WorldWideScience

Sample records for asymmetrical dumbbell structure

  1. Magnetophoresis of flexible DNA-based dumbbell structures

    Science.gov (United States)

    Babić, B.; Ghai, R.; Dimitrov, K.

    2008-02-01

    Controlled movement and manipulation of magnetic micro- and nanostructures using magnetic forces can give rise to important applications in biomedecine, diagnostics, and immunology. We report controlled magnetophoresis and stretching, in aqueous solution, of a DNA-based dumbbell structure containing magnetic and diamagnetic microspheres. The velocity and stretching of the dumbbell were experimentally measured and correlated with a theoretical model based on the forces acting on individual magnetic beads or the entire dumbbell structures. The results show that precise and predictable manipulation of dumbbell structures is achievable and can potentially be applied to immunomagnetic cell separators.

  2. Synthesis and self-assembly of dumbbell shaped ZnO sub-micron structures using low temperature chemical bath deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Borade, P. [National Centre for Nanoscience and Nanotechnology, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098 (India); Joshi, K.U. [Anton-Paar India Pvt. Ltd., Thane (W), 400607 (India); Gokarna, A.; Lerondel, G. [Laboratoire de Nanotechnologie et D' Instrumentation Optique, Institut Charles Delaunay, CNRS UMR 6281, Université de Technologie de Troyes, 12 Rue Marie Curie, BP 2060, 10010 Troyes (France); Walke, P. [National Centre for Nanoscience and Nanotechnology, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098 (India); Late, D. [National Chemical Laboratory (NCL), Pune 400027 (India); Jejurikar, S.M., E-mail: jejusuhas@gmail.com [National Centre for Nanoscience and Nanotechnology, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098 (India)

    2016-02-01

    We report well dispersed horizontal growth of ZnO sub-micron structures using simplest technique ever known i.e. chemical bath deposition (CBD). A set of samples were prepared under two different cases A) dumbbell shaped ZnO grown in CBD bath and B) tubular ZnO structures evolved from dumbbell shaped structures by dissolution mechanism. Single phase wurtzite ZnO formation is confirmed using X-ray diffraction (XRD) technique in both cases. From the morphological investigations performed using scanning electron microscopy (SEM), sample prepared under case A indicate formation of hex bit tool (HBT) shaped ZnO crystals, which observed to self-organize to form dumbbell structures. Further these microstructures are then converted into tubular structures as a fragment of post CBD process. The possible mechanism responsible for the self-assembly of HBT units to form dumbbell structures is discussed. Observed free excitonic peak located at 370 nm in photoluminescence (PL) spectra recorded at 18 K indicate that the micro/nanostructures synthesized using CBD are of high optical quality. - Highlights: • Controlled growth of Dumbbell shaped ZnO using Chemical Bath Deposition (CBD). • Growth mechanism of dumbbell shaped ZnO by self-assembling was discussed. • Quick Transformation of ZnO dumbbell structures in to tubular structures by dissolution. • Sharp UV Emission at 370 nm from both dumbbell and tubular structures.

  3. Equilibria of the three-body problem with rigid dumb-bell satellite

    International Nuclear Information System (INIS)

    Elipe, A.; Palacios, M.; Pretka-Ziomek, H.

    2008-01-01

    This paper is concerned with the orbital-rotational motion of an asymmetric dumb-bell (two masses with fixed distance among them) under the attraction of a central body. For this model, we find some equilibria and give sufficient conditions for their stability

  4. Au@Ag core/shell cuboids and dumbbells: Optical properties and SERS response

    Science.gov (United States)

    Khlebtsov, Boris N.; Liu, Zhonghui; Ye, Jian; Khlebtsov, Nikolai G.

    2015-12-01

    Recent studies have conclusively shown that the plasmonic properties of Au nanorods can be finely controlled by Ag coating. Here, we investigate the effect of asymmetric silver overgrowth of Au nanorods on their extinction and surface-enhanced Raman scattering (SERS) properties for colloids and self-assembled monolayers. Au@Ag core/shell cuboids and dumbbells were fabricated through a seed-mediated anisotropic growth process, in which AgCl was reduced by use of Au nanorods with narrow size and shape distribution as seeds. Upon tailoring the reaction rate, monodisperse cuboids and dumbbells were synthesized and further transformed into water-soluble powders of PEGylated nanoparticles. The extinction spectra of AuNRs were in excellent agreement with T-matrix simulations based on size and shape distributions of randomly oriented particles. The multimodal plasmonic properties of the Au@Ag cuboids and dumbbells were investigated by comparing the experimental extinction spectra with finite-difference time-domain (FDTD) simulations. The SERS efficiencies of the Au@Ag cuboids and dumbbells were compared in two options: (1) individual SERS enhancers in colloids and (2) self-assembled monolayers formed on a silicon wafer by drop casting of nanopowder solutions mixed with a drop of Raman reporters. By using 1,4-aminothiophenol Raman reporter molecules, the analytical SERS enhancement factor (AEF) of the colloidal dumbbells was determined to be 5.1×106, which is an order of magnitude higher than the AEF=4.0×105 for the cuboids. This difference can be explained by better fitting of the dumbbell plasmon resonance to the excitation laser wavelength. In contrast to the colloidal measurements, the AEF=5×107 of self-assembled cuboid monolayers was almost twofold higher than that for dumbbell monolayers, as determined with rhodamine 6G Raman reporters. According to TEM data and electromagnetic simulations, the better SERS response of the self-assembled cuboids is due to uniform

  5. Self-assembly of patchy colloidal dumbbells

    NARCIS (Netherlands)

    Avvisati, Guido|info:eu-repo/dai/nl/407630198; Vissers, Teun|info:eu-repo/dai/nl/304829943; Dijkstra, Marjolein|info:eu-repo/dai/nl/123538807

    2015-01-01

    We employ Monte Carlo simulations to investigate the self-assembly of patchy colloidal dumbbells interacting via a modified Kern-Frenkel potential by probing the system concentration and dumbbell shape. We consider dumbbells consisting of one attractive sphere with diameter sigma(1) and one

  6. Highly Stable [C60AuC60]+/- Dumbbells.

    Science.gov (United States)

    Goulart, Marcelo; Kuhn, Martin; Martini, Paul; Chen, Lei; Hagelberg, Frank; Kaiser, Alexander; Scheier, Paul; Ellis, Andrew M

    2018-05-17

    Ionic complexes between gold and C 60 have been observed for the first time. Cations and anions of the type [Au(C 60 ) 2 ] +/- are shown to have particular stability. Calculations suggest that these ions adopt a C 60 -Au-C 60 sandwich-like (dumbbell) structure, which is reminiscent of [XAuX] +/- ions previously observed for much smaller ligands. The [Au(C 60 ) 2 ] +/- ions can be regarded as Au(I) complexes, regardless of whether the net charge is positive or negative, but in both cases, the charge transfer between the Au and C 60 is incomplete, most likely because of a covalent contribution to the Au-C 60 binding. The C 60 -Au-C 60 dumbbell structure represents a new architecture in fullerene chemistry that might be replicable in synthetic nanostructures.

  7. Advanced Design of Dumbbell-shaped Genetic Minimal Vectors Improves Non-coding and Coding RNA Expression.

    Science.gov (United States)

    Jiang, Xiaoou; Yu, Han; Teo, Cui Rong; Tan, Genim Siu Xian; Goh, Sok Chin; Patel, Parasvi; Chua, Yiqiang Kevin; Hameed, Nasirah Banu Sahul; Bertoletti, Antonio; Patzel, Volker

    2016-09-01

    Dumbbell-shaped DNA minimal vectors lacking nontherapeutic genes and bacterial sequences are considered a stable, safe alternative to viral, nonviral, and naked plasmid-based gene-transfer systems. We investigated novel molecular features of dumbbell vectors aiming to reduce vector size and to improve the expression of noncoding or coding RNA. We minimized small hairpin RNA (shRNA) or microRNA (miRNA) expressing dumbbell vectors in size down to 130 bp generating the smallest genetic expression vectors reported. This was achieved by using a minimal H1 promoter with integrated transcriptional terminator transcribing the RNA hairpin structure around the dumbbell loop. Such vectors were generated with high conversion yields using a novel protocol. Minimized shRNA-expressing dumbbells showed accelerated kinetics of delivery and transcription leading to enhanced gene silencing in human tissue culture cells. In primary human T cells, minimized miRNA-expressing dumbbells revealed higher stability and triggered stronger target gene suppression as compared with plasmids and miRNA mimics. Dumbbell-driven gene expression was enhanced up to 56- or 160-fold by implementation of an intron and the SV40 enhancer compared with control dumbbells or plasmids. Advanced dumbbell vectors may represent one option to close the gap between durable expression that is achievable with integrating viral vectors and short-term effects triggered by naked RNA.

  8. Induced movement of the magnetic beads and DNA-based dumbbell in a micro fluidic channel

    Science.gov (United States)

    Babić, B.; Ghai, R.; Dimitrov, K.

    2007-12-01

    We have explored controlled movement of magnetic beads and a dumbbell structure composed of DNA, a magnetic and a non-magnetic bead in a micro fluidic channel. Movement of the beads and dumbbells is simulated assuming that a net force is described as a superposition between the magnetic and hydrodynamic drag forces. Trajectories of beads and dumbbells are observed with optical light microscopy. The experimentally measured data show a good agreement with the simulations. This dynamical approach offers the prospect to stretch the DNA within the dumbbell and investigate its conformational changes. Further on, we demonstrate that short sonication can reduce multiple attachments of DNA to the beads.

  9. Starch assisted growth of dumbbell-shaped ZnO microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Baranwal, V., E-mail: vikasphy@gmail.com [Nanotechnology Application Centre, University of Allahabad, Allahabad 21002 (India); Zahra, Abeer [Department of Physics, Integral University, Lucknow 226026 (India); Singh, Prashant K.; Pandey, Avinash C. [Nanotechnology Application Centre, University of Allahabad, Allahabad 21002 (India)

    2015-10-15

    We present an experimental study on evolution of dumbbell-shaped ZnO microstructures. Structure, shape, size and optical properties were monitored by means of scanning electron microscopy, x-ray diffraction, and photoluminescence spectroscopy, respectively. Our results show that a crystalline phase of ZnO is formed. A uniform distribution of randomly oriented dumbbell-shaped ZnO microstructures is observed. Near band edge as well as deep level visible emissions confirmed that there are intrinsic defects present in the system. Emissions extending from UV region to visible region show that these microstructures are good quality optical material which can be used in photocatalytic field. - Highlights: • Dumbbell-shaped ZnO micro-rods were synthesized by starch assisted hydrothermal process. • Micro-rods were of crystalline nature, confirmed by x-ray diffraction. • UV-emission as well as deep level visible emissions were observed. • Broad absorption band is observed which can be utilized in photocatalytic field.

  10. Measurement and adjustment of dumb-bells for 9-cell TESLA cavity

    International Nuclear Information System (INIS)

    Xu Wencan; Quan Shengwen; Hao Jiankui; Jiang Tao; Zhang Baocheng; Zhao Kui

    2008-01-01

    Correct Dumb-bells are very important to make sure the right field flatness, frequency of TM010 mode and length of 9-cell TESLA cavity. The shape of the dumb-bells will be wrong due to deep drawing, machining and EB welding. Then, the dumb-bells should be adjusted after iris and stiffness welding according to the mechanical and microwave measurement. Peking University has set up facilities for measuring and correcting the dumb-bells. This paper discusses the method of measuring and correcting the dumb-bells. (authors)

  11. Recent Progress in Syntheses and Applications of Dumbbell-like Nanoparticles**

    OpenAIRE

    Wang, Chao; Xu, Chenjie; Zeng, Hao; Sun, Shouheng

    2009-01-01

    This paper reviews the recent research progress in syntheses and applications of dumbbell-like nanoparticles. It first describes the general synthesis of dumbbell-like nanoparticles containing noble metal and magnetic NPs/or quantum dots. It then outlines the interesting optical and magnetic properties found in these dumbbell nanoparticles. The review further highlights several exciting application potentials of these nanoparticles in catalysis and biomedicine.

  12. Etched poly(ether ether ketone) jacket stir bar with detachable dumbbell-shaped structure for stir bar sorptive extraction.

    Science.gov (United States)

    Zhou, Wei; Wang, Chenlu; Wang, Xuemei; Chen, Zilin

    2018-06-08

    Development of stir bar sorptive extraction (SBSE) device with high stability and extraction efficiency is critical and challenging by date. In this work, etched poly(ether ether ketone) (PEEK) tube with high mechanical strength and large specific surface area was used as jacket for SBSE device. By etching with concentrated sulfuric acid, the smooth outer surface of PEEK become porous with plenty of micro holes, which was beneficial for coating of sorbents and significantly improved the extraction performance. After functionalized by bio-polydopamine method, strong hydrophobic p-naphtholbenzein molecular was immobilized onto the chemical resistant PEEK surface (PNB@E-PEEK) as stationary phase. We also firstly developed a simple detachable dumbbell-shaped structure for improving the workability of PEEK jacket stir bar. The dumbbell-shaped construction can eliminate the friction between stir bar and container, and the design of detachable structure make elution can be accomplished easier with small amount of organic solvent. It was interesting that the developed detachable dumbbell-shaped PNB@E-PEEK stir bar showed exceptional stability and extraction efficiency for SBSE enrichment of multiple analytes including several Sudan dyes, triazines, polycyclic aromatic hydrocarbons (PAHs), alkaloids and flavonoid. By coupling with high performance liquid chromatography-ultraviolet detection (HPLC-UV), PNB@E-PEEK stir bar based SBSE-HPLC-UV method was applied for the analysis of common Sudan dye pollutants. The method showed low limits of detection (0.02-0.03 ng/mL), good linearity (R 2  ≥ 0.9979) and good reproducibility (relative standard deviation ≤ 7.96%). It has been successfully applied to determine three dye pollutants in tap and lake water. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Tunneling and migration of the dumbbell defect in electron-irradiated aluminum-zinc alloys

    International Nuclear Information System (INIS)

    Wallace, P.W.

    1983-01-01

    Ultrasonic attenuation and velocity measurements on irradiated Al-Zn alloys (0.01, 0.1, and 0.5 at %) indicate a tunneling relaxation of the predominant mixed dumbbell defect at low temperatures, and mixed dumbbell migration at the Stage II anneal temperature. The effect of an internal strain varying with the zinc concentration on the measured decrement and modulus change is striking. Evaluated in the framework of a six-level system, this reveals the simultaneous action of resonance and nonclassical relaxation processes. Using Fe as a probe atom, it is shown that mixed dumbbell dissociation is in an insignificant component of the annealing of this defect. The decrease of the annealing temperature at higher zinc concentrations provides evidence that the mixed dumbbell migrates as a unit during annealing. The energies associated with dumbbell migration and interstitial escape are derived. Further evidence for the migration mechanism is obtained from successive irradiation and annealing

  14. Large-scale controllable synthesis of dumbbell-like BiVO4 photocatalysts with enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Lu Yang; Luo Yongsong; Kong Dezhi; Zhang Deyang; Jia Yonglei; Zhang Xinwei

    2012-01-01

    The controllable synthesis of novel dumbbell-like BiVO 4 hierarchical nanostructures has been successfully obtained via a simple hydrothermal route. The as-synthesized products were studied by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and UV–vis absorption spectroscopy. The results showed that the nucleation and growth of the nanodumbbells were governed by an oriented aggregation growth mechanism. It is noteworthy that the concentration of poly(vinyl pyrrolidone) and the volume ratio of H 2 O to CH 3 COOH were crucial to the growth of the final nanoarchitectures. Control experiments were also carried out to investigate the factors which impact on the morphology of the products. Furthermore, the as-prepared BiVO 4 hierarchical nanostructures demonstrated the superior visible-light-driven photocatalytic efficiency, which is helpful for the separation and recycle considering their promising applications in harmful pollutants disposal. - Graphical Abstract: The controllable synthesis of novel dumbbell-like BiVO 4 hierarchical nanostructures has been successfully obtained via a simple hydrothermal route; the as-prepared BiVO 4 hierarchical nanostructures demonstrated the superior visible-light-driven photocatalytic efficiency. Highlights: ►Dumbbell-like BiVO 4 structures were synthesized and characterized for the first time. ► The volume ratios of H 2 O to CH 3 COOH were crucial to the final morphologies. ► Their photocatalytic activity was up to 90% under visible-light irradiation. ► Dumbbell-like BiVO 4 structures may utilize the pollutant disposal.

  15. Tunneling and migration of the dumbbell defect in electron irradiated aluminum-zinc alloys

    International Nuclear Information System (INIS)

    Wallace, P.W.

    1983-01-01

    Ultrasonic attenuation and velocity measurements have been made on irradiated Al-Zn alloys (Zn concentrations of .01%, .1%, and .5% atomic). They provide strong evidence for a tunneling relaxation of the predominant mixed dumbbell defect at low temperatures and for mixed dumbbell migration at the Stage II anneal temperature. The effect of an internal strain varying with the zinc concentration of the measured decrement and modulus change is striking. Evaluated in the framework of a six level system, this reveals the simultaneous action of resonance and non-classical relaxation processes. Using Fe as a probe atom, it is shown that mixed dumbbell dissociation is in an insignificant component of the annealing of this defect. The decrease of the annealing temperature at higher zinc concentrations provides evidence that the mixed dumbbell migrates as a unit during annealing. The energies associated with dumbbell migration and interstitial escape are derived. Further evidence for the migration mechanism is obtained from successive irradiation and annealing measurements on the Al-Zn .01% alloy, and from a comparison of these results with published radiation damage rate measurements of dilute Al-Zn alloys

  16. EFFECT OF THE SHOULDER POSITION ON THE BICEPS BRACHII EMG IN DIFFERENT DUMBBELL CURLS

    Directory of Open Access Journals (Sweden)

    Taian M.M. Vieira

    2009-03-01

    Full Text Available Incline Dumbbell Curl (IDC and Dumbbell Preacher Curl (DPC are two variations of the standard Dumbbell Biceps Curl (DBC, generally applied to optimize biceps brachii contribution for elbow flexion by fixing shoulder at a specific angle. The aim of this study is to identify changes in the neuromuscular activity of biceps brachii long head for IDC, DPC and DBC exercises, by taking into account the changes in load moment arm and muscle length elicited by each dumbbell curl protocol. A single cycle (concentric-eccentric of DBC, IDC and DPC, was applied to 22 subjects using a submaximal load of 40% estimated from an isometric MVC test. The neuromuscular activity of biceps brachii long head was compared by further partitioning each contraction into three phases, according to individual elbow joint range of motion. Although all protocols elicited a considerable level of activation of the biceps brachii muscle (at least 50% of maximum RMS, the contribution of this muscle for elbow flexion/extension varied among exercises. The submaximal elbow flexion (concentric elicited neuro muscular activity up to 95% of the maximum RMS value during the final phase of IDC and DBC and 80% for DPC at the beginning of the movement. All exercises showed significant less muscle activity for the elbow extension (eccentric. The Incline Dumbbell Curl and the classical Dumbbell Biceps Curl resulted in similar patterns of biceps brachii activation for the whole range of motion, whereas Dumbbell Preacher Curl elicited high muscle activation only for a short range of elbow joint angle

  17. Dumbbell-shaped neurofibroma over the external ear

    Directory of Open Access Journals (Sweden)

    S S Shirol

    2015-01-01

    To the best of our knowledge, this is the first ever case to be reported of a dumbbell-shaped neurofibroma over the external ear and only the fourth case of neurofibromatosis type 1 (NF1 to be associated with Hashimoto thyroiditis.

  18. Novel photocatalyst gold nanoparticles with dumbbell-like structure and their superiorly photocatalytic performance for ammonia borane hydrolysis

    Science.gov (United States)

    Zhu, Mingyun; Dai, Yunqian; Fu, Wanlin; Wu, Yanan; Zou, Xixi; You, Tengye; Sun, Yueming

    2018-04-01

    Gold nanoparticles (Au NPs) have attracted remarkable research interest in heterogeneous catalysis due to their unique physical and chemical properties. However, only small-sized Au NPs (power of a single Au nanoparticle (Ps) and turnover frequency of AB molecules within 10 min of D-Au NPs are 52.5 and 3.89 times higher, respectively, than those of spherical Au NPs; (ii) the extinction coefficient and Ps of D-Au NPs are almost 2.72 and 2.42 times as high, respectively, as those of rod-like Au NPs, demonstrating the promoting structure-property relationship of the dumbbell-like structure; (iii) when the pH value of the AB solution was lower than 6.0, the hydrolysis rate was highly promoted, indicating that H+ ions play an active role in the hydrolysis process. This work greatly extends the application of noble metals and provides a new insight into AB hydrolysis.

  19. Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst

    DEFF Research Database (Denmark)

    Sun, Jian-Hui; Dong, Shu-Ying; Wang, Yong-Kui

    2009-01-01

    achieved 68.0%, 99.0% and 98.5%, the TOC removal efficiencies achieved 43.2%, 59.4% and 70.6%, respectively. Compared to commercial ZnO, 16-22% higher TOC removal efficiency was obtained by the dumbbell-shaped ZnO. The results indicated that the prepared dumbbell-shaped ZnO microcrystal photocatalyst...

  20. New jump mechanisms for dumbbell and induced migration of point defects by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Doan, N.V.; Pontikis, V.; Tenenbaum, A.

    1978-01-01

    The induced migration of the (100) - dumbbell is studied using the molecular dynamics simulation. Two new types of jumps are discovered for the dumbbell: first the jump takes place through an intermediate crowdion configuration (110), then the crowdion is converted into the dumbbell configuration with some other orientation. The threshold energy is found for different knocked-on directions. The dependence of the interstitial jump frequency on the incident electron energy is determined for copper. The induced interstitial migration shows a maximum value, but for an electron energy around 15 Kev. The effect of new jump mechanisms on the effective recombination volume is discussed

  1. Binding of Dumbbell Oligonucleotides to MoMuLV Reverse Transcriptase: Inhibitory Properties of RNase H Activity

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2010-01-01

    Full Text Available Dumbbell oligonucleotides with loops of various chemistry were synthesized. Incubation of dumbbell oligonucleotides containing phosphorothioate bonds or trimethylene phosphate linkages in loops with S1 nuclease did not result in significant cleavage under conditions which led to the degradation of dumbbell oligonucleotide containing phophodiester bonds in the loops. The binding of reverse transcriptase of Moloney Murine Leukemia Virus (MoMuLV was evaluated with all the five oligonucleotides. The protein binds to all the dumbbell oligonucleotides with similar affinity. The dissociation constants evaluated using PAGE band mobility shift assays were of the order of 10-7. The inhibitory properties of the retroviral RNase H activity was evaluated using 3H –UTP-labeled RNA:RNA-DNA hybrid. It was found that the best dumbbell oligonucleotide, inhibitor contained phosphorothioate residues in both the loops. Our value studies demonstrated that this particularly designed oligonucleotide displays an IC50 of 18 nM in its inhibition on the reverse transcriptase RNase H activity, a magnitude lower than that of first nucleotide reverse transcriptase of HIV-1, tenofovir, introduced by Gilead Science in the market.

  2. Double dumb-bell calculus in childhood

    Directory of Open Access Journals (Sweden)

    Joshi Prashant

    2009-01-01

    Full Text Available An eight-year old male was admitted with complaints of right scrotal swelling, dysuria and intermittent retention of urine for 10 days. On per-rectal examination, a hard mass was palpable in the posterior urethra. An X-ray (KUB of the abdomen revealed a double dumb-bell calculus at the base of bladder, extending into the posterior urethra. A cystolithotomy via the suprapubic approach was successfully curative.

  3. Differences in unilateral chest press muscle activation and kinematics on a stable versus unstable surface while holding one versus two dumbbells

    Science.gov (United States)

    Patterson, Jeffrey M.; Oppenheimer, Nicole E.; Feser, Erin H.

    2015-01-01

    Training the bench press exercise on a traditional flat bench does not induce a level of instability as seen in sport movements and activities of daily living. Twenty participants were recruited to test two forms of instability: using one dumbbell rather than two and lifting on the COR bench compared to a flat bench. Electromyography (EMG) amplitudes of the pectoralis major, middle trapezius, external oblique, and internal oblique were recorded and compared. Differences in range of motion (ROM) were evaluated by measuring an angular representation of the shoulder complex. Four separate conditions of unilateral bench press were tested while lifting on a: flat bench with one dumbbell, flat bench with two dumbbells, COR Bench with one dumbbell, and COR Bench with two dumbbells. The results imply that there are no differences in EMG amplitude or ROM between the COR bench and traditional bench. However, greater ROM was found to be utilized in the single dumbbell condition, both in the COR bench and the flat bench. PMID:26528421

  4. Decisiveness of the spectral gaps of periodic Schrödinger operators on the dumbbell-like metric graph

    Directory of Open Access Journals (Sweden)

    Hiroaki Niikuni

    2015-01-01

    Full Text Available In this paper, we consider periodic Schrödinger operators on the dumbbell-like metric graph, which is a periodic graph consisting of lines and rings. Let one line and two rings be in the basic period. We see the relationship between the structure of graph and the band-gap spectrum.

  5. High power CW output from low confinement asymmetric structure diode laser

    NARCIS (Netherlands)

    Iordache, G.; Buda, M.; Acket, G.A.; Roer, van de T.G.; Kaufmann, L.M.F.; Karouta, F.; Jagadish, C.; Tan, H.H.

    1999-01-01

    High power continuous wave output from diode lasers using low loss, low confinement, asymmetric structures is demonstrated. An asymmetric structure with an optical trap layer was grown by metal organic vapour phase epitaxy. Gain guided 50 µm wide stripe 1-3 mm long diode lasers were studied. 1.8 W

  6. Optical-fiber strain sensors with asymmetric etched structures.

    Science.gov (United States)

    Vaziri, M; Chen, C L

    1993-11-01

    Optical-fiber strain gauges with asymmetric etched structures have been analyzed, fabricated, and tested. These sensors are very sensitive with a gauge factor as high as 170 and a flat frequency response to at least 2.7 kHz. The gauge factor depends on the asymmetry of the etched structures and the number of etched sections. To understand the physical principles involved, researchers have used structural analysis programs based on a finite-element method to analyze fibers with asymmetric etched structures under tensile stress. The results show that lateral bends are induced on the etched fibers when they are stretched axially. To relate the lateral bending to the optical attenuation, we have also employed a ray-tracing technique to investigate the dependence of the attenuation on the structural deformation. Based on the structural analysis and the ray-tracing study parameters affecting the sensitivity have been studied. These results agree with the results of experimental investigations.

  7. Steady Stokes flow past dumbbell shaped axially symmetric body of revolution: An analytic approach

    Directory of Open Access Journals (Sweden)

    Srivastava Kumar Deepak

    2012-01-01

    Full Text Available In this paper, the problem of steady Stokes flow past dumbbell-shaped axially symmetric isolated body of revolution about its axis of symmetry is considered by utilizing a method (Datta and Srivastava, 1999 based on body geometry under the restrictions of continuously turning tangent on the boundary. The relationship between drag and moment is established in transverse flow situation. The closed form expression of Stokes drag is then calculated for dumbbell-shaped body in terms of geometric parameters b, c, d and a with the aid of this linear relation and the formula of torque obtained by (Chwang and Wu, part 1, 1974 with the use of singularity distribution along axis of symmetry. Drag coefficient and moment coefficient are defined in various forms in terms of dumbbell parameters. Their numerical values are calculated and depicted in respective graphs and compared with some known values.

  8. New ternary tantalum borides containing boron dumbbells: Experimental and theoretical studies of Ta2OsB2 and TaRuB

    International Nuclear Information System (INIS)

    Mbarki, Mohammed; Touzani, Rachid St.; Rehorn, Christian W.G.; Gladisch, Fabian C.; Fokwa, Boniface P.T.

    2016-01-01

    The new ternary transition metal-rich borides Ta 2 OsB 2 and TaRuB have been successfully synthesized by arc-melting the elements in a water-cooled crucible under an argon atmosphere. The crystal structures of both compounds were solved by single-crystal X-ray diffraction and their metal compositions were confirmed by EDX analysis. It was found that Ta 2 OsB 2 and TaRuB crystallize in the tetragonal Nb 2 OsB 2 (space group P4/mnc, no. 128) and the orthorhombic NbRuB (space group Pmma, no. 51) structure types with lattice parameters a=5.878(2) Å, c=6.857(2) Å and a=10.806(2) Å, b=3.196(1) Å, c=6.312(2) Å, respectively. Furthermore, crystallographic, electronic and bonding characteristics have been studied by density functional theory (DFT). Electronic structure relaxation has confirmed the crystallographic parameters while COHP bonding analysis indicates that B 2 -dummbells are the strongest bonds in both compounds. Moreover, the formation of osmium dumbbells in Ta 2 OsB 2 through a Peierls distortion along the c-axis, is found to be the origin of superstructure formation. Magnetic susceptibility measurements reveal that the two phases are Pauli paramagnets, thus confirming the theoretical DOS prediction of metallic character. Also hints of superconductivity are found in the two phases, however lack of single phase samples has prevented confirmation. Furthermore, the thermodynamic stability of the two modifications of AMB (A=Nb, Ta; M =Ru, Os) are studied using DFT, as new possible phases containing either B 4 - or B 2 -units are predicted, the former being the most thermodynamically stable modification. - Graphical abstract: The two new ternary tantalum borides, Ta 2 OsB 2 and TaRuB, have been discovered. Their crystal structures contain boron dumbbells, which are the strongest bonds. Peirls distortion is found responsible for Os 2 -dumbbells formation in Ta 2 OsB 2 . Ta 2 OsB 2 and TaRuB are Pauli paramagnet and potential superconductors. - Highlights:

  9. The Respiratory Impedance in an Asymmetric Model of the Lung Structure

    Directory of Open Access Journals (Sweden)

    Robin De Keyser

    2011-01-01

    Full Text Available This paper presents a model of the respiratory tree as a recurrent, but asymmetric, structure. The intrinsic properties posed by such a system lead to a multi-fractal structure, i.e. a non-integer order model of the total impedance. The fractional order behavior of the asymmetric tree simulated as a dynamic system is assessed by means of Bode plots, on a wide range of frequencies. The results indicate than in a specific frequency range, both the symmetric
    and asymmetric representation of the respiratory tree lead to similar values in the impedance.

  10. Dumbbell-shaped intrathoracic-extradural haemangioma of the thoracic spine.

    Science.gov (United States)

    Doyle, P M; Abou-Zeid, A; Du Plessis, D; Herwadkar, A; Gnanalingham, K K

    2008-04-01

    Spinal haemangiomas are benign vasoproliferative lesions that are typically intra-osseous and generally asymptomatic, although localized pain can be a symptom. Capillary and cavernous variants have been described. We describe a rare case of a dumbbell-shaped haemangioma of the thoracic spine with both an intraspinal-extradural and intrathoracic component.

  11. ROBOTIC SURGERY FOR GIANT PRESACRAL DUMBBELL-SHAPE SCHWANNOMA

    Directory of Open Access Journals (Sweden)

    Farid Yudoyono

    2015-03-01

    Full Text Available Objective: To demonstrate the feasibility of using da Vinci robotic surgical system to perform spinal surgery. Methods: Magnetic resonance imaging (MRI of a 29-year-old female patient complaining right pelvic pain for 1 month revealed a 17x8x10 cm non-homogeneous dumbbell shape encapsulated mass with cystic change located in the pelvic cavity and caused an anterior displacement of urinary bladder and colon. Results: There was no systemic complication and pain decrease 24 hours after surgery and during 2 years of follow up. The patient started a diet 6 hours after the surgery and was discharged 72 hours after the surgery. The pathological diagnosis of the tumor was schwannoma. Conclusions: Giant dumbbell shape presacral schwannomas are rare tumours and their surgical treatment is challenging because of the complex anatomy of the presacral. Clinical application of da Vinci robotic surgical system in the spinal surgical field is currently confined to the treatment of some specific diseases or procedures. However, robotic surgery is expected to play a practical future role as it is minimally invasive. The advent of robotic technology will prove to be a boon to the neurosurgeon.

  12. Unilateral extended suboccipital approach for a C1 dumbbell schwanoma

    Directory of Open Access Journals (Sweden)

    Gorgan R.M.

    2015-03-01

    Full Text Available Craniovertebral junction tumors represent a complex pathology carrying a high risk of injuring the vertebral artery and the lower cranial nerves. Dumbbell C1- C2 schannomas are very rare tumors in this location. We present a case of a 66 years old male accepted for left laterocervical localized pain, headache and vertigo, with a large C1 dumbbell schwannoma extending in lateral over the C1 arch and displacing the C3 segment of the vertebral artery superiorly and anteriorly. Complete removal of the tumor was achieved using a far lateral approach. The approach is discussed with focus on the vertebral artery anatomy as the approach should give enough space to gain control of the artery without creating instability. Safe removal of C1 nerve root schwanomas can be achieved even if they compress and displace the vertebral artery by entering a fibrous tissue plane between the tumor and the vertebral artery.

  13. Data analysis of asymmetric structures advanced approaches in computational statistics

    CERN Document Server

    Saito, Takayuki

    2004-01-01

    Data Analysis of Asymmetric Structures provides a comprehensive presentation of a variety of models and theories for the analysis of asymmetry and its applications and provides a wealth of new approaches in every section. It meets both the practical and theoretical needs of research professionals across a wide range of disciplines and  considers data analysis in fields such as psychology, sociology, social science, ecology, and marketing. In seven comprehensive chapters this guide details theories, methods, and models for the analysis of asymmetric structures in a variety of disciplines and presents future opportunities and challenges affecting research developments and business applications.

  14. New ternary tantalum borides containing boron dumbbells: Experimental and theoretical studies of Ta{sub 2}OsB{sub 2} and TaRuB

    Energy Technology Data Exchange (ETDEWEB)

    Mbarki, Mohammed; Touzani, Rachid St.; Rehorn, Christian W.G.; Gladisch, Fabian C. [Institute of Inorganic Chemistry, RWTH Aachen University, D-52056 Aachen (Germany); Fokwa, Boniface P.T., E-mail: bfokwa@ucr.edu [Institute of Inorganic Chemistry, RWTH Aachen University, D-52056 Aachen (Germany); Department of Chemistry, University of California Riverside (UCR), Riverside, CA 92521 (United States)

    2016-10-15

    The new ternary transition metal-rich borides Ta{sub 2}OsB{sub 2} and TaRuB have been successfully synthesized by arc-melting the elements in a water-cooled crucible under an argon atmosphere. The crystal structures of both compounds were solved by single-crystal X-ray diffraction and their metal compositions were confirmed by EDX analysis. It was found that Ta{sub 2}OsB{sub 2} and TaRuB crystallize in the tetragonal Nb{sub 2}OsB{sub 2} (space group P4/mnc, no. 128) and the orthorhombic NbRuB (space group Pmma, no. 51) structure types with lattice parameters a=5.878(2) Å, c=6.857(2) Å and a=10.806(2) Å, b=3.196(1) Å, c=6.312(2) Å, respectively. Furthermore, crystallographic, electronic and bonding characteristics have been studied by density functional theory (DFT). Electronic structure relaxation has confirmed the crystallographic parameters while COHP bonding analysis indicates that B{sub 2}-dummbells are the strongest bonds in both compounds. Moreover, the formation of osmium dumbbells in Ta{sub 2}OsB{sub 2} through a Peierls distortion along the c-axis, is found to be the origin of superstructure formation. Magnetic susceptibility measurements reveal that the two phases are Pauli paramagnets, thus confirming the theoretical DOS prediction of metallic character. Also hints of superconductivity are found in the two phases, however lack of single phase samples has prevented confirmation. Furthermore, the thermodynamic stability of the two modifications of AMB (A=Nb, Ta; M =Ru, Os) are studied using DFT, as new possible phases containing either B{sub 4}- or B{sub 2}-units are predicted, the former being the most thermodynamically stable modification. - Graphical abstract: The two new ternary tantalum borides, Ta{sub 2}OsB{sub 2} and TaRuB, have been discovered. Their crystal structures contain boron dumbbells, which are the strongest bonds. Peirls distortion is found responsible for Os{sub 2}-dumbbells formation in Ta{sub 2}OsB{sub 2}. Ta{sub 2}OsB{sub 2} and

  15. Revision of the Li13Si4 structure.

    Science.gov (United States)

    Zeilinger, Michael; Fässler, Thomas F

    2013-11-06

    Besides Li17Si4, Li16.42Si4, and Li15Si4, another lithium-rich representative in the Li-Si system is the phase Li13Si4 (trideca-lithium tetra-silicide), the structure of which has been determined previously [Frank et al. (1975 ▶). Z. Naturforsch. Teil B, 30, 10-13]. A careful analysis of X-ray diffraction patterns of Li13Si4 revealed discrepancies between experimentally observed and calculated Bragg positions. Therefore, we redetermined the structure of Li13Si4 on the basis of single-crystal X-ray diffraction data. Compared to the previous structure report, decisive differences are (i) the introduction of a split position for one Li site [occupancy ratio 0.838 (7):0.162 (7)], (ii) the anisotropic refinement of atomic displacement parameters for all atoms, and (iii) a high accuracy of atom positions and unit-cell parameters. The asymmetric unit of Li13Si4 contains two Si and seven Li atoms. Except for one Li atom situated on a site with symmetry 2/m, all other atoms are on mirror planes. The structure consists of isolated Si atoms as well as Si-Si dumbbells surrounded by Li atoms. Each Si atom is either 12- or 13-coordinated. The isolated Si atoms are situated in the ab plane at z = 0 and are strictly separated from the Si-Si dumbbells at z = 0.5.

  16. Revision of the Li13Si4 structure

    Directory of Open Access Journals (Sweden)

    Thomas F. Fässler

    2013-12-01

    Full Text Available Besides Li17Si4, Li16.42Si4, and Li15Si4, another lithium-rich representative in the Li–Si system is the phase Li13Si4 (tridecalithium tetrasilicide, the structure of which has been determined previously [Frank et al. (1975. Z. Naturforsch. Teil B, 30, 10–13]. A careful analysis of X-ray diffraction patterns of Li13Si4 revealed discrepancies between experimentally observed and calculated Bragg positions. Therefore, we redetermined the structure of Li13Si4 on the basis of single-crystal X-ray diffraction data. Compared to the previous structure report, decisive differences are (i the introduction of a split position for one Li site [occupancy ratio 0.838 (7:0.162 (7], (ii the anisotropic refinement of atomic displacement parameters for all atoms, and (iii a high accuracy of atom positions and unit-cell parameters. The asymmetric unit of Li13Si4 contains two Si and seven Li atoms. Except for one Li atom situated on a site with symmetry 2/m, all other atoms are on mirror planes. The structure consists of isolated Si atoms as well as Si–Si dumbbells surrounded by Li atoms. Each Si atom is either 12- or 13-coordinated. The isolated Si atoms are situated in the ab plane at z = 0 and are strictly separated from the Si–Si dumbbells at z = 0.5.

  17. Quantifying social asymmetric structures.

    Science.gov (United States)

    Solanas, Antonio; Salafranca, Lluís; Riba, Carles; Sierra, Vicenta; Leiva, David

    2006-08-01

    Many social phenomena involve a set of dyadic relations among agents whose actions may be dependent. Although individualistic approaches have frequently been applied to analyze social processes, these are not generally concerned with dyadic relations, nor do they deal with dependency. This article describes a mathematical procedure for analyzing dyadic interactions in a social system. The proposed method consists mainly of decomposing asymmetric data into their symmetric and skew-symmetric parts. A quantification of skew symmetry for a social system can be obtained by dividing the norm of the skew-symmetric matrix by the norm of the asymmetric matrix. This calculation makes available to researchers a quantity related to the amount of dyadic reciprocity. With regard to agents, the procedure enables researchers to identify those whose behavior is asymmetric with respect to all agents. It is also possible to derive symmetric measurements among agents and to use multivariate statistical techniques.

  18. Double dumb-bell calculus in childhood | Joshi | African Journal of ...

    African Journals Online (AJOL)

    An eight-year old male was admitted with complaints of right scrotal swelling, dysuria and intermittent retention of urine for 10 days. On per-rectal examination, a hard mass was palpable in the posterior urethra. An X-ray (KUB) of the abdomen revealed a double dumb-bell calculus at the base of bladder, extending into the ...

  19. Large Dumbbell-Shaped C1 Schwannoma Presenting as a Foramen Magnum Mass

    Science.gov (United States)

    Helms, Jody; Michael, Lattimore Madison

    2012-01-01

    Schwannomas involving the foramen magnum commonly originate from the lower cranial nerves, but they are rarely found arising from the first cervical root. To date, very few cases have been described in the literature. The majority involve either the intradural or extradural compartment but not both. We report the second case of a dumbbell-shaped schwannoma arising from the first cervical root. Our patient presented with hemisensory deficits secondary to brainstem compression at the level of the foramen magnum. The patient underwent a far lateral approach, and a gross total resection was achieved. Preoperative suspicion of the diagnosis is helpful in anticipating displacement and avoiding damage to the surrounding neurovascular structures. PMID:23946923

  20. Minimally invasive resection of large dumbbell tumors of the lumbar spine: Advantages and pitfalls.

    Science.gov (United States)

    Zairi, Fahed; Troux, Camille; Sunna, Tarek; Karnoub, Mélodie-Anne; Boubez, Ghassan; Shedid, Daniel

    2018-05-01

    The surgical management of dumbbell tumors of the lumbar spine remains controversial, because of their large volume and complex location, involving both the spinal canal and the retro peritoneum. While sporadically reported, our study aims to confirm the value of minimally invasive posterior access for the complete resection of large lumbar dumbbell tumors. In this prospective study, we included all consecutive patients who underwent the resection of a voluminous dumbbell tumor at the lumbar spine through a minimally invasive approach, between March 2015 and August 2017. There were 4 men and 4 women, with a mean age at diagnosis of 40.6 years (range 29-58 years). The resection was performed through a trans muscular tubular retractor by the same surgical team. Operative parameters and initial postoperative course were systematically reported. Clinical and radiological monitoring was scheduled at 3 months, 1 year and 2 years. The mean operative time was 144 min (range 58-300 minutes) and the mean estimated blood loss was 250 ml (range 100-500 ml). Gross total resection was achieved in all patients. No major complication was reported. The mean length of hospital stay was 3.1 days (range 2 to 6 days). Histological analysis confirmed the diagnosis of grade 1 schwannoma in all patients. The mean follow up period was 14.9 months (range 6 to 26 months), and 5 patients completed at least 1-year follow-up. At 6 months the Macnab was excellent in 6 patients, good in one patient and fair in one patient because of residual neuropathic pain requiring the maintenance of a long-term treatment. No tumor recurrence was noted to date. Lumbar dumbbell tumors can be safely and completely resected using a single-stage minimally invasive procedure, in a trained team. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Hybridized plasmon in an asymmetric cut-wire-pair structure

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Nguyen Thanh [Vietnamese Military Academy of Science and Technology, Hanoi (Viet Nam); Hanyang University, Seoul (Korea, Republic of); Rhee, Joo Yull [Sungkyunkwan University, Suwon (Korea, Republic of); Park, Jin Woo; Lee, Young Pak [Hanyang University, Seoul (Korea, Republic of)

    2010-12-15

    In this report, we discuss an electromagnetic analog of the molecular-orbital theory for metamaterial structures. We show that the electromagnetic responses of a metamagnetic structure consisting of paired cut-wires can be well understood by using the plasmon-hybridization mechanism. The simulated transmission spectra of the asymmetric cut-wire-pair structure, which were obtained utilizing the transfer-matrix method, strongly support our suggestion.

  2. The synchronization of asymmetric-structured electric coupling neuronal system

    Science.gov (United States)

    Wang, Guanping; Jin, Wuyin; Liu, Hao; Sun, Wei

    2018-02-01

    Based on the Hindmarsh-Rose (HR) model, the synchronization dynamics of asymmetric-structured electric coupling two neuronal system is investigated in this paper. It is discovered that when the time-delay scope and coupling strength for the synchronization are correlated positively under unequal time delay, the time-delay difference does not make a clear distinction between the two individual inter-spike intervals (ISI) bifurcation diagrams of the two coupled neurons. Therefore, the superficial difference of the system synchronization dynamics is not obvious for the unequal time-delay feedback. In the asymmetrical current incentives under asymmetric electric coupled system, the two neurons can only be almost completely synchronized in specific area of the interval which end-pointed with two discharge modes for a single neuron under different stimuli currents before coupling, but the intervention of time-delay feedback, together with the change of the coupling strength, can make the coupled system not only almost completely synchronized within anywhere in the front area, but also outside of it.

  3. Strength resistance test of superior members for elderly people: comparison between dumbbells with different weights

    Directory of Open Access Journals (Sweden)

    Lucélia Justino Borges

    2008-07-01

    Full Text Available http://dx.doi.org/10.5007/1980-0037.2008v10n3p261 The aim of the study was to compare the performance of elderly people in the strength resistance test of superior members (SRTSM with dumbbells of different weights (1,8 kg and 2 kg for women and 3,6 kg and 4 kg for men. The sample consisted of 407 elderly (349 feminine and 58 masculine, with age of 60 to 88 years, practitioners of physical exercise for at least six months. The used instrument was the SRTSM of the battery of tests American Alliance for Health, Physical Education, Recreation and Dance (AAHPERD. Two executions of the test were carried through with dumbbells of different weights, SRTSM (1,8 kg and 3,6 kg and “adjusted” SRTSM (2 kg and 4 kg. For the analysis of the data, it was proceeded descriptive analysis, test t of Student for independent samples, paired t test for dependent samples and ANOVA with post-hoc of Tukey, adopting itself the 5% level significance. The results demonstrated that the use of dumbbells with 4 weights of 2 and kg, seem not to affect the performance of the elderly ones, mainly of the masculine sex. For the feminine sex significant difference in the averages of the second comparison carried through for the sort was detected. However, this difference can have been resulting from external factors to the test, since, the greater average obtained was for “the adjusted” SRTSM. Nevertheless, one tries to facilitate even more the evaluation of the functional capacity of the elderly population, being recommended for SRTSM the use of dumbbells with weight of 2 kg for women and 4kg for men that they are of low cost, easy acquisition and access in the Brazilian market.

  4. Asymmetric segregation of damaged cellular components in spatially structured multicellular organisms.

    Directory of Open Access Journals (Sweden)

    Charlotte Strandkvist

    Full Text Available The asymmetric distribution of damaged cellular components has been observed in species ranging from fission yeast to humans. To study the potential advantages of damage segregation, we have developed a mathematical model describing ageing mammalian tissue, that is, a multicellular system of somatic cells that do not rejuvenate at cell division. To illustrate the applicability of the model, we specifically consider damage incurred by mutations to mitochondrial DNA, which are thought to be implicated in the mammalian ageing process. We show analytically that the asymmetric distribution of damaged cellular components reduces the overall damage level and increases the longevity of the cell population. Motivated by the experimental reports of damage segregation in human embryonic stem cells, dividing symmetrically with respect to cell-fate, we extend the model to consider spatially structured systems of cells. Imposing spatial structure reduces, but does not eliminate, the advantage of asymmetric division over symmetric division. The results suggest that damage partitioning could be a common strategy for reducing the accumulation of damage in a wider range of cell types than previously thought.

  5. First-principle study on O–A–O dumbbell of delafossite crystal

    International Nuclear Information System (INIS)

    Jiang, H.F.; Gui, C.Y.; Zhu, Y.Y.; Wu, D.J.; Sun, S.P.; Xiong, C.; Zhu, X.B.

    2014-01-01

    Highlights: • From Cu to Ag, the increase of c parameters is attributed to electrostatic repulsion. • The difference charge density shows the bonding of Ag–O is more covalent. • Effective mass of AgAlO 2 along the [0 0 1] direction is smaller than that of CuAlO 2 . -- Abstract: Taking CuAlO 2 and AgAlO 2 for instance, O–A–O dumbbell-related electronic properties in delafossite lattice were systematically investigated by using the first-principles projector augmented wave method. Compared with CuAlO 2 , the increase of c parameter comes from the volume effect and electrostatic repulsion due to excess overlap of electron clouds between Ag and O atoms. The difference charge density demonstrates the interaction of A d z2 and O p z orbitals, and suggests the stronger covalent hybridization of Ag–O. The effective masses of these two compounds along [0 0 1] direction are remarkably different. Ag vacancy has lower formation energy relative to Cu one, which could benefit from longer c axis. The differences derived from O–A–O dumbbell could be helpful for thoroughly understanding its role in delafossite lattice

  6. Long range surface plasmons on asymmetric suspended thin film structures for biosensing applications.

    Science.gov (United States)

    Min, Qiao; Chen, Chengkun; Berini, Pierre; Gordon, Reuven

    2010-08-30

    We show that long-range surface plasmons (LRSPs) are supported in a physically asymmetric thin film structure, consisting of a low refractive index medium on a metal slab, supported by a high refractive index dielectric layer (membrane) over air, as a suspended waveguide. For design purposes, an analytic formulation is derived in 1D yielding a transcendental equation that ensures symmetry of the transverse fields of the LRSP within the metal slab by constraining its thicknesses and that of the membrane. Results from the formulation are in quantitative agreement with transfer matrix calculations for a candidate slab waveguide consisting of an H(2)O-Au-SiO(2)-air structure. Biosensor-relevant figures of merit are compared for the asymmetric and symmetric structures, and it is found that the asymmetric structure actually improves performance, despite higher losses. The finite difference method is also used to analyse metal stripes providing 2D confinement on the structure, and additional constraints for non-radiative LRSP guiding thereon are discussed. These results are promising for sensors that operate with an aqueous solution that would otherwise require a low refractive index-matched substrate for the LRSP.

  7. Asymmetric transmission of acoustic waves in a layer thickness distribution gradient structure using metamaterials

    Directory of Open Access Journals (Sweden)

    Jung-San Chen

    2016-09-01

    Full Text Available This research presents an innovative asymmetric transmission design using alternate layers of water and metamaterial with complex mass density. The directional transmission behavior of acoustic waves is observed numerically inside the composite structure with gradient layer thickness distribution and the rectifying performance of the present design is evaluated. The layer thickness distributions with arithmetic and geometric gradients are considered and the effect of gradient thickness on asymmetric wave propagation is systematically investigated using finite element simulation. The numerical results indicate that the maximum pressure density and transmission through the proposed structure are significantly influenced by the wave propagation direction over a wide range of audible frequencies. Tailoring the thickness of the layered structure enables the manipulation of asymmetric wave propagation within the desired frequency range. In conclusion, the proposed design offers a new possibility for developing directional-dependent acoustic devices.

  8. Phase Coexistence in Two-Dimensional Passive and Active Dumbbell Systems

    Science.gov (United States)

    Cugliandolo, Leticia F.; Digregorio, Pasquale; Gonnella, Giuseppe; Suma, Antonio

    2017-12-01

    We demonstrate that there is a macroscopic coexistence between regions with hexatic order and regions in the liquid or gas phase over a finite interval of packing fractions in active dumbbell systems with repulsive power-law interactions in two dimensions. In the passive limit, this interval remains finite, similar to what has been found in two-dimensional systems of hard and soft disks. We did not find discontinuous behavior upon increasing activity from the passive limit.

  9. Intra- and Extramedullary Dumbbell-Shaped Schwannoma of the Medulla Oblongata: A Case Report and Review of the Literature.

    Science.gov (United States)

    Zhang, Qing; Ni, Ming; Liu, Wei-Ming; Jia, Wang; Jia, Gui-Jun; Zhang, Jun-Ting

    2017-02-01

    Brainstem intramedullary schwannomas (ISs) are extremely rare. Various theories have been suggested to explain its origin. It was first speculated that ISs arise from the region where the nerve roots lose their sheaths on penetrating the pia mater. Later, it was further predicted that ISs would contain both intra- and extramedullary parts and would be shaped like a dumbbell. However, no cases reported previously can support this assumption adequately. A 40-year-old woman presented with constant cervical pain, accompanied by progressive weakness of upper extremities and glove distribution numbness. Magnetic resonance imaging of the brain revealed a rare intra- and extramedullary dumbbell-shaped lesion of the medulla oblongata, which was partially removed via a midline suboccipital craniectomy. Histologic and immunohistochemical examinations confirmed the diagnosis of schwannoma. Routine imaging performed 20 months after the initial resection revealed a regrowth of the intramedullary part, which was subsequently partially removed through a far-lateral approach, with symptoms alleviated. At 2-year follow-up, there continued to be no radiologic or clinical evidence of regrowth. To date and to our knowledge, there are only 16 reported cases of brainstem ISs, none of which contained both intra- and extramedullary components. We believe this is the first report of dumbbell schwannoma of the medulla oblongata with adequate radiologic evidence. The relevant literature is reviewed, and an assumption has been proposed that dumbbell or surfacing ISs arising near entry zones of sensory nerves, mixed cranial nerves, or ventral root may originate from the aberrant Schwann cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. A dumbbell-shaped hybrid magnetometer operating in DC-10 kHz

    Science.gov (United States)

    Shi, Hongyu; Wang, Yanzhang; Chen, Siyu; Lin, Jun

    2017-12-01

    This study is motivated by the need to design a hybrid magnetometer operating in a wide-frequency band from DC to 10 kHz. To achieve this objective, a residence times difference fluxgate magnetometer (RTDFM) and an induction magnetometer (IM) have been integrated into a compact form. The hybrid magnetometer has a dumbbell-shaped structure in which the RTDFM transducer is partially inserted into the tube cores of the IM. Thus, the sensitivity of the RTDFM is significantly improved due to the flux amplification. The optimal structure, which has maximum sensitivity enhancement, was obtained through FEM analysis. To validate the theoretical analysis, the optimal hybrid magnetometer was manufactured, and its performance was evaluated. The device has a sensitivity of 45 mV/nT at 1 kHz in IM mode and 0.38 μs/nT in RTDFM mode, which is approximately 3.45 times as large as that of the single RTDFM structure. Furthermore, to obtain a lower noise performance in the entire frequency band, two operation modes switch at the cross frequency (0.16 Hz) of their noise levels. The noise level is 30 pT/√Hz in RTDFM mode and 0.07 pT/√Hz at 1 kHz in IM mode.

  11. Adhesion mechanism of a gecko-inspired oblique structure with an adhesive tip for asymmetric detachment

    International Nuclear Information System (INIS)

    Sekiguchi, Yu; Sato, Chiaki; Takahashi, Kunio

    2015-01-01

    An adhesion model of an oblique structure with an adhesive tip is proposed by considering a limiting stress for adhesion to describe the detachment mechanism of gecko foot hairs. When a force is applied to the root of the oblique structure, normal and shear stresses are generated at contact and the adhesive tip is detached from the surface when reaching the limiting stress. An adhesion criterion that considers both the normal and shear stresses is introduced, and the asymmetric detachment of the oblique structure is theoretically investigated. In addition, oblique beam array structures are manufactured, and an inclination effect of the structure on the asymmetric detachment is experimentally verified. (paper)

  12. Investigating the degradation behavior under hot carrier stress for InGaZnO TFTs with symmetric and asymmetric structures

    International Nuclear Information System (INIS)

    Tsai, Ming-Yen; Chang, Ting-Chang; Chu, Ann-Kuo; Chen, Te-Chih; Hsieh, Tien-Yu; Chen, Yu-Te; Tsai, Wu-Wei; Chiang, Wen-Jen; Yan, Jing-Yi

    2013-01-01

    This letter studies the hot-carrier effect in indium–gallium–zinc oxide (IGZO) thin film transistors with symmetric and asymmetric source/drain structures. The different degradation behaviors after hot-carrier stress in symmetric and asymmetric source/drain devices indicate that different mechanisms dominate the degradation. Since the C–V measurement is highly sensitive to trap states compared to the I–V characterization, C–V curves are utilized to analyze the hot-carrier stress-induced trap state generation. Furthermore, the asymmetric C–V measurements C GD (gate-to-drain capacitance) and C GS (gate-to-source capacitance) are used to analyze the trap state in channel location. The asymmetric source/drain structure under hot-carrier stress induces an asymmetric electrical field and causes different degradation behaviors. In this work, the on-current and subthreshold swing (S.S.) degrade under low electrical field, whereas an apparent V t shift occurs under large electrical field. The different degradation behaviors indicate that trap states are generated under a low electrical field and the channel-hot-electron (CHE) effect occurs under a large electrical field. - Highlights: ► Asymmetric structure thin film transistors improve kick-back effect. ► Asymmetric structures under hot-carrier stress induce different degradation. ► Hot-carrier stress leads to capacitance–voltage curve distortion. ► Extra trap states are generated during hot-carrier stress

  13. A giant dumbbell shaped vesico-prostatic urethral calculus: a case report and review of literature.

    Science.gov (United States)

    Prabhuswamy, Vinod Kumar; Tiwari, Rahul; Krishnamoorthy, Ramakrishnan

    2013-01-01

    Calculi in the urethra are an uncommon entity. Giant calculi in prostatic urethra are extremely rare. The decision about treatment strategy of calculi depends upon the size, shape, and position of the calculus and the status of the urethra. If the stone is large and immovable, it may be extracted via the perineal or the suprapubic approach. In most of the previous reported cases, giant calculi were extracted via the transvesical approach and external urethrotomy. A 38-year-old male patient presented with complaints of lower urinary tract symptoms. Further investigations showed a giant urethral calculus secondary to stricture of bulbo-membranous part of the urethra. Surgical removal of calculus was done via transvesical approach. Two calculi were found and extracted. One was a huge dumbbell calculus and the other was a smaller round calculus. This case was reported because of the rare size and the dumbbell nature of the stone. Giant urethral calculi are better managed by open surgery.

