WorldWideScience

Sample records for asymmetrical flow field-flow

  1. Characterization of enzymatically synthesized amylopectin analogs via asymmetrical flow field flow fractionation

    NARCIS (Netherlands)

    Ciric, Jelena; Rolland-Sabate, Agnes; Guilois, Sophie; Loos, Katja

    2014-01-01

    Asymmetrical flow field flow fractionation (AF4), when coupled with multi-angle laser light scattering (MALLS), is a very powerful technique for determination of the macromolecular structure of high molar mass (branched) polysaccharides. AF4 is a size fractionation technique just as size exclusion c

  2. Asymmetrical flow field-flow fractionation in the study of water-soluble macromolecules

    OpenAIRE

    Yohannes, Gebrenegus

    2007-01-01

    Asymmetrical flow field-flow fractionation (AsFlFFF) was constructed, and its applicability to industrial, biochemical, and pharmaceutical applications was studied. The effect of several parameters, such as pH, ionic strength, temperature and the reactants mixing ratios on the particle sizes, molar masses, and the formation of aggregates of macromolecules was determined by AsFlFFF. In the case of industrial application AsFlFFF proved to be a valuable tool in the characterization of the hydrod...

  3. Optimization and evaluation of asymmetric flow field-flow fractionation of silver nanoparticles

    OpenAIRE

    Loeschner, Katrin; Navratilova, Jana; Legros, Samuel; Wagner, Stephan; Grombe, Ringo; Snell, James; von der Kammer, Frank; Larsen, Erik H

    2013-01-01

    Asymmetric flow field-flow fractionation (AF4) in combination with on-line optical detection and mass spectrometry is one of the most promising methods for separation and quantification of nanoparticles (NPs) in complex matrices including food. However, to obtain meaningful results regarding especially the NP size distribution a number of parameters influencing the separation need to be optimized. This paper describes the development of a separation method for polyvinylpyrrolidone-stabilized ...

  4. Nanoparticle separation with a miniaturized asymmetrical flow field-flow fractionation cartridge

    Directory of Open Access Journals (Sweden)

    David eMüller

    2015-07-01

    Full Text Available Asymmetrical Flow Field-Flow Fractionation (AF4 is a separation technique applicable to particles over a wide size range. Despite the many advantages of AF4, its adoption in routine particle analysis is somewhat limited by the large footprint of currently available separation cartridges, extended analysis times and significant solvent consumption. To address these issues, we describe the fabrication and characterization of miniaturized AF4 cartridges. Key features of the scale-down platform include simplified cartridge and reagent handling, reduced analysis costs and higher throughput capacities. The separation performance of the miniaturized cartridge is assessed using certified gold and silver nanoparticle standards. Analysis of gold nanoparticle populations indicates shorter analysis times and increased sensitivity compared to conventional AF4 separation schemes. Moreover, nanoparticulate titanium dioxide populations exhibiting broad size distributions are analyzed in a rapid and efficient manner. Finally, the repeatability and reproducibility of the miniaturized platform are investigated with respect to analysis time and separation efficiency.

  5. Factors affecting measurement of channel thickness in asymmetrical flow field-flow fractionation.

    Science.gov (United States)

    Dou, Haiyang; Jung, Euo Chang; Lee, Seungho

    2015-05-01

    Asymmetrical flow field-flow fractionation (AF4) has been considered to be a useful tool for simultaneous separation and characterization of polydisperse macromolecules or colloidal nanoparticles. AF4 analysis requires the knowledge of the channel thickness (w), which is usually measured by injecting a standard with known diffusion coefficient (D) or hydrodynamic diameter (dh). An accurate w determination is a challenge due to its uncertainties arising from the membrane's compressibility, which may vary with experimental condition. In the present study, influence of factors including the size and type of the standard on the measurement of w was systematically investigated. The results revealed that steric effect and the particles-membrane interaction by van der Waals or electrostatic force may result in an error in w measurement.

  6. Asymmetric flow field-flow fractionation in the field of nanomedicine.

    Science.gov (United States)

    Wagner, Michael; Holzschuh, Stephan; Traeger, Anja; Fahr, Alfred; Schubert, Ulrich S

    2014-06-01

    Asymmetric flow field-flow fractionation (AF4) is a widely used and versatile technique in the family of field-flow fractionations, indicated by a rapidly increasing number of publications. It represents a gentle separation and characterization method, where nonspecific interactions are reduced to a minimum, allows a broad separation range from several nano- up to micrometers and enables a superior characterization of homo- and heterogenic systems. In particular, coupling to multiangle light scattering provides detailed access to sample properties. Information about molar mass, polydispersity, size, shape/conformation, or density can be obtained nearly independent of the used material. In this Perspective, the application and progress of AF4 for (bio)macromolecules and colloids, relevant for "nano" medical and pharmaceutical issues, will be presented. The characterization of different nanosized drug or gene delivery systems, e.g., polymers, nanoparticles, micelles, dendrimers, liposomes, polyplexes, and virus-like-particles (VLP), as well as therapeutic relevant proteins, antibodies, and nanoparticles for diagnostic usage will be discussed. Thereby, the variety of obtained information, the advantages and pitfalls of this emerging technique will be highlighted. Additionally, the influence of different fractionation parameters in the separation process is discussed in detail. Moreover, a comprehensive overview is given, concerning the investigated samples, fractionation parameters as membrane types and buffers used as well as the chosen detectors and the corresponding references. The perspective ends up with an outlook to the future.

  7. Asymmetric flow field-flow fractionation as a new approach to analyse iron-(hydr)oxide nanoparticles in soil extracts

    NARCIS (Netherlands)

    Regelink, I.C.; Weng, L.P.; Koopmans, G.F.; Riemsdijk, van W.H.

    2013-01-01

    Iron-(hydr)oxide nanoparticles are important for the sequestration of organic carbon because of their small size and consequently large specific surface area. Therefore, there is an increasing interest in analytical techniques such as asymmetric flow field-flow fractionation (AF4) that allow for a d

  8. Optimization and evaluation of asymmetric flow field-flow fractionation of silver nanoparticles.

    Science.gov (United States)

    Loeschner, Katrin; Navratilova, Jana; Legros, Samuel; Wagner, Stephan; Grombe, Ringo; Snell, James; von der Kammer, Frank; Larsen, Erik H

    2013-01-11

    Asymmetric flow field-flow fractionation (AF(4)) in combination with on-line optical detection and mass spectrometry is one of the most promising methods for separation and quantification of nanoparticles (NPs) in complex matrices including food. However, to obtain meaningful results regarding especially the NP size distribution a number of parameters influencing the separation need to be optimized. This paper describes the development of a separation method for polyvinylpyrrolidone-stabilized silver nanoparticles (AgNPs) in aqueous suspension. Carrier liquid composition, membrane material, cross flow rate and spacer height were shown to have a significant influence on the recoveries and retention times of the nanoparticles. Focus time and focus flow rate were optimized with regard to minimum elution of AgNPs in the void volume. The developed method was successfully tested for injected masses of AgNPs from 0.2 to 5.0 μg. The on-line combination of AF(4) with detection methods including ICP-MS, light absorbance and light scattering was helpful because each detector provided different types of information about the eluting NP fraction. Differences in the time-resolved appearance of the signals obtained by the three detection methods were explained based on the physical origin of the signal. Two different approaches for conversion of retention times of AgNPs to their corresponding sizes and size distributions were tested and compared, namely size calibration with polystyrene nanoparticles (PSNPs) and calculations of size based on AF(4) theory. Fraction collection followed by transmission electron microscopy was performed to confirm the obtained size distributions and to obtain further information regarding the AgNP shape. Characteristics of the absorbance spectra were used to confirm the presence of non-spherical AgNP.

  9. Application of asymmetric flow-field flow fractionation to the characterization of colloidal dispersions undergoing aggregation.

    Science.gov (United States)

    Lattuada, Marco; Olivo, Carlos; Gauer, Cornelius; Storti, Giuseppe; Morbidelli, Massimo

    2010-05-18

    The characterization of complex colloidal dispersions is a relevant and challenging problem in colloidal science. In this work, we show how asymmetric flow-field flow fractionation (AF4) coupled to static light scattering can be used for this purpose. As an example of complex colloidal dispersions, we have chosen two systems undergoing aggregation. The first one is a conventional polystyrene latex undergoing reaction-limited aggregation, which leads to the formation of fractal clusters with well-known structure. The second one is a dispersion of elastomeric colloidal particles made of a polymer with a low glass transition temperature, which undergoes coalescence upon aggregation. Samples are withdrawn during aggregation at fixed times, fractionated with AF4 using a two-angle static light scattering unit as a detector. We have shown that from the analysis of the ratio between the intensities of the scattered light at the two angles the cluster size distribution can be recovered, without any need for calibration based on standard elution times, provided that the geometry and scattering properties of particles and clusters are known. The nonfractionated samples have been characterized also by conventional static and dynamic light scattering to determine their average radius of gyration and hydrodynamic radius. The size distribution of coalescing particles has been investigated also through image analysis of cryo-scanning electron microscopy (SEM) pictures. The average radius of gyration and the average hydrodynamic radius of the nonfractionated samples have been calculated and successfully compared to the values obtained from the size distributions measured by AF4. In addition, the data obtained are also in good agreement with calculations made with population balance equations.

  10. Characterisation of cationic potato starch by asymmetrical flow field-flow fractionation. Influence of ionic strength and degree of substitution.

    Science.gov (United States)

    Santacruz, Stalin

    2014-06-15

    The properties of a paper sheet depend on the absorption together with the physico-chemical properties of additives used in the paper processing. The effect of ionic strength and degree of substitution of cationic potato starch on the elution pattern of asymmetrical flow field-flow fractionation was analysed. The effect of starch derivatisation, in either dry or wet phase, was also investigated. Average molar mass showed no difference between the starches obtained from the two derivatisation processes. Apparent densities showed that dry cationic starch had higher density than wet cationic starch for a hydrodynamic radius between 50 and 100 nm. Elution times of native and three cationic starches increased when the ionic strength increased from 50 to 100mM. No differences in the molar mass among cationic starches with different degree of substitution suggested no degradation due to a derivatisation process. Large sample loads can be used at 100mM without overloading.

  11. Asymmetrical flow field-flow fractionation with on-line detection for drug transfer studies: a feasibility study

    DEFF Research Database (Denmark)

    Hinna, A.; Steiniger, F.; Hupfeld, S.

    2014-01-01

    Knowledge about drug retention within colloidal carriers is of uppermost importance particularly if drug targeting is anticipated. The aim of the present study was to evaluate asymmetrical flow field-flow fractionation (AF4) with on-line UV/VIS drug quantification for its suitability to determine...... to the clinically used photosensitizer temoporfin, was used as a model drug, and two types of large liposomes were studied as a potential model acceptor phase. Efficiency of separation of small donor from large acceptor liposomes by AF4 was evaluated in dependence on the injected lipid mass using two different......-line absorbance measurements was found feasible for the chosen model drug, but careful (re-) evaluation of turbidity effects is crucial for other drug and carrier combinations....

  12. Analysis of liposomes using asymmetrical flow field-flow fractionation: separation conditions and drug/lipid recovery.

    Science.gov (United States)

    Kuntsche, Judith; Decker, Christiane; Fahr, Alfred

    2012-08-01

    Liposomes composed of dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol were analyzed by asymmetrical flow field-flow fractionation coupled with multi-angle laser light scattering. In addition to evaluation of fractionation conditions (flow conditions, sample mass, carrier liquid), radiolabeled drug-loaded liposomes were used to determine the liposome recovery and a potential loss of incorporated drug during fractionation. Neither sample concentration nor the cross-flow gradient distinctly affected the size results but at very low sample concentration (injected mass 5 μg) the fraction of larger vesicles was underestimated. Imbalance in the osmolality between the inner and outer aqueous phase resulted in liposome swelling after dilution in hypoosmotic carrier liquids. In contrast, liposome shrinking under hyperosmotic conditions was barely visible. The liposomes themselves eluted completely (lipid recoveries were close to 100%) but there was a loss of incorporated drugs during separation with a strong dependence on the octanol-water partition coefficient of the drug. Whereas corticosterone (partition coefficient ~2) was washed out more or less completely (recovery about 2%), loss of temoporfin (partition coefficient ~9) was only minor (recovery about 80%). All fractionations were well repeatable under the experimental conditions applied in the present study.

  13. Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry

    NARCIS (Netherlands)

    Helsper, J.P.F.G.; Peters, R.J.B.; Bemmel, M.E.M. van; Rivera, Z.E.H.; Wagner, S.; Kammer, F. von der; Tromp, P.C.; Hofmann, T.; Weigel, S.

    2016-01-01

    Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass spectrometry (IC

  14. Asymmetrical flow field-flow fractionation with multi-angle light scattering detection for the analysis of structured nanoparticles.

    Science.gov (United States)

    Zattoni, Andrea; Rambaldi, Diana Cristina; Reschiglian, Pierluigi; Melucci, Manuela; Krol, Silke; Garcia, Ana Maria Coto; Sanz-Medel, Alfredo; Roessner, Dierk; Johann, Christoph

    2009-12-25

    Synthesis and applications of new functional nanoparticles are topics of increasing interest in many fields of nanotechnology. Chemical modifications of inorganic nanoparticles are often necessary to improve their features as spectroscopic tracers or chemical sensors, and to increase water solubility and biocompatibility for applications in nano-biotechnology. Analysis and characterization of structured nanoparticles are then key steps for their synthesis optimization and final quality control. Many properties of structured nanoparticles are size-dependent. Particle size distribution analysis then provides fundamental analytical information. Asymmetrical flow field-flow fractionation (AF4) with multi-angle light scattering (MALS) detection is able to size-separate and to characterize nanosized analytes in dispersion. In this work we focus on the central role of AF4-MALS to analyze and characterize different types of structured nanoparticles that are finding increasing applications in nano-biotechnology and nanomedicine: polymer-coated gold nanoparticles, fluorescent silica nanoparticles, and quantum dots. AF4 not only size-fractionated these nanoparticles and measured their hydrodynamic radius (r(h)) distribution but it also separated them from the unbound, relatively low-M(r) components of the nanoparticle structures which were still present in the sample solution. On-line MALS detection on real-time gave the gyration radius (r(g)) distribution of the fractionated nanoparticles. Additional information on nanoparticle morphology was then obtained from the r(h)/r(g) index. Stability of the nanoparticle dispersions was finally investigated. Aggregation of the fluorescent silica nanoparticles was found to depend on the concentration at which they were dispersed. Partial release of the polymeric coating from water-soluble QDs was found when shear stress was induced by increasing flowrates during fractionation.

  15. Combining asymmetrical flow field-flow fractionation with light-scattering and inductively coupled plasma mass spectrometric detection for characterization of nanoclay used in biopolymer nanocomposites

    DEFF Research Database (Denmark)

    Schmidt, Bjørn; Petersen, Jens Højslev; Koch, C. Bender

    2009-01-01

    of polylactide (PLA) with 5% Cloisite®30B (a derivatized montmorillonite clay) as a filler. Based on AF4-MALS analyses, we found that particles ranging from 50 to 800 nm in radius indeed migrated into the 95% ethanol used as a food simulant. The full hyphenated AF4-MALS-ICP-MS system showed, however, that none...... of clay nanoparticulates, an analytical system combining asymmetrical flow field-flow fractionation (AF4) with multi-angle light-scattering detection (MALS) and inductively coupled plasma mass spectrometry (ICP-MS) is presented. In a migration study, we tested a biopolymer nanocomposite consisting...

  16. Feasibility of asymmetric flow field-flow fractionation coupled to ICP-MS for the characterization of wear metal particles and metalloproteins in biofluids from hip replacement patients

    DEFF Research Database (Denmark)

    Löschner, Katrin; Harrington, Chris F.; Kearney, Jacque-Lucca;

    2015-01-01

    or other elements, but the current analytical methods used to investigate the processes involved do not provide sufficient information to understand the size or composition of the wear particles generated in vivo. In this qualitative feasibility study, asymmetric flow field-flow fractionation (AF4) coupled...... and give an indication of particle size, providing useful pathological indices. As such, the methods indicate a new way forward for in vivo investigation of the processes which lead to tissue necrosis and hip loosening in patients with MoM hip replacements....

  17. Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS

    DEFF Research Database (Denmark)

    Löschner, Katrin; Navratilova, Jana; Købler, Carsten;

    2013-01-01

    A method of analysis of silver nanoparticles (AgNPs) in chicken meat was developed. The homogenized chicken meat sample, which was spiked with AgNPs, was subjected to enzymolysis by Proteinase K for 40 min at 37 °C. Transmission electron microscopy and inductively coupled plasma mass spectrometry...... of the AgNPs took place during the sample preparation stage. The digestate was injected into the asymmetric flow field flow fractionation (AF(4)) -ICP-MS system, which enabled fractionation of nanoparticles from the remaining meat matrix, and resulted in one large peak in the fractograms as well as two...... (ICP-MS) in single particle mode were used to characterize the number-based size distribution of AgNPs in the meat digestate. Because similar size distributions were found in the meat digestate and in the aqueous suspension of AgNPs used for spiking the meat, it was shown that no detectable dissolution...

  18. Asymmetric flow-field flow fractionation-multidetection coupling for assessing colloidal copper in drain waters from a Bordeaux wine-growing area.

    Science.gov (United States)

    El Hadri, Hind; Lespes, Gaëtane; Chéry, Philippe; Potin-Gautier, Martine

    2014-02-01

    The objective of this study was to show that on-line asymmetric flow-field flow fractionation (AFFFF)-multidetection coupling is useful for studying environmental colloids in a qualitative and quantitative way. The utility of the technique was illustrated by assessing the colloidal fraction of the copper that was extracted from the soil, transferred to an aqueous phase and then transported by drain waters in a wine-growing area. To determine the size and composition of the colloids, AFFFF was coupled to UV, multi-angle light scattering and inductively coupled plasma mass spectrometry detectors. Colloidal copper represents between 20 and 60% of the total copper in the sub 450 nm of drain waters. Copper is mainly associated with organic-rich colloids with a size below 10 nm. It is also found in organo-mineral populations (as clay or (oxy)hydroxides), with sizes ranging between 10 and 450 nm.

  19. Asymmetric Flow Field Flow Fractionation of Aqueous C60 Nanoparticles with Size Determination by Dynamic Light Scattering and Quantification by Liquid Chromatography Atmospheric Pressure Photo-Ionization Mass Spectrometry

    Science.gov (United States)

    A size separation method was developed for aqueous C60 fullerene aggregates (aqu/C60) using asymmetric flow field flow fractionation (AF4) coupled to a dynamic light scattering detector in flow through mode. Surfactants, which are commonly used in AF4, were avoided as they may al...

  20. Size separations of starch of different botanical origin studied by asymmetrical-flow field-flow fractionation and multiangle light scattering.

    Science.gov (United States)

    Wahlund, Karl-Gustav; Leeman, Mats; Santacruz, Stalin

    2011-02-01

    Asymmetrical-flow field-flow fractionation combined with multiangle light scattering and refractive index detection has been revealed to be a powerful tool for starch characterization. It is based on size separation according to the hydrodynamic diameter of the starch components. Starch from a wide range of different botanical sources were studied, including normal starch and high-amylose and high-amylopectin starch. The starch was dissolved by heat treatment at elevated pressure in a laboratory autoclave. This gave clear solutions with no granular residues. Amylose retrogradation was prevented by using freshly dissolved samples. Programmed cross flow starting at 1.0 mL min(-1) and decreasing exponentially with a half-life of 4 min was utilised. The starches showed two size populations representing mainly amylose and mainly amylopectin with an overlapping region where amylose and amylopectin were possibly co-eluted. Most of the first population had molar masses below 10(6) g mol(-1), and most of the second size population had molar masses above 10(7) g mol(-1). Large differences were found in the relative amounts of the two populations, the molar mass, and hydrodynamic diameters, depending on the plant source and its varieties.

  1. Multivariate DoE Optimization of Asymmetric Flow Field Flow Fractionation Coupled to Quantitative LC-MS/MS for Analysis of Lipoprotein Subclasses

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Kuklenyik

    2015-02-01

    Full Text Available In this report we demonstrate a practical multivariate design of experiment (DoE approach for asymmetric flow field-flow fractionation (AF4 method optimization using separation of lipoprotein subclasses as an example. First, with the aid of commercially available software, we built a full factorial screening design where the theoretical outcomes were calculated by applying established formulas that govern AF4 channel performance for a 5–35 nm particle size range of interest for lipid particles. Second, using the desirable ranges of instrumental parameters established from theoretical optimization, we performed fractional factorial DoE for AF4 separation of pure albumin and ferritin with UV detection to narrow the range of instrumental parameters and allow optimum size resolution while minimizing losses from membrane immobilization. Third, the optimal range of conditions were tested using response surface DoE for sub-fractionation of high and low density lipoproteins (HDL and LDL in human serum, where the recovery of the analytes were monitored by fraction collection and isotope-dilution LC-MS/MS analysis of each individual fraction for cholesterol and apolipoproteins (ApoA-1 and ApoB-100. Our results show that DoE is an effective tool in combining AF4 theoretical knowledge and experimental data in finding the most optimal set of AF4 instrumental parameters for quantitative coupling with LC-MS/MS measurements.

  2. Fractionation and Characterization of High Aspect Ratio Gold Nanorods Using Asymmetric-Flow Field Flow Fractionation and Single Particle Inductively Coupled Plasma Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Thao M. Nguyen

    2015-07-01

    Full Text Available Gold nanorods (GNRs are of particular interest for biomedical applications due to their unique size-dependent longitudinal surface plasmon resonance band in the visible to near-infrared. Purified GNRs are essential for the advancement of technologies based on these materials. Used in concert, asymmetric-flow field flow fractionation (A4F and single particle inductively coupled mass spectrometry (spICP-MS provide unique advantages for fractionating and analyzing the typically complex mixtures produced by common synthetic procedures. A4F fractions collected at specific elution times were analyzed off-line by spICP-MS. The individual particle masses were obtained by conversion of the ICP-MS pulse intensity for each detected particle event, using a defined calibration procedure. Size distributions were then derived by transforming particle mass to length assuming a fixed diameter. The resulting particle lengths correlated closely with ex situ transmission electron microscopy. In contrast to our previously reported observations on the fractionation of low-aspect ratio (AR GNRs (AR < 4, under optimal A4F separation conditions the results for high-AR GNRs of fixed diameter (≈20 nm suggest normal, rather than steric, mode elution (i.e., shorter rods with lower AR generally elute first. The relatively narrow populations in late eluting fractions suggest the method can be used to collect and analyze specific length fractions; it is feasible that A4F could be appropriately modified for industrial scale purification of GNRs.

  3. Characterization of oxidized tannins: comparison of depolymerization methods, asymmetric flow field-flow fractionation and small-angle X-ray scattering.

    Science.gov (United States)

    Vernhet, Aude; Dubascoux, Stéphane; Cabane, Bernard; Fulcrand, Hélène; Dubreucq, Eric; Poncet-Legrand, Céline

    2011-09-01

    Condensed tannins are a major class of plant polyphenols. They play an important part in the colour and taste of foods and beverages. Due to their chemical reactivity, tannins are not stable once extracted from plants. A number of chemical reactions can take place, leading to structural changes of the native structures to give so-called derived tannins and pigments. This paper compares results obtained on native and oxidized tannins with different techniques: depolymerization followed by high-performance liquid chromatography analysis, small-angle X-ray scattering (SAXS) and asymmetric flow field-flow fractionation (AF4). Upon oxidation, new macromolecules were formed. Thioglycolysis experiments showed no evidence of molecular weight increase, but thioglycolysis yields drastically decreased. When oxidation was performed at high concentration (e.g., 10 g L(-1)), the weight average degree of polymerization determined from SAXS increased, whereas it remained stable when oxidation was done at low concentration (0.1 g L(-1)), indicating that the reaction was intramolecular, yet the conformations were different. Differences in terms of solubility were observed; ethanol being a better solvent than water. We also separated soluble and non-water-soluble species of a much oxidized fraction. Thioglycolysis showed no big differences between the two fractions, whereas SAXS and AF4 showed that insoluble macromolecules have a weight average molecular weight ten times higher than the soluble ones.

  4. Combining asymmetrical flow field-flow fractionation with on- and off-line fluorescence detection to examine biodegradation of riverine dissolved and particulate organic matter.

    Science.gov (United States)

    Lee, Sang Tak; Yang, Boram; Kim, Jin-Yong; Park, Ji-Hyung; Moon, Myeong Hee

    2015-08-28

    This study demonstrated that asymmetrical flow field-flow fractionation (AF4) coupled with on-line UV and fluorescence detection (FLD) and off-line excitation-emission matrix (EEM) fluorescence spectroscopy can be employed to analyze the influence of microbial metabolic activity on the consumption and production of freshwater organic matter. With the AF4 system, organic matter is on-line enriched during a focusing/relaxation period, which is an essential process prior to separation. Size-fractionated chromophoric and fluorophoric organic materials were simultaneously monitored during the 30-min AF4 separation process. Two fractions of different sizes (dissolved organic matter (DOM) and particulate organic matter (POM)) of freshwater samples from three locations (up-, mid-, and downstream) along the Han River basin of Korea were incubated with the same inoculum for 14 days to analyze fraction-specific alterations in optical properties using AF4-UV-FLD. A comparison of AF4 fractograms obtained from pre- and post-incubation samples revealed that POM-derived DOM were more susceptible to microbial metabolic activity than was DOM. Preferential microbial consumption of protein-like DOM components concurred with enhanced peaks of chromophoric and humic-like fluorescent components, presumably formed as by-products of microbial processing. AF4-UV-FLD combined with off-line identification of microbially processed components using EEM fluorescence spectroscopy provides a powerful tool to study the relationship between microbial activity and composition as well as biodegradability of DOM and POM-derived DOM from different origins, especially for the analysis of chromophoric and fluorophoric organic matter that are consumed and produced by microbial metabolic activity. The proposed AF4 system can be applied to organic matter in freshwater samples having low concentration range (0.3-2.5ppm of total organic carbon) without a pre-concentration procedure.

  5. Feasibility of asymmetrical flow field-flow fractionation as a method for detecting protective antigen by direct recognition of size-increased target-captured nanoprobes.

    Science.gov (United States)

    Shin, Kayeong; Choi, Jaeyeong; Cho, Jun-Haeng; Yoon, Moon-Young; Lee, Seungho; Chung, Hoeil

    2015-11-27

    Asymmetrical flow field-flow fractionation (AF4) was evaluated as a potential analytical method for detection of a protective antigen (PA), an Anthrax biomarker. The scheme was based on the recognition of altered AF4 retention through the generation of the size-increased Au nanoparticle probes as a result of PA binding, in which a PA-selective peptide was conjugated on the probe surface. In the visible absorption-based AF4 fractograms, the band position shifted to a longer retention time as the PA concentration increased due to the presence of probe bound with PAs. The shift was insignificant when the concentration was relatively low at 84.3pM. To improve sensitivity, two separate probes conjugated with two different peptides able to bind on different PA epitopes were used together. The band shift then became distinguishable even at 84.3pM of PA sample. The formation of larger PA-probe inter-connected species using the dual-probe system was responsible for the enhanced band shift. In parallel, the feasibility of surface-enhanced Raman scattering (SERS) as a potential AF4 detection method was also evaluated. In the off-line SERS fractogram constructed using fractions collected during AF4 separation, a band shift was also observed for the 84.3pM PA sample, and the band intensity was higher when using the dual-probe system. The combination of AF4 and SERS is promising for the detection of PA and will become a potential tool if the reproducibility of SERS measurement is improved.

  6. Characterization of cationic polymers by asymmetric flow field-flow fractionation and multi-angle light scattering-A comparison with traditional techniques.

    Science.gov (United States)

    Wagner, Michael; Pietsch, Christian; Tauhardt, Lutz; Schallon, Anja; Schubert, Ulrich S

    2014-01-17

    In the field of nanomedicine, cationic polymers are the subject of intensive research and represent promising carriers for genetic material. The detailed characterization of these carriers is essential since the efficiency of gene delivery strongly depends on the properties of the used polymer. Common characterization methods such as size exclusion chromatography (SEC) or mass spectrometry (MS) suffer from problems, e.g. missing standards, or even failed for cationic polymers. As an alternative, asymmetrical flow field-flow fractionation (AF4) was investigated. Additionally, analytical ultracentrifugation (AUC) and (1)H NMR spectroscopy, as well-established techniques, were applied to evaluate the results obtained by AF4. In this study, different polymers of molar masses between 10 and 120kgmol(-1) with varying amine functionalities in the side chain or in the polymer backbone were investigated. To this end, some of the most successful gene delivery agents, namely linear poly(ethylene imine) (LPEI) (only secondary amines in the backbone), branched poly(ethylene imine) (B-PEI) (secondary and tertiary amino groups in the backbone, primary amine end groups), and poly(l-lysine) (amide backbone and primary amine side chains), were characterized. Moreover, poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA), poly(2-(amino)ethyl methacrylate) (PAEMA), and poly(2-(tert-butylamino)ethyl methacrylate) (PtBAEMA) as polymers with primary, secondary, and tertiary amines in the side chain, have been investigated. Reliable results were obtained for all investigated polymers by AF4. In addition, important factors for all methods were evaluated, e.g. the influence of different elution buffers and AF4 membranes. Besides this, the correct determination of the partial specific volume and the suppression of the polyelectrolyte effect are the most critical issues for AUC investigations.

  7. Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Helsper, Johannes P F G; Peters, Ruud J B; van Bemmel, Margaretha E M; Rivera, Zahira E Herrera; Wagner, Stephan; von der Kammer, Frank; Tromp, Peter C; Hofmann, Thilo; Weigel, Stefan

    2016-09-01

    Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass spectrometry (ICPMS) for chemical characterization. The aF4-ICPMS conditions were optimised and validated for linearity, limit of detection, recovery, repeatability and reproducibility, all indicating good performance. Multi-element detection with aF4-ICPMS showed that some commercial pigments contained zirconium co-eluting with titanium in aF4. The other two TiMs, NM103 and NM104, contained aluminium as integral part of the titanium peak eluting in aF4. The materials were characterised using various size determination techniques: retention time in aF4, aF4 hyphenated with multi-angle laser light spectrometry (MALS), single particle ICPMS (spICPMS), scanning electron microscopy (SEM) and particle tracking analysis (PTA). PTA appeared inappropriate. For the other techniques, size distribution patterns were quite similar, i.e. high polydispersity with diameters from 20 to >700 nm, a modal peak between 200 and 500 nm and a shoulder at 600 nm. Number-based size distribution techniques as spICPMS and SEM showed smaller modal diameters than aF4-UV, from which mass-based diameters are calculated. With aF4-MALS calculated, light-scattering-based "diameters of gyration" (Øg) are similar to hydrodynamic diameters (Øh) from aF4-UV analyses and diameters observed with SEM, but much larger than with spICPMS. A Øg/Øh ratio of about 1 indicates that the TiMs are oblate spheres or fractal aggregates. SEM observations confirm the latter structure. The rationale for differences in modal peak diameter is discussed.

  8. Characterization of ultrahigh-molecular weight cationic polyacrylamide using frit-inlet asymmetrical flow field-flow fractionation and multi-angle light scattering.

    Science.gov (United States)

    Woo, Sohee; Lee, Ju Yong; Choi, Woonjin; Moon, Myeong Hee

    2016-01-15

    In this study, frit inlet asymmetrical flow field-flow fractionation (FlFFF) with multi-angle light scattering (MALS) and differential refractive index (DRI) detection is utilized for size separation, determination of molecular weight (MW), and conformation of ultrahigh-MW (10(7)-10(9) g/mol) cationic polyacrylamides (C-PAMs), a class of water-soluble copolymers based on acrylamide and vinyl-type comonomers with quaternary ammonium cations that are widely used in wastewater treatment and in paper industries. Linear and branched C-PAM copolymers prepared in two different polymerization methods (solution and emulsion) from varying amounts of crosslinking agent and initiator were size fractionated by FlFFF with field-programming. It was found experimentally that the linear copolymers from both polymerization methods were less than 10(8) g/mol in MW with compact, nearly spherical structures, while the branched C-PAM copolymers from the emulsion polymerization showed a significant increase in average MW up to ∼ 10(9)g/mol, which was about 20-fold greater than those from the solution method, and the branched copolymers had more compact or shrunken conformations. While both linear and branched copolymers less than 10(8) g/mol MW were well resolved in an increasing order of MW (normal mode), it was noted that branched copolymers prepared through emulsion polymerization exhibited significantly larger MWs of 10(8-)10(9) g/mol and eluted in the steric/hyperlayer mode, in which the elution order is reversed in an extreme run condition (strong initial field strength followed by a fast field decay during programming).

  9. Feasibility of asymmetric flow field-flow fractionation coupled to ICP-MS for the characterization of wear metal particles and metalloproteins in biofluids from hip replacement patients.

    Science.gov (United States)

    Loeschner, Katrin; Harrington, Chris F; Kearney, Jacque-Lucca; Langton, David J; Larsen, Erik H

    2015-06-01

    Hip replacements are used to improve the quality of life of people with orthopaedic conditions, but the use of metal-on-metal (MoM) arthroplasty has led to poor outcomes for some patients. These problems are related to the generation of micro- to nanosized metal wear particles containing Cr, Co or other elements, but the current analytical methods used to investigate the processes involved do not provide sufficient information to understand the size or composition of the wear particles generated in vivo. In this qualitative feasibility study, asymmetric flow field-flow fractionation (AF(4)) coupled with inductively coupled plasma mass spectrometry (ICP-MS) was used to investigate metal protein binding and the size and composition of wear metal particles present in serum and hip aspirates from MoM hip replacement patients. A well-established HPLC anion exchange chromatography (AEC) separation system coupled to ICP-MS was used to confirm the metal-protein associations in the serum samples. Off-line single particle ICP-MS (spICP-MS) analysis was used to confirm the approximate size distribution indicated by AF(4) of the wear particles in hip aspirates. In the serum samples, AF(4) -ICP-MS suggested that Cr was associated with transferrin (Tf) and Co with albumin (Alb) and an unidentified species; AEC-ICP-MS confirmed these associations and also indicated an association of Cr with Alb. In the hip aspirate sample, AF(4)-ICP-MS suggested that Cr was associated with Alb and Tf and that Co was associated with Alb and two unidentified compounds; AEC analysis confirmed the Cr results and the association of Co with Alb and a second compound. Enzymatic digestion of the hip aspirate sample, followed by separation using AF(4) with detection by UV absorption (280 nm), multi-angle light scattering and ICP-MS, suggested that the sizes of the Cr-, Co- and Mo-containing wear particles in a hip aspirate sample were in the range 40-150 nm. Off-line spICP-MS was used to confirm these

  10. First steps towards a generic sample preparation scheme for inorganic engineered nanoparticles in a complex matrix for detection, characterization, and quantification by asymmetric flow-field flow fractionation coupled to multi-angle light scattering and ICP-MS

    DEFF Research Database (Denmark)

    Wagner, Stephan; Legros, Samuel; Löschner, Katrin

    2015-01-01

    The applicability of a multi-step generic procedure to systematically develop sample preparation methods for the detection, characterization, and quantification of inorganic engineered nanoparticles (ENPs) in a complex matrix was successfully demonstrated. The research focused on the optimization...... content by asymmetric flow-field flow fractionation coupled to a multi-angle light scattering detector and an inductively coupled plasma mass spectrometer. Following the proposed generic procedure SiO2-ENPs were separated from a tomato soup. Two potential sample preparation methods were tested these being...

  11. Accurate Size and Size-Distribution Determination of Polystyrene Latex Nanoparticles in Aqueous Medium Using Dynamic Light Scattering and Asymmetrical Flow Field Flow Fractionation with Multi-Angle Light Scattering

    Directory of Open Access Journals (Sweden)

    Shinichi Kinugasa

    2012-01-01

    Full Text Available Accurate determination of the intensity-average diameter of polystyrene latex (PS-latex by dynamic light scattering (DLS was carried out through extrapolation of both the concentration of PS-latex and the observed scattering angle. Intensity-average diameter and size distribution were reliably determined by asymmetric flow field flow fractionation (AFFFF using multi-angle light scattering (MALS with consideration of band broadening in AFFFF separation. The intensity-average diameter determined by DLS and AFFFF-MALS agreed well within the estimated uncertainties, although the size distribution of PS-latex determined by DLS was less reliable in comparison with that determined by AFFFF-MALS.

  12. In-house validation of a method for determination of silver nanoparticles in chicken meat based on asymmetric flow field-flow fractionation and inductively coupled plasma mass spectrometric detection

    DEFF Research Database (Denmark)

    Löschner, Katrin; Navratilova, Jana; Grombe, Ringo;

    2015-01-01

    spectrometric detection (AF4-ICP-MS) was applied for quantitative analysis of silver nanoparticles (AgNPs) in a chicken meat matrix following enzymatic sample preparation. For the first time an analytical validation of nanoparticle detection in a food matrix by AF4-ICP-MS has been carried out and the results......Nanomaterials are increasingly used in food production and packaging, and validated methods for detection of nanoparticles (NPs) in foodstuffs need to be developed both for regulatory purposes and product development. Asymmetric flow field-flow fractionation with inductively coupled plasma mass...... showed repeatable and intermediately reproducible determination of AgNP mass fraction and size. The findings demonstrated the potential of AF4-ICP-MS for quantitative analysis of NPs in complex food matrices for use in food monitoring and control. The accurate determination of AgNP size distribution...

  13. Elemental ratios for characterization of quantum-dots populations in complex mixtures by asymmetrical flow field-flow fractionation on-line coupled to fluorescence and inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Menendez-Miranda, Mario; Fernandez-Arguelles, Maria T.; Costa-Fernandez, Jose M., E-mail: jcostafe@uniovi.es; Encinar, Jorge Ruiz; Sanz-Medel, Alfredo, E-mail: asm@uniovi.es

    2014-08-11

    Highlights: • The hyphenated system allows unequivocal identification of nanoparticle populations. • AF4 separation permitted detection of unexpected nanosized species in a sample. • ICP-QQQ provides elemental ratios with adequate accuracy in every nanoparticle. • Purity and chemical composition of different quantum dot samples were assessed. - Abstract: Separation and identification of nanoparticles of different composition, with similar particle diameter, coexisting in heterogeneous suspensions of polymer-coated CdSe/ZnS quantum dots (QDs) have been thoroughly assessed by asymmetric flow field-flow fractionation (AF4) coupled on-line to fluorescence and inductively coupled plasma mass spectrometry (ICPMS) detectors. Chemical characterization of any previously on-line separated nanosized species was achieved by the measurement of the elemental molar ratios of every element involved in the synthesis of the QDs, using inorganic standards and external calibration by flow injection analysis (FIA). Such elemental molar ratios, strongly limited so far to pure single nanoparticles suspensions, have been achieved with adequate accuracy by coupling for the first time an ICP-QQQ instrument to an AF4 system. This hyphenation turned out to be instrumental to assess the chemical composition of the different populations of nanoparticles coexisting in the relatively complex mixtures, due to its capabilities to detect the hardly detectable elements involved in the synthesis. Interestingly such information, complementary to that obtained by fluorescence, was very valuable to detect and identify unexpected nanosized species, present at significant level, produced during QDs synthesis and hardly detectable by standard approaches.

  14. Asymmetric Flow-Field Flow Fractionation Hyphenated ICP-MS as an Alternative to Cloud Point Extraction for Quantification of Silver Nanoparticles and Silver Speciation: Application for Nanoparticles with a Protein Corona.

    Science.gov (United States)

    Mudalige, Thilak K; Qu, Haiou; Linder, Sean W

    2015-07-21

    Production and application of nanoparticles in consumer products is at an all-time high due to the emerging field of nanotechnology. Direct detection and quantification of trace levels of nanoparticles within consumer products is very challenging and problematic. Although multiple methodologies are available for this purpose, each method has its own set of limitations. Herein, we developed an analytical platform consisting of asymmetric flow-field flow fractionation (AF4) coupled with inductively coupled plasma mass spectroscopy (ICP-MS) for the speciation and quantification of silver ions and silver nanoparticles at the ng/kg level (ppt). AF4 is utilized to concentrate the nanoparticles, and ICP-MS acts as the detector. The protein corona that forms upon exposure of nanoparticles to bovine serum albumin was utilized as a nanoparticle stabilization and AF4 recovery enhancement mechanism. Speciation of silver ions and nanoparticles was achieved with the assistance of penicillamine as a complexation ligand. The effect of nanoparticle size, surface coating, and ionization state toward the detection and quantification of the developed methodology was evaluated. The detection limit was found to be 4 ng/kg with the application of a 5 mL sample loop. Further application of this developed methodology on environmentally relevant samples was demonstrated by the analysis of Arkansas River water spiked with silver nanoparticles and nanoparticle spiked into humic acid solution (50 mg/L) at an environmentally relevant level.

  15. Unraveling ultrafiltration of polysaccharides with flow field flow fractionation

    NARCIS (Netherlands)

    Ven, van de Wilbert; Pünt, Ineke; Kemperman, Antoine; Wessling, Matthias

    2009-01-01

    We used flow field flow fractionation (flow-FFF) coupled with multi-angle-light scattering (MALS) to study the conformation of alginate molecules in ultrapure water and in a 10 mM salt solution. In particular, we investigated the behavior of alginates under filtration conditions. The flow-FFF result

  16. Field flow fractionation techniques to explore the "nano-world".

    Science.gov (United States)

    Contado, Catia

    2017-01-23

    Field flow fractionation (FFF) techniques are used to successfully characterize several nanomaterials by sizing nano-entities and producing information about the aggregation/agglomeration state of nanoparticles. By coupling FFF techniques to specific detectors, researchers can determine particle-size distributions (PSDs), expressed as mass-based or number-based PSDs. This review considers FFF applications in the food, biomedical, and environmental sectors, mostly drawn from the past 4 y. It thus underlines the prominent role of asymmetrical flow FFF within the FFF family. By concisely comparing FFF techniques with other techniques suitable for sizing nano-objects, the advantages and the disadvantages of these instruments become clear. A consideration of select recent publications illustrates the state of the art of some lesser-known FFF techniques and innovative instrumental set-ups.

  17. Multielement characterization of metal-humic substances complexation by size exclusion chromatography, asymmetrical flow field-flow fractionation, ultrafiltration and inductively coupled plasma-mass spectrometry detection: a comparative approach.

    Science.gov (United States)

    Bolea, E; Gorriz, M P; Bouby, M; Laborda, F; Castillo, J R; Geckeis, H

    2006-10-06

    The use of three different separation techniques, ultrafiltration (UF), high performance size exclusion chromatography (HPSEC) and asymmetrical flow field-flow fractionation (AsFlFFF), for the characterization of a compost leachate is described. The possible interaction of about 30 elements with different size fractions of humic substances (HS) has been investigated coupling these separation techniques with UV-vis absorption spectrophotometry and inductively coupled plasma-mass spectrometry (ICP-MS) as detection techniques. The organic matter is constituted by a polydisperse mixture of humic substances ranging from low molecular weights (around 1kDa) to significantly larger entities. Elements can be classified into three main groups with regard to their interaction with HS. The first group is constituted by primarily the monovalent alkaline metal ions and anionic species like B, W, Mo, As existing as oxyanions all being not significantly associated to HS. The second group consists of elements that are at least partly associated to a smaller HS size fraction (such as Ni, Cu, Cr and Co). A third group of mainly tri- and tetravalent metal ions like Al, Fe, the lanthanides, Sn and Th are rather associated to larger-sized HS fractions. The three separation techniques provide a fairly consistent size classification for most of the metal ions, even though slight disagreements were observed. The number-average molecular weight (Mn), the weight-average molecular weight (Mw) and the polydispersity (rho) parameters have been calculated both from AsFlFFF and HPSEC experiments and compared for HS and some metal-HS species. Differences in values can be partly explained by an overloading effect observed in the AsFlFFF experiments induced by electrostatic repulsion effects in the low ionic strength, high pH carrier solution. Size information obtained from ultrafiltration is not as resolved as for the other methods. Molecular weight cut-offs (MWCO) of the individual filter

  18. The Application of Asymmetric Flow Field-Flow Fractionation in Nanomaterial and Biopolymers%非对称流场流分离技术在纳米材料及生物分子表征方面的应用

    Institute of Scientific and Technical Information of China (English)

    全灿; 刘攀攀; 金君素

    2013-01-01

    Field-flow fractionation is one of the most versatile separation techniques in the field of analytical separation sciences; it can separate, characterize and purify nanoparticles and proteins. It combines the effects of a laminar flow profile with an exponential concentration profile of analyte components caused by their interactions with a physical field applied perpendicular to the flow of a carrier liquid, and can determine the size, the size distribution and molecular weight distribution of the nanoparticles. Flow Field-flow fractionation provides a continuous and high-resolution separation, and becomes more and more popular. The classification of field-flow fractionation and its basic principle and applications of asymmetric flow field-flow fractionation are introduced. Finally the development tendency of this technology is summarized.%场流分离作为一类分离技术可分离、提纯和收集流体中的悬浮物微粒,它是将流体与外场联合作用于待分离物质,利用样品质量、体积和密度等性质的差异实现分离,然后利用分离物质的保留性质来确定样品颗粒粒径及分布、分子量等性质.其中非对称流场流分离能够提供连续的、高分辨率的分离,近年来越来越受到科研人员的欢迎.本文介绍了场流分离的分类及其原理,重点介绍了非对称流场流分离的原理及其应用,包括非对称流场流分离的影响因素及与其他分离技术的比较;最后总结了该技术的发展趋势.

  19. FFF 92: Third international symposium on field-flow fractionation

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This is a collection of abstracts from the Third International Symposium on Field-Flow Fractionation. Topics were covered in the areas of environmental analysis, pharmaceutical applications, polymer analysis, particle characterization, and theory and optimization. Individual articles are abstracted and indexed separately.

  20. Field-flow fractionation of cells with chemiluminescence detection.

    Science.gov (United States)

    Melucci, Dora; Roda, Barbara; Zattoni, Andrea; Casolari, Sonia; Reschiglian, Pierluigi; Roda, Aldo

    2004-11-12

    Field-flow fractionation is a separation technique characterized by a retention mechanism which makes it suitable for sorting cells over a short analysis time, with low sample carry-over and preserving cell viability. Thanks to its high sensitivity, chemiluminescence detection is suitable for the quantification of just a few cells expressing chemiluminescence or bioluminescence. In this work, different formats for coupling gravitational field-flow fractionation and chemiluminescence detection are explored to achieve ultra-sensitive cell detection in the framework of cell sorting. The study is carried out using human red blood cells as model sample. The best performance is obtained with the on-line coupling format, performed in post-column flow-injection mode. Red cells are isolated from diluted whole human blood in just a few minutes and detected using the liquid phase chemiluminescent reaction of luminol catalysed by the red blood cell heme. The limit of detection is a few hundred injected cells. This is lower than the limit of detection usually achieved by means of conventional colorimetric/turbidimetric methods, and it corresponds to a red blood cell concentration in the injected sample of five orders of magnitude lower than in whole blood.

  1. Field-Flow Fractionation of Carbon Nanotubes and Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    John P. Selegue

    2011-11-17

    During the grant period, we carried out FFF studies of carbonaceous soot, single-walled and multi-walled carbon nanotubes, carbon nano-onions and polyoxometallates. FFF alone does not provide enough information to fully characterize samples, so our suite of characterization techniques grew to include light scattering (especially Photon Correlation Spectroscopy), scanning and transmission electron microscopy, thermogravimetric analysis and spectroscopic methods. We developed convenient techniques to deposit and examine minute FFF fractions by electron microscopy. In collaboration with Arthur Cammers (University of Kentucky), we used Flow Field-Flow Fractionation (Fl-FFF) to monitor the solution-phase growth of keplerates, a class of polyoxometallate (POM) nanoparticles. We monitored the evolution of Mo-POM nanostructures over the course of weeks by by using flow field-flow fractionation and corroborated the nanoparticle structures by using transmission electron microscopy (TEM). Total molybdenum in the solution and precipitate phases was monitored by using inductively coupled plasma analyses, and total Mo-POM concentration by following the UV-visible spectra of the solution phase. We observe crystallization-driven formation of (Mo132) keplerate and solution phase-driven evolution of structurally related nanoscopic species (3-60 nm). FFF analyses of other classes of materials were less successful. Attempts to analyze platelets of layered materials, including exfoliated graphite (graphene) and TaS2 and MoS2, were disappointing. We were not able to optimize flow conditions for the layered materials. The metal sulfides react with the aqueous carrier liquid and settle out of suspension quickly because of their high density.

  2. Asymmetric flow networks

    OpenAIRE

    Olaizola Ortega, María Norma; Valenciano Llovera, Federico

    2012-01-01

    This paper provides a new model of network formation that bridges the gap between the two benchmark models by Bala and Goyal, the one-way flow model, and the two-way flow model, and includes both as particular extreme cases. As in both benchmark models, in what we call an "asymmetric flow" network a link can be initiated unilaterally by any player with any other, and the flow through a link towards the player who supports it is perfect. Unlike those models, in the opposite direction there is ...

  3. Asymmetric reactions in continuous flow

    Directory of Open Access Journals (Sweden)

    Xiao Yin Mak

    2009-04-01

    Full Text Available An overview of asymmetric synthesis in continuous flow and microreactors is presented in this review. Applications of homogeneous and heterogeneous asymmetric catalysis as well as biocatalysis in flow are discussed.

  4. Analysis of liposomes using asymmetrical flow field-flow fractionation

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Decker, Christiane; Fahr, Alfred

    2012-01-01

    completely (lipid recoveries were close to 100%) but there was a loss of incorporated drugs during separation with a strong dependence on the octanol-water partition coefficient of the drug. Whereas corticosterone (partition coefficient ~2) was washed out more or less completely (recovery about 2%), loss...

  5. Quantitative Characterization of Gold Nanoparticles by Field-Flow Fractionation Coupled Online with Light Scattering Detection and Inductively Coupled Plasma Mass Spectrometry

    DEFF Research Database (Denmark)

    Schmidt, Bjørn; Löschner, Katrin; Hadrup, Niels

    2011-01-01

    An analytical platform coupling asymmetric flow field-flow fractionation (AF4) with multiangle light scattering (MALS), dynamic light scattering (DLS), and inductively coupled plasma mass spectrometry (ICPMS) was established and used for separation and quantitative determination of size and mass ...

  6. Far-field Noise and Near-field Flow Validation of Tandem Cylinder Flow Simulations

    OpenAIRE

    今村, 太郎; Imamura, Taro; 平井, 亨; Hirai, Toru; 榎本, 俊治; Enomoto, Shunji; 山本, 一臣; Yamamoto, Kazuomi

    2012-01-01

    In this paper, flow around tandem cylinder is solved using UPACS-LES code developed in JAXA. Several key issues for unsteady flow simulation are investigated by changing the parameters, such as turbulence modeling and grid density. The flow field is compared with the experiment for both far- and near- field. Current results indicate that the calculation of the boundary layer and the shear layer around the cylinders plays important role especially to the near field flow structure while it is l...

  7. On the flow magnitude and field-flow alignment at Earth's core surface

    DEFF Research Database (Denmark)

    Finlay, Chris; Amit, H.

    We present a method to estimate the typical magnitude of flow close toEarth's core surface based on observational knowledge of the maingeomagnetic field (MF) and its secular variation (SV), together withprior information concerning field-flow alignment gleaned from numericaldynamo models. An expr......We present a method to estimate the typical magnitude of flow close toEarth's core surface based on observational knowledge of the maingeomagnetic field (MF) and its secular variation (SV), together withprior information concerning field-flow alignment gleaned from numericaldynamo models....... An expression linking the core surface flow magnitude tospherical harmonic spectra of the MF and SV is derived from the magneticinduction equation. This involves the angle gamma between the flowand the horizontal gradient of the radial field. We study gamma in asuite of numerical dynamo models and discuss...... that the amount of field-flow alignment depends primarily on amagnetic modified Rayleigh number Raeta = alpha g0 Delta T D / eta Omega , which measures the vigorof convective driving relative to the strength of magnetic dissipation.Synthetic tests of the flow magnitude estimation scheme are encouraging...

  8. Coupling gravitational and flow field-flow fractionation, and size-distribution analysis of whole yeast cells.

    Science.gov (United States)

    Sanz, Ramsés; Puignou, Lluís; Galceran, Maria Teresa; Reschiglian, Pierluigi; Zattoni, Andrea; Melucci, Dora

    2004-08-01

    This work continues the project on field-flow fractionation characterisation of whole wine-making yeast cells reported in previous papers. When yeast cells are fractionated by gravitational field-flow fractionation and cell sizing of the collected fractions is achieved by the electrosensing zone technique (Coulter counter), it is shown that yeast cell retention depends on differences between physical indexes of yeast cells other than size. Scanning electron microscopy on collected fractions actually shows co-elution of yeast cells of different size and shape. Otherwise, the observed agreement between the particle size distribution analysis obtained by means of the Coulter counter and by flow field-flow fractionation, which employs a second mobile phase flow as applied field instead of Earth's gravity, indicates that yeast cell density can play a major role in the gravitational field-flow fractionation retention mechanism of yeast cells, in which flow field-flow fractionation retention is independent of particle density. Flow field-flow fractionation is then coupled off-line to gravitational field-flow fractionation for more accurate characterisation of the doubly-fractionated cells. Coupling gravitational and flow field-flow fractionation eventually furnishes more information on the multipolydispersity indexes of yeast cells, in particular on their shape and density polydispersity.

  9. Sedimentation field flow fractionation and flow field flow fractionation as tools for studying the aging effects of WO₃ colloids for photoelectrochemical uses.

    Science.gov (United States)

    Contado, Catia; Argazzi, Roberto

    2011-07-08

    WO₃ colloidal suspensions obtained through a simple sol-gel procedure were subjected to a controlled temperature aging process whose time evolution in terms of particle mass and size distribution was followed by sedimentation field flow fractionation (SdFFF) and flow field flow fractionation (FlFFF). The experiments performed at a temperature of 60 °C showed that in a few hours the initially transparent sol of WO₃ particles, whose size was less than 25 nm, undergoes a progressive size increase allowing nanoparticles to reach a maximum equivalent spherical size of about 130 nm after 5 h. The observed shift in particle size distribution maxima (SdFFF), the broadening of the curves (FlFFF) and the SEM-TEM observations suggest a mixed mechanism of growth-aggregation of initial nanocrystals to form larger particles. The photoelectrochemical properties of thin WO₃ films obtained from the aged suspensions at regular intervals, were tested in a biased photoelectrocatalytic cell with 1M H₂SO₄ under solar simulated irradiation. The current-voltage polarization curves recorded in the potential range 0-1.8 V (vs. SCE) showed a diminution of the maximum photocurrent from 3.7 mA cm⁻² to 2.8 mA cm⁻² with aging times of 1h and 5h, respectively. This loss of performance was mainly attributed to the reduction of the electroactive surface area of the sintered particles as suggested by the satisfactory linear correlation between the integrated photocurrent and the cyclic voltammetry cathodic wave area of the W(VI)→W(V) process measured in the dark.

  10. Magnetic field flow phenomena in a falling particle receiver

    Science.gov (United States)

    Armijo, Kenneth M.; Ho, Clifford; Anderson, Ryan; Christian, Joshua; Babiniec, Sean; Ortega, Jesus

    2016-05-01

    Concentrating solar power (CSP) falling particle receivers are being pursued as a desired means for utilizing low-cost, high-absorptance particulate materials that can withstand high concentration ratios (˜1000 suns), operating temperatures above 700 °C, and inherent storage capabilities which can be used to reduce to levelized cost of electricity (LCOE)1. Although previous falling particle receiver designs have proven outlet temperatures above 800 °C, and thermal efficiencies between 80-90%, performance challenges still exist to operate at higher concentration ratios above 1000 suns and greater solar absorptance levels. To increase absorptance, these receivers will require enhanced particle residence time within a concentrated beam of sunlight. Direct absorption solid particle receivers that can enhance this residence time will have the potential to achieve heat-transfer media temperatures2 over 1000 °C. However, depending on particle size and external forces (e.g., external wind and flow due to convective heat losses), optimized particle flow can be severely affected, which can reduce receiver efficiency. To reduce particle flow destabilization and increase particle residence time on the receiver an imposed magnetic field is proposed based on a collimated design for two different methodologies. These include systems with ferromagnetic and charged particle materials. The approaches will be analytically evaluated based on magnetic field strength, geometry, and particle parameters, such as magnetic moment. A model is developed using the computational fluid dynamics (CFD) code ANSYS FLUENT to analyze these approaches for a ˜2 MWth falling particle receiver at Sandia National Laboratories5,6. Here, assessment will be made with respect to ferromagnetic particles such as iron-oxides, as well as charged particles. These materials will be parametrically assessed (e.g., type, size, dipole moment and geometry) over a range of magnetic permeability, μ values. Modeling

  11. Hyperlayer hollow-fiber flow field-flow fractionation of cells.

    Science.gov (United States)

    Reschiglian, Pierluigi; Zattoni, Andrea; Roda, Barbara; Cinque, Leonardo; Melucci, Dora; Min, Byung Ryul; Moon, Myeong Hee

    2003-01-24

    Interest in low-cost, analytical-scale, highly efficient and sensitive separation methods for cells, among which bacteria, is increasing. Particle separation in hollow-fiber flow field-flow fractionation (HF FlFFF) has been recently improved by the optimization of the HF FIFFF channel design. The intrinsic simplicity and low cost of this HF FlFFF channel allows for its disposable usage. which is particularly appealing for analytical bio-applications. Here, for the first time, we present a feasibility study on high-performance, hyperlayer HF FIFFF of micrometer-sized bacteria (Escherichia coli) and of different types of cells (human red blood cells, wine-making yeast from Saccharomyces cerevisiae). Fractionation performance is shown to be at least comparable to that obtained with conventional, flat-channel hyperlayer FIFFF of cells, at superior size-based selectivity and reduced analysis time.

  12. Working without accumulation membrane in flow field-flow fractionation. Effect of sample loading on retention.

    Science.gov (United States)

    Melucci, Dora; Zattoni, Andrea; Casolari, Sonia; Reggiani, Matteo; Sanz, Ramses; Reschiglian, Pierluigi; Torsi, Giancarlo

    2004-03-01

    Membraneless hyperlayer flow field-flow fractionation (Hyp FIFFF) has shown improved performance with respect to Hyp FIFFF with membrane. The conditions for high recovery and recovery independent of sample loading in membraneless Hyp FIFFF have been previously determined. The effect of sample loading should be also investigated in order to optimize the form of the peaks for real samples. The effect of sample loading on peak retention parameters is of prime importance in applications such as the conversion of peaks into particle size distributions. In this paper, a systematic experimental work is performed in order to study the effect of sample loading on retention parameters. A procedure to regenerate the frit operating as accumulation wall is described. High reproducibility is obtained with low system conditioning time.

  13. Conductivity-Dependent Flow Field-Flow Fractionation of Fulvic and Humic Acid Aggregates

    Directory of Open Access Journals (Sweden)

    Martha J. M. Wells

    2015-09-01

    Full Text Available Fulvic (FAs and humic acids (HAs are chemically fascinating. In water, they have a strong propensity to aggregate, but this research reveals that tendency is regulated by ionic strength. In the environment, conductivity extremes occur naturally—freshwater to seawater—warranting consideration at low and high values. The flow field flow fractionation (flow FFF of FAs and HAs is observed to be concentration dependent in low ionic strength solutions whereas the corresponding flow FFF fractograms in high ionic strength solutions are concentration independent. Dynamic light scattering (DLS also reveals insight into the conductivity-dependent behavior of humic substances (HSs. Four particle size ranges for FAs and humic acid aggregates are examined: (1 <10 nm; (2 10 nm–6 µm; (3 6–100 µm; and (4 >100 µm. Representative components of the different size ranges are observed to dynamically coexist in solution. The character of the various aggregates observed—such as random-extended-coiled macromolecules, hydrogels, supramolecular, and micellar—as influenced by electrolytic conductivity, is discussed. The disaggregation/aggregation of HSs is proposed to be a dynamic equilibrium process for which the rate of aggregate formation is controlled by the electrolytic conductivity of the solution.

  14. Application of flow field-flow fractionation for the characterization of macromolecules of biological interest: a review

    NARCIS (Netherlands)

    R.N. Qureshi; W.T. Kok

    2011-01-01

    An overview is given of the recent literature on (bio) analytical applications of flow field-flow fractionation (FlFFF). FlFFF is a liquid-phase separation technique that can separate macromolecules and particles according to size. The technique is increasingly used on a routine basis in a variety o

  15. Characterization of magnetic nanoparticles using programmed quadrupole magnetic field-flow fractionation.

    Science.gov (United States)

    Williams, P Stephen; Carpino, Francesca; Zborowski, Maciej

    2010-09-28

    Quadrupole magnetic field-flow fractionation is a relatively new technique for the separation and characterization of magnetic nanoparticles. Magnetic nanoparticles are often of composite nature having a magnetic component, which may be a very finely divided material, and a polymeric or other material coating that incorporates this magnetic material and stabilizes the particles in suspension. There may be other components such as antibodies on the surface for specific binding to biological cells, or chemotherapeutic drugs for magnetic drug delivery. Magnetic field-flow fractionation (MgFFF) has the potential for determining the distribution of the magnetic material among the particles in a given sample. MgFFF differs from most other forms of field-flow fractionation in that the magnetic field that brings about particle separation induces magnetic dipole moments in the nanoparticles, and these potentially can interact with one another and perturb the separation. This aspect is examined in the present work. Samples of magnetic nanoparticles were analysed under different experimental conditions to determine the sensitivity of the method to variation of conditions. The results are shown to be consistent and insensitive to conditions, although magnetite content appeared to be somewhat higher than expected.

  16. Gravitational Field-Flow Fractionation Devices Fabricated via a Hot Embossing/Thermal Bonding Method

    Directory of Open Access Journals (Sweden)

    Kaijun Yang

    2014-04-01

    Full Text Available A novel hot embossing/low temperature ethanol solvent bonding method for the fabrication of polymethylmethacrylate (PMMA field flow fractionation devices has been developed. The separation channel on a PMMA substrate was generated by a hot embossing process without vacuum. Special temperature-pressure profiles were used to analyze the influence of the hot embossing parameters. After the hot embossing process, ethanol solvent bonding was used to seal the separation channel on the PMMA substrate. The experimental results show that the bonding strength with ethanol solvent bonding at 35 °C (aspect ratio (depth/width: 0.043 is 3.05 MPa, and the deformation percentage is very low (0.54%. A burst pressure test indicated that the as-prepared PMMA gravitational field flow fractionation device has a very high burst pressure. Furthermore, the higher resolution of the as-prepared PMMA gravitational field flow fractionation device in the separation of wheat and starch particles shows that the hot embossing/low temperature ethanol solvent bonding technique will have potential commercial value.

