Introduction to Asymptotic Giant Branch Stars
El Eid, Mounib F.
2016-04-01
A brief introduction on the main characteristics of the asymptotic giant branch stars (briefly: AGB) is presented. We describe a link to observations and outline basic features of theoretical modeling of these important evolutionary phases of stars. The most important aspects of the AGB stars is not only because they are the progenitors of white dwarfs, but also they represent the site of almost half of the heavy element formation beyond iron in the galaxy. These elements and their isotopes are produced by the s-process nucleosynthesis, which is a neutron capture process competing with the β- radioactive decay. The neutron source is mainly due to the reaction 13C(α,n)16O reaction. It is still a challenging problem to obtain the right amount of 13 C that can lead to s-process abundances compatible with observation. Some ideas are presented in this context.
Cyanogen in NGC 1851 Red Giant Branch and Asymptotic Giant Branch Stars: Quadrimodal Distributions
DEFF Research Database (Denmark)
Campbell, S. W.; Yong, D.; Wylie-de Boer, E. C.;
2012-01-01
The Galactic globular cluster NGC 1851 has raised much interest since Hubble Space Telescope photometry revealed that it hosts a double subgiant branch. Here we report on our homogeneous study into the cyanogen (CN) band strengths in the red giant branch (RGB) population (17 stars) and asymptotic...
Mass Losing Asymptotic Giant Branch Stars and Supergiants
Whitelock, Patricia A; Höfner, Susanne; Wittkowski, Markus; Zijlstra, Albert A
2016-01-01
This paper presents a summary of four invited and twelve contributed presentations on asymptotic giant branch stars and red supergiants, given over the course of two afternoon splinter sessions at the 19th Cool Stars Workshop. It highlights both recent observations and recent theory, with some emphasis on high spatial resolution, over a wide range of wavelengths. Topics covered include 3D models, convection, binary interactions, mass loss, dust formation and magnetic fields.
Chemical analysis of Asymptotic Giant Branch stars in M62
Lapenna, E; Ferraro, F R; Origlia, L; Lanzoni, B; Massari, D; Dalessandro, E
2015-01-01
We have collected UVES-FLAMES high-resolution spectra for a sample of 6 asymptotic giant branch (AGB) and 13 red giant branch (RGB) stars in the Galactic globular cluster M62 (NGC6266). Here we present the detailed abundance analysis of iron, titanium, and light-elements (O, Na, Al and Mg). For the majority (5 out 6) of the AGB targets we find that the abundances, of both iron and titanium, determined from neutral lines are significantly underestimated with respect to those obtained from ionized features, the latter being, instead, in agreement with those measured for the RGB targets. This is similar to recent findings in other clusters and may suggest the presence of Non-Local Thermodynamical Equilibrium (NLTE) effects. In the O-Na, Al-Mg and Na-Al planes, the RGB stars show the typical correlations observed for globular cluster stars. Instead, all the AGB targets are clumped in the regions where first generation stars are expected to lie, similarly to what recently found for the AGB population of NGC6752. W...
Dusty Mass Loss from Galactic Asymptotic Giant Branch Stars
Sargent, Benjamin A.; Srinivasan, Sundar; Meixner, Margaret; Kastner, Joel H.
2016-06-01
We are probing how mass loss from Asymptotic Giant Branch (AGB) stars depends upon their metallicity. Asymptotic giant branch (AGB) stars are evolved stars that eject large parts of their mass in outflows of dust and gas in the final stages of their lives. Our previous studies focused on mass loss from AGB stars in lower metallicity galaxies: the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC). In our present study, we analyze AGB star mass loss in the Galaxy, with special attention to the Bulge, to investigate how mass loss differs in an overall higher metallicity environment. We construct radiative transfer models of the spectral energy distributions (SEDs) of stars in the Galaxy identified as AGB stars from infrared and optical surveys. Our Magellanic Cloud studies found that the AGB stars with the highest mass loss rates tended to have outflows with carbon-rich dust, and that overall more carbon-rich (C-rich) dust than oxygen-rich (O-rich) was produced by AGB stars in both LMC and SMC. Our radiative transfer models have enabled us to determine reliably the dust chemistry of the AGB star from the best-fit model. For our Galactic sample, we are investigating both the dust chemistries of the AGB stars and their mass-loss rates, to compare the balance of C-rich dust to O-rich dust between the Galactic bulge and the Magellanic Clouds. We are also constructing detailed dust opacity models of AGB stars in the Galaxy for which we have infrared spectra; e.g., from the Spitzer Space Telescope Infrared Spectrograph (IRS). This detailed dust modeling of spectra informs our choice of dust properties to use in radiative transfer modeling of SEDs of Galactic AGB stars. BAS acknowledges funding from NASA ADAP grant NNX15AF15G.
CHEMICAL ANALYSIS OF ASYMPTOTIC GIANT BRANCH STARS IN M62
Energy Technology Data Exchange (ETDEWEB)
Lapenna, E.; Mucciarelli, A.; Ferraro, F. R.; Lanzoni, B.; Dalessandro, E. [Dipartimento di Fisica e Astronomia, Università degli Studi di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Origlia, L.; Massari, D. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani, 1, I-40127 Bologna (Italy)
2015-11-10
We have collected UVES-FLAMES high-resolution spectra for a sample of 6 asymptotic giant branch (AGB) and 13 red giant branch (RGB) stars in the Galactic globular cluster (GC) M62 (NGC 6266). Here we present the detailed abundance analysis of iron, titanium, and light elements (O, Na, Mg, and Al). For the majority (five out of six) of the AGB targets, we find that the abundances of both iron and titanium determined from neutral lines are significantly underestimated with respect to those obtained from ionized features, the latter being, instead, in agreement with those measured for the RGB targets. This is similar to recent findings in other clusters and may suggest the presence of nonlocal thermodynamic equilibrium (NLTE) effects. In the O–Na, Al–Mg, and Na–Al planes, the RGB stars show the typical correlations observed for GC stars. Instead, all the AGB targets are clumped in the regions where first-generation stars are expected to lie, similar to what was recently found for the AGB population of NGC 6752. While the sodium and aluminum abundances could be underestimated as a consequence of the NLTE bias affecting iron and titanium, the oxygen line used does not suffer from the same effects, and the lack of O-poor AGB stars therefore is a solid result. We can thus conclude that none of the investigated AGB stars belongs to the second stellar generation of M62. We also find an RGB star with extremely high sodium abundance ([Na/Fe] = +1.08 dex)
Stellar Models and Yields of Asymptotic Giant Branch Stars
Karakas, Amanda I
2007-01-01
We present stellar yields calculated from detailed models of low and intermediate-mass asymptotic giant branch (AGB) stars. We evolve models with a range of mass from 1 to 6Msun, and initial metallicities from solar to 1/200th of the solar metallicity. Each model was evolved from the zero age main sequence to near the end of the thermally-pulsing AGB phase, and through all intermediate phases including the core He-flash for stars initially less massive than 2.5Msun. For each mass and metallicity, we provide tables containing structural details of the stellar models during the TP-AGB phase, and tables of the stellar yields for 74 species from hydrogen through to sulphur, and for a small number of iron-group nuclei. All tables are available for download. Our results have many applications including use in population synthesis studies and the chemical evolution of galaxies and stellar systems, and for comparison to the composition of AGB and post-AGB stars and planetary nebulae.
Stellar yields from metal-rich asymptotic giant branch models
Karakas, Amanda I
2016-01-01
We present new theoretical stellar yields and surface abundances for three grids of metal-rich asymptotic giant branch (AGB) models. Post-processing nucleosynthesis results are presented for stellar models with initial masses between 1$M_{\\odot}$ and 7.5$M_{\\odot}$ for $Z=0.007$, and 1$M_{\\odot}$ and 8$M_{\\odot}$ for $Z=0.014$ (solar) and $Z=0.03$. We include stellar surface abundances as a function of thermal pulse on the AGB for elements from C to Bi and for a selection of isotopic ratios for elements up to Fe and Ni (e.g., $^{12}$C/$^{13}$C), which can be obtained from observations of molecules in stars and from the laboratory analysis of meteoritic stardust grains. Ratios of elemental abundances of He/H, C/O, and N/O are also included, which are useful for direct comparison to observations of AGB stars and their progeny including planetary nebulae. The integrated elemental stellar yields are presented for each model in the grid for hydrogen, helium and all stable elements from C to Bi. Yields of Li are al...
An HI Imaging Survey of Asymptotic Giant Branch Stars
Matthews, L D; Gerard, E; Johnson, M C
2013-01-01
We present an imaging study of a sample of eight asymptotic giant branch (AGB) stars in the HI 21-cm line. Using observations from the Very Large Array, we have unambiguously detected HI emission associated with the extended circumstellar envelopes of six of the targets. The detected HI masses range from M_HI ~ 0.015-0.055 M_sun. The HI morphologies and kinematics are diverse, but in all cases appear to be significantly influenced by the interaction between the circumstellar envelope and the surrounding medium. Four stars (RX Lep, Y UMa, Y CVn, and V1942 Sgr) are surrounded by detached HI shells ranging from 0.36 to 0.76 pc across. We interpret these shells as resulting from material entrained in a stellar outflow being abruptly slowed at a termination shock where it meets the local medium. RX Lep and TX Psc, two stars with moderately high space velocities (V_space>56 km/s), exhibit extended gaseous wakes (~0.3 and 0.6 pc in the plane of the sky), trailing their motion through space. The other detected star, ...
On Carbon Burning in Super Asymptotic Giant Branch Stars
Farmer, R; Timmes, F X
2015-01-01
We explore the detailed and broad properties of carbon burning in Super Asymptotic Giant Branch (SAGB) stars with 2755 MESA stellar evolution models. The location of first carbon ignition, quenching location of the carbon burning flames and flashes, angular frequency of the carbon core, and carbon core mass are studied as a function of the ZAMS mass, initial rotation rate, and mixing parameters such as convective overshoot, semiconvection, thermohaline and angular momentum transport. In general terms, we find these properties of carbon burning in SAGB models are not a strong function of the initial rotation profile, but are a sensitive function of the overshoot parameter. We quasi-analytically derive an approximate ignition density, $\\rho_{ign} \\approx 2.1 \\times 10^6$ g cm$^{-3}$, to predict the location of first carbon ignition in models that ignite carbon off-center. We also find that overshoot moves the ZAMS mass boundaries where off-center carbon ignition occurs at a nearly uniform rate of $\\Delta M_{\\rm...
Solar-Like Cycle in Asymptotic Giant Branch Stars
Soker, N
2000-01-01
I propose that the mechanism behind the formation of concentric semi-periodic shells found in several planetary nebulae (PNs) and proto-PNs, and around one asymptotic giant branch (AGB) star, is a solar-like magnetic activity cycle in the progenitor AGB stars. The time intervals between consecutive ejection events is about 200-1,000 years, which is assumed to be the cycle period (the full magnetic cycle can be twice as long, as is the 22-year period in the sun). The magnetic field has no dynamical effects; it regulates the mass loss rate by the formation of magnetic cool spots. The enhanced magnetic activity at the cycle maximum results in more magnetic cool spots, which facilitate the formation of dust, hence increasing the mass loss rate. The strong magnetic activity implies that the AGB star is spun up by a companion, via a tidal or common envelope interaction. The strong interaction with a stellar companion explains the observations that the concentric semi-periodic shells are found mainly in bipolar PNs.
Melbourne, J; Williams, B.; Dalcanton, J.; Ammons, S. M.; Max, C.; Koo, D.C.; Girardi, Leo; Dolphin, A.
2010-01-01
We investigate the utility of the asymptotic giant branch (AGB) and the red giant branch (RGB) as probes of the star formation history (SFH) of the nearby (D=2.5 Mpc) dwarf irregular galaxy, KKH 98. Near-infrared (IR) Keck Laser Guide Star Adaptive Optics (AO) images resolve 592 IR bright stars reaching over 1 magnitude below the Tip of the Red Giant Branch. Significantly deeper optical (F475W and F814W) Hubble Space Telescope images of the same field contain over 2500 stars, reaching to the ...
Multiple populations along the asymptotic giant branch of the globular cluster M4
Lardo, C.; Salaris, M.; Savino, A.; Donati, P.; Stetson, P. B.; Cassisi, S.
2017-04-01
Nearly all Galactic globular clusters host stars that display characteristic abundance anticorrelations, like the O-rich/Na-poor pattern typical of field halo stars, together with O-poor/Na-rich additional components. A recent spectroscopic investigation questioned the presence of O-poor/Na-rich stars amongst a sample of asymptotic giant branch (AGB) stars in the cluster M4, at variance with the spectroscopic detection of a O-poor/Na-rich component along both the cluster red giant branch (RGB) and horizontal branch. This is contrary to what is expected from the cluster horizontal branch morphology and horizontal branch stellar evolution models. Here, we have investigated this issue by employing the CUBI = (U - B) - (B - I) index, that previous studies have demonstrated to be very effective in separating multiple populations along both the RGB and AGB sequences. We confirm previous results that the RGB is intrinsically broad in the V-CUBI diagram, with the presence of two components that nicely correspond to the two populations identified by high-resolution spectroscopy. We find that AGB stars are distributed over a wide range of CUBI values, in close analogy with what is observed for the RGB, demonstrating that the AGB of M4 also hosts multiple stellar populations.
Nanni, Ambra; Marigo, Paola; Girardi, Léo
2013-01-01
We extend the formalism presented in our recent calculations of dust ejecta from the Thermally Pulsing Asymptotic Giant Branch (TP-AGB) phase, to the case of super-solar metallicity stars. The TP-AGB evolutionary models are computed with the COLIBRI code. We adopt our preferred scheme for dust growth. For M-giants, we neglect chemisputtering by H$_2$ molecules and, for C-stars we assume a homogeneous growth scheme which is primarily controlled by the carbon over oxygen excess. At super-solar metallicities, dust forms more efficiently and silicates tend to condense significantly closer to the photosphere (r~1.5 R$_*$) - and thus at higher temperatures and densities - than at solar and sub-solar metallicities (r~2-3 R$_*$). In such conditions, the hypothesis of thermal decoupling between gas and dust becomes questionable, while dust heating due to collisions plays an important role. The heating mechanism delays dust condensation to slightly outer regions in the circumstellar envelope. We find that the same mech...
Nanni, Ambra; Marigo, Paola; Girardi, Léo
2013-01-01
We present the dust ejecta of the new stellar models for the Thermally Pulsing Asymptotic Giant Branch (TP-AGB) phase computed with the COLIBRI code. We use a formalism of dust growth coupled with a stationary wind for both M and C-stars. In the original version of this formalism, the most efficient destruction process of silicate dust in M-giants is chemisputtering by H2 molecules. For these stars we find that dust grains can only form at relatively large radial distances (r~5 R*), where they cannot be efficiently accelerated, in agreement with other investigations. In the light of recent laboratory results, we also consider the alternative case that the condensation temperature of silicates is determined only by the competition between growth and free evaporation processes (i.e. no chemisputtering). With this latter approach we obtain dust condensation temperatures that are significantly higher (up to Tcond~1400 K) than those found when chemisputtering is included (Tcond~900 K), and in better agreement with...
Melbourne, J; Dalcanton, J; Ammons, S M; Max, C; Koo, D C; Girardi, Leo; Dolphin, A
2010-01-01
We investigate the utility of the asymptotic giant branch (AGB) and the red giant branch (RGB) as probes of the star formation history (SFH) of the nearby (D=2.5 Mpc) dwarf irregular galaxy, KKH 98. Near-infrared (IR) Keck Laser Guide Star Adaptive Optics (AO) images resolve 592 IR bright stars reaching over 1 magnitude below the Tip of the Red Giant Branch. Significantly deeper optical (F475W and F814W) Hubble Space Telescope images of the same field contain over 2500 stars, reaching to the Red Clump and the Main Sequence turn-off for 0.5 Gyr old populations. Compared to the optical color magnitude diagram (CMD), the near-IR CMD shows significantly tighter AGB sequences, providing a good probe of the intermediate age (0.5 - 5 Gyr) populations. We match observed CMDs with stellar evolution models to recover the SFH of KKH 98. On average, the galaxy has experienced relatively constant low-level star formation (5 x 10^-4 Mo yr^-1) for much of cosmic time. Except for the youngest main sequence populations (age &...
Nanni, Ambra; Bressan, Alessandro; Marigo, Paola; Girardi, Léo
2014-03-01
We extend the formalism presented in our recent calculations of dust ejecta from the Thermally Pulsing Asymptotic Giant Branch (TP-AGB) phase to the case of super-solar metallicity stars. The TP-AGB evolutionary models are computed with the COLIBRI code. We adopt our preferred scheme for dust growth. For M-giants, we neglect chemisputtering by H2 molecules and for C-stars we assume a homogeneous growth scheme which is primarily controlled by the carbon over oxygen excess. At super-solar metallicities, dust forms more efficiently and silicates tend to condense significantly closer to the photosphere (r ˜ 1.5R*) - and thus at higher temperatures and densities - than at solar and sub-solar metallicities (r ˜ 2-3R*). In such conditions, the hypothesis of thermal decoupling between gas and dust becomes questionable, while dust heating due to collisions plays an important role. The heating mechanism delays dust condensation to slightly outer regions in the circumstellar envelope. We find that the same mechanism is not significant at solar and sub-solar metallicities. The main dust products at super-solar metallicities are silicates. We calculate the total dust ejecta and dust-to-gas ejecta, for various values of the stellar initial masses and initial metallicities Z = 0.04, 0.06. Merging these new calculations with those for lower metallicities it turns out that, contrary to what is often assumed, the total dust-to-gas ejecta of intermediate-mass stars exhibit only a weak dependence on the initial metal content.
Evolution and nucleosynthesis of helium-rich asymptotic giant branch models
Shingles, Luke J; Karakas, Amanda I; Stancliffe, Richard J; Lattanzio, John C; Lugaro, Maria
2015-01-01
There is now strong evidence that some stars have been born with He mass fractions as high as $Y \\approx 0.40$ (e.g., in $\\omega$ Centauri). However, the advanced evolution, chemical yields, and final fates of He-rich stars are largely unexplored. We investigate the consequences of He-enhancement on the evolution and nucleosynthesis of intermediate-mass asymptotic giant branch (AGB) models of 3, 4, 5, and 6 M$_\\odot$ with a metallicity of $Z = 0.0006$ ([Fe/H] $\\approx -1.4$). We compare models with He-enhanced compositions ($Y=0.30, 0.35, 0.40$) to those with primordial He ($Y=0.24$). We find that the minimum initial mass for C burning and super-AGB stars with CO(Ne) or ONe cores decreases from above our highest mass of 6 M$_\\odot$ to $\\sim$ 4-5 M$_\\odot$ with $Y=0.40$. We also model the production of trans-Fe elements via the slow neutron-capture process (s-process). He-enhancement substantially reduces the third dredge-up efficiency and the stellar yields of s-process elements (e.g., 90% less Ba for 6 M$_\\o...
Ventura, P; Dell'Agli, F; García-Hernández, D A; Di Criscienzo, M
2015-01-01
We used a new generation of asymptotic giant branch (AGB) stellar models that include dust formation in the stellar winds to find the links between evolutionary models and the observed properties of a homogeneous sample of Large Magellanic Cloud (LMC) planetary nebulae (PNe). Comparison between the evolutionary yields of elements such as CNO and the corresponding observed chemical abundances is a powerful tool to shed light on evolutionary processes such as hot bottom burning (HBB) and third dredge-up (TDU). We found that the occurrence of HBB is needed to interpret the nitrogen-enriched (log(N/H)+12>8) PNe. In particular, N-rich PNe with the lowest carbon content are nicely reproduced by AGB models of mass M >=6 Mo, whose surface chemistry reflects the pure effects of HBB. PNe with log(N/H)+12<7.5 correspond to ejecta of stars that have not experienced HBB, with initial mass below about 3 Mo. Some of these stars show very large carbon abundances, owing to the many TDU episodes experienced. We found from o...
Dust-enshrouded Asymptotic Giant Branch Stars in the Solar Neighbourhood
Olivier, E A; Marang, F; Olivier, Enrico A.; Whitelock, Patricia; Marang, Fred
2001-01-01
A study is made of a sample of 58 dust-enshrouded Asymptotic Giant Branch (AGB) stars (including 2 possible post AGB stars), of which 27 are carbon-rich and 31 are oxygen-rich. These objects were originally identified by Jura & Kleinmann as nearby (within about 1 kpc of the sun) AGB stars with high mass-loss rates, greater than 1E-6 solar masses per year. Ground-based near-infrared photometry, data obtained by IRAS and kinematic data from the literature are combined to investigate the properties of these stars. The light amplitude in the near-infrared is found to be correlated with period, and this amplitude decreases with increasing wavelength. Statistical tests show that there is no reason to suspect any difference in the period distributions of the carbon- and oxygen-rich stars for periods less than 1000 days, and no carbon-rich star has a period longer than 1000 days. The colours are consistent with those of cool stars with evolved circumstellar dust-shells. Luminosities and distances are estimated us...
A Spitzer Space Telescope survey of extreme Asymptotic Giant Branch stars in M32
Jones, O C; Rich, R M; Kemper, F; Boyer, M L; Zijlstra, A A; Bendo, G J
2014-01-01
We investigate the population of cool, evolved stars in the Local Group dwarf elliptical galaxy M32, using Infrared Array Camera observations from the Spitzer Space Telescope. We construct deep mid-infrared colour-magnitude diagrams for the resolved stellar populations within 3.5 arcmin of M32's centre, and identify those stars that exhibit infrared excess. Our data is dominated by a population of luminous, dust-producing stars on the asymptotic giant branch (AGB) and extend to approximately 3 mag below the AGB tip. We detect for the first time a sizeable population of `extreme' AGB stars, highly enshrouded by circumstellar dust and likely completely obscured at optical wavelengths. The total dust-injection rate from the extreme AGB candidates is measured to be $7.5 \\times 10^{-7}$ ${\\rm M}_{\\odot} \\, {\\rm yr}^{-1}$, corresponding to a gas mass-loss rate of $1.5 \\times 10^{-4}$ ${\\rm M}_{\\odot} \\, {\\rm yr}^{-1}$. These extreme stars may be indicative of an extended star-formation epoch between 0.2 and 5 Gyr a...
New light on Galactic post-asymptotic giant branch stars. I. First distance catalogue
Vickers, Shane B; Parker, Ouentin A; Bojicic, Ivan S
2014-01-01
We have commenced a detailed analysis of the known sample of Galactic post-asymptotic giant branch (PAGB) objects compiled in the Toru\\'n catalogue of Szczerba et al., and present, for the first time, homogeneously derived distance determinations for the 209 likely and 87 possible catalogued PAGB stars from that compilation. Knowing distances are essential in determining meaningful physical characteristics for these sources and this has been difficult to determine for most objects previously. The distances were determined by modelling their spectral energy distributions (SED) with multiple black-body curves, and integrating under the overall fit to determine the total distance-dependent flux. This method works because the luminosity of these central stars is very nearly constant from the tip of the AGB phase to the beginning of the white-dwarf cooling track. This then enables us to use a standard-candle luminosity to estimate the SED distances. For Galactic thin disk PAGB objects, we use three luminosity bins...
The Core Mass Growth and Stellar Lifetime of Thermally Pulsing Asymptotic Giant Branch Stars
Kalirai, Jason S; Tremblay, Pier-Emmanuel
2013-01-01
We establish new constraints on the intermediate-mass range of the initial-final mass relation by studying white dwarfs in four young star clusters, and apply the results to study the evolution of stars on the thermally pulsing asymptotic giant branch (TP-AGB). We show that the stellar core mass on the AGB grows rapidly from 10% to 30% for stars with $M_{\\rm initial}$ = 1.6 to 2.0 $M_\\odot$. At larger masses, the core-mass growth decreases steadily to $\\sim$10% at $M_{\\rm initial}$ = 3.4 $M_\\odot$. These observations are in excellent agreement with predictions from the latest TP-AGB evolutionary models in Marigo et al. (2013). We also compare to models with varying efficiencies of the third dredge-up and mass loss, and demonstrate that the process governing the growth of the core is largely the stellar wind, while the third dredge-up plays a secondary, but non-negligible role. Based on the new white dwarf measurements, we perform an exploratory calibration of the most popular mass-loss prescriptions in the li...
Measuring The Mass Loss Evolution at The Tip of The Asymptotic Giant Branch
Sandin, C; Schönberner, D
2009-01-01
In the final stages of stellar evolution low- to intermediate-mass stars lose their envelope in increasingly massive stellar winds. Such winds affect the interstellar medium as well as the circumstellar envelope where planetary nebulae form subsequently. Characteristics of this mass loss depends on both stellar properties and properties of gas and dust in the wind formation region. In a recent study we measure the mass loss evolution, and other properties, using four planetary nebulae in the galactic disk. Specifically we use the method of integral field spectroscopy on faint halos, which are found outside the much brighter central parts of the planetary nebula. Here we present the outcome of our approach. We also make a brief comparison with other existing methods, which, so far, are used to measure previous stages of mass loss on the asymptotic giant branch. We then discuss the occurrence and observables of halos of planetary nebulae. We finish with a discussion on how our observations of the mass loss evol...
A Spitzer Space Telescope Survey of Extreme Asymptotic Giant Branch Stars in M32
Jones, O.C.; McDonald, I.; Rich, R.M.; Kemper, F.; Boyer, M.L.; Zijlstra, A.A.; Bendo, G.J.
2014-01-01
We investigate the population of cool, evolved stars in the Local Group dwarf elliptical galaxy M32, using Infrared Array Camera observations from the Spitzer Space Telescope. We construct deep mid-infrared colour-magnitude diagrams for the resolved stellar populations within 3.5 arcminutes of M32's centre, and identify those stars that exhibit infrared excess. Our data is dominated by a population of luminous, dustproducing stars on the asymptotic giant branch (AGB) and extend to approximately 3 magnitudes below the AGB tip. We detect for the first time a sizeable population of 'extreme' AGB stars, highly enshrouded by circumstellar dust and likely completely obscured at optical wavelengths. The total dust-injection rate from the extreme AGB candidates is measured to be 7.5 x 10 (sup -7) solar masses per year, corresponding to a gas mass-loss rate of 1.5 x 10 (sup -4) solar masses per year. These extreme stars may be indicative of an extended star-formation epoch between 0.2 and 5 billion years ago.
Heavy Element Nucleosynthesis in the Brightest Galactic Asymptotic Giant Branch stars
Karakas, Amanda I; Lugaro, Maria
2012-01-01
We present updated calculations of stellar evolutionary sequences and detailed nucleosynthesis predictions for the brightest asymptotic giant branch (AGB) stars in the Galaxy with masses between 5Msun to 9Msun, with an initial metallicity of Z =0.02 ([Fe/H] = 0.14). In our previous studies we used the Vassiliadis & Wood (1993) mass-loss rate, which stays low until the pulsation period reaches 500 days after which point a superwind begins. Vassiliadis & Wood noted that for stars over 2.5Msun the superwind should be delayed until P ~ 750 days at 5Msun. We calculate evolutionary sequences where we delay the onset of the superwind to pulsation periods of P ~ 700-800 days in models of M = 5, 6, and 7Msun. Post-processing nucleosynthesis calculations show that the 6 and 7Msun models produce the most Rb, with [Rb/Fe] ~ 1 dex, close to the average of most of the Galactic Rb-rich stars ([Rb/Fe] ~ 1.4 plus or minus 0.8 dex). Changing the rate of the 22Ne + alpha reactions results in variations of [Rb/Fe] as lar...
Luminosities of Carbon-rich Asymptotic Giant Branch stars in the Milky Way
Guandalini, Roald
2013-01-01
Stars evolving along the Asymptotic Giant Branch can become Carbon-rich in the final part of their evolution. They replenish the inter-stellar medium with nuclear processed material via strong radiative stellar winds. The determination of the luminosity function of these stars, even if far from being conclusive, is extremely important to test the reliability of theoretical models. In particular, strong constraints on the mixing treatment and the mass-loss rate can be derived. We present an updated Luminosity Function of Galactic Carbon Stars obtained from a re-analysis of available data already published in previous papers. Starting from available near- and mid-infrared photometric data, we re-determine the selection criteria. Moreover, we take advantage from updated distance estimates and Period-Luminosity relations and we adopt a new formulation for the computation of Bolometric Corrections. This leads us to collect an improved sample of carbon-rich sources from which we construct an updated Luminosity Func...
Ventura, Paolo
2010-01-01
We investigate the main physical properties of low-metallicity Asymptotic Giant Branch stars, with the aim of quantifying the uncertainties that presently affect the predicted chemical yields of these stars, associated to mass loss and description of molecular opacities. We find that above a threshold mass, M ~ 3.5Msun for Z=0.001, the results are little dependent on the opacity treatment, as long as hot-bottom burning prevents the surface C/O ratio from exceeding unity; the yields of these massive AGB stars are expected to be mostly determined by the efficiency of convection, with a relatively mild dependence on the mass-loss description. A much higher degree of uncertainty is associated to the yields of less massive models, which critically depend on the adopted molecular opacities. An interval of masses exists, say 2.0-3.0Msun, (the exact range depends on mass loss), in which HBB may be even extinguished following the cooling produced by the opacity of C-bearing molecules. The yields of these stars are the...
Nanni, Ambra; Bressan, Alessandro; Marigo, Paola; Girardi, Léo
2013-09-01
We present the dust ejecta of the new stellar models for the thermally pulsing asymptotic giant branch (TP-AGB) phase computed with the COLIBRI code. We use a formalism of dust growth coupled with a stationary wind for both M- and C-stars. In the original version of this formalism, the most efficient destruction process of silicate dust in M-giants is chemisputtering by H2 molecules. For these stars, we find that dust grains can only form at relatively large radial distances (r ˜ 5R*), where they cannot be efficiently accelerated, in agreement with other investigations. In the light of recent laboratory results, we also consider the alternative case that the condensation temperature of silicates is determined only by the competition between growth and free evaporation processes (i.e. no chemisputtering). With this latter approach we obtain dust condensation temperatures that are significantly higher (up to Tcond ˜ 1400 K) than those found when chemisputtering is included (Tcond ˜ 900 K), and in better agreement with condensation experiments. As a consequence, silicate grains can remain stable in inner regions of the circumstellar envelopes (r ˜ 2 R*), where they can rapidly grow and can be efficiently accelerated. With this modification, our models nicely reproduce the observed trend between terminal velocities and mass-loss rates of Galactic M-giants. For C-stars the formalism is based on the homogeneous growth scheme where the key role is played by the carbon over oxygen excess. The models reproduce fairly well the terminal velocities of Galactic stars and there is no need to invoke changes in the standard assumptions. At decreasing metallicity the carbon excess becomes more pronounced and the efficiency of dust formation increases. This trend could be in tension with recent observational evidence in favour of a decreasing efficiency, at decreasing metallicity. If confirmed by more observational data, it would indicate that either the amount of the carbon
THE EFFECTS OF ROTATION ON s-PROCESS NUCLEOSYNTHESIS IN ASYMPTOTIC GIANT BRANCH STARS
Energy Technology Data Exchange (ETDEWEB)
Piersanti, L.; Cristallo, S.; Straniero, O., E-mail: piersanti@oa-teramo.inaf.it [INAF-Osservatorio Astronomico di Collurania, via Maggini snc, I-64100 Teramo (Italy)
2013-09-10
In this paper, we analyze the effects induced by rotation on low-mass asymptotic giant branch stars. We compute two sets of models, M = 2.0 M{sub Sun} at [Fe/H] = 0 and M = 1.5 M{sub Sun} at [Fe/H] = -1.7, by adopting main-sequence rotation velocities in the range 0-120 km s{sup -1}. At high metallicity, we find that the Goldreich-Schubert-Fricke instability, active at the interface between the convective envelope and the rapid rotating core, contaminates the {sup 13}C-pocket (the major neutron source) with {sup 14}N (the major neutron poison), thus reducing the neutron flux available for the synthesis of heavy elements. As a consequence, the yields of heavy-s elements (Ba, La, Nd, Sm) and, to a lesser extent, those of light-s elements (Sr, Y, Zr) decrease with increasing rotation velocities up to 60 km s{sup -1}. However, for larger initial rotation velocities, the production of light-s and, to a lesser extent, that of heavy-s, begins again to increase, due to mixing induced by meridional circulations. At low metallicity, the effects of meridional circulations are important even at rather low rotation velocity. The combined effect of the Goldreich-Schubert-Fricke instability and meridional circulations determines an increase of light-s and, to a lesser extent, heavy-s elements, while lead is strongly reduced. For both metallicities, the rotation-induced instabilities active during the interpulse phase reduce the neutron-to-seed ratio, so that the spectroscopic indexes [hs/ls] and [Pb/hs] decrease by increasing the initial rotation velocity. Our analysis suggests that rotation could explain the spread in the s-process indexes, as observed in s-process enriched stars at different metallicities.
Institute of Scientific and Technical Information of China (English)
Xun Tu; Zhong-Xiang Wang
2013-01-01
In the Wide-field Infrared Survey Explorer (WISE) all-sky source catalog there are 76 million mid-infrared point sources that were detected in the first three WISE bands and have association with only one 2MASS near-IR source within 3".We search for their identifications in the SIMBAD database and find 3.2 million identified sources.Based on these known sources,we establish three criteria for selecting candidate asymptotic giant branch (AGB) stars in the Galaxy,which are three defined zones in a color-color diagram,Galactic latitude |b| ≤ 20°,and "corrected" WISE third-band W3c≤ 11.Applying these criteria to the WISE+2MASS sources,1.37 million of them are selected.We analyze the WISE third-band W3 distribution of the selected sources,and further establish that W3≤8 is required in order to exclude a large fraction of normal stars from them.We therefore find 0.47 million candidate AGB stars in our Galaxy from the WISE source catalog.Using W3c,we estimate their distances and derive their Galactic distributions.The candidates are generally distributed around the Galactic center uniformly,with 68％ (1-σ) of them within approximately 8 kpc.We discuss the idea that optical spectroscopy can be used to verify the C-rich AGB stars in our candidates,and thus a fraction of them (～10％) will be good targets for the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST)survey that is planned to start in fall of 2012.
Hot Bottom Burning in Asymptotic Giant Branch Stars and the Turbulent Convection Model
D'Antona, Francesca; Mazzitelli, Italo
1996-10-01
We investigate the effect of two different local turbulent convection models on the structure of intermediate-mass stars (IMSs, 3.5 Msun ≤ M ≤7 Msun) in the asymptotic giant branch (AGB) phase where, according to observations, they should experience hot bottom burning (HBB). Evolutionary models adopting either the mixing length theory (MLT) or the Canuto & Mazzitelli (CM) description of stellar convection are discussed. It is found that, while the MLT structures require some degree of tuning to achieve, at the bottom of the convective envelope, the large temperatures required for HBB, the CM structures spontaneously achieve these conditions. Since the observational evidence for HBB (existence of a class of very luminous, lithium-rich AGB stars in the Magellanic Clouds showing low 12C/13C ratios) is quite compelling, the above result provides a further, successful test for the CM convective model, in stellar conditions far from solar. With the aid of the CM model, we then explore a number of problems related to the late evolution of this class of objects, and give first results for (1) the luminosity evolution of IMSs in the AGB phase (core mass-luminosity relation and luminosity range in which HBB occurs) for Population I and Population II structures, (2) the minimum core mass for semidegenerate carbon ignition (˜1.05 Msun), (3) the relation between initial mass and final white dwarf (WD) mass (also based on some observational evidences about the upper AGB stars), and (4) the expected mass function of massive WDs. Confirmation of the theoretical framework could arise from an observational test: the luminosity function of AGB stars is expected to show a gap at Mbol ˜ -6, which would distinguish between the low-luminosity regime, in which AGBs become carbon stars, and the upper luminosities, at which they undergo HBB, have very low 12C/13C ratios, and become lithium rich.
The puzzle of the CNO isotope ratios in asymptotic giant branch carbon stars
Abia, C.; Hedrosa, R. P.; Domínguez, I.; Straniero, O.
2017-02-01
Context. The abundance ratios of the main isotopes of carbon, nitrogen and oxygen are modified by the CNO-cycle in the stellar interiors. When the different dredge-up events mix the burning material with the envelope, valuable information on the nucleosynthesis and mixing processes can be extracted by measuring these isotope ratios. Aims: Previous determinations of the oxygen isotopic ratios in asymptotic giant branch (AGB) carbon stars were at odds with the existing theoretical predictions. We aim to redetermine the oxygen ratios in these stars using new spectral analysis tools and further develop discussions on the carbon and nitrogen isotopic ratios in order to elucidate this problem. Methods: Oxygen isotopic ratios were derived from spectra in the K-band in a sample of galactic AGB carbon stars of different spectral types and near solar metallicity. Synthetic spectra calculated in local thermodynamic equillibrium (LTE) with spherical carbon-rich atmosphere models and updated molecular line lists were used. The CNO isotope ratios derived in a homogeneous way, were compared with theoretical predictions for low-mass (1.5-3 M⊙) AGB stars computed with the FUNS code assuming extra mixing both during the RGB and AGB phases. Results: For most of the stars the 16O/17O/18O ratios derived are in good agreement with theoretical predictions confirming that, for AGB stars, are established using the values reached after the first dredge-up (FDU) according to the initial stellar mass. This fact, as far as the oxygen isotopic ratios are concerned, leaves little space for the operation of any extra mixing mechanism during the AGB phase. Nevertheless, for a few stars with large 16O/17O/18O, the operation of such a mechanism might be required, although their observed 12C/13C and 14N/15N ratios would be difficult to reconcile within this scenario. Furthermore, J-type stars tend to have lower 16O/17O ratios than the normal carbon stars, as already indicated in previous studies
Evolution of thermally pulsing asymptotic giant branch stars - I. The COLIBRI code
Marigo, Paola; Bressan, Alessandro; Nanni, Ambra; Girardi, Léo; Pumo, Maria Letizia
2013-09-01
We present the COLIBRI code for computing the evolution of stars along the thermally pulsing asymptotic giant branch (TP-AGB) phase. Compared to purely synthetic TP-AGB codes, COLIBRI relaxes a significant part of their analytic formalism in favour of a detailed physics applied to a complete envelope model, in which the stellar structure equations are integrated from the atmosphere down to the bottom of the hydrogen-burning shell. This allows us to predict self-consistently: (i) the effective temperature, and more generally the convective envelope and atmosphere structures, correctly coupled to the changes in the surface chemical abundances and gas opacities; (ii) the conditions under which sphericity effects may significantly affect the atmospheres of giant stars; (iii) the core mass-luminosity relation and its possible break-down due to the occurrence of hot-bottom burning (HBB) in the most massive AGB stars, by taking properly into account the nuclear energy generation in the H-burning shell and in the deepest layers of the convective envelope; (iv) the HBB nucleosynthesis via the solution of a complete nuclear network (including the pp chains, and the CNO, NeNa and MgAl cycles) coupled to a diffusive description of mixing, suitable to follow also the synthesis of 7Li via the Cameron-Fowler beryllium transport mechanism; (v) the intershell abundances left by each thermal pulse via the solution of a complete nuclear network applied to a simple model of the pulse-driven convective zone (PDCZ); (vi) the onset and quenching of the third dredge-up, with a temperature criterion that is applied, at each thermal pulse, to the result of envelope integrations at the stage of the post-flash luminosity peak. At the same time, COLIBRI pioneers new techniques in the treatment of the physics of stellar interiors, not yet adopted in full TP-AGB models. It is the first evolutionary code ever to use accurate on-the-fly computation of the equation of state (EoS) for roughly 800
Lapenna, E.; Lardo, C.; Mucciarelli, A.; Salaris, M.; Ferraro, F. R.; Lanzoni, B.; Massari, D.; Stetson, P. B.; Cassisi, S.; Savino, A.
2016-07-01
We derived chemical abundances for C, N, O, Na, Mg, and Al in 20 asymptotic giant branch (AGB) stars in the globular cluster (GC) NGC 6752. All these elements (but Mg) show intrinsic star-to-star variations and statistically significant correlations or anticorrelations analogous to those commonly observed in red giant stars of GCs hosting multiple populations. This demonstrates that, at odds with previous findings, both first- and second-generation (SG) stars populate the AGB of NGC 6752. The comparison with the Na abundances of red giant branch stars in the same cluster reveals that SG stars (with mild Na and He enrichment) do reach the AGB phase. The only objects that are not observed along the AGB of NGC 6752 are stars with extreme Na enhancement. This is also consistent with standard stellar evolution models, showing that highly Na and He enriched stars populate the bluest portion of the horizontal branch and, because of their low stellar masses, evolve directly to the white dwarf cooling sequence, skipping the AGB phase. Based on observations collected at the ESO-VLT under the program 095.D-0320(A).
Lapenna, E; Mucciarelli, A; Salaris, M; Ferraro, F R; Lanzoni, B; Massari, D; Stetson, P B; Cassisi, S; Savino, A
2016-01-01
We derived chemical abundances for C, N, O, Na, Mg and Al in 20 asymptotic giant branch (AGB) stars in the globular cluster NGC 6752. All these elements (but Mg) show intrinsic star-to-star variations and statistically significant correlations or anticorrelations analogous to those commonly observed in red giant stars of globular clusters hosting multiple populations. This demonstrates that, at odds with previous findings, both first and second generation stars populate the AGB of NGC 6752. The comparison with the Na abundances of red giant branch stars in the same cluster reveals that second generation stars (with mild Na and He enrichment) do reach the AGB phase. The only objects that are not observed along the AGB of NGC 6752 are stars with extreme Na enhancement. This is also consistent with standard stellar evolution models, showing that highly Na and He enriched stars populate the bluest portion of the horizontal branch and, because of their low stellar masses, evolve directly to the white dwarf cooling...
Ventura, P; Dell'Agli, F; Boyer, M L; García-Hernández, D A; Di Criscienzo, M; Schneider, R
2015-01-01
We use Spitzer observations of the rich population of Asymptotic Giant Branch stars in the Large Magellanic Cloud (LMC) to test models describing the internal structure and nucleosynthesis of the most massive of these stars, i.e. those with initial mass above $\\sim 4M_{\\odot}$. To this aim, we compare Spitzer observations of LMC stars with the theoretical tracks of Asymptotic Giant Branch models, calculated with two of the most popular evolution codes, that are known to differ in particular for the treatment of convection. Although the physical evolution of the two models are significantly different, the properties of dust formed in their winds are surprisingly similar, as is their position in the colour-colour (CCD) and colour-magnitude (CMD) diagrams obtained with the Spitzer bands. This model independent result allows us to select a well defined region in the ($[3.6]-[4.5], [5.8]-[8.0]$) plane, populated by AGB stars experiencing Hot Bottom Burning, the progeny of stars with mass $M\\sim 5.5M_{\\odot}$. This...
Garcia-Hernandez, D A; Monelli, M; Cassisi, S; Stetson, P B; Zamora, O; Shetrone, M; Lucatello, S
2015-01-01
Galactic globular clusters (GCs) are known to host multiple stellar populations: a first generation with a chemical pattern typical of halo field stars and a second generation (SG) enriched in Na and Al and depleted in O and Mg. Both stellar generations are found at different evolutionary stages (e.g., the main-sequence turnoff, the subgiant branch, and the red giant branch). The non detection of SG asymptotic giant branch (AGB) stars in several metal-poor ([Fe/H] < -1) GCs suggests that not all SG stars ascend the AGB phase, and that failed AGB stars may be very common in metal-poor GCs. This observation represents a serious problem for stellar evolution and GC formation/evolution theories. We report fourteen SG-AGB stars in four metal-poor GCs (M 13, M 5, M 3, and M 2) with different observational properties: horizontal branch (HB) morphology, metallicity, and age. By combining the H-band Al abundances obtained by the APOGEE survey with ground-based optical photometry, we identify SG Al-rich AGB stars in...
Energy Technology Data Exchange (ETDEWEB)
Lapenna, E.; Mucciarelli, A.; Lanzoni, B.; Ferraro, F. R.; Dalessandro, E.; Massari, D. [Dipartimento di Fisica e Astronomia, Università degli Studi di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Origlia, L. [INAF- Osservatorio Astronomico di Bologna, Via Ranzani, 1, 40127 Bologna (Italy)
2014-12-20
We present the iron abundance of 24 asymptotic giant branch (AGB) stars, members of the globular cluster 47 Tucanae, obtained with high-resolution spectra collected with the FEROS spectrograph at the MPG/ESO 2.2 m Telescope. We find that the iron abundances derived from neutral lines (with a mean value [Fe I/H] =–0.94 ± 0.01, σ = 0.08 dex) are systematically lower than those derived from single ionized lines ([Fe II/H] =–0.83 ± 0.01, σ = 0.05 dex). Only the latter are in agreement with those obtained for a sample of red giant branch (RGB) cluster stars, for which the Fe I and Fe II lines provide the same iron abundance. This finding suggests that non-local thermodynamical equilibrium (NLTE) effects driven by overionization mechanisms are present in the atmosphere of AGB stars and significantly affect the Fe I lines while leaving Fe II features unaltered. On the other hand, the very good ionization equilibrium found for RGB stars indicates that these NLTE effects may depend on the evolutionary stage. We discuss the impact of this finding on both the chemical analysis of AGB stars and on the search for evolved blue stragglers.
Girardi, Leo; Gilbert, Karoline M; Rosenfield, Philip; Dalcanton, Julianne J; Marigo, Paola; Boyer, Martha L; Dolphin, Andrew; Weisz, Daniel R; Melbourne, Jason; Olsen, Knut A G; Seth, Anil C; Skillman, Evan
2010-01-01
In an attempt to constrain evolutionary models of the asymptotic giant branch (AGB) phase at the limit of low masses and low metallicities, we have examined the luminosity functions and number ratio between AGB and red giant branch (RGB) stars from a sample of resolved galaxies from the ACS Nearby Galaxy Survey Treasury (ANGST). This database provides HST optical photometry together with maps of completeness, photometric errors, and star formation histories for dozens of galaxies within 4 Mpc. We select 12 galaxies characterized by predominantly metal-poor populations as indicated by a very steep and blue RGB, and which do not present any indication of recent star formation in their color--magnitude diagrams. Thousands of AGB stars brighter than the tip of the RGB (TRGB) are present in the sample (between 60 and 400 per galaxy), hence the Poisson noise has little impact in our measurements of the AGB/RGB ratio. We model the photometric data with a few sets of thermally pulsing AGB (TP-AGB) evolutionary models...
Li, A
2003-01-01
Titanium carbide (TiC) nanocrystals were recently proposed as the carrier of the mysterious 21$\\mum$ emission feature observed in post-asymptotic giant branch stars, based on their close spectral match and the presolar nature of meteoritic TiC nanograins (which reveals their stellar ejecta origin). But we show in this {\\it Letter} that the Kramers-Kronig dispersion relations, which relate the wavelength-integrated extinction cross section to the total dust mass, would impose a lower bound on the TiC mass. This Kramers-Kronig lower limit exceeds the maximum available TiC mass by a factor of at least $\\simali$50, independent of the absolute value of the ultraviolet/visible absorptivity of nano TiC. The TiC model is therefore readily ruled out by the Kramers-Kronig physical principle.
Garcia-Hernandez, D A; Delgado-Inglada, G; Dell'Agli, F; Di Criscienzo, M; Yagüe, A
2016-01-01
We present nucleosynthesis predictions (HeCNOCl) from asymptotic giant branch (AGB) models, with diffusive overshooting from all the convective borders, in the metallicity range Z/4 3.5 Msun) solar/supersolar metallicity AGBs that experience hot bottom burning (HBB), but other formation channels in low-mass AGBs like extra mixing, stellar rotation, binary interaction, or He pre-enrichment cannot be disregarded until more accurate C/O ratios would be obtained. Two objects among the DC PNe show the imprint of advanced CNO processing and deep second dredge-up, suggesting progenitors masses close to the limit to evolve as core collapse supernovae (above 6 Msun). Their actual C/O ratio, if confirmed, indicate contamination from the third dredge-up, rejecting the hypothesis that the chemical composition of such high-metallicity massive AGBs is modified exclusively by HBB.
Lee, Hyun-chul; Blakeslee, John P
2009-01-01
We investigate the effects of alpha-element enhancement and the thermally pulsing-asymptotic giant branch (TP-AGB) stars on the surface brightness fluctuation (SBF) magnitudes and broadband colors of simple stellar populations and compare to the empirical calibrations. We consider a broad range of ages and metallicities using the recently updated Teramo BaSTI isochrones. We find that the alpha-element enhanced I-band SBF magnitudes are brighter and their integrated V - I colors are redder, mostly because of oxygen enhancement effects on the upper red giant branch and asymptotic giant branch. The Teramo BaSTI and Padova isochrones that include TP-AGB stars fit the I-band and near-IR SBF empirical trends better than past models. Our results indicate that alpha-enhanced SBF models may be necessary to match red massive galaxies, while solar-scaled models may be adequate to match bluer galaxies.
Worley, C. C.; Cottrell, P. L.; Freeman, K. C.; Wylie-de Boer, E. C.
2009-12-01
This study resolves a discrepancy in the abundance of Zr in the 47 Tucanæ asymptotic giant branch (AGB) star Lee 2525. This star was observed using the echelle spectrograph on the 2.3-m telescope at Siding Spring Observatory. The analysis was undertaken by calibrating Lee 2525 with respect to the standard giant star Arcturus. This work emphasizes the importance of using a standard star with stellar parameters comparable to the star under analysis rather than a calibration with respect to the Sun as in Koch & McWilliam. Systematic errors in the analysis process are then minimized due to the similarity in atmospheric structure between the standard and programme stars. The abundances derived for Lee 2525 were found to be in general agreement with the Brown & Wallerstein values except for Zr. In this study Zr has a similar enhancement ([Zr/Fe] = +0.51 dex) to another light s-process element, Y ([Y/Fe] = +0.53 dex), which reflects current theory regarding the enrichment of s-process elements by nuclear processes within AGB stars. This is contrary to the results of Brown & Wallerstein where Zr was underabundant ([Zr/Fe] = -0.51 dex) and Y was overabundant ([Y/Fe] = +0.50 dex) with respect to Fe.
Nanni, A.; Bressan, A.; Marigo, P.; Girardi, L.; Javadi, A.; van Loon, J. Th.
2015-08-01
We discuss the dust chemistry and growth in the circumstellar envelopes (CSEs) of Thermally Pulsing Asymptotic Giant Branch (TP-AGB) star models, computed with the COLIBRI code, at varying initial mass and metallicity (Z = 0.001, 0.008, 0.02, 0.04, 0.06). A relevant result of our analysis deals with silicate production in M stars. We show that, in order to reproduce the observed trend between terminal velocities and mass-loss rates in Galactic M giants, one has to significantly reduce the efficiency of chemisputtering by H2 molecules, usually considered the most effective dust destruction mechanism. This conclusion is in agreement with the most recent laboratory results, which show that silicates may condense already at Tcond˜1400 K, rather than only at Tcond˜1000 K, as obtained by models that include chemisputtering. From analysis of the total dust ejecta, we find that the dust-to-gas ratios of the total ejecta from intermediate-mass stars are much less dependent on metallicity than usually assumed. In a broader context, our results are suitable for studying the dust enrichment of the interstellar medium provided by TP-AGB stars in both nearby and high-redshift galaxies.
Ambra, Nanni; Paola, Marigo; Léo, Girardi; Atefeh, Javadi; Jacco, van Loon
2014-01-01
We discuss the dust chemistry and growth in the circumstellar envelopes (CSEs) of Thermally Pulsing Asymptotic Giant Branch (TP-AGB) star models computed with the COLIBRI code, at varying initial mass and metallicity (Z=0.001, 0.008, 0.02, 0.04, 0.06). A relevant result of our analysis deals with the silicate production in M-stars. We show that, in order to reproduce the observed trend between terminal velocities and mass-loss rates in Galactic M-giants, one has to significantly reduce the efficiency of chemisputtering by H2 molecules, usually considered as the most effective dust destruction mechanism. This indication is also in agreement with the most recent laboratory results, which show that silicates may condense already at T=1400 K, instead than at Tcond=1000 K, as obtained by models that include chemisputtering. From the analysis of the total dust ejecta, we find that the total dust-to-gas ejecta of intermediate-mass stars are much less dependent on metallicity than usually assumed. In a broader contex...
Energy Technology Data Exchange (ETDEWEB)
Girardi, Léo [Osservatorio Astronomico di Padova-INAF, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Marigo, Paola [Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Vicolo dell' Osservatorio 3, I-35122 Padova (Italy); Bressan, Alessandro [SISSA, via Bonomea 365, I-34136 Trieste (Italy); Rosenfield, Philip [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States)
2013-11-10
In the recent controversy about the role of thermally pulsing asymptotic giant branch (TP-AGB) stars in evolutionary population synthesis (EPS) models of galaxies, one particular aspect is puzzling: TP-AGB models aimed at reproducing the lifetimes and integrated fluxes of the TP-AGB phase in Magellanic Cloud (MC) clusters, when incorporated into EPS models, are found to overestimate, to various extents, the TP-AGB contribution in resolved star counts and integrated spectra of galaxies. In this paper, we call attention to a particular evolutionary aspect, linked to the physics of stellar interiors, that in all probability is the main cause of this conundrum. As soon as stellar populations intercept the ages at which red giant branch stars first appear, a sudden and abrupt change in the lifetime of the core He-burning phase causes a temporary 'boost' in the production rate of subsequent evolutionary phases, including the TP-AGB. For a timespan of about 0.1 Gyr, triple TP-AGB branches develop at slightly different initial masses, causing their frequency and contribution to the integrated luminosity of the stellar population to increase by a factor of ∼2. The boost occurs for turn-off masses of ∼1.75 M{sub ☉}, just in the proximity of the expected peak in the TP-AGB lifetimes (for MC metallicities), and for ages of ∼1.6 Gyr. Coincidently, this relatively narrow age interval happens to contain the few very massive MC clusters that host most of the TP-AGB stars used to constrain stellar evolution and EPS models. This concomitance makes the AGB-boosting particularly insidious in the context of present EPS models. As we discuss in this paper, the identification of this evolutionary effect brings about three main consequences. First, we claim that present estimates of the TP-AGB contribution to the integrated light of galaxies derived from MC clusters are biased toward too large values. Second, the relative TP-AGB contribution of single-burst populations
García-Hernández, D. A.; Ventura, P.; Delgado-Inglada, G.; Dell'Agli, F.; Di Criscienzo, M.; Yagüe, A.
