beta function for the essential coupling has no explicit gauge-dependence. In order to reach our goal, we introduce several technical novelties, including a different decomposition of the metric fluctuations, a new implementation of the ghost sector, and a new cut-off scheme. We find a non-trivial fixed point, with a value of the cosmological constant which is independent of the gauge-fixing parameters.
Kissin, Yevgeni
2015-01-01
The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5 and $5\\,M_\\odot$, taking into account mass loss on the giant branches and the partitioning of angular momentum between the outer and inner envelope. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag as well as the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles $\\Omega(r)$ is considered in the deep convective envelope, ranging from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force on the inward pumping of angular momentum, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core ro...
Giant cell arteritis is a disorder that causes inflammation of your arteries, usually in the scalp, neck, and arms. ... arteries, which keeps blood from flowing well. Giant cell arteritis often occurs with another disorder called polymyalgia ...
Branched polynomial covering maps
DEFF Research Database (Denmark)
Hansen, Vagn Lundsgaard
2002-01-01
A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere. (C) 2001 Elsevier Science B.V. All rights reserved....
Asymptotic properties of the C-Metric
Sladek, Pavel
2010-01-01
The aim of this article is to analyze the asymptotic properties of the C-metric, using a general method specified in work of Tafel and coworkers, [1], [2], [3]. By finding an appropriate conformal factor $\\Omega$, it allows the investigation of the asymptotic properties of a given asymptotically flat spacetime. The news function and Bondi mass aspect are computed, their general properties are analyzed, as well as the small mass, small acceleration, small and large Bondi time limits.
Asymptotically Plane Wave Spacetimes and their Actions
Witt, Julian Le; Ross, Simon F.
2008-01-01
We propose a definition of asymptotically plane wave spacetimes in vacuum gravity in terms of the asymptotic falloff of the metric, and discuss the relation to previously constructed exact solutions. We construct a well-behaved action principle for such spacetimes, using the formalism developed by Mann and Marolf. We show that this action is finite on-shell and that the variational principle is well-defined for solutions of vacuum gravity satisfying our asymptotically plane wave falloff condi...
Asymptotic independence and a network traffic model
Maulik, Krishanu; Resnick, Sidney; Rootzén, Holger
2002-01-01
The usual concept of asymptotic independence, as discussed in the context of extreme value theory, requires the distribution of the coordinatewise sample maxima under suitable centering and scaling to converge to a product measure. However, this definition is too broad to conclude anything interesting about the tail behavior of the product of two random variables that are asymptotically independent. Here we introduce a new concept of asymptotic independence which allows u...
Asymptotics of near unit roots (in Russian)
Stanislav Anatolyev; Nikolay Gospodinov
2012-01-01
Sometimes the conventional asymptotic theory yields that the limiting distribution changes discontinuously, or that the asymptotic distribution does not approximate accurately the actual finite-sample distribution. In such situations one finds useful an asymptotic tool of drifting parameterizations where certain parameters are allowed to depend explicitly on the sample size. It proves useful, among other things, for impulse response analysis and forecasting of strongly dependent processes at ...
Asymptotic conservation laws in field theory
Anderson, Ian M.; Torre, Charles G.
1996-01-01
A new, general, field theoretic approach to the derivation of asymptotic conservation laws is presented. In this approach asymptotic conservation laws are constructed directly from the field equations according to a universal prescription which does not rely upon the existence of Noether identities or any Lagrangian or Hamiltonian formalisms. The resulting general expressions of the conservation laws enjoy important invariance properties and synthesize all known asymptotic conservation...
Giant osteoblastoma of temporal bone: case report
Directory of Open Access Journals (Sweden)
FIGUEIREDO EBERVAL GADELHA
1998-01-01
Full Text Available Benign osteoblastoma is an uncommon bone tumor accounting for approximately 1% of all bone tumors. There are only 35 cases of skull osteoblastoma reported in the literature. We describe the case of a 23 year old male with a giant osteoblastoma of temporal bone submitted to a total removal of the tumor after an effective embolization of all external carotid branches. The authors discuss diagnostic and management aspects of this uncommon skull tumor.
Numerical Asymptotic Solutions Of Differential Equations
Thurston, Gaylen A.
1992-01-01
Numerical algorithms derived and compared with classical analytical methods. In method, expansions replaced with integrals evaluated numerically. Resulting numerical solutions retain linear independence, main advantage of asymptotic solutions.
Why are tensor field theories asymptotically free?
Rivasseau, Vincent
2015-01-01
In this pedagogic letter we explain the combinatorics underlying the generic asymptotic freedom of tensor field theories. We focus on simple combinatorial models with a $1/p^2$ propagator and quartic interactions and on the comparison between the intermediate field representations of the vector, matrix and tensor cases. The transition from asymptotic freedom (tensor case) to asymptotic safety (matrix case) is related to the crossing symmetry of the matrix vertex whereas in the vector case, the lack of asymptotic freedom ("Landau ghost"), as in the ordinary scalar case, is simply due to the absence of any wave function renormalization at one loop.
Asymptotically flat and regular Cauchy data
Dain, S
2002-01-01
I describe the construction of a large class of asymptotically flat initial data with non-vanishing mass and angular momentum for which the metric and the extrinsic curvature have asymptotic expansions at space-like infinity in terms of powers of a radial coordinate. I emphasize the motivations and the main ideas behind the proofs.
8. Asymptotically Flat and Regular Cauchy Data
Dain, Sergio
I describe the construction of a large class of asymptotically flat initial data with non-vanishing mass and angular momentum for which the metric and the extrinsic curvature have asymptotic expansions at space-like infinity in terms of powers of a radial coordinate. I emphasize the motivations and the main ideas behind the proofs.
Einstein Constraints on Asymptotically Euclidean Manifolds
Choquet-Bruhat, Y; York, J W; Choquet-Bruhat, Yvonne; Isenberg, James; York, James W.
2000-01-01
We consider the Einstein constraints on asymptotically euclidean manifolds $M$ of dimension $n \\geq 3$ with sources of both scaled and unscaled types. We extend to asymptotically euclidean manifolds the constructive method of proof of existence. We also treat discontinuous scaled sources. In the last section we obtain new results in the case of non-constant mean curvature.
PERIODIC SOLUTIONS OF ASYMPTOTICALLY LINEAR HAMILTONIAN SYSTEMS
Institute of Scientific and Technical Information of China (English)
FEIGUIHUA; QIUQINGJIU
1997-01-01
The authors establish the existence of nontrival periodic solutions of the asymptotically linear Hamiltomian systems in the general case that the asymptotic matrix may be degenerate and time-dependent.This is done by using the critical point theory,Galerkin approximation procedure and the Maslov-type index theory introduced and generalized by Conley,Zehnder and Long.
An asymptotic model of the F layer
Oliver, W. L.
2012-01-01
A model of the F layer of the ionosphere is presented that consists of a bottomside asymptote that ignores transport and a topside asymptote that ignores chemistry. The asymptotes connect at the balance height dividing the chemistry and transport regimes. A combination of these two asymptotes produces a good approximation to the true F layer. Analogously, a model of F layer response to an applied vertical drift is presented that consists of two asymptotic responses, one that ignores transport and one that ignores chemistry. The combination of these asymptotic responses produces a good approximation to the response of the true F layer. This latter response is identical to the “servo” response of Rishbeth et al. (1978), derived from the continuity equation. The asymptotic approach bypasses the continuity equation in favor of “force balance” arguments and so replaces a differential equation with simpler algebraic equations. This new approach provides a convenient and intuitive mean for first-order estimates of the change in F layer peak height and density in terms of changes in neutral density, composition, temperature, winds, and electric fields. It is applicable at midlatitudes and at magnetically quiet times at high latitudes. Forensic inverse relations are possible but are not unique. The validity of the asymptotic relations is shown through numerical simulation.
Squashed giants: bound states of giant gravitons
International Nuclear Information System (INIS)
We consider giant gravitons in the maximally supersymmetric type IIB plane-wave, in the presence of a constant NSNS B-field background. We show that in response to the background B-field the giant graviton would take the shape of a deformed three-sphere, the size and shape of which depend on the B-field, and that the giant becomes classically unstable once the B-field is larger than a critical value Bcr. In particular, for the B-field which is (anti-)self-dual under the SO(4) isometry of the original giant S3, the closed string metric is that of a round S3, while the open string metric is a squashed three-sphere. The squashed giant can be interpreted as a bound state of a spherical three-brane and circular D-strings. We work out the spectrum of geometric fluctuations of the squashed giant and study its stability. We also comment on the gauge theory which lives on the brane (which is generically a noncommutative theory) and a possible dual gauge theory description of the deformed giant. (author)
Universal asymptotic umbrella for hydraulic fracture modeling
Linkov, Aleksandr M
2014-01-01
The paper presents universal asymptotic solution needed for efficient modeling of hydraulic fractures. We show that when neglecting the lag, there is universal asymptotic equation for the near-front opening. It appears that apart from the mechanical properties of fluid and rock, the asymptotic opening depends merely on the local speed of fracture propagation. This implies that, on one hand, the global problem is ill-posed, when trying to solve it as a boundary value problem under a fixed position of the front. On the other hand, when properly used, the universal asymptotics drastically facilitates solving hydraulic fracture problems (both analytically and numerically). We derive simple universal asymptotics and comment on their employment for efficient numerical simulation of hydraulic fractures, in particular, by well-established Level Set and Fast Marching Methods.
Penrose type inequalities for asymptotically hyperbolic graphs
Dahl, Mattias; Sakovich, Anna
2013-01-01
In this paper we study asymptotically hyperbolic manifolds given as graphs of asymptotically constant functions over hyperbolic space $\\bH^n$. The graphs are considered as subsets of $\\bH^{n+1}$ and carry the induced metric. For such manifolds the scalar curvature appears in the divergence of a 1-form involving the integrand for the asymptotically hyperbolic mass. Integrating this divergence we estimate the mass by an integral over an inner boundary. In case the inner boundary satisfies a convexity condition this can in turn be estimated in terms of the area of the inner boundary. The resulting estimates are similar to the conjectured Penrose inequality for asymptotically hyperbolic manifolds. The work presented here is inspired by Lam's article concerning the asymptotically Euclidean case.
Local asymptotic normality and asymptotical minimax efficiency of the MLE under random censorship
Institute of Scientific and Technical Information of China (English)
王启华; 荆炳义
2000-01-01
Here we study the problems of local asymptotic normality of the parametric family of distri-butions and asymptotic minimax efficient estimators when the observations are subject to right censor-ing. Local asymptotic normality will be established under some mild regularity conditions. A lower bound for local asymptotic minimax risk is given with respect to a bowl-shaped loss function, and fur-thermore a necessary and sufficient condition is given in order to achieve this lower bound. Finally, we show that this lower bound can be attained by the maximum likelihood estimator in the censored case and hence it is local asymptotic minimax efficient.
Local asymptotic normality and asymptotical minimax efficiency of the MLE under random censorship
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Here we study the problems of local asymptotic normality of the parametric family of distributions and asymptotic minimax efficient estimators when the observations are subject to right censoring. Local asymptotic normality will be established under some mild regularity conditions. A lower bound for local asymptotic minimax risk is given with respect to a bowl-shaped loss function, and furthermore a necessary and sufficient condition is given in order to achieve this lower bound. Finally, we show that this lower bound can be attained by the maximum likelihood estimator in the censored case and hence it is local asymptotic minimax efficient.
A comparative study of two 47 Tuc giant stars with different s-process enrichment
Cordero, M J; Johnson, C I; Pilachowski, C A
2015-01-01
Here we aim to understand the origin of 47 Tuc's La-rich star Lee 4710. We report abundances for O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Co, Ni, Zn, Y, Zr, Ba, La, Ce, Pr, Nd, and Eu, and present a detailed abundance analysis of two 47 Tuc stars with similar stellar parameters but different slow neutron-capture (s-)process enrichment. Star Lee 4710 has the highest known La abundance ratio in this cluster ([La/Fe] = 1.14), and star Lee 4626 is known to have normal s-process abundances (e.g., [Ba/Eu]$<0$). The nucleosynthetic pattern of elements with Z$\\gtrsim$56 for star Lee 4710 agrees with the predicted yields of a $1.3M_{\\odot}$ asymptotic giant branch (AGB) star. Therefore, Lee 4710 may have been enriched by mass transfer from a more massive AGB companion, which is compatible with its location far away from the center of this relatively metal-rich ([Fe/H]$\\sim-0.7$) globular cluster. A further analysis comparing the abundance pattern of Lee 4710 with data available in the literature reveals that nine out ...
Cross-Section Measurements of the 86Kr(g,n) Reaction to Probe the s-Process Branching at 85Kr
Raut, R; Rusev, G; Tornow, W; Iliadis, C; Lugaro, M; Buntain, J; Goriely, S; Kelley, J H; Schwengner, R; Banu, A; Tsoneva, N
2013-01-01
We have carried out photodisintegration cross-section measurements on 86Kr using monoenergetic photon beams ranging from the neutron separation energy, S_n = 9.86 MeV, to 13 MeV. We combine our experimental 86Kr(g,n)85Kr cross section with results from our recent 86Kr(g,g') measurement below the neutron separation energy to obtain the complete nuclear dipole response of 86Kr. The new experimental information is used to predict the neutron capture cross section of 85Kr, an important branching point nucleus on the abundance flow path during s-process nucleosynthesis. Our new and more precise 85Kr(n,g)86Kr cross section allows to produce more precise predictions of the 86Kr abundance from s-process models. In particular, we find that the models of the s-process in asymptotic giant branch stars of mass < 1.5 Msun, where the 13C neutron source burns convectively rather than radiatively, represent a possible solution for the highest 86Kr/82Kr ratios observed in meteoritic stardust SiC grains.
The M giant candidates identified in the LAMOST DR1
Zhong, Jing
2015-08-01
M giants are red-giant-branch (RGB) stars with low surface temperature and high luminosity in the late-phase of stellar evolution. Its luminous nature allows us to use these stars as good tracers to study the outer Galactic halo and distant substructures. A well classified M-giant stars sample has important scientific values for the statistic research. In order to fully utilize the spectral data of LAMOST spectroscopic survey, we perform a discrimination procedure with the spectral index diagram of TiO5 and CaH2+CaH3 to separate M giants from M dwarfs. Using the M giant spectra identified from the LAMOST DR1 with high signal-to-noise ratio, we have successfully assembled a set of M giant templates from M0 to M6. Then, the template-fit algorithm were used to automatically identify and classify M giants from the LAMOST DR1. In addition, we calculated the heliocentric radial velocity of all M giants by using the cross-correlation method with the template spectrum in a zero-velocity rest frame. Using the relationship between the absolute infrared magnitude MJ and our classified spectroscopic subtype, we derived the spectroscopic distance of M giants, with uncertainties of about 40%. Finally, we present a spectroscopic catalog of 8639 M giants including stellar parameters like photometry, proper motion, radial velocity, distance, spectral type and so on. In particular, the large sample of M giants is carried out for the first time. We will further use this sample to study the sub-structures and tidal stream in the Galactic Anti-Center.
Asymptotics of thermal spectral functions
Caron-Huot, S
2009-01-01
We use operator product expansion (OPE) techniques to study the spectral functions of currents at finite temperature, in the high-energy time-like region $\\omega\\gg T$. The leading corrections to the spectral function of currents and stress tensors are proportional to $\\sim T^4$ expectation values in general, and the leading corrections $\\sim g^2T^4$ are calculated at weak coupling, up to one undetermined coefficient in the shear viscosity channel. Spectral functions in the asymptotic regime are shown to be infrared safe up to order $g^8T^4$. The convergence of sum rules in the shear and bulk viscosity channels is established in QCD to all orders in perturbation theory, though numerically significant tails $\\sim T^4/(\\log\\omega)^3$ are shown to exist in the bulk viscosity channel and to have an impact on sum rules recently proposed by Kharzeev and Tuchin. We argue that the spectral functions of currents and stress tensors in strongly coupled $\\mathcal{N}=4$ super Yang-Mills do not receive any medium-dependent...
Asymptotic Safety, Emergence and Minimal Length
Percacci, R
2010-01-01
There seems to be a common prejudice that asymptotic safety is either incompatible with, or at best unrelated to, the other topics in the title. This is not the case. In fact, we show that 1) the existence of a fixed point with suitable properties is a promising way of deriving emergent properties of gravity, and 2) there is a precise sense in which asymptotic safety implies a minimal length. In so doing we also discuss possible signatures of asymptotic safety in scattering experiments.
ASYMPTOTIC STABILITIES OF STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
SHEN Yi; JIANG Ming-hui; LIAO Xiao-xin
2006-01-01
Asymptotic characteristic of solution of the stochastic functional differential equation was discussed and sufficient condition was established by multiple Lyapunov functions for locating the limit set of t he solution. Moreover, from them many effective criteria on stochastic asymptotic stability, which enable us to construct the Lyapunov functions much more easily in application, were obtained. The results show that the wellknown classical theorem on stochastic asymptotic stability is a special case of our more general results. In the end, application in stochastic Hopfield neural networks is given to verify our results.
Fractal Dimension of Randomly Branched Polymers in a Good Solvent
Institute of Scientific and Technical Information of China (English)
巴信武; 张书文; 王海军; 王素娟; 韩颖慧
2002-01-01
We propose a concept of subchains for randomly branched polymers. As a direct application of this concept,the asymptotic expression of the average mean square radius of gyration is determined to give the fractal dimensions, in which the excluded volume effect is taken into consideration. Furthermore, we investigate a scaling relation that is associated with the Flory exponent v, the fractal dimension df and the polydispersity exponent τ.
F. H. Busse; Simitev, R.
2009-01-01
Possibilities and difficulties of applying the theory of magnetic field generation by convection flows in rotating spherical fluid shells to the Giant Planets are outlined. Recent progress in the understanding of the distribution of electrical conductivity in the Giant Planets suggests that the dynamo process occurs predominantly in regions of semiconductivity. In contrast to the geodynamo the magnetic field generation in the Giant Planets is thus characterized by strong radial conductivity v...
"Asymptotic Parabola" Fits for Smoothing Generally Asymmetric Light Curves
Andrych, Kateryna D; Chinarova, Lidia L; Marsakova, Vladyslava I
2015-01-01
A computer program is introduced, which allows to determine statistically optimal approxi-mation using the "Asymptotic Parabola" fit, or, in other words, the spline consisting of polynomials of order 1,2,1, or two lines ("asymptotes") connected with a parabola. The function itself and its derivative is continuous. There are 5 parameters: two points, where a line switches to a parabola and vice versa, the slopes of the line and the curvature of the parabola. Extreme cases are either the parabola without lines (i.e.the parabola of width of the whole interval), or lines without a parabola (zero width of the parabola), or "line+parabola" without a second line. Such an approximation is especially effective for pulsating variables, for which the slopes of the ascending and descending branches are generally different, so the maxima and minima have asymmetric shapes. The method was initially introduced by Marsakova and Andronov (1996OAP.....9..127M) and realized as a computer program written in QBasic under DOS. It w...
Gurau, Razvan
2013-01-01
Melonic graphs constitute the family of graphs arising at leading order in the 1/N expansion of tensor models. They were shown to lead to a continuum phase, reminiscent of branched polymers. We show here that they are in fact precisely branched polymers, that is, they possess Hausdorff dimension 2 and spectral dimension 4/3.
Nanodielectrics with giant permittivity
Indian Academy of Sciences (India)
S K Saha
2008-06-01
Nanodielectrics is an emerging area of research because of its potential application in energy storage and transducers. One-dimensional metallic nanostructures with localized electronic wave functions show giant dielectric constant. Following the prediction, during the last couple of years we have investigated the effect of giant permittivity in one-dimensional systems of conventional metals and conjugated polymer chains. In this article, we have tried to summarize the works on giant permittivity and finally the fabrication of nanocapacitor using metal nanowires, which shows giant permittivity is also discussed.
Nonsymmetric gravity does have acceptable global asymptotics
Cornish, N J
1994-01-01
"Reports of my death are greatly exaggerated" - Mark Twain. We consider the claim by Damour, Deser and McCarthy that nonsymmetric gravity theory has unacceptable global asymptotics. We explain why this claim is incorrect.
Large Deviations and Asymptotic Methods in Finance
Gatheral, Jim; Gulisashvili, Archil; Jacquier, Antoine; Teichmann, Josef
2015-01-01
Topics covered in this volume (large deviations, differential geometry, asymptotic expansions, central limit theorems) give a full picture of the current advances in the application of asymptotic methods in mathematical finance, and thereby provide rigorous solutions to important mathematical and financial issues, such as implied volatility asymptotics, local volatility extrapolation, systemic risk and volatility estimation. This volume gathers together ground-breaking results in this field by some of its leading experts. Over the past decade, asymptotic methods have played an increasingly important role in the study of the behaviour of (financial) models. These methods provide a useful alternative to numerical methods in settings where the latter may lose accuracy (in extremes such as small and large strikes, and small maturities), and lead to a clearer understanding of the behaviour of models, and of the influence of parameters on this behaviour. Graduate students, researchers and practitioners will find th...