  17. Polysaccharide characterization by hollow-fiber flow field-flow fractionation with on-line multi-angle static light scattering and differential refractometry.

    Science.gov (United States)

    Pitkänen, Leena; Striegel, André M

    2015-02-06

    Accurate characterization of the molar mass and size of polysaccharides is an ongoing challenge, oftentimes due to architectural diversity but also to the broad molar mass (M) range over which a single polysaccharide can exist and to the ultra-high M of many polysaccharides. Because of the latter, many of these biomacromolecules experience on-column, flow-induced degradation during analysis by size-exclusion and, even, hydrodynamic chromatography (SEC and HDC, respectively). The necessity for gentler fractionation methods has, to date, been addressed employing asymmetric flow field-flow fractionation (AF4). Here, we introduce the coupling of hollow-fiber flow field-flow fractionation (HF5) to multi-angle static light scattering (MALS) and differential refractometry (DRI) detection for the analysis of polysaccharides. In HF5, less stresses are placed on the macromolecules during separation than in SEC or HDC, and HF5 can offer a higher sensitivity, with less propensity for system overloading and analyte aggregation, than generally found in AF4. The coupling to MALS and DRI affords the determination of absolute, calibration-curve-independent molar mass averages and dispersities. Results from the present HF5/MALS/DRI experiments with dextrans, pullulans, and larch arabinogalactan were augmented with hydrodynamic radius (RH) measurements from off-line quasi-elastic light scattering (QELS) and by RH distribution calculations and fractogram simulations obtained via a finite element analysis implementation of field-flow fractionation theory by commercially available software. As part of this study, we have investigated analyte recovery in HF5 and also possible reasons for discrepancies between calculated and simulated results vis-à-vis experimentally determined data.

  18. Sonication effect on cellular material in sedimentation and gravitational field flow fractionation.

    Science.gov (United States)

    Sanz, R; Battu, S; Puignou, L; Galceran, M T; Cardot, Ph J P

    2003-06-20

    Sonication procedures are generally used prior to field flow fractionation (FFF) separation in order to produce suspensions without aggregates. Yeast cells manufactured in active dry wine yeast (ADWY) were placed in an ultrasound water bath in order to disrupt possible clumps and to obtain a single-cell suspension to be used in optimal conditions during fermentation processes. In order to determine whether this sample preparation procedure meets absolute needs, different yeast samples before and after sonication were analysed by two field flow fractionation techniques. It is shown that 2 min of sonication in the sample preparation process is sufficient to obtain an optimal dispersion of the yeast cells, that is, without critical percentage of aggregates. To demonstrate this effect, photographs of the yeast cell suspensions were performed with non-sonicated and sonicated yeast sample dispersion. The resulting data are compared with the elution profiles obtained from the two different FFF techniques. It is demonstrated that fractogram profiles prove the effectiveness of sonication methodologies.

  19. Characterization of seed nuclei in glucagon aggregation using light scattering methods and field-flow fractionation

    Directory of Open Access Journals (Sweden)

    Kirsch Lee E

    2008-07-01

    Full Text Available Abstract Background Glucagon is a peptide hormone with many uses as a therapeutic agent, including the emergency treatment of hypoglycemia. Physical instability of glucagon in solution leads to problems with the manufacture, formulation, and delivery of this pharmaceutical product. Glucagon has been shown to aggregate and form fibrils and gels in vitro. Small oligomeric precursors serve to initiate and nucleate the aggregation process. In this study, these initial aggregates, or seed nuclei, are characterized in bulk solution using light scattering methods and field-flow fractionation. Results High molecular weight aggregates of glucagon were detected in otherwise monomeric solutions using light scattering techniques. These aggregates were detected upon initial mixing of glucagon powder in dilute HCl and NaOH. In the pharmaceutically relevant case of acidic glucagon, the removal of aggregates by filtration significantly slowed the aggregation process. Field-flow fractionation was used to separate aggregates from monomeric glucagon and determine relative mass. The molar mass of the large aggregates was shown to grow appreciably over time as the glucagon solutions gelled. Conclusion The results of this study indicate that initial glucagon solutions are predominantly monomeric, but contain small quantities of large aggregates. These results suggest that the initial aggregates are seed nuclei, or intermediates which catalyze the aggregation process, even at low concentrations.

  20. Circuit modification in electrical field flow fractionation systems generating higher resolution separation of nanoparticles.

    Science.gov (United States)

    Tasci, Tonguc O; Johnson, William P; Fernandez, Diego P; Manangon, Eliana; Gale, Bruce K

    2014-10-24

    Compared to other sub-techniques of field flow fractionation (FFF), cyclical electrical field flow fractionation (CyElFFF) is a relatively new method with many opportunities remaining for improvement. One of the most important limitations of this method is the separation of particles smaller than 100nm. For such small particles, the diffusion rate becomes very high, resulting in severe reductions in the CyElFFF separation efficiency. To address this limitation, we modified the electrical circuitry of the ElFFF system. In all earlier ElFFF reports, electrical power sources have been directly connected to the ElFFF channel electrodes, and no alteration has been made in the electrical circuitry of the system. In this work, by using discrete electrical components, such as resistors and diodes, we improved the effective electric field in the system to allow high resolution separations. By modifying the electrical circuitry of the ElFFF system, high resolution separations of 15 and 40nm gold nanoparticles were achieved. The effects of applying different frequencies, amplitudes and voltage shapes have been investigated and analyzed through experiments.

  1. Hydrodynamic chromatography and field flow fractionation in finite aspect ratio channels.

    Science.gov (United States)

    Shendruk, T N; Slater, G W

    2014-04-25

    Hydrodynamic chromatography (HC) and field-flow fractionation (FFF) separation methods are often performed in 3D rectangular channels, though ideal retention theory assumes 2D systems. Devices are commonly designed with large aspect ratios; however, it can be unavoidable or desirable to design rectangular channels with small or even near-unity aspect ratios. To assess the significance of finite-aspect ratio effects and interpret experimental retention results, an ideal, analytical retention theory is needed. We derive a series solution for the ideal retention ratio of HC and FFF rectangular channels. Rather than limiting devices' ability to resolve samples, our theory predicts that retention curves for normal-mode FFF are well approximated by the infinite plate solution and that the performance of HC is actually improved. These findings suggest that FFF devices need not be designed with large aspect ratios and that rectangular HC channels are optimal when the aspect ratio is unity.

  2. Enrichment of putative stem cells from adipose tissue using dielectrophoretic field-flow fractionation

    Science.gov (United States)

    Vykoukal, Jody; Vykoukal, Daynene M.; Freyberg, Susanne; Alt, Eckhard U.; Gascoyne, Peter R. C.

    2009-01-01

    We have applied the microfluidic cell separation method of dielectrophoretic field-flow fractionation (DEP-FFF) to the enrichment of a putative stem cell population from an enzyme-digested adipose tissue derived cell suspension. A DEP-FFF separator device was constructed using a novel microfluidic-microelectronic hybrid flex-circuit fabrication approach that is scaleable and anticipates future low-cost volume manufacturing. We report the separation of a nucleated cell fraction from cell debris and the bulk of the erythrocyte population, with the relatively rare (<2% starting concentration) NG2-positive cell population (pericytes and/or putative progenitor cells) being enriched up to 14-fold. This work demonstrates a potential clinical application for DEP-FFF and further establishes the utility of the method for achieving label-free fractionation of cell subpopulations. PMID:18651083

  3. Improved performance of gravitational field-flow fractionation for screening wine-making yeast varieties.

    Science.gov (United States)

    Sanz, R; Torsello, B; Reschiglian, P; Puignou, L; Galceran, M T

    2002-08-09

    Performance of gravitational field-flow fractionation (GFFF) is improved here with respect to the ability to fractionate and distinguish different varieties of wine-making yeast from Saccharomyces cerevisiae. A new GFFF channel with non-polar walls has been employed to enhance fractionation selectivity and reproducibility. Since GFFF retention depends from first principles on particle size, Coulter counter measurements were performed in order to compare size distribution profiles with GFFF profiles. From such a comparison, GFFF was shown to be able to reveal differences in yeast cells other than size. This could make use of GFFF for screening different varieties of wine-making yeast towards future quality assessment procedures based on a possible correlation between yeast cell morphology indexes and quality indexes.

  4. Top-down and bottom-up lipidomic analysis of rabbit lipoproteins under different metabolic conditions using flow field-flow fractionation, nanoflow liquid chromatography and mass spectrometry.

    Science.gov (United States)

    Byeon, Seul Kee; Kim, Jin Yong; Lee, Ju Yong; Chung, Bong Chul; Seo, Hong Seog; Moon, Myeong Hee

    2015-07-31

    This study demonstrated the performances of top-down and bottom-up approaches in lipidomic analysis of lipoproteins from rabbits raised under different metabolic conditions: healthy controls, carrageenan-induced inflammation, dehydration, high cholesterol (HC) diet, and highest cholesterol diet with inflammation (HCI). In the bottom-up approach, the high density lipoproteins (HDL) and the low density lipoproteins (LDL) were size-sorted and collected on a semi-preparative scale using a multiplexed hollow fiber flow field-flow fractionation (MxHF5), followed by nanoflow liquid chromatography-ESI-MS/MS (nLC-ESI-MS/MS) analysis of the lipids extracted from each lipoprotein fraction. In the top-down method, size-fractionated lipoproteins were directly infused to MS for quantitative analysis of targeted lipids using chip-type asymmetrical flow field-flow fractionation-electrospray ionization-tandem mass spectrometry (cAF4-ESI-MS/MS) in selected reaction monitoring (SRM) mode. The comprehensive bottom-up analysis yielded 122 and 104 lipids from HDL and LDL, respectively. Rabbits within the HC and HCI groups had lipid patterns that contrasted most substantially from those of controls, suggesting that HC diet significantly alters the lipid composition of lipoproteins. Among the identified lipids, 20 lipid species that exhibited large differences (>10-fold) were selected as targets for the top-down quantitative analysis in order to compare the results with those from the bottom-up method. Statistical comparison of the results from the two methods revealed that the results were not significantly different for most of the selected species, except for those species with only small differences in concentration between groups. The current study demonstrated that top-down lipid analysis using cAF4-ESI-MS/MS is a powerful high-speed analytical platform for targeted lipidomic analysis that does not require the extraction of lipids from blood samples.

  5. Biocompatible channels for field-flow fractionation of biological samples: correlation between surface composition and operating performance.

    Science.gov (United States)

    Roda, Barbara; Cioffi, Nicola; Ditaranto, Nicoletta; Zattoni, Andrea; Casolari, Sonia; Melucci, Dora; Reschiglian, Pierluigi; Sabbatini, Luigia; Valentini, Antonio; Zambonin, Pier Giorgio

    2005-02-01

    Biocompatible methods capable of rapid purification and fractionation of analytes from complex natural matrices are increasingly in demand, particularly at the forefront of biotechnological applications. Field-flow fractionation is a separation technique suitable for nano-sized and micro-sized analytes among which bioanalytes are an important family. The objective of this preliminary study is to start a more general approach to field-flow fractionation for bio-samples by investigation of the correlation between channel surface composition and biosample adhesion. For the first time we report on the use of X-ray photoelectron spectroscopy (XPS) to study the surface properties of channels of known performance. By XPS, a polar hydrophobic environment was found on PVC material commonly used as accumulation wall in gravitational field-flow fractionation (GrFFF), which explains the low recovery obtained when GrFFF was used to fractionate a biological sample such as Staphylococcus aureus. An increase in separation performance was obtained first by conditioning the accumulation wall with bovine serum albumin and then by using the ion-beam sputtering technique to cover the GrFFF channel surface with a controlled inert film. XPS analysis was also employed to determine the composition of membranes used in hollow-fiber flow field-flow fractionation (HF FlFFF). The results obtained revealed homogeneous composition along the HF FlFFF channel both before and after its use for fractionation of an intact protein such as ferritin.

  6. Effect of carrier ionic strength in microscale cyclical electrical field-flow fractionation.

    Science.gov (United States)

    Kantak, Ameya S; Srinivas, Merugu; Gale, Bruce K

    2006-04-15

    Recent work with cyclical electrical field-flow fractionation systems has shown promise for the technique as a separation and analysis tool, but little is understood about how the carrier composition in the system affects its capabilities. The electrical properties of microscale CyElFFF systems change when the carrier ionic conditions are altered, and it is well known that the effects of increasing ionic strength carriers on retention in normal ElFFF systems are severe. Specifically, retention levels fall significantly. Accordingly, this work seeks to understand the effect that increasing carrier ionic strength in CyElFFF has on nanoparticle retention in the channels. The retention of polystyrene particles in the CyElFFF microsystem is reported at various ionic strengths of ammonium carbonate and at a variety of pH levels. The experiments are compared to the theory of CyElFFF available in the literature. The results indicate that the ionic strength of the carrier has a significant impact on retention and that high ionic strength carrier solutions lead to poor performance of the CyElFFF system. These results have significant impact on the possible uses of the technique and its applications, especially in the biomedical arena.

  7. Sedimentation field flow fractionation and optical absorption spectroscopy for a quantitative size characterization of silver nanoparticles.

    Science.gov (United States)

    Contado, Catia; Argazzi, Roberto; Amendola, Vincenzo

    2016-11-04

    Many advanced industrial and biomedical applications that use silver nanoparticles (AgNPs), require that particles are not only nano-sized, but also well dispersed, not aggregated and not agglomerated. This study presents two methods able to give rapidly sizes of monodispersed AgNPs suspensions in the dimensional range of 20-100nm. The first method, based on the application of Mie's theory, determines the particle sizes from the values of the surface plasmon resonance wavelength (SPRMAX), read from the optical absorption spectra, recorded between 190nm and 800nm. The computed sizes were compared with those determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS) and resulted in agreement with the nominal values in a range between 13% (for 20nm NPs) and 1% (for 100nm NPs), The second method is based on the masterly combination of the Sedimentation Field Flow Fractionation (SdFFF - now sold as Centrifugal FFF-CFFF) and the Optical Absorption Spectroscopy (OAS) techniques to accomplish sizes and quantitative particle size distributions for monodispersed, non-aggregated AgNPs suspensions. The SdFFF separation abilities, well exploited to size NPs, greatly benefits from the application of Mie's theory to the UV-vis signal elaboration, producing quantitative mass-based particle size distributions, from which trusted number-sized particle size distributions can be derived. The silver mass distributions were verified and supported by detecting off-line the Ag concentration with the graphite furnace atomic absorption spectrometry (GF-AAS).

  8. Size sorting of citrate reduced gold nanoparticles by sedimentation field-flow fractionation.

    Science.gov (United States)

    Contado, Catia; Argazzi, Roberto

    2009-12-25

    Gold nanoparticles (GNPs) have been synthesized through the citrate reduction method; the citrate/gold(III) ratio was changed from 1:1 up to 10:1 and the size of the resulting nanoparticles was measured by sedimentation field-flow fractionation (SdFFF). Experimental data showed that the GNPs size decreases in the ratio range 1:1-3:1 and then increases from 5:1 to 10:1 passing through a plateau region in between, and is almost independent of the precursor solution concentrations. In the zone of minimum diameters the synthetic process does not produce monodispersed GNPs but often multiple distributions, very close in size, are observed as evidenced by the particle size distributions (PSDs) derived from the SdFFF fractograms. UV-vis spectrophotometry, being the most common technique employed in the optical characterization of nanoparticles suspensions, was used throughout this work. A confirmation of the nucleation-aggregation-fragmentation mechanism was inferred from the cross-correlation between UV-vis and SdFFF results.

  9. Determination of calibration function in thermal field flow fractionation under thermal field programming.

    Science.gov (United States)

    Pastil, Luisa; Ventosa, Edgar A; Mingozzi, Ines; Dondi, Francesco

    2006-05-01

    A new procedure for determining the calibration function able to relate retention and operative parameters to molecular weight of the species in thermal field flow (ThFFF) under thermal field programming (TFP) conditions is presented. The procedure involves determining the average values of retention parameters under TFP and determining a numerical function related to the temperature variations that occur during TFP. The calibration parameters are obtained by a procedure fitting the retention and operative parameters that hold true at the beginning of the TFP. The procedure is closely related to the one previously developed to calibrate the retention time axis under TFP ThFFF and, together, they constitute a full calibration procedure. Experimental validation was performed with reference to polystyrene (PS)-decalin and PS-THF systems. The calibration functions here obtained were compared to those derived by the classical procedure at constant thermal field ThFFF to obtain the calibration function at variable cold wall temperatures. Excellent agreement was found in all cases proving "universality" of the ThFFF calibration concept, i.e. it is independent of the particular system on which it was determined and can thus be extended to ThFFF operating under TFP. The new procedure is simpler than the classical one since it requires less precision in setting the instrumentation and can be obtained with fewer experiments. The potential applications for the method are discussed.

  10. Size characterization by Sedimentation Field Flow Fractionation of silica particles used as food additives.

    Science.gov (United States)

    Contado, Catia; Ravani, Laura; Passarella, Martina

    2013-07-25

    Four types of SiO2, available on the market as additives in food and personal care products, were size characterized using Sedimentation Field Flow Fractionation (SdFFF), SEM, TEM and Photon Correlation Spectroscopy (PCS). The synergic use of the different analytical techniques made it possible, for some samples, to confirm the presence of primary nanoparticles (10 nm) organized in clusters or aggregates of different dimension and, for others, to discover that the available information is incomplete, particularly that regarding the presence of small particles. A protocol to extract the silica particles from a simple food matrix was set up, enriching (0.25%, w w(-1)) a nearly silica-free instant barley coffee powder with a known SiO2 sample. The SdFFF technique, in conjunction with SEM observations, made it possible to identify the added SiO2 particles and verify the new particle size distribution. The SiO2 content of different powdered foodstuffs was determined by graphite furnace atomic absorption spectroscopy (GFAAS); the concentrations ranged between 0.006 and 0.35% (w w(-1)). The protocol to isolate the silica particles was so applied to the most SiO2-rich commercial products and the derived suspensions were separated by SdFFF; SEM and TEM observations supported the size analyses while GFAAS determinations on collected fractions permitted element identification.

  11. Asymmetric Flow Field-Flow Fractionation of Manufactured Silver Nanoparticles in Soil Water Extracts

    NARCIS (Netherlands)

    Koopmans, G.F.; Hiemstra, T.; Molleman, B.; Regelink, I.C.; Comans, R.N.J.

    2013-01-01

    Manufactured silver nanoparticles (AgNP) are among the most widely used nanoparticles in consumer products and their unintended release into the environment has become a serious concern. For a meaningful assessment of the risks of AgNP in soils, their concentration and particle-size-distribution in

  12. Asymmetric flow field-flow fractionation of manufactured silver nanoparticles spiked into soil solution

    NARCIS (Netherlands)

    Koopmans, G.F.; Hiemstra, T.; Regelink, I.C.; Molleman, B.; Comans, R.N.J.

    2015-01-01

    Manufactured metallic silver nanoparticles (AgNP) are intensively utilized in consumer products and this will inevitably lead to their release to soils. To assess the environmental risks of AgNP in soils, quantification of both their concentration and size in soil solution is essential. We developed

  13. Asymmetric flow field-flow fractionation of superferrimagnetic iron oxide multicore nanoparticles

    DEFF Research Database (Denmark)

    Dutz, Silvio; Kuntsche, Judith; Eberbeck, Dietmar;

    2012-01-01

    . The hysteresis curves were measured by vibrating sample magnetometry. Starting from a coercivity of 1.41 kA m(-1) for the original MCNPs the coercivity of the particles in the different fractions varied from 0.41 to 3.83 kA m(-1). In our paper it is shown for the first time that fractions obtained from a broad......Magnetic nanoparticles are very useful for various medical applications where each application requires particles with specific magnetic properties. In this paper we describe the modification of the magnetic properties of magnetic multicore nanoparticles (MCNPs) by size dependent fractionation...... size distributed MCNP fluid classified by AF4 show a strong correlation between hydrodynamic diameter and magnetic properties. Thus we state that AF4 is a suitable technology for reproducible size dependent classification of magnetic multicore nanoparticles suspended as ferrofluids....

  14. Optimization and evaluation of asymmetric flow field-flow fractionation of silver nanoparticles

    DEFF Research Database (Denmark)

    Löschner, Katrin; Navratilova, Jana; Legros, Samuel

    2013-01-01

    especially the NP size distribution a number of parameters influencing the separation need to be optimized. This paper describes the development of a separation method for polyvinylpyrrolidone-stabilized silver nanoparticles (AgNPs) in aqueous suspension. Carrier liquid composition, membrane material, cross...

  15. Flow field-flow fractionation: a versatile approach for size characterization of alpha-tocopherol-induced enlargement of gold nanoparticles.

    Science.gov (United States)

    Sermsri, Wimut; Jarujamrus, Purim; Shiowatana, Juwadee; Siripinyanond, Atitaya

    2010-04-01

    Flow field-flow fractionation (FlFFF) was used for size characterization of gold nanoparticles. The measured particle sizes obtained from FlFFF for the commercial 10 nm gold nanoparticle standard and the gold nanoparticles synthesized in the laboratory were in good agreement with those measured by transmission electron microscopy (TEM). Further, the capability of alpha-tocopherol to induce enlargement of gold nanoparticles by catalysis of the reduction of AuCl(4)(-) by citrate was observed by monitoring the changes in particle size of gold nanoparticles using FlFFF. The effects of alpha-tocopherol and incubation time on enlargement of the gold nanoparticles were examined. Higher concentrations of alpha-tocopherol resulted in larger nanoparticles. At fixed alpha-tocopherol concentration, larger nanoparticles were formed at longer incubation times.

  16. Size characterization by Sedimentation Field Flow Fractionation of silica particles used as food additives

    Energy Technology Data Exchange (ETDEWEB)

    Contado, Catia, E-mail: Catia.Contado@unife.it [University of Ferrara, Department of Chemical and Pharmaceutical Sciences, via L. Borsari, 46, 44121 Ferrara (Italy); Ravani, Laura [University of Ferrara, Department of Life Sciences and Biotechnologies, via L. Borsari, 46, 44121 Ferrara (Italy); Passarella, Martina [University of Ferrara, Department of Chemical and Pharmaceutical Sciences, via L. Borsari, 46, 44121 Ferrara (Italy)

    2013-07-25

    Graphical abstract: -- Highlights: •Four types of SiO{sub 2} particles were characterized by SdFFF, PCS and EM techniques. •Clusters of 10 nm nanoparticles were found in some SiO{sub 2} samples. •A method was set up to extract SiO{sub 2} particles from food matrices. •The effects of the carrier solution composition on SdFFF separations were evaluated. •Particle size distributions were obtained from SiO{sub 2} particles extracted from foodstuffs. -- Abstract: Four types of SiO{sub 2}, available on the market as additives in food and personal care products, were size characterized using Sedimentation Field Flow Fractionation (SdFFF), SEM, TEM and Photon Correlation Spectroscopy (PCS). The synergic use of the different analytical techniques made it possible, for some samples, to confirm the presence of primary nanoparticles (10 nm) organized in clusters or aggregates of different dimension and, for others, to discover that the available information is incomplete, particularly that regarding the presence of small particles. A protocol to extract the silica particles from a simple food matrix was set up, enriching (0.25%, w w{sup −1}) a nearly silica-free instant barley coffee powder with a known SiO{sub 2} sample. The SdFFF technique, in conjunction with SEM observations, made it possible to identify the added SiO{sub 2} particles and verify the new particle size distribution. The SiO{sub 2} content of different powdered foodstuffs was determined by graphite furnace atomic absorption spectroscopy (GFAAS); the concentrations ranged between 0.006 and 0.35% (w w{sup −1}). The protocol to isolate the silica particles was so applied to the most SiO{sub 2}-rich commercial products and the derived suspensions were separated by SdFFF; SEM and TEM observations supported the size analyses while GFAAS determinations on collected fractions permitted element identification.

  17. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    Science.gov (United States)

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  18. Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Poda, A R; Bednar, A J; Kennedy, A J; Harmon, A; Hull, M; Mitrano, D M; Ranville, J F; Steevens, J

    2011-07-01

    The ability to detect and identify the physiochemical form of contaminants in the environment is important for degradation, fate and transport, and toxicity studies. This is particularly true of nanomaterials that exist as discrete particles rather than dissolved or sorbed contaminant molecules in the environment. Nanoparticles will tend to agglomerate or dissolve, based on solution chemistry, which will drastically affect their environmental properties. The current study investigates the use of field flow fractionation (FFF) interfaced to inductively coupled plasma-mass spectrometry (ICP-MS) as a sensitive and selective method for detection and characterization of silver nanoparticles. Transmission electron microscopy (TEM) is used to verify the morphology and primary particle size and size distribution of precisely engineered silver nanoparticles. Subsequently, the hydrodynamic size measurements by FFF are compared to dynamic light scattering (DLS) to verify the accuracy of the size determination. Additionally, the sensitivity of the ICP-MS detector is demonstrated by fractionation of μg/L concentrations of mixed silver nanoparticle standards. The technique has been applied to nanoparticle suspensions prior to use in toxicity studies, and post-exposure biological tissue analysis. Silver nanoparticles extracted from tissues of the sediment-dwelling, freshwater oligochaete Lumbriculus variegatus increased in size from approximately 31-46nm, indicating a significant change in the nanoparticle characteristics during exposure.

  19. A new method for immunoassays using field-flow fractionation with on-line, continuous chemiluminescence detection.

    Science.gov (United States)

    Melucci, D; Guardigli, M; Roda, B; Zattoni, A; Reschiglian, P; Roda, A

    2003-06-13

    Chemiluminescence detection has already been combined with different separation techniques such as HPLC and capillary electrophoresis. In this work, it was applied to gravitational field-flow fractionation, a low-cost, flow-assisted separation technique for micronsized particles suited to further on-line detection of the separated analytes. Horseradish peroxidase was used as model sample, either free in solution or immobilized onto micronsized, polystyrene beads. The chemiluminescent substrates were added directly into the mobile phase, and the continuous, steady-state chemiluminescence generated during elution was detected on-line by either a flow-through luminometer or a CCD camera. Ultra-low detection limits, two orders of magnitude lower than those achievable with spectrophotometric detection, were found. The possibility to fully separate and quantitate free and bead-immobilized enzymes is reported, as a step towards the development of multianalyte, ultra-sensitive, micronsized beads-based flow-assisted immunoassays.

  20. The steady-state solution of dendritic growth from the undercooled binary alloy melt with the far field flow

    Institute of Scientific and Technical Information of China (English)

    CHEN MingWen; WANG ZiDong; XU JianJun

    2009-01-01

    The steady-state dendritic growth from the undercooled binary alloy melt with the far field flow is considered.By neglecting the interface energy,interface kinetics and buoyancy effects in the system,we obtaine the steady-state solution for the case of the large Schmidt number,in terms of the multiple variable expansion method.The changes of thtemperature and concentration fields,the morphology of the interface,the normalization parameter and the Peclet number of the system induced by uniform external flow are derived.The results show that,compared with the system of dendritic growth from undercooled pure melt,the convective flow in the system of growth from undercooled binary alloy has stronger effects on the morphology of the interface.Nevertheless,the shape of the interface still remains nearly a paraboloid.

  1. The steady-state solution of dendritic growth from the undercooled binary alloy melt with the far field flow

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The steady-state dendritic growth from the undercooled binary alloy melt with the far field flow is considered. By neglecting the interface energy, interface kinetics and buoyancy effects in the system, we obtaine the steady-state solution for the case of the large Schmidt number, in terms of the multiple variable expansion method. The changes of the temperature and concentration fields, the morphology of the interface, the normalization parameter and the Peclet number of the system induced by uniform external flow are derived. The results show that, compared with the system of dendritic growth from undercooled pure melt, the convective flow in the system of growth from undercooled binary alloy has stronger effects on the morphology of the interface. Nevertheless, the shape of the interface still remains nearly a paraboloid.

  2. Influence of secondary preparative parameters and aging effects on PLGA particle size distribution: a sedimentation field flow fractionation investigation.

    Science.gov (United States)

    Contado, Catia; Vighi, Eleonora; Dalpiaz, Alessandro; Leo, Eliana

    2013-01-01

    Poly(lactic-co-glycolic acid) particles in the 200-400-nm size range were formulated through nanoprecipitation and solvent evaporation methods. Different concentrations of the polymer and stabilizer (Pluronic® F 68) were tested in order to identify the best conditions for making poly(lactic-co-glycolic acid) particles of suitable size, stable in time, and to be used as carriers for brain-targeting drugs. The particles with the best characteristics for delivery system design were those formulated by nanoprecipitation with an organic/water phase ratio of 2:30, a polymer concentration of 25 mg/mL, and a surfactant concentration of 0.83 mg/mL; their surface charge was reasonably negative (approximately -27 mV) and the average size of the almost monodisperse population was roughly 250 nm. Particle characterization was obtained through ζ-potential measurements, scanning electron microscope observations, and particle size distribution determinations; the latter achieved by both photon-correlation spectroscopy and sedimentation field flow fractionation. Sedimentation field flow fractionation, which is considered more reliable than photon-correlation spectroscopy in describing the possible particle size distribution modifications, was used to investigate the effects of 3 months of storage at 4 °C had on the lyophilized particles. Figure Particle size ditribution from the SdFFF and the PCS techniques.

  3. Size- and density-dependent elution of normal and pathological red blood cells by gravitational field-flow fractionation.

    Science.gov (United States)

    Cardot, P J; Elgéa, C; Guernet, M; Godet, D; Andreux, J P

    1994-04-01

    Elution of normal and pathological human red blood cells (RBCs) was performed by gravitational field-flow fractionation (GFFF). The reproducibility of the retention factor was lower than 10% and elution at high and low flow-rates confirmed the existence of "lifting forces". No direct correlation between size and retention was observed for normal RBCs in the absence of density information. Elution of pathological human RBCs, known to be modified in shape, density and rigidity, was performed. The elution parameters confirmed that the retention mechanism of RBCs is at least density dependent but that other factors can be involved, such as shape or deformity. Moreover, peak profile description parameters (standard deviation and asymmetry) can be qualitatively related to some biophysical parameters. Numerous elution characteristics can be linked to cell properties described in the literature and although GFFF appeared to have limited capabilities in terms of size analysis it appeared to be a versatile tool for studying cell biophysical characteristics.

  4. Size selectivity in field-flow fractionation: lift mode of retention with near-wall lift force.

    Science.gov (United States)

    Martin, Michel; Beckett, Ronald

    2012-06-28

    A simple theoretical model for the size selectivity, S(d), in the lift mode of retention in field-flow fractionation (FFF) is developed on the basis of the near-wall lift force expression. S(d) is made up of two contributions: the flow contribution, S(d,f), arising from the variation of the flow velocity at center of particle due to a change in particle position with particle size, and a slip contribution, S(d,s), arising from the concomitant change in the extent of retardation due to the presence of a nearby channel wall. The slip contribution is minor, but not negligible, and amounts to 10-20% of the overall size selectivity. It contributes to reduce S(d) in sedimentation FFF but to enhance it in flow FFF. S(d) would steadily increase with particle size if the flow profile was linear (Couette flow). Because of the curvature of the flow profile encountered in the classical Poiseuille flow, S(d) exhibits a maximum at some specific particle size. The model predicts a significant difference in S(d) between sedimentation FFF and flow FFF, arising from the different functional dependences of the field force with particle size between these two methods. The predictions are in good agreement with the various S(d) values reported in the literature in both sedimentation and flow FFF. On the basis of the model, guidelines are given for adjusting the operating parameters (carrier flow rate and field strength) to optimize the size selectivity. Finally, it is found that S(d) generally decreases with decreasing channel thickness.

  5. Field-flow fractionation: An efficient approach for matrix removal of soil extract for inductively coupled plasma optical emission spectrometry

    Science.gov (United States)

    Sangsawong, Supharart; Waiyawat, Weerawan; Shiowatana, Juwadee; Siripinyanond, Atitaya

    2011-06-01

    An on-line coupling between a continuous-flow sequential extraction (CFSE) unit and flow field-flow fractionation with cross flow matrix removal (FlFFF/CFM) with ICP-OES detection was developed for determination of metal leachability from soil. The use of high concentration of Mg(NO 3) 2 in exchangeable phase can cause undesirable matrix effects by shifting ionization equilibrium in the plasma, etc., resulting in a clear need for matrix removal. Therefore, the capability of FlFFF/CFM to remove Mg matrix ion from soil extract was evaluated. Poly(ethylene imine) (PEI) having molecular weight of 25,000 Da was added to form complexes with analyte elements (Cu, Mn, Pb, and Zn) but not the matrix element (Mg). The free Mg matrix ions were then removed by filtering off through the ultrafiltration membrane, having a 1000-Da molecular weight cut-off, inside the FlFFF channel. With the use of FlFFF/CFM, matrix removal efficiency was approximately 83.5%, which was equivalent to approximately 6-fold dilution of the matrix ion. The proposed hyphenated system of CFSE and FlFFF/CFM with ICP-OES detection was examined for its reliability by checking with SRM 2710 (a highly contaminated soil from Montana). The metal contents determined by the proposed method were not significantly different (at 95% confidence) from the certified values.

  6. Cross-field flow and electric potential in a plasma slab

    Directory of Open Access Journals (Sweden)

    J. De Keyser

    2013-08-01

    Full Text Available We consider cross-field plasma flow inside a field-aligned plasma slab embedded in a uniform background in a 1-dimensional geometry. This situation may arise, for instance, when long-lasting reconnection pulses inject plasma into the inner magnetosphere. The present paper presents a detailed analysis of the structure of the interfaces that separate the slab from the background plasma on either side; a fully kinetic model is used to do so. Since the velocity shear across both interfaces has opposite signs, and given the typical gyroradius differences between injected and background ions and electrons, the structure of both interfaces can be very different. The behaviour of the slab and its interfaces depends critically on the flow of the plasma transverse to the magnetic field; in particular, it is shown that there are bounds to the flow speed that can be supported by the magnetised plasma. Further complicating the picture is the effect of the potential difference between the slab and its environment.

  7. Quantitative characterization of gold nanoparticles by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Schmidt, Bjørn; Loeschner, Katrin; Hadrup, Niels; Mortensen, Alicja; Sloth, Jens J; Koch, Christian Bender; Larsen, Erik H

    2011-04-01

    An analytical platform coupling asymmetric flow field-flow fractionation (AF(4)) with multiangle light scattering (MALS), dynamic light scattering (DLS), and inductively coupled plasma mass spectrometry (ICPMS) was established and used for separation and quantitative determination of size and mass concentration of nanoparticles (NPs) in aqueous suspension. Mixtures of three polystyrene (PS) NPs between 20 and 100 nm in diameter and mixtures of three gold (Au) NPs between 10 and 60 nm in diameter were separated by AF(4). The geometric diameters of the separated PS NPs and the hydrodynamic diameters of the Au and PS NPs were determined online by MALS and DLS, respectively. The three separated Au NPs were quantified by ICPMS and recovered at 50-95% of the injected masses, which ranged between approximately 8-80 ng of each nanoparticle size. Au NPs adhering to the membrane in the separation channel was found to be a major cause for incomplete recoveries. The lower limit of detection (LOD) ranged between 0.02 ng Au and 0.4 ng Au, with increasing LOD by increasing nanoparticle diameter. The analytical platform was applied to characterization of Au NPs in livers of rats, which were dosed with 10 nm, 60 nm, or a mixture of 10 and 60 nm nanoparticles by intravenous injection. The homogenized livers were solubilized in tetramethylammonium hydroxide (TMAH), and the recovery of Au NPs from the livers amounted to 86-123% of their total Au content. In spite of successful stabilization with bovine serum albumin even in alkaline medium, separation of the Au NPs by AF(4) was not possible due to association with undissolved remains of the alkali-treated liver tissues as demonstrated by electron microscopy images.

  8. Filter-feeding, near-field flows, and the morphologies of colonial choanoflagellates

    Science.gov (United States)

    Kirkegaard, Julius B.; Goldstein, Raymond E.

    2016-11-01

    Efficient uptake of prey and nutrients from the environment is an important component in the fitness of all microorganisms, and its dependence on size may reveal clues to the origins of evolutionary transitions to multicellularity. Because potential benefits in uptake rates must be viewed in the context of other costs and benefits of size, such as varying predation rates and the increased metabolic costs associated with larger and more complex body plans, the uptake rate itself is not necessarily that which is optimized by evolution. Uptake rates can be strongly dependent on local organism geometry and its swimming speed, providing selective pressure for particular arrangements. Here we examine these issues for choanoflagellates, filter-feeding microorganisms that are the closest relatives of the animals. We explore the different morphological variations of the choanoflagellate Salpingoeca rosetta, which can exist as a swimming cell, as a sessile thecate cell, and as colonies of cells in various shapes. In the absence of other requirements and in a homogeneously nutritious environment, we find that the optimal strategy to maximize filter-feeding by the collar of microvilli is to swim fast, which favors swimming unicells. In large external flows, the sessile thecate cell becomes advantageous. Effects of prey diffusion are discussed and also found to be to the advantage of the swimming unicell.

  9. A novel method to detect unlabeled inorganic nanoparticles and submicron particles in tissue by sedimentation field-flow fractionation

    Directory of Open Access Journals (Sweden)

    Yost Garold S

    2008-12-01

    Full Text Available Abstract A novel methodology to detect unlabeled inorganic nanoparticles was experimentally demonstrated using a mixture of nano-sized (70 nm and submicron (250 nm silicon dioxide particles added to mammalian tissue. The size and concentration of environmentally relevant inorganic particles in a tissue sample can be determined by a procedure consisting of matrix digestion, particle recovery by centrifugation, size separation by sedimentation field-flow fractionation (SdFFF, and detection by light scattering. Background Laboratory nanoparticles that have been labeled by fluorescence, radioactivity, or rare elements have provided important information regarding nanoparticle uptake and translocation, but most nanomaterials that are commercially produced for industrial and consumer applications do not contain a specific label. Methods Both nitric acid digestion and enzyme digestion were tested with liver and lung tissue as well as with cultured cells. Tissue processing with a mixture of protease enzymes is preferred because it is applicable to a wide range of particle compositions. Samples were visualized via fluorescence microscopy and transmission electron microscopy to validate the SdFFF results. We describe in detail the tissue preparation procedures and discuss method sensitivity compared to reported levels of nanoparticles in vivo. Conclusion Tissue digestion and SdFFF complement existing techniques by precisely identifying unlabeled metal oxide nanoparticles and unambiguously distinguishing nanoparticles (diameter

  10. A novel method to detect unlabeled inorganic nanoparticles and submicron particles in tissue by sedimentation field-flow fractionation

    Science.gov (United States)

    Deering, Cassandra E; Tadjiki, Soheyl; Assemi, Shoeleh; Miller, Jan D; Yost, Garold S; Veranth, John M

    2008-01-01

    A novel methodology to detect unlabeled inorganic nanoparticles was experimentally demonstrated using a mixture of nano-sized (70 nm) and submicron (250 nm) silicon dioxide particles added to mammalian tissue. The size and concentration of environmentally relevant inorganic particles in a tissue sample can be determined by a procedure consisting of matrix digestion, particle recovery by centrifugation, size separation by sedimentation field-flow fractionation (SdFFF), and detection by light scattering. Background Laboratory nanoparticles that have been labeled by fluorescence, radioactivity, or rare elements have provided important information regarding nanoparticle uptake and translocation, but most nanomaterials that are commercially produced for industrial and consumer applications do not contain a specific label. Methods Both nitric acid digestion and enzyme digestion were tested with liver and lung tissue as well as with cultured cells. Tissue processing with a mixture of protease enzymes is preferred because it is applicable to a wide range of particle compositions. Samples were visualized via fluorescence microscopy and transmission electron microscopy to validate the SdFFF results. We describe in detail the tissue preparation procedures and discuss method sensitivity compared to reported levels of nanoparticles in vivo. Conclusion Tissue digestion and SdFFF complement existing techniques by precisely identifying unlabeled metal oxide nanoparticles and unambiguously distinguishing nanoparticles (diameter<100 nm) from both soluble compounds and from larger particles of the same nominal elemental composition. This is an exciting capability that can facilitate epidemiological and toxicological research on natural and manufactured nanomaterials. PMID:19055780

  11. Field-flow fractionation as analytical technique for the characterization of dry yeast: correlation with wine fermentation activity.

    Science.gov (United States)

    Sanz, Ramsés; Galceran, Ma Teresa; Puignou, Lluís

    2003-01-01

    Important oenological properties of wine depend on the winemaking yeast used in the fermentation process. There is considerable controversy about the quality of yeast, and a simple and cheap analytical methodology for quality control of yeast is needed. Gravitational field flow fractionation (GFFF) was used to characterize several commercial active dry wine yeasts from Saccharomyces cerevisiae and Saccharomyces bayanus and to assess the quality of the raw material before use. Laboratory-scale fermentations were performed using two different S. cerevisiae strains as inocula, and GFFF was used to follow the behavior of yeast cells during alcoholic fermentation. The viable/nonviable cell ratio was obtained by flow cytometry (FC) using propidium iodide as fluorescent dye. In each experiment, the amount of dry wine yeast to be used was calculated in order to provide the same quantity of viable cells. Kinetic studies of the fermentation process were performed controlling the density of the must, from 1.071 to 0.989 (20/20 density), and the total residual sugars, from 170 to 3 g/L. During the wine fermentation process, differences in the peak profiles obtained by GFFF between the two types of commercial yeasts that can be related with the unlike cell growth were observed. Moreover, the strains showed different fermentation kinetic profiles that could be correlated with the corresponding fractograms monitored by GFFF. These results allow optimism that sedimentation FFF techniques could be successfully used for quality assessment of the raw material and to predict yeast behavior during yeast-based bioprocesses such as wine production.

  12. Aggregation behavior of fullerenes in aqueous solutions: a capillary electrophoresis and asymmetric flow field-flow fractionation study

    NARCIS (Netherlands)

    A. Astefanei; O. Núñez; M.T. Galceran; W.Th. Kok; P.J. Schoenmakers

    2015-01-01

    In this work, the electrophoretic behavior of hydrophobic fullerenes [buckminsterfullerene (C-60), C-70, and N-methyl-fulleropyrrolidine (C-60-pyrr)] and water-soluble fullerenes [fullerol (C-60(OH)(24)); polyhydroxy small gap fullerene, hydrated (C-120(OH)(30)); C-60 pyrrolidine tris acid (C-60-pyr

  13. Different elution modes and field programming in gravitational field-flow fractionation. III. Field programming by flow-rate gradient generated by a programmable pump.

    Science.gov (United States)

    Plocková, J; Chmelík, J

    2001-05-25

    Gravitational field-flow fractionation (GFFF) utilizes the Earth's gravitational field as an external force that causes the settlement of particles towards the channel accumulation wall. Hydrodynamic lift forces oppose this action by elevating particles away from the channel accumulation wall. These two counteracting forces enable modulation of the resulting force field acting on particles in GFFF. In this work, force-field programming based on modulating the magnitude of hydrodynamic lift forces was implemented via changes of flow-rate, which was accomplished by a programmable pump. Several flow-rate gradients (step gradients, linear gradients, parabolic, and combined gradients) were tested and evaluated as tools for optimization of the separation of a silica gel particle mixture. The influence of increasing amount of sample injected on the peak resolution under flow-rate gradient conditions was also investigated. This is the first time that flow-rate gradients have been implemented for programming of the resulting force field acting on particles in GFFF.

  14. Phoretic flow induced by asymmetric confinement

    CERN Document Server

    Lisicki, Maciej; Lauga, Eric

    2016-01-01

    Internal phoretic flows due to the interactions of solid boundaries with local chemical gradients may be created using chemical patterning. Alternatively, we demonstrate here that internal flows might also be induced by geometric asymmetries of chemically-homogeneous surfaces. We characterise the circulatory flow created in a cavity enclosed between two eccentric cylindrical walls of uniform chemical activity. Local gradients of the diffusing solute induce a slip flow along the surface of the cylinders, leading to a circulatory bulk flow pattern which can be solved analytically in the diffusive limit. The flow strength can be controlled by adjusting the relative positions of the cylinders and an optimal configuration is identified. These results provide a model system for tunable phoretic pumps.

  15. Breakdown of doublet recirculation and direct line drives by far-field flow in reservoirs: implications for geothermal and hydrocarbon well placement

    Science.gov (United States)

    Weijermars, R.; van Harmelen, A.

    2016-07-01

    An important real world application of doublet flow occurs in well design of both geothermal and hydrocarbon reservoirs. A guiding principle for fluid management of injection and extraction wells is that mass balance is commonly assumed between the injected and produced fluid. Because the doublets are considered closed loops, the injection fluid is assumed to eventually reach the producer well and all the produced fluid ideally comes from stream tubes connected to the injector of the well pair making up the doublet. We show that when an aquifer background flow occurs, doublets will rarely retain closed loops of fluid recirculation. When the far-field flow rate increases relative to the doublet's strength, the area occupied by the doublet will diminish and eventually vanishes. Alternatively, rather than using a single injector (source) and single producer (sink), a linear array of multiple injectors separated by some distance from a parallel array of producers can be used in geothermal energy projects as well as in waterflooding of hydrocarbon reservoirs. Fluid flow in such an arrangement of parallel source-sink arrays is shown to be macroscopically equivalent to that of a line doublet. Again, any far-field flow that is strong enough will breach through the line doublet, which then splits into two vortices. Apart from fundamental insight into elementary flow dynamics, our new results provide practical clues that may contribute to improve the planning and design of doublets and direct line drives commonly used for flow management of groundwater, geothermal and hydrocarbon reservoirs.

  16. Characterization of winemaking yeast by cell number-size distribution analysis through flow field-flow fractionation with multi-wavelength turbidimetric detection.

    Science.gov (United States)

    Zattoni, Andrea; Melucci, Dora; Reschiglian, Pierluigi; Sanz, Ramsés; Puignou, Lluís; Galceran, Maria Teresa

    2004-10-29

    Yeasts are widely used in several areas of food industry, e.g. baking, beer brewing, and wine production. Interest in new analytical methods for quality control and characterization of yeast cells is thus increasing. The biophysical properties of yeast cells, among which cell size, are related to yeast cell capabilities to produce primary and secondary metabolites during the fermentation process. Biophysical properties of winemaking yeast strains can be screened by field-flow fractionation (FFF). In this work we present the use of flow FFF (FlFFF) with turbidimetric multi-wavelength detection for the number-size distribution analysis of different commercial winemaking yeast varieties. The use of a diode-array detector allows to apply to dispersed samples like yeast cells the recently developed method for number-size (or mass-size) analysis in flow-assisted separation techniques. Results for six commercial winemaking yeast strains are compared with data obtained by a standard method for cell sizing (Coulter counter). The method here proposed gives, at short analysis time, accurate information on the number of cells of a given size, and information on the total number of cells.

  17. Thomson scattering measurements from asymmetric interpenetrating plasma flows

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J. S., E-mail: ross36@llnl.gov; Moody, J. D.; Fiuza, F.; Ryutov, D.; Divol, L.; Huntington, C. M.; Park, H.-S. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-11-15

    Imaging Thomson scattering measurements of collective ion-acoustic fluctuations have been utilized to determine ion temperature and density from laser produced counter-streaming asymmetric flows. Two foils are heated with 8 laser beams each, 500 J per beam, at the Omega Laser facility. Measurements are made 4 mm from the foil surface using a 60 J 2ω probe laser with a 200 ps pulse length. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the multi-ion species, asymmetric flows theoretical form factor for the ion feature such that the ion temperatures, ion densities, and flow velocities for each plasma flow are determined.

  18. Flow line asymmetric nonimaging concentrating optics

    Science.gov (United States)

    Jiang, Lun; Winston, Roland

    2016-09-01

    Nonimaging Optics has shown that it achieves the theoretical limits by utilizing thermodynamic principles rather than conventional optics. Hence in this paper the condition of the "best" design are both defined and fulfilled in the framework of thermodynamic arguments, which we believe has profound consequences for the designs of thermal and even photovoltaic systems, even illumination and optical communication tasks. This new way of looking at the problem of efficient concentration depends on probabilities, geometric flux field and radiative heat transfer while "optics" in the conventional sense recedes into the background. Some of the new development of flow line designs will be introduced and the connection between the thermodynamics and flow line design will be officially formulated in the framework of geometric flux field. A new way of using geometric flux to design nonimaging optics will be introduced. And finally, we discuss the possibility of 3D ideal nonimaing optics.

  19. TiO2 in commercial sunscreen lotion: flow field-flow fractionation and ICP-AES together for size analysis.

    Science.gov (United States)

    Contado, Catia; Pagnoni, Antonella

    2008-10-01

    A new method for determining the size of titanium dioxide particles is proposed and assayed in a commercial sunscreen product. Today many sun protection cosmetics incorporate physical UV filters as active ingredients, and there are no official methods for determining these compounds in sunscreen cosmetics. Here flow field-flow fractionation (FlFFF) has been tested, first to sort two different types of TiO2 nano- and microstandard materials (AeroxideTiO2 Degussa P-25 and TiO2 rutile 0.1-0.2-microm size) and then to fractionate TiO2 particles, extracted from a commercial sunscreen lotion. All the TiO2 FlFFF separations were detected by UV but during elution fractions were collected and their Ti content measured by inductively coupled plasma-atomic emission spectrometer (ICP-AES); the Ti concentration profiles obtained by ICP-AES were well correlated with the UV signals. The TiO2 particle mass-size distribution were calculated from the UV profiles. This methodology is relatively simple and rapid, and the sample treatment is as a whole easy and low cost.

  20. Different elution modes and field programming in gravitational field-flow fractionation. IV. Field programming achieved with channels of non-constant cross-sections.

    Science.gov (United States)

    Plocková, Jana; Matulík, Frantisek; Chmelík, Josef

    2002-04-26

    Force field programming provided increased speed of separation with an improved resolution and detection capability in many field-flow fractionation (FFF) techniques. Gravitational field-flow fractionation (GFFF) uses the Earth's gravitational field to cause the settlement of particles towards the channel accumulation wall. Although this field is constant and relatively weak, there are different ways to implement force field programming in GFFF. Because hydrodynamic lift forces (HLF) participate in the separation process in focusing (hyperlayer) elution mode, they can control the resulting force field acting on particles via changes in flow-velocity. These changes can be accomplished by a programmable pump or with channels of non-constant cross-sections. This work is focused on flow-velocity programming accomplished with channels of non-constant cross-sections. Three trapezoidal channels of decreasing breadth and two channels of decreasing height (along the longitudinal axis) are tested as tools for optimization of the separation of a model silica gel particle mixture. The trapezoidal channels yielded reduced separation times. However, taking into account both speed of separation and resolution, the optimization effect was lower compared with the flow-rate gradients generated by a programmable pump. The channels of non-constant height did not yield advantageous separations.

  1. Instrument and method to determine the electrophoretic mobility of nanoparticles and proteins by combining electrical and flow field-flow fractionation.

    Science.gov (United States)

    Johann, Christoph; Elsenberg, Stephan; Schuch, Horst; Rösch, Ulrich

    2015-04-21

    A new FFF method is presented which combines asymmetrical flow-FFF (AF4) and electrical FFF (ElFFF) in one channel to electrical asymmetrical flow-FFF (EAF4) to overcome the restrictions of pure ElFFF. It allows for measuring electrophoretic mobility (μ) as a function of size. The method provides an absolute value and does not require calibration. Results of μ for two particle standards are in good agreement with values determined by phase analysis light scattering (PALS). There is no requirement for low ionic strength carriers with EAF4. This overcomes one of the main limitations of ElFFF, making it feasible to measure proteins under physiological conditions. EAF4 has the capability to determine μ for individual populations which are resolved into separate peaks. This is demonstrated for a mixture of three polystyrene latex particles with different sizes as well as for the monomer and dimer of BSA and an antibody. The experimental setup consists of an AF4 channel with added electrodes; one is placed beneath the frit at the bottom wall and the other covers the inside of the upper channel plate. This design minimizes contamination from the electrolysis reactions by keeping the particles distant from the electrodes. In addition the applied voltage range is low (1.5-5 V), which reduces the quantity of gaseous electrolysis products below a threshold that interferes with the laminar flow profile or detector signals. Besides measuring μ, the method can be useful to improve the separation between sample components compared to pure flow-FFF. For two proteins (BSA and a monoclonal antibody), enhanced resolution of the monomer and dimer is achieved by applying an electric field.

  2. Comparison of the molecular mass and optical properties of colored dissolved organic material in two rivers and coastal waters by flow field-flow fractionation.

    Science.gov (United States)

    Zanardi-Lamardo, Eliete; Clark, Catherine D; Moore, Cynthia A; Zika, Rod G

    2002-07-01

    Colored dissolved organic material (CDOM) is an important sunlight absorbing substance affecting the optical properties of natural waters. However, little is known about its structural and optical properties mainly due to its complex matrix and the limitation of the techniques available. A comparison of two southwestern Florida rivers [the Caloosahatchee River (CR) and the Shark River (SR)] was done in terms of molecular mass (MM) and diffusion coefficients (D). The novel technique Frit inlet/frit outlet-flow field-flow fractionation (FIFO-FIFFF) with absorbance and fluorescence detectors was used to determine these properties. The SR receives organic material from the Everglades. By contrast, the CR arises from Lake Okeechobee in central Florida, receiving anthropogenic inputs, farming runoff, and natural organics. Both rivers discharge to the Gulf of Mexico. Fluorescence identified, for both rivers, two different MM distributions in low salinity water samples: the first was centered at approximately 1.7 kDa (CR) and approximately 2 kDa (SR); the second centered at approximately 13 kDa for both rivers, which disappeared gradually in the river plumes to below detection limit in coastal waters. Absorbance detected only one MM distribution centered at approximately 2 kDa (CR) and 2.2-2.4 kDa (SR). Fluorescence in general peaked at a lower MM than absorbance, suggesting a different size distribution for fluorophores vs chromophores. A photochemical study showed that, after sunlight, irradiated freshwater samples have similar characteristics to more marine waters, including a shift in MM distribution of chromophores. The differences observed between the rivers in the optical characteristics, MM distributions, and D values suggest that the CDOM sources, physical, and photochemical degradation processes are different for these two rivers.

  3. On the wake flow of asymmetrically beveled trailing edges

    Science.gov (United States)

    Guan, Yaoyi; Pröbsting, Stefan; Stephens, David; Gupta, Abhineet; Morris, Scott C.

    2016-05-01

    Trailing edge and wake flows are of interest for a wide range of applications. Small changes in the design of asymmetrically beveled or semi-rounded trailing edges can result in significant difference in flow features which are relevant for the aerodynamic performance, flow-induced structural vibration and aerodynamically generated sound. The present study describes in detail the flow field characteristics around a family of asymmetrically beveled trailing edges with an enclosed trailing-edge angle of 25° and variable radius of curvature R. The flow fields over the beveled trailing edges are described using data obtained by particle image velocimetry (PIV) experiments. The flow topology for different trailing edges was found to be strongly dependent on the radius of curvature R, with flow separation occurring further downstream as R increases. This variation in the location of flow separation influences the aerodynamic force coefficients, which were evaluated from the PIV data using a control volume approach. Two-point correlations of the in-plane velocity components are considered to assess the structure in the flow field. The analysis shows large-scale coherent motions in the far wake, which are associated with vortex shedding. The wake thickness parameter yf is confirmed as an appropriate length scale to characterize this large-scale roll-up motion in the wake. The development in the very near wake was found to be critically dependent on R. In addition, high-speed PIV measurements provide insight into the spectral characteristics of the turbulent fluctuations. Based on the time-resolved flow field data, the frequency range associated with the shedding of coherent vortex pairs in the wake is identified. By means of time-correlation of the velocity components, turbulent structures are found to convect from the attached or separated shear layers without distinct separation point into the wake.

  4. Pulsatile flow in a compliant stenosed asymmetric model

    Science.gov (United States)

    Usmani, Abdullah Y.; Muralidhar, K.

    2016-12-01

    Time-varying velocity field in an asymmetric constricted tube is experimentally studied using a two-dimensional particle image velocimetry system. The geometry resembles a vascular disease which is characterized by arterial narrowing due to plaque deposition. The present study compares the nature of flow patterns in rigid and compliant asymmetric constricted tubes for a range of dimensionless parameters appearing in a human artery. A blood analogue fluid is employed along with a pump that mimics cardioflow conditions. The peak Reynolds number range is Re 300-800, while the Womersley number range considered in experiments is Wo 6-8. These values are based on the peak velocity in a straight rigid tube connected to the model, over a pulsation frequency range of 1.2-2.4 Hz. The medial-plane velocity distribution is used to investigate the nature of flow patterns. Temporal distribution of stream traces and hemodynamic factors including WSS, TAWSS and OSI at important phases of the pulsation cycle are discussed. The flow patterns obtained from PIV are compared to a limited extent against numerical simulation. Results show that the region downstream of the constriction is characterized by a high-velocity jet at the throat, while a recirculation zone, attached to the wall, evolves in time. Compliant models reveal large flow disturbances upstream during the retrograde flow. Wall shear stress values are lower in a compliant model as compared to the rigid. Cross-plane flow structures normal to the main flow direction are visible at select phases of the cycle. Positive values of largest Lyapunov exponent are realized for wall movement and are indicative of chaotic motion transferred from the flow to the wall. These exponents increase with Reynolds number as well as compliance. Period doubling is observed in wall displacement of highly compliant models, indicating possible triggering of hemodynamic events in a real artery that may cause fissure in the plaque deposits.

  5. Size characterization of barley starch granules by gravitational field-flow fractionation: a rapid, low-cost method to assess the brewing capability of different strains.

    Science.gov (United States)

    Reschiglian, Pierluigi; Zattoni, Andrea; Casolari, Sonia; Krumlova, Andrea; Budinska, Marcela; Chmelík, Josef

    2002-04-01

    Cereal starch occurs as two types of micrometer-sized granules, large and small. Large starch granules are more susceptible to enzymatic hydrolysis. When cereal starch is used for fermentation processes, as in brewing of barley malt, the barley strains with the highest content of large starch granules should be preferred. Gravitational field-flow fractionation (GFFF) is a separation method able to fractionate starch samples at low cost and short analysis time. In this work, the search for the best GFFF conditions for the analytical separation of barley starch within an inter-laboratory approach is presented. For different barley strains cultivated under monitored conditions the size distributions of starch granules is here quickly monitored and characterized by GFFF. As a consequence, dimensional characterization of barley starch can allow for the selection of the most suitable strains with the lowest content of non-degradable starch.

  6. A new analytical platform based on field-flow fractionation and olfactory sensor to improve the detection of viable and non-viable bacteria in food.

    Science.gov (United States)

    Roda, Barbara; Mirasoli, Mara; Zattoni, Andrea; Casale, Monica; Oliveri, Paolo; Bigi, Alessandro; Reschiglian, Pierluigi; Simoni, Patrizia; Roda, Aldo

    2016-10-01

    An integrated sensing system is presented for the first time, where a metal oxide semiconductor sensor-based electronic olfactory system (MOS array), employed for pathogen bacteria identification based on their volatile organic compound (VOC) characterisation, is assisted by a preliminary separative technique based on gravitational field-flow fractionation (GrFFF). In the integrated system, a preliminary step using GrFFF fractionation of a complex sample provided bacteria-enriched fractions readily available for subsequent MOS array analysis. The MOS array signals were then analysed employing a chemometric approach using principal components analysis (PCA) for a first-data exploration, followed by linear discriminant analysis (LDA) as a classification tool, using the PCA scores as input variables. The ability of the GrFFF-MOS system to distinguish between viable and non-viable cells of the same strain was demonstrated for the first time, yielding 100 % ability of correct prediction. The integrated system was also applied as a proof of concept for multianalyte purposes, for the detection of two bacterial strains (Escherichia coli O157:H7 and Yersinia enterocolitica) simultaneously present in artificially contaminated milk samples, obtaining a 100 % ability of correct prediction. Acquired results show that GrFFF band slicing before MOS array analysis can significantly increase reliability and reproducibility of pathogen bacteria identification based on their VOC production, simplifying the analytical procedure and largely eliminating sample matrix effects. The developed GrFFF-MOS integrated system can be considered a simple straightforward approach for pathogen bacteria identification directly from their food matrix. Graphical abstract An integrated sensing system is presented for pathogen bacteria identification in food, in which field-flow fractionation is exploited to prepare enriched cell fractions prior to their analysis by electronic olfactory system

  7. A quantitative determination of magnetic nanoparticle separation using on-off field operation of quadrupole magnetic field-flow fractionation (QMgFFF).

    Science.gov (United States)

    Orita, Toru; Moore, Lee R; Joshi, Powrnima; Tomita, Masahiro; Horiuchi, Takashi; Zborowski, Maciej

    2013-01-01

    Quadrupole Magnetic Field-Flow Fractionation (QMgFFF) is a technique for characterization of sub-micrometer magnetic particles based on their retention in the magnetic field from flowing suspensions. Different magnetic field strengths and volumetric flow rates were tested using on-off field application and two commercial nanoparticle preparations that significantly differed in their retention parameter, λ (by nearly 8-fold). The fractograms showed a regular pattern of higher retention (98.6% v. 53.3%) for the larger particle (200 nm v. 90 nm) at the higher flow rate (0.05 mL/min v. 0.01 mL/min) at the highest magnetic field (0.52 T), as expected because of its lower retention parameter. The significance of this approach is a demonstration of a system that is simpler in operation than a programmed field QMgFFF in applications to particle mixtures consisting of two distinct particle fractions. This approach could be useful for detection of unwanted particulate contaminants, especially important in industrial and biomedical applications.