2016-09-01
We present nucleosynthesis predictions (HeCNOCl) from asymptotic giant branch (AGB) models, with diffusive overshooting from all the convective borders, in the metallicity range Z⊙/4 chemical pattern similar to the DC PNe. In agreement with recent literature, the DC PNe mostly descend from high-mass (M ≥ 3.5 M⊙) solar/supersolar metallicity AGBs that experience hot bottom burning (HBB), but other formation channels in low-mass AGBs like extra mixing, stellar rotation, binary interaction, or He pre-enrichment cannot be disregarded until more accurate C/O ratios would be obtained. Two objects among the DC PNe show the imprint of advanced CNO processing and deep second dredge-up, suggesting progenitors masses close to the limit to evolve as core collapse supernovae (above 6M⊙). Their actual C/O ratio, if confirmed, indicate contamination from the third dredge-up, rejecting the hypothesis that the chemical composition of such high-metallicity massive AGBs is modified exclusively by HBB.
Capozzi, Diego; Daddi, Emanuele; Renzini, Alvio; Strazzullo, Veronica; Gobat, Raphael
2015-01-01
We study the debated contribution from thermally pulsing asymptotic giant branch (TP-AGB) stars in evolutionary population synthesis models. We investigate the Spectral Energy Distributions (SEDs) of a sample of 51 spectroscopically confirmed, high-z ($1.3
Sloan, G C; Zijlstra, A A; Kraemer, K E; Weis, A P; Matsuura, M; Volk, K; Peeters, E; Duley, W W; Cami, J; Bernard-Salas, J; Kemper, F; Sahai, R
2014-01-01
Infrared spectra of carbon-rich objects which have evolved off the asymptotic giant branch reveal a range of dust properties, including fullerenes, polycyclic aromatic hydrocarbons (PAHs), aliphatic hydrocarbons, and several unidentified features, including the 21 um emission feature. To test for the presence of fullerenes, we used the position and width of the feature at 18.7-18.9 um and examined other features at 17.4 and 6-9 um. This method adds three new fullerene sources to the known sample, but it also calls into question three previous identifications. We confirm that the strong 11 um features seen in some sources arise primarily from SiC, which may exist as a coating around carbonaceous cores and result from photo-processing. Spectra showing the 21 um feature usually show the newly defined Class D PAH profile at 7-9 um. These spectra exhibit unusual PAH profiles at 11-14 um, with weak contributions at 12.7 um, which we define as Class D1, or show features shifted to ~11.4, 12.4, and 13.2 um, which we ...
Jones, O C; Sargent, B A; McDonald, I; Gielen, C; Woods, Paul M; Sloan, G C; Boyer, M L; Zijlstra, A A; Clayton, G C; Kraemer, K E; Srinivasan, S; Ruffle, P M E
2012-01-01
We investigate the occurrence of crystalline silicates in oxygen-rich evolved stars across a range of metallicities and mass-loss rates. It has been suggested that the crystalline silicate feature strength increases with increasing mass-loss rate, implying a correlation between lattice structure and wind density. To test this, we analyse Spitzer IRS and Infrared Space Observatory SWS spectra of 217 oxygen-rich asymptotic giant branch stars and 98 red supergiants in the Milky Way, the Large and Small Magellanic Clouds and Galactic globular clusters. These encompass a range of spectral morphologies from the spectrally-rich which exhibit a wealth of crystalline and amorphous silicate features to 'naked' (dust-free) stars. We combine spectroscopic and photometric observations with the GRAMS grid of radiative transfer models to derive (dust) mass-loss rates and temperature. We then measure the strength of the crystalline silicate bands at 23, 28 and 33 microns. We detect crystalline silicates in stars with dust ma...
Karakas, Amanda I; Nataf, David M
2014-01-01
We investigate the effect of helium enrichment on the evolution and nucleosynthesis of low-mass asymptotic giant branch (AGB) stars of 1.7Msun and 2.36Msun with a metallicity of Z=0.0006 ([Fe/H] = -1.4). We calculate evolutionary sequences with the primordial helium abundance (Y = 0.24) and with helium-enriched compositions (Y = 0.30, 0.35, 0.40). For comparison we calculate models of the same mass but at a lower metallicity Z=0.0003 ([Fe/H] = -1.8) with Y=0.24. Post-processing nucleosynthesis calculations are performed on each of the evolutionary sequences to determine the production of elements from hydrogen through to bismuth. Elemental surface abundance predictions and stellar yields are presented for each model. The models with enriched helium have shorter main sequence and AGB lifetimes, and enter the AGB with a more massive hydrogen exhausted core than the primordial helium model. The main consequences are 1) low-mass AGB models with enhanced helium will evolve more than twice as fast, giving them the ...
Bertolami, Marcelo M Miller
2015-01-01
The Post Asymptotic Giant Branch (AGB) phase is arguably one of the least understood phases of the evolution of low- and intermediate- mass stars. The two grids of models presently available are based on outdated micro- and macro-physics and do not agree with each other. We study the timescales of post-AGB and CSPNe in the context of our present understanding of the micro- and macro-physics of stars. We want to assess whether new post-AGB models, based on the latter improvements in TP-AGB modeling, can help to understand the discrepancies between observation and theory and within theory itself. We compute a grid of post-AGB full evolutionary sequences that include all previous evolutionary stages from the Zero Age Main Sequence to the White Dwarf phase. Models are computed for initial masses between 0.8 and 4 $M_\\odot$ and for a wide range of initial metallicities ($Z_0=$0.02, 0.01, 0.001, 0.0001), this allow us to provide post-AGB timescales and properties for H-burning post-AGB objects with masses in the re...
Boyer, Martha L; van Loon, Jacco Th; Gehrz, Robert D; Woodward, Charles E
2009-01-01
We present the third and final part of a census of Asymptotic Giant Branch (AGB) stars in Local Group dwarf irregular galaxies. Papers I and II presented the results for WLM and IC 1613. Included here are Phoenix, LGS 3, DDO 210, Leo A, Pegasus dIrr, and Sextans A. Spitzer photometry at 3.6, 4.5, 5.8, and 8 are presented, along with a more thorough treatment of background galaxy contamination than was presented in papers I and II. We find that at least a small population of completely optically obscured AGB stars exists in each galaxy, regardless of the galaxy's metallicity, but that higher-metallicity galaxies tend to harbor more stars with slight IR excesses. The optical incompleteness increases for the redder AGB stars, in line with the expectation that some AGB stars are not detected in the optical due to large amounts of extinction associated with in situ dust production. Overall, there is an underrepresentation of 30% - 40% in the optical AGB within the 1 sigma errors for all of the galaxies in our samp...
Marigo, Paola; Bressan, Alessandro; Groenewegen, Martin A T; Silva, Laura; Granato, Gian Luigi
2007-01-01
We present a large set of theoretical isochrones, whose distinctive features mostly reside on the greatly improved treatment of the thermally pulsing asymptotic giant branch (TP-AGB) phase. Essentially, we have coupled the TP-AGB tracks described in Paper I, at their stages of pre-flash quiescent H-shell burning, with the evolutionary tracks for the previous evolutionary phases from Girardi et al. (2000). Theoretical isochrones for any intermediate value of age and metallicity are then derived by interpolation in the grids. We take care that the isochrones keep, to a good level of detail, the several peculiarities present in these TP-AGB tracks. Theoretical isochrones are then converted to about 20 different photometric systems -- including traditional ground-based systems, and those of recent major wide-field surveys such as SDSS, OGLE, DENIS, 2MASS, UKIDSS, etc., -- by means of synthetic photometry applied to an updated library of stellar spectra, suitably extended to include C-type stars. Finally, we corre...
Riffel, Rogério; Mason, Rachel E.; Martins, Lucimara P.; Rodríguez-Ardila, Alberto; Ho, Luis C.; Riffel, Rogemar A.; Lira, Paulina; Gonzalez Martin, Omaira; Ruschel-Dutra, Daniel; Alonso-Herrero, Almudena; Flohic, Helene; McDermid, Richard M.; Ramos Almeida, Cristina; Thanjavur, Karun; Winge, Claudia
2015-07-01
We analyse the stellar absorption features in high signal-to-noise ratio (S/N) near-infrared (NIR) spectra of the nuclear region of 12 nearby galaxies, mostly spirals. The features detected in some or all of the galaxies in this sample are the TiO (0.843 and 0.886 μm), VO (1.048 μm), CN (1.1 and 1.4 μm), H2O (1.4 and 1.9 μm) and CO (1.6 and 2.3 μm) bands. The C2 (1.17 and 1.76 μm) bands are generally weak or absent, although C2 (1.76 μm) may be weakly present in the mean galaxy spectrum. A deep feature near 0.93 μm, likely caused by CN, TiO and/or ZrO, is also detected in all objects. Fitting a combination of stellar spectra to the mean spectrum shows that the absorption features are produced by evolved stars: cool giants and supergiant stars in the early- or thermally pulsing asymptotic giant branch (E-AGB or TP-AGB) phases. The high luminosity of TP-AGB stars, and the appearance of VO and ZrO features in the data, suggest that TP-AGB stars dominate these spectral features. However, a contribution from other evolved stars is also likely. Comparison with evolutionary population synthesis models shows that models based on empirical libraries that predict relatively strong NIR features provide a more accurate description of the data. However, none of the models tested accurately reproduces all of the features observed in the spectra. To do so, the models will need to not only improve the treatment of TP-AGB stars, but also include good quality spectra of red giant and E-AGB stars. The uninterrupted wavelength coverage, high S/N and quantity of features we present here will provide a benchmark for the next generation of models aiming to explain and predict the NIR properties of galaxies.
Energy Technology Data Exchange (ETDEWEB)
Boyer, M. L.; Gordon, K. D.; Meixner, M.; Sargent, B. A. [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Srinivasan, S. [UPMC-CNRS UMR7095, Institut d' Astrophysique de Paris, F-75014 Paris (France); Riebel, D. [Department of Physics and Astronomy, The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); McDonald, I. [Jodrell Bank Centre for Astrophysics, Alan Turing Building, University of Manchester, Manchester M13 9PL (United Kingdom); Van Loon, J. Th. [Astrophysics Group, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom); Clayton, G. C. [Department of Physics and Astronomy, Louisiana State University, 233-A Nicholson Hall, Tower Dr., Baton Rouge, LA 70803-4001 (United States); Sloan, G. C., E-mail: mboyer@stsci.edu [Astronomy Department, Cornell University, Ithaca, NY 14853-6801 (United States)
2012-03-20
We estimate the total dust input from the cool evolved stars in the Small Magellanic Cloud, using the 8 {mu}m excess emission as a proxy for the dust-production rate (DPR). We find that asymptotic giant branch (AGB) and red supergiant (RSG) stars produce (8.6-9.5) Multiplication-Sign 10{sup -7} M{sub Sun} yr{sup -1} of dust, depending on the fraction of far-infrared sources that belong to the evolved star population (with 10%-50% uncertainty in individual DPRs). RSGs contribute the least (<4%), while carbon-rich AGB stars (especially the so-called extreme AGB stars) account for 87%-89% of the total dust input from cool evolved stars. We also estimate the dust input from hot stars and supernovae (SNe), and find that if SNe produce 10{sup -3} M{sub Sun} of dust each, then the total SN dust input and AGB input are roughly equivalent. We consider several scenarios of SN dust production and destruction and find that the interstellar medium (ISM) dust can be accounted for solely by stellar sources if all SNe produce dust in the quantities seen around the dustiest examples and if most SNe explode in dense regions where much of the ISM dust is shielded from the shocks. We find that AGB stars contribute only 2.1% of the ISM dust. Without a net positive contribution from SNe to the dust budget, this suggests that dust must grow in the ISM or be formed by another unknown mechanism.
Energy Technology Data Exchange (ETDEWEB)
Sloan, G. C.; Lagadec, E. [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853-6801 (United States); Zijlstra, A. A. [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom); Kraemer, K. E. [Institute for Scientific Research, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467 (United States); Weis, A. P. [Department of Astronomy and Astrophysics, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Matsuura, M. [Astrophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Volk, K. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Peeters, E.; Cami, J. [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada); Duley, W. W. [Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 (Canada); Bernard-Salas, J. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Kemper, F. [Academia Sinica, Institute of Astronomy and Astrophysics, 11F Astronomy-Mathematics Building, NTU/AS, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, R.O.C (China); Sahai, R., E-mail: sloan@isc.astro.cornell.edu [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States)
2014-08-10
Infrared spectra of carbon-rich objects that have evolved off the asymptotic giant branch reveal a range of dust properties, including fullerenes, polycyclic aromatic hydrocarbons (PAHs), aliphatic hydrocarbons, and several unidentified features, including the 21 μm emission feature. To test for the presence of fullerenes, we used the position and width of the feature at 18.7-18.9 μm and examined other features at 17.4 and 6-9 μm. This method adds three new fullerene sources to the known sample, but it also calls into question three previous identifications. We confirm that the strong 11 μm features seen in some sources arise primarily from SiC, which may exist as a coating around carbonaceous cores and result from photo-processing. Spectra showing the 21 μm feature usually show the newly defined Class D PAH profile at 7-9 μm. These spectra exhibit unusual PAH profiles at 11-14 μm, with weak contributions at 12.7 μm, which we define as Class D1, or show features shifted to ∼11.4, 12.4, and 13.2 μm, which we define as Class D2. Alkyne hydrocarbons match the 15.8 μm feature associated with 21 μm emission. Sources showing fullerene emission but no PAHs have blue colors in the optical, suggesting a clear line of sight to the central source. Spectra with 21 μm features and Class D2 PAH emission also show photometric evidence for a relatively clear line of sight to the central source. The multiple associations of the 21 μm feature with aliphatic hydrocarbons suggest that the carrier is related to this material in some way.
Marigo, Paola; Ripamonti, Emanuele; Nanni, Ambra; Bressan, Alessandro; Girardi, Léo
2016-02-01
We investigate the formation of hydrogen cyanide (HCN) in the inner circumstellar envelopes of thermally pulsing asymptotic giant branch (TP-AGB) stars. A dynamic model for periodically shocked atmospheres, which includes an extended chemo-kinetic network, is for the first time coupled to detailed evolutionary tracks for the TP-AGB phase computed with the COLIBRI code. We carried out a calibration of the main shock parameters (the shock formation radius rs,0 and the effective adiabatic index γ _ad^eff) using the circumstellar HCN abundances recently measured for a populous sample of pulsating TP-AGB stars. Our models recover the range of the observed HCN concentrations as a function of the mass-loss rates, and successfully reproduce the systematic increase of HCN moving along the M-S-C chemical sequence of TP-AGB stars, which traces the increase of the surface C/O ratio. The chemical calibration brings along two important implications for the physical properties of the pulsation-induced shocks: (i) the first shock should emerge very close to the photosphere (rs,0 ≃ 1R), and (ii) shocks are expected to have a dominant isothermal character (γ _ad^eff˜eq 1) in the denser region close to the star (within ˜3-4R), implying that radiative processes should be quite efficient. Our analysis also suggests that the HCN concentrations in the inner circumstellar envelopes are critically affected by the H-H2 chemistry during the post-shock relaxation stages. Given the notable sensitiveness of the results to stellar parameters, this paper shows that such chemo-dynamic analyses may indeed provide a significant contribution to the broader goal of attaining a comprehensive calibration of the TP-AGB evolutionary phase.
Energy Technology Data Exchange (ETDEWEB)
Liu, Nan; Davis, Andrew M.; Pellin, Michael J.; Dauphas, Nicolas [Department of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637 (United States); Savina, Michael R. [Chicago Center for Cosmochemistry, Chicago, IL 60637 (United States); Gallino, Roberto; Bisterzo, Sara [Dipartimento di Fisica, Università di Torino, I-10125 Torino (Italy); Straniero, Oscar; Cristallo, Sergio [INAF–Osservatorio Astronomico di Collurania, via Maggini snc, I-64100 Teramo (Italy); Gyngard, Frank [Laboratory for Space Sciences, Washington University, St. Louis, MO 63130 (United States); Willingham, David G. [Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Pignatari, Marco [Department of Physics, University of Basel, Basel CH-4056 (Switzerland); Herwig, Falk, E-mail: lnsmile@uchicago.edu [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P5C2 (Canada)
2014-05-01
We present barium, carbon, and silicon isotopic compositions of 38 acid-cleaned presolar SiC grains from Murchison. Comparison with previous data shows that acid washing is highly effective in removing barium contamination. Strong depletions in δ({sup 138}Ba/{sup 136}Ba) values are found, down to –400‰, which can only be modeled with a flatter {sup 13}C profile within the {sup 13}C pocket than is normally used. The dependence of δ({sup 138}Ba/{sup 136}Ba) predictions on the distribution of {sup 13}C within the pocket in asymptotic giant branch (AGB) models allows us to probe the {sup 13}C profile within the {sup 13}C pocket and the pocket mass in AGB stars. In addition, we provide constraints on the {sup 22}Ne(α, n){sup 25}Mg rate in the stellar temperature regime relevant to AGB stars, based on δ({sup 134}Ba/{sup 136}Ba) values of mainstream grains. We found two nominally mainstream grains with strongly negative δ({sup 134}Ba/{sup 136}Ba) values that cannot be explained by any of the current AGB model calculations. Instead, such negative values are consistent with the intermediate neutron capture process (i process), which is activated by the very late thermal pulse during the post-AGB phase and characterized by a neutron density much higher than the s process. These two grains may have condensed around post-AGB stars. Finally, we report abundances of two p-process isotopes, {sup 130}Ba and {sup 132}Ba, in single SiC grains. These isotopes are destroyed in the s process in AGB stars. By comparing their abundances with respect to that of {sup 135}Ba, we conclude that there is no measurable decay of {sup 135}Cs (t {sub 1/2} = 2.3 Ma) to {sup 135}Ba in individual SiC grains, indicating condensation of barium, but not cesium into SiC grains before {sup 135}Cs decayed.
Miller Bertolami, Marcelo Miguel
2016-04-01
Context. The post-asymptotic giant branch (AGB) phase is arguably one of the least understood phases of the evolution of low- and intermediate- mass stars. The two grids of models presently available are based on outdated micro- and macrophysics and do not agree with each other. Studies of the central stars of planetary nebulae (CSPNe) and post-AGB stars in different stellar populations point to significant discrepancies with the theoretical predictions of post-AGB models. Aims: We study the timescales of post-AGB and CSPNe in the context of our present understanding of the micro- and macrophysics of stars. We want to assess whether new post-AGB models, based on the latter improvements in TP-AGB modeling, can help us to understand the discrepancies between observation and theory and within theory itself. In addition, we aim to understand the impact of the previous AGB evolution for post-AGB phases. Methods: We computed a grid of post-AGB full evolutionary sequences that include all previous evolutionary stages from the zero age main sequence to the white dwarf phase. We computed models for initial masses between 0.8 and 4 M⊙ and for a wide range of initial metallicities (Z0 = 0.02, 0.01, 0.001, 0.0001). This allowed us to provide post-AGB timescales and properties for H-burning post-AGB objects with masses in the relevant range for the formation of planetary nebulae (~0.5-0.8 M⊙). We included an updated treatment of the constitutive microphysics and included an updated description of the mixing processes and winds that play a key role during the thermal pulses (TP) on the AGB phase. Results: We present a new grid of models for post-AGB stars that take into account the improvements in the modeling of AGB stars in recent decades. These new models are particularly suited to be inputs in studies of the formation of planetary nebulae and for the determination of the properties of CSPNe from their observational parameters. We find post-AGB timescales that are at
Energy Technology Data Exchange (ETDEWEB)
Blum, R. D. [NOAO, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Srinivasan, S.; Kemper, F.; Ling, B. [Academia Sinica, Institute of Astronomy and Astrophysics, 11F of Astronomy-Mathematics Building, NTU/AS, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Volk, K. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)
2014-11-01
K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ''tip'' of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ''stellar'' cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk.
Blum, R. D.; Srinivasan, S.; Kemper, F.; Ling, B.; Volk, K.
2014-11-01
K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ``tip" of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ``stellar" cores. Modest amounts of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).
Rosenfield, Philip; Girardi, Léo; Dalcanton, Julianne J; Bressan, Alessandro; Williams, Benjamin F; Dolphin, Andrew
2016-01-01
Thermally-Pulsing Asymptotic Giant Branch (TP-AGB) stars are relatively short lived (less than a few Myr), yet their cool effective temperatures, high luminosities, efficient mass-loss and dust production can dramatically effect the chemical enrichment histories and the spectral energy distributions of their host galaxies. The ability to accurately model TP-AGB stars is critical to the interpretation of the integrated light of distant galaxies, especially in redder wavelengths. We continue previous efforts to constrain the evolution and lifetimes of TP-AGB stars by modeling their underlying stellar populations. Using Hubble Space Telescope (HST) optical and near-infrared photometry taken of 12 fields of 10 nearby galaxies imaged via the ACS Nearby Galaxy Survey Treasury and the near-infrared HST/SNAP follow-up campaign, we compare the model and observed TP-AGB luminosity functions as well as the number ratio of TP-AGB to red giant branch stars. We confirm the best-fitting mass-loss prescription, introduced by...
Mishra, Ajay; Jiang, B W
2016-01-01
Over two decades ago, a prominent, mysterious emission band peaking at ~20.1 micrometer was serendipitously detected in four preplanetary nebulae (PPNe; also known as "protoplanetary nebulae"). So far, this spectral feature, designated as the "21 micrometer" feature, has been seen in 18 carbon-rich PPNe. The nature of the carriers of this feature remains unknown although many candidate materials have been proposed. The 21 micrometer sources also exhibit an equally mysterious, unidentified emission feature peaking at 30 micrometer. While the 21 micrometer feature is exclusively seen in PPNe, a short-lived evolutionary stage between the end of the asymptotic giant branch (AGB) and planetary nebula (PN) phases, the 30 micrometer feature is commonly observed in all stages of stellar evolution from the AGB through PPN to PNe phases. We derive the stellar mass loss rates (M_{loss}) of these 21 micrometer sources from their dust infrared (IR) emission, using the "2-DUST" radiative transfer code for axisymmetric dust...
Riffel, Rogério; Martins, Lucimara P; Rodíguez-Ardila, Alberto; Ho, Luis C; Riffel, Rogemar A; Lira, Paulina; Martin, Omaira Gonzalez; Ruschel-Dutra, Daniel; Alonso-Herrero, Almudena; Flohic, Helene; McDermid, Richard M; Almeida, Cristina Ramos; Thanjavur, Karun; Winge, Claudia
2015-01-01
We analyze the stellar absorption features in high signal-to-noise ratio near-infrared (NIR) spectra of the nuclear region of 12 nearby galaxies, mostly spirals. The features detected in some or all of the galaxies in this sample are the TiO (0.843 $\\mu$m\\ and 0.886 $\\mu$m), VO (1.048 $\\mu$m), CN (1.1 $\\mu$m\\ and 1.4 $\\mu$m), H$\\rm _2$O (1.4 $\\mu$m\\ and 1.9 $\\mu$m) and CO (1.6 $\\mu$m\\ and 2.3 $\\mu$m) bands. The C$\\rm _2$ (1.17 $\\mu$m\\ and 1.76 $\\mu$m) bands are generally weak or absent, although C$\\rm _2$ (1.76 $\\mu$m) may be weakly present in the mean galaxy spectrum. A deep feature near 0.93 $\\mu$m, likely caused by CN, TiO and/or ZrO, is also detected in all objects. Fitting a combination of stellar spectra to the mean spectrum shows that the absorption features are produced by evolved stars: cool giants and supergiant stars in the early- or thermally-pulsing asymptotic giant branch (E-AGB or TP-AGB) phases. The high luminosity of TP-AGB stars, and the appearance of VO and ZrO features in the data, suggest...
Lugaro, Maria; Karakas, Amanda I; Milazzo, Paolo M; Kaeppeler, Franz; Davis, Andrew M; Savina, Michael R
2013-01-01
We present model predictions for the Zr isotopic ratios produced by slow neutron captures in C-rich asymptotic giant branch (AGB) stars of masses 1.25 to 4 Msun and metallicities Z=0.01 to 0.03, and compare them to data from single meteoritic stardust silicon carbide (SiC) and high-density graphite grains that condensed in the outflows of these stars. We compare predictions produced using the Zr neutron-capture cross section from Bao et al. (2000) and from n_TOF experiments at CERN, and present a new evaluation for the neutron-capture cross section of the unstable isotope 95Zr, the branching point leading to the production of 96Zr. The new cross sections generally presents an improved match with the observational data, except for the 92Zr/94Zr ratios, which are on average still substantially higher than predicted. The 96Zr/94Zr ratios can be explained using our range of initial stellar masses, with the most 96Zr-depleted grains originating from AGB stars of masses 1.8 - 3 Msun, and the others from either lowe...
Energy Technology Data Exchange (ETDEWEB)
Rosenfield, Philip; Dalcanton, Julianne J.; Weisz, Daniel; Williams, Benjamin F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Marigo, Paola [Department of Physics and Astronomy G. Galilei, University of Padova, Vicolo dell' Osservatorio 3, I-35122 Padova (Italy); Girardi, Léo; Gullieuszik, Marco [Osservatorio Astronomico di Padova—INAF, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Bressan, Alessandro [Astrophysics Sector, SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Dolphin, Andrew [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Aringer, Bernhard [Department of Astrophysics, University of Vienna, Turkenschanzstraße 17, A-1180 Wien (Austria)
2014-07-20
The evolution and lifetimes of thermally pulsating asymptotic giant branch (TP-AGB) stars suffer from significant uncertainties. In this work, we analyze the numbers and luminosity functions of TP-AGB stars in six quiescent, low metallicity ([Fe/H] ≲ –0.86) galaxies taken from the ACS Nearby Galaxy Survey Treasury sample, using Hubble Space Telescope (HST) photometry in both optical and near-infrared filters. The galaxies contain over 1000 TP-AGB stars (at least 60 per field). We compare the observed TP-AGB luminosity functions and relative numbers of TP-AGB and red giant branch (RGB) stars, N{sub TP-AGB}/N{sub RGB}, to models generated from different suites of TP-AGB evolutionary tracks after adopting star formation histories derived from the HST deep optical observations. We test various mass-loss prescriptions that differ in their treatments of mass loss before the onset of dust-driven winds (pre-dust). These comparisons confirm that pre-dust mass loss is important, since models that neglect pre-dust mass loss fail to explain the observed N{sub TP-AGB}/N{sub RGB} ratio or the luminosity functions. In contrast, models with more efficient pre-dust mass loss produce results consistent with observations. We find that for [Fe/H] ≲ –0.86, lower mass TP-AGB stars (M ≲ 1 M{sub ☉}) must have lifetimes of ∼0.5 Myr and higher masses (M ≲ 3 M{sub ☉}) must have lifetimes ≲ 1.2 Myr. In addition, assuming our best-fitting mass-loss prescription, we show that the third dredge-up has no significant effect on TP-AGB lifetimes in this mass and metallicity range.
Rosenfield, Philip; Marigo, Paola; Girardi, Léo; Dalcanton, Julianne J.; Bressan, Alessandro; Williams, Benjamin F.; Dolphin, Andrew
2016-05-01
Thermally pulsing asymptotic giant branch (TP-AGB) stars are relatively short lived (less than a few Myr), yet their cool effective temperatures, high luminosities, efficient mass loss, and dust production can dramatically affect the chemical enrichment histories and the spectral energy distributions of their host galaxies. The ability to accurately model TP-AGB stars is critical to the interpretation of the integrated light of distant galaxies, especially in redder wavelengths. We continue previous efforts to constrain the evolution and lifetimes of TP-AGB stars by modeling their underlying stellar populations. Using Hubble Space Telescope (HST) optical and near-infrared photometry taken of 12 fields of 10 nearby galaxies imaged via the Advanced Camera for Surveys Nearby Galaxy Survey Treasury and the near-infrared HST/SNAP follow-up campaign, we compare the model and observed TP-AGB luminosity functions as well as the ratio of TP-AGB to red giant branch stars. We confirm the best-fitting mass-loss prescription, introduced by Rosenfield et al., in which two different wind regimes are active during the TP-AGB, significantly improves models of many galaxies that show evidence of recent star formation. This study extends previous efforts to constrain TP-AGB lifetimes to metallicities ranging -1.59 ≲ {{[Fe/H]}} ≲ -0.56 and initial TP-AGB masses up to ˜4 M ⊙, which include TP-AGB stars that undergo hot-bottom burning. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
Energy Technology Data Exchange (ETDEWEB)
Montiel, Edward J.; Clayton, Geoffrey C.; Johnson, Christopher B. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Srinivasan, Sundar [Academica Sinica, Institute of Astronomy and Astrophysics, PO Box 23-141, Taipei 10617, Taiwan, R. O. C. (China); Engelbracht, Charles W., E-mail: emonti2@lsu.edu [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)
2015-02-01
We present the first detection of 24 μm variability in 24 sources in the Local Group galaxy M33. These results are based on 4 epochs of Multiband Imaging Photometer for Spitzer observations, which are irregularly spaced over ∼750 days. We find that these sources are constrained exclusively to the Holmberg radius of the galaxy, which increases their chances of being members of M33. We have constructed spectral energy distributions (SEDs) ranging from the optical to the submillimeter to investigate the nature of these objects. We find that 23 of our objects are most likely heavily self-obscured, evolved stars, while the remaining source is the Giant H ii region, NGC 604. We believe that the observed variability is the intrinsic variability of the central star reprocessed through their circumstellar dust shells. Radiative transfer modeling was carried out to determine their likely chemical composition, luminosity, and dust production rate (DPR). As a sample, our modeling has determined an average luminosity of (3.8±0.9)×10{sup 4} L{sub ⊙} and a total DPR of (2.3±0.1)×10{sup −5} M{sub ⊙} yr{sup −1}. Most of the sources, given the high DPRs and short wavelength obscuration, are likely extreme asymptotic giant branch (XAGB) stars. Five of the sources are found to have luminosities above the classical AGB limit (M{sub bol} <−7.1 mag, L > 54,000 L{sub ⊙}), which classifies them as probable red supergiants (RSGs). Almost all of the sources are classified as oxygen-rich. As also seen in the LMC, a significant fraction of the dust in M33 is produced by a handful of XAGB and RSG stars.
Srinivasan, Sundar; Matsuura, M; Meixner, M; Kemper, F; Tielens, A G G M; Volk, K; Speck, A K; Woods, Paul M; Gordon, K; Marengo, M; Sloan, G C
2010-01-01
We present a 2Dust model for the dust shell around a LMC long-period variable (LPV) previously studied as part of the OGLE survey. OGLE LMC LPV 28579 (SAGE J051306.40-690946.3) is a carbon-rich asymptotic giant branch (AGB) star for which we have photometry and spectra from the Spitzer SAGE and SAGE-Spec programs along with UBVIJHK_s photometry. By modeling this source, we obtain a baseline set of dust properties to be used in the construction of a grid of models for carbon stars. We reproduce its spectral energy distribution using a mixture of AmC and SiC (15% by mass). The grain sizes are distributed according to the KMH model. The best-fit model has an optical depth of 0.28 for the shell at the peak of the SiC feature, with R_in~1430 R_sun or 4.4 R_star. The temperature at this inner radius is 1310 K. Assuming an expansion velocity of 10 km s^-1, we obtain a dust mass-loss rate of 2.5x10^-9 M_sun yr-1. We calculate a 15% variation in this rate by testing the fit sensitivity against variation in input param...
Sargent, Benjamin A; Meixner, M; Kemper, F; Tielens, A G G M; Speck, A K; Matsuura, M; Bernard, J -Ph; Hony, S; Gordon, Karl D; Indebetouw, R; Marengo, M; Sloan, G C; Woods, Paul M
2014-01-01
We model multi-wavelength broadband UBVIJHKs and Spitzer IRAC and MIPS photometry and IRS spectra from the SAGE and SAGE-Spec observing programs of two oxygen-rich asymptotic giant branch (O-rich AGB) stars in the Large Magellanic Cloud (LMC) using radiative transfer models of dust shells around stars. We chose a star from each of the bright and faint O-rich AGB populations found by earlier studies of the SAGE sample in order to derive a baseline set of dust properties to be used in the construction of an extensive grid of radiative transfer models of the O-rich AGB stars found in the SAGE surveys. From the bright O-rich AGB population we chose HV 5715, and from the faint O-rich AGB population we chose SSTISAGE1C J052206.92-715017.6 (SSTSAGE052206). We found the complex indices of refraction of oxygen-deficient silicates from Ossenkopf et al (1992) and a "KMH"-like grain size distribution with gamma of -3.5, a_min of 0.01 microns, and a_0 of 0.1 microns to be reasonable dust properties for these models. There...
Boyer, Martha L; Srinivasan, Sundar; Zijlstra, Albert; van Loon, Jacco Th; Olsen, Knut A G; Sonneborn, George
2015-01-01
We have identified a new class of Asymptotic Giant Branch (AGB) stars in the Small and Large Magellanic Clouds (SMC/LMC) using optical to infrared photometry, light curves, and optical spectroscopy. The strong dust production and long-period pulsations of these stars indicate that they are at the very end of their AGB evolution. Period-mass-radius relations for the fundamental-mode pulsators give median current stellar masses of 1.14 M_sun in the LMC and 0.94 M_sun in the SMC (with dispersions of 0.21 and 0.18 M_sun, respectively), and models suggest initial masses of <1.5 M_sun and <1.25 M_sun, respectively. This new class of stars includes both O-rich and C-rich chemistries, placing the limit where dredge-up allows carbon star production below these masses. A high fraction of the brightest among them should show S star characteristics indicative of atmospheric C/O ~ 1, and many will form O-rich dust prior to their C-rich phase. These stars can be separated from their less-evolved counterparts by their...
Yasuda, Yuki
2011-01-01
We investigate the formation of silicon carbide (SiC) grains in the framework of dust-driven wind around pulsating carbon-rich Asymptotic Giant Branch (C-rich AGB) stars in order to reveal not only the amount but also the size distribution. Two cases are considered for the nucleation process; one is the LTE case where the vibration temperature of SiC clusters $T_{\\rm v}$ is equal to the gas temperature as usual, and another is the non-LTE case in which $T_{\\rm v}$ is assumed to be the same as the temperature of small SiC grains. The results of hydrodynamical calculations for a model with stellar parameters of mass $M_{\\ast}$=1.0 $M_{\\odot}$, luminosity $L_{\\ast}$=10$^{4}$ $L_{\\odot}$, effective temperature $T_{\\rm eff}$=2600 K, C/O ratio=1.4, and pulsation period $P$=650 days show the followings: In the LTE case, SiC grains condense in accelerated outflowing gas after the formation of carbon grains and the resulting averaged mass ratio of SiC to carbon grains of $\\sim$ 10$^{-8}$ is too small to reproduce the ...
Rosenfield, Philip; Girardi, Leo; Dalcanton, Julianne J; Bressan, Alessandro; Gullieuszik, Marco; Weisz, Daniel; Williams, Benjamin F; Dolphin, Andrew; Aringer, Bernhard
2014-01-01
The evolution and lifetimes of thermally pulsating asymptotic giant branch (TP-AGB) stars suffer from significant uncertainties. In this work, we analyze the numbers and luminosity functions of TP-AGB stars in six quiescent, low metallicity ([Fe/H] $\\lesssim -0.86$) galaxies taken from the ANGST sample, using HST photometry in both optical and near-infrared filters. The galaxies contain over 1000 TP-AGB stars (at least 60 per field). We compare the observed TP-AGB luminosity functions and relative numbers of TP-AGB and RGB stars, to models generated from different suites of TP-AGB evolutionary tracks after adopting star formation histories (SFH) derived from the HST deep optical observations. We test various mass-loss prescriptions that differ in their treatments of mass-loss before the onset of dust-driven winds (pre-dust). These comparisons confirm that pre-dust mass-loss is important, since models that neglect pre-dust mass-loss fail to explain the observed TP-AGB/RGB ratio or the luminosity functions. In ...
Marigo, Paola; Nanni, Ambra; Bressan, Alessandro; Girardi, Leo
2015-01-01
We investigate the formation of hydrogen cyanide (HCN) in the inner circumstellar envelopes of thermally pulsing asymptotic giant branch (TP-AGB) stars. A dynamic model for periodically shocked atmospheres, which includes an extended chemo-kinetic network, is for the first time coupled to detailed evolutionary tracks for the TP-AGB phase computed with the COLIBRI code. We carried out a calibration of the main shock parameters (the shock formation radius and the effective adiabatic index) using the circumstellar HCN abundances recently measured for a populous sample of pulsating TP-AGB stars. Our models recover the range of the observed HCN concentrations as a function of the mass-loss rates, and successfully reproduce the systematic increase of HCN moving along the M-S-C chemical sequence of TP-AGB stars, that traces the increase of the surface C/O ratio. The chemical calibration brings along two important implications: i) the first shock should emerge very close to the photosphere, and ii) shocks are expecte...
Energy Technology Data Exchange (ETDEWEB)
Jaminet, P.A.
1992-01-01
A heterodyne receiver designed for astronomical use between 450 and 520 GHz has been constructed. Very low capacitance (C [approximately] 5-10 fF) Superconductor-Insulator-Superconductor (SIS) junctions have been fabricated as the detectors; these junctions lie on the edges of niobium thin films and form Nb-Al-Al[sub 2]O[sub 3]-Al-Nb sandwiches. The double sideband (DSB) receiver noise temperature is between 400 K and 800 K throughout the 70 GHz band. In addition, detailed modelling and analysis of astronomical observations of two post-AGB (Asymptotic Giant Branch) stars was performed. The observations were made with an SIS receiver designed for 345 GHz. CO observations and modelling of the young planetary nebula NGC 7027 provided the best determination yet of its AGB mass loss rate, the first direct evidence for bipolarity in its AGB mass loss, evidence for close hydrodynamic coupling between the planetary nebula and the relic AGB wind, and evidence for evolution in the metallicity of the stellar wind. Observations of the proto-planetary nebula CRL 2688 found evidence for spatially extended fast wind emission with a non-bipolar morphology, and evidence for evolution is elemental abundances in the stellar wind.
Energy Technology Data Exchange (ETDEWEB)
Lugaro, Maria [Monash Centre for Astrophysics (MoCA), Monash University, Clayton, VIC 3800 (Australia); Tagliente, Giuseppe [Istituto Nazionale di Fisica Nucleare (INFN), Bari (Italy); Karakas, Amanda I. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Milazzo, Paolo M. [Istituto Nazionale di Fisica Nucleare (INFN), Trieste (Italy); Käppeler, Franz [Karlsruhe Institute of Technology, Campus North, D-76021 Karlsruhe (Germany); Davis, Andrew M. [The Department of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637 (United States); Savina, Michael R., E-mail: maria.lugaro@monash.edu, E-mail: giuseppe.tagliente@ba.infn.it, E-mail: amanda.karakas@anu.edu.au, E-mail: paolo.milazzo@ts.infn.it, E-mail: franz.kaeppeler@kit.edu, E-mail: a-davis@uchicago.edu, E-mail: msavina@anl.gov [Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States)
2014-01-01
We present model predictions for the Zr isotopic ratios produced by slow neutron captures in C-rich asymptotic giant branch (AGB) stars of masses 1.25-4 M {sub ☉} and metallicities Z = 0.01-0.03, and compare them to data from single meteoritic stardust silicon carbide (SiC) and high-density graphite grains that condensed in the outflows of these stars. We compare predictions produced using the Zr neutron-capture cross sections from Bao et al. and from n{sub T}OF experiments at CERN, and present a new evaluation for the neutron-capture cross section of the unstable isotope {sup 95}Zr, the branching point leading to the production of {sup 96}Zr. The new cross sections generally present an improved match with the observational data, except for the {sup 92}Zr/{sup 94}Zr ratios, which are on average still substantially higher than predicted. The {sup 96}Zr/{sup 94}Zr ratios can be explained using our range of initial stellar masses, with the most {sup 96}Zr-depleted grains originating from AGB stars of masses 1.8-3 M {sub ☉} and the others from either lower or higher masses. The {sup 90,} {sup 91}Zr/{sup 94}Zr variations measured in the grains are well reproduced by the range of stellar metallicities considered here, which is the same needed to cover the Si composition of the grains produced by the chemical evolution of the Galaxy. The {sup 92}Zr/{sup 94}Zr versus {sup 29}Si/{sup 28}Si positive correlation observed in the available data suggests that stellar metallicity rather than rotation plays the major role in covering the {sup 90,} {sup 91,} {sup 92}Zr/{sup 94}Zr spread.
Montiel, Edward J; Clayton, Geoffrey C; Engelbracht, Charles W; Johnson, Christopher B
2014-01-01
We present the first detection of 24 {\\mu}m variability in 24 sources in the Local Group galaxy M33. These results are based on 4 epochs of MIPS observations, which are irregularly spaced over ~750 days. We find that these sources are constrained exclusively to the Holmberg radius of the galaxy, which increases their chances of being members of M33. We have constructed spectral energy distributions (SEDs) ranging from the optical to the sub-mm to investigate the nature of these objects. We find that 23 of our objects are most likely heavily self-obscured, evolved stars; while the remaining source is the Giant HII region, NGC 604. We believe that the observed variability is the intrinsic variability of the central star reprocessed through their circumstellar dust shells. Radiative transfer modeling was carried out to determine their likely chemical composition, luminosity, and dust production rate (DPR). As a sample, our modeling has determined an average luminosity of (3.8 $\\pm$ 0.9) x 10$^4$ L$_\\odot$ and a ...
Energy Technology Data Exchange (ETDEWEB)
Gandhi, Poshak; Yamamura, Issei; Takita, Satoshi [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)
2012-05-20
We present the discovery of a source with broadband infrared photometric characteristics similar to Sakurai's object. WISE J180956.27-330500.2 (hereafter J1810-3305) shows very red WISE colors, but a very blue 2MASS [K] versus WISE [W1 (3.4 {mu}m)] color. It was not visible during the IRAS era, but now has a 12 {mu}m flux well above the IRAS point-source catalog detection limit. There are also indications of variability in historical optical photographic plates as well as in multi-epoch AKARI mid-infrared measurements. The broadband infrared spectral energy distribution (SED) shape, post-IRAS brightening, and multiwavelength variability are all characteristics also shared by Sakurai's object-a post-asymptotic giant branch (post-AGB) star which underwent a late thermal pulse and recently ejected massive envelopes of dust that are currently expanding and cooling. Optical progenitor colors suggest that J1810-3305 may have been of late spectral class. Its dramatic infrared brightening and the detection of a late-type optical counterpart are consistent with a scenario in which we have caught an extremely massive dust ejection event (in 1998 or shortly before) during the thermal pulse of an AGB star, thus providing a unique opportunity to observe stellar evolution in this phase. J1810-3305 is the only source in the entire WISE preliminary data release with similar infrared SED and variability, emphasizing the rarity of such sources. Confirmation of its nature is of great importance.
Energy Technology Data Exchange (ETDEWEB)
Constantino, Thomas; Campbell, Simon; Lattanzio, John [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Victoria 3800 (Australia); Gil-Pons, Pilar, E-mail: thomas.constantino@monash.edu [Department of Applied Physics, Polytechnic University of Catalonia, 08860 Barcelona (Spain)
2014-03-20
The vital importance of composition-dependent low-temperature opacity in low-mass (M ≤ 3 M {sub ☉}) asymptotic giant branch (AGB) stellar models of metallicity Z ≥ 0.001 has recently been demonstrated. Its significance to more metal-poor, intermediate-mass (M ≥ 2.5 M {sub ☉}) models has yet to be investigated. We show that its inclusion in lower-metallicity models ([Fe/H] ≤–2) is essential and that there exists no threshold metallicity below which composition-dependent molecular opacity may be neglected. We find it to be crucial in all intermediate-mass models investigated ([Fe/H] ≤–2 and 2.5 ≤ M/M {sub ☉} ≤ 5), because of the evolution of the surface chemistry, including the orders of magnitude increase in the abundance of molecule-forming species. Its effect on these models mirrors that previously reported for higher-metallicity models—increase in radius, decrease in T {sub eff}, faster mass loss, shorter thermally pulsing AGB lifetime, reduced enrichment in third dredge-up products (by a factor of 3-10), and an increase in the mass limit for hot bottom burning. We show that the evolution of low-metallicity models with composition-dependent low-temperature opacity is relatively independent of initial metal abundance because its contribution to the opacity is far outweighed by changes resulting from dredge-up. Our results imply a significant reduction in the expected number of nitrogen-enhanced metal-poor stars, which may help explain their observed paucity. We note that these findings are partially a product of the macrophysics adopted in our models, in particular, the Vassiliadis and Wood mass loss rate which is strongly dependent on radius.
Energy Technology Data Exchange (ETDEWEB)
Avila, Janaina N.; Ireland, Trevor R.; Holden, Peter [Research School of Earth Sciences, Australian National University, Canberra ACT 0200 (Australia); Lugaro, Maria [Monash Centre for Astrophysics, Monash University, Clayton, VIC 3800 (Australia); Gyngard, Frank; Zinner, Ernst [Laboratory for Space Sciences and the Department of Physics, Washington University, One Brookings Drive, St. Louis, MO 63130 (United States); Cristallo, Sergio [Osservatorio Astronomico di Collurania, INAF, via Maggini snc, Teramo I-64100 (Italy); Rauscher, Thomas, E-mail: janaina.avila@anu.edu.au [Centre for Astrophysics Research, School of Physics, Astronomy, and Mathematics, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom)
2013-05-01
Individual mainstream stardust silicon carbide (SiC) grains and a SiC-enriched bulk sample from the Murchison carbonaceous meteorite have been analyzed by the Sensitive High Resolution Ion Microprobe-Reverse Geometry for Eu isotopes. The mainstream grains are believed to have condensed in the outflows of {approx}1.5-3 M{sub Sun} carbon-rich asymptotic giant branch (AGB) stars with close-to-solar metallicity. The {sup 151}Eu fractions [fr({sup 151}Eu) = {sup 151}Eu/({sup 151}Eu+{sup 153}Eu)] derived from our measurements are compared with previous astronomical observations of carbon-enhanced metal-poor stars enriched in elements made by slow neutron captures (the s-process). Despite the difference in metallicity between the parent stars of the grains and the metal-poor stars, the fr({sup 151}Eu) values derived from our measurements agree well with fr({sup 151}Eu) values derived from astronomical observations. We have also compared the SiC data with theoretical predictions of the evolution of Eu isotopic ratios in the envelope of AGB stars. Because of the low Eu abundances in the SiC grains, the fr({sup 151}Eu) values derived from our measurements show large uncertainties, in most cases being larger than the difference between solar and predicted fr({sup 151}Eu) values. The SiC aggregate yields a fr({sup 151}Eu) value within the range observed in the single grains and provides a more precise result (fr({sup 151}Eu) = 0.54 {+-} 0.03, 95% conf.), but is approximately 12% higher than current s-process predictions. The AGB models can match the SiC data if we use an improved formalism to evaluate the contribution of excited nuclear states in the calculation of the {sup 151}Sm(n, {gamma}) stellar reaction rate.
Wasserburg, G. J.; Karakas, Amanda I.; Lugaro, Maria
2017-02-01
We explore the possibility that the short-lived radionuclides {}26{{A}}l, {}60{{F}}e, {}107{{P}}d, and {}182{{H}}f inferred to be present in the proto-solar cloud originated from 3–8 {M}ȯ asymptotic giant branch (AGB) stars. Models of AGB stars with initial mass above 5 {M}ȯ are prolific producers of {}26{{A}}l owing to hot bottom burning (HBB). In contrast, {}60{{F}}e, {}107{{P}}d, and {}182{{H}}f are produced by neutron captures: {}107{{P}}d and {}182{{H}}f in models ≲ 5 {M}ȯ , and {}60{{F}}e in models with higher mass. We mix stellar yields from solar-metallicity AGB models into a cloud of solar mass and composition to investigate whether it is possible to explain the abundances of the four radioactive nuclides at the Sun’s birth using one single value of the mixing ratio between the AGB yields and the initial cloud material. We find that AGB stars that experience efficient HBB (≥slant 6 {M}ȯ ) cannot provide a solution because they produce too little {}182{{H}}f and {}107{{P}}d relative to {}26{{A}}l and {}60{{F}}e. Lower-mass AGB stars cannot provide a solution because they produce too little {}26{{A}}l relative to {}107{{P}}d and {}182{{H}}f. A self-consistent solution may be found for AGB stars with masses in between (4–5.5 {M}ȯ ), provided that HBB is stronger than in our models and the {}13{{C}}(α, n){}16{{O}} neutron source is mildly activated. If stars of {{M}}< 5.5 {M}ȯ are the source of the radioactive nuclides, then some basis for their existence in proto-solar clouds needs to be explored, given that the stellar lifetimes are longer than the molecular cloud lifetimes.
Indian Academy of Sciences (India)
Jiang Zhang; Fang Zhao; Yanping Chen; Wenyuan Cui; Bo Zhang
2013-12-01
CEMP-r/s stars at low metallicity are known as double-enhanced stars that show enhancements of both r-process and s-process elements. The chemical abundances of these very metal-poor stars provide us a lot of information for putting new restraints on models of neutron-capture processes. In this article, we put forward an accreted scenario in which the double enrichment of r-process and s-process elements is caused by a former intermediate-mass Asymptotic Giant Branch (AGB) companion in a detached binary system. As the AGB superwind is only present at the ultimate phase of AGB stars, there is thus a lot of potential that the degenerate-core mass of an intermediate-mass AGB star reaches the Chandrasekhar limit before the AGB superwind. In these circumstances, both s-process elements produced in the AGB shell and r-process elements synthesized in the subsequent explosion would be sprayed contemporaneously and accreted by its companion. Despite similarity to physical conditions of a core-collapse supernova, a major focus in this scenario is the degenerate C–O core surrounded by an envelope of a former intermediate-mass AGB donor that may collapse and explode. Due to the existence of an outer envelope, r-process nucleosynthesis is expected to occur. Hypothesizing the material-rich europium (Eu) accreted by the secondary via the wind from the supernova to be in proportion to the geometric fraction of the companion with respect to the exploding donor star, we find that the estimated yield of Eu (as representative of r-process elements) per AGB supernova event is about 1 × 10-9⊙ ∼ 5 × 10-9⊙. Using the yields of Eu, the overabundance of r-process elements in CEMP-r/s stars can be accounted for. The calculated results show that the value of parameter , standing for efficiency of wind pollution from the AGB supernova, will reach about 104, which means that the enhanced factor is much larger than unity due to the impact of gravity of the donor and the result of the
He, J J; Ma, S B; Hu, J; Zhang, L Y; Fu, C B; Zhang, N T; Lian, G; Su, J; Li, Y J; Yan, S Q; Shen, Y P; Hou, S Q; Jia, B L; Zhang, T; Zhang, X P; Guo, B; Kubono, S; Liu, W P
2016-01-01
In 2014, the National Natural Science Foundation of China (NSFC) approved the Jinping Underground Nuclear Astrophysics laboratory (JUNA) project, which aims at direct cross-section measurements of four key stellar nuclear reactions right down to the Gamow windows. In order to solve the observed fluorine overabundances in Asymptotic Giant Branch (AGB) stars, measuring the key $^{19}$F($p$,$\\alpha$)$^{16}$O reaction at effective burning energies (i.e., at Gamow window) is established as one of the scientific research sub-projects. The present paper describes this sub-project in details, including motivation, status, experimental setup, yield and background estimation, aboveground test, as well as other relevant reactions.
Asymptotic behaviour near extinction of continuous-state branching processes
Pardo, Juan Carlos; Berzunza, Gabriel
2016-01-01
In this note, we study the asymptotic behaviour near extinction of (sub-) critical continuous state branching processes. In particular, we establish an analogue of Khintchin's law of the iterated logarithm near extinction time for a continuous state branching process whose branching mechanism satisfies a given condition and its reflected process at its infimum.
Asymptotic behaviour of extinction probability of interacting branching collision processes
Chen, Anyue; Li, Junping; Chen, Yiqing; Zhou, Dingxuan
2014-01-01
Although the exact expressions for the extinction probabilities of the Interacting Branching Collision Processes (IBCP) were very recently given by Chen et al. [4], some of these expressions are very complicated; hence, useful information regarding asymptotic behaviour, for example, is harder to obtain. Also, these exact expressions take very different forms for different cases and thus seem lacking in homogeneity. In this paper, we show that the asymptotic behaviour of these extr...
Asymptotic Analysis of Mixed Modes in Red Giant Stars
Jiang, C
2014-01-01
High precision space observations, such as made by the kepler and corot missions, allow us to detect mixed modes for $l = 1$ modes in their high signal-to-noise photometry data. By means of asteroseismology, the inner structure of red giant (RG) stars is revealed the first time with the help of mixed modes. We analyse these mixed modes of a 1.3 $M_{sun}$ RG model theoretically from the approximate asymptotic descriptions of oscillations. While fitting observed frequencies with the eigenvalue condition for mixed modes, a good estimate of period spacing and coupling strength is also acquired for more evolved models. We show that the behaviour of the mode inertia in a given mode varies dramatically when the coupling is strong. An approximation of period spacings is also obtained from the asymptotic dispersion relation, which provides a good estimate of the coupling strength as well as period spacing when g-mode-like mixed modes are sufficiently dense.
Testing the core of red-giant-branch stars using the period spacing of gravity modes
Lagarde, Nadège; Diego, Bossini; Miglio, Andrea
2015-08-01
The blooming of asteroseismology of red-giant stars with the CoRoT and Kepler space missions paves the way to a better understanding of the stellar structure and physical processes occurring in low-mass-giant stars.We investigate the effect of rotation on the asymptotic period spacing of gravity modes (DP) and on the coupling strength between acoustic and gravity modes. We focus on red-giant-branch stars (RGB) which ignite He in degenerate conditions (Mstars below the RGB bump, additional transport processes of chemicals have an impact on DP, hence on the determination of the stellar mass when DP is used as a constraint. Moreover we show that the coupling strength gives a direct signature of rotation occuring in red-giant stars. Whether this signature can be inferred from current data needs however to be investigated further. Finally we show that, irrespective of additional transport processes occurring during the main sequence, the period spacing of red-giant stars brighter than the RGB bump is an accurate proxy for the stellar luminosity, due to the well known relation between MHecore and luminosity.
On the red giant branch mass loss in 47 Tucanae: Constraints from the horizontal branch morphology
Salaris, Maurizio; Pietrinferni, Adriano
2016-01-01
We obtain stringent constraints on the actual efficiency of mass loss for red giant branch stars in the Galactic globular cluster 47 Tuc, by comparing synthetic modeling based on stellar evolution tracks with the observed distribution of stars along the horizontal branch in the colour-magnitude-diagram. We confirm that the observed, wedge-shaped distribution of the horizontal branch can be reproduced only by accounting for a range of initial He abundances --in agreement with inferences from the analysis of the main sequence-- and a red giant branch mass loss with a small dispersion. We have carefully investigated several possible sources of uncertainty that could affect the results of the horizontal branch modeling, stemming from uncertainties in both stellar model computations and the cluster properties such as heavy element abundances, reddening and age. We determine a firm lower limit of ~0.17$Mo for the mass lost by red giant branch stars, corresponding to horizontal branch stellar masses between ~0.65Mo ...