  14. A Giant Dumbbell Shaped Vesico-Prostatic Urethral Calculus: A Case Report and Review of Literature

    Science.gov (United States)

    Prabhuswamy, Vinod Kumar; Tiwari, Rahul; Krishnamoorthy, Ramakrishnan

    2013-01-01

    Calculi in the urethra are an uncommon entity. Giant calculi in prostatic urethra are extremely rare. The decision about treatment strategy of calculi depends upon the size, shape, and position of the calculus and the status of the urethra. If the stone is large and immovable, it may be extracted via the perineal or the suprapubic approach. In most of the previous reported cases, giant calculi were extracted via the transvesical approach and external urethrotomy. A 38-year-old male patient presented with complaints of lower urinary tract symptoms. Further investigations showed a giant urethral calculus secondary to stricture of bulbo-membranous part of the urethra. Surgical removal of calculus was done via transvesical approach. Two calculi were found and extracted. One was a huge dumbbell calculus and the other was a smaller round calculus. This case was reported because of the rare size and the dumbbell nature of the stone. Giant urethral calculi are better managed by open surgery. PMID:23762742

  15. Energy capture and storage in asymmetrically multistable modular structures inspired by skeletal muscle

    Science.gov (United States)

    Kidambi, Narayanan; Harne, Ryan L.; Wang, K. W.

    2017-08-01

    The remarkable versatility and adaptability of skeletal muscle that arises from the assembly of its nanoscale cross-bridges into micro-scale assemblies known as sarcomeres provides great inspiration for the development of advanced adaptive structures and material systems. Motivated by the capability of cross-bridges to capture elastic strain energy to improve the energetic efficiency of sudden movements and repeated motions, and by models of cross-bridge power stroke motions and sarcomere contractile behaviors that incorporate asymmetric, bistable potential energy landscapes, this research develops and studies modular mechanical structures that trap and store energy in higher-energy configurations. Modules exhibiting tailorable asymmetric bistability are first designed and fabricated, revealing how geometric parameters influence the asymmetry of the resulting double-well energy landscapes. These experimentally-observed characteristics are then investigated with numerical and analytical methods to characterize the dynamics of asymmetrically bistable modules. The assembly of such modules into greater structures generates complex, multi-well energy landscapes with stable system configurations exhibiting different quantities of stored elastic potential energy. Dynamic analyses illustrate the ability of these structures to capture a portion of the initial kinetic energy due to impulsive excitations as recoverable strain potential energy, and reveal how stiffness parameters, damping, and the presence of thermal noise in micro- and nano-scale applications influence energy capture behaviors. The insights gained could foster the development of advanced structural/material systems inspired by skeletal muscle, including actuators that effectively capture, store, and release energy, as well as adaptive, robust, and reusable armors and protective devices.

  16. Large Dumbbell-Shaped C1 Schwannoma Presenting as a Foramen Magnum Mass

    OpenAIRE

    Helms, Jody; Michael, Lattimore Madison

    2012-01-01

    Schwannomas involving the foramen magnum commonly originate from the lower cranial nerves, but they are rarely found arising from the first cervical root. To date, very few cases have been described in the literature. The majority involve either the intradural or extradural compartment but not both. We report the second case of a dumbbell-shaped schwannoma arising from the first cervical root. Our patient presented with hemisensory deficits secondary to brainstem compression at the level of t...

  17. Asymmetric dumbbell-shaped silver nanoparticles and spherical gold nanoparticles green-synthesized by mangosteen (Garcinia mangostana pericarp waste extracts

    Directory of Open Access Journals (Sweden)

    Park JS

    2017-09-01

    Full Text Available Ji Su Park, Eun-Young Ahn, Youmie Park College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam, Republic of Korea Abstract: Mangosteen (Garcinia mangostana pericarp waste extract was used to synthesize gold and silver nanoparticles by a green strategy. The extract was both a reducing and stabilizing agent during synthesis. Phytochemical screening of the extract was conducted to obtain information regarding the presence/absence of primary and secondary metabolites in the extract. The in vitro antioxidant activity results demonstrated that the extract had excellent antioxidant activity, which was comparable to a standard (butylated hydroxy toluene. Spherical gold nanoparticles (gold nanoparticles green synthesized by mangosteen pericarp extract [GM-AuNPs] with an average size of 15.37±3.99 to 44.20±16.99 nm were observed in high-resolution transmission electron microscopy (HR-TEM images. Most interestingly, the silver nanoparticles (silver nanoparticles green synthesized by mangosteen pericarp extract [GM-AgNPs] had asymmetric nanodumbbell shapes where one tail grew from a spherical head. The average head size was measured to be 13.65±5.07 to 31.08±3.99 nm from HR-TEM images. The hydrodynamic size of both nanoparticles tended to increase with increasing extract concentration. Large negative zeta potentials (–18.92 to –34.77 mV suggested that each nanoparticle solution possessed excellent colloidal stability. The reaction yields were 99.7% for GM-AuNPs and 82.8% for GM-AgNPs, which were assessed by inductively coupled plasma optical emission spectroscopy. A high-resolution X-ray diffraction pattern confirmed the face-centered cubic structure of both nanoparticles. Based on phytochemical screening and Fourier transform infrared spectra, the hydroxyl functional groups of carbohydrates, flavonoids, glycosides, and phenolic compounds were most likely involved in a reduction reaction of

  18. Asymmetric larval head and mandibles of Hydrophilus acuminatus (Insecta: Coleoptera, Hydrophilidae): Fine structure and embryonic development.

    Science.gov (United States)

    Sato, Shun'ichi; Inoda, Toshio; Niitsu, Shuhei; Kubota, Souichirou; Goto, Yuji; Kobayashi, Yukimasa

    2017-11-01

    The larvae of a water scavenger beetle, Hydrophilus acuminatus, have strongly asymmetric mandibles; the right one is long and slender, whereas the left one is short and stout. The fine structure and embryonic development of the head capsule and mandibles of this species were examined using light and scanning electron microscopy, and asymmetries in shape were detected in these structures applying an elliptic Fourier analysis. The larval mandibles are asymmetric in the following aspects: whole length, the number, structure and arrangement of retinacula (inner teeth), and size and shape of both the molar and incisor regions. The larval head is also asymmetric; the left half of the head capsule is larger than the right, and the left adductor muscle of the mandible is much thicker than the right. The origin and developmental process of asymmetric mandibles were traced in developing embryos whose developmental period is about 270 h and divided into 10 stages. Mandibular asymmetries are produced by the cumulative effects of six stepwise modifications that occur from about 36% of the total developmental time onward. The significance of these modifications was discussed with respect to the functional advantages of asymmetries and the phylogeny of members of the Hydrophilidae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Particle-in-cell simulations of asymmetric guide-field reconnection: quadrupolar structure of Hall magnetic field

    Science.gov (United States)

    Schmitz, R. G.; Alves, M. V.; Barbosa, M. V. G.

    2017-12-01

    One of the most important processes that occurs in Earth's magnetosphere is known as magnetic reconnection (MR). This process can be symmetric or asymmetric, depending basically on the plasma density and magnetic field in both sides of the current sheet. A good example of symmetric reconnection in terrestrial magnetosphere occurs in the magnetotail, where these quantities are similar on the north and south lobes. In the dayside magnetopause MR is asymmetric, since the plasma regimes and magnetic fields of magnetosheath and magnetosphere are quite different. Symmetric reconnection has some unique signatures. For example, the formation of a quadrupolar structure of Hall magnetic field and a bipolar Hall electric field that points to the center of the current sheet. The different particle motions in the presence of asymmetries change these signatures, causing the quadrupolar pattern to be distorted and forming a bipolar structure. Also, the bipolar Hall electric field is modified and gives rise to a single peak pointing toward the magnetosheat, considering an example of magnetopause reconnection. The presence of a guide-field can also distort the quadrupolar pattern, by giving a shear angle across the current sheet and altering the symmetric patterns, according to previous simulations and observations. Recently, a quadrupolar structure was observed in an asymmetric guide-field MR event using MMS (Magnetospheric Multiscale) mission data [Peng et al., JGR, 2017]. This event shows clearly that the density asymmetry and the guide-field were not sufficient to form signatures of asymmetric reconnection. Using the particle-in-cell code iPIC3D [Markidis et al, Mathematics and Computers in Simulation, 2010] with the MMS data from this event used to define input parameters, we found a quadrupolar structure of Hall magnetic field and a bipolar pattern of Hall electric field in ion scales, showing that our results are in an excellent agreement with the MMS observations. To our

  20. Surgical strategy for intra- and extra-vertebral dumbbell-shaped tumors

    Directory of Open Access Journals (Sweden)

    SUN Li-yong

    2013-12-01

    Full Text Available Objective To investigate the clinical features and surgical strategy of intra- and extra-vertebral dumbbell-shaped tumors. Methods Clinical data of 39 patients with intra- and extra-vertebral tumor were retrospectively studied. The tumors were removed via posterior midline approach in 33 patients, and via posterior combined with anterior approach in 6 patients. Thirty patients underwent tumor resection and internal fixation. Lateral mass screw fixation was performed in the level of C3-7, while the pedicular screw fixation was performed in the level of C2 and thoracic and lumbar segment. Results Tumors were totally excised in all the cases. The patients were followed-up for 6 months to 5 years with an average of 18.67 months. Pain relief occured in 29 cases, of whom the average Visual Analogue Scale (VAS score decreased from (7.51 ± 1.05 before surgery to (3.17 ± 1.17 24 h after surgery (P < 0.05. The numbness area emerged or enlarged in 12 cases and was unchanged in 3 cases. The average American Spinal Injury Association (ASIA sensation score decreased from (218.67 ± 2.80 before surgery to (213.33 ± 2.16 24 h after surgery (P < 0.05, but it increased to (216.78 ± 1.47 6 months after operation (P < 0.05. The motor function improved in 18 cases, and ASIA motor function score improved from (92.33 ± 1.63 before surgery to (95.05 ± 1.41 6 months after operation (P < 0.05. No tumor recurrence and secondary spinal deformity were found. Conclusion Most cases of dumbbell-shaped intra- and extra-vertebral tumor can be totally removed with one-session microsurgery. In the cases with bony erosion caused by tumor and facetectomy, concurrent internal fixation and fusion were recommended in order to maintain spinal stability.

  1. Asymmetrical field emitter

    Science.gov (United States)

    Fleming, J.G.; Smith, B.K.

    1995-10-10

    A method is disclosed for providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure. 17 figs.

  2. Rectified motion in an asymmetrically structured channel due to induced-charge electrokinetic and thermo-kinetic phenomena

    International Nuclear Information System (INIS)

    Sugioka, Hideyuki

    2016-01-01

    It would be advantageous to move fluid by the gradient of random thermal noises that are omnipresent in the natural world. To achieve this motion, we propose a rectifier that uses a thermal noise along with induced-charge electroosmosis and electrophoresis (ICEO and ICEP) around a metal post cylinder in an asymmetrically structured channel and numerically examine its rectification performance. By the boundary element method combined with the thin double layer approximation, we find that rectified motion occurs in the asymmetrically structured channel due to ICEO and ICEP. Further, by thermodynamical and equivalent circuit methods, we discuss a thermal voltage that drives a rectifier consisting of a fluidic channel of an electrolyte and an impedance as a noise source. Our calculations show that fluid can be moved in the asymmetrically structured channel by the fluctuation of electric fields due to a thermal noise only when there is a temperature difference. In addition, our simple noise argument provides a different perspective for the thermo-kinetic phenomena (around a metal post) which was predicted based on the electrolyte Seebeck effect in our previous paper [H. Sugioka, “Nonlinear thermokinetic phenomena due to the Seebeck effect,” Langmuir 30, 8621 (2014)

  3. Rectified motion in an asymmetrically structured channel due to induced-charge electrokinetic and thermo-kinetic phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Sugioka, Hideyuki, E-mail: hsugioka@shinshu-u.ac.jp [Frontier Research Center, Canon Inc. 30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501, Japan and Department of Mechanical Systems Engineering, Shinshu University 4-17-1 Wakasato, Nagano 380-8553 (Japan)

    2016-02-15

    It would be advantageous to move fluid by the gradient of random thermal noises that are omnipresent in the natural world. To achieve this motion, we propose a rectifier that uses a thermal noise along with induced-charge electroosmosis and electrophoresis (ICEO and ICEP) around a metal post cylinder in an asymmetrically structured channel and numerically examine its rectification performance. By the boundary element method combined with the thin double layer approximation, we find that rectified motion occurs in the asymmetrically structured channel due to ICEO and ICEP. Further, by thermodynamical and equivalent circuit methods, we discuss a thermal voltage that drives a rectifier consisting of a fluidic channel of an electrolyte and an impedance as a noise source. Our calculations show that fluid can be moved in the asymmetrically structured channel by the fluctuation of electric fields due to a thermal noise only when there is a temperature difference. In addition, our simple noise argument provides a different perspective for the thermo-kinetic phenomena (around a metal post) which was predicted based on the electrolyte Seebeck effect in our previous paper [H. Sugioka, “Nonlinear thermokinetic phenomena due to the Seebeck effect,” Langmuir 30, 8621 (2014)].

  4. Impact of repeated uniaxial mechanical strain on flexible a-IGZO thin film transistors with symmetric and asymmetric structures

    Science.gov (United States)

    Liao, Po-Yung; Chang, Ting-Chang; Su, Wan-Ching; Chen, Bo-Wei; Chen, Li-Hui; Hsieh, Tien-Yu; Yang, Chung-Yi; Chang, Kuan-Chang; Zhang, Sheng-Dong; Huang, Yen-Yu; Chang, Hsi-Ming; Chiang, Shin-Chuan

    2017-06-01

    This letter investigates repeated uniaxial mechanical stress-induced degradation behavior in flexible amorphous In-Ga-Zn-O thin-film transistors (TFTs) of different geometric structures. Two types of via-contact structure TFTs are investigated: symmetrical and UI structure (TFTs with I- and U-shaped asymmetric electrodes). After repeated mechanical stress, I-V curves for the symmetrical structure show a significant negative threshold voltage (VT) shift, due to mechanical stress-induced oxygen vacancy generation. However, degradation in the UI structure TFTs after stress is a negative VT shift along with the parasitic transistor characteristic in the forward-operation mode, with this hump not evident in the reverse-operation mode. This asymmetrical degradation is clarified by the mechanical strain simulation of the UI TFTs.

  5. Analysis of classification and surgical treatment of cervical dumbbell-shaped tumors

    Directory of Open Access Journals (Sweden)

    LIU Jia-gang

    2013-11-01

    Full Text Available Objective To investigate the clinical characteristics, classification, surgical approach, complication and prognosis of cervical dumbbell-shaped tumors. Methods Twenty-six consecutive cases with cervical dumbbell-shaped tumors were retrospectively studied. According to tumor location by imaging examination, all tumors were divided into 3 types. Type Ⅰ (17 cases was mostly intravertebral and foraminal. Surgery through posterior approach was performed and internal fixation was operated in 8 cases. Type Ⅱ (4 cases was mostly paravertebral and foraminal. Surgery through the anterolateral approach was performed without internal fixation. Type Ⅲ (5 cases was equalization of intravertebral and paravertebral, and underwent surgery through combined posterior-anterolateral approach and internal fixation was performed in all of those cases. If the unilateral facet joint was destroyed, internal fixation was necessary. Lateral mass screw internal fixation and transpedicular screw fixation supplemented by fusion with autologous iliac bone graft were used to maintain cervical spinal stability. Results Among 26 patients there were 19 schwannomas, 4 neurofibromas, 2 gangliocytoma and 1 spinal meningioma. Total and subtotal tumor resection was achieved in 23 and 3 patients respectively. Among them 50% (13/26 of the cases were used internal fixation including 8 TypeⅠand 5 Type Ⅲ patients. The follow-up period was from 7 to 62 months, and mean time was 30 months. Four cases (15.38% were found local tumor recurrence. Two cases suffered with surgical infection and cerebrospinal fluid leakage. There was no spinal cord injury and spinal deformity. Conclusion In order to increase the total resection rate and decrease recurrence rate, surgical approach should be selected according to the imaging classification of tumors. Stability reconstruction is absolutely necessary for the patients with facet joint destroyed.

  6. Specific features of waveguide recombination in laser structures with asymmetric barrier layers

    Energy Technology Data Exchange (ETDEWEB)

    Polubavkina, Yu. S., E-mail: polubavkina@mail.ru; Zubov, F. I.; Moiseev, E. I.; Kryzhanovskaya, N. V.; Maximov, M. V. [Russian Academy of Sciences, St. Petersburg National Research Academic University (Russian Federation); Semenova, E. S.; Yvind, K. [Technical University of Denmark, DTU Fotonik (Denmark); Asryan, L. V. [Virginia Polytechnic Institute and State University (United States); Zhukov, A. E. [Russian Academy of Sciences, St. Petersburg National Research Academic University (Russian Federation)

    2017-02-15

    The spatial distribution of the intensity of the emission caused by recombination appearing at a high injection level (up to 30 kA/cm{sup 2}) in the waveguide layer of a GaAs/AlGaAs laser structure with GaInP and AlGaInAs asymmetric barrier layers is studied by means of near-field scanning optical microscopy. It is found that the waveguide luminescence in such a laser, which is on the whole less intense as compared to that observed in a similar laser without asymmetric barriers, is non-uniformly distributed in the waveguide, so that the distribution maximum is shifted closer to the p-type cladding layer. This can be attributed to the ability of the GaInP barrier adjoining the quantum well on the side of the n-type cladding layer to suppress the hole transport.

  7. Specific features of waveguide recombination in laser structures with asymmetric barrier layers

    DEFF Research Database (Denmark)

    Polubavkina, Yu; Zubov, F. I.; Moiseev, E.

    2017-01-01

    microscopy. It is found that the waveguide luminescence in such a laser, which is on the whole less intense as compared to that observed in a similar laser without asymmetric barriers, is non-uniformly distributed in the waveguide, so that the distribution maximum is shifted closer to the p-type cladding......The spatial distribution of the intensity of the emission caused by recombination appearing at a high injection level (up to 30 kA/cm2) in the waveguide layer of a GaAs/AlGaAs laser structure with GaInP and AlGaInAs asymmetric barrier layers is studied by means of near-field scanning optical...... layer. This can be attributed to the ability of the GaInP barrier adjoining the quantum well on the side of the n-type cladding layer to suppress the hole transport....

  8. Shoulder Muscle Activation of Novice and Resistance Trained Women during Variations of Dumbbell Press Exercises

    Science.gov (United States)

    Luczak, Joshua; Bosak, Andy; Riemann, Bryan L.

    2013-01-01

    Previous research has compared the effects of trunk inclination angle on muscle activation using barbells and Smith machines in men. Whether similar effects occur with the use of dumbbells or in women remains unknown. The purpose was to compare upper extremity surface electromyographical (EMG) activity between dumbbell bench, incline, and shoulder presses. Dominate arm EMG data were recorded for collegiate-aged female resistance trained individuals (n = 12) and novice female resistance trained exercisers (n = 12) from which average EMG amplitude for each repetition phase (concentric, eccentric) was computed. No significant differences were found between experienced and novice resistance trained individuals. For the upper trapezius and anterior deltoid muscles, shoulder press activation was significantly greater than incline press which in turn was significantly greater than bench press across both phases. The bench and incline presses promoted significantly greater pectoralis major sternal activation compared to the shoulder press (both phases). While pectoralis major clavicular activation during the incline press eccentric phase was significantly greater than both the bench and shoulder presses, activation during the bench press concentric phase promoted significantly greater activation than the incline press which in turn was significantly greater than the shoulder press. These results provide evidence for selecting exercises in resistance and rehabilitation programs. PMID:26464884

  9. Shoulder Muscle Activation of Novice and Resistance Trained Women during Variations of Dumbbell Press Exercises

    Directory of Open Access Journals (Sweden)

    Joshua Luczak

    2013-01-01

    Full Text Available Previous research has compared the effects of trunk inclination angle on muscle activation using barbells and Smith machines in men. Whether similar effects occur with the use of dumbbells or in women remains unknown. The purpose was to compare upper extremity surface electromyographical (EMG activity between dumbbell bench, incline, and shoulder presses. Dominate arm EMG data were recorded for collegiate-aged female resistance trained individuals ( and novice female resistance trained exercisers ( from which average EMG amplitude for each repetition phase (concentric, eccentric was computed. No significant differences were found between experienced and novice resistance trained individuals. For the upper trapezius and anterior deltoid muscles, shoulder press activation was significantly greater than incline press which in turn was significantly greater than bench press across both phases. The bench and incline presses promoted significantly greater pectoralis major sternal activation compared to the shoulder press (both phases. While pectoralis major clavicular activation during the incline press eccentric phase was significantly greater than both the bench and shoulder presses, activation during the bench press concentric phase promoted significantly greater activation than the incline press which in turn was significantly greater than the shoulder press. These results provide evidence for selecting exercises in resistance and rehabilitation programs.

  10. Dumbbell meningioma of the cervico-clavicular region.

    Science.gov (United States)

    Hlavka, V; Miklić, P; Besenski, N; Miklić, D; Franz, G

    1991-01-01

    The authors are reporting on a case of a 55-year-old man with an epidural meningioma in the region from the C VII. to the Th I. segment. The tumor encircled this region, and to the front and right involved the channels through which pass the C VI, C VII. and C VIII. roots. Subdurally, no tumoral mass was found. Another part of this tumor, of the same histological architecture as the epidural cervicospinal part was found in the supraclavicular region to the right, closely connected to the arteries and nerves of this region. The authors discuss the possibility of the tumoral occurrence at this site, primarily taking into account the origin of this tumor from the cells of the outer surface of the arachnoidea, i.e. cap cells which can invade the dura, with later separation from the main arachnoidal layer. The other possibility of such dumbbell meningioma occurring at the outgoing openings of the neural paths from the spinal channel should be looked for in the remnants of the arachnoidal cells in the region of the outgoing openings. In the paper are also discussed and correlated clinico-pathological, CT and angiographic findings.

  11. On new bulk singularity structures, RR couplings in the asymmetric picture and their all order α{sup '} corrections

    Energy Technology Data Exchange (ETDEWEB)

    Hatefi, Ehsan [Queen Mary University of London, Centre for Research in String Theory, School of Physics and Astronomy, London (United Kingdom); TU Wien, Institute for Theoretical Physics, Vienna (Austria)

    2017-08-15

    We have analyzed in detail four and five point functions of the string theory amplitudes, including a closed string Ramond-Ramond (RR) in an asymmetric picture and either two or three transverse scalar fields in both IIA and IIB. The complete forms of these S-matrices are derived and these asymmetric S-matrices are also compared with their own symmetric results. This leads us to explore two different kinds of bulk singularity structures as well as various new couplings in the asymmetric picture of the amplitude in type II string theory. All order α{sup '} higher derivative corrections to these new couplings have been discovered as well. Several remarks for these two new bulk singularity structures and for contact interactions of the S-matrix have also been made. (orig.)

  12. Asymmetric hindwing foldings in rove beetles.

    Science.gov (United States)

    Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji

    2014-11-18

    Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right-left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use.

  13. Synthesis method of asymmetric gold particles.

    Science.gov (United States)

    Jun, Bong-Hyun; Murata, Michael; Hahm, Eunil; Lee, Luke P

    2017-06-07

    Asymmetric particles can exhibit unique properties. However, reported synthesis methods for asymmetric particles hinder their application because these methods have a limited scale and lack the ability to afford particles of varied shapes. Herein, we report a novel synthetic method which has the potential to produce large quantities of asymmetric particles. Asymmetric rose-shaped gold particles were fabricated as a proof of concept experiment. First, silica nanoparticles (NPs) were bound to a hydrophobic micro-sized polymer containing 2-chlorotritylchloride linkers (2-CTC resin). Then, half-planar gold particles with rose-shaped and polyhedral structures were prepared on the silica particles on the 2-CTC resin. Particle size was controlled by the concentration of the gold source. The asymmetric particles were easily cleaved from the resin without aggregation. We confirmed that gold was grown on the silica NPs. This facile method for synthesizing asymmetric particles has great potential for materials science.

  14. Method development of damage detection in asymmetric buildings

    Science.gov (United States)

    Wang, Yi; Thambiratnam, David P.; Chan, Tommy H. T.; Nguyen, Andy

    2018-01-01

    Aesthetics and functionality requirements have caused most buildings to be asymmetric in recent times. Such buildings exhibit complex vibration characteristics under dynamic loads as there is coupling between the lateral and torsional components of vibration, and are referred to as torsionally coupled buildings. These buildings require three dimensional modelling and analysis. In spite of much recent research and some successful applications of vibration based damage detection methods to civil structures in recent years, the applications to asymmetric buildings has been a challenging task for structural engineers. There has been relatively little research on detecting and locating damage specific to torsionally coupled asymmetric buildings. This paper aims to compare the difference in vibration behaviour between symmetric and asymmetric buildings and then use the vibration characteristics for predicting damage in them. The need for developing a special method to detect damage in asymmetric buildings thus becomes evident. Towards this end, this paper modifies the traditional modal strain energy based damage index by decomposing the mode shapes into their lateral and vertical components and to form component specific damage indices. The improved approach is then developed by combining the modified strain energy based damage indices with the modal flexibility method which was modified to suit three dimensional structures to form a new damage indicator. The procedure is illustrated through numerical studies conducted on three dimensional five-story symmetric and asymmetric frame structures with the same layout, after validating the modelling techniques through experimental testing of a laboratory scale asymmetric building model. Vibration parameters obtained from finite element analysis of the intact and damaged building models are then applied into the proposed algorithms for detecting and locating the single and multiple damages in these buildings. The results

  15. Data supporting beta-amyloid dimer structural transitions and protein–lipid interactions on asymmetric lipid bilayer surfaces using MD simulations on experimentally derived NMR protein structures

    Directory of Open Access Journals (Sweden)

    Sara Y. Cheng

    2016-06-01

    Full Text Available This data article supports the research article entitled “Maximally Asymmetric Transbilayer Distribution of Anionic Lipids Alters the Structure and interaction with Lipids of an Amyloidogenic Protein Dimer Bound to the Membrane Surface” [1]. We describe supporting data on the binding kinetics, time evolution of secondary structure, and residue-contact maps of a surface-absorbed beta-amyloid dimer protein on different membrane surfaces. We further demonstrate the sorting of annular and non-annular regions of the protein/lipid bilayer simulation systems, and the correlation of lipid-number mismatch and surface area per lipid mismatch of asymmetric lipid membranes.

  16. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

    Energy Technology Data Exchange (ETDEWEB)

    Bornholdt, S. [Heidelberg Univ., (Germany). Inst., fuer Theoretische Physik; Graudenz, D. [Lawrence Berkeley Lab., CA (United States)

    1993-07-01

    A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback.

  17. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

    International Nuclear Information System (INIS)

    Bornholdt, S.

    1993-07-01

    A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback

  18. Electron Energization and Structure of the Diffusion Region During Asymmetric Reconnection

    Science.gov (United States)

    Chen, Li-Jen; Hesse, Michael; Wang, Shan; Bessho, Naoki; Daughton, William

    2016-01-01

    Results from particle-in-cell simulations of reconnection with asymmetric upstream conditions are reported to elucidate electron energization and structure of the electron diffusion region (EDR). Acceleration of unmagnetized electrons results in discrete structures in the distribution functions and supports the intense current and perpendicular heating in the EDR. The accelerated electrons are cyclotron turned by the reconnected magnetic field to produce the outflow jets, and as such, the acceleration by the reconnection electric field is limited, leading to resistivity without particle-particle or particle-wave collisions. A map of electron distributions is constructed, and its spatial evolution is compared with quantities previously proposed to be EDR identifiers to enable effective identifications of the EDR in terrestrial magnetopause reconnection.

  19. ad-heap: an Efficient Heap Data Structure for Asymmetric Multicore Processors

    DEFF Research Database (Denmark)

    Liu, Weifeng; Vinter, Brian

    2014-01-01

    and its child nodes must be executed sequentially, and (2) heaps, even d-heaps (d-ary heaps or d-way heaps), cannot supply enough wide data parallelism to these processors. Recent research proposed more versatile asymmetric multicore processors (AMPs) that consist of two types of cores (latency......-oriented cores with high single-thread performance and throughput-oriented cores with wide vector processing capability), unified memory address space and faster synchronization mechanism among cores with different ISAs. To leverage the AMPs for the heap data structure, in this paper we propose ad......-heap, an efficient heap data structure that introduces an implicit bridge structure and properly apportions workloads to the two types of cores. We implement a batch k-selection algorithm and conduct experiments on simulated AMP environments composed of real CPUs and GPUs. In our experiments on two representative...

  20. Asymmetric ring structure of Vps4 required for ESCRT-III disassembly

    Science.gov (United States)

    Caillat, Christophe; Macheboeuf, Pauline; Wu, Yuanfei; McCarthy, Andrew A.; Boeri-Erba, Elisabetta; Effantin, Gregory; Göttlinger, Heinrich G.; Weissenhorn, Winfried; Renesto, Patricia

    2015-12-01

    The vacuolar protein sorting 4 AAA-ATPase (Vps4) recycles endosomal sorting complexes required for transport (ESCRT-III) polymers from cellular membranes. Here we present a 3.6-Å X-ray structure of ring-shaped Vps4 from Metallosphera sedula (MsVps4), seen as an asymmetric pseudohexamer. Conserved key interface residues are shown to be important for MsVps4 assembly, ATPase activity in vitro, ESCRT-III disassembly in vitro and HIV-1 budding. ADP binding leads to conformational changes within the protomer, which might propagate within the ring structure. All ATP-binding sites are accessible and the pseudohexamer binds six ATP with micromolar affinity in vitro. In contrast, ADP occupies one high-affinity and five low-affinity binding sites in vitro, consistent with conformational asymmetry induced on ATP hydrolysis. The structure represents a snapshot of an assembled Vps4 conformation and provides insight into the molecular motions the ring structure undergoes in a concerted action to couple ATP hydrolysis to ESCRT-III substrate disassembly.

  1. Asymmetric Evolutionary Games

    Science.gov (United States)

    McAvoy, Alex; Hauert, Christoph

    2015-01-01

    Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner’s Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games. PMID:26308326

  2. Frequency Dispersion of the Impedance of Capacitor Structures with Asymmetrically Connected Electrodes

    Science.gov (United States)

    Emel'yanov, O. A.; Ivanov, I. O.

    2018-01-01

    A method to estimate the frequency dispersion of the impedance of capacitance structures with asymmetric opposite connection of electrodes is considered. The proposed equations are used to derive exact solutions for spatially nonuniform distributions of potential and current. The solutions are in agreement with the results of the 3D simulation using the COMSOL Multiphysics software. The frequency dispersion of the impedance must be taken into account in the development of modern capacitors needed for construction of efficient energy storages.

  3. A Ligand Structure-Activity Study of DNA-Based Catalytic Asymmetric Hydration and Diels-Alder Reactions

    NARCIS (Netherlands)

    Rosati, F.; Roelfes, J.G.

    A structure-activity relationship study of the first generation ligands for the DNA-based asymmetric hydration of enones and Diels-Alder reaction in water is reported. The design of the ligand was optimized resulting in a maximum ee of 83% in the hydration reaction and 75% in the Diels-Alder

  4. Asymmetric anode and cathode extraction structure fast recovery diode

    Science.gov (United States)

    Xie, Jiaqiang; Ma, Li; Gao, Yong

    2018-05-01

    This paper presents an asymmetric anode structure and cathode extraction fast and soft recovery diode. The device anode is partial-heavily doped and partial-lightly doped. The P+ region is introduced into the cathode. Firstly, the characteristics of the diode are simulated and analyzed. Secondly, the diode was fabricated and its characteristics were tested. The experimental results are in good agreement with the simulation results. The results show that, compared with the P–i–N diode, although the forward conduction characteristic of the diode is declined, the reverse recovery peak current is reduced by 47%, the reverse recovery time is shortened by 20% and the softness factor is doubled. In addition, the breakdown voltage is increased by 10%. Project supported by the National Natural Science Foundation of China (No. 51177133).

  5. Asymmetric dumbbell-shaped silver nanoparticles and spherical gold nanoparticles green-synthesized by mangosteen (Garcinia mangostana) pericarp waste extracts

    Science.gov (United States)

    Park, Ji Su; Ahn, Eun-Young; Park, Youmie

    2017-01-01

    Mangosteen (Garcinia mangostana) pericarp waste extract was used to synthesize gold and silver nanoparticles by a green strategy. The extract was both a reducing and stabilizing agent during synthesis. Phytochemical screening of the extract was conducted to obtain information regarding the presence/absence of primary and secondary metabolites in the extract. The in vitro antioxidant activity results demonstrated that the extract had excellent antioxidant activity, which was comparable to a standard (butylated hydroxy toluene). Spherical gold nanoparticles (gold nanoparticles green synthesized by mangosteen pericarp extract [GM-AuNPs]) with an average size of 15.37±3.99 to 44.20±16.99 nm were observed in high-resolution transmission electron microscopy (HR-TEM) images. Most interestingly, the silver nanoparticles (silver nanoparticles green synthesized by mangosteen pericarp extract [GM-AgNPs]) had asymmetric nanodumbbell shapes where one tail grew from a spherical head. The average head size was measured to be 13.65±5.07 to 31.08±3.99 nm from HR-TEM images. The hydrodynamic size of both nanoparticles tended to increase with increasing extract concentration. Large negative zeta potentials (−18.92 to −34.77 mV) suggested that each nanoparticle solution possessed excellent colloidal stability. The reaction yields were 99.7% for GM-AuNPs and 82.8% for GM-AgNPs, which were assessed by inductively coupled plasma optical emission spectroscopy. A high-resolution X-ray diffraction pattern confirmed the face-centered cubic structure of both nanoparticles. Based on phytochemical screening and Fourier transform infrared spectra, the hydroxyl functional groups of carbohydrates, flavonoids, glycosides, and phenolic compounds were most likely involved in a reduction reaction of gold or silver salts to their corresponding nanoparticles. The in vitro cytotoxicity (based on a water-soluble tetrazolium assay) demonstrated that GM-AgNPs were toxic to both A549 (a human lung

  6. Surgical Management of Mandibular Central Incisors with Dumbbell Shaped Periapical Lesion: A Case Report

    Directory of Open Access Journals (Sweden)

    Roopadevi Garlapati

    2014-01-01

    Full Text Available Dental traumatic injuries may affect the teeth and alveolar bone directly or indirectly. Pulpal necrosis and chronic and apical periodontitis with cystic changes are the most common sequelae of the dental traumatic injuries, if the teeth are not treated immediately. This case report focuses on the conventional and surgical management of mandibular central incisors. A twenty-four-year-old male patient presented with pain in the mandibular central incisors. Radiographic examination revealed mandibular central incisors with dumbbell shaped periapical lesion. After root canal treatment, parendodontic surgery was performed for mandibular central incisors. After one-year recall examination, the teeth were asymptomatic and periapical lesion had healed.

  7. Optical fiber temperature sensor based on dumbbell-shaped Mach-Zehnder interferometer

    Science.gov (United States)

    Tan, Jianchang; Feng, Guoying; Liang, Jingchuan; Zhang, Shulin

    2018-01-01

    A dumbbell-shaped and core-disconnected microstructure all-fiber temperature sensor based on the Mach-Zehnder interferometer (MZI) is designed and implemented. To the best of our knowledge, the MZI with this configuration was produced and applied to sense temperature for the first time. It demonstrated that this all-fiber interferometer incorporates intermodal interference between the LP01 mode and a high-order cladding mode of LP07. Theoretical and experimental results indicate that the linearity of the spectral shift due to the temperature change is ˜0.999 and the sensitivity at 25°C to 400°C is ˜26.03 pm/°C and at -25°C to 20°C is ˜23.87 pm/°C. The reproducibility error of this all-fiber temperature sensor at 25°C to 400°C is innovative micro-nano all-fiber sensors.

  8. Designing asymmetric multiferroics with strong magnetoelectric coupling

    Science.gov (United States)

    Lu, Xuezeng; Xiang, Hongjun; Rondinelli, James; Materials Theory; Design Group Team

    2015-03-01

    Multiferroics offer exciting opportunities for electric-field control of magnetism. Single-phase multiferroics suitable for such applications at room temperature need much more study. Here, we propose the concept of an alternative type of multiferroics, namely, the ``asymmetric multiferroic.'' In asymmetric multiferroics, two locally stable ferroelectric states are not symmetrically equivalent, leading to different magnetic properties between these two states. Furthermore, we predict from first principles that a Fe-Cr-Mo superlattice with the LiNbO3-type structure is such an asymmetric multiferroic. The strong ferrimagnetism, high ferroelectric polarization, and significant dependence of the magnetic transition temperature on polarization make this asymmetric multiferroic an ideal candidate for realizing electric-field control of magnetism at room temperature. Our study suggests that the asymmetric multiferroic may provide an alternative playground for voltage control of magnetism and find its applications in spintronics and quantum computing.

  9. Study of asymmetric multilayered structures by means of nonreciprocity in phases

    International Nuclear Information System (INIS)

    Rao, V S C Manga; Gupta, S Dutta; Agarwal, G S

    2004-01-01

    We study symmetric and asymmetric stratified media with resonant absorbers to bring out the role of inversion symmetry and absorption. We show that both can be probed using the reflected fields for excitation of the structure from opposite sides. The phase asymmetry is shown to bear the signature of broken inversion symmetry in lossless systems, while losses in addition lead to the nonreciprocity in the intensity reflection coefficient. We demonstrate how reflected pulses from opposite ends can reveal both of the aspects through their shapes and delays. Moreover, we demonstrate a great flexibility in manipulating the pulse velocities mediated by the resonant atom-field interaction

  10. Lattice-parameter-difference measurement of heteroepitaxial structures by means of extremely asymmetrical Bragg diffraction

    International Nuclear Information System (INIS)

    Pietsch, U.; Borchard, W.

    1987-01-01

    The sensitivity of measurements of the lattice-parameter difference in monocrystalline heterostructures can be enhanced by use of an extremely asymmetrical diffraction geometry. If the angle of incidence is somewhat higher than the critical angle for total external reflection, the Bragg peak is shifted from the position calculated by kinematic theory. The amount of shift depends on the angle of incidence as well as on the mass density of the material used. For heteroepitaxial structures both the layer and the substrate peaks are shifted but by different amounts. Therefore it becomes possible to characterize layers of totally lattice-matched structures also. (orig.)

  11. Engineered Asymmetric Composite Membranes with Rectifying Properties.

    Science.gov (United States)

    Wen, Liping; Xiao, Kai; Sainath, Annadanam V Sesha; Komura, Motonori; Kong, Xiang-Yu; Xie, Ganhua; Zhang, Zhen; Tian, Ye; Iyoda, Tomokazu; Jiang, Lei

    2016-01-27

    Asymmetric composite membranes with rectifying properties are developed by grafting pH-stimulus-responsive materials onto the top layer of the composite structure, which is prepared by two novel block copolymers using a phase-separation technique. This engineered asymmetric composite membrane shows potential applications in sensors, filtration, and nanofluidic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Beamwidth for asymmetric and multilayer semiconductor laser structures

    DEFF Research Database (Denmark)

    Buus, Jens

    1981-01-01

    An expression for the far field of the fundamental TE0mode in an asymmetrical dielectric slab waveguide is derived. By using normalized waveguide parameters, universal plots of the beamwidth are presented. These plots include the obliquity factor correction. Experimental results for symmetrical G...

  13. Visible-light promoted catalytic activity of dumbbell-like Au nanorods supported on graphene/TiO2 sheets towards hydrogenation reaction

    Science.gov (United States)

    Dai, Yunqian; Zhu, Mingyun; Wang, Xiaotian; Wu, Yanan; Huang, Chengqian; Fu, Wanlin; Meng, Xiangyu; Sun, Yueming

    2018-06-01

    In this work, the rationally-designed sharp corners on Au nanorods tremendously improved the catalytic activity, particularly in the presence of visible light irradiation, towards the hydrogenation of 4-nitrophenol to 4-aminophenol. A strikingly increased rate constant of 50.6 g‑1 s‑1 L was achieved in M-Au-3, which was 41.8 times higher than that of parent Au nanorods under dark conditions. The enhanced activities were proportional to the extent of the protruding sharp corners. Furthermore, remarkably enhanced activities were achieved in novel ternary Au/RGO/TiO2 sheets, which were endowed with a 52.0 times higher rate constant than that of straight Au nanorods. These remarkably enhanced activities were even higher than those of previously reported 3–5 nm Au and 3 nm Pt nanoparticles. It was systematically observed that there are three aspects to the synergistic effects between Au and RGO sheets: (i) electron transfer from RGO to Au, (ii) a high concentration of p-nitrophenol close to dumbbell-like Au nanorods on RGO sheets, and (iii) increased local reaction temperature from the photothermal effect of both dumbbell-like Au nanorods and RGO sheets.

  14. Research into the Energy Output of Asymmetric Cylindrical Structure under Internal Explosion Loading

    Directory of Open Access Journals (Sweden)

    Liangliang Ding

    2018-04-01

    Full Text Available The energy output characteristic of an asymmetric cylindrical structure under internal explosion loading has significant research value in the field of the national defense industry. This paper took the D-shaped structure as the research object. Three groups of experiments (D-90°, D-120°, D-150° were carried out. The D-shaped structure showed that fragments are concentrated in the middle and are sparse on both sides. Moreover, the fragment density decreased with the increase of the azimuth angle. The fragment velocities, which were measured from high-speed photography and an oscilloscope, coincided well with each other, and decreased with an increase in the central angle. Compared with the cylindrical structure, the fragment energy gain of the D-shaped structure is significant; the total energy and energy density of the three D-shaped structures were very close to each other. This indicates that D-120° is the optimal solution among the three D-shaped structures and it can provide guidance for the future design of D-shaped structures to achieve higher energy output.

  15. Laser-Printed In-Plane Micro-Supercapacitors: From Symmetric to Asymmetric Structure.

    Science.gov (United States)

    Huang, Gui-Wen; Li, Na; Du, Yi; Feng, Qing-Ping; Xiao, Hong-Mei; Wu, Xing-Hua; Fu, Shao-Yun

    2018-01-10

    Here, we propose and demonstrate a complete solution for efficiently fabricating in-plane micro-supercapacitors (MSCs) from a symmetric to asymmetric structure. By using an original laser printing process, symmetric MSC with reduced graphene oxide (rGO)/silver nanowire (Ag-NW) hybrid electrodes was facilely fabricated and a high areal capacitance of 5.5 mF cm -2 was achieved, which reaches the best reports on graphene-based MSCs. More importantly, a "print-and-fold" method has been creatively proposed that enabled the rapid manufacturing of asymmetric in-plane MSCs beyond the traditional cumbersome technologies. α-Ni(OH) 2 particles with high tapping density were successfully synthesized and employed as the pseudocapacitive material. Consequently, an improved supply voltage of 1.5 V was obtained and an areal capacitance as high as 8.6 mF cm -2 has been realized. Moreover, a demonstration of a miniaturized MSC pack was performed by multiply-folding the serial Ag-NW-connected MSC units. As a result, a compact MSC pack with a high supply voltage of 3 V was obtained, which can be utilized to power a light-emitting diode light. These presented technologies may pave the way for the efficiently producing high performance in-plane MSCs, meanwhile offering a solution for the achievement of practical power supply packs integrated in limited spaces.

  16. Asymmetric quantum-well structures for AlGaN/GaN/AlGaN resonant tunneling diodes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lin' an, E-mail: layang@xidian.edu.cn; Li, Yue; Wang, Ying; Xu, Shengrui; Hao, Yue [State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xi' an 710071 (China)

    2016-04-28

    Asymmetric quantum-well (QW) structures including the asymmetric potential-barrier and the asymmetric potential-well are proposed for AlGaN/GaN/AlGaN resonant tunneling diodes (RTDs). Theoretical investigation gives that an appropriate decrease in Al composition and thickness for emitter barrier as well as an appropriate increase of both for collector barrier can evidently improve the negative-differential-resistance characteristic of RTD. Numerical simulation shows that RTD with a 1.5-nm-thick GaN well sandwiched by a 1.3-nm-thick Al{sub 0.15}Ga{sub 0.85}N emitter barrier and a 1.7-nm-thick Al{sub 0.25}Ga{sub 0.75}N collector barrier can yield the I-V characteristic having the peak current (Ip) and the peak-to-valley current ratio (PVCR) of 0.39 A and 3.6, respectively, about double that of RTD with a 1.5-nm-thick Al{sub 0.2}Ga{sub 0.8}N for both barriers. It is also found that an introduction of InGaN sub-QW into the diode can change the tunneling mode and achieve higher transmission coefficient of electron. The simulation demonstrates that RTD with a 2.8-nm-thick In{sub 0.03}Ga{sub 0.97}N sub-well in front of a 2.0-nm-thick GaN main-well can exhibit the I-V characteristic having Ip and PVCR of 0.07 A and 11.6, about 7 times and double the value of RTD without sub-QW, respectively. The purpose of improving the structure of GaN-based QW is to solve apparent contradiction between the device structure and the device manufacturability of new generation RTDs for sub-millimeter and terahertz applications.

  17. Electromagnetic resonance in the asymmetric terahertz metamaterials with triangle microstructure

    Science.gov (United States)

    Xing, Yuanyuan; Zhang, Xiaoyu; Zhang, Qiang; Gu, Yanping; Qian, Yunan; Lin, Xingyue; Tang, Yunhai; Cheng, Xinli; Qin, Changfa; Shen, Jiaoyan; Zang, Taocheng; Ma, Chunlan

    2018-05-01

    We investigate terahertz transmission properties and electromagnetic resonance modes in the asymmetric triangle structures with the change of asymmetric distance and the direction of electric field. When the THz electric field is perpendicular to the split gap of triangle, the electric field can better excite the THz absorption in the triangle structures. Importantly, electromagnetically induced transparency (EIT) characteristics are observed in the triangle structures due to the destructive interference of the different excited modes. The distributions of electric field and surface current density simulated by finite difference time domain indicate that the bright mode is excited by the side of triangle structures and dark mode is excited by the gap-side of triangle. The present study is helpful to understand the electromagnetic resonance in the asymmetric triangular metamaterials.

  18. Optical nonreciprocal transmission in an asymmetric silicon photonic crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zheng; Chen, Juguang; Ji, Mengxi; Huang, Qingzhong; Xia, Jinsong; Wang, Yi, E-mail: yingwu2@126.com, E-mail: ywangwnlo@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wu, Ying, E-mail: yingwu2@126.com, E-mail: ywangwnlo@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2015-11-30

    An optical nonreciprocal transmission (ONT) is realized by employing the nonlinear effects in a compact asymmetric direct-coupled nanocavity-waveguide silicon photonic crystal structure with a high loaded quality factor (Q{sub L}) of 42 360 and large extinction ratio exceeding 30 dB. Applying a single step lithography and successive etching, the device can realize the ONT in an individual nanocavity, alleviating the requirement to accurately control the resonance of the cavities. A maximum nonreciprocal transmission ratio of 21.1 dB as well as a working bandwidth of 280 pm in the telecommunication band are obtained at a low input power of 76.7 μW. The calculated results by employing a nonlinear coupled-mode model are in good agreement with the experiment.

  19. Asymmetric actuating structure generates negligible influence on the supporting base for high performance scanning probe microscopies

    Science.gov (United States)

    Yi Yan, Gang; Bin Liu, Yong; Hua Feng, Zhi

    2014-02-01

    An asymmetric actuating structure generating negligible influence on the supporting base for high performance scanning probe microscopies is proposed in this paper. The actuator structure consists of two piezostacks, one is used for actuating while the other is for counterbalancing. In contrast with balanced structure, the two piezostacks are installed at the same side of the supporting base. The effectiveness of the structure is proved by some experiments with the actuators fixed to the free end of a cantilever. Experimental results show that almost all of the vibration modes of the cantilever are suppressed effectively at a wide frequency range of 90 Hz-10 kHz.

  20. Strength resistance test of superior members for elderly people: comparison between dumbbells with different weights

    Directory of Open Access Journals (Sweden)

    Marize Amorim Lopes

    2008-06-01

    Full Text Available The aim of the study was to compare the performance of elderly people in the strength resistance test of superior members (SRTSM with dumbbells of different weights (1,8 kg and 2 kg for women and 3,6 kg and 4 kg for men. The sample consisted of 407 elderly (349 feminine and 58 masculine, with age of 60 to 88 years, practitioners of physical exercise for at least six months. The used instrument was the SRTSM of the battery of tests American Alliance for Health, Physical Education, Recreation and Dance (AAHPERD. Two executions of the test were carried through with dumbbells of different weights, SRTSM (1,8 kg and 3,6 kg and “adjusted” SRTSM (2 kg and 4 kg. For the analysis of the data, it was proceeded descriptive analysis, test t of Student for independent samples, paired t test for dependent samples and ANOVA with post-hoc of Tukey, adopting itself the 5% level significance. The results demonstrated that the use of dumbbells with 4 weights of 2 and kg, seem not to affect the performance of the elderly ones, mainly of the masculine sex. For the feminine sex significant difference in the averages of the second comparison carried through for the sort was detected. However, this difference can have been resulting from external factors to the test, since, the greater average obtained was for “the adjusted” SRTSM. Nevertheless, one tries to facilitate even more the evaluation of the functional capacity of the elderly population, being recommended for SRTSM the use of dumbbells with weight of 2 kg for women and 4kg for men that they are of low cost, easy acquisition and access in the Brazilian market. ResumoO objetivo do estudo foi comparar o desempenho de idosos no teste de resistência de força de membros superiores (RESISFOR com halteres de diferentes pesos (1,8 kg e 2 kg para mulheres e 3,6 kg e 4 kg para homens. A amostra foi constituída por 407 idosos (349 feminino e 58 masculino, com idade de 60 a 88 anos, praticantes de exercício f

  1. Turbulent flow field structure of initially asymmetric jets

    International Nuclear Information System (INIS)

    Kim, Kyung Hoon; Kim, Bong Whan; Kim, Suk Woo

    2000-01-01

    The near field structure of round turbulent jets with initially asymmetric velocity distributions is investigated experimentally. Experiments are carried out using a constant temperature hot-wire anemomentry system to measure streamwise velocity in the jets. The measurements are undertaken across the jet at various streamwise stations in a range starting from the jet exit plane and up to a downstream location of twelve diameters. The experimental results include the distributions of mean and instantaneous velocities, vorticity field, turbulence intensity, and the Reynolds shear stresses. The asymmetry of the jet exit plane was obtained by using circular cross-section pipes with a bend upstream of the exit. Three pipes used here include a straight pipe, and 90 and 160 degree-bend pipes. Therefore, at the upstream of the pipe exit, secondary flow through the bend and mean streamwise velocity distribution could be controlled by changing the curvature of pipes. The jets into the atmosphere have two levels of initial velocity skewness in addition to an axisymmetric jet from a straight pipe. In case of the curved pipe, a six diameterlong straight pipe section follows the bend upstream of the exit. The Reynolds number based on the exit bulk velocity is 13,400. The results indicate that the near field structure is considerably modified by the skewness of an initial mean velocity distribution. As the skewness increases, the decay rate of mean velocity at the centerline also increases

  2. Predicting How Nanoconfinement Changes the Relaxation Time of a Supercooled Liquid

    DEFF Research Database (Denmark)

    Ingebrigtsen, Trond; Errington, Jeff; Truskett, Tom

    2013-01-01

    The properties of nanoconfined fluids can be strikingly different from those of bulk liquids. A basic unanswered question is whether the equilibrium and dynamic consequences of confinement are related to each other in a simple way. We study this question by simulation of a liquid comprising...... asymmetric dumbbell-shaped molecules, which can be deeply supercooled without crystallizing. We find that the dimensionless structural relaxation times—spanning six decades as a function of temperature, density, and degree of confinement—collapse when plotted versus excess entropy. The data also collapse...

  3. Structure of highly asymmetric hard-sphere mixtures: an efficient closure of the Ornstein-Zernike equations.

    Science.gov (United States)

    Amokrane, S; Ayadim, A; Malherbe, J G

    2005-11-01

    A simple modification of the reference hypernetted chain (RHNC) closure of the multicomponent Ornstein-Zernike equations with bridge functions taken from Rosenfeld's hard-sphere bridge functional is proposed. Its main effect is to remedy the major limitation of the RHNC closure in the case of highly asymmetric mixtures--the wide domain of packing fractions in which it has no solution. The modified closure is also much faster, while being of similar complexity. This is achieved with a limited loss of accuracy, mainly for the contact value of the big sphere correlation functions. Comparison with simulation shows that inside the RHNC no-solution domain, it provides a good description of the structure, while being clearly superior to all the other closures used so far to study highly asymmetric mixtures. The generic nature of this closure and its good accuracy combined with a reduced no-solution domain open up the possibility to study the phase diagram of complex fluids beyond the hard-sphere model.

  4. Tuning of Preparational Factors Affecting the Morphological Structure and Gas Separation Property of Asymmetric Polysulfone Membranes

    Science.gov (United States)

    Yuenyao, C.; Ruangdit, S.; Chittrakarn, T.

    2017-09-01

    The aim of this work was to study the effect of preparational factors such as solvent type, evaporation time (ET) and non-solvent additive, on the morphological structure, physical and gas separation properties of the prepared membrane samples by tuning of these parameters. Flat sheet asymmetric polysulfone (PSF) membranes were prepared by the dry/wet phase inversion process combined with the double coagulation bath method. The alteration of the prepared membranes were analyzed through scientific techniques such as Scanning Electron Microscope (SEM) and Dynamic Mechanical Thermal Analysis (DMTA). Furthermore, gas separation performance of membrane samples was measured in term of gas permeation and ideal selectivity of CO2/CH4. Experimental results showed that the change of preparational factors affected to the gas permeation of asymmetric PSF membranes. For example, the selective layer thickness increased with increasing of ET. This lead to increase significantly of ideal selectivity of CO2/CH4. The CO2/CH4 ideal selectivity was also increased with increase of ethanol (non-solvent additive) concentration in casting solution. In summary, the tuning of preparational factors affected to morphological structure, physical and gas separation properties of PSF membranes.