  8. Animating streamlines with repeated asymmetric patterns for steady flow visualization

    Science.gov (United States)

    Yeh, Chih-Kuo; Liu, Zhanping; Lee, Tong-Yee

    2012-01-01

    Animation provides intuitive cueing for revealing essential spatial-temporal features of data in scientific visualization. This paper explores the design of Repeated Asymmetric Patterns (RAPs) in animating evenly-spaced color-mapped streamlines for dense accurate visualization of complex steady flows. We present a smooth cyclic variable-speed RAP animation model that performs velocity (magnitude) integral luminance transition on streamlines. This model is extended with inter-streamline synchronization in luminance varying along the tangential direction to emulate orthogonal advancing waves from a geometry-based flow representation, and then with evenly-spaced hue differing in the orthogonal direction to construct tangential flow streaks. To weave these two mutually dual sets of patterns, we propose an energy-decreasing strategy that adopts an iterative yet efficient procedure for determining the luminance phase and hue of each streamline in HSL color space. We also employ adaptive luminance interleaving in the direction perpendicular to the flow to increase the contrast between streamlines.

  9. Different elution modes and field programming in gravitational field-flow fractionation: field programming using density and viscosity gradients.

    Science.gov (United States)

    Plocková, Jana; Chmelík, Josef

    2006-06-23

    In previous papers, several approaches to programming of the resulting force field in GFFF were described and investigated. The experiments were dealing with flow-velocity and channel thickness, i.e. factors influencing hydrodynamic lift forces (HLF). The potential of density and viscosity of carrier liquid for field programming was predicted and demonstrated by preliminary experiments. This work is devoted to experimental verification of the influence of carrier liquid density and viscosity. Several carrier liquid density and simultaneously viscosity gradients using water-methanol mixtures are in this work implemented in the separation of a model silica mixture. Working with the water-methanol gradients, one is not able to separate the influence of density from the contribution of viscosity. However, we found experimental conditions to show the isolated effect of carrier liquid density (two water-methanol mixtures of equal viscosity differing in their densities). In order to demonstrate the isolated effect of viscosity, we implemented in this work a new system of (hydroxypropyl)methyl cellulose (HPMC) carrier liquids. Three different HPMC compositions enabled to vary the viscosity more than two times at almost constant density. With increasing carrier liquid viscosity, the focusing and elevating trend was clearly pronounced for 5 and 10 microm silica particles. By the isolated effect of increased viscosity, the centre of the 10 microm particle zone was elevated to the streamline at 16% of the channel height. These experiments have shown that the influence of carrier liquid viscosity on HLF should be taken into account even at higher levels above the channel bottom, i.e. beyond the near-wall region. Further, it is shown that higher value of carrier liquid viscosity improves the separation of the model mixture in terms of time and resolution.

  10. ASYMMETRIC VORTICES FLOW OVER SLENDER BODY AND ITS ACTIVE CONTROL AT HIGH ANGLE OF ATTACK

    Institute of Scientific and Technical Information of China (English)

    DENG Xueying; WANG Yankui

    2004-01-01

    The studies of asymmetric vortices flow over slender body and its active control at high angles of attack have significant importance for both academic field and engineering area. This paper attempts to provide an update state of art to the investigations on the fields of forebody asymmetric vortices. This review emphasizes the correlation between micro-perturbation on the model nose and its response and evolution behaviors of the asymmetric vortices. The critical issues are discussed,which include the formation and evolution mechanism of asymmetric multi-vortices; main behaviors of asymmetric vortices flow including its deterministic feature and vortices flow structure; the evolution and development of asymmetric vortices under the perturbation on the model nose; forebody vortex active control especially discussed micro-perturbation active control concept and technique in more detail. However present understanding in this area is still very limited and this paper tries to identify the key unknown problems in the concluding remarks.

  11. Sedimentation field-flow fractionation for characterization of citric acid-modified Hβ zeolite particles: Effect of particle dispersion and carrier composition.

    Science.gov (United States)

    Dou, Haiyang; Bai, Guoyi; Ding, Liang; Li, Yueqiu; Lee, Seungho

    2015-11-27

    In this study, sedimentation field-flow fractionation (SdFFF) was, for the first time, applied for determination of size distribution of Hβ zeolite particles modified by citric acid (CA-Hβ). Effects of the particle dispersion and the carrier liquid composition (type of dispersing reagent (surfactant) and salt added in the carrier liquid, ionic strength, and pH) on SdFFF elution behavior of CA-Hβ zeolite particles were systematically investigated. Also the SdFFF separation efficiency of the particles was discussed in terms of the forces such as van der Waals, hydrophobic, and induced-dipole interactions. Results reveal that the type of salt and pH of the carrier liquid significantly affect the SdFFF separation efficiency of the zeolite particles. It was found that addition of a salt (NaN3) into the carrier liquid affects the characteristic of the SdFFF channel surface. It was found that the use of an acidic medium (pH 3.2) leads to a particle-channel interaction, while the use of a basic medium (pH 10.6) promotes an inter-particle hydrophobic interaction. Result from SdFFF was compared with those from scanning electron microscopy (SEM) and dynamic light scattering (DLS). It seems that, once the experimental conditions are optimized, SdFFF becomes a valuable tool for size characterization of the zeolite particles.

  12. Agglomeration behaviour of titanium dioxide nanoparticles in river waters: A multi-method approach combining light scattering and field-flow fractionation techniques.

    Science.gov (United States)

    Chekli, L; Roy, M; Tijing, L D; Donner, E; Lombi, E; Shon, H K

    2015-08-15

    Titanium dioxide nanoparticles (TiO2 NPs) are currently one of the most prolifically used nanomaterials, resulting in an increasing likelihood of release to the environment. This is of concern as the potential toxicity of TiO2 NPs has been investigated in several recent studies. Research into their fate and behaviour once entering the environment is urgently needed to support risk assessment and policy development. In this study, we used a multi-method approach combining light scattering and field-flow fractionation techniques to assess both the aggregation behaviour and aggregate structure of TiO2 NPs in different river waters. Results showed that both the aggregate size and surface-adsorbed dissolved organic matter (DOM) were strongly related to the initial DOM concentration of the tested waters (i.e. R(2) > 0.90) suggesting that aggregation of TiO2 NPs is controlled by the presence and concentration of DOM. The conformation of the formed aggregates was also found to be strongly related to the surface-adsorbed DOM (i.e. R(2) > 0.95) with increasing surface-adsorbed DOM leading to more compact structures. Finally, the concentration of TiO2 NPs remaining in the supernatant after sedimentation of the larger aggregates was found to decrease proportionally with both increasing IS and decreasing DOM concentration, resulting in more than 95% sedimentation in the highest IS sample.

  13. Numerical Simulation of Capillary Flow in Fan-Shaped Asymmetric Interior Corner Under Microgravity

    Science.gov (United States)

    Yong-Qiang, Li; Wen-Hui, Cao; Ling, Liu

    2017-02-01

    Based on fluid mechanics theories, this research focuses on numerical simulation and analysis of capillary flow under microgravity in fan-shaped asymmetric interior corner. We analyze the effect the contact angle has on rising height in a fan-shaped asymmetric interior corner, and get the Concus-Finn condition the calculation of capillary flow needs to satisfy in fan-shaped asymmetric interior corner. Then we study the effect that different parameters of experimental medium and container configuration has on capillary flow in fan-shaped asymmetric interior corner when Concus-Finn condition is fulfilled. The conclusions of this paper has an important role in guiding the analytic solution of flow in a fan-shaped asymmetric interior corner under microgravity. We can also chose the appropriate experimental medium and design a container based on this paper.

  14. Colloidal mercury (Hg) distribution in soil samples by sedimentation field-flow fractionation coupled to mercury cold vapour generation atomic absorption spectroscopy.

    Science.gov (United States)

    Santoro, A; Terzano, R; Medici, L; Beciani, M; Pagnoni, A; Blo, G

    2012-01-01

    Diverse analytical techniques are available to determine the particle size distribution of potentially toxic elements in matrices of environmental interest such as soil, sediments, freshwater and groundwater. However, a single technique is often not exhaustive enough to determine both particle size distribution and element concentration. In the present work, the investigation of mercury in soil samples collected from a polluted industrial site was performed by using a new analytical approach which makes use of sedimentation field-flow fractionation (SdFFF) coupled to cold vapour generation electrothermal atomic absorption spectroscopy (CV-ETAAS). The Hg concentration in the SdFFF fractions revealed a broad distribution from about 0.1 to 1 μm, roughly following the particle size distributions, presenting a maximum at about 400-700 nm in diameter. A correlation between the concentration of Hg in the colloidal fraction and organic matter (O.M.) content in the soil samples was also found. However, this correlation is less likely to be related to Hg sorption to soil O.M. but rather to the presence of colloidal mercuric sulfide particles whose size is probably controlled by the occurrence of dissolved O.M. The presence of O.M. could have prevented the aggregation of smaller particles, leading to an accumulation of mercuric sulfides in the colloidal fraction. In this respect, particle size distribution of soil samples can help to understand the role played by colloidal particles in mobilising mercury (also as insoluble compounds) and provide a significant contribution in determining the environmental impact of this toxic element.

  15. Reconstruction of velocity profiles in axisymmetric and asymmetric flows using an electromagnetic flow meter

    Science.gov (United States)

    Kollár, László E.; Lucas, Gary P.; Meng, Yiqing

    2015-05-01

    An analytical method that was developed formerly for the reconstruction of velocity profiles in asymmetric flows is improved to be applicable for both axisymmetric and asymmetric flows. The method is implemented in Matlab, and predicts the velocity profile from measured electrical potential distributions obtained around the boundary of a multi-electrode electromagnetic flow meter (EMFM). Potential distributions are measured in uniform and non-uniform magnetic fields, and the velocity is assumed as a sum of axisymmetric and polynomial components. The procedure requires three steps. First, the discrete Fourier transform (DFT) is applied to the potential distribution obtained in a uniform magnetic field. Since the direction of polynomial components of order greater than two in the plane of the pipe cross section is not unique multiple solutions exist, therefore all possible polynomial velocity profiles are determined. Then, the DFT is applied to the potential distribution obtained in a specific non-uniform magnetic field, and used to calculate the exponent in a power-law representation of the axisymmetric component. Finally, the potential distribution in the non-uniform magnetic field is calculated for all of the possible velocity profile solutions using weight values, and the velocity profile with the calculated potential distribution which is closest to the measured one provides the optimum solution. The method is validated by reconstructing two quartic velocity profiles, one of which includes an axisymmetric component. The potential distributions are obtained from simulations using COMSOL Multiphysics where a model of the EMFM is constructed. The reconstructed velocity profiles show satisfactory agreement with the input velocity profiles. The main benefits of the method described in this paper are that it provides a velocity distribution in the circular cross section of a pipe as an analytical function of the spatial coordinates which is suitable for both

  16. Effect of size of Fe3O4 magnetic nanoparticles on electrochemical performance of screen printed electrode using sedimentation field-flow fractionation

    Science.gov (United States)

    Dou, Haiyang; Kim, Beom-Ju; Choi, Seong-Ho; Jung, Euo Chang; Lee, Seungho

    2014-10-01

    Fe3O4 magnetic nanoparticles (MNPs) and Fe3O4-deposited multi-walled carbon nanotubes (Fe3O4@MWCNTs) were synthesized by ultrasonic co-precipitation method. The surface and structural properties of Fe3O4 MNPs and Fe3O4@MWCNTs were characterized by X-ray diffraction, field emission transmission electron microscopy (FE-TEM), X-ray photoelectron spectroscopy, and dynamic light scattering (DLS). Sedimentation field-flow fractionation (SdFFF) was, for the first time, employed to study the influence of synthesis parameters on size distribution of Fe3O4 MNPs. A reasonable resolution for SdFFF analysis of Fe3O4 MNPs was obtained by a combination of 1,600 RPM, flow rate of 0.3 mL min-1, and Triton X-100. The results suggest that lower pH and higher reaction temperature tend to yield smaller Fe3O4 MNPs size. The size distribution of Fe3O4 MNPs obtained from SdFFF was compared with those obtained from TEM and DLS. Also the effect of the particle size of Fe3O4 MNPs on electrochemical property of Fe3O4@MWCNTs-treated screen printed electrode (SPE) was studied. Cyclic voltammetry revealed that SPE treated with MWCNTs yields a significantly enhanced signal than that with no treatment. The SPE signal was even further enhanced with addition of Fe3O4 MNPs. For SPE analysis of dopamine, a liner range of 0.005-0.1 mM with a correlation coefficient of 0.986 was observed. Results revealed that (1) SdFFF is a useful tool for size-based separation and characterization of MNPs; (2) Proposed methods for synthesis of Fe3O4 nanoparticles and Fe3O4@MWCNTs are mild and fast (about 30 min); (3) SPE treated with Fe3O4@MWCNTs shows potential applicability for biosensing.

  17. The use of asymmetrical flow field-flow fractionation with on-line detection in the study of drug retention within liposomal nanocarriers and drug transfer kinetics

    DEFF Research Database (Denmark)

    Hinna, Askell Hvid; Hupfeld, Stefan; Kuntsche, Judith

    2016-01-01

    Due to their solubilizing capabilities, liposomes (phospholipid vesicles) are suited for designing formulations for intravenous administration of drug compounds which are poorly water-soluble. Despite the good in-vitro stability of such formulations with minimal drug leakage, upon i.v. injection...

  18. Local heat transfer in an in-line tube bundle with asymmetrical flow

    DEFF Research Database (Denmark)

    Meyer, Knud Erik

    1999-01-01

    Measurements of the local heat transfer in themiddle of a small in-line tube bundle with longitudinal to transverse pitches of $1.5\\times 1.8$ are performed at a Reynolds number of $30\\,000$. Asymmetrical distributions of the local heat transfer are found. The distributions are in good agreement...... with earlier flow measurements. The mean heat transfer rate is only little affected bythe asymmetrical conditions....

  19. Transient Asymmetric Flow and Bubble Transport Inside a Slab Continuous-Casting Mold

    Science.gov (United States)

    Liu, Zhongqiu; Li, Baokuan; Jiang, Maofa

    2014-04-01

    A one third scale water model experiment was conducted to observe the asymmetric flow and vortexing flow inside a slab continuous-casting mold. Dye-injection experiment was used to show the evolution of the transient flow pattern in the liquid pool without and with gas injection. The spread of the dye was not symmetric about the central plane. The flow pattern inside the mold was not stationary. The black sesames were injected into water to visualize the vortexing flow pattern on the top surface. The changes of shape and location of single vortex and two vortices with time had been observed during experiments. Plant ultrasonic testing (UT) of slabs was used to analyze the slab defects distribution, which indicated that the defects are intermittent and asymmetric. A mathematical model has been developed to analyze the time-dependent flow using the realistic geometries, which includes the submerged entry nozzle (SEN), actual mold, and part of the secondary cooling zone. The transient turbulent flow of molten steel inside the mold has been simulated using the large eddy simulation computational approach. Simulation results agree acceptably well with the water model experimentally observed and plant UT results. The oscillating motions of jet and the turbulence naturally promote the asymmetric flow even without the effects of slide gate nozzle or the existence of clogs inside the SEN. The periodic behavior of transient fluid flow in the mold is identified and characterized. The vortexing flow is resulted from asymmetric flow in the liquid pool. The vortices are located at the low-velocity side adjacent to the SEN, and the positions and sizes are different. Finally, the model is applied to investigate the influence of bubble size and casting speed on the time-dependent bubble distribution and removal fraction from the top surface inside the mold.

  20. On-line coupling of flow field-flow fractionation and multiangle laser light scattering for the characterization of macromolecules in aqueous solution as illustrated by sulfonated polystyrene samples.

    Science.gov (United States)

    Thielking, H; Kulicke, W M

    1996-04-01

    Seven sulfonated polystyrene standards (18 000-3 000 000 g/mol), taken as model substances for macromolecular polyelectrolytes, were dissolved in aqueous 0.1 M sodium nitrate solution and characterized by multiangle laser light scattering coupled on-line to flow field-flow fractionation. The distributions of molar mass and root mean square radius and the diffusion coefficients were obtained for each sample using a constant field of force for separation. Relationships between molar mass and root mean square radius [〈R(G)(2)〉(z)(0.5) = (2.71 × 10(-)(2))M(w)(0.56)] or diffusion coefficient [D = (7.10 × 10(-)(8))M(w)(-)(0.68)] were calculated. To investigate the static analytical range of this novel hyphenated technique a mixture of all seven samples was fractionated applying a programmed field. The relationship obtained between root mean square radius and molar mass was used to calculate a Mark-Houwink equation [[η]calcd = (2.99 × 10(-)(2))M(w)(0.68)]. To verify this result, the intrinsic viscosities for all samples were measured at low shear rate and found to be in good agreement [[η]calcd = (2.77 × 10(-)(2))M(w)(0.67)].

  1. Asymmetric energy flow in liquid alkylbenzenes: A computational study

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, David M., E-mail: dml@unr.edu [Department of Chemistry and Chemical Physics Program, University of Nevada, Reno, Nevada 89557 (United States); Freiburg Institute for Advanced Studies (FRIAS), Freiburg (Germany); Pandey, Hari Datt [Department of Chemistry and Chemical Physics Program, University of Nevada, Reno, Nevada 89557 (United States)

    2015-10-14

    Ultrafast IR-Raman experiments on substituted benzenes [B. C. Pein et al., J. Phys. Chem. B 117, 10898–10904 (2013)] reveal that energy can flow more efficiently in one direction along a molecule than in others. We carry out a computational study of energy flow in the three alkyl benzenes, toluene, isopropylbenzene, and t-butylbenzene, studied in these experiments, and find an asymmetry in the flow of vibrational energy between the two chemical groups of the molecule due to quantum mechanical vibrational relaxation bottlenecks, which give rise to a preferred direction of energy flow. We compare energy flow computed for all modes of the three alkylbenzenes over the relaxation time into the liquid with energy flow through the subset of modes monitored in the time-resolved Raman experiments and find qualitatively similar results when using the subset compared to all the modes.

  2. Stability characteristics of the open channel flow above the asymmetrical irregular sand ripples

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Sandy bed cannot keep its original smoothness as the flows pass. With the increase of the flow intensity, the bed forms will appear as sand ripples and dune in turn. Among these morphologies, the sand ripple scale is the smallest, which is generally symmetrical when it just appears, but as time goes on, the asymmetrical form gradually develops. Just because of this sand ripples asymmetry, it manifests the influence of the flow on the bed morphology and also the impact on the laminar flow dynamical process, especially the stability characteristics. The stability features of laminar flow on open channels with the asymmetrical sand ripples are discussed, and also the results on the symmetrical sand ripples are compared in detail.

  3. Large eddy simulation of high frequency oscillating flow in an asymmetric branching airway model.

    Science.gov (United States)

    Nagels, Martin A; Cater, John E

    2009-11-01

    The implementation of artificial ventilation schemes is necessary when respiration fails. One approach involves the application of high frequency oscillatory ventilation (HFOV) to the respiratory system. Oscillatory airflow in the upper bronchial tree can be characterized by Reynolds numbers as high as 10(4), hence, the flow presents turbulent features. In this study, transitional and turbulent flow within an asymmetric bifurcating model of the upper airway during HFOV are studied using large eddy simulation (LES) methods. The flow, characterized by a peak Reynolds number of 8132, is analysed using a validated LES model of a three-dimensional branching geometry. The pressures, velocities, and vorticity within the flow are presented and compared with prior models for branching flow systems. The results demonstrate how pendelluft occurs at asymmetric branches within the respiratory system. These results may be useful in optimising treatments using HFOV methods.

  4. Asymmetric magnetic reconnection with a flow shear and applications to the magnetopause

    Science.gov (United States)

    Doss, C. E.; Komar, C. M.; Cassak, P. A.; Wilder, F. D.; Eriksson, S.; Drake, J. F.

    2015-09-01

    We perform a systematic theoretical and numerical study of antiparallel two-dimensional magnetic reconnection with asymmetries in the plasma density and reconnecting magnetic field strength in addition to a bulk flow shear across the reconnection site in the plane of the reconnecting fields, which commonly occurs at planetary magnetospheres. We analytically predict the speed at which an isolated X line is convected by the flow, the reconnection rate, and the critical flow speed at which reconnection no longer takes place for arbitrary reconnecting magnetic field strengths, densities, and upstream flow speeds, and we confirm the results with two-fluid numerical simulations. The predictions and simulation results counter the prevailing model of reconnection at Earth's dayside magnetopause which says reconnection occurs with a stationary X line for sub-Alfvénic magnetosheath flow, reconnection occurs but the X line convects for magnetosheath flows between the Alfvén speed and double the Alfvén speed, and reconnection does not occur for magnetosheath flows greater than double the Alfvén speed. In particular, we find that X line motion is governed by momentum conservation from the upstream flows, which are weighted differently in asymmetric systems, so the X line convects for generic conditions including sub-Alfvénic upstream speeds. For the reconnection rate, as with symmetric reconnection, it drops with increasing flow shear and there is a cutoff speed above which reconnection is not predominant. However, while the cutoff condition for symmetric reconnection is that the difference in flows on the two sides of the reconnection site is twice the Alfvén speed, we find asymmetries cause the cutoff speed for asymmetric reconnection to be higher than twice the asymmetric form of the Alfvén speed. The stronger the asymmetries, the more the cutoff exceeds double the asymmetric Alfvén speed. This is due to the fact that in asymmetric reconnection, the plasma with the

  5. Theoretical Prediction of Asymmetrical Jet Formation in Two-Metallic-Flow Collision

    Institute of Scientific and Technical Information of China (English)

    SHI Yi-Na; QIN Cheng-Sen

    2007-01-01

    @@ We develop a basic problem in ballistics and impact engineering, concerning the collision of two fluid streams with different widths. The geometrical theory of plane asymmetrical jet formation is presented and a closed form solution is given. The width and flow direction of the outgoing flows are predicted both analytically and numerically as a function of initial configuration of the incoming flows. The predictions are more accurate than the results of other analytic models and in agreement with the experimental data and numerical results over a wide range of flow widths ratio variation.

  6. Tumbling of asymmetric microrods in a microchannel flow

    CERN Document Server

    Einarsson, J; Laas, A; Ankardal, S; Angilella, J R; Hanstorp, D; Mehlig, B

    2016-01-01

    We describe results of measurements of the orientational motion of glass microrods in a microchannel flow, following the orientational motion of particles with different shapes. We determine how the orientational dynamics depends on the shape of the particle and on its initial orientation. We find that the dynamics depends so sensitively on the degree to which axisymmetry is broken that it is difficult to find particles that are sufficiently axisymmetric so that they exhibit periodic tumbling ("Jeffery orbits").

  7. Particle-in-cell simulation study of the scaling of asymmetric magnetic reconnection with in-plane flow shear

    CERN Document Server

    Doss, C E; Swisdak, M

    2016-01-01

    We investigate magnetic reconnection in systems simultaneously containing asymmetric (anti-parallel) magnetic fields, asymmetric plasma densities and temperatures, and arbitrary in-plane bulk flow of plasma in the upstream regions. Such configurations are common in the high-latitudes of Earth's magnetopause and in tokamaks. We investigate the convection speed of the X-line, the scaling of the reconnection rate, and the condition for which the flow suppresses reconnection as a function of upstream flow speeds. We use two-dimensional particle-in-cell simulations to capture the mixing of plasma in the outflow regions better than is possible in fluid modeling. We perform simulations with asymmetric magnetic fields, simulations with asymmetric densities, and simulations with magnetopause-like parameters where both are asymmetric. For flow speeds below the predicted cutoff velocity, we find good scaling agreement with the theory presented in Doss et al., J.~Geophys.~Res., 120, 7748 (2015). Applications to planetary...

  8. Asymmetric collapse by dissolution or melting in a uniform flow

    CERN Document Server

    Rycroft, Chris H

    2015-01-01

    An advection--diffusion-limited dissolution model of an object being eroded by a two-dimensional potential flow is presented. By taking advantage of the conformal invariance of the model, a numerical method is introduced that tracks the evolution of the object boundary in terms of a time-dependent Laurent series. Simulations of a variety of dissolving objects are shown, which shrink and then collapse to a single point in finite time. The simulations reveal a surprising exact relationship whereby the collapse point is the root of a non-analytic function given in terms of the flow velocity and the Laurent series coefficients describing the initial shape. This result is subsequently derived using residue calculus. The structure of the non-analytic function is examined for three different test cases, and a practical approach to determine the collapse point using a generalized Newton--Raphson root-finding algorithm is outlined. These examples also illustrate the possibility that the model breaks down in finite tim...

  9. Recent progress on the study of asymmetric vortex flow over slender bodies

    Institute of Scientific and Technical Information of China (English)

    X.Y.Deng; W.Tian; B.F.Ma; Y.K.Wang

    2008-01-01

    The investigations of forebody vortex flow and its flow control have great importance in both academic field and engineering application areas. A large number of papers and many review papers have been published. However in this research field of forebody asymmetric vortices, three problems such as tip perturbation effect, Reynolds number effect and flow instability are less studied and thus not unders-tood completely. So many researches are still working on the issues in recent years. The present paper attempts to provide a review of recent research progress on first two problems. The first problem is mainly concerned with how the vortex flow evolves after tip perturbation; how to solve the problem of repeatability and reproducibility of wind tunnel testing data; how to develop a conception of active flow control technique with tip perturbation based on the study of vor-tex flow response to tip perturbation. For the second problem one is mainly concerned that how the asymmetric vortices are developed with the increase of Reynolds number; how to classify the vortex flow patterns in different Reynolds number regimes; how to develop an appropriate boundary layer tran-sition technique to simulate flows at high Reynolds number in the convention wind tunnels. Finally, some important ques-tions that deserve answers are proposed in the concluding remarks.

  10. EXPERIMENTAL STUDY ON TURBULENT FEATURES IN THE NEGATIVE TRANSPORT REGION OF ASYMMETRIC PLANE CHANNEL FLOW

    Institute of Scientific and Technical Information of China (English)

    卢志明; 刘宇陆; 蒋剑波

    2001-01-01

    Turbulent features of streamwise and vertical components of velocity in the negative transport region of asymmetric plane channel flow have been studied experimentally in details. Experiments show that turbulent fluctuations in negative transport region are suppressed, and their probability distributions are far from Gaus sian. Besides, the skewness factors attain their negative maxima at the position of the maximum mean velocity, whereas the flatness factors attain their positive maxima at the same position.

  11. LATTICE BGK MODEL SIMULATION OF ASYMMETRIC FLOW INSIDE A CONTINUOUS SLAB CASTING MOLD

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-jun; SHEN Hou-fa

    2006-01-01

    The incompressible lattice Bhatnager-Gross-Krook (BGK) model of computational fluid dynamics, from which the unsteady incompressible Navier-Stokes equations can be exactly derived with the limit of small Mach number, was established in continuous casting mold. An asymmetric flow pattern in the two-dimensional central plane of continuous slab casting mold was simulated, and the flow pattern is not stationary but changes over frequently if the Reynolds number is larger than 3000 or so. The results are found to be in excellent agreement with previous experimental results.

  12. Magnetohydrodynamic peristaltic flow of a hyperbolic tangent fluid in a vertical asymmetric channel with heat transfer

    Institute of Scientific and Technical Information of China (English)

    Sohail Nadeem; Safia Akram

    2011-01-01

    In the present paper we discuss the magnetohydrodynamic (MHD) peristaltic flow of a hyperbolic tangent fluid model in a vertical asymmetric channel under a zero Reynolds number and long wavelength approximation. Exact solution of the temperature equation in the absence of dissipation term has been computed and the analytical expression for stream function and axial pressure gradient are established. The flow is analyzed in a wave frame of reference moving with the velocity of wave. The expression for pressure rise has been computed numerically. The physical features of pertinent parameters are analyzed by plotting graphs and discussed in detail.

  13. Numerical simulation of peristaltic flow of a Carreau nanofluid in an asymmetric channel

    Directory of Open Access Journals (Sweden)

    Noreen Sher Akbar

    2014-03-01

    Full Text Available In this article, we studied MHD peristaltic flow of a Carreau nanofluid in an asymmetric channel. The flow development is carried out in a wave frame of reference moving with velocity of the wave c1. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations using similarity transformations and then tackled numerically using the fourth and fifth order Runge–Kutta–Fehlberg. Numerical results are obtained for dimensionless velocity, stream function, pressure rise, temperature and nanoparticle volume fraction. It is found that the pressure rise increases with increase in Hartmann Number and thermophoresis parameter.

  14. Quantitative visualization of asymmetric gas flow in constricted microchannels by using pressure-sensitive paint

    Science.gov (United States)

    Huang, Chih-Yung; Chen, Ying-Hsuan; Wan, Shaw-An; Wang, Yu-Chuan

    2016-10-01

    Asymmetric flow in constricted microchannel devices was quantitatively investigated using a pressure-sensitive paint (PSP) technique. For microchannel devices with constriction ratios of 2 : 1 and 5 : 1, detailed pressure maps for the region around the constriction structure were obtained and enabled visualization of the flow field. Symmetric flow was observed in the microchannel device with a constriction ratio of 2 : 1 at the Reynolds number range 2-165. In the microchannel with a constriction ratio of 5 : 1, a deflected flow pattern was clearly identified from PSP measurements at Reynolds numbers exceeding 107. Furthermore, PSP measurements showed a pressure difference of up to 2.5 kPa between the two lateral locations corresponding to y  =  ±0.15 W (W is the microchannel width) downstream of the constriction at a Reynolds number of 279. The pressure difference resulted from asymmetric bifurcation of the flow.

  15. Theoretical prediction of stationary positions in the rectangular chamber during asymmetric electroosmotic flow

    Science.gov (United States)

    1985-01-01

    Most microscopic cell electrophoretic work depends on the theortical prediction of stationary positions by Smoluchowski and Komagata. Their theoretical solutions are based on the assumption that the electroosmotic flow in a chamber is symmetric. Because experiences with the rectangular chamber indicate that symmetric flow occurs during less than 8% of the experiments, the existing theory for stationary position determination is expanded to include the more general case of asymmetric flow. Smoluchowski's equation for symmetric electroosmotic flow in a rectangular chamber having a width much smaller than its height or length is examined. Smoluchowski's approach is used to approximate stationary positions in rectangular chambers with height/width ratios greater than 40. Support for the theoretical prediction of stationary positions using is given by three types of experimental evidence.

  16. Experimental Study on Leakage Flow in Labyrinth Seals with Asymmetric Geometries

    Science.gov (United States)

    Nishii, Kazufumi; Furukawa, Akinori; Watanabe, Satoshi; Miyake, Kunihiro

    2010-06-01

    The labyrinth seal is one of non-contact seals, which is used as a seal device of rotary machines from reasons of the lubrication free and small losses. So far, many researchers have investigated the characteristics and suitable geometries of labyrinth seals, though only one directional flow of the seal has been focused up to now. As flow direction in the seal becomes changeable depending on the gas-purge system and the inner pressure variation of machines for recent applications, a guideline of designing labyrinth seal with changeable flow directions is required. In the present report, effects of seal characteristics and internal flow behaviors on various shapes of asymmetric convexity in labyrinth seals are experimentally investigated and relations between pressure loss and convexity geometries are discussed for designing a suitable seal.

  17. Azimuthal ExB drift of electrons induced by the radial electric field flowing through a longitudinal magnetic channel with non-magnetized ions

    Science.gov (United States)

    Akatsuka, Hiroshi; Takeda, Jun; Nezu, Atsushi

    2016-09-01

    To examine of the effect of the radial electric field on the azimuthal electron motion under E × B field for plasmas with magnetized electrons and non-magnetized ions, an experimental study is conducted by a stationary plasma flow. The argon plasma flow is generated by a DC arc generator under atmospheric pressure, followed by a cw expansion into a rarefied gas-wind tunnel with a uniform magnetic field 0 . 16 T. Inside one of the magnets, we set a ring electrode to apply the radial electric field. We applied an up-down probe for the analysis of the electron motion, where one of the tips is also used as a Langmuir probe to measure electron temperature, density and the space potential. We found that the order of the radial electric field is about several hundred V/m, which should be caused by the difference in the magnetization between electrons and ions. Electron saturation current indicates the existence of the E × B rotation of electrons, whose order is about 2000 - 4000 m/s. The order of the observed electron drift velocity is consistent with the theoretical value calculated from the applied magnetic field and the measured electric field deduced from the space potential.

  18. Asymmetrical reverse vortex flow due to induced-charge electro-osmosis around carbon stacking structures

    Science.gov (United States)

    Sugioka, Hideyuki

    2011-05-01

    Broken symmetry of vortices due to induced-charge electro-osmosis (ICEO) around stacking structures is important for the generation of a large net flow in a microchannel. Following theoretical predictions in our previous study, we herein report experimental observations of asymmetrical reverse vortex flows around stacking structures of carbon posts with a large height (~110 μm) in water, prepared by the pyrolysis of a photoresist film in a reducing gas. Further, by the use of a coupled calculation method that considers boundary effects precisely, the experimental results, except for the problem of anomalous flow reversal, are successfully explained. That is, unlike previous predictions, the precise calculations here show that stacking structures accelerate a reverse flow rather than suppressing it for a microfluidic channel because of the deformation of electric fields near the stacking portions; these structures can also generate a large net flow theoretically in the direction opposite that of a previous prediction for a standard vortex flow. Furthermore, by solving the one-dimensional Poisson-Nernst-Plank (PNP) equations in the presence of ac electric fields, we find that the anomalous flow reversal occurs by the phase retardation between the induced diffuse charge and the tangential electric field. In addition, we successfully explain the nonlinearity of the flow velocity on the applied voltage by the PNP analysis. In the future, we expect to improve the pumping performance significantly by using stacking structures of conductive posts along with a low-cost process.

  19. Three dimensional steady and unsteady asymmetric flow past wings of arbitrary planforms

    Science.gov (United States)

    Kandil, O. A.; Atta, E. H.; Nayfeh, A. H.

    1978-01-01

    The nonlinear discrete vortex method is extended to treat the problem of asymmetric flows past a wing with leading edge separation, including steady and unsteady flows. The problem is formulated in terms of a body fixed frame of reference and the nonlinear-discrete vortex method is modified accordingly. Although the method is general, only examples of flows past delta wings are presented due to the availability of experimental data as well as approximate theories. Comparison of results with experimental results for a delta wing undergoing a steady rolling motion at zero angle of attack demonstrate the superiority of the present method over existing approximate theories in obtaining highly accurate loads. Numerical results for yawed wings at large angles of attack are also presented. In all cases, total load coefficients, pressure distributions, and shapes of the free vortex sheets are shown.

  20. NUMERICAL STUDY ON TURBULENT COUNTER-GRADIENT-TRANSPORT PHENOMENA IN ASYMMETRIC TURBULENT CHANNEL FLOW

    Institute of Scientific and Technical Information of China (English)

    Wang Li-bing; Liu Yu-lu; Qiu Xiang

    2003-01-01

    In this paper, the turbulence characteristics were numerically investigated in an asymmetric turbulent channel flow and the computational results were compared with the relevant experimental data. It shows that the results are consistent with the experiments and there exist Counter-Gradient Momentum Transport(CGMT) phenomena in the central region near the smooth wall, and this region is as large as 6 percent of the channel width. In addition, a region, in which Counter-Gradient-Transport (CGT) phenomena occur more evidently, is found close to the rough wall. These results can help to gain a deeper insight into the mechanism of CGT phenomena.

  1. Orthogonal wavelet analysis of counter gradient transport phenomena in turbulent asymmetric channel flow

    Institute of Scientific and Technical Information of China (English)

    Jianbo Jiang; Xiang Qiu; Zhiming Lu; Yulu Liu

    2005-01-01

    In this paper four families of orthogonal wavelets are applied to analyze the turbulent counter gradient transport phenomena in fully developed asymmetric channel flows,The results show that: (1) In the instance of counter gradient transport, the principal scale of the coherent structure is responsible for the strong local counter gradient transport; (2)Counter gradient transport phenomena have a strong effect on the intermittency of turbulence; (3) Non-Gaussian part of the principal coherent structure is essential for counter gradient transport phenomena.

  2. Peristaltic flow in an asymmetric channel with convective boundary conditions and Joule heating

    Institute of Scientific and Technical Information of China (English)

    Abbasi Fahad Munir; Hayat Tasawar; Ahmad Bashir

    2014-01-01

    The peristaltic transport of viscous fluid in an asymmetric channel is concentrated. The channel walls exhibit convective boundary conditions. Both cases of hydrodynamic and magnetohydrodynamic (MHD) fluids are considered. Mathematical analysis has been presented in a wave frame of reference. The resulting problems are non-dimensionalized. Long wavelength and low Reynolds number approximations are employed. Joule heating effect on the thermal equation is retained. Analytic solutions for stream function and temperature are constructed. Numerical integration is carried out for pressure rise per wavelength. Effects of influential flow parameters have been pointed out through graphs.

  3. Is Investment-Cash Flow Sensitivity Caused by the Agency Costs or Asymmetric Information? Evidence from the UK

    NARCIS (Netherlands)

    Pawlina, G.; Renneboog, L.D.R.

    2005-01-01

    We investigate the investment-cash flow sensitivity of a large sample of the UK listed firms and confirm that investment is strongly cash flow-sensitive.Is this suboptimal investment policy the result of agency problems when managers with high discretion overinvest, or of asymmetric information when

  4. NUMERICAL INVESTIGATION OF TURBULENT COUNTER-GRADIENT-TRANSPORT IN ASYMMETRIC FLOW WITH A JET

    Institute of Scientific and Technical Information of China (English)

    QIU Xiang; GUO Hui-fen; LIU Yu-lu

    2004-01-01

    By using the Reynolds Stress Closure Model(RSM), turbulent Counter-Gradient-Transport (CGT) phenomenon was numerically investigated in asymmetric flow with a jet, and the computational results were compared with experimental data. The computational results show that the negative turbulent energy production only appears at some certain stations in CGT region, this fact indicates that the CGT phenomenon exists more widely than the negative turbulent energy production; while the CGT region exists all along,it gradually shrinks in the favorable pressure gradient zone until the position of the wing central part is reached, where it vanishes, but it appears in the adverse pressure gradient region; in addition, the location in the flow where uv = 0 switched sides, relative to where ()U/()y = 0, from favorable pressure gradient to adverse pressure gradient. The pressure gradient takes an important effect on the region of negative turbulent energy production and CGT.

  5. Buoyancy Effects on Unsteady MHD Flow of a Reactive Third-Grade Fluid with Asymmetric Convective Cooling

    Directory of Open Access Journals (Sweden)

    Tirivanhu Chinyoka

    2015-01-01

    Full Text Available This article examines the combined effects of buoyancy force and asymmetrical convective cooling on unsteady MHD channel flow and heat transfer characteristics of an incompressible, reactive, variable viscosity and electrically conducting third grade fluid. The chemical kinetics in the flow system is exothermic and the asymmetric convective heat transfers at the channel walls follow the Newton’s law of cooling. The coupled nonlinear partial differential equations governing the problem are derived and solved numerically using a semi-implicit finite difference scheme. Graphical results are presented and physical aspects of the problem are discussed with respect to various parameters embedded in the system.

  6. Peristaltic Flow of Phan-Thien-Tanner Fluid in an Asymmetric Channel with Porous Medium

    Directory of Open Access Journals (Sweden)

    Kuppalapalle Vajravelu

    2016-01-01

    Full Text Available This paper deals with peristaltic transport of Phan-Thien-Tanner fluid in an asymmetric channel induced by sinusoidal peristaltic waves traveling down the flexible walls of the channel. The flow is investigated in a wave frame of reference moving with the velocity of the waveby using the long wavelength and low Reynolds number approximations.The nonlinear governing equations are solved employing a perturbation method by choosing as the perturbation parameter. The expressions for velocity, stream function and pressure gradient are obtained. The features of the flow characteristics are analyzed through graphs and the obtained results are discussed in detail. It is noticed that the peristaltic pumping gets reduced due to an increase in the phase difference of the traveling waves. It is also observed that the size of the trapping bolus is a decreasing function of the permeability parameter and the Weissenberg number. Furthermore, the results obtained for the flow characteristics reveal many interesting behaviors that warrant further study on the non-Newtonian fluid phenomena, especially the Peristaltic flow phenomena.

  7. Asymmetrical Blood Flow in the Temporal Lobe in the Charles Bonnet Syndrome: Serial Neuroimaging Study

    Directory of Open Access Journals (Sweden)

    N. Adachi

    1994-01-01

    Full Text Available Clinical features and results of neuroimagings of an 86 year old woman with the Charles Bonnet syndrome are reported. She had become completely blind bilaterally due to cataracts and glaucoma. Shortly after an operation for cataracts, she developed visual hallucinations which lasted for 22 years. She had no deterioration of intelligence. Computed tomography (CT and magnetic resonance imaging (MRI showed moderate generalized atrophy, particularly of the temporal lobes. A serial single photon emission computed tomography (SPECT study during visual hallucinations demonstrated hyperperfusion in the left temporal region and the basal ganglia and hypoperfusion in the right temporal region. These findings suggest that asymmetrical blood flow, particularly in the temporal regions, may be correlated with visual hallucination in the Charles Bonnet syndrome.

  8. Impact of flows on ion temperatures inferred from neutron spectra in asymmetrically driven OMEGA DT implosions

    Science.gov (United States)

    Gatu Johnson, M.; Frenje, J. A.; Seguin, F. H.; Petrasso, R. D.; Aappelbe, B.; Chittenden, J.; Walsh, C.; Knauer, J. P.; Glebov, V. Yu.; Forrest, C.; Marshall, F.; Michel, T.; Stoeckl, C.; Sangster, T. C.; Zylstra, A.

    2016-10-01

    Ion temperatures (Tion) in Inertial Confinement Fusion (ICF) experiments have traditionally been inferred from the broadening of primary neutron spectra. Directional motion (flow) of the fuel at burn, expected to arise due to asymmetries imposed by engineering features (such as stalks, fill tubes, tents, or capsule imperfections) or drive non-uniformity, also impacts broadening and may lead to artificially inflated ``Tion'' values. Flow due to low-mode asymmetries is expected to give rise to line-of-sight variations in measured Tion, as observed in OMEGA cryogenic DT implosions but not in similar experiments at the NIF. In this presentation we report on an OMEGA experiment with intentionally asymmetric drive, designed to test the ability to accurately predict and measure line-of-sight differences in apparent Tion due to low-mode asymmetry-seeded flows. The results provide insight into the complexity of hot-spot dynamics, which is a problem that must be mastered to achieve ICF ignition. This work was supported in part by LLE, the U.S. DoE (NNSA, NLUF) and LLNL.

  9. Homotopy analysis solutions for the asymmetric laminar flow in a porous channel with expanding or contracting walls

    Institute of Scientific and Technical Information of China (English)

    Xin-Hui Si; Lian-Cun Zheng; Xin-Xin Zhang; Ying Chao

    2011-01-01

    In this paper, the asymmetric laminar flow in a porous channel with expanding or contracting walls is investigated. The governing equations are reduced to ordinary ones by using suitable similar transformations. Homotopy analysis method (HAM) is employed to obtain the expressions for velocity fields. Graphs are sketched for values of parameters and associated dynamic characteristics, especially the expansion ratio, are analyzed in detail.

  10. Determination of forced convective heat transfer coefficients for subsonic flows over heated asymmetric NANA 4412 airfoil

    Science.gov (United States)

    Dag, Yusuf

    Forced convection over traditional surfaces such as flat plate, cylinder and sphere have been well researched and documented. Data on forced convection over airfoil surfaces, however, remain very scanty in literature. High altitude vehicles that employ airfoils as lifting surfaces often suffer leading edge ice accretions which have tremendous negative consequences on the lifting capabilities and stability of the vehicle. One of the ways of mitigating the effect of ice accretion involves judicious leading edge convective cooling technique which in turn depends on the accuracy of convective heat transfer coefficient used in the analysis. In this study empirical investigation of convective heat transfer measurements on asymmetric airfoil is presented at different angle of attacks ranging from 0° to 20° under subsonic flow regime. The top and bottom surface temperatures are measured at given points using Senflex hot film sensors (Tao System Inc.) and used to determine heat transfer characteristics of the airfoils. The model surfaces are subjected to constant heat fluxes using KP Kapton flexible heating pads. The monitored temperature data are then utilized to determine the heat convection coefficients modelled empirically as the Nusselt Number on the surface of the airfoil. The experimental work is conducted in an open circuit-Eiffel type wind tunnel, powered by a 37 kW electrical motor that is able to generate subsonic air velocities up to around 41 m/s in the 24 square-inch test section. The heat transfer experiments have been carried out under constant heat flux supply to the asymmetric airfoil. The convective heat transfer coefficients are determined from measured surface temperature and free stream temperature and investigated in the form of Nusselt number. The variation of Nusselt number is shown with Reynolds number at various angles of attacks. It is concluded that Nusselt number increases with increasing Reynolds number and increase in angle of attack from 0

  11. Analytical Model of an Asymmetric Sunspot with a Steady Plasma Flow in its Penumbra

    Science.gov (United States)

    Solov'ev, A. A.; Kirichek, E. A.

    2016-08-01

    A new exact analytical solution to the stationary problem of ideal magnetohydrodynamics is derived for an unipolar asymmetric sunspot immersed in a realistic solar atmosphere. The radial and vertical profiles of pressure, plasma density, and temperature in the visible layers of the sunspot are calculated. The reduction in plasma density in the magnetic funnel of the sunspot, corresponding to the Wilson depression, is also obtained. The magnetic structure of the sunspot is given analytically in a realistic way: a part of the magnetic flux of the sunspot approaches the surrounding photosphere at the outer edge of the penumbra. The magnetic field of the sunspot is not assumed to be axially symmetric. For the first time, the angular dependence of the physical variables in this model allows us to simulate not only a deviation from the circular shape of the sunspot, but also a fine filamentary structure of the sunspot penumbra. The Alfvén Mach number (the ratio of the plasma speed to the Alfvén speed) is zero at the center of the sunspot and rises slowly toward the periphery of the sunspot; this corresponds to the structure of the Evershed flow in the penumbra. The Evershed flow in our model is mainly concentrated in dark penumbral filaments, as is observed.

  12. Viscoelasticity and nonlinear simple shear flow behavior of an entangled asymmetric exact comb polymer solution

    KAUST Repository

    Snijkers, F.

    2016-03-31

    We report upon the characterization of the steady-state shear stresses and first normal stress differences as a function of shear rate using mechanical rheometry (both with a standard cone and plate and with a cone partitioned plate) and optical rheometry (with a flow-birefringence setup) of an entangled solution of asymmetric exact combs. The combs are polybutadienes (1,4-addition) consisting of an H-skeleton with an additional off-center branch on the backbone. We chose to investigate a solution in order to obtain reliable nonlinear shear data in overlapping dynamic regions with the two different techniques. The transient measurements obtained by cone partitioned plate indicated the appearance of overshoots in both the shear stress and the first normal stress difference during start-up shear flow. Interestingly, the overshoots in the start-up normal stress difference started to occur only at rates above the inverse stretch time of the backbone, when the stretch time of the backbone was estimated in analogy with linear chains including the effects of dynamic dilution of the branches but neglecting the effects of branch point friction, in excellent agreement with the situation for linear polymers. Flow-birefringence measurements were performed in a Couette geometry, and the extracted steady-state shear and first normal stress differences were found to agree well with the mechanical data, but were limited to relatively low rates below the inverse stretch time of the backbone. Finally, the steady-state properties were found to be in good agreement with model predictions based on a nonlinear multimode tube model developed for linear polymers when the branches are treated as solvent.

  13. Directed flow in asymmetric nucleus-nucleus collisions and the inverse Landau-Pomeranchuk-Migdal effect

    CERN Document Server

    Toneev, V D; Kolomeitsev, E E; Cassing, W

    2016-01-01

    It is proposed to identify a strong electric field - created during relativistic collisions of asymmetric nuclei - via the observation of pseudorapidity and transverse momentum distributions of hadrons with the same mass but opposite charge. The results of detailed calculations within the Parton-Hadron String Dynamics (PHSD) approach for the charge-dependent directed flow $v_1$ are presented for semi-central Cu+Au collision at $\\sqrt{s_{NN}}=200$ GeV incorporating the inverse Landau-Pomeranchuk-Migdal (iLPM) effect, which accounts for a delay in the electromagnetic interaction with the charged degree of freedom. Including the iLPM effect we achieve a reasonable agreement of the PHSD results for the charge splitting in $v_1(p_T)$ in line with the recent measurements of the STAR Collaboration for Cu+Au collisions at $\\sqrt{s_{NN}}=200$ GeV while an instant appearance and coupling of electric charges at the hard collision vertex overestimates the splitting by about a factor of 10. We predict that the iLPM effect...

  14. Electrospun carbon nanofibers/electrocatalyst hybrids as asymmetric electrodes for vanadium redox flow battery

    Science.gov (United States)

    Wei, Guanjie; Fan, Xinzhuang; Liu, Jianguo; Yan, Chuanwei

    2015-05-01

    To improve the electrochemical activity of polyacrylonitrile (PAN)-based electrospun carbon nanofibers (ECNFs) toward vanadium redox couples, the multi-wall carbon nanotubes (CNTs) and Bi-based compound as electrocatalyst have been embedded in the ECNFs to make composite electrode, respectively. The morphology and electrochemical properties of pristine ECNFs, CNTs/ECNFs and Bi/ECNFs have been characterized. Among the three kinds of electrodes, the CNTs/ECNFs show best electrochemical activity toward VO2+/VO2+ redox couple, while the Bi/ECNFs present the best electrochemical activity toward V2+/V3+ redox couple. Furthermore, the high overpotential of hydrogen evolution on Bi/ECNFs makes the side-reaction suppressed. Because of the large property difference between the two composite electrodes, the CNTs/ECNFs and Bi/ECNFs are designed to act as positive and negative electrode for vanadium redox flow battery (VRFB), respectively. It not only does improve the kinetics of two electrode reactions at the same time, but also reduce the kinetics difference between them. Due to the application of asymmetric electrodes, performance of the cell is improved greatly.

  15. Asymmetrical gene flow in a hybrid zone of Hawaiian Schiedea (Caryophyllaceae species with contrasting mating systems.

    Directory of Open Access Journals (Sweden)

    Lisa E Wallace

    Full Text Available Asymmetrical gene flow, which has frequently been documented in naturally occurring hybrid zones, can result from various genetic and demographic factors. Understanding these factors is important for determining the ecological conditions that permitted hybridization and the evolutionary potential inherent in hybrids. Here, we characterized morphological, nuclear, and chloroplast variation in a putative hybrid zone between Schiedea menziesii and S. salicaria, endemic Hawaiian species with contrasting breeding systems. Schiedea menziesii is hermaphroditic with moderate selfing; S. salicaria is gynodioecious and wind-pollinated, with partially selfing hermaphrodites and largely outcrossed females. We tested three hypotheses: 1 putative hybrids were derived from natural crosses between S. menziesii and S. salicaria, 2 gene flow via pollen is unidirectional from S. salicaria to S. menziesii and 3 in the hybrid zone, traits associated with wind pollination would be favored as a result of pollen-swamping by S. salicaria. Schiedea menziesii and S. salicaria have distinct morphologies and chloroplast genomes but are less differentiated at the nuclear loci. Hybrids are most similar to S. menziesii at chloroplast loci, exhibit nuclear allele frequencies in common with both parental species, and resemble S. salicaria in pollen production and pollen size, traits important to wind pollination. Additionally, unlike S. menziesii, the hybrid zone contains many females, suggesting that the nuclear gene responsible for male sterility in S. salicaria has been transferred to hybrid plants. Continued selection of nuclear genes in the hybrid zone may result in a population that resembles S. salicaria, but retains chloroplast lineage(s of S. menziesii.

  16. Flow modification in canine intracranial aneurysm model by an asymmetric stent: studies using digital subtraction angiography (DSA) and image-based computational fluid dynamics (CFD) analyses

    Science.gov (United States)

    Hoi, Yiemeng; Ionita, Ciprian N.; Tranquebar, Rekha V.; Hoffmann, Kenneth R.; Woodward, Scott H.; Taulbee, Dale B.; Meng, Hui; Rudin, Stephen

    2006-03-01

    An asymmetric stent with low porosity patch across the intracranial aneurysm neck and high porosity elsewhere is designed to modify the flow to result in thrombogenesis and occlusion of the aneurysm and yet to reduce the possibility of also occluding adjacent perforator vessels. The purposes of this study are to evaluate the flow field induced by an asymmetric stent using both numerical and digital subtraction angiography (DSA) methods and to quantify the flow dynamics of an asymmetric stent in an in vivo aneurysm model. We created a vein-pouch aneurysm model on the canine carotid artery. An asymmetric stent was implanted at the aneurysm, with 25% porosity across the aneurysm neck and 80% porosity elsewhere. The aneurysm geometry, before and after stent implantation, was acquired using cone beam CT and reconstructed for computational fluid dynamics (CFD) analysis. Both steady-state and pulsatile flow conditions using the measured waveforms from the aneurysm model were studied. To reduce computational costs, we modeled the asymmetric stent effect by specifying a pressure drop over the layer across the aneurysm orifice where the low porosity patch was located. From the CFD results, we found the asymmetric stent reduced the inflow into the aneurysm by 51%, and appeared to create a stasis-like environment which favors thrombus formation. The DSA sequences also showed substantial flow reduction into the aneurysm. Asymmetric stents may be a viable image guided intervention for treating intracranial aneurysms with desired flow modification features.

  17. Calculation and measurement of a neutral air flow velocity impacting a high voltage capacitor with asymmetrical electrodes

    Directory of Open Access Journals (Sweden)

    M. Malík

    2014-01-01

    Full Text Available This paper deals with the effects surrounding phenomenon of a mechanical force generated on a high voltage asymmetrical capacitor (the so called Biefeld-Brown effect. A method to measure this force is described and a formula to calculate its value is also given. Based on this the authors derive a formula characterising the neutral air flow velocity impacting an asymmetrical capacitor connected to high voltage. This air flow under normal circumstances lessens the generated force. In the following part this velocity is measured using Particle Image Velocimetry measuring technique and the results of the theoretically calculated velocity and the experimentally measured value are compared. The authors found a good agreement between the results of both approaches.

  18. Simultaneous effects of Hall and convective conditions on peristaltic flow of couple-stress fluid in an inclined asymmetric channel

    Indian Academy of Sciences (India)

    T Hayat; Maryam Iqbal; Humaira Yasmin; Fuad E Alsaadi; Huijun Gao

    2015-07-01

    A mathematical model is developed to analyse the peristaltic flow of couple-stress fluid in an inclined asymmetric channel with convective conditions. Soret and Dufour and Hall effects are taken into account. Analysis has been carried out in a wave frame of reference. Expressions for velocity, pressure gradient, temperature and concentration are constructed. Pumping and trapping phenomena are examined. Impact of sundry parameters on the velocity, temperature and concentration is discussed.

  19. Effect of Bottom Wall Heating on the Turbulent Fluid Flow in an Asymmetric Rectangular Diffuser: an Experimental Study

    Directory of Open Access Journals (Sweden)

    Somnath Bhattacharjee

    2016-01-01

    Full Text Available Turbulent fluid flow and heat transfer in an asymmetric diffuser are important in the context of the power plant engineering such as gas turbine, aircraft propulsion systems, hydraulic turbine equipment etc. In the present study, an experimental investigation on the forced convective heat transfer considering turbulent air flow in an asymmetric rectangular diffuser duct has been done. The experimental setup considered for the analysis consists of a diffuser at different bottom wall temperatures and inlet conditions. The air enters into the diffuser at a room temperature and flows steadily under turbulent conditions undergoing thermal boundary layer development within the diffuser. Efforts have been focused to determine the effects of bottom wall heating on the recirculation bubble strength, thermal boundary layer, velocity fields, temperature profiles etc. The distribution of the local average Nusselt number and skin friction factor in the whole flow fields have been critically examined to identify the significance of bottom wall heating effects on the overall heat transfer rates.

  20. Cross-Layer Scheme to Control Contention Window for Per-Flow in Asymmetric Multi-Hop Networks

    Science.gov (United States)

    Giang, Pham Thanh; Nakagawa, Kenji

    The IEEE 802.11 MAC standard for wireless ad hoc networks adopts Binary Exponential Back-off (BEB) mechanism to resolve bandwidth contention between stations. BEB mechanism controls the bandwidth allocation for each station by choosing a back-off value from one to CW according to the uniform random distribution, where CW is the contention window size. However, in asymmetric multi-hop networks, some stations are disadvantaged in opportunity of access to the shared channel and may suffer severe throughput degradation when the traffic load is large. Then, the network performance is degraded in terms of throughput and fairness. In this paper, we propose a new cross-layer scheme aiming to solve the per-flow unfairness problem and achieve good throughput performance in IEEE 802.11 multi-hop ad hoc networks. Our cross-layer scheme collects useful information from the physical, MAC and link layers of own station. This information is used to determine the optimal Contention Window (CW) size for per-station fairness. We also use this information to adjust CW size for each flow in the station in order to achieve per-flow fairness. Performance of our cross-layer scheme is examined on various asymmetric multi-hop network topologies by using Network Simulator (NS-2).

  1. Peristaltic flow of Johnson-Segalman fluid in asymmetric channel with convective boundary conditions

    Institute of Scientific and Technical Information of China (English)

    H YASMIN; T HAYAT; A ALSAEDI; HH ALSULAMI

    2014-01-01

    This work is concerned with the peristaltic transport of the Johnson-Segalman fluid in an asymmetric channel with convective boundary conditions. The mathematical modeling is based upon the conservation laws of mass, linear momentum, and energy. The resulting equations are solved after long wavelength and low Reynolds number are used. The results for the axial pressure gradient, velocity, and temperature profiles are obtained for small Weissenberg number. The expressions of the pressure gra-dient, velocity, and temperature are analyzed for various embedded parameters. Pumping and trapping phenomena are also explored.

  2. The maintenance of genetic variation due to asymmetric gene flow in dendritic metapopulations.

    Science.gov (United States)

    Morrissey, Michael B; de Kerckhove, Derrick T

    2009-12-01

    Dendritic landscapes can have ecological properties that differ importantly from simpler spatial arrangements of habitats. Most dendritic landscapes are structured by elevation, and therefore, migration is likely to be directionally biased. While the population-genetic consequences of both dendritic landscape arrangements and asymmetric migration have begun to be studied, these processes have not been considered together. Simple conceptual models predict that if migration into branch (headwater) populations is limited, such populations can act as reservoirs for potentially unique alleles. As a consequence of the fact that dendritic landscapes have, by definition, more branches than internal habitat patches, this process may lead to the maintenance of higher overall genetic diversities in metapopulations inhabiting dendritic networks where migration is directionally biased. Here we begin to address the generality of these simple predictions using genetic models and a review of empirical literature. We show, for a range of demographic parameters, that dendritic systems with asymmetric migration can maintain levels of genetic variation that are very different, sometimes very elevated, compared with more classical models of geographical population structure. Furthermore, predicted patterns of genetic variation within metapopulations--that is, stepwise increases in genetic diversity at nodes--do occur in some empirical data.

  3. Asymmetric magnetic reconnection with a flow shear and applications to the magnetopause

    CERN Document Server

    Doss, C E; Cassak, P A; Wilder, F D; Eriksson, S; Drake, J F

    2015-01-01

    We perform a theoretical and numerical study of anti-parallel 2D magnetic reconnection with asymmetries in the density and reconnecting magnetic field strength in addition to a bulk flow shear across the reconnection site in the plane of the reconnecting fields, which commonly occurs at planetary magnetospheres. We predict the speed at which an isolated X-line is convected by the flow, the reconnection rate, and the critical flow speed at which reconnection no longer takes place for arbitrary reconnecting magnetic field strengths, densities, and upstream flow speeds, and confirm the results with two-fluid numerical simulations. The predictions and simulation results counter the prevailing model of reconnection at Earth's dayside magnetopause which says reconnection occurs with a stationary X-line for sub-Alfvenic magnetosheath flow, reconnection occurs but the X-line convects for magnetosheath flows between the Alfven speed and double the Alfven speed, and reconnection does not occur for magnetosheath flows g...

  4. Sediment Micromechanics in Sheet Flows Induced by Asymmetric Waves: A CFD-DEM Study

    CERN Document Server

    Sun, Rui

    2016-01-01

    Understanding the sediment transport in oscillatory flows is essential to the investigation of the overall sediment budget for coastal regions. This overall budget is crucial for the prediction of the morphological change of the coastline in engineering applications. Since the sediment transport in oscillatory flows is dense particle-laden flow, appropriate modeling of the particle interaction is critical. Although traditional two-fluid approaches have been applied to the study of sediment transport in oscillatory flows, the approaches do not resolve the interaction of the particles. Particle-resolved modeling of sediment transport in oscillatory flows and the study of micromechanics of sediment particles are still lacking. In this work, a parallel CFD-DEM solver SediFoam that can resolve the inter-particle collision is applied to study the granular micromechanics of sediment particles in oscillatory flows. The results obtained from SediFoam are validated by the experimental data of coarse and medium sands. T...

  5. Analytical solution for peristaltic flow of conducting nanofluids in an asymmetric channel with slip effect of velocity, temperature and concentration

    Directory of Open Access Journals (Sweden)

    S. Sreenadh

    2016-06-01

    Full Text Available The Peristaltic transport of conducting nanofluids under the effect of slip condition in an asymmetric channel is reported in the present work. The mathematical modelling has been carried out under long wavelength and low Reynolds number approximations. The analytical solutions are obtained for pressure rise, nanoparticle concentration, temperature distribution, velocity profiles and stream function. Influence of various parameters on the flow characteristics has been discussed with the help of graphs. The results showed that the pressure rise increases with increasing magnetic effect and decreases with increasing slip parameter. The effects of thermophoresis parameter and Brownian motion parameter on the nanoparticle concentration and temperature distribution are studied. It is observed that the pressure gradient increases with increasing slip parameter and magnetic effect. The trapping phenomenon for different parameters is presented.

  6. Lattice Boltzmann simulation of asymmetric flow in nematic liquid crystals with finite anchoring

    Science.gov (United States)

    Zhang, Rui; Roberts, Tyler; Aranson, Igor S.; de Pablo, Juan J.

    2016-02-01

    Liquid crystals (LCs) display many of the flow characteristics of liquids but exhibit long range orientational order. In the nematic phase, the coupling of structure and flow leads to complex hydrodynamic effects that remain to be fully elucidated. Here, we consider the hydrodynamics of a nematic LC in a hybrid cell, where opposite walls have conflicting anchoring boundary conditions, and we employ a 3D lattice Boltzmann method to simulate the time-dependent flow patterns that can arise. Due to the symmetry breaking of the director field within the hybrid cell, we observe that at low to moderate shear rates, the volumetric flow rate under Couette and Poiseuille flows is different for opposite flow directions. At high shear rates, the director field may undergo a topological transition which leads to symmetric flows. By applying an oscillatory pressure gradient to the channel, a net volumetric flow rate is found to depend on the magnitude and frequency of the oscillation, as well as the anchoring strength. Taken together, our findings suggest several intriguing new applications for LCs in microfluidic devices.