The s-Process in Rotating Asymptotic Giant Branch Stars
Herwig, F; Lugaro, M
2003-01-01
(abridged) We model the nucleosynthesis during the thermal pulse phase of a rotating, solar metallicity AGB star of 3M_sun. Rotationally induced mixing during the thermal pulses produces a layer (~2E-5M_sun) on top of the CO-core where large amounts of protons and C12 co-exist. We follow the abundance evolution in this layer, in particular that of the neutron source C13 and of the neutron poison N14. In our AGB model mixing persists during the entire interpulse phase due to the steep angular velocity gradient at the core-envelope interface. We follow the neutron production during the interpulse phase, and find a resulting maximum neutron exposure of tau_max =0.04 mbarn^-1, which is too small to produce any significant s-process. In parametric models, we then investigate the combined effects of diffusive overshooting from the convective envelope and rotationally induced mixing. Models with overshoot and weaker interpulse mixing - as perhaps expected from more slowly rotating stars - yield larger neutron exposu...
INTERRUPTED MASS-LOSS ON THE ASYMPTOTIC GIANT BRANCH
ZIJLSTRA, AA; LOUP, C; WATERS, LBFM; DEJONG, T
1992-01-01
We show that mass loss on the AGB is not a continuous process. Episodes of low mass loss rate, already known for carbon stars, are found to occur in oxygen-rich stars as well, suggesting that they constitute a general phenomenon. We propose that the mass loss depends on the phase of the thermal puls
The Astrosphere of the Asymptotic Giant Branch Star Irc+10216
Sahai, Raghvendra
2010-01-01
We have discovered a very extended shock structure (i.e., with a diameter of about 24 arcmin) surrounding the well-known carbon star IRC+10216 in ultraviolet images taken with the GALEX satellite. We conclude that this structure results from the interaction of IRC+10216's molecular wind with the interstellar medium (ISM), as it moves through the latter. All important structural features expected from theoretical models of such interactions are identified: the termination shock, the astrosheath, the astropause, the bowshock, and an astrotail (with vortices). The extent of the astropause provides new lower limits to the envelope age (69,000 years) and mass (1.4 solar masses, for a mass-loss rate of 2 x 10^(-5) solar masses/year). From the termination-shock standoff distance, we find that IRC+10216 is moving at a speed of about > 91 km/s [1 cm^(-3)/n_(ISM)]^1/2 through the local ISM.
The Astrosphere of the Asymptotic Giant Branch Star CIT 6
Sahai, Raghvendra; Mack-Crane, Galen P.
2014-10-01
We have discovered two extended half-ring structures in a far-ultraviolet image taken with the GALEX satellite of the well-known mass-losing carbon star CIT 6 (RW LMi). The northern (southern) ring is brighter (fainter) with a diameter of ~15' (~18'). These structures most likely represent the astrosphere resulting from the shock interaction of CIT 6's molecular wind with the warm interstellar medium (ISM), as it moves through the latter. These data provide a direct estimate of the size of CIT 6's circumstellar envelope that is a factor ~20 larger than previous estimates based on CO millimeter-wave line data. We find that CIT 6 has been undergoing heavy mass-loss for at least 93,000 yr and the total envelope mass is 0.29 M ⊙ or larger, assuming a constant mass-loss rate of 3.2 × 10-6 M ⊙ yr-1. Assuming that the shock front has reached a steady state and CIT 6's motion relative to the ISM is in the sky plane, we measure the termination-shock standoff distance directly from the image and find that CIT 6 is moving at a speed of about gsim39 (0.17 cm-3/n ISM)1/2 km s-1 through the ISM around it. However, comparisons with published numerical simulations and analytical modeling shows that CIT 6's forward shock (the northern ring) departs from the parabolic shape expected in steady state. We discuss several possible explanations for this departure.
The astrosphere of the Asymptotic Giant Branch star CIT 6
Sahai, Raghvendra
2014-01-01
We have discovered two extended half-ring structures in a far-ultraviolet image taken with the GALEX satellite of the well-known mass-losing carbon star CIT 6 (RW LMi). The northern (southern) ring is brighter (fainter) with a diameter of about 15 arcmin (18 arcmin). These structures most likely represent the astrosphere resulting from the shock interaction of CIT 6's molecular wind with the Warm Interstellar Medium, as it moves through the latter. These data provide a direct estimate of the size of CIT 6's circumstellar envelope that is a factor ~20 larger than previous estimates based on CO millimeter-wave line data. We find that CIT 6 has been undergoing heavy mass-loss for at least 93,000 yr and the total envelope mass is 0.29 Msun or larger, assuming a constant mass-loss rate of 3.2 x 10^(-6) Msun/yr. Assuming that the shock front has reached a steady-state and CIT 6's motion relative to the ISM is in the sky-plane, we measure the termination-shock standoff distance directly from the image and find that ...
Evolution and nucleosynthesis in low mass Asymptotic Giant Branch stars
Cristallo, S
2008-01-01
People usually smile when astrophysicists assert that we are sons of the stars, but human life confirms this sentence: about 65% of the mass of our body is made up of oxygen, carbon occurs in all organic life and is the basis of organic chemistry, nitrogen is an essential part of amino acids and nucleic acids, calcium is a major component of our bones. Moreover, phosphorus plays a major role in biological molecules such as DNA and RNA (where the chemical codes of life is written) and our blood carries oxygen to tissues by means of the hemoglobin (an iron pigment of red blood cells). All these elements have been created in stars. I just list some examples related to human body, but also common element such as aluminum, nickel, gold, silver and lead come from a pristine generation of stars. The abundances in the Solar System are in fact due to the mixing of material ejected from stars that polluted the Universe in different epochs before the Sun formation, occurred about 5 billion years ago, after the gravitati...
The astrosphere of the asymptotic giant branch star CIT 6
Energy Technology Data Exchange (ETDEWEB)
Sahai, Raghvendra [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States); Mack-Crane, Galen P., E-mail: sahai@jpl.nasa.gov [Department of Physics, Occidental College, Los Angeles, CA 90041 (United States)
2014-10-01
We have discovered two extended half-ring structures in a far-ultraviolet image taken with the GALEX satellite of the well-known mass-losing carbon star CIT 6 (RW LMi). The northern (southern) ring is brighter (fainter) with a diameter of ∼15' (∼18'). These structures most likely represent the astrosphere resulting from the shock interaction of CIT 6's molecular wind with the warm interstellar medium (ISM), as it moves through the latter. These data provide a direct estimate of the size of CIT 6's circumstellar envelope that is a factor ∼20 larger than previous estimates based on CO millimeter-wave line data. We find that CIT 6 has been undergoing heavy mass-loss for at least 93,000 yr and the total envelope mass is 0.29 M {sub ☉} or larger, assuming a constant mass-loss rate of 3.2 × 10{sup –6} M {sub ☉} yr{sup –1}. Assuming that the shock front has reached a steady state and CIT 6's motion relative to the ISM is in the sky plane, we measure the termination-shock standoff distance directly from the image and find that CIT 6 is moving at a speed of about ≳39 (0.17 cm{sup –3}/n {sub ISM}){sup 1/2} km s{sup –1} through the ISM around it. However, comparisons with published numerical simulations and analytical modeling shows that CIT 6's forward shock (the northern ring) departs from the parabolic shape expected in steady state. We discuss several possible explanations for this departureþ.
The Red Giant Branch in the Tycho-2 Catalogue
Gontcharov, George
2016-01-01
Based on multicolor photometry from the 2MASS and Tycho-2 catalogues, we have produced a sample of 38 368 branch red giants that has less than 1\\% of admixtures and is complete within 500 pc of the Sun. The sample includes 30 671 K giants, 7544 M giants, 49 C giants, and 104 suspected supergiants or S stars. The photometric distances have been calculated for K, M, and C stars with an accuracy of 40\\%. Tycho-2 proper motions and PCRV radial velocities are used to analyze the stellar kinematics. The decrease in the stellar distribution density with distance from the Galactic equator approximated by the barometric law, contrary to the Besancon model of the Galaxy, and the kinematic parameters calculated using the Ogorodnikov--Milne model characterize the overwhelming majority of the selected K and M giants as disk stars with ages of more than 3 Gyr. A small number of K and M giants are extremely young or, conversely, thick-disk ones. The latter show a nonuniform distribution in the phase space of coordinates and...
Asymptotic normality of the size of the giant component in a random hypergraph
Bollobas, Bela
2011-01-01
Recently, we adapted random walk arguments based on work of Nachmias and Peres, Martin-L\\"of, Karp and Aldous to give a simple proof of the asymptotic normality of the size of the giant component in the random graph $G(n,p)$ above the phase transition. Here we show that the same method applies to the analogous model of random $k$-uniform hypergraphs, establishing asymptotic normality throughout the (sparse) supercritical regime. Previously, asymptotic normality was known only towards the two ends of this regime.
Foretellings of Ragnar\\"ok: World-engulfing Asymptotic Giants and the Inheritance of White Dwarfs
Mustill, Alexander James
2012-01-01
The search for planets around White Dwarf stars, and evidence for dynamical instability around them in the form of atmospheric pollution and circumstellar discs, raises questions about the nature of planetary systems that can survive the vicissitudes of the Asymptotic Giant Branch (AGB). We study the competing effects, on planets at several AU from the star, of strong tidal forces arising from the star's large convective envelope, and of the planets' orbital expansion due to stellar mass-loss. We, for the first time, study the evolution of planets while following each thermal pulse on the AGB. For Jovian planets, tidal forces are strong, and can pull into the envelope planets initially at ~3 AU for a 1M_Sol star and ~5 AU for a 5M_Sol star. Lower-mass planets feel weaker tidal forces, and Terrestrial planets initially within 1.5-3 AU enter the stellar envelope. Thus, low-mass planets that begin inside the maximum stellar radius can survive, as their orbits expand due to mass-loss. The inclusion of a moderate ...
An asymptotic analysis of closed queueing networks with branching populations
Bayer, N.; Coffman, E.G.; Kogan, Y.A.
1995-01-01
Closed queueing networks have proven to be valuable tools for system performance analysis. In this paper, we broaden the applications of such networks by incorporating populations of {em branching customers: whenever a customer completes service at some node of the network, it is replaced by N>=0 cu
On the asymptotic acoustic-mode phase in red-giant stars and its dependence on evolutionary state
Christensen-Dalsgaard, J; Elsworth, Y; Hekker, S
2014-01-01
Asteroseismic investigations based on the wealth of data now available,in particular from the CoRoT and Kepler missions, require a good understanding of the relation between the observed quantities and the properties of the underlying stellar structure. Kallinger et al. 2012 found a relation between their determination of the asymptotic phase of radial oscillations in evolved stars and the evolutionary state, separating ascending-branch red giants from helium-burning stars in the `red clump'. Here we provide a detailed analysis of this relation, which is found to derive from differences between these two classes of stars in the thermodynamic state of the convective envelope. There is potential for distinguishing red giants and clump stars based on the phase determined from observations that are too short to allow distinction based on determination of the period spacing for mixed modes. The analysis of the phase may also point to a better understanding of the potential for using the helium-ionization-induced a...
Asymptotic normality of the size of the giant component via a random walk
Bollobas, Bela
2010-01-01
In this paper we give a simple new proof of a result of Pittel and Wormald concerning the asymptotic value and (suitably rescaled) limiting distribution of the number of vertices in the giant component of $G(n,p)$ above the scaling window of the phase transition. Nachmias and Peres used martingale arguments to study Karp's exploration process, obtaining a simple proof of a weak form of this result. Here we use slightly different martingale arguments to obtain the full result of Pittel and Wormald with little extra work.
Asymptotic regimes for the partition into colonies of a branching process with emigration
Bertoin, Jean
2009-01-01
We consider a spatial branching process with emigration in which children either remain at the same site as their parents or migrate to new locations and then found their own colonies. We are interested in asymptotics of the partition of the total population into colonies for large populations with rare migrations. Under appropriate regimes, we establish weak convergence of the rescaled partition to some random measure that is constructed from the restriction of a Poisson point measure to a certain random region, and whose cumulant solves a simple integral equation.
Veras, Dimitri; Gaensicke, Boris T
2015-01-01
The discovery of over 50 planets around evolved stars and more than 35 debris discs orbiting white dwarfs highlight the increasing need to understand small body evolution around both early and asymptotic giant branch (GB) stars. Pebbles and asteroids are susceptible to strong accelerations from the intense luminosity and winds of GB stars. Here, we establish equations that can model time-varying GB stellar radiation, wind drag and mass loss. We derive the complete three-dimensional equations of motion in orbital elements due to (1) the Epstein and Stokes regimes of stellar wind drag, (2) Poynting-Robertson drag, and (3) the Yarkovsky drift with seasonal and diurnal components. We prove through averaging that the potential secular eccentricity and inclination excitation due to Yarkovsky drift can exceed that from Poynting-Robertson drag and radiation pressure by at least three orders of magnitude, possibly flinging asteroids which survive YORP spin-up into a widely dispersed cloud around the resulting white dw...
Konstantinova-Antova, R; Charbonnel, C; Drake, N A; Wade, G; Tsvetkova, S; Petit, P; Schröder, K -P; Lèbre, A
2013-01-01
We present our first results on a new sample containing all single G,K and M giants down to V = 4 mag in the Solar vicinity, suitable for spectropolarimetric (Stokes V) observations with Narval at TBL, France. For detection and measurement of the magnetic field (MF), the Least Squares Deconvolution (LSD) method was applied (Donati et al. 1997) that in the present case enables detection of large-scale MFs even weaker than the solar one (the typical precision of our longitudinal MF measurements is 0.1-0.2 G). The evolutionary status of the stars is determined on the basis of the evolutionary models with rotation (Lagarde et al. 2012; Charbonnel et al., in prep.) and fundamental parameters given by Massarotti et al. (1998). The stars appear to be in the mass range 1-4 M_sun, situated at different evolutionary stages after the Main Sequence (MS), up to the Asymptotic Giant Branch (AGB). The sample contains 45 stars. Up to now, 29 stars are observed (that is about 64 % of the sample), each observed at least twice....
Buysschaert, B; Corsaro, E; Christensen-Dalsgaard, J; Aerts, C; Arentoft, T; Kjeldsen, H; García, R A; Aguirre, V Silva; Degroote, P
2016-01-01
Dipole mixed pulsation modes of consecutive radial order have been detected for thousands of low-mass red-giant stars with the NASA space telescope Kepler. Such modes have the potential to reveal information on the physics of the deep stellar interior. Different methods have been proposed to derive an observed value for the gravity-mode period spacing, the most prominent one relying on a relation derived from asymptotic pulsation theory applied to the gravity-mode character of the mixed modes. Our aim is to compare results based on this asymptotic relation with those derived from an empirical approach for three pulsating red-giant stars. We developed a data-driven method to perform frequency extraction and mode identification. Next, we used the identified dipole mixed modes to determine the gravity-mode period spacing by means of an empirical method and by means of the asymptotic relation. In our methodology, we consider the phase offset, $\\epsilon_{\\mathrm{g}}$, of the asymptotic relation as a free parameter...
Resolved Stellar Halos of M87 and NGC 5128: Metallicities from the Red-Giant Branch
Bird, Sarah A.
2016-08-01
We have searched halo fields of two giant elliptical galaxies: M87, using HST images at 10 kpc from the galactic center, and NGC 5128 (Cen A), using VIMOS VLT images at 65 kpc from the center and archival HST data from 8 to 38 kpc from the center. We have resolved thousands of red-giant-branch (RGB) stars in these stellar halo fields using V and I filters, and, in addition, measured the metallicity using stellar isochrones. The metallicity distribution function (MDF) of the inner stellar halo of M87 is similar to that of NGC 5128's stellar halo.
A giant planet orbiting the 'extreme horizontal branch' star V 391 Pegasi.
Silvotti, R; Schuh, S; Janulis, R; Solheim, J-E; Bernabei, S; Østensen, R; Oswalt, T D; Bruni, I; Gualandi, R; Bonanno, A; Vauclair, G; Reed, M; Chen, C-W; Leibowitz, E; Paparo, M; Baran, A; Charpinet, S; Dolez, N; Kawaler, S; Kurtz, D; Moskalik, P; Riddle, R; Zola, S
2007-09-13
After the initial discoveries fifteen years ago, over 200 extrasolar planets have now been detected. Most of them orbit main-sequence stars similar to our Sun, although a few planets orbiting red giant stars have been recently found. When the hydrogen in their cores runs out, main-sequence stars undergo an expansion into red-giant stars. This expansion can modify the orbits of planets and can easily reach and engulf the inner planets. The same will happen to the planets of our Solar System in about five billion years and the fate of the Earth is matter of debate. Here we report the discovery of a planetary-mass body (Msini = 3.2M(Jupiter)) orbiting the star V 391 Pegasi at a distance of about 1.7 astronomical units (au), with a period of 3.2 years. This star is on the extreme horizontal branch of the Hertzsprung-Russell diagram, burning helium in its core and pulsating. The maximum radius of the red-giant precursor of V 391 Pegasi may have reached 0.7 au, while the orbital distance of the planet during the stellar main-sequence phase is estimated to be about 1 au. This detection of a planet orbiting a post-red-giant star demonstrates that planets with orbital distances of less than 2 au can survive the red-giant expansion of their parent stars.
New Exact and Asymptotic Results of Dual-Branch MRC over Correlated Nakagami-m Fading Channels
Al-Quwaiee, Hessa
2015-05-01
We present in this paper a new performance analysis results of dual-branch maximal-ratio combining over correlated Nakagami-m fading channels with arbitrary fading parameter. In particular, we derive exact closed-form expressions of the outage probability, the average bit error rate, and the ergodic capacity in terms of the extended generalized bivariate Meijer G- function. Moreover, we also provide simple closed- form asymptotic expressions in the high signal-to- noise ratio regime of these three fundamental performance measures. © 2015 IEEE.
On Lithium-rich Red Giants: Engulfment on the Giant Branch of Trumpler 20
Aguilera-Gómez, Claudia; Chanamé, Julio; Pinsonneault, Marc H.; Carlberg, Joleen K.
2016-12-01
The Gaia-ESO survey recently reported on a large sample of lithium (Li) abundance determinations for evolved stars in the rich open cluster Trumpler 20. They argue for a scenario where virtually all stars experience post-main-sequence mixing and Li is preserved in only two objects. We present an alternate explanation, where Li is normal in the vast majority of cluster stars and anomalously high in these two cases. We demonstrate that the Li upper limits in the red giants can be explained with a combination of main-sequence depletion and standard dredge-up and that they are close to the detected levels in other systems of similar age. In our framework, two of the detected giants are anomalously Li-rich, and we propose that both could have been produced by the engulfment of a substellar mass companion of {16}-10+6 {M}{{J}}. This would imply that ˜ 5 % of 1.8 {M}⊙ stars in this system, and by extension elsewhere, should have substellar mass companions of high mass that could be engulfed at some point in their lifetimes. We discuss future tests that could confirm or refute this scenario.
On Lithium-Rich Red Giants. II. Engulfment on the Giant Branch of Trumpler 20
Aguilera-Gómez, Claudia; Pinsonneault, Marc H; Carlberg, Joleen K
2016-01-01
The Gaia-ESO survey recently reported on a large sample of lithium (Li) abundance determinations for evolved stars in the rich open cluster Trumpler 20. They argue for a scenario where virtually all stars experience post main sequence mixing and Li is preserved in only two objects. We present an alternate explanation, where Li is normal in the vast majority of cluster stars and anomalously high in these two cases. We demonstrate that the Li upper limits in the red giants can be explained with a combination of main sequence depletion and standard dredge-up, and that they are close to the detected levels in other systems of similar age. In our framework, the two detected giants are anomalously Li-rich, and we propose that both could have been produced by the engulfment of a substellar mass companion of 14+-8M_J. This would imply that ~5% of 1.8 solar mass stars in this system, and by extension elsewhere, should have substellar mass companions of high mass that could be engulfed at some point in their lifetimes....
Dust is forming along the red giant branch of 47 TUC
Origlia, Livia; Fabbri, Sara; Ferraro, Francesco R; Pecci, Flavio Fusi; Rich, R Michael; Dalessandro, Emanuele
2010-01-01
We present additional evidence that dust is really forming along the red giant branch (RGB) of 47 Tuc at luminosities ranging from above the horizontal branch to the RGB-tip (Origlia et al. 2007). The presence of dust had been inferred from an infrared excess in the (K-8) color, with K measured from high spatial resolution ground based near-IR photometry and "8" referring to Spitzer-IRAC 8 micron photometry. We show how (K-8) is a far more sensitive diagnostic for detecting tiny circumstellar envelopes around warm giants than colors using only the Spitzer-IRAC bands, for example the (3.6-8) color used by Boyer et al. (2010). In addition, we also show high resolution HST-ACS I band images of the giant stars which have (K-8) color excess. These images clearly demonstrate that Boyer et al (2010) statement that our detections of color excess associated with stars below the RGB-tip arise from blends and artefacts is simply not valid.
ISOCAM observations of Galactic Globular Clusters mass loss along the Red Giant Branch
Origlia, L; Pecci, F F; Rood, R T; Origlia, Livia; Ferraro, Francesco R.; Pecci, Flavio Fusi; Rood, Robert T.
2002-01-01
Deep images in the 10 micron spectral region have been obtained for five massive Galactic globular clusters, NGC 104 (=47 Tuc), NGC 362, NGC 5139 (omega Cen), NGC 6388, NGC 7078 (=M15) and NGC 6715 (=M54) in the Sagittarius Dwarf Spheroidal using ISOCAM in 1997. A significant sample of bright giants have an ISOCAM counterpart but only < 20% of these have a strong mid-IR excess indicative of dusty circumstellar envelopes. From a combined physical and statistical analysis we derive mass loss rates and frequency. We find that i) significant mass loss occurs only at the very end of the Red Giant Branch evolutionary stage and is episodic, ii) the modulation timescales must be greater than a few decades and less than a million years, and iii) mass loss occurrence does not show a crucial dependence on the cluster metallicity.
Asymptotic behavior of critical primitive multi-type branching processes with immigration
Ispány, Márton
2012-01-01
Under natural assumptions a Feller type diffusion approximation is derived for critical multi-type branching processes with immigration when the offspring mean matrix is primitive (in other words, positively regular). Namely, it is proved that a sequence of appropriately scaled random step functions formed from a sequence of critical primitive multi-type branching processes with immigration converges weakly towards a squared Bessel process supported by a ray determined by the Perron vector of the offspring mean matrix.
Determining the forsterite abundance of the dust around Asymptotic Giant Branch stars
de Vries, B L; Waters, L B F M; Blommaert, J A D L; Kemper, F
2010-01-01
Aims. We present a diagnostic tool to determine the abundance of the crystalline silicate forsterite in AGB stars surrounded by a thick shell of silicate dust. Using six infrared spectra of high mass-loss oxygen rich AGB stars we obtain the forsterite abundance of their dust shells. Methods. We use a monte carlo radiative transfer code to calculate infrared spectra of dust enshrouded AGB stars. We vary the dust composition, mass-loss rate and outer radius. We focus on the strength of the 11.3 and the 33.6 \\mu m forsterite bands, that probe the most recent (11.3 \\mu m) and older (33.6 \\mu m) mass-loss history of the star. Simple diagnostic diagrams are derived, allowing direct comparison to observed band strengths. Results. Our analysis shows that the 11.3 \\mu m forsterite band is a robust indicator for the forsterite abundance of the current mass-loss period for AGB stars with an optically thick dust shell. The 33.6 \\mu m band of forsterite is sensitive to changes in the density and the geometry of the emitti...
Condensation of refractory metals in asymptotic giant branch and other stellar environments
Energy Technology Data Exchange (ETDEWEB)
Schwander, D.; Berg, T.; Schönhense, G.; Ott, U., E-mail: schwandd@uni-mainz.de [Institut für Physik, Johannes Gutenberg-Universität, Staudingerweg 7, D-55128 Mainz (Germany)
2014-09-20
The condensation of material from a gas of solar composition has been extensively studied, but less so condensation in the environment of evolved stars, which has been mainly restricted to major compounds and some specific element groups such as the Rare Earth elements. Also of interest, however, are refractory metals like Mo, Ru, Os, W, Ir, and Pt, which may condense to form refractory metal nuggets (RMNs) like the ones that have been found in association with presolar graphite. We have performed calculations describing the condensation of these elements in the outflows of s-process enriched AGB stars as well as from gas enriched in r-process products. While in carbon-rich environments (C > O), the formation of carbides is expected to consume W, Mo, and V (Lodders and Fegley), the condensation sequence for the other refractory metals under these conditions does not significantly differ from the case of a cooling gas of solar composition. The composition in detail, however, is significantly different due to the completely different source composition. Condensation from an r-process enriched source differs less from the solar case. Elemental abundance ratios of the refractory metals can serve as a guide for finding candidate presolar grains among the RMNs in primitive meteorites—most of which have a solar system origin—for confirmation by isotopic analysis. We apply our calculations to the case of the four RMNs found by Croat et al., which may very well be presolar.
Transmission Electron Microscopy of Al-rich Silicate Stardust from Asymptotic Giant Branch Stars
Vollmer, Christian; Hoppe, Peter; Brenker, Frank E.
2013-05-01
We report on transmission electron microscopy (TEM) investigations of two mineralogically unusual stardust silicates to constrain their circumstellar condensation conditions. Both grains were identified by high spatial resolution nano secondary ion mass spectrometry (NanoSIMS) in the Acfer 094 meteorite, one of the most pristine carbonaceous chondrites available for study. One grain is a highly crystalline, highly refractory (Fe content formation of olivine over pyroxene is favored in circumstellar environments, in agreement with expectations from condensation theory and experiments. The second stardust silicate consists of an amorphous Ca-Si rich material which lacks any crystallinity based on TEM observations in which tiny (<20 nm) hibonite nanocrystallites are embedded. This complex assemblage therefore attests to the fast cooling and rapidly changing chemical environments under which dust grains in circumstellar shells form.
TRANSMISSION ELECTRON MICROSCOPY OF Al-RICH SILICATE STARDUST FROM ASYMPTOTIC GIANT BRANCH STARS
Energy Technology Data Exchange (ETDEWEB)
Vollmer, Christian [Institute for Mineralogy, University of Muenster, Correnssstr. 24, D-48149 Muenster (Germany); Hoppe, Peter [Max Planck Institute for Chemistry, Particle Chemistry Department, Hahn-Meitner-Weg 1, D-55128 Mainz (Germany); Brenker, Frank E., E-mail: christian.vollmer@wwu.de [Institute of Geoscience/Mineralogy, Goethe-University Frankfurt, Altenhoeferallee 1, D-60438 Frankfurt (Germany)
2013-05-20
We report on transmission electron microscopy (TEM) investigations of two mineralogically unusual stardust silicates to constrain their circumstellar condensation conditions. Both grains were identified by high spatial resolution nano secondary ion mass spectrometry (NanoSIMS) in the Acfer 094 meteorite, one of the most pristine carbonaceous chondrites available for study. One grain is a highly crystalline, highly refractory (Fe content < 0.5 at%), structurally undisturbed orthopyroxene (MgSiO{sub 3}) with an unusually high Al content (1.8 {+-} 0.5 at%). This is the first TEM documentation of a single crystal pyroxene within the complete stardust silicate data set. We interpret the microstructure and chemistry of this grain as being a direct condensate from a gas of locally non-solar composition (i.e., with a higher-than-solar Al content and most likely also a lower-than-solar Mg/Si ratio) at (near)-equilibrium conditions. From the overabundance of crystalline olivine (six reported grains to date) compared to crystalline pyroxene (only documented as a single crystal in this work) we infer that formation of olivine over pyroxene is favored in circumstellar environments, in agreement with expectations from condensation theory and experiments. The second stardust silicate consists of an amorphous Ca-Si rich material which lacks any crystallinity based on TEM observations in which tiny (<20 nm) hibonite nanocrystallites are embedded. This complex assemblage therefore attests to the fast cooling and rapidly changing chemical environments under which dust grains in circumstellar shells form.
Binarity in Cool Asymptotic Giant Branch Stars: A Galex Search for Ultraviolet Excesse
Sahai, R; de Paz, A Gil; Contreras, C Sánchez
2008-01-01
The search for binarity in AGB stars is of critical importance for our understanding of how planetary nebulae acquire the dazzling variety of aspherical shapes which characterises this class. However, detecting binary companions in such stars has been severely hampered due to their extreme luminosities and pulsations. We have carried out a small imaging survey of AGB stars in ultraviolet light (using GALEX) where these cool objects are very faint, in order to search for hotter companions. We report the discovery of significant far-ultraviolet excesses towards nine of these stars. The far-ultraviolet excess most likely results either directly from the presence of a hot binary companion, or indirectly from a hot accretion disk around the companion.
Evolution of Thermally Pulsing Asymptotic Giant Branch Stars I. The COLIBRI Code
Marigo, Paola; Nanni, Ambra; Girardi, Leo; Pumo, Maria Letizia
2013-01-01
We present the COLIBRI code for computing the evolution of stars along the TP-AGB phase. Compared to purely synthetic TP-AGB codes, COLIBRI relaxes a significant part of their analytic formalism in favour of a detailed physics applied to a complete envelope model, in which the stellar structure equations are integrated from the atmosphere down to the bottom of the hydrogen-burning shell. This allows to predict self-consistently: (i) the effective temperature, and more generally the convective envelope and atmosphere structures, correctly coupled to the changes in the surface chemical abundances and gas opacities; (ii) sphericity effects in the atmospheres; (iii) the core mass-luminosity relation and its break-down due to hot bottom burning (HBB) in the most massive AGB stars, (iv) the HBB nucleosynthesis via the solution of a complete nuclear network (pp chains, and the CNO, NeNa, MgAl cycles), including also the production of 7Li via the Cameron-Fowler beryllium transport mechanism; (v) the chemical composit...
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
In this article the supercritical bisexual Galton-Watson branching processes with the immigration of mating units is considered. A necessary condition for the almost sure convergence, and a sufficient condition for the L1 convergence are given for the process with the suitably normed condition.
Tail asymptotics for the total progeny of the critical killed branching random walk
Aidekon, Elie
2009-01-01
We consider a branching random walk on $\\mathbb{R}$ with a killing barrier at zero. At criticality, the process becomes eventually extinct, and the total progeny $Z$ is therefore finite. We show that the tail distribution of $Z$ displays a typical behaviour in $(n\\ln^2(n))^{-1}$, which confirms the prediction of Addario-Berry and Broutin.
Asymptotic behaviour of the S-stopped branching processes with countable state space
Kyrychynska, Iryna; Yeleyko, Yaroslav
2011-01-01
he starting process with countable number of types \\mu(t) generates a stopped branching process \\xi(t). The starting process stops, by falling into the nonempty set S. It is assumed, that the starting process is subcritical, indecomposable and noncyclic. It is proved, that the extinction probability converges to the cyclic function with period 1.
Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution.
von Bloh, W; Cuntz, M; Schröder, K-P; Bounama, C; Franck, S
2009-01-01
The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth-mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthetic biomass production and takes into account a variety of climatological, biogeochemical, and geodynamical processes. This allows us to identify a so-called photosynthesis-sustaining habitable zone (pHZ), as determined by the limits of biological productivity on the planetary surface. Our model considers solar evolution during the main-sequence stage and along the Red Giant Branch as described by the most recent solar model. We obtain a large set of solutions consistent with the principal possibility of life. The highest likelihood of habitability is found for "water worlds." Only mass-rich water worlds are able to realize pHZ-type habitability beyond the stellar main sequence on the Red Giant Branch.
Abundances of C, N, Sr and Ba on the red giant branch of omega Centauri
Stanford, Laura M; Norris, John E
2010-01-01
Abundances relative to iron for carbon, nitrogen, strontium and barium are presented for 33 stars on the red giant branch of the globular cluster omega Centauri. They are based on intermediate-resolution spectroscopic data covering the blue spectral region analyzed using spectrum synthesis techniques. The data reveal the existence of a broad range in the abundances of these elements, and a comparison with similar data for main sequence stars enables insight into the evolutionary history of the cluster. The majority of the red giant branch stars were found to be depleted in carbon, i.e. [C/Fe]<0, while [N/Fe] for the same stars shows a range of ~1 dex, from [N/Fe]~0.7 to 1.7 dex. The strontium-to-iron abundance ratios varied from solar to mildly enhanced (0.0<=[Sr/Fe]<=0.8), with [Ba/Fe] generally equal to or greater than [Sr/Fe]. The carbon and nitrogen abundance ratios for the one known CH star in the sample, ROA 279, are [C/Fe]=0.6 and [N/Fe]=0.5 dex. Evidence for evolutionary mixing on the red gia...
Light Element Chemistry and the Double Red Giant Branch in the Galactic Globular Cluster NGC 288
Hsyu, Tiffany; Lee, Young-Wook; Rich, R Michael
2014-01-01
The globular cluster NGC 288 was previously reported to exhibit two distinct red giant branches (RGBs) in the narrow-band Calcium (HK) and Str\\"omgren b and y band passes. In order to investigate this phenomenon further, we obtained moderate resolution (R$\\sim$18,000) spectra of 27 RGB stars in NGC 288 with the Hydra multifiber spectrograph on the Blanco 4m telescope at Cerro Tololo Inter-American Observatory. From these data we derive iron ($\\langle$[Fe/H]$\\rangle$=-1.19; $\\sigma$=0.12), oxygen ($\\langle$[O/Fe]$\\rangle$=$+$0.25; $\\sigma$=0.13), and sodium ($\\langle$[Na/Fe]$\\rangle$=$+$0.15; $\\sigma$=0.26) abundances using standard equivalent width and spectrum synthesis techniques. Combining these data with those available in the literature indicates that the two giant branches have distinctly different light element chemistry but do not exhibit a significant spread in [Fe/H]. A new transmission tracing for the CTIO Ca filter, obtained for this project, shows that CN contamination is the primary spectral fea...
Marino, A F; Casagrande, L; Collet, R; Dotter, A; Johnson, C I; Lind, K; Bedin, L R; Jerjen, H; Aparicio, A; Sbordone, L
2016-01-01
The globular cluster 47 Tuc exhibits a complex sub-giant branch (SGB) with a faint-SGB comprising only about the 10% of the cluster mass and a bright-SGB hosting at least two distinct populations.We present a spectroscopic analysis of 62 SGB stars including 21 faint-SGB stars. We thus provide the first chemical analysis of the intriguing faint-SGB population and compare its abundances with those of the dominant populations. We have inferred abundances of Fe, representative light elements C, N, Na, and Al, {\\alpha} elements Mg and Si for individual stars. Oxygen has been obtained by co-adding spectra of stars on different sequences. In addition, we have analysed 12 stars along the two main RGBs of 47 Tuc. Our principal results are: (i) star-to-star variations in C/N/Na among RGB and bright-SGB stars; (ii) substantial N and Na enhancements for the minor population corresponding to the faint-SGB; (iii) no high enrichment in C+N+O for faint-SGB stars. Specifically, the C+N+O of the faint-SGB is a factor of 1.1 hi...
The Giant Branches of ω Centauri: Multiwavelength Observations of Evolved Stars
Hughes, Joanne; Wallerstein, George; van Leeuwen, Floor; Hilker, Michael
2004-02-01
We have obtained photometric observations in a 182 arcmin2 area, 25' to the north of the center of the globular cluster ω Centauri. The Strömgren vby and broadband BI filters were used to obtain measurements for some 2500 stars. Preliminary examinations of parts of the data have been presented previously (Hughes & Wallerstein, published in 2000; Hughes, Wallerstein, & van Leeuwen, published in 2002). Here we present the complete data set, study the giant branches, and use the B-I color index as a tool for assessing the ages of the populations within ω Cen. Our results confirm previous results for the main-sequence turnoff stars: there appears to be an age spread of about 3-5 Gyr among the stars of ω Cen. We use the proper-motion study by van Leeuwen et al. (published in 2000) to confirm cluster membership above B~16.5 and calibrate our photometry to that of Hilker and Hilker & Richtler (both published in 2000) in order to use the improved methods described by these authors for deriving metallicity estimates from the Strömgren photometry. We use data on 25 ROA stars in our field and 40 stars from Hilker to look at the enrichment history of ω Cen. We support previous findings that there is another red giant branch, redder (Lee et al., published in 1999, and Pancino et al., published in 2000), and younger than the main giant branch but containing few stars. Even though this so-called RGB-a population appears to be younger than the bulk of the stellar population, it does not seem to be younger than the most metal-rich tail of the bulk population. This last property suggests that the RGB-a may not have been the last burst of star formation in ω Cen and could support the idea, presented by Ferraro et al. and Pancino et al. (both in 2002), that it represents an accreted stellar system.
Marino, A. F.; Milone, A. P.; Casagrande, L.; Collet, R.; Dotter, A.; Johnson, C. I.; Lind, K.; Bedin, L. R.; Jerjen, H.; Aparicio, A.; Sbordone, L.
2016-06-01
The globular cluster 47 Tuc exhibits a complex sub-giant branch (SGB) with a faint-SGB comprising only about the 10 per cent of the cluster mass and a bright-SGB hosting at least two distinct populations. We present a spectroscopic analysis of 62 SGB stars including 21 faint-SGB stars. We thus provide the first chemical analysis of the intriguing faint-SGB population and compare its abundances with those of the dominant populations. We have inferred abundances of Fe, representative light elements C, N, Na, and Al, α elements Mg and Si for individual stars. Oxygen has been obtained by co-adding spectra of stars on different sequences. In addition, we have analysed 12 stars along the two main RGBs of 47 Tuc. Our principal results are (i) star-to-star variations in C/N/Na among RGB and bright-SGB stars; (ii) substantial N and Na enhancements for the minor population corresponding to the faint-SGB; (iii) no high enrichment in C+N+O for faint-SGB stars. Specifically, the C+N+O of the faint-SGB is a factor of 1.1 higher than the bright-SGB, which, considering random (±1.3) plus systematic errors (±0.3), means that their C+N+O is consistent within observational uncertainties. However, a small C+N+O enrichment for the faint-SGB, similar to what predicted on theoretical ground, cannot be excluded. The N and Na enrichment of the faint-SGB qualitatively agrees with this population possibly being He-enhanced, as suggested by theory. The iron abundance of the bright and faint-SGB is the same to a level of ˜0.10 dex, and no other significant difference for the analysed elements has been detected.
The Destruction of 3He by Rayleigh-Taylor Instability on the First Giant Branch
Eggleton, P P; Lattanzio, J C
2006-01-01
Low-mass stars, ~1-2 solar masses, near the Main Sequence are efficient at producing 3He, which they mix into the convective envelope on the giant branch and distribute into the Galaxy by way of envelope loss. This process is so efficient that it is difficult to reconcile the observed cosmic abundance of 3He with the predictions of Big Bang nucleosynthesis. In this paper we find, by modeling a red giant with a fully three-dimensional hydrodynamic code and a full nucleosynthetic network, that mixing arises in the supposedly stable and radiative zone between the hydrogen-burning shell and the base of the convective envelope. This mixing is due to Rayleigh-Taylor instability within a zone just above the hydrogen-burning shell. In this zone the burning of the 3He left behind by the retreating convective envelope is predominantly by the reaction 3He + 3He -> 4He + 2p, a reaction which, untypically for stellar nuclear reactions, {\\it lowers} the mean molecular weight, leading to a local minimum. This local minimum ...
Carbon and Nitrogen Abundance Variations Among Red Giant Branch Stars in M10
Gerber, Jeffrey M.; Friel, Eileen D.; Vesperini, Enrico
2016-06-01
We present analysis of the CN and CH molecular band strengths derived for red giants in M10 as part of a first pilot study in the WIYN Indiana Northern Globular Survey (WINGS). This survey plans to use a combination of low-resolution spectroscopy taken with Hydra and wide-field SDSS filter photometry taken with the newly upgraded ODI to study the multiple populations and dynamics of a sample of Milky Way globular clusters. Our sample comes from the first in a series of observation runs conducted in Aug. 2014 using Hydra on the WIYN 3.5m telescope. CN and CH bands are measured for ~100 red giant branch stars and used to characterize the distribution in band strength and to derive carbon and nitrogen abundances by comparing observed band strengths to synthetic spectra produced by the Synthetic Spectrum Generator (SSG), which makes use of MARCS model atmospheres. Band strengths and CN abundances are used to investigate the distribution of stars in nitrogen normal and enhanced populations and to compare these to other ways of characterizing multiple stellar populations with other light elements (such as Na and O).
Institute of Scientific and Technical Information of China (English)
YAO Gui-Jin; SONG Ruo-Long; WANG Ke-Xie
2008-01-01
We obtaln an asymptotic solution to the vertical branch-cut integral of shear waves excited by an impulsive pressure point source in a fluid-filled borehole,by taking the effect of the infinite singularity of the Hankel functions related to shear waves in the integrand at the shear branch point into account and using the method of steepest-descent to expand the vertical branch-cut integral of shear waves.It is theoretically proven that the saddle point of the integrand is locared at ks-i/z,where ks and z are the shear branch point and the offset.The continuous and smooth amplitude spectra and the resonant peaks of shear waves are numerically calculated from the asymptotic solution.These asymptotic results are generally in agreement with the numerical integral results.It is also found by the comparison and analysis of two results that the resonant factor and the effect of the normal and leaking mode poles around the shear branch point lead to the two-peak characteristics of the amplitude spectra of shear waves in the resonant peak zones from the numerical integral calculations.
NGC 362: another globular cluster with a split red giant branch
Carretta, E; Gratton, R G; Lucatello, S; D'Orazi, V; Bellazzini, M; Catanzaro, G; Leone, F; Momany, Y; Sollima, A
2013-01-01
We obtained FLAMES GIRAFFE+UVES spectra for both first and second-generation red giant branch (RGB) stars in the globular cluster (GC) NGC 362 and used them to derive abundances of 21 atomic species for a sample of 92 stars. The surveyed elements include proton-capture (O, Na, Mg, Al, Si), alpha-capture (Ca, Ti), Fe-peak (Sc, V, Mn, Co, Ni, Cu), and neutron-capture elements (Y, Zr, Ba, La, Ce, Nd, Eu, Dy). The analysis is fully consistent with that presented for twenty GCs in previous papers of this series. Stars in NGC 362 seem to be clustered into two discrete groups along the Na-O anti-correlation, with a gap at [O/Na] 0 dex. Na-rich, second generation stars show a trend to be more centrally concentrated, although the level of confidence is not very high. When compared to the classical second-parameter twin NGC 288, with similar metallicity, but different horizontal branch type and much lower total mass, the proton-capture processing in stars of NGC 362 seems to be more extreme, confirming previous analysi...
VLT/FLAMES spectroscopy of Red Giant Branch stars in the Carina dwarf spheroidal galaxy
Lemasle, B; Tolstoy, E; Venn, K A; Shetrone, M D; Irwin, M J; de Boer, T J L; Starkenburg, E; Salvadori, S
2011-01-01
The ages of individual Red Giant Branch stars (RGB) can range from 1 Gyr old to the age of the Universe, and it is believed that the abundances of most chemical elements in their photospheres remain unchanged with time (those that are not affected by the 1st dredge-up). This means that they trace the ISM in the galaxy at the time the star formed, and hence the chemical enrichment history of the galaxy. CMD analysis has shown the Carina dwarf spheroidal (dSph) to have had an unusually episodic star formation history (SFH) which is expected to be reflected in the abundances of different chemical elements. We use the VLT-FLAMES spectrograph in HR mode (R~20000) to measure the abundances of several chemical elements in a sample of 35 RGB stars in Carina. We also combine these abundances with photometry to derive age estimates for these stars. This allows us to determine which of two distinct star formation (SF) episodes the stars in our sample belong to, and thus to define the relationship between SF and chemical...
The double sub-giant branch of NGC 6656 (M22): a chemical characterization
Marino, A F; Sneden, C; Bergemann, M; Kraft, R P; Wallerstein, G; Cassisi, S; Aparicio, A; Asplund, M; Bedin, R L; Hilker, M; Lind, K; Momany, Y; Piotto, G; Roederer, I U; Stetson, P B; Zoccali, M
2012-01-01
We present an abundance analysis of 101 subgiant branch (SGB) stars in the globular cluster M22. Using low resolution FLAMES/GIRAFFE spectra we have determined abundances of the neutron-capture strontium and barium and the light element carbon. With these data we explore relationships between the observed SGB photometric split in this cluster and two stellar groups characterized by different contents of iron, slow neutron-capture process (s-process) elements, and the alpha element calcium, that we previously discovered in M22âs red-giant stars. We show that the SGB stars correlate in chemical composition and color-magnitude diagram position: the stars with higher metallicity and relative s-process abundances define a fainter SGB, while stars with lower metallicity and s-process content reside on a relatively brighter SGB. This result has implications for the relative ages of the two stellar groups of M22. In particular, it is inconsistent with a large spread in ages of the two SGBs. By accounting for the...
Infrared tip of the red giant branch and distances to the MAFFEI/IC 342 group
Energy Technology Data Exchange (ETDEWEB)
Wu, Po-Feng; Tully, R. Brent; Jacobs, Bradley A. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, HI 96822 (United States); Rizzi, Luca [W. M. Keck Observatory, 65-1120 Mamalahoa Hwy, Kamuela, HI 96743 (United States); Dolphin, Andrew E. [Raytheon, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Karachentsev, Igor D. [Special Astrophysical Observatory, Russian Academy of Sciences, Nizhnij Arkhyz, Karachai-Cherkessian Republic 369167 (Russian Federation)
2014-07-01
In this paper, we extend the use of the tip of the red giant branch (TRGB) method to near-infrared wavelengths from the previously used I-band, using the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3). Upon calibration of a color dependency of the TRGB magnitude, the IR TRGB yields a random uncertainty of ∼5% in relative distance. The IR TRGB methodology has an advantage over the previously used Advance Camera for Surveys F606W and F814W filter set for galaxies that suffer from severe extinction. Using the IR TRGB methodology, we obtain distances toward three principal galaxies in the Maffei/IC 342 complex, which are located at low Galactic latitudes. New distance estimates using the TRGB method are 3.45{sub −0.13}{sup +0.13} Mpc for IC 342, 3.37{sub −0.23}{sup +0.32} Mpc for Maffei 1, and 3.52{sub −0.30}{sup +0.32} Mpc for Maffei 2. The uncertainties are dominated by uncertain extinction, especially for Maffei 1 and Maffei 2. Our IR calibration demonstrates the viability of the TRGB methodology for observations with the James Webb Space Telescope.
Infrared Tip of the Red Giant Branch and Distances to the Maffei/IC 342 Group
Wu, Po-Feng; Rizzi, Luca; Dolphin, Andrew E; Jacobs, Bradley A; Karachentsev, Igor D
2014-01-01
In this paper, we extend the use of the tip of the red giant branch (TRGB) method to near-infrared wavelengths from previously-used $I$-band, using the \\textit{Hubble Space Telescope (HST)} Wide Field Camera 3 (WFC3). Upon calibration of a color dependency of the TRGB magnitude, the IR TRGB yields a random uncertainty of $\\sim 5%$ in relative distance. The IR TRGB methodology has an advantage over the previously-used ACS $F606W$ and $F814W$ filter set for galaxies that suffer from severe extinction. Using the IR TRGB methodology, we obtain distances toward three principal galaxies in the Maffei/IC 342 complex, which are located at low Galactic latitudes. New distance estimates using the TRGB method are 3.45$^{+0.13}_{-0.13}$ Mpc for IC 342, 3.37$^{+0.32}_{-0.23}$ Mpc for Maffei 1 and 3.52$^{+0.32}_{-0.30}$ Mpc for Maffei 2. The uncertainties are dominated by uncertain extinction, especially for Maffei 1 and Maffei 2. Our IR calibration demonstrates the viability of the TRGB methodology for observations with t...
VLT/FLAMES spectroscopy of red giant branch stars in the Fornax dwarf spheroidal galaxy
Lemasle, B; Hill, V; Tolstoy, E; Irwin, M; Jablonka, P; Venn, K; Battaglia, G; Starkenburg, E; Shetrone, M; Letarte, B; Francois, P; Helmi, A; Primas, F; Kaufer, A; Szeifert, T
2014-01-01
Fornax is one of the most massive dwarf spheroidal galaxies in the Local Group. The Fornax field star population is dominated by intermediate age stars but star formation was going on over almost its entire history. It has been proposed that Fornax experienced a minor merger event. Despite recent progress, only the high metallicity end of Fornax field stars ([Fe/H]>-1.2 dex) has been sampled in larger number via high resolution spectroscopy. We want to better understand the full chemical evolution of this galaxy by better sampling the whole metallicity range, including more metal poor stars. We use the VLT-FLAMES multi-fibre spectrograph in high-resolution mode to determine the abundances of several alpha, iron-peak and neutron-capture elements in a sample of 47 individual Red Giant Branch stars in the Fornax dwarf spheroidal galaxy. We combine these abundances with accurate age estimates derived from the age probability distribution from the colour-magnitude diagram of Fornax. Similar to other dwarf spheroid...
On the oxygen abundances of M 67 stars from the turn-off point through the red-giant branch
Takeda, Yoichi
2014-01-01
With an aim to examine whether the surface oxygen composition suffers any appreciable change due to evolution-induced mixing of nuclear-processed material in the envelope of red giants, abundance determinations for O/Fe/Ni based on the synthetic spectrum-fitting method were performed by using the moderate-dispersion spectra in the 7770-7792A region (comprising O I 7771-5, Fe I 7780, and Ni I 7788 lines) for 16 stars of the old open cluster M 67 in various evolutionary stages from the turn-off point through the red giant branch. We could not find any meaningful difference in the oxygen abundances between the non-giant group (T_eff > 5000 K) and the red-giant group (T_eff < 5000 K), which are almost consistent with each other on the average (despite that both have rather large dispersions of a few tenths dex caused by insufficient data quality), though only one giant star (S 1054) appears to show an exceptionally low O abundance and thus needs a more detailed study. This result may suggest that oxygen conten...
DEFF Research Database (Denmark)
Miglio, A.; Brogaard, Karsten Frank; Stello, D.
2012-01-01
Mass-loss of red giant branch (RGB) stars is still poorly determined, despite its crucial role in the chemical enrichment of galaxies. Thanks to the recent detection of solar-like oscillations in G–K giants in open clusters with Kepler, we can now directly determine stellar masses for a statistic...
Miglio, A.; Brogaard, K.; Stello, D.; Chaplin, W.J.; D'Antona, F.; Montalbán, J.; Basu, S.; Bressan, A.; Grundahl, F.; Pinsonneault, M.; Serenelli, A.M.; Elsworth, Y.; Hekker, S.; Kallinger, T.; Mosser, B.; Ventura, P.; Bonanno, A.; Noels, A.; Silva Aguirre, V.; Szabo, R.; Li, J.; McCauliff, S.; Middour, C.K.; Kjeldsen, H.
2012-01-01
Mass-loss of red giant branch (RGB) stars is still poorly determined, despite its crucial role in the chemical enrichment of galaxies. Thanks to the recent detection of solar-like oscillations in G-K giants in open clusters with Kepler, we can now directly determine stellar masses for a statisticall
The Pattern of CN, O, and Na Inhomogeneities on the Red Giant Branch of Messier 5
Smith, Graeme H; Hamren, Katherine M
2013-01-01
Data from the literature are used to explore the relation between $\\lambda$3883 CN band strength and the sodium and oxygen abundances of red giants in the globular cluster Messier 5. Although there is a broad tendency for CN-strong giants in this cluster to have higher sodium abundances and lower oxygen abundances than CN-weak giants of comparable absolute magnitude there are some secondary features in these relations. The oxygen abundance [O/Fe] shows a greater range (0.6-0.7 dex) among the CN-strong giants than the CN-weak giants (approximately 0.3 dex). By contrast [Na/Fe] shows a 0.6-0.7 dex range among the CN-weak giants, but a more limited range of 0.3-0.4 dex among the CN-strong giants. The $\\lambda$3883 CN band anticorrelates in strength with [O/Fe] among the CN-strong giants, but there is little, if any, such trend among the CN-weak giants. In contrast, the CN band strength may show a modest correlation with [Na/Fe] among the CN-weak giants, but there is little evidence for such among the CN-strong g...
Madore, Barry F.; Freedman, Wendy L.
1995-01-01
Based on both empirical data for the nearby galaxies, and on computer simulations, we show that measuring the position of the tip of the first-ascent red-giant branch provides a means of obtaining the distances to nearby galaxies with a precision and accuracy comparable to using Cepheids and/or RR Lyrae variables. We present an analysis of synthetic I vs (V-I) color magnitude diagrams of Population 2 systems to investigate the use of the observed discontinuity in the I-band luminosity function as a primary distance indicator. In the simulations we quantify the effects (1) signal to noise, (2) crowding, (3) population size, and (4) non-giant-branch-star contamination, on the method adopted for detecting the discontinuity,, measuring its luminosity, and estimating its uncertainity. We discuss sources of systematic error in the context of observable parameters, such as the signal-to-noise ratio and/or surface brightness. The simulations are then scaled to observed color-magnitude diagrams. It is concluded, that from the ground the tip of the red-giant-branch method can be sucessfully used to determine distances accurate to +/- 10% for galaxies out to 3 Mpc (mu approximately 27.5 mag); and from space a factor of four further in distance (mu approximately 30.6 mag) can be reached using HST. This method can be applied whereever a metal-poor population (-2.0 less than Z less than -0.7) of red-giant stars is detected (whose age is in the range 7-17 Gyr), whether that population resides in the halo of a spiral galaxy, the extended outer disk of a dwarf irregular, or in the outer periphery of an elliptical galaxy.
Hekker, S; Basu, S; Mazumdar, A; Aguirre, V Silva; Chaplin, W J
2013-01-01
Asteroseismology, i.e. the study of the internal structures of stars via their global oscillations, is a valuable tool to obtain stellar parameters such as mass, radius, surface gravity and mean density. These parameters can be obtained using certain scaling relations which are based on an asymptotic approximation. Usually the observed oscillation parameters are assumed to follow these scaling relations. Recently, it has been questioned whether this is a valid approach, i.e., whether the order of the observed oscillation modes are high enough to be approximated with an asymptotic theory. In this work we use stellar models to investigate whether the differences between observable oscillation parameters and their asymptotic estimates are indeed significant. We compute the asymptotic values directly from the stellar models and derive the observable values from adiabatic pulsation calculations of the same models. We find that the extent to which the atmosphere is included in the models is a key parameter. Conside...