  5. Stable single longitudinal mode erbium-doped silica fiber laser based on an asymmetric linear three-cavity structure

    International Nuclear Information System (INIS)

    Feng Ting; Yan Feng-Ping; Li Qi; Peng Wan-Jing; Feng Su-Chun; Tan Si-Yu; Wen Xiao-Dong

    2013-01-01

    We present a stable linear-cavity single longitudinal mode (SLM) erbium-doped silica fiber laser. It consists of four fiber Bragg gratings (FBGs) directly written in a section of photosensitive erbium-doped fiber (EDF) to form an asymmetric three-cavity structure. The stable SLM operation at a wavelength of 1545.112 nm with a 3-dB bandwidth of 0.012 nm and an optical signal-to-noise ratio (OSNR) of about 60 dB is verified experimentally. Under laboratory conditions, the performance of a power fluctuation of less than 0.05 dB observed from the power meter for 6 h and a wavelength variation of less than 0.01 nm obtained from the optical spectrum analyzer (OSA) for about 1.5 h are demonstrated. The gain fiber length is no longer limited to only several centimeters for SLM operation because of the excellent mode-selecting ability of the asymmetric three-cavity structure. The proposed scheme provides a simple and cost-effective approach to realizing a stable SLM fiber laser. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  6. Two-Stage Surgery for a Large Cervical Dumbbell Tumour in Neurofibromatosis 1: A Case Report

    Directory of Open Access Journals (Sweden)

    Mohd Ariff S

    2011-11-01

    Full Text Available Spinal neurofibromas occur sporadically and typically occur in association with neurofibromatosis 1. Patients afflicted with neurofibromatosis 1 usually present with involvement of several nerve roots. This report describes the case of a 14- year-old child with a large intraspinal, but extradural tumour with paraspinal extension, dumbbell neurofibroma of the cervical region extending from the C2 to C4 vertebrae. The lesions were readily detected by MR imaging and were successfully resected in a two-stage surgery. The time interval between the first and second surgery was one month. We provide a brief review of the literature regarding various surgical approaches, emphasising the utility of anterior and posterior approaches.

  7. Dynamic structural change of the self-assembled lanthanum complex induced by lithium triflate for direct catalytic asymmetric aldol-Tishchenko reaction.

    Science.gov (United States)

    Horiuchi, Yoshihiro; Gnanadesikan, Vijay; Ohshima, Takashi; Masu, Hyuma; Katagiri, Kosuke; Sei, Yoshihisa; Yamaguchi, Kentaro; Shibasaki, Masakatsu

    2005-09-05

    The development of a direct catalytic asymmetric aldol-Tishchenko reaction and the nature of its catalyst are described. An aldol-Tishchenko reaction of various propiophenone derivatives with aromatic aldehydes was promoted by [LaLi3(binol)3] (LLB), and reactivity and enantioselectivity were dramatically enhanced by the addition of lithium trifluoromethanesulfonate (LiOTf). First, we observed a dynamic structural change of LLB by the addition of LiOTf using 13C NMR spectroscopy, electronspray ionization mass spectrometry (ESI-MS), and cold-spray ionization mass spectrometry (CSI-MS). X-ray crystallography revealed that the structure of the newly generated self-assembled complex was a binuclear [La2Li4(binaphthoxide)5] complex 6. A reverse structural change of complex 6 to LLB by the addition of one equivalent of Li2(binol) was also confirmed by ESI-MS and experimental results. The drastic concentration effects on the direct catalytic asymmetric aldol-Tishchenko reaction suggested that the addition of LiOTf to LLB generated an active oligomeric catalyst species.

  8. [Dumbbell malignant dorsal schwannoma embolized and operated by single posterior approach].

    Science.gov (United States)

    Zabalo, Gorka; de Frutos, Daniel; García, Juan Carlos; Ortega, Rodrigo; Guelbenzu, Juan José; Zazpe, Idoya

    2018-02-19

    We report a case of a 41 years old patient complaining of chronic dorsalgia. MRI showed a well defined intradural extramedular dumbbell-shaped lesion, associated to a left paravertebral tumor at D5-D6 level. The tumor was embolizated prior to surgery. Following she underwent a D4-D6 laminotomy, left D5-D6 costotransversectomy and resection of the intracanal extradural part of the lesion with section of the left D5 nerve. Posteriorly, complete resection of the extracanal portion of the tumor was performed by a postero-lateral approach. The anatomopathologic diagnosis was a malignant schwannoma. After the surgery, the patient required adyuvant radiotherapic treatment. Malignant schwannoma is a very uncommon tumor which belongs to the malignant peripheral nerve sheath tumors (MPNST). It develops from Schwann cells. It is frequently associated with type 1 neurofibromatosis. MPNST usually present local recurrence and can metastatize. Copyright © 2018 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. A single dumbbell falling under gravity in a cellular flow field

    CERN Document Server

    Piva, M F

    2003-01-01

    We study the motion of a single polymer chain settling under gravity in an ensemble of periodic, cellular flow fields, which are steady in time. The molecule is an elastic dumbbell composed of two beads connected by a nonbendable Hookean spring. Each bead is subject to a Stokes drag and a Brownian force from the flow. In the absence of particle inertia, the molecule settles out at a rate which depends on three parameters: the particle velocity in a fluid at rest, V sub g , the spring constant, B, and the diffusion coefficient, D. We investigate the dependence of the molecule settling velocity on B, for fixed V sub g and D. It is found that this velocity strongly depends on B and it has a minimum value less than V sub g. We also find that the molecule is temporarily trapped at fixed points for certain values of the parameters. We analyse one fixed point in detail and conclude that its stability is the main factor which contributes to slowing down the settling process.

  10. A novel PM motor with hybrid PM excitation and asymmetric rotor structure for high torque performance

    Directory of Open Access Journals (Sweden)

    Gaohong Xu

    2017-05-01

    Full Text Available This paper proposes a novel permanent magnet (PM motor for high torque performance, in which hybrid PM material and asymmetric rotor design are applied. The hybrid PM material is adopted to reduce the consumption of rare-earth PM because ferrite PM is assisted to enhance the torque production. Meanwhile, the rotor structure is designed to be asymmetric by shifting the surface-insert PM (SPM, which is used to improve the torque performance, including average torque and torque ripple. Moreover, the reasons for improvement of the torque performance are explained by evaluation and analysis of the performances of the proposed motor. Compared with SPM motor and V-type motor, the merit of high utilization ratio of rare-earth PM is also confirmed, showing that the proposed motor can offer higher torque density and lower torque ripple simultaneously with less consumption of rare-earth PM.

  11. Cell Chirality Drives Left-Right Asymmetric Morphogenesis.

    Science.gov (United States)

    Inaki, Mikiko; Sasamura, Takeshi; Matsuno, Kenji

    2018-01-01

    Most macromolecules found in cells are chiral, meaning that they cannot be superimposed onto their mirror image. However, cells themselves can also be chiral, a subject that has received little attention until very recently. In our studies on the mechanisms of left-right (LR) asymmetric development in Drosophila , we discovered that cells can have an intrinsic chirality to their structure, and that this "cell chirality" is generally responsible for the LR asymmetric development of certain organs in this species. The actin cytoskeleton plays important roles in the formation of cell chirality. In addition, Myosin31DF ( Myo31DF ), which encodes Drosophila Myosin ID, was identified as a molecular switch for cell chirality. In other invertebrate species, including snails and Caenorhabditis elegans , chirality of the blastomeres, another type of cell chirality, determines the LR asymmetry of structures in the body. Thus, chirality at the cellular level may broadly contribute to LR asymmetric development in various invertebrate species. Recently, cell chirality was also reported for various vertebrate cultured cells, and studies suggested that cell chirality is evolutionarily conserved, including the essential role of the actin cytoskeleton. Although the biological roles of cell chirality in vertebrates remain unknown, it may control LR asymmetric development or other morphogenetic events. The investigation of cell chirality has just begun, and this new field should provide valuable new insights in biology and medicine.

  12. Asymmetric threat data mining and knowledge discovery

    Science.gov (United States)

    Gilmore, John F.; Pagels, Michael A.; Palk, Justin

    2001-03-01

    Asymmetric threats differ from the conventional force-on- force military encounters that the Defense Department has historically been trained to engage. Terrorism by its nature is now an operational activity that is neither easily detected or countered as its very existence depends on small covert attacks exploiting the element of surprise. But terrorism does have defined forms, motivations, tactics and organizational structure. Exploiting a terrorism taxonomy provides the opportunity to discover and assess knowledge of terrorist operations. This paper describes the Asymmetric Threat Terrorist Assessment, Countering, and Knowledge (ATTACK) system. ATTACK has been developed to (a) data mine open source intelligence (OSINT) information from web-based newspaper sources, video news web casts, and actual terrorist web sites, (b) evaluate this information against a terrorism taxonomy, (c) exploit country/region specific social, economic, political, and religious knowledge, and (d) discover and predict potential terrorist activities and association links. Details of the asymmetric threat structure and the ATTACK system architecture are presented with results of an actual terrorist data mining and knowledge discovery test case shown.

  13. Single-particle effects in fine structure of super-asymmetric fission

    International Nuclear Information System (INIS)

    Mirea, M.

    1999-01-01

    Energy spectrum measurements concerning the 14 C decay from 223 Ra revealed a fine structure with an intense branch on the excited state of the daughter 209 Pb. Apart the great number of microscopic--macroscopic attempts of different authors in describing this behavior (compiled recently), this phenomenon was explained quantitatively using the Landau--Zener effect, i.e., the promotion mechanism of a unpaired nucleon between two levels characterised by the same quantum numbers connected to some symmetries of the nuclear system in the region where an avoided level crossing is exhibited. The adiabatic levels during the super-asymmetric fission process were determined with a new version of the two--centre shell model especially constructed for very large mass--asymmetries. The half--lives are obtained in the framework of the Wentzel--Kramers--Brillouin approximation. The amount of the variation of the barrier height in the excited channels was estimated accounting the specialization energy which can be interpreted as the excess of the energy of a nucleon with a given spin over the energy for the same spin nucleon state of lowest energy. It is evidenced that the fine structure of cluster decay is due to two competitive effects: the Landau--Zener effect which enhances the probability to have an excited daughter in the final channel and the specialization energy which increases the potential barrier and therefore leads to a diminution of the penetrability. This formalism was used for predictions of the fine structure in the case of 14 C decay of 225 Ac and to explain the fine structure of alpha decay. (author)

  14. Dumbbell DNA-templated CuNPs as a nano-fluorescent probe for detection of enzymes involved in ligase-mediated DNA repair.

    Science.gov (United States)

    Qing, Taiping; He, Xiaoxiao; He, Dinggeng; Ye, Xiaosheng; Shangguan, Jingfang; Liu, Jinquan; Yuan, Baoyin; Wang, Kemin

    2017-08-15

    DNA repair processes are responsible for maintaining genome stability. Ligase and polynucleotide kinase (PNK) have important roles in ligase-mediated DNA repair. The development of analytical methods to monitor these enzymes involved in DNA repair pathways is of great interest in biochemistry and biotechnology. In this work, we reported a new strategy for label-free monitoring PNK and ligase activity by using dumbbell-shaped DNA templated copper nanoparticles (CuNPs). In the presence of PNK and ligase, the dumbbell-shaped DNA probe (DP) was locked and could resist the digestion of exonucleases and then served as an efficient template for synthesizing fluorescent CuNPs. However, in the absence of ligase or PNK, the nicked DP could be digested by exonucleases and failed to template fluorescent CuNPs. Therefore, the fluorescence changes of CuNPs could be used to evaluate these enzymes activity. Under the optimal conditions, highly sensitive detection of ligase activity of about 1U/mL and PNK activity down to 0.05U/mL is achieved. To challenge the practical application capability of this strategy, the detection of analyte in dilute cells extracts was also investigated and showed similar linear relationships. In addition to ligase and PNK, this sensing strategy was also extended to the detection of phosphatase, which illustrates the versatility of this strategy. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Synthesis, crystal structure and luminescent properties of lanthanide extended structure with asymmetrical dinuclear units based on 2-(methylthio)benzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Cristiane K.; Souza, Viviane P. de; Luz, Leonis L. da [Departamento de Química Fundamental, UFPE, 50.740-560 Recife, PE (Brazil); Menezes Vicenti, Juliano R. de [Escola de Química e Alimento, FURG, 96203-900 Rio Grande, RS (Brazil); Burrow, Robert A. [Departamento de Química, UFSM, 97105-900 Santa Maria, RS (Brazil); Severino Alves; Longo, Ricardo L. [Departamento de Química Fundamental, UFPE, 50.740-560 Recife, PE (Brazil); Malvestiti, Ivani, E-mail: ivani@ufpe.br [Departamento de Química Fundamental, UFPE, 50.740-560 Recife, PE (Brazil)

    2016-02-15

    The extended structures [Ln{sub 2}(L){sub 6}(OH{sub 2}){sub 4}] with L=2-(methylthio)benzoato (2-CH{sub 3}S–C{sub 6}H{sub 4}COO{sup −}) and Ln=Tb (1), Eu (2) and Gd (3) were successfully synthesized and characterized. The single crystal structure of compound 1 was determined and showed an extended structure made up of asymmetrical dinuclear units with the formula catena-poly[{Tb(H_2O)_4}-(μ-L-1κO:2κO'){sub 2}-{Tb(L-κO,O')_2}-(μ-L-1κO:2κO'){sub 2}]. In the molecule of 1, there are two distinct metal sites. The Tb atom in site 1 is bound to four coordinated water molecules and four oxygen atoms from four different benzoate ligands, two of which bridge to site 2 Tb atoms on one side and two to site 2 Tb atoms on the other side. The site 2 Tb atom is bound to four oxygen atoms from two chelating benzoate ligands and four oxygen atoms from four different benzoate ligands, two of which bridge to site 1 Tb atoms on one side and two to site 1 Tb atoms on the other side. The bridging benzoate ligands extend the framework in one-dimension with alternating site 1/site 2 Tb atoms. The luminescent properties of these asymmetric dinuclear extended structures are quite peculiar and showed a single emitting lanthanide center. The quantum yields of 1 (ca. 50–55%) is practically independent of the excitation energy, whereas those of 2 are vanishing small (<1%) when excited at the ligand states and become sizable (ca. 10–20%) upon excitation at the intra-4f manifold. To reconcile these experimental observations in conjunction with the spectral data for compounds 1 and 3, a strong interaction between the lanthanide emitting states at sites 1 and 2 was proposed. For compound 1, the numerical solutions of the rate equations provided evidences that when the transition rates between the emitting states at both sites are larger than the highest decaying rate of these states, the system becomes an effective single emitter. This establishes, for the first time

  16. Fourier synthesis of asymmetrical optical potentials for atoms

    International Nuclear Information System (INIS)

    Ritt, G.

    2007-01-01

    In this work a dissipationless asymmetrical optical potential for cold atoms was produced. In a first step a new type of optical lattice was generated, whose spatial periodicity only corresponds to a quarter of the wavelength of the light used for the generation. This corresponds to the half of the periodicity of a conventional optical lattice, which is formed by the light of the same wavelength. The generation of this new type of optical lattice was reached by the use of two degenerated raman transitions. Virtual processes occur, in which four photons are involved. In conventional optical lattices however virtual two-photon processes occur. By spatially superimposing this optical lattice with a conventional optical lattice an asymmetrical optical potential could be formed. By diffraction of a Bose Einstein condensate of rubidium atoms at the transient activated asymmetrical potential the asymmetrical structure was proven. (orig.)

  17. Prospects of asymmetrically H-terminated zigzag germanene nanoribbons for spintronic application

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Varun, E-mail: varun@iiitm.ac.in [Nanomaterials Research Group, ABV-Indian Institute of Information Technology and Management (IIITM), Gwalior 474015 (India); Srivastava, Pankaj [Nanomaterials Research Group, ABV-Indian Institute of Information Technology and Management (IIITM), Gwalior 474015 (India); Jaiswal, Neeraj K. [Discipline of Physics, Indian Institute of Information Technology, Design & Manufacturing, Jabalpur, Dumna Airport Road, Jabalpur 482005 (India)

    2017-02-28

    Highlights: • Asymmetric hydrogen termination of Zigzag Germanene Nanoribbons (ZGeNR) is presented with their plausible spintronic device application. • It is revealed that asymmetric terminations are energetically more favourable compared to symmetric terminations. • The magnetic moment analysis depicts that asymmetric ZGeNR have a magnetic ground state with a preferred ferromagnetic (FM) coupling. • Presented doped asymmetric ZGeNR exhibits a half-metallic character which makes them qualify for spin-filtering device. - Abstract: First-principles investigations have been performed to explore the spin based electronic and transport properties of asymmetrically H-terminated zigzag germanene nanoribbons (2H−H ZGeNR). Investigations reveal a significant formation energy difference (ΔE{sub F} = E{sub F(2H-H)} − E{sub F(H-H)} ∼ −0.49 eV), highlighting more energetic stability for asymmetric edge termination compared to symmetric edge termination, irrespective of the ribbon width. Further, magnetic moment analysis and total energy calculations were performed to unveil that these structures have a magnetic ground state with preferred ferromagnetic (FM) coupling. The calculated E-k structures project a unique bipolar semiconducting behaviour for 2H−H ZGeNR which is contrast to H-terminated ZGeNR. Half-metallic transformation has also been revealed via suitable p-type or n-type doping for these structures. Finally, transport calculations were performed to highlight the selective contributions of spin-down (spin-up) electrons in the I–V characteristics of the doped 2H−H ZGeNR, suggesting their vitality for spintronic device applications.

  18. Survey of beta-particle interaction experiments with asymmetric matter

    Science.gov (United States)

    Van Horn, J. David; Wu, Fei

    2018-05-01

    Asymmetry is a basic property found at multiple scales in the universe. Asymmetric molecular interactions are fundamental to the operation of biological systems in both signaling and structural roles. Other aspects of asymmetry are observed and useful in many areas of science and engineering, and have been studied since the discovery of chirality in tartrate salts. The observation of parity violation in beta decay provided some impetus for later experiments using asymmetric particles. Here we survey historical work and experiments related to electron (e-) or positron (e+) polarimetry and their interactions with asymmetric materials in gas, liquid and solid forms. Asymmetric interactions may be classified as: 1) stereorecognition, 2) stereoselection and 3) stereoinduction. These three facets of physical stereochemistry are unique but interrelated; and examples from chemistry and materials science illustrate these aspects. Experimental positron and electron interactions with asymmetric materials may be classified in like manner. Thus, a qualitative assessment of helical and polarized positron experiments with different forms of asymmetric matter from the past 40 years is presented, as well as recent experiments with left-hand and right-hand single crystal quartz and organic compounds. The purpose of this classification and review is to evaluate the field for potential new experiments and directions for positron (or electron) studies with asymmetric materials.

  19. Effects of Thermal Cross-Linking on the Structure and Property of Asymmetric Membrane Prepared from the Polyacrylonitrile

    Directory of Open Access Journals (Sweden)

    Xin Jin

    2018-05-01

    Full Text Available Improving the thermal and chemical stabilities of classical polymer membranes will be beneficial to extend their applications in the high temperature or aggressive environment. In this work, the asymmetric ultrafiltration membranes prepared from the polyacrylonitrile (PAN were used to fabricate the cross-linking asymmetric (CLA PAN membranes via thermal cross-linking in air to improve their thermal and chemical stabilities. The effects of thermal cross-linking parameters such as temperature and holding time on the structure, gas separation performance, thermal and chemical stabilities of PAN membranes were investigated by Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, positron annihilation lifetime spectroscopy (PALS, scanning electron microscopy (SEM, thermogravimetic analysis (TGA and gas permeation test. The thermal cross-linking significantly influences the chemical structure, microstructure and pore structure of PAN membrane. During the thermal cross-linking, the shrinkage of membrane and coalescence or collapse of pore and microstructure make large pores diminish, small pores disappear and pore volumes reduce. The gas permeances of CLA-PAN membranes increase as the increasing of cross-linking temperature and holding time due to the volatilization of small molecules. The CLA-PAN membranes demonstrate excellent thermal and chemical stabilities and present good prospects for application in ultrafiltration for water treatment and for use as a substrate for nanofiltration or gas separation with an aggressive and demanding environment.

  20. Cell chirality: its origin and roles in left-right asymmetric development.

    Science.gov (United States)

    Inaki, Mikiko; Liu, Jingyang; Matsuno, Kenji

    2016-12-19

    An item is chiral if it cannot be superimposed on its mirror image. Most biological molecules are chiral. The homochirality of amino acids ensures that proteins are chiral, which is essential for their functions. Chirality also occurs at the whole-cell level, which was first studied mostly in ciliates, single-celled protozoans. Ciliates show chirality in their cortical structures, which is not determined by genetics, but by 'cortical inheritance'. These studies suggested that molecular chirality directs whole-cell chirality. Intriguingly, chirality in cellular structures and functions is also found in metazoans. In Drosophila, intrinsic cell chirality is observed in various left-right (LR) asymmetric tissues, and appears to be responsible for their LR asymmetric morphogenesis. In other invertebrates, such as snails and Caenorhabditis elegans, blastomere chirality is responsible for subsequent LR asymmetric development. Various cultured cells of vertebrates also show intrinsic chirality in their cellular behaviours and intracellular structural dynamics. Thus, cell chirality may be a general property of eukaryotic cells. In Drosophila, cell chirality drives the LR asymmetric development of individual organs, without establishing the LR axis of the whole embryo. Considering that organ-intrinsic LR asymmetry is also reported in vertebrates, this mechanism may contribute to LR asymmetric development across phyla.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Authors.

  1. Cell chirality: its origin and roles in left–right asymmetric development

    Science.gov (United States)

    Inaki, Mikiko; Liu, Jingyang

    2016-01-01

    An item is chiral if it cannot be superimposed on its mirror image. Most biological molecules are chiral. The homochirality of amino acids ensures that proteins are chiral, which is essential for their functions. Chirality also occurs at the whole-cell level, which was first studied mostly in ciliates, single-celled protozoans. Ciliates show chirality in their cortical structures, which is not determined by genetics, but by ‘cortical inheritance’. These studies suggested that molecular chirality directs whole-cell chirality. Intriguingly, chirality in cellular structures and functions is also found in metazoans. In Drosophila, intrinsic cell chirality is observed in various left–right (LR) asymmetric tissues, and appears to be responsible for their LR asymmetric morphogenesis. In other invertebrates, such as snails and Caenorhabditis elegans, blastomere chirality is responsible for subsequent LR asymmetric development. Various cultured cells of vertebrates also show intrinsic chirality in their cellular behaviours and intracellular structural dynamics. Thus, cell chirality may be a general property of eukaryotic cells. In Drosophila, cell chirality drives the LR asymmetric development of individual organs, without establishing the LR axis of the whole embryo. Considering that organ-intrinsic LR asymmetry is also reported in vertebrates, this mechanism may contribute to LR asymmetric development across phyla. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821533

  2. Salt supply to and significance of asymmetric salt diapirs

    DEFF Research Database (Denmark)

    Koyi, H.; Burliga, S.; Chemia, Zurab

    2012-01-01

    Salt diapirs can be asymmetric both internally and externally reflecting their evolution history. As such, this asymmetry bear a significant amount of information about the differential loading (± lateral forces) and in turn the salt supply that have shaped the diapir. In two dimensions......, In this study we compare results of analogue and numerical models of diapirs with two natural salt diapris (Klodawa and Gorleben diapirs) to explain their salt supply and asymmetric evolution. In a NW-SE section, the Gorleben salt diapir possesses an asymmetric external geometry represented by a large...... southeastern overhang due to salt extrusion during Middle Cretaceous followed by its burial in Tertiary. This external asymmetry is also reflected in the internal configuration of the diapir which shows different rates of salt flow on the two halves of the structure. The asymmetric external and internal...

  3. Asymmetric strand segregation: epigenetic costs of genetic fidelity?

    Directory of Open Access Journals (Sweden)

    Diane P Genereux

    2009-06-01

    Full Text Available Asymmetric strand segregation has been proposed as a mechanism to minimize effective mutation rates in epithelial tissues. Under asymmetric strand segregation, the double-stranded molecule that contains the oldest DNA strand is preferentially targeted to the somatic stem cell after each round of DNA replication. This oldest DNA strand is expected to have fewer errors than younger strands because some of the errors that arise on daughter strands during their synthesis fail to be repaired. Empirical findings suggest the possibility of asymmetric strand segregation in a subset of mammalian cell lineages, indicating that it may indeed function to increase genetic fidelity. However, the implications of asymmetric strand segregation for the fidelity of epigenetic information remain unexplored. Here, I explore the impact of strand-segregation dynamics on epigenetic fidelity using a mathematical-modelling approach that draws on the known molecular mechanisms of DNA methylation and existing rate estimates from empirical methylation data. I find that, for a wide range of starting methylation densities, asymmetric -- but not symmetric -- strand segregation leads to systematic increases in methylation levels if parent strands are subject to de novo methylation events. I found that epigenetic fidelity can be compromised when enhanced genetic fidelity is achieved through asymmetric strand segregation. Strand segregation dynamics could thus explain the increased DNA methylation densities that are observed in structured cellular populations during aging and in disease.

  4. Seismic soil structure interaction analysis for asymmetrical buildings supported on piled raft for the 2015 Nepal earthquake

    Science.gov (United States)

    Badry, Pallavi; Satyam, Neelima

    2017-01-01

    Seismic damage surveys and analyses conducted on modes of failure of structures during past earthquakes observed that the asymmetrical buildings show the most vulnerable effect throughout the course of failures (Wegner et al., 2009). Thus, all asymmetrical buildings significantly fails during the shaking events and it is really needed to focus on the accurate analysis of the building, including all possible accuracy in the analysis. Apart from superstructure geometry, the soil behavior during earthquake shaking plays a pivotal role in the building collapse (Chopra, 2012). Fixed base analysis where the soil is considered to be infinitely rigid cannot simulate the actual scenario of wave propagation during earthquakes and wave transfer mechanism in the superstructure (Wolf, 1985). This can be well explained in the soil structure interaction analysis, where the ground movement and structural movement can be considered with the equal rigor. In the present study the object oriented program has been developed in C++ to model the SSI system using the finite element methodology. In this attempt the seismic soil structure interaction analysis has been carried out for T, L and C types piled raft supported buildings in the recent 25th April 2015 Nepal earthquake (M = 7.8). The soil properties have been considered with the appropriate soil data from the Katmandu valley region. The effect of asymmetry of the building on the responses of the superstructure is compared with the author's research work. It has been studied/observed that the shape or geometry of the superstructure governs the response of the superstructure subjected to the same earthquake load.

  5. Estimation of carrier mobility at organic semiconductor/insulator interface using an asymmetric capacitive test structure

    Directory of Open Access Journals (Sweden)

    Rajesh Agarwal

    2016-04-01

    Full Text Available Mobility of carriers at the organic/insulator interface is crucial to the performance of organic thin film transistors. The present work describes estimation of mobility using admittance measurements performed on an asymmetric capacitive test structure. Besides the advantage of simplicity, it is shown that at low frequencies, the measured capacitance comes from a large area of channel making the capacitance-voltage characteristics insensitive to contact resistances. 2-D numerical simulation and experimental results obtained with Pentacene/Poly(4-vinyphenol system are presented to illustrate the operation and advantages of the proposed technique.

  6. Asymmetric acoustic transmission in multiple frequency bands

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hong-xiang, E-mail: jsdxshx@ujs.edu.cn [Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013 (China); Laboratory of Modern Acoustics, Institute of Acoustics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China); Yuan, Shou-qi, E-mail: Shouqiy@ujs.edu.cn [Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013 (China); Zhang, Shu-yi [Laboratory of Modern Acoustics, Institute of Acoustics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-11-23

    We report both experimentally and numerically that the multi-band device of the asymmetric acoustic transmission is realized by placing two periodic gratings with different periods on both sides of two brass plates immersed in water. The asymmetric acoustic transmission can exist in four frequency bands below 1500 kHz, which arises from the interaction between various diffractions from the two gratings and Lamb modes in the brass plates immersed in water. The results indicate that the device has the advantages of multiple band, broader bandwidth, and simpler structure. Our finding should have great potential applications in ultrasonic devices.

  7. Asymmetric acoustic transmission in multiple frequency bands

    International Nuclear Information System (INIS)

    Sun, Hong-xiang; Yuan, Shou-qi; Zhang, Shu-yi

    2015-01-01

    We report both experimentally and numerically that the multi-band device of the asymmetric acoustic transmission is realized by placing two periodic gratings with different periods on both sides of two brass plates immersed in water. The asymmetric acoustic transmission can exist in four frequency bands below 1500 kHz, which arises from the interaction between various diffractions from the two gratings and Lamb modes in the brass plates immersed in water. The results indicate that the device has the advantages of multiple band, broader bandwidth, and simpler structure. Our finding should have great potential applications in ultrasonic devices

  8. Rod-like plasmonic nanoparticles as optical building blocks: how differences in particle shape and structural geometry influence optical signal

    Energy Technology Data Exchange (ETDEWEB)

    Stender, Anthony [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    interlock with one another quite easily. The dimers that form as a result display optical behavior that differs from what has been previously reported about nanorod dimers. Simulated surface charge density patterns reveal that hybridization of LSPR modes occurs readily along the lobes of individual dumbbells in some situations. A pentamer of dumbbells also displays hybridization of modes, and “hot spots” are observed at junctions between pairings of dumbbells. In the final set of experiments, the assembly behavior of nanoparticles in solution was observed in real time. In general, large assemblies of nanoparticles display backbone-like rigidity, but an interesting variety of movements is permitted within the larger structures.

  9. Porous asymmetric SiO2-g-PMMA nanoparticles produced by phase inversion

    KAUST Repository

    Munirasu, Selvaraj

    2014-07-22

    A new kind of asymmetric organic-inorganic porous structure has been proposed. Asymmetric lattices of polymer grafted silica nanoparticles were manufactured by casting and phase inversion in water. Silica nanoparticles were first functionalized with 3-(dimethylethoxysilyl)propyl-2-bromoisobutyrate, followed by grafting of poly(methylmethacrylate) (PMMA) segments, performed by atom-transfer radical polymerization. Mechanically stable self-standing films were prepared by casting a dispersion of functionalized nanoparticles in different solvents and immersion in water. The resulting asymmetrically porous morphology and nanoparticle assembly was characterized by scanning electron and atomic force microscopy. The PMMA functionalized SiO2 hybrid material in acetone or acetone/dioxane led to the best-assembled structures. Porous asymmetric membranes were prepared by adding free PMMA and PMMA terminated with hydrophilic hydroxyl group. Nitrogen flow of 2800 L m-2 h -1 was measured at 1.3 bar demonstrating the porosity and potential application for membrane technology. © 2014 Springer Science+Business Media New York.

  10. An intrinsically asymmetric radio galaxy: 0500+630?

    Science.gov (United States)

    Saikia, D. J.; Thomasson, P.; Jackson, N.; Salter, C. J.; Junor, W.

    1996-10-01

    As part of a search for high-luminosity radio galaxies with one-sided structures, the radio galaxy 0500+630 has been imaged with both the VLA and MERLIN and its optical spectrum determined using the Isaac Newton Telescope on La Palma. The galaxy is found to have a redshift of 0.290+/-0.004. The radio observations show the source to be highly asymmetric, with an overall structure which cannot be understood easily by ascribing it either to orientation and relativistic beaming effects or to an asymmetric distribution of gas in the central region. A comparison of this source with objects of similar luminosity suggests that it is one of the best examples yet of a source with possibly an intrinsic asymmetry in either the collimation of its jets or the supply of energy from the central engine to opposite sides.

  11. High Quality Plasmonic Sensors Based on Fano Resonances Created through Cascading Double Asymmetric Cavities

    OpenAIRE

    Zhang, Xiangao; Shao, Mingzhen; Zeng, Xiaoqi

    2016-01-01

    In this paper, a type of compact nanosensor based on a metal-insulator-metal structure is proposed and investigated through cascading double asymmetric cavities, in which their metal cores shift along different axis directions. The cascaded asymmetric structure exhibits high transmission and sharp Fano resonance peaks via strengthening the mutual coupling of the cavities. The research results show that with the increase of the symmetry breaking in the structure, the number of Fano resonances ...

  12. Synthesis of dumbbell-like Au nanostructure and its light-absorbance study

    International Nuclear Information System (INIS)

    Shen Jianlei; Xu Yan; Li Kun; Song Shiping; Fan Chunhai

    2013-01-01

    Background: By changing the size or the morphology of Au nanostructure, they can absorb different wavelength light due to the localized surface plasmon resonance (LSPR). Because Au nanorods show good ability to transform light into heat (photothermal effect), they have been wildly used to deliver the drugs and release them controllably. However, when applying such nanostructure for in vivo treatments, Au nanorods must have long aspect ratio which often make it hard to prepare heterogeneous nanostructure. Purpose: A new method to synthesize Au nanostructure with uniform size and to achieve long wavelength light absorbance is needed. This work attempts to synthesize such Au nanostructure by using bio-nano techniques. Methods: New nanostructures are prepared by growing Au nanoparticles on the surface of Au nanorods modified with DNA molecules. Results: Dumbbell-Ikea Au nanostructures were prepared firstly. Its maximum absorbance locates at near ultraviolet region, which means that it can be used as a potential tool for the deep-skin photothermal treatment. Moreover, other two kinds of nanostructures, i.e. Au nanorods with Au splinter at two ends and sea urchin-like nanostructures, are also studied. Conclusions: We successfully fabricated novel Au nanostructures which can be used for drug delivery, surface-enhanced Raman spectroscopy and catalysis. (authors)

  13. Design of a randomised intervention study: the effect of dumbbell exercise therapy on physical activity and quality of life among breast cancer survivors in Malaysia.

    Science.gov (United States)

    Rufa'i, Adamu Ahmad; Muda, Wan Abdul Manan Wan; Yen, Siew Hwa; Abd Shatar, Aishah Knight; Murali, Bhavaraju Venkata Krishna; Tan, Shu Wen

    2016-01-01

    Participation in physical activity has a positive impact on the overall health and quality of life, whereas physical inactivity is associated with a poor prognosis among breast cancer survivors. Despite the health-enhancing benefits of physical activity, the majority of Malaysian breast cancer survivors are not physically active. This paper presents the design of a randomised study to evaluate the feasibility and effect of exercise therapy intervention using light resistance dumbbell exercise to promote active lifestyle and improve the quality of life of breast cancer survivors in Malaysia. This is an intervention study of a 12-week exercise therapy that will explore and compare the effects of light resistance and aerobic exercise on physical activity level and quality of life components in 102 female breast cancer survivors. Major eligibility criteria include histologically confirmed diagnosis of breast cancer stages I-III, 3-12 months post-diagnosis, and absence of any disorder contraindicating exercise. Participants will be stratified based on menopausal status (pre-menopause vs post-menopause) and then assigned randomly to one of three groups. Participants in group A will participate in a three-times weekly supervised resistance exercise using light resistance dumbbells; participants in group B will participate in a three-times weekly supervised aerobic exercise; while participants in group C (control group) will be given aerobic exercise after completion of the intervention. The primary end points include physical activity level and quality of life components. The secondary end points are body mass index, body composition, total caloric intake, and waist-to-hip ratio. Although there have been many studies of resistance exercise in breast cancer survivors, this is the first study using this specific mode of resistance. Findings will contribute data on the feasibility and effects of light resistance dumbbell exercises, and provide knowledge on the physical

  14. Activity-induced clustering in model dumbbell swimmers: the role of hydrodynamic interactions.

    Science.gov (United States)

    Furukawa, Akira; Marenduzzo, Davide; Cates, Michael E

    2014-08-01

    Using a fluid-particle dynamics approach, we numerically study the effects of hydrodynamic interactions on the collective dynamics of active suspensions within a simple model for bacterial motility: each microorganism is modeled as a stroke-averaged dumbbell swimmer with prescribed dipolar force pairs. Using both simulations and qualitative arguments, we show that, when the separation between swimmers is comparable to their size, the swimmers' motions are strongly affected by activity-induced hydrodynamic forces. To further understand these effects, we investigate semidilute suspensions of swimmers in the presence of thermal fluctuations. A direct comparison between simulations with and without hydrodynamic interactions shows these to enhance the dynamic clustering at a relatively small volume fraction; with our chosen model the key ingredient for this clustering behavior is hydrodynamic trapping of one swimmer by another, induced by the active forces. Furthermore, the density dependence of the motility (of both the translational and rotational motions) exhibits distinctly different behaviors with and without hydrodynamic interactions; we argue that this is linked to the clustering tendency. Our study illustrates the fact that hydrodynamic interactions not only affect kinetic pathways in active suspensions, but also cause major changes in their steady state properties.

  15. A New Surgical Procedure "Dumbbell-Form Resection" for Selected Hilar Cholangiocarcinomas With Severe Jaundice: Comparison With Hemihepatectomy.

    Science.gov (United States)

    Wang, Shuguang; Tian, Feng; Zhao, Xin; Li, Dajiang; He, Yu; Li, Zhihua; Chen, Jian

    2016-01-01

    The aim of the study is to evaluate the therapeutic effect of a new surgical procedure, dumbbell-form resection (DFR), for hilar cholangiocarcinoma (HCCA) with severe jaundice. In DFR, liver segments I, IVb, and partial V above the right hepatic pedicle are resected.Hemihepatectomy is recognized as the preferred procedure; however, its application is limited in HCCAs with severe jaundice.Thirty-eight HCCA patients with severe jaundice receiving DFR and 70 receiving hemihepatectomy from January 2008 to January 2013 were included. Perioperative parameters, operation-related morbidity and mortality, and post-operative survival were analyzed.A total of 21.1% patients (8/38) in the DFR group received percutaneous transhepatic biliary drainage (PTBD), which was significantly jaundice. However, its indications should be restricted.

  16. Maximally asymmetric transbilayer distribution of anionic lipids alters the structure and interaction with lipids of an amyloidogenic protein dimer bound to the membrane surface.

    Science.gov (United States)

    Cheng, Sara Y; Chou, George; Buie, Creighton; Vaughn, Mark W; Compton, Campbell; Cheng, Kwan H

    2016-03-01

    We used molecular dynamics simulations to explore the effects of asymmetric transbilayer distribution of anionic phosphatidylserine (PS) lipids on the structure of a protein on the membrane surface and subsequent protein-lipid interactions. Our simulation systems consisted of an amyloidogenic, beta-sheet rich dimeric protein (D42) absorbed to the phosphatidylcholine (PC) leaflet, or protein-contact PC leaflet, of two membrane systems: a single-component PC bilayer and double PC/PS bilayers. The latter comprised of a stable but asymmetric transbilayer distribution of PS in the presence of counterions, with a 1-component PC leaflet coupled to a 1-component PS leaflet in each bilayer. The maximally asymmetric PC/PS bilayer had a non-zero transmembrane potential (TMP) difference and higher lipid order packing, whereas the symmetric PC bilayer had a zero TMP difference and lower lipid order packing under physiologically relevant conditions. Analysis of the adsorbed protein structures revealed weaker protein binding, more folding in the N-terminal domain, more aggregation of the N- and C-terminal domains and larger tilt angle of D42 on the PC leaflet surface of the PC/PS bilayer versus the PC bilayer. Also, analysis of protein-induced membrane structural disruption revealed more localized bilayer thinning in the PC/PS versus PC bilayer. Although the electric field profile in the non-protein-contact PS leaflet of the PC/PS bilayer differed significantly from that in the non-protein-contact PC leaflet of the PC bilayer, no significant difference in the electric field profile in the protein-contact PC leaflet of either bilayer was evident. We speculate that lipid packing has a larger effect on the surface adsorbed protein structure than the electric field for a maximally asymmetric PC/PS bilayer. Our results support the mechanism that the higher lipid packing in a lipid leaflet promotes stronger protein-protein but weaker protein-lipid interactions for a dimeric protein on

  17. Transient gain property of a weak probe field in an asymmetric semiconductor coupled double quantum well structure

    International Nuclear Information System (INIS)

    Wang Zhigang; Zheng Zhiren; Yu Junhua

    2007-01-01

    The transient gain property of a weak probe field in an asymmetric semiconductor coupled double quantum well structure is reported. The transient process of the system, which is induced by the external coherent coupling field, shows the property of no inverse gain. We find that the transient behavior of the probe field can be tuned by the change of tunneling barrier. Both the amplitude of the transient gain and the frequency of the oscillation can be affected by the lifetime broadening

  18. Extended asymmetric-cut multilayer X-ray gratings.

    Science.gov (United States)

    Prasciolu, Mauro; Haase, Anton; Scholze, Frank; Chapman, Henry N; Bajt, Saša

    2015-06-15

    The fabrication and characterization of a large-area high-dispersion blazed grating for soft X-rays based on an asymmetric-cut multilayer structure is reported. An asymmetric-cut multilayer structure acts as a perfect blazed grating of high efficiency that exhibits a single diffracted order, as described by dynamical diffraction throughout the depth of the layered structure. The maximum number of grating periods created by cutting a multilayer deposited on a flat substrate is equal to the number of layers deposited, which limits the size of the grating. The size limitation was overcome by depositing the multilayer onto a substrate which itself is a coarse blazed grating and then polish it flat to reveal the uniformly spaced layers of the multilayer. The number of deposited layers required is such that the multilayer thickness exceeds the step height of the substrate structure. The method is demonstrated by fabricating a 27,060 line pairs per mm blazed grating (36.95 nm period) that is repeated every 3,200 periods by the 120-μm period substrate structure. This preparation technique also relaxes the requirements on stress control and interface roughness of the multilayer film. The dispersion and efficiency of the grating is demonstrated for soft X-rays of 13.2 nm wavelength.

  19. Predicting how nanoconfinement changes the relaxation time of a supercooled liquid.

    Science.gov (United States)

    Ingebrigtsen, Trond S; Errington, Jeffrey R; Truskett, Thomas M; Dyre, Jeppe C

    2013-12-06

    The properties of nanoconfined fluids can be strikingly different from those of bulk liquids. A basic unanswered question is whether the equilibrium and dynamic consequences of confinement are related to each other in a simple way. We study this question by simulation of a liquid comprising asymmetric dumbbell-shaped molecules, which can be deeply supercooled without crystallizing. We find that the dimensionless structural relaxation times-spanning six decades as a function of temperature, density, and degree of confinement-collapse when plotted versus excess entropy. The data also collapse when plotted versus excess isochoric heat capacity, a behavior consistent with the existence of isomorphs in the bulk and confined states.

  20. Numerical Investigation of Size and Structure Effect on Tensile Characteristics of Symmetric and Asymmetric CNTs

    Directory of Open Access Journals (Sweden)

    Mahnaz Zakeri

    2016-06-01

    Full Text Available In this research, the influence of structure on the tensile properties of single- walled carbon nanotubes (CNTs is evaluated using molecular mechanics technique and finite element method. The effects of diameter, length and chiral angle on elastic modulus and Poisson’s ratio of armchair, zigzag and chiral structures are investigated. To simulate the CNTs, a 3D FEM code is developed using the ANSYS commercial software. Considering the carbon-carbon covalent bonds as connecting load-carrying beam elements, and the atoms as joints of the elements, CNTs are simulated as space-frame structures. The atomic potentials are estimated using harmonic simple functions. The numerical results show that by increasing the diameter and length to a certain amount, the size effect on tensile behavior of modeled nanotubes is omitted. In fact, for nanotubes with diameter over 2 nm and length over 36.5 nm the chiral angle is the only effective factor on the tensile properties. Also, it is found that the structure has a little effect on the elasticity modulus, which is about 4%. However, Poisson’s ratio can be affected significantly with chiral angle. Asymmetric structures with angles θ

  1. Pricing and collecting decisions in a closed-loop supply chain with symmetric and asymmetric information

    DEFF Research Database (Denmark)

    Wei, Jie; Govindan, Kannan; Li, Yongjian

    2015-01-01

    . The optimal strategies in closed form are given under the decision scenarios with symmetric information; moreover, the first order conditions that the optimal retail price, optimal wholesale price, and optimal collection rate satisfy are given under the decision scenarios with asymmetric information......The optimal decision problem of a closed-loop supply chain with symmetric and asymmetric information structures is considered using game theory in this paper. The paper aims to explore how the manufacturer and the retailer make their own decisions about wholesale price, retail price, and collection...... rate under symmetric and asymmetric information conditions. Four game models are established, which allow one to examine the strategies of each firm and explore the role of the manufacturer and the retailer in four different game scenarios under symmetric and asymmetric information structures...

  2. Bianisotropic metamaterials based on twisted asymmetric crosses

    International Nuclear Information System (INIS)

    Reyes-Avendaño, J A; Sampedro, M P; Juárez-Ruiz, E; Pérez-Rodríguez, F

    2014-01-01

    The effective bianisotropic response of 3D periodic metal-dielectric structures, composed of crosses with asymmetrically-cut wires, is investigated within a general homogenization theory using the Fourier formalism and the form-factor division approach. It is found that the frequency dependence of the effective permittivity for a system of periodically-repeated layers of metal crosses exhibits two strong resonances, whose separation is due to the cross asymmetry. Besides, bianisotropic metamaterials, having a base of four twisted asymmetric crosses, are proposed. The designed metamaterials possess negative refractive index at frequencies determined by the cross asymmetry, the gap between the arms of adjacent crosses lying on the same plane, and the type of Bravais lattice. (papers)

  3. 0114 + 074 - A very asymmetric galaxy in the field of an intermediate-redshift QSO

    International Nuclear Information System (INIS)

    Akujor, C.E.

    1989-01-01

    New radio-continuum observations of 0114 + 074 (4C 07.4) are presented. It is shown that this radio source consists of two distinct objects: a point source identified with an 18.0 mag QSO and a highly asymmetric 18.5 mag galaxy. The patently asymmetric structure of the galaxy is most plausibly due to intrinsically asymmetric energy funding of the lobes by the central machine or nucleus, rather than external influences. 41 refs

  4. Does asymmetric correlation affect portfolio optimization?

    Science.gov (United States)

    Fryd, Lukas

    2017-07-01

    The classical portfolio optimization problem does not assume asymmetric behavior of relationship among asset returns. The existence of asymmetric response in correlation on the bad news could be important information in portfolio optimization. The paper applies Dynamic conditional correlation model (DCC) and his asymmetric version (ADCC) to propose asymmetric behavior of conditional correlation. We analyse asymmetric correlation among S&P index, bonds index and spot gold price before mortgage crisis in 2008. We evaluate forecast ability of the models during and after mortgage crisis and demonstrate the impact of asymmetric correlation on the reduction of portfolio variance.

  5. Success Factors of Asymmetric Connections - Example of Large Slovenian Enterprises

    Directory of Open Access Journals (Sweden)

    Viktor Vračar

    2014-11-01

    Full Text Available More and more companies realize the fact that networking or partner collaborations, which are based on partner relations between companies, are essential for their long-term existence. In today’s global competitive environment each company is included at least in some different connections. Very common connections occur between large and smaller enterprises, where the so called asymmetric connections occur, which may be understood as the ability of one organisation to establish power, influence and control over the other organisation and its resources. According to numerous statements, the connections between enterprises are very frequently uneffectivenessful, with opinions on the optimal nature of asymmetric connections being quite common as well, whereby it is, as a rule, a synergic complementing of missing content for both partners. To verify the thesis, that companies achieve more competitiveness and effectiveness through connections, whereby the so called asymmetric connections are common, a structural model of the evolution of asymmetric connection has been developed, which connects the theoretically identified factors and all dependent concepts of competitiveness, efficiency and effectiveness. The empirical research also attempts to further expose the factors of asymmetric connections, which affect efficiency and effectiveness of the connected enterprises.

  6. A novel asymmetric chair-like hydroxyl-bridged tetra-copper compound: Synthesis, supramolecular structure and magnetic property

    Science.gov (United States)

    Wang, Xiao-Feng; Du, Ke-Jie; Wang, Hong-Qing; Zhang, Xue-Li; Nie, Chang-Ming

    2017-06-01

    A new polynuclear Cu(II) compound, [Cu4(bpy)4(OH)4(H2O)(BTC)]NO3·8H2O (1), was prepared by self-assembly from the solution of copper(II) nitrate and two kinds of ligands, 2,2‧-bipyridine (bpy) and benzene-tricarboxylic acid (H3BTC). Single crystal structure analysis reveals that 1 features a rare asymmetric chair-like hydroxyl-bridged tetra-copper cluster: [Cu4(OH)4] core along with one H2O and one BTC3- occupied each terminal coordinated site. In addition, the magnetic property has been investigated.

  7. Asymmetric acoustic transmission in graded beam

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Li, E-mail: lj94172350@hotmail.com [School of Mechanical Engineering and State Key laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Wu, Jiu Hui, E-mail: ejhwu@mail.xjtu.edu.cn [School of Mechanical Engineering and State Key laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Guan, Dong; Lu, Kuan [School of Mechanical Engineering and State Key laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Gao, Nansha [School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Songhua, Cao [School of Mechanical Engineering and State Key laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China)

    2016-12-01

    We demonstrate the dynamic effective material parameters and vibration performance of a graded beam. The structure of the beam was composed of several unit cells with different fill factors. The dispersion relations and energy band structures of each unit cell were calculated using the finite element method (FEM). The dynamic effective material parameters in each unit cell of the graded beam were determined by the dispersion relations and energy band structures. Longitudinal wave propagation was investigated using a numerical method and FEM. The results show that the graded beam allows asymmetric acoustic transmission over a wide range of frequencies.

  8. Congenital abdominal dumbbell fashion neuroblastoma with invasion of spinal canal detected by ultrasonography - case report

    International Nuclear Information System (INIS)

    Kosiak, W.; Czarniak, P.; Swieton, D.; Piskunowicz, M.; Drozynska, E.; Szolkiewicz, A.

    2007-01-01

    A case of congenital abdominal dumbbell fashion neuroblastoma with invasion of the spinal canal detected by ultrasonography (US) is presented. A 3-week-old male neonate was admitted to the hospital with a palpable mass in the left lumbar region. Ultrasound examination was performed on the same day. It disclosed a pathologic mass filling the left side of the retroperitoneal space - displacing laterally and inferiorly the left kidney. The second part of the tumor was located above the Gerot's fascia in the muscles and infiltrated the tomography scanning confirmed the presence of solid masses in these locations. Urinary excretion of vanillin-mandelic acid (VMA) was within normal range, ferritin level was elevated (447 μg/ml). Bone scintigraphy showed metastases to the left clavicle. There were no changes in bone marrow. Diagnosis of an undifferentiated malignant neuroblastoma was established in histopathological examination. Spinal ultrasonography is highly recommended in neonates and infants with retroperitoneal tumors. (author)

  9. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong

    2017-01-01

    The employment of metal salts is quite limited in asymmetric catalysis, although it would provide an additional arsenal of safe and inexpensive reagents to create molecular functions with high optical purity. Cation chelation by polyethers increases the salts' solubility in conventional organic...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...... highly enantioselective silylation reactions in polyether-generated chiral environments, and leading to a record-high turnover in asymmetric organocatalysis. This can lead to further applications by the asymmetric use of other inorganic salts in various organic transformations....

  10. Experimental research on photovoltaic module for asymmetrical compound parabolic concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jinshe; Wang, Mingyue [Chongqing Normal University, Chongqing (China). Department of Physics; Yang, Changmin [Xian University of Technology, Xian (China). Department of Applied Physics

    2008-07-01

    The photovoltaic module for the use of fixed asymmetrical CPC concentrator was designed and fabricated based on the performance of polycrystalline-silicon solar cells with back surface field (BSF) structure. The performance of the combination of the module and asymmetrical CPC concentrator was investigated. The results show its effective concentration ratio to be 2.46 and the output power of the PV-a-CPC system to be increased by 2.13 times compared with that of the module approximately. (orig.)

  11. Asymmetric Michael Addition Mediated by Chiral Ionic Liquids.

    Science.gov (United States)

    Suzuki, Yumiko

    2018-06-01

    Chiral ionic liquids with a focus on their applications in asymmetric Michael additions and related reactions were reviewed. The examples were classified on the basis of the mode of asymmetric induction (e.g., external induction/non-covalent interaction or internal induction/covalent bond formation), the roles in reactions (as a solvent or catalyst), and their structural features (e.g., imidazolium-based chiral cations, other chiral oniums; proline derivatives). Most of the reactions with high chiral induction are Michael addition of ketones or aldehydes to chalcones or nitrostyrenes where proline-derived chiral ionic liquids catalyze the reaction through enamine/ iminium formation. Many reports demonstrate the recyclability of ionic liquid-tagged pyrrolidines.

  12. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.

    Science.gov (United States)

    Guo, Wei; Tian, Ye; Jiang, Lei

    2013-12-17

    Both scientists and engineers are interested in the design and fabrication of synthetic nanofluidic architectures that mimic the gating functions of biological ion channels. The effort to build such structures requires interdisciplinary efforts at the intersection of chemistry, materials science, and nanotechnology. Biological ion channels and synthetic nanofluidic devices have some structural and chemical similarities, and therefore, they share some common features in regulating the traverse ionic flow. In the past decade, researchers have identified two asymmetric ion transport phenomena in synthetic nanofluidic structures, the rectified ionic current and the net diffusion current. The rectified ionic current is a diode-like current-voltage response that occurs when switching the voltage bias. This phenomenon indicates a preferential direction of transport in the nanofluidic system. The net diffusion current occurs as a direct product of charge selectivity and is generated from the asymmetric diffusion through charged nanofluidic channels. These new ion transport phenomena and the elaborate structures that occur in biology have inspired us to build functional nanofluidic devices for both fundamental research and practical applications. In this Account, we review our recent progress in the design and fabrication of biomimetic solid-state nanofluidic devices with asymmetric ion transport behavior. We demonstrate the origin of the rectified ionic current and the net diffusion current. We also identify several influential factors and discuss how to build these asymmetric features into nanofluidic systems by controlling (1) nanopore geometry, (2) surface charge distribution, (3) chemical composition, (4) channel wall wettability, (5) environmental pH, (6) electrolyte concentration gradient, and (7) ion mobility. In the case of the first four features, we build these asymmetric features directly into the nanofluidic structures. With the final three, we construct

  13. Investigation of band structure and electrochemical properties of h-BN/rGO composites for asymmetric supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Sanjit; Jana, Milan; Samanta, Pranab; Murmu, Naresh C. [Surface Engineering & Tribology Division, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-CMERI Campus, Durgapur, 713209 (India); Kim, Nam H. [Advanced Materials Institute of BIN Convergence Technology (BK21 Plus Global), Dept. of BIN Convergence Technology, Chonbuk National University, Jeonju, Jeonbuk, 54896 (Korea, Republic of); Kuila, Tapas, E-mail: tkuila@gmail.com [Surface Engineering & Tribology Division, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-CMERI Campus, Durgapur, 713209 (India); Lee, Joong H., E-mail: jhl@jbnu.ac.kr [Advanced Materials Institute of BIN Convergence Technology (BK21 Plus Global), Dept. of BIN Convergence Technology, Chonbuk National University, Jeonju, Jeonbuk, 54896 (Korea, Republic of); Carbon Composite Research Centre, Department of Polymer & Nanoscience and Technology, Chonbuk National University, Jeonju, Jeonbuk, 54896 (Korea, Republic of)

    2017-04-01

    The effect of different content of graphene oxide (GO) on the electrical and electrochemical property of h-BN/reduced GO (rGO) hetero-structure is investigated elaborately. The increasing amount of rGO within the h-BN moiety plays fascinating role by reducing the electronic work function while increasing the density of state of the electrode. Furthermore, different h-BN/rGO architecture shows different potential window and the transition from pseudocapacitance to electrochemical double layer capacitance (EDLC) is observed with increasing π-conjugation of C atoms. The rod like h-BN is aligned as sheet while forming super-lattice with rGO. Transmission electron microscopy images show crystalline morphology of the hetero-structure super-lattice. The valance band and Mott-Shotky relationship determined from Mott-Shotky X-ray photoelectron spectroscopy shows that the electronic band structure of super-lattice is improved as compared to the insulating h-BN. The h-BN/rGO super-lattice provides high specific capacitance of ∼960 F g{sup −1}. An asymmetric device configured with h-BN/rGO super-lattice and B, N doped rGO shows very high energy and power density of 73 W h kg{sup −1} and 14,000 W kg{sup −1}, respectively. Furthermore, very low relaxation time constant of ∼1.6 ms and high stability (∼80%) after 10,000 charge-discharge cycles ensure the h-BN/rGO super-lattice as potential materials for the next generation energy storage applications. - Highlights: • Band gap energy of boron nitride decreased with increasing graphene oxide content. • Graphene oxide effectively affected the charge storage mechanism of the composite. • Morphology of boron nitride changed from rod to sheet while forming superlattice. • Highly conducting superlattice showed excellent supercapacitor performance. • Asymmetric device exhibited long stability with high energy and power density.