  7. Effects of Asymmetrical Micro Electrode Surface Topography to AC Electroosmosis flow Rate

    CERN Document Server

    Hong-Yuan, Jiang; Zhen-Xiu, Hou; Yu-Kun, Ren; Yong-Jun, Sun

    2010-01-01

    AC Electroosmosis (ACEO) has many advantages such as low power consumption, non-moving parts, and easy to integrate etc., so it is widely used for low concentration microfluid manipulation in low frequency range. Classical ACEO theory assumes that electric double layer (EDL) is the main cause of electric field induced flow, and gives electric-flow field coupling equations for ACEO flow rate. But the calculation data usually are tens times faster than the experimental velocities. In this paper, electrode surface topography is included to solve ACEO flow rate. With electrode surface roughness as the characteristic parameter, equivalent EDL model is set up to modify the classical EDL model. The relationship between flow rate and electrode surface roughness is studied. Experiment results agree with the simulation very well, proving the feasibility of equivalent EDL model.

  8. Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow

    CERN Document Server

    Wong, Terence T W; Ho, Kenneth K Y; Tang, Matthew Y H; Robles, Joseph D F; Wei, Xiaoming; Chan, Antony C S; Tang, Anson H L; Lam, Edmund Y; Wong, Kenneth K Y; Chan, Godfrey C F; Shum, Ho Cheung; Tsia, Kevin K

    2013-01-01

    Accelerating imaging speed in optical microscopy is often realized at the expense of image contrast, image resolution, and detection sensitivity- a common predicament for advancing high-speed and high-throughput cellular imaging. We here demonstrate a new imaging approach, called asymmetric-detection time-stretch optical microscopy (ATOM), which can deliver ultrafast label-free high-contrast flow imaging with well delineated cellular morphological resolution and in-line optical image amplification to overcome the compromised imaging sensitivity at high speed. We show that ATOM can separately reveal the enhanced phase-gradient and absorption contrast in microfluidic live-cell imaging at a flow speed as high as ~10 m/s, corresponding to an imaging throughput of ~100,000 cells/sec. ATOM could thus be the enabling platform to meet the pressing need for intercalating optical microscopy in cellular assay, e.g. imaging flow cytometry- permitting high-throughput access to the morphological information of the individu...

  9. Immiscible displacement of oil by water in a microchannel: asymmetric flow behavior and nonlinear stability analysis of core-annular flow.

    Science.gov (United States)

    Foroughi, Hooman; Abbasi, Alireza; Das, Kausik S; Kawaji, Masahiro

    2012-02-01

    The immiscible displacement of oil by water in a circular microchannel was investigated. A fused silica microchannel with an inner diameter of 250 μm and a length of 7 cm was initially filled with a viscous silicone oil. Only water then was injected into the channel. We describe our flow observations based on the two-dimensional images captured in the middle of the channel. The water finger displaced the oil and left an oil film on the channel wall. While the oil was being displaced at the core, the flow resistance decreased, which resulted in increases in water flow rate and inertia. Eventually, the water finger reached the channel exit and formed a core-annular flow pattern. The wavelength of the waves formed at the oil-water interface also increased with the increase in inertia. The initially symmetric interfacial waves became asymmetric with time. Also, the water core shifted from the center of the channel and left a thinner oil film on one side of the microchannel. Under all flow rates tested in this study, as long as the water was continuously injected, the water core was stable and no breakup into droplets was observed. We also discuss the flow stability based on nonlinear and linear stability analyses performed on the core-annular flow. Compared to the linear analysis, which ignores the inertia effects, the nonlinear analysis, which includes the inertia effects, predicts longer interfacial wavelengths by a factor of 1/sqrt[1-a(o)/2(We(w) + We(o)a(o)(2)/1-a(o)(2))] where We(w) and We(o) are the Weber numbers of the water and the oil phases, respectively, and a(o) is the unperturbed water core radius made dimensionless by the channel radius.

  10. Immiscible displacement of oil by water in a microchannel: Asymmetric flow behavior and nonlinear stability analysis of core-annular flow

    Science.gov (United States)

    Foroughi, Hooman; Abbasi, Alireza; Das, Kausik S.; Kawaji, Masahiro

    2012-02-01

    The immiscible displacement of oil by water in a circular microchannel was investigated. A fused silica microchannel with an inner diameter of 250 μm and a length of 7 cm was initially filled with a viscous silicone oil. Only water then was injected into the channel. We describe our flow observations based on the two-dimensional images captured in the middle of the channel. The water finger displaced the oil and left an oil film on the channel wall. While the oil was being displaced at the core, the flow resistance decreased, which resulted in increases in water flow rate and inertia. Eventually, the water finger reached the channel exit and formed a core-annular flow pattern. The wavelength of the waves formed at the oil-water interface also increased with the increase in inertia. The initially symmetric interfacial waves became asymmetric with time. Also, the water core shifted from the center of the channel and left a thinner oil film on one side of the microchannel. Under all flow rates tested in this study, as long as the water was continuously injected, the water core was stable and no breakup into droplets was observed. We also discuss the flow stability based on nonlinear and linear stability analyses performed on the core-annular flow. Compared to the linear analysis, which ignores the inertia effects, the nonlinear analysis, which includes the inertia effects, predicts longer interfacial wavelengths by a factor of (1)/(1-(ao)/(2)(Wew+Weo(ao2)/(1-ao2))) where Wew and Weo are the Weber numbers of the water and the oil phases, respectively, and ao is the unperturbed water core radius made dimensionless by the channel radius.

  11. Sediment micromechanics in sheet flows induced by asymmetric waves: A CFD-DEM study

    Science.gov (United States)

    Sun, Rui; Xiao, Heng

    2016-11-01

    Understanding the sediment transport in oscillatory flows is essential to the investigation of the overall sediment budget for coastal regions. This overall budget is crucial for the prediction of the morphological change of the coastline in engineering applications. Since the sediment transport in oscillatory flows is dense particle-laden flow, appropriate modeling the particle interaction is critical. Although traditional two-fluid approaches have been applied to the study of sediment transport in oscillatory flows, the approaches do not capture the interaction of the particles. The study of the motion of individual sediment particles and their micromechanics (e.g., packing and contact force) in oscillatory flows is still lacking. In this work, a parallel CFD-DEM solver SediFoam that can model the inter-particle collision is applied to study the granular micromechanics of sediment particles in oscillatory flows. The results obtained from the CFD-DEM solver are validated by using the experimental data of coarse and medium sands. The comparison with experimental results suggests that the flow velocity, the sediment flux and the net sediment transport rate predicted by SediFoam are satisfactory. Moreover, the micromechanic quantities of the sediment bed are presented in detail, including the Voronoi concentration, the coordination number, and the particle interaction force. It is demonstrated that the variation of these micromechanic quantities at different phases in the oscillatory cycle is significant, which is due to different responses of the sediment bed. To investigate the structural properties of the sediment bed, the correlation of the Voronoi volume fraction and coordination number is compared to the results from the fluidized bed simulations. The consistency in the comparison indicates the structural micromechanics of sediment transport and fluidized bed are similar despite the differences in flow patterns. From the prediction of the CFD-DEM model, we

  12. Laboratory Experiments of Sand Ripples with Bimodal Size Distributions Under Asymmetric Oscillatory Flows

    Science.gov (United States)

    Calantoni, J.; Landry, B. J.

    2010-12-01

    The dynamics of sand ripples are vital to understanding numerous coastal processes such as sediment transport, wave attenuation, boundary layer development, and seafloor acoustic properties. Though significant laboratory research has been conducted to elucidate oscillatory flow morphodynamics under various constant and transient forcing conditions, the majority of the previous experiments were conducted only for beds with unimodal size distributions of sediment. Recent oscillatory flow experiments as well as past laboratory observations in uniform flows suggest that the presence of heterogeneous size sand compositions may significantly impact ripple morphology, resulting in a variety of observable effects (e.g., sediment sorting, bed armoring, and altered transport rates). Experimental work was conducted in a small oscillatory flow tunnel at the Sediment Dynamics Laboratory at the Naval Research Laboratory, Stennis Space Center. Three different monochromatic oscillatory forcings having velocity asymmetry were used to study sand ripple dynamics over five bimodal and two unimodal sediment beds. The seven different mixtures were composed using two unimodal sands of different colors (blue/white) and median grain diameters (d=0.31 mm / d=0.65 mm) combined into various mixtures by mass (i.e., 0/100; 10/90; 25/75; 50/50; 75/25; 90/10; and 100/0 which denotes mass percentage of blue/white sand, respectively, within each mixture). High-definition video of the sediment bed profile was acquired in conjunction with sediment trap measurements to resolve differences in ripple geometries, migration and evolution rates due to the different sediment mixtures and flow conditions. Observational findings clearly illustrate sediment stratification within ripple crests and the depth of the active mixing layer in addition to supporting sediment sorting in previous research on symmetric oscillatory flows in which the larger grains collect on top of ripple crests and smaller grains in the

  13. An asymmetric Zn//Ag doped polyaniline microparticle suspension flow battery with high discharge capacity

    Science.gov (United States)

    Wu, Sen; Zhao, Yongfu; Li, Degeng; Xia, Yang; Si, Shihui

    2015-02-01

    In this study, the effect of oxygen on the potential of reduced polyaniline (PANI) was investigated. In order to enhance the air oxidation of reduced PANI, several composites of PANI doped with co-catalysts were prepared, and a reasonable flow Zn//PANI suspension cell system was designed to investigate the discharge capacity of obtained PANI composite microparticle suspension cathodes. Compared with PANI doped with Cu2+, La+, Mn2+ and zinc protoporphyrin, Ag doped PANI composite at 0.90 weight percent doping of Ag gave the highest value of discharge capacity for the half-cell potential from the initial value to -0.20 V (vs. SCE). A comparison study on the electrochemical properties of both PANI and Ag doped PANI microparticle suspension was done by using cyclic voltammetry, AC Impedance. Due to partial utilization of Zn//air fuel cell, the discharge capacity for Ag doped PANI reached 470 mA h g-1 at the current density of 20 mA cm-2. At 15 mA cm-2, the discharge capacity even reached up to 1650 mA h g-1 after 220 h constant current discharge at the final discharge voltage of 0.65 V. This work demonstrates an effective and feasible approach toward obtaining high energy and power densities by a Zn//Ag-doped PANI suspension flow battery system combined with Zn//air fuel cell.

  14. Measurements of the asymmetric, dynamic sheath around a pulse biased sphere immersed in flowing metal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre; Wu, Hongchen; Anders, Andre

    2008-06-13

    A long-probe technique was utilized to record the expansion and retreat of the dynamic sheath around a spherical substrate immersed in pulsed cathode arc metal plasma. Positively biased, long cylindrical probes were placed on the side and downstream of a negatively pulsed biased stainless steel sphere of 1" (25.4 mm) diameter. The amplitude and width of the negative high voltage pulses (HVP) were 2 kV, 5 kV, 10 kV, and 2 mu s, 4 mu s, 10 mu s, respectively. The variation of the probe (electron) current during the HVP is a direct measure for the sheath expansion and retreat. Maximum sheath sizes were determined for the different parameters of the HVP. The expected rarefaction zone behind the biased sphere (wake) due to the fast plasma flow was clearly established and quantified.

  15. Impact of chevron spacing and asymmetric distribution on supersonic jet acoustics and flow

    Science.gov (United States)

    Heeb, N.; Gutmark, E.; Kailasanath, K.

    2016-05-01

    An experimental investigation into the effect of chevron spacing and distribution on supersonic jets was performed. Cross-stream and streamwise particle imaging velocimetry measurements were used to relate flow field modification to sound field changes measured by far-field microphones in the overexpanded, ideally expanded, and underexpanded regimes. Drastic modification of the jet cross-section was achieved by the investigated configurations, with both elliptic and triangular shapes attained downstream. Consequently, screech was nearly eliminated with reductions in the range of 10-25 dB depending on the operating condition. Analysis of the streamwise velocity indicated that both the mean shock spacing and strength were reduced resulting in an increase in the broadband shock associated noise spectral peak frequency and a reduction in the amplitude, respectively. Maximum broadband shock associated noise amplitude reductions were in the 5-7 dB range. Chevron proximity was found to be the primary driver of peak vorticity production, though persistence followed the opposite trend. The integrated streamwise vorticity modulus was found to be correlated with peak large scale turbulent mixing noise reduction, though optimal overall sound pressure level reductions did not necessarily follow due to the shock/fine scale mixing noise sources. Optimal large scale mixing noise reductions were in the 5-6 dB range.

  16. LBM-LES Simulation of the Transient Asymmetric Flow and Free Surface Fluctuations under Steady Operating Conditions of Slab Continuous Casting Process

    Science.gov (United States)

    Zhao, Peng; Li, Qiang; Kuang, S. B.; Zou, Zongshu

    2017-02-01

    Transient flow structures in a continuous casting mold can strongly influence the slag entrainment in liquid steel and the bubbles capture in the initial solidified shell, both of which are associated with the quality of the final product. This paper presents a numerical study of the turbulent flow with a top free surface in the continuous casting mold at a meso-scale level by a three-dimensional combined approach of Free Surface Lattice Boltzmann Method and Large Eddy Simulation (FSLBM-LES). The validity of the model is verified by the good agreement between the calculated results and the measurements from various water experiments in terms of the flow velocity and free surface profile. The mathematical model is then used to reveal the transient and spatiotemporal asymmetric characteristics associated with the transient flow field and the free surface fluctuation, although the steady state operation is considered during the continuous casting process. The results show that the locations of the jets of liquid steel from the two out ports of the Submerged Entry Nozzle (SEN) always fluctuate alternatively within a certain range, and periodically deviate from the design angle of the SEN within the same time period. The oscillating behavior of the jets promotes the asymmetric flow patterns and multi-scale vortices at both sides of the SEN. By introducing the Q-criterion in the results analysis, the formation, development, and shedding of the coherent structure (CS) of the turbulent flow are quantitatively characterized. The interaction between the transient flow patterns and the fluctuations of the top free surface as well as the evolution of the transient profile and velocities of the free surface are also demonstrated. The results obtained from the current study suggest that the FSLBM-LES model offers a promising way to study the complex flows and related transfer phenomena in the continuous casting process.

  17. Modeling Asymmetric Flow of Viscoelastic Fluid in Symmetric Planar Sudden Expansion Geometry Based on User-Defined Function in FLUENT CFD Package

    Directory of Open Access Journals (Sweden)

    Zhi-Ying Zheng

    2013-01-01

    Full Text Available Through embedding an in-house subroutine into FLUENT code by utilizing the functionalization of user-defined function provided by the software, a new numerical simulation methodology on viscoelastic fluid flows has been established. In order to benchmark this methodology, numerical simulations under different viscoelastic fluid solution concentrations (with solvent viscosity ratio varied from 0.2 to 0.9, extensibility parameters (100≤L2≤500, Reynolds numbers (0.1 ≤ Re ≤ 100, and Weissenberg numbers (0 ≤ Wi ≤ 20 are conducted on unsteady laminar flows through a symmetric planar sudden expansion with expansion ratio of 1: 3 for viscoelastic fluid flows. The constitutive model used to describe the viscoelastic effect of viscoelastic fluid flow is FENE-P (finitely extensive nonlinear elastic-Peterlin model. The numerical simulation results show that the influences of elasticity, inertia, and concentration on the flow bifurcation characteristics are more significant than those of extensibility. The present simulation results including the critical Reynolds number for which the flow becomes asymmetric, vortex size, bifurcation diagram, velocity distribution, streamline, and pressure loss show good agreements with some published results. That means the newly established method based on FLUENT software platform for simulating peculiar flow behaviors of viscoelastic fluid is credible and suitable for the study of viscoelastic fluid flows.

  18. Effects of Navier slip on unsteady flow of a reactive variable viscosity non- Newtonian fluid through a porous saturated medium with asymmetric convecti- ve boundary conditions

    Institute of Scientific and Technical Information of China (English)

    RUNDORA Lazarus; MAKINDE Oluwole Daniel

    2015-01-01

    A study on the effects of Navier slip, in conjunction with other flow parameters, on unsteady flow of reactive variable viscosity third-grade fluid through a porous saturated medium with asymmetric convective boundary conditions is presented. The channel walls are assumed to be subjected to asymmetric convective heat exchange with the ambient, and exothermic chemical reactions take place within the flow system. The heat exchange with the ambient obeys Newton’s law of cooling. The coupled equations, arising from the law of conservation of momentum and the first law of thermodynamics, then the derived system are non- dimensionalised and solved using a semi-implicit finite difference scheme. The lower wall slip parameter is observed to increase the fluid velocity profiles, whereas the upper wall slip parameter retards them because of backflow at the upper channel wall. Heat pro- duction in the fluid is seen to increase with the slip parameters. The wall shear stress increases with the slip parameters while the wall heat transfer rate is largely unaltered by the lower wall slip parameter but marginally increased by the upper wall slip parameter.

  19. On Combined Effects of Heat Transfer and Chemical Reaction for the Flow through an Asymmetric Channel with Orthogonally Deformable Porous Walls

    Directory of Open Access Journals (Sweden)

    Syed Tauseef Mohyud-Din

    2016-01-01

    Full Text Available The combined effects of heat transfer and chemical reaction are studied for the flow through a semi-infinite asymmetric channel with orthogonally deformable porous walls. The similarity transforms have been used to reduce the conservation laws to a corresponding system of nonlinear ordinary differential equations. The resulting equations are solved, both analytically and numerically, by using Homotopy Analysis Method (HAM and the fourth-order Runge-Kutta (RK-4 method, respectively. The convergence of the analytical solution is assured through the so-called total squared residual error analysis. The optimal values of auxiliary parameters are obtained by minimizing the total squared residual error.

  20. Response to "Comments on 'A theoretical model of the pressure distributions arising from asymmetric intraglottal flows applied to a two-mass model of the vocal folds'" [J. Acoust. Soc. Am. 130, 389-403 (2011)].

    Science.gov (United States)

    Erath, Byron D; Peterson, Sean D; Zañartu, Matías; Wodicka, George R; Stewart, Kelley C; Plesniak, Michael W

    2013-08-01

    Hirschberg [J. Acoust. Soc. Am. 134, 9-12 (2013)] presents a commentary and criticisms of the viscous flow model presented by Erath et al. [J. Acoust. Soc. Am. 130, 389-403 (2011)] that solves for the asymmetric pressure loading on the vocal fold walls. This pressure loading arises from asymmetric flow attachment to one vocal fold wall when the glottal channel forms a divergent configuration. Hirschberg proposes an alternative model for the asymmetric loading based upon inviscid flow curvature at the glottal inlet. In this manuscript further evidence is provided in support of the model of Erath et al. and the underlying assumptions, and demonstrates that the primary criticisms presented by Hirschberg are unwarranted. The model presented by Hirschberg is compared with the model from the original paper by Erath et al., and it is shown that each model describes different and complementary aspects of divergent glottal flows.

  1. Asymmetric information and economics

    Science.gov (United States)

    Frieden, B. Roy; Hawkins, Raymond J.

    2010-01-01

    We present an expression of the economic concept of asymmetric information with which it is possible to derive the dynamical laws of an economy. To illustrate the utility of this approach we show how the assumption of optimal information flow leads to a general class of investment strategies including the well-known Q theory of Tobin. Novel consequences of this formalism include a natural definition of market efficiency and an uncertainty principle relating capital stock and investment flow.

  2. Peristaltic flow of a couple stress fluid under the effect of induced magnetic field in an asymmetric channel

    Energy Technology Data Exchange (ETDEWEB)

    Nadeem, Sohail; Akram, Safia [Quaid-i-Azam University, Department of Mathematics, Islamabad (Pakistan)

    2011-01-15

    The present paper investigates the peristaltic transport of a couple stress fluid in an asymmetric channel with the effect of the induced magnetic field. The exact solutions of momentum and the magnetic field equations have been calculated under the assumptions of long wave length and low but finite Reynolds number. The expression for pressure rise has been computed numerically using mathematics software Mathematica. The graphical results have been presented to discuss the physical behavior of various physical parameters of interest. Finally, the trapping phenomena have been discussed for various physical parameters. (orig.)

  3. Peristaltic Flow and Heat Transfer of a Conducting Phan-Thien-Tanner Fluid in an Asymmetric Channel - Application to Chyme Movement in Small Intestine

    Science.gov (United States)

    Vajravelu, K.; Sreenadh, S.; Dhananjaya, S.; Lakshminarayana, P.

    2016-08-01

    In this paper, the influence of heat transfer on the peristaltic flow of a conducting Phan-Thien-Tanner fluid in an asymmetric channel with porous medium is studied. The coupled nonlinear governing differential equations are solved by a perturbation technique. The expressions for the temperature field, the stream function, the axial velocity, and the pressure gradient are obtained. The effects of the various physical parameters such as the magnetic parameter M, the permeability parameter σ, the Brinkman number Br and the Weissenberg number We on the pumping phenomenon are analyzed through graphs and the results are discussed in detail. It is observed that the velocity and the pressure are decreased with increasing the magnetic parameter M whereas the effect of the parameter M on the temperature field is quite the opposite.

  4. Three Dimensional Separation with Spiral-Focus in a Decelerating Duct Flow (Effect of Asymmetric Inlet Boundary Layer Thickness)

    Institute of Scientific and Technical Information of China (English)

    Yoichi Kinoue; Toshiaki Setoguchi; Kenji Kaneko; Mamun Mohammad; Masahiro Inoue

    2003-01-01

    An experimental apparatus was developed to study the three dimensional separated flow with spiral-foci. The internal decelerating flow was generated by the air suction from a side wall to produce the separation on an opposite-side wall. The relation between the upstream boundary layer and the generation of spiral-foci in the separation region was observed by a tuft method. As a result, it was clarified that the spiral-focus type separation could be produced on the side wall and its behavior was closely related to the vortices supplied into the separation region from the boundary layer developing along top wall or bottom one.

  5. A polystyrene-supported 9-amino(9-deoxy)epi quinine derivative for continuous flow asymmetric Michael reactions.

    Science.gov (United States)

    Izquierdo, Javier; Ayats, Carles; Henseler, Andrea H; Pericàs, Miquel A

    2015-04-14

    A polystyrene (PS)-supported 9-amino(9-deoxy)epi quinine derivative catalyzes Michael reactions affording excellent levels of conversion and enantioselectivity using different nucleophiles and structurally diverse enones. The highly recyclable, immobilized catalyst has been used to implement a single-pass, continuous flow process (residence time: 40 min) that can be operated for 21 hours without significant decrease in conversion and with improved enantioselectivity with respect to batch operation. The flow process has also been used for the sequential preparation of a small library of enantioenriched Michael adducts.

  6. Application of an asymmetric helical tube reactor for fast identification of gene transcripts of pathogenic viruses by micro flow-through PCR.

    Science.gov (United States)

    Hartung, R; Brösing, A; Sczcepankiewicz, G; Liebert, U; Häfner, N; Dürst, M; Felbel, J; Lassner, D; Köhler, J M

    2009-06-01

    We have established a fast PCR-based micro flow-through process consisting of a helical constructed tube reactor. By this approach we can detect transcripts of measles and human papilloma virus (HPV) by continuous flow allowing for reverse transcription (RT) and amplification of cDNA. The micro reaction system consisted of two columnar reactors for thermostating the different reaction zones of the RT process and the amplification. The PCR reactor was built by asymmetric heating sections thus realizing different residence times and optimal conditions for denaturation, annealing and elongation. The system concept is based on low electrical power consumption (50-120 W) and is suited for portable diagnostic applications. The samples were applied in form of micro fluidic segments with single volumes between 65 and 130 nL injected into an inert carrier liquid inside a Teflon FEP tube with an inner diameter of 0.5 mm. Optimal amplification for template lengths of 292 bp (lambda-DNA), 127 bp (measles virus) and 95 bp (HPV) was achieved by maximal cycle times of 75 s.

  7. Asymmetric Ashes

    Science.gov (United States)

    2006-11-01

    that oscillate in certain directions. Reflection or scattering of light favours certain orientations of the electric and magnetic fields over others. This is why polarising sunglasses can filter out the glint of sunlight reflected off a pond. When light scatters through the expanding debris of a supernova, it retains information about the orientation of the scattering layers. If the supernova is spherically symmetric, all orientations will be present equally and will average out, so there will be no net polarisation. If, however, the gas shell is not round, a slight net polarisation will be imprinted on the light. This is what broad-band polarimetry can accomplish. If additional spectral information is available ('spectro-polarimetry'), one can determine whether the asymmetry is in the continuum light or in some spectral lines. In the case of the Type Ia supernovae, the astronomers found that the continuum polarisation is very small so that the overall shape of the explosion is crudely spherical. But the much larger polarization in strongly blue-shifted spectral lines evidences the presence, in the outer regions, of fast moving clumps with peculiar chemical composition. "Our study reveals that explosions of Type Ia supernovae are really three-dimensional phenomena," says Dietrich Baade. "The outer regions of the blast cloud is asymmetric, with different materials found in 'clumps', while the inner regions are smooth." "This study was possible because polarimetry could unfold its full strength thanks to the light-collecting power of the Very Large Telescope and the very precise calibration of the FORS instrument," he adds. The research team first spotted this asymmetry in 2003, as part of the same observational campaign (ESO PR 23/03 and ESO PR Photo 26/05). The new, more extensive results show that the degree of polarisation and, hence, the asphericity, correlates with the intrinsic brightness of the explosion. The brighter the supernova, the smoother, or less clumpy

  8. Comments on "A theoretical model of the pressure field arising from asymmetric intraglottal flows applied to a two-mass model of the vocal folds" [J. Acoust. Soc. Am. 130, 389-403 (2011)].

    Science.gov (United States)

    Hirschberg, Avraham

    2013-07-01

    After demonstrating by means of an in vitro model experiment that the flow in the glottis can become asymmetric, Erath et al. [J. Acoust. Soc. Am. 130, 389-403 (2011)] propose a theory to estimate the resulting asymmetry in the lateral hydrodynamic force on the vocal folds. A wall-jet attached to one side of the divergent downstream part of the glottis is considered. The model assumes that the wall is a flat plate and that the jet separates at the glottal exit. They implement this so-called Boundary Layer Estimation of Asymmetric Pressure force model in a lumped two mass model of the vocal folds. This should allow them to study the impact of the asymmetry on voiced sound production. A critical discussion of the merits and shortcomings of the model is provided. It predicts discontinuities in the time dependency of the lateral force. It predicts this force to be independent from the glottal opening, which is not reasonable. An alternative model is proposed, which avoids these problems and predicts that there is a minimum glottal opening below which the wall-jet does not separate from the wall at the glottal exit. This is in agreement with the experimental results provided by Erath et al.

  9. Relation of improvement in endothelium-dependent flow-mediated vasodilation after rosiglitazone to changes in asymmetric dimethylarginine, endothelin-1, and C-reactive protein in nondiabetic patients with the metabolic syndrome.

    Science.gov (United States)

    Wang, Tzung-Dau; Chen, Wen-Jone; Cheng, Wern-Cherng; Lin, Jong-Wei; Chen, Ming-Fong; Lee, Yuan-Teh

    2006-10-15

    The mechanisms by which thiazolidinediones exert beneficial effects on the endothelium are still not clear. We examined the effects of rosiglitazone on the plasma markers of metabolic control (glucose, insulin, adiponectin, resistin, and lipid profiles), markers of inflammation (high-sensitivity C-reactive protein [CRP], interleukin-6, soluble CD40 ligand, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1), and markers of vasoreactivity (asymmetric dimethylarginine [ADMA] and endothelin-1) and analyzed the relations between changes in endothelium-dependent flow-mediated dilation of the brachial artery and changes in these markers to elucidate their roles in mediating the vascular protective effects of rosiglitazone. Of 70 nondiabetic patients who met a modified National Cholesterol Education Program definition of the metabolic syndrome, 35 were randomized to receive rosiglitazone (4 mg/day) and 35 to receive placebo for 8 weeks. At study end, treatment with rosiglitazone had significantly reduced plasma insulin (-25%, p = 0.004) and resistin (-16%, p flow-mediated dilation (p analysis, changes in ADMA, endothelin-1, and CRP were independent predictors of improved endothelial reactivity with rosiglitazone. In conclusion, we have, for the first time, demonstrated the independent associations between the improvement in flow-mediated dilation and reductions in ADMA, endothelin-1, and CRP after 8 weeks of treatment with rosiglitazone in nondiabetic patients with the metabolic syndrome. These findings suggest that decreases in ADMA, endothelin-1, and CRP may serve as possible mechanisms for the improvement in endothelial function conferred by rosiglitazone treatment.

  10. Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation

    DEFF Research Database (Denmark)

    Kammer, Frank von der; Legros, Samuel; Hofmann, Thilo

    2011-01-01

    The thorough analysis of natural nanoparticles (NPs) and engineered NPs involves the sequence of detection, identification, quantification and, if possible, detailed characterization. In a complex or heterogeneous sample, each step of this sequence is an individual challenge, and, given suitable...... conditions on all types of NP in the sample. A holistic methodological approach is preferable to a technique-focused one....

  11. Filter-feeding, near-field flows, and the morphologies of colonial choanoflagellates

    CERN Document Server

    Kirkegaard, Julius B

    2016-01-01

    Efficient uptake of nutrients from the environment is an important component in the fitness of all microorganisms, and its dependence on size may reveal clues to the origins of evolutionary transitions to multicellularity. Because potential benefits in uptake rates must be viewed in the context of other costs and benefits of size, such as varying predation rates and the increased metabolic costs associated with larger and more complex body plans, the uptake rate itself is not necessarily that which is optimized by evolution. Uptake rates can be strongly dependent on local organism geometry and its swimming speed, providing selective pressure for particular arrangements. Here we examine these issues for choanoflagellates, filter-feeding microorganisms that are the closest relatives of the animals. We explore the different morphological variations of the choanoflagellete $Salpingoeca~rosetta$, which can exist as a swimming cell, a sessile thecate cell, and as colonies of cells in various shapes. In the absence ...

  12. Asymmetric-Structure Analysis of Carbon and Energy Markets

    Science.gov (United States)

    Xu, Wei; Cao, Guangxi

    2016-02-01

    This study aimed to investigate the asymmetric structure between the carbon and energy markets from two aspects of different trends (up or down) and volatility-transmission direction using asymmetric detrended cross-correlation analysis (DCCA) cross-correlation coefficient test, multifractal asymmetric DCCA (MF-ADCCA) method, asymmetric volatility-constrained correlation metric and time rate of information-flow approach. We sampled 1283 observations from January 2008 to December 2012 among pairs of carbon and energy markets for analysis. Empirical results show that the (1) asymmetric characteristic from the cross-correlation between carbon and returns in the energy markets is significant, (2) asymmetric cross-correlation between carbon and energy market price returns is persistent and multifractral and (3) volatility of the base assets of energy market returns is more influential to the base asset of the carbon market than that of the energy market.

  13. Asymmetric catalysis with short-chain peptides.

    Science.gov (United States)

    Lewandowski, Bartosz; Wennemers, Helma

    2014-10-01

    Within this review article we describe recent developments in asymmetric catalysis with peptides. Numerous peptides have been established in the past two decades that catalyze a wide variety of transformations with high stereoselectivities and yields, as well as broad substrate scope. We highlight here catalytically active peptides, which have addressed challenges that had thus far remained elusive in asymmetric catalysis: enantioselective synthesis of atropoisomers and quaternary stereogenic centers, regioselective transformations of polyfunctional substrates, chemoselective transformations, catalysis in-flow and reactions in aqueous environments.

  14. Exact Analytical Solution of the Peristaltic Nanofluids Flow in an Asymmetric Channel with Flexible Walls and Slip Condition: Application to the Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Abdelhalim Ebaid

    2013-01-01

    Full Text Available In the cancer treatment, magnetic nanoparticles are injected into the blood vessel nearest to the cancer’s tissues. The dynamic of these nanoparticles occurs under the action of the peristaltic waves generated on the flexible walls of the blood vessel. Studying such nanofluid flow under this action is therefore useful in treating tissues of the cancer. In this paper, the mathematical model describing the slip peristaltic flow of nanofluid was analytically investigated. Exact expressions were deduced for the temperature distribution and nano-particle concentration. In addition, the effects of the slip, thermophoresis, and Brownian motion parameters on the temperature and nano-particle concentration profiles were discussed and further compared with other approximate results in the literatures. In particular, these results have been obtained at the same values of the physical examined parameters that was considered in Akbar et al., “Peristaltic flow of a nanofluid with slip effects,” 2012. The results reveal that remarkable differences are detected between the exact current results and those approximately obtained in the literatures for behaviour of the temperature profile and nano-particles concentration. Accordingly, the current analysis and results are considered as optimal and therefore may be taken as a base for any future comparisons.

  15. Effects of rotation and magnetic field on the nonlinear peristaltic flow of a second-order fluid in an asymmetric channel through a porous medium

    Institute of Scientific and Technical Information of China (English)

    A.M.Abd-Alla; S.M.Abo-Dahab; H.D.El-Shahrany

    2013-01-01

    In this paper,the effects of both rotation and magnetic field of the peristaltic transport of a second-order fluid through a porous medium in a channel are studied analytically and computed numerically.The material is represented by the constitutive equations for a second-order fluid.Closed-form solutions under the consideration of long wavelength and low Reynolds number is presented.The analytical expressions for the pressure gradient,pressure rise,friction force,stream function,shear stress,and velocity are obtained in the physical domain.The effects of the non-dimensional wave amplitude,porosity,magnetic field,rotation,and the dimensionless time-mean flow in the wave frame are analyzed theoretically and computed numerically.Numerical results are given and illustrated graphically in each case considered.Comparison was made with the results obtained in the presence and absence of rotation,magnetic field,and porosity.The results indicate that the effects of the non-dimensional wave amplitude,porosity,magnetic field,rotation,and the dimensionless time-mean flow are very pronounced in the phenomena.

  16. Ecological differentiation, lack of hybrids involving diploids, and asymmetric gene flow between polyploids in narrow contact zones of Senecio carniolicus (syn. Jacobaea carniolica, Asteraceae).

    Science.gov (United States)

    Hülber, Karl; Sonnleitner, Michaela; Suda, Jan; Krejčíková, Jana; Schönswetter, Peter; Schneeweiss, Gerald M; Winkler, Manuela

    2015-03-01

    Areas of immediate contact of different cytotypes offer a unique opportunity to study evolutionary dynamics within heteroploid species and to assess isolation mechanisms governing coexistence of cytotypes of different ploidy. The degree of reproductive isolation of cytotypes, that is, the frequency of heteroploid crosses and subsequent formation of viable and (partly) fertile hybrids, plays a crucial role for the long-term integrity of lineages in contact zones. Here, we assessed fine-scale distribution, spatial clustering, and ecological niches as well as patterns of gene flow in parental and hybrid cytotypes in zones of immediate contact of di-, tetra-, and hexaploid Senecio carniolicus (Asteraceae) in the Eastern Alps. Cytotypes were spatially separated also at the investigated microscale; the strongest spatial separation was observed for the fully interfertile tetra- and hexaploids. The three main cytotypes showed highly significant niche differences, which were, however, weaker than across their entire distribution ranges in the Eastern Alps. Individuals with intermediate ploidy levels were found neither in the diploid/tetraploid nor in the diploid/hexaploid contact zones indicating strong reproductive barriers. In contrast, pentaploid individuals were frequent in the tetraploid/hexaploid contact zone, albeit limited to a narrow strip in the immediate contact zone of their parental cytotypes. AFLP fingerprinting data revealed introgressive gene flow mediated by pentaploid hybrids from tetra- to hexaploid individuals, but not vice versa. The ecological niche of pentaploids differed significantly from that of tetraploids but not from hexaploids.

  17. Asymmetrical field emitter

    Science.gov (United States)

    Fleming, J.G.; Smith, B.K.

    1995-10-10

    A method is disclosed for providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure. 17 figs.

  18. PASSIVE CONTROL OF PARTICLE DISPERSION IN A PARTICLE-LADEN CIRCULAR JET USING ELLIPTIC CO-ANNULAR FLOW: A MEANS FOR IMPROVING UTILIZATION AND EMISSION REDUCTIONS IN PULVERIZED COAL BURNER

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan R. Choudhuri

    2003-06-01

    A passive control technology utilizing elliptic co-flow to control the particle flinging and particle dispersion in a particle (coal)-laden flow was investigated using experimental and numerical techniques. Preferential concentration of particles occurs in particle-laden jets used in pulverized coal burner and causes uncontrollable NO{sub x} formation due to inhomogeneous local stoichiometry. This particular project was aimed at characterizing the near-field flow behavior of elliptic coaxial jets. The knowledge gained from the project will serve as the basis of further investigation on fluid-particle interactions in an asymmetric coaxial jet flow-field and thus is important to improve the design of pulverized coal burners where non-homogeneity of particle concentration causes increased NO{sub x} formation.

  19. Asymmetrical international attitudes

    NARCIS (Netherlands)

    Van Oudenhoven, JP; Askevis-Leherpeux, F; Hannover, B; Jaarsma, R; Dardenne, B

    2002-01-01

    In general, attitudes towards nations have a fair amount of reciprocity: nations either like each other are relatively indifferent to each other or dislike each other Sometimes, however international attitudes are asymmetrical. In this study, we use social identity theory in order to explain asymmet

  20. Asymmetric catalysis with helical polymers

    NARCIS (Netherlands)

    Megens, Rik P.; Roelfes, Gerard

    2011-01-01

    Inspired by nature, the use of helical biopolymer catalysts has emerged over the last years as a new approach to asymmetric catalysis. In this Concept article the various approaches and designs and their application in asymmetric catalysis will be discussed.

  1. Catalytic Methods in Asymmetric Synthesis Advanced Materials, Techniques, and Applications

    CERN Document Server

    Gruttadauria, Michelangelo

    2011-01-01

    This book covers advances in the methods of catalytic asymmetric synthesis and their applications. Coverage moves from new materials and technologies to homogeneous metal-free catalysts and homogeneous metal catalysts. The applications of several methodologies for the synthesis of biologically active molecules are discussed. Part I addresses recent advances in new materials and technologies such as supported catalysts, supports, self-supported catalysts, chiral ionic liquids, supercritical fluids, flow reactors and microwaves related to asymmetric catalysis. Part II covers advances and milesto

  2. Asymmetric extractions in orthodontics

    OpenAIRE

    Camilo Aquino Melgaço; Mônica Tirre de Souza Araújo

    2012-01-01

    INTRODUCTION: Extraction decisions are extremely important in during treatment planning. In addition to the extraction decision orthodontists have to choose what tooth should be extracted for the best solution of the problem and the esthetic/functional benefit of the patient. OBJECTIVE: This article aims at reviewing the literature relating the advantages, disadvantages and clinical implications of asymmetric extractions to orthodontics. METHODS: Keywords were selected in English and Portugue...

  3. Asymmetric Evolutionary Games.

    Directory of Open Access Journals (Sweden)

    Alex McAvoy

    2015-08-01

    Full Text Available Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner's Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games.

  4. Asymmetric extractions in orthodontics

    Directory of Open Access Journals (Sweden)

    Camilo Aquino Melgaço

    2012-04-01

    Full Text Available INTRODUCTION: Extraction decisions are extremely important in during treatment planning. In addition to the extraction decision orthodontists have to choose what tooth should be extracted for the best solution of the problem and the esthetic/functional benefit of the patient. OBJECTIVE: This article aims at reviewing the literature relating the advantages, disadvantages and clinical implications of asymmetric extractions to orthodontics. METHODS: Keywords were selected in English and Portuguese and the EndNote 9 program was used for data base search in PubMed, Web of Science (WSc and LILACS. The selected articles were case reports, original articles and prospective or retrospective case-control studies concerning asymmetrical extractions of permanent teeth for the treatment of malocclusions. CONCLUSION: According to the literature reviewed asymmetric extractions can make some specific treatment mechanics easier. Cases finished with first permanent molars in Class II or III relationship in one or both sides seem not to cause esthetic or functional problems. However, diagnosis knowledge and mechanics control are essential for treatment success.

  5. Asymmetric synthesis v.4

    CERN Document Server

    Morrison, James

    1984-01-01

    Asymmetric Synthesis, Volume 4: The Chiral Carbon Pool and Chiral Sulfur, Nitrogen, Phosphorus, and Silicon Centers describes the practical methods of obtaining chiral fragments. Divided into five chapters, this book specifically examines initial chiral transmission and extension. The opening chapter describes the so-called chiral carbon pool, the readily available chiral carbon fragments used as building blocks in synthesis. This chapter also provides a list of 375 chiral building blocks, along with their commercial sources, approximate prices, and methods of synthesis. Schemes involving

  6. Salt supply to and significance of asymmetric salt diapirs

    DEFF Research Database (Denmark)

    Koyi, H.; Burliga, S.; Chemia, Zurab

    2012-01-01

    Salt diapirs can be asymmetric both internally and externally reflecting their evolution history. As such, this asymmetry bear a significant amount of information about the differential loading (± lateral forces) and in turn the salt supply that have shaped the diapir. In two dimensions......, In this study we compare results of analogue and numerical models of diapirs with two natural salt diapris (Klodawa and Gorleben diapirs) to explain their salt supply and asymmetric evolution. In a NW-SE section, the Gorleben salt diapir possesses an asymmetric external geometry represented by a large...... southeastern overhang due to salt extrusion during Middle Cretaceous followed by its burial in Tertiary. This external asymmetry is also reflected in the internal configuration of the diapir which shows different rates of salt flow on the two halves of the structure. The asymmetric external and internal...

  7. Additive Effects on Asymmetric Catalysis.

    Science.gov (United States)

    Hong, Liang; Sun, Wangsheng; Yang, Dongxu; Li, Guofeng; Wang, Rui

    2016-03-23

    This review highlights a number of additives that can be used to make asymmetric reactions perfect. Without changing other reaction conditions, simply adding additives can lead to improved asymmetric catalysis, such as reduced reaction time, improved yield, or/and increased selectivity.

  8. The asymmetric sandwich theorem

    CERN Document Server

    Simons, Stephen

    2011-01-01

    We discuss the asymmetric sandwich theorem, a generalization of the Hahn-Banach theorem. As applications, we derive various results on the existence of linear functionals that include bivariate, trivariate and quadrivariate generalizations of the Fenchel duality theorem. Most of the results are about affine functions defined on convex subsets of vector spaces, rather than linear functions defined on vector spaces. We consider both results that use a simple boundedness hypothesis (as in Rockafellar's version of the Fenchel duality theorem) and also results that use Baire's theorem (as in the Robinson-Attouch-Brezis version of the Fenchel duality theorem). This paper also contains some new results about metrizable topological vector spaces that are not necessarily locally convex.

  9. Asymmetric black dyonic holes

    Directory of Open Access Journals (Sweden)

    I. Cabrera-Munguia

    2015-04-01

    Full Text Available A 6-parametric asymptotically flat exact solution, describing a two-body system of asymmetric black dyons, is studied. The system consists of two unequal counterrotating Kerr–Newman black holes, endowed with electric and magnetic charges which are equal but opposite in sign, separated by a massless strut. The Smarr formula is generalized in order to take into account their contribution to the mass. The expressions for the horizon half-length parameters σ1 and σ2, as functions of the Komar parameters and of the coordinate distance, are displayed, and the thermodynamic properties of the two-body system are studied. Furthermore, the seven physical parameters satisfy a simple algebraic relation which can be understood as a dynamical scenario, in which the physical properties of one body are affected by the ones of the other body.

  10. Wilsonian flows and background fields

    CERN Document Server

    Litim, Daniel F; Litim, Daniel F.; Pawlowski, Jan M.

    2002-01-01

    We study exact renormalisation group flows for background field dependent regularisations. It is shown that proper-time flows are approximations to exact background field flows for a specific class of regulators. We clarify the role of the implicit scale dependence introduced by the background field. Its impact on the flow is evaluated numerically for scalar theories at criticality for different approximations and regularisations. Implications for gauge theories are discussed.

  11. Management pay-performance sensitivity, internal cash flow and investment behavior: A test of the free cash flow theory and asymmetric information theory%管理层业绩报酬敏感度、内部现金流与企业投资行为——对自由现金流和信息不对称理论的一个检验

    Institute of Scientific and Technical Information of China (English)

    支晓强; 童盼

    2009-01-01

    The relationship between investment and financing,the two basic components of corporate finance,is of significant interest to researchers and practitioners alike.The free cash flow hypothesis and asymmetric information hypothesis are two important theories to explain the relationship between investment expenditure and cash flow.In this paper,we examine how consistency between the interests of management and shareholders influences investment-cash flow sensitivity,and how the nature of the controlling shareholder influences this relationship,so as to analyze how much the free cash flow hypothesis and asymmetric information hypothesis can explain the practice of investment and financing in China.We use pay-performance sensitivity as a proxy for the degree of consistency between shareholders and management interests.We find that investment-cash flow sensitivity is affected not only by financial constraints that caused by asymmetric information,but also by the shareholder-manager agency problem.It is found that the asymmetric information theory has more explanatory power than the shareholder-manager agency theory.In addition,the relationship between investment-cash flow sensitivity and pay-performance sensitivity is affected by the nature of controlling shareholders.Specifically,in the state-owned enterprises,the investment-cash flow sensitivity is mainly ascribed to information asymmetry problems,but in the non-state-owned enterprises,the investment-cash flow sensitivity mainly results from free cash flow.%作为企业理财行为中的两大重要组成部分,企业投资和融资行为之间的关系一直备受理论与实务界人士的关注.自由现金流假说和信息不对称假说是解释企业投资支出与现金流之间关系的两种重要理论.我们考察了管理层与股东利益的拉近程度对投资现金流敏感度的影响,以及控股股东性质对这一关系的影响,从而分析了自由现金流假说和信息不对称假说对我

  12. Asymmetric Gepner Models (Revisited)

    CERN Document Server

    Gato-Rivera, B

    2010-01-01

    We reconsider a class of heterotic string theories studied in 1989, based on tensor products of N=2 minimal models with asymmetric simple current invariants. We extend this analysis from (2,2) and (1,2) spectra to (0,2) spectra with SO(10) broken to the Standard Model. In the latter case the spectrum must contain fractionally charged particles. We find that in nearly all cases at least some of them are massless. However, we identify a large subclass where the fractional charges are at worst half-integer, and often vector-like. The number of families is very often reduced in comparison to the 1989 results, but there are no new tensor combinations yielding three families. All tensor combinations turn out to fall into two classes: those where the number of families is always divisible by three, and those where it is never divisible by three. We find an empirical rule to determine the class, which appears to extend beyond minimal N=2 tensor products. We observe that distributions of physical quantities such as th...

  13. Magnetically Modified Asymmetric Supercapacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project is for the development of an asymmetric supercapacitor that will have improved energy density and cycle life....

  14. Multicatalyst system in asymmetric catalysis

    CERN Document Server

    Zhou, Jian

    2014-01-01

    This book introduces multi-catalyst systems by describing their mechanism and advantages in asymmetric catalysis.  Helps organic chemists perform more efficient catalysis with step-by-step methods  Overviews new concepts and progress for greener and economic catalytic reactions  Covers topics of interest in asymmetric catalysis including bifunctional catalysis, cooperative catalysis, multimetallic catalysis, and novel tandem reactions   Has applications for pharmaceuticals, agrochemicals, materials, and flavour and fragrance

  15. On Asymmetric Quantum MDS Codes

    CERN Document Server

    Ezerman, Martianus Frederic; Ling, San

    2010-01-01

    Assuming the validity of the MDS Conjecture, the weight distribution of all MDS codes is known. Using a recently-established characterization of asymmetric quantum error-correcting codes, linear MDS codes can be used to construct asymmetric quantum MDS codes with $d_{z} \\geq d_{x}\\geq 2$ for all possible values of length $n$ for which linear MDS codes over $\\F_{q}$ are known to exist.

  16. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong

    2017-01-01

    and KCN, are selectively bound to the catalyst, providing exceptionally high enantioselectivities for kinetic resolutions, elimination reactions (fluoride base), and Strecker synthesis (cyanide nucleophile). Asymmetric cation-binding catalysis was recently expanded to silicon-based reagents, enabling...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...

  17. Evolution of turbulence and in-plane vortices in the near field flow behind multi-scale planar grids

    Science.gov (United States)

    Gan, L.; Krogstad, P.-Å.

    2016-08-01

    In this experimental work, we carry out detailed two-dimensional particle image velocimetry investigations for the near field wakes behind a conventional and two multi-scale planar grids, using stitched camera fields of view. Statistical independent measurements are conducted focusing on the first few mesh distances downstream of the grid. It is found that the multiple integral length scales originated from the grids loose their importance on the turbulence development after about three mesh distances downstream, much earlier than the distance where the turbulence becomes homogeneous. The largest eddy size, represented by the integral length scales, does not show clear differences in its growth rate among the three grids after an initial development of three times the largest grid size downstream. Nevertheless, when examining individual vortex behaviours using conditional averaging and filtering processes, clear differences are found. The grids are found to have different decay rates of peak vorticity and projected vortex strengths. Despite these differences, the in-plane vorticity correlation function reveals that the mean vortex shape of all the grids shows a universal near-Gaussian pattern which does not change much as the turbulence decays.

  18. Thermal transport across symmetric and asymmetric solid-solid interfaces

    Science.gov (United States)

    Bi, Kedong; Liu, Yadong; Zhang, Chunwei; Li, Jiapeng; Chen, Minhua; Chen, Yunfei

    2016-10-01

    Thermal transport across symmetric and asymmetric solid-solid interfaces is investigated by non-equilibrium molecular dynamics simulations. For symmetric interfaces, simulation results demonstrate that the thermal interface resistance is reduced greatly with the temperature increasing from 20 to 70 K. Besides, the introduction of an interlayer in the region of a highly mismatched interface is predicted to effectively decrease the thermal interface resistance due to the vibrational bridge role of the interlayer in connecting two vibrationally mismatched materials. As for the case of asymmetric interfaces, it is found that the capacity of thermal transport across an asymmetric interface is related to the effective interfacial area, namely the smaller cross-section area of component materials. In addition, effects of the transition angle at asymmetric interfaces on the thermal interface resistance are further studied when heat flows through interfaces from the side with larger cross-section area to the other. It is shown that a smoother transition is preferred for thermal transport through an asymmetric interface.

  19. Nonlinear effects in asymmetric catalysis.

    Science.gov (United States)

    Satyanarayana, Tummanapalli; Abraham, Susan; Kagan, Henri B

    2009-01-01

    There is a need for the preparation of enantiomerically pure compounds for various applications. An efficient approach to achieve this goal is asymmetric catalysis. The chiral catalyst is usually prepared from a chiral auxiliary, which itself is derived from a natural product or by resolution of a racemic precursor. The use of non-enantiopure chiral auxiliaries in asymmetric catalysis seems unattractive to preparative chemists, since the anticipated enantiomeric excess (ee) of the reaction product should be proportional to the ee value of the chiral auxiliary (linearity). In fact, some deviation from linearity may arise. Such nonlinear effects can be rich in mechanistic information and can be synthetically useful (asymmetric amplification). This Review documents the advances made during the last decade in the use of nonlinear effects in the area of organometallic and organic catalysis.

  20. Asymmetric distances for binary embeddings.

    Science.gov (United States)

    Gordo, Albert; Perronnin, Florent; Gong, Yunchao; Lazebnik, Svetlana

    2014-01-01

    In large-scale query-by-example retrieval, embedding image signatures in a binary space offers two benefits: data compression and search efficiency. While most embedding algorithms binarize both query and database signatures, it has been noted that this is not strictly a requirement. Indeed, asymmetric schemes that binarize the database signatures but not the query still enjoy the same two benefits but may provide superior accuracy. In this work, we propose two general asymmetric distances that are applicable to a wide variety of embedding techniques including locality sensitive hashing (LSH), locality sensitive binary codes (LSBC), spectral hashing (SH), PCA embedding (PCAE), PCAE with random rotations (PCAE-RR), and PCAE with iterative quantization (PCAE-ITQ). We experiment on four public benchmarks containing up to 1M images and show that the proposed asymmetric distances consistently lead to large improvements over the symmetric Hamming distance for all binary embedding techniques.

  1. A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels

    Science.gov (United States)

    Clark, Kylen D.

    Supersonic wind tunnels are a vital aspect to the aerospace industry. Both the design and testing processes of different aerospace components often include and depend upon utilization of supersonic test facilities. Engine inlets, wing shapes, and body aerodynamics, to name a few, are aspects of aircraft that are frequently subjected to supersonic conditions in use, and thus often require supersonic wind tunnel testing. There is a need for reliable and repeatable supersonic test facilities in order to help create these vital components. The option of building and using asymmetric supersonic converging-diverging nozzles may be appealing due in part to lower construction costs. There is a need, however, to investigate the differences, if any, in the flow characteristics and performance of asymmetric type supersonic wind tunnels in comparison to symmetric due to the fact that asymmetric configurations of CD nozzle are not as common. A computational fluid dynamics (CFD) study has been conducted on an existing University of Michigan (UM) asymmetric supersonic wind tunnel geometry in order to study the effects of asymmetry on supersonic wind tunnel performance. Simulations were made on both the existing asymmetrical tunnel geometry and two axisymmetric reflections (of differing aspect ratio) of that original tunnel geometry. The Reynolds Averaged Navier Stokes equations are solved via NASAs OVERFLOW code to model flow through these configurations. In this way, information has been gleaned on the effects of asymmetry on supersonic wind tunnel performance. Shock boundary layer interactions are paid particular attention since the test section integrity is greatly dependent upon these interactions. Boundary layer and overall flow characteristics are studied. The RANS study presented in this document shows that the UM asymmetric wind tunnel/nozzle configuration is not as well suited to producing uniform test section flow as that of a symmetric configuration, specifically one

  2. Asymmetric DSL Technology of Signal Transmission

    Directory of Open Access Journals (Sweden)

    Dražen Kovačević

    2005-05-01

    Full Text Available Asymmetric flow of information is the key feature of theADSL (Asymmetric Digital Subscriber Loop technology, i.e.higher data transmission rate towards the user than from theuser towards the network. Characteristic is the short messagesending by the user with a certain request to the se!Ver. These!Ver responds to the request by a significantly longer messageof various electronic forms (data, digitized speech, pictures orvideo. Therefore, this technology is most often used by smalland medium users. ADSL is currently the only commerciallyavailable DSL technology which is still experiencing the breakthroughon the seiVice market. It enables faster access to theInternet, LAN (Local Area Network, videoconferencing, VoD(Video on Demand and interactive multimedia. In order tostandardize such se/Vices, the !TU (International TelecommunicationsUnion G. 992.1 (standardized DMT-discrete multi-tone line coding technology and ANSJ (American NationalStandards Institution Tl.413-95!98 are used for ADSL. DMT(Discrete Multi Tone, as the more popular one, uses the linecoding technique, which splits a certain frequency range intoseveral sub-channels. Most of these sub-channels are used forupstream and downstream transmission of speech and data,whereas some are used as pilot signals or kept in rese/Ve. Suchmodulation technique expands the frequency spectrum, allowingthe usage ofbroadband se/Vices per one pair of wires. In thisway the sharing of speech and data se/Vice transmission is realized.

  3. Asymmetric Synthesis via Chiral Aziridines

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Harden, Adrian; Wyatt, Paul

    1996-01-01

    A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines)]. In the b......A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines...

  4. Asymmetric exchange in flocks

    CERN Document Server

    Dadhichi, Lokrshi Prawar; Maitra, Ananyo; Ramaswamy, Sriram

    2016-01-01

    As the constituents of a flock are polar, one expects a fore-aft asymmetry in their interactions. We show here that the resulting antisymmetric part of the "exchange coupling" between a bird and its neighbours, if large enough, destabilizes the flock through spontaneous turning of the birds. The same asymmetry also yields a natural mechanism for a difference between the speed of advection of information along the flock and the speed of the flock itself. We show that the absence of detailed balance, and not merely the breaking of Galilean invariance, is responsible for this difference. We delineate the conditions on parameters and wavenumber for the existence of the turning instability. Lastly we present an alternative perspective based on flow-alignment effects in an active liquid crystal with turning inertia in contact with a momentum sink.

  5. The role of zonally asymmetric heating in the vertical and temporal structure of the global scale flow fields during FGGE SOP-1. [First Global Atmospheric Research Program Global Experiment (FGGE); Special Observing Period (SOP)

    Science.gov (United States)

    Paegle, J.; Kalnay-Rivas, E.; Baker, W. E.

    1981-01-01

    By examining the vertical structure of the low order spherical harmonics of the divergence and vorticity fields, the relative contribution of tropical and monsoonal circulations upon the global wind fields was estimated. This indicates that the overall flow over North America and the Pacific between January and February is quite distinct both in the lower and upper troposphere. In these longitudes there is a stronger tropical overturning and subtropical jet stream in January than February. The divergent flow reversed between 850 and 200 mb. Poleward rotational flow at upper levels is associated with an equatorward rotational flow at low levels. This suggests that the monsoon and other tropical circulations project more amplitude upon low order (global scale) representations of the flow than do the typical midlatitude circulations and that their structures show conspicuous changes on a time scale of a week or less.

  6. Synthesis of Asymmetric Propanetriol Analogues

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    From natural tartaric acid, (R)-2-benzyloxy-3-(2-tetrahydropyranyloxy) propanol 3 was designed and synthesized, and (R)-2-benzyloxy-3-(4-methoxybenzyloxy) propanol 7 was prepared in a new method. They can be used as chiral synthons of lysophosphatidic acid and other compounds with asymmetric propanetriol backbone.

  7. Catalytic Asymmetric Bromocyclization of Polyenes.

    Science.gov (United States)

    Samanta, Ramesh C; Yamamoto, Hisashi

    2017-02-01

    The first catalytic asymmetric bromonium ion-induced polyene cyclization has been achieved by using a chiral BINOL-derived thiophosphoramide catalyst and 1,3-dibromo-5,5-dimethylhydantoin as an electrophilic bromine source. Bromocyclization products are obtained in high yields, with good enantiomeric ratios and high diastereoselectivity, and are abundantly found as scaffolds in natural products.

  8. Asymmetric coherent transmission for single particle diode and gyroscope

    OpenAIRE

    S. Yang; Song, Z; Sun, C.P.

    2009-01-01

    We study the single particle scattering process in a coherent multi-site system consisting of a tight-binding ring threaded by an Aharonov-Bohm flux and several attaching leads. The asymmetric behavior of scattering matrix is discovered analytically in the framework of both Bethe Ansatz and Green's function formalism. It is found that, under certain conditions, a three-site electronic system can behave analogous to a perfect semiconductor diode where current flows only in one direction. The g...

  9. Asymmetric Multilevel Diversity Coding and Asymmetric Gaussian Multiple Descriptions

    CERN Document Server

    Mohajer, Soheil; Diggavi, Suhas N

    2009-01-01

    We consider the asymmetric multilevel diversity (A-MLD) coding problem, where a set of $2^K-1$ information sources, ordered in a decreasing level of importance, is encoded into $K$ messages (or descriptions). There are $2^K-1$ decoders, each of which has access to a non-empty subset of the encoded messages. Each decoder is required to reproduce the information sources up to a certain importance level depending on the combination of descriptions available to it. We obtain a single letter characterization of the achievable rate region for the 3-description problem. In contrast to symmetric multilevel diversity coding, source-separation coding is not sufficient in the asymmetric case, and ideas akin to network coding need to be used strategically. Based on the intuitions gained in treating the A-MLD problem, we derive inner and outer bounds for the rate region of the asymmetric Gaussian multiple description (MD) problem with three descriptions. Both the inner and outer bounds have a similar geometric structure t...

  10. Modelling asymmetric growth in crowded plant communities

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2010-01-01

    A class of models that may be used to quantify the effect of size-asymmetric competition in crowded plant communities by estimating a community specific degree of size-asymmetric growth for each species in the community is suggested. The model consists of two parts: an individual size-asymmetric ......A class of models that may be used to quantify the effect of size-asymmetric competition in crowded plant communities by estimating a community specific degree of size-asymmetric growth for each species in the community is suggested. The model consists of two parts: an individual size...

  11. Cyclodextrins in Asymmetric and Stereospecific Synthesis

    Directory of Open Access Journals (Sweden)

    Fliur Macaev

    2015-09-01

    Full Text Available Since their discovery, cyclodextrins have widely been used as green and easily available alternatives to promoters or catalysts of different chemical reactions in water. This review covers the research and application of cyclodextrins and their derivatives in asymmetric and stereospecific syntheses, with their division into three main groups: (1 cyclodextrins promoting asymmetric and stereospecific catalysis in water; (2 cyclodextrins’ complexes with transition metals as asymmetric and stereospecific catalysts; and (3 cyclodextrins’ non-metallic derivatives as asymmetric and stereospecific catalysts. The scope of this review is to systematize existing information on the contribution of cyclodextrins to asymmetric and stereospecific synthesis and, thus, to facilitate further development in this direction.

  12. Terahertz metamaterial with asymmetric transmission

    CERN Document Server

    Singh, R; Menzel, C; Rockstuhl, C; Azad, A K; Cheville, R A; Lederer, F; Zhang, W; Zheludev, N I

    2009-01-01

    We show for the first time that a planar metamaterial, an array of coupled metal split-ring resonators with a unit cell lacking mirror symmetry, exhibits asymmetric transmission of terahertz radiation propagating through it in opposite directions. This intriguing effect, that is compatible with Lorentz reciprocity and time-reversal, depends on a directional difference in conversion efficiency of the incident circularly polarized wave into one of opposite handedness, that is only possible in lossy low-symmetry planar chiral metamaterials. We show that asymmetric transmission is linked to excitation of enantiomerically sensitive plasmons, these are induced charge-field excitations that depend on the mutual handedness of incident wave and metamaterial pattern. Various bands of positive, negative and zero phase and group velocities have been identified indicating the opportunity to develop polarization sensitive negative index and slow light media based on such metamaterials.

  13. Asymmetric information and macroeconomic dynamics

    Science.gov (United States)

    Hawkins, Raymond J.; Aoki, Masanao; Roy Frieden, B.

    2010-09-01

    We show how macroeconomic dynamics can be derived from asymmetric information. As an illustration of the utility of this approach we derive the equilibrium density, non-equilibrium densities and the equation of motion for the response to a demand shock for productivity in a simple economy. Novel consequences of this approach include a natural incorporation of time dependence into macroeconomics and a common information-theoretic basis for economics and other fields seeking to link micro-dynamics and macro-observables.