Cassisi, S
1997-01-01
Updated theoretical relations for the run of the bolometric and I magnitude of the Tip of the Red Giant Branch (TRGB) with respect to the metallicity are provided. An analogous relation for the V magnitude of the Zero Age Horizontal Branch at the RR Lyrae instability strip is also provided. A comparison has been performed among our ZAHB and TRGB distances, the Cepheid distance scale by Madore & Freedman (1991) and the HIPPARCOS distances set by local subdwarfs with accurate parallax determinations. The application of our TRGB distance scale to NGC3379 provides a distance to the Leo I group that is about 8% higher than the one obtained by Sakai et al. (1997) adopting the TRGB brightness calibration by Da Costa & Armandroff (1990). Our distance to the Leo I group, coupled with the relative distance Coma cluster-Leo I, provides a determination of H_0 at the Coma cluster: H_0=64_{-9}^{+10} Km s^{-1} Mpc^{-1}.
The Distance to M101 Hosting Type Ia SN 2011fe Based on the Tip of the Red Giant Branch
Lee, Myung Gyoon
2012-01-01
We present a new determination of the distance to M101, host of the type Ia SN 2011fe, based on the tip of the red giant branch method (TRGB). Our determination is based on {\\it Hubble Space Telescope} archival $F555W$ and $F814W$ images of nine fields within the galaxy. Color-magnitude diagrams of arm-free regions in all fields show a prominent red giant branch (RGB). We measure the $I$-band magnitudes of the TRGB, obtaining a mean value of $I_{\\rm TRGB}=25.28\\pm0.01$ (where the error is a standard error), using an edge-detection method. We derive a weighted mean value of distance modulus $(m-M)_0=29.30\\pm0.01 ({\\rm random})\\pm0.12 ({\\rm systematic})$, corresponding to a linear distance of $7.24\\pm0.03\\pm0.40 $ Mpc. While previous estimates for M101 show a large range (TRGB distances of $(m-M)_0=29.05$ to 29.42 and Cepheid distances of $(m-M)_0=29.04$ to 29.71), our measurements of the TRGB distances for nine fields show a small dispersion of only 0.02. We combine our distance estimate and photometry in the ...
Saviane, I; Piotto, G; Aparicio, A; Saviane, Ivo; Rosenberg, Alfred; Piotto, Giampaolo; Aparicio, Antonio
2000-01-01
The purpose of this study is to carry out a thorough investigation of the changes in morphology of the red giant branch (RGB) of Galactic globular clusters (GGC) as a function of metallicity, in the V,I bands. To this aim, two key points are developed in the course of the analysis. (a) Using our photometric V,I database for Galactic globular clusters (the largest homogeneous data sample to date; Rosenberg et al. 1999) we measure a complete set of metallicity indices, based on the morphology and position of the red-giant branch. In particular, we provide here the first calibration of the S, DV_(1.1) and DV_(1.4) indices in the (V-I,V) plane. We show that our indices are internally consistent, and we calibrate each index in terms of metallicity, both on the Zinn & West (1984) and the Carretta & Gratton (1997) scales. Our new calibrations of the (V-I)o,g, DV_(1.2), (V-I)_(-3.0) and (V-I)_(-3.5) indices are consistent with existing relations. (b) Using a grid of selected RGB fiducial points, we define a f...
Naturally occurring branched-chain polyamines induce a crosslinked meshwork structure in a giant DNA
Muramatsu, Akira; Shimizu, Yuta; Yoshikawa, Yuko; Fukuda, Wakao; Umezawa, Naoki; Horai, Yuhei; Higuchi, Tsunehiko; Fujiwara, Shinsuke; Imanaka, Tadayuki; Yoshikawa, Kenichi
2016-12-01
We studied the effect of branched-chain polyamines on the folding transition of genome-sized DNA molecules in aqueous solution by the use of single-molecule observation with fluorescence microcopy. Detailed morphological features of polyamine/DNA complexes were characterized by atomic force microscopy (AFM). The AFM observations indicated that branched-chain polyamines tend to induce a characteristic change in the higher-order structure of DNA by forming bridges or crosslinks between the segments of a DNA molecule. In contrast, natural linear-chain polyamines cause a parallel alignment between DNA segments. Circular dichroism measurements revealed that branched-chain polyamines induce the A-form in the secondary structure of DNA, while linear-chain polyamines have only a minimum effect. This large difference in the effects of branched- and linear-chain polyamines is discussed in relation to the difference in the manner of binding of these polyamines to negatively charged double-stranded DNA.
Marigo, P; Marigo, Paola; Girardi, Leo
2007-01-01
We present new synthetic models of the TP-AGB evolution. They are computed for 7 values of initial metal content (Z from 0.0001 to 0.03) and for initial masses between 0.5 and 5.0 Msun, thus extending the low- and intermediate-mass tracks of Girardi et al. (2000) until the beginning of the post-AGB phase. The calculations are performed by means of a synthetic code that incorporates many recent improvements, among which we mention: (1) the use of detailed and revised analytical relations to describe the evolution of quiescent luminosity, inter-pulse period, third dredge-up, hot bottom burning, pulse cycle luminosity variations, etc.; (2) the use of variable molecular opacities -- i.e. opacities consistent with the changing photospheric chemical composition -- in the integration of a complete envelope model, instead of the standard choice of scaled-solar opacities; (3) the use of formalisms for the mass-loss rates derived from pulsating dust-driven wind models of C- and O-rich AGB stars; and (4) the switching o...
Sargent, Benjamin A.; Srinivasan, S.; Meixner, M.; Kemper, F.; Tielens, X.; Speck, A.; Matsuura, M.; Bernard, J.; Hony, S.; Gordon, K.; Indebetouw, R.; Marengo, M.; Sloan, G.; Woods, P.; Vijh, U. P.
2010-01-01
The Spitzer Space Telescope Legacy program Surveying the Agents of a Galaxy's Evolution (SAGE; PI: M. Meixner) has observed over 6 million stars in the Large Magellanic Cloud with both the Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) instruments to explore the lif
Sargent, Benjamin A.; Srinivasan, S.; Meixner, M.; Kemper, F.; Tielens, X.; Speck, A.; Matsuura, M.; Bernard, J.; Hony, S.; Gordon, K.; Indebetouw, R.; Marengo, M.; Sloan, G.; Woods, P.; Vijh, U. P.
2010-01-01
The Spitzer Space Telescope Legacy program Surveying the Agents of a Galaxy's Evolution (SAGE; PI: M. Meixner) has observed over 6 million stars in the Large Magellanic Cloud with both the Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) instruments to explore the lif
A New Giant Branch Clump Structure In the Large Magellanic Cloud
Piatti, A E; Bica, E; Claria, J J; Santos, J F C; Sarajedini, A; Dottori, H
1999-01-01
We present Washington C, T1 CCD photometry of 21 fields located in the northern part of the Large Magellanic Cloud (LMC), and spread over a region of more than 2.52 degrees approximately 6 degrees from the bar. The surveyed areas were chosen on the basis of their proximity to SL 388 and SL 509, whose fields showed the presence of a secondary giant clump, observationally detected by Bica et al. (1998, AJ, 116, 723). From the collected data we found that most of the observed field CMDs do not show a separate secondary clump, but rather a continuous vertical structure (VS), which is clearly seen for the first time. Its position and size are nearly the same throughout the surveyed regions: it lies below the Red Giant Clump (RGC) and extends from the bottom of the RGC to approximately 0.45 mag fainter, spanning the bluest color range of the RGC. The more numerous the VS stars in a field, the larger the number of LMC giants in the same zone. Our analysis demonstrate that VS stars belong to the LMC and are most like...
Gorski, Marek; Gieren, Wolfgang; Catelan, Marcio; Pilecki, Bogumil; Karczmarek, Paulina; Suchomska, Ksenia; Graczyk, Dariusz; Konorski, Piotr; Zgirski, Bartlomiej; Wielgorski, Piotr
2016-01-01
We present a precise optical and near-infrared determination of the Tip of the Red Giant Branch (TRGB) brightness in the Large and Small Magellanic Clouds (respectively LMC and SMC). The commonly used calibrations of the absolute magnitude of the TRGB lead to an overestimation of the distance to the LMC and SMC in the K band, and an underestimation of the distance in the optical I band for both galaxies. Reported discrepancies are at the level of 0.2 mag, with respect to the very accurate distance determinations to both Clouds based on late-type eclipsing binaries. The differential distances between the LMC and SMC obtained in the J and K bands, and for the bolometric brightness are consistent with each other, and with the results obtained from eclipsing binaries and other distance indicators.
Cassisi, Santi; Pietrinferni, Adriano
2015-01-01
We performed a detailed study of the evolution of the luminosity of He-ignition stage and of the red giant branch bump luminosity during the red giant branch phase transition for various metallicities. To this purpose we calculated a grid of stellar models that sample the mass range of the transition with a fine mass step equal to ${\\rm 0.01M_\\odot}$. We find that for a stellar population with a given initial chemical composition, there is a critical age (of 1.1-1.2~Gyr) around which a decrease in age of just 20-30 million years causes a drastic drop in the red giant branch tip brightness. We also find a narrow age range (a few $10^7$ yr) around the transition, characterized by the luminosity of the red giant branch bump being brighter than the luminosity of He ignition. We discuss a possible link between this occurrence and observations of Li-rich core He-burning stars.
McDonald, Iain
2015-01-01
The impact of metallicity on the mass-loss rate from red giant branch (RGB) stars is studied through its effect on the parameters of horizontal branch (HB) stars. The scaling factors from Reimers (1975) and Schroder & Cuntz (2005) are determined for 56 well-studied Galactic globular clusters (GCs). The median values among clusters are, respectively, {\\eta}_R = 0.477 +/- 0.070 (+0.050/-0.062) and {\\eta}_SC = 0.172 +/- 0.024 (+0.018/-0.023) (standard deviation and systematic uncertainties, respectively). Mass-loss mechanisms on the RGB have very little metallicity dependence: over a factor of 200 in iron abundance, {\\eta} varies by <~30 per cent, within the current systematic uncertainties on cluster ages and evolution models. Since {\\eta} incorporates cluster age, the low standard deviation of {\\eta} among clusters (~14 per cent) suggests that age can almost entirely account for the "second parameter problem". The remaining spread in {\\eta} correlates with cluster mass and density, suggesting helium enr...
Johnson, Christian I; Rich, R Michael; Pilachowski, Catherine A; Hsyu, Tiffany
2016-01-01
We present radial velocities and chemical abundances for red giant branch stars in the Galactic bulge globular clusters NGC 6342 and NGC 6366. The velocities and abundances are based on measurements of high resolution (R > 20,000) spectra obtained with the MMT-Hectochelle and WIYN-Hydra spectrographs. We find that NGC 6342 has a heliocentric radial velocity of +112.5 km/s (sigma = 8.6 km/s), NGC 6366 has a heliocentric radial velocity of -122.3 km/s (sigma = 1.5 km/s), and that both clusters have nearly identical metallicities ([Fe/H] ~ -0.55). NGC 6366 shows evidence of a moderately extended O-Na anti-correlation, but more data are needed for NGC 6342 to determine if this cluster also exhibits the typical O-Na relation likely found in all other Galactic globular clusters. The two clusters are distinguished from similar metallicity field stars as having larger [Na/Fe] spreads and enhanced [La/Fe] ratios, but we find that NGC 6342 and NGC 6366 display alpha and Fe-peak element abundance patterns that are typic...
Johnson, Christian I.; Caldwell, Nelson; Rich, R. Michael; Pilachowski, Catherine A.; Hsyu, Tiffany
2016-07-01
We present radial velocities and chemical abundances for red giant branch stars in the Galactic bulge globular clusters NGC 6342 and NGC 6366. The velocities and abundances are based on measurements of high-resolution (R ≳ 20,000) spectra obtained with the MMT-Hectochelle and WIYN-Hydra spectrographs. We find that NGC 6342 has a heliocentric radial velocity of +112.5 km s-1 (σ = 8.6 km s-1), NGC 6366 has a heliocentric radial velocity of -122.3 km s-1 (σ = 1.5 km s-1), and both clusters have nearly identical metallicities ([Fe/H] ≈ -0.55). NGC 6366 shows evidence of a moderately extended O-Na anti-correlation, but more data are needed for NGC 6342 to determine if this cluster also exhibits the typical O-Na relation likely found in all other Galactic globular clusters. The two clusters are distinguished from similar metallicity field stars as having larger [Na/Fe] spreads and enhanced [La/Fe] ratios, but we find that NGC 6342 and NGC 6366 display α and Fe-peak element abundance patterns that are typical of other metal-rich ([Fe/H] > -1) inner Galaxy clusters. However, the median [La/Fe] abundance may vary from cluster-to-cluster.
Conn, Anthony R; Lewis, Geraint F; Parker, Quentin A; Zucker, Daniel B; Martin, Nicolas F; McConnachie, Alan W; Irwin, Mike J; Tanvir, Nial; Fardal, Mark A; Ferguson, Annette M N; Chapman, Scott C; Valls-Gabaud, David
2012-01-01
In `A Bayesian Approach to Locating the Red Giant Branch Tip Magnitude (PART I),' a new technique was introduced for obtaining distances using the TRGB standard candle. Here we describe a useful complement to the technique with the potential to further reduce the uncertainty in our distance measurements by incorporating a matched-filter weighting scheme into the model likelihood calculations. In this scheme, stars are weighted according to their probability of being true object members. We then re-test our modified algorithm using random-realization artificial data to verify the validity of the generated posterior probability distributions (PPDs) and proceed to apply the algorithm to the satellite system of M31, culminating in a 3D view of the system. Further to the distributions thus obtained, we apply a satellite-specific prior on the satellite distances to weight the resulting distance posterior distributions, based on the halo density profile. Thus in a single publication, using a single method, a compreh...
Tolstoy, E; Cole, A A; Pasquini, L; Gilmozzi, R; Gallagher, J S; Tolstoy, Eline; Irwin, Michael J.; Cole, Andrew A.
2001-01-01
Spectroscopic abundance determinations for stars spanning a Hubble time in age are necessary in order to unambiguously determine the evolutionary histories of galaxies. Using FORS1 in Multi-Object Spectroscopy mode on ANTU (UT1) at the ESO-VLT on Paranal we obtained near infrared spectra from which we measured the equivalent widths of the two strongest Ca II triplet lines to determine metal abundances for a sample of Red Giant Branch stars, selected from ESO-NTT optical (I, V-I) photometry of three nearby, Local Group, galaxies: the Sculptor Dwarf Spheroidal, the Fornax Dwarf Spheroidal and the Dwarf Irregular NGC 6822. The summed equivalent width of the two strongest lines in the Ca II triplet absorption line feature, centered at 8500A, can be readily converted into an [Fe/H] abundance using the previously established calibrations by Armandroff & Da Costa (1991) and Rutledge, Hesser & Stetson (1997). We measured metallicities for 37 stars in Sculptor, 32 stars in Fornax, and 23 stars in NGC 6822, yie...
Goudfrooij, Paul; Rosenfield, Philip; Bressan, Alessandro; Marigo, Paola; Correnti, Matteo; Puzia, Thomas H
2015-01-01
Recent high-quality photometry of many star clusters in the Magellanic Clouds with ages of 1$\\,-\\,$2 Gyr revealed main sequence turnoffs (MSTOs) that are significantly wider than can be accounted for by a simple stellar population (SSP). Such extended MSTOs (eMSTOs) are often interpreted in terms of an age spread of several $10^8$ yr, challenging the traditional view of star clusters as being formed in a single star formation episode. Li et al. and Bastian & Niederhofer recently investigated the sub-giant branches (SGBs) of NGC 1651, NGC 1806, and NGC 1846, three star clusters in the Large Magellanic Cloud (LMC) that exhibit an eMSTO. They argued that the SGB of these star clusters can be explained only by a SSP. We study these and two other similar star clusters in the LMC, using extensive simulations of SSPs including unresolved binaries. We find that the shapes of the cross-SGB profiles of all star clusters in our sample are in fact consistent with their cross-MSTO profiles when the latter are interpre...
Institute of Scientific and Technical Information of China (English)
王汉兴; 赵飞; 卢金余
2006-01-01
In this paper, we investigate Galton-Watson branching processes in random environments. In the case where the environmental process is a Markov chain which is positive recurrent or has a transition matrix Q (θ,α) such that supθ Q (θ,α)> 0 for some α, we prove that the model has the asymptotic behavior being similar to that of Galton-Watson branching processes. In other case where the environments are non-stationary independent, the sufficient conditions are obtained for certain extinction and uncertain extinction for the model.
Goudfrooij, Paul; Girardi, Léo; Rosenfield, Philip; Bressan, Alessandro; Marigo, Paola; Correnti, Matteo; Puzia, Thomas H.
2015-06-01
High-quality photometry of many star clusters in the Magellanic Clouds with ages of 1-2 Gyr revealed main sequence turnoffs (MSTOs) that are significantly wider than can be accounted for by a simple stellar population (SSP). Such extended MSTOs (eMSTOs) are often interpreted in terms of an age spread of several 108 yr, challenging the traditional view of star clusters as being formed in a single star formation episode. Li et al. and Bastian & Niederhofer recently investigated the sub-giant branches (SGBs) of NGC 1651, NGC 1806, and NGC 1846, three star clusters in the Large Magellanic Cloud (LMC) that exhibit an eMSTO. They argued that the SGB of these star clusters can be explained only by an SSP. We study these and two other similar star clusters in the LMC, using extensive simulations of SSPs including unresolved binaries. We find that the shapes of the cross-SGB profiles of all star clusters in our sample are in fact consistent with their cross-MSTO profiles when the latter are interpreted as age distributions. Conversely, SGB morphologies of star clusters with eMSTOs are found to be inconsistent with those of simulated SSPs. Finally, we create PARSEC isochrones from tracks featuring a grid of convective overshoot levels and a very fine grid of stellar masses. A comparison of the observed photometry with these isochrones shows that the morphology of the red clump (RC) of such star clusters is also consistent with that implied by their MSTO in the age spread scenario. We conclude that the SGB and RC morphologies of star clusters featuring eMSTOs are consistent with the scenario in which the eMSTOs are caused by a distribution of stellar ages.
Dobbs, David E.
2010-01-01
This note develops and implements the theory of polynomial asymptotes to (graphs of) rational functions, as a generalization of the classical topics of horizontal asymptotes and oblique/slant asymptotes. Applications are given to hyperbolic asymptotes. Prerequisites include the division algorithm for polynomials with coefficients in the field of…
Lithium-Rich Giants in Globular Clusters
Kirby, Evan N; Zhang, Andrew J; Hong, Jerry; Guo, Michelle; Guo, Rachel; Cohen, Judith G; Cunha, Katia
2016-01-01
Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron-Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 +/- 0.1)% for the RGB, (1.6 +/- 1.1)% for the AGB, and (0.3 +/- 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propo...
A Superwind from Early Post-Red Giant Stars?
Soker, N; Rood, R T; Harpaz, A; Soker, Noam; Catelan, Marcio; Rood, Robert T.; Harpaz, Amos
2001-01-01
We suggest that the gap observed at 20,000 K in the horizontal branches of several Galactic globular clusters is caused by a small amount of extra mass loss which occurs when stars start to "peel off" the red giant branch (RGB), i.e., when their effective temperature starts to increase, even though they may still be on the RGB. We show that the envelope structure of RGB stars which start to peel off is similar to that of late asymptotic giant branch stars known to have a super-wind phase. An analogous super-wind in the RGB peel-off stars could easily lead to the observed gap in the distribution of the hottest HB stars.
Hydrodynamic Simulations of the Interaction between Giant Stars and Planets
Staff, Jan E; Wood, Peter; Galaviz, Pablo; Passy, Jean-Claude
2016-01-01
We present the results of hydrodynamic simulations of the interaction between a 10 Jupiter mass planet and a red or asymptotic giant branch stars, both with a zero-age main sequence mass of 3.5 $M_\\odot$. Dynamic in-spiral timescales are of the order of few years and a few decades for the red and asymptotic giant branch stars, respectively. The planets will eventually be destroyed at a separation from the core of the giants smaller than the resolution of our simulations, either through evaporation or tidal disruption. As the planets in-spiral, the giant stars' envelopes are somewhat puffed up. Based on relatively long timescales and even considering the fact that further in-spiral should take place before the planets are destroyed, we predict that the merger would be difficult to observe, with only a relatively small, slow brightening. Very little mass is unbound in the process. These conclusions may change if the planet's orbit enhances the star's main pulsation modes. Based on the angular momentum transfer,...
Charbonnel, C
2016-01-01
Long-lived stars in GCs exhibit chemical peculiarities with respect to their halo counterparts. In particular, Na-enriched stars are identified as belonging to a 2d stellar population born from cluster material contaminated by the H-burning ashes of a 1st stellar population. Their presence and numbers in different locations of the CMDs provide important constraints on the self-enrichment scenarios. In particular, the ratio of Na-poor to Na-rich stars on the AGB has recently been found to vary strongly from cluster to cluster, while it is relatively constant on the RGB. We investigate the impact of both age and metallicity on the theoretical Na spread along the AGB within the framework of the fast rotating massive stars scenario for GC self-enrichment. (tb continued)
Matthews, L D; Gerard, E; Bertre, T Le; Johnson, M C; Dame, T M
2010-01-01
We report HI 21-cm line observations of the AGB star X Her obtained with the Green Bank Telescope (GBT) and the Very Large Array (VLA). We have detected HI emission totaling M_HI=2.1e-03 M_sun associated with the circumstellar envelope of the star. The HI distribution exhibits a head-tail morphology, similar to those previously observed around Mira and RS Cnc. The tail extends ~6.0' (0.24 pc) in the plane of the sky, along the direction of the star's space motion. We also detect a velocity gradient of ~6.5 km/s across the envelope, consistent with the HI tracing a turbulent wake that arises from the motion of a mass-losing star through the ISM. GBT mapping of a 2x2deg region around X Her reveals that the star lies (in projection) near the periphery of a much larger HI cloud that also exhibits signatures of ISM interaction. The properties of the cloud are consistent with those of compact high-velocity clouds. Using CO observations, we have placed an upper limit on its molecular gas content of N_H22.4~M_sun) an...
Weintraub, D.; Kastner, J.; Hines, D.; Sahai, R.
2000-01-01
The authors have used infrared polarimetric imaging with NICMOS to determine precisely the position of the star that illuminates (and presumably generated) the bipolar, preplanetary reflection nebula RAFGL 2688 (the Egg Nebula).
IRAS 17423-1755 (Hen 3-1475) revisited: an O-rich high-mass post-Asymptotic Giant Branch star
Manteiga, M; Ulla, A; Manchado, A; Garcia-Lario, P
2011-01-01
The high-resolution (R=600) Spitzer/IRS spectrum of the bipolar proto-planetary nebula (PPN) IRAS 17423-1755 is presented in order to clarify the dominant chemistry (C-rich versus O-rich) of its circumstellar envelope as well as to constrain its evolutionary stage. The high quality Spitzer/IRS spectrum shows weak 9.7 um absorption from amorphous silicates. This confirms for the first time the O-rich nature of IRAS 17423-1755 in contradiction to a previous C-rich classification, which was based on the wrong identification of the strong 3.1 um absorption feature seen in the Infrared Space Observatory (ISO) spectrum as due to acetylene (C2H2). The high-resolution Spitzer/IRS spectrum displays a complete lack of C-rich mid-IR features such as molecular absorption features (e.g., 13.7 um C2H2, 14.0 um HCN, etc.) or the classical polycyclic aromatic hydrocarbon infrared emission bands. Thus, the strong 3.1 um absorption band toward IRAS 17423-1755 has to be identified as water ice. In addition, a [Ne II] nebular em...
Carretta, Eugenio
2014-01-01
We present the homogeneous reanalysis of Mg and Al abundances from high resolution UVES/FLAMES spectra for 31 red giants in the globular cluster NGC 2808. We found a well defined Mg-Al anticorrelation reaching a regime of subsolar Mg abundance ratios, with a spread of about 1.4 dex in [Al/Fe]. The main result from the improved statistics of our sample is that the distribution of stars is not continuous along the anticorrelation as they are neatly clustered into three distinct clumps each with different chemical composition. One group (P) shows the primordial composition of field stars of similar metallicity, and the other two (I and E) have increasing abundances of Al and decreasing abundances of Mg. The fraction of stars we found in the three components (P: 68%, I: 19%, E: 13%) is in excellent agreement with the number ratios computed for the three distinct main sequences in NGC 2808: for the first time there is a clear correspondence between discrete photometric sequences of dwarfs and distinct groups of gi...
Seismic evidence for a rapidly rotating core in a lower-giant-branch star observed with Kepler
Deheuvels, S; Chaplin, W J; Basu, S; Antia, H M; Appourchaux, T; Benomar, O; Davies, G R; Elsworth, Y; Gizon, L; Goupil, M J; Reese, D R; Regulo, C; Schou, J; Stahn, T; Casagrande, L; Christensen-Dalsgaard, J; Fischer, D; Hekker, S; Kjeldsen, H; Mathur, S; Mosser, B; Pinsonneault, M; Valenti, J; Christiansen, J L; Kinemuchi, K; Mullally, F
2012-01-01
Rotation is expected to have an important influence on the structure and the evolution of stars. However, the mechanisms of angular momentum transport in stars remain theoretically uncertain and very complex to take into account in stellar models. To achieve a better understanding of these processes, we desperately need observational constraints on the internal rotation of stars, which until very recently were restricted to the Sun. In this paper, we report the detection of mixed modes - i.e. modes that behave both as g modes in the core and as p modes in the envelope - in the spectrum of the early red giant KIC7341231, which was observed during one year with the Kepler spacecraft. By performing an analysis of the oscillation spectrum of the star, we show that its non-radial modes are clearly split by stellar rotation and we are able to determine precisely the rotational splittings of 18 modes. We then find a stellar model that reproduces very well the observed atmospheric and seismic properties of the star. ...
Constructing stable 3D hydrodynamical models of giant stars
Ohlmann, Sebastian T.; Röpke, Friedrich K.; Pakmor, Rüdiger; Springel, Volker
2017-02-01
Hydrodynamical simulations of stellar interactions require stable models of stars as initial conditions. Such initial models, however, are difficult to construct for giant stars because of the wide range in spatial scales of the hydrostatic equilibrium and in dynamical timescales between the core and the envelope of the giant. They are needed for, e.g., modeling the common envelope phase where a giant envelope encompasses both the giant core and a companion star. Here, we present a new method of approximating and reconstructing giant profiles from a stellar evolution code to produce stable models for multi-dimensional hydrodynamical simulations. We determine typical stellar stratification profiles with the one-dimensional stellar evolution code mesa. After an appropriate mapping, hydrodynamical simulations are conducted using the moving-mesh code arepo. The giant profiles are approximated by replacing the core of the giant with a point mass and by constructing a suitable continuation of the profile to the center. Different reconstruction methods are tested that can specifically control the convective behaviour of the model. After mapping to a grid, a relaxation procedure that includes damping of spurious velocities yields stable models in three-dimensional hydrodynamical simulations. Initially convectively stable configurations lead to stable hydrodynamical models while for stratifications that are convectively unstable in the stellar evolution code, simulations recover the convective behaviour of the initial model and show large convective plumes with Mach numbers up to 0.8. Examples are shown for a 2 M⊙ red giant and a 0.67 M⊙ asymptotic giant branch star. A detailed analysis shows that the improved method reliably provides stable models of giant envelopes that can be used as initial conditions for subsequent hydrodynamical simulations of stellar interactions involving giant stars.
Lithium-rich Giants in Globular Clusters
Kirby, Evan N.; Guhathakurta, Puragra; Zhang, Andrew J.; Hong, Jerry; Guo, Michelle; Guo, Rachel; Cohen, Judith G.; Cunha, Katia
2016-03-01
Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron-Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
LITHIUM-RICH GIANTS IN GLOBULAR CLUSTERS
Energy Technology Data Exchange (ETDEWEB)
Kirby, Evan N.; Cohen, Judith G. [California Institute of Technology, 1200 E. California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Guhathakurta, Puragra [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Zhang, Andrew J. [The Harker School, 500 Saratoga Avenue, San Jose, CA 95129 (United States); Hong, Jerry [Palo Alto High School, 50 Embarcadero Road, Palo Alto, CA, 94301 (United States); Guo, Michelle [Stanford University, 450 Serra Mall, Stanford, CA 94305 (United States); Guo, Rachel [Irvington High School, 41800 Blacow Road, Fremont, CA 94538 (United States); Cunha, Katia [Observatório Nacional, São Cristóvão Rio de Janeiro (Brazil)
2016-03-10
Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron–Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval.
Jang, In Sung; Lee, Myung Gyoon
2017-01-01
We present a revised Tip of the Red Giant Branch (TRGB) calibration, accurate to 2.7% of distance. A modified TRGB magnitude corrected for its color dependence, the QT magnitude, is introduced for better measurement of the TRGB. We determine the color–magnitude relation of the TRGB from photometry of deep images of HST/ACS fields around eight nearby galaxies. The zero-point of the TRGB at the fiducial metallicity ([Fe/H] = ‑1.6 ({(V-I)}0,{TRGB}=1.5)) is obtained from photometry of two distance anchors, NGC 4258 (M106) and the Large Magellanic Cloud (LMC), to which precise geometric distances are known: MQT,TRGB = ‑4.023 ± 0.073 mag from NGC 4258 and MQT,TRGB = ‑4.004 ± 0.096 mag from the LMC. A weighted mean of the two zero-points is MQT,TRGB = ‑4.016 ± 0.058 mag. Quoted uncertainty is ∼2× smaller than those of previous calibrations. We compare the empirical TRGB calibration derived in this study with theoretical stellar models, finding that there are significant discrepancies, especially for red color ({({{F}}606{{W}}-{{F}}814{{W}})}0≳ 2.5). We provide the revised TRGB calibration in several magnitude systems for future studies.
Monelli, M; Fabrizio, M; Bono, G; Stetson, P B; Walker, A R; Cassisi, S; Gallart, C; Nonino, M; Aparicio, A; Buonanno, R; Dall'Ora, M; Ferraro, I; Iannicola, G; Pulone, L; Thévenin, F
2014-01-01
We present an analysis of photometric and spectroscopic data of the Carina dSph galaxy, testing a new approach similar to that used to disentangle multiple populations in Galactic globular clusters (GCs). We show that a proper colour combination is able to separate a significant fraction of the red giant branch (RGB) of the two main Carina populations (the old one, \\sim 12 Gyr, and the intermediate-age one, 4-8 Gyr). In particular, the c_UBI=(U-B)-(B-I) pseudo-colour allows us to follow the RGB of both populations along a relevant portion of the RGB. We find that the oldest stars have more negative c_UBI pseudo-colour than intermediate-age ones. We correlate the pseudo-colour of RGB stars with their chemical properties, finding a significant trend between the iron content and the c_UBI. Stars belonging to the old population are systematically more metal poor ([Fe/H]=-2.32\\pm0.08 dex) than the intermediate-age ones ([Fe/H]=-1.82\\pm0.03 dex). This gives solid evidence on the chemical evolution history of this g...
Chaplin, W J; Davies, G R; Campante, T L; Handberg, R; Miglio, A; Basu, S
2014-01-01
We consider the prospects for detecting solar-like oscillations in the "super-Nyquist" regime of long-cadence (LC) Kepler photometry, i.e., above the associated Nyquist frequency of approximately 283 {\\mu}Hz. Targets of interest are cool, evolved subgiants and stars lying at the base of the red-giant branch. These stars would ordinarily be studied using the short-cadence (SC) data, since the associated SC Nyquist frequency lies well above the frequencies of the detectable oscillations. However, the number of available SC target slots is quite limited. This imposes a severe restriction on the size of the ensemble available for SC asteroseismic study.We find that archival Kepler LC data from the nominal Mission may be utilized for asteroseismic studies of targets whose dominant oscillation frequencies lie as high as approximately 500 {\\mu}Hz, i.e., about 1.75- times the LC Nyquist frequency. The frequency detection threshold for the shorter-duration science campaigns of the re-purposed Kepler Mission, K2, is lo...
Cuntz, M; Schroeder, K -P; Bounama, C; Franck, S
2011-01-01
In a previous study published in Astrobiology, we focused on the evolution of habitability of a 10 M_E super-Earth planet orbiting a star akin to the Sun. This study was based on a concept of planetary habitability in accordance to the integrated system approach that describes the photosynthetic biomass production taking into account a variety of climatological, biogeochemical, and geodynamical processes. In the present study, we pursue a significant augmentation of our previous work by considering stars with zero-age main sequence masses between 0.5 and 2.0 M_sun with special emphasis on models of 0.8, 0.9, 1.2 and 1.5 M_sun. Our models of habitability consider again geodynamical processes during the main-sequence stage of these stars as well as during their red giant branch evolution. Pertaining to the different types of stars, we identify so-called photosynthesis-sustaining habitable zones (pHZ) determined by the limits of biological productivity on the planetary surface. We obtain various sets of solution...
Energy Technology Data Exchange (ETDEWEB)
Monelli, M.; Milone, A. P.; Gallart, C.; Aparicio, A. [Instituto de Astrofísica de Canarias, Calle Via Lactea s/n, E-38205 La Laguna, Tenerife (Spain); Fabrizio, M.; Cassisi, S.; Buonanno, R. [Istituto Nazionale di Astrofisica-Osservatorio Astronomico Collurania, Via M. Maggini, I-64100 Teramo (Italy); Bono, G. [Dipartimento di Fisica, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Rome (Italy); Stetson, P. B. [Dominion Astrophysical Observatory, NRC-Herzberg, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Walker, A. R. [Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena (Chile); Nonino, M. [Istituto Nazionale di Astrofisica-Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, I-40131 Trieste (Italy); Dall' Ora, M. [INAF—Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, I-80131 Napoli (Italy); Ferraro, I.; Iannicola, G.; Pulone, L. [Istituto Nazionale di Astrofisica-Osservatorio Astronomico di Roma, Via Frascati 33, Monte Porzio Catone, I-00044 Rome (Italy); Thévenin, F., E-mail: monelli@iac.es [Université de Nice Sophia-antipolis, CNRS, Observatoire de la Côte d' Azur, Laboratoire Lagrange, BP 4229, F-06304 Nice (France)
2014-12-01
We present an analysis of photometric and spectroscopic data of the Carina dSph galaxy, testing a new approach similar to that used to disentangle multiple populations in Galactic globular clusters (GCs). We show that a proper color combination is able to separate a significant fraction of the red giant branch (RGB) of the two main Carina populations (the old one, ∼12 Gyr, and the intermediate-age one, 4-8 Gyr). In particular, the c {sub U,} {sub B,} {sub I} = (U – B) – (B – I) pseudo-color allows us to follow the RGB of both populations along a relevant portion of the RGB. We find that the oldest stars have a more negative c {sub U,} {sub B,} {sub I} pseudo-color than intermediate-age ones. We correlate the pseudo-color of RGB stars with their chemical properties, finding a significant trend between the iron content and the c {sub U,} {sub B,} {sub I}. Stars belonging to the old population are systematically more metal-poor ([Fe/H] =–2.32 ± 0.08 dex) than the intermediate-age ones ([Fe/H] =–1.82 ± 0.03 dex). This gives solid evidence of the chemical evolution history of this galaxy, and we have a new diagnostic that can allow us to break the age-metallicity degeneracy of H-burning advanced evolutionary phases. We compared the distribution of stars in the c {sub U,} {sub B,} {sub I} plane with theoretical isochrones, finding that no satisfactory agreement can be reached with models developed in a theoretical framework based on standard heavy element distributions. Finally, we discuss possible systematic differences when compared with multiple populations in GCs.
Carbon in Red Giants in Globular Clusters and Dwarf Spheroidal Galaxies
Kirby, Evan N; Zhang, Andrew J; Deng, Michelle; Cohen, Judith G; Guhathakurta, Puragra; Shetrone, Matthew D; Lee, Young Sun; Rizzi, Luca
2015-01-01
We present carbon abundances of red giants in Milky Way globular clusters and dwarf spheroidal galaxies (dSphs). Our sample includes measurements of carbon abundances for 154 giants in the clusters NGC 2419, M68, and M15 and 398 giants in the dSphs Sculptor, Fornax, Ursa Minor, and Draco. This sample doubles the number of dSph stars with measurements of [C/Fe]. The [C/Fe] ratio in the clusters decreases with increasing luminosity above log(L/L_sun) ~= 1.6, which can be explained by deep mixing in evolved giants. The same decrease is observed in dSphs, but the initial [C/Fe] of the dSph giants is not uniform. Stars in dSphs at lower metallicities have larger [C/Fe] ratios. We hypothesize that [C/Fe] (corrected to the initial carbon abundance) declines with increasing [Fe/H] due to the metallicity dependence of the carbon yield of asymptotic giant branch stars and due to the increasing importance of Type Ia supernovae at higher metallicities. We also identified 11 very carbon-rich giants (8 previously known) in...
Hydrodynamic simulations of the interaction between giant stars and planets
Staff, Jan E.; De Marco, Orsola; Wood, Peter; Galaviz, Pablo; Passy, Jean-Claude
2016-05-01
We present the results of hydrodynamic simulations of the interaction between a 10 Jupiter mass planet and a red or asymptotic giant branch stars, both with a zero-age main sequence mass of 3.5 M⊙. Dynamic in-spiral time-scales are of the order of few years and a few decades for the red and asymptotic giant branch stars, respectively. The planets will eventually be destroyed at a separation from the core of the giants smaller than the resolution of our simulations, either through evaporation or tidal disruption. As the planets in-spiral, the giant stars' envelopes are somewhat puffed up. Based on relatively long time-scales and even considering the fact that further in-spiral should take place before the planets are destroyed, we predict that the merger would be difficult to observe, with only a relatively small, slow brightening. Very little mass is unbound in the process. These conclusions may change if the planet's orbit enhances the star's main pulsation modes. Based on the angular momentum transfer, we also suspect that this star-planet interaction may be unable to lead to large-scale outflows via the rotation-mediated dynamo effect of Nordhaus and Blackman. Detectable pollution from the destroyed planets would only result for the lightest, lowest metallicity stars. We furthermore find that in both simulations the planets move through the outer stellar envelopes at Mach-3 to Mach-5, reaching Mach-1 towards the end of the simulations. The gravitational drag force decreases and the in-spiral slows down at the sonic transition, as predicted analytically.
The Frequency of Lithium-Rich Giants in Globular Clusters
Kirby, Evan N.; Guhathakurta, Puragra; Zhang, Andrew J.; Hong, Jerry; Guo, Michelle; Guo, Rachel; Cohen, Judith G.; Cunha, Katia M. L.
2016-01-01
Although red giants destroy lithium, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron-Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval.
A sequence of nitrogen-rich very red giants in the globular cluster NGC 1851
Carretta, Eugenio; Gratton, Raffaele G; Lucatello, Sara
2014-01-01
We present the abundances of N in a sample of 62 stars on the red giant branch (RGB) in the peculiar globular cluster NGC 1851. The values of [N/Fe] ratio were obtained by comparing the flux measured in the observed spectra with that from synthetic spectra for up to about 15 features of CN. This is the first time that N abundances are obtained for such a large sample of RGB stars from medium-resolution spectroscopy in this cluster. With these abundances we provide a chemical tagging of the split red giant branch found from several studies in NGC 1851. The secondary, reddest sequence on the RGB is populated almost exclusively by N-rich stars, confirming our previous suggestion based on Stromgren magnitudes and colours. These giants are also, on average, enriched in s-process elements such as Ba, and are likely the results of pollution from low mass stars that experienced episodes of third dredge-up in the asymptotic giant branch phase.
Leaman, Ryan; Cole, Andrew A.; Venn, Kim A.; Tolstoy, Eline; Irwin, Mike J.; Szeifert, Thomas; Skillman, Evan D.; McConnachie, Alan W.
2009-01-01
We present the first determination of the radial velocities and metallicities of 78 red giant stars in the isolated dwarf irregular galaxy WLM. Observations of the calcium II triplet in these stars were made with FORS2 at the VLT-UT2 in two separated fields of view in WLM, and the [Fe/H] values were
The Super Lithium-Rich Red Giant Rapid Rotator G0928+73.2600: A Case for Planet Accretion?
Carlberg, Joleen K; Cunha, Katia; Majewski, Steven R; Rood, Robert T; 10.1088/2041-8205/723/1/L103
2010-01-01
We present the discovery of a super lithium-rich K giant star, G0928+73.2600. This red giant (T_eff = 4885 K and log g = 2.65) is a fast rotator with a projected rotational velocity of 8.4 km/s and an unusually high lithium abundance of A(Li) = 3.30 dex. Although the lack of a measured parallax precludes knowing the exact evolutionary phase, an isochrone-derived estimate of its luminosity places the star on the Hertzsprung-Russell diagram in a location that is not consistent with either the red bump on the first ascent of the red giant branch or with the second ascent on the asymptotic giant branch, the two evolutionary stages where lithium-rich giant stars tend to cluster. Thus, even among the already unusual group of lithium-rich giant stars, G0928+73.2600 is peculiar. Using 12C/13C as a tracer for mixing---more mixing leads to lower 12C/13C---we find 12C/13C = 28, which is near the expected value for standard first dredge-up mixing. We can therefore conclude that "extra" deep mixing has not occurred. Regar...
Mass loss from red giants - A simple evolutionary model for NGC 7027
Jura, M.
1984-01-01
NGC 7027 is a young planetary nebula with the remnants of a red giant circumstellar envelope surrounding the central, ionized region. By comparing the outer molecular envelope with the inner ionized material, it is argued that the mass loss rate has decreased by at least a factor of 3, and more probably by about a factor of 10, during the past 1000 years. From this result, it is argued that the luminosity of the central star has also decreased substantially during the same time, consistent with models for the rapid evolution of stars just after they evolve off the asymptotic giant branch. In this picture, the distance to NGC 7027 is less than 1300 pc. NGC 7027 was the last (and best) example of a star where apparently the momentum in the outflowing mass /M(dot)v/ is considerably greater than the momentum in the radiation field (L/c). With the above description of this object, the evidence is now strong that quite often the mass lost from late-type giants is ultimately driven to infinity by radiation pressure on grains. If M(dot)v is as large as L/c for asymptotic branch stars, then it is expected that the total amount of mass lost during this stage of evolution is of the same magnitude as the initial mass of the star, and therefore this mass loss can profoundly affect the star's ultimate fate.
Asymptotically Safe Dark Matter
DEFF Research Database (Denmark)
Sannino, Francesco; Shoemaker, Ian M.
2015-01-01
We introduce a new paradigm for dark matter (DM) interactions in which the interaction strength is asymptotically safe. In models of this type, the coupling strength is small at low energies but increases at higher energies, and asymptotically approaches a finite constant value. The resulting...... searches are the primary ways to constrain or discover asymptotically safe dark matter....
The abundance spread in the giants of NGC 6752
Norris, J.; Cottrell, P. L.; Freeman, K. C.; Da Costa, G. S.
1981-02-01
A spectroscopic survey has been performed of 69 stars on or near the giant branches of the metal-poor globular cluster NGC 6752. Our basic results are: (i) There is a large range in the strength of the violet cyanogen bands on the red giant branch, with the available evidence strongly suggesting that the distribution is bimodal. (ii) The cyanogen variations on the giant branch appear to be accompanied by an anticorrelated variation in the abundance of the CH molecule. Spectrum synthesis analysis of a (CN strong)/(CN weak) pair of stars for which relatively high resolution data are available shows that there is a variation of Δ[N/A] ˜+0.9, and Δ[C/A] ˜-0.3, indicative of the CN cycle. (iii) On the red giant branch there are variations in the strength of the lines of Al I which correlate positively with the cyanogen variations. The size of the variations is consistent with the hypothesis that the same phenomenon has occurred in NGC 6752 and ω Centauri, but to a much smaller extent in the former. (iv) On the asymptotic giant branch (AGB), the features of CH are weaker than on the red giant branch at the same color or magnitude, and there are no examples of stars in the strong CN group. Spectrum synthesis suggests that the behavior of the CH features is consistent, on the average, with the effective temperature and gravities of the AGB stars, but that the absence of strong CN stars cannot be explained in this way. We set an upper limit of Δ[C/H] ˜0.3 to the possible range of carbon on the AGB at log L/L -- stars: individual: ˜2.3, and between this group and stars of similar color on the red giant branch. (v) Most of the stars on the anomalously low luminosity end of the AGB are not members of NGC 6752. Two stars, (CS 41 and CS 44), however, deserve further study, since they could be examples of partially mixed stars. No definitive statement can be made concerning the origin of the abundance anomalies. if mixing is responsible, the data require this process to
Energy Technology Data Exchange (ETDEWEB)
Smith, Verne V.; Cunha, Katia [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Shetrone, Matthew D. [Department of Astronomy and McDonald Observatory, University of Texas, Austin, TX 78712 (United States); Meszaros, Szabolcs; Allende Prieto, Carlos [Instituto d' Astrofisica de Canarias, E-38205, La Laguna, Tenerife (Spain); Bizyaev, Dmitry [Apache Point Observatory, Sunspot, NM 88349 (United States); Garcia Perez, Ana; Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Schiavon, Ricardo [Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5UX (United Kingdom); Holtzman, Jon [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Johnson, Jennifer A., E-mail: vsmith@noao.edu [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States)
2013-03-01
High-resolution H-band spectra of five bright field K, M, and MS giants, obtained from the archives of the Kitt Peak National Observatory Fourier transform spectrometer, are analyzed to determine chemical abundances of 16 elements. The abundances were derived via spectrum synthesis using the detailed linelist prepared for the Sloan Digital Sky Survey III Apache Point Galactic Evolution Experiment (APOGEE), which is a high-resolution near-infrared spectroscopic survey to derive detailed chemical abundance distributions and precise radial velocities for 100,000 red giants sampling all Galactic stellar populations. The red giant sample studied here was chosen to probe which chemical elements can be derived reliably from the H-band APOGEE spectral region. These red giants consist of two K-giants ({alpha} Boo and {mu} Leo), two M-giants ({beta} And and {delta} Oph), and one thermally pulsing asymptotic giant branch (TP-AGB) star of spectral type MS (HD 199799). Measured chemical abundances include the cosmochemically important isotopes {sup 12}C, {sup 13}C, {sup 14}N, and {sup 16}O, along with Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. The K and M giants exhibit the abundance signature of the first dredge-up of CN-cycle material, while the TP-AGB star shows clear evidence of the addition of {sup 12}C synthesized during {sup 4}He-burning thermal pulses and subsequent third dredge-up. A comparison of the abundances derived here with published values for these stars reveals consistent results to {approx}0.1 dex. The APOGEE spectral region and linelist is thus well suited for probing both Galactic chemical evolution, as well as internal nucleosynthesis and mixing in populations of red giants via high-resolution spectroscopy.
Is mass loss from red giant stars dust driven?
Yates, J. A.
1992-12-01
Long period variable stars on the Asymptotic Giant Branch are observed to be losing mass in the form of cool dusty molecular stellar winds at rates from 10-7 to 10-4 Msunyr-1. The driving force for this mass loss is thought to be radiation pressure on dust particles. The dust transfers its momentum to gas molecules via collisions. This paper discusses the existing evidence for this scenario. New results, from analysis of 22 GHz H2O maser observations made by Merlin, show that the cruical acceleration past the stellar escape velocity of the central star takes place in the inner circumstellar envelope around the central star. The analysis of the velocity fields of the circumstellar envelopes of VX Sgr and VY CMa using the model described by Chapman and Cohen (1986) are discussed.
Asymptotics of Random Contractions
Hashorva, Enkelejd; Tang, Qihe
2010-01-01
In this paper we discuss the asymptotic behaviour of random contractions $X=RS$, where $R$, with distribution function $F$, is a positive random variable independent of $S\\in (0,1)$. Random contractions appear naturally in insurance and finance. Our principal contribution is the derivation of the tail asymptotics of $X$ assuming that $F$ is in the max-domain of attraction of an extreme value distribution and the distribution function of $S$ satisfies a regular variation property. We apply our result to derive the asymptotics of the probability of ruin for a particular discrete-time risk model. Further we quantify in our asymptotic setting the effect of the random scaling on the Conditional Tail Expectations, risk aggregation, and derive the joint asymptotic distribution of linear combinations of random contractions.
ASYMPTOTIC QUANTIZATION OF PROBABILITY DISTRIBUTIONS
Institute of Scientific and Technical Information of China (English)
Klaus P(o)tzelberger
2003-01-01
We give a brief introduction to results on the asymptotics of quantization errors.The topics discussed include the quantization dimension,asymptotic distributions of sets of prototypes,asymptotically optimal quantizations,approximations and random quantizations.
The discovery of a planetary candidate around the evolved low-mass Kepler giant star HD 175370
Hrudková, M.; Hatzes, A.; Karjalainen, R.; Lehmann, H.; Hekker, S.; Hartmann, M.; Tkachenko, A.; Prins, S.; Van Winckel, H.; De Nutte, R.; Dumortier, L.; Frémat, Y.; Hensberge, H.; Jorissen, A.; Lampens, P.; Laverick, M.; Lombaert, R.; Pápics, P. I.; Raskin, G.; Sódor, Á.; Thoul, A.; Van Eck, S.; Waelkens, C.
2017-01-01
We report on the discovery of a planetary companion candidate with a minimum mass M sin i = 4.6 ± 1.0 MJupiter orbiting the K2 III giant star HD 175370 (KIC 007940959). This star was a target in our programme to search for planets around a sample of 95 giant stars observed with Kepler. This detection was made possible using precise stellar radial velocity measurements of HD 175370 taken over five years and four months using the coudé echelle spectrograph of the 2-m Alfred Jensch Telescope and the fibre-fed echelle spectrograph High Efficiency and Resolution Mercator Echelle Spectrograph of the 1.2-m Mercator Telescope. Our radial velocity measurements reveal a periodic (349.5 ± 4.5 d) variation with a semi-amplitude K = 133 ± 25 m s- 1, superimposed on a long-term trend. A low-mass stellar companion with an orbital period of ˜88 yr in a highly eccentric orbit and a planet in a Keplerian orbit with an eccentricity e = 0.22 are the most plausible explanation of the radial velocity variations. However, we cannot exclude the existence of stellar envelope pulsations as a cause for the low-amplitude radial velocity variations and only future continued monitoring of this system may answer this uncertainty. From Kepler photometry, we find that HD 175370 is most likely a low-mass red giant branch or asymptotic giant branch star.
Weakly asymptotically hyperbolic manifolds
Allen, Paul T; Lee, John M; Allen, Iva Stavrov
2015-01-01
We introduce a class of "weakly asymptotically hyperbolic" geometries whose sectional curvatures tend to $-1$ and are $C^0$, but are not necessarily $C^1$, conformally compact. We subsequently investigate the rate at which curvature invariants decay at infinity, identifying a conformally invariant tensor which serves as an obstruction to "higher order decay" of the Riemann curvature operator. Finally, we establish Fredholm results for geometric elliptic operators, extending the work of Rafe Mazzeo and John M. Lee to this setting. As an application, we show that any weakly asymptotically hyperbolic metric is conformally related to a weakly asymptotically hyperbolic metric of constant negative curvature.
Nonstandard asymptotic analysis
Berg, Imme
1987-01-01
This research monograph considers the subject of asymptotics from a nonstandard view point. It is intended both for classical asymptoticists - they will discover a new approach to problems very familiar to them - and for nonstandard analysts but includes topics of general interest, like the remarkable behaviour of Taylor polynomials of elementary functions. Noting that within nonstandard analysis, "small", "large", and "domain of validity of asymptotic behaviour" have a precise meaning, a nonstandard alternative to classical asymptotics is developed. Special emphasis is given to applications in numerical approximation by convergent and divergent expansions: in the latter case a clear asymptotic answer is given to the problem of optimal approximation, which is valid for a large class of functions including many special functions. The author's approach is didactical. The book opens with a large introductory chapter which can be read without much knowledge of nonstandard analysis. Here the main features of the t...
Asymptotic behaviour for a diffusion equation governed by nonlocal interactions
Ovono, Armel Andami
2010-01-01
In this paper we study the asymptotic behaviour of a nonlocal nonlinear parabolic equation governed by a parameter. After giving the existence of unique branch of solutions composed by stable solutions in stationary case, we gives for the parabolic problem $L^\\infty $ estimates of solution based on using the Moser iterations and existence of global attractor. We finish our study by the issue of asymptotic behaviour in some cases when $t\\to \\infty$.
Selected asymptotic methods with applications to electromagnetics and antennas
Fikioris, George; Bakas, Odysseas N
2013-01-01
This book describes and illustrates the application of several asymptotic methods that have proved useful in the authors' research in electromagnetics and antennas. We first define asymptotic approximations and expansions and explain these concepts in detail. We then develop certain prerequisites from complex analysis such as power series, multivalued functions (including the concepts of branch points and branch cuts), and the all-important gamma function. Of particular importance is the idea of analytic continuation (of functions of a single complex variable); our discussions here include som
Gehan, Charlotte; Michel, Eric
2016-01-01
Stellar oscillations give seismic information on the internal properties of stars. Red giants are targets of interest since they present mixed modes, which behave as pressure modes in the convective envelope and as gravity modes in the radiative core. Mixed modes thus directly probe red giant cores, and allow in particular the study of their mean core rotation. The high-quality data obtained by CoRoT and Kepler satellites represent an unprecedented perspective to obtain thousands of measurements of red giant core rotation, in order to improve our understanding of stellar physics in deep stellar interiors. We developed an automated method to obtain such core rotation measurements and validated it for stars on the red giant branch. In this work, we particularly focus on the specific application of this method to red giants having a rapid core rotation. They show complex spectra where it is tricky to disentangle rotational splittings from mixed-mode period spacings. We demonstrate that the method based on the id...
2014-01-01
We study asymptotic behavior of conditional least squares estimators for critical continuous state and continuous time branching processes with immigration based on discrete time (low frequency) observations.
Asymptotic freedom, asymptotic flatness and cosmology
Kiritsis, Elias
2013-01-01
Holographic RG flows in some cases are known to be related to cosmological solutions. In this paper another example of such correspondence is provided. Holographic RG flows giving rise to asymptotically-free $\\beta$-functions have been analyzed in connection with holographic models of QCD. They are shown upon Wick rotation to provide a large class of inflationary models with logarithmically soft inflaton potentials. The scalar spectral index is universal and depends only on the number of e-foldings. The ratio of tensor to scalar power depends on the single extra real parameter that defines this class of models. The Starobinsky inflationary model as well as the recently proposed models of T-inflation are members of this class. The holographic setup gives a completely new (and contrasting) view to the stability and other problems of such inflationary models.
The dust condensation sequence in red super-giant stars
Verhoelst, T; Hony, S; Decin, L; Cami, J; Eriksson, K
2009-01-01
Context: Red super-giant (RSG) stars exhibit significant mass loss through a slow and dense wind. They are often considered to be the more massive counter parts of Asymptotic Giant Branch (AGB) stars. While the AGB mass loss is linked to their strong pulsations, the RSG are often only weakly variable. Aim: To study the conditions at the base of the wind, by determining the dust composition in a sample of RSG. The dust composition is thought to be sensitive to the density, temperature and acceleration at the base of the wind. Method: We compile a sample of 27 RSG infrared spectra (ISO-SWS) and supplement these with photometric measurements to obtain the full spectral energy distribution (SED). These data are modelled using a dust radiative transfer code. The results are scrutinised for correlations. Results: We find (1) strong correlations between dust composition, mass-loss rate and stellar luminosity, roughly in agreement with the theoretical dust condensation sequence, (2) the need for a continuous (near-)I...