Asymptotic Likelihood Distribution for Correlated & Constrained Systems
Agarwal, Ujjwal
2016-01-01
It describes my work as summer student at CERN. The report discusses the asymptotic distribution of the likelihood ratio for total no. of parameters being h and 2 out of these being are constrained and correlated.
EMC effect: asymptotic freedom with nuclear targets
International Nuclear Information System (INIS)
General features of the EMC effect are discussed within the framework of quantum chromodynamics as expressed via the operator product expansion and asymptotic freedom. These techniques are reviewed with emphasis on the target dependence. 22 references
Precise Asymptotics for Lévy Processes
Institute of Scientific and Technical Information of China (English)
Zhi Shui HU; Chun SU
2007-01-01
Let {X(t), t ≥ 0} be a Lévy process with EX(1)=0 and EX2(1)＜∞. In this paper, we shall give two precise asymptotic theorems for {X(t), t≥0}. By the way, we prove the corresponding conclusions for strictly stable processes and a general precise asymptotic proposition for sums of i.i.d.random variables.
The trouble with asymptotically safe inflation
Fang, Chao
2013-01-01
In this paper we investigate the perturbation theory of the asymptotically safe inflation and we find that all modes of gravitational waves perturbation become ghosts in order to achieve a large enough number of e-folds. Formally we can calculate the power spectrum of gravitational waves perturbation, but we find that it is negative. It indicates that there is serious trouble with the asymptotically safe inflation.
Asymptotic representation theorems for poverty indices
Lo, Gane Samb; Sall, Serigne Touba
2010-01-01
We set general conditions under which the general poverty index, which summarizes all the available indices, is asymptotically represented with some empirical processes. This representation theorem offers a general key, in most directions, for the asymptotics of the bulk of poverty indices and issues in poverty analysis. Our representation results uniformly hold on a large collection of poverty indices. They enable the continuous measure of poverty with longitudinal data.
Dirichlet eigenvalues of asymptotically flat triangles
Ourmières-Bonafos, Thomas
2015-01-01
This paper is devoted to the study of the eigenpairs of the Dirichlet Laplacian on a family of triangles where two vertices are fixed and the altitude associated with the third vertex goes to zero. We investigate the dependence of the eigenvalues on this altitude. For the first eigenvalues and eigenfunctions, we obtain an asymptotic expansion at any order at the scale cube root of this altitude due to the influence of the Airy operator. Asymptotic expansions of the eigenpairs are provided, ex...
Asymptotically hyperbolic black holes in Horava gravity
Janiszewski, Stefan
2014-01-01
Solutions of Hořava gravity that are asymptotically Lifshitz are explored. General near boundary expansions allow the calculation of the mass of these spacetimes via a Hamiltonian method. Both analytic and numeric solutions are studied which exhibit a causal boundary called the universal horizon, and are therefore black holes of the theory. The thermodynamics of an asymptotically Anti-de Sitter Hořava black hole are verified.
Loop Quantum Gravity and Asymptotically Flat Spaces
Arnsdorf, Matthias
2000-01-01
After motivating why the study of asymptotically flat spaces is important in loop quantum gravity, we review the extension of the standard framework of this theory to the asymptotically flat sector based on the GNS construction. In particular, we provide a general procedure for constructing new Hilbert spaces for loop quantum gravity on non-compact spatial manifolds. States in these Hilbert spaces can be interpreted as describing fluctuations around fiducial fixed backgrounds. When the backgr...
Asymptotic and Exact Expansions of Heat Traces
Energy Technology Data Exchange (ETDEWEB)
Eckstein, Michał, E-mail: michal@eckstein.pl [Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science (Poland); Zając, Artur, E-mail: artur.zajac@uj.edu.pl [Jagiellonian University, Faculty of Mathematics and Computer Science (Poland)
2015-12-15
We study heat traces associated with positive unbounded operators with compact inverses. With the help of the inverse Mellin transform we derive necessary conditions for the existence of a short time asymptotic expansion. The conditions are formulated in terms of the meromorphic extension of the associated spectral zeta-functions and proven to be verified for a large class of operators. We also address the problem of convergence of the obtained asymptotic expansions. General results are illustrated with a number of explicit examples.
General smile asymptotics with bounded maturity
Francesco Caravenna; Jacopo Corbetta
2014-01-01
We provide explicit conditions on the distribution of risk-neutral log-returns which yield sharp asymptotic estimates on the implied volatility smile. We allow for a variety of asymptotic regimes, including both small maturity (with arbitrary strike) and extreme strike (with arbitrary bounded maturity), extending previous work of Benaim and Friz [Math. Finance 19 (2009), 1-12]. We present applications to popular models, including Carr-Wu finite moment logstable model, Merton's jump diffusion ...
Gordon, Gail
2012-01-01
The Materials Test Branch resides at Marshall Space Flight Center's Materials and Processing laboratory and has a long history of supporting NASA programs from Mercury to the recently retired Space Shuttle. The Materials Test Branch supports its customers by supplying materials testing expertise in a wide range of applications. The Materials Test Branch is divided into three Teams, The Chemistry Team, The Tribology Team and the Mechanical Test Team. Our mission and goal is to provide world-class engineering excellence in materials testing with a special emphasis on customer service.
Peripheral giant cell granuloma
Directory of Open Access Journals (Sweden)
Padam Narayan Tandon
2012-01-01
Full Text Available Peripheral giant cell granuloma or the so-called "giant cell epulis" is the most common oral giant cell lesion. It normally presents as a soft tissue purplish-red nodule consisting of multinucleated giant cells in a background of mononuclear stromal cells and extravasated red blood cells. This lesion probably does not represent a true neoplasm, but rather may be reactive in nature, believed to be stimulated by local irritation or trauma, but the cause is not certainly known. This article reports a case of peripheral giant cell granuloma arising at the maxillary anterior region in a 22-year-old female patient. The lesion was completely excised to the periosteum level and there is no residual or recurrent swelling or bony defect apparent in the area of biopsy after a follow-up period of 6 months.
Branching processes in biology
Kimmel, Marek
2015-01-01
This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second ex...
Evaporation of Jupiter like planets orbiting extreme horizontal branch stars
Bear, Ealeal; Soker, Noam
2011-01-01
We study the evaporation of planets orbiting close to hot (extreme) horizontal branch (EHB) stars. These planets survived the common envelope phase inside the envelope of the reg giant star progenitor. We find that Jupiter-like planets orbiting within 10Ro from an EHB star suffers a non-negligible mass-loss during their 10^8 yr evolution on the horizontal branch. The evaporated gas is ionized and becomes a source of Balmer lines. Such planets might be detected by the periodic variation of the...
Koenigs function and branching processes
Chikilev, O G
2001-01-01
An explicit solution of time-homogeneous pure birth branching processes is described. It gives alternative extensions for the negative binomial distribution (branching processes with immigration) and for the Furry-Yule distribution (branching processes without immigration).
Synthesis of branched polysaccharides with tunable degree of branching
Ciric, Jelena; Loos, Katja
2013-01-01
An in vitro enzyme-catalyzed tandem reaction using the enzymes phosphorylase b from rabbit muscle and Deinococcus geothermalis glycogen branching enzyme (Dg GBE) to obtain branched polyglucans with tunable degree of branching (2% divided by 13%) is presented. The tunable degree of branching is obtai
Asymptotic Theory of Cepstral Random Fields
McElroy, Tucker S
2011-01-01
Random fields play a central role in the analysis of spatially correlated data and, as a result, have a significant impact on a broad array of scientific applications. Given the importance of this topic, there has been substantial research devoted to this area. However, in spite of the tremendous research to date, outside the engineering literature, the cepstral random field model remains largely underdeveloped. We provide a comprehensive treatment of the asymptotic theory for cepstral random field models. In particular, we provide recursive formulas that connect the spatial cepstral coefficients to an equivalent moving-average random field, which facilitates easy computation of the necessary autocovariance matrix. Additionally, we establish asymptotic consistency results for Bayesian, maximum likelihood, and quasi-maximum likelihood estimation. Further, in both the maximum and quasi-maximum likelihood frameworks we derive the asymptotic distribution of our estimator. The theoretical results are presented gen...
Relations between asymptotic and Fredholm representations
Manuilov, V M
1997-01-01
We prove that for matrix algebras $M_n$ there exists a monomorphism $(\\prod_n M_n/\\oplus_n M_n)\\otimes C(S^1) \\to {\\cal Q} $ into the Calkin algebra which induces an isomorphism of the $K_1$-groups. As a consequence we show that every vector bundle over a classifying space $B\\pi$ which can be obtained from an asymptotic representation of a discrete group $\\pi$ can be obtained also from a representation of the group $\\pi\\times Z$ into the Calkin algebra. We give also a generalization of the notion of Fredholm representation and show that asymptotic representations can be viewed as asymptotic Fredholm representations.
Asymptotic analysis of outwardly propagating spherical flames
Institute of Scientific and Technical Information of China (English)
Yun-Chao Wu; Zheng Chen
2012-01-01
Asymptotic analysis is conducted for outwardly propagating spherical flames with large activation energy.The spherical flame structure consists of the preheat zone,reaction zone,and equilibrium zone.Analytical solutions are separately obtained in these three zones and then asymptotically matched.In the asymptotic analysis,we derive a correlation describing the spherical flame temperature and propagation speed changing with the flame radius.This correlation is compared with previous results derived in the limit of infinite value of activation energy.Based on this correlation,the properties of spherical flame propagation are investigated and the effects of Lewis number on spherical flame propagation speed and extinction stretch rate are assessed.Moreover,the accuracy and performance of different models used in the spherical flame method are examined.It is found that in order to get accurate laminar flame speed and Markstein length,non-linear models should be used.
The optimal homotopy asymptotic method engineering applications
Marinca, Vasile
2015-01-01
This book emphasizes in detail the applicability of the Optimal Homotopy Asymptotic Method to various engineering problems. It is a continuation of the book “Nonlinear Dynamical Systems in Engineering: Some Approximate Approaches”, published at Springer in 2011, and it contains a great amount of practical models from various fields of engineering such as classical and fluid mechanics, thermodynamics, nonlinear oscillations, electrical machines, and so on. The main structure of the book consists of 5 chapters. The first chapter is introductory while the second chapter is devoted to a short history of the development of homotopy methods, including the basic ideas of the Optimal Homotopy Asymptotic Method. The last three chapters, from Chapter 3 to Chapter 5, are introducing three distinct alternatives of the Optimal Homotopy Asymptotic Method with illustrative applications to nonlinear dynamical systems. The third chapter deals with the first alternative of our approach with two iterations. Five application...
Enrichment of Heavy Elements in the red giant S15-19 in the Sextans Dwarf Spheroidal Galaxy
Honda, Satoshi; Arimoto, Nobuo; Sadakane, Kozo
2011-01-01
We determined chemical abundances of the Extremely Metal-Poor (EMP) star S15-19 ([Fe/H]=-3.0) in the Sextans dwarf galaxy. While heavy neutron-capture elements (e.g., Ba) are generally deficient in EMP stars in dwarf galaxies, this object was shown to have an exceptional over-abundance of Ba ([Ba/Fe] +0.5) by a previous study, which is similar to those of r-process-enhanced stars found in the field halo. Our new high-resolution spectroscopy for this object for the blue region, however, reveals that no clear excess of r-process elements, like Eu, appears in this object. Moreover, a significant excess of carbon ([C/Fe]= +1.0) and a deficiency of Sr ([Sr/Fe] = -1.4) are found for this object. Taking the variation of radial velocities measured at the two different epochs into consideration, the origin of the excesses of heavy neutron-capture elements in S15-19 is not the r-process, but is the s-process in an asymptotic giant branch (AGB) star that was the binary companion (primary) of this object. Carbon- and s-p...
A Fluctuation Limit Theorem of Branching Processes with Immigration and Statistical Applications
Ma, Chunhua
2009-01-01
We prove a general fluctuation limit theorem for Galton-Watson branching processes with immigration. The limit is a time-inhomogeneous OU type process driven by a spectrally positive Levy process. As applications of this result, we obtain some asymptotic estimates for the conditional least-squares estimator of the offspring mean.
Variance estimators in critical branching processes with non-homogeneous immigration
Rahimov, Ibrahim
2012-01-01
The asymptotic normality of conditional least squares estimators for the offspring variance in critical branching processes with non-homogeneous immigration is established, under moment assumptions on both reproduction and immigration. The proofs use martingale techniques and weak convergence results in Skorokhod spaces.
Asymptotic Regime in N Random Interacting Species
Fiasconaro, A; Valenti, D
2005-01-01
The asymptotic regime of a complex ecosystem with N random interacting species and in the presence of an external multiplicative noise is analyzed. We find the role of the external noise on the long time probability distribution of the i_th density species, the extinction of species and the local field acting on the i_th population. We analyze in detail the transient dynamics of this field and the cavity field, which is the field acting on the i_th species when this is absent. We find that the presence or the absence of some population give different asymptotic distributions of these fields.
Asymptotic Methods for Solitary Solutions and Compactons
Directory of Open Access Journals (Sweden)
Ji-Huan He
2012-01-01
Full Text Available This paper is an elementary introduction to some new asymptotic methods for the search for the solitary solutions of nonlinear differential equations, nonlinear differential-difference equations, and nonlinear fractional differential equations. Particular attention is paid throughout the paper to giving an intuitive grasp for the variational approach, the Hamiltonian approach, the variational iteration method, the homotopy perturbation method, the parameter-expansion method, the Yang-Laplace transform, the Yang-Fourier transform, and ancient Chinese mathematics. Hamilton principle and variational principles are also emphasized. The reviewed asymptotic methods are easy to be followed for various applications. Some ideas on this paper are first appeared.
Energy Technology Data Exchange (ETDEWEB)
Maher, M.M. [Department of Radiology, Mater Misericordiae Hospital, Dublin (Ireland); Department of Radiology, St. Vincent' s Hospital, Elm Park, Dublin 4 (Ireland); Kennedy, J.; Hynes, D. [Department of Orthopaedics, Mater Misericordiae Hospital, Dublin (Ireland); Murray, J.G.; O' Connell, D. [Department of Radiology, Mater Misericordiae Hospital, Dublin (Ireland)
2000-03-30
We describe the imaging features of a giant geode of the distal humerus in a patient with rheumatoid arthritis, which presented initially as a pathological fracture. The value of magnetic resonance imaging in establishing this diagnosis is emphasized. (orig.)
Stockdale, Dennis
1998-01-01
Provides directions for the construction of giant plastic cells, including details for building and installing the organelles. Also contains instructions for preparing the ribosomes, nucleolus, nucleus, and mitochondria. (DDR)
Energy Technology Data Exchange (ETDEWEB)
Pereira, L.F.; Hemais, P.M.P.G.; Aymore, I.L.; Carmo, M.C.R. do; Cunha, M.E.P.R. da; Resende, C.M.C.
Three cases of metaphyseal giant cell tumor are presented. A review of the literature is done, demostrating the lesion is rare and that there are few articles about it. Age incidence and characteristics of the tumor are discussed.
Gaulme, Patrick; Schmider, Francois-Xavier; Guillot, Tristan
2014-01-01
Seismology applied to giant planets could drastically change our understanding of their deep interiors, as it has happened with the Earth, the Sun, and many main-sequence and evolved stars. The study of giant planets' composition is important for understanding both the mechanisms enabling their formation and the origins of planetary systems, in particular our own. Unfortunately, its determination is complicated by the fact that their interior is thought not to be homogeneous, so that spectroscopic determinations of atmospheric abundances are probably not representative of the planet as a whole. Instead, the determination of their composition and structure must rely on indirect measurements and interior models. Giant planets are mostly fluid and convective, which makes their seismology much closer to that of solar-like stars than that of terrestrial planets. Hence, helioseismology techniques naturally transfer to giant planets. In addition, two alternative methods can be used: photometry of the solar light ref...
International Nuclear Information System (INIS)
Three cases of metaphyseal giant cell tumor are presented. A review of the literature is done, demostrating the lesion is rare and that there are few articles about it. Age incidence and characteristics of the tumor are discussed. (Author)
Directory of Open Access Journals (Sweden)
Mare Kõiva
2016-06-01
Full Text Available The purpose of this article is to discuss transmedia narratives based on giant lore, which is described by means of examples from folkloristics and transmedia dissemination. Giant lore, particularly the epic Kalevipoeg, a core text of Estonian culture, has generated numerous transmedially circulating texts and various contemporary forms. Through their connections with media, texts about giants continue to participate in the national cultural space; in previous eras, they have been carriers of Estonian identity or, alternatively, have held an important place in the creation of local identities. The latter can be observed today in printed matter, advertisements, and products marketed to the homeland public. However, texts about giants can also be used as a self-characterising image directed beyond national space. The article provides a closer look at ways in which stories connected with Kalevipoeg and Suur Tõll are engaged in different levels of media, as well as necessary contextual cultural knowledge for understanding contemporary media clips.
Fuzzy branching temporal logic.
Moon, Seong-ick; Lee, Kwang H; Lee, Doheon
2004-04-01
Intelligent systems require a systematic way to represent and handle temporal information containing uncertainty. In particular, a logical framework is needed that can represent uncertain temporal information and its relationships with logical formulae. Fuzzy linear temporal logic (FLTL), a generalization of propositional linear temporal logic (PLTL) with fuzzy temporal events and fuzzy temporal states defined on a linear time model, was previously proposed for this purpose. However, many systems are best represented by branching time models in which each state can have more than one possible future path. In this paper, fuzzy branching temporal logic (FBTL) is proposed to address this problem. FBTL adopts and generalizes concurrent tree logic (CTL*), which is a classical branching temporal logic. The temporal model of FBTL is capable of representing fuzzy temporal events and fuzzy temporal states, and the order relation among them is represented as a directed graph. The utility of FBTL is demonstrated using a fuzzy job shop scheduling problem as an example. PMID:15376850
DEFF Research Database (Denmark)
Bussink, Barbara E; Holst, Anders Gaarsdal; Jespersen, Lasse;
2013-01-01
AimsTo determine the prevalence, predictors of newly acquired, and the prognostic value of right bundle branch block (RBBB) and incomplete RBBB (IRBBB) on a resting 12-lead electrocardiogram in men and women from the general population.Methods and resultsWe followed 18 441 participants included.......5%/2.3% in women, P Right bundle branch block was associated with significantly...... increased all-cause and cardiovascular mortality in both genders with age-adjusted hazard ratios (HR) of 1.31 [95% confidence interval (CI), 1.11-1.54] and 1.87 (95% CI, 1.48-2.36) in the gender pooled analysis with little attenuation after multiple adjustment. Right bundle branch block was associated...
Directory of Open Access Journals (Sweden)
Chris van Zyl
2015-03-01
Full Text Available Giant peritoneal loose bodies are rare lesions, originating from auto-amputated appendices epiploicae. They may cause urinary or gastrointestinal obstruction and, should the radiologist not be familiar with the entity, can potentially be confused with malignant or parasitic lesions.Familiarity with their characteristic computed tomographic features is essential to prevent unnecessary surgery in the asymptomatic patient. We present a case of a 70-year-old man diagnosed with two giant peritoneal loose bodies.
Giant magnetostrictive materials
Institute of Scientific and Technical Information of China (English)
LIU JingHua; JIANG ChengBao; XU HuiBin
2012-01-01
Giant magnetostrictive materials are a kind of functional materials developed since 1970s,known as their large magnetostrain and high energy density.In this paper,an introduction of magnetosttiction and the history of magnetostrictive materials are described firstly.Then we review the recent developments of both rare earth and non-rare earth magnetostrictive materials.Finally,the tendency of developing new giant magnetostrictive materials is presented.
Red giant seismology: Observations
Directory of Open Access Journals (Sweden)
Mosser B.
2013-03-01
Full Text Available The CoRoT and Kepler missions provide us with thousands of red-giant light curves that allow a very precise asteroseismic study of these objects. Before CoRoT and Kepler, the red-giant oscillation patterns remained obscure. Now, these spectra are much more clear and unveil many crucial interior structure properties. For thousands of red giants, we can derive from seismic data precise estimates of the stellar mass and radius, the evolutionary status of the giants (with a clear difference between clump and RGB stars, the internal differential rotation, the mass loss, the distance of the stars... Analyzing this amount of information is made easy by the identification of the largely homologous red-giant oscillation patterns. For the first time, both pressure and mixed mode oscillation patterns can be precisely depicted. The mixed-mode analysis allows us, for instance, to probe directly the stellar core. Fine details completing the red-giant oscillation pattern then provide further information on the interior structure, including differential rotation.