  14. Asymmetrical Γ-Source Inverters

    DEFF Research Database (Denmark)

    Wei, Mo; Poh Chiang, Loh; Blaabjerg, Frede

    2014-01-01

    , inverters with coupled transformers have been introduced, but they usually lead to high turns ratio, and hence many winding turns, at high gain. An alternative would then be the asymmetrical Γ-source inverters proposed in this paper, whose gain is raised by lowering their turns ratio toward unity. The input...... current drawn by the proposed inverters is smoother and, hence, more adaptable by the source. Theories and experimental results have been presented in this paper for validating the concepts proposed....

  15. Up-down asymmetric tokamaks

    CERN Document Server

    Ball, Justin

    2016-01-01

    Bulk toroidal rotation has proven capable of stabilising both dangerous MHD modes and turbulence. In this thesis, we explore a method to drive rotation in large tokamaks: up-down asymmetry in the magnetic equilibrium. We seek to maximise this rotation by finding optimal up-down asymmetric flux surface shapes. First, we use the ideal MHD model to show that low order external shaping (e.g. elongation) is best for creating up-down asymmetric flux surfaces throughout the device. Then, we calculate realistic up-down asymmetric equilibria for input into nonlinear gyrokinetic turbulence analysis. Analytic gyrokinetics shows that, in the limit of fast shaping effects, a poloidal tilt of the flux surface shaping has little effect on turbulent transport. Since up-down symmetric surfaces do not transport momentum, this invariance to tilt implies that devices with mirror symmetry about any line in the poloidal plane will drive minimal rotation. Accordingly, further analytic investigation suggests that non-mirror symmetri...

  16. Membrane-free microfiltration by asymmetric inertial migration

    Science.gov (United States)

    Seo, Jeonggi; Lean, Meng H.; Kole, Ashutosh

    2007-07-01

    Membrane-free microfiltration by asymmetric inertial migration is studied and evidence of the filtration capability is presented. Centrifugal force induced by flow in spiral channel geometry modifies the lateral symmetry of straight-channel tubular pinch equilibrium resulting in a focused particle band nearer to the inner sidewall. Bifurcated outlets separately collect the concentrated particle band and remaining effluent. The spiral continuous flow filtration relies solely on internal fluidic shear characteristics, eliminating the need for membrane filters or external force fields. This device has the desirable combinations of high throughput and low cost, making it inherently suited for preparative filtration in the range of micro- to macroscale applications.

  17. Dispersion phenomena in helical flow in a concentric annulus.

    Science.gov (United States)

    Song, Young Seok; Brenner, Howard

    2009-12-14

    We examined dispersion phenomena of solutes in helical flow in a concentric annulus through a multiscale approach. The helical flow was developed by the combination of the Poiseuille flow and Couette flow. Here, we present an analytic model that can address the multidimensional Taylor dispersion in the helical flow under a lateral field of thermophoresis (or thermal diffusion) in the gapwise direction. Macroscopic parameters including the average solute velocity and dispersivity were analyzed using relevant microscopic physicochemical properties. The mathematically obtained results were validated by the numerical simulation carried out in this study. The findings show that macrotransport processes are robust and straightforward to handle multidimensional dispersion phenomena of solutes in helical flow. This study is expected to provide a theoretical platform for applications of helical flow such as tube exchangers, oil drilling, and multidimensional field flow fractionations (e.g., helical flow field flow fractionation).

  18. Asymmetric Schiff bases derived from diaminomaleonitrile and their metal complexes

    Science.gov (United States)

    Yang, Jianjie; Shi, Rufei; Zhou, Pei; Qiu, Qiming; Li, Hui

    2016-02-01

    Asymmetric Schiff bases, due to its asymmetric structure, can be used as asymmetric catalyst, antibacterial, and mimic molecules during simulate biological processes, etc. In recent years, research on synthesis and properties of asymmetric Schiff bases have become an increase interest of chemists. This review summarizes asymmetric Schiff bases derived from diaminomaleonitrile (DAMN) and DAMN-based asymmetric Schiff bases metal complexes. Applications of DAMN-based asymmetric Schiff bases are also discussed in this review.

  19. Asymmetric random matrices: What do we need them for?

    CERN Document Server

    Drozdz, Stanislaw; Ioannides, Andreas A; 10.5506/APhysPolB.42.987

    2011-01-01

    Complex systems are typically represented by large ensembles of observations. Correlation matrices provide an efficient formal framework to extract information from such multivariate ensembles and identify in a quantifiable way patterns of activity that are reproducible with statistically significant frequency compared to a reference chance probability, usually provided by random matrices as fundamental reference. The character of the problem and especially the symmetries involved must guide the choice of random matrices to be used for the definition of a baseline reference. For standard correlation matrices this is the Wishart ensemble of symmetric random matrices. The real world complexity however often shows asymmetric information flows and therefore more general correlation matrices are required to adequately capture the asymmetry. Here we first summarize the relevant theoretical concepts. We then present some examples of human brain activity where asymmetric time-lagged correlations are evident and hence...

  20. Spontaneous baryogenesis from asymmetric inflaton

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Fuminobu [Tohoku Univ., Sendai (Japan). Dept. of Physics; Tokyo Univ., Chiba (Japan). Kavli IPMU (WPI), UTIAS; Yamada, Masaki [Tokyo Univ., Chiba (Japan). Kavli IPMU (WPI), UTIAS; Tokyo Univ., Chiba (Japan). Inst. for Cosmic Ray Research; DESY Hamburg (Germany)

    2015-10-15

    We propose a variant scenario of spontaneous baryogenesis from asymmetric inflaton based on current-current interactions between the inflaton and matter fields with a non-zero B-L charge. When the inflaton starts to oscillate around the minimum after inflation, it may lead to excitation of a CP-odd component, which induces an effective chemical potential for the B-L number through the current-current interactions. We study concrete inflation models and show that the spontaneous baryogenesis scenario can be naturally implemented in the chaotic inflation in supergravity.

  1. The asymmetric Goos-H\\"anchen effect

    OpenAIRE

    Araujo, Manoel P.; Carvalho, Silvânia A.; De Leo, Stefano

    2013-01-01

    We show in which conditions optical gaussian beams, propagating throughout an homogeneous dielectric right angle prism, present an asymmetric Goos-H\\"anchen (GH) effect. This asymmetric behavior is seen for incidence at critical angles and happens in the propagation direction of the outgoing beam. The asymmetric GH effect can be also seen as an amplification of the standard GH shift. Due to the fact that it only depends on the ratio between the wavelength and the minimal waist size of the inc...

  2. Review of Composite Asymmetric Spur Gear

    OpenAIRE

    Sandeep C. Dhaduti; Dr. S. G. Sarganachari

    2015-01-01

    Gears made from composite materials are widely used in many power and motion transmission applications. Due to lower weight to stiffness ratio, composite gears may be replaced by conventional material gears in power transmission systems. Design of gears with asymmetric teeth enables to increase load capacity, reduce weight, size and vibration level. This article includes a summary of asymmetric gear design parameters, new developments of asymmetric spur gear and their ...

  3. The asymmetric Goos-H\\"anchen effect

    CERN Document Server

    Araujo, Manoel P; De Leo, Stefano

    2014-01-01

    We show in which conditions optical gaussian beams, propagating throughout an homogeneous dielectric right angle prism, present an asymmetric Goos-H\\"anchen (GH) effect. This asymmetric behavior is seen for incidence at critical angles and happens in the propagation direction of the outgoing beam. The asymmetric GH effect can be also seen as an amplification of the standard GH shift. Due to the fact that it only depends on the ratio between the wavelength and the minimal waist size of the incoming gaussian beam, it can be also used to determine one of these parameters. Multiple peaks interference is an additional phenomenon seen in the presence of such asymmetric effects.

  4. Thin lenses of asymmetric power

    Directory of Open Access Journals (Sweden)

    W. F. Harris

    2009-12-01

    Full Text Available It is generally supposed that thin systems, including refracting surfaces and thin lenses, have powers that are necessarily symmetric.  In other words they have powers which can be represented assymmetric dioptric power matrices and in the familar spherocylindrical form used in optometry and ophthalmology.  This paper shows that this is not correct and that it is indeed possible for a thin system to have a power that is not symmetric and which cannot be expressed in spherocylindrical form.  Thin systems of asymmetric power are illustratedby means of a thin lens that is modelled with small prisms and is chosen to have a dioptric power ma-trix that is antisymmetric.  Similar models can be devised for a thin system whose dioptric power matrix is any  2 2 ×  matrix.  Thus any power, symmetric, asymmetric or antisymmetric, is possible for a thin system.  In this sense our understanding of the power of thin systems is now complete.

  5. Excitons in asymmetric quantum wells

    Science.gov (United States)

    Grigoryev, P. S.; Kurdyubov, A. S.; Kuznetsova, M. S.; Ignatiev, I. V.; Efimov, Yu. P.; Eliseev, S. A.; Petrov, V. V.; Lovtcius, V. A.; Shapochkin, P. Yu.

    2016-09-01

    Resonance dielectric response of excitons is studied for the high-quality InGaAs/GaAs heterostructures with wide asymmetric quantum wells (QWs). To highlight effects of the QW asymmetry, we have grown and studied several heterostructures with nominally square QWs as well as with triangle-like QWs. Several quantum confined exciton states are experimentally observed as narrow exciton resonances. A standard approach for the phenomenological analysis of the profiles is generalized by introducing different phase shifts for the light waves reflected from the QWs at different exciton resonances. Good agreement of the phenomenological fit to the experimentally observed exciton spectra for high-quality structures allowed us to reliably obtain parameters of the exciton resonances: the exciton transition energies, the radiative broadenings, and the phase shifts. A direct numerical solution of the Schrödinger equation for the heavy-hole excitons in asymmetric QWs is used for microscopic modeling of the exciton resonances. Remarkable agreement with the experiment is achieved when the effect of indium segregation is taken into account. The segregation results in a modification of the potential profile, in particular, in an asymmetry of the nominally square QWs.

  6. Asymmetric Laguerre-Gaussian beams

    Science.gov (United States)

    Kovalev, A. A.; Kotlyar, V. V.; Porfirev, A. P.

    2016-06-01

    We introduce a family of asymmetric Laguerre-Gaussian (aLG) laser beams. The beams have been derived via a complex-valued shift of conventional LG beams in the Cartesian plane. While propagating in a uniform medium, the first bright ring of the aLG beam becomes less asymmetric and the energy is redistributed toward peripheral diffraction rings. The projection of the orbital angular momentum (OAM) onto the optical axis is calculated. The OAM is shown to grow quadratically with increasing asymmetry parameter of the aLG beam, which equals the ratio of the shift to the waist radius. Conditions for the OAM becoming equal to the topological charge have been derived. For aLG beams with zero radial index, we have deduced an expression to define the intensity maximum coordinates and shown the crescent-shaped intensity pattern to rotate during propagation. Results of the experimental generation and rotation of aLG beams agree well with theoretical predictions.

  7. Asymmetric catalysis : ligand design and microwave acceleration

    OpenAIRE

    Bremberg, Ulf

    2000-01-01

    This thesis deals partly with the design and synthesis ofligands for use in asymmetric catalysis, and partly with theapplication of microwave heating on metal-based asymmetriccatalytic reactions. Enantiomerically pure pyridyl alcohols and bipyridylalcohols were synthesized from the chiral pool for future usein asymmetric catalysis. Lithiated pyridines were reacted withseveral chiral electrophiles, yielding diastereomeric mixturesthat could be separated without the use of resolutiontechniques....

  8. Worst Asymmetrical Short-Circuit Current

    DEFF Research Database (Denmark)

    Arana Aristi, Iván; Holmstrøm, O; Grastrup, L

    2010-01-01

    In a typical power plant, the production scenario and the short-circuit time were found for the worst asymmetrical short-circuit current. Then, a sensitivity analysis on the missing generator values was realized in order to minimize the uncertainty of the results. Afterward the worst asymmetrical...

  9. Renewable resource management under asymmetric information

    DEFF Research Database (Denmark)

    Jensen, Frank; Andersen, Peder; Nielsen, Max

    2013-01-01

    Asymmetric information between fishermen and the regulator is important within fisheries. The regulator may have less information about stock sizes, prices, costs, effort, productivity and catches than fishermen. With asymmetric information, a strong analytical tool is principal-agent analysis. I...

  10. The Catalytic Asymmetric Intramolecular Stetter Reaction.

    Science.gov (United States)

    de Alaniz, Javier Read; Rovis, Tomislav

    2009-05-01

    This account chronicles our efforts at the development of a catalytic asymmetric Stetter reaction using chiral triazolium salts as small molecule organic catalysts. Advances in the mechanistically related azolium-catalyzed asymmetric benzoin reaction are discussed, particularly as they apply to catalyst design. A chronological treatise of reaction discovery, catalyst optimization and reactivity extension follows.

  11. Turbulent mixed convection in asymmetrically heated vertical channel

    Directory of Open Access Journals (Sweden)

    Mokni Ameni

    2012-01-01

    Full Text Available In this paper an investigation of mixed convection from vertical heated channel is undertaken. The aim is to explore the heat transfer obtained by adding a forced flow, issued from a flat nozzle located in the entry section of a channel, to the up-going fluid along its walls. Forced and free convection are combined studied in order to increase the cooling requirements. The study deals with both symmetrically and asymmetrically heated channel. The Reynolds number based on the nozzle width and the jet velocity is assumed to be 3 103 and 2.104; whereas, the Rayleigh number based on the channel length and the wall temperature difference varies from 2.57 1010 to 5.15 1012. The heating asymmetry effect on the flow development including the mean velocity and temperature the local Nusselt number, the mass flow rate and heat transfer are examined.

  12. The asymmetric compact jet of GRS 1915+105

    CERN Document Server

    Ribó, M; Mirabel, I F

    2004-01-01

    We present multiepoch VLBA observations of the compact jet of GRS 1915+105 conducted at 15.0 and 8.4 GHz during a {\\it plateau} state of the source in 2003 March-April. These observations show that the compact jet is clearly asymmetric. Assuming an intrinsically symmetric continuous jet flow, using Doppler boosting arguments and an angle to the line of sight of $\\theta=70\\degr$, we obtain values for the velocity of the flow in the range 0.3--0.5$c$. These values are much higher than in previous observations of such compact jet, although much lower than the highly relativistic values found during individual ejection events. These preliminary results are compatible with current ideas on the jet flow velocity for black holes in the low/hard state.

  13. Condensation on Slippery Asymmetric Bumps

    CERN Document Server

    Park, Kyoo-Chul; He, Neil; Aizenberg, Joanna

    2015-01-01

    Bumps are omnipresent from human skin to the geological structures on planets, which offer distinct advantages in numerous phenomena including structural color, drag reduction, and extreme wettability. Although the topographical parameters of bumps such as radius of curvature of convex regions significantly influence various phenomena including anti-reflective structures and contact time of impacting droplets, the effect of the detailed bump topography on growth and transport of condensates have not been clearly understood. Inspired by the millimetric bumps of the Namib Desert beetle, here we report the identified role of radius of curvature and width of bumps with homogeneous surface wettability in growth rate, coalescence and transport of water droplets. Further rational design of asymmetric convex topography and synergetic combination with slippery coating simultaneously enable self-transport, leading to unseen five-fold higher growth rate and an order of magnitude faster shedding time of droplets compared...

  14. Double injection/single detection asymmetric flow injection manifold for spectrophotometric determination of ascorbic acid and uric acid: Selection the optimal conditions by MCDM approach based on different criteria weighting methods

    Science.gov (United States)

    Boroumand, Samira; Chamjangali, Mansour Arab; Bagherian, Ghadamali

    2017-03-01

    A simple and sensitive double injection/single detector flow injection analysis (FIA) method is proposed for the simultaneous kinetic determination of ascorbic acid (AA) and uric acid (UA). This method is based upon the difference between the rates of the AA and UA reactions with Fe3 + in the presence of 1, 10-phenanthroline (phen). The absorbance of Fe2 +/1, 10-phenanthroline (Fe-phen) complex obtained as the product was measured spectrophotometrically at 510 nm. To reach a good accuracy in the differential kinetic determination via the mathematical manipulations of the transient signals, different criteria were considered in the selection of the optimum conditions. The multi criteria decision making (MCDM) approach was applied for the selection of the optimum conditions. The importance weights of the evaluation criteria were determined using the analytic hierarchy process, entropy method, and compromised weighting (CW). The experimental conditions (alternatives) were ranked by the technique for order preference by similarity to an ideal solution. Under the selected optimum conditions, the obtained analytical signals were linear in the ranges of 0.50-5.00 and 0.50-4.00 mg L- 1 for AA and UA, respectively. The 3σ detection limits were 0.07 mg L- 1 for AA and 0.12 mg L- 1 for UA. The relative standard deviations for four replicate determinations of AA and UA were 2.03% and 3.30% respectively. The method was also applied for the analysis of analytes in the blood serum, Vitamine C tablets, and tap water with satisfactory results.

  15. Magmatism, Hydrothermal Cooling and Asymmetric Accretion at Slow-spreading Ridges

    Science.gov (United States)

    Bai, H.; Montesi, L.

    2014-12-01

    Asymmetric spreading is common at slow-spreading mid-ocean ridges when an active detachment fault accommodates a portion of the total plate separation. Basalts erupted along asymmetric segments have lower Ca, higher Fe, Na, K than the ones collected from symmetric segments, indicating higher pressures of fractionation and lower extents of partial melting of the mantle [Langmuir et al., AGU, 2013]. Seismic evidence also shows a thicker and colder axial lithosphere at asymmetric sections of the ridge [Escartín et al., 2008]. This phenomenon is most obvious when the asymmetric spreading centers are also oblique to its opening direction. The reduced melt supply beneath asymmetric spreading segments may be attributed to distorted mantle upwelling, enhanced hydrothermal cooling, and enriched compositional heterogeneities in the upper mantle. We construct two-dimensional thermo-mechanical models of symmetric and asymmetric spreading centers, and test the effects of asymmetric accretion and hydrothermal circulation on mantle melting. A temperature-dependent mantle viscosity is used. The hydrothermal circulation is implemented as an enhanced thermal conductivity limited by cutoff depth and temperature. The effect of oblique spreading is incorporated in the model as reduced effective spreading rate. Mantle flow and thermal structure are solved in the commercial finite element software COMSOL Multiphysics®. Melt production and flux are estimated in Matlab® using a nonlinear melting function [Katz et al., 2003]. We show that the asymmetric accretion alone does not affect the extent of melting or reduce the melt flux significantly. Hydrothermal cooling can plays an important role in deepening the melting depth and lowering the melt extent. Therefore, the difference in the extent of melting between asymmetric and symmetric spreading models can be explained by an enhanced hydrothermal circulation at asymmetric segments. This correlation is supported by the observation made at

  16. Computational analysis of asymmetric water entry of wedge and ship section at constant velocity

    Science.gov (United States)

    Rahaman, Md. Mashiur; Ullah, Al Habib; Afroz, Laboni; Shabnam, Sharmin; Sarkar, M. A. Rashid

    2016-07-01

    Water impact problems receive much attention due to their short duration and large unsteady component of hydrodynamic loads. The effect of water entry has several important applications in various aspects of the naval field. Significant attention has been given to various water entry phenomena such as ship slamming, planning hulls, high-speed hydrodynamics of seaplanes, surface-piercing propellers and the interaction of high-speed liquid drops with structural elements. Asymmetric water entry may be caused by various natural phenomena such as weather conditions or strong winds. Since the determination of hydrodynamic impact load plays a vital role in designing safe and effcient vessels, an accurate and reliable prediction method is necessary to investigate asymmetric water entry problems. In this paper, water entry of a two-dimensional wedge and ship section at constant velocity in asymmetric condition will be analysed numerically and the effects of asymmetric impact on the velocity and pressure distribution will be discussed. The finite volume method is employed to solve the dynamic motion of the wedge in two-phase flow. During the water entry, the air and water interface is described implicitly by the volume of fluid (VOF) scheme. The numerical code and method was first validated for symmetric condition by one of the present author is applied for asymmetric wedge and ship section. The free surface, velocity and pressure distribution for asymmetric water entry are investigated and visualized with contour plots at different time steps.

  17. Experimental adiabatic vortex ratchet effect in Nb films with asymmetric pinning trap

    Indian Academy of Sciences (India)

    J E Villegas; N O nunez; M P Gonzalez; E M Gonalez; J L Vicent

    2006-01-01

    Nb films grown on top of an array of asymmetric pinning centers show a vortex ratchet effect. A net flow of vortices is induced when the vortex lattice is driven by fluctuating forces on an array of pinning centers without reflection symmetry. This effect occurs in the adiabatic regime and it could be mimiced only by reversible DC driven forces.

  18. Asymmetric stem cell division: lessons from Drosophila.

    Science.gov (United States)

    Wu, Pao-Shu; Egger, Boris; Brand, Andrea H

    2008-06-01

    Asymmetric cell division is an important and conserved strategy in the generation of cellular diversity during animal development. Many of our insights into the underlying mechanisms of asymmetric cell division have been gained from Drosophila, including the establishment of polarity, orientation of mitotic spindles and segregation of cell fate determinants. Recent studies are also beginning to reveal the connection between the misregulation of asymmetric cell division and cancer. What we are learning from Drosophila as a model system has implication both for stem cell biology and also cancer research.

  19. On-chip asymmetric microcavity optomechanics.

    Science.gov (United States)

    Soltani, Soheil; Hudnut, Alexa W; Armani, Andrea M

    2016-12-26

    High quality factor (Q) optical resonators have enabled rapid growth in the field of cavity-enhanced, radiation pressure-induced optomechanics. However, because research has focused on axisymmetric devices, the observed regenerative excited mechanical modes are similar. In the present work, a strategy for fabricating high-Q whispering gallery mode microcavities with varying degrees of asymmetry is developed and demonstrated. Due to the combination of high optical Q and asymmetric device design, two previously unobserved modes, the asymmetric cantilever and asymmetric crown mode, are demonstrated with sub-mW thresholds for onset of oscillations. The experimental results are in good agreement with computational modeling predictions.

  20. Regenerating a symmetry in asymmetric dark matter.

    Science.gov (United States)

    Buckley, Matthew R; Profumo, Stefano

    2012-01-06

    Asymmetric dark matter theories generically allow for mass terms that lead to particle-antiparticle mixing. Over the age of the Universe, dark matter can thus oscillate from a purely asymmetric configuration into a symmetric mix of particles and antiparticles, allowing for pair-annihilation processes. Additionally, requiring efficient depletion of the primordial thermal (symmetric) component generically entails large annihilation rates. We show that unless some symmetry completely forbids dark matter particle-antiparticle mixing, asymmetric dark matter is effectively ruled out for a large range of masses, for almost any oscillation time scale shorter than the age of the Universe.

  1. Absolute Asymmetric Synthesis Using A Cocrystal Approach

    Institute of Scientific and Technical Information of China (English)

    H.Koshima

    2007-01-01

    1 Results Absolute asymmetric synthesis by means of solid-state reaction of chiral crystals self-assembled from achiral molecules is an attractive and promising methodology for asymmetric synthesis because it is not necessary to employ any external chiral source like a chiral catalyst.In order to design reliably absolute asymmetric syntheses in the solid state,it is inevitable to prepare and predict the formation of chiral crystals from achiral compounds.We have prepared a number of chiral cocrystals co...

  2. Asymmetric dark matter in braneworld cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Meehan, Michael T.; Whittingham, Ian B., E-mail: Michael.Meehan@my.jcu.edu.au, E-mail: Ian.Whittingham@jcu.edu.au [School of Engineering and Physical Sciences, James Cook University, Townsville, 4811 Australia (Australia)

    2014-06-01

    We investigate the effect of a braneworld expansion era on the relic density of asymmetric dark matter. We find that the enhanced expansion rate in the early universe predicted by the Randall-Sundrum II (RSII) model leads to earlier particle freeze-out and an enhanced relic density. This effect has been observed previously by Okada and Seto (2004) for symmetric dark matter models and here we extend their results to the case of asymmetric dark matter. We also discuss the enhanced asymmetric annihilation rate in the braneworld scenario and its implications for indirect detection experiments.

  3. Enantiopure sulfoxides: recent applications in asymmetric synthesis.

    Science.gov (United States)

    Carreño, M Carmen; Hernández-Torres, Gloria; Ribagorda, María; Urbano, Antonio

    2009-11-07

    Sulfoxides are nowadays recognised as powerful chiral auxiliaries that may participate in a wide range of asymmetric reactions. Their high configurational stability, the existence of several efficient methods allowing the access to both configurations as well as their synthetic versatility are characteristic features offering a tremendous potential to develop new applications. Significant recent advances leading to high asymmetric inductions in carbon-carbon and carbon-oxygen bond forming reactions, and applications of homochiral sulfoxides to atroposelective synthesis and asymmetric catalysis are discussed. New uses of sulfoxides in the design of chiroptical switches are also shown.

  4. Asymmetric dark matter bound state

    Science.gov (United States)

    Bi, Xiao-Jun; Kang, Zhaofeng; Ko, P.; Li, Jinmian; Li, Tianjun

    2017-02-01

    We propose an interesting framework for asymmetric scalar dark matter (ADM), which has novel collider phenomenology in terms of an unstable ADM bound state (ADMonium) produced via Higgs portals. ADMonium is a natural consequence of the basic features of ADM: the (complex scalar) ADM is charged under a dark local U (1 )d symmetry which is broken at a low scale and provides a light gauge boson X . The dark gauge coupling is strong and then ADM can annihilate away into X -pair effectively. Therefore, the ADM can form a bound state due to its large self-interaction via X mediation. To explore the collider signature of ADMonium, we propose that ADM has a two-Higgs doublet portal. The ADMonium can have a sizable mixing with the heavier Higgs boson, which admits a large cross section of ADMonium production associated with b b ¯. The resulting signature at the LHC depends on the decays of X . In this paper we consider a case of particular interest: p p →b b ¯ +ADMonium followed by ADMonium→2 X →2 e+e- where the electrons are identified as (un)converted photons. It may provide a competitive explanation to heavy di-photon resonance searches at the LHC.

  5. Twin Higgs Asymmetric Dark Matter.

    Science.gov (United States)

    García García, Isabel; Lasenby, Robert; March-Russell, John

    2015-09-18

    We study asymmetric dark matter (ADM) in the context of the minimal (fraternal) twin Higgs solution to the little hierarchy problem, with a twin sector with gauged SU(3)^{'}×SU(2)^{'}, a twin Higgs doublet, and only third-generation twin fermions. Naturalness requires the QCD^{'} scale Λ_{QCD}^{'}≃0.5-20  GeV, and that t^{'} is heavy. We focus on the light b^{'} quark regime, m_{b^{'}}≲Λ_{QCD}^{'}, where QCD^{'} is characterized by a single scale Λ_{QCD}^{'} with no light pions. A twin baryon number asymmetry leads to a successful dark matter (DM) candidate: the spin-3/2 twin baryon, Δ^{'}∼b^{'}b^{'}b^{'}, with a dynamically determined mass (∼5Λ_{QCD}^{'}) in the preferred range for the DM-to-baryon ratio Ω_{DM}/Ω_{baryon}≃5. Gauging the U(1)^{'} group leads to twin atoms (Δ^{'}-τ^{'}[over ¯] bound states) that are successful ADM candidates in significant regions of parameter space, sometimes with observable changes to DM halo properties. Direct detection signatures satisfy current bounds, at times modified by dark form factors.

  6. Force on an Asymmetric Capacitor

    CERN Document Server

    Bahder, T B; Bahder, Thomas B.; Fazi, Chris

    2002-01-01

    When a high voltage (~30 kV) is applied to a capacitor whose electrodes have different physical dimensions, the capacitor experiences a net force toward the smaller electrode (Biefeld-Brown effect). We have verified this effect by building four capacitors of different shapes. The effect may have applications to vehicle propulsion and dielectric pumps. We review the history of this effect briefly through the history of patents by Thomas Townsend Brown. At present, the physical basis for the Biefeld-Brown effect is not understood. The order of magnitude of the net force on the asymmetric capacitor is estimated assuming two different mechanisms of charge conduction between its electrodes: ballistic ionic wind and ionic drift. The calculations indicate that ionic wind is at least three orders of magnitude too small to explain the magnitude of the observed force on the capacitor. The ionic drift transport assumption leads to the correct order of magnitude for the force, however, it is difficult to see how ionic dr...

  7. Asymmetric total synthesis of vindoline.

    Science.gov (United States)

    Kato, Daisuke; Sasaki, Yoshikazu; Boger, Dale L

    2010-03-24

    A concise asymmetric total synthesis of (-)-vindoline (1) is detailed based on a tandem intramolecular [4+2]/[3+2] cycloaddition cascade of a 1,3,4-oxadiazole inspired by the natural product structure, in which the tether linking the initiating dienophile and oxadiazole bears a chiral substituent that controls the facial selectivity of the initiating Diels-Alder reaction and sets absolute stereochemistry of the remaining six stereocenters in the cascade cycloadduct. This key reaction introduces three rings and four C-C bonds central to the pentacyclic ring system setting all six stereocenters and introducing essentially all the functionality found in the natural product in a single step. Implementation of the approach also required the development of a unique ring expansion reaction to provide a six-membered ring suitably functionalized for introduction of the Delta (6, 7)-double bond found in the core structure of vindoline and defined our use of a protected hydroxymethyl group as the substituent used to control the stereochemical course of the cycloaddition cascade.

  8. A novel asymmetric synthesis of cinacalcet hydrochloride

    OpenAIRE

    Arava, Veera R; Laxminarasimhulu Gorentla; Pramod K. Dubey

    2012-01-01

    A novel route to asymmetric synthesis of cinacalcet hydrochloride by the application of (R)-tert-butanesulfinamide and regioselective N-alkylation of the naphthyl ethyl sulfinamide intermediate is described.

  9. A novel asymmetric synthesis of cinacalcet hydrochloride

    Directory of Open Access Journals (Sweden)

    Veera R. Arava

    2012-08-01

    Full Text Available A novel route to asymmetric synthesis of cinacalcet hydrochloride by the application of (R-tert-butanesulfinamide and regioselective N-alkylation of the naphthyl ethyl sulfinamide intermediate is described.

  10. A novel asymmetric synthesis of cinacalcet hydrochloride

    Science.gov (United States)

    Gorentla, Laxminarasimhulu; Dubey, Pramod K

    2012-01-01

    Summary A novel route to asymmetric synthesis of cinacalcet hydrochloride by the application of (R)-tert-butanesulfinamide and regioselective N-alkylation of the naphthyl ethyl sulfinamide intermediate is described. PMID:23019473

  11. Catalytic Asymmetric Synthesis of Phosphine Boronates

    NARCIS (Netherlands)

    Hornillos, Valentin; Vila, Carlos; Otten, Edwin; Feringa, Ben L.

    2015-01-01

    The first catalytic enantioselective synthesis of ambiphilic phosphine boronate esters is presented. The asymmetric boration of ,-unsaturated phosphine oxides catalyzed by a copper bisphosphine complex affords optically active organoboronate esters that bear a vicinal phosphine oxide group in good y

  12. Asymmetric Swiss-cheese brane-worlds

    CERN Document Server

    Gergely, L A; K\\'{e}p\\'{\\i}r\\'{o}, Ibolya

    2006-01-01

    We consider Swiss-cheese brane universes embedded asymmetrically into the bulk. Neither the junction conditions between the Schwarzschild spheres and the sorrounding Friedmann brane regions with cosmological constant $\\Lambda $, nor the evolution of the scale factor are changed with respect to the symmetric case. The universe expands and decelerates forever. The asymmetry however has a drastic influence on the evolution of the cosmological fluid. Instead of the two branches of the symmetric case, in the asymmetric case four branches emerge. Moreover, the future pressure singularity arising in the symmetric case only for huge values of $\\Lambda $ becomes quite generic in the asymmetric case. Such pressure singularities emerge also when $\\Lambda=0$ is set. Then they are due entirely to the asymmetric embedding. For generic values of $\\Lambda $ we introduce a critical value of a suitably defined asymmetry parameter, which separates Swiss-cheese cosmologies with and without pressure singularities.

  13. Congenital asymmetric crying face: a case report

    Directory of Open Access Journals (Sweden)

    Semra Kara

    2011-12-01

    Full Text Available Congenital asymmetric crying face is an anomalia caused by unilateral absence or weakness of depressor anguli oris muscle The major finding of the disease is the absence or weakness in the outer and lower movement of the commissure during crying. The other expression muscles are normal and the face is symmetric at rest. The asymmetry in congenital asymmetric crying face is most evident during infancy but decreases by age. Congenital asymmetric crying face can be associated with cervicofacial, musclebone, respiratory, genitourinary and central nervous system anomalia. It is diagnosed by physical examination. This paper presents a six days old infant with Congenital asymmetric crying face and discusses the case in terms of diagnosis and disease features.

  14. Asymmetric cryptography based on wavefront sensing.

    Science.gov (United States)

    Peng, Xiang; Wei, Hengzheng; Zhang, Peng

    2006-12-15

    A system of asymmetric cryptography based on wavefront sensing (ACWS) is proposed for the first time to our knowledge. One of the most significant features of the asymmetric cryptography is that a trapdoor one-way function is required and constructed by analogy to wavefront sensing, in which the public key may be derived from optical parameters, such as the wavelength or the focal length, while the private key may be obtained from a kind of regular point array. The ciphertext is generated by the encoded wavefront and represented with an irregular array. In such an ACWS system, the encryption key is not identical to the decryption key, which is another important feature of an asymmetric cryptographic system. The processes of asymmetric encryption and decryption are formulized mathematically and demonstrated with a set of numerical experiments.

  15. DOES VOLATILITY RESPOND ASYMMETRIC TO PAST SHOCKS?

    OpenAIRE

    Claudiu Botoc

    2014-01-01

    The main aim of the paper is to examine if the stock market volatility exhibits asymmetric or an asymmetric response to past shocks, for certain CEE countries (Romania,Hungary, Bulgaria, Poland) over the period May 2004 - September 2014. For the stock marketsfrom East Europe the results are in line with the symmetric volatility, i.e. volatility is similaraffected by both positive and negative returns with the same magnitude. For the stock marketsfrom Central Europe the results are consistent ...

  16. A generalized optimization principle for asymmetric branching in fluidic networks

    Science.gov (United States)

    Stephenson, David; Lockerby, Duncan A.

    2016-07-01

    When applied to a branching network, Murray's law states that the optimal branching of vascular networks is achieved when the cube of the parent channel radius is equal to the sum of the cubes of the daughter channel radii. It is considered integral to understanding biological networks and for the biomimetic design of artificial fluidic systems. However, despite its ubiquity, we demonstrate that Murray's law is only optimal (i.e. maximizes flow conductance per unit volume) for symmetric branching, where the local optimization of each individual channel corresponds to the global optimum of the network as a whole. In this paper, we present a generalized law that is valid for asymmetric branching, for any cross-sectional shape, and for a range of fluidic models. We verify our analytical solutions with the numerical optimization of a bifurcating fluidic network for the examples of laminar, turbulent and non-Newtonian fluid flows.

  17. Experimental investigation of flow pattern and sediment deposition in rectangular shallow reservoirs

    Institute of Scientific and Technical Information of China (English)

    Matthieu DUFRESNE; Benjamin J.DEWALS; Sébastien ERPICUM; Pierre ARCHAMBEAU; Michel PIROTTON

    2010-01-01

    This paper reports the experimental investigation of flow pattern, preferential regions of deposition and trap efficiency as a function of the length of rectangular shallow reservoirs. Four flow patterns were identified (from longer to shorter reservoirs): an asymmetric flow with two reattachment points, an asymmetric flow with one reattachment point, an unstable flow, and a symmetric flow without any reattachment point. Using dye visualizations, the median value and the temporal variability of the reattachment lengths were precisely measured for the asymmetric flows. For each stable flow, sediment tests with plastic particles were carried out. The regions of deposition on the bed of the reservoir were clearly a function of the flow pattern. The transition from an asymmetric flow pattern to a symmetric flow pattern was responsible for an abrupt decrease of the trap efficiency; a number of regression laws were discussed to take it into account.

  18. Numerical Simulations of Asymmetric Mixing in Planar Shear Flows.

    Science.gov (United States)

    2014-09-26

    Cartesian calculations described below were performed with the general code with the gravity, diffusion, chemistry , and energy release options not used...first approximation to the correct outflow boundary condition. The density and momenta are extrapolated according to Pg = 9n (2) (iVx)g ( Vx )n (3) (OV...preliminary calculations, we used inflow boundary conditions which prespecified, constant values of the mass, momentum and energy of the inflowing gas

  19. Irregular vocal fold dynamics incited by asymmetric fluid loading in a model of recurrent laryngeal nerve paralysis

    Science.gov (United States)

    Sommer, David; Erath, Byron D.; Zanartu, Matias; Peterson, Sean D.

    2011-11-01

    Voiced speech is produced by dynamic fluid-structure interactions in the larynx. Traditionally, reduced order models of speech have relied upon simplified inviscid flow solvers to prescribe the fluid loadings that drive vocal fold motion, neglecting viscous flow effects that occur naturally in voiced speech. Viscous phenomena, such as skewing of the intraglottal jet, have the most pronounced effect on voiced speech in cases of vocal fold paralysis where one vocal fold loses some, or all, muscular control. The impact of asymmetric intraglottal flow in pathological speech is captured in a reduced order two-mass model of speech by coupling a boundary-layer estimation of the asymmetric pressures with asymmetric tissue parameters that are representative of recurrent laryngeal nerve paralysis. Nonlinear analysis identifies the emergence of irregular and chaotic vocal fold dynamics at values representative of pathological speech conditions.

  20. Rotation effect on peristaltic transport of a Jeffrey fluid in an asymmetric channel with gravity field

    Directory of Open Access Journals (Sweden)

    A.M. Abd-Alla

    2016-06-01

    Full Text Available In this paper, the peristaltic flow of a Jeffrey fluid in an asymmetric rotating channel is studied under long wavelength and low Reynolds number assumptions are investigated. Closed form expressions for the pressure gradient, pressure rise, stream function, axial velocity and shear stress on the channel walls have been computed numerically. The effects of the ratio of relaxation to retardation times, time-mean flow, rotation, the phase angle and the gravity field on the pressure gradient, pressure rise, streamline, axial velocity and shear stress are discussed in detail and shown graphically. The results indicate that the effect of the ratio of relaxation to retardation times, time-mean flow, rotation, the phase angle and the gravitational field are very pronounced in the phenomena. Comparison was made with the results obtained in the asymmetric channel and symmetric channel.

  1. Asymmetric tandem organic solar cells

    Science.gov (United States)

    Howells, Thomas J.

    where it is used to predict the short-circuit current (Jsc) generation of the sub-cells, which is not accessible experimentally. Current-matching is then used to predict the Jsc of the complete tandem device. . As a support to the optical modelling, ellipsometry measurements of thin films of ClAlPc are presented. These films of known thickness are analysed to extract the complex refractive index for use in optical modelling calculations. A dependence of the complex refractive index on film thickness and substrate is also noted. Finally, the external quantum efficiency (EQE) technique is considered as applied to solar cells, and an additional method is proposed to characterise current balancing in asymmetric tandem cells under illumination. This technique is verified experimentally by two separate sets of data..

  2. Control of apoptosis by asymmetric cell division.

    Directory of Open Access Journals (Sweden)

    Julia Hatzold

    2008-04-01

    Full Text Available Asymmetric cell division and apoptosis (programmed cell death are two fundamental processes that are important for the development and function of multicellular organisms. We have found that the processes of asymmetric cell division and apoptosis can be functionally linked. Specifically, we show that asymmetric cell division in the nematode Caenorhabditis elegans is mediated by a pathway involving three genes, dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail, that directly control the enzymatic machinery responsible for apoptosis. Interestingly, the MIDA1-like protein GlsA of the alga Volvox carteri, as well as the Snail-related proteins Snail, Escargot, and Worniu of Drosophila melanogaster, have previously been implicated in asymmetric cell division. Therefore, C. elegans dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail may be components of a pathway involved in asymmetric cell division that is conserved throughout the plant and animal kingdoms. Furthermore, based on our results, we propose that this pathway directly controls the apoptotic fate in C. elegans, and possibly other animals as well.

  3. [Development of new methods in asymmetric reactions and their applications].

    Science.gov (United States)

    Node, Manabu

    2002-01-01

    Several novel methods using chiral reagents and biocatalysts for asymmetric reactions are described. Among those reactions, asymmetric reduction via a novel tandem Michael addition/Meerwein-Ponndorf-Verley reduction of acyclic alpha,beta-unsaturated ketones using a chiral mercapto alcohol, asymmetric synthesis of allene-1,3-dicarboxylate via crystallization induced asymmetric transformation, and improved asymmetric nitroolefination of lactones and lactames at alpha-carbon using new chiral reagents were developed. In the reactions using biocatalysts, asymmetric dealkoxycarbonylation of bicyclic beta-keto diesters having sigma-symmetry with lipase or esterase to give optically active beta-keto esters, the asymmetric reduction of bicyclic 1,3-diketones having sigma-symmetry with Baker's yeast to give optically active keto alcohols, and the asymmetric aldol reaction of glycine with threonine aldolase were also developed. The above mentioned products were effectively utilized as chiral building blocks for the asymmetric synthesis of natural products and drugs.

  4. Flammable gas interlock spoolpiece flow response test plan and procedure

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, T.C., Fluor Daniel Hanford

    1997-02-13

    The purpose of this test plan and procedure is to test the Whittaker electrochemical cell and the Sierra Monitor Corp. flammable gas monitors in a simulated field flow configuration. The sensors are used on the Rotary Mode Core Sampling (RMCS) Flammable Gas Interlock (FGI), to detect flammable gases, including hydrogen and teminate the core sampling activity at a predetermined concentration level.

  5. Dc SQUIDs with asymmetric shunt resistors

    Energy Technology Data Exchange (ETDEWEB)

    Rudolph, Matthias; Nagel, Joachim; Kemmler, Matthias; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut - Experimentalphysik II and Center for Collective Quantum Phenomena in LISAplus, Universitaet Tuebingen (Germany); Meckbach, Johannes Maximilian; Ilin, Konstantin; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme, Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2013-07-01

    We have investigated asymmetrically shunted Nb/Al-AlO{sub x}/Nb dc SQUIDs. Simulations based on the coupled Langevin equations predict that the optimum energy resolution ε, and thus also the noise performance of such an asymmetric SQUID, can be 3-4 times better than that of its symmetric counterpart. While keeping the total resistance R identical to a comparable symmetric SQUID with R{sup -1} = R{sub 1}{sup -1} + R{sub 2}{sup -1}, we shunted only one of the two Josephson junctions with R = R{sub 1,2}/2. Both types of SQUIDs were characterized with respect to their transport and noise properties at temperature T = 4.2 K, and we compared the experimental results with numerical simulations. Experiments yielded ε ∼ 32 ℎ for an asymmetric SQUID with an inductance L = 22 pH, whereas a comparable symmetric device achieved ε = 110 ℎ.

  6. Modular knowledge systems accelerate human migration in asymmetric random environments.

    Science.gov (United States)

    Wang, Dong; Deem, Michael W

    2016-12-01

    Migration is a key mechanism for expansion of communities. In spatially heterogeneous environments, rapidly gaining knowledge about the local environment is key to the evolutionary success of a migrating population. For historical human migration, environmental heterogeneity was naturally asymmetric in the north-south (NS) and east-west (EW) directions. We here consider the human migration process in the Americas, modelled as random, asymmetric, modularly correlated environments. Knowledge about the environments determines the fitness of each individual. We present a phase diagram for asymmetry of migration as a function of carrying capacity and fitness threshold. We find that the speed of migration is proportional to the inverse complement of the spatial environmental gradient, and in particular, we find that NS migration rates are lower than EW migration rates when the environmental gradient is higher in the NS direction. Communication of knowledge between individuals can help to spread beneficial knowledge within the population. The speed of migration increases when communication transmits pieces of knowledge that contribute in a modular way to the fitness of individuals. The results for the dependence of migration rate on asymmetry and modularity are consistent with existing archaeological observations. The results for asymmetry of genetic divergence are consistent with patterns of human gene flow.

  7. Analysis of Capillary Rise in Asymmetric Branch-Like Capillary

    Science.gov (United States)

    Li, Caoxiong; Shen, Yinghao; Ge, Hongkui; Yang, Zhihui; Su, Shuai; Ren, Kai; Huang, Heyu

    2016-05-01

    Transport in porous media is common in nature, attracting many attentions for a long time. Tree-like network model is often used as a simplification for porous space, expressing the complexity of pore spaces instead of capillary bundle. To investigate spontaneous imbibition characteristics in this network, a dynamic asymmetric branch-like capillary model is used to represent basic network structure, using fractal method to represent tortuosity. This work investigates the influence of parameters on imbibition process in the branch-like capillary model. An analytical equation for the imbibition mass versus time is derived. Parameters from capillary structures to liquid properties are taken into account and analyzed based on the numerical solution of the equation. It is found that the imbibition process in asymmetric branch-like capillary model can be recognized by four sections and brunching tubes are positive for imbibition process. Concomitantly, meniscus arrest event is simulated and discussed. Moreover, the influence of parameters on imbibition process is discussed. These parameters can be classified as static and dynamic. Static parameters mainly change the capillary force, which are related to the ultimate imbibition mass or imbibition ability, while dynamic parameters mainly have influence on resistance of flowing fluid, which are related to the imbibition speed in the imbibition process.

  8. Asymmetric gear rectifies random robot motion

    Science.gov (United States)

    Li, He; Zhang, H. P.

    2013-06-01

    We experimentally study the dynamics of centimetric robots and their interactions with rotary gears through inelastic collisions. Under the impacts of self-propelled robots, a gear with symmetric teeth diffuses with no preferred direction of motion. An asymmetric gear, however, rectifies random motion of nearby robots which, in return, exert a torque on the gear and drive it into unidirectional motion. Rectification efficiency increases with the degree of gear asymmetry. Our work demonstrates that asymmetric environments can be used to rectify and extract energy from random motion of macroscopic self-propelled particles.

  9. Homogeneous asymmetric catalysis in fragrance chemistry.

    Science.gov (United States)

    Ciappa, Alessandra; Bovo, Sara; Bertoldini, Matteo; Scrivanti, Alberto; Matteoli, Ugo

    2008-06-01

    Opposite enantiomers of a chiral fragrance may exhibit different olfactory activities making a synthesis in high enantiomeric purity commercially and scientifically interesting. Accordingly, the asymmetric synthesis of four chiral odorants, Fixolide, Phenoxanol, Citralis, and Citralis Nitrile, has been investigated with the aim to develop practically feasible processes. In the devised synthetic schemes, the key step that leads to the formation of the stereogenic center is the homogeneous asymmetric hydrogenation of a prochiral olefin. By an appropriate choice of the catalyst and the reaction conditions, Phenoxanol, Citralis, and Citralis Nitrile were obtained in high enantiomeric purity, and odor profiles of the single enantiomers were determined.

  10. Asymmetric acoustic transmission in multiple frequency bands

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hong-xiang, E-mail: jsdxshx@ujs.edu.cn [Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013 (China); Laboratory of Modern Acoustics, Institute of Acoustics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China); Yuan, Shou-qi, E-mail: Shouqiy@ujs.edu.cn [Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013 (China); Zhang, Shu-yi [Laboratory of Modern Acoustics, Institute of Acoustics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-11-23

    We report both experimentally and numerically that the multi-band device of the asymmetric acoustic transmission is realized by placing two periodic gratings with different periods on both sides of two brass plates immersed in water. The asymmetric acoustic transmission can exist in four frequency bands below 1500 kHz, which arises from the interaction between various diffractions from the two gratings and Lamb modes in the brass plates immersed in water. The results indicate that the device has the advantages of multiple band, broader bandwidth, and simpler structure. Our finding should have great potential applications in ultrasonic devices.

  11. Integrated asymmetric vertical coupler pressure sensors

    Science.gov (United States)

    Kiyat, Isa; Kocabas, Askin; Akcag, Imran; Aydinli, Atilla

    2004-08-01

    Design and analysis of a novel pressure sensor based on a silicon-on-insulator asymmetric integrated vertical coupler is presented. The coupler is composed of a single mode low index waveguide and a thin silicon slab. Wavelength selective optical modulation of asymmetric vertical coupler is examined in detail. Its potential for sensing applications is highlighted as an integrated optical pressure sensor which can be realized by standard silicon micro-fabrication. Sensitivity of transmission of such couplers on refractive index change of silicon slab ensures that they are good candidates for applications requiring high sensitivities.

  12. Asymmetric localization in disordered Landau bands

    Energy Technology Data Exchange (ETDEWEB)

    Nita, M [Institute of Physics and Technology of Materials, PO Box MG7, Bucharest-Magurele (Romania); Aldea, A [Institute of Physics and Technology of Materials, PO Box MG7, Bucharest-Magurele (Romania); Zittartz, J [Institute of Theoretical Physics, Cologne University, 50937 Cologne (Germany)

    2007-06-06

    We show that, due to band mixing, the eigenstate localization within the disordered Landau bands gets an asymmetric structure: the degree of localization increases in the lower part of the band and decreases in the upper one. The calculation is performed for a two-dimensional lattice with the Anderson disorder potential and we prove that this effect is related to the upper shift of the extended states within the band and is enhanced by the disorder strength. The asymmetric localization and the energy shift disappear when the interband coupling is switched off.

  13. Asymmetric multiscale behavior in PM2.5 time series: Based on asymmetric MS-DFA

    Science.gov (United States)

    Zhang, Chen; Ni, Zhiwei; Ni, Liping

    2016-11-01

    Particulate matter with an aerodynamic diameter of 2.5 mm or less (PM2.5) is one of the most serious air pollution, considered most harmful for people by World Health Organisation. In this paper, we utilized the asymmetric multiscale detrended fluctuation analysis (A-MSDFA) method to explore the existence of asymmetric correlation properties for PM2.5 daily average concentration in two USA cities (Fresno and Los Angeles) and two Chinese cities (Hong Kong and Shanghai), and to assess the properties of these asymmetric correlations. The results show the existences of asymmetric correlations, and the degree of asymmetric for two USA cities is stronger than that of two Chinese cities. Further, most of the local exponent β(n) are smaller than 0.5, which indicates the existence of anti-persistent long-range correlation for PM2.5 time series in four cities. In addition, we reanalyze the asymmetric correlation by the A-MSDFA method with secant rolling windows of different sizes, which can investigate dynamic changes in the multiscale correlation for PM2.5 time series with changing window size. Whatever window sizes, the correlations are asymmetric and display smaller asymmetries at small scales and larger asymmetries at large scales. Moreover, the asymmetries become increasingly weaker with the increase of window sizes.

  14. Di-jet asymmetric momentum transported by QGP fluid

    Energy Technology Data Exchange (ETDEWEB)

    Tachibana, Y., E-mail: tachibana@nt.phys.s.u-tokyo.ac.jp [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Theoretical Research Division, Nishina Center, RIKEN, Wako 351-0198 (Japan); Department of Physics, Sophia University, Tokyo 102-8554 (Japan); Hirano, T., E-mail: hirano@sophia.ac.jp [Department of Physics, Sophia University, Tokyo 102-8554 (Japan)

    2014-12-15

    We study the collective flow of the QGP-fluid which transports the energy and momentum deposited from jets. Simulations of the propagation of jets together with expansion of the QGP-fluid are performed by solving relativistic hydrodynamic equations numerically in the fully (3+1)-dimensional space. Mach cones are induced by the energy–momentum deposition from jets and extended by the expansion of the QGP. As a result, low-p{sub T} particles are enhanced at large angles from the jet axis. This provedes an intimate link between the observables in di-jet asymmetric events in heavy-ion collisions and theoretical pictures of the medium excitation by jet-energy deposition.

  15. Asymmetric coherent transmission for single particle diode and gyroscope

    CERN Document Server

    Yang, S; Sun, C P

    2009-01-01

    We study the single particle scattering process in a coherent multi-site system consisting of a tight-binding ring threaded by an Aharonov-Bohm flux and several attaching leads. The asymmetric behavior of scattering matrix is discovered analytically in the framework of both Bethe Ansatz and Green's function formalism. It is found that, under certain conditions, a three-site electronic system can behave analogous to a perfect semiconductor diode where current flows only in one direction. The general result is also valid for a neutral particle system since the effective magnetic flux may be implemented by a globe rotation. This observation means that the three-site system can serve as an orientation measuring gyroscope due to the approximate linear dependence of the current difference of two output leads on the rotational angular velocity.

  16. Non-geometric fluxes, asymmetric strings and nonassociative geometry

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, R; Deser, A; Luest, D; Rennecke, F [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Foehringer Ring 6, 80805 Muenchen (Germany); Plauschinn, E, E-mail: blumenha@mpp.mpg.de, E-mail: deser@mpp.mpg.de, E-mail: luest@mpp.mpg.de, E-mail: e.plauschinn@uu.nl, E-mail: rennecke@mpp.mpg.de [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)

    2011-09-23

    We study closed bosonic strings propagating both in a flat background with constant H-flux and in its T-dual configurations. We define a conformal field theory capturing linear effects in the flux and compute scattering amplitudes of tachyons, where the Rogers dilogarithm plays a prominent role. For the scattering of four tachyons, a fluxed version of the Virasoro-Shapiro amplitude is derived and its pole structure is analysed. In the case of an R-flux background obtained after three T-dualities, we find indications for a nonassociative target-space structure which can be described in terms of a deformed tri-product. Remarkably, this product is compatible with crossing symmetry of conformal correlation functions. We finally argue that the R-flux background flows to an asymmetric CFT. (paper)

  17. Asymmetric pedestrian dynamics on a staircase landing from continuous measurements

    CERN Document Server

    Corbetta, Alessandro; Muntean, Adrian; Toschi, Federico

    2015-01-01

    We investigate via extensive experimental data the dynamics of pedestrians walking in a corridor-shaped landing in a building at Eindhoven University of Technology. With year-long automatic measurements employing a Microsoft KinectTM 3D-range sensor and ad hoc tracking techniques, we acquired few hundreds of thousands pedestrian trajectories in real-life conditions. Here we discuss the asymmetric features of the dynamics in the two walking directions with respect to the flights of stairs (i.e. ascending or descending). We provide a detailed analysis of position and speed fields for the cases of pedestrians walking alone undisturbed and for couple of pedestrians in counter-flow. Then, we show average walking velocities exploring all the observed combinations in terms of numbers of pedestrians and walking directions.

  18. THz operation of asymmetric-nanochannel devices

    NARCIS (Netherlands)

    Balocco, C.; Halsall, M.; Vinh, N. Q.; Song, A. M.

    2008-01-01

    The THz spectrum lies between microwaves and the mid-infrared, a region that remains largely unexplored mainly due to the bottleneck issue of lacking compact, solid state, emitters and detectors. Here, we report on a novel asymmetric-nanochannel device, known as the self-switching device, which can

  19. Asymmetric conditional volatility in international stock markets

    Science.gov (United States)

    Ferreira, Nuno B.; Menezes, Rui; Mendes, Diana A.

    2007-08-01

    Recent studies show that a negative shock in stock prices will generate more volatility than a positive shock of similar magnitude. The aim of this paper is to appraise the hypothesis under which the conditional mean and the conditional variance of stock returns are asymmetric functions of past information. We compare the results for the Portuguese Stock Market Index PSI 20 with six other Stock Market Indices, namely the SP 500, FTSE 100, DAX 30, CAC 40, ASE 20, and IBEX 35. In order to assess asymmetric volatility we use autoregressive conditional heteroskedasticity specifications known as TARCH and EGARCH. We also test for asymmetry after controlling for the effect of macroeconomic factors on stock market returns using TAR and M-TAR specifications within a VAR framework. Our results show that the conditional variance is an asymmetric function of past innovations raising proportionately more during market declines, a phenomenon known as the leverage effect. However, when we control for the effect of changes in macroeconomic variables, we find no significant evidence of asymmetric behaviour of the stock market returns. There are some signs that the Portuguese Stock Market tends to show somewhat less market efficiency than other markets since the effect of the shocks appear to take a longer time to dissipate.

  20. Dynamic Conditional Correlations for Asymmetric Processes

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2010-01-01

    textabstractThe paper develops two Dynamic Conditional Correlation (DCC) models, namely the Wishart DCC (WDCC) model and the Matrix-Exponential Conditional Correlation (MECC) model. The paper applies the WDCC approach to the exponential GARCH (EGARCH) and GJR models to propose asymmetric DCC models.

  1. Weak chaos in the asymmetric heavy top

    CERN Document Server

    Barrientos, M; Ranada, A F

    1995-01-01

    We consider the dynamics of the slightly asymmetric heavy top, a non-integrable system obtained from the Lagrange top by breaking the symmetry of its inertia tensor. It shows signs of weak chaos, which we study numerically. We argue that it is a good example for introducing students to non-integrability and chaos. (author)

  2. Catalytic Asymmetric Synthesis of Phosphine Boronates.

    Science.gov (United States)

    Hornillos, Valentín; Vila, Carlos; Otten, Edwin; Feringa, Ben L

    2015-06-26

    The first catalytic enantioselective synthesis of ambiphilic phosphine boronate esters is presented. The asymmetric boration of α,β-unsaturated phosphine oxides catalyzed by a copper bisphosphine complex affords optically active organoboronate esters that bear a vicinal phosphine oxide group in good yields and high enantiomeric excess. The synthetic utility of the products is demonstrated through stereospecific transformations into multifunctional optically active compounds.

  3. Beam-beam issues in asymmetric colliders

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M.A.

    1992-07-01

    We discuss generic beam-beam issues for proposed asymmetric e{sup +}- e{sup -} colliders. We illustrate the issues by choosing, as examples, the proposals by Cornell University (CESR-B), KEK, and SLAC/LBL/LLNL (PEP-II).

  4. Three dimensional force balance of asymmetric droplets

    Science.gov (United States)

    Kim, Yeseul; Lim, Su Jin; Cho, Kun; Weon, Byung Mook

    2016-11-01

    An equilibrium contact angle of a droplet is determined by a horizontal force balance among vapor, liquid, and solid, which is known as Young's law. Conventional wetting law is valid only for axis-symmetric droplets, whereas real droplets are often asymmetric. Here we show that three-dimensional geometry must be considered for a force balance for asymmetric droplets. By visualizing asymmetric droplets placed on a free-standing membrane in air with X-ray microscopy, we are able to identify that force balances in one side and in other side control pinning behaviors during evaporation of droplets. We find that X-ray microscopy is powerful for realizing the three-dimensional force balance, which would be essential in interpretation and manipulation of wetting, spreading, and drying dynamics for asymmetric droplets. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01007133).

  5. Asymmetric Hydrogenation of 3-Substituted Pyridinium Salts

    NARCIS (Netherlands)

    Renom-Carrasco, Marc; Gajewski, Piotr; Pignataro, Luca; de Vries, Johannes G.; Piarulli, Umberto; Gennari, Cesare; Lefort, Laurent

    2016-01-01

    The use of an equivalent amount of an organic base leads to high enantiomeric excess in the asymmetric hydrogenation of N-benzylated 3-substituted pyridinium salts into the corresponding piperidines. Indeed, in the presence of Et3N, a Rh-JosiPhos catalyst reduced a range of pyridinium salts with ee

  6. Nucleation Process in Asymmetric Nuclear Matter

    CERN Document Server

    Peres-Menezes, D

    1998-01-01

    An extended version of the non linear Walecka model, with rho mesons and eletromagnetic field is used to investigate the possibility of phase transitions in hot (warm) nuclear matter, giving rise to droplet formation. Surface properties of asymmetric nuclear matter as the droplet surface energy and its thickness are also examined.

  7. Integrated Optical Asymmetric Coupler Pressure Sensor

    Science.gov (United States)

    Kiyat, Isa; Kocabas, Coskun; Aydinli, Atilla

    2004-05-01

    Analysis of a novel pressure sensor based on a silicon-on-insulator (SOI) asymmetric vertical coupler is presented. The integrated optical component is a coupler composed of a single mode (SM) low index waveguide and a thin silicon slab. High sensitivities of about 0.14 rad.kPa-1 should be achieved.

  8. Asymmetric relationships between proteins shape genome evolution.

    NARCIS (Netherlands)

    Notebaart, R.A.; Kensche, P.R.; Huynen, M.A.; Dutilh, B.E.

    2009-01-01

    BACKGROUND: The relationships between proteins are often asymmetric: one protein (A) depends for its function on another protein (B), but the second protein does not depend on the first. In metabolic networks there are multiple pathways that converge into one central pathway. The enzymes in the conv

  9. Standards vs. labels with imperfect competition and asymmetric information

    DEFF Research Database (Denmark)

    Baltzer, Kenneth Thomas

    2012-01-01

    I demonstrate that providing information about product quality is not necessarily the best way to address asymmetric information problems when markets are imperfectly competitive. In a vertical differentiation model I show that a Minimum Quality Standard, which retains asymmetric information...

  10. Standards vs. labels with imperfect competition and asymmetric information

    DEFF Research Database (Denmark)

    Baltzer, Kenneth Thomas

    I demonstrate that providing information about product quality is not necessarily the best way to address asymmetric information problems when markets are imperfectly competitive. In a vertical dierentiation model I show that a Minimum Quality Standard, which retains asymmetric information...

  11. Ants exhibit asymmetric hybridization in a mosaic hybrid zone.

    Science.gov (United States)

    Purcell, Jessica; Zahnd, Sacha; Athanasiades, Anouk; Türler, Rebecca; Chapuisat, Michel; Brelsford, Alan

    2016-10-01

    Research on hybridization between species provides unparalleled insights into the pre- and postzygotic isolating mechanisms that drive speciation. In social organisms, colony-level incompatibilities may provide additional reproductive barriers not present in solitary species, and hybrid zones offer an opportunity to identify these barriers. Here, we use genotyping-by-sequencing to sequence hundreds of markers in a hybrid zone between two socially polymorphic ant species, Formica selysi and Formica cinerea. We characterize the zone, determine the frequency of hybrid workers, infer whether hybrid queens or males are produced and investigate whether hybridization is influenced by colony social organization. We also compare cuticular hydrocarbon profiles and aggression levels between the two species. The hybrid zone exhibits a mosaic structure. The asymmetric distribution of hybrids skewed towards F. cinerea suggests a pattern of unidirectional nuclear gene flow from F. selysi into F. cinerea. The occurrence of backcrossed individuals indicates that hybrid queens and/or males are fertile, and the presence of the F. cinerea mitochondrial haplotype in 97% of hybrids shows that successful F1 hybrids will generally have F. cinerea mothers and F. selysi fathers. We found no evidence that social organization contributes to speciation, because hybrids occur in both single-queen and multiple-queen colonies. Strongly differentiated cuticular hydrocarbon profiles and heightened interspecific aggression further reveal that species recognition cues are both present and perceived. The discovery of fertile hybrids and asymmetrical gene flow is unusual in ants, and this hybrid zone will therefore provide an ideal system with which to investigate speciation in social insects.