Exploring masses and CNO surface abundances of red giant stars
Halabi, Ghina M
2015-01-01
A grid of evolutionary sequences of stars in the mass range $1.2$-$7$ M$_{\\odot}$, with solar-like initial composition is presented. We focus on this mass range in order to estimate the masses and calculate the CNO surface abundances of a sample of observed red giants. The stellar models are calculated from the zero-age main sequence till the early asymptotic giant branch (AGB) phase. Stars of M $\\leqslant$ $2.2$M$_{\\odot}$ are evolved through the core helium flash. In this work, an approach is adopted that improves the mass determination of an observed sample of 21 RGB and early AGB stars. This approach is based on comparing the observationally derived effective temperatures and absolute magnitudes with the calculated values based on our evolutionary tracks in the Hertzsprung-Russell diagram. A more reliable determination of the stellar masses is achieved by using evolutionary tracks extended to the range of observation. In addition, the predicted CNO surface abundances are compared to the observationally in...
Asymptotically hyperbolic connections
Fine, Joel; Krasnov, Kirill; Scarinci, Carlos
2015-01-01
General Relativity in 4 dimensions can be equivalently described as a dynamical theory of SO(3)-connections rather than metrics. We introduce the notion of asymptotically hyperbolic connections, and work out an analog of the Fefferman-Graham expansion in the language of connections. As in the metric setup, one can solve the arising "evolution" equations order by order in the expansion in powers of the radial coordinate. The solution in the connection setting is arguably simpler, and very straightforward algebraic manipulations allow one to see how the obstruction appears at third order in the expansion. Another interesting feature of the connection formulation is that the "counter terms" required in the computation of the renormalised volume all combine into the Chern-Simons functional of the restriction of the connection to the boundary. As the Chern-Simons invariant is only defined modulo large gauge transformations, the requirement that the path integral over asymptotically hyperbolic connections is well-d...
DEFF Research Database (Denmark)
Litim, Daniel F.; Sannino, Francesco
2014-01-01
We study the ultraviolet behaviour of four-dimensional quantum field theories involving non-abelian gauge fields, fermions and scalars in the Veneziano limit. In a regime where asymptotic freedom is lost, we explain how the three types of fields cooperate to develop fully interacting ultraviolet ...... fixed points, strictly controlled by perturbation theory. Extensions towards strong coupling and beyond the large-N limit are discussed.......We study the ultraviolet behaviour of four-dimensional quantum field theories involving non-abelian gauge fields, fermions and scalars in the Veneziano limit. In a regime where asymptotic freedom is lost, we explain how the three types of fields cooperate to develop fully interacting ultraviolet...
Javadi, Atefeh; van Loon, Jacco Th; Khosroshahi, Habib; Golabatooni, Najmeh; Mirtorabi, Mohammad Taghi
2014-01-01
We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). The main aim was to identify stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. In this fourth paper of the series, we present a search for variable red giant stars in an almost square degree region comprising most of the galaxy's disc, carried out with the WFCAM instrument in the K band. These data, taken during the period 2005--2007, were complemented by J- and H-band images. Photometry was obtained for 403 734 stars in this region; of these, 4643 stars were found to be variable, most of which are Asymptotic Giant Branch (AGB) stars. The variable stars are concentrated towards the centre of M33, more so than low-mass, less-evolved red giants. Our data were matched to optical catalogues of variable stars and ca...
Litim, Daniel F
2014-01-01
We study the ultraviolet behaviour of four-dimensional quantum field theories involving non-abelian gauge fields, fermions and scalars in the Veneziano limit. In a regime where asymptotic freedom is lost, we explain how the three types of fields cooperate to develop fully interacting ultraviolet fixed points, strictly controlled by perturbation theory. Extensions towards strong coupling and beyond the large-N limit are discussed.
Composite asymptotic expansions
Fruchard, Augustin
2013-01-01
The purpose of these lecture notes is to develop a theory of asymptotic expansions for functions involving two variables, while at the same time using functions involving one variable and functions of the quotient of these two variables. Such composite asymptotic expansions (CAsEs) are particularly well-suited to describing solutions of singularly perturbed ordinary differential equations near turning points. CAsEs imply inner and outer expansions near turning points. Thus our approach is closely related to the method of matched asymptotic expansions. CAsEs offer two unique advantages, however. First, they provide uniform expansions near a turning point and away from it. Second, a Gevrey version of CAsEs is available and detailed in the lecture notes. Three problems are presented in which CAsEs are useful. The first application concerns canard solutions near a multiple turning point. The second application concerns so-called non-smooth or angular canard solutions. Finally an Ackerberg-O’Malley resonance pro...
Asymptotically hyperbolic connections
Fine, Joel; Herfray, Yannick; Krasnov, Kirill; Scarinci, Carlos
2016-09-01
General relativity in four-dimensions can be equivalently described as a dynamical theory of {SO}(3)˜ {SU}(2)-connections rather than metrics. We introduce the notion of asymptotically hyperbolic connections, and work out an analogue of the Fefferman-Graham expansion in the language of connections. As in the metric setup, one can solve the arising ‘evolution’ equations order by order in the expansion in powers of the radial coordinate. The solution in the connection setting is arguably simpler, and very straightforward algebraic manipulations allow one to see how the unconstrained by Einstein equations ‘stress-energy tensor’ appears at third order in the expansion. Another interesting feature of the connection formulation is that the ‘counter terms’ required in the computation of the renormalised volume all combine into the Chern-Simons functional of the restriction of the connection to the boundary. As the Chern-Simons invariant is only defined modulo large gauge transformations, the requirement that the path integral over asymptotically hyperbolic connections is well-defined requires the cosmological constant to be quantised. Finally, in the connection setting one can deform the 4D Einstein condition in an interesting way, and we show that asymptotically hyperbolic connection expansion is universal and valid for any of the deformed theories.
Exploring masses and CNO surface abundances of red giant stars
Halabi, Ghina M.; Eid, Mounib El
2015-08-01
A grid of evolutionary sequences of stars in the mass range 1.2-7M⊙, with solar-like initial composition is presented. We focus on this mass range in order to estimate the masses and calculate the CNO surface abundances of a sample of observed red giants. The stellar models are calculated from the zero-age main sequence till the early asymptotic giant branch (AGB) phase. Stars of M ≤ 2.2M⊙ are evolved through the core helium flash. In this work, an approach is adopted that improves the mass determination of an observed sample of 21 RGB and early AGB stars. This approach is based on comparing the observationally derived effective temperatures and absolute magnitudes with the calculated values based on our evolutionary tracks in the Hertzsprung-Russell diagram. A more reliable determination of the stellar masses is achieved by using evolutionary tracks extended to the range of observation. In addition, the predicted CNO surface abundances are compared to the observationally inferred values in order to show how far standard evolutionary calculation can be used to interpret available observations and to illustrate the role of convective mixing. We find that extra mixing beyond the convective boundary determined by the Schwarzschild criterion is needed to explain the observational oxygen isotopic ratios in low-mass stars. The effect of recent determinations of proton capture reactions and their uncertainties on the 16O/17O and 14N/15N ratios is also shown. It is found that the 14N( p, γ)15O reaction is important for predicting the 14N/15N ratio in red giants.
The Horizontal Branch of the Sculptor Dwarf galaxy
Salaris, Maurizio; Tolstoy, Eline; Fiorentino, Giuliana; Cassisi, Santi
2013-01-01
We have performed the first detailed simulation of the horizontal branch of the Sculptor dwarf spheroidal galaxy by means of synthetic modelling techniques,taking consistently into account the star formation history and metallicity evolution as determined from the main sequence and red giant branch spectroscopic observations. The only free parameter in the whole analysis is the integrated mass loss of red giant branch stars. This is the first time that synthetic horizontal branch models, consistent with the complex star formation history of a galaxy, are calculated and matched to the observations. We find that the metallicity range covered by the star formation history, as constrained by observations, plus a simple mass loss law, enable us to cover both the full magnitude and colour range of HB stars. In addition the number count distribution along the observed horizontal branch, can be also reproduced, provided that the red giant branch mass loss is mildly metallicity dependent, with a very small dispersion ...
Guillot, Tristan
2014-01-01
We review the interior structure and evolution of Jupiter, Saturn, Uranus and Neptune, and giant exoplanets with particular emphasis on constraining their global composition. Compared to the first edition of this review, we provide a new discussion of the atmospheric compositions of the solar system giant planets, we discuss the discovery of oscillations of Jupiter and Saturn, the significant improvements in our understanding of the behavior of material at high pressures and the consequences for interior and evolution models. We place the giant planets in our Solar System in context with the trends seen for exoplanets.
Ho, Pei-Ming
2016-01-01
Following earlier works on the KMY model of black-hole formation and evaporation, we construct the metric for a matter sphere in gravitational collapse, with the back-reaction of pre-Hawking radiation taken into consideration. The mass distribution and collapsing velocity of the matter sphere are allowed to have an arbitrary radial dependence. We find that a generic gravitational collapse asymptote to a universal configuration which resembles a black hole but without horizon. This approach clarifies several misunderstandings about black-hole formation and evaporation, and provides a new model for black-hole-like objects in the universe.
Ho, Pei-Ming
2017-04-01
Following earlier works on the KMY model of black-hole formation and evaporation, we construct the metric for a matter sphere in gravitational collapse, with the back-reaction of pre-Hawking radiation taken into consideration. The mass distribution and collapsing velocity of the matter sphere are allowed to have an arbitrary radial dependence. We find that a generic gravitational collapse asymptote to a universal configuration which resembles a black hole but without horizon. This approach clarifies several misunderstandings about black-hole formation and evaporation, and provides a new model for black-hole-like objects in the universe.
An HST/WFC3 view of stellar populations on the Horizontal Branch of NGC 2419
Di Criscienzo, M; Milone, A P; D'Antona, F; Ventura, P; Dotter, A; Brocato, E
2015-01-01
We use images acquired with the Hubble Space Telescope Wide Field Camera 3 and new models to probe the Horizontal Branch (HB) population of the We use images acquired with the Hubble Space Telescope Wide Field Camera 3 and new models to probe the horizontal branch (HB) population of the Galactic globular cluster (GC) NGC 2419. A detailed analysis of the composite HB highlights three populations:(1) the blue luminous HB, hosting standard helium stars (Y=0.25) with a very small spread of mass, (2) a small population of stars with intermediate helium content (0.26
Confinement versus asymptotic freedom
Dubin, A Yu
2002-01-01
I put forward the low-energy confining asymptote of the solution $$ (valid for large macroscopic contours C of the size $>>1/\\Lambda_{QCD}$) to the large N Loop equation in the D=4 U(N) Yang-Mills theory with the asymptotic freedom in the ultraviolet domain. Adapting the multiscale decomposition characteristic of the Wilsonean renormgroup, the proposed Ansatz for the loop-average is composed in order to sew, along the lines of the bootstrap approach, the large N weak-coupling series for high-momentum modes with the $N\\to{\\infty}$ limit of the recently suggested stringy representation of the 1/N strong-coupling expansion Dub4 applied to low-momentum excitations. The resulting low-energy stringy theory can be described through such superrenormalizable deformation of the noncritical Liouville string that, being devoid of ultraviolet divergences, does not possess propagating degrees of freedom at short-distance scales $<<1/{\\sqrt{\\sigma_{ph}}}$, where $\\sigma_{ph}\\sim{(\\Lambda_{QCD})^{2}}$ is the physical s...
Asymptotic Symmetries from finite boxes
Andrade, Tomas
2015-01-01
It is natural to regulate an infinite-sized system by imposing a boundary condition at finite distance, placing the system in a "box." This breaks symmetries, though the breaking is small when the box is large. One should thus be able to obtain the asymptotic symmetries of the infinite system by studying regulated systems. We provide concrete examples in the context of Einstein-Hilbert gravity (with negative or zero cosmological constant) by showing in 4 or more dimensions how the Anti-de Sitter and Poincar\\'e asymptotic symmetries can be extracted from gravity in a spherical box with Dirichlet boundary conditions. In 2+1 dimensions we obtain the full double-Virasoro algebra of asymptotic symmetries for AdS$_3$ and, correspondingly, the full Bondi-Metzner-Sachs (BMS) algebra for asymptotically flat space. In higher dimensions, a related approach may continue to be useful for constructing a good asymptotically flat phase space with BMS asymptotic symmetries.
A random walk with a branching system in random environments
Institute of Scientific and Technical Information of China (English)
Ying-qiu LI; Xu LI; Quan-sheng LIU
2007-01-01
We consider a branching random walk in random environments, where the particles are reproduced as a branching process with a random environment (in time), and move independently as a random walk on Z with a random environment (in locations). We obtain the asymptotic properties on the position of the rightmost particle at time n, revealing a phase transition phenomenon of the system.
Crnojević, D; Irwin, M J; Bernard, E J; Arimoto, N; Jablonka, P; Kobayashi, C
2013-01-01
We present the first deep survey of resolved stellar populations in the remote outer halo of our nearest giant elliptical (gE), Centaurus A (D=3.8 Mpc). Using the VIMOS/VLT optical camera, we obtained deep photometry for four fields along the major and minor axes at projected elliptical radii of ~30-85 kpc (corresponding to ~5-14 R_{eff}). We use resolved star counts to map the spatial and colour distribution of red giant branch (RGB) stars down to ~2 magnitudes below the RGB tip. We detect an extended halo out to the furthermost elliptical radius probed (~85 kpc or ~14 R_{eff}), demonstrating the vast extent of this system. We detect a localised substructure in these parts, visible in both (old) RGB and (intermediate-age) luminous asymptotic giant branch stars, and there is some evidence that the outer halo becomes more elliptical and has a shallower surface brightness profile. We derive photometric metallicity distribution functions for halo RGB stars and find relatively high median metallicity values ([Fe/...
Asymptotically Safe Grand Unification
Bajc, Borut
2016-01-01
Phenomenologically appealing supersymmetric grand unified theories have large gauge representations and thus are not asymptotically free. Their ultraviolet validity is limited by the appearance of a Landau pole well before the Planck scale. One could hope that these theories save themselves, before the inclusion of gravity, by generating an interacting ultraviolet fixed point, similar to the one recently discovered in non-supersymmetric gauge-Yukawa theories. Employing a-maximization, a-theorem, unitarity bounds, as well as positivity of other central charges we nonperturbatively rule out this possibility for a broad class of prime candidates of phenomenologically relevant supersymmetric grand unified theories. We also uncover candidates passing these tests, which have either exotic matter or contain one field decoupled from the superpotential. The latter class of theories contains a model with the minimal matter content required by phenomenology.
Asymptotically safe grand unification
Bajc, Borut; Sannino, Francesco
2016-12-01
Phenomenologically appealing supersymmetric grand unified theories have large gauge representations and thus are not asymptotically free. Their ultraviolet validity is limited by the appearance of a Landau pole well before the Planck scale. One could hope that these theories save themselves, before the inclusion of gravity, by generating an interacting ultraviolet fixed point, similar to the one recently discovered in non-supersymmetric gauge-Yukawa theories. Employing a-maximization, a-theorem, unitarity bounds, as well as positivity of other central charges we nonperturbatively rule out this possibility for a broad class of prime candidates of phenomenologically relevant supersymmetric grand unified theories. We also uncover candidates passing these tests, which have either exotic matter or contain one field decoupled from the superpotential. The latter class of theories contains a model with the minimal matter content required by phenomenology.
The Horizontal Branch of the Sculptor Dwarf galaxy
Salaris, Maurizio; Boer, Thomas de; Tolstoy, Eline; Fiorentino, Giuliana; Cassisi, Santi
2013-01-01
We have performed the first detailed simulation of the horizontal branch of the Sculptor dwarf spheroidal galaxy by means of synthetic modelling techniques, taking consistently into account the star formation history and metallicity evolution as determined from the main sequence and red giant branch
The Keck Aperture Masking Experiment: Dust Enshrouded Red Giants
Blasius, T D; Tuthill, P G; Danchi, W C; Anderson, M
2012-01-01
While the importance of dusty asymptotic giant branch (AGB) stars to galactic chemical enrichment is widely recognised, a sophisticated understanding of the dust formation and wind-driving mechanisms has proven elusive due in part to the difficulty in spatially-resolving the dust formation regions themselves. We have observed twenty dust-enshrouded AGB stars as part of the Keck Aperture Masking Experiment, resolving all of them in multiple near-infrared bands between 1.5 microns and 3.1 microns. We find 45% of the targets to show measurable elongations that, when correcting for the greater distances of the targets, would correspond to significantly asymmetric dust shells on par with the well-known cases of IRC+10216 or CIT6. Using radiative transfer models, we find the sublimation temperature of 1130 +- 90 K and 1170 +- 60 K for silicates and amorphous carbon respectively, both somewhat lower than expected from laboratory measurements and vastly below temperatures inferred from the inner edge of YSO disks. Th...
A Note on Asymptotic Contractions
Directory of Open Access Journals (Sweden)
Marina Arav
2006-12-01
Full Text Available We provide sufficient conditions for the iterates of an asymptotic contraction on a complete metric space X to converge to its unique fixed point, uniformly on each bounded subset of X.
A Note on Asymptotic Contractions
Directory of Open Access Journals (Sweden)
Castillo Santos Francisco Eduardo
2007-01-01
Full Text Available We provide sufficient conditions for the iterates of an asymptotic contraction on a complete metric space to converge to its unique fixed point, uniformly on each bounded subset of .
Asymptotic Dynamics of Monopole Walls
Cross, R
2015-01-01
We determine the asymptotic dynamics of the U(N) doubly periodic BPS monopole in Yang-Mills-Higgs theory, called a monopole wall, by exploring its Higgs curve using the Newton polytope and amoeba. In particular, we show that the monopole wall splits into subwalls when any of its moduli become large. The long-distance gauge and Higgs field interactions of these subwalls are abelian, allowing us to derive an asymptotic metric for the monopole wall moduli space.
Polynomial Asymptotes of the Second Kind
Dobbs, David E.
2011-01-01
This note uses the analytic notion of asymptotic functions to study when a function is asymptotic to a polynomial function. Along with associated existence and uniqueness results, this kind of asymptotic behaviour is related to the type of asymptote that was recently defined in a more geometric way. Applications are given to rational functions and…
Branching structure of uniform recursive trees
Institute of Scientific and Technical Information of China (English)
FENG; Qunqiang; SU; Chun; HU; Zhishui
2005-01-01
The branching structure of uniform recursive trees is investigated in this paper.Using the method of sums for a sequence of independent random variables, the distribution law of ηn, the number of branches of the uniform recursive tree of size n are given first. It is shown that the strong law of large numbers, the central limit theorem and the law of iterated logarithm for ηn follow easily from this method. Next it is shown that ηn and ξn, the depth of vertex n, have the same distribution, and the distribution law of ζn,m, the number of branches of size m, is also given, whose asymptotic distribution is the Poisson distribution with parameter λ = 1/m. In addition, the joint distribution and the asymptotic joint distribution of the numbers of various branches are given. Finally, it is proved that the size of the biggest branch tends to infinity almost sure as n -→∞.
Growth of Preferential Attachment Random Graphs Via Continuous-Time Branching Processes
Indian Academy of Sciences (India)
Krishna B Athreya; Arka P Ghosh; Sunder Sethuraman
2008-08-01
Some growth asymptotics of a version of `preferential attachment’ random graphs are studied through an embedding into a continuous-time branching scheme. These results complement and extend previous work in the literature.
Asymptotics of trimmed CUSUM statistics
Berkes, István; Schauer, Johannes; 10.3150/10-BEJ318
2012-01-01
There is a wide literature on change point tests, but the case of variables with infinite variances is essentially unexplored. In this paper we address this problem by studying the asymptotic behavior of trimmed CUSUM statistics. We show that in a location model with i.i.d. errors in the domain of attraction of a stable law of parameter $0<\\alpha <2$, the appropriately trimmed CUSUM process converges weakly to a Brownian bridge. Thus, after moderate trimming, the classical method for detecting change points remains valid also for populations with infinite variance. We note that according to the classical theory, the partial sums of trimmed variables are generally not asymptotically normal and using random centering in the test statistics is crucial in the infinite variance case. We also show that the partial sums of truncated and trimmed random variables have different asymptotic behavior. Finally, we discuss resampling procedures which enable one to determine critical values in the case of small and mo...
Asymptotic analysis and boundary layers
Cousteix, Jean
2007-01-01
This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general comprehensive presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows. The advantages of SCEM are discussed in comparison with the standard Method of Matched Asymptotic Expansions. In particular, for the first time, the theory of Interactive Boundary Layer is fully justified. With its chapter summaries, detailed derivations of results, discussed examples and fully worked out problems and solutions, the book is self-contained. It is written on a mathematical level accessible to graduate and post-graduate students of engineering and physics with a good knowledge in fluid mechanics. Researchers and practitioners will estee...
Asymptotics for dissipative nonlinear equations
Hayashi, Nakao; Kaikina, Elena I; Shishmarev, Ilya A
2006-01-01
Many of problems of the natural sciences lead to nonlinear partial differential equations. However, only a few of them have succeeded in being solved explicitly. Therefore different methods of qualitative analysis such as the asymptotic methods play a very important role. This is the first book in the world literature giving a systematic development of a general asymptotic theory for nonlinear partial differential equations with dissipation. Many typical well-known equations are considered as examples, such as: nonlinear heat equation, KdVB equation, nonlinear damped wave equation, Landau-Ginzburg equation, Sobolev type equations, systems of equations of Boussinesq, Navier-Stokes and others.
Higher dimensional nonclassical eigenvalue asymptotics
Camus, Brice; Rautenberg, Nils
2015-02-01
In this article, we extend Simon's construction and results [B. Simon, J. Funct. Anal. 53(1), 84-98 (1983)] for leading order eigenvalue asymptotics to n-dimensional Schrödinger operators with non-confining potentials given by Hn α = - Δ + ∏ i = 1 n |x i| α i on ℝn (n > 2), α ≔ ( α 1 , … , α n ) ∈ ( R+ ∗ ) n . We apply the results to also derive the leading order spectral asymptotics in the case of the Dirichlet Laplacian -ΔD on domains Ωn α = { x ∈ R n : ∏ j = 1 n }x j| /α j α n < 1 } .
Ruin problems and tail asymptotics
DEFF Research Database (Denmark)
Rønn-Nielsen, Anders
The thesis Ruin Problems and Tail Asymptotics provides results on ruin problems for several classes of Markov processes. For a class of diffusion processes with jumps an explicit expression for the joint Laplace transform of the first passage time and the corresponding undershoot is derived...... by an underlying Harris recurrent Markov process some asymptotic results for the ruin probability are derived. Finally, a paper, which is separate in content from the rest of the thesis, treats a RESTART problem in the situation, where failures occur with decreasing intensity....
Asymptotic Rayleigh instantaneous unit hydrograph
Troutman, B.M.; Karlinger, M.R.
1988-01-01
The instantaneous unit hydrograph for a channel network under general linear routing and conditioned on the network magnitude, N, tends asymptotically, as N grows large, to a Rayleigh probability density function. This behavior is identical to that of the width function of the network, and is proven under the assumption that the network link configuration is topologically random and the link hydraulic and geometric properties are independent and identically distributed random variables. The asymptotic distribution depends only on a scale factor, {Mathematical expression}, where ?? is a mean link wave travel time. ?? 1988 Springer-Verlag.
Asymptotic vacua with higher derivatives
Energy Technology Data Exchange (ETDEWEB)
Cotsakis, Spiros, E-mail: skot@aegean.gr [Department of Mathematics, American University of the Middle East, P.O. Box 220 Dasman, 15453 (Kuwait); Kadry, Seifedine, E-mail: Seifedine.Kadry@aum.edu.kw [Department of Mathematics, American University of the Middle East, P.O. Box 220 Dasman, 15453 (Kuwait); Kolionis, Georgios, E-mail: gkolionis@aegean.gr [Research group of Geometry, Dynamical Systems and Cosmology, University of the Aegean, Karlovassi 83200, Samos (Greece); Tsokaros, Antonios, E-mail: atsok@aegean.gr [Research group of Geometry, Dynamical Systems and Cosmology, University of the Aegean, Karlovassi 83200, Samos (Greece)
2016-04-10
We study limits of vacuum, isotropic universes in the full, effective, four-dimensional theory with higher derivatives. We show that all flat vacua as well as general curved ones are globally attracted by the standard, square root scaling solution at early times. Open vacua asymptote to horizon-free, Milne states in both directions while closed universes exhibit more complex logarithmic singularities, starting from initial data sets of a possibly smaller dimension. We also discuss the relation of our results to the asymptotic stability of the passage through the singularity in ekpyrotic and cyclic cosmologies.
Asymptotic vacua with higher derivatives
Directory of Open Access Journals (Sweden)
Spiros Cotsakis
2016-04-01
Full Text Available We study limits of vacuum, isotropic universes in the full, effective, four-dimensional theory with higher derivatives. We show that all flat vacua as well as general curved ones are globally attracted by the standard, square root scaling solution at early times. Open vacua asymptote to horizon-free, Milne states in both directions while closed universes exhibit more complex logarithmic singularities, starting from initial data sets of a possibly smaller dimension. We also discuss the relation of our results to the asymptotic stability of the passage through the singularity in ekpyrotic and cyclic cosmologies.
Institute of Scientific and Technical Information of China (English)
Yan Xia REN
2008-01-01
The global supports of super-Poisson processes and super-random walks with a branching mechanism ψ(z)=z2 and constant branching rate are known to be noncompact. It turns out that, for any spatially dependent branching rate, this property remains true. However, the asymptotic extinction property for these two kinds of superprocesses depends on the decay rate of the branching-rate function at infinity.
Inaccurate usage of asymptotic formulas
Maj, R; Maj, Radoslaw; Mrowczynski, Stanislaw
2004-01-01
The asymptotic form of the plane-wave decomposition into spherical waves, which is often used, in particular, to express the scattering amplitude through the phase shifts, is incorrect. We precisely explain why it is incorrect and show how to circumvent mathematical inconsistency.
Thermodynamics of asymptotically safe theories
DEFF Research Database (Denmark)
Rischke, Dirk H.; Sannino, Francesco
2015-01-01
We investigate the thermodynamic properties of a novel class of gauge-Yukawa theories that have recently been shown to be completely asymptotically safe, because their short-distance behaviour is determined by the presence of an interacting fixed point. Not only do all the coupling constants freeze...
Continuous state branching processes in random environment: The Brownian case
Palau, Sandra; Pardo, Juan Carlos
2015-01-01
We consider continuous state branching processes that are perturbed by a Brownian motion. These processes are constructed as the unique strong solution of a stochastic differential equation. The long-term extinction and explosion behaviours are studied. In the stable case, the extinction and explosion probabilities are given explicitly. We find three regimes for the asymptotic behaviour of the explosion probability and, as in the case of branching processes in random environment, we find five...
On transfinite extension of asymptotic dimension
Radul, Taras
2006-01-01
We prove that a transfinite extension of asymptotic dimension asind is trivial. We introduce a transfinite extension of asymptotic dimension asdim and give an example of metric proper space which has transfinite infinite dimension.
Branching diffusions in random environment
Böinghoff, Christian
2011-01-01
We consider the diffusion approximation of branching processes in random environment (BPREs). This diffusion approximation is similar to and mathematically more tractable than BPREs. We obtain the exact asymptotic behavior of the survival probability. As in the case of BPREs, there is a phase transition in the subcritical regime due to different survival opportunities. In addition, we characterize the process conditioned to never go extinct and establish a backbone construction. In the strongly subcritical regime, mean offspring numbers are increased but still subcritical in the process conditioned to never go extinct. Here survival is solely due to an immortal individual, whose offspring are the ancestors of additional families. In the weakly subcritical regime, the mean offspring number is supercritical in the process conditioned to never go extinct. Thus this process survives with positive probability even if there was no immortal individual.
Javadi, Atefeh; Mirtorabi, Mohammad Taghi
2010-01-01
We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). The main aim was to identify stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. The most extensive dataset was obtained in the K-band with the UIST instrument for the central 4'x 4' (1 square kpc) - this contains the nuclear star cluster and inner disc. These data, taken during the period 2003-2007, were complemented by J- and H-band images. Photometry was obtained for 18,398 stars in this region; of these, 812 stars were found to be variable, most of which are Asymptotic Giant Branch (AGB) stars. Our data were matched to optical catalogues of variable stars and carbon stars, and to mid-infrared photometry from the Spitzer Space Telescope. In this first of a series of papers, we present the methodology of the va...
Asymptotic safety goes on shell
Benedetti, Dario
2012-01-01
It is well known in quantum field theory that the off-shell effective action depends on the gauge choice and field parametrization used in calculating it. Nevertheless, the typical scheme in which the scenario of asymptotically safe gravity is investigated is an off-shell version of the functional renormalization group equation. Working with the Einstein-Hilbert truncation as a test bed, we develop a new scheme for the analysis of asymptotically safe gravity in which the on-shell part of the effective action is singled out and we show that the beta function for the essential coupling has no explicit gauge dependence. In order to reach our goal, we introduce several technical novelties, including a different decomposition of the metric fluctuations, a new implementation of the ghost sector and a new cut-off scheme. We find a nontrivial fixed point, with a value of the cosmological constant that is independent of the gauge-fixing parameters.
Composite Operators in Asymptotic Safety
Pagani, Carlo
2016-01-01
We study the role of composite operators in the Asymptotic Safety program for quantum gravity. By including in the effective average action an explicit dependence on new sources we are able to keep track of operators which do not belong to the exact theory space and/or are normally discarded in a truncation. Typical examples are geometric operators such as volumes, lengths, or geodesic distances. We show that this set-up allows to investigate the scaling properties of various interesting operators via a suitable exact renormalization group equation. We test our framework in several settings, including Quantum Einstein Gravity, the conformally reduced Einstein-Hilbert truncation, and two dimensional quantum gravity. Finally, we briefly argue that our construction paves the way to approach observables in the Asymptotic Safety program.
Asymptotic Excisions of Metric Spaces and Ideals of Asymptotic Coarse Roe Algebras
Institute of Scientific and Technical Information of China (English)
LI Jin-xiu; WANG Qin
2006-01-01
We introduce in this note the notions of asymptotic excision of proper metric spaces and asymptotic equivalence relation for subspaces of metric spaces, which are relevant in characterizing spatial ideals of the asymptotic coarse Roe algebras. We show that the lattice of the asymptotic equivalence classes of the subspaces of a proper metric space is isomorphic to the lattice of the spatial ideals of the asymptotic Roe algebra. For asymptotic excisions of the metric space, we also establish a Mayer-Vietoris sequence in K-theory of the asymptotic coarse Roe algebras.
Supersymmetric asymptotic safety is not guaranteed
Intriligator, Kenneth
2015-01-01
It was recently shown that certain perturbatively accessible, non-supersymmetric gauge-Yukawa theories have UV asymptotic safety, without asymptotic freedom: the UV theory is an interacting RG fixed point, and the IR theory is free. We here investigate the possibility of asymptotic safety in supersymmetric theories, and use unitarity bounds, and the a-theorem, to rule it out in broad classes of theories. The arguments apply without assuming perturbation theory. Therefore, the UV completion of a non-asymptotically free susy theory must have additional, non-obvious degrees of freedom, such as those of an asymptotically free (perhaps magnetic dual) extension.
Lagarde, N; Charbonnel, C; Eggenberger, P; Ekström, S; Palacios, A
2012-01-01
The availability of asteroseismic constraints for a large sample of stars from the missions CoRoT and Kepler paves the way for various statistical studies of the seismic properties of stellar populations. In this paper, we evaluate the impact of rotation-induced mixing and thermohaline instability on the global asteroseismic parameters at different stages of the stellar evolution from the Zero Age Main Sequence to the Thermally Pulsating Asymptotic Giant Branch to distinguish stellar populations. We present a grid of stellar evolutionary models for four metallicities (Z = 0.0001, 0.002, 0.004, and 0.014) in the mass range between 0.85 to 6.0 Msun. The models are computed either with standard prescriptions or including both thermohaline convection and rotation-induced mixing. For the whole grid we provide the usual stellar parameters (luminosity, effective temperature, lifetimes, ...), together with the global seismic parameters, i.e. the large frequency separation and asymptotic relations, the frequency corre...
Kanter, Rosabeth Moss
2008-01-01
Large corporations have long been seen as lumbering, inflexible, bureaucratic--and clueless about global developments. But recently some multinationals seem to be transforming themselves: They're engaging employees, moving quickly, and introducing innovations that show true connection with the world. Harvard Business School's Kanter ventured with a research team inside a dozen global giants--including IBM, Procter & Gamble, Omron, CEMEX, Cisco, and Banco Real--to discover what has been driving the change. After conducting more than 350 interviews on five continents, she and her colleagues came away with a strong sense that we are witnessing the dawn of a new model of corporate power: The coordination of actions and decisions on the front lines now appears to stem from widely shared values and a sturdy platform of common processes and technology, not from top-down decrees. In particular, the values that engage the passions of far-flung workforces stress openness, inclusion, and making the world a better place. Through this shift in what might be called their guidance systems, the companies have become as creative and nimble as much smaller ones, even while taking on social and environmental challenges of a scale that only large enterprises could attempt. IBM, for instance, has created a nonprofit partnership, World Community Grid, through which any organization or individual can donate unused computing power to research projects and see what is being done with the donation in real time. IBM has gained an inspiring showcase for its new technology, helped business partners connect with the company in a positive way, and offered individuals all over the globe the chance to contribute to something big.
Asymptotic integration of differential and difference equations
Bodine, Sigrun
2015-01-01
This book presents the theory of asymptotic integration for both linear differential and difference equations. This type of asymptotic analysis is based on some fundamental principles by Norman Levinson. While he applied them to a special class of differential equations, subsequent work has shown that the same principles lead to asymptotic results for much wider classes of differential and also difference equations. After discussing asymptotic integration in a unified approach, this book studies how the application of these methods provides several new insights and frequent improvements to results found in earlier literature. It then continues with a brief introduction to the relatively new field of asymptotic integration for dynamic equations on time scales. Asymptotic Integration of Differential and Difference Equations is a self-contained and clearly structured presentation of some of the most important results in asymptotic integration and the techniques used in this field. It will appeal to researchers i...
Giant cell arteritis is a disorder that causes inflammation of your arteries, usually in the scalp, neck, and arms. ... arteries, which keeps blood from flowing well. Giant cell arteritis often occurs with another disorder called polymyalgia ...
Kissin, Yevgeni
2015-01-01
The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5 and $5\\,M_\\odot$, taking into account mass loss on the giant branches and the partitioning of angular momentum between the outer and inner envelope. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag as well as the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles $\\Omega(r)$ is considered in the deep convective envelope, ranging from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force on the inward pumping of angular momentum, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core ro...
2014-01-01
We study asymptotic behavior of conditional least squares estimators for 2-type doubly symmetric critical irreducible continuous state and continuous time branching processes with immigration based on discrete time (low frequency) observations.
Institute of Scientific and Technical Information of China (English)
赵丽华; 雷思林; 卢准炜; 刘桂芬
2011-01-01
本文研究了独立同分布随机环境中的两性Galton-Watson分支过程,在上临界情形下,当k充分大时,qk≤ck.%In bisexual Galton-Watson branching process with independent and identically distributed random environments, it is shown that under certain conditions there exists 0 for sufficiently large k.
Asymptotics of robust utility maximization
Knispel, Thomas
2012-01-01
For a stochastic factor model we maximize the long-term growth rate of robust expected power utility with parameter $\\lambda\\in(0,1)$. Using duality methods the problem is reformulated as an infinite time horizon, risk-sensitive control problem. Our results characterize the optimal growth rate, an optimal long-term trading strategy and an asymptotic worst-case model in terms of an ergodic Bellman equation. With these results we propose a duality approach to a "robust large deviations" criterion for optimal long-term investment.
Asymptotics for Associated Random Variables
Oliveira, Paulo Eduardo
2012-01-01
The book concerns the notion of association in probability and statistics. Association and some other positive dependence notions were introduced in 1966 and 1967 but received little attention from the probabilistic and statistics community. The interest in these dependence notions increased in the last 15 to 20 years, and many asymptotic results were proved and improved. Despite this increased interest, characterizations and results remained essentially scattered in the literature published in different journals. The goal of this book is to bring together the bulk of these results, presenting
Asymptotics of Lagged Fibonacci Sequences
Mertens, Stephan
2009-01-01
Consider "lagged" Fibonacci sequences $a(n) = a(n-1)+a(\\lfloor n/k\\rfloor)$ for $k > 1$. We show that $\\lim_{n\\to\\infty} a(kn)/a(n)\\cdot\\ln n/n = k\\ln k$ and we demonstrate the slow numerical convergence to this limit and how to deal with this slow convergence. We also discuss the connection between two classical results of N.G. de Bruijn and K. Mahler on the asymptotics of $a(n)$.
A dynamic network in a dynamic population: asymptotic properties
Britton, Tom; Turova, Tatyana
2011-01-01
We derive asymptotic properties for a stochastic dynamic network model in a stochastic dynamic population. In the model, nodes give birth to new nodes until they die, each node being equipped with a social index given at birth. During the life of a node it creates edges to other nodes, nodes with high social index at higher rate, and edges disappear randomly in time. For this model we derive criterion for when a giant connected component exists after the process has evolved for a long period of time, assuming the node population grows to infinity. We also obtain an explicit expression for the degree correlation $\\rho$ (of neighbouring nodes) which shows that $\\rho$ is always positive irrespective of parameter values in one of the two treated submodels, and may be either positive or negative in the other model, depending on the parameters.
Detailed abundances for a large sample of giant stars in the globular cluster 47 Tucanae (NGC 104)
Energy Technology Data Exchange (ETDEWEB)
Cordero, M. J.; Pilachowski, C. A. [Astronomy Department, Indiana University Bloomington, Swain West 319, 727 East 3rd Street, Bloomington, IN 47405-7105 (United States); Johnson, C. I. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-15, Cambridge, MA 02138 (United States); McDonald, I.; Zijlstra, A. A. [Jodrell Bank Centre for Astrophysics, Alan Turing Building, Manchester M13 9PL (United Kingdom); Simmerer, J., E-mail: majocord@indiana.edu, E-mail: catyp@astro.indiana.edu, E-mail: cjohnson@cfa.harvard.edu, E-mail: mcdonald@jb.man.ac.uk, E-mail: albert.zijlstra@manchester.ac.uk, E-mail: jennifer@physics.utah.edu [University of Utah, Physics and Astronomy, 115 South 1400 East #201, Salt Lake City, UT 84112-0830 (United States)
2014-01-01
47 Tuc is an ideal target to study chemical evolution and globular cluster (GC) formation in massive more metal-rich GCs, as it is the closest massive GC. We present chemical abundances for O, Na, Al, Si, Ca, Ti, Fe, Ni, La, and Eu in 164 red giant branch stars in the massive GC 47 Tuc using spectra obtained with both the Hydra multifiber spectrograph at the Blanco 4 m telescope and the FLAMES multiobject spectrograph at the Very Large Telescope. We find an average [Fe/H] = –0.79 ± 0.09 dex, consistent with literature values, as well as overabundances of alpha-elements ([α/Fe] ∼ 0.3 dex). The n-capture process elements indicate that 47 Tuc is r process-dominated ([Eu/La] = +0.24), and the light elements O, Na, and Al exhibit star-to-star variations. The Na-O anticorrelation, a signature typically seen in Galactic GCs, is present in 47 Tuc, and extends to include a small number of stars with [O/Fe] ∼ –0.5. Additionally, the [O/Na] ratios of our sample reveal that the cluster stars can be separated into three distinct populations. A Kolmogorov-Smirnov test demonstrates that the O-poor/Na-rich stars are more centrally concentrated than the O-rich/Na-poor stars. The observed number and radial distribution of 47 Tuc's stellar populations, as distinguished by their light element composition, agrees closely with the results obtained from photometric data. We do not find evidence supporting a strong Na-Al correlation in 47 Tuc, which is consistent with current models of asymptotic giant branch nucleosynthesis yields.
Asymptotic safety goes on shell
Benedetti, Dario
2011-01-01
It is well known in quantum field theory that the off-shell effective action depends on the gauge choice and field parametrization used in calculating it. Nevertheless, the typical scheme in which the scenario of asymptotically safe gravity is investigated is an off-shell version of the functional renormalization group equation. Working with the Einstein-Hilbert truncation as a test bed, we develop a new scheme for the analysis of asymptotically safe gravity in which the on-shell part of the effective action is singled out and we show that the beta function for the essential coupling has no explicit gauge-dependence. In order to reach our goal, we introduce several technical novelties, including a different decomposition of the metric fluctuations, a new implementation of the ghost sector, and a new cut-off scheme. We find a non-trivial fixed point, with a value of the cosmological constant which is independent of the gauge-fixing parameters.
Asymptotically Free Gauge Theories. I
Wilczek, Frank; Gross, David J.
1973-07-01
Asymptotically free gauge theories of the strong interactions are constructed and analyzed. The reasons for doing this are recounted, including a review of renormalization group techniques and their application to scaling phenomena. The renormalization group equations are derived for Yang-Mills theories. The parameters that enter into the equations are calculated to lowest order and it is shown that these theories are asymptotically free. More specifically the effective coupling constant, which determines the ultraviolet behavior of the theory, vanishes for large space-like momenta. Fermions are incorporated and the construction of realistic models is discussed. We propose that the strong interactions be mediated by a "color" gauge group which commutes with SU(3)xSU(3). The problem of symmetry breaking is discussed. It appears likely that this would have a dynamical origin. It is suggested that the gauge symmetry might not be broken, and that the severe infrared singularities prevent the occurrence of non-color singlet physical states. The deep inelastic structure functions, as well as the electron position total annihilation cross section are analyzed. Scaling obtains up to calculable logarithmic corrections, and the naive lightcone or parton model results follow. The problems of incorporating scalar mesons and breaking the symmetry by the Higgs mechanism are explained in detail.
... tumors of the brain and spinal cord. Neuro-Oncology Clinical Fellowship This is a joint program with ... NCINeuroOncology@mail.nih.gov . Our News The Neuro-Oncology Branch Welcomes Dr. Mark Gilbert as New Branch ...
Asymptotic properties of the C-Metric
Sladek, Pavel
2010-01-01
The aim of this article is to analyze the asymptotic properties of the C-metric, using a general method specified in work of Tafel and coworkers, [1], [2], [3]. By finding an appropriate conformal factor $\\Omega$, it allows the investigation of the asymptotic properties of a given asymptotically flat spacetime. The news function and Bondi mass aspect are computed, their general properties are analyzed, as well as the small mass, small acceleration, small and large Bondi time limits.
Supersymmetric asymptotic safety is not guaranteed
DEFF Research Database (Denmark)
Intriligator, Kenneth; Sannino, Francesco
2015-01-01
It was recently shown that certain perturbatively accessible, non-supersymmetric gauge-Yukawa theories have UV asymptotic safety, without asymptotic freedom: the UV theory is an interacting RG fixed point, and the IR theory is free. We here investigate the possibility of asymptotic safety...... in supersymmetric theories, and use unitarity bounds, and the a-theorem, to rule it out in broad classes of theories. The arguments apply without assuming perturbation theory. Therefore, the UV completion of a non-asymptotically free susy theory must have additional, non-obvious degrees of freedom, such as those...
A Comparative Study of Two 47 Tuc Giant Stars with Different s-process Enrichment
Cordero, M. J.; Hansen, C. J.; Johnson, C. I.; Pilachowski, C. A.
2015-07-01
Here we aim to understand the origin of 47 Tuc’s La-rich star Lee 4710. We report abundances for O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Co, Ni, Zn, Y, Zr, Ba, La, Ce, Pr, Nd, and Eu and present a detailed abundance analysis of two 47 Tuc stars with similar stellar parameters but different slow neutron-capture (s-)process enrichment. Star Lee 4710 has the highest known La abundance ratio in this cluster ([La/Fe] = 1.14), and star Lee 4626 is known to have normal s-process abundances (e.g., [Ba/Eu] < 0). The nucleosynthetic pattern of elements with Z ≳ 56 for star Lee 4710 agrees with the predicted yields of a 1.3{M}⊙ asymptotic giant branch (AGB) star. Therefore, Lee 4710 may have been enriched by mass transfer from a more massive AGB companion, which is compatible with its location far away from the center of this relatively metal-rich ([Fe/H] ˜ -0.7) globular cluster. A further analysis comparing the abundance pattern of Lee 4710 with data available in the literature reveals that nine out of the ˜200 47 Tuc stars previously studied show strong s-process enhancements that point toward later enrichment by more massive AGB stars.
Asymptotic expansions in nonlinear rotordynamics
Day, William B.
1987-01-01
This paper is an examination of special nonlinearities of the Jeffcott equations in rotordynamics. The immediate application of this analysis is directed toward understanding the excessive vibrations recorded in the LOX pump of the SSME during hot-firing ground testing. Deadband, side force, and rubbing are three possible sources of inducing nonlinearity in the Jeffcott equations. The present analysis initially reduces these problems to the same mathematical description. A special frequency, named the nonlinear natural frequency, is defined and used to develop the solutions of the nonlinear Jeffcott equations as singular asymptotic expansions. This nonlinear natural frequency, which is the ratio of the cross-stiffness and the damping, plays a major role in determining response frequencies.
An asymptotic model of the F layer
Oliver, W. L.
2012-01-01
A model of the F layer of the ionosphere is presented that consists of a bottomside asymptote that ignores transport and a topside asymptote that ignores chemistry. The asymptotes connect at the balance height dividing the chemistry and transport regimes. A combination of these two asymptotes produces a good approximation to the true F layer. Analogously, a model of F layer response to an applied vertical drift is presented that consists of two asymptotic responses, one that ignores transport and one that ignores chemistry. The combination of these asymptotic responses produces a good approximation to the response of the true F layer. This latter response is identical to the “servo” response of Rishbeth et al. (1978), derived from the continuity equation. The asymptotic approach bypasses the continuity equation in favor of “force balance” arguments and so replaces a differential equation with simpler algebraic equations. This new approach provides a convenient and intuitive mean for first-order estimates of the change in F layer peak height and density in terms of changes in neutral density, composition, temperature, winds, and electric fields. It is applicable at midlatitudes and at magnetically quiet times at high latitudes. Forensic inverse relations are possible but are not unique. The validity of the asymptotic relations is shown through numerical simulation.
Einstein Constraints on Asymptotically Euclidean Manifolds
Choquet-Bruhat, Y; York, J W; Choquet-Bruhat, Yvonne; Isenberg, James; York, James W.
2000-01-01
We consider the Einstein constraints on asymptotically euclidean manifolds $M$ of dimension $n \\geq 3$ with sources of both scaled and unscaled types. We extend to asymptotically euclidean manifolds the constructive method of proof of existence. We also treat discontinuous scaled sources. In the last section we obtain new results in the case of non-constant mean curvature.
PERIODIC SOLUTIONS OF ASYMPTOTICALLY LINEAR HAMILTONIAN SYSTEMS
Institute of Scientific and Technical Information of China (English)
FEIGUIHUA; QIUQINGJIU
1997-01-01
The authors establish the existence of nontrival periodic solutions of the asymptotically linear Hamiltomian systems in the general case that the asymptotic matrix may be degenerate and time-dependent.This is done by using the critical point theory,Galerkin approximation procedure and the Maslov-type index theory introduced and generalized by Conley,Zehnder and Long.
Penrose type inequalities for asymptotically hyperbolic graphs
Dahl, Mattias; Sakovich, Anna
2013-01-01
In this paper we study asymptotically hyperbolic manifolds given as graphs of asymptotically constant functions over hyperbolic space $\\bH^n$. The graphs are considered as subsets of $\\bH^{n+1}$ and carry the induced metric. For such manifolds the scalar curvature appears in the divergence of a 1-form involving the integrand for the asymptotically hyperbolic mass. Integrating this divergence we estimate the mass by an integral over an inner boundary. In case the inner boundary satisfies a convexity condition this can in turn be estimated in terms of the area of the inner boundary. The resulting estimates are similar to the conjectured Penrose inequality for asymptotically hyperbolic manifolds. The work presented here is inspired by Lam's article concerning the asymptotically Euclidean case.
Asymptotic properties of random matrices and pseudomatrices
Lenczewski, Romuald
2010-01-01
We study the asymptotics of sums of matricially free random variables called random pseudomatrices, and we compare it with that of random matrices with block-identical variances. For objects of both types we find the limit joint distributions of blocks and give their Hilbert space realizations, using operators called `matricially free Gaussian operators'. In particular, if the variance matrices are symmetric, the asymptotics of symmetric blocks of random pseudomatrices agrees with that of symmetric random blocks. We also show that blocks of random pseudomatrices are `asymptotically matricially free' whereas the corresponding symmetric random blocks are `asymptotically symmetrically matricially free', where symmetric matricial freeness is obtained from matricial freeness by an operation of symmetrization. Finally, we show that row blocks of square, lower-block-triangular and block-diagonal pseudomatrices are asymptotically free, monotone independent and boolean independent, respectively.
Universal asymptotic umbrella for hydraulic fracture modeling
Linkov, Aleksandr M
2014-01-01
The paper presents universal asymptotic solution needed for efficient modeling of hydraulic fractures. We show that when neglecting the lag, there is universal asymptotic equation for the near-front opening. It appears that apart from the mechanical properties of fluid and rock, the asymptotic opening depends merely on the local speed of fracture propagation. This implies that, on one hand, the global problem is ill-posed, when trying to solve it as a boundary value problem under a fixed position of the front. On the other hand, when properly used, the universal asymptotics drastically facilitates solving hydraulic fracture problems (both analytically and numerically). We derive simple universal asymptotics and comment on their employment for efficient numerical simulation of hydraulic fractures, in particular, by well-established Level Set and Fast Marching Methods.
Nanodielectrics with giant permittivity
Indian Academy of Sciences (India)
S K Saha
2008-06-01
Nanodielectrics is an emerging area of research because of its potential application in energy storage and transducers. One-dimensional metallic nanostructures with localized electronic wave functions show giant dielectric constant. Following the prediction, during the last couple of years we have investigated the effect of giant permittivity in one-dimensional systems of conventional metals and conjugated polymer chains. In this article, we have tried to summarize the works on giant permittivity and finally the fabrication of nanocapacitor using metal nanowires, which shows giant permittivity is also discussed.
Local asymptotic normality and asymptotical minimax efficiency of the MLE under random censorship
Institute of Scientific and Technical Information of China (English)
王启华; 荆炳义
2000-01-01
Here we study the problems of local asymptotic normality of the parametric family of distri-butions and asymptotic minimax efficient estimators when the observations are subject to right censor-ing. Local asymptotic normality will be established under some mild regularity conditions. A lower bound for local asymptotic minimax risk is given with respect to a bowl-shaped loss function, and fur-thermore a necessary and sufficient condition is given in order to achieve this lower bound. Finally, we show that this lower bound can be attained by the maximum likelihood estimator in the censored case and hence it is local asymptotic minimax efficient.
Local asymptotic normality and asymptotical minimax efficiency of the MLE under random censorship
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Here we study the problems of local asymptotic normality of the parametric family of distributions and asymptotic minimax efficient estimators when the observations are subject to right censoring. Local asymptotic normality will be established under some mild regularity conditions. A lower bound for local asymptotic minimax risk is given with respect to a bowl-shaped loss function, and furthermore a necessary and sufficient condition is given in order to achieve this lower bound. Finally, we show that this lower bound can be attained by the maximum likelihood estimator in the censored case and hence it is local asymptotic minimax efficient.
Cross-Section Measurements of the 86Kr(g,n) Reaction to Probe the s-Process Branching at 85Kr
Raut, R; Rusev, G; Tornow, W; Iliadis, C; Lugaro, M; Buntain, J; Goriely, S; Kelley, J H; Schwengner, R; Banu, A; Tsoneva, N
2013-01-01
We have carried out photodisintegration cross-section measurements on 86Kr using monoenergetic photon beams ranging from the neutron separation energy, S_n = 9.86 MeV, to 13 MeV. We combine our experimental 86Kr(g,n)85Kr cross section with results from our recent 86Kr(g,g') measurement below the neutron separation energy to obtain the complete nuclear dipole response of 86Kr. The new experimental information is used to predict the neutron capture cross section of 85Kr, an important branching point nucleus on the abundance flow path during s-process nucleosynthesis. Our new and more precise 85Kr(n,g)86Kr cross section allows to produce more precise predictions of the 86Kr abundance from s-process models. In particular, we find that the models of the s-process in asymptotic giant branch stars of mass < 1.5 Msun, where the 13C neutron source burns convectively rather than radiatively, represent a possible solution for the highest 86Kr/82Kr ratios observed in meteoritic stardust SiC grains.
Asymptotics of thermal spectral functions
Caron-Huot, S
2009-01-01
We use operator product expansion (OPE) techniques to study the spectral functions of currents at finite temperature, in the high-energy time-like region $\\omega\\gg T$. The leading corrections to the spectral function of currents and stress tensors are proportional to $\\sim T^4$ expectation values in general, and the leading corrections $\\sim g^2T^4$ are calculated at weak coupling, up to one undetermined coefficient in the shear viscosity channel. Spectral functions in the asymptotic regime are shown to be infrared safe up to order $g^8T^4$. The convergence of sum rules in the shear and bulk viscosity channels is established in QCD to all orders in perturbation theory, though numerically significant tails $\\sim T^4/(\\log\\omega)^3$ are shown to exist in the bulk viscosity channel and to have an impact on sum rules recently proposed by Kharzeev and Tuchin. We argue that the spectral functions of currents and stress tensors in strongly coupled $\\mathcal{N}=4$ super Yang-Mills do not receive any medium-dependent...
Peripheral giant cell granuloma
Directory of Open Access Journals (Sweden)
Padam Narayan Tandon
2012-01-01
Full Text Available Peripheral giant cell granuloma or the so-called "giant cell epulis" is the most common oral giant cell lesion. It normally presents as a soft tissue purplish-red nodule consisting of multinucleated giant cells in a background of mononuclear stromal cells and extravasated red blood cells. This lesion probably does not represent a true neoplasm, but rather may be reactive in nature, believed to be stimulated by local irritation or trauma, but the cause is not certainly known. This article reports a case of peripheral giant cell granuloma arising at the maxillary anterior region in a 22-year-old female patient. The lesion was completely excised to the periosteum level and there is no residual or recurrent swelling or bony defect apparent in the area of biopsy after a follow-up period of 6 months.