Lithium and magnetic fields in giants. HD 232862 : a magnetic and lithium-rich giant star
Lèbre, A; Nascimento, J D do; Konstantinova-Antova, R; Kolev, D; Aurière, M; De Laverny, P; De Medeiros, J R
2009-01-01
We report the detection of an unusually high lithium content in HD 232862, a field giant classified as a G8II star, and hosting a magnetic field. With the spectropolarimeters ESPaDOnS at CFHT and NARVAL at TBL, we have collected high resolution and high signal-to-noise spectra of three giants : HD 232862, KU Peg and HD 21018. From spectral synthesis we have inferred stellar parameters and measured lithium abundances that we have compared to predictions from evolutionary models. We have also analysed Stokes V signatures, looking for a magnetic field on these giants. HD 232862, presents a very high abundance of lithium (ALi = 2.45 +/- 0.25 dex), far in excess of the theoretically value expected at this spectral type and for this luminosity class (i.e, G8II). The evolutionary stage of HD 232862 has been precised, and it suggests a mass in the lower part of the [1.0 Msun ; 3.5 Msun ] mass interval, likely 1.5 to 2.0 solar mass, at the bottom of the Red Giant Branch. Besides, a time variable Stokes V signature has...
Asymptotic estimates for generalized Stirling numbers
Chelluri, R.; Richmond, L.B.; Temme, Nico
2000-01-01
Uniform asymptotic expansions are given for the Stirling numbers of the first kind for integral arguments and for the second kind as defined for real arguments by Flajolet and Prodinger. The logconcavity of the resulting real valued function of Flajolet and Prodinger is established for a range including the classical integral domain.
Lectures on renormalization and asymptotic safety
International Nuclear Information System (INIS)
A short introduction is given on the functional renormalization group method, putting emphasis on its nonperturbative aspects. The method enables to find nontrivial fixed points in quantum field theoretic models which make them free from divergences and leads to the concept of asymptotic safety. It can be considered as a generalization of the asymptotic freedom which plays a key role in the perturbative renormalization. We summarize and give a short discussion of some important models, which are asymptotically safe such as the Gross–Neveu model, the nonlinear σ model, the sine–Gordon model, and we consider the model of quantum Einstein gravity which seems to show asymptotic safety, too. We also give a detailed analysis of infrared behavior of such scalar models where a spontaneous symmetry breaking takes place. The deep infrared behavior of the broken phase cannot be treated within the framework of perturbative calculations. We demonstrate that there exists an infrared fixed point in the broken phase which creates a new scaling regime there, however its structure is hidden by the singularity of the renormalization group equations. The theory spaces of these models show several similar properties, namely the models have the same phase and fixed point structure. The quantum Einstein gravity also exhibits similarities when considering the global aspects of its theory space since the appearing two phases there show analogies with the symmetric and the broken phases of the scalar models. These results be nicely uncovered by the functional renormalization group method
Eigenvalue asymptotics for Dirac-Bessel operators
Hryniv, Rostyslav O.; Mykytyuk, Yaroslav V.
2016-06-01
In this paper, we establish the eigenvalue asymptotics for non-self-adjoint Dirac-Bessel operators on (0, 1) with arbitrary real angular momenta and square integrable potentials, which gives the first step for solution of the related inverse problem. The approach is based on a careful examination of the corresponding characteristic functions and their zero distribution.
Large degree asymptotics of generalized Bessel polynomials
López, J.L.; Temme, N.M.
2011-01-01
Asymptotic expansions are given for large values of $n$ of the generalized Bessel polynomials $Y_n^\\mu(z)$. The analysis is based on integrals that follow from the generating functions of the polynomials. A new simple expansion is given that is valid outside a compact neighborhood of the origin in t
Asymptotic estimates for generalized Stirling numbers
Chelluri, R.; Richmond, L.B.; Temme, N.M.
1999-01-01
Uniform asymptotic expansions are given for the Stirling numbers of the first kind for integral arguments and for the second kind as defined for real arguments by Flajolet and Prodinger. The logconcavity of the resulting real valued function of Flajolet and Prodinger is established for a range inclu
On the Asymptotic Accuracy of Efron's Bootstrap
Singh, Kesar
1981-01-01
In the non-lattice case it is shown that the bootstrap approximation of the distribution of the standardized sample mean is asymptotically more accurate than approximation by the limiting normal distribution. The exact convergence rate of the bootstrap approximation of the distributions of sample quantiles is obtained. A few other convergence rates regarding the bootstrap method are also studied.
Heavy axion in asymptotically safe QCD
Kobakhidze, Archil
2016-01-01
Assuming QCD exhibits an interacting fixed-point behaviour in the ultraviolet regime, I argue that the axion can be substantially heavier than in the conventional case of asymptotically free QCD due to the enhanced contribution of small size instantons to its mass.
Asymptotic theory of relativistic, magnetized jets.
Lyubarsky, Yuri
2011-01-01
The structure of a relativistically hot, strongly magnetized jet is investigated at large distances from the source. Asymptotic equations are derived describing collimation and acceleration of the externally confined jet. Conditions are found for the transformation of the thermal energy into the fluid kinetic energy or into the Poynting flux. Simple scalings are presented for the jet collimation angle and Lorentz factors. PMID:21405769
Asymptotic analysis of the Forward Search
DEFF Research Database (Denmark)
Johansen, Søren; Nielsen, Bent
The Forward Search is an iterative algorithm concerned with detection of outliers and other unsuspected structures in data. This approach has been suggested, analysed and applied for regression models in the monograph Atkinson and Riani (2000). An asymptotic analysis of the Forward Search is made...
THE COMPLETE ASYMPTOTIC EXPANSION FOR BASKAKOV OPERATORS
Institute of Scientific and Technical Information of China (English)
Chungou Zhang; Quane Wang
2007-01-01
In this paper, we derive the complete asymptotic expansion of classical Baskakov itly in terms of Stirling number of the first and second kind and another number G(I, p). As a corollary, we also get the Voronovskaja-type result for the operators.
Exponential asymptotics of the Voigt functions
Paris, R. B.
2015-06-01
We obtain the asymptotic expansion of the Voigt functionss K( x, y) and L( x, y) for large (real) values of the variables x and y, paying particular attention to the exponentially small contributions. A Stokes phenomenon is encountered as with x > 0 fixed. Numerical examples are presented to demonstrate the accuracy of these new expansions.
On the Asymptotic Distribution of Signal Fraction
Volobouev, Igor
2016-01-01
Condition of the asymptotic normality of the signal fraction estimate by maximum likelihood is derived under the null hypothesis of no signal. Consequences of this condition for determination of signal significance taking in to account the look elsewhere effect are discussed.
Asymptotic theory of integrated conditional moment tests
Bierens, H.J.; Ploberger, W.
1995-01-01
In this paper we derive the asymptotic distribution of the test statistic of a generalized version of the integrated conditional moment (ICM) test of Bierens (1982, 1984), under a class of Vn-local alternatives, where n is the sample size. The generalized version involved includes neural network tes
An asymptotically optimal nonparametric adaptive controller
Institute of Scientific and Technical Information of China (English)
郭雷; 谢亮亮
2000-01-01
For discrete-time nonlinear stochastic systems with unknown nonparametric structure, a kernel estimation-based nonparametric adaptive controller is constructed based on truncated certainty equivalence principle. Global stability and asymptotic optimality of the closed-loop systems are established without resorting to any external excitations.
Zero bias transformation and asymptotic expansions
Jiao, Ying
2012-01-01
Let W be a sum of independent random variables. We apply the zero bias transformation to deduce recursive asymptotic expansions for $\\mathbb {E}[h(W)]$ in terms of normal expectations, or of Poisson expectations for integer-valued random variables. We also discuss the estimates of remaining errors.
Radioiodinated branched carbohydrates
Goodman, Mark M.; Knapp, Jr., Furn F.
1989-01-01
A radioiodinated branched carbohydrate for tissue imaging. Iodine-123 is stabilized in the compound by attaching it to a vinyl functional group that is on the carbohydrate. The compound exhibits good uptake and retention and is promising in the development of radiopharmaceuticals for brain, heart and tumor imaging.
Tracheobronchial Branching Anomalies
Energy Technology Data Exchange (ETDEWEB)
Hong, Min Ji; Kim, Young Tong; Jou, Sung Shick [Soonchunhyang University, Cheonan Hospital, Cheonan (Korea, Republic of); Park, A Young [Soonchunhyang University College of Medicine, Asan (Korea, Republic of)
2010-04-15
There are various congenital anomalies with respect to the number, length, diameter, and location of tracheobronchial branching patterns. The tracheobronchial anomalies are classified into two groups. The first one, anomalies of division, includes tracheal bronchus, cardiac bronchus, tracheal diverticulum, pulmonary isomerism, and minor variations. The second one, dysmorphic lung, includes lung agenesis-hypoplasia complex and lobar agenesis-aplasia complex
Multimode geodesic branching components
Schulz, D.; Voges, E.
1983-01-01
Geodesic branching components are investigated for multimode guided wave optics. Geodesic structures with particular properties, e.g. focussing star couplers, are derived by a synthesis technique based on a theorem of Toraldo di Francia. Experimentally, the geodesic surfaces are printed on acrylic glass and are spin-coated with organic film waveguides.
On the Asymptotic Approach to Thermosolutal Convection in Heated Slow Reactive Boundary Layer Flows
Directory of Open Access Journals (Sweden)
Stanford Shateyi
2008-01-01
Full Text Available The study sought to investigate thermosolutal convection and stability of two dimensional disturbances imposed on a heated boundary layer flow over a semi-infinite horizontal plate composed of a chemical species using a self-consistent asymptotic method. The chemical species reacts as it diffuses into the nearby fluid causing density stratification and inducing a buoyancy force. The existence of significant temperature gradients near the plate surface results in additional buoyancy and decrease in viscosity. We derive the linear neutral results by analyzing asymptotically the multideck structure of the perturbed flow in the limit of large Reynolds numbers. The study shows that for small Damkohler numbers, increasing buoyancy has a destabilizing effect on the upper branch Tollmien-Schlichting (TS instability waves. Similarly, increasing the Damkohler numbers (which corresponds to increasing the reaction rate has a destabilizing effect on the TS wave modes. However, for small Damkohler numbers, negative buoyancy stabilizes the boundary layer flow.
Multimodal Distributions along the Horizontal Branch
Ferraro, F R; Pecci, F F; Dorman, B; Rood, R T; Ferraro, Francesco R.; Paltrinieri, Barbara; Pecci, Flavio Fusi; Dorman, Ben; Rood, Robert T.
1997-01-01
We report on HST/WFPC2 U,V and far-ultraviolet observations of two Galactic Globular Clusters (GGCs), NGC 6205 = M13 and NGC 6093 = M80. Both of these clusters have horizontal-branch (HB) tails that extend to the helium-burning main sequence, with the hottest stars reaching theoretical effective temperatures above 35,000 K. In both clusters, groups of stars are found to be separated by narrow gaps along the blue HB sequence. These gaps appear at similar locations in the color-magnitude diagrams of the two clusters. While stochastic effects may give rise to variations in the color distribution along the HB, the coincidence of gaps in different clusters effectively rules this out as the primary cause. The comparison among the clusters strongly suggests that there are separate physical processes operating during the earlier red-giant phase of evolution to produce mass loss.
Blue Horizontal Branch Stars in M92
Cohen, J G
1997-01-01
We have analyzed high dispersion and high precision spectra of 5 blue horizontal branch stars in the globular cluster M92 to establish that the projected rotational velocity for these stars ranges from 15 to 40 \\kms. This is larger than that expected based on the rotation of their main sequence progenitors, the spin down of rotation with age, and the conservation of angular momentum. Possible explanations include a rapidly rotating stellar core. An abundance analysis of these spectra of these blue HB stars in M92 yields the same results as have been obtained from the giants in this cluster. There is a hint of a trend of higher abundance as the projected surface rotational velocity increases, which could be chance and requires confirmation.
On the Ergodic Capacity of Dual-Branch Correlated Log-Normal Fading Channels with Applications
Alquwaiee, Hessa
2015-05-01
Closed-form expressions of the ergodic capacity of independent or correlated diversity branches over Log-Normal fading channels are not available in the literature. Thus, it is become of an interest to investigate the behavior of such metric at high signal-to-noise (SNR). In this work, we propose simple closed-form asymptotic expressions of the ergodic capacity of dual-branch correlated Log- Normal corresponding to selection combining, and switch-and-stay combining. Furthermore, we capitalize on these new results to find new asymptotic ergodic capacity of correlated dual- branch free-space optical communication system under the impact of pointing error with both heterodyne and intensity modulation/direct detection. © 2015 IEEE.
1/2 BPS geometries of M2 giant gravitons
International Nuclear Information System (INIS)
We construct the general 1/2 BPS M2 giant graviton solutions asymptotic to the 11-dimensional maximally supersymmetric plane-wave background, based on the recent work of Lin, Lunin, and Maldacena. The solutions have null singularity and we argue that it is unavoidable to have null singularity in the proposed framework, although the solutions are still physically relevant. They involve an arbitrary function F(x) which is shown to have a correspondence to the 1/2 BPS states of the Berenstein-Maldacena-Nastase (BMN) matrix model. A detailed map between the 1/2 BPS states of both sides is worked out
1/2 BPS Geometries of M2 Giant Gravitons
Bak, D; Yee, H U; Bak, Dongsu; Siwach, Sanjay; Yee, Ho-Ung
2005-01-01
We construct the general 1/2 BPS M2 giant graviton solutions asymptotic to the eleven-dimensional maximally supersymmetric plane wave background, based on the recent work of Lin, Lunin and Maldacena. The solutions have null singularity and we argue that it is unavoidable to have null singularity in the proposed framework, although the solutions are still physically relevant. They involve an arbitrary function F(x) which is shown to have a correspondence to the 1/2 BPS states of the BMN matrix model. A detailed map between the 1/2 BPS states of both sides is worked out.
Asymptotic expansion of the wavelet transform with error term
R. S. Pathak; Pathak, Ashish
2014-01-01
UsingWong's technique asymptotic expansion for the wavelet transform is derived and thereby asymptotic expansions for Morlet wavelet transform, Mexican Hat wavelet transform and Haar wavelet transform are obtained.
Armas, Jay; Obers, Niels A; Orselli, Marta; Pedersen, Andreas Vigand
2012-01-01
We study the giant graviton solution as the AdS_5 X S^5 background is heated up to finite temperature. The analysis employs the thermal brane probe technique based on the blackfold approach. We focus mainly on the thermal giant graviton corresponding to a thermal D3-brane probe wrapped on an S^3 moving on the S^5 of the background at finite temperature. We find several interesting new effects, including that the thermal giant graviton has a minimal possible value for the angular momentum and correspondingly also a minimal possible radius of the S^3. We compute the free energy of the thermal giant graviton in the low temperature regime, which potentially could be compared to that of a thermal state on the gauge theory side. Moreover, we analyze the space of solutions and stability of the thermal giant graviton and find that, in parallel with the extremal case, there are two available solutions for a given temperature and angular momentum, one stable and one unstable. In order to write down the equations of mot...
On Large Scale Inductive Dimension of Asymptotic Resemblance Spaces
Kalantari, Sh.; Honari, B.
2014-01-01
We introduce the notion of large scale inductive dimension for asymptotic resemblance spaces. We prove that the large scale inductive dimension and the asymptotic dimensiongrad are equal in the class of r-convex metric spaces. This class contains the class of all geodesic metric spaces and all finitely generated groups. This leads to an answer for a question asked by E. Shchepin concerning the relation between the asymptotic inductive dimension and the asymptotic dimensiongrad, for r-convex m...
Generalized Asymptotic Pointwise Contractions and Nonexpansive Mappings Involving Orbits
Directory of Open Access Journals (Sweden)
Nicolae Adriana
2010-01-01
Full Text Available We give fixed point results for classes of mappings that generalize pointwise contractions, asymptotic contractions, asymptotic pointwise contractions, and nonexpansive and asymptotic nonexpansive mappings. We consider the case of metric spaces and, in particular, CAT spaces. We also study the well-posedness of these fixed point problems.
Componentwise Asymptotic Stability of Continuous-Time Interval Systems
Institute of Scientific and Technical Information of China (English)
赵胜民; 唐万生; 李光泉; 李文秀
2003-01-01
A special type of asymptotic (exponential) stability, namely componentwise asymptotic (exponential) stability for the continuous-time interval system is investigated. A set-valued map that represents the constraint of the state of the system is defined. And, by applying the viability theory of differential equation, sufficient and necessary conditions for the componentwise asymptotical (exponential) stability of this kind of systems are given.
Supersymmetric 3D gravity with torsion: asymptotic symmetries
Cvetkovic, B.; Blagojevic, M
2007-01-01
We study the structure of asymptotic symmetries in N=1+1 supersymmetric extension of three-dimensional gravity with torsion. Using a natural generalization of the bosonic anti-de Sitter asymptotic conditions, we show that the asymptotic Poisson bracket algebra of the canonical generators has the form of two independent super-Virasoro algebras with different central charges.
Asymptotic symmetries in 3d gravity with torsion
Blagojevic, M; Vasilic, M.
2003-01-01
We study the nature of asymptotic symmetries in topological 3d gravity with torsion. After introducing the concept of asymptotically anti-de Sitter configuration, we find that the canonical realization of the asymptotic symmetry is characterized by the Virasoro algebra with classical central charge, the value of which is the same as in general relativity: c=3l/2G.
Asymptotic estimates and compactness of expanding gradient Ricci solitons
Deruelle, Alix
2014-01-01
We first investigate the asymptotics of conical expanding gradient Ricci solitons by proving sharp decay rates to the asymptotic cone both in the generic and the asymptotically Ricci flat case. We then establish a compactness theorem concerning nonnegatively curved expanding gradient Ricci solitons.
Electrochemical Energy Storage Branch
1985-01-01
The activities of the Electrochemical Energy Storage Branch are highlighted, including the Technology Base Research and the Exploratory Technology Development and Testing projects within the Electrochemical Energy Storage Program for the 1984 fiscal year. General Headquarters activities are presented first; and then, a summary of the Director Controlled Milestones, followed by other major accomplishments. A listing of the workshops and seminars held during the year is also included.
Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Garrido, L; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G
1996-01-01
A sample of 62249 \\tau-pair events is selected from data taken with the ALEPH detector in 1991, 1992 and 1993. The measurement of the branching fractions for \\tau decays into electrons and muons is presented with emphasis on the study of systematic effects from selection, particle identification and decay classification. Combined with the most recent ALEPH determination of the \\tau lifetime, these results provide a relative measurement of the leptonic couplings in the weak charged current for transverse W bosons.
Jochem B. Evers; Vos, Jan
2013-01-01
Cereals and grasses adapt their structural development to environmental conditions and the resources available. The primary adaptive response is a variable degree of branching, called tillering in cereals. Especially for heterogeneous plant configurations the degree of tillering varies per plant. Functional–structural plant modeling (FSPM) is a modeling approach allowing simulation of the architectural development of individual plants, culminating in the emergent behavior at the canopy level....
Hekker, S
2016-01-01
The internal properties of stars in the red-giant phase undergo significant changes on relatively short timescales. Long near-interrupted high-precision photometric timeseries observations from dedicated space missions such as CoRoT and Kepler have provided seismic inferences of the global and internal properties of a large number of evolved stars, including red giants. These inferences are confronted with predictions from theoretical models to improve our understanding of stellar structure and evolution. Our knowledge and understanding of red giants have indeed increased tremendously using these seismic inferences, and we anticipate that more information is still hidden in the data. Unraveling this will further improve our understanding of stellar evolution. This will also have significant impact on our knowledge of the Milky Way Galaxy as well as on exo-planet host stars. The latter is important for our understanding of the formation and structure of planetary systems.
Exact asymptotics of the freezing transition of a logarithmically correlated random energy model
Webb, Christian
2011-01-01
We consider a logarithmically correlated random energy model, namely a model for directed polymers on a Cayley tree, which was introduced by Derrida and Spohn. We prove asymptotic properties of a generating function of the partition function of the model by studying a discrete time analogy of the KPP-equation - thus translating Bramson's work on the KPP-equation into a discrete time case. We also discuss connections to extreme value statistics of a branching random walk and a rescaled multiplicative cascade measure beyond the critical point.