  12. Charge Asymmetric Cosmic Rays as a probe of Flavor Violating Asymmetric Dark Matter

    DEFF Research Database (Denmark)

    Masina, Isabella; Sannino, Francesco

    2011-01-01

    The recently introduced cosmic sum rules combine the data from PAMELA and Fermi-LAT cosmic ray experiments in a way that permits to neatly investigate whether the experimentally observed lepton excesses violate charge symmetry. One can in a simple way determine universal properties of the unknown...... component of the cosmic rays. Here we attribute a potential charge asymmetry to the dark sector. In particular we provide models of asymmetric dark matter able to produce charge asymmetric cosmic rays. We consider spin zero, spin one and spin one-half decaying dark matter candidates. We show that lepton...... flavor violation and asymmetric dark matter are both required to have a charge asymmetry in the cosmic ray lepton excesses. Therefore, an experimental evidence of charge asymmetry in the cosmic ray lepton excesses implies that dark matter is asymmetric....

  13. A laboratory study of asymmetric magnetic reconnection in strongly driven plasmas.

    Science.gov (United States)

    Rosenberg, M J; Li, C K; Fox, W; Igumenshchev, I; Séguin, F H; Town, R P J; Frenje, J A; Stoeckl, C; Glebov, V; Petrasso, R D

    2015-02-04

    Magnetic reconnection, the annihilation and rearrangement of magnetic fields in a plasma, is a universal phenomenon that frequently occurs when plasmas carrying oppositely directed field lines collide. In most natural circumstances, the collision is asymmetric (the two plasmas having different properties), but laboratory research to date has been limited to symmetric configurations. In addition, the regime of strongly driven magnetic reconnection, where the ram pressure of the plasma dominates the magnetic pressure, as in several astrophysical environments, has also received little experimental attention. Thus, we have designed the experiments to probe reconnection in asymmetric, strongly driven, laser-generated plasmas. Here we show that, in this strongly driven system, the rate of magnetic flux annihilation is dictated by the relative flow velocities of the opposing plasmas and is insensitive to initial asymmetries. In addition, out-of-plane magnetic fields that arise from asymmetries in the three-dimensional plasma geometry have minimal impact on the reconnection rate, due to the strong flows.

  14. A Default Model of The Non-listed Companies Under Asymmetric Information

    Institute of Scientific and Technical Information of China (English)

    Wang Fake

    2013-01-01

    For the financing difficulties of the non-listed companies, A continuous credit risk model is created which is based on the asymmetric information theory.In the model,the value of the non-listed companies is estimated by the free cash flow,and the loan discussed contains the collateral asset.Based on the model,The default probability,the LGD and the largest company debts are discussed.

  15. On asymmetric generalized solitary gravity-capillary waves in finite depth.

    Science.gov (United States)

    Gao, T; Wang, Z; Vanden-Broeck, J-M

    2016-10-01

    Generalized solitary waves propagating at the surface of a fluid of finite depth are considered. The fluid is assumed to be inviscid and incompressible and the flow to be irrotational. Both the effects of gravity and surface tension are included. It is shown that in addition to the classical symmetric waves, there are new asymmetric solutions. These new branches of solutions bifurcate from the branches of symmetric waves. The detailed bifurcation diagrams as well as typical wave profiles are presented.

  16. Asymmetric Mid-Ocean ridges: Interplay Between Plate and Mantle Processes and Consequences for Melting

    Science.gov (United States)

    Montesi, L.; Bai, H.

    2014-12-01

    Mid-ocean ridges constitute a fundamental component of the global plate tectonic system. The classical view of ridges is of symmetric system, where plates diverge, generating a mostly passive upwelling immediately underneath the ridge axis. However, observations of mid-ocean ridges draw quite a different picture. At the Southern East Pacific Rise, plate subsidence (related to plate age) occurs at different rates on the Pacific and Nazca plates, implying different rates of accretion on each side of the ridge. At greater depth, the melting region extends much further beneath the Pacific plate than the Nazca plate. Asymmetry is also evident in slow spreading center. For examples, at the 13°N segment of the Mid-Atlantic Ridge, isochrons are more widely spaced on the American side than the European side. Core complexes along the axis are another manifestation of asymmetric accretion at that location. In this contribution, we seek to understand how is the melting system affected by ridge asymmetry. First, we discuss the different ways that an asymmetric ridge may develop. We present an analytical solution of mantle flow in the mantle underneath spreading centers that considers 1) different rates of accretion in on the two plates; 2) migration of the ridge system with respect to the underlying mantle (Couette flow in the asthenosphere); 3) mantle wind (Poiseuille flow in the asthenosphere); 4) different slopes of the lithosphere underneath each plate; and 5) any combination of the above. These solutions assume an isoviscous mantle underneath the lithosphere. Asymmetry in mantle flow is observed in each case. The temperature field associated with each case implies that melting is suppressed by the asymmetric accretion, although deeper processes have little effect on melting. As asymmetric accretion is thought to develop when melt flux to the axis is reduced, there is the possibility of a positive feedback that forces segments to switch between symmetric and asymmetric

  17. Optical diagnostics of intermittent flows

    DEFF Research Database (Denmark)

    Okulov, V.L.; Naumov, I.V.; Sørensen, Jens Nørkær

    2007-01-01

    The efficiency of combined use of different optical techniques for flow diagnostics is demonstrated with the practically important case of intense swirling flows. It is shown that, when applied separately, commonly used optical measuring techniques, such as laser Doppler anemometry and particle...... image velocimetry, frequently give erroneous results, especially for the transition flow and developed nonstationary flow. However, their combined use in diagnostics of unsteady (intermittent) flows significantly improves both the temporal and spatial resolution of measurements. Such a complex approach...... is for the first time applied for diagnostics of the flow pattern in a closed cylinder with a rotating end face with the aim of studying the changeover from the steady axisymmetric to unsteady asymmetric flow over a wide range of flow parameters. It is found that such a transition is notable for azimuthal...

  18. Porous asymmetric SiO2-g-PMMA nanoparticles produced by phase inversion

    KAUST Repository

    Munirasu, Selvaraj

    2014-07-22

    A new kind of asymmetric organic-inorganic porous structure has been proposed. Asymmetric lattices of polymer grafted silica nanoparticles were manufactured by casting and phase inversion in water. Silica nanoparticles were first functionalized with 3-(dimethylethoxysilyl)propyl-2-bromoisobutyrate, followed by grafting of poly(methylmethacrylate) (PMMA) segments, performed by atom-transfer radical polymerization. Mechanically stable self-standing films were prepared by casting a dispersion of functionalized nanoparticles in different solvents and immersion in water. The resulting asymmetrically porous morphology and nanoparticle assembly was characterized by scanning electron and atomic force microscopy. The PMMA functionalized SiO2 hybrid material in acetone or acetone/dioxane led to the best-assembled structures. Porous asymmetric membranes were prepared by adding free PMMA and PMMA terminated with hydrophilic hydroxyl group. Nitrogen flow of 2800 L m-2 h -1 was measured at 1.3 bar demonstrating the porosity and potential application for membrane technology. © 2014 Springer Science+Business Media New York.

  19. Enhancing molecule fluorescence with asymmetrical plasmonic antennas.

    Science.gov (United States)

    Lu, Guowei; Liu, Jie; Zhang, Tianyue; Shen, Hongming; Perriat, Pascal; Martini, Matteo; Tillement, Olivier; Gu, Ying; He, Yingbo; Wang, Yuwei; Gong, Qihuang

    2013-07-21

    We propose and justify by the finite-difference time-domain method an efficient strategy to enhance the spontaneous emission of a fluorophore with a multi-resonance plasmonic antenna. The custom-designed asymmetrical antenna consists of two plasmonic nanoparticles with different sizes and is able to couple efficiently to free space light through multiple localized surface plasmon resonances. This design simultaneously permits a large near-field excitation near the antenna as well as a high quantum efficiency, which results in an unusual and significant enhancement of the fluorescence of a single emitter. Such an asymmetrical antenna presents intrinsic advantages over single particle or dimer based antennas made using two identical nanostructures. This promising concept can be exploited in the large domain of light-matter interaction processes involving multiple frequencies.

  20. Design of Asymmetric Peptide Bilayer Membranes.

    Science.gov (United States)

    Li, Sha; Mehta, Anil K; Sidorov, Anton N; Orlando, Thomas M; Jiang, Zhigang; Anthony, Neil R; Lynn, David G

    2016-03-16

    Energetic insights emerging from the structural characterization of peptide cross-β assemblies have enabled the design and construction of robust asymmetric bilayer peptide membranes. Two peptides differing only in their N-terminal residue, phosphotyrosine vs lysine, coassemble as stacks of antiparallel β-sheets with precisely patterned charged lattices stabilizing the bilayer leaflet interface. Either homogeneous or mixed leaflet composition is possible, and both create nanotubes with dense negative external and positive internal solvent exposed surfaces. Cross-seeding peptide solutions with a preassembled peptide nanotube seed leads to domains of different leaflet architecture within single nanotubes. Architectural control over these cross-β assemblies, both across the bilayer membrane and along the nanotube length, provides access to highly ordered asymmetric membranes for the further construction of functional mesoscale assemblies.

  1. Asymmetric dark matter models in SO(10)

    Science.gov (United States)

    Nagata, Natsumi; Olive, Keith A.; Zheng, Jiaming

    2017-02-01

    We systematically study the possibilities for asymmetric dark matter in the context of non-supersymmetric SO(10) models of grand unification. Dark matter stability in SO(10) is guaranteed by a remnant Z2 symmetry which is preserved when the intermediate scale gauge subgroup of SO(10) is broken by a {126} dimensional representation. The asymmetry in the dark matter states is directly generated through the out-of-equilibrium decay of particles around the intermediate scale, or transferred from the baryon/lepton asymmetry generated in the Standard Model sector by leptogenesis. We systematically classify possible asymmetric dark matter candidates in terms of their quantum numbers, and derive the conditions for each case that the observed dark matter density is (mostly) explained by the asymmetry of dark matter particles.

  2. Asymmetric Dark Matter Models in SO(10)

    CERN Document Server

    Nagata, Natsumi; Zheng, Jiaming

    2016-01-01

    We systematically study the possibilities for asymmetric dark matter in the context of non-supersymmetric SO(10) models of grand unification. Dark matter stability in SO(10) is guaranteed by a remnant $\\mathbb{Z}_2$ symmetry which is preserved when the intermediate scale gauge subgroup of SO(10) is broken by a ${\\bf 126}$ dimensional representation. The asymmetry in the dark matter states is directly generated through the out-of-equilibrium decay of particles around the intermediate scale, or transferred from the baryon/lepton asymmetry generated in the Standard Model sector by leptogenesis. We systematically classify possible asymmetric dark matter candidates in terms of their quantum numbers, and derive the conditions for each case that the observed dark matter density is (mostly) explained by the asymmetry of dark matter particles.

  3. Cosmological signatures of time-asymmetric gravity

    CERN Document Server

    Cortês, Marina; Smolin, Lee

    2016-01-01

    We develop the model proposed by Cort\\^es, Gomes & Smolin, to predict cosmological signatures of time-asymmetric extensions of general relativity they proposed recently. Within this class of models the equation of motion of chiral fermions is modified by a torsion term. This term leads to a dispersion law for neutrinos that associates a new time-varying energy with each particle. We find a new neutrino contribution to the Friedmann equation resulting from the torsion term in the Ashtekar connection. In this note we explore the phenomenology of this term and observational consequences for cosmological evolution. We show that constraints on the critical energy density will ordinarily render this term unobservably small, a maximum of order $10^{-25}$ of the neutrino energy density today. However, if the time-asymmetric dark energy is tuned to cancel the cosmological constant, the torsion effect may be a dark matter candidate.

  4. Venture Capital Contracting Under Asymmetric Information

    OpenAIRE

    Jeffrey Trester

    1993-01-01

    The author develops a model of venture capital contracting in which the entrepreneur and venture capitalist contract under symmetric information. A condition of asymmetric information may arise subsequent to the first contract. The author shows that this condition makes debt contracts infeasible and leads to the use of preferred equity contracts. The author notes that discussions of the relation between venture capital and capital structure are rare. This paper expands the literature by addre...

  5. Fluorous Mixture Synthesis of Asymmetric Dendrimers

    Science.gov (United States)

    Jiang, Zhong-Xing; Yu, Yihua Bruce

    2010-01-01

    A divergent fluorous mixture synthesis (FMS) of asymmetric fluorinated dendrimers has been developed. Four generations of fluorinated dendrimers with the same fluorinated moiety were prepared with high efficiency, yield and purity. Comparison of the physicochemical properties of these dendrimers provided valuable information for their application and future optimization. This strategy has not only provided a practical method for the synthesis and purification of dendrimers, but also established the possibility of utilizing the same fluorinated moiety for FMS. PMID:20170088

  6. Asymmetric k-Center with Minimum Coverage

    DEFF Research Database (Denmark)

    Gørtz, Inge Li

    2008-01-01

    In this paper we give approximation algorithms and inapproximability results for various asymmetric k-center with minimum coverage problems. In the k-center with minimum coverage problem, each center is required to serve a minimum number of clients. These problems have been studied by Lim et al. [A....... Lim, B. Rodrigues, F. Wang, Z. Xu, k-center problems with minimum coverage, Theoret. Comput. Sci. 332 (1–3) (2005) 1–17] in the symmetric setting....

  7. New electric field in asymmetric magnetic reconnection.

    Science.gov (United States)

    Malakit, K; Shay, M A; Cassak, P A; Ruffolo, D

    2013-09-27

    We present a theory and numerical evidence for the existence of a previously unexplored in-plane electric field in collisionless asymmetric magnetic reconnection. This electric field, dubbed the "Larmor electric field," is associated with finite Larmor radius effects and is distinct from the known Hall electric field. Potentially, it could be an important indicator for the upcoming Magnetospheric Multiscale mission to locate reconnection sites as we expect it to appear on the magnetospheric side, pointing earthward, at the dayside magnetopause reconnection site.

  8. Asymmetric Information – Adverse Selection Problem

    Directory of Open Access Journals (Sweden)

    Dumitru MARIN

    2007-01-01

    Full Text Available The present paper makes an introduction in the contract theory starting with the definitions of asymmetric information and some of the problems that generate: moral hazard and adverse selection. We provide an insight of the latest empirical studies in adverse selection in different markets. An adverse selection model, based on Rothchild and Stiglitz is also present to give a perspective of the theoretical framework.

  9. Asymmetric threat data mining and knowledge discovery

    Science.gov (United States)

    Gilmore, John F.; Pagels, Michael A.; Palk, Justin

    2001-03-01

    Asymmetric threats differ from the conventional force-on- force military encounters that the Defense Department has historically been trained to engage. Terrorism by its nature is now an operational activity that is neither easily detected or countered as its very existence depends on small covert attacks exploiting the element of surprise. But terrorism does have defined forms, motivations, tactics and organizational structure. Exploiting a terrorism taxonomy provides the opportunity to discover and assess knowledge of terrorist operations. This paper describes the Asymmetric Threat Terrorist Assessment, Countering, and Knowledge (ATTACK) system. ATTACK has been developed to (a) data mine open source intelligence (OSINT) information from web-based newspaper sources, video news web casts, and actual terrorist web sites, (b) evaluate this information against a terrorism taxonomy, (c) exploit country/region specific social, economic, political, and religious knowledge, and (d) discover and predict potential terrorist activities and association links. Details of the asymmetric threat structure and the ATTACK system architecture are presented with results of an actual terrorist data mining and knowledge discovery test case shown.

  10. Asymmetric Conditional Volatility in International Stock Markets

    CERN Document Server

    Ferreira, N B; Menezes, R; Ferreira, Nuno B.; Mendes, Diana A.; Menezes, Rui

    2006-01-01

    Recent studies show that a negative shock in stock prices will generate more volatility than a positive shock of similar magnitude. The aim of this paper is to appraise the hypothesis under which the conditional mean and the conditional variance of stock returns are asymmetric functions of past information. We compare the results for the Portuguese Stock Market Index PSI 20 with six other Stock Market Indices, namely the S&P 500, FTSE100, DAX 30, CAC 40, ASE 20, and IBEX 35. In order to assess asymmetric volatility we use autoregressive conditional heteroskedasticity specifications known as TARCH and EGARCH. We also test for asymmetry after controlling for the effect of macroeconomic factors on stock market returns using TAR and M-TAR specifications within a VAR framework. Our results show that the conditional variance is an asymmetric function of past innovations raising proportionately more during market declines, a phenomenon known as the leverage effect. However, when we control for the effect of chan...

  11. Multiple Traveling Salesmen in Asymmetric Metrics

    CERN Document Server

    Friggstad, Zachary

    2011-01-01

    We consider some generalizations of the Asymmetric Traveling Salesman Path problem. Suppose we have an asymmetric metric G = (V,A) with two distinguished nodes s,t. We are also given a positive integer k. The goal is to find k paths of minimum total cost from s to t whose union spans all nodes. We call this the k-Person Asymmetric Traveling Salesmen Path problem (k-ATSPP). Our main result for k-ATSPP is a bicriteria approximation that, for some parameter b >= 1 we may choose, finds between k and k + k/b paths of total length O(b log |V|) times the optimum value of an LP relaxation based on the Held-Karp relaxation for the Traveling Salesman problem. On one extreme this is an O(log |V|)-approximation that uses up to 2k paths and on the other it is an O(k log |V|)-approximation that uses exactly k paths. Next, we consider the case where we have k pairs of nodes (s_1,t_1), ..., (s_k,t_k). The goal is to find an s_i-t_i path for every pair such that each node of G lies on at least one of these paths. Simple appro...

  12. Traceless Synthesis of Asymmetrically Modified Bivalent Nucleosomes.

    Science.gov (United States)

    Lechner, Carolin C; Agashe, Ninad D; Fierz, Beat

    2016-02-18

    Nucleosomes carry extensive post-translational modifications (PTMs), which results in complex modification patterns that are involved in epigenetic signaling. Although two copies of each histone coexist in a nucleosome, they may not carry the same PTMs and are often differently modified (asymmetric). In bivalent domains, a chromatin signature prevalent in embryonic stem cells (ESCs), namely H3 methylated at lysine 4 (H3K4me3), coexists with H3K27me3 in asymmetric nucleosomes. We report a general, modular, and traceless method for producing asymmetrically modified nucleosomes. We further show that in bivalent nucleosomes, H3K4me3 inhibits the activity of the H3K27-specific lysine methyltransferase (KMT) polycomb repressive complex 2 (PRC2) solely on the same histone tail, whereas H3K27me3 stimulates PRC2 activity across tails, thereby partially overriding the H3K4me3-mediated repressive effect. To maintain bivalent domains in ESCs, PRC2 activity must thus be locally restricted or reversed.

  13. SPECT using asymmetric pinholes with truncated projections

    Energy Technology Data Exchange (ETDEWEB)

    Lin Jianyu; Meikle, Steven R, E-mail: jianyu.lin@curtin.edu.au [Ramaciotti Imaging Centre, Brain and Mind Research Institute, University of Sydney (Australia)

    2011-07-07

    Tomographic systems employing truncated projections have been developed for parallel and fan beam collimation and for cone beam CT but the idea has not been extensively explored in pinhole single photon emission computed tomography (SPECT). In this paper, we explore the sampling requirements and system performance of SPECT systems with asymmetric pinhole collimators and truncated projections. We demonstrate that complete 3D sampling can be achieved by using multiple detectors with truncated asymmetric pinholes, offset axially from each other, and a spiral orbit. The use of truncated projections can be exploited in the design of pinhole SPECT systems by moving the pinholes closer to the subject, resulting in increased sensitivity and improved spatial resolution. Truncated and untruncated pinhole systems were evaluated using the contrast-to-noise ratio (CNR) calculated from the linearized local impulse response as a figure of merit. The CNR for the truncated pinhole system was up to 60% greater than that for the untruncated system at matched resolution for a source voxel near the centre of a uniform phantom and 30% greater at the edge. We conclude that an object can be reconstructed from asymmetric pinholes with truncated projections, which leads to potentially important design considerations and applications in single- and multi-pinhole SPECT.

  14. Unsteady Flows in Axial Turbomachines

    Science.gov (United States)

    Marble, F. E.; Rannie, W. D.

    1957-01-01

    Of the various unsteady flows that occur in axial turbomachines certain asymmetric disturbances, of wave length large in comparison with blade spacing, have become understood to a certain extent. These disturbances divide themselves into two categories: self-induced oscillations and force disturbances. A special type of propagating stall appears as a self-induced disturbance; an asymmetric velocity profile introduced at the compressor inlet constitutes a forced disturbance. Both phenomena have been treated from a unified theoretical point of view in which the asymmetric disturbances are linearized and the blade characteristics are assumed quasi-steady. Experimental results are in essential agreement with this theory wherever the limitations of the theory are satisfied. For the self-induced disturbances and the more interesting examples of the forced disturbances, the dominant blade characteristic is the dependence of total pressure loss, rather than the turning angle, upon the local blade inlet angle.

  15. The ISR Asymmetrical Capacitor Thruster: Experimental Results and Improved Designs

    Science.gov (United States)

    Canning, Francis X.; Cole, John; Campbell, Jonathan; Winet, Edwin

    2004-01-01

    A variety of Asymmetrical Capacitor Thrusters has been built and tested at the Institute for Scientific Research (ISR). The thrust produced for various voltages has been measured, along with the current flowing, both between the plates and to ground through the air (or other gas). VHF radiation due to Trichel pulses has been measured and correlated over short time scales to the current flowing through the capacitor. A series of designs were tested, which were increasingly efficient. Sharp features on the leading capacitor surface (e.g., a disk) were found to increase the thrust. Surprisingly, combining that with sharp wires on the trailing edge of the device produced the largest thrust. Tests were performed for both polarizations of the applied voltage, and for grounding one or the other capacitor plate. In general (but not always) it was found that the direction of the thrust depended on the asymmetry of the capacitor rather than on the polarization of the voltage. While no force was measured in a vacuum, some suggested design changes are given for operation in reduced pressures.

  16. Free fatty acids do not acutely increase asymmetrical dimethylarginine concentrations.

    Science.gov (United States)

    Namiranian, K; Mittermayer, F; Artwohl, M; Pleiner, J; Schaller, G; Mayer, B X; Bayerle-Eder, M; Roden, M; Baumgartner-Parzer, S; Wolzt, M

    2005-12-01

    Concentrations of asymmetrical dimethylarginine (ADMA) and free fatty acids (FFAs) are elevated in insulin resistance which is associated with impaired vascular function. We hypothesized that FFAs could alter vascular tone by affecting ADMA concentrations. Plasma FFA levels were increased in seventeen healthy male volunteers by Intralipid/heparin infusion; hemodynamic and biochemical parameters were measured after 90 minutes. Plasma collected before and during Intralipid/heparin or equivalent synthetic FFAs was incubated with human umbilical vein endothelial cells (HUVECs) in vitro. Intralipid/heparin infusion resulted in an approximately seven-fold increase in plasma FFA levels to 1861 +/- 139 micromol/l, which was paralleled by increased systemic blood pressure and forearm blood flow. Intralipid/heparin did not affect ADMA (baseline mean 0.59 [95 % confidence interval [CI]: 0.54; 0.64] and 0.56 [CI: 0.51; 0.59] after 90 minutes), but slightly decreased SDMA (from 0.76, [CI: 0.70; 0.83] to 0.71 [CI: 0.64; 0.74], p < 0.05), and had no effect on ADMA/SDMA ratio. There was no correlation between ADMA and FFA concentrations or forearm blood flow. Incubation of HUVECs with FFA-rich plasma or synthetic FFAs induced an ADMA release after 24 hours, but not after 90 minutes. Acutely increased FFA levels caused hemodynamic effects but did not affect ADMA. Prolonged elevation of FFA levels might influence vascular function by increasing ADMA levels.

  17. Flow Separation and Turbulence in Jet Pumps for Thermoacoustic Applications

    NARCIS (Netherlands)

    Oosterhuis, Joris P.; Verbeek, Anton A.; Bühler, Simon; Wilcox, Douglas; Meer, van der Theo H.

    2016-01-01

    The effect of flow separation and turbulence on the performance of a jet pump in oscillatory flows is investigated. A jet pump is a static device whose shape induces asymmetric hydrodynamic end effects when placed in an oscillatory flow. This will result in a time-averaged pressure drop which can be

  18. Control method of high-speed switched reluctance motor with an asymmetric rotor magnetic circuit

    Directory of Open Access Journals (Sweden)

    Bogusz Piotr

    2016-12-01

    Full Text Available In the paper, the modified (compared to the classical asymmetric half-bridge converter for a switched reluctance machine with an asymmetric rotor magnetic circuit was analysed. An analysis for two various structures of switched reluctance motors was conducted. The rotor shaping was used to obtain required start-up torque or/and to obtain less electromagnetic torque ripple. The discussed converter gives a possibility to turn a phase off much later while reduced time of a current flows in a negative slope of inductance. The results of the research in the form of waveforms of currents, voltages and electromagnetic torque were presented. Conclusions were formulated concerning the comparison of the characteristics of SRM supplied by the classic converter and by the one supplied by the analysed converter.

  19. A carbon nanotube confinement strategy to implement homogeneous asymmetric catalysis in the solid phase.

    Science.gov (United States)

    Hashimoto, Kazuki; Kumagai, Naoya; Shibasaki, Masakatsu

    2015-03-09

    A readily recyclable asymmetric catalyst has been developed based on the self-assembly of a homogeneous catalyst in a fibrous network of multiwalled carbon nanotubes (MWNTs). Dimerization of an amide-based chiral ligand with a suitable spacer allows for the efficient formation of a heterogeneous catalyst by self-assembly on addition of Er(OiPr)3. The self-assembly proceeds in the MWNT fibrous network and small clusters of assembled catalyst are confined in the MWNTs, producing an easily handled solid-phase catalyst. The resulting MWNT-confined catalyst exhibits a good catalytic performance in a catalytic asymmetric Mannich-type reaction, which can be conducted in a repeated batch system and in a continuous-flow platform.

  20. Quantum optics of lossy asymmetric beam splitters

    Science.gov (United States)

    Uppu, Ravitej; Wolterink, Tom A. W.; Tentrup, Tristan B. H.; Pinkse, Pepijn W. H.

    2016-07-01

    We theoretically investigate quantum interference of two single photons at a lossy asymmetric beam splitter, the most general passive 2$\\times$2 optical circuit. The losses in the circuit result in a non-unitary scattering matrix with a non-trivial set of constraints on the elements of the scattering matrix. Our analysis using the noise operator formalism shows that the loss allows tunability of quantum interference to an extent not possible with a lossless beam splitter. Our theoretical studies support the experimental demonstrations of programmable quantum interference in highly multimodal systems such as opaque scattering media and multimode fibers.

  1. Improved DFIG Capability during Asymmetrical Grid Faults

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede

    2015-01-01

    the natural component of the Doubly-Fed Induction Generator (DFIG) stator flux during the fault period, their effects on the rotor voltage can be investigated. It is concluded that the phase-to-phase fault has the worst scenario due to its highest introduction of the negative stator flux. Afterwards......, the capability of a 2 MW DFIG to ride through asymmetrical grid faults can be estimated at the existing design of the power electronics converter. Finally, a control scheme aimed to improve the DFIG capability is proposed and the simulation results validate its feasibility....

  2. Resonance phenomena for asymmetric weakly nonlinear oscillator

    Institute of Scientific and Technical Information of China (English)

    钱定边

    2002-01-01

    We establish the coexistence of periodic solution and unbounded solution, the infinity of largeamplitude subharmonics for asymmetric weakly nonlinear oscillator x" + a2x+ - b2x- + h(x) = p(t) with h(±∞) - 0 and xh(x) → +∞(x →∞), assuming that M(τ ) has zeros which are all simple and M(τ ) 0respectively, where M(τ ) is a function related to the piecewise linear equation x" + a2x+ - b2x- = p(t).``

  3. Dynamic Conditional Correlations for Asymmetric Processes

    OpenAIRE

    Asai, Manabu; McAleer, Michael

    2011-01-01

    The paper develops two Dynamic Conditional Correlation (DCC) models, namely the Wishart DCC (wDCC) model. The paper applies the wDCC approach to the exponential GARCH (EGARCH) and GJR models to propose asymmetric DCC models. We use the standardized multivariate t-distribution to accommodate heavy-tailed errors. The paper presents an empirical example using the trivariate data of the Nikkei 225, Hang Seng and Straits Times Indices for estimating and forecasting the wDCC-EGARCH and wDCC-GJR mod...

  4. On asymmetric causal relationships in Petropolitics

    Directory of Open Access Journals (Sweden)

    Balan Feyza

    2016-01-01

    Full Text Available The aim of this paper is to examine whether the First Law of Petropolitics denominated by Friedman in 2006 is valid for OPEC countries. To do this, this paper analyses the relationship between political risk and oil supply by applying the asymmetric panel causality test suggested by Hatemi-J (2011 to these countries for the period 1984-2014. The results show that the First Law of Petropolitics is valid for Angola, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi Arabia, and the UAE, given that positive oil supply shocks significantly lead to negative political stability shocks, and negative oil supply shocks significantly lead to positive shocks in political stability.

  5. Quantum optics of lossy asymmetric beam splitters

    CERN Document Server

    Uppu, Ravitej; Tentrup, Tristan B H; Pinkse, Pepijn W H

    2016-01-01

    We theoretically investigate quantum interference of two single photons at a lossy asymmetric beam splitter, the most general passive 2$\\times$2 optical circuit. The losses in the circuit result in a non-unitary scattering matrix with a non-trivial set of constraints on the elements of the scattering matrix. Our analysis using the noise operator formalism shows that the loss allows tunability of quantum interference to an extent not possible with a lossless beam splitter. Our theoretical studies support the experimental demonstrations of programmable quantum interference in highly multimodal systems such as opaque scattering media and multimode fibers.

  6. Asymmetric chemical reactions by polarized quantum beams

    Science.gov (United States)

    Takahashi, Jun-Ichi; Kobayashi, Kensei

    One of the most attractive hypothesis for the origin of homochirality in terrestrial bio-organic compounds (L-amino acid and D-sugar dominant) is nominated as "Cosmic Scenario"; a chiral impulse from asymmetric excitation sources in space triggered asymmetric reactions on the surfaces of such space materials as meteorites or interstellar dusts prior to the existence of terrestrial life. 1) Effective asymmetric excitation sources in space are proposed as polarized quantum beams, such as circularly polarized light and spin polarized electrons. Circularly polarized light is emitted as synchrotron radiation from tightly captured electrons by intense magnetic field around neutron stars. In this case, either left-or right-handed polarized light can be observed depending on the direction of observation. On the other hand, spin polarized electrons is emitted as beta-ray in beta decay from radioactive nuclei or neutron fireballs in supernova explosion. 2) The spin of beta-ray electrons is longitudinally polarized due to parity non-conservation in the weak interaction. The helicity (the the projection of the spin onto the direction of kinetic momentum) of beta-ray electrons is universally negative (left-handed). For the purpose of verifying the asymmetric structure emergence in bio-organic compounds by polarized quantum beams, we are now carrying out laboratory simulations using circularly polarized light from synchrotron radiation facility or spin polarized electron beam from beta-ray radiation source. 3,4) The target samples are solid film or aqueous solution of racemic amino acids. 1) K.Kobayashi, K.Kaneko, J.Takahashi, Y.Takano, in Astrobiology: from simple molecules to primitive life; Ed. V.Basiuk; American Scientific Publisher: Valencia, 2008. 2) G.A.Gusev, T.Saito, V.A.Tsarev, A.V.Uryson, Origins Life Evol. Biosphere. 37, 259 (2007). 3) J.Takahashi, H.Shinojima, M.Seyama, Y.Ueno, T.Kaneko, K.Kobayashi, H.Mita, M.Adachi, M.Hosaka, M.Katoh, Int. J. Mol. Sci. 10, 3044

  7. RHIC operation with asymmetric collisions in 2015

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Aschenauer, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Atoian, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brown, K. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bruno, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Connolly, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ottavio, T. D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Drees, K. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gu, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hayes, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Laster, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Makdisi, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Marr, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mernick, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Michnoff, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Montag, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Morris, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Narayan, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Nayak, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Nemesure, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pile, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Poblaguev, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schmidke, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Severino, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Shrey, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Steski, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); White, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yip, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zeno, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhang, S. Y. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-08-07

    To study low-x shadowing/saturation physics as well as other nuclear effects [1], [2], proton-gold (p-Au, for 5 weeks) and proton-Aluminum (p-Al, for 2 weeks) collisions were provided for experiments in 2015 at the Relativistic Heavy Ion Collider (RHIC), with polarized proton beam in the Blue ring and Au/Al beam in the Yellow ring. The special features of the asymmetric run in 2015 will be introduced. The operation experience will be reviewed as well in the report.

  8. Photoresponse of silicon with asymmetric area contacts

    Science.gov (United States)

    Rabbani, M. Golam; Sundararajan, Jency P.; Verma, Amit; Nekovei, Reza; Khader, Mahmoud M.; Darling, R. B.; Patil, Sunil R.

    2017-01-01

    We report on high performance metal-semiconductor-metal (MSM) photosensors based on asymmetric metal pad areas. The reported devices require a single-step metal deposition, and exhibit large photo response even under zero-bias. Moreover the devices offer fast and stable light switching behavior. Device fabrication and electrical characterization results are presented that are further analyzed with TCAD modeling and simulation. Device simulations show that contact asymmetry along with surface recombination and barrier lowering plays an important role in the MSM I-V characteristics.

  9. Chiral Diamine-catalyzed Asymmetric Aldol Reaction

    Institute of Scientific and Technical Information of China (English)

    LI Hui; XU Da-zhen; WU Lu-lu; WANG Yong-mei

    2012-01-01

    A highly efficient catalytic system composed of a simple and commercially available chiral primary diamine (1R,2R)-cyclohexane-1,2-diamine(6) and trifluoroacetic acid(TFA) was employed for asymmetric Aldol reaction in i-PrOH at room temperature.A loading of 10%(molar fraction) catalyst 6 with TFA as a cocatalyst could catalyze the Aldol reactions of various ketones or aldehydes with a series of aromatic aldehydes,furnishing Aldol products in moderate to high yields(up to >99%) with enantioselectivities of up to >99% and diastereoselectivities of up to 99:1.

  10. Analysis of Asymmetric Piezoelectric Composite Beam

    CERN Document Server

    Chen, J -S; Wu, K -C

    2008-01-01

    This paper deals with the vibration analysis of an asymmetric composite beam composed of glass a piezoelectric material. The Bernoulli's beam theory is adopted for mechanical deformations, and the electric potential field of the piezoelectric material is assumed such that the divergence-free requirement of the electrical displacements is satisfied. The accuracy of the analytic model is assessed by comparing the resonance frequencies obtained by the analytic model with those obtained by the finite element method. The model developed can be used as a tool for designing piezoelectric actuators such as micro-pumps.

  11. Asymmetric Synthesis of Both Enantiomers of Disparlure

    Institute of Scientific and Technical Information of China (English)

    王志刚; 郑剑峰; 黄培强

    2012-01-01

    Starting from propargyl alcohol (12), and on the basis of Zhou's modified Sharpless asymmetric epoxidation, the sex pheromone of the Gypsy moth, disparlure (+)-8 and its enantiomer (-)-8 have been synthesized, each in six steps, with overall yields of 29% for (+)-8 and 27% for (-)-8 (ee〉98%). The use of the sequential coupling tactic renders the method flexible, which is applicable to the synthesis of other cis-epoxy pheromones.

  12. Nanotribology of Symmetric and Asymmetric Liquid Lubricants

    Directory of Open Access Journals (Sweden)

    Shinji Yamada

    2010-03-01

    Full Text Available When liquid molecules are confined in a narrow gap between smooth surfaces, their dynamic properties are completely different from those of the bulk. The molecular motions are highly restricted and the system exhibits solid-like responses when sheared slowly. This solidification behavior is very dependent on the molecular geometry (shape of liquids because the solidification is induced by the packing of molecules into ordered structures in confinement. This paper reviews the measurements of confined structures and friction of symmetric and asymmetric liquid lubricants using the surface forces apparatus. The results show subtle and complex friction mechanisms at the molecular scale.

  13. Neuronal Alignment On Asymmetric Textured Surfaces

    CERN Document Server

    Beighley, Ross; Sekeroglu, Koray; Atherton, Timothy; Demirel, Melik C; Staii, Cristian

    2013-01-01

    Axonal growth and the formation of synaptic connections are key steps in the development of the nervous system. Here we present experimental and theoretical results on axonal growth and interconnectivity in order to elucidate some of the basic rules that neuronal cells use for functional connections with one another. We demonstrate that a unidirectional nanotextured surface can bias axonal growth. We perform a systematic investigation of neuronal processes on asymmetric surfaces and quantify the role that biomechanical surface cues play in neuronal growth. These results represent an important step towards engineering directed axonal growth for neuro-regeneration studies.

  14. Asymmetric acoustic transmission in graded beam

    Science.gov (United States)

    Jing, Li; Wu, Jiu Hui; Guan, Dong; Lu, Kuan; Gao, Nansha; Songhua, Cao

    2016-12-01

    We demonstrate the dynamic effective material parameters and vibration performance of a graded beam. The structure of the beam was composed of several unit cells with different fill factors. The dispersion relations and energy band structures of each unit cell were calculated using the finite element method (FEM). The dynamic effective material parameters in each unit cell of the graded beam were determined by the dispersion relations and energy band structures. Longitudinal wave propagation was investigated using a numerical method and FEM. The results show that the graded beam allows asymmetric acoustic transmission over a wide range of frequencies.

  15. An Asymmetric Block Dynamic Conditional Correlation Multivariate GARCH Model

    OpenAIRE

    Vargas, Gregorio A.

    2006-01-01

    The Block DCC model for determining dynamic correlations within and between groups of financial asset returns is extended to account for asymmetric effects. Simulation results show that the Asymmetric Block DCC model is competitive in in-sample forecasting and performs better than alternative DCC models in out-of-sample forecasting of conditional correlation in the presence of asymmetric effect between blocks of asset returns. Empirical results demonstrate that the model is able to capture ...

  16. Asymmetric joint multifractal analysis in Chinese stock markets

    Science.gov (United States)

    Chen, Yuwen; Zheng, Tingting

    2017-04-01

    In this paper, the asymmetric joint multifractal analysis method based on statistical physics is proposed to explore the asymmetric correlation between daily returns and trading volumes in Chinese stock markets. The result shows asymmetric multifractal correlations exist between return and trading volume in Chinese stock markets. Moreover, when the stock indexes are upward, the fluctuations of returns are always weaker than when they are downward, whether the trading volumes are more or less.

  17. Asymmetric Campaigning as a Rational Choice: Planning Considerations

    Science.gov (United States)

    2006-06-01

    Maslow identified five levels: survival, safety, belonging, esteem, and self-actualization. He presented his theory as a pyramid with five layers...to be sustained by actions of the asymmetric opponent. For the media-fed frenzy over constraints and protraction to continue, the asymmetric...lot of people. The reason for this is twofold. First, the actor needs sufficient support to exist and to sustain an asymmetric campaign. Second, the

  18. Dynamics of asymmetrical hybridization in North American wood ferns: reconciling patterns of inheritance with gametophyte reproductive biology.

    Science.gov (United States)

    Testo, Weston L; Watkins, James E; Barrington, David S

    2015-04-01

    Hybridization is an important evolutionary force in plants, but the mechanisms underlying it have not been well studied for many groups. In particular, the drivers of non-random patterns of interspecific gene flow (asymmetrical hybridization) remain poorly understood, especially in the seed-free vascular plants. Here, we examine patterns of asymmetrical hybridization in two widespread fern hybrids from eastern North America and study the role of gametophyte ecology in the determination of hybridization bias. We characterized the maternal parentage of > 140 hybrid sporophytes by sequencing a c. 350-bp region of chloroplast DNA (cpDNA). To identify factors contributing to patterns of asymmetrical hybridization, we cultured gametophytes of the parental species and evaluated critical aspects of their reproductive biology. We found that asymmetrical hybridization was prevalent across the populations of both hybrids. Reproductive traits varied across species and suggest that selfing potential, antheridiogen responsiveness, sperm dispersal capacity and gamete size all contribute to the mediation of the direction of hybridization in this group. Our findings suggest that asymmetrical hybridization in ferns is driven by an array of reproductive traits. This study helps to sharpen and define a mechanistic understanding of patterns of hybridization in this group and demonstrates the importance of considering gametophyte biology when studying evolutionary processes in ferns.

  19. Asymmetric transmission: a generic property of lossy periodic interfaces

    CERN Document Server

    Plum, E; Zheludev, N I

    2010-01-01

    Asymmetric transmission of circularly polarized waves is a well-established property of lossy, anisotropic, two-dimensionally chiral patterns. Here we show that asymmetric transmission can be observed for oblique incidence onto any lossy periodically structured plane. Our results greatly expand the range of natural and artificial materials in which directionally asymmetric transmission can be expected making it a cornerstone electromagnetic effect rather than a curiosity of planar chiral metamaterials. Prime candidates for asymmetric transmission at oblique incidence are rectangular arrays of plasmonic spheres or semiconductor quantum dots, lossy double-periodic gratings and planar metamaterial structures.

  20. Quantity Discount Scheme in Supply Chain under Asymmetric Information

    Institute of Scientific and Technical Information of China (English)

    LI Ji-bin; PENG Zuo-he

    2007-01-01

    Quantity discount scheme plays an important role in supply chain management. The different quantity discount schemes under symmetric (full) information and asymmetric information, are analyzed by using principal-agent and optimal control theory. As a result, the research reveals that the optimal quantity discount solution under symmetric information is a special case of that under asymmetric information. At the same price, the critical value of quantity discount under asymmetric information is much lower than that under asymmetric information. Therefore, this leads to less cost for retailers and smaller profit for their supplier.

  1. Evaluation of an asymmetric stent patch design for a patient specific intracranial aneurysm using computational fluid dynamic (CFD) calculations in the computed tomography (CT) derived lumen

    Science.gov (United States)

    Kim, Minsuok; Ionita, Ciprian; Tranquebar, Rekha; Hoffmann, Kenneth R.; Taulbee, Dale B.; Meng, Hui; Rudin, Stephen

    2006-03-01

    Stenting may provide a new, less invasive therapeutic option for cerebral aneurysms. However, a conventional porous stent may be insufficient in modifying the blood flow for clinical aneurysms. We designed an asymmetric stent consisting of a low porosity patch welded onto a porous stent for an anterior cerebral artery aneurysm of a specific patient geometry to block the strong inflow jet. To evaluate the effect of the patch on aneurysmal flow dynamics, we "virtually" implanted it into the patient's aneurysm geometry and performed Computational Fluid Dynamics (CFD) analysis. The patch was computationally deformed to fit into the vessel lumen segmented from the patient CT reconstructions. After the flow calculations, a patch with the same design was fabricated using laser cutting techniques and welded onto a commercial porous stent, creating a patient-specific asymmetric stent. This stent was implanted into a phantom, which was imaged with X-ray angiography. The hemodynamics of untreated and stented aneurysms were compared both computationally and experimentally. It was found from CFD of the patient aneurysm that the asymmetric stent effectively blocked the strong inflow jet into the aneurysm and eliminated the flow impingement on the aneurysm wall at the dome. The impact zone with elevated wall shear stress was eliminated, the aneurysmal flow activity was substantially reduced, and the flow was considerably reduced. Experimental observations corresponded well qualitatively with the CFD results. The demonstrated asymmetric stent could lead to a new minimally invasive image guided intervention to reduce aneurysm growth and rupture.

  2. Constant rate solutions for a fractured well with an asymmetric fracture

    Energy Technology Data Exchange (ETDEWEB)

    Berumen, S.; Rodriguez, F. [PEMEX E and P and UNAM, Ciudad Universitaria, Postal 70-256, 04510 Coyoacan (Mexico); Tiab, D. [School of Petroleum and Geological Engineering, The University of Oklahoma, 100 East Boyd Street, T301 SEC Norman, OK (United States)

    2000-01-01

    This paper presents solutions for the pressure response on hydraulically fractured wells flowing at constant flow rate through an asymmetric vertical fracture. The pressure behavior of wells intercepting asymmetric fractures of both infinite and finite conductivity was investigated by solving numerically and analytically the mathematical model. The new solutions developed for the dimensionless wellbore pressure under production at constant flow rate are presented in terms of an asymmetry factor {xi}. New curves for these systems were generated and the deviation from the classical solution was readily detected. Some qualitative criteria to interpret the intensity of this effect are provided. Results of our investigation indicated that at early times for fractures of moderate conductivity (C{sub D}<5) the characteristic slope of one fourth is present, except for cases of strong asymmetry (0.85<{xi}{<=}1) where no evidence of straight line having one fourth slope was observed. However, it was also detected that at intermediate fracture conductivities (5flow occurs earlier. Our results are relevant in improving the fracture characterization of fractured wells.

  3. Asymmetric disassembly and robustness in declining networks.

    Science.gov (United States)

    Saavedra, Serguei; Reed-Tsochas, Felix; Uzzi, Brian

    2008-10-28

    Mechanisms that enable declining networks to avert structural collapse and performance degradation are not well understood. This knowledge gap reflects a shortage of data on declining networks and an emphasis on models of network growth. Analyzing >700,000 transactions between firms in the New York garment industry over 19 years, we tracked this network's decline and measured how its topology and global performance evolved. We find that favoring asymmetric (disassortative) links is key to preserving the topology and functionality of the declining network. Based on our findings, we tested a model of network decline that combines an asymmetric disassembly process for contraction with a preferential attachment process for regrowth. Our simulation results indicate that the model can explain robustness under decline even if the total population of nodes contracts by more than an order of magnitude, in line with our observations for the empirical network. These findings suggest that disassembly mechanisms are not simply assembly mechanisms in reverse and that our model is relevant to understanding the process of decline and collapse in a broad range of biological, technological, and financial networks.

  4. Algebraic Davis Decomposition and Asymmetric Doob Inequalities

    Science.gov (United States)

    Hong, Guixiang; Junge, Marius; Parcet, Javier

    2016-09-01

    In this paper we investigate asymmetric forms of Doob maximal inequality. The asymmetry is imposed by noncommutativity. Let {({M}, τ)} be a noncommutative probability space equipped with a filtration of von Neumann subalgebras {({M}_n)_{n ≥ 1}}, whose union {bigcup_{n≥1}{M}_n} is weak-* dense in {{M}}. Let {{E}_n} denote the corresponding family of conditional expectations. As an illustration for an asymmetric result, we prove that for {1 spaces {{H}_p^r({M})} and {{H}_p^c({M})} respectively. In particular, this solves a problem posed by the Defant and Junge in 2004. In the case p = 1, our results establish a noncommutative form of the Davis celebrated theorem on the relation betwe en martingale maximal and square functions in L 1, whose noncommutative form has remained open for quite some time. Given {1 ≤ p ≤ 2}, we also provide new weak type maximal estimates, which imply in turn left/right almost uniform convergence of {{E}_n(x)} in row/column Hardy spaces. This improves the bilateral convergence known so far. Our approach is based on new forms of Davis martingale decomposition which are of independent interest, and an algebraic atomic description for the involved Hardy spaces. The latter results are new even for commutative von Neumann algebras.

  5. An asymmetric B factory based on PEP

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    In this report we describe a design for a high-luminosity Asymmetric B Factory to be built in the PEP tunnel on the SLAC site. This proposal, a collaborative effort SLAC, LBL, and LLNL, is the culmination of more than two years of effort aimed at the design and construction of an asymmetric e{sup +}e{sup {minus}} collider capable of achieving a luminosity of L = 3 {times} 10{sup 33} cm{sup {minus}2} s{sup {minus}1}. The configuration adopted utilizes two storage rings, and electron ring operating at 9 GeV and a positron ring at 3.1 GeV, each with a circumference of 2200 m. The high-energy ring is an upgrade of the PEP storage ring at SLAC; all PEP magnets and most power supplies will be reused. The upgrade consists primarily of replacing the PEP vacuum chamber and RF system with newly designed versions optimized for the high-current environment of the B Factory. The low-energy ring will be newly constructed and will be situated atop the high-energy ring in the PEP tunnel. Utilities already installed in the PEP tunnel are largely sufficient to operate the two B Factory storage rings.

  6. Evolutionary stability in the asymmetric volunteer's dilemma.

    Directory of Open Access Journals (Sweden)

    Jun-Zhou He

    Full Text Available It is often assumed that in public goods games, contributors are either strong or weak players and each individual has an equal probability of exhibiting cooperation. It is difficult to explain why the public good is produced by strong individuals in some cooperation systems, and by weak individuals in others. Viewing the asymmetric volunteer's dilemma game as an evolutionary game, we find that whether the strong or the weak players produce the public good depends on the initial condition (i.e., phenotype or initial strategy of individuals. These different evolutionarily stable strategies (ESS associated with different initial conditions, can be interpreted as the production modes of public goods of different cooperation systems. A further analysis revealed that the strong player adopts a pure strategy but mixed strategies for the weak players to produce the public good, and that the probability of volunteering by weak players decreases with increasing group size or decreasing cost-benefit ratio. Our model shows that the defection probability of a "strong" player is greater than the "weak" players in the model of Diekmann (1993. This contradicts Selten's (1980 model that public goods can only be produced by a strong player, is not an evolutionarily stable strategy, and will therefore disappear over evolutionary time. Our public good model with ESS has thus extended previous interpretations that the public good can only be produced by strong players in an asymmetric game.

  7. At Low SNR Asymmetric Quantizers Are Better

    CERN Document Server

    Koch, Tobias

    2012-01-01

    We study the capacity of the discrete-time Gaussian channel when its output is quantized with a one-bit quantizer. We focus on the low signal-to-noise ratio (SNR) regime, where communication at very low spectral efficiencies takes place. In this regime a symmetric threshold quantizer is known to reduce channel capacity by 2/pi, i.e., to cause an asymptotic power loss of approximately two decibels. Here it is shown that this power loss can be entirely avoided by using asymmetric threshold quantizers and asymmetric signaling constellations. We prove that in order to avoid this power loss flash-signaling input-distributions are essential. Consequently, one-bit output quantization of the Gaussian channel reduces spectral efficiency. Threshold quantizers are not only asymptotically optimal: as we prove, at every fixed SNR, a threshold quantizer maximizes capacity among all one-bit output quantizers. The picture changes on the Rayleigh-fading channel. In the noncoherent case we show that a one-bit output quantizer ...

  8. Instability of asymmetric continuous shaft system

    Science.gov (United States)

    Srinath, R.; Sarkar, Abhijit; Sekhar, A. S.

    2016-11-01

    In this work, the governing equation of asymmetric continuous shaft in inertial frame of reference is studied. In particular, determination of the parameter ranges for the stability or instability of the shaft response is the focus of the present work. The governing equations are a fourth-order coupled partial differential equations containing time dependent coefficients. The equations are non-dimensionalized in terms of two parameters related to the average moment of inertia and the difference of moments of inertia about the principal axes. Using the latter as the asymptotic parameter and employing modal superposition, a formal methodology based on perturbation methods is developed to ascertain the stability and instability characteristics. The methodology is applicable to shafts subjected to some of the classical boundary conditions viz. simply supported, cantilever, and fixed-fixed. Similar stability curves are obtained for each mode for these different boundary conditions. The novel non-dimensionalization scheme chosen leads to the stability boundaries as well as the loci of varying speeds to be in the form of straight lines. The intersection of these lines determine the stable and unstable speed ranges of different asymmetric shafts. The results are generalized for different material and geometric properties of the shaft.

  9. Asymmetric transition disks: Vorticity or eccentricity?

    CERN Document Server

    Zsom, A; Ghanbari, J

    2013-01-01

    Context. Transition disks typically appear in resolved millimeter observations as giant dust rings surrounding their young host stars. More accurate observations with ALMA have shown several of these rings to be in fact asymmetric: they have lopsided shapes. It has been speculated that these rings act as dust traps, which would make them important laboratories for studying planet formation. It has been shown that an elongated giant vortex produced in a disk with a strong viscosity jump strikingly resembles the observed asymmetric rings. Aims. We aim to study a similar behavior for a disk in which a giant planet is embedded. However, a giant planet can induce two kinds of asymmetries: (1) a giant vortex, and (2) an eccentric disk. We studied under which conditions each of these can appear, and how one can observationally distinguish between them. This is important because only a vortex can trap particles both radially and azimuthally, while the eccentric ring can only trap particles in radial direction. Method...

  10. Properties of asymmetrically evolved community networks

    Institute of Scientific and Technical Information of China (English)

    Cui Di; Gao Zi-You; Zheng Jian-Feng

    2009-01-01

    This paper studies a simple asymmetrically evolved community network with a combination of preferential at-tachment and random properties. An important issue about community networks is to discover the different utility increments of two nodes, where the utility is introduced to investigate the asymmetrical effect of connecting two nodes. On the other hand, the connection of two nodes in community networks can be classified as two nodes belonging to the same or to different communities. The simulation results show that the model can reproduce a power-law utility distribution P(u)~ u-σ,σ=2+ 1/p, which can be obtained by using mean-field approximation methods. Furthermore, the model exhibits exponential behaviour with respect to small values of a parameter denoting the random effect in our model at the low-utility region and a power-law feature with respect to big values of this parameter at the high-utility region, which is in good agreement with theoretical analysis. This kind of community network can reproduce a unique utility distribution by theoretical and numerical analysis.

  11. Survey of Reflection-Asymmetric Nuclear Deformations

    Science.gov (United States)

    Olsen, Erik; Cao, Yuchen; Nazarewicz, Witold; Schunck, Nicolas

    2016-09-01

    Due to spontaneous symmetry breaking it is possible for a nucleus to have a deformed shape in its ground state. It is theorized that atoms whose nuclei have reflection-asymmetric or pear-like deformations could have non-zero electric dipole moments (EDMs). Such a trait would be evidence of CP-violation, a feature that goes beyond the Standard Model of Physics. It is the purpose of this project to predict which nuclei exhibit a reflection-asymmetric deformation and which of those would be the best candidates for an EDM measuring experiment. Using nuclear Density Functional Theory along with the new computer code AxialHFB and massively parallel computing we calculated ground state nuclear properties for thousands of even-even nuclei across the nuclear chart: from light to superheavy and from stable to short-lived systems. Six different Energy Density Functionals (EDFs) were used to assess systematic errors in our calculations. These results are to be added to the website Massexplorer (http://massexplorer.frib.msu.edu/) which contains results from earlier mass table calculations and information on single quasiparticle energies.

  12. Asymmetric Dimethyarginine as Marker and Mediator in Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Karin Weissenborn

    2012-11-01

    Full Text Available Asymmetric dimethylarginine (ADMA, an endogenous nitric oxide synthase (NOS inhibitor, is known as mediator of endothelial cell dysfunction and atherosclerosis. Circulating ADMA levels are correlated with cardiovascular risk factors such as hypercholesterolemia, arterial hypertension, diabetes mellitus, hyperhomocysteinemia, age and smoking. Accordingly, clinical studies found evidence that increased ADMA levels are associated with a higher risk of cerebrovascular events. After the acute event of ischemic stroke, levels of ADMA and its analog symmetric dimethylarginine (SDMA are elevated through augmentation of protein methylation and oxidative stress. Furthermore, cleavage of ADMA through dimethylarginine dimethylaminohydrolases (DDAHs is reduced. This increase of dimethylarginines might be predictive for adverse clinical outcome. However, the definite role of ADMA after acute ischemic stroke still needs to be clarified. On the one hand, ADMA might contribute to brain injury by reduction of cerebral blood flow. On the other hand, ADMA might be involved in NOS-induced oxidative stress and excitotoxic neuronal death. In the present review, we highlight the current knowledge from clinical and experimental studies on ADMA and its role for stroke risk and ischemic brain injury in the hyperacute stage after stroke. Finally, further studies are warranted to unravel the relevance of the close association of dimethylarginines with stroke.

  13. Asymmetric dimethylarginine: A novel biomarker of gastric mucosal injury?

    Institute of Scientific and Technical Information of China (English)

    Zhe Zhang; Yi-You Zou; Fu-Jun Li; Chang-Ping Hu

    2011-01-01

    Nitric oxide (NO),a multifunctional endogenous gas molecule,is metabolized from L-arginine by enzymatic reaction in the presence of nitric oxide synthase. NO,an important gas signaling molecule,is a gastric mucosa protective factor that contributes significantly to maintain normal gastric mucosa integrity. NO increases gastric mucosa blood flow,regulates the secretion of mucus and bicarbonate,and inhibits the secretion of gastric juice. Asymmetric dimethylarginine (ADMA) has been identified as the major endogenous inhibitor of nitric oxide synthase. The function of ADMA is to decrease NO production via inhibiting nitric oxide synthase activity. Besides inhibiting NO synthesis,ADMA also directly induces oxidative stress and cell apoptosis,and participates in inflammation reaction. Its systemic accumulation was observed in conjunction with several cardiovascular and metabolic diseases. ADMA also mediates gastric ulcer injury induced by ethanol,stress,helicobacter pylori and indomethacin. The mechanism of ADMA directly producing adverse effect in gastric mucosa is incompletely understood. It is widely accepted that NO bioavailability decrease is the majority reason. Promotion of apoptosis and aggravation of inflammation may be other important mechanisms of ADMA-induced gastric injury. ADMA might be a novel clinical and experimental biomarker related to gastric mucosa disorder. Although therapeutic tool targeting to ADMA is available in multiple cardiovascular diseases,it is unknown in gastrointestinal disease. The strategy to inhibit ADMA is beneficial to gastric ulcer induced by ethanol in rats. Thus,ADMA might be a candidate of therapeutic target in gastric mucosa damage.

  14. Numerical study of asymmetric driven reconnection at dayside magnetopause

    Institute of Scientific and Technical Information of China (English)

    金曙平; 沈俊太; 郝蕾; 胡先鹏

    2000-01-01

    A two-dimensional compressible MHD code has been used to numerically study the asymmetric driven reconnection processes in the vicinity of the magnetopause. The initial magnetic field configuration is assumed to be in a mechanical equilibrium state. The cases with identical temperatures ( Tm0/ Ts0 = 1 .0) and four different ratios of magnetic field strength ( Q = Bm0/Bs0 = 1.0, 1.5, 2.0, 2.5), and the case with Tm0/ Ts0 = 2.0 and O = 1.5 are investigated ( Bm0, Tm0 and B, Ts0 are the initial magnetic strength and temperature outside the current sheet on the magnetosphere and the mag-netosheath, respectively ). When the magnetic field on the magnetosheath side is set as southward, a recurrent formation of multiple magnetic bubbles with various scales occurs under the action of the inward plasma flow imposed at the left and right boundaries. In the simulation, some bubbles coalesce into a bigger one and then it is convected out of the simulation domain; the others are convected through the top boundary all

  15. Critical Differences of Asymmetric Magnetic Reconnection from Standard Models

    Science.gov (United States)

    Nitta, S.; Wada, T.; Fuchida, T.; Kondoh, K.

    2016-09-01

    We have clarified the structure of asymmetric magnetic reconnection in detail as the result of the spontaneous evolutionary process. The asymmetry is imposed as ratio k of the magnetic field strength in both sides of the initial current sheet (CS) in the isothermal equilibrium. The MHD simulation is carried out by the HLLD code for the long-term temporal evolution with very high spatial resolution. The resultant structure is drastically different from the symmetric case (e.g., the Petschek model) even for slight asymmetry k = 2. (1) The velocity distribution in the reconnection jet clearly shows a two-layered structure, i.e., the high-speed sub-layer in which the flow is almost field aligned and the acceleration sub-layer. (2) Higher beta side (HBS) plasma is caught in a lower beta side plasmoid. This suggests a new plasma mixing process in the reconnection events. (3) A new large strong fast shock in front of the plasmoid forms in the HBS. This can be a new particle acceleration site in the reconnection system. These critical properties that have not been reported in previous works suggest that we contribute to a better and more detailed knowledge of the reconnection of the standard model for the symmetric magnetic reconnection system.

  16. Asymmetric Synthesis of (+)-(11 R,12S)-Mefloquine Hydrochloride

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The asymmetric synthesis of (+)-(11R,12S)-mefloquine hydrochloride, an antimalarial drug, was accomplished from commercially available 2-trifluoromethylaniline, ethyl 4,4,4-trifluoroacetoacetate and cyclopentanone in 7 steps with a 14% overall yield. The key steps were proline-catalyzed asymmetric direct aldol reaction and Beck-mann rearrangement. The absolute configuration was assigned by a Mosher's method.

  17. ASYMMETRIC HYDROSILYLATION CATALYZED BY POLYMER—SUPPORTED THIAZOLIDINE RHODIUM CATALYSTS

    Institute of Scientific and Technical Information of China (English)

    LEIYanohui; LIHong; 等

    1999-01-01

    Asymmetric hydrisilylation catalyzed by polymeric thiazolidine rhodium catalysts was conducted.Almost the same optical yields have been obtained when comb-shaped polymeric ligands and their corresponding monomer complexed rhodium cataltysts were used to asymmetric hydrosilylation of acetophenone.Optical yield of chiral 1-methylbenzyl alcohol reaches as high as 71.5%.Temperature dependence of enantioselective hydrosilylation of acetophenone was discussed.

  18. Extensive Taguchi's Quality Loss Function Based On Asymmetric tolerances

    Institute of Scientific and Technical Information of China (English)

    ZHU Wei; LI Yuan-sheng; LIU Feng

    2004-01-01

    If specification interval is asymmetric, basic specification is the target value of quality characteristics. In this paper Taguchi's quality loss function is applied to describe quality loss based on asymmetric tolerances. The measurement of quality loss which is caused by the deviation of quality characteristics from basic specification is further presented.