ASYMPTOTIC STABILITIES OF STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
SHEN Yi; JIANG Ming-hui; LIAO Xiao-xin
2006-01-01
Asymptotic characteristic of solution of the stochastic functional differential equation was discussed and sufficient condition was established by multiple Lyapunov functions for locating the limit set of t he solution. Moreover, from them many effective criteria on stochastic asymptotic stability, which enable us to construct the Lyapunov functions much more easily in application, were obtained. The results show that the wellknown classical theorem on stochastic asymptotic stability is a special case of our more general results. In the end, application in stochastic Hopfield neural networks is given to verify our results.
Asymptotic Safety, Emergence and Minimal Length
Percacci, R
2010-01-01
There seems to be a common prejudice that asymptotic safety is either incompatible with, or at best unrelated to, the other topics in the title. This is not the case. In fact, we show that 1) the existence of a fixed point with suitable properties is a promising way of deriving emergent properties of gravity, and 2) there is a precise sense in which asymptotic safety implies a minimal length. In so doing we also discuss possible signatures of asymptotic safety in scattering experiments.
"Asymptotic Parabola" Fits for Smoothing Generally Asymmetric Light Curves
Andrych, Kateryna D; Chinarova, Lidia L; Marsakova, Vladyslava I
2015-01-01
A computer program is introduced, which allows to determine statistically optimal approxi-mation using the "Asymptotic Parabola" fit, or, in other words, the spline consisting of polynomials of order 1,2,1, or two lines ("asymptotes") connected with a parabola. The function itself and its derivative is continuous. There are 5 parameters: two points, where a line switches to a parabola and vice versa, the slopes of the line and the curvature of the parabola. Extreme cases are either the parabola without lines (i.e.the parabola of width of the whole interval), or lines without a parabola (zero width of the parabola), or "line+parabola" without a second line. Such an approximation is especially effective for pulsating variables, for which the slopes of the ascending and descending branches are generally different, so the maxima and minima have asymmetric shapes. The method was initially introduced by Marsakova and Andronov (1996OAP.....9..127M) and realized as a computer program written in QBasic under DOS. It w...
Labbé, Cyril
2012-01-01
We encode the genealogy of a continuous-state branching process associated with a branching mechanism $\\Psi$ - or $\\Psi$-CSBP in short - using a stochastic flow of partitions. This encoding holds for all branching mechanisms and appears as a very tractable object to deal with asymptotic behaviours and convergences. In particular we study the so-called Eve property - the existence of an ancestor from which the entire population descends asymptotically - and give a necessary and sufficient condition on the $\\Psi$-CSBP for this property to hold. Finally, we show that the flow of partitions unifies the lookdown representation and the flow of subordinators when the Eve property holds.
Gurau, Razvan
2013-01-01
Melonic graphs constitute the family of graphs arising at leading order in the 1/N expansion of tensor models. They were shown to lead to a continuum phase, reminiscent of branched polymers. We show here that they are in fact precisely branched polymers, that is, they possess Hausdorff dimension 2 and spectral dimension 4/3.
Asymptotic Evolution of Random Unitary Operations
Novotny, J; Jex, I
2009-01-01
We analyze the asymptotic dynamics of quantum systems resulting from large numbers of iterations of random unitary operations. Although, in general, these quantum operations cannot be diagonalized it is shown that their resulting asymptotic dynamics is described by a diagonalizable superoperator. We prove that this asymptotic dynamics takes place in a typically low dimensional attractor space which is independent of the probability distribution of the unitary operations applied. This vector space is spanned by all eigenvectors of the unitary operations involved which are associated with eigenvalues of unit modulus. Implications for possible asymptotic dynamics of iterated random unitary operations are presented and exemplified in an example involving random controlled-not operations acting on two qubits.
The Lorentzian proper vertex amplitude: Asymptotics
Engle, Jonathan; Zipfel, Antonia
2015-01-01
In previous work, the Lorentzian proper vertex amplitude for a spin-foam model of quantum gravity was derived. In the present work, the asymptotics of this amplitude are studied in the semi-classical limit. The starting point of the analysis is an expression for the amplitude as an action integral with action differing from that in the EPRL case by an extra `projector' term which scales linearly with spins only in the asymptotic limit. New tools are introduced to generalize stationary phase methods to this case. For the case of boundary data which can be glued to a non-degenerate Lorentzian 4-simplex, the asymptotic limit of the amplitude is shown to equal the single Feynman term, showing that the extra term in the asymptotics of the EPRL amplitude has been eliminated.
Large Deviations and Asymptotic Methods in Finance
Gatheral, Jim; Gulisashvili, Archil; Jacquier, Antoine; Teichmann, Josef
2015-01-01
Topics covered in this volume (large deviations, differential geometry, asymptotic expansions, central limit theorems) give a full picture of the current advances in the application of asymptotic methods in mathematical finance, and thereby provide rigorous solutions to important mathematical and financial issues, such as implied volatility asymptotics, local volatility extrapolation, systemic risk and volatility estimation. This volume gathers together ground-breaking results in this field by some of its leading experts. Over the past decade, asymptotic methods have played an increasingly important role in the study of the behaviour of (financial) models. These methods provide a useful alternative to numerical methods in settings where the latter may lose accuracy (in extremes such as small and large strikes, and small maturities), and lead to a clearer understanding of the behaviour of models, and of the influence of parameters on this behaviour. Graduate students, researchers and practitioners will find th...
Hermite polynomials and quasi-classical asymptotics
Energy Technology Data Exchange (ETDEWEB)
Ali, S. Twareque, E-mail: twareque.ali@concordia.ca [Department of Mathematics and Statistics, Concordia University, Montréal, Québec H3G 1M8 (Canada); Engliš, Miroslav, E-mail: englis@math.cas.cz [Mathematics Institute, Silesian University in Opava, Na Rybníčku 1, 74601 Opava, Czech Republic and Mathematics Institute, Žitná 25, 11567 Prague 1 (Czech Republic)
2014-04-15
We study an unorthodox variant of the Berezin-Toeplitz type of quantization scheme, on a reproducing kernel Hilbert space generated by the real Hermite polynomials and work out the associated quasi-classical asymptotics.
Nonsymmetric gravity does have acceptable global asymptotics
Cornish, N J
1994-01-01
"Reports of my death are greatly exaggerated" - Mark Twain. We consider the claim by Damour, Deser and McCarthy that nonsymmetric gravity theory has unacceptable global asymptotics. We explain why this claim is incorrect.
A Shortcut to LAD Estimator Asymptotics
1990-01-01
Using generalized functions of random variables and generalized Taylor series expansions, we provide almost trivial demonstrations of the asymptotic theory for the LAD estimator in a regression model setting. The approach is justified by the smoothing that is delivered in the limit by the asymptotics, whereby the generalized functions are forced to appear as linear functionals wherein they become real valued. Models with fixed and random regressors, autoregressions and autoregressions with in...
Asymptotic and Exact Expansions of Heat Traces
Energy Technology Data Exchange (ETDEWEB)
Eckstein, Michał, E-mail: michal@eckstein.pl [Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science (Poland); Zając, Artur, E-mail: artur.zajac@uj.edu.pl [Jagiellonian University, Faculty of Mathematics and Computer Science (Poland)
2015-12-15
We study heat traces associated with positive unbounded operators with compact inverses. With the help of the inverse Mellin transform we derive necessary conditions for the existence of a short time asymptotic expansion. The conditions are formulated in terms of the meromorphic extension of the associated spectral zeta-functions and proven to be verified for a large class of operators. We also address the problem of convergence of the obtained asymptotic expansions. General results are illustrated with a number of explicit examples.
The trouble with asymptotically safe inflation
Fang, Chao
2013-01-01
In this paper we investigate the perturbation theory of the asymptotically safe inflation and we find that all modes of gravitational waves perturbation become ghosts in order to achieve a large enough number of e-folds. Formally we can calculate the power spectrum of gravitational waves perturbation, but we find that it is negative. It indicates that there is serious trouble with the asymptotically safe inflation.
Collateral branching of long-distance cortical projections in monkey.
Rockland, Kathleen S
2013-12-15
Collateralization of individual cortical axons is well documented for rodents but less so for monkeys, where double retrograde tracer experiments have tended to find only small numbers of neurons projecting to two different injection sites. Evidence from both double label and single axon studies, however, suggests that in specific projection systems the number of neurons with collateralized axons can be 10% or greater. These include feedback projections from temporal areas (but less so those from V4 and MT/V5). Single-axon analyses show that many parietal neurons branch to multiple targets. Except for giant Meynert cells in area V1, feedforward projections from early visual areas have only a small number of neurons with branching axons. Why only some neurons collateralize, what determines branch points and projection foci, and how this impacts network organization are largely unknown. Deciphering the branching code might offer new perspectives on space-time organization at the network level.
Zarembo, K
2008-01-01
The giant magnons are classical solitons of the O(N) sigma-model, which play an important role in the AdS/CFT correspondence. We study quantum giant magnons first at large N and then exactly using Bethe Ansatz, where giant magnons can be interpreted as holes in the Fermi sea. We also identify a solvable limit of Bethe Ansatz in which it describes a weakly-interacting Bose gas at zero temperature. The examples include the O(N) model at large N, weakly interacting non-linear Schrodinger model, and nearly isotropic XXZ spin chain in the magnetic field.
Tahere Nosratzehi; Lale Maleki
2013-01-01
Giant cell fibroma is a fibrous tumor which represents about 2 to 5% of all oral fibrotic proliferations. Compared to traumatic fibroma, giant (traumatic fibroma or irritation fibroma) cell fibroma occurs at a younger age. In about 60% of the cases the lesion is diagnosed within the first three decades of life and is slightly more in women. 50% of the cases is observed in the gum and will appear as a nodule with a papillary surface [1]. The giant cell fibroma is treated by conservative excisi...
Busse, F H; 10.1017/S1743921307000920
2009-01-01
Possibilities and difficulties of applying the theory of magnetic field generation by convection flows in rotating spherical fluid shells to the Giant Planets are outlined. Recent progress in the understanding of the distribution of electrical conductivity in the Giant Planets suggests that the dynamo process occurs predominantly in regions of semiconductivity. In contrast to the geodynamo the magnetic field generation in the Giant Planets is thus characterized by strong radial conductivity variations. The importance of the constraint on the Ohmic dissipation provided by the planetary luminosity is emphasized. Planetary dynamos are likely to be of an oscillatory type, although these oscillations may not be evident from the exterior of the planets.
Stockdale, Dennis
1998-01-01
Provides directions for the construction of giant plastic cells, including details for building and installing the organelles. Also contains instructions for preparing the ribosomes, nucleolus, nucleus, and mitochondria. (DDR)
Energy Technology Data Exchange (ETDEWEB)
Pereira, L.F.; Hemais, P.M.P.G.; Aymore, I.L.; Carmo, M.C.R. do; Cunha, M.E.P.R. da; Resende, C.M.C.
Three cases of metaphyseal giant cell tumor are presented. A review of the literature is done, demostrating the lesion is rare and that there are few articles about it. Age incidence and characteristics of the tumor are discussed.
Energy Technology Data Exchange (ETDEWEB)
Maher, M.M. [Department of Radiology, Mater Misericordiae Hospital, Dublin (Ireland); Department of Radiology, St. Vincent' s Hospital, Elm Park, Dublin 4 (Ireland); Kennedy, J.; Hynes, D. [Department of Orthopaedics, Mater Misericordiae Hospital, Dublin (Ireland); Murray, J.G.; O' Connell, D. [Department of Radiology, Mater Misericordiae Hospital, Dublin (Ireland)
2000-03-30
We describe the imaging features of a giant geode of the distal humerus in a patient with rheumatoid arthritis, which presented initially as a pathological fracture. The value of magnetic resonance imaging in establishing this diagnosis is emphasized. (orig.)
Gaulme, Patrick; Schmider, Francois-Xavier; Guillot, Tristan
2014-01-01
Seismology applied to giant planets could drastically change our understanding of their deep interiors, as it has happened with the Earth, the Sun, and many main-sequence and evolved stars. The study of giant planets' composition is important for understanding both the mechanisms enabling their formation and the origins of planetary systems, in particular our own. Unfortunately, its determination is complicated by the fact that their interior is thought not to be homogeneous, so that spectroscopic determinations of atmospheric abundances are probably not representative of the planet as a whole. Instead, the determination of their composition and structure must rely on indirect measurements and interior models. Giant planets are mostly fluid and convective, which makes their seismology much closer to that of solar-like stars than that of terrestrial planets. Hence, helioseismology techniques naturally transfer to giant planets. In addition, two alternative methods can be used: photometry of the solar light ref...
Giant magnetostrictive materials
Institute of Scientific and Technical Information of China (English)
LIU JingHua; JIANG ChengBao; XU HuiBin
2012-01-01
Giant magnetostrictive materials are a kind of functional materials developed since 1970s,known as their large magnetostrain and high energy density.In this paper,an introduction of magnetosttiction and the history of magnetostrictive materials are described firstly.Then we review the recent developments of both rare earth and non-rare earth magnetostrictive materials.Finally,the tendency of developing new giant magnetostrictive materials is presented.
Branching processes in biology
Kimmel, Marek
2015-01-01
This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second ex...
Aoki, H; Kawai, H; Kitazawa, Y; Aoki, Hajime; Iso, Satoshi; Kawai, Hikaru; Kitazawa, Yoshihisa
2000-01-01
We show that correlation functions for branched polymers correspond to those for $\\phi^3$ theory with a single mass insertion, not those for the $\\phi^3$ theory themselves, as has been widely believed. In particular, the two-point function behaves as 1/p^4, not as 1/p^2. This behavior is consistent with the fact that the Hausdorff dimension of the branched polymer is four.
Koenigs function and branching processes
Chikilev, O G
2001-01-01
An explicit solution of time-homogeneous pure birth branching processes is described. It gives alternative extensions for the negative binomial distribution (branching processes with immigration) and for the Furry-Yule distribution (branching processes without immigration).
Red giant seismology: Observations
Directory of Open Access Journals (Sweden)
Mosser B.
2013-03-01
Full Text Available The CoRoT and Kepler missions provide us with thousands of red-giant light curves that allow a very precise asteroseismic study of these objects. Before CoRoT and Kepler, the red-giant oscillation patterns remained obscure. Now, these spectra are much more clear and unveil many crucial interior structure properties. For thousands of red giants, we can derive from seismic data precise estimates of the stellar mass and radius, the evolutionary status of the giants (with a clear difference between clump and RGB stars, the internal differential rotation, the mass loss, the distance of the stars... Analyzing this amount of information is made easy by the identification of the largely homologous red-giant oscillation patterns. For the first time, both pressure and mixed mode oscillation patterns can be precisely depicted. The mixed-mode analysis allows us, for instance, to probe directly the stellar core. Fine details completing the red-giant oscillation pattern then provide further information on the interior structure, including differential rotation.
Giant neurons in the macaque pulvinar: a distinct relay subpopulation
Directory of Open Access Journals (Sweden)
Kosuke Imura
2007-07-01
Full Text Available Calbindin positive (CB+ giant neurons are known to occur within the pulvinar nucleus in subhuman primates. Here, we demonstrate by combined retrograde tracing and immunocytochemistry that at least some of these are pulvinocortical relay neurons, and further report several distinctive features. First, in contrast with non-giant relay neurons, the giant neurons are often solitary and isolated from a main projection focus. The question thus arises of whether their cortical projections may be non-reciprocal or otherwise distinctive. Second, these neurons are positive for GluR4; but third, they are otherwise neurochemically heterogeneous, in that about one-third are positive for both parvalbumin (PV and CB. Presumably, these subpopulations are also functionally heterogeneous. These results provide further evidence for the idea of multiple, interleaved organizations within the pulvinar; and they imply that thalamocortical projections are more disparate than has yet been appreciated. Finally, we found that giant CB+ neurons have a distinctive meshwork of large, PV+ terminations, prominent at the first dendritic branch point. In size and location, these resemble inhibitory terminations from the zona incerta or anterior pretectal nucleus (APT, as recently described in higher order thalamic nuclei in rats. One can speculate that giant neurons in the macaque pulvinar participate in a layer 5-APT-thalamus (giant neuron extrareticular pathway, functionally distinct from the layer 6-reticular nucleus-thalamus network.
The origin of extreme horizontal branch stars
Dorman, B; O'Connell, R W; Dorman, Ben; Rood, Robert T; O'Connell, Robert W
1995-01-01
Strong mass loss on the red giant branch (RGB) can result in the formation of extreme horizontal branch (EHB) stars. The EHB stars spend most of their He core and shell burning phase at high temperatures and produce copious ultraviolet flux. They have very small hydrogen envelopes and occupy a small range in mass. We have computed evolutionary RGB models with mass loss for stars with a range of metallicities at initial masses < 1.1 Msun corresponding to populations ages between 12.5 and 14.5 Gyr. We used the Reimers formula to characterize mass loss, but investigated a larger range of the mass loss efficiency parameter, eta, than is common. To understand how the number of EHB stars varies with metallicity in a stellar population we considered how the zero-age horizontal branch (ZAHB) is populated. The range in eta producing EHB stars is comparable to that producing `mid-HB' stars. Somewhat surprisingly, neither the range nor magnitude of eta producing EHB stars varies much metallicity. In contrast, the ran...
Lithium and magnetic fields in giants. HD 232862 : a magnetic and lithium-rich giant star
Lèbre, A; Nascimento, J D do; Konstantinova-Antova, R; Kolev, D; Aurière, M; De Laverny, P; De Medeiros, J R
2009-01-01
We report the detection of an unusually high lithium content in HD 232862, a field giant classified as a G8II star, and hosting a magnetic field. With the spectropolarimeters ESPaDOnS at CFHT and NARVAL at TBL, we have collected high resolution and high signal-to-noise spectra of three giants : HD 232862, KU Peg and HD 21018. From spectral synthesis we have inferred stellar parameters and measured lithium abundances that we have compared to predictions from evolutionary models. We have also analysed Stokes V signatures, looking for a magnetic field on these giants. HD 232862, presents a very high abundance of lithium (ALi = 2.45 +/- 0.25 dex), far in excess of the theoretically value expected at this spectral type and for this luminosity class (i.e, G8II). The evolutionary stage of HD 232862 has been precised, and it suggests a mass in the lower part of the [1.0 Msun ; 3.5 Msun ] mass interval, likely 1.5 to 2.0 solar mass, at the bottom of the Red Giant Branch. Besides, a time variable Stokes V signature has...
Relations between asymptotic and Fredholm representations
Manuilov, V M
1997-01-01
We prove that for matrix algebras $M_n$ there exists a monomorphism $(\\prod_n M_n/\\oplus_n M_n)\\otimes C(S^1) \\to {\\cal Q} $ into the Calkin algebra which induces an isomorphism of the $K_1$-groups. As a consequence we show that every vector bundle over a classifying space $B\\pi$ which can be obtained from an asymptotic representation of a discrete group $\\pi$ can be obtained also from a representation of the group $\\pi\\times Z$ into the Calkin algebra. We give also a generalization of the notion of Fredholm representation and show that asymptotic representations can be viewed as asymptotic Fredholm representations.
The optimal homotopy asymptotic method engineering applications
Marinca, Vasile
2015-01-01
This book emphasizes in detail the applicability of the Optimal Homotopy Asymptotic Method to various engineering problems. It is a continuation of the book “Nonlinear Dynamical Systems in Engineering: Some Approximate Approaches”, published at Springer in 2011, and it contains a great amount of practical models from various fields of engineering such as classical and fluid mechanics, thermodynamics, nonlinear oscillations, electrical machines, and so on. The main structure of the book consists of 5 chapters. The first chapter is introductory while the second chapter is devoted to a short history of the development of homotopy methods, including the basic ideas of the Optimal Homotopy Asymptotic Method. The last three chapters, from Chapter 3 to Chapter 5, are introducing three distinct alternatives of the Optimal Homotopy Asymptotic Method with illustrative applications to nonlinear dynamical systems. The third chapter deals with the first alternative of our approach with two iterations. Five application...
Nanofluid surface wettability through asymptotic contact angle.
Vafaei, Saeid; Wen, Dongsheng; Borca-Tasciuc, Theodorian
2011-03-15
This investigation introduces the asymptotic contact angle as a criterion to quantify the surface wettability of nanofluids and determines the variation of solid surface tensions with nanofluid concentration and nanoparticle size. The asymptotic contact angle, which is only a function of gas-liquid-solid physical properties, is independent of droplet size for ideal surfaces and can be obtained by equating the normal component of interfacial force on an axisymmetric droplet to that of a spherical droplet. The technique is illustrated for a series of bismuth telluride nanofluids where the variation of surface wettability is measured and evaluated by asymptotic contact angles as a function of nanoparticle size, concentration, and substrate material. It is found that the variation of nanofluid concentration, nanoparticle size, and substrate modifies both the gas-liquid and solid surface tensions, which consequently affects the force balance at the triple line, the contact angle, and surface wettability.
Asymptotic analysis of outwardly propagating spherical flames
Institute of Scientific and Technical Information of China (English)
Yun-Chao Wu; Zheng Chen
2012-01-01
Asymptotic analysis is conducted for outwardly propagating spherical flames with large activation energy.The spherical flame structure consists of the preheat zone,reaction zone,and equilibrium zone.Analytical solutions are separately obtained in these three zones and then asymptotically matched.In the asymptotic analysis,we derive a correlation describing the spherical flame temperature and propagation speed changing with the flame radius.This correlation is compared with previous results derived in the limit of infinite value of activation energy.Based on this correlation,the properties of spherical flame propagation are investigated and the effects of Lewis number on spherical flame propagation speed and extinction stretch rate are assessed.Moreover,the accuracy and performance of different models used in the spherical flame method are examined.It is found that in order to get accurate laminar flame speed and Markstein length,non-linear models should be used.
On generalized Nariai solutions and their asymptotics
Beyer, Florian
2009-01-01
In this paper, we consider the class of generalized Nariai solutions of Einstein's field equations in vacuum with a positive cosmological constant. According to the cosmic no-hair conjecture, generic expanding solutions isotropize and approach the de-Sitter solution asymptotically, at least locally in space. The generalized Nariai solutions, however, show quite unusual asymptotics and hence should be non-generic in some sense. In the first part of the paper, we list the necessary facts and characterize the asymptotic behavior geometrically. In the second part, we study the question of non-genericity, which we are able to confirm within the class of spatially homogeneous solutions. It turns out that perturbations of the three isometry classes of generalized Nariai solutions are related to different mass regimes of Schwarzschild de-Sitter solutions. In subsequent papers, we will continue this research in more general classes of solutions.
Variance estimators in critical branching processes with non-homogeneous immigration
Rahimov, Ibrahim
2012-01-01
The asymptotic normality of conditional least squares estimators for the offspring variance in critical branching processes with non-homogeneous immigration is established, under moment assumptions on both reproduction and immigration. The proofs use martingale techniques and weak convergence results in Skorokhod spaces.
Giant dendritic carbonaceous particles in Soweto aerosols
Energy Technology Data Exchange (ETDEWEB)
Wentzel, M.; Annegarn, H.J.; Helas, G.; Weinbruch, S.; Balogh, A.G.; Sithole, J.S. [Max Planck Institute of Chemistry, Mainz (Germany). Biogeochemistry Dept.
1999-03-01
Gravimetric analyses of aerosol filter samples from Soweto, southwest of Johannesburg, have revealed an anomalous mass-size distribution. Instead of the coal fire generated aerosol forming sub-micron aerosols as expected, most of the mass of the winter smoke is in particles greater than 3{mu}m aerodynamic diameter. A high-resolution scanning electron microscope was used to examine coarse and fine-mode aerosol fractions from two contrasting sites in the conurbation. Unanticipated giant carbonaceous conglomerates (10-100 {mu}m diameter), which comprise the bulk of the aerosol mass on the filters examined, were found. The outer shape of the conglomerates tends towards spherical, rather than the branched, chain-like structures of high-temperature soot. Internal structure varies from highly dendritic with 20-nm-wide branches, through a coarser sponge-like structure to an almost solid `melted toffee` irregular surface. Possible modes of formation of these conglomerates are discussed in terms of condensation aerosols conglomeration, and subsequent partial melting or solvent condensation. The occurrence of the giant carbonaceous conglomerates as a general feature of the Soweto winter atmosphere explains the anomalous size-mass distribution results from bulk filter analyses.
Asymptotics of a horizontal liquid bridge
Haynes, M.; O'Brien, S. B. G.; Benilov, E. S.
2016-04-01
This paper uses asymptotic techniques to find the shape of a two dimensional liquid bridge suspended between two vertical walls. We model the equilibrium bridge shape using the Laplace-Young equation. We use the Bond number as a small parameter to deduce an asymptotic solution which is then compared with numerical solutions. The perturbation approach demonstrates that equilibrium is only possible if the contact angle lies within a hysteresis interval and the analysis relates the width of this interval to the Bond number. This result is verified by comparison with a global force balance. In addition, we examine the quasi-static evolution of such a two dimensional bridge.
Asymptotic Methods for Solitary Solutions and Compactons
Directory of Open Access Journals (Sweden)
Ji-Huan He
2012-01-01
Full Text Available This paper is an elementary introduction to some new asymptotic methods for the search for the solitary solutions of nonlinear differential equations, nonlinear differential-difference equations, and nonlinear fractional differential equations. Particular attention is paid throughout the paper to giving an intuitive grasp for the variational approach, the Hamiltonian approach, the variational iteration method, the homotopy perturbation method, the parameter-expansion method, the Yang-Laplace transform, the Yang-Fourier transform, and ancient Chinese mathematics. Hamilton principle and variational principles are also emphasized. The reviewed asymptotic methods are easy to be followed for various applications. Some ideas on this paper are first appeared.
Semiclassical Asymptotics on Manifolds with Boundary
Koldan, Nilufer; Shubin, Mikhail
2008-01-01
We discuss semiclassical asymptotics for the eigenvalues of the Witten Laplacian for compact manifolds with boundary in the presence of a general Riemannian metric. To this end, we modify and use the variational method suggested by Kordyukov, Mathai and Shubin (2005), with a more extended use of quadratic forms instead of the operators. We also utilize some important ideas and technical elements from Helffer and Nier (2006), who were the first to supply a complete proof of the full semi-classical asymptotic expansions for the eigenvalues with fixed numbers.
de Reyna, Juan Arias
2012-01-01
A new derivation of the classic asymptotic expansion of the n-th prime is presented. A fast algorithm for the computation of its terms is also given, which will be an improvement of that by Salvy (1994). Realistic bounds for the error with $\\li^{-1}(n)$, after having retained the first m terms, for $1\\le m\\le 11$, are given. Finally, assuming the Riemann Hypothesis, we give estimations of the best possible $r_3$ such that, for $n\\ge r_3$, we have $p_n> s_3(n)$ where $s_3(n)$ is the sum of the first four terms of the asymptotic expansion.
Asymptotic stability of singularly perturbed differential equations
Artstein, Zvi
2017-02-01
Asymptotic stability is examined for singularly perturbed ordinary differential equations that may not possess a natural split into fast and slow motions. Rather, the right hand side of the equation is comprised of a singularly perturbed component and a regular one. The limit dynamics consists then of Young measures, with values being invariant measures of the fast contribution, drifted by the slow one. Relations between the asymptotic stability of the perturbed system and the limit dynamics are examined, and a Lyapunov functions criterion, based on averaging, is established.
Bisterzo, Sara; Kaeppeler, Franz; Wiescher, Michael; Imbriani, Gianluca; Straniero, Oscar; Cristallo, Sergio; Goerres, Joachim; deBoer, Richard
2015-01-01
This paper provides a detailed analysis of the main component of the slow neutron capture process (the s-process), which accounts for the solar abundances of half of the nuclei with 90 <~ A <~ 208. We examine the impact of the uncertainties of the two neutron sources operating in low-mass asymptotic giant branch (AGB) stars: the 13C(alpha, n)16O reaction, which releases neutrons radiatively during interpulse periods (kT ~ 8 keV), and the 22Ne(alpha, n)25Mg reaction, partially activated during the convective thermal pulses (TPs). We focus our attention on the branching points that mainly influence the abundance of s-only isotopes. In our AGB models, the 13C is fully consumed radiatively during interpulse. In this case, we find that the present uncertainty associated to the 13C(alpha, n)16O reaction has marginal effects on s-only nuclei. On the other hand, a reduction of this rate may increase the amount of residual (or unburned) 13C at the end of the interpulse: in this condition, the residual 13C is bur...
Armas, Jay; Obers, Niels A; Orselli, Marta; Pedersen, Andreas Vigand
2012-01-01
We study the giant graviton solution as the AdS_5 X S^5 background is heated up to finite temperature. The analysis employs the thermal brane probe technique based on the blackfold approach. We focus mainly on the thermal giant graviton corresponding to a thermal D3-brane probe wrapped on an S^3 moving on the S^5 of the background at finite temperature. We find several interesting new effects, including that the thermal giant graviton has a minimal possible value for the angular momentum and correspondingly also a minimal possible radius of the S^3. We compute the free energy of the thermal giant graviton in the low temperature regime, which potentially could be compared to that of a thermal state on the gauge theory side. Moreover, we analyze the space of solutions and stability of the thermal giant graviton and find that, in parallel with the extremal case, there are two available solutions for a given temperature and angular momentum, one stable and one unstable. In order to write down the equations of mot...
Damage Tolerance Assessment Branch
Walker, James L.
2013-01-01
The Damage Tolerance Assessment Branch evaluates the ability of a structure to perform reliably throughout its service life in the presence of a defect, crack, or other form of damage. Such assessment is fundamental to the use of structural materials and requires an integral blend of materials engineering, fracture testing and analysis, and nondestructive evaluation. The vision of the Branch is to increase the safety of manned space flight by improving the fracture control and the associated nondestructive evaluation processes through development and application of standards, guidelines, advanced test and analytical methods. The Branch also strives to assist and solve non-aerospace related NDE and damage tolerance problems, providing consultation, prototyping and inspection services.
DEFF Research Database (Denmark)
Bussink, Barbara E; Holst, Anders Gaarsdal; Jespersen, Lasse;
2013-01-01
AimsTo determine the prevalence, predictors of newly acquired, and the prognostic value of right bundle branch block (RBBB) and incomplete RBBB (IRBBB) on a resting 12-lead electrocardiogram in men and women from the general population.Methods and resultsWe followed 18 441 participants included.......5%/2.3% in women, P Right bundle branch block was associated with significantly.......60-1.62). The presence of IRBBB was not associated with any adverse outcome.ConclusionIn this cohort study, RBBB and IRBBB were two to three times more common among men than women. Right bundle branch block was associated with increased cardiovascular risk and all-cause mortality, whereas IRBBB was not. Contrary...
Hekker, S
2016-01-01
The internal properties of stars in the red-giant phase undergo significant changes on relatively short timescales. Long near-interrupted high-precision photometric timeseries observations from dedicated space missions such as CoRoT and Kepler have provided seismic inferences of the global and internal properties of a large number of evolved stars, including red giants. These inferences are confronted with predictions from theoretical models to improve our understanding of stellar structure and evolution. Our knowledge and understanding of red giants have indeed increased tremendously using these seismic inferences, and we anticipate that more information is still hidden in the data. Unraveling this will further improve our understanding of stellar evolution. This will also have significant impact on our knowledge of the Milky Way Galaxy as well as on exo-planet host stars. The latter is important for our understanding of the formation and structure of planetary systems.
Asymptotic Distributions for Tests of Combined Significance.
Becker, Betsy Jane
This paper discusses distribution theory and power computations for four common "tests of combined significance." These tests are calculated using one-sided sample probabilities or p values from independent studies (or hypothesis tests), and provide an overall significance level for the series of results. Noncentral asymptotic sampling…
Asymptotic symmetry algebra of conformal gravity
Irakleidou, M
2016-01-01
We compute asymptotic symmetry algebras of conformal gravity. Due to more general boundary conditions allowed in conformal gravity in comparison to those in Einstein gravity, we can classify the corresponding algebras. The highest algebra for non-trivial boundary conditions is five dimensional and it leads to global geon solution with non-vanishing charges.
THE COMPLETE ASYMPTOTIC EXPANSION FOR BASKAKOV OPERATORS
Institute of Scientific and Technical Information of China (English)
Chungou Zhang; Quane Wang
2007-01-01
In this paper, we derive the complete asymptotic expansion of classical Baskakov itly in terms of Stirling number of the first and second kind and another number G(I, p). As a corollary, we also get the Voronovskaja-type result for the operators.
Discrete Energy Asymptotics on a Riemannian circle
Brauchart, J S; Saff, E B
2009-01-01
We derive the complete asymptotic expansion in terms of powers of $N$ for the geodesic $f$-energy of $N$ equally spaced points on a rectifiable simple closed curve $\\Gamma$ in ${\\mathbb R}^p$, $p\\geq2$, as $N \\to \\infty$. For $f$ decreasing and convex, such a point configuration minimizes the $f$-energy $\\sum_{j\
Asymptotic estimates for generalized Stirling numbers
Chelluri, R.; Richmond, L.B.; Temme, N.M.
1999-01-01
Uniform asymptotic expansions are given for the Stirling numbers of the first kind for integral arguments and for the second kind as defined for real arguments by Flajolet and Prodinger. The logconcavity of the resulting real valued function of Flajolet and Prodinger is established for a range inclu
Toeplitz Quantization and Asymptotic Expansions: Geometric Construction
Directory of Open Access Journals (Sweden)
Miroslav Englis
2009-02-01
Full Text Available For a real symmetric domain G_R/K_R, with complexification G_C/K_C, we introduce the concept of ''star-restriction'' (a real analogue of the ''star-products'' for quantization of Kähler manifolds and give a geometric construction of the G_R-invariant differential operators yielding its asymptotic expansion.
An asymptotically optimal nonparametric adaptive controller
Institute of Scientific and Technical Information of China (English)
郭雷; 谢亮亮
2000-01-01
For discrete-time nonlinear stochastic systems with unknown nonparametric structure, a kernel estimation-based nonparametric adaptive controller is constructed based on truncated certainty equivalence principle. Global stability and asymptotic optimality of the closed-loop systems are established without resorting to any external excitations.
The conformal approach to asymptotic analysis
Nicolas, Jean-Philippe
2015-01-01
This essay was written as an extended version of a talk given at a conference in Strasbourg on "Riemann, Einstein and geometry", organized by Athanase Papadopoulos in September 2014. Its aim is to present Roger Penrose's approach to asymptotic analysis in general relativity, which is based on conformal geometric techniques, focusing on historical and recent aspects of two specialized topics~: conformal scattering and peeling.
Breaking a magnetic zero locus: asymptotic analysis
Raymond, Nicolas
2014-01-01
25 pages; This paper deals with the spectral analysis of the Laplacian in presence of a magnetic field vanishing along a broken line. Denoting by $\\theta$ the breaking angle, we prove complete asymptotic expansions of all the lowest eigenpairs when $\\theta$ goes to $0$. The investigation deeply uses a coherent states decomposition and a microlocal analysis of the eigenfunctions.
Couplings and Asymptotic Exponentiality of Exit Times
Brassesco, S.; Olivieri, E.; Vares, M. E.
1998-10-01
The goal of this note is simply to call attention to the resulting simplification in the proof of asymptotic exponentiality of exit times in the Freidlin-Wentzell regime (as proved by F. Martinelli et al.) by using the coupling proposed by T. Lindvall and C. Rogers.
Asymptotically periodic solutions of Volterra integral equations
Directory of Open Access Journals (Sweden)
Muhammad N. Islam
2016-03-01
Full Text Available We study the existence of asymptotically periodic solutions of a nonlinear Volterra integral equation. In the process, we obtain the existence of periodic solutions of an associated nonlinear integral equation with infinite delay. Schauder's fixed point theorem is used in the analysis.
On the Asymptotic Distribution of Signal Fraction
Volobouev, Igor
2016-01-01
Condition of the asymptotic normality of the signal fraction estimate by maximum likelihood is derived under the null hypothesis of no signal. Consequences of this condition for determination of signal significance taking in to account the look elsewhere effect are discussed.
Resonance asymptotics in the generalized Winter model
Exner, P; Exner, Pavel; Fraas, Martin
2006-01-01
We consider a modification of the Winter model describing a quantum particle in presence of a spherical barrier given by a fixed generalized point interaction. It is shown that the three classes of such interactions correspond to three different types of asymptotic behaviour of resonances of the model at high energies.
Asymptotic iteration approach to supersymmetric bistable potentials
Institute of Scientific and Technical Information of China (English)
H. Ciftci; O. ozer; P. Roy
2012-01-01
We examine quasi exactly solvable bistable potentials and their supersymmetric partners within the framework of the asymptotic iteration method (AIM).It is shown that the AIM produces excellent approximate spectra and that sometimes it is found to be more useful to use the partner potential for computation. We also discuss the direct application of the AIM to the Fokker-Planck equation.
Multimodal Distributions along the Horizontal Branch
Ferraro, F R; Pecci, F F; Dorman, B; Rood, R T; Ferraro, Francesco R.; Paltrinieri, Barbara; Pecci, Flavio Fusi; Dorman, Ben; Rood, Robert T.
1997-01-01
We report on HST/WFPC2 U,V and far-ultraviolet observations of two Galactic Globular Clusters (GGCs), NGC 6205 = M13 and NGC 6093 = M80. Both of these clusters have horizontal-branch (HB) tails that extend to the helium-burning main sequence, with the hottest stars reaching theoretical effective temperatures above 35,000 K. In both clusters, groups of stars are found to be separated by narrow gaps along the blue HB sequence. These gaps appear at similar locations in the color-magnitude diagrams of the two clusters. While stochastic effects may give rise to variations in the color distribution along the HB, the coincidence of gaps in different clusters effectively rules this out as the primary cause. The comparison among the clusters strongly suggests that there are separate physical processes operating during the earlier red-giant phase of evolution to produce mass loss.
The Gaia-ESO Survey: revisiting the Li-rich giant problem
Casey, A. R.; Ruchti, G.; Masseron, T.; Randich, S.; Gilmore, G.; Lind, K.; Kennedy, G. M.; Koposov, S. E.; Hourihane, A.; Franciosini, E.; Lewis, J. R.; Magrini, L.; Morbidelli, L.; Sacco, G. G.; Worley, C. C.; Feltzing, S.; Jeffries, R. D.; Vallenari, A.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Francois, P.; Korn, A. J.; Lanzafame, A.; Pancino, E.; Recio-Blanco, A.; Smiljanic, R.; Carraro, G.; Costado, M. T.; Damiani, F.; Donati, P.; Frasca, A.; Jofré, P.; Lardo, C.; de Laverny, P.; Monaco, L.; Prisinzano, L.; Sbordone, L.; Sousa, S. G.; Tautvaišienė, G.; Zaggia, S.; Zwitter, T.; Delgado Mena, E.; Chorniy, Y.; Martell, S. L.; Silva Aguirre, V.; Miglio, A.; Chiappini, C.; Montalban, J.; Morel, T.; Valentini, M.
2016-09-01
The discovery of lithium-rich giants contradicts expectations from canonical stellar evolution. Here we report on the serendipitous discovery of 20 Li-rich giants observed during the Gaia-ESO Survey, which includes the first nine Li-rich giant stars known towards the CoRoT fields. Most of our Li-rich giants have near-solar metallicities and stellar parameters consistent with being before the luminosity bump. This is difficult to reconcile with deep mixing models proposed to explain lithium enrichment, because these models can only operate at later evolutionary stages: at or past the luminosity bump. In an effort to shed light on the Li-rich phenomenon, we highlight recent evidence of the tidal destruction of close-in hot Jupiters at the sub-giant phase. We note that when coupled with models of planet accretion, the observed destruction of hot Jupiters actually predicts the existence of Li-rich giant stars, and suggests that Li-rich stars should be found early on the giant branch and occur more frequently with increasing metallicity. A comprehensive review of all known Li-rich giant stars reveals that this scenario is consistent with the data. However, more evolved or metal-poor stars are less likely to host close-in giant planets, implying that their Li-rich origin requires an alternative explanation, likely related to mixing scenarios rather than external phenomena.
Radioiodinated branched carbohydrates
Goodman, Mark M.; Knapp, Jr., Furn F.
1989-01-01
A radioiodinated branched carbohydrate for tissue imaging. Iodine-123 is stabilized in the compound by attaching it to a vinyl functional group that is on the carbohydrate. The compound exhibits good uptake and retention and is promising in the development of radiopharmaceuticals for brain, heart and tumor imaging.
Tracheobronchial Branching Anomalies
Energy Technology Data Exchange (ETDEWEB)
Hong, Min Ji; Kim, Young Tong; Jou, Sung Shick [Soonchunhyang University, Cheonan Hospital, Cheonan (Korea, Republic of); Park, A Young [Soonchunhyang University College of Medicine, Asan (Korea, Republic of)
2010-04-15
There are various congenital anomalies with respect to the number, length, diameter, and location of tracheobronchial branching patterns. The tracheobronchial anomalies are classified into two groups. The first one, anomalies of division, includes tracheal bronchus, cardiac bronchus, tracheal diverticulum, pulmonary isomerism, and minor variations. The second one, dysmorphic lung, includes lung agenesis-hypoplasia complex and lobar agenesis-aplasia complex
Multimode geodesic branching components
Schulz, D.; Voges, E.
1983-01-01
Geodesic branching components are investigated for multimode guided wave optics. Geodesic structures with particular properties, e.g. focussing star couplers, are derived by a synthesis technique based on a theorem of Toraldo di Francia. Experimentally, the geodesic surfaces are printed on acrylic glass and are spin-coated with organic film waveguides.
On the Ergodic Capacity of Dual-Branch Correlated Log-Normal Fading Channels with Applications
Al-Quwaiee, Hessa
2015-05-01
Closed-form expressions of the ergodic capacity of independent or correlated diversity branches over Log-Normal fading channels are not available in the literature. Thus, it is become of an interest to investigate the behavior of such metric at high signal-to-noise (SNR). In this work, we propose simple closed-form asymptotic expressions of the ergodic capacity of dual-branch correlated Log- Normal corresponding to selection combining, and switch-and-stay combining. Furthermore, we capitalize on these new results to find new asymptotic ergodic capacity of correlated dual- branch free-space optical communication system under the impact of pointing error with both heterodyne and intensity modulation/direct detection. © 2015 IEEE.
Asymptotic expansion of the wavelet transform with error term
Pathak, R.S.; Pathak, Ashish
2014-01-01
UsingWong's technique asymptotic expansion for the wavelet transform is derived and thereby asymptotic expansions for Morlet wavelet transform, Mexican Hat wavelet transform and Haar wavelet transform are obtained.
Giant Congenital Melanocytic Nevus
DEFF Research Database (Denmark)
Rasmussen, Bo Sonnich; Henriksen, Trine Foged; Kølle, Stig-Frederik Trojahn
2015-01-01
Giant congenital melanocytic nevi (GCMN) occur in 1:20,000 livebirths and are associated with increased risk of malignant transformation. The treatment of GCMN from 1981 to 2010 in a tertiary referral center was reviewed evaluating the modalities used, cosmetic results, associated complications...
DEFF Research Database (Denmark)
Delgrange, Etienne; Raverot, Gerald; Bex, Marie
2014-01-01
OBJECTIVE: To characterise distinctive clinical features of giant prolactinomas in women. DESIGN: A multicentre, retrospective case series and literature review. METHODS: We collected data from 15 female patients with a pituitary tumour larger than 4 cm and prolactin levels above 1000 μg/l and id......OBJECTIVE: To characterise distinctive clinical features of giant prolactinomas in women. DESIGN: A multicentre, retrospective case series and literature review. METHODS: We collected data from 15 female patients with a pituitary tumour larger than 4 cm and prolactin levels above 1000 μg....../l and identified 19 similar cases from the literature; a gender-based comparison of the frequency and age distribution was obtained from a literature review. RESULTS: The initial PubMed search using the term 'giant prolactinomas' identified 125 patients (13 women) responding to the inclusion criteria. The female...... in only 4/18 patients, and 7/18 patients were resistant to weekly doses ranging from 3.0 to 7.0 mg. CONCLUSION: Giant prolactinomas are rare in women, often resistant to dopamine agonists and seem to be distributed in two age groups, with a larger late-onset peak....
[Giant retroperitoneal liposarcoma].
Mezzour, Mohamed Hicham; El Messaoudi, Yasser Arafat; Fekak, Hamid; Rabii, Redouane; Marnissi, Farida; Karkouri, Mehdi; Salam, Siham; Iraki, Moulay Ahmed; Joual, Abdenbi; Meziane, Fathi
2006-02-01
The authors report a case of giant retroperitoneal liposarcoma. The diagnosis was suspected after scanography and magnetic resonance imaging and confirmed by the histological analysis of the extracted piece after surgical treatment. Postoperative evolution was favourable after one year without recurrence or distant metastasis. The authors discuss the pathologic and therapeutic aspects and the prognosis of retroperitoneal liposarcoma.
Directory of Open Access Journals (Sweden)
Vipul Yagnik
2011-07-01
Full Text Available Fibroadenomas are benign solid tumor associated with aberration of normal lobular development. Juvenile giant fibroadenoma is usually single and >5 cm in size /or >500 gms in weight. Important differential diagnoses are: phyllodes tumor and juvenile gigantomastia. Simple excision is the treatment of choice.
The mass-ratio and eccentricity distributions of barium and S stars, and red giants in open clusters
Van der Swaelmen, M.; Boffin, H. M. J.; Jorissen, A.; Van Eck, S.
2017-01-01
the lowest metallicity in the sample (i.e. star 173 in NGC 2420, with [Fe/H] = -0.26), whereas the barium stars with mild s-process abundance anomalies (from 0.25 to 0.6 dex) are found in the clusters with slightly subsolar metallicities. Our finding confirms the classical prediction that the s-process nucleosynthesis is more efficient at low metallicities, since the s-process overabundance is not clearly correlated with the cluster turn-off (TO) mass; such a correlation would instead hint at the importance of the dilution factor. We also find a mild barium star in NGC 2335, a cluster with a large TO mass of 4.3 M⊙, which implies that asymptotic giant branch stars that massive still operate the s-process and the third dredge-up. Based on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, and on observations made with the HARPS spectrograph installed on the 3.6 m telescope at the European Southern Observatory.
Locally Asymptotic-norming Property and Kadec Property
Institute of Scientific and Technical Information of China (English)
王建华
2002-01-01
In this paper we study the three new asymptotic-norming properties which are called locally asymptotic-norming property κ, κ=Ⅰ,Ⅱ,Ⅲ,and discuss the relationship between the locally asymptotic-norming property and the Kadec Property.
Critical branching neural networks.
Kello, Christopher T
2013-01-01
It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical branching and, in doing so, simulates observed scaling laws as pervasive to neural and behavioral activity. These scaling laws are related to neural and cognitive functions, in that critical branching is shown to yield spiking activity with maximal memory and encoding capacities when analyzed using reservoir computing techniques. The model is also shown to account for findings of pervasive 1/f scaling in speech and cued response behaviors that are difficult to explain by isolable causes. Issues and questions raised by the model and its results are discussed from the perspectives of physics, neuroscience, computer and information sciences, and psychological and cognitive sciences.
Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Garrido, L; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G
1996-01-01
A sample of 62249 \\tau-pair events is selected from data taken with the ALEPH detector in 1991, 1992 and 1993. The measurement of the branching fractions for \\tau decays into electrons and muons is presented with emphasis on the study of systematic effects from selection, particle identification and decay classification. Combined with the most recent ALEPH determination of the \\tau lifetime, these results provide a relative measurement of the leptonic couplings in the weak charged current for transverse W bosons.
Electrochemical Energy Storage Branch
1985-01-01
The activities of the Electrochemical Energy Storage Branch are highlighted, including the Technology Base Research and the Exploratory Technology Development and Testing projects within the Electrochemical Energy Storage Program for the 1984 fiscal year. General Headquarters activities are presented first; and then, a summary of the Director Controlled Milestones, followed by other major accomplishments. A listing of the workshops and seminars held during the year is also included.
Generalized Markov branching models
Li, Junping
2005-01-01
In this thesis, we first considered a modified Markov branching process incorporating both state-independent immigration and resurrection. After establishing the criteria for regularity and uniqueness, explicit expressions for the extinction probability and mean extinction time are presented. The criteria for recurrence and ergodicity are also established. In addition, an explicit expression for the equilibrium distribution is presented.\\ud \\ud We then moved on to investigate the basic proper...
Generalized Markov branching models
Li, Junping
2005-01-01
In this thesis, we first considered a modified Markov branching process incorporating both state-independent immigration and resurrection. After establishing the criteria for regularity and uniqueness, explicit expressions for the extinction probability and mean extinction time are presented. The criteria for recurrence and ergodicity are also established. In addition, an explicit expression for the equilibrium distribution is presented. We then moved on to investigate the basic proper...
Asymptotic dynamics of three-dimensional gravity
Donnay, Laura
2016-01-01
These are the lectures notes of the course given at the Eleventh Modave Summer School in Mathematical Physics, 2015, aimed at PhD candidates and junior researchers in theoretical physics. We review in details the result of Coussaert-Henneaux-van Driel showing that the asymptotic dynamics of $(2+1)$- dimensional gravity with negative cosmological constant is described at the classical level by Liouville theory. Boundary conditions implement the asymptotic reduction in two steps: the first set reduces the $SL(2,\\mathbb R)\\times SL(2,\\mathbb R)$ Chern-Simons action, equivalent to the Einstein action, to a non-chiral $SL(2,\\mathbb R)$ Wess-Zumino-Witten model, while the second set imposes constraints on the WZW currents that reduce further the action to Liouville theory. We discuss the issues of considering the latter as an effective description of the dual conformal field theory describing AdS$_3$ gravity beyond the semi-classical regime.
On asymptotic flatness and Lorentz charges
Energy Technology Data Exchange (ETDEWEB)
Compere, Geoffrey [KdV Institute for Mathematics, Universiteit van Amsterdam (Netherlands); Dehouck, Francois; Virmani, Amitabh, E-mail: gcompere@uva.nl, E-mail: fdehouck@ulb.ac.be, E-mail: avirmani@ulb.ac.be [Physique Theorique et Mathematique, Universite Libre de Bruxelles, Bruxelles (Belgium)
2011-07-21
In this paper we establish two results concerning four-dimensional asymptotically flat spacetimes at spatial infinity. First, we show that the six conserved Lorentz charges are encoded in two unique, distinct, but mutually dual symmetric divergence-free tensors that we construct from the equations of motion. Second, we show that the integrability of Einstein's equations in the asymptotic expansion is sufficient to establish the equivalence between counter-term charges defined from the variational principle and charges defined by Ashtekar and Hansen. These results clarify earlier constructions of conserved charges in the hyperboloid representation of spatial infinity. In showing this, the parity condition on the mass aspect is not needed. Along the way in establishing these results, we prove two lemmas on tensor fields on three-dimensional de Sitter spacetime stated by Ashtekar-Hansen and Beig-Schmidt and state and prove three additional lemmas.
Asymptotically anti-de Sitter Proca Stars
Duarte, Miguel
2016-01-01
We show that complex, massive spin-1 fields minimally coupled to Einstein's gravity with a negative cosmological constant, admit asymptotically anti-de Sitter self-gravitating solutions. Focusing on 4-dimensional spacetimes, we start by obtaining analytical solutions in the test-field limit, where the Proca field equations can be solved in a fixed anti-de Sitter background, and then find fully non-linear solutions numerically. These solutions are a natural extension of the recently found asymptotically flat Proca stars and share similar properties with scalar boson stars. In particular, we show that they are stable against spherically symmetric linear perturbations for a range of fundamental frequencies limited by their point of maximum mass. We finish with an overview of the behavior of Proca stars in $5$ dimensions.
The peculiar Horizontal Branch of NGC 2808
Dalessandro, E; Ferraro, F R; Cassisi, S; Lanzoni, B; Rood, R T; Pecci, F Fusi; Sabbi, E
2010-01-01
We present an accurate analysis of the peculiar Horizontal Branch (HB) of the massive Galactic globular cluster NGC 2808, based on high-resolution far-UV and optical images of the central region of the cluster obtained with HST. We confirm the multimodal distribution of stars along the HB: 4 sub-populations separated by gaps are distinguishable. The detailed comparison with suitable theoretical models showed that (i) it is not possible to reproduce the luminosity of the entire HB with a single helium abundance, while an appropriate modeling is possible for three HB groups by assuming different helium abundances in the range 0.24 < Y < 0.4 that are consistent with the multiple populations observed in the Main Sequence; (ii) canonical HB models are not able to properly match the observational properties of the stars populating the hottest end of the observed HB distribution, the so called "blue-hook region". These objects are probably "hot-flashers" , stars that peel off the red giant branch before reachi...
Holographic fermions in asymptotically scaling geometries with hyperscaling violation
Fan, Zhongying
2013-01-01
We investigate holographic fermions in general asymptotically scaling geometries with hyperscaling violation exponent $\\theta$, which is a natural generalization of fermions in Lifshitz spacetime. We prove that the retarded Green functions in this background satisfy the ARPES (angle-resolved photoemission spectroscopy) sum rules by introducing a dynamical source on a UV brane for zero density fermionic systems. The big difference from the Lifshitz case is that the mass of probe fermions decoupled from the UV theory and thus has no longer been restricted by unitarity bound. We also study finite density fermions at finite temperature, with dynamical exponent $z=2$. We find that the dispersion relation is linear but the logarithm of the spectral function is not linearly related to the logarithm of $k_\\bot =k-k_F$, independent of charge $q$ and $\\theta$. Furthermore, we show that with the increasing of charge, new branches of Fermi surfaces emerge and tend to gathering together to form a shell-like structure when...
Asymptotic Behaviour Near a Nonlinear Sink
Calder, Matt S
2010-01-01
In this paper, we will explore an iterative procedure to determine the detailed asymptotic behaviour of solutions of a certain class of nonlinear vector differential equations which approach a nonlinear sink as time tends to infinity. This procedure is indifferent to resonance in the eigenvalues. Moreover, we will address the writing of one component in terms of the other in the case of a planar system. Examples will be given, notably the Michaelis-Menten mechanism of enzyme kinetics.
Theorems for Asymptotic Safety of Gauge Theories
Bond, Andrew D
2016-01-01
We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasized. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated.
Asymptotics of high order noise corrections
Sondergaard, N; Pálla, G; Voros, A; Sondergaard, Niels; Vattay, Gabor; Palla, Gergely; Voros, Andre
1999-01-01
We consider an evolution operator for a discrete Langevin equation with a strongly hyperbolic classical dynamics and noise with finite moments. Using a perturbative expansion of the evolution operator we calculate high order corrections to its trace in the case of a quartic map and Gaussian noise. The leading contributions come from the period one orbits of the map. The asymptotic behaviour is investigated and is found to be independent up to a multiplicative constant of the distribution of noise.