The Gaia-ESO Survey: revisiting the Li-rich giant problem
Casey, A. R.; Ruchti, G.; Masseron, T.; Randich, S.; Gilmore, G.; Lind, K.; Kennedy, G. M.; Koposov, S. E.; Hourihane, A.; Franciosini, E.; Lewis, J. R.; Magrini, L.; Morbidelli, L.; Sacco, G. G.; Worley, C. C.; Feltzing, S.; Jeffries, R. D.; Vallenari, A.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Francois, P.; Korn, A. J.; Lanzafame, A.; Pancino, E.; Recio-Blanco, A.; Smiljanic, R.; Carraro, G.; Costado, M. T.; Damiani, F.; Donati, P.; Frasca, A.; Jofré, P.; Lardo, C.; de Laverny, P.; Monaco, L.; Prisinzano, L.; Sbordone, L.; Sousa, S. G.; Tautvaišienė, G.; Zaggia, S.; Zwitter, T.; Delgado Mena, E.; Chorniy, Y.; Martell, S. L.; Silva Aguirre, V.; Miglio, A.; Chiappini, C.; Montalban, J.; Morel, T.; Valentini, M.
2016-09-01
The discovery of lithium-rich giants contradicts expectations from canonical stellar evolution. Here we report on the serendipitous discovery of 20 Li-rich giants observed during the Gaia-ESO Survey, which includes the first nine Li-rich giant stars known towards the CoRoT fields. Most of our Li-rich giants have near-solar metallicities and stellar parameters consistent with being before the luminosity bump. This is difficult to reconcile with deep mixing models proposed to explain lithium enrichment, because these models can only operate at later evolutionary stages: at or past the luminosity bump. In an effort to shed light on the Li-rich phenomenon, we highlight recent evidence of the tidal destruction of close-in hot Jupiters at the sub-giant phase. We note that when coupled with models of planet accretion, the observed destruction of hot Jupiters actually predicts the existence of Li-rich giant stars, and suggests that Li-rich stars should be found early on the giant branch and occur more frequently with increasing metallicity. A comprehensive review of all known Li-rich giant stars reveals that this scenario is consistent with the data. However, more evolved or metal-poor stars are less likely to host close-in giant planets, implying that their Li-rich origin requires an alternative explanation, likely related to mixing scenarios rather than external phenomena.
Asymptotic dynamics of three-dimensional gravity
Donnay, Laura
2016-01-01
These are the lectures notes of the course given at the Eleventh Modave Summer School in Mathematical Physics, 2015, aimed at PhD candidates and junior researchers in theoretical physics. We review in details the result of Coussaert-Henneaux-van Driel showing that the asymptotic dynamics of $(2+1)$- dimensional gravity with negative cosmological constant is described at the classical level by Liouville theory. Boundary conditions implement the asymptotic reduction in two steps: the first set reduces the $SL(2,\\mathbb R)\\times SL(2,\\mathbb R)$ Chern-Simons action, equivalent to the Einstein action, to a non-chiral $SL(2,\\mathbb R)$ Wess-Zumino-Witten model, while the second set imposes constraints on the WZW currents that reduce further the action to Liouville theory. We discuss the issues of considering the latter as an effective description of the dual conformal field theory describing AdS$_3$ gravity beyond the semi-classical regime.
The Asymptotic Safety Scenario in Quantum Gravity
Directory of Open Access Journals (Sweden)
Niedermaier Max
2006-12-01
Full Text Available The asymptotic safety scenario in quantum gravity is reviewed, according to which a renormalizable quantum theory of the gravitational field is feasible which reconciles asymptotically safe couplings with unitarity. The evidence from symmetry truncations and from the truncated flow of the effective average action is presented in detail. A dimensional reduction phenomenon for the residual interactions in the extreme ultraviolet links both results. For practical reasons the background effective action is used as the central object in the quantum theory. In terms of it criteria for a continuum limit are formulated and the notion of a background geometry self-consistently determined by the quantum dynamics is presented. Self-contained appendices provide prerequisites on the background effective action, the effective average action, and their respective renormalization flows.
Asymptotically Honest Confidence Regions for High Dimensional
DEFF Research Database (Denmark)
Caner, Mehmet; Kock, Anders Bredahl
While variable selection and oracle inequalities for the estimation and prediction error have received considerable attention in the literature on high-dimensional models, very little work has been done in the area of testing and construction of confidence bands in high-dimensional models. However......, in a recent paper van de Geer et al. (2014) showed how the Lasso can be desparsified in order to create asymptotically honest (uniform) confidence band. In this paper we consider the conservative Lasso which penalizes more correctly than the Lasso and hence has a lower estimation error. In particular, we...... of the asymptotic covariance matrix of an increasing number of parameters which is robust against conditional heteroskedasticity. To our knowledge we are the first to do so. Next, we show that our confidence bands are honest over sparse high-dimensional sub vectors of the parameter space and that they contract...
Asymptotically Lifshitz brane-world black holes
International Nuclear Information System (INIS)
We study the gravity dual of a Lifshitz field theory in the context of a RSII brane-world scenario, taking into account the effects of the extra dimension through the contribution of the electric part of the Weyl tensor. We study the thermodynamical behavior of such asymptotically Lifshitz black holes. It is shown that the entropy imposes the critical exponent z to be bounded from above. This maximum value of z corresponds to a positive infinite entropy as long as the temperature is kept positive. The stability and phase transition for different spatial topologies are also discussed. - Highlights: ► Studying the gravity dual of a Lifshitz field theory in the context of brane-world scenario. ► Studying the thermodynamical behavior of asymptotically Lifshitz black holes. ► Showing that the entropy imposes the critical exponent z to be bounded from above. ► Discussing the phase transition for different spatial topologies.
Asymptotically Lifshitz Brane-World Black Holes
Ranjbar, Arash; Shahidi, Shahab
2012-01-01
We study the gravity dual of a Lifshitz field theory in the context of a RSII brane-world scenario, taking into account the effects of the extra dimension through the contribution of the electric part of the Weyl tensor. We show that although the Lifshitz space-time cannot be considered as a vacuum solution of the RSII brane-world, the asymptotically Lifshitz solution can. We then study the thermodynamical behavior of such asymptotically Lifshitz black holes. It is shown that the condition on the positivity of entropy imposes an upper bound on the critical exponent $z$. This maximum value of $z$ corresponds to a positive infinite entropy as long as the temperature is kept positive. The stability and phase transition for different spatial topologies are also discussed.
Asymptotically anti-de Sitter Proca Stars
Duarte, Miguel
2016-01-01
We show that complex, massive spin-1 fields minimally coupled to Einstein's gravity with a negative cosmological constant, admit asymptotically anti-de Sitter self-gravitating solutions. Focusing on 4-dimensional spacetimes, we start by obtaining analytical solutions in the test-field limit, where the Proca field equations can be solved in a fixed anti-de Sitter background, and then find fully non-linear solutions numerically. These solutions are a natural extension of the recently found asymptotically flat Proca stars and share similar properties with scalar boson stars. In particular, we show that they are stable against spherically symmetric linear perturbations for a range of fundamental frequencies limited by their point of maximum mass. We finish with an overview of the behavior of Proca stars in $5$ dimensions.
Planet Engulfment by ~1.5-3 Solar-Mass Red Giants
Kunitomo, M.; Ikoma, M.; Sato, B; Katsuta, Y; Ida, S.
2011-01-01
Recent radial-velocity surveys for GK clump giants have revealed that planets also exist around ~1.5-3 Msun stars. However, no planets have been found inside 0.6 AU around clump giants, in contrast to solar-type main-sequence stars, many of which harbor short-period planets such as hot Jupiters. In this study we examine the possibility that planets were engulfed by host stars evolving on the red-giant branch (RGB). We integrate the orbital evolution of planets in the RGB and helium burning (H...
Giant perigenital seborrheic keratosis.
Bandyopadhyay, Debabrata; Saha, Abanti; Mishra, Vivek
2015-01-01
Seborrheic keratosis (SK) is a very common benign epidermal proliferation that is prevalent in all races. Most commonly occurring on the trunk, face, scalp, and the extremities, they can occur anywhere on the body except the palms and soles. The most common appearance is that of a very superficial verrucous plaque which appears to be stuck on the surface. Giant lesions are very rare, and their location on the genital area is rarer still. We report here a case of multiple giant SK lesions in a 59-year-old man. PMID:25657917
Giant perigenital seborrheic keratosis
Directory of Open Access Journals (Sweden)
Debabrata Bandyopadhyay
2015-01-01
Full Text Available Seborrheic keratosis (SK is a very common benign epidermal proliferation that is prevalent in all races. Most commonly occurring on the trunk, face, scalp, and the extremities, they can occur anywhere on the body except the palms and soles. The most common appearance is that of a very superficial verrucous plaque which appears to be stuck on the surface. Giant lesions are very rare, and their location on the genital area is rarer still. We report here a case of multiple giant SK lesions in a 59-year-old man.
Giant perigenital seborrheic keratosis
Debabrata Bandyopadhyay; Abanti Saha; Vivek Mishra
2015-01-01
Seborrheic keratosis (SK) is a very common benign epidermal proliferation that is prevalent in all races. Most commonly occurring on the trunk, face, scalp, and the extremities, they can occur anywhere on the body except the palms and soles. The most common appearance is that of a very superficial verrucous plaque which appears to be stuck on the surface. Giant lesions are very rare, and their location on the genital area is rarer still. We report here a case of multiple giant SK lesions in a...
Variational Asymptotic Micromechanics Modeling of Composite Materials
Tang, Tian
2008-01-01
The issue of accurately determining the effective properties of composite materials has received the attention of numerous researchers in the last few decades and continues to be in the forefront of material research. Micromechanics models have been proven to be very useful tools for design and analysis of composite materials. In the present work, a versatile micromechanics modeling framework, namely, the Variational Asymptotic Method for Unit Cell Homogenization (VAMUCH), has been invented a...
Lattice Quantum Gravity and Asymptotic Safety
Laiho, J.; Bassler, S.; Coumbe, D.; Du, D.; Neelakanta, J. T.
2016-01-01
We study the nonperturbative formulation of quantum gravity defined via Euclidean dynamical triangulations (EDT) in an attempt to make contact with Weinberg's asymptotic safety scenario. We find that a fine-tuning is necessary in order to recover semiclassical behavior. Such a fine-tuning is generally associated with the breaking of a target symmetry by the lattice regulator; in this case we identify the target symmetry as the Hamiltonian canonical symmetry, which is closely related to, but n...
Chiral fermions in asymptotically safe quantum gravity
Meibohm, Jan; Pawlowski, Jan M.
2016-01-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck-scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works \\cite{Christia...
Asymptotic completeness in QED. Pt. 1
International Nuclear Information System (INIS)
Projection operators onto the asymptotic scattering states are defined in the space of quasilocal states of QED in a Gupta-Bleuler formulation. They are obtained as weak limits for t → ±∞ of expressions formed with interacting fields, in close analogy to the LSZ expressions known from field theories without infrared problems. It is shown that these limits exist in perturbative QED and are equal to the identity. (orig.)
Asymptotic completeness in QED. Pt. 2
International Nuclear Information System (INIS)
Physical states and fields in QED are defined as limits in the sense of Wightman functions of states and composite fields of the Gupta-Bleuler formalism. A formulation of asymptotic completeness proposed in an earlier publication for the Gupta-Bleuler case is transferred to the physical state space and shown to be valid in perturbation theory. An application to the calculation of inclusive cross sections is discussed. (orig.)
Theorems for Asymptotic Safety of Gauge Theories
Bond, Andrew D
2016-01-01
We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasized. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated.
Asymptotics of high order noise corrections
Sondergaard, N; Pálla, G; Voros, A; Sondergaard, Niels; Vattay, Gabor; Palla, Gergely; Voros, Andre
1999-01-01
We consider an evolution operator for a discrete Langevin equation with a strongly hyperbolic classical dynamics and noise with finite moments. Using a perturbative expansion of the evolution operator we calculate high order corrections to its trace in the case of a quartic map and Gaussian noise. The leading contributions come from the period one orbits of the map. The asymptotic behaviour is investigated and is found to be independent up to a multiplicative constant of the distribution of noise.
Asymptotic elastic energy in simple metals
International Nuclear Information System (INIS)
The asymptotic form of the elastic binding energy ΔEsup(as)(R) between two Mg atoms in Al is expressed as a product of a lattice Green function and the dipole force tensor P. The quantity P is obtained by a nearly free electron model in which the impurity effect is introduced by a screened Ashcroft pseudopotential characterized by an excess charge ΔZ and a core radius rsub(j). (author)
The Asymptotic Regime of High Density QCD
Gay-Ducati, M B
2000-01-01
We discuss the distinct approaches for high density QCD (hdQCD) in the asymptotic regime of large values of parton density. We derive the AGL equation for running coupling constant and obtain the asymptotic solution, demonstrating that the property of partial saturation of the solution of the AGL equation is not modified by the running of the coupling constant. We show that in this kinematical regime, the solution of the AGL equation coincides with the solution of an evolution equation, obtained recently using the McLerran-Venugopalan approach. Using the asymptotic behavior of the gluon distribution we calculate the $F_2$ structure function assuming first that the leading twist relation between these two quantities is valid and second that this relation is modified by the higher twist terms associated to the unitarity corrections. In the first case we obtain that the corresponding $F_2$ structure function is linearly proportional to $ln s$, which agrees with the results obtained recently by Kovchegov using a ...
Asymptotic expansions for the Gaussian unitary ensemble
DEFF Research Database (Denmark)
Haagerup, Uffe; Thorbjørnsen, Steen
2012-01-01
Let g : R ¿ C be a C8-function with all derivatives bounded and let trn denote the normalized trace on the n × n matrices. In Ref. 3 Ercolani and McLaughlin established asymptotic expansions of the mean value ¿{trn(g(Xn))} for a rather general class of random matrices Xn, including the Gaussian...... Unitary Ensemble (GUE). Using an analytical approach, we provide in the present paper an alternative proof of this asymptotic expansion in the GUE case. Specifically we derive for a random matrix Xn that where k is an arbitrary positive integer. Considered as mappings of g, we determine the coefficients...... aj(g), j ¿ N, as distributions (in the sense of L. Schwarts). We derive a similar asymptotic expansion for the covariance Cov{Trn[f(Xn)], Trn[g(Xn)]}, where f is a function of the same kind as g, and Trn = n trn. Special focus is drawn to the case where and for ¿, µ in C\\R. In this case the mean and...
Asymptotically flat space-times: an enigma
Newman, Ezra T.
2016-07-01
We begin by emphasizing that we are dealing with standard Einstein or Einstein-Maxwell theory—absolutely no new physics has been inserted. The fresh item is that the well-known asymptotically flat solutions of the Einstein-Maxwell theory are transformed to a new coordinate system with surprising and (seemingly) inexplicable results. We begin with the standard description of (Null) asymptotically flat space-times described in conventional Bondi-coordinates. After transforming the variables (mainly the asymptotic Weyl tensor components) to a very special set of Newman-Unti (NU) coordinates, we find a series of relations totally mimicking standard Newtonian classical mechanics and Maxwell theory. The surprising and troubling aspect of these relations is that the associated motion and radiation does not take place in physical space-time. Instead these relations takes place in an unusual inherited complex four-dimensional manifold referred to as H-space that has no immediate relationship with space-time. In fact these relations appear in two such spaces, H-space and its dual space \\bar{H}.
Asymptotics of the instantons of Painleve I
Garoufalidis, Stavros; Kapaev, Andrei; Marino, Marcos
2010-01-01
The 0-instanton solution of Painlev\\'e I is a sequence $(u_{n,0})$ of complex numbers which appears universally in many enumerative problems in algebraic geometry, graph theory, matrix models and 2-dimensional quantum gravity. The asymptotics of the 0-instanton $(u_{n,0})$ for large $n$ were obtained by the third author using the Riemann-Hilbert approach. For $k=0,1,2,...$, the $k$-instanton solution of Painlev\\'e I is a doubly-indexed sequence $(u_{n,k})$ of complex numbers that satisfies an explicit quadratic non-linear recursion relation. The goal of the paper is three-fold: (a) to compute the asymptotics of the 1-instanton sequence $(u_{n,1})$ to all orders in $1/n$ by using the Riemann-Hilbert method, (b) to present formulas for the asymptotics of $(u_{n,k})$ for fixed $k$ and to all orders in $1/n$ using resurgent analysis, and (c) to confirm numerically the predictions of resurgent analysis. We point out that the instanton solutions display a new type of Stokes behavior, induced from the tritronqu\\'ee ...
Kotkar, Kunal; Thakkar, Ravi; Songra, MC
2011-01-01
Primary urethral calculus is rarely seen and is usually encountered in men with urethral stricture or diverticulum. We present a case of giant urethral calculus secondary to a urethral stricture in a man. The patient was treated with calculus extraction with end to end urethroplasty.
Ramadanovic, Bojan
2008-01-01
The quantization of the giant magnon away from the infinite size limit is discussed. We argue that this quantization inevitably leads to string theory on a Z_M-orbifold of S^5. This is shown explicitly and examined in detail in the near plane-wave limit.
Giant solitary trichoepithelioma
DEFF Research Database (Denmark)
Jemec, B; Løvgreen Nielsen, P; Jemec, G B;
1999-01-01
The giant solitary trichoepithelioma is a rare trichogenic tumor with potential for local recurrence. Only nine cases have been previously described in the literature, and one additional case without recurrence during the first 3.5 years of observation is presented stressing that the rate of...
Thermal Energy Conversion Branch
Bielozer, Matthew C.; Schreiber, Jeffrey, G.; Wilson, Scott D.
2004-01-01
The Thermal Energy Conversion Branch (5490) leads the way in designing, conducting, and implementing research for the newest thermal systems used in space applications at the NASA Glenn Research Center. Specifically some of the most advanced technologies developed in this branch can be broken down into four main areas: Dynamic Power Systems, Primary Solar Concentrators, Secondary Solar Concentrators, and Thermal Management. Work was performed in the Dynamic Power Systems area, specifically the Stirling Engine subdivision. Today, the main focus of the 5490 branch is free-piston Stirling cycle converters, Brayton cycle nuclear reactors, and heat rejection systems for long duration mission spacecraft. All space exploring devices need electricity to operate. In most space applications, heat energy from radioisotopes is converted to electrical power. The Radioisotope Thermoelectric Generator (RTG) already supplies electricity for missions such as the Cassini Spacecraft. The focus of today's Stirling research at GRC is aimed at creating an engine that can replace the RTG. The primary appeal of the Stirling engine is its high system efficiency. Because it is so efficient, the Stirling engine will significantly reduce the plutonium fuel mission requirements compared to the RTG. Stirling is also being considered for missions such as the lunar/Mars bases and rovers. This project has focused largely on Stirling Engines of all types, particularly the fluidyne liquid piston engine. The fluidyne was developed by Colin D. West. This engine uses the same concepts found in any type of Stirling engine, with the exception of missing mechanical components. All the working components are fluid. One goal was to develop and demonstrate a working Stirling Fluidyne Engine at the 2nd Annual International Energy Conversion Engineering Conference in Providence, Rhode Island.
Combustion Branch Website Development
Bishop, Eric
2004-01-01
The NASA combustion branch is a leader in developing and applying combustion science to focused aerospace propulsion systems concepts. It is widely recognized for unique facilities, analytical tools, and personnel. In order to better communicate the outstanding research being done in this Branch to the public and other research organization, a more substantial website was desired. The objective of this project was to build an up-to-date site that reflects current research in a usable and attractive manner. In order to accomplish this, information was requested from all researchers in the Combustion branch, on their professional skills and on the current projects. This information was used to fill in the Personnel and Research sections of the website. A digital camera was used to photograph all personnel and these photographs were included in the personnel section as well. The design of the site was implemented using the latest web standards: xhtml and external css stylesheets. This implementation conforms to the guidelines recommended by the w3c. It also helps to ensure that the web site is accessible by disabled users, and complies with Section 508 Federal legislation (which mandates that all Federal websites be accessible). Graphics for the new site were generated using the gimp (www.gimp.org) an open-source graphics program similar to Adobe Photoshop. Also, all graphics on the site were of a reasonable size (less than 20k, most less than 2k) so that the page would load quickly. Technologies such as Macromedia Flash and Javascript were avoided, as these only function on some clients which have the proper software installed or enabled. The website was tested on different platforms with many different browsers to ensure there were no compatibility issues. The website was tested on windows with MS IE 6, MSIE 5 , Netscape 7, Mozilla and Opera. On a Mac, the site was tested with MS IE 5 , Netscape 7 and Safari.