  14. Charge Asymmetric Cosmic Rays as a probe of Flavor Violating Asymmetric Dark Matter

    DEFF Research Database (Denmark)

    Masina, Isabella; Sannino, Francesco

    2011-01-01

    The recently introduced cosmic sum rules combine the data from PAMELA and Fermi-LAT cosmic ray experiments in a way that permits to neatly investigate whether the experimentally observed lepton excesses violate charge symmetry. One can in a simple way determine universal properties of the unknown...... component of the cosmic rays. Here we attribute a potential charge asymmetry to the dark sector. In particular we provide models of asymmetric dark matter able to produce charge asymmetric cosmic rays. We consider spin zero, spin one and spin one-half decaying dark matter candidates. We show that lepton...... flavor violation and asymmetric dark matter are both required to have a charge asymmetry in the cosmic ray lepton excesses. Therefore, an experimental evidence of charge asymmetry in the cosmic ray lepton excesses implies that dark matter is asymmetric....

  15. Volatile and Nonvolatile Characteristics of Asymmetric Dual-Gate Thyristor RAM with Vertical Structure.

    Science.gov (United States)

    Kim, Hyun-Min; Kwon, Dae Woong; Kim, Sihyun; Lee, Kitae; Lee, Junil; Park, Euyhwan; Lee, Ryoongbin; Kim, Hyungjin; Kim, Sangwan; Park, Byung-Gook

    2018-09-01

    In this paper, the volatile and nonvolatile characteristics of asymmetric dual-gate thyristor random access memory (TRAM) are investigated using the technology of a computer-aided design (TCAD) simulation. Owing to the use of two independent gates having different gate dielectric layers, volatile and nonvolatile memory functions can be realized in a single device. The first gate with a silicon oxide layer controls the one-transistor dynamic random access memory (1T-DRAM) characteristics of the device. From the simulation results, a rapid write speed (107) can be achieved. The second gate, whose dielectric material is composed of oxide/nitride/oxide (O/N/O) layers, is used to implement the nonvolatile property by trapping charges in the nitride layer. In addition, this offers an advantage when processing the 3D-stack memory application, as the device has a vertical channel structure with polycrystalline silicon.

  16. Asymmetric Michael Addition Mediated by Chiral Ionic Liquids

    Science.gov (United States)

    Suzuki, Yumiko

    2018-01-01

    Chiral ionic liquids with a focus on their applications in asymmetric Michael additions and related reactions were reviewed. The examples were classified on the basis of the mode of asymmetric induction (e.g., external induction/non-covalent interaction or internal induction/covalent bond formation), the roles in reactions (as a solvent or catalyst), and their structural features (e.g., imidazolium-based chiral cations, other chiral oniums; proline derivatives). Most of the reactions with high chiral induction are Michael addition of ketones or aldehydes to chalcones or nitrostyrenes where proline-derived chiral ionic liquids catalyze the reaction through enamine/ iminium formation. Many reports demonstrate the recyclability of ionic liquid-tagged pyrrolidines. PMID:29861702

  17. Homemade Firearm Suicide With Dumbbell Pipe Triggering by an Air-Compressed Gun: Case Report and Review of Literature.

    Science.gov (United States)

    Le Garff, Erwan; Delannoy, Yann; Mesli, Vadim; Berthezene, Jean Marie; Morbidelli, Philippe; Hédouin, Valéry

    2015-12-01

    Firearm suicides are frequent and well described in the forensic literature, particularly in Europe and the United States. However, the use of homemade and improvised firearms is less well described. The present case reports a suicide with an original improvised gun created using an air-compressed pellet gun and a dumbbell pipe. The aims of this study were to describe the scene, the external examination of the corpse, the body scan, and the autopsy; to understand the mechanism of death; and to compare the results with a review of the forensic literature to highlight the epidemiology of homemade firearm use, the tools used for homemade and improvised firearms in suicides versus homicides, and the manners in which homemade firearms are used (homicide or suicide, particularly in complex suicide cases).

  18. Cyclodextrins in Asymmetric and Stereospecific Synthesis

    Directory of Open Access Journals (Sweden)

    Fliur Macaev

    2015-09-01

    Full Text Available Since their discovery, cyclodextrins have widely been used as green and easily available alternatives to promoters or catalysts of different chemical reactions in water. This review covers the research and application of cyclodextrins and their derivatives in asymmetric and stereospecific syntheses, with their division into three main groups: (1 cyclodextrins promoting asymmetric and stereospecific catalysis in water; (2 cyclodextrins’ complexes with transition metals as asymmetric and stereospecific catalysts; and (3 cyclodextrins’ non-metallic derivatives as asymmetric and stereospecific catalysts. The scope of this review is to systematize existing information on the contribution of cyclodextrins to asymmetric and stereospecific synthesis and, thus, to facilitate further development in this direction.

  19. Principles of asymmetric synthesis

    CERN Document Server

    Gawley, Robert E; Aube, Jeffrey

    2012-01-01

    The world is chiral. Most of the molecules in it are chiral, and asymmetric synthesis is an important means by which enantiopure chiral molecules may be obtained for study and sale. Using examples from the literature of asymmetric synthesis, this book presents a detailed analysis of the factors that govern stereoselectivity in organic reactions. After an explanation of the basic physical-organic principles governing stereoselective reactions, the authors provide a detailed, annotated glossary of stereochemical terms. A chapter on "Practical Aspects of Asymmetric Synthesis" provides a critical overview of the most common methods for the preparation of enantiomerically pure compounds, techniques for analysis of stereoisomers using chromatographic, spectroscopic, and chiroptical methods. The authors then present an overview of the most important methods in contemporary asymmetric synthesis organized by reaction type. Thus, there are four chapters on carbon-carbon bond forming reactions, one chapter on reductions...

  20. Imprints of the Molecular Electronic Structure in the Photoelectron Spectra of Strong-Field Ionized Asymmetric Triatomic Model Molecules

    Science.gov (United States)

    Paul, Matthias; Yue, Lun; Gräfe, Stefanie

    2018-06-01

    We examine the circular dichroism in the angular distribution of photoelectrons of triatomic model systems ionized by strong-field ionization. Following our recent work on this effect [Paul, Yue, and Gräfe, J. Mod. Opt. 64, 1104 (2017), 10.1080/09500340.2017.1299883], we demonstrate how the symmetry and electronic structure of the system is imprinted into the photoelectron momentum distribution. We use classical trajectories to reveal the origin of the threefolded pattern in the photoelectron momentum distribution, and show how an asymmetric nuclear configuration of the triatomic system effects the photoelectron spectra.

  1. Cluster shell model: I. Structure of 9Be, 9B

    Science.gov (United States)

    Della Rocca, V.; Iachello, F.

    2018-05-01

    We calculate energy spectra, electromagnetic transition rates, longitudinal and transverse electron scattering form factors and log ft values for beta decay in 9Be, 9B, within the framework of a cluster shell model. By comparing with experimental data, we find strong evidence for the structure of these nuclei to be two α-particles in a dumbbell configuration with Z2 symmetry, plus an additional nucleon.

  2. New ternary tantalum borides containing boron dumbbells: Experimental and theoretical studies of Ta2OsB2 and TaRuB

    Science.gov (United States)

    Mbarki, Mohammed; Touzani, Rachid St.; Rehorn, Christian W. G.; Gladisch, Fabian C.; Fokwa, Boniface P. T.

    2016-10-01

    The new ternary transition metal-rich borides Ta2OsB2 and TaRuB have been successfully synthesized by arc-melting the elements in a water-cooled crucible under an argon atmosphere. The crystal structures of both compounds were solved by single-crystal X-ray diffraction and their metal compositions were confirmed by EDX analysis. It was found that Ta2OsB2 and TaRuB crystallize in the tetragonal Nb2OsB2 (space group P4/mnc, no. 128) and the orthorhombic NbRuB (space group Pmma, no. 51) structure types with lattice parameters a=5.878(2) Å, c=6.857(2) Å and a=10.806(2) Å, b=3.196(1) Å, c=6.312(2) Å, respectively. Furthermore, crystallographic, electronic and bonding characteristics have been studied by density functional theory (DFT). Electronic structure relaxation has confirmed the crystallographic parameters while COHP bonding analysis indicates that B2-dummbells are the strongest bonds in both compounds. Moreover, the formation of osmium dumbbells in Ta2OsB2 through a Peierls distortion along the c-axis, is found to be the origin of superstructure formation. Magnetic susceptibility measurements reveal that the two phases are Pauli paramagnets, thus confirming the theoretical DOS prediction of metallic character. Also hints of superconductivity are found in the two phases, however lack of single phase samples has prevented confirmation. Furthermore, the thermodynamic stability of the two modifications of AMB (A=Nb, Ta; M =Ru, Os) are studied using DFT, as new possible phases containing either B4- or B2-units are predicted, the former being the most thermodynamically stable modification.

  3. Balancing Uplink and Downlink under Asymmetric Traffic Environments Using Distributed Receive Antennas

    Science.gov (United States)

    Sohn, Illsoo; Lee, Byong Ok; Lee, Kwang Bok

    Recently, multimedia services are increasing with the widespread use of various wireless applications such as web browsers, real-time video, and interactive games, which results in traffic asymmetry between the uplink and downlink. Hence, time division duplex (TDD) systems which provide advantages in efficient bandwidth utilization under asymmetric traffic environments have become one of the most important issues in future mobile cellular systems. It is known that two types of intercell interference, referred to as crossed-slot interference, additionally arise in TDD systems; the performances of the uplink and downlink transmissions are degraded by BS-to-BS crossed-slot interference and MS-to-MS crossed-slot interference, respectively. The resulting performance unbalance between the uplink and downlink makes network deployment severely inefficient. Previous works have proposed intelligent time slot allocation algorithms to mitigate the crossed-slot interference problem. However, they require centralized control, which causes large signaling overhead in the network. In this paper, we propose to change the shape of the cellular structure itself. The conventional cellular structure is easily transformed into the proposed cellular structure with distributed receive antennas (DRAs). We set up statistical Markov chain traffic model and analyze the bit error performances of the conventional cellular structure and proposed cellular structure under asymmetric traffic environments. Numerical results show that the uplink and downlink performances of the proposed cellular structure become balanced with the proper number of DRAs and thus the proposed cellular structure is notably cost-effective in network deployment compared to the conventional cellular structure. As a result, extending the conventional cellular structure into the proposed cellular structure with DRAs is a remarkably cost-effective solution to support asymmetric traffic environments in future mobile cellular

  4. Totally Asymmetric Limit for Models of Heat Conduction

    Science.gov (United States)

    De Carlo, Leonardo; Gabrielli, Davide

    2017-08-01

    We consider one dimensional weakly asymmetric boundary driven models of heat conduction. In the cases of a constant diffusion coefficient and of a quadratic mobility we compute the quasi-potential that is a non local functional obtained by the solution of a variational problem. This is done using the dynamic variational approach of the macroscopic fluctuation theory (Bertini et al. in Rev Mod Phys 87:593, 2015). The case of a concave mobility corresponds essentially to the exclusion model that has been discussed in Bertini et al. (J Stat Mech L11001, 2010; Pure Appl Math 64(5):649-696, 2011; Commun Math Phys 289(1):311-334, 2009) and Enaud and Derrida (J Stat Phys 114:537-562, 2004). We consider here the convex case that includes for example the Kipnis-Marchioro-Presutti (KMP) model and its dual (KMPd) (Kipnis et al. in J Stat Phys 27:6574, 1982). This extends to the weakly asymmetric regime the computations in Bertini et al. (J Stat Phys 121(5/6):843-885, 2005). We consider then, both microscopically and macroscopically, the limit of large externalfields. Microscopically we discuss some possible totally asymmetric limits of the KMP model. In one case the totally asymmetric dynamics has a product invariant measure. Another possible limit dynamics has instead a non trivial invariant measure for which we give a duality representation. Macroscopically we show that the quasi-potentials of KMP and KMPd, which are non local for any value of the external field, become local in the limit. Moreover the dependence on one of the external reservoirs disappears. For models having strictly positive quadratic mobilities we obtain instead in the limit a non local functional having a structure similar to the one of the boundary driven asymmetric exclusion process.

  5. High Q-factor metasurfaces based on miniaturized asymmetric single split resonators

    Science.gov (United States)

    Al-Naib, Ibraheem A. I.; Jansen, Christian; Koch, Martin

    2009-04-01

    We introduce asymmetric single split rectangular resonators as bandstop metasurfaces, which exhibit very high Q-factors in combination with low passband losses and a small electrical footprint. The effect of the degree of asymmetry on the frequency response is thoroughly studied. Furthermore, complementary structures, which feature a bandpass behavior, were derived by applying Babinet's principle and investigated with regards to their transmission characteristics. In future, asymmetric single split rectangular resonators could provide efficient unit cells for frequency selective surface devices, such as thin-film sensors or high performance filters.

  6. Joint small-angle X-ray and neutron scattering data analysis of asymmetric lipid vesicles

    International Nuclear Information System (INIS)

    Eicher, Barbara; Heberle, Frederick A.; Marquardt, Drew T.

    2017-01-01

    Low- and high-resolution models describing the internal transbilayer structure of asymmetric lipid vesicles have been developed. These models can be used for the joint analysis of small-angle neutron and X-ray scattering data. The models describe the underlying scattering length density/electron density profiles either in terms of slabs or through the so-called scattering density profile, previously applied to symmetric lipid vesicles. Both models yield structural details of asymmetric membranes, such as the individual area per lipid, and the hydrocarbon thickness of the inner and outer bilayer leaflets. The scattering density profile model, however, comes at a cost of increased computational effort but results in greater structural resolution, showing a slightly lower packing of lipids in the outer bilayer leaflet of ~120 nm diameter palmitoyloleoyl phosphatidylcholine (POPC) vesicles, compared to the inner leaflet. Here, analysis of asymmetric dipalmitoyl phosphatidylcholine/POPC vesicles did not reveal evidence of transbilayer coupling between the inner and outer leaflets at 323 K,i.e.above the melting transition temperature of the two lipids.

  7. Investigation on asymmetric flow over a blunt-nose slender body at high angle of attack

    Science.gov (United States)

    Zhongyang, Qi; Yankui, Wang; Lei, Wang; Qian, Li

    2017-12-01

    The asymmetric vortices over a blunt-nose slender body are investigated experimentally and numerically at a high angle of attack (AoA, α = 50°) and a Reynolds number of Re D = 1.54 × 105 on the basis of an incoming free-stream velocity and diameter (D) of the model. A micro-perturbation in the form of a hemispherical protrusion with a radius of r = 0.012D is introduced and attached on the nose of the slender body to control the behavior of the asymmetric vortices. Given the predominant role of micro perturbation in the asymmetric vortex pattern, a square wave, which is singly periodic, is observed for side-force variation by setting the circumferential angle (θ) of the micro perturbation from 0° to 360°. The asymmetric vortex pattern and the corresponding side force are manageable and highly dependent on the location of perturbation. The flow structure over the blunt-nose slender body is clarified by building a physical model of asymmetric vortex flow structure in a regular state at a high AoA (α = 50°). This model is divided into several regions by flow structure development along the model body-axis, i.e., inception region at x/D ≤ 3.0, triple-vortex region at 3.0 ≤ x/D ≤ 6.0, four-vortex region at 6.0 ≤ x/D ≤ 8.5, and five-vortex region at 8.5 ≤ x/D ≤ 12. The model reveals a complicated multi-vortex system. The associated pressure distributions and flow characteristics are discussed in detail.

  8. Hierarchical polypyrrole based composites for high performance asymmetric supercapacitors

    Science.gov (United States)

    Chen, Gao-Feng; Liu, Zhao-Qing; Lin, Jia-Ming; Li, Nan; Su, Yu-Zhi

    2015-06-01

    An advanced asymmetric supercapacitor with high energy density, exploiting hierarchical polypyrrole (PPy) based composites as both the anode [three dimensional (3D) chuzzle-like Ni@PPy@MnO2] and (3D cochleate-like Ni@MnO2@PPy) cathode, has been developed. The ultrathin PPy and flower-like MnO2 orderly coating on the high-conductivity 3D-Ni enhance charge storage while the unique 3D chuzzle-like and 3D cochleate-like structures provide storage chambers and fast ion transport pathways for benefiting the transport of electrolyte ions. The 3D cochleate-like Ni@MnO2@PPy possesses excellent pseudocapacitance with a relatively negative voltage window while preserved EDLC and free transmission channels conducive to hold the high power, providing an ideal cathode for the asymmetric supercapacitor. It is the first report of assembling hierarchical PPy based composites as both the anode and cathode for asymmetric supercapacitor, which exhibits wide operation voltage of 1.3-1.5 V with maximum energy and power densities of 59.8 Wh kg-1 and 7500 W kg-1.

  9. In Situ Studies and Magnetic Properties of the Cmcm Polymorph of LiCoPO4 with a Hierarchical Dumbbell-Like Morphology Synthesized by Easy Single-Step Polyol Synthesis

    Directory of Open Access Journals (Sweden)

    Carlos Alarcón-Suesca

    2016-11-01

    Full Text Available LiCoPO4 (LCP exists in three different structural modifications: LCP-Pnma (olivine structure, LCP-Pn21a (KNiPO4 structure type, and LCP-Cmcm (Na2CrO4 structure type. The synthesis of the LCP-Cmcm polymorph has been reported via high pressure/temperature solid-state methods and by microwave-assisted solvothermal synthesis. Phase transitions from both LCP-Pn21a and LCP-Cmcm to LCP-Pnma upon heating indicates a metastable behavior. However, a precise study of the structural changes during the heating process and the magnetic properties of LCP-Cmcm are hitherto unknown. Herein, we present the synthesis and characterization of LCP-Cmcm via a rapid and facile soft-chemistry approach using two different kinetically controlled pathways, solvothermal and polyol syntheses, both of which only require relatively low temperatures (~200 °C. Additionally, by polyol, method a dumbbell-like morphology is obtained without the use of any additional surfactant or template. A temperature-dependent in situ powder XRD shows a transition from LCP-Cmcm at room temperature to LCP-Pnma and finally to LCP-Pn21a at 575 and 725 °C, respectively. In addition to that, the determination of the magnetic susceptibility as a function of temperature indicates a long-range antiferromagnetic order below TN = 11 K at 10 kOe and 9.1 K at 25 kOe. The magnetization curves suggests the presence of a metamagnetic transition.

  10. The Asymmetric Continental Shelf Wave in Response to the Synoptic Wind Burst in a Semienclosed Double-Shelf Basin

    Science.gov (United States)

    Qu, Lixin; Lin, Xiaopei; Hetland, Robert D.; Guo, Jingsong

    2018-01-01

    The primary goal of this study is to investigate the asymmetric structure of continental shelf wave in a semienclosed double-shelf basin, such as the Yellow Sea. Supported by in situ observations and realistic numerical simulations, it is found that in the Yellow Sea, the shelf wave response to the synoptic wind forcing does not match the mathematically symmetric solution of classic double-shelf wave theory, but rather exhibits a westward shift. To study the formation mechanism of this asymmetric structure, an idealized model was used and two sets of experiments were conducted. The results confirm that the asymmetric structure is due to the existence of a topographic waveguide connecting both shelves. For a semienclosed basin, such as the Yellow Sea, a connection at the end of the basin eliminates the potential vorticity barrier between the two shelves and hence plays a role as a connecting waveguide for shelf waves. This waveguide enables the shelf wave to propagate from one shelf to the other shelf and produces the asymmetric response in sea level and upwind flow evolutions.

  11. Study of electro-optic effect in asymmetrically ramped AlInGaAs multiple quantum well structures

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq, Muhammad Usman; Peters, Frank H.; Corbett, Brian [Tyndall National Institute, Lee Maltings, Cork (Ireland); Department of Physics, University College Cork, Cork (Ireland); O' Callaghan, James; Roycroft, Brendan; Thomas, Kevin; Pelucchi, Emanuele [Tyndall National Institute, Lee Maltings, Cork (Ireland)

    2016-04-15

    We investigate the electro-optic properties of two oppositely ramped asymmetric quantum well structures in the AlInGaAs material system. The grading of the bandgap in the quantum wells has been achieved by changing the ratio of Al to Ga in the quaternary alloy during the epitaxial growth. The surface normal photo-response and the Fabry-Perot fringe shift in straight waveguides are compared for both structures as a function of applied voltage at 1550 nm for TE-polarized light. The measurements show a change in the refractive index due to a red shift of the excitonic resonances due to the quantum-confined Stark effect. The 10 quantum well structure with a ramp up of the bandgap in the growth direction leads to the figure of merit of the voltage for a π phase shift, V{sub π} by length, L, V{sub π} x L, of 6 as compared to 7 V . mm in the structure with a ramp in opposite direction. Further investigations show that the reduction in V{sub π} is due to increased absorption at high reverse bias which induces a non-linear phase change. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Dumbbell-shaped Hodgkin's disease with cauda equina compression mimicking a herniated inter-vertebral disc, a case report.

    Science.gov (United States)

    Liao, Jen-Chung; Fu, Tsai-Sheng; Chen, Wen-Jer; Jung, Shih-Ming

    2007-01-01

    Hodgkin's disease may involve the spine as a setting of the advanced disease. An initial manifestation of Hodgkin's disease in spine is extremely rare and the major involved sites usually are the thoracic or cervical spine. The mechanisms of pathogenesis for the formation of an epidural mass during Hodgkin's disease are hematogenous dissemination from nodal sites or local infiltration of lymphomatous tissue. We document here a case of a 16 year-old boy who suffered from incomplete voiding due to dumbbell-shaped retroperitoneal Hodgkin's disease with cauda equina compression. He was successfully managed using surgery and adjuvant chemotherapy. Although lymphadenomatous tissue responds well to radiotherapy and chemotherapy, the role of surgery in this case was to achieve immediate nerve tissue decompression and to obtain an adequate specimen for pathological diagnosis. Magnetic resonance imaging (MRI) is a non-invasive and helpful tool when detecting spinal and paraspinal lesions and we emphasize that spinal MRI should be performed without delay if there is persistent back pain or sciatica.

  13. Hypostatic jammed packings of frictionless nonspherical particles

    OpenAIRE

    VanderWerf, Kyle; Jin, Weiwei; Shattuck, Mark D.; O'Hern, Corey S.

    2017-01-01

    We perform computational studies of static packings of a variety of nonspherical particles including circulo-lines, circulo-polygons, ellipses, asymmetric dimers, and dumbbells to determine which shapes form hypostatic versus isostatic packings and to understand why hypostatic packings of nonspherical particles can be mechanically stable despite having fewer contacts than that predicted from na\\"ive constraint counting. To generate highly accurate force- and torque-balanced packings of circul...

  14. Cinchona alkaloids in asymmetric organocatalysis

    NARCIS (Netherlands)

    Marcelli, T.; Hiemstra, H.

    2010-01-01

    This article reviews the applications of cinchona alkaloids as asymmetric catalysts. In the last few years, characterized by the resurgence of interest in asymmetric organocatalysis, cinchona derivatives have been shown to catalyze an outstanding array of chemical reactions, often with remarkable

  15. Novel asymmetrical pyrene derivatives as light emitting materials: Synthesis and photophysics

    International Nuclear Information System (INIS)

    Li Yang; Wang Dong; Wang Lei; Li Zhengqiang; Cui Qing; Zhang Haiquan; Yang Huai

    2012-01-01

    A series of novel substituted pyrene derivatives with asymmetrical groups have been successfully synthesized in excellent yield. Structures of the asymmetrical compound were fully characterized by 1 H-NMR, IR spectroscopy and mass spectrometry. By introducing ethynyl functions to pyrene, we obtained highly efficient blue and green light emitting materials. It has been demonstrated that the emission characteristics of pyrene derivatives have been bathochromatically tuned in the visible region by extending the π-conjugation. The photophysical properties of these compounds were carefully examined in different organic solvents and different concentrations. The electrochemical properties and geometrical electronic structures of the new pyrene derivatives have been investigated by cyclic voltammograms and density functional theory (DFT) calculations. - Highlights: ► It is the first research about asymmetrial pyrene derivatives as highly efficient light emitting materials. ► The solvatochromism and concentration effect of the new compounds have been discussed. ► Furthermore, the electrochemical properties and geometrical electronic structures were also investigated in this paper.

  16. Asymmetric Rolling Process Simulations by Dynamic Explicit Crystallographic Homogenized Finite Element Method

    International Nuclear Information System (INIS)

    Ngoc Tam, Nguyen; Nakamura, Yasunori; Terao, Toshihiro; Kuramae, Hiroyuki; Nakamachi, Eiji; Sakamoto, Hidetoshi; Morimoto, Hideo

    2007-01-01

    Recently, the asymmetric rolling (ASR) has been applied to the material processing of aluminum alloy sheet to control micro-crystal structure and texture in order to improve the mechanical properties. Previously, several studies aimed at high formability sheet generation have been carried out experimentally, but finite element simulations to predict the deformation induced texture evolution of the asymmetrically rolled sheet metals have not been investigated rigorously. In this study, crystallographic homogenized finite element (FE) codes are developed and applied to analyze the asymmetrical rolling processes. The textures of sheet metals were measured by electron back scattering diffraction (EBSD), and compared with FE simulations. The results from the dynamic explicit type Crystallographic homogenization FEM code shows that this type of simulation is a comprehensive tool to predict the plastic induced texture evolution

  17. Alternative Asymmetric Stochastic Volatility Models

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2010-01-01

    textabstractThe stochastic volatility model usually incorporates asymmetric effects by introducing the negative correlation between the innovations in returns and volatility. In this paper, we propose a new asymmetric stochastic volatility model, based on the leverage and size effects. The model is

  18. Asymmetric ion trap

    Science.gov (United States)

    Barlow, Stephan E.; Alexander, Michael L.; Follansbee, James C.

    1997-01-01

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.

  19. Free-Standing Bilayered Nanoparticle Superlattice Nanosheets with Asymmetric Ionic Transport Behaviors.

    Science.gov (United States)

    Rao, Siyuan; Si, Kae Jye; Yap, Lim Wei; Xiang, Yan; Cheng, Wenlong

    2015-11-24

    Natural cell membranes can directionally and selectively regulate the ion transport, which is critical for the functioning of living cells. Here, we report on the fabrication of an artificial membrane based on an asymmetric nanoparticle superlattice bilayered nanosheet, which exhibits similar ion transport characteristics. The superlattice nanosheets were fabricated via a drying-mediated self-assembly of polystyrene-capped gold nanoparticles at the liquid-air interface. By adopting a layer-by-layer assembly process, an asymmetric nanomembrane could be obtained consisting of two nanosheets with different nanoparticle size. The resulting nanomembranes exhibit an asymmetric ion transport behavior, and diode-like current-voltage curves were observed. The asymmetric ion transport is attributed to the cone-like nanochannels formed within the membranes, upon which a simulation map was established to illustrate the relationship between the channel structure and the ionic selectivity, in consistency with our experimental results. Our superlattice nanosheet-based design presents a promising strategy for the fabrication of next-generation smart nanomembranes for rationally and selectively regulating the ion transport even at a large ion flux, with potential applications in a wide range of fields, including biosensor devices, energy conversion, biophotonics, and bioelectronics.

  20. A mean-field theory on the differential capacitance of asymmetric ionic liquid electrolytes.

    Science.gov (United States)

    Han, Yining; Huang, Shanghui; Yan, Tianying

    2014-07-16

    The size of ions significantly influences the electric double layer structure of room temperature ionic liquid (IL) electrolytes and their differential capacitance (Cd). In this study, we extended the mean-field theory (MFT) developed independently by Kornyshev (2007J. Phys. Chem. B 111 5545-57) and Kilic, Bazant, and Ajdari (2007 Phys. Rev. E 75 021502) (the KKBA MFT) to take into account the asymmetric 1:1 IL electrolytes by introducing an additional parameter ξ for the anion/cation volume ratio, besides the ionic compressibility γ in the KKBA MFT. The MFT of asymmetric ions becomes KKBA MFT upon ξ = 1, and further reduces to Gouy-Chapman theory in the γ → 0 limit. The result of the extended MFT demonstrates that the asymmetric ILs give rise to an asymmetric Cd, with the higher peak in Cd occurring at positive polarization for the smaller anionic size. At high potential, Cd decays asymptotically toward KKBA MFT characterized by γ for the negative polarization, and characterized by ξγ for the positive polarization, with inverse-square-root behavior. At low potential, around the potential of zero charge, the asymmetric ions cause a higher Cd, which exceeds that of Gouy-Chapman theory.

  1. Computer simulation of molecular absorption spectra for asymmetric top molecules

    International Nuclear Information System (INIS)

    Bende, A.; Tosa, V.; Cosma, V.

    2001-01-01

    The effective Hamiltonian formalism has been used to develop a model for infrared multiple-photon absorption (IRMPA) process in asymmetric top molecules. Assuming a collisionless regime, the interaction between the molecule and laser field can be described by the time-dependent Schroedinger equation. By using the rotating wave approximation and Laplace transformation, the time-dependent problem reduces to a time-independent eigen problem for an effective Hamiltonian which can be solved only numerically for a real vibrational-rotational structure of polyatomic molecule. The vibrational-rotational structure is assumed to be an anharmonic oscillator coupled to an asymmetric rigid rotor. The main assumptions taken into account for this model are the following: (1) the excitation is coherent, i.e. the collision (if present during the laser pulse) does not influence the excitation; (2) the excitation starts from the ground state and is near resonant to a normal mode, thus, the rotating wave approximation can be applied; (3) after absorbing N photons the vibrational energy of the excited mode leak into a quasicontinuum; (4) the thermal population of the ground state is given by the Maxwell-Boltzmann distribution law. The energy levels of the asymmetric top molecules cannot be represented by an explicit formula analogous to that for the symmetric top, according to quantum mechanics, but we can consider it a deviation from the prolate or oblate case of the symmetric top, and we can find in the same manner the selection rules of the asymmetric case using the selection rules for the symmetric case. The infrared bands of asymmetric top molecules are not resolved, but if the dispersion used is not too small, so that the envelopes of the bands can be distinguished from simple maxima, it is possible to draw conclusions as to the type of the bands. In this case, the simulation of the absorption spectra can give us some important information about the types of these bands. In

  2. Nanotribology of Symmetric and Asymmetric Liquid Lubricants

    Directory of Open Access Journals (Sweden)

    Shinji Yamada

    2010-03-01

    Full Text Available When liquid molecules are confined in a narrow gap between smooth surfaces, their dynamic properties are completely different from those of the bulk. The molecular motions are highly restricted and the system exhibits solid-like responses when sheared slowly. This solidification behavior is very dependent on the molecular geometry (shape of liquids because the solidification is induced by the packing of molecules into ordered structures in confinement. This paper reviews the measurements of confined structures and friction of symmetric and asymmetric liquid lubricants using the surface forces apparatus. The results show subtle and complex friction mechanisms at the molecular scale.

  3. A triclinic crystal structure of the carboxy-terminal domain of HIV-1 capsid protein with four molecules in the asymmetric unit reveals a novel packing interface

    International Nuclear Information System (INIS)

    Lampel, Ayala; Yaniv, Oren; Berger, Or; Bacharach, Eran; Gazit, Ehud; Frolow, Felix

    2013-01-01

    The triclinic structure of the HIV-1 capsid protein contains four molecules in the asymmetric unit that form a novel packing interface that could conceivably resemble an intermediate structure that is involved in the early steps of HIV-1 assembly. The Gag precursor is the major structural protein of the virion of human immunodeficiency virus-1 (HIV-1). Capsid protein (CA), a cleavage product of Gag, plays an essential role in virus assembly both in Gag-precursor multimerization and in capsid core formation. The carboxy-terminal domain (CTD) of CA contains 20 residues that are highly conserved across retroviruses and constitute the major homology region (MHR). Genetic evidence implies a role for the MHR in interactions between Gag precursors during the assembly of the virus, but the structural basis for this role remains elusive. This paper describes a novel triclinic structure of the HIV-1 CA CTD at 1.6 Å resolution with two canonical dimers of CA CTD in the asymmetric unit. The canonical dimers form a newly identified packing interface where interactions of four conserved MHR residues take place. This is the first structural indication that these MHR residues participate in the putative CTD–CTD interactions. These findings suggest that the molecules forming this novel interface resemble an intermediate structure that participates in the early steps of HIV-1 assembly. This interface may therefore provide a novel target for antiviral drugs

  4. Barrier lowering effect and dark current characteristics in asymmetric GaAs/AlGaAs multi quantum well structure

    Energy Technology Data Exchange (ETDEWEB)

    Altin, E. [Inonu University, Scientific and Technological Research Center, Malatya (Turkey); Anadolu University, Department of Physics, Eskisehir (Turkey); Hostut, M. [Akdeniz University, Department of Secondary Education of Science and Maths., Division of Physics Education, Antalya (Turkey); Ergun, Y. [Anadolu University, Department of Physics, Eskisehir (Turkey)

    2011-12-15

    In this study, we investigate dark current voltage characteristics of GaAs/AlGaAs staircase-like asymmetric multiquantum well structure at various temperatures experimentally. The activation energy is calculated by using Arrhenius plots at different voltages. It is found that the activation energy decreased with increasing electric field. This result is evaluated using a barrier lowering effect which is a combination of geometrical and Poole-Frenkel effects. Measured dark current density-voltage (J-V) characteristics compared with the Levine model, 3D carrier drift model and the emission capture model. The best agreement with the experimental results of dark current densities is obtained by the Levine model. (orig.)

  5. Worst Asymmetrical Short-Circuit Current

    DEFF Research Database (Denmark)

    Arana Aristi, Iván; Holmstrøm, O; Grastrup, L

    2010-01-01

    In a typical power plant, the production scenario and the short-circuit time were found for the worst asymmetrical short-circuit current. Then, a sensitivity analysis on the missing generator values was realized in order to minimize the uncertainty of the results. Afterward the worst asymmetrical...

  6. Treatment outcome of bimaxillary surgery for asymmetric skeletal class II deformity.

    Science.gov (United States)

    Chen, Yun-Fang; Liao, Yu-Fang; Chen, Yin-An; Chen, Yu-Ray

    2018-05-04

    Facial asymmetry is one of the main concerns in patients with a dentofacial deformity. The aims of the study were to (1) evaluate the changes in facial asymmetry after bimaxillary surgery for asymmetric skeletal class II deformity and (2) compare preoperative and postoperative facial asymmetry of class II patients with normal controls. The facial asymmetry was assessed for 30 adults (21 women and 9 men, mean age: 29.3 years) who consecutively underwent bimaxillary surgery for asymmetric skeletal class II deformity using cone-beam computed tomography before and at least 6 months after surgery. Thirty soft tissue and two dental landmarks were identified on each three-dimensional facial image, and the asymmetry index of each landmark was calculated. Results were compared with those of 30 normal control subjects (21 women and 9 men, mean age: 26.2 years) with skeletal class I structure. Six months after surgery, the asymmetric index of the lower face and total face decreased significantly (17.8 ± 29.4 and 16.6 ± 29.5 mm, respectively, both p class II patients had residual chin asymmetry. The postoperative total face asymmetric index was positively correlated with the preoperative asymmetric index (r = 0.37, p class II deformity resulted in a significant improvement in lower face asymmetry. However, approximately 50% of the patients still had residual chin asymmetry. The total face postoperative asymmetry was moderately related to the initial severity of asymmetry. These findings could help clinicians better understand orthognathic outcomes on different facial regions for patients with asymmetric class II deformity.

  7. Inclined asymmetric librations in exterior resonances

    Science.gov (United States)

    Voyatzis, G.; Tsiganis, K.; Antoniadou, K. I.

    2018-04-01

    Librational motion in Celestial Mechanics is generally associated with the existence of stable resonant configurations and signified by the existence of stable periodic solutions and oscillation of critical (resonant) angles. When such an oscillation takes place around a value different than 0 or π , the libration is called asymmetric. In the context of the planar circular restricted three-body problem, asymmetric librations have been identified for the exterior mean motion resonances (MMRs) 1:2, 1:3, etc., as well as for co-orbital motion (1:1). In exterior MMRs the massless body is the outer one. In this paper, we study asymmetric librations in the three-dimensional space. We employ the computational approach of Markellos (Mon Not R Astron Soc 184:273-281, https://doi.org/10.1093/mnras/184.2.273, 1978) and compute families of asymmetric periodic orbits and their stability. Stable asymmetric periodic orbits are surrounded in phase space by domains of initial conditions which correspond to stable evolution and librating resonant angles. Our computations were focused on the spatial circular restricted three-body model of the Sun-Neptune-TNO system (TNO = trans-Neptunian object). We compare our results with numerical integrations of observed TNOs, which reveal that some of them perform 1:2 resonant, inclined asymmetric librations. For the stable 1:2 TNO librators, we find that their libration seems to be related to the vertically stable planar asymmetric orbits of our model, rather than the three-dimensional ones found in the present study.

  8. Asymmetric Membranes Containing Micron-Size Silicon for High Performance Lithium Ion Battery Anode

    International Nuclear Information System (INIS)

    Byrd, Ian; Wu, Ji

    2016-01-01

    Micron-size Si anode is notorious for having extremely poor cycle life. It is mainly caused by the large volume change (∼300%) and poor mechanical strength of the Si electrode. Satisfying methods to address this issue are seriously lacking in literature. In this study, novel single-layer, double-layer and triple-layer asymmetric membranes containing micron-size silicon have been fabricated using a simple phase inversion method to dramatically improve its cyclability. The electrochemical performance of these asymmetric membranes as lithium ion battery anodes are evaluated and compared to pure micron-size Si powders and carbonaceous asymmetric membranes. All three types of asymmetric membrane electrodes demonstrate significantly enhanced stability as compared to pure Si powders. The single-layer asymmetric membrane has the largest capacity degradation due to the loss of pulverized Si powders from the membrane surface, only 40% of whose capacity can be retained in 100 cycles. But this performance is still much better than pure micron-size silicon electrode. After being coated with nanoporous carbonaceous layers on both sides of a single-layer asymmetric membrane to make a triple-layer asymmetric membrane (sandwich structure), the capacity retention is notably increased to 88% in 100 cycles at 610 mAh g"−"1 and 0.5C. The enhanced stability is attributed to the extra nanoporous coatings that can prevent the fractured Si powders from being leached out and allow facile lithium ion diffusions. Such a novel, efficient and scalable method may provide beneficiary guidance for designing high capacity lithium ion battery anodes with large volume change issues.

  9. Asymmetric Macular Structural Damage Is Associated With Relative Afferent Pupillary Defects in Patients With Glaucoma

    Science.gov (United States)

    Gracitelli, Carolina P. B.; Tatham, Andrew J.; Zangwill, Linda M.; Weinreb, Robert N.; Abe, Ricardo Y.; Diniz-Filho, Alberto; Paranhos, Augusto; Baig, Saif; Medeiros, Felipe A.

    2016-01-01

    Purpose We examined the relationship between relative afferent pupillary defects (RAPDs) and macular structural damage measured by macular thickness and macular ganglion cell-inner plexiform layer (mGCIPL) thickness in patients with glaucoma. Methods A cross-sectional study was done of 106 glaucoma patients and 85 healthy individuals from the Diagnostic Innovations in Glaucoma Study. All subjects underwent standard automated perimetry (SAP) and optic nerve and macular imaging using Cirrus Spectral Domain Optical Coherence Tomography (SDOCT). Glaucoma was defined as repeatable abnormal SAP or progressive glaucomatous changes on stereo photographs. Pupil responses were assessed using an automated pupillometer, which records the magnitude of RAPD (RAPD score), with additional RAPD scores recorded for each of a series of colored stimuli (blue, red, green, and yellow). The relationship between RAPD score and intereye differences (right minus left eye) in circumpapillary retinal nerve fiber layer (cpRNFL) thickness, mGCIPL, macular thickness, and SAP mean deviation (MD), was examined using linear regression. Results There was fair correlation between RAPD score and asymmetric macular structural damage measured by intereye difference in mGCIPL thickness (R2 = 0.285, P glaucoma. PMID:27064394

  10. Improved Saturation Performance in High Speed Waveguide Photodetectors at 1.3 ??sing an Asymmetric InA1GaAs/InGaAsP Structure

    Science.gov (United States)

    Vang, T. A.; Davis, L.; Keo, S.; Forouhar, S. F.

    1996-01-01

    Waveguide photodetector (WGPD) results have recently been presented demonstrating the very large bandwidth-efficiency product potential of these devices. Improved saturation and linearity characteristics are realized in waveguide p-i-n photodetectors at 1.3 ??y using an asymmetric cladding structure with InA1GaAs/InGaAsP in the anode and InGaAsP in the cathode.

  11. Economic Dispatch of Demand Response Balancing through Asymmetric Block Offers

    DEFF Research Database (Denmark)

    O'Connell, Niamh; Pinson, Pierre; Madsen, Henrik

    2015-01-01

    This paper proposes a method of describing the load shifting ability of flexible electrical loads in a manner suitable for existing power system dispatch frameworks. The concept of an asymmetric block offer for flexible loads is introduced. This offer structure describes the ability of a flexible...

  12. Dynamic response of the ITER tokamak during asymmetric VDEs

    International Nuclear Information System (INIS)

    Schioler, Tyge; Bachmann, Christian; Mazzone, Giuseppe; Sannazzaro, Giulio

    2011-01-01

    During the operational life of ITER, it is expected that a number of vertical displacement events (VDEs) will occur. A sub-class of these events, 'slow' asymmetric VDEs, is of particular interest from a structural point of view. This is because the forces generated during such events are both substantial and sufficiently long-lasting to significantly excite the structure. It is necessary to establish that the absolute and relative displacements of components, as well as internal and external forces, stay within acceptable limits during these events. Previous studies have investigated this problem using relatively simple models and non-rotating loads. A new, more detailed, 360-degree model was developed, and used to assess the effects of asymmetric VDEs. This paper presents the main results of this investigation. It is shown that the distance between the VV and the TFC at the inboard wall can decrease by as much as 19 mm at the equatorial plane, and that the vertical reaction force in the Vacuum Vessel supports can reach 15 MN.

  13. The molecular clock of neutral evolution can be accelerated or slowed by asymmetric spatial structure.

    Science.gov (United States)

    Allen, Benjamin; Sample, Christine; Dementieva, Yulia; Medeiros, Ruben C; Paoletti, Christopher; Nowak, Martin A

    2015-02-01

    Over time, a population acquires neutral genetic substitutions as a consequence of random drift. A famous result in population genetics asserts that the rate, K, at which these substitutions accumulate in the population coincides with the mutation rate, u, at which they arise in individuals: K = u. This identity enables genetic sequence data to be used as a "molecular clock" to estimate the timing of evolutionary events. While the molecular clock is known to be perturbed by selection, it is thought that K = u holds very generally for neutral evolution. Here we show that asymmetric spatial population structure can alter the molecular clock rate for neutral mutations, leading to either Ku. Our results apply to a general class of haploid, asexually reproducing, spatially structured populations. Deviations from K = u occur because mutations arise unequally at different sites and have different probabilities of fixation depending on where they arise. If birth rates are uniform across sites, then K ≤ u. In general, K can take any value between 0 and Nu. Our model can be applied to a variety of population structures. In one example, we investigate the accumulation of genetic mutations in the small intestine. In another application, we analyze over 900 Twitter networks to study the effect of network topology on the fixation of neutral innovations in social evolution.

  14. The molecular clock of neutral evolution can be accelerated or slowed by asymmetric spatial structure.

    Directory of Open Access Journals (Sweden)

    Benjamin Allen

    2015-02-01

    Full Text Available Over time, a population acquires neutral genetic substitutions as a consequence of random drift. A famous result in population genetics asserts that the rate, K, at which these substitutions accumulate in the population coincides with the mutation rate, u, at which they arise in individuals: K = u. This identity enables genetic sequence data to be used as a "molecular clock" to estimate the timing of evolutionary events. While the molecular clock is known to be perturbed by selection, it is thought that K = u holds very generally for neutral evolution. Here we show that asymmetric spatial population structure can alter the molecular clock rate for neutral mutations, leading to either Ku. Our results apply to a general class of haploid, asexually reproducing, spatially structured populations. Deviations from K = u occur because mutations arise unequally at different sites and have different probabilities of fixation depending on where they arise. If birth rates are uniform across sites, then K ≤ u. In general, K can take any value between 0 and Nu. Our model can be applied to a variety of population structures. In one example, we investigate the accumulation of genetic mutations in the small intestine. In another application, we analyze over 900 Twitter networks to study the effect of network topology on the fixation of neutral innovations in social evolution.

  15. Fast and accurate non-sequential protein structure alignment using a new asymmetric linear sum assignment heuristic.

    Science.gov (United States)

    Brown, Peter; Pullan, Wayne; Yang, Yuedong; Zhou, Yaoqi

    2016-02-01

    The three dimensional tertiary structure of a protein at near atomic level resolution provides insight alluding to its function and evolution. As protein structure decides its functionality, similarity in structure usually implies similarity in function. As such, structure alignment techniques are often useful in the classifications of protein function. Given the rapidly growing rate of new, experimentally determined structures being made available from repositories such as the Protein Data Bank, fast and accurate computational structure comparison tools are required. This paper presents SPalignNS, a non-sequential protein structure alignment tool using a novel asymmetrical greedy search technique. The performance of SPalignNS was evaluated against existing sequential and non-sequential structure alignment methods by performing trials with commonly used datasets. These benchmark datasets used to gauge alignment accuracy include (i) 9538 pairwise alignments implied by the HOMSTRAD database of homologous proteins; (ii) a subset of 64 difficult alignments from set (i) that have low structure similarity; (iii) 199 pairwise alignments of proteins with similar structure but different topology; and (iv) a subset of 20 pairwise alignments from the RIPC set. SPalignNS is shown to achieve greater alignment accuracy (lower or comparable root-mean squared distance with increased structure overlap coverage) for all datasets, and the highest agreement with reference alignments from the challenging dataset (iv) above, when compared with both sequentially constrained alignments and other non-sequential alignments. SPalignNS was implemented in C++. The source code, binary executable, and a web server version is freely available at: http://sparks-lab.org yaoqi.zhou@griffith.edu.au. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Reversal modes in asymmetric Ni nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Leighton, B.; Pereira, A. [Departamento de Fisica, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Escrig, J., E-mail: jescrigm@gmail.com [Departamento de Fisica, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile)

    2012-11-15

    We have investigated the evolution of the magnetization reversal mechanism in asymmetric Ni nanowires as a function of their geometry. Circular nanowires are found to reverse their magnetization by the propagation of a vortex domain wall, while in very asymmetric nanowires the reversal is driven by the propagation of a transverse domain wall. The effect of shape asymmetry of the wire on coercivity and remanence is also studied. Angular dependence of the remanence and coercivity is also addressed. Tailoring the magnetization reversal mechanism in asymmetric nanowires can be useful for magnetic logic and race-track memory, both of which are based on the displacement of magnetic domain walls. Finally, an alternative method to detect the presence of magnetic drops is proposed. - Highlights: Black-Right-Pointing-Pointer Asymmetry strongly modifies the magnetic behavior of a wire. Black-Right-Pointing-Pointer Very asymmetric nanowires reverse their magnetization by a transverse domain wall. Black-Right-Pointing-Pointer An alternative method to detect the presence of magnetic drops is proposed. Black-Right-Pointing-Pointer Tailoring the reversal mode in asymmetric nanowires can be useful for potential applications.

  17. Femtometer toroidal structures in nuclei

    International Nuclear Information System (INIS)

    Forest, J.L.; Pandharipande, V.R.; Pieper, S.C.; Wiringa, R.B.; Schiavilla, R.; Arriaga, A.

    1996-01-01

    The two-nucleon density distributions in states with isospin T=0, spin S=1, and projection M S =0 and ±1 are studied in 2 H, 3,4 He, 6,7 Li, and 16 O. The equidensity surfaces for M S =0 distributions are found to be toroidal in shape, while those of M S =±1 have dumbbell shapes at large density. The dumbbell shapes are generated by rotating tori. The toroidal shapes indicate that the tensor correlations have near maximal strength at r 3 He, 4 He, and 6 Li. The toroidal distribution has a maximum-density diameter of ∼1 fm and a half-maximum density thickness of ∼0.9 fm. Many realistic models of nuclear forces predict these values, which are supported by the observed electromagnetic form factors of the deuteron, and also predicted by classical Skyrme effective Lagrangians, related to QCD in the limit of infinite colors. Due to the rather small size of this structure, it could have a revealing relation to certain aspects of QCD. Experiments to probe this structure and its effects in nuclei are suggested. Pair distribution functions in other T,S channels are also discussed; those in T,S=1,1 have anisotropies expected from one-pion-exchange interactions. The tensor correlations in T,S=0,1 states are found to deplete the number of T,S=1,0 pairs in nuclei and cause a reduction in nuclear binding energies via many-body effects. copyright 1996 The American Physical Society

  18. Strategic Munitions Planning in Non-Conventional Asymmetric Operations

    Science.gov (United States)

    2010-04-01

    Conventional Asymmetric Operations RTO-MP-SAS-081 16 - 3 with a clearly structured, sized and located military force. The principles of Lanchester ...stockpiles and calculated munitions requirements. REFERENCES [1] Prague Summit Declaration, November 2002. [2] J. Fletcher, The Lanchester Legacy... Lanchester battles, Journal of the Operational Research Society, Vol. 50 No. 3, March 1999. [13] W. Freeman, A Study of Ammunition Consumption, Master of

  19. An asymmetric resonant coupling wireless power transmission link for Micro-Ball Endoscopy.

    Science.gov (United States)

    Sun, Tianjia; Xie, Xiang; Li, Guolin; Gu, Yingke; Deng, Yangdong; Wang, Ziqiang; Wang, Zhihua

    2010-01-01

    This paper investigates the design and optimization of a wireless power transmission link targeting Micro-Ball Endoscopy applications. A novel asymmetric resonant coupling structure is proposed to deliver power to an endoscopic Micro-Ball system for image read-out after it is excreted. Such a technology enables many key medical applications with stringent requirements for small system volume and high power delivery efficiency. A prototyping power transmission sub-system of the Micro-Ball system was implemented. It consists of primary coil, middle resonant coil, and cube-like full-direction secondary receiving coils. Our experimental results proved that 200mW of power can be successfully delivered. Such a wireless power transmission capability could satisfy the requirements of the Micro-Ball based endoscopy application. The transmission efficiency is in the range of 41% (worst working condition) to 53% (best working condition). Comparing to conventional structures, Asymmetric Resonant Coupling Structure improves power efficiency by 13%.

  20. Multiband Printed Asymmetric Dipole Antenna for LTE/WLAN Applications

    Directory of Open Access Journals (Sweden)

    Chia-Mei Peng

    2013-01-01

    Full Text Available The ability of a single layer strip fed printed asymmetric dipole antenna, which is composed of top-loading, asymmetric coplanar waveguide (ACPW and stepped-feeding structure, to operate at three wide frequency bands (698~960 MHz, 1710~2620 MHz, and 5150~5850 MHz to cover WLAN and LTE operation has been demonstrated. A prototype of the proposed antenna with 57.5 mm in length, 0.4 mm in thickness, and 5 mm in width is fabricated and experimentally investigated. The experimental results indicate that the VSWR 2.5 : 1 bandwidths achieved were 74.3%, 40.8%, and 18.2% at 700 MHz, 2450 MHz, and 5500 MHz, respectively. Experimental results are shown to verify the validity of theoretical work.

  1. Asymmetric mesoporous silica nanoparticles as potent and safe immunoadjuvants provoke high immune responses.

    Science.gov (United States)

    Abbaraju, Prasanna Lakshmi; Jambhrunkar, Manasi; Yang, Yannan; Liu, Yang; Lu, Yao; Yu, Chengzhong

    2018-02-20

    Asymmetric mesoporous silica nanoparticles with a head-tail structure are potent immunoadjuvants for delivering a peptide antigen, generating a higher antibody immune response in mice compared to their symmetric counterparts.

  2. Asymmetric cryptography based on wavefront sensing.

    Science.gov (United States)

    Peng, Xiang; Wei, Hengzheng; Zhang, Peng

    2006-12-15

    A system of asymmetric cryptography based on wavefront sensing (ACWS) is proposed for the first time to our knowledge. One of the most significant features of the asymmetric cryptography is that a trapdoor one-way function is required and constructed by analogy to wavefront sensing, in which the public key may be derived from optical parameters, such as the wavelength or the focal length, while the private key may be obtained from a kind of regular point array. The ciphertext is generated by the encoded wavefront and represented with an irregular array. In such an ACWS system, the encryption key is not identical to the decryption key, which is another important feature of an asymmetric cryptographic system. The processes of asymmetric encryption and decryption are formulized mathematically and demonstrated with a set of numerical experiments.

  3. A mean-field theory on the differential capacitance of asymmetric ionic liquid electrolytes

    International Nuclear Information System (INIS)

    Han, Yining; Huang, Shanghui; Yan, Tianying

    2014-01-01

    The size of ions significantly influences the electric double layer structure of room temperature ionic liquid (IL) electrolytes and their differential capacitance (C d ). In this study, we extended the mean-field theory (MFT) developed independently by Kornyshev (2007J. Phys. Chem. B 111 5545–57) and Kilic, Bazant, and Ajdari (2007 Phys. Rev. E 75 021502) (the KKBA MFT) to take into account the asymmetric 1:1 IL electrolytes by introducing an additional parameter ξ for the anion/cation volume ratio, besides the ionic compressibility γ in the KKBA MFT. The MFT of asymmetric ions becomes KKBA MFT upon ξ = 1, and further reduces to Gouy–Chapman theory in the γ → 0 limit. The result of the extended MFT demonstrates that the asymmetric ILs give rise to an asymmetric C d , with the higher peak in C d occurring at positive polarization for the smaller anionic size. At high potential, C d decays asymptotically toward KKBA MFT characterized by γ for the negative polarization, and characterized by ξγ for the positive polarization, with inverse-square-root behavior. At low potential, around the potential of zero charge, the asymmetric ions cause a higher C d , which exceeds that of Gouy–Chapman theory. (paper)

  4. Palladium-catalyzed asymmetric alkylation in the synthesis of cyclopentanoid and cycloheptanoid core structures bearing all-carbon quaternary stereocenters

    KAUST Repository

    Hong, Allen Y.

    2011-12-01

    General catalytic asymmetric routes toward cyclopentanoid and cycloheptanoid core structures embedded in numerous natural products have been developed. The central stereoselective transformation in our divergent strategies is the enantioselective decarboxylative alkylation of seven-membered β-ketoesters to form α-quaternary vinylogous esters. Recognition of the unusual reactivity of β-hydroxyketones resulting from the addition of hydride or organometallic reagents enabled divergent access to γ-quaternary acylcyclopentenes through a ring contraction pathway or γ-quaternary cycloheptenones through a carbonyl transposition pathway. Synthetic applications of these compounds were explored through the preparation of mono-, bi-, and tricyclic derivatives that can serve as valuable intermediates for the total synthesis of complex natural products. This work complements our previous work with cyclohexanoid systems.

  5. Suppression of the asymmetric competition mode in the relativistic Ku-band coaxial transit-time oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Junpu; He, Juntao; Zhang, Jiande; Jiang, Tao; Wang, Lei [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2014-10-15

    A relativistic Ku-band coaxial transit-time oscillator has been proposed in our previous work. In the experiments, we find that the asymmetric competition mode in the device limits the microwave power with the increase of the input electric power. For solving such a problem, the methods for analysis and suppression of the asymmetric competition mode in the device are investigated theoretically and experimentally. It is shown that the structure and the material of the collector, the concentricity, and the electron emission uniformity play an important part in the suppression of the asymmetric competition mode in the relativistic Ku-band transit-time oscillator. In the subsequent experiments, the asymmetric mode was suppressed effectively. At a low guiding magnetic field of 0.7 T, a microwave pulse with power of 1 GW, frequency of 14.3 GHz close to the simulation one, and efficiency of 20% was generated.

  6. Chaos of several typical asymmetric systems

    International Nuclear Information System (INIS)

    Feng Jingjing; Zhang Qichang; Wang Wei

    2012-01-01

    The threshold for the onset of chaos in asymmetric nonlinear dynamic systems can be determined using an extended Padé method. In this paper, a double-well asymmetric potential system with damping under external periodic excitation is investigated, as well as an asymmetric triple-well potential system under external and parametric excitation. The integrals of Melnikov functions are established to demonstrate that the motion is chaotic. Threshold values are acquired when homoclinic and heteroclinic bifurcations occur. The results of analytical and numerical integration are compared to verify the effectiveness and feasibility of the analytical method.

  7. Synthesis of asymmetric polyetherimide membrane for CO2/N2 separation

    Science.gov (United States)

    Ahmad, A. L.; Salaudeen, Y. O.; Jawad, Z. A.