  19. Asymmetric Catalytic Reactions Catalyzed by Chiral Titanium Complexes

    Institute of Scientific and Technical Information of China (English)

    FENG XiaoMing

    2001-01-01

    @@ Chiral titanium complexes is very importance catalyst to asymmetric catalytic reactions. A series of catalytic systems based on titanium-chiral ligands complexes has been reported. This presentation will discuss some of our recent progress on asymmetric catalytic reactions catalyzed by chiral titanium complexes.

  20. Asymmetric Catalytic Reactions Catalyzed by Chiral Titanium Complexes

    Institute of Scientific and Technical Information of China (English)

    FENG; XiaoMing

    2001-01-01

    Chiral titanium complexes is very importance catalyst to asymmetric catalytic reactions. A series of catalytic systems based on titanium-chiral ligands complexes has been reported. This presentation will discuss some of our recent progress on asymmetric catalytic reactions catalyzed by chiral titanium complexes.  ……

  1. A new convenient asymmetric approach to herbarumin Ⅲ

    Institute of Scientific and Technical Information of China (English)

    Xue Song Chen; Shi Jun Da; Li Hong Yang; Bo Yan Xu; Zhi Xiang Xie; Ying Li

    2007-01-01

    The asymmetric total synthesis of herbarumin Ⅲ 3, a naturally occurred phytotoxin, along with 8-epi-herbarumin Ⅲ 22, was succeeded in 12 steps from n-butyraldehyde based on Brown's asymmetric allylation, taking modified Julia olefination and Yamaguchi's macro-lactonization as key steps.

  2. Asymmetric catalytic synthesis of the proposed structure of trocheliophorolide B.

    Science.gov (United States)

    Trost, Barry M; Quintard, Adrien

    2012-09-01

    A concise catalytic asymmetric synthesis of the proposed structure of trocheliophorolide B is reported. The synthetic sequence notably features an asymmetric acetaldehyde alkynylation, a Ru-catalyzed alder-ene reaction, and a Zn-ProPhenol ynone aldol condensation. Comparison with the reported data suggests a misassignment of the natural product structure.

  3. Asymmetric group loans, non-assortative matching and adverse selection

    NARCIS (Netherlands)

    Gangopadhyay, Shubhashis; Lensink, Robert

    2014-01-01

    This paper shows that an asymmetric group debt contract, where one borrower co-signs for another, but not vice versa, leads to heterogeneous matching. The analysis suggests that micro finance organizations can achieve the first best by offering asymmetric group contracts. (C) 2014 Elsevier B.V. All

  4. Effect of asymmetric auxin application on Helianthus hypocotyl curvature

    Science.gov (United States)

    Migliaccio, F.; Rayle, D. L.

    1989-01-01

    Indole-3-acetic acid was applied asymmetrically to the hypocotyls of sunflower (Helianthus annuus L.) seedlings. After 5 hours on a clinostat, auxin gradients as small as 1 to 1.3 produced substantial (more than 60 degrees) hypocotyl curvature. This result suggests the asymmetric growth underlying hypocotyl gravitropism can be explained by lateral auxin redistribution.

  5. Effect of adiabatic square ribs on natural convection in an asymmetrically heated channel

    Science.gov (United States)

    Abidi-Saad, Aissa; Kadja, Mahfoud; Popa, Catalin; Polidori, Guillaume

    2017-02-01

    A 2-D numerical simulation is carried out to investigate the effect of two adiabatic square ribs on laminar flow and heat transfer in an asymmetrically heated channel. The two ribs are symmetrically located on each wall, exactly above the heating zone. The computational procedure is made by solving the unsteady bi-dimensional continuity, momentum and energy equations with the finite volume method. The investigations focused more specifically on the influence of ribs sizes on the flow structure and heat transfer enhancement. The results showed that the variation of ribs sizes significantly alters the heat transfer and fluid flow distribution along the channel, especially in the vicinity of protrusions. Also, the results show that streamlines, isotherms, and the number, sizes and formation of vortex structures inside the channel strongly depend on the size of protrusions. The changes in heat transfer parameters have also been presented.

  6. Magnetic Field and Gravity Effects on Peristaltic Transport of a Jeffrey Fluid in an Asymmetric Channel

    Directory of Open Access Journals (Sweden)

    A. M. Abd-Alla

    2014-01-01

    Full Text Available In this paper, the peristaltic flow of a Jeffrey fluid in an asymmetric channel has been investigated. Mathematical modeling is carried out by utilizing long wavelength and low Reynolds number assumptions. Closed form expressions for the pressure gradient, pressure rise, stream function, axial velocity, and shear stress on the channel walls have been computed numerically. Effects of the Hartmann number, the ratio of relaxation to retardation times, time-mean flow, the phase angle and the gravity field on the pressure gradient, pressure rise, streamline, axial velocity, and shear stress are discussed in detail and shown graphically. The results indicate that the effect of Hartmann number, ratio of relaxation to retardation times, time-mean flow, phase angle, and gravity field are very pronounced in the peristaltic transport phenomena. Comparison was made with the results obtained in the presence and absence of magnetic field and gravity field.

  7. On the Electron Diffusion Region in Asymmetric Reconnection with a Guide Magnetic Field

    Science.gov (United States)

    Hesse, Michael; Liu, Yi-Hsin; Chen, Li-Jen; Bessho, Naoki; Kuznetsova, Masha; Birn, Joachim; Burch, James L.

    2016-01-01

    Particle-in-cell simulations in a 2.5-D geometry and analytical theory are employed to study the electron diffusion region in asymmetric reconnection with a guide magnetic field. The analysis presented here demonstrates that similar to the case without guide field, in-plane flow stagnation and null of the in-plane magnetic field are well separated. In addition, it is shown that the electric field at the local magnetic X point is again dominated by inertial effects, whereas it remains dominated by nongyrotropic pressure effects at the in-plane flow stagnation point. A comparison between local electron Larmor radii and the magnetic gradient scale lengths predicts that distribution should become nongyrotropic in a region enveloping both field reversal and flow stagnation points. This prediction is verified by an analysis of modeled electron distributions, which show clear evidence of mixing in the critical region.

  8. Polyimides Derived from Novel Asymmetric Benzophenone Dianhydrides

    Science.gov (United States)

    Chuang, Chun-Hua (Inventor)

    2015-01-01

    This invention relates to the composition and processes for preparing thermoset polyimides derived from an asymmetric dianhydride, namely 2,3,3',4'-benzophenone dianhydride (a-BTDA) with at least one diamine, and a monofunctional terminal endcaps. The monofunctional terminating groups include 4-phenylethynylphthalic anhydride ester-acid derivatives, phenylethyl trimellitic anhydride (PETA) and its ester derivatives as well as 3-phenylethynylaniline. The process of polyimide composite comprises impregnating monomer reactants of dianhydride or its ester-acid derivatives, diamine and with monofunctional reactive endcaps into glass, carbon, quartz or synthetic fibers and fabrics, and then stack up into laminates and subsequently heated to between 150-375.degree. C. either at atmosphere or under pressure to promote the curing and crosslinking of the reactive endcaps to form a network of thermoset polyimides.

  9. Asymmetric quantum dialogue in noisy environment

    Science.gov (United States)

    Banerjee, Anindita; Shukla, Chitra; Thapliyal, Kishore; Pathak, Anirban; Panigrahi, Prasanta K.

    2017-02-01

    A notion of asymmetric quantum dialogue (AQD) is introduced. Conventional protocols of quantum dialogue are essentially symmetric as the users (Alice and Bob) can encode the same amount of classical information. In contrast, the proposed scheme for AQD provides different amount of communication powers to Alice and Bob. The proposed scheme offers an architecture, where the entangled state to be used and the encoding scheme to be shared between Alice and Bob depend on the amount of classical information they want to exchange with each other. The general structure for the AQD scheme has been obtained using a group theoretic structure of the operators introduced in Shukla et al. (Phys Lett A 377:518, 2013). The effect of different types of noises (e.g., amplitude damping and phase damping noise) on the proposed scheme is investigated, and it is shown that the proposed scheme for AQD is robust and it uses an optimized amount of quantum resources.

  10. Asymmetric Ferromagnet-Superconductor-Ferromagnet Switch

    Energy Technology Data Exchange (ETDEWEB)

    Cadden-Zimansky, P.; Bazaliy, Ya.B.; Litvak, L.M.; Jiang, J.S.; Pearson, J.; Gu, J.Y.; You, Chun-Yeol; Beasley, M.R.; Bader, S.D.

    2011-11-04

    In layered ferromagnet-superconductor-ferromagnet F{sub 1} /S/F{sub 2} structures, the critical temperature T{sub c} of the superconductors depends on the magnetic orientation of the ferromagnetic layers F{sub 1} and F{sub 2} relative to each other. So far, the experimentally observed magnitude of change in T{sub c} for structures utilizing weak ferromagnets has been 2 orders of magnitude smaller than is expected from calculations. We theoretically show that such a discrepancy can result from the asymmetry of F/S boundaries, and we test this possibility by performing experiments on structures where F{sub 1} and F{sub 2} are independently varied. Our experimental results indicate that asymmetric boundaries are not the source of the discrepancy. If boundary asymmetry is causing the suppressed magnitude of T{sub c} changes, it may only be possible to detect in structures with thinner ferromagnetic layers.

  11. Distributed Function Computation in Asymmetric Communication Scenarios

    CERN Document Server

    Agnihotri, Samar

    2009-01-01

    We consider the distributed function computation problem in asymmetric communication scenarios, where the sink computes some deterministic function of the data split among N correlated informants. The distributed function computation problem is addressed as a generalization of distributed source coding (DSC) problem. We are mainly interested in minimizing the number of informant bits required, in the worst-case, to allow the sink to exactly compute the function. We provide a constructive solution for this in terms of an interactive communication protocol and prove its optimality. The proposed protocol also allows us to compute the worst-case achievable rate-region for the computation of any function. We define two classes of functions: lossy and lossless. We show that, in general, the lossy functions can be computed at the sink with fewer number of informant bits than the DSC problem, while computation of the lossless functions requires as many informant bits as the DSC problem.

  12. Universality in freezing of an asymmetric drop

    Science.gov (United States)

    Ismail, Md Farhad; Waghmare, Prashant R.

    2016-12-01

    We present the evidence of universality in conical tip formation during the freezing of arbitrary-shaped sessile droplets. The focus is to demonstrate the relationship between this universality and the liquid drop shape. We observe that, in the case of asymmetric drops, this universal shape is achieved when the tip reconfigures by changing its location, which subsequently alters the frozen drop shape. The proposed "two-triangle" model quantifies the change in the tip configuration as a function of the asymmetry of the drop that shows a good agreement with the experimental evidence. Finally, based on the experimental and theoretical exercise, we propose the scaling dependence between the variations in the tip configuration and the asymmetry of the drop.

  13. Activation of carboxylic acids in asymmetric organocatalysis.

    Science.gov (United States)

    Monaco, Mattia Riccardo; Poladura, Belén; Diaz de Los Bernardos, Miriam; Leutzsch, Markus; Goddard, Richard; List, Benjamin

    2014-07-01

    Organocatalysis, catalysis using small organic molecules, has recently evolved into a general approach for asymmetric synthesis, complementing both metal catalysis and biocatalysis. Its success relies to a large extent upon the introduction of novel and generic activation modes. Remarkably though, while carboxylic acids have been used as catalyst directing groups in supramolecular transition-metal catalysis, a general and well-defined activation mode for this useful and abundant substance class is still lacking. Herein we propose the heterodimeric association of carboxylic acids with chiral phosphoric acid catalysts as a new activation principle for organocatalysis. This self-assembly increases both the acidity of the phosphoric acid catalyst and the reactivity of the carboxylic acid. To illustrate this principle, we apply our concept in a general and highly enantioselective catalytic aziridine-opening reaction with carboxylic acids as nucleophiles.

  14. THz operation of asymmetric-nanochannel devices

    Science.gov (United States)

    Balocco, C.; Halsall, M.; Vinh, N. Q.; Song, A. M.

    2008-09-01

    The THz spectrum lies between microwaves and the mid-infrared, a region that remains largely unexplored mainly due to the bottleneck issue of lacking compact, solid state, emitters and detectors. Here, we report on a novel asymmetric-nanochannel device, known as the self-switching device, which can operate at frequencies up to 2.5 THz for temperature up to 150 K. This is, to our knowledge, not only the simplest diode but also the quickest acting electronic nanodevice reported to date. The radiation was generated by the free electron laser FELIX (Netherlands). The dependences of the device efficiency as a function of the electric bias, radiation intensity, radiation frequency and temperature are reported.

  15. Isospin dependent properties of asymmetric nuclear matter

    CERN Document Server

    Chowdhury, P Roy; Samanta, C

    2009-01-01

    The density dependence of nuclear symmetry energy is determined from a systematic study of the isospin dependent bulk properties of asymmetric nuclear matter using the isoscalar and the isovector components of density dependent M3Y interaction. The incompressibility $K_\\infty$ for the symmetric nuclear matter, the isospin dependent part $K_{asy}$ of the isobaric incompressibility and the slope $L$ are all in excellent agreement with the constraints recently extracted from measured isotopic dependence of the giant monopole resonances in even-A Sn isotopes, from the neutron skin thickness of nuclei and from analyses of experimental data on isospin diffusion and isotopic scaling in intermediate energy heavy-ion collisions. This work provides a fundamental basis for the understanding of nuclear matter under extreme conditions, and validates the important empirical constraints obtained from recent experimental data.

  16. Chilly Dark Sectors and Asymmetric Reheating

    CERN Document Server

    Adshead, Peter; Shelton, Jessie

    2016-01-01

    In a broad class of theories, the relic abundance of dark matter is determined by interactions internal to a thermalized dark sector, with no direct involvement of the Standard Model (SM). We point out that these theories raise an immediate cosmological question: how was the dark sector initially populated in the early universe? Motivated in part by the difficulty of accommodating large amounts of entropy carried in dark radiation with cosmic microwave background measurements of the effective number of relativistic species at recombination, $N_{\\mathrm{eff}}$, we aim to establish which admissible cosmological histories can populate a thermal dark sector that never reaches thermal equilibrium with the SM. The minimal cosmological origin for such a dark sector is asymmetric reheating, when the same mechanism that populates the SM in the early universe also populates the dark sector at a lower temperature. Here we demonstrate that the resulting inevitable inflaton-mediated scattering between the dark sector and ...

  17. Spectral measurements of asymmetrically irradiated capsule backlighters

    Science.gov (United States)

    Keiter, P. A.; Drake, R. P.

    2016-11-01

    Capsule backlighters provide a quasi-continuum x-ray spectrum over a wide range of photon energies [J. F. Hansen et al., Rev. Sci. Instrum. 79, 013504 (2008)]. Ideally one irradiates the capsule backlighter symmetrically, however, in complex experimental geometries, this is not always possible. In recent experiments we irradiated capsule backlighters asymmetrically and measured the x-ray spectrum from multiple directions. We will present time-integrated spectra over the photon energy range of 2-13 keV and time-resolved spectra over the photon energy range of 2-3 keV. We will compare the spectra from different lines of sight to determine if the laser asymmetry results in an angular dependence in the x-ray emission.

  18. Magnetoresistive system with concentric ferromagnetic asymmetric nanorings

    Energy Technology Data Exchange (ETDEWEB)

    Avila, J. I., E-mail: javila@ulg.ac.be; Tumelero, M. A.; Pasa, A. A.; Viegas, A. D. C. [Laboratório de Filmes Finos e Superfícies (LFFS), Departamento de Física, Universidade Federal de Santa Catarina, CP 476 Florianópolis (Brazil)

    2015-03-14

    A structure consisting of two concentric asymmetric nanorings, each displaying vortex remanent states, is studied with micromagnetic calculations. By orienting in suitable directions, both the asymmetry of the rings and a uniform magnetic field, the vortices chiralities can be switched from parallel to antiparallel, obtaining in this way the analogue of the ferromagnetic and antiferromagnetic configurations found in bar magnets pairs. Conditions on the thickness of single rings to obtain vortex states, as well as formulas for their remanent magnetization are given. The concentric ring structure enables the creation of magnetoresistive systems comprising the qualities of magnetic nanorings, such as low stray fields and high stability. A possible application is as contacts in spin injection in semiconductors, and estimations obtained here of magnetoresistance change for a cylindrical spin injection based device show significant variations comparable to linear geometries.

  19. Asymmetric Beam Combination for Optical Interferometry

    CERN Document Server

    Monnier, J D

    2001-01-01

    Optical interferometers increasingly use single-mode fibers as spatial filters to convert varying wavefront distortion into intensity fluctuations which can be monitored for accurate calibration of fringe amplitudes. Here I propose using an asymmetric coupler to allow the photometric intensities of each telescope beam to be measured at the same time as the fringe visibility, but without the need for dedicated photometric outputs, which reduce the light throughput in the interferometric channels. In the read-noise limited case often encountered in the infrared, I show that a 53% improvement in signal-to-noise ratio for the visibility amplitude measurement is achievable, when compared to a balanced coupler setup with 50% photometric taps (e.g., the FLUOR experiment). In the Poisson-noise limit appropriate for visible light, the improvement is reduced to only ~8%. This scheme also reduces the cost and complexity of the beam combination since fewer components and detectors are required, and can be extended to mor...

  20. Asymmetric EPR entanglement in continuous variable systems

    CERN Document Server

    Wagner, Katherine; Armstrong, Seiji; Morizur, Jean-Francois; Lam, Ping Koy; Bachor, Hans-Albert

    2012-01-01

    Continuous variable entanglement can be produced in nonlinear systems or via interference of squeezed states. In many of optical systems, such as parametric down conversion or interference of optical squeezed states, production of two perfectly symmetric subsystems is usually used for demonstrating the existence of entanglement. This symmetry simplifies the description of the concept of entanglement. However, asymmetry in entanglement may arise naturally in a real experiment, or be intentionally introduced in a given quantum information protocol. These asymmetries can emerge from having the output beams experience different losses and environmental contamination, or from the availability of non-identical input quantum states in quantum communication protocols. In this paper, we present a visualisation of entanglement using quadrature amplitude plots of the twin beams. We quantitatively discuss the strength of asymmetric entanglement using EPR and inseparability criteria and theoretically show that the optimal...

  1. Scaffold of Asymmetric Organic Compounds - Magnetite Plaquettes

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M. E.; Martinez, J.

    2015-01-01

    Life on Earth shows preference towards the set of organics with particular spatial configurations, this 'selectivity' is a crucial criterion for life. With only rare exceptions, life prefers the left- (L-) form over the right- (D-) form of amino acids, resulting in an L-enantiomeric excess (L-ee). Recent studies have shown Lee for alpha-methyl amino acids in some chondrites. Since these amino acids have limited terrestrial occurrence, the origin of their stereoselectivity is nonbiological, and it seems appropriate to conclude that chiral asymmetry, the molecular characteristic that is common to all terrestrial life form, has an abiotic origin. A possible abiotic mechanism that can produce chiral asymmetry in meteoritic amino acids is their formation with the presence of asymmetric catalysts, as mineral crystallization can produce spatially asymmetric structures. Magnetite is shown to be an effective catalyst for the formation of amino acids that are commonly found in chondrites. Magnetite 'plaquettes' (or 'platelets'), first described by Jedwab, show an interesting morphology of barrel-shaped stacks of magnetite disks with an apparent dislocation-induced spiral growth that seem to be connected at the center. A recent study by Singh et al. has shown that magnetites can self-assemble into helical superstructures. Such molecular asymmetry could be inherited by adsorbed organic molecules. In order to understand the distribution of 'spiral' magnetites in different meteorite classes, as well as to investigate their apparent spiral configurations and possible correlation to molecular asymmetry, we observed polished sections of carbonaceous chondrites (CC) using scanning electron microscope (SEM) imaging. The sections were also studied by electron backscattered diffraction (EBSD) in order to reconstruct the crystal orientation along the stack of magnetite disks.

  2. The evolution of cooperation in asymmetric systems

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Explaining the "Tragedy of the Commons" of the evolution of cooperation remains one of the greatest problems for both biology and social science.Asymmetrical interaction,which is one of the most important characteristics of cooperative systems,has not been sufficiently considered in the existing models of the evolution of cooperation.Considering the inequality in the number and payoff between the cooperative actors and recipients in cooperation systems,discriminative density-dependent interference competition will occur in limited dispersal systems.Our model and simulation show that the local but not the global stability of a cooperative interaction can be maintained if the utilization of common resource remains unsaturated,which can be achieved by density-dependent restraint or competition among the cooperative actors.More intense density dependent interference competition among the cooperative actors and the ready availability of the common resource,with a higher intrinsic contribution ratio of a cooperative actor to the recipient,will increase the probability of cooperation.The cooperation between the recipient and the cooperative actors can be transformed into conflict and,it oscillates chaotically with variations of the affecting factors under different environmental or ecological conditions.The higher initial relatedness(i.e.similar to kin or reciprocity relatedness),which is equivalent to intrinsic contribution ratio of a cooperative actor to the recipient,can be selected for by penalizing less cooperative or cheating actors but rewarding cooperative individuals in asymmetric systems.The initial relatedness is a pivot but not the aim of evolution of cooperation.This explains well the direct conflict observed in almost all cooperative systems.

  3. Finite Element Analysis of Symmetric and Asymmetric Three-roll Rolling Process

    Directory of Open Access Journals (Sweden)

    Pesin A.

    2015-01-01

    Full Text Available A three-roll process is a significant technique in the production of wire rod, round bars and hexagonal profiles for structural applications. Better mechanical properties of wire rod, round bars and hexagonal profiles can be achieved due to large plastic deformation by the three-roll process. Asymmetric rolling is a novel technique characterised by a kinematic asymmetry linked to the difference in peripheral speed of the rolls, able to introduce additional shear strains through the bar thickness. In order to achieve this, asymmetrical three-roll rolling process was investigated to better control the deformation compared to the conventional three-roll rolling process in a stand with two three-roll calibers located very close to each other. Simulation of round-triangle-triangle pass rolling was performed. FEM simulations were carried out with using software DEFORM 3D. The influence of the friction coefficient and speed asymmetry on the shear strain and material flow was discussed. The results of simulation can be used to optimize the asymmetric three-roll rolling process to improve the mechanical properties of wire rod, round bars and hexagonal profiles.

  4. Scaling Effect of Phosphorene Nanoribbon - Uncovering the Origin of Asymmetric Current Transport

    Science.gov (United States)

    Lv, Yawei; Chang, Sheng; Huang, Qijun; Wang, Hao; He, Jin

    2016-11-01

    In this paper, phosphorene nanoribbons (PNRs) are theoretically studied using a multiscale simulation flow from the ab initio level to the tight binding (TB) level. The scaling effects of both armchair PNRs (aPNRs) and zigzag PNRs (zPNRs) from material properties to device properties are explored. The much larger effective mass of holes compared to that of electrons in zPNR is responsible for its asymmetric transport. However, in aPNR, not only the effective mass difference but also the non-equal density of state (DOS) distributions near valence band maximum (VBM) and conduction band minimum (CBM) lead to the asymmetric transport. This non-equal distribution phenomenon is caused by energy band degeneracies near the VBM. Based on these two different mechanisms, PNRs’ asymmetric transport characteristics at the device level are explained, and it is shown that this behaviour can be ameliorated well by reducing the ribbon width in an aPNR MOSFET. Calculation results also indicate that aPNR’s effective mass is comparable to that of a graphene nanoribbon (GNR) at the same bandgap; however, aPNR’s band gap variation is more stable and regular than that of GNR, making it a good candidate for use in low-dimensional nano devices.

  5. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.

    Science.gov (United States)

    Guo, Wei; Tian, Ye; Jiang, Lei

    2013-12-17

    Both scientists and engineers are interested in the design and fabrication of synthetic nanofluidic architectures that mimic the gating functions of biological ion channels. The effort to build such structures requires interdisciplinary efforts at the intersection of chemistry, materials science, and nanotechnology. Biological ion channels and synthetic nanofluidic devices have some structural and chemical similarities, and therefore, they share some common features in regulating the traverse ionic flow. In the past decade, researchers have identified two asymmetric ion transport phenomena in synthetic nanofluidic structures, the rectified ionic current and the net diffusion current. The rectified ionic current is a diode-like current-voltage response that occurs when switching the voltage bias. This phenomenon indicates a preferential direction of transport in the nanofluidic system. The net diffusion current occurs as a direct product of charge selectivity and is generated from the asymmetric diffusion through charged nanofluidic channels. These new ion transport phenomena and the elaborate structures that occur in biology have inspired us to build functional nanofluidic devices for both fundamental research and practical applications. In this Account, we review our recent progress in the design and fabrication of biomimetic solid-state nanofluidic devices with asymmetric ion transport behavior. We demonstrate the origin of the rectified ionic current and the net diffusion current. We also identify several influential factors and discuss how to build these asymmetric features into nanofluidic systems by controlling (1) nanopore geometry, (2) surface charge distribution, (3) chemical composition, (4) channel wall wettability, (5) environmental pH, (6) electrolyte concentration gradient, and (7) ion mobility. In the case of the first four features, we build these asymmetric features directly into the nanofluidic structures. With the final three, we construct

  6. Special Issue of "Asymmetric Synthesis"%Special Issue of "Asymmetric Synthesis"

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Organic chemistry exploring the world at a molecu- lar level remains essential for our society in the 21st century. Asymmetric synthesis, particularly those em- ploying catalytic approach, is one of the most important research fields in organic synthesis providing chiral compounds in an enantiopure form. The latter is critical since the two enantiomers of one chiral compound, in many cases, have a different response in biological sys- tems. The huge markets of non-racemic chiral com- pounds as synthetic intermediates, pharmaceuticals,

  7. Axially chiral imidodiphosphoric Acid catalyst for asymmetric sulfoxidation reaction: insights on asymmetric induction.

    Science.gov (United States)

    Jindal, Garima; Sunoj, Raghavan B

    2014-04-22

    Insights into chiral induction for an asymmetric sulfoxidation reaction involving a single oxygen atom transfer are gained through analyzing the stereocontrolling transition states. The fitting of the substrate into the chiral cavity of a new class of imidodiphosphoric Brønsted acids, as well as weak CH⋅⋅⋅π and CH⋅⋅⋅O noncovalent interactions, are identified as responsible for the observed chiral induction.

  8. VLE MEASUREMENTS FOR ASYMMETRIC MIXTURES OF FISCHER-TROPSCH HYDROCARBONS

    Energy Technology Data Exchange (ETDEWEB)

    Mark C. Thies

    2004-01-12

    The ability to model the thermodynamic phase behavior of long-chain and short-chain alkane mixtures is of considerable industrial and theoretical interest. However, attempts to accurately describe the phase behavior of what we call asymmetric mixtures of hydrocarbons (AMoHs) have met with only limited success. Vapor-liquid equilibrium (VLE) data are surprisingly scarce, and the limited data that are available suggest that cubic equations of state may not be capable of fitting (much less predicting) the phase behavior of AMoHs. The following tasks, which address the problems described above, were accomplished during the one-year period of this Phase I UCR grant: (1) A continuous-flow apparatus was modified for the measurement of AMoHs and used to measure VLE for propane + hexadecane mixtures at temperatures from 473 to 626 K and pressures up to the mixture critical pressures of about 100 bar. (2) The extent to which cubic vs. modern, statistical mechanics-based equations of state (EoS) are applicable to AMoHs was evaluated. Peng-Robinson (PR) was found to be a surprisingly accurate equation for fitting AMoHs, but only if its pure component parameters were regressed to liquid densities and vapor pressures. However, even this form of PR was still not a predictive equation, as there was a significant variation of kij with temperature. In spite of its deficiencies in terms of vapor-phase predictions and modeling of the critical region, PC-SAFT was found to be the most appropriate EoS for truly predicting the phase behavior of highly asymmetric mixtures of alkanes. (3) Finally, a dense-gas extraction (DGE) apparatus was designed and constructed for the fractionation of F-T waxes into cuts of pure oligomers. Such oligomers are needed in g-sized quantities to perform VLE measurements with long-chain alkanes with carbon numbers greater than 40. The dense gas and the solute mixture to be extracted are contacted in a packed column that has a separation power significantly

  9. Robustness of the filamentation instability for asymmetric plasma shells collision in arbitrarily oriented magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain and Instituto de Investigaciones Energticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain)

    2013-10-15

    The filamentation instability triggered when two counter streaming plasma shells overlap appears to be the main mechanism by which collisionless shocks are generated. It has been known for long that a flow aligned magnetic field can completely suppress this instability. In a recent paper [Phys. Plasmas 18, 080706 (2011)], it was demonstrated in two dimensions that for the case of two cold, symmetric, relativistically colliding shells, such cancellation cannot occur if the field is not perfectly aligned. Here, this result is extended to the case of two asymmetric shells. The filamentation instability appears therefore as an increasingly robust mechanism to generate shocks.

  10. Estimation of electric conductivity of the quark gluon plasma via asymmetric heavy-ion collisions

    CERN Document Server

    Hirono, Yuji; Hirano, Tetsufumi

    2012-01-01

    We show that in asymmetric heavy-ion collisions, especially off-central Cu+Au collisions, a sizable strength of electric field directed from Au nucleus to Cu nucleus is generated in the overlapping region, because of the difference in the number of electric charges between the two nuclei. This electric field would induce an electric current in the matter created after the collision, which result in a dipole deformation of the charge distribution. The directed flow parameters $v_1^{\\pm}$ of charged particles turn out to be sensitive to the charge dipole and provide us with information about electric conductivity of the quark gluon plasma.

  11. Asymmetric Quantum Transport in a Double-Stranded Kronig-Penney Model

    Science.gov (United States)

    Cheon, Taksu; Poghosyan, Sergey S.

    2015-06-01

    We introduce a double-stranded Kronig-Penney model and analyze its transport properties. Asymmetric fluxes between two strands with suddenly alternating localization patterns are found as the energy is varied. The zero-size limit of the internal lines connecting two strands is examined using quantum graph vertices with four edges. We also consider a two-dimensional Kronig-Penney lattice with two types of alternating layer with δ and δ' connections, and show the existence of energy bands in which the quantum flux can flow only in selected directions.

  12. Basic flow structure in saccular aneurysms: a flow visualization study.

    Science.gov (United States)

    Steiger, H J; Poll, A; Liepsch, D; Reulen, H J

    1987-01-01

    Basic flow patterns were investigated in a set of glass aneurysm models by means of flow visualization methods. Dye injection and streaming double refraction were used to visualize flow. The circulation inside lateral aneurysms arising at a 90 degree angle from a straight parent conduit could not be visualized by the dye-injection technique but could be demonstrated by streaming double refraction. The inflow was seen to arise from the downstream lip of the orifice and to project to the dome of the aneurysm. Backflow to the parent conduit took place along the walls of the aneurysm. In aneurysms located at bifurcations, flow characteristics depended on the geometry of the bifurcation and the flow ratio between the branches. Relatively little intra-aneurysmal flow was demonstrated in side branch-related aneurysms arising distal to an asymmetric 90 degrees bifurcation of the type encountered at the junction of the internal carotid and posterior communicating arteries. Stagnation of flow at the neck and little intra-aneurysmal circulation were found with terminal aneurysms of the basilar bifurcation type if the outflow through the branches was symmetric. With asymmetric outflow, however, or if the axis of the aneurysm did not coincide with that of the afferent vessel, an active rotation developed in these aneurysms. The size of the aneurysm had no influence on the basic pattern of intra-aneurysmal circulation. The use of pulsatile perfusion did not significantly alter the basic flow patterns observed with steady flow. Locally disturbed laminar flow was observed in certain models at physiological Reynold's numbers, but there were no signs of fully developed turbulence.

  13. Experimental simulation of asymmetric heat up of coolant channel under small break LOCA condition for PHWR

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Ashwini K., E-mail: ashwinikumaryadav@gmail.com [Department of Mechanical and Industrial Engineering, Indian Institute of Technology, Roorkee 247667 (India); Majumdar, P., E-mail: pmajum@barc.gov.in [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Ravi, E-mail: ravikfme@iitr.ernet.in [Department of Mechanical and Industrial Engineering, Indian Institute of Technology, Roorkee 247667 (India); Chatterjee, B., E-mail: barun@barc.gov.in [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Gupta, Akhilesh, E-mail: akhilfme@iitr.ernet.in [Department of Mechanical and Industrial Engineering, Indian Institute of Technology, Roorkee 247667 (India); Mukhopadhyay, D., E-mail: dmukho@barc.gov.in [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2013-02-15

    Highlights: ► Circumferential temperature gradient of PT for asymmetric heat-up was 440 °C. ► At 2 MPa ballooning initiated at 450 °C and with strain rate of 0.0277%/s. ► At 4 MPa ballooning initiated at 390 °C and with strain rate of 0.0305%/s. ► At 4 MPa, PT ruptured under uneven strain and steep temperature gradient. ► Integrity of PT depends on internal pressure and magnitude of decay power. -- Abstract: During postulated small break loss of coolant accident (SBLOCA) for Pressurised Heavy Water Reactors (PHWRs) as well as for postulated SBLOCA coincident with loss of ECCS, a stratified flow condition can arise in the coolant channels as the gravitational force dominates over the low inertial flow arising from small break flow. A Station Blackout condition without operator intervention can also lead to stratified flow condition during a slow channel boil-off condition. For all these conditions the pressure remains high and under stratified flow condition, the horizontal fuel bundles experience different heat transfer environments with respect to the stratified flow level. This causes the bundle upper portion to get heated up higher as compared to the submerged portion. This kind of asymmetrical heating of the bundle is having a direct bearing on the circumferential temperature gradient of pressure tube (PT) component of the coolant channel. The integrity of the PT is important under normal conditions as well as at different accident loading conditions as this component houses the fuel bundles and serves as a coolant pressure boundary of the reactors. An assessment of PT is required with respect to different accident loading conditions. The present investigation aims to study thermo-mechanical behaviour of PT (Zr, 2.5 wt% Nb) under a stratified flow condition under different internal pressures. The component is subjected to an asymmetrical heat-up conditions as expected during the said situation under different pressure conditions which varies from 2

  14. Simulation of Chaos in Asymmetric Nonlinear Chua's Circuit

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-fei; QIAO Shu-tong; JIANG Jian-guo

    2008-01-01

    In order to describe practical chaotic systems exactly, we presented a simple modified Chua's circuit,which contains an asymmetric nonlinear resistive element. Mathematical analysis was made, and simulation study was performed by MATLAB. By varying the value of linear resistor in the circuit, rich variety dynamical behaviors were observed, such as DC equilibrium point, Hopf bifurcation, period-doubling bifurcation,single-scroll strange attractor, periodic windows, and asymmetric double-scroll strange attractor. The extreme sensitivity in the state trajectory with respect to the initial conditions was exhibited; the special characteristic of asymmetric nonlinear Chua's circuit was found also.

  15. The Dualism of Asymmetric Information in Agricultural Insurance

    Directory of Open Access Journals (Sweden)

    Xuemei Yang

    2013-07-01

    Full Text Available Asymmetric information objectively exists in the insurance market, especially in agricultural insurance, which has a great impact on the insurance contract and market operation. This paper designs two game models to analyse the dualism of asymmetric information in agricultural insurance and its reasons of forming. We find that, the particularity of agricultural production, the agricultural risk diversification and the benefits’ spillover of the agricultural insurance are the main causes of asymmetric information. Therefore, this paper puts forward that establishment of appropriate agricultural insurance mode, optimization of insurance policy design and increasing investment in science and technology, increasing farmers’ insurance consciousness and establishing supervision system

  16. Asymmetric Orbifolds, Noncommutative Geometry and Type I String Vacua

    CERN Document Server

    Blumenhagen, R; Körs, B; Lüst, Dieter; Blumenhagen, Ralph; Goerlich, Lars; Kors, Boris; Lust, Dieter

    2000-01-01

    We investigate the D-brane contents of asymmetric orbifolds. Using T-dualitywe find that the consistent description of open strings in asymmetric orbifoldsrequires to turn on background gauge fields on the D-branes. Hence open stringsand D-branes in generic asymmetric orbifolds necessarily lead to noncommutativegeometry. We derive the corresponding noncommutative geometry arising on suchD-branes with mixed Neumann-Dirichlet boundary conditions by applying anasymmetric rotation to ordinary D-branes with pure Dirichlet boundaryconditions. As a concrete application of our results we construct asymmetrictype I vacua requiring open strings with mixed boundary conditions for tadpolecancellation.

  17. Mechanisms of asymmetric cell divisions in Drosophila melanogaster neuroblasts

    Directory of Open Access Journals (Sweden)

    X Jiang

    2014-04-01

    Full Text Available Stem cells possess the properties of self-renewal and differentiation, and mainly rely on two strategies for division, including symmetric and asymmetric cell divisions. In this review, we summarize the latest progress on asymmetric cell divisions in Drosophila melanogaster neuroblasts (NBs, which focus on the establishment of cell polarity, mitotic spindle orientation, the asymmetric segregation of cell fate determinants as well as cell-cycle control. Here we also introduce five major cell fate determinants, including Numb, Prospero, Brat, Miranda, and Pon, which are thought to be unequally segregated to the ganglion mother cells (GMCs and play an important role in the formation of stem cell-derived tumors

  18. Generic approach for synthesizing asymmetric nanoparticles and nanoassemblies

    Science.gov (United States)

    Sun, Yugang; Hu, Yongxing

    2015-05-26

    A generic route for synthesis of asymmetric nanostructures. This approach utilizes submicron magnetic particles (Fe.sub.3O.sub.4--SiO.sub.2) as recyclable solid substrates for the assembly of asymmetric nanostructures and purification of the final product. Importantly, an additional SiO.sub.2 layer is employed as a mediation layer to allow for selective modification of target nanoparticles. The partially patched nanoparticles are used as building blocks for different kinds of complex asymmetric nanostructures that cannot be fabricated by conventional approaches. The potential applications such as ultra-sensitive substrates for surface enhanced Raman scattering (SERS) have been included.

  19. The experimental study of acoustic field in an asymmetric borehole

    Institute of Scientific and Technical Information of China (English)

    LINWeijun; ZHANGChengyu; ZHANGHailan; WANGXiuming

    2003-01-01

    The acoustic field in an asymmetric borehole was investigated by recording and comparing the waveforms with different offset in both axial symmetric borehole and axial asymmetric borehole. The two-dimensional spectrum in wave-number and frequency domain was also calculated and compared with the result of numeric simulation with 2.5-D finite difference method, and a consistent result was obtained. This work provides an accurate verification of our investigation of asymmetric borehole with 2.5-D finite difference method.

  20. High-Voltage, Asymmetric-Waveform Generator

    Science.gov (United States)

    Beegle, Luther W.; Duong, Tuan A.; Duong, Vu A.; Kanik, Isik

    2008-01-01

    The shapes of waveforms generated by commercially available analytical separation devices, such as some types of mass spectrometers and differential mobility spectrometers are, in general, inadequate and result in resolution degradation in output spectra. A waveform generator was designed that would be able to circumvent these shortcomings. It is capable of generating an asymmetric waveform, having a peak amplitude as large as 2 kV and frequency of several megahertz, which can be applied to a capacitive load. In the original intended application, the capacitive load would consist of the drift plates in a differential-mobility spectrometer. The main advantage to be gained by developing the proposed generator is that the shape of the waveform is made nearly optimum for various analytical devices requiring asymmetric-waveform such as differential-mobility spectrometers. In addition, this waveform generator could easily be adjusted to modify the waveform in accordance with changed operational requirements for differential-mobility spectrometers. The capacitive nature of the load is an important consideration in the design of the proposed waveform generator. For example, the design provision for shaping the output waveform is based partly on the principle that (1) the potential (V) on a capacitor is given by V=q/C, where C is the capacitance and q is the charge stored in the capacitor; and, hence (2) the rate of increase or decrease of the potential is similarly proportional to the charging or discharging current. The proposed waveform generator would comprise four functional blocks: a sine-wave generator, a buffer, a voltage shifter, and a high-voltage switch (see Figure 1). The sine-wave generator would include a pair of operational amplifiers in a feedback configuration, the parameters of which would be chosen to obtain a sinusoidal timing signal of the desired frequency. The buffer would introduce a slight delay (approximately equal to 20 ns) but would otherwise

  1. Flexible 3D Nanoporous Graphene for Desalination and Bio-decontamination of Brackish Water via Asymmetric Capacitive Deionization.

    Science.gov (United States)

    El-Deen, Ahmed G; Boom, Remko M; Kim, Hak Yong; Duan, Hongwei; Chan-Park, Mary B; Choi, Jae-Hwan

    2016-09-28

    Nanoporous graphene based materials are a promising nanostructured carbon for energy storage and electrosorption applications. We present a novel and facile strategy for fabrication of asymmetrically functionalized microporous activated graphene electrodes for high performance capacitive desalination and disinfection of brackish water. Briefly, thiocarbohydrazide coated silica nanoparticles intercalated graphene sheets are used as a sacrificial material for creating mesoporous graphene followed by alkaline activation process. This fabrication procedure meets the ideal desalination pore diameter with ultrahigh specific surface area ∼ 2680 m(2) g(-1) of activated 3D graphene based micropores. The obtained activated graphene electrode is modified by carboxymethyl cellulose as negative charge (COO(-2)) and disinfectant quaternary ammonium cellulose with positively charged polyatomic ions of the structure (NR4(+)). Our novel asymmetric coated microporous activated 3D graphene employs nontoxic water-soluble binder which increases the surface wettability and decreases the interfacial resistance and moreover improves the electrode flexibility compared with organic binders. The desalination performance of the fabricated electrodes was evaluated by carrying out single pass mode experiment under various cell potentials with symmetric and asymmetric cells. The asymmetric charge coated microporous activated graphene exhibits exceptional electrosorption capacity of 18.43 mg g(-1) at a flow rate of 20 mL min(-1) upon applied cell potential of 1.4 V with initial NaCl concentration of 300 mg L(-1), high charge efficiency, excellent recyclability, and, moreover, good antibacterial behavior. The present strategy provides a new avenue for producing ultrapure water via green capacitive deionization technology.

  2. Evacuation dynamics of asymmetrically coupled pedestrian pairs

    CERN Document Server

    Müller, Frank

    2016-01-01

    We propose and analyze extended floor field cellular automaton models for evacuation dynamics of inhomogeneous pedestrian pairs which are coupled by asymmetric group interactions. Such pairs consist of a leader, who mainly determines the couple's motion and a follower, who has a defined tendency to follow the leader. Examples for such pairs are mother and child or two siblings of different age. We examine the system properties and compare them to the case of a homogeneous crowd. We find a strong impact on evacuation times for the regime of strong pair coupling due to the occurrence of a clogging phenomenon. In addition we obtain a non-trivial dependence of evacuation times on the followers' coupling to the static floor field, which carries the information of the shortest way to the exit location. In particular we find that systems with fully passive followers, who are solely coupled to their leaders, show lower evacuation times than homogeneous systems where all pedestrians have an equal tendency to move towa...

  3. Asymmetric vector mesons produced in nuclear collisions

    CERN Document Server

    Dremin, I M

    2016-01-01

    It is argued that the experimentally observed phenomenon of asymmetric shapes of vector mesons produced in nuclear media during high energy nucleus-nucleus collisions can be explained as Fano-Feshbach resonances. It has been observed that the mass distributions of lepton pairs created at meson decays decline from the traditional Breit-Wigner shape with some excess in the low-mass wing of the resonance. It is clear that the whole phenomenon is related to some interaction with the nuclear medium. Moreover, it can be further detalized in quantum mechanics as the interference of direct and continuum states in Fano-Feshbach effect. To reveal the nature of the interaction it is proposed to use a phenomenological model of the additional contribution due to Cherenkov gluons. They can be created because of the excess of the refractivity index over 1 just in the low-mass wing as required by the classical Cherenkov treatment. In quantum mechanics, this requirement is related to the positive real part of the interaction ...

  4. ADMonium: Asymmetric Dark Matter Bound State

    CERN Document Server

    Bi, Xiao-Jun; Ko, P; Li, Jinmian; Li, Tianjun

    2016-01-01

    We propose a novel framework for asymmetric scalar dark matter (ADM), which has interesting collider phenomenology in terms of an unstable ADM bound state (ADMonium) produced via Higgs portals. ADMonium is a natural consequence of the basic features of ADM: the (complex scalar) ADM is charged under a dark local $U(1)_d$ symmetry which is broken at a low scale and provides a light gauge boson $X$. The dark gauge coupling is strong and then ADM can annihilate away into $X$-pair effectively. Therefore, the ADM can form bound state due to its large self-interaction via $X$ mediation. To explore the collider signature of ADMonium, we propose that ADM has a two-Higgs doublet portal. The ADMonium can have a sizable mixing with the heavier Higgs boson, which admits a large cross section of ADMonium production associated with $b\\bar b$. Of particular interest, our setup nicely explains the recent di-photon anomaly at 750 GeV via the events from ${\\rm ADMonium}\\ra 2X(\\ra e^+e^-)$, where the electrons are identified as ...

  5. Asymmetric vector mesons produced in nuclear collisions

    Science.gov (United States)

    Dremin, I. M.; Nechitailo, V. A.

    2016-09-01

    It is argued that the experimentally observed phenomenon of asymmetric shapes of vector mesons produced in nuclear media during high-energy nucleus-nucleus collisions can be explained as Fano-Feshbach resonances. It has been observed that the mass distributions of lepton pairs created at meson decays decline from the traditional Breit-Wigner shape with some excess in the low-mass wing of the resonance. It is clear that the whole phenomenon is related to some interaction with the nuclear medium. Moreover, it can be further described in quantum mechanics as the interference of direct and continuum states in the Fano-Feshbach effect. To reveal the nature of the interaction it is proposed to use a phenomenological model of the additional contribution due to Cherenkov gluons. They can be created because of the excess of the refractivity index over 1 just in the low-mass wing as required by the classical Cherenkov treatment. In quantum mechanics, this requirement is related to the positive real part of the interaction amplitude in this wing. The corresponding parameters are found from the comparison with ρ-meson data and admit reasonable explanation.

  6. Barbed congruence of the asymmetric chi calculus

    Institute of Scientific and Technical Information of China (English)

    DONG Xiao-ju; FU Yu-xi

    2006-01-01

    The chi calculus is a model of mobile processes. It has evolved from the pi-calculus with motivations from simplification and communication-as-cut-elimination. This paper studies the chi calculus in the framework incorporating asymmetric communication. The major feature of the calculus is the identification of two actions:x/x and τ. The investigation on the barbed bisimilarity shows how the property affects the observational theory.Based on the definition of the barbed bisimilarity, the simulation properties of the barbed bisimilarity are studied. It shows that the algebraic properties of the barbed bisimilarity have changed greatly compared with the chi calculus. Although the definition of the barbed bisimilarity is very simple, the property of closeness under contexts makes it difficult to understand the barbed bisimilarity directly. Therefore an open style definition of the barbed bisimilarity is given, which is a context free description of barbed bisimilarity. Its definition is complex,but it is a well-behaved relation for it coincides with the barbed bisimilarity. It also helps to build an axiomatization system for the barbed congruence. Besides the axioms for the strong barbed bisimilarity, the paper proposes a new tau law and four new update laws for the barbed congruence. Both the operational and algebraic properties of the enriched calculus improve the understanding of the bisimulation behaviors of the model.

  7. Magnetohydrodynamic Waves in an Asymmetric Magnetic Slab

    Science.gov (United States)

    Allcock, Matthew; Erdélyi, Robert

    2017-02-01

    Analytical models of solar atmospheric magnetic structures have been crucial for our understanding of magnetohydrodynamic (MHD) wave behaviour and in the development of the field of solar magneto-seismology. Here, an analytical approach is used to derive the dispersion relation for MHD waves in a magnetic slab of homogeneous plasma enclosed on its two sides by non-magnetic, semi-infinite plasma with different densities and temperatures. This generalises the classic magnetic slab model, which is symmetric about the slab. The dispersion relation, unlike that governing a symmetric slab, cannot be decoupled into the well-known sausage and kink modes, i.e. the modes have mixed properties. The eigenmodes of an asymmetric magnetic slab are better labelled as quasi-sausage and quasi-kink modes. Given that the solar atmosphere is highly inhomogeneous, this has implications for MHD mode identification in a range of solar structures. A parametric analysis of how the mode properties (in particular the phase speed, eigenfrequencies, and amplitudes) vary in terms of the introduced asymmetry is conducted. In particular, avoided crossings occur between quasi-sausage and quasi-kink surface modes, allowing modes to adopt different properties for different parameters in the external region.

  8. Asymmetric vector mesons produced in nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Dremin, I.M.; Nechitailo, V.A. [Lebedev Physical Institute, Moscow (Russian Federation); National Research Nuclear University ' ' MEPhI' ' , Moscow (Russian Federation)

    2016-09-15

    It is argued that the experimentally observed phenomenon of asymmetric shapes of vector mesons produced in nuclear media during high-energy nucleus-nucleus collisions can be explained as Fano-Feshbach resonances. It has been observed that the mass distributions of lepton pairs created at meson decays decline from the traditional Breit-Wigner shape with some excess in the low-mass wing of the resonance. It is clear that the whole phenomenon is related to some interaction with the nuclear medium. Moreover, it can be further described in quantum mechanics as the interference of direct and continuum states in the Fano-Feshbach effect. To reveal the nature of the interaction it is proposed to use a phenomenological model of the additional contribution due to Cherenkov gluons. They can be created because of the excess of the refractivity index over 1 just in the low-mass wing as required by the classical Cherenkov treatment. In quantum mechanics, this requirement is related to the positive real part of the interaction amplitude in this wing. The corresponding parameters are found from the comparison with ρ-meson data and admit reasonable explanation. (orig.)

  9. Asymmetric Swiss-cheese brane-worlds

    Science.gov (United States)

    Gergely, László Á.; Képíró, Ibolya

    2007-07-01

    We study a brane-world cosmological scenario with local inhomogeneities represented by black holes. The brane is asymmetrically embedded into the bulk. The black strings/cigars penetrating the Friedmann brane generate a Swiss-cheese-type structure. This universe forever expands and decelerates, as its general relativistic analogue. The evolution of the cosmological fluid, however, can proceed along four branches, two allowed to have positive energy density, and one of them having the symmetric embedding limit. On this branch a future pressure singularity can arise for either (a) a difference in the cosmological constants of the cosmological and black hole brane regions or (b) a difference in the left and right bulk cosmological constants. While behaviour (a) can be avoided by a redefinition of the fluid variables, (b) establishes a critical value of the asymmetry over which the pressure singularity occurs. We introduce the pressure singularity censorship which bounds the degree of asymmetry in the bulk cosmological constant. We also show as a model-independent generic feature that the asymmetry source term due to the bulk cosmological constant increases in the early universe. In order to obey the nucleosynthesis constraints, the brane tension should be constrained therefore both from below and from above. With the maximal degree of asymmetry obeying the pressure singularity censorship, the higher limit is ten times the lower limit. The degree of asymmetry allowed by present cosmological observations is, however, much less, pushing the upper limit to infinity.

  10. The Asymmetric Pupil Fourier Wavefront Sensor

    CERN Document Server

    Martinache, Frantz

    2013-01-01

    This paper introduces a novel wavefront sensing approach that relies on the Fourier analysis of a single conventional direct image. In the high Strehl ratio regime, the relation between the phase measured in the Fourier plane and the wavefront errors in the pupil can be linearized, as was shown in a previous work that introduced the notion of generalized closure-phase, or kernel-phase. The technique, to be usable as presented requires two conditions to be met: (1) the wavefront errors must be kept small (of the order of one radian or less) and (2) the pupil must include some asymmetry, that can be introduced with a mask, for the problem to become solvable. Simulations show that this asymmetric pupil Fourier wavefront sensing or APF-WFS technique can improve the Strehl ratio from 50 to over 90 % in just a few iterations, with excellent photon noise sensitivity properties, suggesting that on-sky close loop APF-WFS is possible with an extreme adaptive optics system.

  11. Asymmetric Electrostatic Radiation Shielding for Spacecraft

    Science.gov (United States)

    Metzger, Philip T.; Youngquist, Robert C.; Lane, John E.

    2005-01-01

    A paper describes the types, sources, and adverse effects of energetic-particle radiation in interplanetary space, and explores a concept of using asymmetric electrostatic shielding to reduce the amount of such radiation impinging on spacecraft. Typically, such shielding would include a system of multiple inflatable, electrically conductive spheres deployed in clusters in the vicinity of a spacecraft on lightweight structures that would maintain the spheres in a predetermined multipole geometry. High-voltage generators would maintain the spheres at potential differences chosen in conjunction with the multipole geometry so that the resulting multipole field would gradually divert approaching energetic atomic nuclei from a central region occupied by the spacecraft. The spheres nearest the center would be the most positive, so as to repel the positively charged impinging nuclei from the center. At the same time, the monopole potential of the overall spacecraft-and-shielding system would be made negative so as to repel thermal electrons. The paper presents results of computational simulations of energetic-particle trajectories and shield efficiency for a trial system of 21 spheres arranged in three clusters in an overall linear quadrupole configuration. Further development would be necessary to make this shielding concept practical.

  12. Asymmetric translation between multiple representations in chemistry

    Science.gov (United States)

    Lin, Yulan I.; Son, Ji Y.; Rudd, James A., II

    2016-03-01

    Experts are more proficient in manipulating and translating between multiple representations (MRs) of a given concept than novices. Studies have shown that instruction using MR can increase student understanding of MR, and one model for MR instruction in chemistry is the chemistry triplet proposed by Johnstone. Concreteness fading theory suggests that presenting concrete representations before abstract representations can increase the effectiveness of MR instruction; however, little work has been conducted on varying the order of different representations during instruction and the role of concreteness in assessment. In this study, we investigated the application of concreteness fading to MR instruction and assessment in teaching chemistry. In two experiments, undergraduate students in either introductory psychology courses or general chemistry courses were given MR instruction on phase changes using different orders of presentation and MR assessment questions based on the representations in the chemistry triplet. Our findings indicate that the order of presentation based on levels of concreteness in MR chemistry instruction is less important than implementation of comprehensive MR assessments. Even after MR instruction, students display an asymmetric understanding of the chemical phenomenon on the MR assessments. Greater emphasis on MR assessments may be an important component in MR instruction that effectively moves novices toward more expert MR understanding.

  13. Polyimides Derived from Novel Asymmetric Dianhydrides

    Science.gov (United States)

    Chuang, Chun-Hua (Inventor)

    2012-01-01

    This invention relates to the compositions and processes for preparing thermoset and thermoplastic polyimides derived from novel asymmetrical dianhydrides: specifically 2,3,3',4' benzophenone dianhydride (a-BTDA), and 3,4'-(hexafluoroisopropylidene)diphthalic anhydride (a-6FDA). The a-BTDA anhydride is prepared by Suzuki coupling with catalysts from a mixed anhydride of 3,4-dimethylbenzoic acid or 2,3-dimethylbenzoic acid with 2,3-dimethylphenylboronic acid or 3,4-dimethylphenylboronic acid respectively, to form 2,3,3',4'-tetramethylbenzophenone which is oxidized to form 2,3,3',4'-benzophenonetetracarboxylic acid followed by cyclodehydration to obtain a-BTDA. The a-6FDA is prepared by nucleophilic triflouoromethylation of 2,3,3',4'-tetramethylbenzophenone with trifluoromethyltrimethylsilane to form 3,4'-(trifluoromethylmethanol)-bis(o-xylene) which is converted to 3,4'-(hexafluoroisopropylidene-bis(o-xylene). The 3,4'-(hexafluoroisopropylidene)-bis(o-xylene) is oxidized to the corresponding tetraacid followed by cyclodehydration to yield a-6FDA.

  14. Impact parameter dependence of collective flow and its disappearance for different mass asymmetries

    CERN Document Server

    Goyal, Supriya

    2011-01-01

    We study the role of impact parameter on the collective flow and its disappearance for different mass asymmetric reactions. The mass asymmetry is varied from 0 to 0.7 keeping the total mass of the system fixed. Our results clearly indicate a significant role of impact parameter on the collective flow and its disappearance for the mass asymmetric reactions. The impact parameter dependence is also found to vary with mass asymmetry of the reaction.

  15. Loss Aversion and the Asymmetric Transmission of Monetary Policy

    DEFF Research Database (Denmark)

    Santoro, Emiliano; Petrella, Ivan; Pfajfar, Damjan

    2014-01-01

    There is widespread evidence that monetary policy exerts asymmetric effects on output over contractions and expansions in economic activity, while price responses display no sizeable asymmetry. To rationalize these facts we develop a dynamic general equilibrium model where households’ utility...

  16. Magnetic Field and Force Calculations for ATLAS Asymmetrical Structure

    CERN Document Server

    Nessi, Marzio

    2001-01-01

    Magnetic field distortion in the assymetrical ATLAS structure are calculated. Magnetic forces in the system are estimated. 3D magnetic field simulation by the Opera3D code for symmetrical and asymmetrical systems is used.

  17. Asymmetric H-D exchange reactions of fluorinated aromatic ketones

    KAUST Repository

    Zhao, Yujun

    2012-01-01

    Chiral bicyclic guanidine catalyzes the asymmetric H-D exchange reactions. Up to 30% ee was achieved. DFT calculations were employed to elucidate and explain the origin of the reaction\\'s stereoselectivity. © 2012 The Royal Society of Chemistry.

  18. Asymmetric Intramolecular Cyclopropanation Induced by (β-Diketone)-copper Complex

    Institute of Scientific and Technical Information of China (English)

    Qing Fang CHENG; Xing You XU; Wei Xing MA; Tian Pa YOU

    2005-01-01

    Asymmetric intramolecular cyclopropanation of allylic diazoacetate was investigated using a chiral (β-diketone)-copper complex as catalyst, excellent yield and enantioselectivity were achieved. Some factors influencing enantioselectivity were discussed.

  19. Asymmetric Dark Matter in the shear-dominated universe

    Science.gov (United States)

    Iminniyaz, Hoernisa

    2017-02-01

    We explore the relic abundance of asymmetric Dark Matter in shear-dominated universe in which it is assumed the universe is expanded anisotropically. The modified expansion rate leaves its imprint on the relic density of asymmetric Dark Matter particles if the asymmetric Dark Matter particles are decoupled in shear dominated era. We found the relic abundances for particle and anti-particle are increased. The particle and anti-particle abundances are almost in the same amount for the larger value of the shear factor xe which makes the indirect detection possible for asymmetric Dark Matter. We use the present day Dark Matter density from the observation to find the constraints on the parameter space in this model.

  20. Asymmetric periflexural exanthema: A report in an adult patient

    Directory of Open Access Journals (Sweden)

    Zawar V

    2003-11-01

    Full Text Available Asymmetric periflexural exanthem (APE is a distinctive exanthem, probably viral in origin. It is largely a disease of childhood and is uncommon in adults. We report an adult man presenting with the typical clinical findings of APE.

  1. Vertical Control and Parallel Trade under Asymmetric Information

    Directory of Open Access Journals (Sweden)

    Alessandro Avenali

    2015-05-01

    profits from the manufacturer to the wholesaler. Therefore, in R&D-intensive industries, such as pharmaceuticals, policy makers should anticipate the likely consequences of PT under asymmetric information on the long-run incentives to innovate.

  2. Abundance of Asymmetric Dark Matter in Brane World Cosmology

    Science.gov (United States)

    Abdusattar, Haximjan; Iminniyaz, Hoernisa

    2016-09-01

    Relic abundance of asymmetric Dark Matter particles in brane world cosmological scenario is investigated in this article. Hubble expansion rate is enhanced in brane world cosmology and it affects the relic abundance of asymmetric Dark Matter particles. We analyze how the relic abundance of asymmetric Dark Matter is changed in this model. We show that in such kind of nonstandard cosmological scenario, indirect detection of asymmetric Dark Matter is possible if the cross section is small enough which let the anti-particle abundance kept in the same amount with the particle. We show the indirect detection signal constraints can be used to such model only when the cross section and the 5-dimensional Planck mass scale are in appropriate values. Supported by the National Natural Science Foundation of China under Grant No. 11365022

  3. Asymptotic Theory for Extended Asymmetric Multivariate GARCH Processes

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2016-01-01

    textabstractThe paper considers various extended asymmetric multivariate conditional volatility models, and derives appropriate regularity conditions and associated asymptotic theory. This enables checking of internal consistency and allows valid statistical inferences to be drawn based on empirical

  4. Polarization dependent switching of asymmetric nanorings with a circular field

    Directory of Open Access Journals (Sweden)

    Nihar R. Pradhan

    2016-01-01

    Full Text Available We experimentally investigated the switching from onion to vortex states in asymmetric cobalt nanorings by an applied circular field. An in-plane field is applied along the symmetric or asymmetric axis of the ring to establish domain walls (DWs with symmetric or asymmetric polarization. A circular field is then applied to switch from the onion state to the vortex state, moving the DWs in the process. The asymmetry of the ring leads to different switching fields depending on the location of the DWs and direction of applied field. For polarization along the asymmetric axis, the field required to move the DWs to the narrow side of the ring is smaller than the field required to move the DWs to the larger side of the ring. For polarization along the symmetric axis, establishing one DW in the narrow side and one on the wide side, the field required to switch to the vortex state is an intermediate value.

  5. Asymmetric dynamic phase holographic grating in nematic liquid crystal

    Science.gov (United States)

    Ren, Chang-Yu; Shi, Hong-Xin; Ai, Yan-Bao; Yin, Xiang-Bao; Wang, Feng; Ding, Hong-Wei

    2016-09-01

    A new scheme for recording a dynamic phase grating with an asymmetric profile in C60-doped homeotropically aligned nematic liquid crystal (NLC) was presented. An oblique incidence beam was used to record the thin asymmetric dynamic phase holographic grating. The diffraction efficiency we achieved is more than 40%, exceeding the theoretical limit for symmetric profile gratings. Both facts can be explained by assuming that a grating with an asymmetric saw-tooth profile is formed in the NLC. Finally, physical mechanism and mathematical model for characterizing the asymmetric phase holographic grating were presented, based on the photo-refractive-like (PR-like) effect. Project supported by the Science and Technology Programs of the Educational Committee of Heilongjiang Province, China (Grant No. 12541730) and the National Natural Science Foundation of China (Grant No. 61405057).

  6. Results of investigations into coal cutting by asymmetric disks

    Energy Technology Data Exchange (ETDEWEB)

    Krauze, K.