Roederer, Ian U.; Frebel, Anna; Shetrone, Matthew D.; Allende Prieto, Carlos; Rhee, Jaehyon; Gallino, Roberto; Bisterzo, Sara; Sneden, Christopher; Beers, Timothy C.; Cowan, John J.
2008-06-01
We present the first detailed abundance analysis of the metal-poor giant HKII 17435-00532. This star was observed as part of the University of Texas long-term project Chemical Abundances of Stars in the Halo (CASH). A spectrum was obtained with the High Resolution Spectrograph (HRS) on the Hobby-Eberly Telescope with a resolving power of R ~ 15,000. Our analysis reveals that this star may be located on the red giant branch, red horizontal branch, or early asymptotic giant branch. We find that this metal-poor ([Fe/H] = - 2.2) star has an unusually high lithium abundance [log ɛ (Li) = + 2.1], mild carbon ([C/Fe] = + 0.7) and sodium ([Na/Fe] = + 0.6) enhancement, as well as enhancement of both s-process ([Ba/Fe] = + 0.8) and r-process ([Eu/Fe] = + 0.5) material. The high Li abundance can be explained by self-enrichment through extra mixing that connects the convective envelope with the outer regions of the H-burning shell. If so, HKII 17435-00532 is the most metal-poor star in which this short-lived phase of Li enrichment has been observed. The Na and n-capture enrichment can be explained by mass transfer from a companion that passed through the thermally pulsing AGB phase of evolution with only a small initial enrichment of r-process material present in the birth cloud. Despite the current nondetection of radial velocity variations (over ~180 days), it is possible that HKII 17435-00532 is in a long-period or highly inclined binary system, similar to other stars with similar n-capture enrichment patterns. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.
Asteroseismology of 1523 misclassified red giants using Keplerdata
Yu, Jie; Huber, Daniel; Bedding, Timothy R.; Stello, Dennis; Murphy, Simon J.; Xiang, Maosheng; Bi, Shaolan; Li, Tanda
2016-08-01
We analysed solar-like oscillations in 1523 Keplerred giants which have previously been misclassified as subgiants, with predicted νmaxvalues (based on the Kepler Input Catalogue) between 280 μHzto 700 μHz. We report the discovery of 626 new oscillating red giants in our sample, in addition to 897 oscillators that were previously characterized by Hekker et al. (2011) from one quarter of Keplerdata. Our sample increases the known number of oscillating low-luminosity red giants by 26% (up to ˜ 1900 stars). About three quarters of our sample are classified as ascending red-giant-branch stars, while the remainder are red-clump stars. A novel scheme was applied to determine Δνfor 108 stars with νmaxclose to the Nyquist frequency (240 μHz < νmax < 320 μHz). Additionally, we identified 47 stars oscillating in the super-Nyquist frequency regime, up to 387μHz, using long-cadence light curves. We show that the misclassifications are most likely due to large uncertainties in KIC surface gravities, and do not result from the absence of broadband colors or from different physical properties such as reddening, spatial distribution, mass or metallicity. The sample will be valuable to study oscillations in low-luminosity red giants and to characterize planet candidates around those stars.
Branch formation during organ development
Gjorevski, Nikolce; Nelson, Celeste M.
2010-01-01
Invertebrates and vertebrates use branching morphogenesis to build epithelial trees to maximize the surface area of organs within a given volume. Several molecular regulators of branching have recently been discovered, a number of which are conserved across different organs and species. Signals that control branching at the cellular and tissue levels are also starting to emerge, and are rapidly unveiling the physical nature of branch development. Here we discuss the molecular, cellular and physical processes that govern branch formation and highlight the major outstanding questions in the field. PMID:20890968
Thermodynamic Branch in the Chemical System Response to External Impact
Zilbergleyt, B
2012-01-01
The paper gives an account of a detailed investigation of the thermodynamic branch as a path of the chemical system deviation from its isolated thermodynamic equilibrium under an external impact. For a combination of direct and reverse reactions in the same chemical system, full thermodynamic branch is presented by an S-shaped curve, whose ends asymptotically achieve appropriate initial states, which, in turn, are logistic ends of the opposite reactions. The slope tangents of the steepest parts of the curves, the areas of the maximum rate of the shift growth vs. the external thermodynamic force, occurred to be directly proportional to the force and, simultaneously, linearly proportional to the thermodynamic equivalent of chemical reaction, which is the ratio between the amount in moles of any reaction participant, transformed in an isolated system, along the reaction way from its initial state to thermodynamic equilibrium, to its stoichiometric coefficient. The found linearity is valid for arbitrary combinati...
Some distance bounds of branching processes and their diffusion limits
Kammerer, Niels B
2010-01-01
We compute exact values respectively bounds of "distances" - in the sense of (transforms of) power divergences and relative entropy - between two discrete-time Galton-Watson branching processes with immigration GWI for which the offspring as well as the immigration is arbitrarily Poisson-distributed (leading to arbitrary type of criticality). Implications for asymptotic distinguishability behaviour in terms of contiguity and entire separation of the involved GWI are given, too. Furthermore, we determine the corresponding limit quantities for the context in which the two GWI converge to Feller-type branching diffusion processes, as the time-lags between observations tend to zero. Some applications to (static random environment like) Bayesian decision making and Neyman-Pearson testing are presented as well.
Bladh, S; Aringer, B; Eriksson, K
2015-01-01
Stellar winds observed in asymptotic giant branch (AGB) stars are usually attributed to a combination of stellar pulsations and radiation pressure on dust. Shock waves triggered by pulsations propagate through the atmosphere, compressing the gas and lifting it to cooler regions, which create favourable conditions for grain growth. If sufficient radiative acceleration is exerted on the newly formed grains through absorption or scattering of stellar photons, an outflow can be triggered. Strong candidates for wind-driving dust species in M-type AGB stars are magnesium silicates (Mg$_2$SiO$_4$ and MgSiO$_3$). Such grains can form close to the stellar surface, they consist of abundant materials and, if they grow to sizes comparable to the wavelength of the stellar flux maximum, they experience strong acceleration by photon scattering. We use a frequency-dependent radiation-hydrodynamics code with a detailed description for the growth of Mg$_2$SiO$_4$ grains to calculate the first extensive set of time-dependent wi...
Savino, Alessandro; Tolstoy, Eline
2015-01-01
We present a detailed analysis of the Horizontal Branch of the Carina Dwarf Spheroidal Galaxy by means of synthetic modelling techniques, taking consistently into account the star formation history and metallicity evolution as determined from main sequence and red giant branch spectroscopic observations. We found that a range of integrated red giant branch mass loss values of 0.1-0.14 M, increasing with metallicity, is able to reproduce the colour extension of the old Horizontal Branch. However, leaving the mass loss as the only free parameter is not enough to match the detailed morphology of Carina Horizontal Branch. We explored the role played by the star formation history on the discrepancies between synthetic and observed Horizontal Branches. We derived a toy bursty star formation history that reproduces the horizontal branch star counts, and also matches qualitatively the red giant and the turn off regions. This star formation history is made of a subset of age and [M/H] components of the star formation ...
Asymptotic sampling formulae and particle system representations for $\\Lambda$-coalescents
Berestycki, Julien; Limic, Vlada
2011-01-01
Consider an evolving population, with genealogy given by a Lambda-coalescent that comes down from infinity. We provide rather explicit sampling formulae under this model, for large samples. More precisely, we describe the asymptotic behavior of the site and allele frequency spectrum and the number of segregating sites, as the sample size tends to infinity. A regular variation condition on the driving measure Lambda is assumed for some of the almost sure asymptotic results, but most of out results are valid for a general Lambda-coalescent that comes down from infinity. The proofs rely in part on the recent analysis of the speed of coming down from infinity for Lambda-coalescents, done by the authors in a previous work. state branching processes, and The second goal of this paper is to investigate a remarkable connection between Lambda-coalescents and genealogies of continuous-state branching processes. Our particle representation and the resulting coupling construction offer new perspective on the speed of com...
Asymptotics for a generalization of Hermite polynomials
Alfaro, M; Peña, A; Rezola, M L
2009-01-01
We consider a generalization of the classical Hermite polynomials by the addition of terms involving derivatives in the inner product. This type of generalization has been studied in the literature from the point of view of the algebraic properties. Thus, our aim is to study the asymptotics of this sequence of nonstandard orthogonal polynomials. In fact, we obtain Mehler--Heine type formulas for these polynomials and, as a consequence, we prove that there exists an acceleration of the convergence of the smallest positive zeros of these generalized Hermite polynomials towards the origin.
Large Degree Asymptotics of Generalized Bessel Polynomials
López, J. L.; Temme, Nico
2011-01-01
Asymptotic expansions are given for large values of $n$ of the generalized Bessel polynomials $Y_n^\\mu(z)$. The analysis is based on integrals that follow from the generating functions of the polynomials. A new simple expansion is given that is valid outside a compact neighborhood of the origin in the $z-$plane. New forms of expansions in terms of elementary functions valid in sectors not containing the turning points $z=\\pm i/n$ are derived, and a new expansion in terms of modified Bessel fu...
Taming perturbative divergences in asymptotically safe gravity
Energy Technology Data Exchange (ETDEWEB)
Benedetti, Dario, E-mail: dbenedetti@perimeterinstitute.c [Perimeter Institute for Theoretical Physics, 31 Caroline St. N, N2L 2Y5, Waterloo ON (Canada); Machado, Pedro F., E-mail: p.f.machado@uu.n [Institute for Theoretical Physics, Utrecht University, 3508 TD Utrecht (Netherlands); Saueressig, Frank, E-mail: Frank.Saueressig@cea.f [Institut de Physique Theorique, CEA Saclay, F-91191 Gif-Sur-Yvette Cedex (France); CNRS URA 2306, F-91191 Gif-Sur-Yvette Cedex (France)
2010-01-01
We use functional renormalization group methods to study gravity minimally coupled to a free scalar field. This setup provides the prototype of a gravitational theory which is perturbatively non-renormalizable at one-loop level, but may possess a non-trivial renormalization group fixed point controlling its UV behavior. We show that such a fixed point indeed exists within the truncations considered, lending strong support to the conjectured asymptotic safety of the theory. In particular, we demonstrate that the counterterms responsible for its perturbative non-renormalizability have no qualitative effect on this feature.
BIHARMONIC EQUATIONS WITH ASYMPTOTICALLY LINEAR NONLINEARITIES
Institute of Scientific and Technical Information of China (English)
Liu Yue; Wang Zhengping
2007-01-01
This article considers the equation △2u = f(x, u)with boundary conditions either u|(a)Ω = (a)u/(a)n|(a)Ω = 0 or u|(a)Ω = △u|(a)Ω = 0, where f(x,t) is asymptotically linear with respect to t at infinity, and Ω is a smooth bounded domain in RN, N ＞ 4. By a variant version of Mountain Pass Theorem, it is proved that the above problems have a nontrivial solution under suitable assumptions of f(x, t).
Homogenization and asymptotics for small transaction costs
Soner, H Mete
2012-01-01
We consider the classical Merton problem of lifetime consumption-portfolio optimization problem with small proportional transaction costs. The first order term in the asymptotic expansion is explicitly calculated through a singular ergodic control problem which can be solved in closed form in the one-dimensional case. Unlike the existing literature, we consider a general utility function and general dynamics for the underlying assets. Our arguments are based on ideas from the homogenization theory and use the convergence tools from the theory of viscosity solutions. The multidimensional case is studied in our accompanying paper using the same approach.
The ADM mass of asymptotically flat hypersurfaces
de Lima, Levi Lopes
2011-01-01
We provide integral formulae for the ADM mass of asymptotically flat hypersurfaces in Riemannian manifolds with a certain warped product structure in a neighborhood of infinity, thus extending Lam's recent results on Euclidean graphs to this broader context. As applications we exhibit, in any dimension, new classes of manifolds for which versions of the Positive Mass and Riemannian Penrose inequalities hold and discuss a notion of quasi-local mass in this setting. The proof explores a novel connection between the co-vector defining the ADM mass of a hypersurface as above and the Newton tensor associated to its shape operator, which takes place in the presence of an ambient Killing field.
Asymptotics of loop quantum gravity fusion coefficients
Energy Technology Data Exchange (ETDEWEB)
Alesci, Emanuele; Bianchi, Eugenio; Magliaro, Elena; Perini, Claudio, E-mail: alesci@fis.uniroma3.i, E-mail: e.bianchi@sns.i, E-mail: elena.magliaro@gmail.co, E-mail: claude.perin@libero.i [Centre de Physique Theorique de Luminy , case 907, F-13288 Marseille (France)
2010-05-07
The fusion coefficients from SO(3) to SO(4) play a key role in the definition of spin foam models for the dynamics in loop quantum gravity. In this paper we give a simple analytic formula of the Engle-Pereira-Rovelli-Livine fusion coefficients. We study the large spin asymptotics and show that they map SO(3) semiclassical intertwiners into SU(2){sub L} x SU(2){sub R} semiclassical intertwiners. This non-trivial property opens the possibility for an analysis of the semiclassical behavior of the model.
Asymptotic behaviour of exclusive processes in QCD
International Nuclear Information System (INIS)
The main ideas, methods and results in the investigation of the asymptotic behaviour of exclusive processes are reviewed. We discuss power behaviour and its dependence on hadron quantum numbers, logarithmic corrections and properties of nonperturbative hadronic wave functions. Applications to meson and baryon form factors, strong, electromagnetic and weak decays of heavy mesons, elastic scattering, threshold behaviour of inclusive structure functions, etc., are described. Comparison of theoretical predictions with experimental data is made whenever possible. The review may be of interest to theoreticians, experimentalists and students specializing in elementary particle physics. The experts in this field can also find new results (nonleading logarithms, higher twist processes, novel applications, etc.). (orig.)
Asymptotic curved interface models in piezoelectric composites
Serpilli, Michele
2016-10-01
We study the electromechanical behavior of a thin interphase, constituted by a piezoelectric anisotropic shell-like thin layer, embedded between two generic three-dimensional piezoelectric bodies by means of the asymptotic analysis in a general curvilinear framework. After defining a small real dimensionless parameter ε, which will tend to zero, we characterize two different limit models and their associated limit problems, the so-called weak and strong piezoelectric curved interface models, respectively. Moreover, we identify the non-classical electromechanical transmission conditions at the interface between the two three-dimensional bodies.
Path-valued branching processes and nonlocal branching superprocesses
Li, Zenghu
2012-01-01
A family of continuous-state branching processes with immigration are constructed as the solution flow of a stochastic equation system driven by time-space noises. The family can be regarded as an inhomogeneous increasing path-valued branching process with immigration. Two nonlocal branching immigration superprocesses can be defined from the flow. We identify explicitly the branching and immigration mechanisms of those processes. The results provide new perspectives into the tree-valued Markov processes of Aldous and Pitman [Ann. Inst. H. Poincare Probab. Statist. 34 (1998), 637--686] and Abraham and Delmas [Ann. Probab. To appear].
Quiver Varieties and Branching
Directory of Open Access Journals (Sweden)
Hiraku Nakajima
2009-01-01
Full Text Available Braverman and Finkelberg recently proposed the geometric Satake correspondence for the affine Kac-Moody group Gaff [Braverman A., Finkelberg M., arXiv:0711.2083]. They conjecture that intersection cohomology sheaves on the Uhlenbeck compactification of the framed moduli space of Gcpt-instantons on $R^4/Z_r$ correspond to weight spaces of representations of the Langlands dual group $G_{aff}^{vee}$ at level $r$. When $G = SL(l$, the Uhlenbeck compactification is the quiver variety of type $sl(r_{aff}$, and their conjecture follows from the author's earlier result and I. Frenkel's level-rank duality. They further introduce a convolution diagram which conjecturally gives the tensor product multiplicity [Braverman A., Finkelberg M., Private communication, 2008]. In this paper, we develop the theory for the branching in quiver varieties and check this conjecture for $G = SL(l$.
International Nuclear Information System (INIS)
We investigate giant magnons from classical rotating strings in two different backgrounds. First we generalize the solution of Hofman and Maldacena and investigate new magnon excitations of a spin chain which are dual to a string on RxS5 with two nonvanishing angular momenta. Allowing string dynamics along the third angle in the five sphere, we find a dispersion relation that reproduces the Hofman and Maldacena one and the one found by Dorey for the two spin case. In the second part of the paper we generalize the two 'spin' giant magnon to the case of β-deformed AdS5xS5 background. We find agreement between the dispersion relation of the rotating string and the proposed dispersion relation of the magnon bound state on the spin chain
Institute of Scientific and Technical Information of China (English)
Eric Benjamin Newton; Mark R Versland; Thomas E Sepe
2008-01-01
Giant duodenal ulcers (GDUs) are a subset of duodenal ulcers that have historically resulted in greater morbidity than usual duodenal ulcers. Until recently,few cases had been successfully treated with medical therapy. However, the widespread use of endoscopy,the introduction of H-2 receptor blockers and proton pump inhibitors, and the improvement in surgical techniques all have revolutionized the diagnosis,treatment and outcome of this condition. Nevertheless,GDUs are still associated with high rates of morbidity,mortality and complications. Thus, surgical evaluation of a patient with a GDU should remain an integral part of patient care. These giant variants, while usually benign, can frequently harbor malignancy. A careful review of the literature highlights the important differences when comparing GDUs to classical peptic ulcers and why they must be thought of differently than their more common counterpart.
Intraoral giant condyloma acuminatum
Directory of Open Access Journals (Sweden)
Gupta R
2001-09-01
Full Text Available A case of intraoral giant condyloma acuminatum is reported in a 50- year- old Indian. He did not respond to topical application of podophyllin 20% but responded partially to electric cauterisation. Surgical excision was done to get rid of the warty growh completely. Since there were no skin or genital lesions and no history of marital or extramarital sexual contact the lesion was probably acquired from environmental sources. Nonsexual transmission should be considered especially when the lesions are extragenital.
Directory of Open Access Journals (Sweden)
Schenk C.
1992-02-01
Full Text Available We are in the second year of fieldwork surveying for Giant Otters in the southeastern rainforest of Peru, in three areas with differing levels of legal protection. While there is some illegal hunting still happening outside the protected areas, the main threat to the otters is badly-conducted tourism. Well-organised tourism can be a promising argument for establishing protected areas like national parks.
Ilkay Albayrak
2013-01-01
The most of mediastinal germ cell tumors are teratomas. The main purpose of the treatment of immature and mature teratomas is completly resection of the mass. However, surgical problems may be occur due to proximity with vital structures. In this case, subtotal resection can be performed. Recurrence is rare, and the prognosis is usually very good. In this report, a case of the giant mediastinal mature cystic teratoma that applied subtotal resection due to pericardial adhesions is presented.
Rymer, A. M.; Arridge, C. S.; Masters, A.; Turtle, E. P.; Simon, A. A.; Hofstadter, M. D.; Turrini, D.; Politi, R.
2015-12-01
The Ice Giants in our solar system, Uranus and Neptune, are fundamentally different from their Gas Giant siblings Jupiter and Saturn, from the different proportions of rock and ice to the configuration of their planetary magnetic fields. Kepler space telescope discoveries of exo-planets indicate that planets of this type are among the most ubiquitous universally and therefore a future mission to explore the nature of the Ice Giants in our own solar system will provide insights into the nature of extra-solar system objects in general. Uranus has the smallest self- luminosity of all the planets, potentially related to catastrophic events early in the planet's history, which also may explain Uranus' large obliquity. Uranus' atmosphere is subject to extreme seasonal forcing making it unique in the Solar System. Neptune is also unique in a number of ways, notably its large moon Triton which is likely a captured Kuiper Belt Object and one of only two moons in the solar system with a robustly collisional atmosphere. Similar to Uranus, the angle between the solar wind and the magnetic dipole axis is subject to large-amplitude variations on both diurnal and seasonal timescales, but peculiarly it has one of the quietest magnetospheres of the solar system, at least according to Voyager 2, the only spacecraft to encounter Neptune to date. A comprehensive mission, as advocated in the Decadal Survey, would provide enormous science return but is also challenging and expensive. In this presentation we will discuss mission scenarios and suggest how collaboration between disciplines and internationally can help us to pursue a mission that includes Ice Giant exploration.
Lipomas gigantes Giants lipomas
Directory of Open Access Journals (Sweden)
Pietro Accetta
1998-10-01
Full Text Available The authors report two cases of giants lipomas in the gluteal region with 3,9 and 3,1 kg. They make a brief epidemiological presentation and consider diagnosis and treatment. They believe that CT scan is the best image method, as it provides more information about size and relationship with surrounding structures. They are against biopsies and lipoaspiration but stand up for the total exeresis as the best option of treatment.