    2017-06-01

    Large emission of carbon dioxide (CO2) to the environment requires mitigation to avoid unbearable consequences on global climate change. The CO2 emissions generated by fossil fuel combustion within the power and industrial sectors need to be quickly curbed. The gas emission can be abated using membrane technology; this is one of the most promising approaches for selective separation of CO2/N2. The purpose of the study is to synthesis an asymmetric polyetherimide (PEI) membrane and to establish its morphological characteristics for CO2/N2 separation. The PEI flat-sheet asymmetric membrane was fabricated using phase inversion with N-methyl-2-pyrrolidone (NMP) as solvent and water-isopropanol as a coagulant. Particularly, polymer concentration of 20, 25, and 30 wt. % were studied. In addition, the structure and morphology of the produced membrane were observed using scanning electron microscopy (SEM). Importantly, results showed that the membrane with high PEI concentration of 30 wt. % yield an optimal selectivity of 10.7 for CO2/Nitrogen (N2) separation at 1 bar and 25 ºC for pure gas, aided by the membrane surface morphology. The dense skin present was as a result of non-solvent (water) while isopropanol generates a porous sponge structure. This appreciable separation performance makes the PEI asymmetric membrane an attractive alternative for CO2/N2 separation.

  8. Temperature-dependent photoluminescence and contactless electroreflectance characterization of a ZnxCd1-xSe/Znx'Cdy'Mg1-x'-y'Se asymmetric coupled quantum well structure

    International Nuclear Information System (INIS)

    Wu, J.D.; Huang, Y.S.; Lin, D.Y.; Charles, W.O.; Shen, A.; Tamargo, M.C.; Tiong, K.K.

    2011-01-01

    Research highlights: → We report a detailed study of a ZnxCd 1-x Se/Znx'Cdy'Mg 1-x '-y'Se asymmetric coupled quantum well structure by using temperature-dependent photoluminescence (PL) and contactless electroreflectance (CER) techniques. → The PL peak position yielded information of the fundamental excitonic recombinations. → Analysis of the CER spectra led to the identification of various interband transitions. →Study of the temperature dependence of the excitonic transition energies indicated that main influence of temperature on the quantized transitions is through temperature dependence of the constituent material band gap in the well. - Abstract: Temperature-dependent photoluminescence (PL) and contactless electroreflectance (CER) were used to characterize a Zn x Cd 1-x Se/Zn x' Cd y' Mg 1-x'-y' Se asymmetric coupled quantum well (ACQW) structure in the range of 10-300 K. The PL peak position yielded information of the fundamental excitonic recombinations. A detailed analysis of the CER spectra led to the identification of various interband transitions. The intersubband transitions were then estimated and found to be in a good agreement with the previous report of Fourier-transform infrared absorption measurements. At low temperature, the PL spectra of the sample showed an asymmetric behavior with an exponential tail at the lower-energy side and were attributed to the localized excitonic recombinations due to potential fluctuations. Detailed study of the temperature dependence of the excitonic transition energies indicated that the main influence of temperature on the quantized transitions is through the temperature dependence of the band gap of the constituent material in the well.

  9. High Quality Plasmonic Sensors Based on Fano Resonances Created through Cascading Double Asymmetric Cavities.

    Science.gov (United States)

    Zhang, Xiangao; Shao, Mingzhen; Zeng, Xiaoqi

    2016-10-18

    In this paper, a type of compact nanosensor based on a metal-insulator-metal structure is proposed and investigated through cascading double asymmetric cavities, in which their metal cores shift along different axis directions. The cascaded asymmetric structure exhibits high transmission and sharp Fano resonance peaks via strengthening the mutual coupling of the cavities. The research results show that with the increase of the symmetry breaking in the structure, the number of Fano resonances increase accordingly. Furthermore, by modulating the geometrical parameters appropriately, Fano resonances with high sensitivities to the changes in refractive index can be realized. A maximum figure of merit (FoM) value of 74.3 is obtained. Considerable applications for this work can be found in bio/chemical sensors with excellent performance and other nanophotonic integrated circuit devices such as optical filters, switches and modulators.

  10. High Quality Plasmonic Sensors Based on Fano Resonances Created through Cascading Double Asymmetric Cavities

    Directory of Open Access Journals (Sweden)

    Xiangao Zhang

    2016-10-01

    Full Text Available In this paper, a type of compact nanosensor based on a metal-insulator-metal structure is proposed and investigated through cascading double asymmetric cavities, in which their metal cores shift along different axis directions. The cascaded asymmetric structure exhibits high transmission and sharp Fano resonance peaks via strengthening the mutual coupling of the cavities. The research results show that with the increase of the symmetry breaking in the structure, the number of Fano resonances increase accordingly. Furthermore, by modulating the geometrical parameters appropriately, Fano resonances with high sensitivities to the changes in refractive index can be realized. A maximum figure of merit (FoM value of 74.3 is obtained. Considerable applications for this work can be found in bio/chemical sensors with excellent performance and other nanophotonic integrated circuit devices such as optical filters, switches and modulators.

  11. Plastic strain accumulation during asymmetric cyclic loading of Zircaloy-2 at room temperature

    International Nuclear Information System (INIS)

    Rajpurohit, R.S.; Santhi Srinivas, N.C.; Singh, Vakil

    2016-01-01

    Asymmetric cyclic loading leads to accumulation of cyclic plastic strain and reduces the fatigue life of components. This phenomenon is known as ratcheting fatigue. Zircaloy-2 is a important structural material in nuclear reactors and used as pressure tubes and fuel cladding in pressurized light and heavy water nuclear reactors. Due to power fluctuations, these components experience plastic strain cycles in the reactor and their life is reduced due to strain cycles. Power fluctuations also cause asymmetric straining of the material and leads to accumulation of plastic strain. The present investigation deals with the effect of the magnitude of mean stress, stress amplitude and stress rate on hardening/softening behavior of Zircaloy-2 under asymmetric cyclic loading, at room temperature. It was observed that plastic strain accumulation increased with mean stress and stress amplitude; however, it decreased with stress rate. (author)

  12. Asymmetric Localization of Cdx2 mRNA during the First Cell-Fate Decision in Early Mouse Development

    Directory of Open Access Journals (Sweden)

    Maria Skamagki

    2013-02-01

    Full Text Available A longstanding question in mammalian development is whether the divisions that segregate pluripotent progenitor cells for the future embryo from cells that differentiate into extraembryonic structures are asymmetric in cell-fate instructions. The transcription factor Cdx2 plays a key role in the first cell-fate decision. Here, using live-embryo imaging, we show that localization of Cdx2 transcripts becomes asymmetric during development, preceding cell lineage segregation. Cdx2 transcripts preferentially localize apically at the late eight-cell stage and become inherited asymmetrically during divisions that set apart pluripotent and differentiating cells. Asymmetric localization depends on a cis element within the coding region of Cdx2 and requires cell polarization as well as intact microtubule and actin cytoskeletons. Failure to enrich Cdx2 transcripts apically results in a significant decrease in the number of pluripotent cells. We discuss how the asymmetric localization and segregation of Cdx2 transcripts could contribute to multiple mechanisms that establish different cell fates in the mouse embryo.

  13. Congenital asymmetric crying face: a case report

    Directory of Open Access Journals (Sweden)

    Semra Kara

    2011-12-01

    Full Text Available Congenital asymmetric crying face is an anomalia caused by unilateral absence or weakness of depressor anguli oris muscle The major finding of the disease is the absence or weakness in the outer and lower movement of the commissure during crying. The other expression muscles are normal and the face is symmetric at rest. The asymmetry in congenital asymmetric crying face is most evident during infancy but decreases by age. Congenital asymmetric crying face can be associated with cervicofacial, musclebone, respiratory, genitourinary and central nervous system anomalia. It is diagnosed by physical examination. This paper presents a six days old infant with Congenital asymmetric crying face and discusses the case in terms of diagnosis and disease features.

  14. Study of 235U very asymmetric thermal fission

    International Nuclear Information System (INIS)

    Sida, J.L.

    1989-12-01

    The fission fragment separator Lohengrin of the Institut Laue-Langevin in Grenoble was used to determine the yields of the very asymmetric light fission products (A=84-69) as a function of A, Z, and the kinetic energy E. The proton pairing effect causes fine structures in the mass distribution, in the mean nuclear charge anti Z and its variance σ z , and in the mean kinetic energies of the elements. The neutron pairing effect in the production yields is found for the first time of the same order of magnitude than the proton pairing effect. In the mass region investigated both are the largest observed in fission of 235 U. A decrease in the mean kinetic energy for the isotopes of Ni and Cu was observed. It points to a large deformation at scission. Our results support the view that very asymmetric low-energy fission is a weakly dissipative process. The highly deformed transient system breaks by a slow necking-in process [fr

  15. Artificial asymmetric warming reduces nectar yield in a Tibetan alpine species of Asteraceae.

    Science.gov (United States)

    Mu, Junpeng; Peng, Youhong; Xi, Xinqiang; Wu, Xinwei; Li, Guoyong; Niklas, Karl J; Sun, Shucun

    2015-11-01

    Asymmetric warming is one of the distinguishing features of global climate change, in which winter and night-time temperatures are predicted to increase more than summer and diurnal temperatures. Winter warming weakens vernalization and hence decreases the potential to flower for some perennial herbs, and night warming can reduce carbohydrate concentrations in storage organs. This study therefore hypothesized that asymmetric warming should act to reduce flower number and nectar production per flower in a perennial herb, Saussurea nigrescens, a key nectar plant for pollinators in Tibetan alpine meadows. A long-term (6 years) warming experiment was conducted using open-top chambers placed in a natural meadow and manipulated to achieve asymmetric increases in temperature, as follows: a mean annual increase of 0·7 and 2·7 °C during the growing and non-growing seasons, respectively, combined with an increase of 1·6 and 2·8 °C in the daytime and night-time, respectively, from June to August. Measurements were taken of nectar volume and concentration (sucrose content), and also of leaf non-structural carbohydrate content and plant morphology. Six years of experimental warming resulted in reductions in nectar volume per floret (64·7 % of control), floret number per capitulum (8·7 %) and capitulum number per plant (32·5 %), whereas nectar concentration remained unchanged. Depletion of leaf non-structural carbohydrates was significantly higher in the warmed than in the ambient condition. Overall plant density was also reduced by warming, which, when combined with reductions in flower development and nectar volumes, led to a reduction of ∼90 % in nectar production per unit area. The negative effect of asymmetric warming on nectar yields in S. nigrescens may be explained by a concomitant depletion of leaf non-structural carbohydrates. The results thus highlight a novel aspect of how climate change might affect plant-pollinator interactions and plant

  16. The limits of the electron optical parameters of asymmetric double pipecol magnetic objective lenses

    International Nuclear Information System (INIS)

    Al-khashab, A. M.; Abas, K. A.

    1997-01-01

    The asymmetrical magnetic electron lens is of great importance for the electron microscopes intended for high resolution. Such lenses are determined not only by its geometric structure and shape parameters but also by the gap width to bore diameter (S/D) of its pole pieces. a systematic investigation has been carried out for asymmetric objective lenses having different bore diameters. The results indicate that the op per h ore diameter of pole piece lens has considerable effects on the electron optical properties. The Comparison between the two sets of the family of asymmetric lenses provides good performance, and suggests that the ratio of the lens gap width to the bore diameters of its pole pieces (S/ D 1 /D 2 =3) are favourable. (authors). 9 refs., 9 figs

  17. Continentward-dipping detachment fault system and asymmetric rift structure of the Baiyun Sag, northern South China Sea

    Science.gov (United States)

    Zhou, Zhichao; Mei, Lianfu; Liu, Jun; Zheng, Jinyun; Chen, Liang; Hao, Shihao

    2018-02-01

    The rift architecture and deep crustal structure of the distal margin at the mid-northern margin of the South China Sea have been previously investigated by using deep seismic reflection profiles. However, one fundamental recurring problem in the debate is the extensional fault system and rift structure of the hyperextended rift basins (Baiyun Sag and Liwan Sag) within the distal margin because of the limited amount of seismic data. Based on new 3D seismic survey data and 2D seismic reflection profiles, we observe an array of fault blocks in the Baiyun Sag, which were tilted towards the ocean by extensional faulting. The extensional faults consistently dip towards the continent. Beneath the tilted fault blocks and extensional faults, a low-angle, high-amplitude and continuous reflection has been interpreted as the master detachment surface that controls the extension process. During rifting, the continentward-dipping normal faults evolved in a sequence from south to north, generating the asymmetric rift structure of the Baiyun Sag. The Baiyun Sag is separated from the oceanic domain by a series of structural highs that were uplifted by magmatic activity in response to the continental breakup at 33 Ma and a ridge jump to the south at 26-24 Ma. Therefore, we propose that magmatism played a significant role in the continental extension and final breakup in the South China Sea.

  18. COMPARISON OF THE SHAKE WEIGHT® MODALITY EXERCISES WHEN COMPARED TO TRADITIONAL DUMBBELLS

    Directory of Open Access Journals (Sweden)

    Jordan M. Glenn

    2012-12-01

    Full Text Available Individuals are continuously looking for faster, more efficient methods with which to develop physical fitness. This has led to the development of products and programs marketed towards increasing physical fitness in minimal time. The Shake Weight® (SW has been advertised to increase muscular strength among other factors in less time than traditional weightlifting. The purpose of this study was to compare the electromyographic (EMG muscle activity of the SW to a traditional dumbbell (DB performing the same exercises. Twelve men (22.9 ± 1.6 years and 13 women (23.0 ± 1.9 years volunteered to participate in this study. Subjects performed the chest shake (CS, biceps shake (BS, and triceps shake (TS using the SW and DW. Maximal voluntary isometric contractions (MVIC were exhibited for all muscles. EMG activity was recorded for the pectoralis major (PM, triceps brachii (TB, biceps brachii (BB, anterior deltoid (AD, trapezius (TR, and rectus abdominus (RA and compared to detect differences between modalities. EMG activity for each muscle group was reported as a percentage of each subject's individual MVIC. A repeated measures ANOVA revealed no significant differences between the SW and DB modalities during each exercise for all muscles except the BB (p < 0.05. During the CS exercise muscle activity was significantly greater for DB in the BB muscle when compared to the SW mode (50.8 ± 28.9%; 35.8 ± 30.8%. The SW did not have any advantage over the DB for any exercise, nor for any muscle group. Further, no muscle group during any of the SW trials exhibited an MVIC over 60%, the level necessary to increase muscular strength

  19. Dynamic JUNQ inclusion bodies are asymmetrically inherited in mammalian cell lines through the asymmetric partitioning of vimentin.

    Science.gov (United States)

    Ogrodnik, Mikołaj; Salmonowicz, Hanna; Brown, Rachel; Turkowska, Joanna; Średniawa, Władysław; Pattabiraman, Sundararaghavan; Amen, Triana; Abraham, Ayelet-chen; Eichler, Noam; Lyakhovetsky, Roman; Kaganovich, Daniel

    2014-06-03

    Aging is associated with the accumulation of several types of damage: in particular, damage to the proteome. Recent work points to a conserved replicative rejuvenation mechanism that works by preventing the inheritance of damaged and misfolded proteins by specific cells during division. Asymmetric inheritance of misfolded and aggregated proteins has been shown in bacteria and yeast, but relatively little evidence exists for a similar mechanism in mammalian cells. Here, we demonstrate, using long-term 4D imaging, that the vimentin intermediate filament establishes mitotic polarity in mammalian cell lines and mediates the asymmetric partitioning of damaged proteins. We show that mammalian JUNQ inclusion bodies containing soluble misfolded proteins are inherited asymmetrically, similarly to JUNQ quality-control inclusions observed in yeast. Mammalian IPOD-like inclusion bodies, meanwhile, are not always inherited by the same cell as the JUNQ. Our study suggests that the mammalian cytoskeleton and intermediate filaments provide the physical scaffold for asymmetric inheritance of dynamic quality-control JUNQ inclusions. Mammalian IPOD inclusions containing amyloidogenic proteins are not partitioned as effectively during mitosis as their counterparts in yeast. These findings provide a valuable mechanistic basis for studying the process of asymmetric inheritance in mammalian cells, including cells potentially undergoing polar divisions, such as differentiating stem cells and cancer cells.

  20. Transition behavior of asymmetric polystyrene-b-poly(2-vinylpyridine) films: A stable hexagonally modulated layer structure

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sungmin; Koo, Kyosung; Kim, Kyunginn; Ahn, Hyungju; Lee, Byeongdu; Park, Cheolmin; Ryu, Du Yeol

    2015-03-09

    The phase transitions in the films of an asymmetric polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) were investigated by grazing incidence small-angle X-ray scattering (GISAXS) and transmission electron microscopy (TEM). Compared with the sequential transitions in the bulk, hexagonally perforated layer (HPL) – gyroid (GYR) – disorder (DIS) upon heating, the transitions in film geometry were dramatically changed with decreasing thickness due to the growing preferential interactions from substrate, resulting in a thickness-dependent transition diagram including four different morphologies of hexagonally modulated layer (HML), coexisting (HML and GYR), GYR, and DIS. Particularly in the films ≤10Lo, where Lo is d-spacing at 150 °C, a stable HML structure was identified even above the order-to-disorder transition (ODT) temperature of the bulk, which was attributed to the suppressed compositional fluctuations by the enhanced substrate interactions.

  1. Asymmetric ratchet effect for directional transport of fog drops on static and dynamic butterfly wings.

    Science.gov (United States)

    Liu, Chengcheng; Ju, Jie; Zheng, Yongmei; Jiang, Lei

    2014-02-25

    Inspired by novel creatures, researchers have developed varieties of fog drop transport systems and made significant contributions to the fields of heat transferring, water collecting, antifogging, and so on. Up to now, most of the efforts in directional fog drop transport have been focused on static surfaces. Considering it is not practical to keep surfaces still all the time in reality, conducting investigations on surfaces that can transport fog drops in both static and dynamic states has become more and more important. Here we report the wings of Morpho deidamia butterflies can directionally transport fog drops in both static and dynamic states. This directional drop transport ability results from the micro/nano ratchet-like structure of butterfly wings: the surface of butterfly wings is composed of overlapped scales, and the scales are covered with porous asymmetric ridges. Influenced by this special structure, fog drops on static wings are transported directionally as a result of the fog drops' asymmetric growth and coalescence. Fog drops on vibrating wings are propelled directionally due to the fog drops' asymmetric dewetting from the wings.

  2. Estimation of value at risk in currency exchange rate portfolio using asymmetric GJR-GARCH Copula

    Science.gov (United States)

    Nurrahmat, Mohamad Husein; Noviyanti, Lienda; Bachrudin, Achmad

    2017-03-01

    In this study, we discuss the problem in measuring the risk in a portfolio based on value at risk (VaR) using asymmetric GJR-GARCH Copula. The approach based on the consideration that the assumption of normality over time for the return can not be fulfilled, and there is non-linear correlation for dependent model structure among the variables that lead to the estimated VaR be inaccurate. Moreover, the leverage effect also causes the asymmetric effect of dynamic variance and shows the weakness of the GARCH models due to its symmetrical effect on conditional variance. Asymmetric GJR-GARCH models are used to filter the margins while the Copulas are used to link them together into a multivariate distribution. Then, we use copulas to construct flexible multivariate distributions with different marginal and dependence structure, which is led to portfolio joint distribution does not depend on the assumptions of normality and linear correlation. VaR obtained by the analysis with confidence level 95% is 0.005586. This VaR derived from the best Copula model, t-student Copula with marginal distribution of t distribution.

  3. Fourier synthesis of asymmetrical optical potentials for atoms; Fourier-Synthese von asymmetrischen optischen Potentialen fuer Atome

    Energy Technology Data Exchange (ETDEWEB)

    Ritt, G.

    2007-07-13

    In this work a dissipationless asymmetrical optical potential for cold atoms was produced. In a first step a new type of optical lattice was generated, whose spatial periodicity only corresponds to a quarter of the wavelength of the light used for the generation. This corresponds to the half of the periodicity of a conventional optical lattice, which is formed by the light of the same wavelength. The generation of this new type of optical lattice was reached by the use of two degenerated raman transitions. Virtual processes occur, in which four photons are involved. In conventional optical lattices however virtual two-photon processes occur. By spatially superimposing this optical lattice with a conventional optical lattice an asymmetrical optical potential could be formed. By diffraction of a Bose Einstein condensate of rubidium atoms at the transient activated asymmetrical potential the asymmetrical structure was proven. (orig.)

  4. A general model for metabolic scaling in self-similar asymmetric networks.

    Directory of Open Access Journals (Sweden)

    Alexander Byers Brummer

    2017-03-01

    Full Text Available How a particular attribute of an organism changes or scales with its body size is known as an allometry. Biological allometries, such as metabolic scaling, have been hypothesized to result from selection to maximize how vascular networks fill space yet minimize internal transport distances and resistances. The West, Brown, Enquist (WBE model argues that these two principles (space-filling and energy minimization are (i general principles underlying the evolution of the diversity of biological networks across plants and animals and (ii can be used to predict how the resulting geometry of biological networks then governs their allometric scaling. Perhaps the most central biological allometry is how metabolic rate scales with body size. A core assumption of the WBE model is that networks are symmetric with respect to their geometric properties. That is, any two given branches within the same generation in the network are assumed to have identical lengths and radii. However, biological networks are rarely if ever symmetric. An open question is: Does incorporating asymmetric branching change or influence the predictions of the WBE model? We derive a general network model that relaxes the symmetric assumption and define two classes of asymmetrically bifurcating networks. We show that asymmetric branching can be incorporated into the WBE model. This asymmetric version of the WBE model results in several theoretical predictions for the structure, physiology, and metabolism of organisms, specifically in the case for the cardiovascular system. We show how network asymmetry can now be incorporated in the many allometric scaling relationships via total network volume. Most importantly, we show that the 3/4 metabolic scaling exponent from Kleiber's Law can still be attained within many asymmetric networks.

  5. Multicatalyst system in asymmetric catalysis

    CERN Document Server

    Zhou, Jian

    2014-01-01

    This book introduces multi-catalyst systems by describing their mechanism and advantages in asymmetric catalysis.  Helps organic chemists perform more efficient catalysis with step-by-step methods  Overviews new concepts and progress for greener and economic catalytic reactions  Covers topics of interest in asymmetric catalysis including bifunctional catalysis, cooperative catalysis, multimetallic catalysis, and novel tandem reactions   Has applications for pharmaceuticals, agrochemicals, materials, and flavour and fragrance

  6. Heat transfer modeling in asymmetrical sheet rolling of aluminium alloys with ultra high shear strain

    Directory of Open Access Journals (Sweden)

    Pesin Alexander

    2016-01-01

    Full Text Available Asymmetrical sheet rolling is a method of severe plastic deformation (SPD for production of aluminium alloys with UFG structure. Prediction of sheet temperature during SPD is important. The temperature of sheet is changed due to the conversion of mechanical work into heat through sliding on contact surfaces and high shear strain. Paper presents the results of FEM simulation of the effect of contact friction, rolling speed and rolls speed ratio on the heating of aluminium sheets during asymmetrical rolling.

  7. Asymmetrical Interleaved DC/DC Switching Converters for Photovoltaic and Fuel Cell Applications—Part 1: Circuit Generation, Analysis and Design 

    Directory of Open Access Journals (Sweden)

    Sergio Serna

    2012-11-01

    Full Text Available A novel asymmetrical interleaved dc/dc switching converters family intended for photovoltaic and fuel cell applications is presented in this paper. The main requirements on such applications are small ripples in the generator and load, as well as high voltage conversion ratio. Therefore, interleaved structures and voltage multiplier cells have been asymmetrically combined to generate new converters, which inherently operate indiscontinuous conduction mode. The novel family is derived from boost, buck-boost and flyback-based structures. This converter family is analyzed to obtain the design equations and synthesize a design process based on the typical requirements of photovoltaic and fuel cell applications. Finally, the experimental results validate the characteristics and usefulness of the asymmetrical interleaved converter family. 

  8. Preparation of CaTiO3 Asymmetric Membranes Using Polyetherimide as Binder Polymer

    Directory of Open Access Journals (Sweden)

    Endang Purwanti Setyaningsih

    2016-03-01

    Full Text Available Asymmetric dense and thin membranes have been prepared from powders of perovskite oxide-type CaTiO3 without cracking by phase inversion method. Polyetherimide was used as a polymeric binder in the method. The resulting green membranes, composed of CaTiO3 powder and polyetherimide binder, were sintered at 890, 1100 or 1200 °C. The crystal phase of CaTiO3 was analyzed using X-Ray Diffraction (XRD. The XRD pattern of the synthesized CaTiO3 powder was matched with the reference indicating the formation of CaTiO3 structure. Sintering at 890 °C fails to form a strong membrane. Scanning Electron Microscope (SEM images of the membranes showed that the membrane had the asymmetric structure with dense layer on one side and porous layer on the other side. The pores in the porous layer were both finger-like and sponge-like structure. The mechanical strength of the membranes, which were determined by Vickers micro hardness method, varied from 3.5 to 25.8 Hv. The strongest membrane without any crack was resulted from sintering at 1200°C with hardness values between 19.4 and 25.8 Hv. Thermal expansion coefficients of the asymmetric membranes sintered at 1100 and 1200 °C, measured with Thermomechanical Analyzer (TMA, were 10.82 × 10-6 and 12.78 × 10-6.C-1 respectively.

  9. Enantioselective syntheses and biological studies of aeruginosin 298-A and its analogs: application of catalytic asymmetric phase-transfer reaction.

    Science.gov (United States)

    Fukuta, Yuhei; Ohshima, Takashi; Gnanadesikan, Vijay; Shibuguchi, Tomoyuki; Nemoto, Tetsuhiro; Kisugi, Takaya; Okino, Tatsufumi; Shibasaki, Masakatsu

    2004-04-13

    Aeruginosin 298-A was isolated from the freshwater cyanobacterium Microcystis aeruginosa (NIES-298) and is an equipotent thrombin and trypsin inhibitor. A variety of analogs were synthesized to gain insight into the structure-activity relations. We developed a versatile synthetic process for aeruginosin 298-A as well as several attractive analogs, in which all stereocenters were controlled by catalytic asymmetric phase-transfer reaction promoted by two-center asymmetric catalysts and catalytic asymmetric epoxidation promoted by a lanthanide-BINOL complex. Furthermore, serine protease inhibitory activities of aeruginosin 298-A and its analogs were examined.

  10. A new equilibrium trading model with asymmetric information

    Directory of Open Access Journals (Sweden)

    Lianzhang Bao

    2018-03-01

    Full Text Available Taking arbitrage opportunities into consideration in an incomplete market, dealers will pricebonds based on asymmetric information. The dealer with the best offering price wins the bid. The riskpremium in dealer’s offering price is primarily determined by the dealer’s add-on rate of change tothe term structure. To optimize the trading strategy, a new equilibrium trading model is introduced.Optimal sequential estimation scheme for detecting the risk premium due to private inforamtion isproposed based on historical prices, and the best bond pricing formula is given with the accordingoptimal trading strategy. Numerical examples are provided to illustrate the economic insights underthe certain stochastic term structure interest rate models.

  11. NeoPHOX – a structurally tunable ligand system for asymmetric catalysis

    Directory of Open Access Journals (Sweden)

    Jaroslav Padevět

    2016-06-01

    Full Text Available A synthesis of new NeoPHOX ligands derived from serine or threonine has been developed. The central intermediate is a NeoPHOX derivative bearing a methoxycarbonyl group at the stereogenic center next to the oxazoline N atom. The addition of methylmagnesium chloride leads to a tertiary alcohol, which can be acylated or silylated to produce NeoPHOX ligands with different sterical demand. The new NeoPHOX ligands were tested in the iridium-catalyzed asymmetric hydrogenation and palladium-catalyzed allylic substitution. In both reactions high enantioselectivities were achieved, that were comparable to the enantioselectivities obtained with the up to now best NeoPHOX ligand derived from expensive tert-leucine.

  12. Comment on ``Steady-state properties of a totally asymmetric exclusion process with periodic structure''

    Science.gov (United States)

    Jiang, Rui; Hu, Mao-Bin; Wu, Qing-Song

    2008-07-01

    Lakatos [Phys. Rev. E 71, 011103 (2005)] have studied a totally asymmetric exclusion process that contains periodically varying movement rates. They have presented a cluster mean-field theory for the problem. We show that their cluster mean-field theory leads to redundant equations. We present a mean-field analysis in which there is no redundant equation.

  13. Vortex Dynamics of Asymmetric Heave Plates

    Science.gov (United States)

    Rusch, Curtis; Maurer, Benjamin; Polagye, Brian

    2017-11-01

    Heave plates can be used to provide reaction forces for wave energy converters, which harness the power in ocean surface waves to produce electricity. Heave plate inertia includes both the static mass of the heave plate, as well as the ``added mass'' of surrounding water accelerated with the object. Heave plate geometries may be symmetric or asymmetric, with interest in asymmetric designs driven by the resulting hydrodynamic asymmetry. Limited flow visualization has been previously conducted on symmetric heave plates, but flow visualization of asymmetric designs is needed to understand the origin of observed hydrodynamic asymmetries and their dependence on the Keulegan-Carpenter number. For example, it is hypothesized that the time-varying added mass of asymmetric heave plates is caused by vortex shedding, which is related to oscillation amplitude. Here, using direct flow visualization, we explore the relationship between vortex dynamics and time-varying added mass and drag. These results suggest potential pathways for more advanced heave plate designs that can exploit vortex formation and shedding to achieve more favorable hydrodynamic properties for wave energy converters.

  14. Renewable resource management under asymmetric information

    DEFF Research Database (Denmark)

    Jensen, Frank; Andersen, Peder; Nielsen, Max

    2013-01-01

    Asymmetric information between fishermen and the regulator is important within fisheries. The regulator may have less information about stock sizes, prices, costs, effort, productivity and catches than fishermen. With asymmetric information, a strong analytical tool is principal-agent analysis....... In this paper, we study asymmetric information about productivity within a principal-agent framework and a tax on fishing effort is considered. It is shown that a second best optimum can be achieved if the effort tax is designed such that low-productivity agents rent is exhausted, while high-productivity agents...... receive an information rent. The information rent is equivalent to the total incentive cost. The incentive costs arise as we want to reveal the agent's type....

  15. Subcopula-based measure of asymmetric association for contingency tables.

    Science.gov (United States)

    Wei, Zheng; Kim, Daeyoung

    2017-10-30

    For the analysis of a two-way contingency table, a new asymmetric association measure is developed. The proposed method uses the subcopula-based regression between the discrete variables to measure the asymmetric predictive powers of the variables of interest. Unlike the existing measures of asymmetric association, the subcopula-based measure is insensitive to the number of categories in a variable, and thus, the magnitude of the proposed measure can be interpreted as the degree of asymmetric association in the contingency table. The theoretical properties of the proposed subcopula-based asymmetric association measure are investigated. We illustrate the performance and advantages of the proposed measure using simulation studies and real data examples. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Seeing left- or right-asymmetric tail wagging produces different emotional responses in dogs.

    Science.gov (United States)

    Siniscalchi, Marcello; Lusito, Rita; Vallortigara, Giorgio; Quaranta, Angelo

    2013-11-18

    Left-right asymmetries in behavior associated with asymmetries in the brain are widespread in the animal kingdom, and the hypothesis has been put forward that they may be linked to animals' social behavior. Dogs show asymmetric tail-wagging responses to different emotive stimuli-the outcome of different activation of left and right brain structures controlling tail movements to the right and left side of the body. A crucial question, however, is whether or not dogs detect this asymmetry. Here we report that dogs looking at moving video images of conspecifics exhibiting prevalent left- or right-asymmetric tail wagging showed higher cardiac activity and higher scores of anxious behavior when observing left- rather than right-biased tail wagging. The finding that dogs are sensitive to the asymmetric tail expressions of other dogs supports the hypothesis of a link between brain asymmetry and social behavior and may prove useful to canine animal welfare theory and practice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Apparent molal volumes of symmetrical and asymmetrical isomers of tetrabutylammonium bromide in water at several temperatures

    International Nuclear Information System (INIS)

    Moreno, Nicolás; Malagón, Andrés; Buchner, Richard; Vargas, Edgar F.

    2014-01-01

    Highlights: • Apparent molal volumes of five isomers of Bu 4 NBr in water have been measured. • The structural effect of branched and linear chains is discussed. • The structural contributions to the ionic volume were calculated. -- Abstract: Apparent molal volumes of a series of differently substituted quaternary ammonium bromides, namely tetra-iso-butyl-, tetra-sec-butyl-, tetra-n-butyl-, di-n-butyl-di-sec-butyl- and di-n-butyl-di-iso-butylammonium bromide have been determined as a function of molal concentration at (298.15, 303.15 and 308.15) K. Partial molar volumes at infinite dilution and ionic molar volumes of these quaternary ammonium cations were determined. Structural volume contributions to the ionic molar volume were also calculated. The symmetric and asymmetric quaternary ammonium cations are “structure making” ions. The contribution of the branched butyl chains predominates over the linear butyl chains in the asymmetric cations

  18. Modelling asymmetric growth in crowded plant communities

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2010-01-01

    A class of models that may be used to quantify the effect of size-asymmetric competition in crowded plant communities by estimating a community specific degree of size-asymmetric growth for each species in the community is suggested. The model consists of two parts: an individual size......-asymmetric growth part, where growth is assumed to be proportional to a power function of the size of the individual, and a term that reduces the relative growth rate as a decreasing function of the individual plant size and the competitive interactions from other plants in the neighbourhood....

  19. Fast response of the optical nonlinearity in a GaAs/AlGaAs asymmetric triple quantum well structure

    CERN Document Server

    Ahn, S H; Sawaki, N

    1999-01-01

    The time response of the optical nonlinear behavior in a GaAs/AlGaAs asymmetric triple quantum well structure is estimated by using a picosecond pump-probe method at 77 K. From the results of the transmission of the probe pulse as a function of the delay time at the excitation wavelengths, a rise time of 5 approx 10 ps and a fall time of 8 approx 16 ps are obtained. The nonlinear behavior is attributed to the triple resonance of the electronic states due to the build-up of the internal field induced by the separation of photo-excited electrons and holes. It is found that the rise time is determined by the tunneling transfer time of the electrons in the narrowest well to an adjacent well separated by a thin potential barrier.

  20. Asymmetric Frontal Brain Activity and Parental Rejection

    NARCIS (Netherlands)

    Huffmeijer, R.; Alink, L.R.A.; Tops, M.; Bakermans-Kranenburg, M.J.; van IJzendoorn, M.H.

    2013-01-01

    Asymmetric frontal brain activity has been widely implicated in reactions to emotional stimuli and is thought to reflect individual differences in approach-withdrawal motivation. Here, we investigate whether asymmetric frontal activity, as a measure of approach-withdrawal motivation, also predicts

  1. Conditions for Stable Chip Breaking and Provision of Machined Surface Quality While Turning with Asymmetric Tool Vibrations

    OpenAIRE

    Шелег, В. К.; Молочко, В. И.; Данильчик, С. С.

    2015-01-01

    The paper considers a process of turning structural steel with asymmetric tool vibrations directed along feeding. Asymmetric vibrations characterized by asymmetry coefficient of vibration cycle, their frequency and amplitude are additionally transferred to the tool in the turning process with the purpose to crush chips. Conditions of stable chip breaking and obtaining optimum dimensions of chip elements have been determined in the paper. In order to reduce a negative impact of the vibration a...

  2. Asymmetric dominance and asymmetric mate choice oppose premating isolation after allopatric divergence.

    Science.gov (United States)

    Sefc, Kristina M; Hermann, Caroline M; Steinwender, Bernd; Brindl, Hanna; Zimmermann, Holger; Mattersdorfer, Karin; Postl, Lisbeth; Makasa, Lawrence; Sturmbauer, Christian; Koblmüller, Stephan

    2015-04-01

    Assortative mating promotes reproductive isolation and allows allopatric speciation processes to continue in secondary contact. As mating patterns are determined by mate preferences and intrasexual competition, we investigated male-male competition and behavioral isolation in simulated secondary contact among allopatric populations. Three allopatric color morphs of the cichlid fish Tropheus were tested against each other. Dyadic male-male contests revealed dominance of red males over bluish and yellow-blotch males. Reproductive isolation in the presence of male-male competition was assessed from genetic parentage in experimental ponds and was highly asymmetric among pairs of color morphs. Red females mated only with red males, whereas the other females performed variable degrees of heteromorphic mating. Discrepancies between mating patterns in ponds and female preferences in a competition-free, two-way choice paradigm suggested that the dominance of red males interfered with positive assortative mating of females of the subordinate morphs and provoked asymmetric hybridization. Between the nonred morphs, a significant excess of negative assortative mating by yellow-blotch females with bluish males did not coincide with asymmetric dominance among males. Hence, both negative assortative mating preferences and interference of male-male competition with positive assortative preferences forestall premating isolation, the latter especially in environments unsupportive of competition-driven spatial segregation.

  3. Asymmetric Synthesis via Chiral Aziridines

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Harden, Adrian; Wyatt, Paul

    1996-01-01

    A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines)]. In the b......A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines...

  4. Low voltage operation of electro-absorption modulator promising for high-definition 3D imaging application using a three step asymmetric coupled quantum well structure

    International Nuclear Information System (INIS)

    Na, Byung Hoon; Ju, Gun Wu; Cho, Yong Chul; Lee, Yong Tak; Choi, Hee Ju; Jeon, Jin Myeong; Lee, Soo Kyung; Park, Yong Hwa; Park, Chang Young

    2015-01-01

    In this paper, we propose a transmission type electro-absorption modulator (EAM) operating at 850 nm having low operating voltage and high absorption change with low insertion loss using a novel three step asymmetric coupled quantum well (3 ACQW) structure which can be used as an optical image shutter for high-definition (HD) three dimensional (3D) imaging. Theoretical calculations show that the exciton red shift of 3 ACQW structure is more than two times larger than that of rectangular quantum well (RQW) structure while maintaining high absorption change. The EAM having coupled cavities with 3 ACQW structure shows a wide spectral bandwidth and high amplitude modulation at a bias voltage of only -8V, which is 41% lower in operating voltage than that of RQW, making the proposed EAM highly attractive as an optical image shutter for HD 3D imaging applications

  5. Optimal multicopy asymmetric Gaussian cloning of coherent states

    International Nuclear Information System (INIS)

    Fiurasek, Jaromir; Cerf, Nicolas J.

    2007-01-01

    We investigate the asymmetric Gaussian cloning of coherent states which produces M copies from N input replicas in such a way that the fidelity of each copy may be different. We show that the optimal asymmetric Gaussian cloning can be performed with a single phase-insensitive amplifier and an array of beam splitters. We obtain a simple analytical expression characterizing the set of optimal asymmetric Gaussian cloning machines and prove the optimality of these cloners using the formalism of Gaussian completely positive maps and semidefinite programming techniques. We also present an alternative implementation of the asymmetric cloning machine where the phase-insensitive amplifier is replaced with a beam splitter, heterodyne detector, and feedforward

  6. Optimal multicopy asymmetric Gaussian cloning of coherent states

    Science.gov (United States)

    Fiurášek, Jaromír; Cerf, Nicolas J.

    2007-05-01

    We investigate the asymmetric Gaussian cloning of coherent states which produces M copies from N input replicas in such a way that the fidelity of each copy may be different. We show that the optimal asymmetric Gaussian cloning can be performed with a single phase-insensitive amplifier and an array of beam splitters. We obtain a simple analytical expression characterizing the set of optimal asymmetric Gaussian cloning machines and prove the optimality of these cloners using the formalism of Gaussian completely positive maps and semidefinite programming techniques. We also present an alternative implementation of the asymmetric cloning machine where the phase-insensitive amplifier is replaced with a beam splitter, heterodyne detector, and feedforward.

  7. Constructing Asymmetric Polyion Complex Vesicles via Template Assembling Strategy: Formulation Control and Tunable Permeability

    Directory of Open Access Journals (Sweden)

    Junbo Li

    2017-11-01

    Full Text Available A strategy for constructing polyion complex vesicles (PICsomes with asymmetric structure is described. Poly(methylacrylic acid-block-poly(N-isopropylacrylamide modified gold nanoparticles (PMAA-b-PNIPAm-@-Au NPs were prepared and then assembled with poly(ethylene glycol-block-poly[1-methyl-3-(2-methacryloyloxy propylimidazolium bromine] (PEG-b-PMMPImB via polyion complex of PMMA and PMMPImB. After removing the Au NPs template, asymmetric PICsomes composed of a PNIPAm inner-shell, PIC wall, and PEG outer-corona were obtained. These PICsomes have low protein absorption and thermally tunable permeability, provided by the PEG outer-corona and the PNIPAm inner-shell, respectively. Moreover, PICsome size can be tailored by using templates of predetermined sizes. This novel strategy for constructing asymmetric PICsomes with well-defined properties and controllable size is valuable for applications such as drug delivery, catalysis and monitoring of chemical reactions, and biomimetics.

  8. Asymmetric Formal Aza-Diels-Alder Reaction of Trifluoromethyl Hemiaminals with Enones Catalyzed by Primary Amines.

    Science.gov (United States)

    Zhang, Sheng; Cha, Lide; Li, Lijun; Hu, Yanbin; Li, Yanan; Zha, Zhenggen; Wang, Zhiyong

    2016-04-15

    A primary amine-catalyzed asymmetric formal aza-Diels-Alder reaction of trifluoromethyl hemiaminals with enones was developed via a chiral gem-diamine intermediate. This novel protocol allowed facile access to structurally diverse trifluoromethyl-substituted piperidine scaffolds with high stereoselectivity. The utility of this method was further demonstrated through a concise approach to biologically active 4-hydroxypiperidine. More importantly, a stepwise mechanism involving an asymmetric induction process was proposed to rationalize the positive correlation between the chirality of the gem-diamine intermediate and the formal aza-Diels-Alder product.

  9. Direct band gap electroluminescence from bulk germanium at room temperature using an asymmetric fin type metal/germanium/metal structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong, E-mail: wang.dong.539@m.kyushu-u.ac.jp; Maekura, Takayuki; Kamezawa, Sho [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Yamamoto, Keisuke; Nakashima, Hiroshi [Art, Science and Technology Center for Cooperative Research, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan)

    2015-02-16

    We demonstrated direct band gap (DBG) electroluminescence (EL) at room temperature from n-type bulk germanium (Ge) using a fin type asymmetric lateral metal/Ge/metal structure with TiN/Ge and HfGe/Ge contacts, which was fabricated using a low temperature (<400 °C) process. Small electron and hole barrier heights were obtained for TiN/Ge and HfGe/Ge contacts, respectively. DBG EL spectrum peaked at 1.55 μm was clearly observed even at a small current density of 2.2 μA/μm. Superlinear increase in EL intensity was also observed with increasing current density, due to superlinear increase in population of elections in direct conduction band. The efficiency of hole injection was also clarified.

  10. Rapid structural analysis of nanomaterials in aqueous solutions

    Science.gov (United States)

    Ryuzaki, Sou; Tsutsui, Makusu; He, Yuhui; Yokota, Kazumichi; Arima, Akihide; Morikawa, Takanori; Taniguchi, Masateru; Kawai, Tomoji

    2017-04-01

    Rapid structural analysis of nanoscale matter in a liquid environment represents innovative technologies that reveal the identities and functions of biologically important molecules. However, there is currently no method with high spatio-temporal resolution that can scan individual particles in solutions to gain structural information. Here we report the development of a nanopore platform realizing quantitative structural analysis for suspended nanomaterials in solutions with a high z-axis and xy-plane spatial resolution of 35.8 ± 1.1 and 12 nm, respectively. We used a low thickness-to-diameter aspect ratio pore architecture for achieving cross sectional areas of analyte (i.e. tomograms). Combining this with multiphysics simulation methods to translate ionic current data into tomograms, we demonstrated rapid structural analysis of single polystyrene (Pst) beads and single dumbbell-like Pst beads in aqueous solutions.

  11. Spatial genetic structure and asymmetrical gene flow within the Pacific walrus

    Science.gov (United States)

    Sonsthagen, Sarah A.; Jay, Chadwick V.; Fischbach, Anthony S.; Sage, George K.; Talbot, Sandra L.

    2012-01-01

    Pacific walruses (Odobenus rosmarus divergens) occupying shelf waters of Pacific Arctic seas migrate during spring and summer from 3 breeding areas in the Bering Sea to form sexually segregated nonbreeding aggregations. We assessed genetic relationships among 2 putative breeding populations and 6 nonbreeding aggregations. Analyses of mitochondrial DNA (mtDNA) control region sequence data suggest that males are distinct among breeding populations (ΦST=0.051), and between the eastern Chukchi and other nonbreeding aggregations (ΦST=0.336–0.449). Nonbreeding female aggregations were genetically distinct across marker types (microsatellite FST=0.019; mtDNA ΦST=0.313), as was eastern Chukchi and all other nonbreeding aggregations (microsatellite FST=0.019–0.035; mtDNA ΦST=0.386–0.389). Gene flow estimates are asymmetrical from St. Lawrence Island into the southeastern Bering breeding population for both sexes. Partitioning of haplotype frequencies among breeding populations suggests that individuals exhibit some degree of philopatry, although weak. High levels of genetic differentiation among eastern Chukchi and all other nonbreeding aggregations, but considerably lower genetic differentiation between breeding populations, suggest that at least 1 genetically distinct breeding population remained unsampled. Limited genetic structure at microsatellite loci between assayed breeding areas can emerge from several processes, including male-mediated gene flow, or population admixture following a decrease in census size (i.e., due to commercial harvest during 1880–1950s) and subsequent recovery. Nevertheless, high levels of genetic diversity in the Pacific walrus, which withstood prolonged decreases in census numbers with little impact on neutral genetic diversity, may reflect resiliency in the face of past environmental challenges.

  12. Asymmetric transmission in prisms using structures and materials with isotropic-type dispersion.

    Science.gov (United States)

    Gundogdu, Funda Tamara; Serebryannikov, Andriy E; Cakmak, A Ozgur; Ozbay, Ekmel

    2015-09-21

    It is demonstrated that strong asymmetry in transmission can be obtained at the Gaussian beam illumination for a single prism based on a photonic crystal (PhC) with isotropic-type dispersion, as well as for its analog made of a homogeneous material. Asymmetric transmission can be realized with the aid of refraction at a proper orientation of the interfaces and wedges of the prism, whereas neither contribution of higher diffraction orders nor anisotropic-type dispersion is required. Furthermore, incidence toward a prism wedge can be used for one of two opposite directions in order to obtain asymmetry. Thus, asymmetric transmission is a general property of the prism configurations, which can be obtained by using simple geometries and quite conventional materials. The obtained results show that strong asymmetry can be achieved in PhC prisms with (nearly) circular shape of equifrequency dispersion contours, in both cases associated with the index of refraction 01. For the comparison purposes, results are also presented for solid uniform non-magnetic prisms made of a material with the same value of n. It is shown in zero-loss approximation that the PhC prism and the ultralow-index material prism (01. Possible contributions of scattering on the individual rods and diffraction on the wedge to the resulting mechanism are discussed. Analogs of unidirectional splitting and unidirectional deflection regimes, which are known from the studies of PhC gratings, are obtained in PhC prisms and solid uniform prisms, i.e. without higher diffraction orders.

  13. The structure of the muscle protein complex 4Ca2+ ·troponin C · troponin

    International Nuclear Information System (INIS)

    Olah, G.A.; Trewhella, J.

    1994-01-01

    Analysis of scattering data based on a Monte Carlo integration method was used to 2+ obtain a low resolution model of the 4Ca 2+ circ troponin C circ troponin I complex. This modeling method allows rapid testing of plausible structures where the best fit model can be ascertained by a comparison between model structure scattering profiles and measured scattering data. In the best fit model, troponin I appears as a spiral structure 2+ that wraps around 4Ca 2+ circ troponin C which adopts an extended dumbbell conformation similar to that observed in the crystal structures of troponin C. The Monte Carlo modeling method can be applied to other biological systems in which detailed structural information is lacking

  14. Asymmetric three-dimensional topography over mantle plumes.

    Science.gov (United States)

    Burov, Evgueni; Gerya, Taras

    2014-09-04

    The role of mantle-lithosphere interactions in shaping surface topography has long been debated. In general, it is supposed that mantle plumes and vertical mantle flows result in axisymmetric, long-wavelength topography, which strongly differs from the generally asymmetric short-wavelength topography created by intraplate tectonic forces. However, identification of mantle-induced topography is difficult, especially in the continents. It can be argued therefore that complex brittle-ductile rheology and stratification of the continental lithosphere result in short-wavelength modulation and localization of deformation induced by mantle flow. This deformation should also be affected by far-field stresses and, hence, interplay with the 'tectonic' topography (for example, in the 'active/passive' rifting scenario). Testing these ideas requires fully coupled three-dimensional numerical modelling of mantle-lithosphere interactions, which so far has not been possible owing to the conceptual and technical limitations of earlier approaches. Here we present new, ultra-high-resolution, three-dimensional numerical experiments on topography over mantle plumes, incorporating a weakly pre-stressed (ultra-slow spreading), rheologically realistic lithosphere. The results show complex surface evolution, which is very different from the smooth, radially symmetric patterns usually assumed as the canonical surface signature of mantle upwellings. In particular, the topography exhibits strongly asymmetric, small-scale, three-dimensional features, which include narrow and wide rifts, flexural flank uplifts and fault structures. This suggests a dominant role for continental rheological structure and intra-plate stresses in controlling dynamic topography, mantle-lithosphere interactions, and continental break-up processes above mantle plumes.

  15. Time-Dependent-Asymmetric-Linear-Parsimonious Ancestral State Reconstruction.

    Science.gov (United States)

    Didier, Gilles

    2017-10-01

    The time-dependent-asymmetric-linear parsimony is an ancestral state reconstruction method which extends the standard linear parsimony (a.k.a. Wagner parsimony) approach by taking into account both branch lengths and asymmetric evolutionary costs for reconstructing quantitative characters (asymmetric costs amount to assuming an evolutionary trend toward the direction with the lowest cost). A formal study of the influence of the asymmetry parameter shows that the time-dependent-asymmetric-linear parsimony infers states which are all taken among the known states, except for some degenerate cases corresponding to special values of the asymmetry parameter. This remarkable property holds in particular for the Wagner parsimony. This study leads to a polynomial algorithm which determines, and provides a compact representation of, the parametric reconstruction of a phylogenetic tree, that is for all the unknown nodes, the set of all the possible reconstructed states associated with the asymmetry parameters leading to them. The time-dependent-asymmetric-linear parsimony is finally illustrated with the parametric reconstruction of the body size of cetaceans.

  16. Mechanochemistry assisted asymmetric organocatalysis: A sustainable approach

    Directory of Open Access Journals (Sweden)

    Pankaj Chauhan

    2012-12-01

    Full Text Available Ball-milling and pestle and mortar grinding have emerged as powerful methods for the development of environmentally benign chemical transformations. Recently, the use of these mechanochemical techniques in asymmetric organocatalysis has increased. This review highlights the progress in asymmetric organocatalytic reactions assisted by mechanochemical techniques.

  17. Ideal 3D asymmetric concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Botella, Angel [Departamento Fisica Aplicada a los Recursos Naturales, Universidad Politecnica de Madrid, E.T.S.I. de Montes, Ciudad Universitaria s/n, 28040 Madrid (Spain); Fernandez-Balbuena, Antonio Alvarez; Vazquez, Daniel; Bernabeu, Eusebio [Departamento de Optica, Universidad Complutense de Madrid, Fac. CC. Fisicas, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2009-01-15

    Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used for producing reflective and refractive optical devices, including reverse engineering techniques. In this paper we apply photometric field theory and elliptic ray bundles method to study 3D asymmetric - without rotational or translational symmetry - concentrators, which can be useful components for nontracking solar applications. We study the one-sheet hyperbolic concentrator and we demonstrate its behaviour as ideal 3D asymmetric concentrator. (author)

  18. Physical characterization of amorphous In-Ga-Zn-O thin-film transistors with direct-contact asymmetric graphene electrode

    Directory of Open Access Journals (Sweden)

    Jaewook Jeong

    2014-09-01

    Full Text Available High performance a-IGZO thin-film transistors (TFTs are fabricated using an asymmetric graphene drain electrode structure. A-IGZO TFTs (channel length = 3 μm were successfully demonstrated with a saturation field-effect mobility of 6.6 cm2/Vs without additional processes between the graphene and a-IGZO layer. The graphene/a-IGZO junction exhibits Schottky characteristics and the contact property is affected not only by the Schottky barrier but also by the parasitic resistance from the depletion region under the graphene electrode. Therefore, to utilize the graphene layer as S/D electrodes for a-IGZO TFTs, an asymmetric electrode is essential, which can be easily applied to the conventional pixel electrode structure.

  19. Exposing asymmetric gray matter vulnerability in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Matthew S. Devine

    2015-01-01

    Full Text Available Limb weakness in amyotrophic lateral sclerosis (ALS is typically asymmetric. Previous studies have identified an effect of limb dominance on onset and spread of weakness, however relative atrophy of dominant and non-dominant brain regions has not been investigated. Our objective was to use voxel-based morphometry (VBM to explore gray matter (GM asymmetry in ALS, in the context of limb dominance. 30 ALS subjects were matched with 17 healthy controls. All subjects were right-handed. Each underwent a structural MRI sequence, from which GM segmentations were generated. Patterns of GM atrophy were assessed in ALS subjects with first weakness in a right-sided limb (n = 15 or left-sided limb (n = 15. Within each group, a voxelwise comparison was also performed between native and mirror GM images, to identify regions of hemispheric GM asymmetry. Subjects with ALS showed disproportionate atrophy of the dominant (left motor cortex hand area, irrespective of the side of first limb weakness (p < 0.01. Asymmetric atrophy of the left somatosensory cortex and temporal gyri was only observed in ALS subjects with right-sided onset of limb weakness. Our VBM protocol, contrasting native and mirror images, was able to more sensitively detect asymmetric GM pathology in a small cohort, compared with standard methods. These findings indicate particular vulnerability of dominant upper limb representation in ALS, supporting previous clinical studies, and with implications for cortical organisation and selective vulnerability.

  20. Response of asymmetric carbon nanotube network devices to sub-terahertz and terahertz radiation

    International Nuclear Information System (INIS)

    Gayduchenko, I.; Kardakova, A.; Voronov, B.; Finkel, M.; Fedorov, G.; Jiménez, D.; Morozov, S.; Presniakov, M.; Goltsman, G.

    2015-01-01

    Demand for efficient terahertz radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. It was maintained that photothermoelectric effect under certain conditions results in strong response of such devices to terahertz radiation even at room temperature. In this work, we investigate different mechanisms underlying the response of asymmetric carbon nanotube (CNT) based devices to sub-terahertz and terahertz radiation. Our structures are formed with CNT networks instead of individual CNTs so that effects probed are more generic and not caused by peculiarities of an individual nanoscale object. We conclude that the DC voltage response observed in our structures is not only thermal in origin. So called diode-type response caused by asymmetry of the device IV characteristic turns out to be dominant at room temperature. Quantitative analysis provides further routes for the optimization of the device configuration, which may result in appearance of novel terahertz radiation detectors

  1. Modelling of novel light sources based on asymmetric heterostructures

    International Nuclear Information System (INIS)

    Afonenko, A.A.; Kononenko, V.K.; Manak, I.S.

    1995-01-01

    For asymmetric quantum-well heterojunction laser sources, processes of carrier injection into quantum wells are considered. In contrast to ordinary quantum-well light sources, active layers in the novel nanocrystalline systems have different thickness and/or compositions. In addition, wide-band gap barrier layers separating the quantum wells may have a linear or parabolic energy potential profile. For various kinds of the structures, mathematical simulation of dynamic response has been carried out. (author). 8 refs, 5 figs

  2. Organocatalytic asymmetric michael addition of aldehydes to beta-nitroacroleine dimethyl acetal.

    Science.gov (United States)

    Reyes, Efraim; Vicario, Jose L; Badía, Dolores; Carrillo, Luisa

    2006-12-21

    [Structure: see text] The organocatalytic asymmetric Michael addition of aldehydes to beta-nitroacroleine dimethyl acetal has been studied in detail. The reaction took place with excellent yields and high stereoselectivities when a chiral beta-amino alcohol such as L-prolinol was employed as the catalyst, leaving a formation of highly functionalized enantioenriched compounds containing two differentiated formyl groups together with a nitro moiety.