Asymptotic Existence of Nearly Kirkman Systems
Institute of Scientific and Technical Information of China (English)
沈灏; 储文松
1994-01-01
It is proved in this paper that,for any given positive integer k≥2,there exists a constant v0=v0(k) such that for v≥v0,the necessary condition v=0 (mod k(k-)) for the existence of a nearly Kirkman system NKS (2,k,v) is also sufficient.Thus we have completely determined the asymptotic existence of NKS.
Asymptotic analysis of the Forward Search
DEFF Research Database (Denmark)
Johansen, Søren; Nielsen, Bent
The Forward Search is an iterative algorithm concerned with detection of outliers and other unsuspected structures in data. This approach has been suggested, analysed and applied for regression models in the monograph Atkinson and Riani (2000). An asymptotic analysis of the Forward Search is made....... The argument involves theory for a new class of weighted and marked empirical processes, quantile process theory, and a fixed point argument to describe the iterative element of the procedure....
Asymptotic Enumeration of RNA Structures with Pseudoknots
Jin, Emma Y
2007-01-01
In this paper we present the asymptotic enumeration of RNA structures with pseudoknots. We develop a general framework for the computation of exponential growth rate and the sub exponential factors for $k$-noncrossing RNA structures. Our results are based on the generating function for the number of $k$-noncrossing RNA pseudoknot structures, ${\\sf S}_k(n)$, derived in \\cite{Reidys:07pseu}, where $k-1$ denotes the maximal size of sets of mutually intersecting bonds. We prove a functional equation for the generating function $\\sum_{n\\ge 0}{\\sf S}_k(n)z^n$ and obtain for $k=2$ and $k=3$ the analytic continuation and singular expansions, respectively. It is implicit in our results that for arbitrary $k$ singular expansions exist and via transfer theorems of analytic combinatorics we obtain asymptotic expression for the coefficients. We explicitly derive the asymptotic expressions for 2- and 3-noncrossing RNA structures. Our main result is the derivation of the formula ${\\sf S}_3(n) \\sim \\frac{10.4724\\cdot 4!}{n(n...
Asymptotically flat space-times: an enigma
Newman, Ezra T.
2016-07-01
We begin by emphasizing that we are dealing with standard Einstein or Einstein-Maxwell theory—absolutely no new physics has been inserted. The fresh item is that the well-known asymptotically flat solutions of the Einstein-Maxwell theory are transformed to a new coordinate system with surprising and (seemingly) inexplicable results. We begin with the standard description of (Null) asymptotically flat space-times described in conventional Bondi-coordinates. After transforming the variables (mainly the asymptotic Weyl tensor components) to a very special set of Newman-Unti (NU) coordinates, we find a series of relations totally mimicking standard Newtonian classical mechanics and Maxwell theory. The surprising and troubling aspect of these relations is that the associated motion and radiation does not take place in physical space-time. Instead these relations takes place in an unusual inherited complex four-dimensional manifold referred to as H-space that has no immediate relationship with space-time. In fact these relations appear in two such spaces, H-space and its dual space \\bar{H}.
Bladh, S; Aringer, B; Eriksson, K
2015-01-01
Stellar winds observed in asymptotic giant branch (AGB) stars are usually attributed to a combination of stellar pulsations and radiation pressure on dust. Shock waves triggered by pulsations propagate through the atmosphere, compressing the gas and lifting it to cooler regions, which create favourable conditions for grain growth. If sufficient radiative acceleration is exerted on the newly formed grains through absorption or scattering of stellar photons, an outflow can be triggered. Strong candidates for wind-driving dust species in M-type AGB stars are magnesium silicates (Mg$_2$SiO$_4$ and MgSiO$_3$). Such grains can form close to the stellar surface, they consist of abundant materials and, if they grow to sizes comparable to the wavelength of the stellar flux maximum, they experience strong acceleration by photon scattering. We use a frequency-dependent radiation-hydrodynamics code with a detailed description for the growth of Mg$_2$SiO$_4$ grains to calculate the first extensive set of time-dependent wi...
asymptoticMK: A Web-Based Tool for the Asymptotic McDonald-Kreitman Test.
Haller, Benjamin C; Messer, Philipp W
2017-03-24
The McDonald-Kreitman (MK) test is a widely used method for quantifying the role of positive selection in molecular evolution. One key shortcoming of this test lies in its sensitivity to the presence of slightly deleterious mutations, which can severely bias its estimates. An asymptotic version of the MK test was recently introduced that addresses this problem by evaluating polymorphism levels for different mutation frequencies separately, and then extrapolating a function fitted to that data. Here we present asymptoticMK, a web-based implementation of this asymptotic McDonald-Kreitman test. Our web service provides a simple R-based interface into which the user can upload the required data (polymorphism and divergence data for the genomic test region and a neutrally evolving reference region). The web service then analyzes the data and provides plots of the test results. This service is free to use, open-source, and available at http://benhaller.com/messerlab/asymptoticMK.html. We provide results from simulations to illustrate the performance and robustness of the asymptoticMK test under a wide range of model parameters.
Hoffman, Gary S
2016-11-01
This issue provides a clinical overview of giant cell arteritis, focusing on diagnosis, treatment, and practice improvement. The content of In the Clinic is drawn from the clinical information and education resources of the American College of Physicians (ACP), including MKSAP (Medical Knowledge and Self-Assessment Program). Annals of Internal Medicine editors develop In the Clinic in collaboration with the ACP's Medical Education and Publishing divisions and with the assistance of additional science writers and physician writers.
Directory of Open Access Journals (Sweden)
Schenk C.
1992-02-01
Full Text Available We are in the second year of fieldwork surveying for Giant Otters in the southeastern rainforest of Peru, in three areas with differing levels of legal protection. While there is some illegal hunting still happening outside the protected areas, the main threat to the otters is badly-conducted tourism. Well-organised tourism can be a promising argument for establishing protected areas like national parks.
Stability of earthquake clustering models: criticality and branching ratios.
Zhuang, Jiancang; Werner, Maximilian J; Harte, David S
2013-12-01
We study the stability conditions of a class of branching processes prominent in the analysis and modeling of seismicity. This class includes the epidemic-type aftershock sequence (ETAS) model as a special case, but more generally comprises models in which the magnitude distribution of direct offspring depends on the magnitude of the progenitor, such as the branching aftershock sequence (BASS) model and another recently proposed branching model based on a dynamic scaling hypothesis. These stability conditions are closely related to the concepts of the criticality parameter and the branching ratio. The criticality parameter summarizes the asymptotic behavior of the population after sufficiently many generations, determined by the maximum eigenvalue of the transition equations. The branching ratio is defined by the proportion of triggered events in all the events. Based on the results for the generalized case, we show that the branching ratio of the ETAS model is identical to its criticality parameter because its magnitude density is separable from the full intensity. More generally, however, these two values differ and thus place separate conditions on model stability. As an illustration of the difference and of the importance of the stability conditions, we employ a version of the BASS model, reformulated to ensure the possibility of stationarity. In addition, we analyze the magnitude distributions of successive generations of the BASS model via analytical and numerical methods, and find that the compound density differs substantially from a Gutenberg-Richter distribution, unless the process is essentially subcritical (branching ratio less than 1) or the magnitude dependence between the parent event and the direct offspring is weak.
Stability of earthquake clustering models: Criticality and branching ratios
Zhuang, Jiancang; Werner, Maximilian J.; Harte, David S.
2013-12-01
We study the stability conditions of a class of branching processes prominent in the analysis and modeling of seismicity. This class includes the epidemic-type aftershock sequence (ETAS) model as a special case, but more generally comprises models in which the magnitude distribution of direct offspring depends on the magnitude of the progenitor, such as the branching aftershock sequence (BASS) model and another recently proposed branching model based on a dynamic scaling hypothesis. These stability conditions are closely related to the concepts of the criticality parameter and the branching ratio. The criticality parameter summarizes the asymptotic behavior of the population after sufficiently many generations, determined by the maximum eigenvalue of the transition equations. The branching ratio is defined by the proportion of triggered events in all the events. Based on the results for the generalized case, we show that the branching ratio of the ETAS model is identical to its criticality parameter because its magnitude density is separable from the full intensity. More generally, however, these two values differ and thus place separate conditions on model stability. As an illustration of the difference and of the importance of the stability conditions, we employ a version of the BASS model, reformulated to ensure the possibility of stationarity. In addition, we analyze the magnitude distributions of successive generations of the BASS model via analytical and numerical methods, and find that the compound density differs substantially from a Gutenberg-Richter distribution, unless the process is essentially subcritical (branching ratio less than 1) or the magnitude dependence between the parent event and the direct offspring is weak.
Lozano, Yolanda; Prinsloo, Andrea
2013-01-01
In this article we extend the construction of giant gravitons from holomorphic surfaces [arXiv:hep-th/0010206] to the ABJM correspondence. We construct a new class of 1/6-BPS M5-branes wrapping 5-manifolds in S^7/Z_k and supported by a large angular momentum in the orbifold space. These orbifold giant gravitons undergo a supersymmetry enhancement to 1/3-BPS and 1/2-BPS configurations in special cases. The compactification of M-theory on AdS_4 x S^7/Z_k to type IIA superstring theory on AdS_4 x CP^3 then gives rise to another new class of 1/6-BPS D4 and NS5-branes wrapping 4 and 5-manifolds in CP^3. The D4-branes carry a combination of D0-brane charge and angular momentum in the complex projective space, while the NS5-branes are supported only by D0-brane charge. Finally, we present a detailed analysis of a one-parameter family of 1/2-BPS M5-brane orbifold giant gravitons, and their D4 and NS5-brane CP^3 descendants.
Some distance bounds of branching processes and their diffusion limits
Kammerer, Niels B
2010-01-01
We compute exact values respectively bounds of "distances" - in the sense of (transforms of) power divergences and relative entropy - between two discrete-time Galton-Watson branching processes with immigration GWI for which the offspring as well as the immigration is arbitrarily Poisson-distributed (leading to arbitrary type of criticality). Implications for asymptotic distinguishability behaviour in terms of contiguity and entire separation of the involved GWI are given, too. Furthermore, we determine the corresponding limit quantities for the context in which the two GWI converge to Feller-type branching diffusion processes, as the time-lags between observations tend to zero. Some applications to (static random environment like) Bayesian decision making and Neyman-Pearson testing are presented as well.
Thermodynamic Branch in the Chemical System Response to External Impact
Zilbergleyt, B
2012-01-01
The paper gives an account of a detailed investigation of the thermodynamic branch as a path of the chemical system deviation from its isolated thermodynamic equilibrium under an external impact. For a combination of direct and reverse reactions in the same chemical system, full thermodynamic branch is presented by an S-shaped curve, whose ends asymptotically achieve appropriate initial states, which, in turn, are logistic ends of the opposite reactions. The slope tangents of the steepest parts of the curves, the areas of the maximum rate of the shift growth vs. the external thermodynamic force, occurred to be directly proportional to the force and, simultaneously, linearly proportional to the thermodynamic equivalent of chemical reaction, which is the ratio between the amount in moles of any reaction participant, transformed in an isolated system, along the reaction way from its initial state to thermodynamic equilibrium, to its stoichiometric coefficient. The found linearity is valid for arbitrary combinati...
Combustion Branch Website Development
Bishop, Eric
2004-01-01
The NASA combustion branch is a leader in developing and applying combustion science to focused aerospace propulsion systems concepts. It is widely recognized for unique facilities, analytical tools, and personnel. In order to better communicate the outstanding research being done in this Branch to the public and other research organization, a more substantial website was desired. The objective of this project was to build an up-to-date site that reflects current research in a usable and attractive manner. In order to accomplish this, information was requested from all researchers in the Combustion branch, on their professional skills and on the current projects. This information was used to fill in the Personnel and Research sections of the website. A digital camera was used to photograph all personnel and these photographs were included in the personnel section as well. The design of the site was implemented using the latest web standards: xhtml and external css stylesheets. This implementation conforms to the guidelines recommended by the w3c. It also helps to ensure that the web site is accessible by disabled users, and complies with Section 508 Federal legislation (which mandates that all Federal websites be accessible). Graphics for the new site were generated using the gimp (www.gimp.org) an open-source graphics program similar to Adobe Photoshop. Also, all graphics on the site were of a reasonable size (less than 20k, most less than 2k) so that the page would load quickly. Technologies such as Macromedia Flash and Javascript were avoided, as these only function on some clients which have the proper software installed or enabled. The website was tested on different platforms with many different browsers to ensure there were no compatibility issues. The website was tested on windows with MS IE 6, MSIE 5 , Netscape 7, Mozilla and Opera. On a Mac, the site was tested with MS IE 5 , Netscape 7 and Safari.
Bartsch, Christian; Kochler, Thomas; Müller, Sebastian; Popov, Serguei
2011-01-01
We consider a branching random walk on $\\Z$, where the particles behave differently in visited and unvisited sites. Informally, each site on the positive half-line contains initially a cookie. On the first visit of a site its cookie is removed and particles at positions with a cookie reproduce and move differently from particles on sites without cookies. Therefore, the movement and the reproduction of the particles depend on the previous behaviour of the population of particles. We study the question if the process is recurrent or transient, i.e., whether infinitely many particles visit the origin or not.
Branch formation during organ development
Gjorevski, Nikolce; Nelson, Celeste M.
2010-01-01
Invertebrates and vertebrates use branching morphogenesis to build epithelial trees to maximize the surface area of organs within a given volume. Several molecular regulators of branching have recently been discovered, a number of which are conserved across different organs and species. Signals that control branching at the cellular and tissue levels are also starting to emerge, and are rapidly unveiling the physical nature of branch development. Here we discuss the molecular, cellular and physical processes that govern branch formation and highlight the major outstanding questions in the field. PMID:20890968
Directory of Open Access Journals (Sweden)
Xionghua Wu
2012-01-01
Full Text Available Let {}⊂(0,1 be such that →1 as →∞, let and be two positive numbers such that +=1, and let be a contraction. If be a continuous asymptotically pseudocontractive self-mapping of a nonempty bounded closed convex subset of a real reflexive Banach space with a uniformly Gateaux differentiable norm, under suitable conditions on the sequence {}, we show the existence of a sequence {} satisfying the relation =(1−/(+(/ and prove that {} converges strongly to the fixed point of , which solves some variational inequality provided is uniformly asymptotically regular. As an application, if be an asymptotically nonexpansive self-mapping of a nonempty bounded closed convex subset of a real Banach space with a uniformly Gateaux differentiable norm and which possesses uniform normal structure, we prove that the iterative process defined by 0∈,+1=(1−/(+(/+(/ converges strongly to the fixed point of .
Savino, Alessandro; Tolstoy, Eline
2015-01-01
We present a detailed analysis of the Horizontal Branch of the Carina Dwarf Spheroidal Galaxy by means of synthetic modelling techniques, taking consistently into account the star formation history and metallicity evolution as determined from main sequence and red giant branch spectroscopic observations. We found that a range of integrated red giant branch mass loss values of 0.1-0.14 M, increasing with metallicity, is able to reproduce the colour extension of the old Horizontal Branch. However, leaving the mass loss as the only free parameter is not enough to match the detailed morphology of Carina Horizontal Branch. We explored the role played by the star formation history on the discrepancies between synthetic and observed Horizontal Branches. We derived a toy bursty star formation history that reproduces the horizontal branch star counts, and also matches qualitatively the red giant and the turn off regions. This star formation history is made of a subset of age and [M/H] components of the star formation ...
Structure and decay properties of spin-dipole giant resonances within a semimicroscopical approach
Moukhai, EA; Rodin, VA; Urin, MH
1999-01-01
A semimicroscopical approach is applied to calculate: (i) strength functions for the charge-exchange spin-dipole giant resonances in the Pb-208 parent nucleus; (ii) partial and total branching ratios for the direct proton decay of the resonance in Bi-208. The approach is based on continuum-RPA calcu
Asymptotic sampling formulae and particle system representations for $\\Lambda$-coalescents
Berestycki, Julien; Limic, Vlada
2011-01-01
Consider an evolving population, with genealogy given by a Lambda-coalescent that comes down from infinity. We provide rather explicit sampling formulae under this model, for large samples. More precisely, we describe the asymptotic behavior of the site and allele frequency spectrum and the number of segregating sites, as the sample size tends to infinity. A regular variation condition on the driving measure Lambda is assumed for some of the almost sure asymptotic results, but most of out results are valid for a general Lambda-coalescent that comes down from infinity. The proofs rely in part on the recent analysis of the speed of coming down from infinity for Lambda-coalescents, done by the authors in a previous work. state branching processes, and The second goal of this paper is to investigate a remarkable connection between Lambda-coalescents and genealogies of continuous-state branching processes. Our particle representation and the resulting coupling construction offer new perspective on the speed of com...
Asymptotic problems for stochastic partial differential equations
Salins, Michael
Stochastic partial differential equations (SPDEs) can be used to model systems in a wide variety of fields including physics, chemistry, and engineering. The main SPDEs of interest in this dissertation are the semilinear stochastic wave equations which model the movement of a material with constant mass density that is exposed to both determinstic and random forcing. Cerrai and Freidlin have shown that on fixed time intervals, as the mass density of the material approaches zero, the solutions of the stochastic wave equation converge uniformly to the solutions of a stochastic heat equation, in probability. This is called the Smoluchowski-Kramers approximation. In Chapter 2, we investigate some of the multi-scale behaviors that these wave equations exhibit. In particular, we show that the Freidlin-Wentzell exit place and exit time asymptotics for the stochastic wave equation in the small noise regime can be approximated by the exit place and exit time asymptotics for the stochastic heat equation. We prove that the exit time and exit place asymptotics are characterized by quantities called quasipotentials and we prove that the quasipotentials converge. We then investigate the special case where the equation has a gradient structure and show that we can explicitly solve for the quasipotentials, and that the quasipotentials for the heat equation and wave equation are equal. In Chapter 3, we study the Smoluchowski-Kramers approximation in the case where the material is electrically charged and exposed to a magnetic field. Interestingly, if the system is frictionless, then the Smoluchowski-Kramers approximation does not hold. We prove that the Smoluchowski-Kramers approximation is valid for systems exposed to both a magnetic field and friction. Notably, we prove that the solutions to the second-order equations converge to the solutions of the first-order equation in an Lp sense. This strengthens previous results where convergence was proved in probability.
Taming perturbative divergences in asymptotically safe gravity
Energy Technology Data Exchange (ETDEWEB)
Benedetti, Dario, E-mail: dbenedetti@perimeterinstitute.c [Perimeter Institute for Theoretical Physics, 31 Caroline St. N, N2L 2Y5, Waterloo ON (Canada); Machado, Pedro F., E-mail: p.f.machado@uu.n [Institute for Theoretical Physics, Utrecht University, 3508 TD Utrecht (Netherlands); Saueressig, Frank, E-mail: Frank.Saueressig@cea.f [Institut de Physique Theorique, CEA Saclay, F-91191 Gif-Sur-Yvette Cedex (France); CNRS URA 2306, F-91191 Gif-Sur-Yvette Cedex (France)
2010-01-01
We use functional renormalization group methods to study gravity minimally coupled to a free scalar field. This setup provides the prototype of a gravitational theory which is perturbatively non-renormalizable at one-loop level, but may possess a non-trivial renormalization group fixed point controlling its UV behavior. We show that such a fixed point indeed exists within the truncations considered, lending strong support to the conjectured asymptotic safety of the theory. In particular, we demonstrate that the counterterms responsible for its perturbative non-renormalizability have no qualitative effect on this feature.
Homogenization and asymptotics for small transaction costs
Soner, H Mete
2012-01-01
We consider the classical Merton problem of lifetime consumption-portfolio optimization problem with small proportional transaction costs. The first order term in the asymptotic expansion is explicitly calculated through a singular ergodic control problem which can be solved in closed form in the one-dimensional case. Unlike the existing literature, we consider a general utility function and general dynamics for the underlying assets. Our arguments are based on ideas from the homogenization theory and use the convergence tools from the theory of viscosity solutions. The multidimensional case is studied in our accompanying paper using the same approach.
Lectures on the asymptotic theory of ideals
Rees, D
1988-01-01
In this book Professor Rees introduces and proves some of the main results of the asymptotic theory of ideals. The author's aim is to prove his Valuation Theorem, Strong Valuation Theorem, and Degree Formula, and to develop their consequences. The last part of the book is devoted to mixed multiplicities. Here the author develops his theory of general elements of ideals and gives a proof of a generalised degree formula. The reader is assumed to be familiar with basic commutative algebra, as covered in the standard texts, but the presentation is suitable for advanced graduate students. The work
BIHARMONIC EQUATIONS WITH ASYMPTOTICALLY LINEAR NONLINEARITIES
Institute of Scientific and Technical Information of China (English)
Liu Yue; Wang Zhengping
2007-01-01
This article considers the equation △2u = f(x, u)with boundary conditions either u|(a)Ω = (a)u/(a)n|(a)Ω = 0 or u|(a)Ω = △u|(a)Ω = 0, where f(x,t) is asymptotically linear with respect to t at infinity, and Ω is a smooth bounded domain in RN, N ＞ 4. By a variant version of Mountain Pass Theorem, it is proved that the above problems have a nontrivial solution under suitable assumptions of f(x, t).
The ADM mass of asymptotically flat hypersurfaces
de Lima, Levi Lopes
2011-01-01
We provide integral formulae for the ADM mass of asymptotically flat hypersurfaces in Riemannian manifolds with a certain warped product structure in a neighborhood of infinity, thus extending Lam's recent results on Euclidean graphs to this broader context. As applications we exhibit, in any dimension, new classes of manifolds for which versions of the Positive Mass and Riemannian Penrose inequalities hold and discuss a notion of quasi-local mass in this setting. The proof explores a novel connection between the co-vector defining the ADM mass of a hypersurface as above and the Newton tensor associated to its shape operator, which takes place in the presence of an ambient Killing field.
Asymptotics for a generalization of Hermite polynomials
Alfaro, M; Peña, A; Rezola, M L
2009-01-01
We consider a generalization of the classical Hermite polynomials by the addition of terms involving derivatives in the inner product. This type of generalization has been studied in the literature from the point of view of the algebraic properties. Thus, our aim is to study the asymptotics of this sequence of nonstandard orthogonal polynomials. In fact, we obtain Mehler--Heine type formulas for these polynomials and, as a consequence, we prove that there exists an acceleration of the convergence of the smallest positive zeros of these generalized Hermite polynomials towards the origin.
Asymptotic curved interface models in piezoelectric composites
Serpilli, Michele
2016-10-01
We study the electromechanical behavior of a thin interphase, constituted by a piezoelectric anisotropic shell-like thin layer, embedded between two generic three-dimensional piezoelectric bodies by means of the asymptotic analysis in a general curvilinear framework. After defining a small real dimensionless parameter ε, which will tend to zero, we characterize two different limit models and their associated limit problems, the so-called weak and strong piezoelectric curved interface models, respectively. Moreover, we identify the non-classical electromechanical transmission conditions at the interface between the two three-dimensional bodies.
Vacuum Potential and its Asymptotic Variation
Dahal, Pravin
2016-09-01
The possible form of existence of dark energy is explained and the relation for its asymptotic variation is given. This has two huge implications in the understanding of the Universe. The first is that the theory predicts that the Universe should be in negative pressure state in the very early period as required for inflation and spontaneous symmetry breaking. The second is that the theory gives the reasonable answer to the astrophysical evidence of dark energy dominating the Universe. The author is presenting his research in the nature of dark energy. Some of the work is submitted for publication in the journal and is currently under review.
Singular asymptotic expansions in nonlinear rotordynamics
Day, W. B.
1985-01-01
During hot firing ground testing of the Space shuttle's Main Engine, vibrations of the liquid oxygen pump occur at frequencies which cannot be explained by the linear Jeffcott model of the rotor. The model becomes nonlinear after accounting for deadband, side forces, and rubbing. Two phenomena present in the numerical solutions of the differential equations are unexpected periodic orbits of the rotor and tracking of the nonlinear frequency. A multiple scale asymptotic expansion of the differential equations is used to give an analytic explanation of these characteristics.
RE-INFLATED WARM JUPITERS AROUND RED GIANTS
Energy Technology Data Exchange (ETDEWEB)
Lopez, Eric D. [Institute for Astronomy, Royal Observatory Edinburgh, University of Edinburgh, Blackford Hill, Edinburgh (United Kingdom); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)
2016-02-10
Since the discovery of the first transiting hot Jupiters, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of hot Jupiter radius anomalies scales strongly with a planet's level of irradiation and numerous models like tidal heating, ohmic dissipation, and thermal tides have since been developed to help explain these inflated radii. In general, however, these models can be grouped into two broad categories: models that directly inflate planetary radii by depositing a fraction of the incident irradiation into the interior and models that simply slow a planet's radiative cooling, allowing it to retain more heat from formation and thereby delay contraction. Here we present a new test to distinguish between these two classes of models. Gas giants orbiting at moderate orbital periods around post-main-sequence stars will experience enormous increases to their irradiation as their host stars move up the sub-giant and red-giant branches. If hot Jupiter inflation works by depositing irradiation into the planet's deep interiors then planetary radii should increase in response to the increased irradiation. This means that otherwise non-inflated gas giants at moderate orbital periods of >10 days can re-inflate as their host stars evolve. Here we explore the circumstances that can lead to the creation of these “re-inflated” gas giants and examine how the existence or absence of such planets can be used to place unique constraints on the physics of the hot Jupiter inflation mechanism. Finally, we explore the prospects for detecting this potentially important undiscovered population of planets.
Path-valued branching processes and nonlocal branching superprocesses
Li, Zenghu
2012-01-01
A family of continuous-state branching processes with immigration are constructed as the solution flow of a stochastic equation system driven by time-space noises. The family can be regarded as an inhomogeneous increasing path-valued branching process with immigration. Two nonlocal branching immigration superprocesses can be defined from the flow. We identify explicitly the branching and immigration mechanisms of those processes. The results provide new perspectives into the tree-valued Markov processes of Aldous and Pitman [Ann. Inst. H. Poincare Probab. Statist. 34 (1998), 637--686] and Abraham and Delmas [Ann. Probab. To appear].
Computer simulations of melts of randomly branching polymers
Rosa, Angelo; Everaers, Ralf
2016-10-01
Randomly branching polymers with annealed connectivity are model systems for ring polymers and chromosomes. In this context, the branched structure represents transient folding induced by topological constraints. Here we present computer simulations of melts of annealed randomly branching polymers of 3 ≤ N ≤ 1800 segments in d = 2 and d = 3 dimensions. In all cases, we perform a detailed analysis of the observed tree connectivities and spatial conformations. Our results are in excellent agreement with an asymptotic scaling of the average tree size of R ˜ N1/d, suggesting that the trees behave as compact, territorial fractals. The observed swelling relative to the size of ideal trees, R ˜ N1/4, demonstrates that excluded volume interactions are only partially screened in melts of annealed trees. Overall, our results are in good qualitative agreement with the predictions of Flory theory. In particular, we find that the trees swell by the combination of modified branching and path stretching. However, the former effect is subdominant and difficult to detect in d = 3 dimensions.
ASYMPTOTIC BEHAVIOR FOR COMMUTATIVE SEMIGROUPS OF ALMOST ASYMPTOTICALLY NONEXPANSIVE TYPE MAPPINGS
Institute of Scientific and Technical Information of China (English)
Zeng Luchuan
2006-01-01
This article introduces the concept of commutative semigroups of almost asymptotically nonexpansive-type mappings in a Ban ach space X which has the Opial property and whose norm is UKK, and establishes the weak convergence theorems for almostorbits of this class of commutative semigroups. The author improves, extends and develops some recent and earlier results.
Frenod, Emmanuel
2013-01-01
In this note, a classification of Homogenization-Based Numerical Methods and (in particular) of Numerical Methods that are based on the Two-Scale Convergence is done. In this classification stand: Direct Homogenization-Based Numerical Methods; H-Measure-Based Numerical Methods; Two-Scale Numerical Methods and TSAPS: Two-Scale Asymptotic Preserving Schemes.
Imaging Extrasolar Giant Planets
Bowler, Brendan P.
2016-10-01
High-contrast adaptive optics (AO) imaging is a powerful technique to probe the architectures of planetary systems from the outside-in and survey the atmospheres of self-luminous giant planets. Direct imaging has rapidly matured over the past decade and especially the last few years with the advent of high-order AO systems, dedicated planet-finding instruments with specialized coronagraphs, and innovative observing and post-processing strategies to suppress speckle noise. This review summarizes recent progress in high-contrast imaging with particular emphasis on observational results, discoveries near and below the deuterium-burning limit, and a practical overview of large-scale surveys and dedicated instruments. I conclude with a statistical meta-analysis of deep imaging surveys in the literature. Based on observations of 384 unique and single young (≈5-300 Myr) stars spanning stellar masses between 0.1 and 3.0 M ⊙, the overall occurrence rate of 5-13 M Jup companions at orbital distances of 30-300 au is {0.6}-0.5+0.7 % assuming hot-start evolutionary models. The most massive giant planets regularly accessible to direct imaging are about as rare as hot Jupiters are around Sun-like stars. Dividing this sample into individual stellar mass bins does not reveal any statistically significant trend in planet frequency with host mass: giant planets are found around {2.8}-2.3+3.7 % of BA stars, planets spanning a broad range of masses and ages.
Quiver Varieties and Branching
Directory of Open Access Journals (Sweden)
Hiraku Nakajima
2009-01-01
Full Text Available Braverman and Finkelberg recently proposed the geometric Satake correspondence for the affine Kac-Moody group Gaff [Braverman A., Finkelberg M., arXiv:0711.2083]. They conjecture that intersection cohomology sheaves on the Uhlenbeck compactification of the framed moduli space of Gcpt-instantons on $R^4/Z_r$ correspond to weight spaces of representations of the Langlands dual group $G_{aff}^{vee}$ at level $r$. When $G = SL(l$, the Uhlenbeck compactification is the quiver variety of type $sl(r_{aff}$, and their conjecture follows from the author's earlier result and I. Frenkel's level-rank duality. They further introduce a convolution diagram which conjecturally gives the tensor product multiplicity [Braverman A., Finkelberg M., Private communication, 2008]. In this paper, we develop the theory for the branching in quiver varieties and check this conjecture for $G = SL(l$.
Sigdel, G; Agarwal, A; Keshaw, B W
2014-01-01
Urethral calculi are rare forms of urolithiasis. Majority of the calculi are migratory from urinary bladder or upper urinary tract. Primary urethral calculi usually occur in presence of urethral stricture or diverticulum. In this article we report a case of a giant posterior urethral calculus measuring 7x3x2 cm in a 47 years old male. Patient presented with acute retention of urine which was preceded by burning micturition and dribbling of urine for one week. The calculus was pushed in to the bladder through the cystoscope and was removed by suprapubic cystolithotomy.
GIANT PROSTHETIC VALVE THROMBUS
Directory of Open Access Journals (Sweden)
Prashanth Kumar
2015-04-01
Full Text Available Mechanical prosthetic valves are predisposed to bleeding, thrombosis & thromboembolic complications. Overall incidence of thromboembolic complications is 1% per year who are on oral anticoagulants, whereas bleeding complications incidence is 0.5% to 6.6% per year. 1, 2 Minimization of Scylla of thromboembolic & Charybdis of bleeding complication needs a balancing act of optimal antithrombotic therapy. We are reporting a case of middle aged male patient with prosthetic mitral valve presenting in heart failure. Patient had discontinued anticoagulants, as he had subdural hematoma in the past. He presented to our institute with a giant prosthetic valve thrombus.
Vacuum polarization in asymptotically Lifshitz black holes
Quinta, Gonçalo M; Lemos, José P S
2016-01-01
There has been considerable interest in applying the gauge/gravity duality to condensed matter theories with particular attention being devoted to gravity duals (Lifshitz spacetimes) of theories that exhibit anisotropic scaling. In this context, black hole solutions with Lifshitz asymptotics have also been constructed aiming at incorporating finite temperature effects. The goal here is to look at quantum polarization effects in these spacetimes, and to this aim, we develop a way to compute the coincidence limit of the Green's function for massive, non-minimally coupled scalar fields, adapting to the present situation the analysis developed for the case of asymptotically anti de Sitter black holes. The basics are similar to previous calculations, however in the Lifshitz case one needs to extend previous results to include a more general form for the metric and dependence on the dynamical exponent. All formulae are shown to reduce to the AdS case studied before once the value of the dynamical exponent is set to...
Vacuum polarization in asymptotically Lifshitz black holes
Quinta, Gonçalo M.; Flachi, Antonino; Lemos, José P. S.
2016-06-01
There has been considerable interest in applying the gauge-gravity duality to condensed matter theories with particular attention being devoted to gravity duals (Lifshitz spacetimes) of theories that exhibit anisotropic scaling. In this context, black hole solutions with Lifshitz asymptotics have also been constructed, focused on incorporating finite temperature effects. The goal here is to look at quantum polarization effects in these spacetimes and, to this aim, we develop a way to compute the coincidence limit of the Green's function for massive, nonminimally coupled scalar fields, adapting to the present situation the analysis developed for the case of asymptotically anti-de Sitter black holes. The basics are similar to previous calculations; however, in the Lifshitz case, one needs to extend the previous results to include a more general form for the metric and dependence on the dynamical exponent. All formulas are shown to reduce to the anti-de Sitter (AdS) case studied before once the value of the dynamical exponent is set to unity and the metric functions are accordingly chosen. The analytical results we present are general and can be applied to a variety of cases, in fact, to all spherically symmetric Lifshitz black hole solutions. We also implement the numerical analysis choosing some known Lifshitz black hole solutions as illustration.
Asymptotic behaviour of electro-$\\Lambda$ spacetimes
Saw, Vee-Liem
2016-01-01
We derive the asymptotic solutions for vacuum spacetimes with non-zero cosmological constant $\\Lambda$ coupled to Maxwell fields, using the Newman-Penrose formalism. This extends a recent work that dealt with the vacuum Einstein (Newman-Penrose) equations with $\\Lambda=0$. Using these asymptotic solutions, we discuss the mass-loss of an isolated electro-gravitating system with cosmological constant. In a universe with $\\Lambda>0$, the physics of electromagnetic (EM) radiation is relatively straightforward compared to those of gravitational radiation: 1) It is clear that outgoing EM radiation results in a decrease to the Bondi mass of the isolated system. 2) It is also perspicuous that if any incoming EM radiation from elsewhere is present, those beyond the isolated system's cosmological horizon would eventually arrive at the spacelike $\\mathcal{I}$ and increase the Bondi mass of the isolated system. Hence, the (outgoing and incoming) EM radiation fields do not couple with the Bondi mass-loss formula in any un...
Lattice Quantum Gravity and Asymptotic Safety
Laiho, J; Coumbe, D; Du, D; Neelakanta, J T
2016-01-01
We study the nonperturbative formulation of quantum gravity defined via Euclidean dynamical triangulations (EDT) in an attempt to make contact with Weinberg's asymptotic safety scenario. We find that a fine-tuning is necessary in order to recover semiclassical behavior. Such a fine-tuning is generally associated with the breaking of a target symmetry by the lattice regulator; in this case we identify the target symmetry as the Hamiltonian canonical symmetry, which is closely related to, but not identical to, four-dimensional diffeomorphism invariance. After introducing and fine-tuning a non-trivial local measure term, we find no barrier to taking a continuum limit, and we find evidence that four-dimensional, semiclassical geometries are recovered at long distance scales in the continuum limit. We also find that the spectral dimension at short distance scales is consistent with 3/2, a value that could resolve the tension between asymptotic safety and the holographic entropy scaling of black holes. We argue tha...
Relaxing the parity conditions of asymptotically flat gravity
Compère, Geoffrey; Dehouck, François
2011-12-01
Four-dimensional asymptotically flat spacetimes at spatial infinity are defined from first principles without imposing parity conditions or restrictions on the Weyl tensor. The Einstein-Hilbert action is shown to be a correct variational principle when it is supplemented by an anomalous counterterm which breaks asymptotic translation, supertranslation and logarithmic translation invariance. Poincaré transformations as well as supertranslations and logarithmic translations are associated with finite and conserved charges which represent the asymptotic symmetry group. Lorentz charges as well as logarithmic translations transform anomalously under a change of regulator. Lorentz charges are generally nonlinear functionals of the asymptotic fields but reduce to well-known linear expressions when parity conditions hold. We also define a covariant phase space of asymptotically flat spacetimes with parity conditions but without restrictions on the Weyl tensor. In this phase space, the anomaly plays classically no dynamical role. Supertranslations are pure gauge and the asymptotic symmetry group is the expected Poincaré group.
Giant Pandas and Their Conservation
Institute of Scientific and Technical Information of China (English)
GarethDavey
2004-01-01
IT is paradoxical that themost well-known conservation symbol in the world,the giant panda, is a criti-cally endangered species.The estimated 1,600 thatremain live in the high-altitude for-ests of southwest China (within theprovinces of Sichuan, Gansu andShaanxi). Giant pandas are popularand elicit affection and admiration
Famine Threatens the Giant Panda
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Large swathes of arrow bamboo groves at and above 2,700 meters in the Piankou Nature Reserve in Sichuan's Mianyang are producing purple blooms, and some groves have started to wither and die. An absence of bamboo means famine for giant pandas living there. Sichuan has consequently activated its giant panda contingency plan.
Re-inflated Warm Jupiters Around Red Giants
Lopez, Eric D
2015-01-01
Since the discovery of the first transiting hot Jupiters, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of hot Jupiter radius anomalies scales strongly with a planet's level of irradiation and numerous models like tidal heating, ohmic dissipation, and thermal tides have since been developed to help explain these inflated radii. In general however, these models can be grouped into two broad categories: 1) models that directly inflate planetary radii by depositing a fraction of the incident irradiation into the interior and 2) models that simply slow a planet's radiative cooling allowing it to retain more heat from formation and thereby delay contraction. Here we present a new test to distinguish between these two classes of models. Gas giants orbiting at moderate orbital periods around post main sequence stars will experience enormous increases their irradiation as their host stars move up the sub-giant and red-giant branches. If hot Jupite...
Asymptotic analysis of the Nörlund and Stirling polynomials
Directory of Open Access Journals (Sweden)
Mark Daniel Ward
2012-04-01
Full Text Available We provide a full asymptotic analysis of the N{\\"o}rlund polynomials and Stirling polynomials. We give a general asymptotic expansion---to any desired degree of accuracy---when the parameter is not an integer. We use singularity analysis, Hankel contours, and transfer theory. This investigation was motivated by a need for such a complete asymptotic description, with parameter 1/2, during this author's recent solution of Wilf's 3rd (previously Unsolved Problem.
ASYMPTOTIC EXPANSION AND ESTIMATE OF THE LANDAU CONSTANT
Institute of Scientific and Technical Information of China (English)
A.Eisinberg; G.Franzè; N.Salerno
2001-01-01
Properties of Landau constant are investigated in this note.A new representation in terms of a hypergeometric function 3F2 is given and a property defining the family of asymptotic sequences of Landau constant is formalized.Moreover,we give an other asymptotic expansion of Landau constant by using asymptotic expansion of the ratio of gamma functions in the sense of Poincaré due to Tricomi and Erdélyi.
Liapunov structure and asymptotic expressions of linear differential systems
Institute of Scientific and Technical Information of China (English)
高维新
1996-01-01
With a view to the researches on asymptotic properties for linear differential systems,the characteristic number is transformed into functional dass which can indicate the change trend of the norm for solution,so the invariant structure is given under Liapunov changes and feasible computational method of asymptotic expressions for linear differential systems with variant coefficients,and various asymptotic conclusions induding the necessary and sufllcient conditions of stability are got.
Coulomb string tension, asymptotic string tension, and the gluon chain
Greensite, Jeff; Szczepaniak, Adam P.
2015-02-01
We compute, via numerical simulations, the nonperturbative Coulomb potential of pure SU(3) gauge theory in Coulomb gauge. We find that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.
Methods and Technologies Branch (MTB)
The Methods and Technologies Branch focuses on methods to address epidemiologic data collection, study design and analysis, and to modify technological approaches to better understand cancer susceptibility.
Asymptotic variance of grey-scale surface area estimators
DEFF Research Database (Denmark)
Svane, Anne Marie
Grey-scale local algorithms have been suggested as a fast way of estimating surface area from grey-scale digital images. Their asymptotic mean has already been described. In this paper, the asymptotic behaviour of the variance is studied in isotropic and sufficiently smooth settings, resulting...... in a general asymptotic bound. For compact convex sets with nowhere vanishing Gaussian curvature, the asymptotics can be described more explicitly. As in the case of volume estimators, the variance is decomposed into a lattice sum and an oscillating term of at most the same magnitude....
ASYMPTOTIC EXPANSIONS OF ZEROS FOR KRAWTCHOUK POLYNOMIALS WITH ERROR BOUNDS
Institute of Scientific and Technical Information of China (English)
ZHU Xiao-feng; LI Xiu-chun
2006-01-01
Krawtchouk polynomials are frequently applied in modern physics. Based on the results which were educed by Li and Wong, the asymptotic expansions of Krawtchouk polynomials are improved by using Airy function, and uniform asymptotic expansions are got. Furthermore, the asymptotic expansions of the zeros for Krawtchouk polynomials are again deduced by using the property of the zeros of Airy function, and their corresponding error bounds are discussed. The obtained results give the asymptotic property of Krawtchouk polynomials with their zeros, which are better than the results educed by Li and Wong.
Testing the cores of first ascent red-giant stars using the period spacing of g modes
Lagarde, Nadège; Miglio, Andrea; Vrard, Mathieu; Mosser, Benoit
2015-01-01
In the context of the determination of stellar properties using asteroseismology, we study the influence of rotation and convective-core overshooting on the properties of red-giant stars. We used models in order to investigate the effects of these mechanisms on the asymptotic period spacing of gravity modes ($\\Delta \\Pi_1$) of red-giant stars that ignite He burning in degenerate conditions (M$\\lesssim$2.0 M$_{\\odot}$). We also compare the predictions of these models with Kepler observations. For a given $\\Delta\
Giant Intradiverticular Bladder Tumor
Noh, Mohamad Syafeeq Faeez Md; Aziz, Ahmad Fuad Abdul; Ghani, Khairul Asri Mohd; Siang, Christopher Lee Kheng; Yunus, Rosna; Yusof, Mubarak Mohd
2017-01-01
Patient: Male, 74 Final Diagnosis: Giant intradiverticular bladder tumor with metastasis Symptoms: Hematuria Medication:— Clinical Procedure: — Specialty: Urology Objective: Rare disease Background: Intradiverticular bladder tumors are rare. This renders diagnosis of an intradiverticular bladder tumor difficult. Imaging plays a vital role in achieving the diagnosis, and subsequently staging of the disease. Case Report: A 74-year-old male presented to our center with a few months history of constitutional symptoms. Upon further history, he reported hematuria two months prior to presentation, which stopped temporarily, only to recur a few days prior to coming to the hospital. The patient admitted to having lower urinary tract symptoms. However, there was no dysuria, no sandy urine, and no fever. Palpation of his abdomen revealed a vague mass at the suprapubic region, which was non tender. In view of his history and the clinical examination findings, an ultrasound of the abdomen and computed tomography (CT) was arranged. These investigations revealed a giant tumor that seemed to be arising from a bladder diverticulum, with a mass effect and hydronephrosis. He later underwent operative intervention. Conclusions: Intradiverticular bladder tumors may present a challenge to the treating physician in an atypical presentation; thus requiring a high index of suspicion and knowledge of tumor pathophysiology. As illustrated in our case, CT with its wide availability and multiplanar imaging capabilities offers a useful means for diagnosis, disease staging, operative planning, and follow-up. PMID:28246375
Rapidly Evolving Giant Dermatofibroma
Directory of Open Access Journals (Sweden)
K. J. Lang
2010-01-01
Full Text Available Dermatofibroma, also known as “fibrous histiocytoma”, is a benign dermal or subcutaneous poorly circumscribed proliferation of spindle-shaped fibroblasts and macrophages in the dermis. Although it is commonly present as a brownish nodule the legs of females, it may also arise on the upper extremities, trunk, and rarely on the head. The exact pathogenesis is unclear. However, it is widely believed that the originating insult to the dermis is a folliculitis, an arthropod bite, or an unspecified initial inflammatory condition. Giant dermatofibromas of greater than 5 cm in diameter are rare, with only 22 cases reported in the literature. We present a case of a rapidly evolving pedunculated mass in the groin of a male patient. Histological examination confirmed this to be a giant dermatofibroma. Though this specimen cannot is not confirmed as such, the cellular subtype is sometimes present as a larger lesion with anecdotal reports of local recurrence and distant metastases. The clinical and radiological features which were somewhat suspicious of malignancy are considered in the context of the definitive pathological diagnosis of a benign lesion.
Discovery of Super-Li Rich Red Giants in Dwarf Spheroidal Galaxies
Kirby, Evan; Guhathakurta, Puragra; Deng, Licai
2012-01-01
Stars destroy lithium (Li) in their normal evolution. The convective envelopes of evolved red giants reach temperatures of millions of K, hot enough for the 7Li(p,alpha)4He reaction to burn Li efficiently. Only about 1% of first-ascent red giants more luminous than the luminosity function bump in the red giant branch exhibit A(Li) > 1.5. Nonetheless, Li-rich red giants do exist. We present 15 Li-rich red giants--14 of which are new discoveries--among a sample of 2054 red giants in Milky Way dwarf satellite galaxies. Our sample more than doubles the number of low-mass, metal-poor ([Fe/H] <~ -0.7) Li-rich red giants, and it includes the most-metal poor Li-enhanced star known ([Fe/H] = -2.82, A(Li)_NLTE = 3.15). Because most of these stars have Li abundances larger than the universe's primordial value, the Li in these stars must have been created rather than saved from destruction. These Li-rich stars appear like other stars in the same galaxies in every measurable regard other than Li abundance. We consider ...
Kohler, Susanna
2017-01-01
Two new, large gas-giant exoplanets have been discovered orbiting close to their host stars. A recent study examining these planets and others like them may help us to better understand what happens to close-in hot Jupiters as their host stars reach the end of their main-sequence lives.OversizedGiantsUnbinned transit light curves for HAT-P-65b. [Adapted from Hartman et al. 2016]The discovery of HAT-P-65b and HAT-P-66b, two new transiting hot Jupiters, is intriguing. These planets have periods of just under 3 days and masses of roughly 0.5 and 0.8 times that of Jupiter, but their sizes are whats really interesting: they have inflated radii of 1.89 and 1.59 times that of Jupiter.These two planets, discovered using the Hungarian-made Automated Telescope Network (HATNet) in Arizona and Hawaii, mark the latest in an ever-growing sample of gas-giant exoplanets with radii larger than expected based on theoretical planetary structure models.What causes this discrepancy? Did the planets just fail to contract to the expected size when they were initially formed, or were they reinflated later in their lifetimes? If the latter, how? These are questions that scientists are only now starting to be able to address using statistics of the sample of close-in, transiting planets.Unbinned transit light curves for HAT-P-66b. [Hartman et al. 2016]Exploring Other PlanetsLed by Joel Hartman (Princeton University), the team that discovered HAT-P-65b and HAT-P-66b has examined these planets observed parameters and those of dozens of other known close-in, transiting exoplanets discovered with a variety of transiting exoplanet missions: HAT, WASP, Kepler, TrES, and KELT. Hartman and collaborators used this sample to draw conclusions about what causes some of these planets to have such large radii.The team found that there is a statistically significant correlation between the radii of close-in giant planets and the fractional ages of their host stars (i.e., the stars age divided by its full
HST Observations of New Horizontal Branch Structures in the Globular Cluster omega Centauri
Da Cruz, N L; Rood, R T; Whitney, J H; Dorman, B; Landsman, W B; Hill, R S; Stecher, T P; Bohlin, R C; Cruz, Noella L. D'; Connell, Robert W. O'; Rood, Robert T.; Whitney, Jonathan H.; Dorman, Ben; Landsman, Wayne B.; Hill, Robert S.; Stecher, Theodore P.; Bohlin, Ralph C.
1999-01-01
The globular cluster omega Centauri contains the largest known population of very hot horizontal branch (HB) stars. We have used the Hubble Space Telescope to obtain a far-UV/optical color-magnitude diagram of three fields in omega Cen. We find that over 30% of the HB objects are ``extreme'' HB or hot post-HB stars. The hot HB stars are not concentrated toward the cluster center, which argues against a dynamical origin for them. A wide gap in the color distribution of the hot HB stars appears to correspond to gaps found earlier in several other clusters. This suggests a common mechanism, probably related to giant branch mass loss. The diagram contains a significant population of hot sub-HB stars, which we interpret as the ``blue-hook'' objects predicted by D'Cruz et al. (1996a). These are produced by late He-flashes in stars which have undergone unusually large giant branch mass loss. omega Cen has a well-known spread of metal abundance, and our observations are consistent with a giant branch mass loss effici...
On the length of an external branch in the Beta-coalescent
Dhersin, Jean-Stephane; Siri-Jegousse, Arno; Yuan, Linglong
2012-01-01
In this paper, we consider Beta$(2-{\\alpha},{\\alpha})$ (with $1<{\\alpha}<2$) and related ${\\Lambda}$-coalescents. If $T^{(n)}$ denotes the length of an external branch of the $n$-coalescent, we prove the convergence of $n^{{\\alpha}-1}T^{(n)}$ when $n$ tends to $ \\infty $, and give the limit. To this aim, we give asymptotics for the number $\\sigma^{(n)}$ of collisions which occur in the $n$-coalescent until the end of the chosen external branch, and for the block counting process associated with the $n$-coalescent.
Fringe trees, Crump-Mode-Jagers branching processes and $m$-ary search trees
Holmgren, Cecilia; Janson, Svante
2016-01-01
This survey studies asymptotics of random fringe trees and extended fringe trees in random trees that can be constructed as family trees of a Crump-Mode-Jagers branching process, stopped at a suitable time. This includes random recursive trees, preferential attachment trees, fragmentation trees, binary search trees and (more generally) $m$-ary search trees, as well as some other classes of random trees. We begin with general results, mainly due to Aldous (1991) and Jagers and Nerman (1984). T...
Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G
1996-01-01
From 64492 selected \\tau-pair events, produced at the Z^0 resonance, the measurement of the tau decays into hadrons from a global analysis using 1991, 1992 and 1993 ALEPH data is presented. Special emphasis is given to the reconstruction of photons and \\pi^0's, and the removal of fake photons. A detailed study of the systematics entering the \\pi^0 reconstruction is also given. A complete and consistent set of tau hadronic branching ratios is presented for 18 exclusive modes. Most measurements are more precise than the present world average. The new level of precision reached allows a stringent test of \\tau-\\mu universality in hadronic decays, g_\\tau/g_\\mu \\ = \\ 1.0013 \\ \\pm \\ 0.0095, and the first measurement of the vector and axial-vector contributions to the non-strange hadronic \\tau decay width: R_{\\tau ,V} \\ = \\ 1.788 \\ \\pm \\ 0.025 and R_{\\tau ,A} \\ = \\ 1.694 \\ \\pm \\ 0.027. The ratio (R_{\\tau ,V} - R_{\\tau ,A}) / (R_{\\tau ,V} + R_{\\tau ,A}), equal to (2.7 \\pm 1.3) \\ \\%, is a measure of the importance of Q...
Dimensionally reduced gravity theories are asymptotically safe
Energy Technology Data Exchange (ETDEWEB)
Niedermaier, Max E-mail: max@phys.univ-tours.fr
2003-11-24
4D Einstein gravity coupled to scalars and abelian gauge fields in its 2-Killing vector reduction is shown to be quasi-renormalizable to all loop orders at the expense of introducing infinitely many essential couplings. The latter can be combined into one or two functions of the 'area radius' associated with the two Killing vectors. The renormalization flow of these couplings is governed by beta functionals expressible in closed form in terms of the (one coupling) beta function of a symmetric space sigma-model. Generically the matter coupled systems are asymptotically safe, that is the flow possesses a non-trivial UV stable fixed point at which the trace anomaly vanishes. The main exception is a minimal coupling of 4D Einstein gravity to massless free scalars, in which case the scalars decouple from gravity at the fixed point.
Asymptotic stability of steady compressible fluids
Padula, Mariarosaria
2011-01-01
This volume introduces a systematic approach to the solution of some mathematical problems that arise in the study of the hyperbolic-parabolic systems of equations that govern the motions of thermodynamic fluids. It is intended for a wide audience of theoretical and applied mathematicians with an interest in compressible flow, capillarity theory, and control theory. The focus is particularly on recent results concerning nonlinear asymptotic stability, which are independent of assumptions about the smallness of the initial data. Of particular interest is the loss of control that sometimes results when steady flows of compressible fluids are upset by large disturbances. The main ideas are illustrated in the context of three different physical problems: (i) A barotropic viscous gas in a fixed domain with compact boundary. The domain may be either an exterior domain or a bounded domain, and the boundary may be either impermeable or porous. (ii) An isothermal viscous gas in a domain with free boundaries. (iii) A h...
Entropy Production during Asymptotically Safe Inflation
Directory of Open Access Journals (Sweden)
Martin Reuter
2011-01-01
Full Text Available The Asymptotic Safety scenario predicts that the deep ultraviolet of Quantum Einstein Gravity is governed by a nontrivial renormalization group fixed point. Analyzing its implications for cosmology using renormalization group improved Einstein equations, we find that it can give rise to a phase of inflationary expansion in the early Universe. Inflation is a pure quantum effect here and requires no inflaton field. It is driven by the cosmological constant and ends automatically when the renormalization group evolution has reduced the vacuum energy to the level of the matter energy density. The quantum gravity effects also provide a natural mechanism for the generation of entropy. It could easily account for the entire entropy of the present Universe in the massless sector.
Asymptotic Linear Stability of Solitary Water Waves
Pego, Robert L.; Sun, Shu-Ming
2016-12-01
We prove an asymptotic stability result for the water wave equations linearized around small solitary waves. The equations we consider govern irrotational flow of a fluid with constant density bounded below by a rigid horizontal bottom and above by a free surface under the influence of gravity neglecting surface tension. For sufficiently small amplitude waves, with waveform well-approximated by the well-known sech-squared shape of the KdV soliton, solutions of the linearized equations decay at an exponential rate in an energy norm with exponential weight translated with the wave profile. This holds for all solutions with no component in (that is, symplectically orthogonal to) the two-dimensional neutral-mode space arising from infinitesimal translational and wave-speed variation of solitary waves. We also obtain spectral stability in an unweighted energy norm.