Asymptotic behaviour of electro-$\\Lambda$ spacetimes
Saw, Vee-Liem
2016-01-01
We derive the asymptotic solutions for vacuum spacetimes with non-zero cosmological constant $\\Lambda$ coupled to Maxwell fields, using the Newman-Penrose formalism. This extends a recent work that dealt with the vacuum Einstein (Newman-Penrose) equations with $\\Lambda=0$. Using these asymptotic solutions, we discuss the mass-loss of an isolated electro-gravitating system with cosmological constant. In a universe with $\\Lambda>0$, the physics of electromagnetic (EM) radiation is relatively straightforward compared to those of gravitational radiation: 1) It is clear that outgoing EM radiation results in a decrease to the Bondi mass of the isolated system. 2) It is also perspicuous that if any incoming EM radiation from elsewhere is present, those beyond the isolated system's cosmological horizon would eventually arrive at the spacelike $\\mathcal{I}$ and increase the Bondi mass of the isolated system. Hence, the (outgoing and incoming) EM radiation fields do not couple with the Bondi mass-loss formula in any un...
Asymptotically Lifshitz brane-world black holes
Energy Technology Data Exchange (ETDEWEB)
Ranjbar, Arash, E-mail: a_ranjbar@sbu.ac.ir; Sepangi, Hamid Reza, E-mail: hr-sepangi@sbu.ac.ir; Shahidi, Shahab, E-mail: s_shahidi@sbu.ac.ir
2012-12-15
We study the gravity dual of a Lifshitz field theory in the context of a RSII brane-world scenario, taking into account the effects of the extra dimension through the contribution of the electric part of the Weyl tensor. We study the thermodynamical behavior of such asymptotically Lifshitz black holes. It is shown that the entropy imposes the critical exponent z to be bounded from above. This maximum value of z corresponds to a positive infinite entropy as long as the temperature is kept positive. The stability and phase transition for different spatial topologies are also discussed. - Highlights: Black-Right-Pointing-Pointer Studying the gravity dual of a Lifshitz field theory in the context of brane-world scenario. Black-Right-Pointing-Pointer Studying the thermodynamical behavior of asymptotically Lifshitz black holes. Black-Right-Pointing-Pointer Showing that the entropy imposes the critical exponent z to be bounded from above. Black-Right-Pointing-Pointer Discussing the phase transition for different spatial topologies.
Vacuum polarization in asymptotically Lifshitz black holes
Quinta, Gonçalo M.; Flachi, Antonino; Lemos, José P. S.
2016-06-01
There has been considerable interest in applying the gauge-gravity duality to condensed matter theories with particular attention being devoted to gravity duals (Lifshitz spacetimes) of theories that exhibit anisotropic scaling. In this context, black hole solutions with Lifshitz asymptotics have also been constructed, focused on incorporating finite temperature effects. The goal here is to look at quantum polarization effects in these spacetimes and, to this aim, we develop a way to compute the coincidence limit of the Green's function for massive, nonminimally coupled scalar fields, adapting to the present situation the analysis developed for the case of asymptotically anti-de Sitter black holes. The basics are similar to previous calculations; however, in the Lifshitz case, one needs to extend the previous results to include a more general form for the metric and dependence on the dynamical exponent. All formulas are shown to reduce to the anti-de Sitter (AdS) case studied before once the value of the dynamical exponent is set to unity and the metric functions are accordingly chosen. The analytical results we present are general and can be applied to a variety of cases, in fact, to all spherically symmetric Lifshitz black hole solutions. We also implement the numerical analysis choosing some known Lifshitz black hole solutions as illustration.
Vacuum polarization in asymptotically Lifshitz black holes
Quinta, Gonçalo M; Lemos, José P S
2016-01-01
There has been considerable interest in applying the gauge/gravity duality to condensed matter theories with particular attention being devoted to gravity duals (Lifshitz spacetimes) of theories that exhibit anisotropic scaling. In this context, black hole solutions with Lifshitz asymptotics have also been constructed aiming at incorporating finite temperature effects. The goal here is to look at quantum polarization effects in these spacetimes, and to this aim, we develop a way to compute the coincidence limit of the Green's function for massive, non-minimally coupled scalar fields, adapting to the present situation the analysis developed for the case of asymptotically anti de Sitter black holes. The basics are similar to previous calculations, however in the Lifshitz case one needs to extend previous results to include a more general form for the metric and dependence on the dynamical exponent. All formulae are shown to reduce to the AdS case studied before once the value of the dynamical exponent is set to...
Lattice Quantum Gravity and Asymptotic Safety
Laiho, J; Coumbe, D; Du, D; Neelakanta, J T
2016-01-01
We study the nonperturbative formulation of quantum gravity defined via Euclidean dynamical triangulations (EDT) in an attempt to make contact with Weinberg's asymptotic safety scenario. We find that a fine-tuning is necessary in order to recover semiclassical behavior. Such a fine-tuning is generally associated with the breaking of a target symmetry by the lattice regulator; in this case we identify the target symmetry as the Hamiltonian canonical symmetry, which is closely related to, but not identical to, four-dimensional diffeomorphism invariance. After introducing and fine-tuning a non-trivial local measure term, we find no barrier to taking a continuum limit, and we find evidence that four-dimensional, semiclassical geometries are recovered at long distance scales in the continuum limit. We also find that the spectral dimension at short distance scales is consistent with 3/2, a value that could resolve the tension between asymptotic safety and the holographic entropy scaling of black holes. We argue tha...
DEFF Research Database (Denmark)
Delgrange, Etienne; Raverot, Gerald; Bex, Marie;
2014-01-01
OBJECTIVE: To characterise distinctive clinical features of giant prolactinomas in women. DESIGN: A multicentre, retrospective case series and literature review. METHODS: We collected data from 15 female patients with a pituitary tumour larger than 4 cm and prolactin levels above 1000 μg/l and id......OBJECTIVE: To characterise distinctive clinical features of giant prolactinomas in women. DESIGN: A multicentre, retrospective case series and literature review. METHODS: We collected data from 15 female patients with a pituitary tumour larger than 4 cm and prolactin levels above 1000 μg....../l and identified 19 similar cases from the literature; a gender-based comparison of the frequency and age distribution was obtained from a literature review. RESULTS: The initial PubMed search using the term 'giant prolactinomas' identified 125 patients (13 women) responding to the inclusion criteria. The female......:male ratio was 1:9. Another six female patients were found by extending the literature search, while our own series added 15 patients. The median age at diagnosis was 44 years in women compared with 35 years in men (Pwomen (n=34), we...
Liapunov structure and asymptotic expressions of linear differential systems
Institute of Scientific and Technical Information of China (English)
高维新
1996-01-01
With a view to the researches on asymptotic properties for linear differential systems,the characteristic number is transformed into functional dass which can indicate the change trend of the norm for solution,so the invariant structure is given under Liapunov changes and feasible computational method of asymptotic expressions for linear differential systems with variant coefficients,and various asymptotic conclusions induding the necessary and sufllcient conditions of stability are got.
Numerical integration of asymptotic solutions of ordinary differential equations
Thurston, Gaylen A.
1989-01-01
Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.
Asymptotic analysis of the Nörlund and Stirling polynomials
Directory of Open Access Journals (Sweden)
Mark Daniel Ward
2012-04-01
Full Text Available We provide a full asymptotic analysis of the N{\\"o}rlund polynomials and Stirling polynomials. We give a general asymptotic expansion---to any desired degree of accuracy---when the parameter is not an integer. We use singularity analysis, Hankel contours, and transfer theory. This investigation was motivated by a need for such a complete asymptotic description, with parameter 1/2, during this author's recent solution of Wilf's 3rd (previously Unsolved Problem.
Singularities in asymptotically anti-de Sitter spacetimes
Ishibashi, Akihiro; Maeda, Kengo
2012-01-01
We consider singularity theorems in asymptotically anti-de Sitter (AdS) spacetimes. In the first part, we discuss the global methods used to show geodesic incompleteness and see that when the conditions imposed in Hawking and Penrose's singularity theorem are satisfied, a singularity must appear in asymptotically AdS spacetime. The recent observations of turbulent instability of asymptotically AdS spacetimes indicate that AdS spacetimes are generically singular even if a closed trapped surfac...
Asymptotic parameterization in inverse limit spaces of dendrites
Hamilton, Brent
2012-01-01
In this paper, we study asymptotic behavior arising in inverse limit spaces of dendrites. In particular, the inverse limit is constructed with a single unimodal bonding map, for which points have unique itineraries and the critical point is periodic. Using symbolic dynamics, sufficient conditions for two rays in the inverse limit space to have asymptotic parameterizations are given. Being a topological invariant, the classification of asymptotic parameterizations would be a useful tool when d...
ASYMPTOTIC EXPANSION AND ESTIMATE OF THE LANDAU CONSTANT
Institute of Scientific and Technical Information of China (English)
A.Eisinberg; G.Franzè; N.Salerno
2001-01-01
Properties of Landau constant are investigated in this note.A new representation in terms of a hypergeometric function 3F2 is given and a property defining the family of asymptotic sequences of Landau constant is formalized.Moreover,we give an other asymptotic expansion of Landau constant by using asymptotic expansion of the ratio of gamma functions in the sense of Poincaré due to Tricomi and Erdélyi.
Methods and Technologies Branch (MTB)
The Methods and Technologies Branch focuses on methods to address epidemiologic data collection, study design and analysis, and to modify technological approaches to better understand cancer susceptibility.
On the asymptotic methods for nuclear collective models
Gheorghe, A. C.; Raduta, A. A.
2009-01-01
Contractions of orthogonal groups to Euclidean groups are applied to analytic descriptions of nuclear quantum phase transitions. The semiclassical asymptotic of multipole collective Hamiltonians are also investigated.
Asymptotic stability of Riemann waves for conservation laws
Chen, G.-Q.; Frid, H.; Marta
We are concerned with the asymptotic behavior of entropy solutions of conservation laws. A new notion about the asymptotic stability of Riemann solutions is introduced, and corresponding analytical frameworks are developed. The correlation between the asymptotic problem and many important topics in conservation laws and nonlinear analysis is recognized and analyzed, such as zero dissipation limits, uniqueness of entropy solutions, entropy analysis, and divergence-measure fields in L∞ . Then this theory is applied to understanding the asymptotic behavior of entropy solutions for many important systems of conservation laws.
ASYMPTOTIC EXPANSIONS OF ZEROS FOR KRAWTCHOUK POLYNOMIALS WITH ERROR BOUNDS
Institute of Scientific and Technical Information of China (English)
ZHU Xiao-feng; LI Xiu-chun
2006-01-01
Krawtchouk polynomials are frequently applied in modern physics. Based on the results which were educed by Li and Wong, the asymptotic expansions of Krawtchouk polynomials are improved by using Airy function, and uniform asymptotic expansions are got. Furthermore, the asymptotic expansions of the zeros for Krawtchouk polynomials are again deduced by using the property of the zeros of Airy function, and their corresponding error bounds are discussed. The obtained results give the asymptotic property of Krawtchouk polynomials with their zeros, which are better than the results educed by Li and Wong.
On the length of an external branch in the Beta-coalescent
Dhersin, Jean-Stephane; Siri-Jegousse, Arno; Yuan, Linglong
2012-01-01
In this paper, we consider Beta$(2-{\\alpha},{\\alpha})$ (with $1<{\\alpha}<2$) and related ${\\Lambda}$-coalescents. If $T^{(n)}$ denotes the length of an external branch of the $n$-coalescent, we prove the convergence of $n^{{\\alpha}-1}T^{(n)}$ when $n$ tends to $ \\infty $, and give the limit. To this aim, we give asymptotics for the number $\\sigma^{(n)}$ of collisions which occur in the $n$-coalescent until the end of the chosen external branch, and for the block counting process associated with the $n$-coalescent.
Narski Jacek; Negulescu Claudia; Maldarella Dario; Degond Pierre; Deluzet Fabrice; Parisot Martin
2011-01-01
International audience In this paper a strategy is investigated for the spatial coupling of an asymptotic preserving scheme with the asymptotic limit model, associated to a singularly perturbed, highly anisotropic, ellip-tic problem. This coupling strategy appears to be very advantageous as compared with the numerical discretization of the initial singular perturbation model or the purely asymptotic preserving scheme introduced in previous works [3, 5]. The model problem addressed in this ...
Re-inflated Warm Jupiters around Red Giants
Lopez, Eric D.; Fortney, Jonathan J.
2016-02-01
Since the discovery of the first transiting hot Jupiters, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of hot Jupiter radius anomalies scales strongly with a planet's level of irradiation and numerous models like tidal heating, ohmic dissipation, and thermal tides have since been developed to help explain these inflated radii. In general, however, these models can be grouped into two broad categories: models that directly inflate planetary radii by depositing a fraction of the incident irradiation into the interior and models that simply slow a planet's radiative cooling, allowing it to retain more heat from formation and thereby delay contraction. Here we present a new test to distinguish between these two classes of models. Gas giants orbiting at moderate orbital periods around post-main-sequence stars will experience enormous increases to their irradiation as their host stars move up the sub-giant and red-giant branches. If hot Jupiter inflation works by depositing irradiation into the planet's deep interiors then planetary radii should increase in response to the increased irradiation. This means that otherwise non-inflated gas giants at moderate orbital periods of >10 days can re-inflate as their host stars evolve. Here we explore the circumstances that can lead to the creation of these “re-inflated” gas giants and examine how the existence or absence of such planets can be used to place unique constraints on the physics of the hot Jupiter inflation mechanism. Finally, we explore the prospects for detecting this potentially important undiscovered population of planets.
RE-INFLATED WARM JUPITERS AROUND RED GIANTS
Energy Technology Data Exchange (ETDEWEB)
Lopez, Eric D. [Institute for Astronomy, Royal Observatory Edinburgh, University of Edinburgh, Blackford Hill, Edinburgh (United Kingdom); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)
2016-02-10
Since the discovery of the first transiting hot Jupiters, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of hot Jupiter radius anomalies scales strongly with a planet's level of irradiation and numerous models like tidal heating, ohmic dissipation, and thermal tides have since been developed to help explain these inflated radii. In general, however, these models can be grouped into two broad categories: models that directly inflate planetary radii by depositing a fraction of the incident irradiation into the interior and models that simply slow a planet's radiative cooling, allowing it to retain more heat from formation and thereby delay contraction. Here we present a new test to distinguish between these two classes of models. Gas giants orbiting at moderate orbital periods around post-main-sequence stars will experience enormous increases to their irradiation as their host stars move up the sub-giant and red-giant branches. If hot Jupiter inflation works by depositing irradiation into the planet's deep interiors then planetary radii should increase in response to the increased irradiation. This means that otherwise non-inflated gas giants at moderate orbital periods of >10 days can re-inflate as their host stars evolve. Here we explore the circumstances that can lead to the creation of these “re-inflated” gas giants and examine how the existence or absence of such planets can be used to place unique constraints on the physics of the hot Jupiter inflation mechanism. Finally, we explore the prospects for detecting this potentially important undiscovered population of planets.
Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G
1996-01-01
From 64492 selected \\tau-pair events, produced at the Z^0 resonance, the measurement of the tau decays into hadrons from a global analysis using 1991, 1992 and 1993 ALEPH data is presented. Special emphasis is given to the reconstruction of photons and \\pi^0's, and the removal of fake photons. A detailed study of the systematics entering the \\pi^0 reconstruction is also given. A complete and consistent set of tau hadronic branching ratios is presented for 18 exclusive modes. Most measurements are more precise than the present world average. The new level of precision reached allows a stringent test of \\tau-\\mu universality in hadronic decays, g_\\tau/g_\\mu \\ = \\ 1.0013 \\ \\pm \\ 0.0095, and the first measurement of the vector and axial-vector contributions to the non-strange hadronic \\tau decay width: R_{\\tau ,V} \\ = \\ 1.788 \\ \\pm \\ 0.025 and R_{\\tau ,A} \\ = \\ 1.694 \\ \\pm \\ 0.027. The ratio (R_{\\tau ,V} - R_{\\tau ,A}) / (R_{\\tau ,V} + R_{\\tau ,A}), equal to (2.7 \\pm 1.3) \\ \\%, is a measure of the importance of Q...
Fringe trees, Crump-Mode-Jagers branching processes and $m$-ary search trees
Holmgren, Cecilia; Janson, Svante
2016-01-01
This survey studies asymptotics of random fringe trees and extended fringe trees in random trees that can be constructed as family trees of a Crump-Mode-Jagers branching process, stopped at a suitable time. This includes random recursive trees, preferential attachment trees, fragmentation trees, binary search trees and (more generally) $m$-ary search trees, as well as some other classes of random trees. We begin with general results, mainly due to Aldous (1991) and Jagers and Nerman (1984). T...
Asymptotic stability of steady compressible fluids
Padula, Mariarosaria
2011-01-01
This volume introduces a systematic approach to the solution of some mathematical problems that arise in the study of the hyperbolic-parabolic systems of equations that govern the motions of thermodynamic fluids. It is intended for a wide audience of theoretical and applied mathematicians with an interest in compressible flow, capillarity theory, and control theory. The focus is particularly on recent results concerning nonlinear asymptotic stability, which are independent of assumptions about the smallness of the initial data. Of particular interest is the loss of control that sometimes results when steady flows of compressible fluids are upset by large disturbances. The main ideas are illustrated in the context of three different physical problems: (i) A barotropic viscous gas in a fixed domain with compact boundary. The domain may be either an exterior domain or a bounded domain, and the boundary may be either impermeable or porous. (ii) An isothermal viscous gas in a domain with free boundaries. (iii) A h...
Motion Parallax is Asymptotic to Binocular Disparity
Stroyan, Keith
2010-01-01
Researchers especially beginning with (Rogers & Graham, 1982) have noticed important psychophysical and experimental similarities between the neurologically different motion parallax and stereopsis cues. Their quantitative analysis relied primarily on the "disparity equivalence" approximation. In this article we show that retinal motion from lateral translation satisfies a strong ("asymptotic") approximation to binocular disparity. This precise mathematical similarity is also practical in the sense that it applies at normal viewing distances. The approximation is an extension to peripheral vision of (Cormac & Fox's 1985) well-known non-trig central vision approximation for binocular disparity. We hope our simple algebraic formula will be useful in analyzing experiments outside central vision where less precise approximations have led to a number of quantitative errors in the vision literature.
Asymptotically thermal responses for smoothly switched detectors
Fewster, Christopher J; Louko, Jorma
2015-01-01
Thermal phenomena in quantum field theory can be detected with the aid of particle detectors coupled to quantum fields along stationary worldlines, by testing whether the response of such a detector satisfies the detailed balance version of the KMS condition at a constant temperature. This relation holds when the interaction between the field and the detector has infinite time duration. Operationally, however, detectors interact with fields for a finite amount of time, controlled by a switching function of compact support, and the KMS detailed balance condition cannot hold exactly for finite time interactions at arbitrarily large detector energy gap. In this large energy gap regime, we show that, for an adiabatically switched Rindler detector, the Unruh temperature emerges asymptotically after the detector and the field have interacted for a time that is polynomially long in the large energy. We comment on the significance of the adiabaticity assumption in this result.
Loop Quantum Gravity and Asymptotically Flat Spaces
Arnsdorf, Matthias
2002-12-01
Remarkable progress has been made in the field of non-perturbative (loop) quantum gravity in the last decade or so and it is now a rigorously defined kinematical theory (c.f. [5] for a review and references). We are now at the stage where physical applications of loop quantum gravity can be studied and used to provide checks for the consistency of the quantisation programme. Equally, old fundamental problems of canonical quantum gravity such as the problem of time or the interpretation of quantum cosmology need to be reevaluated seriously. These issues can be addressed most profitably in the asymptotically flat sector of quantum gravity. Indeed, it is likely that we should obtain a quantum theory for this special case even if it is not possible to quantise full general relativity. The purpose of this summary is to advertise the extension of loop quantum gravity to this sector that was developed in [1]...
The asymptotic safety scenario in quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Saueressig, Frank [Institute of Physics, University of Mainz, D-55099 Mainz (Germany)
2011-07-01
Asymptotic safety offers the possibility that gravity constitutes a consistent and predictive quantum field theory within Wilsons generalized framework of renormalization. The key ingredient of this scenario is a non-trivial fixed point of the gravitational renormalization group flow which governs the UV behavior of the theory. The fixed point itself thereby guarantees the absence of unphysical UV divergences while its associated finite-dimensional UV-critical surface ensures the predictivity of the resulting quantum theory. This talk summarizes the evidence for the existence of such a fixed point, which emerged from the flow equation for the effective average action, the gravitational beta-functions in 2+{epsilon} dimensions, the 2-Killing vector reduction of the gravitational path-integral and lattice simulations. Possible phenomenological consequences are discussed in detail.