  3. Unravelling Thiol’s Role in Directing Asymmetric Growth of Au Nanorod–Au Nanoparticle Dimers

    KAUST Repository

    Huang, Jianfeng

    2015-12-15

    Asymmetric nanocrystals have practical significance in nanotechnologies but present fundamental synthetic challenges. Thiol ligands have proven effective in breaking the symmetric growth of metallic nanocrystals but their exact roles in the synthesis remain elusive. Here, we synthesized an unprecedented Au nanorod-Au nanoparticle (AuNR-AuNP) dimer structure with the assistance of a thiol ligand. On the basis of our experimental observations, we unraveled for the first time that the thiol could cause an inhomogeneous distribution of surface strains on the seed crystals as well as a modulated reduction rate of metal precursors, which jointly induced the asymmetric growth of monometallic dimers. © 2015 American Chemical Society.

  4. Development of Lexical and Syntactic Representations: The Acquisition of Symmetrical and Asymmetrical Verbs

    Science.gov (United States)

    Gurcanli, Ozge

    2013-01-01

    This dissertation concerns the acquisition of the interaction between lexicosemantic properties of verbs and syntax, focusing on symmetrical and asymmetrical verbs in different syntactic structures. Based on linguistic evidence, it is shown that two conceptual categories, Mutuality and Number, interact to give rise to four event-types: Single…

  5. Asymmetric Aldol Additions: A Guided-Inquiry Laboratory Activity on Catalysis

    Science.gov (United States)

    King, Jorge H. Torres; Wang, Hong; Yezierski, Ellen J.

    2018-01-01

    Despite the importance of asymmetric catalysis in both the pharmaceutical and commodity chemicals industries, asymmetric catalysis is under-represented in undergraduate chemistry laboratory curricula. A novel guided-inquiry experiment based on the asymmetric aldol addition was developed. Students conduct lab work to compare the effectiveness of…

  6. Parallel coupling of symmetric and asymmetric exclusion processes

    International Nuclear Information System (INIS)

    Tsekouras, K; Kolomeisky, A B

    2008-01-01

    A system consisting of two parallel coupled channels where particles in one of them follow the rules of totally asymmetric exclusion processes (TASEP) and in another one move as in symmetric simple exclusion processes (SSEP) is investigated theoretically. Particles interact with each other via hard-core exclusion potential, and in the asymmetric channel they can only hop in one direction, while on the symmetric lattice particles jump in both directions with equal probabilities. Inter-channel transitions are also allowed at every site of both lattices. Stationary state properties of the system are solved exactly in the limit of strong couplings between the channels. It is shown that strong symmetric couplings between totally asymmetric and symmetric channels lead to an effective partially asymmetric simple exclusion process (PASEP) and properties of both channels become almost identical. However, strong asymmetric couplings between symmetric and asymmetric channels yield an effective TASEP with nonzero particle flux in the asymmetric channel and zero flux on the symmetric lattice. For intermediate strength of couplings between the lattices a vertical-cluster mean-field method is developed. This approximate approach treats exactly particle dynamics during the vertical transitions between the channels and it neglects the correlations along the channels. Our calculations show that in all cases there are three stationary phases defined by particle dynamics at entrances, at exits or in the bulk of the system, while phase boundaries depend on the strength and symmetry of couplings between the channels. Extensive Monte Carlo computer simulations strongly support our theoretical predictions. Theoretical calculations and computer simulations predict that inter-channel couplings have a strong effect on stationary properties. It is also argued that our results might be relevant for understanding multi-particle dynamics of motor proteins

  7. Multipartite asymmetric quantum cloning

    International Nuclear Information System (INIS)

    Iblisdir, S.; Gisin, N.; Acin, A.; Cerf, N.J.; Filip, R.; Fiurasek, J.

    2005-01-01

    We investigate the optimal distribution of quantum information over multipartite systems in asymmetric settings. We introduce cloning transformations that take N identical replicas of a pure state in any dimension as input and yield a collection of clones with nonidentical fidelities. As an example, if the clones are partitioned into a set of M A clones with fidelity F A and another set of M B clones with fidelity F B , the trade-off between these fidelities is analyzed, and particular cases of optimal N→M A +M B cloning machines are exhibited. We also present an optimal 1→1+1+1 cloning machine, which is an example of a tripartite fully asymmetric cloner. Finally, it is shown how these cloning machines can be optically realized

  8. Enhancement of nuclear reaction rates in asymmetric binary ionic mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Clerouin, J.; Arnault, P.; Desbiens, N. [CEA, DAM, DIF, Arpajon (France); White, A.; Ticknor, C.; Kress, J.D.; Collins, L.A. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM (United States)

    2017-11-15

    Using orbital-free molecular dynamics simulations we study the structure and dynamics of increasingly asymmetric mixtures such as hydrogen-carbon, hydrogen-aluminium, hydrogen-copper, and hydrogen-silver. We show that, whereas the heavy component structure is close to an effective one-component plasma (OCP), the light component appears more structured than the corresponding OCP. This effect is related to the crossover towards a Lorentz-type diffusion triggered by strongly coupled, highly charged heavy ions, and witnessed by the change of temperature scaling laws of diffusion. This over-correlation translates into an enhancement of nuclear reaction rates much higher than its classical OCP counterpart. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Asymmetrical edges induced strong current-polarization in embedded graphene nanoribbons

    Science.gov (United States)

    Li, Kuanhong; Zhang, Xiang-Hua

    2018-05-01

    We investigate the electronic structures and transport properties of the embedded zigzag graphene nanoribbon (E-ZGNR) in hexagonal boron nitride trenches, which are achievable in recent experiments. Our first principles results show that the E-ZGNR has a significant enhanced conductivity relative to common ZGNRs due to the existence of asymmetrical edge structures. Moreover, only one spin-orientation electrons possess a widely opened band gap at the magnetic ground state with anti-ferromagnetic configuration, resulting in a full current-polarization at low bias region. Our findings indicate that the state-of-the-art embedding technology is quite useful for tuning the electronic structure of ZGNR and building possible spin injection and spin filter devices in spintronics.

  10. Seasonally asymmetric enhancement of northern vegetation productivity

    Science.gov (United States)

    Park, T.; Myneni, R.

    2017-12-01

    Multiple evidences of widespread greening and increasing terrestrial carbon uptake have been documented. In particular, enhanced gross productivity of northern vegetation has been a critical role leading to observed carbon uptake trend. However, seasonal photosynthetic activity and its contribution to observed annual carbon uptake trend and interannual variability are not well understood. Here, we introduce a multiple-source of datasets including ground, atmospheric and satellite observations, and multiple process-based global vegetation models to understand how seasonal variation of land surface vegetation controls a large-scale carbon exchange. Our analysis clearly shows a seasonally asymmetric enhancement of northern vegetation productivity in growing season during last decades. Particularly, increasing gross productivity in late spring and early summer is obvious and dominant driver explaining observed trend and variability. We observe more asymmetric productivity enhancement in warmer region and this spatially varying asymmetricity in northern vegetation are likely explained by canopy development rate, thermal and light availability. These results imply that continued warming may facilitate amplifying asymmetric vegetation activity and cause these trends to become more pervasive, in turn warming induced regime shift in northern land.

  11. Asymmetric Price Responses of Gasoline Stations. Evidence for Heterogeneity of Retailers

    Energy Technology Data Exchange (ETDEWEB)

    Faber, R.P. [Erasmus University Rotterdam, Rotterdam (Netherlands)

    2009-11-15

    This paper studies asymmetric price responses of individual firms, via daily retail prices of almost all gasoline stations in the Netherlands and suggested prices of the five largest oil companies over more than two years. I find that 38% of the stations respond asymmetrically to changes in the spot market price. Hence, asymmetric pricing is not a feature of the market as a whole, but of individual firms. For asymmetrically pricing stations, the asymmetry is substantial directly after a change but disappears after one or two days. I study station-specific characteristics and conclude that asymmetric pricing seems to be a phenomenon that is randomly distributed across stations. I also find that none of the five largest oil companies adjust their suggested prices asymmetrically.

  12. Asymmetric Price Responses of Gasoline Stations. Evidence for Heterogeneity of Retailers

    International Nuclear Information System (INIS)

    Faber, R.P.

    2009-11-01

    This paper studies asymmetric price responses of individual firms, via daily retail prices of almost all gasoline stations in the Netherlands and suggested prices of the five largest oil companies over more than two years. I find that 38% of the stations respond asymmetrically to changes in the spot market price. Hence, asymmetric pricing is not a feature of the market as a whole, but of individual firms. For asymmetrically pricing stations, the asymmetry is substantial directly after a change but disappears after one or two days. I study station-specific characteristics and conclude that asymmetric pricing seems to be a phenomenon that is randomly distributed across stations. I also find that none of the five largest oil companies adjust their suggested prices asymmetrically.

  13. Asymmetric Synthesis of Optically Active Spirocyclic Indoline Scaffolds through an Enantioselective Reduction of Indoles

    KAUST Repository

    Borrmann, Ruediger

    2016-11-30

    An enantioselective synthesis of spirocyclic indoline scaffolds was achieved by applying an asymmetric iridium-catalyzed hydrogenation of 3H-indoles. Low catalyst loadings and mild reaction conditions provide a broad range of differently substituted products with excellent yields and enantioselectivities. The developed methodology allows an efficient synthesis of this important spirocyclic structural motif, which is present in numerous biologically active molecules and privileged structures in medicinal chemistry.

  14. Asymmetric switching in a homodimeric ABC transporter: a simulation study.

    Directory of Open Access Journals (Sweden)

    Jussi Aittoniemi

    2010-04-01

    Full Text Available ABC transporters are a large family of membrane proteins involved in a variety of cellular processes, including multidrug and tumor resistance and ion channel regulation. Advances in the structural and functional understanding of ABC transporters have revealed that hydrolysis at the two canonical nucleotide-binding sites (NBSs is co-operative and non-simultaneous. A conserved core architecture of bacterial and eukaryotic ABC exporters has been established, as exemplified by the crystal structure of the homodimeric multidrug exporter Sav1866. Currently, it is unclear how sequential ATP hydrolysis arises in a symmetric homodimeric transporter, since it implies at least transient asymmetry at the NBSs. We show by molecular dynamics simulation that the initially symmetric structure of Sav1866 readily undergoes asymmetric transitions at its NBSs in a pre-hydrolytic nucleotide configuration. MgATP-binding residues and a network of charged residues at the dimer interface are shown to form a sequence of putative molecular switches that allow ATP hydrolysis only at one NBS. We extend our findings to eukaryotic ABC exporters which often consist of two non-identical half-transporters, frequently with degeneracy substitutions at one of their two NBSs. Interestingly, many residues involved in asymmetric conformational switching in Sav1866 are substituted in degenerate eukaryotic NBS. This finding strengthens recent suggestions that the interplay of a consensus and a degenerate NBS in eukaroytic ABC proteins pre-determines the sequence of hydrolysis at the two NBSs.

  15. Liquid-gas phase transition in asymmetric nuclear matter at finite temperature

    Science.gov (United States)

    Maruyama, Toshiki; Tatsumi, Toshitaka; Chiba, Satoshi

    2010-03-01

    Liquid-gas phase transition is discussed in warm asymmetric nuclear matter. Some peculiar features are figured out from the viewpoint of the basic thermodynamics about the phase equilibrium. We treat the mixed phase of the binary system based on the Gibbs conditions. When the Coulomb interaction is included, the mixed phase is no more uniform and the sequence of the pasta structures appears. Comparing the results with those given by the simple bulk calculation without the Coulomb interaction, we extract specific features of the pasta structures at finite temperature.

  16. Liquid-gas phase transition in asymmetric nuclear matter at finite temperature

    International Nuclear Information System (INIS)

    Maruyama, Toshiki; Tatsumi, Toshitaka; Chiba, Satoshi

    2010-01-01

    Liquid-gas phase transition is discussed in warm asymmetric nuclear matter. Some peculiar features are figured out from the viewpoint of the basic thermodynamics about the phase equilibrium. We treat the mixed phase of the binary system based on the Gibbs conditions. When the Coulomb interaction is included, the mixed phase is no more uniform and the sequence of the pasta structures appears. Comparing the results with those given by the simple bulk calculation without the Coulomb interaction, we extract specific features of the pasta structures at finite temperature.

  17. Tailoring the microstructure of porous MgO supports for asymmetric oxygen separation membranes: Optimization of thermoplastic feedstock systems

    DEFF Research Database (Denmark)

    Kothanda Ramachandran, Dhavanesan; Clemens, F.; Glasscock, Julie

    2014-01-01

    Porous magnesium oxide (MgO) structures were prepared by thermoplastic processing for use as supports in asymmetric thin film oxygen transport membranes (OTMs). The open porosity, pore size distribution, and resulting gas permeability of the MgO structures were measured for different feedstock...

  18. Observation of asymmetric electromagnetic field profiles in chiral metamaterials

    Science.gov (United States)

    Hisamoto, Nobuyuki; Ueda, Tetsuya; Sawada, Kei; Tomita, Satoshi

    2018-02-01

    We experimentally observe asymmetric electromagnetic field profiles along two-dimensional chiral metamaterials. The asymmetric field profiles depending on the chirality and the operation frequency have been reproduced well by the numerical simulation. Around a chiral meta-atom, distribution of a Poynting vector is found to be shifted asymmetrically. These results are explained in terms of an analogy with the side-jump mechanism in the electronic anomalous Hall systems.

  19. Nonmonotonous electron mobility due to structurally induced resonant coupling of subband states in an asymmetric double quantum well

    Directory of Open Access Journals (Sweden)

    R. K. Nayak

    2015-11-01

    Full Text Available We show that sharp nonmonotic variation of low temperature electron mobility μ can be achieved in GaAs/AlxGa1-xAs barrier delta-doped double quantum well structure due to quantum mechanical transfer of subband electron wave functions within the wells. We vary the potential profile of the coupled structure as a function of the doping concentration in order to bring the subbands into resonance such that the subband energy levels anticross and the eigen states of the coupled structure equally share both the wells thereby giving rise to a dip in mobility. When the wells are of equal widths, the dip in mobility occurs under symmetric doping of the side barriers. In case of unequal well widths, the resonance can be obtained by suitable asymmetric variation of the doping concentrations. The dip in mobility becomes sharp and also the wavy nature of mobility takes a rectangular shape by increasing the barrier width. We show that the dip in mobility at resonance is governed by the interface roughness scattering through step like changes in the subband mobilities. It is also gratifying to show that the drop in mobility at the onset of occupation of second subband is substantially supressed through the quantum mechanical transfer of subband wave functions between the wells. Our results can be utilized for performance enhancement of coupled quantum well devices.

  20. Peierls-distorted Ru-chains and boron dumbbells in Nb{sub 2}RuB{sub 2} and Ta{sub 2}RuB{sub 2} from first-principles calculations and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Touzani, Rachid S.; Mbarki, Mohammed; Chen, Ximeng [Institute of Inorganic Chemistry, RWTH Aachen University (Germany); Fokwa, Boniface P.T. [Institute of Inorganic Chemistry, RWTH Aachen University (Germany); Department of Chemistry, University of California Riverside (UCR), Riverside, CA (United States)

    2016-09-15

    Nb{sub 2}RuB{sub 2} and Ta{sub 2}RuB{sub 2} phases were recently predicted by GGA-VASP structure optimization to crystallize in the Nb{sub 2}OsB{sub 2}-type structure. Although the Fe-based (Mo{sub 2}FeB{sub 2} type) and Os-based (Nb{sub 2}OsB{sub 2} type, superstructure variant of Mo{sub 2}FeB{sub 2} type) analogues have been synthesized and characterized successfully, the Ru-based phases remained unknown. Crystal structure prediction of Nb{sub 2}RuB{sub 2} and Ta{sub 2}RuB{sub 2} phases, using an evolutionary algorithm, led to the AlMn{sub 2}B{sub 2}-type structure in contrast to the aforementioned optimization; however, phonon calculations showed that the Nb{sub 2}OsB{sub 2}-type phases are dynamically more stable than the AlMn{sub 2}B{sub 2}-type phases. A slightly modified synthetic strategy finally led to the successful preparation of the predicted phases. The extremely quick arc-melting procedure, under argon atmosphere, not only led to a quantitative amount of the phases but also to single crystals suitable for structure determination. Powder and single-crystal X-ray diffraction as well as EDX analysis of the metal ratio have confirmed the GGA-VASP structure optimization: Nb{sub 2}RuB{sub 2} and Ta{sub 2}RuB{sub 2} compounds indeed crystallize isotypically with Nb{sub 2}OsB{sub 2} structure, a superstructure variant of Mo{sub 2}FeB{sub 2} type, in which B-dumbbells and Peierls-distorted Ru-chains are found. Susceptibility measurements on a Ta{sub 2}RuB{sub 2} single crystal reveal no superconducting transition down to 2 K, even though some features in the band structures of both phases, similar to those reported in superconducting NbRuB, hinted at possible superconductivity. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. A new convenient asymmetric approach to herbarumin Ⅲ

    Institute of Scientific and Technical Information of China (English)

    Xue Song Chen; Shi Jun Da; Li Hong Yang; Bo Yan Xu; Zhi Xiang Xie; Ying Li

    2007-01-01

    The asymmetric total synthesis of herbarumin Ⅲ 3, a naturally occurred phytotoxin, along with 8-epi-herbarumin Ⅲ 22, was succeeded in 12 steps from n-butyraldehyde based on Brown's asymmetric allylation, taking modified Julia olefination and Yamaguchi's macro-lactonization as key steps.

  2. Value of the asymmetric film-screen system InSight HC in chest imaging

    International Nuclear Information System (INIS)

    Haeussler, M.D.; Lenzen, H.; Reckels, C.; Peters, P.E.

    1994-01-01

    The asymmetric film-screen system InSight HC represents a development to optimize chest imaging. The purpose of the study was to compare the exposure range and the image quality of this new system with a conventional film-screen system. The optical density of images in both techniques was measured and the image quality of 100 chest images from 50 intensive-care patients was evaluated. 4 observers graded the image quality of organic, non-organic and pathological structures. Statistical evaluation was performed by interobserver analysis. The asymmetric film-screen system shows a larger exposure range and a superior image quality in the mediastinal field. The image quality in the peripheral field must be judged critically and improved especially because of the poor recognizability of pneumothoraces. (orig.) [de

  3. Feasibility of a single-parameter description of equilibrium viscous liquid dynamics

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Christensen, Tage Emil; Schrøder, Thomas

    2008-01-01

    Molecular dynamics results for the dynamic Prigogine-Defay ratio are presented for two glass-forming liquids, thus evaluating the experimentally relevant quantity for testing whether metastable-equilibrium liquid dynamics is described by a single parameter to a good approximation. For the Kob......-Andersen binary Lennard-Jones mixture as well as for an asymmetric dumbbell model liquid, a single-parameter description works quite well. This is confirmed by time-domain results where it is found that energy and pressure fluctuations are strongly correlated on the alpha time scale in the constant...

  4. Variable angle asymmetric cut monochromator

    International Nuclear Information System (INIS)

    Smither, R.K.; Fernandez, P.B.

    1993-09-01

    A variable incident angle, asymmetric cut, double crystal monochromator was tested for use on beamlines at the Advanced Photon Source (APS). For both undulator and wiggler beams the monochromator can expand area of footprint of beam on surface of the crystals to 50 times the area of incident beam; this will reduce the slope errors by a factor of 2500. The asymmetric cut allows one to increase the acceptance angle for incident radiation and obtain a better match to the opening angle of the incident beam. This can increase intensity of the diffracted beam by a factor of 2 to 5 and can make the beam more monochromatic, as well. The monochromator consists of two matched, asymmetric cut (18 degrees), silicon crystals mounted so that they can be rotated about three independent axes. Rotation around the first axis controls the Bragg angle. The second rotation axis is perpendicular to the diffraction planes and controls the increase of the area of the footprint of the beam on the crystal surface. Rotation around the third axis controls the angle between the surface of the crystal and the wider, horizontal axis for the beam and can make the footprint a rectangle with a minimum. length for this area. The asymmetric cut is 18 degrees for the matched pair of crystals, which allows one to expand the footprint area by a factor of 50 for Bragg angles up to 19.15 degrees (6 keV for Si[111] planes). This monochromator, with proper cooling, will be useful for analyzing the high intensity x-ray beams produced by both undulators and wigglers at the APS

  5. Maximal Strength Performance and Muscle Activation for the Bench Press and Triceps Extension Exercises Adopting Dumbbell, Barbell, and Machine Modalities Over Multiple Sets.

    Science.gov (United States)

    Farias, Déborah de Araújo; Willardson, Jeffrey M; Paz, Gabriel A; Bezerra, Ewertton de S; Miranda, Humberto

    2017-07-01

    Farias, DdA, Willardson, JM, Paz, GA, Bezerra, EdS, and Miranda, H. Maximal strength performance and muscle activation for the bench press and triceps extension exercises adopting dumbbell, barbell and machine modalities over multiple sets. J Strength Cond Res 31(7): 1879-1887, 2017-The purpose of this study was to investigate muscle activation, total repetitions, and training volume for 3 bench press (BP) exercise modes (Smith machine [SMBP], barbell [BBP], and dumbbell [DBP]) that were followed by a triceps extension (TE) exercise. Nineteen trained men performed 3 testing protocols in random order, which included: (P1) SMBP + TE; (P2) BBP + TE; and (P3) DBP + TE. Each protocol involved 4 sets with a 10-repetition maximum (RM) load, immediately followed by a TE exercise that was also performed for 4 sets with a 10RM load. A 2-minute rest interval was adopted between sets and exercises. Surface electromyographic activity was assessed for the pectoralis major (PM), anterior deltoid (AD), biceps brachii (BB), and triceps brachii (TB). The results indicated that significantly higher total repetitions were achieved for the DBP (31.2 ± 3.2) vs. the BBP (27.8 ± 4.8). For the TE, significantly greater volume was achieved when this exercise was performed after the BBP (1,204.4 ± 249.4 kg) and DBP (1,216.8 ± 287.5 kg) vs. the SMBP (1,097.5 ± 193 kg). The DBP elicited significantly greater PM activity vs. the BBP. The SMBP elicited significantly greater AD activity vs. the BBP and DBP. During the different BP modes, the SMBP and BBP elicited significantly greater TB activity vs. the DBP. However, the DBP elicited significantly greater BB activity vs. the SMBP and BBP, respectively. During the succeeding TE exercise, significantly greater activity of the TB was observed when this exercise was performed after the BBP vs. the SMBP and DBP. Therefore, it seems that the variation in BP modes does influence both repetition performance and muscle activation patterns during the

  6. Asymmetric designed sintered metal filter elements in the HTF process of LILW vitrification plant

    International Nuclear Information System (INIS)

    Roehlig, Rainer

    2005-01-01

    Sintered metal filter elements have been used for years and have been successfully in operation in different application. The technical and economical advantages of only recently developed asymmetric Metallic Membranes elements, which operate as a surface filter, will be shown in comparison with standard sintered metal filter cartridges. The permeability, particle retention and back flushing performance have been improved. In order to achieve this, an asymmetric structure was designed in which an active filtration layer is applied onto a coarse porous metal support material made out of the same alloy. The economical benefits for customers are low maintenance and reduced investment cost as well as defined particle retention as is required by the users

  7. Influence of in-plane field on vertical Bloch line in the walls of the second kind of dumbbell domains at various temperatures

    International Nuclear Information System (INIS)

    Xu, J.P.; Liu, S.P.; Guo, G.X.; Zhen, C.M.; Tang, G.D.; Sun, H.Y.; Nie, X.F.

    2004-01-01

    The stability of vertical Bloch lines (VBLs) in the second kind of dumbbell domain (IIDs) walls in liquid phase epitaxy garnet bubble films subjected to an in-plane field at various temperatures is studied experimentally. It is found that there exists a critical in-plane field range depending on temperature, in which vertical Bloch lines (VBLs) in the second kind of IIDs walls are unstable, i.e., [Hip(1)(T),Hip(2)(T)]. Here, Hip(1)(T) is the initial critical in-plane field at which VBLs in the walls of IIDs annihilate; while Hip(2)(T) is the lowest in-plane field at which all VBLs in the walls of IIDs have annihilated completely. Also, the critical in-plane field range [Hip(1)(T),Hip(2)(T)],Hip(1)(T) and Hip(2)(T) all decrease with the temperature increasing. Hip(1)(T) and Hip(2)(T) reach zero at T0' and T0, respectively

  8. Radiation characteristics and effective optical properties of dumbbell-shaped cyanobacterium Synechocystis sp

    International Nuclear Information System (INIS)

    Heng, Ri-Liang; Pilon, Laurent

    2016-01-01

    dumbbell shape. • An inverse method was developed to retrieve its effective complex index of refraction. • The method was numerically validated for suspensions of bispheres and quadspheres.

  9. Novel asymmetric chitosan/PVP/nanocellulose wound dressing: In vitro and in vivo evaluation.

    Science.gov (United States)

    Poonguzhali, R; Khaleel Basha, S; Sugantha Kumari, V

    2018-06-01

    The present study was to develop a novel chitosan based symmetric and asymmetric bionanocomposite for potential wound dressing application. Chitosan (C)/Poly (vinyl pyrrolidone) (P)/nanocellulose (NC) membrane were fabricated by salt leaching method with the addition of 3% and 5% wt of nanocellulose. To obtain asymmetric material one side of the membrane was coated by stearic acid (S) which could form hydrophobic surface and another side acts as a hydrophilic surface. Nanocellulose of size 2-10nm was synthesized and characterized by TEM analysis. SEM showed the hydrophilic surface of asymmetric bionanocomposite consists of porous structure and hydrophobic surface is smooth and homogeneous. The results revealed that the Chitosan/PVP/Nanocellulose 3%-Stearic acid (CPNC3%-S) had a moderate swelling ratio, porosity, barrier and mechanical properties. Incorporation of nanocellulose into chitosan/PVP matrix could enhance the antibacterial activity. The hydrophobic surface of the CPNC3%-S bionanocomposite shows water repellent and antiadhesion properties towards E. coli bacteria and also the hydrophilic surface exhibit excellent antibacterial property and cytotoxicity towards bacterial pathogens. In vivo wound healing test shows better re-epithelialization and wound contraction compared with control and Chitosan/PVP-stearic acid (CP-S) bionanocomposite. Asymmetric bionanocomposite Chitosan/PVP/Nanocellulose coated with 3%-Stearic acid (CPNC3%-S) exhibited very good invitro cytocompatibility and enabled a faster wound healing than symmetric dressing, hence showing great potential to be applied as wound dressings. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Structure Investigation of Ti(IV)BODOLates Involved in the Catalytic Asymmetric Reduction of Ketones Using Catecholborane

    DEFF Research Database (Denmark)

    Sarvary, Ian; Norrby, Per-Ola; Frejd, Torbjörn

    2004-01-01

    The complexes formed on mixing Ti(OiPr)4 and bicyclo-octanediols (BODOLs) 1 and 2 (1:1) are useful as chiral catalysts in asymmetric reductions and were investigated by 1HNMR-spectroscopy and by computational methods. A consistent picture emerged of head-to-tail dimers being kept together via a T...

  11. Asymmetric quantum well broadband thyristor laser

    Science.gov (United States)

    Liu, Zhen; Wang, Jiaqi; Yu, Hongyan; Zhou, Xuliang; Chen, Weixi; Li, Zhaosong; Wang, Wei; Ding, Ying; Pan, Jiaoqing

    2017-11-01

    A broadband thyristor laser based on InGaAs/GaAs asymmetric quantum well (AQW) is fabricated by metal organic chemical vapor deposition (MOCVD). The 3-μm-wide Fabry-Perot (FP) ridge-waveguide laser shows an S-shape I-V characteristic and exhibits a flat-topped broadband optical spectrum coverage of ~27 nm (Δ-10 dB) at a center wavelength of ~1090 nm with a total output power of 137 mW under pulsed operation. The AQW structure was carefully designed to establish multiple energy states within, in order to broaden the gain spectrum. An obvious blue shift emission, which is not generally acquired in QW laser diodes, is observed in the broadening process of the optical spectrum as the injection current increases. This blue shift spectrum broadening is considered to result from the prominent band-filling effect enhanced by the multiple energy states of the AQW structure, as well as the optical feedback effect contributed by the thyristor laser structure. Project supported by the National Natural Science Foundation of China (Nos. 61604144, 61504137). Zhen Liu and Jiaqi Wang contributed equally to this work.

  12. Influence of rotating in-plane field on vertical Bloch lines in the walls of second kind of dumbbell domains

    International Nuclear Information System (INIS)

    Sun, H.Y.; Hu, H.N.; Sun, Y.P.; Nie, X.F.

    2004-01-01

    Influence of rotating in-plane field on vertical Bloch lines in the walls of second kind of dumbbell domains (IIDs) was investigated, and a critical in-plane field range [H ip 1 ,H ip 2 ] of which vertical-Bloch lines (VBLs) annihilated in IIDs is found under rotating in-plane field (H ip 1 is the maximal critical in-plane-field of which hard domains remain stable, H ip 2 is the minimal critical in-plane-field of which all of the hard domains convert to soft bubbles (SBs, without VBLs)). It shows that the in-plane field range [H ip 1 , H ip 2 ] changes with the change of the rotating angle Δφ H ip 1 maintains stable, while H ip 2 decreases with the decreasing of rotating angle Δφ. Comparing it with the spontaneous shrinking experiment of IIDs under both bias field and in-plane field, we presume that under the application of in-plane field there exists a direction along which the VBLs in the domain walls annihilate most easily, and it is in the direction that domain walls are perpendicular to the in-plane field

  13. Decrease in back strength in asymmetric trunk postures

    NARCIS (Netherlands)

    Vink, P.; Daanen, H. A M; Meijst, W. J.; Ligteringen, J.

    1992-01-01

    The extension force against resistance was recorded in 23 postures for 12 subjects to find explanations for the decrease in back strength in asymmetric postures. A reduction in muscle force in asymmetric postures was found up to 40%, but was strongly dependent on the plane in which asymmetry

  14. Topology optimization of two-dimensional asymmetrical phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hao-Wen [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Su, Xiao-Xing [School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044 (China); Wang, Yue-Sheng, E-mail: yswang@bjtu.edu.cn [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Chuanzeng [Department of Civil Engineering, University of Siegen, D-57068 Siegen (Germany)

    2014-01-17

    The multiple elitist genetic algorithm with the adaptive fuzzy fitness granulation (AFFG) is used to design the phononic crystals with large relative bandgap width (BGW) for combined out-of-plane and in-plane wave modes. Without assumption on the symmetry of the unit-cell, we obtain an asymmetrical phononic crystal with the relative BGW which is quite larger than that of the optimized symmetrical structure. With the help of AFFG, the number of the fitness function evaluations is reduced by over 50% and the procedure converges 5 times faster than the conventional evolutionary algorithm to reach the same final fitness values.

  15. Zero field spin splitting in asymmetric quantum wells

    International Nuclear Information System (INIS)

    Hao Yafei

    2012-01-01

    Spin splitting of asymmetric quantum wells is theoretically investigated in the absence of any electric field, including the contribution of interface-related Rashba spin-orbit interaction as well as linear and cubic Dresselhaus spin-orbit interaction. The effect of interface asymmetry on three types of spin-orbit interaction is discussed. The results show that interface-related Rashba and linear Dresselhaus spin-orbit interaction can be increased and cubic Dresselhaus spin-orbit interaction can be decreased by well structure design. For wide quantum wells, the cubic Dresselhaus spin-orbit interaction dominates under certain conditions, resulting in decreased spin relaxation time.

  16. Properties of Asymmetric Detrended Fluctuation Analysis in the time series of RR intervals

    Science.gov (United States)

    Piskorski, J.; Kosmider, M.; Mieszkowski, D.; Krauze, T.; Wykretowicz, A.; Guzik, P.

    2018-02-01

    Heart rate asymmetry is a phenomenon by which the accelerations and decelerations of heart rate behave differently, and this difference is consistent and unidirectional, i.e. in most of the analyzed recordings the inequalities have the same directions. So far, it has been established for variance and runs based types of descriptors of RR intervals time series. In this paper we apply the newly developed method of Asymmetric Detrended Fluctuation Analysis, which so far has mainly been used with economic time series, to the set of 420 stationary 30 min time series of RR intervals from young, healthy individuals aged between 20 and 40. This asymmetric approach introduces separate scaling exponents for rising and falling trends. We systematically study the presence of asymmetry in both global and local versions of this method. In this study global means "applying to the whole time series" and local means "applying to windows jumping along the recording". It is found that the correlation structure of the fluctuations left over after detrending in physiological time series shows strong asymmetric features in both magnitude, with α+ physiological data after shuffling or with a group of symmetric synthetic time series.

  17. Subglottic cysts and asymmetrical subglottic narrowing on neck radiograph

    International Nuclear Information System (INIS)

    Holinger, L.D.; Torium, D.M.; Anandappa, E.C.

    1988-01-01

    The congenital subglottic hemangioma typically appears as an asymmetric subglottic narrowing or mass on frontal neck radiograph. Therefore, soft tissue neck radiography has been advocated as a definitive non-operative approach for diagnosing these lesions. However, we have noted similar asymmetric subglottic narrowing in patients with acquired subglottic cysts. These retention cysts occur following long-term intubation in the neonate. The mechanism probably involves subglottic fibrosis which obstructs glands with subsequent cyst formation. Acquired subglottic cysts typically appear as an asymmetric narrowing on frontal or lateral soft tissue neck radiographs. These lesions may produce airway compromise but are effectively treated by forceps or laser removal. Acquired subglottic cysts must be included in the differential diagnosis of asymmetric subglottic narrowing. The definitive diagnosis is made by direct laryngoscopy, not soft tissue neck radiograph. (orig.)

  18. Lower Bounds in the Asymmetric External Memory Model

    DEFF Research Database (Denmark)

    Jacob, Riko; Sitchinava, Nodari

    2017-01-01

    Motivated by the asymmetric read and write costs of emerging non-volatile memory technologies, we study lower bounds for the problems of sorting, permuting and multiplying a sparse matrix by a dense vector in the asymmetric external memory model (AEM). Given an AEM with internal (symmetric) memory...... of size M, transfers between symmetric and asymmetric memory in blocks of size B and the ratio ω between write and read costs, we show Ω(min (N, ωN/B logω M/B N/B) lower bound for the cost of permuting N input elements. This lower bound also applies to the problem of sorting N elements. This proves...

  19. Structural Directed Growth of Ultrathin Parallel Birnessite on β-MnO2 for High-Performance Asymmetric Supercapacitors.

    Science.gov (United States)

    Zhu, Shijin; Li, Li; Liu, Jiabin; Wang, Hongtao; Wang, Tian; Zhang, Yuxin; Zhang, Lili; Ruoff, Rodney S; Dong, Fan

    2018-02-27

    Two-dimensional birnessite has attracted attention for electrochemical energy storage because of the presence of redox active Mn 4+ /Mn 3+ ions and spacious interlayer channels available for ions diffusion. However, current strategies are largely limited to enhancing the electrical conductivity of birnessite. One key limitation affecting the electrochemical properties of birnessite is the poor utilization of the MnO 6 unit. Here, we assemble β-MnO 2 /birnessite core-shell structure that exploits the exposed crystal face of β-MnO 2 as the core and ultrathin birnessite sheets that have the structure advantage to enhance the utilization efficiency of the Mn from the bulk. Our birnessite that has sheets parallel to each other is found to have unusual crystal structure with interlayer spacing, Mn(III)/Mn(IV) ratio and the content of the balancing cations differing from that of the common birnessite. The substrate directed growth mechanism is carefully investigated. The as-prepared core-shell nanostructures enhance the exposed surface area of birnessite and achieve high electrochemical performances (for example, 657 F g -1 in 1 M Na 2 SO 4 electrolyte based on the weight of parallel birnessite) and excellent rate capability over a potential window of up to 1.2 V. This strategy opens avenues for fundamental studies of birnessite and its properties and suggests the possibility of its use in energy storage and other applications. The potential window of an asymmetric supercapacitor that was assembled with this material can be enlarged to 2.2 V (in aqueous electrolyte) with a good cycling ability.

  20. Parts of Speech in Non-typical Function: (Asymmetrical Encoding of Non-verbal Predicates in Erzya

    Directory of Open Access Journals (Sweden)

    Rigina Turunen

    2011-01-01

    Full Text Available Erzya non-verbal conjugation refers to symmetric paradigms in which non-verbal predicates behave morphosyntactically in a similar way to verbal predicates. Notably, though, non-verbal conjugational paradigms are asymmetric, which is seen as an outcome of paradigmatic neutralisation in less frequent/less typical contexts. For non-verbal predicates it is not obligatory to display the same amount of behavioural potential as it is for verbal predicates, and the lexical class of non-verbal predicate operates in such a way that adjectival predicates are more likely to be conjugated than nominals. Further, besides symmetric paradigms and constructions, in Erzya there are non-verbal predicate constructions which display a more overt structural encoding than do verbal ones, namely, copula constructions. Complexity in the domain of non-verbal predication in Erzya decreases the symmetry of the paradigms. Complexity increases in asymmetric constructions, as well as in paradigmatic neutralisation when non-verbal predicates cannot be inflected in all the tenses and moods occurring in verbal predication. The results would be the reverse if we were to measure complexity in terms of the morphological structure. The asymmetric features in non-verbal predication are motivated language-externally, because non-verbal predicates refer to states and occur less frequently as predicates than verbal categories. The symmetry of the paradigms and constructions is motivated language-internally: a grammatical system with fewer rules is economical.

  1. Broadband Impedance Transformer Based on Asymmetric Coupled Transmission Lines in Nonhomogeneous Medium

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Krozer, Viktor; Meincke, Peter

    2007-01-01

    A new broadband quarter-wavelength impedance transformer based on an asymmetric coupled line section is presented. The bandwidth of the coupled line transformer is extended with the help of an interconnecting transmission line. An analytical model for the transformer is developed. The analysis...... of the structure reveals that a fractional bandwidth of more than 100% at –20 dB reflection level can be achieved with such a structure. An experimental transformer circuit has been designed, fabricated and tested. Theoretical and experimental results are fair agreement and confirm the established theory...

  2. Ultrathin-skinned asymmetric membranes by immiscible solvents treatment

    Science.gov (United States)

    Friesen, Dwayne T.; Babcock, Walter C.

    1989-01-01

    Improved semipermeable asymmetric fluid separation membranes useful in gas, vapor and liquid separations are disclosed. The membranes are prepared by substantially filling the pores of asymmetric cellulosic semipermeable membranes having a finely porous layer on one side thereof with a water immiscible organic liquid, followed by contacting the finely porous layer with water.

  3. Design of a Balun Bandpass Filter with Asymmetrical Coupled Microstrip Lines

    Science.gov (United States)

    Wang, Xuedao; Wang, Jianpeng; Zhang, Gang; Huang, Feng

    2017-07-01

    A new microstrip coupled-line balun topology and its application to the balun bandpass filter (BPF) with a triple mode response are proposed in this paper. The involved balun structure is composed of two back-to-back quarter-wavelength (λ/4) asymmetrical coupled-line sections. Detailed design formulas based on the asymmetrical coupled-line theory are given to validate the feasibility of the balun. Besides, to obtain filtering performance simultaneously, the balun is then effectively integrated with a pair of triple mode resonators. To demonstrate the design concept of the balun BPF, a prototype operating at 2.4 GHz with the fractional bandwidth (FBW) of about 19.2 % is designed, fabricated, and measured. Results indicate that between the two balanced outputs, the amplitude imbalance is less than 0.3 dB and the phase difference is within 180°±5° inside the whole passband. Both simulated and experimental results are in good agreement.

  4. Kondo effect in a deformed molecule coupled asymmetrically to ferromagnetic electrodes

    International Nuclear Information System (INIS)

    Rui-Qiang, Wang; Kai-Ming, Jiang

    2009-01-01

    The nonequilibrium Kondo effect is studied in a molecule quantum dot coupled asymmetrically to two ferromagnetic electrodes by employing the nonequilibrium Green function technique. The current-induced deformation of the molecule is taken into account, modeled as interactions with a phonon system, and phonon-assisted Kondo satellites arise on both sides of the usual main Kondo peak. In the antiparallel electrode configuration, the Kondo satellites can be split only for the asymmetric dot-lead couplings, distinguished from the parallel configuration where splitting also exists, even though it is for symmetric case. We also analyze how to compensate the splitting and restore the suppressed zero-bias Kondo resonance. It is shown that one can change the TMR ratio significantly from a negative dip to a positive peak only by slightly modulating a local external magnetic field, whose value is greatly dependent on the electron–phonon coupling strength. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Asymmetric conditional volatility in international stock markets

    Science.gov (United States)

    Ferreira, Nuno B.; Menezes, Rui; Mendes, Diana A.

    2007-08-01

    Recent studies show that a negative shock in stock prices will generate more volatility than a positive shock of similar magnitude. The aim of this paper is to appraise the hypothesis under which the conditional mean and the conditional variance of stock returns are asymmetric functions of past information. We compare the results for the Portuguese Stock Market Index PSI 20 with six other Stock Market Indices, namely the SP 500, FTSE 100, DAX 30, CAC 40, ASE 20, and IBEX 35. In order to assess asymmetric volatility we use autoregressive conditional heteroskedasticity specifications known as TARCH and EGARCH. We also test for asymmetry after controlling for the effect of macroeconomic factors on stock market returns using TAR and M-TAR specifications within a VAR framework. Our results show that the conditional variance is an asymmetric function of past innovations raising proportionately more during market declines, a phenomenon known as the leverage effect. However, when we control for the effect of changes in macroeconomic variables, we find no significant evidence of asymmetric behaviour of the stock market returns. There are some signs that the Portuguese Stock Market tends to show somewhat less market efficiency than other markets since the effect of the shocks appear to take a longer time to dissipate.

  6. High-Resolution Tracking Asymmetric Lithium Insertion and Extraction and Local Structure Ordering in SnS2.

    Science.gov (United States)

    Gao, Peng; Wang, Liping; Zhang, Yu-Yang; Huang, Yuan; Liao, Lei; Sutter, Peter; Liu, Kaihui; Yu, Dapeng; Wang, En-Ge

    2016-09-14

    In the rechargeable lithium ion batteries, the rate capability and energy efficiency are largely governed by the lithium ion transport dynamics and phase transition pathways in electrodes. Real-time and atomic-scale tracking of fully reversible lithium insertion and extraction processes in electrodes, which would ultimately lead to mechanistic understanding of how the electrodes function and why they fail, is highly desirable but very challenging. Here, we track lithium insertion and extraction in the van der Waals interactions dominated SnS2 by in situ high-resolution TEM method. We find that the lithium insertion occurs via a fast two-phase reaction to form expanded and defective LiSnS2, while the lithium extraction initially involves heterogeneous nucleation of intermediate superstructure Li0.5SnS2 domains with a 1-4 nm size. Density functional theory calculations indicate that the Li0.5SnS2 is kinetically favored and structurally stable. The asymmetric reaction pathways may supply enlightening insights into the mechanistic understanding of the underlying electrochemistry in the layered electrode materials and also suggest possible alternatives to the accepted explanation of the origins of voltage hysteresis in the intercalation electrode materials.

  7. Two-channel totally asymmetric simple exclusion processes

    International Nuclear Information System (INIS)

    Pronina, Ekaterina; Kolomeisky, Anatoly B

    2004-01-01

    Totally asymmetric simple exclusion processes, consisting of two coupled parallel lattice chains with particles interacting with hard-core exclusion and moving along the channels and between them, are considered. In the limit of strong coupling between the channels, the particle currents, density profiles and a phase diagram are calculated exactly by mapping the system into an effective one-channel totally asymmetric exclusion model. For intermediate couplings, a simple approximate theory, that describes the particle dynamics in vertical clusters of two corresponding parallel sites exactly and neglects the correlations between different vertical clusters, is developed. It is found that, similarly to the case of one-channel totally asymmetric simple exclusion processes, there are three stationary state phases, although the phase boundaries and stationary properties strongly depend on inter-channel coupling. Extensive computer Monte Carlo simulations fully support the theoretical predictions

  8. Appropriate quantization of asymmetric games with continuous strategies

    International Nuclear Information System (INIS)

    Qin Gan; Chen Xi; Sun Min; Zhou Xianyi; Du Jiangfeng

    2005-01-01

    We establish a new quantization scheme to study the asymmetric Bertrand duopoly with differentiated products. This scheme is more efficient than the previous symmetric one because it can exactly make the optimal cooperative payoffs at quantum Nash equilibrium. It is also a necessary condition for general asymmetric games with continuous strategies to reach such payoffs

  9. Asymmetric forecasting and commitment policy in a robust control problem

    OpenAIRE

    Taro Ikeda

    2013-01-01

    This paper provides a piece of results regarding asymmetric forecasting and commitment monetary policy with a robust control algorithm. Previous studies provide no clarification of the connection between asymmetric preference and robust commitment policy. Three results emerge from general equilibrium modeling with asymmetric preference: (i) the condition for system stability implies an average inflation bias with respect to asymmetry (ii) the effect of asymmetry can be mitigated if policy mak...

  10. All-optical flip-flop operation based on asymmetric active-multimode interferometer bi-stable laser diodes

    DEFF Research Database (Denmark)

    Jiang, H.; Chaen, Y.; Hagio, T.

    2011-01-01

    We demonstrate fast and low energy all optical flip-flop devices based on asymmetric active-multimode interferometer using high-mesa waveguide structure. The implemented devices showed high speed alloptical flip-flop operation with 25ps long pulses. The rising and falling times of the output sign...

  11. Electronic, structural and magnetic studies of niobium borides of group 8 transition metals, Nb2MB2 (M=Fe, Ru, Os) from first principles calculations

    International Nuclear Information System (INIS)

    Touzani, Rachid St.; Fokwa, Boniface P.T.

    2014-01-01

    The Nb 2 FeB 2 phase (U 3 Si 2 -type, space group P4/mbm, no. 127) is known for almost 50 years, but until now its magnetic properties have not been investigated. While the synthesis of Nb 2 OsB 2 (space group P4/mnc, no. 128, a twofold superstructure of U 3 Si 2 -type) with distorted Nb-layers and Os 2 -dumbbells was recently achieved, “Nb 2 RuB 2 ” is still not synthesized and its crystal structure is yet to be revealed. Our first principles density functional theory (DFT) calculations have confirmed not only the experimental structures of Nb 2 FeB 2 and Nb 2 OsB 2 , but also predict “Nb 2 RuB 2 ” to crystalize with the Nb 2 OsB 2 structure type. According to chemical bonding analysis, the homoatomic B–B interactions are optimized and very strong, but relatively strong heteroatomic M–B, B–Nb and M–Nb bonds (M=Fe, Ru, Os) are also found. These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of these ternary borides. The density-of-states at the Fermi level predicts metallic behavior, as expected, from metal-rich borides. Analysis of possible magnetic structures concluded preferred antiferromagnetic ordering for Nb 2 FeB 2 , originating from ferromagnetic interactions within iron chains and antiferromagnetic exchange interactions between them. -- Graphical abstract: Nb 2 FeB 2 (U 3 Si 2 structure type, space group P4/mbm, no. 127) is predicted to order antiferromagnetically, due to the presence of iron chains which show ferromagnetic interactions in the chains and antiferromagnetic interactions between them. “Nb 2 RuB 2 ” is predicted to crystallize with the recently discovered Nb 2 OsB 2 twofold superstructure (space group P4/mnc, no. 128) of U 3 Si 2 structure type. The building of ruthenium dumbbells instead of chains along [001] is found to be responsible for the stabilization of this superstructure. Highlights: • Nb 2 FeB 2 is predicted to order antiferromagnetically.

  12. Impact of Secondary Interactions in Asymmetric Catalysis

    OpenAIRE

    Frölander, Anders

    2007-01-01

    This thesis deals with secondary interactions in asymmetric catalysis and their impact on the outcome of catalytic reactions. The first part revolves around the metal-catalyzed asymmetric allylic alkylation reaction and how interactions within the catalyst affect the stereochemistry. An OH–Pd hydrogen bond in Pd(0)–π-olefin complexes of hydroxy-containing oxazoline ligands was identified by density functional theory computations and helped to rationalize the contrasting results obtained emplo...

  13. How Is Nature Asymmetric?

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 6. How Is Nature Asymmetric? - Discrete Symmetries in Particle Physics and their Violation ... Indian Institute of Technology, Chennai. Aligarh Muslim University. University of Rajasthan, Jaipur. Indian Institute of Science, Bangalore 560012, India.

  14. Exploring asymmetric catalytic transformations

    NARCIS (Netherlands)

    Guduguntla, Sureshbabu

    2017-01-01

    In Chapter 2, we report a highly enantioselective synthesis of β-alkyl-substituted alcohols through a one-pot Cu- catalyzed asymmetric allylic alkylation with organolithium reagents followed by reductive ozonolysis. The synthesis of γ-alkyl-substituted alcohols was also achieved through Cu-catalyzed

  15. Simulation of Phenix EOL Asymmetric Test

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Kwi Seok; Lee, Kwi Lim; Choi, Chi Woong; Kang, Seok Hun; Chang, Won Pyo; Jeong, Hae Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The asymmetric test of End-Of-Life (EOL) tests on the Phenix plant was used for the evaluation of the MARS-LMR in the Generation IV frame as a part of the code validation. The purpose of the test is to evaluate the ability of the system code to describe asymmetric situations and to identify important phenomena during asymmetrical transient such as a three dimensional effect, buoyancy influence, and thermal stratification in the hot and cold pools. 3-dimensional sodium coolant mixing in the pools has different characteristics from the one dimensional full instantaneous mixing. The velocities and temperatures at the core outlet level differ at each sub-assembly and the temperature in the center of the hot pool may be high because the driver fuels are located at the center region. The temperatures in the hot pool are not the same in the radial and axial locations due to the buoyancy effect. The temperatures in the cold pool also differ along with the elevations and azimuthal directions due to the outlet location of IHX and the thermal stratification

  16. Flatfish: an asymmetric perspective on metamorphosis.

    Science.gov (United States)

    Schreiber, Alexander M

    2013-01-01

    The most asymmetrically shaped and behaviorally lateralized of all the vertebrates, the flatfishes are an endless source of fascination to all fortunate enough to study them. Although all vertebrates undergo left-right asymmetric internal organ placement during embryogenesis, flatfish are unusual in that they experience an additional period of postembryonic asymmetric remodeling during metamorphosis, and thus deviate from a bilaterally symmetrical body plan more than other vertebrates. As with amphibian metamorphosis, all the developmental programs of flatfish metamorphosis are ultimately under the control of thyroid hormone. At least one gene pathway involved in embryonic organ lateralization (nodal-lefty-pitx2) is re-expressed in the larval stage during flatfish metamorphosis. Aspects of modern flatfish ontogeny, such as the gradual translocation of one eye to the opposite side of the head and the appearance of key neurocranial elements during metamorphosis, seem to elegantly recapitulate flatfish phylogeny. This chapter highlights the current state of knowledge of the developmental biology of flatfish metamorphosis with emphases on the genetic, morphological, behavioral, and evolutionary origins of flatfish asymmetry. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Standards vs. labels with imperfect competition and asymmetric information

    DEFF Research Database (Denmark)

    Baltzer, Kenneth Thomas

    2012-01-01

    I demonstrate that providing information about product quality is not necessarily the best way to address asymmetric information problems when markets are imperfectly competitive. In a vertical differentiation model I show that a Minimum Quality Standard, which retains asymmetric information...

  18. Standards vs. labels with imperfect competition and asymmetric information

    DEFF Research Database (Denmark)

    Baltzer, Kenneth Thomas

    I demonstrate that providing information about product quality is not necessarily the best way to address asymmetric information problems when markets are imperfectly competitive. In a vertical dierentiation model I show that a Minimum Quality Standard, which retains asymmetric information...

  19. Optimal inverter logic gate using 10-nm double gate-all-around (DGAA transistor with asymmetric channel width

    Directory of Open Access Journals (Sweden)

    Myunghwan Ryu

    2016-01-01

    Full Text Available We investigate the electrical characteristics of a double-gate-all-around (DGAA transistor with an asymmetric channel width using three-dimensional device simulation. The DGAA structure creates a silicon nanotube field-effect transistor (NTFET with a core-shell gate architecture, which can solve the problem of loss of gate controllability of the channel and provides improved short-channel behavior. The channel width asymmetry is analyzed on both sides of the terminals of the transistors, i.e., source and drain. In addition, we consider both n-type and p-type DGAA FETs, which are essential to forming a unit logic cell, the inverter. Simulation results reveal that, according to the carrier types, the location of the asymmetry has a different effect on the electrical properties of the devices. Thus, we propose the N/P DGAA FET structure with an asymmetric channel width to form the optimal inverter. Various electrical metrics are analyzed to investigate the benefits of the optimal inverter structure over the conventional inverter structure. Simulation results show that 27% delay and 15% leakage power improvement are enabled in the optimum structure.

  20. Asymmetrical Polymer Vesicles for Drug delivery and Other Applications

    Directory of Open Access Journals (Sweden)

    Yi Zhao

    2017-06-01

    Full Text Available Scientists have been attracted by polymersomes as versatile drug delivery systems since the last two decades. Polymersomes have the potential to be versatile drug delivery systems because of their tunable membrane formulations, stabilities in vivo, various physicochemical properties, controlled release mechanisms, targeting abilities, and capacities to encapsulate a wide range of drugs and other molecules. Asymmetrical polymersomes are nano- to micro-sized polymeric capsules with asymmetrical membranes, which means, they have different outer and inner coronas so that they can exhibit better endocytosis rate and endosomal escape ability than other polymeric systems with symmetrical membranes. Hence, asymmetrical polymersomes are highly promising as self-assembled nano-delivery systems in the future for in vivo therapeutics delivery and diagnostic imaging applications. In this review, we prepared a summary about recent research progresses of asymmetrical polymersomes in the following aspects: synthesis, preparation, applications in drug delivery and others.

  1. The structure of the muscle protein complex 4Ca{sup 2+} {center_dot}troponin C {center_dot} troponin

    Energy Technology Data Exchange (ETDEWEB)

    Olah, G.A.; Trewhella, J. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Analysis of scattering data based on a Monte Carlo integration method was used to 2+ obtain a low resolution model of the 4Ca{sup 2+}{circ} troponin C{circ}troponin I complex. This modeling method allows rapid testing of plausible structures where the best fit model can be ascertained by a comparison between model structure scattering profiles and measured scattering data. In the best fit model, troponin I appears as a spiral structure 2+ that wraps around 4Ca{sup 2+}{circ}troponin C which adopts an extended dumbbell conformation similar to that observed in the crystal structures of troponin C. The Monte Carlo modeling method can be applied to other biological systems in which detailed structural information is lacking.

  2. Asymmetric evolution and domestication in allotetraploid cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Lei Fang

    2017-04-01

    Full Text Available Polyploidy plays a major role in genome evolution, which corresponds to environmental changes over millions of years. The mechanisms of genome evolution, particularly during the process of domestication, are of broad interest in the fields of plant science and crop breeding. Upland cotton is derived from the hybridization and polyploidization of its ancient A and D diploid ancestors. As a result, cotton is a model for polyploid genome evolution and crop domestication. To explore the genomic mysteries of allopolyploid cotton, we investigated asymmetric evolution and domestication in the A and D subgenomes. Interestingly, more structural rearrangements have been characterized in the A subgenome than in the D subgenome. Correspondingly, more transposable elements, a greater number of lost and disrupted genes, and faster evolution have been identified in the A subgenome. In contrast, the centromeric retroelement (RT-domain related sequence of tetraploid cotton derived from the D subgenome progenitor was found to have invaded the A subgenome centromeres after allotetrapolyploid formation. Although there is no genome-wide expression bias between the subgenomes, as with expression-level alterations, gene expression bias of homoeologous gene pairs is widespread and varies from tissue to tissue. Further, there are more positively selected genes for fiber yield and quality in the A subgenome and more for stress tolerance in the D subgenome, indicating asymmetric domestication. This review highlights the asymmetric subgenomic evolution and domestication of allotetraploid cotton, providing valuable genomic resources for cotton research and enhancing our understanding of the basis of many other allopolyploids.