    1985-02-01

    Effects are analyzed of design and specifications of asymmetric disk cutters on coal cutting by a shearer loader with disk cutters on helical cutting drums. Effects of disk diameter, wedge angle, cutting depth and chip thickness on cutting resistance were analyzed under operational conditions (a coal seam was cut by asymmetric disk cutters). On the basis of analysis of coal resistance to cutting by asymmetric cutting disks, regression equations were derived which describe coal cutting. Effects of disk parameters and cutting conditions on cutting resistance were determined. Analyses show that replacing radial cutting tools with asymmetric disk cutters would cause an increase in energy consumption of cutting and increase coal resistance to cutting. 1 reference.

  7. Numerical study of asymmetric driven reconnection at dayside magnetopause

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A two-dimensional compressible MHD code has been used to numerically study the asymmetric driven reconnection processes in the vicinity of the magnetopause. The initial magnetic field configuration is assumed to be in a mechanical equilibrium state. The cases with identical temperatures (Tm0/Ts0=1.0) and four different ratios of magnetic field strength (Q=Bm0/Bs0=1.0, 1.5, 2.0, 2.5), and the case with Tm0/Ts0=2.0 and Q=1.5 are investigated (Bm0, Tm0 and Bs0, Ts0 are the initial magnetic strength and temperature outside the current sheet on the magnetosphere and the magnetosheath, respectively ). When the magnetic field on the magnetosheath side is set as southward, a recurrent formation of multiple magnetic bubbles with various scales occurs under the action of the inward plasma flow imposed at the left and right boundaries. In the simulation, some bubbles coalesce into a bigger one and then it is convected out of the simulation domain; the others are convected through the top boundary all alone. Thus, the plasmoid events with different scales and different time intervals take place intermittently and the impulsive features of magnetic reconnection are clearly shown. The multiple magnetic islands are all high-temperature and large-density regions in comparison with the ambient environment. The bipolar signatures or fluctuant variations of normal magnetic field component are generated by the formation of multiple magnetic islands. This result is similar to the FTEs signature.

  8. No asymmetric outflows from Sagittarius A* during the pericenter passage of the gas cloud G2

    CERN Document Server

    Park, J -H; Krichbaum, T P; Kim, J -Y; Kino, M; Bertarini, A; Bremer, M; de Vicente, P

    2015-01-01

    The gas cloud G2 falling toward Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way, is supposed to provide valuable information on the physics of accretion flows and the environment of the black hole. We observed Sgr A* with four European stations of the Global Millimeter Very Long Baseline Interferometry Array (GMVA) at 86 GHz on 1 October 2013 when parts of G2 had already passed the pericenter. We searched for possible transient asymmetric structure -- such as jets or winds from hot accretion flows -- around Sgr A* caused by accretion of material from G2. The interferometric closure phases remained zero within errors during the observation time. We thus conclude that Sgr A* did not show significant asymmetric (in the observer frame) outflows in late 2013. Using simulations, we constrain the size of the outflows that we could have missed to ~2.5 mas along the major axis, ~0.4 mas along the minor axis of the beam, corresponding to approximately 232 and 35 Schwarzschild radii, ...

  9. A Numerical Analysis of Droplet Breakup in Asymmetric T-Junctions with Different Outlet Pressure Gradients

    Science.gov (United States)

    Cheng, Way Lee; Han, Arum; Sadr, Reza

    2016-11-01

    Droplet splitting is the breakup of a parent droplet into two or more daughter droplets of desired sizes. It is done to improve production efficiency and investigational capacity in microfluidic devices. Passive splitting is the breakup of droplets into precise volume ratios at predetermined locations without external power sources. In this study, a 3-D simulation was conducted using the Volume-of-Fluid method to analysis the breakup process of a droplet in asymmetric T-junctions with different outlet arm lengths. The arrangement allows a droplet to be split into two smaller droplets of different sizes, where the volumetric ratio of the daughter droplets depends on the length ratios of the outlet arms. The study identified different breakup regimes such as primary, transition, bubble and non-breakup under different flow conditions and channel configurations. Furthermore, a close analysis to the primary breakup regimes were done to determine the breakup mechanisms at various flow conditions. The analysis show that the breakup mechanisms in asymmetric T-junctions is different than a regular split. A pseudo-phenomenological model for the breakup criteria was presented at the end. The model was an expanded version to a theoretically derived model for the symmetric droplet breakup. The Qatar National Research Fund (a member of the Qatar Founda- tion), under Grant NPRP 5-671-2-278, supported this work.

  10. Research on the Design and Modification of Asymmetric Spur Gear

    OpenAIRE

    Xiaohe Deng; Lin Hua; Xinghui Han

    2015-01-01

    A design method for the geometric shape and modification of asymmetric spur gear was proposed, in which the geometric shape and modification of the gear can be obtained directly according to the rack-cutter profile. In the geometric design process of the gear, a rack-cutter with different pressure angles and fillet radius in the driving side and coast side was selected, and the generated asymmetric spur gear profiles also had different pressure angles and fillets accordingly. In the modificat...

  11. Cooperative Mechanism of Supply Chain Under Asymmetric Information

    Institute of Scientific and Technical Information of China (English)

    郭敏; 王红卫; 瞿坦

    2003-01-01

    The cooperative mechanism is one main issue in the decentralized supply chain system, especially in an asymmetric information structure. We analyze the non-cooperative game behavior of a 2-echelon distribution supply chain, compare the results with the system optimal solution, and give the supplier dominated cooperative mechanisms. We also analyze the validity of our contract under the asymmetric retailers' holding cost information and give some useful conclusions.

  12. Asymmetric zygote division: A mystery starting point of embryogenesis.

    Science.gov (United States)

    Zhao, Jing; Sun, Meng-Xiang

    2016-10-02

    In angiosperm, asymmetric zygote division is critical for embryogenesis. The molecular mechanism underlying this process has gained a great attention recently. Some players involve in the control of both accurate position and correct orientation of zygote division plane have been found, which provide useful clues for the extensive investigations. It is getting clear that both internal and external factors are involved in this complex regulatory mechanism and the asymmetric zygote division seems with great impact in cell fate determination and embryo pattern formation.

  13. Reduction of contact stresses using involute gears with asymmetric teeth

    OpenAIRE

    2015-01-01

    Asymmetrical involute gears have a different value of the operating pressure angle for right and left side of the gear. These teeth are suitable for one direction of rotation. Such teeth enable to change the length of the generating line. They enable to improve the value of reduced radii of curvature. Asymmetrical teeth allow reducing the values of Hertz's pressures, especially on the root of the teeth. Hertz pressures are directly related to the asymmetry.

  14. The Asymmetric Impact of Growth Fluctuation on Human Development

    OpenAIRE

    Serap Bedir

    2015-01-01

    In this paper, we re-examine the impact of economic growth fluctuation on human development indicators. Using the per capita growth rate and human development indicators for 131 countries between 1974 and 2007, we find that growth acceleration and deceleration have significant impact on the human development indicators. We also find that the effects are asymmetric. This asymmetric effect is valid both in terms of acceleration and deceleration periods and countries which are classified accordi...

  15. Asymmetric neuroimaging in Creutzfeldt-Jakob disease: a ruse.

    Science.gov (United States)

    Bavis, James; Reynolds, Patrick; Tegeler, Charles; Clark, Paige

    2003-10-01

    Creutzfeldt-Jakob disease (CJD) causes diffuse neurological symptoms, but asymmetric lesions have been found on conventional magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI). Less often, position emission tomography (PET) scanning can also reveal asymmetric lesions in patients with CJD. Such imaging may mislead clinicians. The authors present a case of a woman with CJD who was diagnosed as having suffered a stroke because she had asymmetric T2-weighted imaging (T2WI) MRI abnormalities that were interpreted as a stroke. It was noted that the patient had clinical features consistent with CJD, including rapidly progressive dementia, myoclonus, cerebellar dysfunction, and pyramidal and extrapyramidal signs. This diagnosis was supported by periodic epileptiform discharges on the electroencephalogram (EEG) and by elevated 14-3-3 protein in the cerebrospinal fluid. MRI T2WI and DWI showed dramatically asymmetric abnormalities involving the left cortex. A PET study found decreased metabolism in the left cerebral and right cerebellar hemispheres. The patient's clinical, EEG, and laboratory data were all consistent with CJD, not other diseases, but the MRI and PET had atypical, asymmetric findings. This case demonstrates that CJD should be considered in the differential diagnosis of patients with rapidly progressive neurological decline, even if they have asymmetric imaging findings.

  16. Asymmetric nucleosomes flank promoters in the budding yeast genome.

    Science.gov (United States)

    Ramachandran, Srinivas; Zentner, Gabriel E; Henikoff, Steven

    2015-03-01

    Nucleosomes in active chromatin are dynamic, but whether they have distinct structural conformations is unknown. To identify nucleosomes with alternative structures genome-wide, we used H4S47C-anchored cleavage mapping, which revealed that 5% of budding yeast (Saccharomyces cerevisiae) nucleosome positions have asymmetric histone-DNA interactions. These asymmetric interactions are enriched at nucleosome positions that flank promoters. Micrococcal nuclease (MNase) sequence-based profiles of asymmetric nucleosome positions revealed a corresponding asymmetry in MNase protection near the dyad axis, suggesting that the loss of DNA contacts around H4S47 is accompanied by protection of the DNA from MNase. Chromatin immunoprecipitation mapping of selected nucleosome remodelers indicated that asymmetric nucleosomes are bound by the RSC chromatin remodeling complex, which is required for maintaining nucleosomes at asymmetric positions. These results imply that the asymmetric nucleosome-RSC complex is a metastable intermediate representing partial unwrapping and protection of nucleosomal DNA on one side of the dyad axis during chromatin remodeling.

  17. Asymmetric Facial Bone Fragmentation Mirrors Asymmetric Distribution of Cranial Neuromasts in Blind Mexican Cavefish.

    Science.gov (United States)

    Gross, Joshua B; Gangidine, Andrew; Powers, Amanda K

    2016-11-01

    Craniofacial asymmetry is a convergent trait widely distributed across animals that colonize the extreme cave environment. Although craniofacial asymmetry can be discerned easily, other complex phenotypes (such as sensory organ position and numerical variation) are challenging to score and compare. Certain bones of the craniofacial complex demonstrate substantial asymmetry, and co-localize to regions harboring dramatically expanded numbers of mechanosensory neuromasts. To determine if a relationship exists between this expansion and bone fragmentation in cavefish, we developed a quantitative measure of positional symmetry across the left-right axis. We found that three different cave-dwelling populations were significantly more asymmetric compared to surface-dwelling fish. Moreover, cave populations did not differ in the degree of neuromast asymmetry. This work establishes a method for quantifying symmetry of a complex phenotype, and demonstrates that facial bone fragmentation mirrors the asymmetric distribution of neuromasts in different cavefish populations. Further developmental studies will provide a clearer picture of the developmental and cellular changes that accompany this extreme phenotype, and help illuminate the genetic basis for facial asymmetry in vertebrates.

  18. Orientation- and position-controlled alignment of asymmetric silicon microrod on a substrate with asymmetric electrodes

    Science.gov (United States)

    Shibata, Akihide; Watanabe, Keiji; Sato, Takuya; Kotaki, Hiroshi; Schuele, Paul J.; Crowder, Mark A.; Zhan, Changqing; Hartzell, John W.; Nakatani, Ryoichi

    2014-03-01

    In this paper, we demonstrate the orientation-controlled alignment of asymmetric Si microrods on a glass substrate with an asymmetric pair of electrodes. The Si microrods have the shape of a paddle with a blade and a shaft part, and the pair of electrodes consists of a narrow electrode and a wide electrode. By applying AC bias to the electrodes, the Si microrods suspended in a fluid align in such a way to settle across the electrode pair, and over 80% of the aligned Si microrods have an orientation with the blade and the shaft of the paddle on the wide and the narrow electrodes, respectively. When Si microrods have a shell of dielectric film and its thickness on the top face is thicker than that on the bottom face, 97.8% of the Si microrods are aligned with the top face facing upwards. This technique is useful for orientation-controlled alignment of nano- and microsized devices that have polarity or a distinction between the top and bottom faces.

  19. Hemispherical anomaly from asymmetric initial states

    Science.gov (United States)

    Ashoorioon, Amjad; Koivisto, Tomi

    2016-08-01

    We investigate if the hemispherical asymmetry in the CMB is produced from "asymmetric" excited initial conditions. We show that in the limit where the deviations from the Bunch-Davies vacuum are large and the scale of new physics is maximally separated from the inflationary Hubble parameter, the primordial power spectrum is modulated only by position-dependent dipole and quadrupole terms. Requiring the dipole contribution in the power spectrum to account for the observed power asymmetry, A =0.07 ±0.022 , we show that the amount of quadrupole terms is roughly equal to A2. The mean local bispectrum, which gets enhanced for the excited initial state, is within the 1 σ bound of Planck 2015 results for a large field model, fNL≃4.17 , but is reachable by future CMB experiments. The amplitude of the local non-Gaussianity modulates around this mean value, depending on the angle that the correlated patches on the 2d CMB surface make with the preferred direction. The amount of variation is minimized for the configuration in which the short and long wavelength modes are around the preferred pole and |k→3|≈|k→l ≈10|≪|k→1|≈|k→2|≈|k→l ≈2500| with fNLmin≈3.64 . The maximum occurs when these modes are at the antipode of the preferred pole, fNLmax≈4.81 . The difference of non-Gaussianity between these two configurations is as large as ≃1.17 , which can be used to distinguish this scenario from other scenarios that try to explain the observed hemispherical asymmetry.

  20. Asymmetric transfer of auditory perceptual learning

    Directory of Open Access Journals (Sweden)

    Sygal eAmitay

    2012-11-01

    Full Text Available Perceptual skills can improve dramatically even with minimal practice. A major and practical benefit of learning, however, is in transferring the improvement on the trained task to untrained tasks or stimuli, yet the mechanisms underlying this process are still poorly understood. Reduction of internal noise has been proposed as a mechanism of perceptual learning, and while we have evidence that frequency discrimination (FD learning is due to a reduction of internal noise, the source of that noise was not determined. In this study, we examined whether reducing the noise associated with neural phase locking to tones can explain the observed improvement in behavioural thresholds. We compared FD training between two tone durations (15 and 100 ms that straddled the temporal integration window of auditory nerve fibers upon which computational modeling of phase locking noise was based. Training on short tones resulted in improved FD on probe tests of both the long and short tones. Training on long tones resulted in improvement only on the long tones. Simulations of FD learning, based on the computational model and on signal detection theory, were compared with the behavioral FD data. We found that improved fidelity of phase locking accurately predicted transfer of learning from short to long tones, but also predicted transfer from long to short tones. The observed lack of transfer from long to short tones suggests the involvement of a second mechanism. Training may have increased the temporal integration window which could not transfer because integration time for the short tone is limited by its duration. Current learning models assume complex relationships between neural populations that represent the trained stimuli. In contrast, we propose that training-induced enhancement of the signal-to-noise ratio offers a parsimonious explanation of learning and transfer that easily accounts for asymmetric transfer of learning.

  1. Asymmetric inhibitory treatment effects in multilingual aphasia.

    Science.gov (United States)

    Goral, Mira; Naghibolhosseini, Maryam; Conner, Peggy S

    2013-01-01

    Findings from recent psycholinguistic studies of bilingual processing support the hypothesis that both languages of a bilingual are always active and that bilinguals continually engage in processes of language selection. This view aligns with the convergence hypothesis of bilingual language representation. Furthermore, it is hypothesized that when bilinguals perform a task in one language they need to inhibit their other, nontarget language(s) and that stronger inhibition is required when the task is performed in the weaker language than in the stronger one. The study of multilingual individuals who acquire aphasia resulting from a focal brain lesion offers a unique opportunity to test the convergence hypothesis and the inhibition asymmetry. We report on a trilingual person with chronic nonfluent aphasia who at the time of testing demonstrated greater impairment in her first acquired language (Persian) than in her third, later learned language (English). She received treatment in English followed by treatment in Persian. An examination of her connected language production revealed improvement in her grammatical skills in each language following intervention in that language, but decreased grammatical accuracy in English following treatment in Persian. The increased error rate was evident in structures that are used differently in the two languages (e.g., auxiliary verbs). The results support the prediction that greater inhibition is applied to the stronger language than to the weaker language, regardless of their age of acquisition. We interpret the findings as consistent with convergence theories that posit overlapping neuronal representation and simultaneous activation of multiple languages and with proficiency-dependent asymmetric inhibition in multilinguals.

  2. Chilly dark sectors and asymmetric reheating

    Science.gov (United States)

    Adshead, Peter; Cui, Yanou; Shelton, Jessie

    2016-06-01

    In a broad class of theories, the relic abundance of dark matter is determined by interactions internal to a thermalized dark sector, with no direct involvement of the Standard Model (SM). We point out that these theories raise an immediate cosmological question: how was the dark sector initially populated in the early universe? Motivated in part by the difficulty of accommodating large amounts of entropy carried in dark radiation with cosmic microwave background measurements of the effective number of relativistic species at recombination, N eff , we aim to establish which admissible cosmological histories can populate a thermal dark sector that never reaches thermal equilibrium with the SM. The minimal cosmological origin for such a dark sector is asymmetric reheating, when the same mechanism that populates the SM in the early universe also populates the dark sector at a lower temperature. Here we demonstrate that the resulting inevitable inflaton-mediated scattering between the dark sector and the SM can wash out a would-be temperature asymmetry, and establish the regions of parameter space where temperature asymmetries can be generated in minimal reheating scenarios. Thus obtaining a temperature asymmetry of a given size either restricts possible inflaton masses and couplings or necessitates a non-minimal cosmology for one or both sectors. As a side benefit, we develop techniques for evaluating collision terms in the relativistic Boltzmann equation when the full dependence on Bose-Einstein or Fermi-Dirac phase space distributions must be retained, and present several new results on relativistic thermal averages in an appendix.

  3. Impact and Use of the Asymmetric Property in Bi-directional Cooperative Relaying under Asymmetric Traffic Conditions

    Science.gov (United States)

    Saeki, Takaaki; Yamamoto, Koji; Murata, Hidekazu; Yoshida, Susumu

    Cooperative relaying (CR) is a promising technique to provide spatial diversity by combining multiple signals from source and relay stations. In the present paper, the impact and use of the asymmetric property in bi-directional CR under asymmetric traffic conditions are discussed assuming that CR involves one communication pair and one relay station in a time division duplex (TDD) system. The asymmetric property means that the average communication quality differs for each transmission direction because of the difference in signal power between the combined signals for each direction. First, numerical results show the asymmetric property of bi-directional CR. Next, in order to evaluate the impact of the asymmetric property, the optimal relay position and resource allocation are compared to those in simple multi-hop relaying, which does not have the asymmetric property. Numerical results show that, in order to maximize the overall quality of bi-directional communication, the optimal relay position in CR depends on the offered traffic ratio, which is defined as the traffic ratio of each transmission direction, while the offered traffic ratio does not affect the optimal relay position in multi-hop relaying. Finally, the asymmetric property is used to enhance the overall quality. Specifically, a high overall quality can be achieved by, for example, opportunistically switching to the transmission direction with higher quality. Under asymmetric traffic conditions, weighted proportionally fair scheduling (WPFS), which is proposed in the context of downlink scheduling in a cellular network, is applied to transmission direction switching. Numerical results reveal that WPFS provides a high overall quality and that the quality ratio is similar to the offered traffic ratio.

  4. Asymmetric distribution in twin screw granulation.

    Science.gov (United States)

    Chan Seem, Tim; Rowson, Neil A; Gabbott, Ian; de Matas, Marcel; Reynolds, Gavin K; Ingram, Andy

    2016-09-01

    Positron Emission Particle Tracking (PEPT) was successfully employed to validate measured transverse asymmetry in material distribution in the conveying zones of a Twin Screw Granulator (TSG). Flow asymmetry was established to be a property of the granulator geometry and dependent on fill level. The liquid distribution of granules as a function of fill level was determined. High flow asymmetry at low fill level negatively affects granule nucleation leading to high variance in final uniformity. Wetting of material during nucleation was identified as a critical parameter in determining final granule uniformity and fill level is highlighted as a crucial control factor in achieving this. Flow asymmetry of dry material in conveying zones upstream of binder fluid injection leads to poor non-uniform wetting at nucleation and results in heterogeneous final product. The granule formation mechanism of 60°F kneading blocks is suggested to be primarily breakage of agglomerates formed during nucleation. Optimisation of screw configuration would be required to provide secondary growth. This work shows how fill dependent flow regimes affect granulation mechanisms.

  5. Asymmetric photoredox transition-metal catalysis activated by visible light

    Science.gov (United States)

    Huo, Haohua; Shen, Xiaodong; Wang, Chuanyong; Zhang, Lilu; Röse, Philipp; Chen, Liang-An; Harms, Klaus; Marsch, Michael; Hilt, Gerhard; Meggers, Eric

    2014-11-01

    Asymmetric catalysis is seen as one of the most economical strategies to satisfy the growing demand for enantiomerically pure small molecules in the fine chemical and pharmaceutical industries. And visible light has been recognized as an environmentally friendly and sustainable form of energy for triggering chemical transformations and catalytic chemical processes. For these reasons, visible-light-driven catalytic asymmetric chemistry is a subject of enormous current interest. Photoredox catalysis provides the opportunity to generate highly reactive radical ion intermediates with often unusual or unconventional reactivities under surprisingly mild reaction conditions. In such systems, photoactivated sensitizers initiate a single electron transfer from (or to) a closed-shell organic molecule to produce radical cations or radical anions whose reactivities are then exploited for interesting or unusual chemical transformations. However, the high reactivity of photoexcited substrates, intermediate radical ions or radicals, and the low activation barriers for follow-up reactions provide significant hurdles for the development of efficient catalytic photochemical processes that work under stereochemical control and provide chiral molecules in an asymmetric fashion. Here we report a highly efficient asymmetric catalyst that uses visible light for the necessary molecular activation, thereby combining asymmetric catalysis and photocatalysis. We show that a chiral iridium complex can serve as a sensitizer for photoredox catalysis and at the same time provide very effective asymmetric induction for the enantioselective alkylation of 2-acyl imidazoles. This new asymmetric photoredox catalyst, in which the metal centre simultaneously serves as the exclusive source of chirality, the catalytically active Lewis acid centre, and the photoredox centre, offers new opportunities for the `green' synthesis of non-racemic chiral molecules.

  6. Asymmetrical reinforcement and Wolbachia infection in Drosophila.

    Directory of Open Access Journals (Sweden)

    John Jaenike

    2006-10-01

    Full Text Available Reinforcement refers to the evolution of increased mating discrimination against heterospecific individuals in zones of geographic overlap and can be considered a final stage in the speciation process. One the factors that may affect reinforcement is the degree to which hybrid matings result in the permanent loss of genes from a species' gene pool. Matings between females of Drosophila subquinaria and males of D. recens result in high levels of offspring mortality, due to interspecific cytoplasmic incompatibility caused by Wolbachia infection of D. recens. Such hybrid inviability is not manifested in matings between D. recens females and D. subquinaria males. Here we ask whether the asymmetrical hybrid inviability is associated with a corresponding asymmetry in the level of reinforcement. The geographic ranges of D. recens and D. subquinaria were found to overlap across a broad belt of boreal forest in central Canada. Females of D. subquinaria from the zone of sympatry exhibit much stronger levels of discrimination against males of D. recens than do females from allopatric populations. In contrast, such reproductive character displacement is not evident in D. recens, consistent with the expected effects of unidirectional cytoplasmic incompatibility. Furthermore, there is substantial behavioral isolation within D. subquinaria, because females from populations sympatric with D. recens discriminate against allopatric conspecific males, whereas females from populations allopatric with D. recens show no discrimination against any conspecific males. Patterns of general genetic differentiation among populations are not consistent with patterns of behavioral discrimination, which suggests that the behavioral isolation within D. subquinaria results from selection against mating with Wolbachia-infected D. recens. Interspecific cytoplasmic incompatibility may contribute not only to post-mating isolation, an effect already widely recognized, but also to

  7. Asymmetric Best Effort Service for Packet Networks

    OpenAIRE

    Le Boudec, Jean-Yves; Hamdi, M; Blazevic, L.; P. Thiran

    1998-01-01

    We propose a system and method for providing a ``throughput versus delay'' differentiated service for IP packets. We distinguish two types of traffic: type A and type B. It is expected that type A traffic receives less throughput per flow than type B. On the other hand, type A packets experience considerably smaller delay. The method is intended to be implemented in Internet routers. No bandwidth or buffer reservation is assumed in this system. The service remains a Best Effort service, thus ...

  8. Asymmetric Best Effort Service for Packet Networks

    OpenAIRE

    Blazevic, Ljubica; Le Boudec, Jean-Yves; Thiran, Patrick

    1998-01-01

    We propose a system and method for providing a ``throughput versus delay`` differentiated service for IP packets. We distinguish two types of traffic: type A and type B. It is expected that type A traffic receives less throughput per flow than type B. On the other hand, type A packets experience considerably smaller delay. The method is intended to be implemented in Internet routers. No bandwidth or buffer reservation is assumed in this system. The service remains a Best Effort service, thus...

  9. Prediction and control of vortex-dominated and vortex-wake flows

    Science.gov (United States)

    Kandil, Osama

    1993-01-01

    This progress report documents the accomplishments achieved in the period from December 1, 1992 until November 30, 1993. These accomplishments include publications, national and international presentations, NASA presentations, and the research group supported under this grant. Topics covered by documents incorporated into this progress report include: active control of asymmetric conical flow using spinning and rotary oscillation; supersonic vortex breakdown over a delta wing in transonic flow; shock-vortex interaction over a 65-degree delta wing in transonic flow; three dimensional supersonic vortex breakdown; numerical simulation and physical aspects of supersonic vortex breakdown; and prediction of asymmetric vortical flows around slender bodies using Navier-Stokes equations.

  10. Asymmetric bias in user guided segmentations of brain structures.

    Science.gov (United States)

    Maltbie, Eric; Bhatt, Kshamta; Paniagua, Beatriz; Smith, Rachel G; Graves, Michael M; Mosconi, Matthew W; Peterson, Sarah; White, Scott; Blocher, Joseph; El-Sayed, Mohammed; Hazlett, Heather C; Styner, Martin A

    2012-01-16

    Brain morphometric studies often incorporate comparative hemispheric asymmetry analyses of segmented brain structures. In this work, we present evidence that common user guided structural segmentation techniques exhibit strong left-right asymmetric biases and thus fundamentally influence any left-right asymmetry analyses. In this study, MRI scans from ten pediatric subjects were employed for studying segmentations of amygdala, globus pallidus, putamen, caudate, and lateral ventricle. Additionally, two pediatric and three adult scans were used for studying hippocampus segmentation. Segmentations of the sub-cortical structures were performed by skilled raters using standard manual and semi-automated methods. The left-right mirrored versions of each image were included in the data and segmented in a random order to assess potential left-right asymmetric bias. Using shape analysis we further assessed whether the asymmetric bias is consistent across subjects and raters with the focus on the hippocampus. The user guided segmentation techniques on the sub-cortical structures exhibited left-right asymmetric volume bias with the hippocampus displaying the most significant asymmetry values (pstudy is to raise awareness in the neuroimaging community regarding the presence of the asymmetric bias and its influence on any left-right hemispheric analyses. We also recommend reexamining previous research results in the light of this new finding.

  11. Performance of JPEG Image Transmission Using Proposed Asymmetric Turbo Code

    Directory of Open Access Journals (Sweden)

    Siddiqi Mohammad Umar

    2007-01-01

    Full Text Available This paper gives the results of a simulation study on the performance of JPEG image transmission over AWGN and Rayleigh fading channels using typical and proposed asymmetric turbo codes for error control coding. The baseline JPEG algorithm is used to compress a QCIF ( "Suzie" image. The recursive systematic convolutional (RSC encoder with generator polynomials , that is, (13/11 in decimal, and 3G interleaver are used for the typical WCDMA and CDMA2000 turbo codes. The proposed asymmetric turbo code uses generator polynomials , that is, (13/11; 13/9 in decimal, and a code-matched interleaver. The effect of interleaver in the proposed asymmetric turbo code is studied using weight distribution and simulation. The simulation results and performance bound for proposed asymmetric turbo code for the frame length , code rate with Log-MAP decoder over AWGN channel are compared with the typical system. From the simulation results, it is observed that the image transmission using proposed asymmetric turbo code performs better than that with the typical system.

  12. Performance of JPEG Image Transmission Using Proposed Asymmetric Turbo Code

    Directory of Open Access Journals (Sweden)

    Mohamad Yusoff Alias

    2007-01-01

    Full Text Available This paper gives the results of a simulation study on the performance of JPEG image transmission over AWGN and Rayleigh fading channels using typical and proposed asymmetric turbo codes for error control coding. The baseline JPEG algorithm is used to compress a QCIF (176×144 “Suzie” image. The recursive systematic convolutional (RSC encoder with generator polynomials (1,D3+D2+1/D3+D+1, that is, (13/11 in decimal, and 3G interleaver are used for the typical WCDMA and CDMA2000 turbo codes. The proposed asymmetric turbo code uses generator polynomials (1,D3+D2+1/D3+D+1;D3+D2+1/D3+1, that is, (13/11; 13/9 in decimal, and a code-matched interleaver. The effect of interleaver in the proposed asymmetric turbo code is studied using weight distribution and simulation. The simulation results and performance bound for proposed asymmetric turbo code for the frame length N=400, code rate r=1/3 with Log-MAP decoder over AWGN channel are compared with the typical system. From the simulation results, it is observed that the image transmission using proposed asymmetric turbo code performs better than that with the typical system.

  13. Success Factors of Asymmetric Connections - Example of Large Slovenian Enterprises

    Directory of Open Access Journals (Sweden)

    Viktor Vračar

    2014-11-01

    Full Text Available More and more companies realize the fact that networking or partner collaborations, which are based on partner relations between companies, are essential for their long-term existence. In today’s global competitive environment each company is included at least in some different connections. Very common connections occur between large and smaller enterprises, where the so called asymmetric connections occur, which may be understood as the ability of one organisation to establish power, influence and control over the other organisation and its resources. According to numerous statements, the connections between enterprises are very frequently uneffectivenessful, with opinions on the optimal nature of asymmetric connections being quite common as well, whereby it is, as a rule, a synergic complementing of missing content for both partners. To verify the thesis, that companies achieve more competitiveness and effectiveness through connections, whereby the so called asymmetric connections are common, a structural model of the evolution of asymmetric connection has been developed, which connects the theoretically identified factors and all dependent concepts of competitiveness, efficiency and effectiveness. The empirical research also attempts to further expose the factors of asymmetric connections, which affect efficiency and effectiveness of the connected enterprises.

  14. Citrus asymmetric somatic hybrids produced via fusion of gamma-irradiated and iodoacetamide-treated protoplasts

    Energy Technology Data Exchange (ETDEWEB)

    Bona, Claudine Maria de [Instituto Agronomico do Parana (IAPAR), Curitiba, PR (Brazil)], e-mail: debona@iapar.br; Gould, Jean Howe [Texas A and M University, College Station, TX (United States). Dept. of Ecosystem Science and Management], e-mail: gould@tamu.edu; Miller Junior, J. Creighton [Texas A and M University, College Station, TX (United States). Dept. of Horticultural Sciences], e-mail: jcmillerjr@tamu.edu; Stelly, David [Texas A and M University, College Station, TX (United States). Dept. of Soil and Crop Sciences], e-mail: stelly@tamu.edu; Louzada, Eliezer Silva [Texas A and M University, Kingsville, TX (United States). Citrus Center], e-mail: e-louzada@tamu.edu

    2009-05-15

    The objective of this study was to produce citrus somatic asymmetric hybrids by fusing gamma.irradiated protoplasts with iodoacetamide-treated protoplasts. Protoplasts were isolated from embryogenic suspension cells of grapefruit (Citrus paradisi Macfad.) cultivars Ruby Red and Flame, sweet oranges (C. sinensis Osbeck) 'Itaborai', 'Natal', Valencia', and 'Succari', from 'Satsuma' (C. unshiu Marcow.) and 'Changsha' mandarin (C. reticulata Blanco) and 'Murcott' tangor (C. reticulata x C. sinensis). Donor protoplasts were exposed to gamma rays and receptor protoplasts were treated with 3 mmol L{sup -1} iodoacetamide (IOA), and then they were fused for asymmetric hybridization. Asymmetric embryos were germinated, and the resulting shoots were either grafted onto sour orange, rough lemon or 'Swingle' (C. paradisi x Poncirus trifoliata) x 'Sunki' mandarin rootstock seedlings, or rooted after dipping their bases in indol.butyric acid (IBA) solution. The products were later acclimatized to greenhouse conditions. Ploidy was analyzed by flow cytometry, and hybridity was confirmed by amplified fragment length polymorphism (AFLP) analysis of plantlet DNA samples. The best treatment was the donor-recipient fusion combination of 80 Gy.irradiated 'Ruby Red' protoplasts with 20 min IOA.treated 'Succari' protoplasts. Tetraploid and aneuploid plants were produced. Rooting recalcitrance was solved by dipping shoots' stems in 3,000 mg L{sup -1} IBA solution for 10 min. (author)

  15. Laboratory study of ion and electron dynamics during asymmetric magnetic reconnection

    Science.gov (United States)

    Yoo, J.; Jara-Almonte, J.; Yamada, M.; Ji, H.; Fox, W. R., II; Chen, L. J.; Roytershteyn, V.; Na, B.

    2015-12-01

    Magnetic reconnection at the dayside magnetopause has a large density asymmetry across the current sheet. To study effects of the density asymmetry on the ion and electron dynamics, plasmas with a significant (~10) density asymmetry are created in the Magnetic Reconnection Experiment (MRX) [1]. The density asymmetry affects the ion flow pattern by changing the in-plane electrostatic field such that the potential decrease on the high-density side becomes much smaller than that on the low-density side [2]. The ion inflow stagnation point is shifted toward the low-density side and the maximum ion outflow velocity is observed on the low-density side. The density asymmetry also makes the electron temperature profile asymmetric, which has a higher temperature near the low-density-side separatrices. The bulk electron heating is proportional to the total incoming magnetic energy per particle. The electron energization process during asymmetric reconnection is studied via numerical simulations. By comparing 2D simulations with corresponding 3D simulations, we find that the overall energization process does not depend on variations along the third dimension. Where and how electrons are energized during asymmetric reconnection will be discussed by using data from 2D numerical simulations. Finally, the scaling of the reconnection rate and the ion outflow speed given by the Cassak and Shay 2007 [3] is tested by systematically varying the density ratio. The measured ion outflow speed is about 40% of the theoretical values and the measured reconnection rate agrees with the scaling only with the measured density in the exhaust region. [1] M. Yamada et al., Phys. Plasmas 4, 1936 (1997). [2] J. Yoo et al., Phys. Rev. Lett. 113, 095002 (2014). [3] P. Cassak and M. Shay, Phys. Plasmas 14, 102114 (2007).

  16. Estimation of flood warning runoff thresholds in ungauged basins with asymmetric error functions

    Directory of Open Access Journals (Sweden)

    E. Toth

    2015-06-01

    Full Text Available In many real-world flood forecasting systems, the runoff thresholds for activating warnings or mitigation measures correspond to the flow peaks with a given return period (often the 2-year one, that may be associated with the bankfull discharge. At locations where the historical streamflow records are absent or very limited, the threshold can be estimated with regionally-derived empirical relationships between catchment descriptors and the desired flood quantile. Whatever is the function form, such models are generally parameterised by minimising the mean square error, that assigns equal importance to overprediction or underprediction errors. Considering that the consequences of an overestimated warning threshold (leading to the risk of missing alarms generally have a much lower level of acceptance than those of an underestimated threshold (leading to the issuance of false alarms, the present work proposes to parameterise the regression model through an asymmetric error function, that penalises more the overpredictions. The estimates by models (feedforward neural networks with increasing degree of asymmetry are compared with those of a traditional, symmetrically-trained network, in a rigorous cross-validation experiment referred to a database of catchments covering the Italian country. The analysis shows that the use of the asymmetric error function can substantially reduce the number and extent of overestimation errors, if compared to the use of the traditional square errors. Of course such reduction is at the expense of increasing underestimation errors, but the overall accurateness is still acceptable and the results illustrate the potential value of choosing an asymmetric error function when the consequences of missed alarms are more severe than those of false alarms.

  17. Turbulent combustion flow through variable cross section channel

    Energy Technology Data Exchange (ETDEWEB)

    Rogov, B.V.; Sokolova, I.A.

    1999-07-01

    The object of this study is to develop a new evolutionary numerical method for solving direct task of Laval nozzle, which provides non-iterative calculations of chemical reacting turbulent flows with detailed kinetic chemistry. The numerical scheme of fourth order along the normal coordinate and second order along the streamwise one is derived for calculation of difference-differential equations of the second order and the first order. Marching method provides the possibility of computing field flow in subsonic section of nozzle and near an expansion. Critical mass consumption is calculated with controlled accuracy. After critical cross section of nozzle a combined marching method with global iterations over axial pressure (only) makes it possible to overcome ill posedness of mixed supersonic flow and calculate the whole flow field near and after critical cross section. Numerical results are demonstrated on turbulent burning hydrogen-oxygen flow through Laval nozzle with curvature of wall K{sub w} = 0.5.

  18. Effect of radiation and magnetic field on peristaltic transport of nanofluids through a porous space in a tapered asymmetric channel

    Energy Technology Data Exchange (ETDEWEB)

    Kothandapani, M., E-mail: mkothandapani@gmail.com [Department of Mathematics, University College of Engineering Arni, (A Constituent College of Anna University Chennai), Arni 632326, Tamil Nadu (India); Prakash, J., E-mail: prakashjayavel@yahoo.co.in [Department of Mathematics, Arulmigu Meenakshi Amman College of Engineering, Vadamavandal 604410, Tamil Nadu (India)

    2015-03-15

    Theoretical analyses on the effect of radiation and MHD on the peristaltic flow of a nanofluid through a porous medium in a two dimensional tapered asymmetric channel has been made. The nanofluid is assumed to be electrically conducting in the presence of a uniform magnetic field. The transport equation accounts the both Brownian motion and thermophoresis along with the radiation reaction. The problem has been further simplified with the authentic assumptions of long wavelength and small Reynolds number. The analytical expressions obtained for the axial velocity, stream function, temperature field, nanoparticle fraction field and pressure gradient provide satisfactory explanation. Influence of various parameters on the flow characteristics have been discussed with the help of graphical results. The trapping phenomenon has also been discussed in detail. - Highlights: • Combine effect of thermal radiation and MHD on the peristaltic flow of a Newtonian nanofluid are discussed. • This work may be first attempt dealing the study of Newtonian nanofluid flow in the porous tapered asymmetric channel. • The velocity, stream function, temperature field and nanoparticle fraction field provide satisfactory explanation with help of graphs.

  19. Plasmon coupling of magnetic resonances in an asymmetric gold semishell

    Science.gov (United States)

    Ye, Jian; Kong, Yan; Liu, Cheng

    2016-05-01

    The generation of magnetic dipole resonances in metallic nanostructures is of great importance for constructing near-zero or even negative refractive index metamaterials. Commonly, planar two-dimensional (2D) split-ring resonators or relevant structures are basic elements of metamaterials. In this work, we introduce a three-dimensional (3D) asymmetric Au semishell composed of two nanocups with a face-to-face geometry and demonstrate two distinct magnetic resonances spontaneously in the visible-near infrared optical wavelength regime. These two magnetic resonances are from constructive and destructive hybridization of magnetic dipoles of individual nanocups in the asymmetric semishell. In contrast, complete cancellation of magnetic dipoles in the symmetric semishell leads to only a pronounced electric mode with near-zero magnetic dipole moment. These 3D asymmetric resonators provide new ways for engineering hybrid resonant modes and ultra-high near-field enhancement for the design of 3D metamaterials.

  20. Experimental Quantification of Asymmetric Einstein-Podolsky-Rosen Steering.

    Science.gov (United States)

    Sun, Kai; Ye, Xiang-Jun; Xu, Jin-Shi; Xu, Xiao-Ye; Tang, Jian-Shun; Wu, Yu-Chun; Chen, Jing-Ling; Li, Chuan-Feng; Guo, Guang-Can

    2016-04-22

    Einstein-Podolsky-Rosen (EPR) steering describes the ability of one observer to nonlocally "steer" the other observer's state through local measurements. EPR steering exhibits a unique asymmetric property; i.e., the steerability can differ between observers, which can lead to one-way EPR steering in which only one observer obtains steerability in the steering process. This property is inherently different from the symmetric concepts of entanglement and Bell nonlocality, and it has attracted increasing interest. Here, we experimentally demonstrate asymmetric EPR steering for a class of two-qubit states in the case of two measurement settings. We propose a practical method to quantify the steerability. We then provide a necessary and sufficient condition for EPR steering and clearly demonstrate one-way EPR steering. Our work provides new insight into the fundamental asymmetry of quantum nonlocality and has potential applications in asymmetric quantum information processing.

  1. Multiband Asymmetric Transmission of Airborne Sound by Coded Metasurfaces

    Science.gov (United States)

    Xie, Boyang; Cheng, Hua; Tang, Kun; Liu, Zhengyou; Chen, Shuqi; Tian, Jianguo

    2017-02-01

    We present the design, characterization, and theoretical and experimental demonstration of multiband asymmetric transmission of airborne sound using an ultrathin coded metasurface formed by an alternating arrangement of the coding elements 0 and 1. The asymmetric transmission effect can be easily controlled to selectively achieve off and on by coding different patterns. Both frequency- and angle-selective transmission is discussed. The proposed multiband asymmetric transmission stems from the constructive and destructive interferences of acoustic-wave coupling between the coded elements. The experimental results are in relative agreement with numerical simulations. This work opens an alternative path for ultrathin acoustic-device design and shows promise for application in acoustic rectification and noise control.

  2. Gravity-induced asymmetric distribution of a plant growth hormone

    Science.gov (United States)

    Bandurski, R. S.; Schulze, A.; Momonoki, Y.

    1984-01-01

    Dolk (1936) demonstrated that gravistimulation induced an asymmetric distribution of auxin in a horizontally-placed shoot. An attempt is made to determine where and how that asymmetry arises, and to demonstrate that the endogenous auxin, indole-3-acetic acid, becomes asymmetrically distributed in the cortical cells of the Zea mays mesocotyl during 3 min of geostimulation. Further, indole-3-acetic acid derived by hydrolysis of an applied transport form of the hormone, indole-3-acetyl-myo-inositol, becomes asymmetrically distributed within 15 min of geostimulus time. From these and prior data is developed a working theory that the gravitational stimulus induces a selective leakage, or secretion, of the hormone from the vascular tissue to the cortical cells of the mesocotyl.

  3. New Asymmetric Fuzzy PID Control for Pneumatic Position Control System

    Institute of Scientific and Technical Information of China (English)

    薛阳; 彭光正; 范萌; 伍清河

    2004-01-01

    A fuzzy control algorithm of asymmetric fuzzy strategy is introduced for a servo-pneumatic position system. It can effectively solve the difficult problems of single rod low friction cylinders, which are mainly caused by asymmetric structures and different friction characteristics in two directions. On the basis of this algorithm, a traditional PID control is used to improve dynamic performance. Furthermore, a new asymmetric fuzzy PID control with α factor is advanced to improve the self-adaptability and robustness of the system. Both the theoretical analyses and experimental results prove that, with this control strategy, the dynamic performance of the system can be greatly improved. The system using this control algorithm has strong robustness and it obtains desired overshoot and repeatability in both transient and steady-state responses.

  4. Phase-transfer-catalysed asymmetric synthesis of tetrasubstituted allenes

    Science.gov (United States)

    Hashimoto, Takuya; Sakata, Kazuki; Tamakuni, Fumiko; Dutton, Mark J.; Maruoka, Keiji

    2013-03-01

    Allenes are molecules based on three carbons connected by two cumulated carbon-carbon double bonds. Given their axially chiral nature and unique reactivity, substituted allenes have a variety of applications in organic chemistry as key synthetic intermediates and directly as part of biologically active compounds. Although the demands for these motivated many endeavours to make axially chiral, substituted allenes by exercising asymmetric catalysis, the catalytic asymmetric synthesis of fully substituted ones (tetrasubstituted allenes) remained largely an unsolved issue. The fundamental obstacle to solving this conundrum is the lack of a simple synthetic transformation that provides tetrasubstituted allenes in the action of catalysis. We report herein a strategy to overcome this issue by the use of a phase-transfer-catalysed asymmetric functionalization of 1-alkylallene-1,3-dicarboxylates with N-arylsulfonyl imines and benzylic and allylic bromides.

  5. Asymmetric spindle pole formation in CPAP-depleted mitotic cells.

    Science.gov (United States)

    Lee, Miseon; Chang, Jaerak; Chang, Sunghoe; Lee, Kyung S; Rhee, Kunsoo

    2014-02-21

    CPAP is an essential component for centriole formation. Here, we report that CPAP is also critical for symmetric spindle pole formation during mitosis. We observed that pericentriolar material between the mitotic spindle poles were asymmetrically distributed in CPAP-depleted cells even with intact numbers of centrioles. The length of procentrioles was slightly reduced by CPAP depletion, but the length of mother centrioles was not affected. Surprisingly, the young mother centrioles of the CPAP-depleted cells are not fully matured, as evidenced by the absence of distal and subdistal appendage proteins. We propose that the selective absence of centriolar appendages at the young mother centrioles may be responsible for asymmetric spindle pole formation in CPAP-depleted cells. Our results suggest that the neural stem cells with CPAP mutations might form asymmetric spindle poles, which results in premature initiation of differentiation.

  6. Characteristic of involute slope modification of asymmetric spur gear

    Institute of Scientific and Technical Information of China (English)

    DENG Xiao-he; HUA Lin; HAN Xing-hui

    2015-01-01

    The meshing characteristic of asymmetric involute spur gear was studied, the equations of the geometric shape of the asymmetric gear for both sides were deduced, and the equations of contact ratio and the key points of contact were also obtained. Meanwhile, an involute slope modification method considering the effects of static transmission errors was proposed based on the meshing properties. The characteristic of the involute slope modification was analyzed by changing different modification parameters. The mesh stiffness and synthetic mesh stiffness of unmodified and modified asymmetric spur gears were investigated. Furthermore, the spectrums of synthetic mesh stiffness under different modification parameters were compared. Research results showed that the modification parameters influence the meshing performance of gear pairs, and the proposed modification method was feasible to improve the transmission performance of gear pairs with appropriate modification parameters.

  7. Continuous Flavor Symmetries and the Stability of Asymmetric Dark Matter

    CERN Document Server

    Bishara, Fady

    2014-01-01

    Generically, the asymmetric interactions in asymmetric dark matter (ADM) models lead to decaying DM. We show that, for ADM that carries nonzero baryon number, the continuous flavor symmetries that generate the flavor structure in the quark sector also imply a looser lower bound on the mass scale of the asymmetric mediators between the dark and visible sectors. The mediators for $B=2$ ADM that can produce a signal in the future indirect dark matter searches can thus also be searched for at the LHC. For two examples of the mediator models, with either the MFV or Froggatt-Nielsen flavor breaking pattern, we derive the FCNC constraints and discuss the search strategies at the LHC.

  8. Asymmetric nanoparticle may go "active" at room temperature

    Science.gov (United States)

    Sheng, Nan; Tu, YuSong; Guo, Pan; Wan, RongZheng; Wang, ZuoWei; Fang, HaiPing

    2017-04-01

    Using molecular dynamics simulations, we show that an asymmetrically shaped nanoparticle in dilute solution possesses a spontaneously curved trajectory within a finite time interval, instead of the generally expected random walk. This unexpected dynamic behavior has a similarity to that of active matters, such as swimming bacteria, cells, or even fish, but is of a different physical origin. The key to the curved trajectory lies in the non-zero resultant force originated from the imbalance of the collision forces acted by surrounding solvent molecules on the asymmetrically shaped nanoparticle during its orientation regulation. Theoretical formulae based on microscopic observations have been derived to describe this non-zero force and the resulting motion of the asymmetrically shaped nanoparticle.

  9. Role of Asymmetric Clusters in Desynchronization of Coherent Motion

    DEFF Research Database (Denmark)

    Popovych, O.; Maistrenko, Y.; Mosekilde, Erik

    2002-01-01

    The transition from full synchronization (coherent motion) to two-cluster dynamics is studied for a system of N globally coupled logistic maps. When increasing the nonlinearity parameter of the individual map, new periodic and strongly asymmetric two-cluster states are found to emerge in the same...... order as the periodic windows arise in the logistic map. These strongly asymmetric two-cluster states are generally first to stabilize when reducing the coupling strength. Similar phenomena are also observed for a system of globally coupled Henon maps.......The transition from full synchronization (coherent motion) to two-cluster dynamics is studied for a system of N globally coupled logistic maps. When increasing the nonlinearity parameter of the individual map, new periodic and strongly asymmetric two-cluster states are found to emerge in the same...

  10. Sara endosomes and the asymmetric division of intestinal stem cells.

    Science.gov (United States)

    Montagne, Chrystelle; Gonzalez-Gaitan, Marcos

    2014-05-01

    Tissue homeostasis is maintained by adult stem cells, which self-renew and give rise to differentiating cells. The generation of daughter cells with different fates is mediated by signalling molecules coming from an external niche or being asymmetrically dispatched between the two daughters upon stem cell mitosis. In the adult Drosophila midgut, the intestinal stem cell (ISC) divides to generate a new ISC and an enteroblast (EB) differentiating daughter. Notch signalling activity restricted to the EB regulates intestinal cell fate decision. Here, we show that ISCs divide asymmetrically, and Sara endosomes in ISCs are specifically dispatched to the presumptive EB. During ISC mitosis, Notch and Delta traffic through Sara endosomes, thereby contributing to Notch signalling bias, as revealed in Sara mutants: Sara itself contributes to the control of the ISC asymmetric division. Our data uncover an intrinsic endosomal mechanism during ISC mitosis, which participates in the maintenance of the adult intestinal lineage.

  11. Verifying a theoretical model of loads on an asymmetric disk

    Energy Technology Data Exchange (ETDEWEB)

    Krauze, K.

    1985-02-01

    The results are evaluated of testing a single asymmetric disk cutter used for coal cutting under operational conditions in an underground mine. The tests were aimed at verifying a mathematical model of coal cutting. The mean conventional pressure, a term used by the author, was determined. Forces acting on an asymmetric cutting disk calculated by mathematical modeling were compared to those determined in the tests. Comparisons showed that the model accurately describes coal cutting: in the case of tangential force error was not higher than 18%, in the case of lateral force it was not higher than 46% and in the case of compression force it was not higher than 15%. The method for calculating loads on an asymmetric disk cutter was characterized by reduced labor consumption and low number of tests. 1 reference.

  12. Complete polarimetry on the asymmetric transmission through subwavelength hole arrays.

    Science.gov (United States)

    Arteaga, Oriol; Maoz, Ben M; Nichols, Shane; Markovich, Gil; Kahr, Bart

    2014-06-02

    Dissymmetric, periodically nanostructured metal films can show non-reciprocal transmission of polarized light, in apparent violation of the Lorentz reciprocity theorem. The wave vector dependence of the extraordinary optical transmission in gold films with square and oblique subwavelength hole arrays was examined for the full range of polarized light input states. In normal incidence, the oblique lattice, in contrast to square lattice, showed strong asymmetric, non-reciprocal transmission of circularly polarized light. By analyzing the polarization of the input and the output with a complete Mueller matrix polarimeter the mechanisms that permits asymmetric transmission while preserving the requirement of electromagnetic reciprocity is revealed: the coupling of the linear anisotropies induced by misaligned surface plasmons in the film. The square lattice also shows asymmetric transmission at non-normal incidence, whenever the plane of incidence does not coincide with a mirror line.

  13. Inferring asymmetric limb cloudiness on exoplanets from transit light curves

    CERN Document Server

    von Paris, P; Bordé, P; Leconte, J; Selsis, F

    2016-01-01

    Clouds have been shown to be present in many exoplanetary atmospheres. Cloud formation modeling predicts considerable inhomogeneities of cloud cover, consistent with optical phase curve observations. However, optical phase curves cannot resolve some existing degeneracies between cloud location and cloud optical properties. We present a conceptually simple technique to detect inhomogeneous cloud cover on exoplanets. Such an inhomogeneous cloud cover produces an asymmetric primary transit of the planet in front of the host star. Asymmetric transits produce characteristic residuals compared to a standard symmetric model. Furthermore, bisector spans can be used to determine asymmetries in the transit light curve. We apply a model of asymmetric transits to the light curves of HAT-P-7b, Kepler-7b and HD209458b and search for possible cloud signatures. The nearly uninterrupted Kepler photometry is particularly well-suited for this method since it allows for a very high time resolution. We do not find any statistical...

  14. Asymmetric and axisymmetric dynamics of tropical cyclones

    Directory of Open Access Journals (Sweden)

    J. Persing

    2013-05-01

    into annular rings, the azimuthally-averaged heating rate and radial gradient thereof is considerably less than that in the AX model. This lack of organization results broadly in a slower intensification rate in the 3-D model and leads ultimately to a weaker mature vortex after 12 days of model integration. While axisymmetric heating rates in the 3-D model are weaker than those in the AX model, local heating rates in the 3-D model exceed those in the AX model and at times the vortex in the 3-D model intensifies more rapidly than AX. Analyses of the 3-D model output do not support a recent hypothesis concerning the key role of small-scale vertical mixing processes in the upper-tropospheric outflow in controlling the intensification process. In the 3-D model, surface drag plays a particularly important role in the intensification process for the prototype intensification problem on meteorologically relevant time scales by helping foster the organization of convection in azimuth. There is a radical difference in the behaviour of the 3-D and AX simulations when the surface drag is reduced or increased from realistic values. Borrowing from ideas developed in a recent paper, we give a partial explanation for this difference in behaviour. Our results provide new qualitative and quantitative insight into the differences between the asymmetric and symmetric dynamics of tropical cyclones and would appear to have important consequences for the formulation of a fluid dynamical theory of tropical cyclone intensification and mature intensity. In particular, the results point to some fundamental limitations of strict axisymmetric theory and modelling for representing the azimuthally-averaged behaviour of tropical cyclones in three dimensions.

  15. Dynamic JUNQ inclusion bodies are asymmetrically inherited in mammalian cell lines through the asymmetric partitioning of vimentin.

    Science.gov (United States)

    Ogrodnik, Mikołaj; Salmonowicz, Hanna; Brown, Rachel; Turkowska, Joanna; Średniawa, Władysław; Pattabiraman, Sundararaghavan; Amen, Triana; Abraham, Ayelet-chen; Eichler, Noam; Lyakhovetsky, Roman; Kaganovich, Daniel

    2014-06-01

    Aging is associated with the accumulation of several types of damage: in particular, damage to the proteome. Recent work points to a conserved replicative rejuvenation mechanism that works by preventing the inheritance of damaged and misfolded proteins by specific cells during division. Asymmetric inheritance of misfolded and aggregated proteins has been shown in bacteria and yeast, but relatively little evidence exists for a similar mechanism in mammalian cells. Here, we demonstrate, using long-term 4D imaging, that the vimentin intermediate filament establishes mitotic polarity in mammalian cell lines and mediates the asymmetric partitioning of damaged proteins. We show that mammalian JUNQ inclusion bodies containing soluble misfolded proteins are inherited asymmetrically, similarly to JUNQ quality-control inclusions observed in yeast. Mammalian IPOD-like inclusion bodies, meanwhile, are not always inherited by the same cell as the JUNQ. Our study suggests that the mammalian cytoskeleton and intermediate filaments provide the physical scaffold for asymmetric inheritance of dynamic quality-control JUNQ inclusions. Mammalian IPOD inclusions containing amyloidogenic proteins are not partitioned as effectively during mitosis as their counterparts in yeast. These findings provide a valuable mechanistic basis for studying the process of asymmetric inheritance in mammalian cells, including cells potentially undergoing polar divisions, such as differentiating stem cells and cancer cells.

  16. Control Strategies of Asymmetric Strip Shape in Six-High Cold Rolling Mill%Control Strategies of Asymmetric Strip Shape in Six-High Cold Rolling Mill

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yun; YANG Quan; WANG Xiao-chen

    2011-01-01

    It is a complicated problem for cold-rolled strip to improve asymmetric strip shape in strip production. A roll system and strip coupled model of six-high cold rolling mill was established with finite element method to estimate the effect of intermediate roll shifting, tilting, symmetric and asymmetric bending technologies on strip profile. To reduce asymmetric defects of strip shape as much as possible, some control strategies were proposed, including tilting and asymmetric bending of intermediate roll and work roll. The combinations of these three control strategies can effectively eliminate asymmetric strip shape defects. Finally, the closed-loop control model of asymmetric flat- ness at the last stand was given, and the flatness control system with the function of asymmetric strip shape control was also designed for cold tandem mill.

  17. Asymmetric Electron Transport at Monolayer-Bilayer Heterojunctions of Epitaxial Graphene

    Energy Technology Data Exchange (ETDEWEB)

    Li, An-Ping [ORNL; Clark, Kendal W [ORNL; Zhang, Xiaoguang [ORNL; Gu, Gong [University of Tennessee, Knoxville (UTK); He, Guowei [Carnegie Mellon University (CMU); Feenstra, Randall [Carnegie Mellon University (CMU)

    2014-01-01

    The symmetry of the graphene honeycomb lattice is a key element determining many of graphene s unique electronic properties, such as the linear energy-momentum dispersion and the suppressed backscattering 1,2. However, line defects in large-scale epitaxial graphene films, such as grain boundaries, edges, surface steps, and changes in layer thickness, often break the sublatttice symmetry and can impact transport properties of graphene profoundly 3-6. Here we report asymmetric electron transport upon polarity reversal at individual monolayer-bilayer (ML-BL) boundaries in epitaxial graphene on SiC (0001), revealed by scanning tunneling potentiometry. A greater voltage drop is observed when the current flows from BL to ML graphene than in the reverse direction, and the difference remains nearly unchanged with increasing current. This is not a typical nonlinear conductance due to electron transmission through an asymmetric potential. Rather, it indicates the opening of a dynamic energy gap at the Fermi energy due to the Coulomb interaction between the injected nonequilibrium electron density and the pseudospin polarized Friedel oscillation charge density at the boundary. This intriguing heterojunction transport behavior opens a new avenue towards novel quantum functions such as quantum switching.

  18. Plasma and Energetic Particle Behaviors During Asymmetric Magnetic Reconnection at the Magnetopause

    Science.gov (United States)

    Lee, S. H.; Zhang, H.; Zong, Q.-G.; Otto, A.; Sibeck, D. G.; Wang, Y.; Glassmeier, K.-H.; Daly, P.W.; Reme, H.

    2014-01-01

    The factors controlling asymmetric reconnection and the role of the cold plasma population in the reconnection process are two outstanding questions. We present a case study of multipoint Cluster observations demonstrating that the separatrix and flow boundary angles are greater on the magnetosheath than on the magnetospheric side of the magnetopause, probably due to the stronger density than magnetic field asymmetry at this boundary. The motion of cold plasmaspheric ions entering the reconnection region differs from that of warmer magnetosheath and magnetospheric ions. In contrast to the warmer ions, which are probably accelerated by reconnection in the diffusion region near the subsolar magnetopause, the colder ions are simply entrained by ??×?? drifts at high latitudes on the recently reconnected magnetic field lines. This indicates that plasmaspheric ions can sometimes play only a very limited role in asymmetric reconnection, in contrast to previous simulation studies. Three cold ion populations (probably H+, He+, and O+) appear in the energy spectrum, consistent with ion acceleration to a common velocity.

  19. Gonad morphogenesis defects drive hybrid male sterility in asymmetric hybrid breakdown of Caenorhabditis nematodes.

    Science.gov (United States)

    Dey, Alivia; Jin, Qi; Chen, Yen-Chu; Cutter, Asher D

    2014-01-01

    Determining the causes and evolution of reproductive barriers to gene flow between populations, speciation, is the key to understanding the origin of diversity in nature. Many species manifest hybrid breakdown when they intercross, characterized by increasingly exacerbated problems in later generations of hybrids. Recently, Caenorhabditis nematodes have emerged as a genetic model for studying speciation, and here we investigate the nature and causes of hybrid breakdown between Caenorhabditis remanei and C. latens. We quantify partial F1 hybrid inviability and extensive F2 hybrid inviability; the ~75% F2 embryonic arrest occurs primarily during gastrulation or embryonic elongation. Moreover, F1 hybrid males exhibit Haldane's rule asymmetrically for both sterility and inviability, being strongest when C. remanei serves as maternal parent. We show that the mechanism by which sterile hybrid males are incapable of transferring sperm or a copulatory plug involves defective gonad morphogenesis, which we hypothesize results from linker cell defects in migration and/or cell death during development. This first documented case of partial hybrid male sterility in Caenorhabditis follows expectations of Darwin's corollary to Haldane's rule for asymmetric male fitness, providing a powerful foundation for molecular dissection of intrinsic reproductive barriers and divergence of genetic pathways controlling organ morphogenesis.

  20. A pseudokinase couples signaling pathways to enable asymmetric cell division in a bacterium

    Directory of Open Access Journals (Sweden)

    W. Seth Childers

    2014-12-01

    Full Text Available Bacteria face complex decisions when initiating developmental events such as sporulation, nodulation, virulence, and asymmetric cell division. These developmental decisions require global changes in genomic readout, and bacteria typically employ intricate (yet poorly understood signaling networks that enable changes in cell function. The bacterium Caulobacter crescentus divides asymmetrically to yield two functionally distinct cells: a motile, chemotactic swarmer cell, and a sessile stalked cell with replication and division capabilities. Work from several Caulobacter labs has revealed that differentiation requires concerted regulation by several two-component system (TCS signaling pathways that are differentially positioned at the poles of the predivisional cell (Figure 1. The strict unidirectional flow from histidine kinase (HK to the response regulator (RR, observed in most studied TCS, is difficult to reconcile with the notion that information can be transmitted between two or more TCS signaling pathways. In this study, we uncovered a mechanism by which daughter cell fate, which is specified by the DivJ-DivK-PleC system and effectively encoded in the phosphorylation state of the single-domain RR DivK, is communicated to the CckA-ChpT-CtrA signaling pathway that regulates more than 100 genes for polar differentiation, replication initiation and cell division. Using structural biology and biochemical findings we proposed a mechanistic basis for TCS pathway coupling in which the DivL pseudokinase is repurposed as a sensor rather than participant in phosphotransduction.