Modeling of nanoplastic by asymptotic homogenization method
Institute of Scientific and Technical Information of China (English)
张为民; 何伟; 李亚; 张平; 张淳源
2008-01-01
The so-called nanoplastic is a new simple name for the polymer/layered silicate nanocomposite,which possesses excellent properties.The asymptotic homogenization method(AHM) was applied to determine numerically the effective elastic modulus of a two-phase nanoplastic with different particle aspect ratios,different ratios of elastic modulus of the effective particle to that of the matrix and different volume fractions.A simple representative volume element was proposed,which is assumed that the effective particles are uniform well-aligned and perfectly bonded in an isotropic matrix and have periodic structure.Some different theoretical models and the experimental results were compared.The numerical results are good in agreement with the experimental results.
Hydrodynamics, resurgence and trans-asymptotics
Basar, Gokce
2015-01-01
The second-order hydrodynamical description of a homogeneous conformal plasma that undergoes a boost- invariant expansion is given by a single nonlinear ordinary differential equation, whose resurgent asymptotic properties we study, developing further the recent work of Heller and Spalinski [Phys. Rev. Lett. 115, 072501 (2015)]. Resurgence clearly identifies the non-hydrodynamic modes that are exponentially suppressed at late times, analogous to the quasi-normal-modes in gravitational language, organizing these modes in terms of a trans-series expansion. These modes are analogs of instantons in semi-classical expansions, where the damping rate plays the role of the instanton action. We show that this system displays the generic features of resurgence, with explicit quantitative relations between the fluctuations about different orders of these non-hydrodynamic modes. The imaginary part of the trans-series parameter is identified with the Stokes constant, and the real part with the freedom associated with init...
Chiral fermions in asymptotically safe quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Meibohm, J. [Gothenburg University, Department of Physics, Goeteborg (Sweden); Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany); Pawlowski, J.M. [Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung mbH, ExtreMe Matter Institute EMMI, Darmstadt (Germany)
2016-05-15
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions. (orig.)
Asymptotic theory of quantum statistical inference
Hayashi, Masahito
Part I: Hypothesis Testing: Introduction to Part I -- Strong Converse and Stein's lemma in quantum hypothesis testing/Tomohiro Ogawa and Hiroshi Nagaoka -- The proper formula for relative entropy and its asymptotics in quantum probability/Fumio Hiai and Dénes Petz -- Strong Converse theorems in Quantum Information Theory/Hiroshi Nagaoka -- Asymptotics of quantum relative entropy from a representation theoretical viewpoint/Masahito Hayashi -- Quantum birthday problems: geometrical aspects of Quantum Random Coding/Akio Fujiwara -- Part II: Quantum Cramèr-Rao Bound in Mixed States Model: Introduction to Part II -- A new approach to Cramèr-Rao Bounds for quantum state estimation/Hiroshi Nagaoka -- On Fisher information of Quantum Statistical Models/Hiroshi Nagaoka -- On the parameter estimation problem for Quantum Statistical Models/Hiroshi Nagaoka -- A generalization of the simultaneous diagonalization of Hermitian matrices and its relation to Quantum Estimation Theory/Hiroshi Nagaoka -- A linear programming approach to Attainable Cramèr-Rao Type Bounds/Masahito Hayashi -- Statistical model with measurement degree of freedom and quantum physics/Masahito Hayashi and Keiji Matsumoto -- Asymptotic Quantum Theory for the Thermal States Family/Masahito Hayashi -- State estimation for large ensembles/Richard D. Gill and Serge Massar -- Part III: Quantum Cramèr-Rao Bound in Pure States Model: Introduction to Part III-- Quantum Fisher Metric and estimation for Pure State Models/Akio Fujiwara and Hiroshi Nagaoka -- Geometry of Quantum Estimation Theory/Akio Fujiwara -- An estimation theoretical characterization of coherent states/Akio Fujiwara and Hiroshi Nagaoka -- A geometrical approach to Quantum Estimation Theory/Keiji Matsumoto -- Part IV: Group symmetric approach to Pure States Model: Introduction to Part IV -- Optimal extraction of information from finite quantum ensembles/Serge Massar and Sandu Popescu -- Asymptotic Estimation Theory for a Finite-Dimensional Pure
Quantum defect theory and asymptotic methods
International Nuclear Information System (INIS)
It is shown that quantum defect theory provides a basis for the development of various analytical methods for the examination of electron-ion collision phenomena, including di-electronic recombination. Its use in conjuction with ab initio calculations is shown to be restricted by problems which arise from the presence of long-range non-Coulomb potentials. Empirical fitting to some formulae can be efficient in the use of computer time but extravagant in the use of person time. Calculations at a large number of energy points which make no use of analytical formulae for resonance structures may be made less extravagant in computer time by the development of more efficient asymptotic methods. (U.K.)
Chiral fermions in asymptotically safe quantum gravity
Meibohm, J.; Pawlowski, J. M.
2016-05-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.
Asymptotic methods in mechanics of solids
Bauer, Svetlana M; Smirnov, Andrei L; Tovstik, Petr E; Vaillancourt, Rémi
2015-01-01
The construction of solutions of singularly perturbed systems of equations and boundary value problems that are characteristic for the mechanics of thin-walled structures are the main focus of the book. The theoretical results are supplemented by the analysis of problems and exercises. Some of the topics are rarely discussed in the textbooks, for example, the Newton polyhedron, which is a generalization of the Newton polygon for equations with two or more parameters. After introducing the important concept of the index of variation for functions special attention is devoted to eigenvalue problems containing a small parameter. The main part of the book deals with methods of asymptotic solutions of linear singularly perturbed boundary and boundary value problems without or with turning points, respectively. As examples, one-dimensional equilibrium, dynamics and stability problems for rigid bodies and solids are presented in detail. Numerous exercises and examples as well as vast references to the relevant Russi...
Vortex shedding by matched asymptotic vortex method
Guo, Xinjun; Mandre, Shreyas
2014-11-01
An extension of the Kutta condition, using matched asymptotic expansion applied to the Navier-Stokes equations, is presented for flow past a smooth body at high Reynolds number. The goal is to study the influence of unsteady fluid dynamical effects like leading edge vortex, unsteady boundary layer separation, etc. In order to capture accurately the location and strength of vortex shedding, the simplified Navier-Stokes equations in the form of boundary layer approximation are solved in the thin inner region close to the solid body. In the outer region far from the structure, the vortex methods are applied, which significantly reduces the computational cost compared to CFD in the whole domain. With this method, the flow past an airfoil with two degrees of freedom, pitching and heaving, is investigated.
Asymptotic Behavior of Excitable Cellular Automata
Durrett, R; Durrett, Richard; Griffeath, David
1993-01-01
Abstract: We study two families of excitable cellular automata known as the Greenberg-Hastings Model (GHM) and the Cyclic Cellular Automaton (CCA). Each family consists of local deterministic oscillating lattice dynamics, with parallel discrete-time updating, parametrized by the range of interaction, the "shape" of its neighbor set, threshold value for contact updating, and number of possible states per site. GHM and CCA are mathematically tractable prototypes for the spatially distributed periodic wave activity of so-called excitable media observed in diverse disciplines of experimental science. Earlier work by Fisch, Gravner, and Griffeath studied the ergodic behavior of these excitable cellular automata on Z^2, and identified two distinct (but closely-related) elaborate phase portraits as the parameters vary. In particular, they noted the emergence of asymptotic phase diagrams (and Euclidean dynamics) in a well-defined threshold-range scaling limit. In this study we present several rigorous results and som...
Chiral fermions in asymptotically safe quantum gravity
Meibohm, Jan
2016-01-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck-scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works \\cite{Christiansen:2015rva, Meibohm:2015twa}, concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models, regardless of the number of fermion flavours. This suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.
Entropy Production during Asymptotically Safe Inflation
Directory of Open Access Journals (Sweden)
Martin Reuter
2011-01-01
Full Text Available The Asymptotic Safety scenario predicts that the deep ultraviolet of Quantum Einstein Gravity is governed by a nontrivial renormalization group fixed point. Analyzing its implications for cosmology using renormalization group improved Einstein equations, we find that it can give rise to a phase of inflationary expansion in the early Universe. Inflation is a pure quantum effect here and requires no inflaton field. It is driven by the cosmological constant and ends automatically when the renormalization group evolution has reduced the vacuum energy to the level of the matter energy density. The quantum gravity effects also provide a natural mechanism for the generation of entropy. It could easily account for the entire entropy of the present Universe in the massless sector.
Traversable asymptotically flat wormholes in Rastall gravity
Moradpour, H
2016-01-01
Having introduced the Rastall gravitational theory, and by virtue of the fact that this theory has two unknown parameters, we take the Newtonian limit to define a new parameter for Rastall gravitational theory; a useful dimensionless parameter for simplifying calculations in the Rastall framework. Equipped with basics of the theory, we study the properties of traversable asymptotically flat wormholes in Rastall framework. Then, we investigate the possibility of supporting such geometries by a source with the same state parameter as that of the baryonic matters. Our survey indicates that the parameters of Rastall theory affect the wormhole parameters. It also shows the weak energy condition is violated for all of the studied cases. We then come to investigate the possibility of supporting such geometries by a source of negative energy density and the same state parameter as that of dark energy. Such dark energy-like sources have positive radial and transverse pressures.
Black holes in Asymptotically Safe Gravity
Saueressig, Frank; D'Odorico, Giulio; Vidotto, Francesca
2015-01-01
Black holes are among the most fascinating objects populating our universe. Their characteristic features, encompassing spacetime singularities, event horizons, and black hole thermodynamics, provide a rich testing ground for quantum gravity ideas. In this note we observe that the renormalization group improved Schwarzschild black holes constructed by Bonanno and Reuter within Weinberg's asymptotic safety program constitute a prototypical example of a Hayward geometry used to model non-singular black holes within quantum gravity phenomenology. Moreover, they share many features of a Planck star: their effective geometry naturally incorporates the one-loop corrections found in the effective field theory framework, their Kretschmann scalar is bounded, and the black hole singularity is replaced by a regular de Sitter patch. The role of the cosmological constant in the renormalization group improvement process is briefly discussed.
Solar-like Oscillations in Low-luminosity Red Giants: First Results from Kepler
DEFF Research Database (Denmark)
Bedding, T. R.; Huber, D.; Stello, D.;
2010-01-01
We have measured solar-like oscillations in red giants using time-series photometry from the first 34 days of science operations of the Kepler Mission. The light curves, obtained with 30 minute sampling, reveal clear oscillations in a large sample of G and K giants, extending in luminosity from...... the red clump down to the bottom of the giant branch. We confirm a strong correlation between the large separation of the oscillations (Δν) and the frequency of maximum power (νmax). We focus on a sample of 50 low-luminosity stars (νmax > 100 μHz, L 30 L ) having high signal-to-noise ratios and showing...... data for asteroseismology of red giants....
Re-inflated Warm Jupiters Around Red Giants
Lopez, Eric D
2015-01-01
Since the discovery of the first transiting hot Jupiters, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of hot Jupiter radius anomalies scales strongly with a planet's level of irradiation and numerous models like tidal heating, ohmic dissipation, and thermal tides have since been developed to help explain these inflated radii. In general however, these models can be grouped into two broad categories: 1) models that directly inflate planetary radii by depositing a fraction of the incident irradiation into the interior and 2) models that simply slow a planet's radiative cooling allowing it to retain more heat from formation and thereby delay contraction. Here we present a new test to distinguish between these two classes of models. Gas giants orbiting at moderate orbital periods around post main sequence stars will experience enormous increases their irradiation as their host stars move up the sub-giant and red-giant branches. If hot Jupite...
Bobev, N. P.; Rashkov, R. C.
2006-01-01
We investigate giant magnons from classical rotating strings in two different backgrounds. First we generalize the solution of Hofman and Maldacena and investigate new magnon excitations of a spin chain which are dual to a string on $R\\times S^5$ with two non-vanishing angular momenta. Alowing string dynamics along the third angle in the five sphere, we find a dispersion relation that reproduces the Hofman and Maldacena and the one found by Dorey for the two spin case. In the second part of t...
Giant Cardiac Cavernous Hemangioma.
Unger, Eric; Costic, Joseph; Laub, Glenn
2015-07-01
We report the case of an asymptomatic giant cardiac cavernous hemangioma in a 71-year-old man. The intracardiac mass was discovered incidentally during surveillance for his prostate cancer; however, the patient initially declined intervention. On presentation to our institution 7 years later, the lesion had enlarged significantly, and the patient consented to excision. At surgery, an 8 × 6.5 × 4.8 cm intracardiac mass located on the inferior heart border was excised with an intact capsule through a median sternotomy approach. The patient had an uneventful postoperative course. We discuss the diagnostic workup, treatment, and characteristics of this rare cardiac tumor. PMID:26140782
GIANT PROSTHETIC VALVE THROMBUS
Directory of Open Access Journals (Sweden)
Prashanth Kumar
2015-04-01
Full Text Available Mechanical prosthetic valves are predisposed to bleeding, thrombosis & thromboembolic complications. Overall incidence of thromboembolic complications is 1% per year who are on oral anticoagulants, whereas bleeding complications incidence is 0.5% to 6.6% per year. 1, 2 Minimization of Scylla of thromboembolic & Charybdis of bleeding complication needs a balancing act of optimal antithrombotic therapy. We are reporting a case of middle aged male patient with prosthetic mitral valve presenting in heart failure. Patient had discontinued anticoagulants, as he had subdural hematoma in the past. He presented to our institute with a giant prosthetic valve thrombus.
Giant Ulcerative Dermatofibroma
Directory of Open Access Journals (Sweden)
Turgut Karlidag
2013-01-01
Full Text Available Dermatofibroma is a slowly growing common benign cutaneous tumor characterized by hard papules and nodules. The rarely seen erosions and ulcerations may cause difficulties in the diagnosis. Dermatofibrosarcoma protuberans, which is clinically and histopathologically of malignant character, displays difficulties in the diagnosis since it has similarities with basal cell carcinoma, epidermoid carcinoma, and sarcomas. Head and neck involvement is very rare. In this study, a giant dermatofibroma case, which is histopathologically, ulcerative dermatofibroma, the biggest lesion of the head and neck region and seen rarely in the literature that has characteristics similar to dermatofibrosarcoma protuberans, has been presented.
Testing the cores of first ascent red-giant stars using the period spacing of g modes
Lagarde, Nadège; Miglio, Andrea; Vrard, Mathieu; Mosser, Benoit
2015-01-01
In the context of the determination of stellar properties using asteroseismology, we study the influence of rotation and convective-core overshooting on the properties of red-giant stars. We used models in order to investigate the effects of these mechanisms on the asymptotic period spacing of gravity modes ($\\Delta \\Pi_1$) of red-giant stars that ignite He burning in degenerate conditions (M$\\lesssim$2.0 M$_{\\odot}$). We also compare the predictions of these models with Kepler observations. For a given $\\Delta\
Famine Threatens the Giant Panda
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Large swathes of arrow bamboo groves at and above 2,700 meters in the Piankou Nature Reserve in Sichuan's Mianyang are producing purple blooms, and some groves have started to wither and die. An absence of bamboo means famine for giant pandas living there. Sichuan has consequently activated its giant panda contingency plan.
Giant Pandas and Their Conservation
Institute of Scientific and Technical Information of China (English)
GarethDavey
2004-01-01
IT is paradoxical that themost well-known conservation symbol in the world,the giant panda, is a criti-cally endangered species.The estimated 1,600 thatremain live in the high-altitude for-ests of southwest China (within theprovinces of Sichuan, Gansu andShaanxi). Giant pandas are popularand elicit affection and admiration
Asymptotic Behavior of Solutions to a Linear Volterra Integrodifferential System
Directory of Open Access Journals (Sweden)
Yue-Wen Cheng
2013-01-01
Full Text Available We investigate the asymptotic behavior of solutions to a linear Volterra integrodifferential system , We show that under some suitable conditions, there exists a solution for the above integrodifferential system, which is asymptotically equivalent to some given functions. Two examples are given to illustrate our theorem.
Asymptotic variance of grey-scale surface area estimators
DEFF Research Database (Denmark)
Svane, Anne Marie
Grey-scale local algorithms have been suggested as a fast way of estimating surface area from grey-scale digital images. Their asymptotic mean has already been described. In this paper, the asymptotic behaviour of the variance is studied in isotropic and sufficiently smooth settings, resulting...
An asymptotic solution of large-N QCD
Directory of Open Access Journals (Sweden)
Bochicchio Marco
2014-01-01
Full Text Available We find an asymptotic solution for two-, three- and multi-point correlators of local gauge-invariant operators, in a lower-spin sector of massless large-N QCD, in terms of glueball and meson propagators, in such a way that the solution is asymptotic in the ultraviolet to renormalization-group improved perturbation theory, by means of a new purely field-theoretical technique that we call the asymptotically-free bootstrap, based on a recently-proved asymptotic structure theorem for two-point correlators. The asymptotically-free bootstrap provides as well asymptotic S-matrix amplitudes in terms of glueball and meson propagators. Remarkably, the asymptotic S-matrix depends only on the unknown particle spectrum, but not on the anomalous dimensions, as a consequence of the LS Z reduction formulae. Very many physics consequences follow, both practically and theoretically. In fact, the asymptotic solution sets the strongest constraints on any actual solution of large-N QCD, and in particular on any string solution.
Asymptotic Hyperstability of Dynamic Systems with Point Delays
Directory of Open Access Journals (Sweden)
M. De la Sen
2005-01-01
Full Text Available It is proved that a linear time-invariant system with internal point delays is asymptotically hyperstable independent of the delays if an associate delay-free system is asymptotically hyperstable and the delayed dynamics are sufficiently small.
Asymptotic behavior of support points for planar curves
Nikonorov, Yu G
2010-01-01
In this paper we prove a universal inequality described the asymptotic behavior of support points for planar continuous curves. As corollaries we get an analogous result for tangent points of differentiable planar curves and some (partially known) assertions on the asymptotic of the mean value points for various classical analytic theorems. Some open questions are formulated.
Numerical and asymptotic aspects of parabolic cylinder functions
Temme, N.M.
2000-01-01
Several uniform asymptotics expansions of the Weber parabolic cylinder functions are considered, one group in terms of elementary functions, another group in terms of Airy functions. Starting point for the discussion are asymptotic expansions given earlier by F.W.J. Olver. Some of his results are
Asymptotic Formula for Quantum Harmonic Oscillator Tunneling Probabilities
Jadczyk, Arkadiusz
2015-10-01
Using simple methods of asymptotic analysis it is shown that for a quantum harmonic oscillator in n-th energy eigenstate the probability of tunneling into the classically forbidden region obeys an unexpected but simple asymptotic formula: the leading term is inversely proportional to the cube root of n.
Asymptotic formula for quantum harmonic oscillator tunneling probabilities
Jadczyk, Arkadiusz
2015-01-01
Using simple methods of asymptotic analysis it is shown that for a quantum harmonic oscillator in n-th energy eigenstate the probability of tunneling into the classically forbidden region obeys an unexpected but simple asymptotic formula: the leading term is inversely proportional to the cube root of n.
Strong Convergence Theorems for Mixed Typ e Asymptotically Nonexpansive Mappings
Institute of Scientific and Technical Information of China (English)
Wei Shi-long; Guo Wei-ping
2015-01-01
The purpose of this paper is to study a new two-step iterative scheme with mean errors of mixed type for two asymptotically nonexpansive self-mappings and two asymptotically nonexpansive nonself-mappings and prove strong convergence theorems for the new two-step iterative scheme in uniformly convex Banach spaces.
Einstein-Yang-Mills theory : I. Asymptotic symmetries
Barnich, Glenn
2013-01-01
Asymptotic symmetries of the Einstein-Yang-Mills system with or without cosmological constant are explicitly worked out in a unified manner. In agreement with a recent conjecture, one finds a Virasoro-Kac-Moody type algebra not only in three dimensions but also in the four dimensional asymptotically flat case.
Uniform asymptotic estimates of transition probabilities on combs
Bertacchi, Daniela; Zucca, Fabio
2000-01-01
We investigate the asymptotical behaviour of the transition probabilities of the simple random walk on the 2-comb. In particular we obtain space-time uniform asymptotical estimates which show the lack of symmetry of this walk better than local limit estimates. Our results also point out the impossibility of getting Jones-type non-Gaussian estimates.
Asymptotic expansions for high-contrast linear elasticity
Poveda, Leonardo A.
2015-03-01
We study linear elasticity problems with high contrast in the coefficients using asymptotic limits recently introduced. We derive an asymptotic expansion to solve heterogeneous elasticity problems in terms of the contrast in the coefficients. We study the convergence of the expansion in the H1 norm. © 2015 Elsevier B.V.