  3. Examining the Cultural Leadership Behaviors of Schoo l Principal s within the Context of Symmetric and Asymmetric School Culture

    Directory of Open Access Journals (Sweden)

    Betül BALKAR

    2015-08-01

    Full Text Available The aim of this study is to determine the opinions of teachers on contributions of school principals’ cultural leadership behaviors to forming symmetric and asymmetric culture. The participants of the study consisted of 27 secondary school teachers working in Gaziantep province. Data of the study were collected through semi - structured interviews and analyzed through content analysis. Contributions of each cultural leader ship behavior to symmetric and asymmetric culture types were determined by taking relations between cultural leadership behaviors and symmetric and asymmetric cultures into consideration in the process of content analysis. According to the findings of the study ; supporting development of teachers and reflecting developments and innovations on schools are among the cultural leadership behaviors contributing to forming asymmetric culture at schools. Interpreting tasks and missions of school and ensuring neces sary environment for keeping social values alive at schools are among the cultural leadership behaviors contributing to forming symmetric culture at schools. Based on the results of the study, it is suggested that school principals should follow developmen ts in educational issues and transfer these developments into school practices. They should place more importance on supporting innovative behaviors of teachers in order to create asymmetric culture at schools.

  4. Chiral PEPPSI Complexes: Synthesis, Characterization, and Application in Asymmetric Suzuki–Miyaura Coupling Reactions

    KAUST Repository

    Benhamou, Laure

    2014-01-13

    PEPPSI complexes incorporating chiral N-heterocyclic carbene (NHC) ligands based on 2,2-dimethyl-1-(o-substituted aryl)propan-1-amines were synthesized. Two complexes, with one saturated and one unsaturated NHC ligand, were structurally characterized. The chiral PEPPSI complexes were used in asymmetric Suzuki-Miyaura reactions, giving atropisomeric biaryl products in modest to good enantiomeric ratios. © 2013 American Chemical Society.

  5. Chiral PEPPSI Complexes: Synthesis, Characterization, and Application in Asymmetric Suzuki–Miyaura Coupling Reactions

    KAUST Repository

    Benhamou, Laure; Besnard, Cé line; Kü ndig, E. Peter

    2014-01-01

    PEPPSI complexes incorporating chiral N-heterocyclic carbene (NHC) ligands based on 2,2-dimethyl-1-(o-substituted aryl)propan-1-amines were synthesized. Two complexes, with one saturated and one unsaturated NHC ligand, were structurally characterized. The chiral PEPPSI complexes were used in asymmetric Suzuki-Miyaura reactions, giving atropisomeric biaryl products in modest to good enantiomeric ratios. © 2013 American Chemical Society.

  6. Use of nonlinear asymmetrical shock absorber to improve comfort on passenger vehicles

    Science.gov (United States)

    Silveira, M.; Pontes, B. R.; Balthazar, J. M.

    2014-03-01

    In this study the behaviour of two different types of shock absorbers, symmetrical (linear) and asymmetrical (nonlinear) is compared for use on passenger vehicles. The analyses use different standard road inputs and include variation of the severity parameter, the asymmetry ratio and the velocity of the vehicle. Performance indices and acceleration values are used to assess the efficacy of the asymmetrical systems. The comparisons show that the asymmetrical system, with nonlinear characteristics, tends to have a smoother and more progressive performance, both for vertical and angular movements. The half-car front asymmetrical system was introduced, and the simulation results show that the use of the asymmetrical system only at the front of the vehicle can further diminish the angular oscillations. As lower levels of acceleration are essential for improved ride comfort, the use of asymmetrical systems for vibrations and impact absorption can be a more advantageous choice for passenger vehicles.

  7. Performance of JPEG Image Transmission Using Proposed Asymmetric Turbo Code

    Directory of Open Access Journals (Sweden)

    Siddiqi Mohammad Umar

    2007-01-01

    Full Text Available This paper gives the results of a simulation study on the performance of JPEG image transmission over AWGN and Rayleigh fading channels using typical and proposed asymmetric turbo codes for error control coding. The baseline JPEG algorithm is used to compress a QCIF ( "Suzie" image. The recursive systematic convolutional (RSC encoder with generator polynomials , that is, (13/11 in decimal, and 3G interleaver are used for the typical WCDMA and CDMA2000 turbo codes. The proposed asymmetric turbo code uses generator polynomials , that is, (13/11; 13/9 in decimal, and a code-matched interleaver. The effect of interleaver in the proposed asymmetric turbo code is studied using weight distribution and simulation. The simulation results and performance bound for proposed asymmetric turbo code for the frame length , code rate with Log-MAP decoder over AWGN channel are compared with the typical system. From the simulation results, it is observed that the image transmission using proposed asymmetric turbo code performs better than that with the typical system.

  8. Polymersomes with asymmetric membranes and self-assembled superstructures using pentablock quintopolymers resolved by electron tomography

    KAUST Repository

    Haataja, J. S.

    2018-01-09

    Polystyrene-block-poly(1,4-isoprene)-block-poly(dimethyl siloxane)-block-poly(tert-butyl methacrylate)-block-poly(2-vinyl pyridine), PS-b-PI-b-PDMS-b-PtBMA-b-P2VP, self-assembles in acetone into polymersomes with asymmetric (directional) PI-b-PDMS membranes. The polymersomes, in turn, self-assemble into superstructures. Analogically to supravesicular structures at a smaller length scale, we refer to them as suprapolymersome structures. Electron tomograms are shown to be invaluable in the structural assessment of such complex self-assemblies.

  9. Asymmetric Modeling of the Industrial Heavy Water Plant (PIAP)

    International Nuclear Information System (INIS)

    Teruel, Federico; Aprea, J; Guido Lavalle, German

    2000-01-01

    Software of asymmetric stationary simulation for the Industrial Heavy Water Plant (PIAP) was developed, based on an existing symmetric simulator (Brigitte 2.0).This software allows to turn off some of the isotopic enrichment twin units present in the plant and to simulate them asymmetrically, in other words, with different selection of parameters between twins.Other incorporations were done, such as passing flows between units and entering flows in strategic points of the plant.The iterative system in which the symmetric simulator is based was insufficient to develop the asymmetric simulator, so the system was modeled according to an implicit scheme for the units that form the simulator.This type of resolution resulted in a simulator that supports a big range of boundary conditions and internal parameters.Moreover, the time of calculus is short (∼3 minutes), making it actually useful.The asymmetric simulator is at the PIAP now, for its study and validation. It shows expected tendencies and results according to the symmetric simulator already validated

  10. Shuttlecock-Shaped Molecular Rectifier: Asymmetric Electron Transport Coupled with Controlled Molecular Motion.

    Science.gov (United States)

    Ryu, Taekhee; Lansac, Yves; Jang, Yun Hee

    2017-07-12

    A fullerene derivative with five hydroxyphenyl groups attached around a pentagon, (4-HOC 6 H 4 ) 5 HC 60 (1), has shown an asymmetric current-voltage (I-V) curve in a conducting atomic force microscopy experiment on gold. Such molecular rectification has been ascribed to the asymmetric distribution of frontier molecular orbitals over its shuttlecock-shaped structure. Our nonequilibrium Green's function (NEGF) calculations based on density functional theory (DFT) indeed exhibit an asymmetric I-V curve for 1 standing up between two Au(111) electrodes, but the resulting rectification ratio (RR ∼ 3) is insufficient to explain the wide range of RR observed in experiments performed under a high bias voltage. Therefore, we formulate a hypothesis that high RR (>10) may come from molecular orientation switching induced by a strong electric field applied between two electrodes. Indeed, molecular dynamics simulations of a self-assembled monolayer of 1 on Au(111) show that the orientation of 1 can be switched between standing-up and lying-on-the-side configurations in a manner to align its molecular dipole moment with the direction of the applied electric field. The DFT-NEGF calculations taking into account such field-induced reorientation between up and side configurations indeed yield RR of ∼13, which agrees well with the experimental value obtained under a high bias voltage.

  11. Employing a hydrazine linked asymmetric double naphthalene hybrid for efficient naked eye detection of F-: Crystal structure with real application for F-

    Science.gov (United States)

    Bhattacharyya, Arghyadeep; Makhal, Subhash Chandra; Ghosh, Soumen; Guchhait, Nikhil

    2018-06-01

    An asymmetric hydrazide, (12E, 13E)-2-((naphthalen-1-yl) methylene)-1-(1-(2-hydroxynaphthalen-6-yl) ethylidene) hydrazine (abbreviated as AH) is synthesized and characterized by standard techniques and crystal structure of AH has been obtained. The naked eye detection of F- in aqueous acetonitrile (acetonitrile: water = 7:3/v:v) by AH has been investigated by UV-Visible titration and in presence of other anions, the limit of detection being 1.31 × 10-6(M). The mechanism of F- sensing has been explored by 1H NMR titration. AH undergoes hydrogen bonding with F- followed by deprotonation. The practical utility of AH has been explored by successful test kit response and color change in toothpaste solution.

  12. Experimental and theoretical study on minimum achievable foil thickness during asymmetric rolling.

    Directory of Open Access Journals (Sweden)

    Delin Tang

    Full Text Available Parts produced by microforming are becoming ever smaller. Similarly, the foils required in micro-machines are becoming ever thinner. The asymmetric rolling technique is capable of producing foils that are thinner than those produced by the conventional rolling technique. The difference between asymmetric rolling and conventional rolling is the 'cross-shear' zone. However, the influence of the cross-shear zone on the minimum achievable foil thickness during asymmetric rolling is still uncertain. In this paper, we report experiments designed to understand this critical influencing factor on the minimum achievable thickness in asymmetric rolling. Results showed that the minimum achievable thickness of rolled foils produced by asymmetric rolling with a rolling speed ratio of 1.3 can be reduced to about 30% of that possible by conventional rolling technique. Furthermore, the minimum achievable thickness during asymmetric rolling could be correlated to the cross-shear ratio, which, in turn, could be related to the rolling speed ratio. From the experimental results, a formula to calculate the minimum achievable thickness was established, considering the parameters cross-shear ratio, friction coefficient, work roll radius, etc. in asymmetric rolling.

  13. Experimental and theoretical study on minimum achievable foil thickness during asymmetric rolling.

    Science.gov (United States)

    Tang, Delin; Liu, Xianghua; Song, Meng; Yu, Hailiang

    2014-01-01

    Parts produced by microforming are becoming ever smaller. Similarly, the foils required in micro-machines are becoming ever thinner. The asymmetric rolling technique is capable of producing foils that are thinner than those produced by the conventional rolling technique. The difference between asymmetric rolling and conventional rolling is the 'cross-shear' zone. However, the influence of the cross-shear zone on the minimum achievable foil thickness during asymmetric rolling is still uncertain. In this paper, we report experiments designed to understand this critical influencing factor on the minimum achievable thickness in asymmetric rolling. Results showed that the minimum achievable thickness of rolled foils produced by asymmetric rolling with a rolling speed ratio of 1.3 can be reduced to about 30% of that possible by conventional rolling technique. Furthermore, the minimum achievable thickness during asymmetric rolling could be correlated to the cross-shear ratio, which, in turn, could be related to the rolling speed ratio. From the experimental results, a formula to calculate the minimum achievable thickness was established, considering the parameters cross-shear ratio, friction coefficient, work roll radius, etc. in asymmetric rolling.

  14. Electrical conductivity of metal–carbon nanotube structures: Effect of ...

    Indian Academy of Sciences (India)

    Administrator

    The electrical properties of asymmetric metal–carbon nanotube (CNT) structures have been studied using ... The models with asymmetric metal contacts and carbon nanotube bear resemblance to experimental ... ordinary mechanical strength.

  15. Carrier-envelope phase-dependent transmitted spectra in inversion-asymmetric media with permanent dipole moments

    International Nuclear Information System (INIS)

    Yang Weifeng; Song Xiaohong; Zhang Chaojin; Xu Zhizhan

    2009-01-01

    We investigate the transmitted spectra of a few-cycle ultrashort pulse in an inversion-asymmetric medium with a permanent dipole moment (PDM). Our results show that even-order harmonics can be generated in this medium. Moreover, the generated even-order harmonics depend strongly on the carrier-envelope phase (CEP) of initial incident few-cycle ultrashort pulses. Physical analysis of the re-emitted spectra of the medium reveals that the CEP-dependent spectral effect is originated from the inversion-asymmetric structure and the corresponding PDM effects: two-photon transition dominates in the nonlinear process and further induces the generations of the even-order harmonics. Furthermore, the orientation relation between the electric field peak of the pulse and the PDM results in even-order harmonic generations depending on the CEP.

  16. Does the Dumbbell-Carrying Position Change the Muscle Activity in Split Squats and Walking Lunges?

    Science.gov (United States)

    Stastny, Petr; Lehnert, Michal; Zaatar, Amr M Z; Svoboda, Zdenek; Xaverova, Zuzana

    2015-11-01

    The forward walking lunge (WL) and split squat (SSq) are similar exercises that have differences in the eccentric phase, and both can be performed in the ipsilateral or contralateral carrying conditions. This study aimed to determine the effects of dumbbell-carrying position on the kinematics and electromyographic (EMG) amplitudes of the gluteus medius (Gmed), vastus medialis (VM), vastus lateralis (VL), and biceps femoris during WLs and SSqs. The resistance-trained (RT) and the non-resistance-trained (NT) groups (both n = 14) performed ipsilateral WLs, contralateral WLs, ipsilateral SSqs, and contralateral SSqs in a randomized order in a simulated training session. The EMG amplitude, expressed as a percentage of the maximal voluntary isometric contraction (%MVIC), and the kinematics, expressed as the range of motion (ROM) of the hip and knee, were measured during 5 repetition maximum for both legs. The repeated measure analyses of variance showed significant differences between the RT and NT groups. The NT group showed a smaller knee flexion ROM (p < 0.001, η = 0.36) during both types of WLs, whereas the RT group showed a higher eccentric Gmed amplitude (p < 0.001, η = 0.46) during all exercises and a higher eccentric VL amplitude (p < 0.001, η = 0.63) during contralateral WLs. Further differences were found between contralateral and ipsilateral WLs in both the RT (p < 0.001, η = 0.69) and NT groups (p < 0.001, η = 0.80), and contralateral WLs resulted in higher eccentric Gmed amplitudes. Contralateral WLs highly activated the Gmed (90% MVIC); therefore, this exercise can increase the Gmed maximal strength. The ipsilateral loading condition did not increase the Gmed or VM activity in the RT or NT group.

  17. Asymmetric synthesis II more methods and applications

    CERN Document Server

    Christmann, Mathias

    2012-01-01

    After the overwhelming success of 'Asymmetric Synthesis - The Essentials', narrating the colorful history of asymmetric synthesis, this is the second edition with latest subjects and authors. While the aim of the first edition was mainly to honor the achievements of the pioneers in asymmetric syntheses, the aim of this new edition was bringing the current developments, especially from younger colleagues, to the attention of students. The format of the book remained unchanged, i.e. short conceptual overviews by young leaders in their field including a short biography of the authors. The growing multidisciplinary research within chemistry is reflected in the selection of topics including metal catalysis, organocatalysis, physical organic chemistry, analytical chemistry, and its applications in total synthesis. The prospective reader of this book is a graduate or undergraduate student of advanced organic chemistry as well as the industrial chemist who wants to get a brief update on the current developments in th...

  18. X-Ray Topography of the Subsurface Crystal Layers in the Skew Asymmetric Reflection Geometry

    Directory of Open Access Journals (Sweden)

    Swiątek Z.

    2016-12-01

    Full Text Available The technique of X ray topography with the asymmetric reflection geometry of X-ray diffraction presented in this paper as useful tool for structural characterization of materials, particularly, epitaxial thin films and semiconductor multi-layered crystal systems used for the optoelectronic devices. New possibilities of this technique for a layer-by-layer visualization of structural changes in the subsurface crystal layers are demonstrated for semiconductors after various types of surface treatment, such as chemical etching, laser irradiation and ion implantation.

  19. Asymmetric Effects on Escape Rates of Bistable System

    International Nuclear Information System (INIS)

    Wang Canjun; Mei Dongcheng; Dai Zucheng

    2011-01-01

    The asymmetric effects on the escape rates from the stable states x ± in the bistable system are analyzed. The results indicate that the multiplicative noise and the additive noise always enhance the particle escape from stable states x ± of bistable. However, the asymmetric parameter r enhances the particle escape from stable state x + , and holds back the particle escape from stable state x - . (general)

  20. Biomimetic self-assembly of a functional asymmetrical electronic device.

    Science.gov (United States)

    Boncheva, Mila; Gracias, David H; Jacobs, Heiko O; Whitesides, George M

    2002-04-16

    This paper introduces a biomimetic strategy for the fabrication of asymmetrical, three-dimensional electronic devices modeled on the folding of a chain of polypeptide structural motifs into a globular protein. Millimeter-size polyhedra-patterned with logic devices, wires, and solder dots-were connected in a linear string by using flexible wire. On self-assembly, the string folded spontaneously into two domains: one functioned as a ring oscillator, and the other one as a shift register. This example demonstrates that biomimetic principles of design and self-organization can be applied to generate multifunctional electronic systems of complex, three-dimensional architecture.

  1. Diagnostic implications of asymmetrical mammographic patterns

    International Nuclear Information System (INIS)

    Asenjo, M.; Ania, B.J.

    1997-01-01

    To analyze the effect of asymmetrical mammographic patterns of the diagnosis of breast cancer. In a series of 6, 476 patients referred to a Breast Imaging Diagnosis Unit, we excluded males, women with previous breast surgery, and cases in which mammography was not performed, which left 5,203 women included. Each breast was classified according to one of four patterns of mammographic parenchymal density. Asymmetry was considered to exist when a patient's breasts had different patterns. Breast cancer was confirmed histologically in 282 (5.4%) women. The mammographic pattern was asymmetrical in 8% of the women with cancer and in 2% of the women without cancer (p<0.001). Fine-needle aspiration biopsy was performed in 78% and 96% (p=0.04), respectively, of the women with and without mammographic asymmetry who had neoplasms, and in 33% and 22% (p=0.02), respectively, of the women with and without mammographic asymmetry who did not have neoplasms. Asymmetrical mammographic pattern was four times more frequent in the women with breast cancer. This asymmetry decreased the frequency of needle biopsy in women with cancer, but increased the frequency of needle biopsy in women without cancer. (Author) 11 refs

  2. Hadron scattering in an asymmetric box

    International Nuclear Information System (INIS)

    Li Xin; Chen Ying; Meng Guozhan; Feng Xu; Gong Ming; He Song; Li Gang; Liu Chuan; Liu Yubin; Ma Jianping; Meng Xiangfei; Shen Yan; Zhang Jianbo

    2007-01-01

    We propose to study hadron-hadron scattering using lattice QCD in an asymmetric box which allows one to access more non-degenerate low-momentum modes for a given volume. The conventional Luescher's formula applicable in a symmetric box is modified accordingly. To illustrate the feasibility of this approach, pion-pion elastic scattering phase shifts in the I = 2, J = 0 channel are calculated within quenched approximation using improved gauge and Wilson fermion actions on anisotropic lattices in an asymmetric box. After the chiral and continuum extrapolation, we find that our quenched results for the scattering phase shifts in this channel are consistent with the experimental data when the three-momentum of the pion is below 300MeV. Agreement is also found when compared with previous theoretical results from lattice and other means. Moreover, with the usage of asymmetric volume, we are able to compute the scattering phases in the low-momentum range (pion three momentum less than about 350MeV in the center of mass frame) for over a dozen values of the pion three-momenta, much more than using the conventional symmetric box with comparable volume

  3. Uncovering the link between malfunctions in Drosophila neuroblast asymmetric cell division and tumorigenesis

    Directory of Open Access Journals (Sweden)

    Kelsom Corey

    2012-11-01

    Full Text Available Abstract Asymmetric cell division is a developmental process utilized by several organisms. On the most basic level, an asymmetric division produces two daughter cells, each possessing a different identity or fate. Drosophila melanogaster progenitor cells, referred to as neuroblasts, undergo asymmetric division to produce a daughter neuroblast and another cell known as a ganglion mother cell (GMC. There are several features of asymmetric division in Drosophila that make it a very complex process, and these aspects will be discussed at length. The cell fate determinants that play a role in specifying daughter cell fate, as well as the mechanisms behind setting up cortical polarity within neuroblasts, have proved to be essential to ensuring that neurogenesis occurs properly. The role that mitotic spindle orientation plays in coordinating asymmetric division, as well as how cell cycle regulators influence asymmetric division machinery, will also be addressed. Most significantly, malfunctions during asymmetric cell division have shown to be causally linked with neoplastic growth and tumor formation. Therefore, it is imperative that the developmental repercussions as a result of asymmetric cell division gone awry be understood.

  4. Using Agent Based Distillation to Explore Issues Related to Asymmetric Warfare

    Science.gov (United States)

    2009-10-01

    official definition of asymmetric warfare , considering that its use was redundant to irregular warfare [30]. 2 Such as the Lanchester Equations...RTP-MP-MSG-069 23 - 1 Using Agent Based Distillation to Explore Issues Related to Asymmetric Warfare Martin Adelantado, Jean-Michel Mathé...shows that both conventional and asymmetric warfare are characterised by nonlinear behaviours and that engagement is a Complex Adaptive System (CAS

  5. Controllable asymmetric transmission via gap-tunable acoustic metasurface

    Science.gov (United States)

    Liu, Bingyi; Jiang, Yongyuan

    2018-04-01

    In this work, we utilize the acoustic gradient metasurface (AGM) of a bilayer configuration to realize the controllable asymmetric transmission. Relying on the adjustable gap between the two composing layers, the metasurface could switch from symmetric transmission to asymmetric transmission at a certain gap value. The underlying mechanism is attributed to the interference between the forward diffracted waves scattered by the surface bound waves at two air-AGM interfaces, which is apparently influenced by the interlayer distance. We further utilize the hybrid acoustic elements to construct the desired gradient metasurface with a tunable gap and validate the controllable asymmetric transmission with full-wave simulations. Our work provides the solution for actively controlling the transmission property of an acoustic element, which shows potential application in acoustic communication as a dynamic tunable acoustic diode.

  6. Asymmetric dark matter: residual annihilations and self-interactions arXiv

    CERN Document Server

    Baldes, Iason; Panci, Paolo; Petraki, Kalliopi; Sala, Filippo; Taoso, Marco

    Dark matter (DM) coupled to light mediators has been invoked to resolve the putative discrepancies between collisionless cold DM and galactic structure observations. However, $\\gamma$-ray searches and the CMB strongly constrain such scenarios. To ease the tension, we consider asymmetric DM. We show that, contrary to the common lore, detectable annihilations occur even for large asymmetries, and derive bounds from the CMB, $\\gamma$-ray, neutrino and antiproton searches. We then identify the viable space for self-interacting DM. Direct detection does not exclude this scenario, but provides a way to test it.

  7. The phases of isospin-asymmetric matter in the two-flavor NJL model

    Energy Technology Data Exchange (ETDEWEB)

    Lawley, S. [Special Research Centre for the Subatomic Structure of Matter, University of Adelaide, Adelaide, SA 5005 (Australia) and Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)]. E-mail: slawley@jlab.org; Bentz, W. [Department of Physics, School of Science, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan); Thomas, A.W. [Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)

    2006-01-19

    We investigate the phase diagram of isospin-asymmetric matter at T=0 in the two-flavor Nambu-Jona-Lasinio model. Our approach describes the single nucleon as a confined quark-diquark state, the saturation properties of nuclear matter at normal densities, and the phase transition to normal or color superconducting quark matter at higher densities. The resulting equation of state of charge-neutral matter and the structure of compact stars are discussed.

  8. Study on the output factors of asymmetrical rectangular electron beam field

    International Nuclear Information System (INIS)

    Chen Yinghai; Yang Yueqin; Ma Yuhong; Zheng Jin; Zou Lijuan

    2009-01-01

    Objective: To evaluate the variant regularity of the output factors of asymmetrical rectangular electron beam field. Methods: The output factors of three special fields with different applicators and energies were measured by ionization chamber method at different off-axis distances. Then deviations of the output factors between asymmetrical and symmetric rectangular fields were calculated. Results: The changes of output factor with different off-axis distances in asymmetrical rectangular fields were basically consistent with those in standard square fields with the same applicator. It revealed that the output factor of asymmetrical rectangular field was related with the off-axis ratio of standard square field. Applicator and field size did not show obvious influence on the output factor. Conclusions: The output factor changes of asymmetrical rectangular field are mainly correlated with the off-axis ratio of standard square field. The correction of the output factor is determined by the off-axis ratio changes in standard square field. (authors)

  9. Symmetrization of the beam-beam interaction in an asymmetric collider

    International Nuclear Information System (INIS)

    Chin, Y.H.

    1990-07-01

    This paper studies the idea of symmetrizing both the lattice and the beams of an asymmetric collider, and discusses why this regime should be within the parametric reach of the design in order to credibly ensure its performance. Also examined is the effectiveness of a simple compensation method using the emittance as a free parameter and that it does not work in all cases. At present, when there are no existing asymmetric colliders, it seems prudent to design an asymmetric collider so as to be similar to a symmetric one (without relying on a particular theory of the asymmetric beam-beam interaction that has not passed tests of fidelity). Nevertheless, one must allow for the maximum possible flexibility and freedom in adjusting those parameters that affect luminosity. Such a parameter flexibility will be essential in tuning the collider to the highest luminosity

  10. Force on an Asymmetric Capacitor

    National Research Council Canada - National Science Library

    Bahder, Thomas

    2003-01-01

    .... At present, the physical basis for the Biefeld-Brown effect is not understood. The order of magnitude of the net force on the asymmetric capacitor is estimated assuming two different mechanisms of charge conduction between its electrodes...

  11. Effects of asymmetric vertical disruptions on ITER components

    International Nuclear Information System (INIS)

    Albanese, R.; Carpentieri, B.; Cavinato, M.; Minucci, S.; Palmaccio, R.; Portone, A.; Rubinacci, G.; Testoni, P.; Ventre, S.; Villone, F.

    2015-01-01

    Highlights: • Halo current analysis of AVDEs (asymmetric VDEs) is performed. • Both resistive and inductive effects are considered. • Suitable compression techniques and supercomputing resources are used. • The vertical force on the sectors is nearly uniform. • The radial loads on the various sectors are very different. - Abstract: This paper deals with the halo current distribution due to asymmetric vertical displacement events (VDEs) and the subsequent force distributions on the conducting structures in the ITER tokamak. Both the eddy and halo current analyses have been carried out using the 3D code CARIDDI, based on an integral formulation in the conducting region. The plasma plays the role of a source term. The axisymmetric time evolution of the plasma is taken by 2D axisymmetric simulations. The most critical case is a slow VDE downward combined with an n = 1 kink, which may yield large horizontal forces and peaking factors. A simplified n = 1, m = 1 kink model is taken, given by a rigid horizontal displacement accompanied by a tilt. The halo currents are treated as injected currents on the faces of the first wall hit by the plasma. To take into account the inductive effects, which are important especially in the transient phases, suitable compression techniques and supercomputing resources have been utilized. In the worst case the total vertical force on the structure due to the halo currents is about 90 MN downwards (about 30 of which on the divertor); the horizontal force is about 4 MN (about half of which on the divertor); the distribution of the vertical force on the sectors is nearly uniform, whereas the radial loads on the various sectors are very different from each other

  12. Effects of asymmetric vertical disruptions on ITER components

    Energy Technology Data Exchange (ETDEWEB)

    Albanese, R. [Associazione EURATOM/ENEA/CREATE, DIETI, Università di Napoli Federico II, Napoli (Italy); Carpentieri, B. [Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, Groningen (Netherlands); Cavinato, M. [Fusion for Energy, Torres Diagonal Litoral B3, c/ Josep Plá n.2, Barcelona (Spain); Minucci, S. [Associazione EURATOM/ENEA/CREATE, DIETI, Università di Napoli Federico II, Napoli (Italy); Palmaccio, R. [Associazione EURATOM/ENEA/CREATE, DIEI, Università di Cassino e del Lazio Meridionale, Cassino, FR (Italy); Portone, A. [Fusion for Energy, Torres Diagonal Litoral B3, c/ Josep Plá n.2, Barcelona (Spain); Rubinacci, G. [Associazione EURATOM/ENEA/CREATE, DIETI, Università di Napoli Federico II, Napoli (Italy); Testoni, P., E-mail: pietro.testoni@f4e.europa.eu [Fusion for Energy, Torres Diagonal Litoral B3, c/ Josep Plá n.2, Barcelona (Spain); Ventre, S.; Villone, F. [Associazione EURATOM/ENEA/CREATE, DIEI, Università di Cassino e del Lazio Meridionale, Cassino, FR (Italy)

    2015-05-15

    Highlights: • Halo current analysis of AVDEs (asymmetric VDEs) is performed. • Both resistive and inductive effects are considered. • Suitable compression techniques and supercomputing resources are used. • The vertical force on the sectors is nearly uniform. • The radial loads on the various sectors are very different. - Abstract: This paper deals with the halo current distribution due to asymmetric vertical displacement events (VDEs) and the subsequent force distributions on the conducting structures in the ITER tokamak. Both the eddy and halo current analyses have been carried out using the 3D code CARIDDI, based on an integral formulation in the conducting region. The plasma plays the role of a source term. The axisymmetric time evolution of the plasma is taken by 2D axisymmetric simulations. The most critical case is a slow VDE downward combined with an n = 1 kink, which may yield large horizontal forces and peaking factors. A simplified n = 1, m = 1 kink model is taken, given by a rigid horizontal displacement accompanied by a tilt. The halo currents are treated as injected currents on the faces of the first wall hit by the plasma. To take into account the inductive effects, which are important especially in the transient phases, suitable compression techniques and supercomputing resources have been utilized. In the worst case the total vertical force on the structure due to the halo currents is about 90 MN downwards (about 30 of which on the divertor); the horizontal force is about 4 MN (about half of which on the divertor); the distribution of the vertical force on the sectors is nearly uniform, whereas the radial loads on the various sectors are very different from each other.

  13. Electrical conductivity of metal–carbon nanotube structures

    Indian Academy of Sciences (India)

    The electrical properties of asymmetric metal–carbon nanotube (CNT) structures have been studied using density functional theory and non-equilibrium Green's function method with Atomistix tool kit. The models with asymmetric metal contacts and carbon nanotube bear resemblance to experimental set-ups. The study ...

  14. Exposing asymmetric gray matter vulnerability in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Devine, Matthew S; Pannek, Kerstin; Coulthard, Alan; McCombe, Pamela A; Rose, Stephen E; Henderson, Robert D

    2015-01-01

    Limb weakness in amyotrophic lateral sclerosis (ALS) is typically asymmetric. Previous studies have identified an effect of limb dominance on onset and spread of weakness, however relative atrophy of dominant and non-dominant brain regions has not been investigated. Our objective was to use voxel-based morphometry (VBM) to explore gray matter (GM) asymmetry in ALS, in the context of limb dominance. 30 ALS subjects were matched with 17 healthy controls. All subjects were right-handed. Each underwent a structural MRI sequence, from which GM segmentations were generated. Patterns of GM atrophy were assessed in ALS subjects with first weakness in a right-sided limb (n = 15) or left-sided limb (n = 15). Within each group, a voxelwise comparison was also performed between native and mirror GM images, to identify regions of hemispheric GM asymmetry. Subjects with ALS showed disproportionate atrophy of the dominant (left) motor cortex hand area, irrespective of the side of first limb weakness (p protocol, contrasting native and mirror images, was able to more sensitively detect asymmetric GM pathology in a small cohort, compared with standard methods. These findings indicate particular vulnerability of dominant upper limb representation in ALS, supporting previous clinical studies, and with implications for cortical organisation and selective vulnerability.

  15. Atomistic simulation of ideal shear strength, point defects, and screw dislocations in bcc transition metals: Mo as a prototype

    International Nuclear Information System (INIS)

    Xu, W.; Moriarty, J.A.

    1996-01-01

    Using multi-ion interatomic potentials derived from first-principles generalized pseudopotential theory, we have studied ideal shear strength, point defects, and screw dislocations in the prototype bcc transition metal molybdenum (Mo). Many-body angular forces, which are important to the structural and mechanical properties of such central transition metals with partially filled d bands, are accounted for in the present theory through explicit three- and four-ion potentials. For the ideal shear strength of Mo, our computed results agree well with those predicted by full electronic-structure calculations. For point defects in Mo, our calculated vacancy-formation and activation energies are in excellent agreement with experimental results. The energetics of six self-interstitial configurations have also been investigated. The left-angle 110 right-angle split dumbbell interstitial is found to have the lowest formation energy, in agreement with the configuration found by x-ray diffuse scattering measurements. In ascending order, the sequence of energetically stable interstitials is predicted to be left-angle 110 right-angle split dumbbell, crowdion, left-angle 111 right-angle split dumbbell, tetrahedral site, left-angle 001 right-angle split dumbbell, and octahedral site. In addition, the migration paths for the left-angle 110 right-angle dumbbell self-interstitial have been studied. The migration energies are found to be 3 endash 15 times higher than previous theoretical estimates obtained using simple radial-force Finnis-Sinclair potentials. Finally, the atomic structure and energetics of left-angle 111 right-angle screw dislocations in Mo have been investigated. We have found that the so-called open-quote open-quote easy close-quote close-quote core configuration has a lower formation energy than the open-quote open-quote hard close-quote close-quote one, consistent with previous theoretical studies. (Abstract Truncated)

  16. Asymmetric synthesis of cyclo-archaeol and ß-glucosyl cyclo-archaeol

    NARCIS (Netherlands)

    Ferrer, C.; Fodran, P.; Barroso, S.; Gibson, R.; Hopmans, E.C.; Sinninghe Damsté, J.S.; Schouten, S.; Minnaard, A.J.

    2013-01-01

    An efficient asymmetric synthesis of cyclo-archaeol and beta-glucosyl cyclo-archaeol is presented employing catalytic asymmetric conjugate addition and catalytic epoxide ring opening as the key steps. Their occurrence in deep sea hydrothermal vents has been confirmed by chromatographic comparison

  17. Asymmetric Damage Segregation Constitutes an Emergent Population-Level Stress Response

    DEFF Research Database (Denmark)

    Vedel, Søren; Nunns, Harry; Košmrlj, Andrej

    2016-01-01

    Asymmetric damage segregation (ADS) is a mechanism for increasing population fitness through non-random, asymmetric partitioning of damaged macromolecules at cell division. ADS has been reported across multiple organisms, though the measured effects on fitness of individuals are often small. Here...

  18. Asymmetric-cut variable-incident-angle monochromator.

    Science.gov (United States)

    Smither, R K; Graber, T J; Fernandez, P B; Mills, D M

    2012-03-01

    A novel asymmetric-cut variable-incident-angle monochromator was constructed and tested in 1997 at the Advanced Photon Source of Argonne National Laboratory. The monochromator was originally designed as a high heat load monochromator capable of handling 5-10 kW beams from a wiggler source. This was accomplished by spreading the x-ray beam out on the surface an asymmetric-cut crystal and by using liquid metal cooling of the first crystal. The monochromator turned out to be a highly versatile monochromator that could perform many different types of experiments. The monochromator consisted of two 18° asymmetrically cut Si crystals that could be rotated about 3 independent axes. The first stage (Φ) rotates the crystal around an axis perpendicular to the diffraction plane. This rotation changes the angle of the incident beam with the surface of the crystal without changing the Bragg angle. The second rotation (Ψ) is perpendicular to the first and is used to control the shape of the beam footprint on the crystal. The third rotation (Θ) controls the Bragg angle. Besides the high heat load application, the use of asymmetrically cut crystals allows one to increase or decrease the acceptance angle for crystal diffraction of a monochromatic x-ray beam and allows one to increase or decrease the wavelength bandwidth of the diffraction of a continuum source like a bending-magnet beam or a normal x-ray-tube source. When the monochromator is used in the doubly expanding mode, it is possible to expand the vertical size of the double-diffracted beam by a factor of 10-15. When this was combined with a bending magnet source, it was possible to generate an 8 keV area beam, 16 mm wide by 26 mm high with a uniform intensity and parallel to 1.2 arc sec that could be applied in imaging experiments.

  19. Modulational Instability in Linearly Coupled Asymmetric Dual-Core Fibers

    Directory of Open Access Journals (Sweden)

    Arjunan Govindarajan

    2017-06-01

    Full Text Available We investigate modulational instability (MI in asymmetric dual-core nonlinear directional couplers incorporating the effects of the differences in effective mode areas and group velocity dispersions, as well as phase- and group-velocity mismatches. Using coupled-mode equations for this system, we identify MI conditions from the linearization with respect to small perturbations. First, we compare the MI spectra of the asymmetric system and its symmetric counterpart in the case of the anomalous group-velocity dispersion (GVD. In particular, it is demonstrated that the increase of the inter-core linear-coupling coefficient leads to a reduction of the MI gain spectrum in the asymmetric coupler. The analysis is extended for the asymmetric system in the normal-GVD regime, where the coupling induces and controls the MI, as well as for the system with opposite GVD signs in the two cores. Following the analytical consideration of the MI, numerical simulations are carried out to explore nonlinear development of the MI, revealing the generation of periodic chains of localized peaks with growing amplitudes, which may transform into arrays of solitons.

  20. Solution small-angle x-ray scattering as a screening and predictive tool in the fabrication of asymmetric block copolymer membranes

    KAUST Repository

    Dorin, Rachel Mika; Marques, Debora S.; Sai, Hiroaki; Vainio, Ulla; Phillip, William A.; Peinemann, Klaus; Nunes, Suzana Pereira; Wiesner, Ulrich B.

    2012-01-01

    Small-angle X-ray scattering (SAXS) analysis of the diblock copolymer poly(styrene-b-(4-vinyl)pyridine) in a ternary solvent system of 1,4-dioxane, tetrahydrofuran, and N,N-dimethylformamide, and the triblock terpolymer poly(isoprene-b-styrene-b-(4-vinyl)-pyridine) in a binary solvent system of 1,4-dioxane and tetrahydrofuran, reveals a concentration-dependent onset of ordered structure formation. Asymmetric membranes fabricated from casting solutions with polymer concentrations at or slightly below this ordering concentration possess selective layers with the desired nanostructure. In addition to rapidly screening possible polymer solution concentrations, solution SAXS analysis also predicts hexagonal and square pore lattices of the final membrane surface structure. These results suggest solution SAXS as a powerful tool for screening casting solution concentrations and predicting surface structure in the fabrication of asymmetric ultrafiltration membranes from self-assembled block copolymers. (Figure presented) © 2012 American Chemical Society.

  1. Solution small-angle x-ray scattering as a screening and predictive tool in the fabrication of asymmetric block copolymer membranes

    KAUST Repository

    Dorin, Rachel Mika

    2012-05-15

    Small-angle X-ray scattering (SAXS) analysis of the diblock copolymer poly(styrene-b-(4-vinyl)pyridine) in a ternary solvent system of 1,4-dioxane, tetrahydrofuran, and N,N-dimethylformamide, and the triblock terpolymer poly(isoprene-b-styrene-b-(4-vinyl)-pyridine) in a binary solvent system of 1,4-dioxane and tetrahydrofuran, reveals a concentration-dependent onset of ordered structure formation. Asymmetric membranes fabricated from casting solutions with polymer concentrations at or slightly below this ordering concentration possess selective layers with the desired nanostructure. In addition to rapidly screening possible polymer solution concentrations, solution SAXS analysis also predicts hexagonal and square pore lattices of the final membrane surface structure. These results suggest solution SAXS as a powerful tool for screening casting solution concentrations and predicting surface structure in the fabrication of asymmetric ultrafiltration membranes from self-assembled block copolymers. (Figure presented) © 2012 American Chemical Society.

  2. Effects of asymmetrical stance and movement on body rotation in pushing.

    Science.gov (United States)

    Lee, Yun-Ju; Aruin, Alexander S

    2015-01-21

    Pushing objects in the presence of body asymmetries could increase the risk of back injury. Furthermore, when the object is heavy, it could exacerbate the effects induced by asymmetrical posture. We investigated how the use of asymmetrical posture and/or upper extremity movement affect vertical torque (Tz) and center of pressure (COP) displacement during pushing. Ten healthy volunteers were instructed to push objects of three different weights using two hands (symmetrical hand use) or one hand (asymmetrical hand use) while standing in symmetrical or asymmetrical foot-positions. The peak values of Tz and COP displacement in the medial-lateral direction (COPML) were analyzed. In cases of isolated asymmetry, changes in the Tz were mainly linked with effects of hand-use whereas effects of foot-position dominated changes in the COPML displacement. In cases of a combined asymmetry, the magnitudes of both Tz and COPML were additive when asymmetrical hand-use and foot-position induced the rotation of the lower and upper body in the same direction or subtractive when asymmetries resulted in the rotation of the body segments in the opposite directions. Moreover, larger Tz and COP displacements were seen when pushing the heavy weight. The results point out the importance of using Tz and COPML to describe the isolated or combined effects of asymmetrical upper extremity movement and asymmetrical posture on body rotation during pushing. Furthermore, it suggests that a proper combination of unilateral arm movement and foot placements could help to reduce body rotation even when pushing heavy objects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Project financing versus corporate financing under asymmetric information

    OpenAIRE

    Anton Miglo

    2008-01-01

    In recent years financing through the creation of an independent project company or financing by non-recourse debt has become an important part of corporate decisions. Shah and Thakor (JET, 1987) argue that project financing can be optimal when asymmetric information exists between firm's insiders and market participants. In contrast to that paper, we provide an asymmetric information argument for project financing without relying on corporate taxes, costly information production or an assump...

  4. Asymmetric Shaped-Pattern Synthesis for Planar Antenna Arrays

    Directory of Open Access Journals (Sweden)

    T. M. Bruintjes

    2016-01-01

    Full Text Available A procedure to synthesize asymmetrically shaped beam patterns is developed for planar antenna arrays. As it is based on the quasi-analytical method of collapsed distributions, the main advantage of this procedure is the ability to realize a shaped (null-free region with very low ripple. Smooth and asymmetrically shaped regions can be used for Direction-of-Arrival estimation and subsequently for efficient tracking with a single output (fully analog beamformer.

  5. Asymmetric collider

    International Nuclear Information System (INIS)

    Bharadwaj, V.; Colestock, P.; Goderre, G.; Johnson, D.; Martin, P.; Holt, J.; Kaplan, D.

    1993-01-01

    The study of CP violation in beauty decay is one of the key challenges facing high energy physics. Much work has not yielded a definitive answer how this study might best be performed. However, one clear conclusion is that new accelerator facilities are needed. Proposals include experiments at asymmetric electron-positron colliders and in fixed-target and collider modes at LHC and SSC. Fixed-target and collider experiments at existing accelerators, while they might succeed in a first observation of the effect, will not be adequate to study it thoroughly. Giomataris has emphasized the potential of a new approach to the study of beauty CP violation: the asymmetric proton collider. Such a collider might be realized by the construction of a small storage ring intersecting an existing or soon-to-exist large synchrotron, or by arranging collisions between a large synchrotron and its injector. An experiment at such a collider can combine the advantages of fixed-target-like spectrometer geometry, facilitating triggering, particle identification and the instrumentation of a large acceptance, while the increased √s can provide a factor > 100 increase in beauty-production cross section compared to Tevatron or HERA fixed-target. Beams crossing at a non-zero angle can provide a small interaction region, permitting a first-level decay-vertex trigger to be implemented. To achieve large √s with a large Lorentz boost and high luminosity, the most favorable venue is the high-energy booster (HEB) at the SSC Laboratory, though the CERN SPS and Fermilab Tevatron are also worth considering

  6. An Evolving Asymmetric Game for Modeling Interdictor-Smuggler Problems

    Science.gov (United States)

    2016-06-01

    ASYMMETRIC GAME FOR MODELING INTERDICTOR-SMUGGLER PROBLEMS by Richard J. Allain June 2016 Thesis Advisor: David L. Alderson Second Reader: W...DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE AN EVOLVING ASYMMETRIC GAME FOR MODELING INTERDICTOR- SMUGGLER PROBLEMS 5. FUNDING NUMBERS 6...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited AN EVOLVING

  7. PERSISTENT ASYMMETRIC STRUCTURE OF SAGITTARIUS A* ON EVENT HORIZON SCALES

    International Nuclear Information System (INIS)

    Fish, Vincent L.; Doeleman, Sheperd S.; Lu, Ru-Sen; Akiyama, Kazunori; Beaudoin, Christopher; Cappallo, Roger; Johnson, Michael D.; Blackburn, Lindy; Blundell, Ray; Chael, Andrew A.; Broderick, Avery E.; Psaltis, Dimitrios; Chan, Chi-Kwan; Alef, Walter; Bertarini, Alessandra; Algaba, Juan Carlos; Asada, Keiichi; Bower, Geoffrey C.; Brinkerink, Christiaan; Chamberlin, Richard

    2016-01-01

    The Galactic Center black hole Sagittarius A* (Sgr A*) is a prime observing target for the Event Horizon Telescope (EHT), which can resolve the 1.3 mm emission from this source on angular scales comparable to that of the general relativistic shadow. Previous EHT observations have used visibility amplitudes to infer the morphology of the millimeter-wavelength emission. Potentially much richer source information is contained in the phases. We report on 1.3 mm phase information on Sgr A* obtained with the EHT on a total of 13 observing nights over four years. Closure phases, which are the sum of visibility phases along a closed triangle of interferometer baselines, are used because they are robust against phase corruptions introduced by instrumentation and the rapidly variable atmosphere. The median closure phase on a triangle including telescopes in California, Hawaii, and Arizona is nonzero. This result conclusively demonstrates that the millimeter emission is asymmetric on scales of a few Schwarzschild radii and can be used to break 180° rotational ambiguities inherent from amplitude data alone. The stability of the sign of the closure phase over most observing nights indicates persistent asymmetry in the image of Sgr A* that is not obscured by refraction due to interstellar electrons along the line of sight

  8. PERSISTENT ASYMMETRIC STRUCTURE OF SAGITTARIUS A* ON EVENT HORIZON SCALES

    Energy Technology Data Exchange (ETDEWEB)

    Fish, Vincent L.; Doeleman, Sheperd S.; Lu, Ru-Sen; Akiyama, Kazunori; Beaudoin, Christopher; Cappallo, Roger [Massachusetts Institute of Technology, Haystack Observatory, Route 40, Westford, MA 01886 (United States); Johnson, Michael D.; Blackburn, Lindy; Blundell, Ray; Chael, Andrew A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Broderick, Avery E. [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada); Psaltis, Dimitrios; Chan, Chi-Kwan [Steward Observatory and Department of Astronomy, University of Arizona, 933 North Cherry Ave., Tucson, AZ 85721-0065 (United States); Alef, Walter; Bertarini, Alessandra [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Algaba, Juan Carlos [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Asada, Keiichi [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Bower, Geoffrey C. [Academia Sinica Institute for Astronomy and Astrophysics, 645 N. A‘ohōkū Place, Hilo, HI 96720 (United States); Brinkerink, Christiaan [Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL, Nijmegen (Netherlands); Chamberlin, Richard, E-mail: vfish@haystack.mit.edu [Caltech Submillimeter Observatory, 111 Nowelo Street, Hilo, HI 96720 (United States); and others

    2016-04-01

    The Galactic Center black hole Sagittarius A* (Sgr A*) is a prime observing target for the Event Horizon Telescope (EHT), which can resolve the 1.3 mm emission from this source on angular scales comparable to that of the general relativistic shadow. Previous EHT observations have used visibility amplitudes to infer the morphology of the millimeter-wavelength emission. Potentially much richer source information is contained in the phases. We report on 1.3 mm phase information on Sgr A* obtained with the EHT on a total of 13 observing nights over four years. Closure phases, which are the sum of visibility phases along a closed triangle of interferometer baselines, are used because they are robust against phase corruptions introduced by instrumentation and the rapidly variable atmosphere. The median closure phase on a triangle including telescopes in California, Hawaii, and Arizona is nonzero. This result conclusively demonstrates that the millimeter emission is asymmetric on scales of a few Schwarzschild radii and can be used to break 180° rotational ambiguities inherent from amplitude data alone. The stability of the sign of the closure phase over most observing nights indicates persistent asymmetry in the image of Sgr A* that is not obscured by refraction due to interstellar electrons along the line of sight.

  9. Asymmetric Penning trap coherent states

    International Nuclear Information System (INIS)

    Contreras-Astorga, Alonso; Fernandez, David J.

    2010-01-01

    By using a matrix technique, which allows to identify directly the ladder operators, the coherent states of the asymmetric Penning trap are derived as eigenstates of the appropriate annihilation operators. They are compared with those obtained through the displacement operator method.

  10. Chiral 1,3,2-oxazaborolidines in asymmetric synthesis: recent advances

    International Nuclear Information System (INIS)

    Glushkov, Vladimir A; Tolstikov, Alexander G

    2004-01-01

    The use of chiral 1,3,2-oxazaborolidines in asymmetric organic synthesis, particularly, in enantioselective reduction of ketones, imines and oxime ethers, asymmetric Diels-Alder reactions, aldol condensation and atroposelective reduction of lactones is reviewed. Reactions of immobilised 1,3,2-oxazaborolidines are also considered.

  11. Holding-time-aware asymmetric spectrum allocation in virtual optical networks

    Science.gov (United States)

    Lyu, Chunjian; Li, Hui; Liu, Yuze; Ji, Yuefeng

    2017-10-01

    Virtual optical networks (VONs) have been considered as a promising solution to support current high-capacity dynamic traffic and achieve rapid applications deployment. Since most of the network services (e.g., high-definition video service, cloud computing, distributed storage) in VONs are provisioned by dedicated data centers, needing different amount of bandwidth resources in both directions, the network traffic is mostly asymmetric. The common strategy, symmetric provisioning of traffic in optical networks, leads to a waste of spectrum resources in such traffic patterns. In this paper, we design a holding-time-aware asymmetric spectrum allocation module based on SDON architecture and an asymmetric spectrum allocation algorithm based on the module is proposed. For the purpose of reducing spectrum resources' waste, the algorithm attempts to reallocate the idle unidirectional spectrum slots in VONs, which are generated due to the asymmetry of services' bidirectional bandwidth. This part of resources can be exploited by other requests, such as short-time non-VON requests. We also introduce a two-dimensional asymmetric resource model for maintaining idle spectrum resources information of VON in spectrum and time domains. Moreover, a simulation is designed to evaluate the performance of the proposed algorithm, and results show that our proposed asymmetric spectrum allocation algorithm can improve the resource waste and reduce blocking probability.

  12. Asymmetric Price Transmission in Indonesia's Wheat Flour Market

    OpenAIRE

    Varela, Gonzalo J.; Taniguchi, Kiyoshi

    2014-01-01

    Data indicate that its domestic price in Indonesia has been increasing regardless of movements in the international price of wheat. A test for asymmetric price transmission from international wheat to domestic wheat flour markets is conducted using an error correction model and find the presence of asymmetric price transmission. The upward adjustment in the domestic price of wheat flour is much faster than its adjustment downward when it deviates from long-run equilibrium. Our results are rob...

  13. A New Asymmetric ent-Kauranoid Dimer from Rabdosia rubescens

    Institute of Scientific and Technical Information of China (English)

    LU Hai-ying; LIANG Jing-yu

    2012-01-01

    Objective To study the ent-kaurane diterpenoids from Rabdosia rubescens.Methods The compounds were isolated by chromatographies and their structures were identified by spectral analyses.Results Four compounds were isolated,and they were identified as bisrubescensin E (1),2α,3α,24-trihydroxyurs-12-en-28-oic acid (2),2α,3α,24-trihydroxyurs-12,20-(30)-dien-28-oic acid (3),and 6,7-dihydroxycoumarin (4).Conclusion Compound 1 is a new asymmetric ent-kauranoid dimer.Compound 2 is isolated from the plant for the first time.Compounds 3 and 4 are isolated from the plants ofRabdosia (B1.) Hassk for the first time.

  14. Asymmetrical Capacitors for Propulsion and the ISR Asymmetrical Capacitator Thruster, Experimental Results and Improved Designs

    Science.gov (United States)

    Canning, Francis; Winet, Ed; Ice, Bob; Melcher, Cory; Pesavento, Phil; Holmes, Alan; Butler, Carey; Cole, John; Campbell, Jonathan

    2004-01-01

    The outline of this viewgraph presentation on asymmetrical capacitor thruster development includes: 1) Test apparatus; 2) Devices tested; 3) Circuits used; 4) Data collected (Time averaged, Time resolved); 5) Patterns observed; 6) Force calculation; 7) Electrostatic modeling; 8) Understand it all.

  15. From design to manufacturing of asymmetric teeth gears using computer application

    Science.gov (United States)

    Suciu, F.; Dascalescu, A.; Ungureanu, M.

    2017-05-01

    The asymmetric cylindrical gears, with involutes teeth profiles having different base circle diameters, are nonstandard gears, used with the aim to obtain better function parameters for the active profile. We will expect that the manufacturing of these gears became possible only after the design and realization of some specific tools. The paper present how the computer aided design and applications developed in MATLAB, for obtain the geometrical parameters, in the same time for calculation some functional parameters like stress and displacements, transmission error, efficiency of the gears and the 2D models, generated with AUTOLISP applications, are used for computer aided manufacturing of asymmetric gears with standard tools. So the specific tools considered one of the disadvantages of these gears are not necessary and implicitly the expected supplementary costs are reduced. The calculus algorithm established for the asymmetric gear design application use the „direct design“ of the spur gears. This method offers the possibility of determining first the parameters of the gears, followed by the determination of the asymmetric gear rack’s parameters, based on those of the gears. Using original design method and computer applications have been determined the geometrical parameters, the 2D and 3D models of the asymmetric gears and on the base of these models have been manufacturing on CNC machine tool asymmetric gears.

  16. A Discovery of Strong Metal-Support Bonding in Nanoengineered Au-Fe3O4 Dumbbell-like Nanoparticles by in Situ Transmission Electron Microscopy.

    Science.gov (United States)

    Han, Chang Wan; Choksi, Tej; Milligan, Cory; Majumdar, Paulami; Manto, Michael; Cui, Yanran; Sang, Xiahan; Unocic, Raymond R; Zemlyanov, Dmitry; Wang, Chao; Ribeiro, Fabio H; Greeley, Jeffrey; Ortalan, Volkan

    2017-08-09

    The strength of metal-support bonding in heterogeneous catalysts determines their thermal stability, therefore, a tremendous amount of effort has been expended to understand metal-support interactions. Herein, we report the discovery of an anomalous "strong metal-support bonding" between gold nanoparticles and "nano-engineered" Fe 3 O 4 substrates by in situ microscopy. During in situ vacuum annealing of Au-Fe 3 O 4 dumbbell-like nanoparticles, synthesized by the epitaxial growth of nano-Fe 3 O 4 on Au nanoparticles, the gold nanoparticles transform into the gold thin films and wet the surface of nano-Fe 3 O 4 , as the surface reduction of nano-Fe 3 O 4 proceeds. This phenomenon results from a unique coupling of the size-and shape-dependent high surface reducibility of nano-Fe 3 O 4 and the extremely strong adhesion between Au and the reduced Fe 3 O 4 . This strong metal-support bonding reveals the significance of controlling the metal oxide support size and morphology for optimizing metal-support bonding and ultimately for the development of improved catalysts and functional nanostructures.

  17. Best Speed Fit EDF Scheduling for Performance Asymmetric Multiprocessors

    Directory of Open Access Journals (Sweden)

    Peng Wu

    2017-01-01

    Full Text Available In order to improve the performance of a real-time system, asymmetric multiprocessors have been proposed. The benefits of improved system performance and reduced power consumption from such architectures cannot be fully exploited unless suitable task scheduling and task allocation approaches are implemented at the operating system level. Unfortunately, most of the previous research on scheduling algorithms for performance asymmetric multiprocessors is focused on task priority assignment. They simply assign the highest priority task to the fastest processor. In this paper, we propose BSF-EDF (best speed fit for earliest deadline first for performance asymmetric multiprocessor scheduling. This approach chooses a suitable processor rather than the fastest one, when allocating tasks. With this proposed BSF-EDF scheduling, we also derive an effective schedulability test.