Holographic Renormalization of Asymptotically Flat Gravity
Park, Miok
2012-01-01
We compute the boundary stress tensor associated with Mann-Marolf counterterm in asymptotic flat and static spacetime for cylindrical boundary surface as $r \\rightarrow \\infty$, and find that the form of the boundary stress tensor is the same as the hyperbolic boundary case in 4 dimensions, but has additional terms in higher than 4 dimensions. We find that these additional terms are impotent and do not contribute to conserved charges. We also check the conservation of the boundary stress tensor in a sense that $\\mathcal{D}^a T_{ab} = 0$, and apply our result to the ($n+3$)-dimensional static black hole solution. As a result, we show that the stress boundary tensor with Mann-Marolf counterterm works well in standard boundary surfaces.
Asymptotic sampling formulae for Lambda-coalescents
Berestycki, Julien; Limic, Vlada
2012-01-01
We present a robust method which translates information on the speed of coming down from infinity of a genealogical tree into sampling formulae for the underlying population. We apply these results to population dynamics where the genealogy is given by a Lambda-coalescent. This allows us to derive an exact formula for the asymptotic behavior of the site and allele frequency spectrum and the number of segregating sites, as the sample size tends to infinity. Some of our results hold in the case of a general Lambda-coalescent that comes down from infinity, but we obtain more precise information under a regular variation assumption. In this case, we obtain results of independent interest for the time at which a mutation uniformly chosen at random was generated. This exhibits a phase transition at \\alpha=3/2, where \\alpha \\in(1,2) is the exponent of regular variation.
Asymptotic analysis of ultra-relativistic charge
Burton, D A; Tucker, R W; Burton, David A.; Gratus, Jonathan; Tucker, Robin W.
2006-01-01
This article offers a new approach for analysing the dynamic behaviour of distributions of charged particles in an electromagnetic field. After discussing the limitations inherent in the Lorentz-Dirac equation for a single point particle a simple model is proposed for a charged continuum interacting self-consistently with the Maxwell field in vacuo. The model is developed using intrinsic tensor field theory and exploits to the full the symmetry and light-cone structure of Minkowski spacetime. This permits the construction of a regular stress-energy tensor whose vanishing divergence determines a system of non-linear partial differential equations for the velocity and self-fields of accelerated charge. Within this covariant framework a particular perturbation scheme is motivated by an exact class of solutions to this system describing the evolution of a charged fluid under the combined effects of both self and external electromagnetic fields. The scheme yields an asymptotic approximation in terms of inhomogeneo...
Universality and asymptotic scaling in drilling percolation
Grassberger, Peter
2017-01-01
We present simulations of a three-dimensional percolation model studied recently by K. J. Schrenk et al. [Phys. Rev. Lett. 116, 055701 (2016), 10.1103/PhysRevLett.116.055701], obtained with a new and more efficient algorithm. They confirm most of their results in spite of larger systems and higher statistics used in the present Rapid Communication, but we also find indications that the results do not yet represent the true asymptotic behavior. The model is obtained by replacing the isotropic holes in ordinary Bernoulli percolation by randomly placed and oriented cylinders, with the constraint that the cylinders are parallel to one of the three coordinate axes. We also speculate on possible generalizations.
Asymptotic Behavior of Excitable Cellular Automata
Durrett, R; Durrett, Richard; Griffeath, David
1993-01-01
Abstract: We study two families of excitable cellular automata known as the Greenberg-Hastings Model (GHM) and the Cyclic Cellular Automaton (CCA). Each family consists of local deterministic oscillating lattice dynamics, with parallel discrete-time updating, parametrized by the range of interaction, the "shape" of its neighbor set, threshold value for contact updating, and number of possible states per site. GHM and CCA are mathematically tractable prototypes for the spatially distributed periodic wave activity of so-called excitable media observed in diverse disciplines of experimental science. Earlier work by Fisch, Gravner, and Griffeath studied the ergodic behavior of these excitable cellular automata on Z^2, and identified two distinct (but closely-related) elaborate phase portraits as the parameters vary. In particular, they noted the emergence of asymptotic phase diagrams (and Euclidean dynamics) in a well-defined threshold-range scaling limit. In this study we present several rigorous results and som...
The asymptotic safety scenario in quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Saueressig, Frank [Institute of Physics, University of Mainz, D-55099 Mainz (Germany)
2011-07-01
Asymptotic safety offers the possibility that gravity constitutes a consistent and predictive quantum field theory within Wilsons generalized framework of renormalization. The key ingredient of this scenario is a non-trivial fixed point of the gravitational renormalization group flow which governs the UV behavior of the theory. The fixed point itself thereby guarantees the absence of unphysical UV divergences while its associated finite-dimensional UV-critical surface ensures the predictivity of the resulting quantum theory. This talk summarizes the evidence for the existence of such a fixed point, which emerged from the flow equation for the effective average action, the gravitational beta-functions in 2+{epsilon} dimensions, the 2-Killing vector reduction of the gravitational path-integral and lattice simulations. Possible phenomenological consequences are discussed in detail.
Hydrodynamics, resurgence and trans-asymptotics
Basar, Gokce
2015-01-01
The second-order hydrodynamical description of a homogeneous conformal plasma that undergoes a boost- invariant expansion is given by a single nonlinear ordinary differential equation, whose resurgent asymptotic properties we study, developing further the recent work of Heller and Spalinski [Phys. Rev. Lett. 115, 072501 (2015)]. Resurgence clearly identifies the non-hydrodynamic modes that are exponentially suppressed at late times, analogous to the quasi-normal-modes in gravitational language, organizing these modes in terms of a trans-series expansion. These modes are analogs of instantons in semi-classical expansions, where the damping rate plays the role of the instanton action. We show that this system displays the generic features of resurgence, with explicit quantitative relations between the fluctuations about different orders of these non-hydrodynamic modes. The imaginary part of the trans-series parameter is identified with the Stokes constant, and the real part with the freedom associated with init...
Asymptotic methods in mechanics of solids
Bauer, Svetlana M; Smirnov, Andrei L; Tovstik, Petr E; Vaillancourt, Rémi
2015-01-01
The construction of solutions of singularly perturbed systems of equations and boundary value problems that are characteristic for the mechanics of thin-walled structures are the main focus of the book. The theoretical results are supplemented by the analysis of problems and exercises. Some of the topics are rarely discussed in the textbooks, for example, the Newton polyhedron, which is a generalization of the Newton polygon for equations with two or more parameters. After introducing the important concept of the index of variation for functions special attention is devoted to eigenvalue problems containing a small parameter. The main part of the book deals with methods of asymptotic solutions of linear singularly perturbed boundary and boundary value problems without or with turning points, respectively. As examples, one-dimensional equilibrium, dynamics and stability problems for rigid bodies and solids are presented in detail. Numerous exercises and examples as well as vast references to the relevant Russi...
Grassmann scalar fields and asymptotic freedom
Energy Technology Data Exchange (ETDEWEB)
Palumbo, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy)
1996-03-01
The authors extend previous results about scalar fields whose Fourier components are even elements of a Grassmann algebra with given index of nilpotency. Their main interest in particle physics is related to the possibility that they describe fermionic composites analogous to the Copper pairs of superconductivity. The authors evaluate the free propagators for arbitrary index of nilpotency and they investigate a {phi}{sup 4} model to one loop. Due to the nature of the integral over even Grassmann fields such as a model exists for repulsive as well as attractive self interaction. In the first case the {beta}-function is equal to that of the ordinary theory, while in the second one the model is asymptotically free. The bare mass has a peculiar dependence on the cutoff, being quadratically decreasing/increasing for attractive/repulsive self interaction.
Modeling of nanoplastic by asymptotic homogenization method
Institute of Scientific and Technical Information of China (English)
张为民; 何伟; 李亚; 张平; 张淳源
2008-01-01
The so-called nanoplastic is a new simple name for the polymer/layered silicate nanocomposite,which possesses excellent properties.The asymptotic homogenization method(AHM) was applied to determine numerically the effective elastic modulus of a two-phase nanoplastic with different particle aspect ratios,different ratios of elastic modulus of the effective particle to that of the matrix and different volume fractions.A simple representative volume element was proposed,which is assumed that the effective particles are uniform well-aligned and perfectly bonded in an isotropic matrix and have periodic structure.Some different theoretical models and the experimental results were compared.The numerical results are good in agreement with the experimental results.
Chiral fermions in asymptotically safe quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Meibohm, J. [Gothenburg University, Department of Physics, Goeteborg (Sweden); Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany); Pawlowski, J.M. [Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung mbH, ExtreMe Matter Institute EMMI, Darmstadt (Germany)
2016-05-15
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions. (orig.)
Asymptotic representation of relaxation oscillations in lasers
Grigorieva, Elena V
2017-01-01
In this book we analyze relaxation oscillations in models of lasers with nonlinear elements controlling light dynamics. The models are based on rate equations taking into account periodic modulation of parameters, optoelectronic delayed feedback, mutual coupling between lasers, intermodal interaction and other factors. With the aim to study relaxation oscillations we present the special asymptotic method of integration for ordinary differential equations and differential-difference equations. As a result, they are reduced to discrete maps. Analyzing the maps we describe analytically such nonlinear phenomena in lasers as multistability of large-amplitude relaxation cycles, bifurcations of cycles, controlled switching of regimes, phase synchronization in an ensemble of coupled systems and others. The book can be fruitful for students and technicians in nonlinear laser dynamics and in differential equations.
Motion Parallax is Asymptotic to Binocular Disparity
Stroyan, Keith
2010-01-01
Researchers especially beginning with (Rogers & Graham, 1982) have noticed important psychophysical and experimental similarities between the neurologically different motion parallax and stereopsis cues. Their quantitative analysis relied primarily on the "disparity equivalence" approximation. In this article we show that retinal motion from lateral translation satisfies a strong ("asymptotic") approximation to binocular disparity. This precise mathematical similarity is also practical in the sense that it applies at normal viewing distances. The approximation is an extension to peripheral vision of (Cormac & Fox's 1985) well-known non-trig central vision approximation for binocular disparity. We hope our simple algebraic formula will be useful in analyzing experiments outside central vision where less precise approximations have led to a number of quantitative errors in the vision literature.
Chiral fermions in asymptotically safe quantum gravity
Meibohm, Jan
2016-01-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck-scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works \\cite{Christiansen:2015rva, Meibohm:2015twa}, concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models, regardless of the number of fermion flavours. This suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.
Asymptotically thermal responses for smoothly switched detectors
Fewster, Christopher J; Louko, Jorma
2015-01-01
Thermal phenomena in quantum field theory can be detected with the aid of particle detectors coupled to quantum fields along stationary worldlines, by testing whether the response of such a detector satisfies the detailed balance version of the KMS condition at a constant temperature. This relation holds when the interaction between the field and the detector has infinite time duration. Operationally, however, detectors interact with fields for a finite amount of time, controlled by a switching function of compact support, and the KMS detailed balance condition cannot hold exactly for finite time interactions at arbitrarily large detector energy gap. In this large energy gap regime, we show that, for an adiabatically switched Rindler detector, the Unruh temperature emerges asymptotically after the detector and the field have interacted for a time that is polynomially long in the large energy. We comment on the significance of the adiabaticity assumption in this result.
[Giant esophageal fibrovascular polyp].
Palacios, Fernando; Contardo, Carlos; Guevara, Jorge; Vera, Augusto; Aguilar, Luis; Huamán, Manuel; Palomino, Américo; Yabar, Alejandro
2003-01-01
Fibrovascular polyps are extremely rare benign neoplasias of the esophagus, which usually originate in the lower cricoid area. They do not produce any discomfort in the patient for a long time, however it may make itself evident by the patient's regurgitation of the polyp, producing asphyxia or, more frequently, dysphagia. The case of a 58 year old male patient is presented herein, with a 9 month record of dysphagia, weight loss and intermittent melena. The barium x-ray showed a distended esophagus, with a tumor running from the upper esophageal sphincter to the cardia. The endoscopy confirmed the presence of a pediculated tumor, implanted in the cervical esophagus. Surgeons suspected the potential malignancy of the tumor and performed a transhiatal esophagectomy. The final pathologic diagnosis was giant fibrovascular esophageal polyp.
Piekarewicz, J
2012-01-01
Understanding the equation of state (EOS) of neutron-rich matter is a central goal of nuclear physics that cuts across a variety of disciplines. Indeed, the limits of nuclear existence, the collision of energetic heavy ions, the structure of neutron stars, and the dynamics of core-collapse supernova all depend critically on the nuclear-matter EOS. In this contribution I focus on the EOS of cold baryonic matter with special emphasis on its impact on the structure, dynamics, and composition of neutron stars. In particular, I discuss how laboratory experiments on neutron skins as well as on Pygmy and Giant resonances can help us elucidate the structure of these fascinating objects.
An asymptotic solution of large-N QCD
Directory of Open Access Journals (Sweden)
Bochicchio Marco
2014-01-01
Full Text Available We find an asymptotic solution for two-, three- and multi-point correlators of local gauge-invariant operators, in a lower-spin sector of massless large-N QCD, in terms of glueball and meson propagators, in such a way that the solution is asymptotic in the ultraviolet to renormalization-group improved perturbation theory, by means of a new purely field-theoretical technique that we call the asymptotically-free bootstrap, based on a recently-proved asymptotic structure theorem for two-point correlators. The asymptotically-free bootstrap provides as well asymptotic S-matrix amplitudes in terms of glueball and meson propagators. Remarkably, the asymptotic S-matrix depends only on the unknown particle spectrum, but not on the anomalous dimensions, as a consequence of the LS Z reduction formulae. Very many physics consequences follow, both practically and theoretically. In fact, the asymptotic solution sets the strongest constraints on any actual solution of large-N QCD, and in particular on any string solution.
Asymptotic symmetries of de Sitter space-time
Energy Technology Data Exchange (ETDEWEB)
Chrusciel, P.T. (Polska Akademia Nauk, Warsaw. Inst. Fizyki)
1981-01-01
The general form of the metric of an axially-symmetrical asymptotically de Sitter space-time fulfilling a radiation condition was found. Using the Bondi-Metzner method, the group of asymptotic symmetries of de Sitter space-time was found. The results obtained in this work agree only partially with Penrose's theory.
Numerical and asymptotic aspects of parabolic cylinder functions
Temme, N.M.
2000-01-01
Several uniform asymptotics expansions of the Weber parabolic cylinder functions are considered, one group in terms of elementary functions, another group in terms of Airy functions. Starting point for the discussion are asymptotic expansions given earlier by F.W.J. Olver. Some of his results are
Asymptotic expansions for high-contrast linear elasticity
Poveda, Leonardo A.
2015-03-01
We study linear elasticity problems with high contrast in the coefficients using asymptotic limits recently introduced. We derive an asymptotic expansion to solve heterogeneous elasticity problems in terms of the contrast in the coefficients. We study the convergence of the expansion in the H1 norm. © 2015 Elsevier B.V.
Asymptotic Hyperstability of Dynamic Systems with Point Delays
Directory of Open Access Journals (Sweden)
M. De la Sen
2005-01-01
Full Text Available It is proved that a linear time-invariant system with internal point delays is asymptotically hyperstable independent of the delays if an associate delay-free system is asymptotically hyperstable and the delayed dynamics are sufficiently small.
Error estimates in horocycle averages asymptotics: challenges from string theory
Cardella, M.A.
2010-01-01
For modular functions of rapid decay, a classical result connects the error estimate in their long horocycle average asymptotic to the Riemann hypothesis. We study similar asymptotics, for modular functions with not that mild growing conditions, such as of polynomial growth and of exponential growth
Asymptotic Behavior of Solutions to a Linear Volterra Integrodifferential System
Directory of Open Access Journals (Sweden)
Yue-Wen Cheng
2013-01-01
Full Text Available We investigate the asymptotic behavior of solutions to a linear Volterra integrodifferential system , We show that under some suitable conditions, there exists a solution for the above integrodifferential system, which is asymptotically equivalent to some given functions. Two examples are given to illustrate our theorem.
Small-x asymptotics of structure function $g_2$
Ermolaev, B I
1997-01-01
Nonsinglet structure function g_2(x) for deep inelastic scattering of a lepton on a constituent quark is calculated in the double logarithmic approximation at x<<1. Small-x asymptotics of g_2 is shown to have the same singular behaviour as asymptotics of the nonsinglet structure function g_1.
Strong Convergence Theorems for Mixed Typ e Asymptotically Nonexpansive Mappings
Institute of Scientific and Technical Information of China (English)
Wei Shi-long; Guo Wei-ping
2015-01-01
The purpose of this paper is to study a new two-step iterative scheme with mean errors of mixed type for two asymptotically nonexpansive self-mappings and two asymptotically nonexpansive nonself-mappings and prove strong convergence theorems for the new two-step iterative scheme in uniformly convex Banach spaces.
Global asymptotic stability of cellular neural networks with multiple delays
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Global asymptotic stability (GAS) is discussed for cellular neural networks (CNN) with multiple time delays. Several criteria are proposed to ascertain the uniqueness and global asymptotic stability of the equilibrium point for the CNN with delays. These criteria can eliminate the difference between the neuronal excitatory and inhibitory effects. Two examples are presented to demonstrate the effectiveness of the criteria.
Large Time Asymptotics for Solutions of Nonlinear Partial Differential Equations
Sachdev, PL
2010-01-01
A large number of physical phenomena are modeled by nonlinear partial differential equations, subject to appropriate initial/boundary conditions. This title presents the constructive mathematical techniques. It deals with the asymptotic methods which include self-similarity, balancing argument, and matched asymptotic expansions
A giant Ordovician anomalocaridid.
Van Roy, Peter; Briggs, Derek E G
2011-05-26
Anomalocaridids, giant lightly sclerotized invertebrate predators, occur in a number of exceptionally preserved early and middle Cambrian (542-501 million years ago) biotas and have come to symbolize the unfamiliar morphologies displayed by stem organisms in faunas of the Burgess Shale type. They are characterized by a pair of anterior, segmented appendages, a circlet of plates around the mouth, and an elongate segmented trunk lacking true tergites with a pair of flexible lateral lobes per segment. Disarticulated body parts, such as the anterior appendages and oral circlet, had been assigned to a range of taxonomic groups--but the discovery of complete specimens from the middle Cambrian Burgess Shale showed that these disparate elements all belong to a single kind of animal. Phylogenetic analyses support a position of anomalocaridids in the arthropod stem, as a sister group to the euarthropods. The anomalocaridids were the largest animals in Cambrian communities. The youngest unequivocal examples occur in the middle Cambrian Marjum Formation of Utah but an arthropod retaining some anomalocaridid characteristics is present in the Devonian of Germany. Here we report the post-Cambrian occurrence of anomalocaridids, from the Early Ordovician (488-472 million years ago) Fezouata Biota in southeastern Morocco, including specimens larger than any in Cambrian biotas. These giant animals were an important element of some marine communities for about 30 million years longer than previously realized. The Moroccan specimens confirm the presence of a dorsal array of flexible blades attached to a transverse rachis on the trunk segments; these blades probably functioned as gills.
The Giant Magnetocaloric Effect
Pecharsky, Vitalij K.
1998-03-01
Since the discovery of the magnetocaloric effect in pure iron by E.Warburg in 1881, it has been measured experimentally on many magnetic metals and compounds. The majority of the materials studied order magnetically undergoing a second order phase transformation. The magnetocaloric effect, typically peaking near the Curie or the Néel temperature, generally ranges from 0.5 to 2 K (in terms of adiabatic temperature change) or at 1 to 4 J/kg K (in terms of isothermal magnetic entropy change) per 1 T magnetic field change. The giant magnetocaloric effect recently discovered in Gd_5(Si_xGe_1-x)4 alloys, where x refrigerant capacity, which is the measure of how much heat can be transferred from a cold to a hot reservoir in one ideal thermodynamic cycle, is larger than that of the best second order phase transition materials by 25 to 100%. When the Gd_5(Si_xGe_1-x)4 alloys are compared with other known materials, which show first order magnetic phase transition, such as Dy, Ho, Er, HoCo_2, NdMn_2Si_2, Fe_0.49Rh_0.51, and (Hf_0.83Ta_0.17)Fe_2+x, only Fe_0.49Rh_0.51 has comparable magnetocaloric properties. However, the first order magnetic phase transition in Fe_0.49Rh_0.51 is irreversible, and the magnetocaloric effect disappears after one magnetizing/demagnetizing cycle. A study of the crystal structure, thermodynamics, and magnetism of the Gd_5(Si_xGe_1-x)4 alloys, where 0 basic relations between the composition, the crystal structure, and the change in thermodynamics and magnetocaloric properties, which occur in the Gd_5(Si_xGe_1-x)4 system, and which brings about the giant magnetocaloric effect when x <= 0.5.
Asymptotic admissibility of priors and elliptic differential equations
Hartigan, J A
2010-01-01
We evaluate priors by the second order asymptotic behavior of the corresponding estimators.Under certain regularity conditions, the risk differences between efficient estimators of parameters taking values in a domain D, an open connected subset of R^d, are asymptotically expressed as elliptic differential forms depending on the asymptotic covariance matrix V. Each efficient estimator has the same asymptotic risk as a 'local Bayes' estimate corresponding to a prior density p. The asymptotic decision theory of the estimators identifies the smooth prior densities as admissible or inadmissible, according to the existence of solutions to certain elliptic differential equations. The prior p is admissible if the quantity pV is sufficiently small near the boundary of D. We exhibit the unique admissible invariant prior for V=I,D=R^d-{0). A detailed example is given for a normal mixture model.
Eigenvalue spectrum of the spheroidal harmonics: A uniform asymptotic analysis
Hod, Shahar
2015-01-01
The spheroidal harmonics $S_{lm}(\\theta;c)$ have attracted the attention of both physicists and mathematicians over the years. These special functions play a central role in the mathematical description of diverse physical phenomena, including black-hole perturbation theory and wave scattering by nonspherical objects. The asymptotic eigenvalues $\\{A_{lm}(c)\\}$ of these functions have been determined by many authors. However, it should be emphasized that all previous asymptotic analyzes were restricted either to the regime $m\\to\\infty$ with a fixed value of $c$, or to the complementary regime $|c|\\to\\infty$ with a fixed value of $m$. A fuller understanding of the asymptotic behavior of the eigenvalue spectrum requires an analysis which is asymptotically uniform in both $m$ and $c$. In this paper we analyze the asymptotic eigenvalue spectrum of these important functions in the double limit $m\\to\\infty$ and $|c|\\to\\infty$ with a fixed $m/c$ ratio.
On the asymptotics of the α-Farey transfer operator
Kautzsch, J.; Kesseböhmer, M.; Samuel, T.; Stratmann, B. O.
2015-01-01
We study the asymptotics of iterates of the transfer operator for non-uniformly hyperbolic α-Farey maps. We provide a family of observables which are Riemann integrable, locally constant and of bounded variation, and for which the iterates of the transfer operator, when applied to one of these observables, is not asymptotic to a constant times the wandering rate on the first element of the partition α. Subsequently, sufficient conditions on observables are given under which this expected asymptotic holds. In particular, we obtain an extension theorem which establishes that, if the asymptotic behaviour of iterates of the transfer operator is known on the first element of the partition α, then the same asymptotic holds on any compact set bounded away from the indifferent fixed point.
Asymptotics for Nonlinear Transformations of Fractionally Integrated Time Series
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The asymptotic theory for nonlinear transformations of fractionally integrated time series is developed. By the use of fractional Occupation Times Formula, various nonlinear functions of fractionally integrated series such as ARFIMA time series are studied, and the asymptotic distributions of the sample moments of such functions are obtained and analyzed. The transformations considered in this paper includes a variety of functions such as regular functions, integrable functions and asymptotically homogeneous functions that are often used in practical nonlinear econometric analysis. It is shown that the asymptotic theory of nonlinear transformations of original and normalized fractionally integrated processes is different from that of fractionally integrated processes, but is similar to the asymptotic theory of nonlinear transformations of integrated processes.
Eigenvalue spectrum of the spheroidal harmonics: A uniform asymptotic analysis
Hod, Shahar
2015-06-01
The spheroidal harmonics Slm (θ ; c) have attracted the attention of both physicists and mathematicians over the years. These special functions play a central role in the mathematical description of diverse physical phenomena, including black-hole perturbation theory and wave scattering by nonspherical objects. The asymptotic eigenvalues {Alm (c) } of these functions have been determined by many authors. However, it should be emphasized that all the previous asymptotic analyzes were restricted either to the regime m → ∞ with a fixed value of c, or to the complementary regime | c | → ∞ with a fixed value of m. A fuller understanding of the asymptotic behavior of the eigenvalue spectrum requires an analysis which is asymptotically uniform in both m and c. In this paper we analyze the asymptotic eigenvalue spectrum of these important functions in the double limit m → ∞ and | c | → ∞ with a fixed m / c ratio.
Asymptotic Correction Schemes for Semilocal Exchange-Correlation Functionals
Pan, Chi-Ruei; Chai, Jeng-Da
2013-01-01
Aiming to remedy the incorrect asymptotic behavior of conventional semilocal exchange-correlation (XC) density functionals for finite systems, we propose an asymptotic correction scheme, wherein an exchange density functional whose functional derivative has the correct (-1/r) asymptote can be directly added to any semilocal density functional. In contrast to semilocal approximations, our resulting exchange kernel in reciprocal space exhibits the desirable singularity of the type O(-1/q^2) as q -> 0, which is a necessary feature for describing the excitonic effects in non-metallic solids. By applying this scheme to a popular semilocal density functional, PBE [J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)], the predictions of the properties that are sensitive to the asymptote are significantly improved, while the predictions of the properties that are insensitive to the asymptote remain essentially the same as PBE. Relative to the popular model XC potential scheme, our scheme is sig...
Hierarchical spin-orbital polarization of a giant Rashba system.
Bawden, Lewis; Riley, Jonathan M; Kim, Choong H; Sankar, Raman; Monkman, Eric J; Shai, Daniel E; Wei, Haofei I; Lochocki, Edward B; Wells, Justin W; Meevasana, Worawat; Kim, Timur K; Hoesch, Moritz; Ohtsubo, Yoshiyuki; Le Fèvre, Patrick; Fennie, Craig J; Shen, Kyle M; Chou, Fangcheng; King, Phil D C
2015-09-01
The Rashba effect is one of the most striking manifestations of spin-orbit coupling in solids and provides a cornerstone for the burgeoning field of semiconductor spintronics. It is typically assumed to manifest as a momentum-dependent splitting of a single initially spin-degenerate band into two branches with opposite spin polarization. Combining polarization-dependent and resonant angle-resolved photoemission measurements with density functional theory calculations, we show that the two "spin-split" branches of the model giant Rashba system BiTeI additionally develop disparate orbital textures, each of which is coupled to a distinct spin configuration. This necessitates a reinterpretation of spin splitting in Rashba-like systems and opens new possibilities for controlling spin polarization through the orbital sector.
Atmospheres of Extrasolar Giant Planets
Marley, Mark
2006-01-01
The next decade will almost certainly see the direct imaging of extrasolar giant planets around nearby stars. Unlike purely radial velocity detections, direct imaging will open the door to characterizing the atmosphere and interiors of extrasola planets and ultimately provide clues on their formation and evolution through time. This process has already begun for the transiting planets, placing new constraints on their atmospheric structure, composition, and evolution. Indeed the key to understanding giant planet detectability, interpreting spectra, and constraining effective temperature and hence evolution-is the atmosphere. I will review the universe of extrasolar giant planet models, focusing on what we have already learned from modeling and what we will likely be able to learn from the first generation of direct detection data. In addition to these theoretical considerations, I will review the observations and interpretation of the - transiting hot Jupiters. These objects provide a test of our ability to model exotic atmospheres and challenge our current understanding of giant planet evolution.
Atmospheres of Extrasolar Giant Planets
Marley, M S; Seager, S; Barman, T; Marley, Mark S.; Fortney, Jonathan; Seager, Sara; Barman, Travis
2006-01-01
The key to understanding an extrasolar giant planet's spectrum--and hence its detectability and evolution--lies with its atmosphere. Now that direct observations of thermal emission from extrasolar giant planets are in hand, atmosphere models can be used to constrain atmospheric composition, thermal structure, and ultimately the formation and evolution of detected planets. We review the important physical processes that influence the atmospheric structure and evolution of extrasolar giant planets and consider what has already been learned from the first generation of observations and modeling. We pay particular attention to the roles of cloud structure, metallicity, and atmospheric chemistry in affecting detectable properties through Spitzer Space Telescope observations of the transiting giant planets. Our review stresses the uncertainties that ultimately limit our ability to interpret EGP observations. Finally we will conclude with a look to the future as characterization of multiple individual planets in a ...
2013-09-01
The Pleistocene megafauna extinction erased a group of remarkable animals. Whether humans had a prominent role in the extinction remains controversial, but it is emerging that the disappearance of the giants has markedly affected the environment.
Continuous-state branching processes
Li, Zenghu
2012-01-01
These notes were used in a short graduate course on branching processes the author gave in Beijing Normal University. The following main topics are covered: scaling limits of Galton--Watson processes, continuous-state branching processes, extinction probabilities, conditional limit theorems, decompositions of sample paths, martingale problems, stochastic equations, Lamperti's transformations, independent and dependent immigration processes. Some of the results are simplified versions of those in the author's book "Measure-valued branching Markov processes" (Springer, 2011). We hope these simplified results will set out the main ideas in an easy way and lead the reader to a quick access of the subject.
Scaling Behaviors of Branched Polymers
Aoki, H; Kawai, H; Kitazawa, Y; Aoki, Hajime; Iso, Satoshi; Kawai, Hikaru; Kitazawa, Yoshihisa
2000-01-01
We study the thermodynamic behavior of branched polymers. We first study random walks in order to clarify the thermodynamic relation between the canonical ensemble and the grand canonical ensemble. We then show that correlation functions for branched polymers are given by those for $\\phi^3$ theory with a single mass insertion, not those for the $\\phi^3$ theory themselves. In particular, the two-point function behaves as $1/p^4$, not as $1/p^2$, in the scaling region. This behavior is consistent with the fact that the Hausdorff dimension of the branched polymer is four.
Annular Elastolytic Giant Cell Granuloma
Directory of Open Access Journals (Sweden)
Khandpur Sujay
2001-01-01
Full Text Available The clinical and histopathological features of annular elastolytic giant cell granuloma in a 42â€"year-old female patient are described. The condition presented as annular erythematous plaques over sun- exposed skin sparing the face. Histopathology revealed dense granulomatous infiltrate consisting of numerous giant cells and lymphohistiocytes without any palisading arrangement or necrobiosis. The features differentiating it from other similar granulomatous disorders are discussed.
Branch facial nerve trauma after superficial temporal artery biopsy: a case report
Directory of Open Access Journals (Sweden)
Rison Richard A
2011-01-01
Full Text Available Abstract Introduction Giant cell arteritis is an emergency requiring prompt diagnosis and treatment. Superficial temporal artery biopsy is the gold diagnostic standard. Complications are few and infrequent; however, facial nerve injury has been reported, leaving an untoward cosmetic outcome. This case report is to the best of our knowledge only the fourth one presented in the available literature so far regarding facial nerve injury from superficial temporal artery biopsy. Case presentation A 73-year-old Caucasian woman presented for neurological evaluation regarding eyebrow and facial asymmetry after a superficial temporal artery biopsy for presumptive giant cell arteritis-induced cephalalgia. Conclusion Damage to branches of the facial nerve may occur after superficial temporal artery biopsy, resulting in eyebrow droop. Although an uncommon and sparsely reported complication, all clinicians of various specialties involved in the care of these patients should be aware of this given the gravity of giant cell arteritis and the widespread use of temporal artery biopsy.
DEFF Research Database (Denmark)
Risum, Niels; Strauss, David; Sogaard, Peter;
2013-01-01
The relationship between myocardial electrical activation by electrocardiogram (ECG) and mechanical contraction by echocardiography in left bundle-branch block (LBBB) has never been clearly demonstrated. New strict criteria for LBBB based on a fundamental understanding of physiology have recently...
Asymptotics of Heavy-Meson Form Factors
Grozin, A.G.; Grozin, Andrey G.; Neubert, Matthias
1997-01-01
Using methods developed for hard exclusive QCD processes, we calculate the asymptotic behaviour of heavy-meson form factors at large recoil. It is determined by the leading- and subleading-twist meson wave functions. For $1\\ll |v\\cdot v'|\\ll m_Q/\\Lambda$, the form factors are dominated by the Isgur--Wise function, which is determined by the interference between the wave functions of leading and subleading twist. At $|v\\cdot v'|\\gg m_Q/\\Lambda$, they are dominated by two functions arising at order $1/m_Q$ in the heavy-quark expansion, which are determined by the leading-twist wave function alone. The sum of these contributions describes the form factors in the whole region $|v\\cdot v'|\\gg 1$. As a consequence, there is an exact zero in the form factor for the scattering of longitudinally polarized $B^*$ mesons at some value $v\\cdot v'\\sim m_b/\\Lambda$, and an approximate zero in the form factor of $B$ mesons in the timelike region ($v\\cdot v'\\sim -m_b/\\Lambda$). We obtain the evolution equations and sum rules ...
Truly Minimal Unification Asymptotically Strong Panacea ?
Aulakh, Charanjit S
2002-01-01
We propose Susy GUTs have a UV {\\it{attractor}} at $E\\sim \\Lambda_{cU} \\sim 10^{17} GeV $ where gauge symmetries ``confine'' forming singlet condensates at scales $E\\sim\\Lambda_{cU}$. The length $l_U\\sim \\Lambda_{cU}^{-1}$ characterizies the {\\it{size}} of gauge non- singlet particles yielding a picture dual to the Dual Standard model of Vachaspati. This Asymptotic Slavery (AS) fixed point is driven by realistic Fermion Mass(FM) Higgs content which implies AS. This defines a dynamical morphogenetic scenario dependent on the dynamics of UV strong N=1 Susy Gauge-Chiral(SGC) theories. Such systems are already understood in the AF case but ignored in the AS case. Analogy to the AFSGC suggests the perturbative SM gauge group of the Grand Desert confines at GUT scales i.e GUT symmetry is ``non-restored''. Restoration before confinement and self-inconsistency are the two other (less likely) logical possibilities. Truly Minimal (TM) SU(5) and SO(10) models with matter and FM Higgs only are defined; AM (adjoint multip...
Asymptotic dynamics of inertial particles with memory
Langlois, Gabriel Provencher; Haller, George
2014-01-01
Recent experimental and numerical observations have shown the significance of the Basset--Boussinesq memory term on the dynamics of small spherical rigid particles (or inertial particles) suspended in an ambient fluid flow. These observations suggest an algebraic decay to an asymptotic state, as opposed to the exponential convergence in the absence of the memory term. Here, we prove that the observed algebraic decay is a universal property of the Maxey--Riley equation. Specifically, the particle velocity decays algebraically in time to a limit that is $\\mathcal O(\\epsilon)$-close to the fluid velocity, where $0<\\epsilon\\ll 1$ is proportional to the square of the ratio of the particle radius to the fluid characteristic length-scale. These results follows from a sharp analytic upper bound that we derive for the particle velocity. For completeness, we also present a first proof of existence and uniqueness of global solutions to the Maxey--Riley equation, a nonlinear system of fractional-order differential equ...
Asymptotic Solutions of Serial Radial Fuel Shuffling
Directory of Open Access Journals (Sweden)
Xue-Nong Chen
2015-12-01
Full Text Available In this paper, the mechanism of traveling wave reactors (TWRs is investigated from the mathematical physics point of view, in which a stationary fission wave is formed by radial fuel drifting. A two dimensional cylindrically symmetric core is considered and the fuel is assumed to drift radially according to a continuous fuel shuffling scheme. A one-group diffusion equation with burn-up dependent macroscopic coefficients is set up. The burn-up dependent macroscopic coefficients were assumed to be known as functions of neutron fluence. By introducing the effective multiplication factor keff, a nonlinear eigenvalue problem is formulated. The 1-D stationary cylindrical coordinate problem can be solved successively by analytical and numerical integrations for associated eigenvalues keff. Two representative 1-D examples are shown for inward and outward fuel drifting motions, respectively. The inward fuel drifting has a higher keff than the outward one. The 2-D eigenvalue problem has to be solved by a more complicated method, namely a pseudo time stepping iteration scheme. Its 2-D asymptotic solutions are obtained together with certain eigenvalues keff for several fuel inward drifting speeds. Distributions of the neutron flux, the neutron fluence, the infinity multiplication factor kinf and the normalized power are presented for two different drifting speeds.
Qualitative and Asymptotic Theory of Detonations
Faria, Luiz
2014-11-09
Shock waves in reactive media possess very rich dynamics: from formation of cells in multiple dimensions to oscillating shock fronts in one-dimension. Because of the extreme complexity of the equations of combustion theory, most of the current understanding of unstable detonation waves relies on extensive numerical simulations of the reactive compressible Euler/Navier-Stokes equations. Attempts at a simplified theory have been made in the past, most of which are very successful in describing steady detonation waves. In this work we focus on obtaining simplified theories capable of capturing not only the steady, but also the unsteady behavior of detonation waves. The first part of this thesis is focused on qualitative theories of detonation, where ad hoc models are proposed and analyzed. We show that equations as simple as a forced Burgers equation can capture most of the complex phenomena observed in detonations. In the second part of this thesis we focus on rational theories, and derive a weakly nonlinear model of multi-dimensional detonations. We also show, by analysis and numerical simulations, that the asymptotic equations provide good quantitative predictions.
Novel side branch ostial stent.
Chen, Shao-Liang; Lv, Shu-Zheng; Kwan, Tak W
2009-04-01
Bifurcation lesions are technically challenging and plagued by a high incidence of restenosis, especially at the side branch orifice, which results in a more frequent need for revascularization during the follow-up period. This report discusses two clinical experiences with a novel side branch ostial stent, the BIGUARD stent, designed for the treatment of bifurcation lesions; procedural success with no in-hospital complications was observed in types IVb and Ia lesions.
Radiation effects on branched polysilanes
Energy Technology Data Exchange (ETDEWEB)
Maeda, K.; Seki, S.; Tagawa, S. [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Shibata, H.; Iwai, T. [Tokyo Univ. (Japan). Research Center for Nuclear Science and Technology
2000-03-01
We observed crosslinking and scission caused by gamma radiation in linear and branched polysilanes which have from 5% to 33% of the branching points. The crosslinking reactions become predominant for the irradiation with branching density increasing. The cleavage did not take place exclusively at the branching points and branching polysilanes are sensitive to radiation extraordinary as compared with linear polysilane from a careful study of the radiolysis products of a series of polysilanes. This is due to the increasing Si {center_dot} contributing to the crosslinking reaction and that they are not resonance-stabilized by double bonds as the reaction mechanism in the irradiated polysilanes. However, the gelation curve in linear PMPS irradiated by 2 MeV He{sup +} is almost consistent with that in branching PMPS, indicating that the size of chemical track is responsible for the gel fraction. The crosslinking G value for high molecular weight PMPS irradiated by 2 MeV He{sup +} was drastically decreased as compared with that for low molecular weight. It suggests that there are a large number of intramolecular crosslinking points for high molecular weight PMPS. (author)
Imaging Extrasolar Giant Planets
Bowler, Brendan P
2016-01-01
High-contrast adaptive optics imaging is a powerful technique to probe the architectures of planetary systems from the outside-in and survey the atmospheres of self-luminous giant planets. Direct imaging has rapidly matured over the past decade and especially the last few years with the advent of high-order adaptive optics systems, dedicated planet-finding instruments with specialized coronagraphs, and innovative observing and post-processing strategies to suppress speckle noise. This review summarizes recent progress in high-contrast imaging with particular emphasis on observational results, discoveries near and below the deuterium-burning limit, and a practical overview of large-scale surveys and dedicated instruments. I conclude with a statistical meta-analysis of deep imaging surveys in the literature. Based on observations of 384 unique and single young ($\\approx$5--300~Myr) stars spanning stellar masses between 0.1--3.0~\\Msun, the overall occurrence rate of 5--13~\\Mjup \\ companions at orbital distances ...
Giant high occipital encephalocele
Directory of Open Access Journals (Sweden)
Agrawal Amit
2016-03-01
Full Text Available Encephaloceles are rare embryological mesenchymal developmental anomalies resulting from inappropriate ossification in skull through with herniation of intracranial contents of the sac. Encephaloceles are classified based on location of the osseous defect and contents of sac. Convexity encephalocele with osseous defect in occipital bone is called occipital encephalocele. Giant occipital encephaloceles can be sometimes larger than the size of baby skull itself and they pose a great surgical challenge. Occipital encephaloceles (OE are further classified as high OE when defect is only in occipital bone above the foramen magnum, low OE when involving occipital bone and foramen magnum and occipito-cervical when there involvement of occipital bone, foramen magnum and posterior upper neural arches. Chiari III malformation can be associated with high or low occipital encephaloceles. Pre-operatively, it is essential to know the size of the sac, contents of the sac, relation to the adjacent structures, presence or absence of venous sinuses/vascular structures and osseous defect size. Sometimes it becomes imperative to perform both CT and MRI for the necessary information. Volume rendered CT images can depict the relation of osseous defect to foramen magnum and provide information about upper neural arches which is necessary in classifying these lesions.
2001-01-01
Their work goes on unseen, because they a hundred metres beneath your feet. But while the race against the clock to build the LHC has begun on the surface, teams underground are feverishly engaged to dismantle LEP and its experiments. Four months after the start of dismantling, the technical coordinators of the different experiments discuss the progress of work. Little men attack the giant ALEPH. The barrel and its two endcaps have been removed to the end of the cavern and stripped of their cables. The breaking up of the detector can now begin. At ALEPH, counting rooms removed all in one go Jean-Paul Fabre, technical coordinator at ALEPH:'After making safe the structure, the first step was to remove the wiring and cables. Some 210 cubic metres were brought out. Then the counting rooms all round the detector were taken out. They were brought up from the cavern all in one go, up through the shaft, which is 10 metres wide and 150 metres deep. They made it with 15 centimetres to spare. They have been emptied of...
Giant viruses, giant chimeras: The multiple evolutionary histories of Mimivirus genes
Directory of Open Access Journals (Sweden)
Brochier-Armanet Céline
2008-01-01
Full Text Available Abstract Background Although capable to evolve, viruses are generally considered non-living entities because they are acellular and devoid of metabolism. However, the recent publication of the genome sequence of the Mimivirus, a giant virus that parasitises amoebas, strengthened the idea that viruses should be included in the tree of life. In fact, the first phylogenetic analyses of a few Mimivirus genes that are also present in cellular lineages suggested that it could define an independent branch in the tree of life in addition to the three domains, Bacteria, Archaea and Eucarya. Results We tested this hypothesis by carrying out detailed phylogenetic analyses for all the conserved Mimivirus genes that have homologues in cellular organisms. We found no evidence supporting Mimivirus as a new branch in the tree of life. On the contrary, our phylogenetic trees strongly suggest that Mimivirus acquired most of these genes by horizontal gene transfer (HGT either from its amoebal hosts or from bacteria that parasitise the same hosts. The detection of HGT events involving different eukaryotic donors suggests that the spectrum of hosts of Mimivirus may be larger than currently known. Conclusion The large number of genes acquired by Mimivirus from eukaryotic and bacterial sources suggests that HGT has been an important process in the evolution of its genome and the adaptation to parasitism.
Asymptotic Solution of the Theory of Shells Boundary Value Problem
Directory of Open Access Journals (Sweden)
I. V. Andrianov
2007-01-01
Full Text Available This paper provides a state-of-the-art review of asymptotic methods in the theory of plates and shells. Asymptotic methods of solving problems related to theory of plates and shells have been developed by many authors. The main features of our paper are: (i it is devoted to the fundamental principles of asymptotic approaches, and (ii it deals with both traditional approaches, and less widely used, new approaches. The authors have paid special attention to examples and discussion of results rather than to burying the ideas in formalism, notation, and technical details.
Uniform Asymptotic Expansion for the Incomplete Beta Function
Nemes, Gergő; Olde Daalhuis, Adri B.
2016-10-01
In [Temme N.M., Special functions. An introduction to the classical functions of mathematical physics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1996, Section 11.3.3.1] a uniform asymptotic expansion for the incomplete beta function was derived. It was not obvious from those results that the expansion is actually an asymptotic expansion. We derive a remainder estimate that clearly shows that the result indeed has an asymptotic property, and we also give a recurrence relation for the coefficients.
Asymptotic failure rate of a continuously monitored system
Energy Technology Data Exchange (ETDEWEB)
Grall, A. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: antoine.grall@utt.fr; Dieulle, L. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: laurence.dieulle@utt.fr; Berenguer, C. [Institut des Sciences et Technologies de l' Information de Troyes (CNRS-FRE 2732), Equipe de Modelisation et de Surete des Systemes, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: christophe.berenguer@utt.fr; Roussignol, M. [Laboratoire d' Analyse et de Mathematiques Appliquees, Universite de Marne la Vallee, 5 bd Descartes, Champs sur Marne, 77454 Marne la Vallee, Cedex 2 (France)]. E-mail: michel.roussignol@univ-mlv.fr
2006-02-01
This paper deals with a perfectly continuously monitored system which gradually and stochastically deteriorates. The system is renewed by a delayed maintenance operation, which is triggered when the measured deterioration level exceeds an alarm threshold. A mathematical model is developed to study the asymptotic behavior of the reliability function. A procedure is proposed which allows us to identify the asymptotic failure rate of the maintained system. Numerical experiments illustrate the efficiency of the proposed procedure and emphasize the relevance of the asymptotic failure rate as an interesting indicator for the evaluation of the control-limit preventive replacement policy.
ASYMPTOTICS OF MEAN TRANSFORMATION ESTIMATORS WITH ERRORS IN VARIABLES MODEL
Institute of Scientific and Technical Information of China (English)
CUI Hengjian
2005-01-01
This paper addresses estimation and its asymptotics of mean transformation θ = E[h(X)] of a random variable X based on n iid. Observations from errors-in-variables model Y = X + v, where v is a measurement error with a known distribution and h(.) is a known smooth function. The asymptotics of deconvolution kernel estimator for ordinary smooth error distribution and expectation extrapolation estimator are given for normal error distribution respectively. Under some mild regularity conditions, the consistency and asymptotically normality are obtained for both type of estimators. Simulations show they have good performance.
Chromospheric Models and the Oxygen Abundance in Giant Stars
Dupree, A. K.; Avrett, E. H.; Kurucz, R. L.
2016-04-01
Realistic stellar atmospheric models of two typical metal-poor giant stars in Omega Centauri, which include a chromosphere (CHR), influence the formation of optical lines of O i: the forbidden lines (λ6300, λ6363) and the infrared triplet (λλ7771-7775). One-dimensional semi-empirical non-local thermodynamic equilibrium (LTE) models are constructed based on observed Balmer lines. A full non-LTE formulation is applied for evaluating the line strengths of O i, including photoionization by the Lyman continuum and photoexcitation by Lyα and Lyβ. Chromospheric models (CHR) yield forbidden oxygen transitions that are stronger than those in radiative/convective equilibrium (RCE) models. The triplet oxygen lines from high levels also appear stronger than those produced in an RCE model. The inferred oxygen abundance from realistic CHR models for these two stars is decreased by factors of ˜3 as compared to values derived from RCE models. A lower oxygen abundance suggests that intermediate-mass AGB stars contribute to the observed abundance pattern in globular clusters. A change in the oxygen abundance of metal-poor field giants could affect models of deep mixing episodes on the red giant branch. Changes in the oxygen abundance can impact other abundance determinations that are critical to astrophysics, including chemical tagging techniques and galactic chemical evolution.
CHROMOSPHERIC MODELS AND THE OXYGEN ABUNDANCE IN GIANT STARS
Energy Technology Data Exchange (ETDEWEB)
Dupree, A. K.; Avrett, E. H.; Kurucz, R. L., E-mail: dupree@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)
2016-04-10
Realistic stellar atmospheric models of two typical metal-poor giant stars in Omega Centauri, which include a chromosphere (CHR), influence the formation of optical lines of O i: the forbidden lines (λ6300, λ6363) and the infrared triplet (λλ7771−7775). One-dimensional semi-empirical non-local thermodynamic equilibrium (LTE) models are constructed based on observed Balmer lines. A full non-LTE formulation is applied for evaluating the line strengths of O i, including photoionization by the Lyman continuum and photoexcitation by Lyα and Lyβ. Chromospheric models (CHR) yield forbidden oxygen transitions that are stronger than those in radiative/convective equilibrium (RCE) models. The triplet oxygen lines from high levels also appear stronger than those produced in an RCE model. The inferred oxygen abundance from realistic CHR models for these two stars is decreased by factors of ∼3 as compared to values derived from RCE models. A lower oxygen abundance suggests that intermediate-mass AGB stars contribute to the observed abundance pattern in globular clusters. A change in the oxygen abundance of metal-poor field giants could affect models of deep mixing episodes on the red giant branch. Changes in the oxygen abundance can impact other abundance determinations that are critical to astrophysics, including chemical tagging techniques and galactic chemical evolution.
Determining Ages of APOGEE Giants with Known Distances
Feuillet, Diane K; Holtzman, Jon; Girardi, Leo; MacDonald, Nick; Majewski, Steven R; Nidever, David L
2015-01-01
We present a sample of local red giant stars observed using the New Mexico State University 1 m telescope with the APOGEE spectrograph, for which we estimate stellar ages and the age distribution from the high-resolution spectroscopic stellar parameters and accurate distance measurements from Hipparcos. The high-resolution (R ~ 23,000), near infrared (H-band, 1.5-1.7 micron) APOGEE spectra provide measurements of the stellar atmospheric parameters (temperature, surface gravity, [M/H], and [alpha/M]). Due to the smaller uncertainties in surface gravity possible with high-resolution spectra and accurate Hipparcos distance measurements, we are able to calculate the stellar masses to within 40%. For red giants, the relatively rapid evolution of stars up the red giant branch allows the age to be constrained based on the mass. We examine methods of estimating age using both the mass-age relation directly and a Bayesian isochrone matching of measured parameters, assuming a constant star formation history (SFH). To i...
Hydraulic constraints modify optimal photosynthetic profiles in giant sequoia trees.
Ambrose, Anthony R; Baxter, Wendy L; Wong, Christopher S; Burgess, Stephen S O; Williams, Cameron B; Næsborg, Rikke R; Koch, George W; Dawson, Todd E
2016-11-01
Optimality theory states that whole-tree carbon gain is maximized when leaf N and photosynthetic capacity profiles are distributed along vertical light gradients such that the marginal gain of nitrogen investment is identical among leaves. However, observed photosynthetic N gradients in trees do not follow this prediction, and the causes for this apparent discrepancy remain uncertain. Our objective was to evaluate how hydraulic limitations potentially modify crown-level optimization in Sequoiadendron giganteum (giant sequoia) trees up to 90 m tall. Leaf water potential (Ψ l ) and branch sap flow closely followed diurnal patterns of solar radiation throughout each tree crown. Minimum leaf water potential correlated negatively with height above ground, while leaf mass per area (LMA), shoot mass per area (SMA), leaf nitrogen content (%N), and bulk leaf stable carbon isotope ratios (δ(13)C) correlated positively with height. We found no significant vertical trends in maximum leaf photosynthesis (A), stomatal conductance (g s), and intrinsic water-use efficiency (A/g s), nor in branch-averaged transpiration (E L), stomatal conductance (G S), and hydraulic conductance (K L). Adjustments in hydraulic architecture appear to partially compensate for increasing hydraulic limitations with height in giant sequoia, allowing them to sustain global maximum summer water use rates exceeding 2000 kg day(-1). However, we found that leaf N and photosynthetic capacity do not follow the vertical light gradient, supporting the hypothesis that increasing limitations on water transport capacity with height modify photosynthetic optimization in tall trees.
Limit Theorems for some Branching Measure-Valued Processes
Cloez, Bertrand
2011-01-01
We consider a particles system, where, the particles move independently according to a Markov process and branching event occurs at an inhomogeneous time. The offspring locations and their number may depend on the position of the mother. Our setting capture, for instance, the processes indexed by Galton-Watson tree. We first determine the asymptotic behaviour of the empirical measure. The proof is based on an expression of the empirical measure using an auxiliary process. This latter is not distributed as a one cell lineage, there is a biased phenomenon. Our model is a microscopic description of a random (discrete) population of individuals. We then obtain a large population approximation as weak solution of a growth- fragmentation equation. We illustrate our result with two examples. The first one is a size-structured population model which describes the mitosis and the second one can model a parasite infection.
Kolmogorov turbulence by matched asymptotic expansions
Lundgren, Thomas S.
2003-04-01
The Kolmogorov [Dokl. Akad. Nauk. SSSR 30, 299 (1941), hereafter K41] inertial range theory is derived from first principles by analysis of the Navier-Stokes equation using the method of matched asymptotic expansions without assuming isotropy or homogeneity and the Kolmogorov (K62) [J. Fluid Mech. 13, 82 (1962)] refined theory is analyzed. This paper is an extension of Lundgren [Phys. Fluids 14, 638 (2002)], in which the second- and third-order structure functions were determined from the isotropic Karman-Howarth [Proc. R. Soc. London, Ser. A 164, 192 (1938)] equation. The starting point for the present analysis is an equation for the difference in velocity between two points, one of which is a Lagrangian fluid point and the second, slaved to the first by a fixed separation r, is not Lagrangian. The velocity difference, so defined, satisfies the Navier-Stokes equation with spatial variable r. The analysis is carried out in two parts. In the first part the physical hypothesis is made that the mean dissipation is independent of viscosity as viscosity tends to zero, as assumed in K41. This means that the mean dissipation is finite as Reynolds number tends to infinity and leads to the K41 inertial range results. In the second part this dissipation assumption is relaxed in an attempt to duplicate the K62 theory. While the K62 structure is obtained, there are restrictions, resulting from the analysis which shows that there can be no inertial range intermittency as Reynolds number tends to infinity, and therefore the mean dissipation has to be finite as Reynolds number tends to infinity, as assumed in part one. Reynolds number-dependent corrections to the K41 results are obtained in the form of compensating functions of r/λ, which tend to zero slowly like Rλ-2/3 as Rλ→∞.
Small-x single-particle distributions in jets from the coherent branching formalism
Sapeta, Sebastian
2009-01-01
We calculate single parton distributions inside quark and gluon jets within the coherent branching formalism, which resums leading and next-to-leading logarithmic contributions. This formalism is at the basis of the modified leading logarithmic approximation (MLLA), and it conserves energy exactly. For a wide preasymptotic range of the evolution variable Y=ln[E\\theta/Q_0], we find marked differences in the shape and norm of single parton distributions calculated in the MLLA or in the coherent branching formalism, respectively. For asymptotically large values Y>5-10, the difference in norm persists, while differences in shape disappear. In this way, our numerical study delineates the jet energy scale needed for a reliable application of both approaches. We also study the dependence of the single parton distributions on the hadronization scale Q_0 and on \\Lambda_QCD, and we calculate within the coherent branching formalism the identified quark and gluon distributions inside quark and gluon jets.