Global asymptotic stability of cellular neural networks with multiple delays
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Global asymptotic stability (GAS) is discussed for cellular neural networks (CNN) with multiple time delays. Several criteria are proposed to ascertain the uniqueness and global asymptotic stability of the equilibrium point for the CNN with delays. These criteria can eliminate the difference between the neuronal excitatory and inhibitory effects. Two examples are presented to demonstrate the effectiveness of the criteria.
Global asymptotic stability of delay BAM neural networks with impulses
Energy Technology Data Exchange (ETDEWEB)
Lou Xuyang [Research Center of Control Science and Engineering, Southern Yangtze University, 1800 Lihu Road, Wuxi, Jiangsu 214122 (China); Cui Baotong [Research Center of Control Science and Engineering, Southern Yangtze University, 1800 Lihu Road, Wuxi, Jiangsu 214122 (China)]. E-mail: btcui@sohu.com
2006-08-15
The global asymptotic stability of delay bi-directional associative memory neural networks with impulses are studied by constructing suitable Lyapunov functional. Sufficient conditions, which are independent to the delayed quantity, are obtained for the global asymptotic stability of the neural networks. Some illustrative examples are given to demonstrate the effectiveness of the obtained results.
Asymptotic behavior of the number of Eulerian orientations of graphs
Isaev, Mikhail
2011-01-01
We consider the class of simple graphs with large algebraic connectivity (the second-smallest eigenvalue of the Laplacian matrix). For this class of graphs we determine the asymptotic behavior of the number of Eulerian orientations. In addition, we establish some new properties of the Laplacian matrix, as well as an estimate of a conditionality of matrices with the asymptotic diagonal predominance
Asymptotic analysis, Working Note No. 1: Basic concepts and definitions
Energy Technology Data Exchange (ETDEWEB)
Garbey, M. [Universite Claude Bernard Lyon 1, 69 - Villeurbanne (France). Lab. d`Analyse Numerique; Kaper, H.G. [Argonne National Lab., IL (United States)
1993-07-01
In this note we introduce the basic concepts of asymptotic analysis. After some comments of historical interest we begin by defining the order relations O, o, and O{sup {number_sign}}, which enable us to compare the asymptotic behavior of functions of a small positive parameter {epsilon} as {epsilon} {down_arrow} 0. Next, we introduce order functions, asymptotic sequences of order functions and more general gauge sets of order functions and define the concepts of an asymptotic approximation and an asymptotic expansion with respect to a given gauge set. This string of definitions culminates in the introduction of the concept of a regular asymptotic expansion, also known as a Poincare expansion, of a function f : (0, {epsilon}{sub o}) {yields} X, where X is a normed vector space of functions defined on a domain D {epsilon} R{sup N}. We conclude the note with the asymptotic analysis of an initial value problem whose solution is obtained in the form of a regular asymptotic expansion.
Eigenvalue spectrum of the spheroidal harmonics: A uniform asymptotic analysis
Hod, Shahar
2015-01-01
The spheroidal harmonics $S_{lm}(\\theta;c)$ have attracted the attention of both physicists and mathematicians over the years. These special functions play a central role in the mathematical description of diverse physical phenomena, including black-hole perturbation theory and wave scattering by nonspherical objects. The asymptotic eigenvalues $\\{A_{lm}(c)\\}$ of these functions have been determined by many authors. However, it should be emphasized that all previous asymptotic analyzes were restricted either to the regime $m\\to\\infty$ with a fixed value of $c$, or to the complementary regime $|c|\\to\\infty$ with a fixed value of $m$. A fuller understanding of the asymptotic behavior of the eigenvalue spectrum requires an analysis which is asymptotically uniform in both $m$ and $c$. In this paper we analyze the asymptotic eigenvalue spectrum of these important functions in the double limit $m\\to\\infty$ and $|c|\\to\\infty$ with a fixed $m/c$ ratio.
Asymptotic admissibility of priors and elliptic differential equations
Hartigan, J A
2010-01-01
We evaluate priors by the second order asymptotic behavior of the corresponding estimators.Under certain regularity conditions, the risk differences between efficient estimators of parameters taking values in a domain D, an open connected subset of R^d, are asymptotically expressed as elliptic differential forms depending on the asymptotic covariance matrix V. Each efficient estimator has the same asymptotic risk as a 'local Bayes' estimate corresponding to a prior density p. The asymptotic decision theory of the estimators identifies the smooth prior densities as admissible or inadmissible, according to the existence of solutions to certain elliptic differential equations. The prior p is admissible if the quantity pV is sufficiently small near the boundary of D. We exhibit the unique admissible invariant prior for V=I,D=R^d-{0). A detailed example is given for a normal mixture model.
Asymptotics for Nonlinear Transformations of Fractionally Integrated Time Series
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The asymptotic theory for nonlinear transformations of fractionally integrated time series is developed. By the use of fractional Occupation Times Formula, various nonlinear functions of fractionally integrated series such as ARFIMA time series are studied, and the asymptotic distributions of the sample moments of such functions are obtained and analyzed. The transformations considered in this paper includes a variety of functions such as regular functions, integrable functions and asymptotically homogeneous functions that are often used in practical nonlinear econometric analysis. It is shown that the asymptotic theory of nonlinear transformations of original and normalized fractionally integrated processes is different from that of fractionally integrated processes, but is similar to the asymptotic theory of nonlinear transformations of integrated processes.
Asymptotic Correction Schemes for Semilocal Exchange-Correlation Functionals
Pan, Chi-Ruei; Chai, Jeng-Da
2013-01-01
Aiming to remedy the incorrect asymptotic behavior of conventional semilocal exchange-correlation (XC) density functionals for finite systems, we propose an asymptotic correction scheme, wherein an exchange density functional whose functional derivative has the correct (-1/r) asymptote can be directly added to any semilocal density functional. In contrast to semilocal approximations, our resulting exchange kernel in reciprocal space exhibits the desirable singularity of the type O(-1/q^2) as q -> 0, which is a necessary feature for describing the excitonic effects in non-metallic solids. By applying this scheme to a popular semilocal density functional, PBE [J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)], the predictions of the properties that are sensitive to the asymptote are significantly improved, while the predictions of the properties that are insensitive to the asymptote remain essentially the same as PBE. Relative to the popular model XC potential scheme, our scheme is sig...
Rapidly Evolving Giant Dermatofibroma
Directory of Open Access Journals (Sweden)
K. J. Lang
2010-01-01
Full Text Available Dermatofibroma, also known as “fibrous histiocytoma”, is a benign dermal or subcutaneous poorly circumscribed proliferation of spindle-shaped fibroblasts and macrophages in the dermis. Although it is commonly present as a brownish nodule the legs of females, it may also arise on the upper extremities, trunk, and rarely on the head. The exact pathogenesis is unclear. However, it is widely believed that the originating insult to the dermis is a folliculitis, an arthropod bite, or an unspecified initial inflammatory condition. Giant dermatofibromas of greater than 5 cm in diameter are rare, with only 22 cases reported in the literature. We present a case of a rapidly evolving pedunculated mass in the groin of a male patient. Histological examination confirmed this to be a giant dermatofibroma. Though this specimen cannot is not confirmed as such, the cellular subtype is sometimes present as a larger lesion with anecdotal reports of local recurrence and distant metastases. The clinical and radiological features which were somewhat suspicious of malignancy are considered in the context of the definitive pathological diagnosis of a benign lesion.
Continuous-state branching processes
Li, Zenghu
2012-01-01
These notes were used in a short graduate course on branching processes the author gave in Beijing Normal University. The following main topics are covered: scaling limits of Galton--Watson processes, continuous-state branching processes, extinction probabilities, conditional limit theorems, decompositions of sample paths, martingale problems, stochastic equations, Lamperti's transformations, independent and dependent immigration processes. Some of the results are simplified versions of those in the author's book "Measure-valued branching Markov processes" (Springer, 2011). We hope these simplified results will set out the main ideas in an easy way and lead the reader to a quick access of the subject.
DEFF Research Database (Denmark)
Risum, Niels; Strauss, David; Sogaard, Peter;
2013-01-01
The relationship between myocardial electrical activation by electrocardiogram (ECG) and mechanical contraction by echocardiography in left bundle-branch block (LBBB) has never been clearly demonstrated. New strict criteria for LBBB based on a fundamental understanding of physiology have recently...
Asymptotics of Entropy Rate in Special Families of Hidden Markov Chains
Han, Guangyue
2008-01-01
We derive an asymptotic formula for entropy rate of a hidden Markov chain around a "weak Black Hole". We also discuss applications of the asymptotic formula to the asymptotic behaviors of certain channels.
Branch facial nerve trauma after superficial temporal artery biopsy: a case report
Directory of Open Access Journals (Sweden)
Rison Richard A
2011-01-01
Full Text Available Abstract Introduction Giant cell arteritis is an emergency requiring prompt diagnosis and treatment. Superficial temporal artery biopsy is the gold diagnostic standard. Complications are few and infrequent; however, facial nerve injury has been reported, leaving an untoward cosmetic outcome. This case report is to the best of our knowledge only the fourth one presented in the available literature so far regarding facial nerve injury from superficial temporal artery biopsy. Case presentation A 73-year-old Caucasian woman presented for neurological evaluation regarding eyebrow and facial asymmetry after a superficial temporal artery biopsy for presumptive giant cell arteritis-induced cephalalgia. Conclusion Damage to branches of the facial nerve may occur after superficial temporal artery biopsy, resulting in eyebrow droop. Although an uncommon and sparsely reported complication, all clinicians of various specialties involved in the care of these patients should be aware of this given the gravity of giant cell arteritis and the widespread use of temporal artery biopsy.
Qualitative and Asymptotic Theory of Detonations
Faria, Luiz
2014-11-09
Shock waves in reactive media possess very rich dynamics: from formation of cells in multiple dimensions to oscillating shock fronts in one-dimension. Because of the extreme complexity of the equations of combustion theory, most of the current understanding of unstable detonation waves relies on extensive numerical simulations of the reactive compressible Euler/Navier-Stokes equations. Attempts at a simplified theory have been made in the past, most of which are very successful in describing steady detonation waves. In this work we focus on obtaining simplified theories capable of capturing not only the steady, but also the unsteady behavior of detonation waves. The first part of this thesis is focused on qualitative theories of detonation, where ad hoc models are proposed and analyzed. We show that equations as simple as a forced Burgers equation can capture most of the complex phenomena observed in detonations. In the second part of this thesis we focus on rational theories, and derive a weakly nonlinear model of multi-dimensional detonations. We also show, by analysis and numerical simulations, that the asymptotic equations provide good quantitative predictions.
Extended Analytic Device Optimization Employing Asymptotic Expansion
Mackey, Jonathan; Sehirlioglu, Alp; Dynsys, Fred
2013-01-01
Analytic optimization of a thermoelectric junction often introduces several simplifying assumptionsincluding constant material properties, fixed known hot and cold shoe temperatures, and thermallyinsulated leg sides. In fact all of these simplifications will have an effect on device performance,ranging from negligible to significant depending on conditions. Numerical methods, such as FiniteElement Analysis or iterative techniques, are often used to perform more detailed analysis andaccount for these simplifications. While numerical methods may stand as a suitable solution scheme,they are weak in gaining physical understanding and only serve to optimize through iterativesearching techniques. Analytic and asymptotic expansion techniques can be used to solve thegoverning system of thermoelectric differential equations with fewer or less severe assumptionsthan the classic case. Analytic methods can provide meaningful closed form solutions and generatebetter physical understanding of the conditions for when simplifying assumptions may be valid.In obtaining the analytic solutions a set of dimensionless parameters, which characterize allthermoelectric couples, is formulated and provide the limiting cases for validating assumptions.Presentation includes optimization of both classic rectangular couples as well as practically andtheoretically interesting cylindrical couples using optimization parameters physically meaningful toa cylindrical couple. Solutions incorporate the physical behavior for i) thermal resistance of hot andcold shoes, ii) variable material properties with temperature, and iii) lateral heat transfer through legsides.
Asymptotic Orbits in Barred Spiral Galaxies
Harsoula, Maria; Contopoulos, George
2010-01-01
We study the formation of the spiral structure of barred spiral galaxies, using an $N$-body model. The evolution of this $N$-body model in the adiabatic approximation maintains a strong spiral pattern for more than 10 bar rotations. We find that this longevity of the spiral arms is mainly due to the phenomenon of stickiness of chaotic orbits close to the unstable asymptotic manifolds originated from the main unstable periodic orbits, both inside and outside corotation. The stickiness along the manifolds corresponding to different energy levels supports parts of the spiral structure. The loci of the disc velocity minima (where the particles spend most of their time, in the configuration space) reveal the density maxima and therefore the main morphological structures of the system. We study the relation of these loci with those of the apocentres and pericentres at different energy levels. The diffusion of the sticky chaotic orbits outwards is slow and depends on the initial conditions and the corresponding Jaco...
Asymptotic dynamics of inertial particles with memory
Langlois, Gabriel Provencher; Haller, George
2014-01-01
Recent experimental and numerical observations have shown the significance of the Basset--Boussinesq memory term on the dynamics of small spherical rigid particles (or inertial particles) suspended in an ambient fluid flow. These observations suggest an algebraic decay to an asymptotic state, as opposed to the exponential convergence in the absence of the memory term. Here, we prove that the observed algebraic decay is a universal property of the Maxey--Riley equation. Specifically, the particle velocity decays algebraically in time to a limit that is $\\mathcal O(\\epsilon)$-close to the fluid velocity, where $0<\\epsilon\\ll 1$ is proportional to the square of the ratio of the particle radius to the fluid characteristic length-scale. These results follows from a sharp analytic upper bound that we derive for the particle velocity. For completeness, we also present a first proof of existence and uniqueness of global solutions to the Maxey--Riley equation, a nonlinear system of fractional-order differential equ...
Truly Minimal Unification Asymptotically Strong Panacea ?
Aulakh, Charanjit S
2002-01-01
We propose Susy GUTs have a UV {\\it{attractor}} at $E\\sim \\Lambda_{cU} \\sim 10^{17} GeV $ where gauge symmetries ``confine'' forming singlet condensates at scales $E\\sim\\Lambda_{cU}$. The length $l_U\\sim \\Lambda_{cU}^{-1}$ characterizies the {\\it{size}} of gauge non- singlet particles yielding a picture dual to the Dual Standard model of Vachaspati. This Asymptotic Slavery (AS) fixed point is driven by realistic Fermion Mass(FM) Higgs content which implies AS. This defines a dynamical morphogenetic scenario dependent on the dynamics of UV strong N=1 Susy Gauge-Chiral(SGC) theories. Such systems are already understood in the AF case but ignored in the AS case. Analogy to the AFSGC suggests the perturbative SM gauge group of the Grand Desert confines at GUT scales i.e GUT symmetry is ``non-restored''. Restoration before confinement and self-inconsistency are the two other (less likely) logical possibilities. Truly Minimal (TM) SU(5) and SO(10) models with matter and FM Higgs only are defined; AM (adjoint multip...
Asymptotic dynamics of reflecting spiral waves.
Langham, Jacob; Biktasheva, Irina; Barkley, Dwight
2014-12-01
Resonantly forced spiral waves in excitable media drift in straight-line paths, their rotation centers behaving as pointlike objects moving along trajectories with a constant velocity. Interaction with medium boundaries alters this velocity and may often result in a reflection of the drift trajectory. Such reflections have diverse characteristics and are known to be highly nonspecular in general. In this context we apply the theory of response functions, which via numerically computable integrals, reduces the reaction-diffusion equations governing the whole excitable medium to the dynamics of just the rotation center and rotation phase of a spiral wave. Spiral reflection trajectories are computed by this method for both small- and large-core spiral waves in the Barkley model. Such calculations provide insight into the process of reflection as well as explanations for differences in trajectories across parameters, including the effects of incidence angle and forcing amplitude. Qualitative aspects of these results are preserved far beyond the asymptotic limit of weak boundary effects and slow resonant drift. PMID:25615159
Thermodynamics of Vacuum of Asymptotic Subspace
Bogdanov, A V; Bogdanov, Alexander V.; Gevorkyan, Ashot S.
1997-01-01
The system of oscillator interacting with vacuum is considered as a problem of random motion of quantum reactive harmonic oscillator (QRHO). It is formulated in terms of a wave functional regarded as complex probability process in the extended space. This wave functional obeys some stochastic differential equation (SDE). Based on the nonlinear Langevin type SDE of second order, introduced in the functional space R{W(t)}, the variables in original equation are separated. The general measure in the space R{W(t)} of the Fokker-Planck type is obtained and expression for total wave function (wave mixture) of random QRHO is constructed as functional expansion over the stochastic basis set. The pertinent transition matrix S_br is constructed. For Wiener type measure W(t) of functional space the exact representation for ''vacuum-vacuum'' transition probability is obtained. The thermodynamics of vacuum is described in detail for the asymptotic space R1_as. The exact values for Energy, shift and expansion of ground sta...
Asymptotic Solutions of Serial Radial Fuel Shuffling
Directory of Open Access Journals (Sweden)
Xue-Nong Chen
2015-12-01
Full Text Available In this paper, the mechanism of traveling wave reactors (TWRs is investigated from the mathematical physics point of view, in which a stationary fission wave is formed by radial fuel drifting. A two dimensional cylindrically symmetric core is considered and the fuel is assumed to drift radially according to a continuous fuel shuffling scheme. A one-group diffusion equation with burn-up dependent macroscopic coefficients is set up. The burn-up dependent macroscopic coefficients were assumed to be known as functions of neutron fluence. By introducing the effective multiplication factor keff, a nonlinear eigenvalue problem is formulated. The 1-D stationary cylindrical coordinate problem can be solved successively by analytical and numerical integrations for associated eigenvalues keff. Two representative 1-D examples are shown for inward and outward fuel drifting motions, respectively. The inward fuel drifting has a higher keff than the outward one. The 2-D eigenvalue problem has to be solved by a more complicated method, namely a pseudo time stepping iteration scheme. Its 2-D asymptotic solutions are obtained together with certain eigenvalues keff for several fuel inward drifting speeds. Distributions of the neutron flux, the neutron fluence, the infinity multiplication factor kinf and the normalized power are presented for two different drifting speeds.
A CN Band Survey of Red Giants in the Globular Cluster M53
Martell, S. L.; Smith, G. H.
2004-12-01
We investigate the star-to-star variations in λ 3883 CN bandstrength among red giant stars in the low-metallicity globular cluster M53 ([Fe/H] = --2.0). Our data were taken with the Kast spectrograph on the 3-meter Shane telescope at Lick Observatory in April 2001. Star-to-star variations in CN bandstrength are common in intermediate- and high-metallicity globular clusters ([Fe/H] ≥ --1.6). Our data were obtained to test whether that variation will also be present in a low-metallicity globular cluster, or whether it will be suppressed by the overall lack of metals in the stars. Our preliminary result is that the λ 3883 CN band is weak in our program stars, which span the brightest magnitude of the red giant branch. On visual inspection, the M53 giants appear to be similar in their CN bandstrength to the four CN-weak giants in NGC 6752 whose average spectrum is plotted in Fig. 4 of Norris et al. (1981, ApJ, 244, 205). This work is planned to form part of a larger study of the metallicity dependence of CN bandstrength and carbon abundance behavior on the upper giant branch of globular clusters. This work is supported by NSF grant AST 00-98453 and by an award from the ARCS foundation, Northern California Chapter.
Radiation effects on branched polysilanes
Energy Technology Data Exchange (ETDEWEB)
Maeda, K.; Seki, S.; Tagawa, S. [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Shibata, H.; Iwai, T. [Tokyo Univ. (Japan). Research Center for Nuclear Science and Technology
2000-03-01
We observed crosslinking and scission caused by gamma radiation in linear and branched polysilanes which have from 5% to 33% of the branching points. The crosslinking reactions become predominant for the irradiation with branching density increasing. The cleavage did not take place exclusively at the branching points and branching polysilanes are sensitive to radiation extraordinary as compared with linear polysilane from a careful study of the radiolysis products of a series of polysilanes. This is due to the increasing Si {center_dot} contributing to the crosslinking reaction and that they are not resonance-stabilized by double bonds as the reaction mechanism in the irradiated polysilanes. However, the gelation curve in linear PMPS irradiated by 2 MeV He{sup +} is almost consistent with that in branching PMPS, indicating that the size of chemical track is responsible for the gel fraction. The crosslinking G value for high molecular weight PMPS irradiated by 2 MeV He{sup +} was drastically decreased as compared with that for low molecular weight. It suggests that there are a large number of intramolecular crosslinking points for high molecular weight PMPS. (author)