  18. Gravity-induced asymmetric distribution of a plant growth hormone

    Science.gov (United States)

    Bandurski, R. S.; Schulze, A.; Momonoki, Y.

    1984-01-01

    Dolk (1936) demonstrated that gravistimulation induced an asymmetric distribution of auxin in a horizontally-placed shoot. An attempt is made to determine where and how that asymmetry arises, and to demonstrate that the endogenous auxin, indole-3-acetic acid, becomes asymmetrically distributed in the cortical cells of the Zea mays mesocotyl during 3 min of geostimulation. Further, indole-3-acetic acid derived by hydrolysis of an applied transport form of the hormone, indole-3-acetyl-myo-inositol, becomes asymmetrically distributed within 15 min of geostimulus time. From these and prior data is developed a working theory that the gravitational stimulus induces a selective leakage, or secretion, of the hormone from the vascular tissue to the cortical cells of the mesocotyl.

  19. The shear response of copper bicrystals with Σ11 symmetric and asymmetric tilt grain boundaries by molecular dynamics simulation

    Science.gov (United States)

    Zhang, Liang; Lu, Cheng; Tieu, Kiet; Zhao, Xing; Pei, Linqing

    2015-04-01

    Grain boundaries (GBs) are important microstructure features and can significantly affect the properties of nanocrystalline materials. Molecular dynamics simulation was carried out in this study to investigate the shear response and deformation mechanisms of symmetric and asymmetric Σ11 tilt GBs in copper bicrystals. Different deformation mechanisms were reported, depending on GB inclination angles and equilibrium GB structures, including GB migration coupled to shear deformation, GB sliding caused by local atomic shuffling, and dislocation nucleation from GB. The simulation showed that migrating Σ11(1 1 3) GB under shear can be regarded as sliding of GB dislocations and their combination along the boundary plane. A non-planar structure with dissociated intrinsic stacking faults was prevalent in Σ11 asymmetric GBs of Cu. This type of structure can significantly increase the ductility of bicrystal models under shear deformation. A grain boundary can be a source of dislocation and migrate itself at different stress levels. The intrinsic free volume involved in the grain boundary area was correlated with dislocation nucleation and GB sliding, while the dislocation nucleation mechanism can be different for a grain boundary due to its different equilibrium structures.Grain boundaries (GBs) are important microstructure features and can significantly affect the properties of nanocrystalline materials. Molecular dynamics simulation was carried out in this study to investigate the shear response and deformation mechanisms of symmetric and asymmetric Σ11 tilt GBs in copper bicrystals. Different deformation mechanisms were reported, depending on GB inclination angles and equilibrium GB structures, including GB migration coupled to shear deformation, GB sliding caused by local atomic shuffling, and dislocation nucleation from GB. The simulation showed that migrating Σ11(1 1 3) GB under shear can be regarded as sliding of GB dislocations and their combination along the

  20. The asymmetric total synthesis of (+)- and (-)-trypargine via Noyori asymmetric transfer hydrogenation

    International Nuclear Information System (INIS)

    Pilli, Ronaldo A.; Rodrigues Junior, Manoel Trindade

    2009-01-01

    A concise and efficient total synthesis of (+)- and (-)-trypargine (6 steps and 38% overall yield), a 1-substituted β-carboline guanidine alkaloid isolated from the skin of the African frog K. senegalensis, was developed based on the construction of the b-carboline moiety via Bischler-Napieralski reaction and the enantioselective reduction of the dihydro-β-carboline intermediate via an asymmetric transfer hydrogenation reaction using Noyori's protocol. (author)

  1. Stable walking with asymmetric legs

    International Nuclear Information System (INIS)

    Merker, Andreas; Rummel, Juergen; Seyfarth, Andre

    2011-01-01

    Asymmetric leg function is often an undesired side-effect in artificial legged systems and may reflect functional deficits or variations in the mechanical construction. It can also be found in legged locomotion in humans and animals such as after an accident or in specific gait patterns. So far, it is not clear to what extent differences in the leg function of contralateral limbs can be tolerated during walking or running. Here, we address this issue using a bipedal spring-mass model for simulating walking with compliant legs. With the help of the model, we show that considerable differences between contralateral legs can be tolerated and may even provide advantages to the robustness of the system dynamics. A better understanding of the mechanisms and potential benefits of asymmetric leg operation may help to guide the development of artificial limbs or the design novel therapeutic concepts and rehabilitation strategies.

  2. Polarization dependent switching of asymmetric nanorings with a circular field

    Directory of Open Access Journals (Sweden)

    Nihar R. Pradhan

    2016-01-01

    Full Text Available We experimentally investigated the switching from onion to vortex states in asymmetric cobalt nanorings by an applied circular field. An in-plane field is applied along the symmetric or asymmetric axis of the ring to establish domain walls (DWs with symmetric or asymmetric polarization. A circular field is then applied to switch from the onion state to the vortex state, moving the DWs in the process. The asymmetry of the ring leads to different switching fields depending on the location of the DWs and direction of applied field. For polarization along the asymmetric axis, the field required to move the DWs to the narrow side of the ring is smaller than the field required to move the DWs to the larger side of the ring. For polarization along the symmetric axis, establishing one DW in the narrow side and one on the wide side, the field required to switch to the vortex state is an intermediate value.

  3. [Combined orthodontic-orthoganthic surgery to treat asymmetric mandibular excess malocclusions].

    Science.gov (United States)

    Li, Xiao-Bing; Chen, Song; Chen, Yang-Xi; Li, Jun

    2005-06-01

    To discuss the skeletal and dentoalveolar characteristics of asymmetric mandibular excess malocclusions and to discuss the procedures of combined orthodontic-orthonganthic surgery treatments of asymmetric mandibular excess malocclusions. 25 cases treated by combined orthodontic-orthognathic surgery treatments were reviewed to find out the specialties of this kind of therapy. The asymmetric of mandible presents anterior and posterior teeth tipped both sagitally and horizontally, as well as upper and lower jaws incompatibility. The pre-surgical orthodontic treatments included decomposition of anterior and posterior teeth, leveling and aligning the teeth etc. The post-surgical orthodontic treatments were to detail the occlusions. The patients all got functional and aesthetic good results after the combined orthodontic-orthognathic surgery treatments. The asymmetric mandibular excess affects the harmony of the face badly, and the correction of it must be carried out by the combined orthodontic-orthognathic surgery treatments. The pre- and post-surgical orthodontic treatments are the key stages to make the skeletal corrections stable.

  4. High Current Ionic Diode Using Homogeneously Charged Asymmetric Nanochannel Network Membrane.

    Science.gov (United States)

    Choi, Eunpyo; Wang, Cong; Chang, Gyu Tae; Park, Jungyul

    2016-04-13

    A high current ionic diode is achieved using an asymmetric nanochannel network membrane (NCNM) constructed by soft lithography and in situ self-assembly of nanoparticles with uniform surface charge. The asymmetric NCNM exhibits high rectified currents without losing a rectification ratio because of its ionic selectivity gradient and differentiated electrical conductance. Asymmetric ionic transport is analyzed with diode-like I-V curves and visualized via fluorescent dyes, which is closely correlated with ionic selectivity and ion distribution according to variation of NCNM geometries.

  5. Design of activated carbon/activated carbon asymmetric capacitors

    Science.gov (United States)

    Piñeiro-Prado, Isabel; Salinas-Torres, David; Ruiz Rosas, Ramiro; Morallon, Emilia; Cazorla-Amoros, Diego

    2016-03-01

    Supercapacitors are energy storage devices that offer a high power density and a low energy density in comparison with batteries. Their limited energy density can be overcome by using asymmetric configuration in mass electrodes, where each electrode works within their maximum available potential window, rendering the maximum voltage output of the system. Such asymmetric capacitors must be optimized through careful electrochemical characterization of the electrodes for accurate determination of the capacitance and the potential stability limits. The results of the characterization are then used for optimizing mass ratio of the electrodes from the balance of stored charge. The reliability of the design largely depends on the approach taken for the electrochemical characterization. Therefore, the performance could be lower than expected and even the system could break down, if a well thought out procedure is not followed. In this work, a procedure for the development of asymmetric supercapacitors based on activated carbons is detailed. Three activated carbon materials with different textural properties and surface chemistry have been systematically characterized in neutral aqueous electrolyte. The asymmetric configuration of the masses of both electrodes in the supercapacitor has allowed to cover a higher potential window, resulting in an increase of the energy density of the three devices studied when compared with the symmetric systems, and an improved cycle life.

  6. Design of activated carbon/activated carbon asymmetric capacitors

    Directory of Open Access Journals (Sweden)

    Isabel ePiñeiro-Prado

    2016-03-01

    Full Text Available Supercapacitors are energy storage devices that offer a high power density and a low energy density in comparison with batteries. Their limited energy density can be overcome by using asymmetric configuration in mass electrodes, where each electrode works within their maximum available potential window, rendering the maximum voltage output of the system. Such asymmetric capacitors must be optimized through careful electrochemical characterization of the electrodes for accurate determination of the capacitance and the potential stability limits. The results of the characterization are then used for optimizing mass ratio of the electrodes from the balance of stored charge. The reliability of the design largely depends on the approach taken for the electrochemical characterization. Therefore, the performance could be lower than expected and even the system could break down, if a well thought out procedure is not followed.In this work, a procedure for the development of asymmetric supercapacitors based on activated carbons is detailed. Three activated carbon materials with different textural properties and surface chemistry have been systematically characterized in neutral aqueous electrolyte. The asymmetric configuration of the masses of both electrodes in the supercapacitor has allowed to cover a higher potential window, resulting in an increase of the energy density of the three devices studied when compared with the symmetric systems, and an improved cycle life.

  7. Direct catalytic asymmetric aldol-Tishchenko reaction.

    Science.gov (United States)

    Gnanadesikan, Vijay; Horiuchi, Yoshihiro; Ohshima, Takashi; Shibasaki, Masakatsu

    2004-06-30

    A direct catalytic asymmetric aldol reaction of propionate equivalent was achieved via the aldol-Tishchenko reaction. Coupling an irreversible Tishchenko reaction to a reversible aldol reaction overcame the retro-aldol reaction problem and thereby afforded the products in high enantio and diastereoselectivity using 10 mol % of the asymmetric catalyst. A variety of ketones and aldehydes, including propyl and butyl ketones, were coupled efficiently, yielding the corresponding aldol-Tishchenko products in up to 96% yield and 95% ee. Diastereoselectivity was generally below the detection limit of 1H NMR (>98:2). Preliminary studies performed to clarify the mechanism revealed that the aldol products were racemic with no diastereoselectivity. On the other hand, the Tishchenko products were obtained in a highly enantiocontrolled manner.

  8. Ion Motion Stability in Asymmetric Surface Electrode Ion Traps

    Science.gov (United States)

    Shaikh, Fayaz; Ozakin, Arkadas

    2010-03-01

    Many recently developed designs of the surface electrode ion traps for quantum information processing have asymmetry built into their geometries. The asymmetry helps rotate the trap axes to angles with respect to electrode surface that facilitate laser cooling of ions but introduces a relative angle between the RF and DC fields and invalidates the classical stability analysis of the symmetric case for which the equations of motion are decoupled. For asymmetric case the classical motion of a single ion is given by a coupled, multi-dimensional version of Mathieu's equation. In this poster we discuss the stability diagram of asymmetric surface traps by performing an approximate multiple scale perturbation analysis of the coupled Mathieu equations, and validate the results with numerical simulations. After obtaining the stability diagram for the linear fields, we simulate the motion of an ion in a given asymmetric surface trap, utilizing a method-of-moments calculation of the electrode fields. We obtain the stability diagram and compare it with the ideal case to find the region of validity. Finally, we compare the results of our stability analysis to experiments conducted on a microfabricated asymmetric surface trap.

  9. Broadband asymmetric transmission of linearly polarized electromagnetic waves based on chiral metamaterial

    Science.gov (United States)

    Stephen, Lincy; Yogesh, N.; Subramanian, V.

    2018-01-01

    The giant optical activity of chiral metamaterials (CMMs) holds great potential for tailoring the polarization state of an electromagnetic (EM) wave. In controlling the polarization state, the aspect of asymmetric transmission (AT), where a medium allows the EM radiation to pass through in one direction while restricting it in the opposite direction, adds additional degrees of freedom such as one-way channelling functionality. In this work, a CMM formed by a pair of mutually twisted slanted complementary metal strips is realized for broadband AT accompanied with cross-polarization (CP) conversion for linearly polarized EM waves. Numerically, the proposed ultra-thin (˜λ/42) CMM shows broadband AT from 8.58 GHz to 9.73 GHz (bandwidth of 1.15 GHz) accompanied with CP transmission magnitude greater than 0.9. The transmission and reflection spectra reveal the origin of the asymmetric transmission as the direction sensitive cross polarization conversion and anisotropic electric coupling occurring in the structure which is then elaborated with the surface current analysis and electric field distribution within the structure. An experiment is carried out to verify the broadband AT based CP conversion of the proposed CMM at microwave frequencies, and a reliable agreement between numerical and experimental results is obtained. Being ultra-thin, the reported broadband AT based CP conversion of the proposed CMM is useful for controlling radiation patterns in non-reciprocal EM devices and communication networks.

  10. Performance improvement induced by asymmetric Y2O3-coated device structure to carbon-nanotube-film based photodetectors

    Science.gov (United States)

    Wang, Fanglin; Xu, Haitao; Huang, Huixin; Ma, Ze; Wang, Sheng; Peng, Lian-Mao

    2017-11-01

    Film-based semiconducting carbon nanotube (CNT) photodetectors are promising candidates for industrial applications. However, unintentional doping from the environment such as water/oxygen (H2O/O2) redox, polymers, etc. changes the doping level of the CNT film. Here, we evaluate the performance of film-based barrier-free bipolar diodes (BFBDs), which are basically semiconducting CNT films asymmetrically contacted by perfect n-type ohmic contact (scandium, Sc) and p-type ohmic contact (palladium, Pd) at the two ends of the diode. We show that normal BFBD devices have large variances of forward current, reverse current, and photocurrent for different doping levels of the channel. We propose an asymmetric Y2O3-coated BFBD device in which the channel is covered by a layer of an Y2O3 film and an overlap between the Sc electrode and the Y2O3 film is designed. The Y2O3 film provides p-type doping to the channel. The overlap section increases the length of the base of the pn junction, and the diffusion current of holes is suppressed. In this way, the rectifier factors (current ratio when voltages are at +0.5 V and -0.5 V) of the asymmetric Y2O3-coated BFBD devices are around two orders of magnitude larger and the photocurrent generation is more stable compared to that of normal devices. Our results provide a way to conquer the influence of unintentional doping from the environment and suppress reverse current in pn diodes. This is beneficial to applications of CNT-based photodetectors and of importance for inspiring methods to improve the performances of devices based on other low dimensional materials.

  11. Asymmetric information and list-price reductions in the housing market

    NARCIS (Netherlands)

    de Wit, E.; van der Klaauw, B.

    2013-01-01

    In housing markets with asymmetric information list prices may signal unobserved properties of the house or the seller. Asymmetric information is the starting point for many models for the housing market. In this paper, we estimate the causal effect of list-price reductions on the time houses remain

  12. Family of commuting operators for the totally asymmetric exclusion process

    International Nuclear Information System (INIS)

    Golinelli, O; Mallick, K

    2007-01-01

    The algebraic structure underlying the totally asymmetric exclusion process is studied by using the Bethe Ansatz technique. From the properties of the algebra generated by the local jump operators, we explicitly construct the hierarchy of operators (called generalized Hamiltonians) that commute with the Markov operator. The transfer matrix, which is the generating function of these operators, is shown to represent a discrete Markov process with long-range jumps. We give a general combinatorial formula for the connected Hamiltonians obtained by taking the logarithm of the transfer matrix. This formula is proved using a symbolic calculation program for the first ten connected operators

  13. JET and COMPASS asymmetrical disruptions

    Czech Academy of Sciences Publication Activity Database

    Gerasimov, S.N.; Abreu, P.; Baruzzo, M.; Drozdov, V.; Dvornova, A.; Havlíček, Josef; Hender, T.C.; Hronová-Bilyková, Olena; Kruezi, U.; Li, X.; Markovič, Tomáš; Pánek, Radomír; Rubinacci, G.; Tsalas, M.; Ventre, S.; Villone, F.; Zakharov, L.E.

    2015-01-01

    Roč. 55, č. 11 (2015), s. 113006-113006 ISSN 0029-5515 R&D Projects: GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : tokamak * asymmetrical disruption * JET * COMPASS Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.040, year: 2015

  14. Magnetically Modified Asymmetric Supercapacitors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project is for the development of an asymmetric supercapacitor that will have improved energy density and cycle life....

  15. Ideal MHD beta-limits of poloidally asymmetric equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M.; Miller, A.E.; Grimm, R.C.; Okabayashi, M.; Dalhed, H.E. Jr.

    1981-05-01

    The ideal MHD stability of poloidally asymmetric equilibria, which are typical of a tokamak reactor design with a single-null poloidal divertor is examined. As with symmetric equilibria, stability to non-axisymmetric modes improves with increasing triangularity and ellipticity, and with lower edge safety factor. Pressure profiles optimized with respect to ballooning stability are obtained for an asymmetric shape, resulting in ..beta../sub critical/ approx. = 5.7%. The corresponding value for an equivalent symmetric shape is ..beta../sub critical/ approx. = 6.5%.

  16. Ideal MHD beta-limits of poloidally asymmetric equilibria

    International Nuclear Information System (INIS)

    Todd, A.M.M.; Miller, A.E.; Grimm, R.C.; Okabayashi, M.; Dalhed, H.E. Jr.

    1981-05-01

    The ideal MHD stability of poloidally asymmetric equilibria, which are typical of a tokamak reactor design with a single-null poloidal divertor is examined. As with symmetric equilibria, stability to non-axisymmetric modes improves with increasing triangularity and ellipticity, and with lower edge safety factor. Pressure profiles optimized with respect to ballooning stability are obtained for an asymmetric shape, resulting in β/sub critical/ approx. = 5.7%. The corresponding value for an equivalent symmetric shape is β/sub critical/ approx. = 6.5%

  17. Six transformer based asymmetrical embedded Z-source inverters

    DEFF Research Database (Denmark)

    Wei, Mo; Poh Chiang, Loh; Chi, Jin

    2013-01-01

    Embedded/Asymmetrical embedded Z-source inverters were proposed to maintain smooth input current/voltage across the dc source and within the impedance network, remain the shoot-through feature used to boost up the dc-link voltage without adding bulky filter at input side. This paper introduces a ...... a class of transformer based asymmetrical embedded Z-source inverters which keep the smooth input current and voltage while achieving enhanced voltage boost capability. The presented inverters are verified by laboratory prototypes experimentally....

  18. Synchronised and complementary coordination mechanisms in an asymmetric joint aiming task

    DEFF Research Database (Denmark)

    Skewes, Joshua Charles; Skewes, Lea; Michael, John

    2015-01-01

    Many forms of social interaction require that behaviour be coordinated in the here and now. Much research has been conducted on how people coordinate their actions in real time to achieve a joint goal, showing that people use both synchronised (i.e. symmetric) and complementary (i.e. asymmetric) ...... in this asymmetric task, as people synchronise better with an irregular, but adaptive partner, than with a completely predictable, but non-responsive metronome. These results show that given asymmetric task constraints, adaptability, rather than predictability facilitates coordination....

  19. Capability of DFIG WTS to ride through recurring asymmetrical grid faults

    DEFF Research Database (Denmark)

    Chen, Wenjie; Blaabjerg, Frede; Chen, Min

    2014-01-01

    The Wind Turbine Systems (WTS) are required to ride through recurring grid faults in some countries. In this paper, the capability of Doubly Fed Induction Generator (DFIG) WTS to ride through recurring asymmetrical grid faults is evaluated and compared with the ride through capability under single...... asymmetrical grid fault. A mathematical model of the DFIG under recurring asymmetrical grid faults is represented. The analysis are verified by simulations on a 1.5MW DFIG model and by experiments on a reduced-scale DFIG test system....

  20. Direct growth of vanadium nitride nanosheets on carbon nanotube fibers as novel negative electrodes for high-energy-density wearable fiber-shaped asymmetric supercapacitors

    Science.gov (United States)

    Guo, Jiabin; Zhang, Qichong; Sun, Juan; Li, Chaowei; Zhao, Jingxin; Zhou, Zhenyu; He, Bing; Wang, Xiaona; Man, Ping; Li, Qiulong; Zhang, Jun; Xie, Liyan; Li, Mingxing; Yao, Yagang

    2018-04-01

    Significant efforts have been recently devoted to constructing high-performance fiber-shaped asymmetric supercapacitors. However, it is still a paramount challenge to develop high-energy-density fiber-shaped asymmetric supercapacitors for practical applications in portable and wearable electronics. This work reports a simple and efficient method to directly grow vanadium nitride nanosheets on carbon nanotube fibers as advanced negative electrodes with a high specific capacitance of 188 F/cm3 (564 mF/cm2). Taking advantage of their attractive structure, we successfully fabricated a fiber-shaped asymmetric supercapacitor device with a maximum operating voltage of 1.6 V by assembling the vanadium nitride/carbon nanotube fiber negative electrode with the Zinc-Nickel-Cobalt ternary oxides nanowire arrays positive electrode. Due to the excellent synergistic effects between positive and negative electrodes, a remarkable specific capacitance of 50 F/cm3 (150 mF/cm2) and an outstanding energy density of 17.78 mWh/cm3 (53.33 μWh/cm2) for our fiber-shaped asymmetric supercapacitor can be achieved. Furthermore, the as-assembled fiber-shaped asymmetric supercapacitor device has excellent mechanical flexibility in that 91% of the capacitance retained after bending 90° for 3000 times. Thus, this work exploits a pathway to construct high-energy-density fiber-shaped asymmetric supercapacitor for next-generation portable and wearable electronics.

  1. Influence of artificial tip perturbation on asymmetric vortices flow over a chined fuselage

    Directory of Open Access Journals (Sweden)

    Shi Wei

    2015-08-01

    Full Text Available An experimental study was conducted with the aim of understanding behavior of asymmetric vortices flow over a chined fuselage. The tests were carried out in a wind tunnel at Reynolds number of 1.87 × 105 under the conditions of high angles of attack and zero angle of sideslip. The results show that leeward vortices flow becomes asymmetric vortices flow when angle of attack increases over 20°. The asymmetric vortices flow is asymmetry of two forebody vortices owing to the increase of angle of attack but not asymmetry of vortex breakdown which appears when angle of attack is above 35°. Asymmetric vortices flow is sensitive to tip perturbation and is non-deterministic due to randomly distributed natural minute geometrical irregularities on the nose tip within machining tolerance. Deterministic asymmetric vortices flow can be obtained by attaching artificial tip perturbation which can trigger asymmetric vortices flow and decide asymmetric vortices flow pattern. Triggered by artificial tip perturbation, the vortex on the same side with perturbation is in a higher position, and the other vortex on the opposite side is in a lower position. Vortex suction on the lower vortex side is larger, which corresponds to a side force pointing to the lower vortex side.

  2. Generalized impedances and wakes in asymmetric structures

    International Nuclear Information System (INIS)

    Heifets, S.; Wagner, A.; Zotter, B.

    1998-01-01

    In rotationally structures, the dominant m = 0 longitudinal impedance does not depend on the offsets of either the leading or the trailing particles, while the dominant m = 1 transverse impedance is proportional to the offset of the leading particles, while it is still independent of the offsets of the trailing ones. This behavior is no longer true in rotationally non-symmetric structures, where in general all impedances depend on the offsets of both the leading and the trailing particles. The same behavior is shown by wake functions and wake potentials. The concept of generalized impedances or generalized wake functions must be used to calculate the effect of leading particles on trailing ones with different offsets, each described by two transverse coordinates. This dependence of wake potentials on four additional parameters (two for each offset) would make their use very cumbersome. Fortunately, it was found that the transverse wake potentials can be separated into superpositions of dipolar components, which are proportional to the offset of the leading bunch, and quadrupolar components, which are proportional to the offset of the trailing particles. Higher multipole components are much smaller, and can be neglected for most structures without rotational symmetry. In this report, the authors derive analytical expressions for these multipolar components, which permits estimates of the size of the neglected terms. In particular, when structures have one or two transverse symmetry planes, the expressions simplify and explain the behavior of wake potentials which had been computed for rotationally non-symmetric structures

  3. Autorefraction versus subjective refraction in a radially asymmetric multifocal intraocular lens

    NARCIS (Netherlands)

    Linden, J.W.M. van der; Vrijman, V.; El-Saady, R.; Meulen, I.J. van der; Mourits, M.P.; Lapid-Gortzak, R.

    2014-01-01

    PURPOSE: To evaluate whether the automated refraction (AR) correlates with subjective manifest (MR) refraction in eyes implanted with radially asymmetric multifocal intraocular lens (IOLs). METHODS: This retrospective study evaluated 52 eyes (52 patients) implanted with a radially asymmetric

  4. Asymmetrical distorted structure, dynamics, and reactions of the silacyclohexane and related radical cations: ESR and ab-initio MO study

    International Nuclear Information System (INIS)

    Komaguchi, Kenji; Shiotani, Masaru; Ishikawa, Mitsuo

    1995-01-01

    The σ-type radical cations generated by one electron oxidation of the saturated hydrocarbon have been attracted much attention because of their fundamental importance as primary reactant species in radiation chemistry. Our studies on σ-type radical cations were recently extended to the silacyclohexane (cSiC5), silacyclopentane (cSiC4), and silacyclobutane (cSiC3) radical cations. Their electronic structure, dynamics, and reactions were investigated by means of low temperature matrix isolation ESR technique combined with ionizing radiation (γ-rays from 60 Co). In the preceding paper, the 1-methylsilacyclohexane (1-Me-cSiC5) radical cation has been found to take an asymmetrically distorted C 1 structure with one of two Si-C bonds elongated in which the unpaired electron mainly resides ( 2 A in C 1 ). This conclusion was based on the 4.2 K ESR spectra of radical cations of selectively deuteriated and/or methylsubstituted silacyclohexanes, i.e., cSiC5-2,2,6,6-d 4 + , 1-Me-cSiC5 + , 1-Me-cSiC5-2,2-d 2 + , 1-Me-cSiC5-2,2,6,6-d 4 + , 1,1-Me 2 -cSiC5 + , and 4,4-Me 2 -cSiC5 + , in a frozen CF 3 -cC 6 F 11 matrix. Here we report further experimental and theoretical results on 1-methylsilacyclohexane radical cation, especially on the ab initio MO results and matrix effects on the structural distortion, as well as thermal reactions of the radical cations. The results will make it clear that the distorted C 1 structure of the 1-Me-cSiC5 + is the intrinsic nature at the ground electronic state. (J.P.N.)

  5. Electron Jet of Asymmetric Reconnection

    Science.gov (United States)

    Khotyaintsev, Yu. V.; Graham, D. B.; Norgren, C.; Eriksson, E.; Li, W.; Johlander, A.; Vaivads, A.; Andre, M.; Pritchett, P. L.; Retino, A.; hide

    2016-01-01

    We present Magnetospheric Multiscale observations of an electron-scale current sheet and electron outflow jet for asymmetric reconnection with guide field at the subsolar magnetopause. The electron jet observed within the reconnection region has an electron Mach number of 0.35 and is associated with electron agyrotropy. The jet is unstable to an electrostatic instability which generates intense waves with E(sub parallel lines) amplitudes reaching up to 300 mV/m and potentials up to 20% of the electron thermal energy. We see evidence of interaction between the waves and the electron beam, leading to quick thermalization of the beam and stabilization of the instability. The wave phase speed is comparable to the ion thermal speed, suggesting that the instability is of Buneman type, and therefore introduces electron-ion drag and leads to braking of the electron flow. Our observations demonstrate that electrostatic turbulence plays an important role in the electron-scale physics of asymmetric reconnection.

  6. Field factors for asymmetric collimators

    International Nuclear Information System (INIS)

    Turner, J.R.; Butler, A.P.H.

    1996-01-01

    In recent years manufacturers have been supplying linear accelerators with either a single pair or a dual pair of collimators. The use of a model to relate off-axis field factors to on-axis field factors obviates the need for repeat measurements whenever the asymmetric collimators are employed. We have investigated the variation of collimator scatter Sc, with distance of the central ray x from the central axis for a variety of non square field sizes. Collimator scatter was measured by in-air measurements with a build-up cap. The Primaty-Off-Centre-Ratio (POCR) was measured in-air by scanning orthogonally across the beam with an ionization chamber. The result of the investigation is the useful prediction of off-axis field factors for a range of rectangular asymmetric fields using the simple product of the on-axis field factor and the POCR in air. The effect of asymmetry on the quality of the beam and hence the percent depth dose will be discussed. (author)

  7. The effects of asymmetric directional microphone fittings on acceptance of background noise.

    Science.gov (United States)

    Kim, Jong S; Bryan, Melinda Freyaldenhoven

    2011-05-01

    The effects of asymmetric directional microphone fittings (i.e., an omnidirectional microphone on one ear and a directional microphone on the other) on speech understanding in noise and acceptance of background noise were investigated in 15 full-time hearing aid users. Subjects were fitted binaurally with four directional microphone conditions (i.e., binaural omnidirectional, right asymmetric directional, left asymmetric directional and binaural directional microphones) using Siemens Intuis Directional behind-the-ear hearing aids. Speech understanding in noise was assessed using the Hearing in Noise Test, and acceptance of background noise was assessed using the Acceptable Noise Level procedure. Speech was presented from 0° while noise was presented from 180° azimuth. The results revealed that speech understanding in noise improved when using asymmetric directional microphones compared to binaural omnidirectional microphone fittings and was not significantly hindered compared to binaural directional microphone fittings. The results also revealed that listeners accepted more background noise when fitted with asymmetric directional microphones as compared to binaural omnidirectional microphones. Lastly, the results revealed that the acceptance of noise was further increased for the binaural directional microphones when compared to the asymmetric directional microphones, maximizing listeners' willingness to accept background noise in the presence of noise. Clinical implications will be discussed.

  8. Electronic, structural and magnetic studies of niobium borides of group 8 transition metals, Nb{sub 2}MB{sub 2} (M=Fe, Ru, Os) from first principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Touzani, Rachid St.; Fokwa, Boniface P.T., E-mail: Boniface.Fokwa@ac.rwth-aachen.de

    2014-03-15

    The Nb{sub 2}FeB{sub 2} phase (U{sub 3}Si{sub 2}-type, space group P4/mbm, no. 127) is known for almost 50 years, but until now its magnetic properties have not been investigated. While the synthesis of Nb{sub 2}OsB{sub 2} (space group P4/mnc, no. 128, a twofold superstructure of U{sub 3}Si{sub 2}-type) with distorted Nb-layers and Os{sub 2}-dumbbells was recently achieved, “Nb{sub 2}RuB{sub 2}” is still not synthesized and its crystal structure is yet to be revealed. Our first principles density functional theory (DFT) calculations have confirmed not only the experimental structures of Nb{sub 2}FeB{sub 2} and Nb{sub 2}OsB{sub 2}, but also predict “Nb{sub 2}RuB{sub 2}” to crystalize with the Nb{sub 2}OsB{sub 2} structure type. According to chemical bonding analysis, the homoatomic B–B interactions are optimized and very strong, but relatively strong heteroatomic M–B, B–Nb and M–Nb bonds (M=Fe, Ru, Os) are also found. These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of these ternary borides. The density-of-states at the Fermi level predicts metallic behavior, as expected, from metal-rich borides. Analysis of possible magnetic structures concluded preferred antiferromagnetic ordering for Nb{sub 2}FeB{sub 2}, originating from ferromagnetic interactions within iron chains and antiferromagnetic exchange interactions between them. -- Graphical abstract: Nb{sub 2}FeB{sub 2} (U{sub 3}Si{sub 2} structure type, space group P4/mbm, no. 127) is predicted to order antiferromagnetically, due to the presence of iron chains which show ferromagnetic interactions in the chains and antiferromagnetic interactions between them. “Nb{sub 2}RuB{sub 2}” is predicted to crystallize with the recently discovered Nb{sub 2}OsB{sub 2} twofold superstructure (space group P4/mnc, no. 128) of U{sub 3}Si{sub 2} structure type. The building of ruthenium dumbbells instead of chains along [001] is found to be

  9. Beam-beam issues in asymmetric colliders

    International Nuclear Information System (INIS)

    Furman, M.A.

    1992-07-01

    We discuss generic beam-beam issues for proposed asymmetric e + - e - colliders. We illustrate the issues by choosing, as examples, the proposals by Cornell University (CESR-B), KEK, and SLAC/LBL/LLNL (PEP-II)

  10. Autorefraction versus subjective refraction in a radially asymmetric multifocal intraocular lens

    NARCIS (Netherlands)

    van der Linden, Jan Willem; Vrijman, Violette; Al-Saady, Rana; El-Saady, Rana; van der Meulen, Ivanka J.; Mourits, Maarten P.; Lapid-Gortzak, Ruth

    2014-01-01

    To evaluate whether the automated refraction (AR) correlates with subjective manifest (MR) refraction in eyes implanted with radially asymmetric multifocal intraocular lens (IOLs). This retrospective study evaluated 52 eyes (52 patients) implanted with a radially asymmetric multifocal IOL (LS-312

  11. Micromagnetic simulation of Fe asymmetric nanorings

    International Nuclear Information System (INIS)

    Palma, J.L.; Morales-Concha, C.; Leighton, B.; Altbir, D.; Escrig, J.

    2012-01-01

    During the last decade several methods to control the vortex chirality in nanodots have been proposed. One of them, the introduction of asymmetry in the geometry of the dots, originates interesting effects on the magnetic behavior of the particle. However, asymmetry in core-free structures is also interesting to investigate because of the reproducibility of their magnetic properties. In this work we report systematic changes in the coercivity and remanence in asymmetric nanorings. The angular dependence is also addressed. For specific geometries and magnetic field direction newly reversal modes appear associated with important changes in the coercivity and remanence of the rings. - Highlights: → We report that the existence of asymmetry strongly influences the coercivity and the remanence. → Magnetization reversal is driven by the nucleation of a C state and propagation of a vortex state. → We also conclude that the lack of a core contributes to the stability of the vortex state. → Asymmetry can be useful for tailoring specific magnetic characteristics of these systems.

  12. Affine-response model of molecular solvation of ions: Accurate predictions of asymmetric charging free energies.

    Science.gov (United States)

    Bardhan, Jaydeep P; Jungwirth, Pavel; Makowski, Lee

    2012-09-28

    Two mechanisms have been proposed to drive asymmetric solvent response to a solute charge: a static potential contribution similar to the liquid-vapor potential, and a steric contribution associated with a water molecule's structure and charge distribution. In this work, we use free-energy perturbation molecular-dynamics calculations in explicit water to show that these mechanisms act in complementary regimes; the large static potential (∼44 kJ/mol/e) dominates asymmetric response for deeply buried charges, and the steric contribution dominates for charges near the solute-solvent interface. Therefore, both mechanisms must be included in order to fully account for asymmetric solvation in general. Our calculations suggest that the steric contribution leads to a remarkable deviation from the popular "linear response" model in which the reaction potential changes linearly as a function of charge. In fact, the potential varies in a piecewise-linear fashion, i.e., with different proportionality constants depending on the sign of the charge. This discrepancy is significant even when the charge is completely buried, and holds for solutes larger than single atoms. Together, these mechanisms suggest that implicit-solvent models can be improved using a combination of affine response (an offset due to the static potential) and piecewise-linear response (due to the steric contribution).

  13. Affine-response model of molecular solvation of ions: Accurate predictions of asymmetric charging free energies

    Science.gov (United States)

    Bardhan, Jaydeep P.; Jungwirth, Pavel; Makowski, Lee

    2012-01-01

    Two mechanisms have been proposed to drive asymmetric solvent response to a solute charge: a static potential contribution similar to the liquid-vapor potential, and a steric contribution associated with a water molecule's structure and charge distribution. In this work, we use free-energy perturbation molecular-dynamics calculations in explicit water to show that these mechanisms act in complementary regimes; the large static potential (∼44 kJ/mol/e) dominates asymmetric response for deeply buried charges, and the steric contribution dominates for charges near the solute-solvent interface. Therefore, both mechanisms must be included in order to fully account for asymmetric solvation in general. Our calculations suggest that the steric contribution leads to a remarkable deviation from the popular “linear response” model in which the reaction potential changes linearly as a function of charge. In fact, the potential varies in a piecewise-linear fashion, i.e., with different proportionality constants depending on the sign of the charge. This discrepancy is significant even when the charge is completely buried, and holds for solutes larger than single atoms. Together, these mechanisms suggest that implicit-solvent models can be improved using a combination of affine response (an offset due to the static potential) and piecewise-linear response (due to the steric contribution). PMID:23020318

  14. One-pot synthesis of CoNiO2 single-crystalline nanoparticles as high-performance electrode materials of asymmetric supercapacitors

    Science.gov (United States)

    Du, Weimin; Gao, Yanping; Tian, Qingqing; Li, Dan; Zhang, Zhenhu; Guo, Jiaojiao; Qian, Xuefeng

    2015-09-01

    A facile one-pot solvothermal method has been developed to synthesize CoNiO2 single-crystalline nanoparticles. Crystal phase, morphology, crystal lattice, and composition of the obtained products were characterized by X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, and energy-dispersive X-ray analysis, respectively. Results revealed that the as-synthesized CoNiO2 nanoparticles belong to cubic structure with narrow size-distribution (8-10 nm). Subsequently, new asymmetric supercapacitors were successfully assembled with CoNiO2 nanoparticles as positive electrode and activated carbon as negative electrode. The electrochemical results show that asymmetric supercapacitors based on CoNiO2 nanoparticles possess excellent supercapacitor properties, i.e., a stable electrochemical window of 0-1.7 V, higher energy density of 24.0 Wh/kg at a power density of 415.4 W/kg, and excellent cycling stability (96.8 % capacitance retention after 5000 charge-discharge cycles). Meanwhile, both a light-emitting diode and a mini fan can be powered by two series connection asymmetric supercapacitors. These results imply that the present asymmetric supercapacitors based on CoNiO2 nanoparticles possess the promising potential application in the field of high-performance energy storage.

  15. One-pot synthesis of CoNiO2 single-crystalline nanoparticles as high-performance electrode materials of asymmetric supercapacitors

    International Nuclear Information System (INIS)

    Du, Weimin; Gao, Yanping; Tian, Qingqing; Li, Dan; Zhang, Zhenhu; Guo, Jiaojiao; Qian, Xuefeng

    2015-01-01

    A facile one-pot solvothermal method has been developed to synthesize CoNiO 2 single-crystalline nanoparticles. Crystal phase, morphology, crystal lattice, and composition of the obtained products were characterized by X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, and energy-dispersive X-ray analysis, respectively. Results revealed that the as-synthesized CoNiO 2 nanoparticles belong to cubic structure with narrow size-distribution (8–10 nm). Subsequently, new asymmetric supercapacitors were successfully assembled with CoNiO 2 nanoparticles as positive electrode and activated carbon as negative electrode. The electrochemical results show that asymmetric supercapacitors based on CoNiO 2 nanoparticles possess excellent supercapacitor properties, i.e., a stable electrochemical window of 0–1.7 V, higher energy density of 24.0 Wh/kg at a power density of 415.4 W/kg, and excellent cycling stability (96.8 % capacitance retention after 5000 charge–discharge cycles). Meanwhile, both a light-emitting diode and a mini fan can be powered by two series connection asymmetric supercapacitors. These results imply that the present asymmetric supercapacitors based on CoNiO 2 nanoparticles possess the promising potential application in the field of high-performance energy storage.

  16. The asymmetric rotator model applied to odd-mass iridium isotopes

    International Nuclear Information System (INIS)

    Piepenbring, R.

    1980-04-01

    The method of inversion of the eigenvalue problem previously developed for nuclei with axial symmetry is extended to asymmetric equilibrium shapes. This new approach of the asymmetric rotator model is applied to the odd-mass iridium isotopes. A satisfactory and coherent description of the observed energy spectra is obtained, especially for the lighter isotopes

  17. All Pseudocapacitive MXene-RuO2 Asymmetric Supercapacitors

    KAUST Repository

    Jiang, Qiu

    2018-01-23

    2D transition metal carbides and nitrides, known as MXenes, are an emerging class of 2D materials with a wide spectrum of potential applications, in particular in electrochemical energy storage. The hydrophilicity of MXenes combined with their metallic conductivity and surface redox reactions is the key for high-rate pseudocapacitive energy storage in MXene electrodes. However, symmetric MXene supercapacitors have a limited voltage window of around 0.6 V due to possible oxidation at high anodic potentials. In this study, the fact that titanium carbide MXene (Ti3C2Tx) can operate at negative potentials in acidic electrolyte is exploited, to design an all-pseudocapacitive asymmetric device by combining it with a ruthenium oxide (RuO2) positive electrode. This asymmetric device operates at a voltage window of 1.5 V, which is about two times wider than the operating voltage window of symmetric MXene supercapacitors, and is the widest voltage window reported to date for MXene-based supercapacitors. The complementary working potential windows of MXene and RuO2, along with proton-induced pseudocapacitance, significantly enhance the device performance. As a result, the asymmetric devices can deliver an energy density of 37 µW h cm−2 at a power density of 40 mW cm−2, with 86% capacitance retention after 20 000 charge–discharge cycles. These results show that pseudocapacitive negative MXene electrodes can potentially replace carbon-based materials in asymmetric electrochemical capacitors, leading to an increased energy density.

  18. Kinetically guided colloidal structure formation

    OpenAIRE

    Hecht, Fabian M.; Bausch, Andreas R.

    2016-01-01

    The well-studied self-organization of colloidal particles is predicted to result in a variety of fascinating applications. Yet, whereas self-assembly techniques are extensively explored, designing and producing mesoscale-sized objects remains a major challenge, as equilibration times and thus structure formation timescales become prohibitively long. Asymmetric mesoscopic objects, without prior introduction of asymmetric particles with all its complications, are out of reach––due to the underl...

  19. Asymmetric Facial Bone Fragmentation Mirrors Asymmetric Distribution of Cranial Neuromasts in Blind Mexican Cavefish

    Directory of Open Access Journals (Sweden)

    Joshua B. Gross

    2016-10-01

    Full Text Available Craniofacial asymmetry is a convergent trait widely distributed across animals that colonize the extreme cave environment. Although craniofacial asymmetry can be discerned easily, other complex phenotypes (such as sensory organ position and numerical variation are challenging to score and compare. Certain bones of the craniofacial complex demonstrate substantial asymmetry, and co-localize to regions harboring dramatically expanded numbers of mechanosensory neuromasts. To determine if a relationship exists between this expansion and bone fragmentation in cavefish, we developed a quantitative measure of positional symmetry across the left-right axis. We found that three different cave-dwelling populations were significantly more asymmetric compared to surface-dwelling fish. Moreover, cave populations did not differ in the degree of neuromast asymmetry. This work establishes a method for quantifying symmetry of a complex phenotype, and demonstrates that facial bone fragmentation mirrors the asymmetric distribution of neuromasts in different cavefish populations. Further developmental studies will provide a clearer picture of the developmental and cellular changes that accompany this extreme phenotype, and help illuminate the genetic basis for facial asymmetry in vertebrates.

  20. Impact of asymmetric lamp positioning on the performance of a closed-conduit UV reactor

    Directory of Open Access Journals (Sweden)

    Tipu Sultan

    2017-06-01

    Full Text Available Computational fluid dynamics (CFD analyses for the performance improvement of a closed-conduit ultraviolet (UV reactor were performed by changing the lamp positions from symmetric to asymmetric. The asymmetric lamp positioning can be useful for UV reactor design and optimization. This goal was achieved by incorporating the two performance factors, namely reduction equivalent dose (RED and system dose performance. Four cases were carried out for asymmetric lamp positioning within the UV reactor chamber and each case consisted of four UV lamps that were simulated once symmetrically and four times asymmetrically. The results of the four asymmetric cases were compared with the symmetric one. Moreover, these results were evaluated by using CFD simulations of a closed-conduit UV reactor. The fluence rate model, UVCalc3D was employed to validate the simulations results. The simulation results provide detailed information about the dose distribution, pathogen track modeling and RED. The RED value was increased by approximately 15% by using UVCalc3D fluence rate model. Additionally, the asymmetric lamp positioning of the UV lamps had more than 50% of the pathogens received a better and a higher UV dose than in the symmetric case. Consequently, the system dose performance was improved by asymmetric lamp positioning. It was concluded that the performance parameters (higher RED and system dose performance were improved by using asymmetric lamp positioning.

  1. On the subtle balance between competitive sorption and plasticization effects in asymmetric hollow fiber gas separation membranes

    NARCIS (Netherlands)

    Visser, Tymen; Koops, G.H.; Wessling, Matthias

    2005-01-01

    The paper describes the influence of a varying feed composition of CO2/CH4 and CO2/N2 mixtures on the gas separation performance of integrally skinned asymmetric PES/PI hollow fibers with an effective skin thickness of 0.27 ¿m. Normally, thin membrane structures (<3 ¿m) show accelerated

  2. Electron Raman scattering in asymmetrical multiple quantum wells

    International Nuclear Information System (INIS)

    Betancourt-Riera, R; Rosas, R; Marin-Enriquez, I; Riera, R; Marin, J L

    2005-01-01

    Optical properties of asymmetrical multiple quantum wells for the construction of quantum cascade lasers are calculated, and expressions for the electronic states of asymmetrical multiple quantum wells are presented. The gain and differential cross-section for an electron Raman scattering process are obtained. Also, the emission spectra for several scattering configurations are discussed, and the corresponding selection rules for the processes involved are studied; an interpretation of the singularities found in the spectra is given. The electron Raman scattering studied here can be used to provide direct information about the efficiency of the lasers

  3. Preview-based Asymmetric Load Reduction of Wind Turbines

    DEFF Research Database (Denmark)

    Madsen, Mathias; Filsø, Jakob; Soltani, Mohsen

    2012-01-01

    Controller (MPC) developed is based on a model with individual blade pitching to utilize the LIDAR measurements. The MPC must also maintain a given power reference while satisfying a set of actuator constraints. The designed controller was tested on a 5 MW wind turbine in the FAST simulator and compared......Fatigue loads on wind turbines caused by an asymmetric wind field become an increasing concern when the scale of wind turbines increases. This paper presents a model based predictive approach to reduce asymmetric loads by using Light Detection And Ranging (LIDAR) measurements. The Model Predictive...

  4. Synchronization of Two Asymmetric Exciters in a Vibrating System

    Directory of Open Access Journals (Sweden)

    Zhaohui Ren

    2011-01-01

    Full Text Available We investigate synchronization of two asymmetric exciters in a vibrating system. Using the modified average method of small parameters, we deduce the non-dimensional coupling differential equations of the two exciters (NDDETE. By using the condition of existence for the zero solutions of the NDDETE, the condition of implementing synchronization is deduced: the torque of frequency capture is equal to or greater than the difference in the output electromagnetic torque between the two motors. Using the Routh-Hurwitz criterion, we deduce the condition of stability of synchronization that the inertia coupling matrix of the two exciters is positive definite. A numeric result shows that the structural parameters can meet the need of synchronization stability.

  5. Power loss and energy density of the asymmetric ultracapacitor loaded with molybdenum doped manganese oxide

    International Nuclear Information System (INIS)

    Wang, Yue-Sheng; Tsai, Dah-Shyang; Chung, Wen-Hung; Syu, Yong-Sin; Huang, Ying-Sheng

    2012-01-01

    Highlights: ► Mo-doping (15 mol%) enhances capacitance and diminishes oxide resistance. ► Influences of Mo-doped MnO 2 are analyzed at the level of capacitor power and energy. ► Polarization loss of the asymmetric capacitor is more than that of the symmetric one. ► Pseudocapacitance benefit on energy is evaluated with power and current densities. - Abstract: Ultracapacitors of asymmetric configuration have been prepared with activated carbon (AC) and undoped or Mo-doped manganese oxide (MnO 2 ) in 1.0 M Na 2 SO 4 electrolyte. Phase analysis shows the AC powder, 1–15 μm in size, contains both disordered and graphitic structures, and the undoped and Mo-doped oxide powder, 0.05–0.20 μm in particle size, mainly involves amorphous MnO 2 and MoO 2 . CV results indicate the single electrode of AC plus 10 wt% Mo-doped MnO 2 (A9O M 1) is superior to the electrode with undoped MnO 2 or high content of doped MnO 2 , exhibiting features of double layer capacitance at high scan rate and pseudocapacitance characteristics at low scan rate. When assembled with a negative electrode of AC, the capacitor of positive A9O M 1 electrode demonstrates the least power loss among three asymmetric capacitors. This asymmetric capacitor also shows a higher capacitance than the symmetric AC capacitor when the current density is less than 8.0 A g −1 in 1.8 V potential window. But a higher electrode resistance of A9O M 1, in contrast with AC, compromises its capacitance plus. When the energy density of A9O M 1 asymmetric capacitor is compared with that of symmetric AC capacitor at the same power level, the capacitance benefit on energy density is restricted to current density ≤ 3.0 A g −1 .

  6. Symmetric and Asymmetric Patterns of Attraction Errors in Producing Subject-Predicate Agreement in Hebrew: An Issue of Morphological Structure

    Science.gov (United States)

    Deutsch, Avital; Dank, Maya

    2011-01-01

    A common characteristic of subject-predicate agreement errors (usually termed attraction errors) in complex noun phrases is an asymmetrical pattern of error distribution, depending on the inflectional state of the nouns comprising the complex noun phrase. That is, attraction is most likely to occur when the head noun is the morphologically…

  7. Structural analysis of the ITER vacuum vessel from disruption loading with halo asymmetry

    International Nuclear Information System (INIS)

    Riemer, B.W.; Sayer, R.O.

    1996-01-01

    Static structural analyses of the ITER vacuum vessel were performed with toroidally asymmetric disruption loads. Asymmetric halo current conditions were assumed to modify symmetric disruption loads which resulted in net lateral loading on the vacuum vessel torus. Structural analyses with the asymmetric loading indicated significantly higher vessel stress and blanket support forces than with symmetric disruption loads. A recent change in the vessel support design which provided toroidal constraints at each mid port was found to be effective in reducing torus lateral movement and vessel stress

  8. Process for fabricating PBI hollow fiber asymmetric membranes for gas separation and liquid separation

    Science.gov (United States)

    Jayaweera, Indira; Krishnan, Gopala N.; Sanjurjo, Angel; Jayaweera, Palitha; Bhamidi, Srinivas

    2016-04-26

    The invention provides methods for preparing an asymmetric hollow fiber, the asymmetric hollow fibers prepared by such methods, and uses of the asymmetric hollow fibers. One method involves passing a polymeric solution through an outer annular orifice of a tube-in-orifice spinneret, passing a bore fluid though an inner tube of the spinneret, dropping the polymeric solution and bore fluid through an atmosphere over a dropping distance, and quenching the polymeric solution and bore fluid in a bath to form an asymmetric hollow fiber.

  9. Collaborative hierarchy maintains cooperation in asymmetric games.

    Science.gov (United States)

    Antonioni, Alberto; Pereda, María; Cronin, Katherine A; Tomassini, Marco; Sánchez, Angel

    2018-03-29

    The interplay of social structure and cooperative behavior is under much scrutiny lately as behavior in social contexts becomes increasingly relevant for everyday life. Earlier experimental work showed that the existence of a social hierarchy, earned through competition, was detrimental for the evolution of cooperative behaviors. Here, we study the case in which individuals are ranked in a hierarchical structure based on their performance in a collective effort by having them play a Public Goods Game. In the first treatment, participants are ranked according to group earnings while, in the second treatment, their rankings are based on individual earnings. Subsequently, participants play asymmetric Prisoner's Dilemma games where higher-ranked players gain more than lower ones. Our experiments show that there are no detrimental effects of the hierarchy formed based on group performance, yet when ranking is assigned individually we observe a decrease in cooperation. Our results show that different levels of cooperation arise from the fact that subjects are interpreting rankings as a reputation which carries information about which subjects were cooperators in the previous phase. Our results demonstrate that noting the manner in which a hierarchy is established is essential for understanding its effects on cooperation.

  10. Asymmetric Distribution of GFAP in Glioma Multipotent Cells

    Science.gov (United States)

    Guichet, Pierre-Olivier; Guelfi, Sophie; Ripoll, Chantal; Teigell, Marisa; Sabourin, Jean-Charles; Bauchet, Luc; Rigau, Valérie; Rothhut, Bernard; Hugnot, Jean-Philippe

    2016-01-01

    Asymmetric division (AD) is a fundamental mechanism whereby unequal inheritance of various cellular compounds during mitosis generates unequal fate in the two daughter cells. Unequal repartitions of transcription factors, receptors as well as mRNA have been abundantly described in AD. In contrast, the involvement of intermediate filaments in this process is still largely unknown. AD occurs in stem cells during development but was also recently observed in cancer stem cells. Here, we demonstrate the asymmetric distribution of the main astrocytic intermediate filament, namely the glial fibrillary acid protein (GFAP), in mitotic glioma multipotent cells isolated from glioblastoma (GBM), the most frequent type of brain tumor. Unequal mitotic repartition of GFAP was also observed in mice non-tumoral neural stem cells indicating that this process occurs across species and is not restricted to cancerous cells. Immunofluorescence and videomicroscopy were used to capture these rare and transient events. Considering the role of intermediate filaments in cytoplasm organization and cell signaling, we propose that asymmetric distribution of GFAP could possibly participate in the regulation of normal and cancerous neural stem cell fate. PMID:26953813

  11. Asymmetric Distribution of GFAP in Glioma Multipotent Cells.

    Directory of Open Access Journals (Sweden)

    Pierre-Olivier Guichet

    Full Text Available Asymmetric division (AD is a fundamental mechanism whereby unequal inheritance of various cellular compounds during mitosis generates unequal fate in the two daughter cells. Unequal repartitions of transcription factors, receptors as well as mRNA have been abundantly described in AD. In contrast, the involvement of intermediate filaments in this process is still largely unknown. AD occurs in stem cells during development but was also recently observed in cancer stem cells. Here, we demonstrate the asymmetric distribution of the main astrocytic intermediate filament, namely the glial fibrillary acid protein (GFAP, in mitotic glioma multipotent cells isolated from glioblastoma (GBM, the most frequent type of brain tumor. Unequal mitotic repartition of GFAP was also observed in mice non-tumoral neural stem cells indicating that this process occurs across species and is not restricted to cancerous cells. Immunofluorescence and videomicroscopy were used to capture these rare and transient events. Considering the role of intermediate filaments in cytoplasm organization and cell signaling, we propose that asymmetric distribution of GFAP could possibly participate in the regulation of normal and cancerous neural stem cell fate.

  12. Origin of Asymmetric Charge Partitioning in the Dissociation of Gas-Phase Protein Homodimers

    OpenAIRE

    Jurchen, John C.; Williams, Evan R.

    2003-01-01

    The origin of asymmetric charge and mass partitioning observed for gas-phase dissociation of multiply charged macromolecular complexes has been hotly debated. These experiments hold the potential to provide detailed information about the interactions between the macromolecules within the complex. Here, this unusual phenomenon of asymmetric charge partitioning is investigated for several protein homodimers. Asymmetric charge partitioning in these ions depends on a number of factors, including ...

  13. Leaky electronic states for photovoltaic photodetectors based on asymmetric superlattices

    Science.gov (United States)

    Penello, Germano Maioli; Pereira, Pedro Henrique; Pires, Mauricio Pamplona; Sivco, Deborah; Gmachl, Claire; Souza, Patricia Lustoza

    2018-01-01

    The concept of leaky electronic states in the continuum is used to achieve room temperature operation of photovoltaic superlattice infrared photodetectors. A structural asymmetric InGaAs/InAlAs potential profile is designed to create states in the continuum with the preferential direction for electron extraction and, consequently, to obtain photovoltaic operation at room temperature. Due to the photovoltaic operation and virtual increase in the bandoffset, the device presents both low dark current and low noise. The Johnson noise limited specific detectivity reaches values as high as 1.4 × 1011 Jones at 80 K. At 300 K, the detectivity obtained is 7.0 × 105 Jones.

  14. Stomatal cell wall composition: distinctive structural patterns associated with different phylogenetic groups.

    Science.gov (United States)

    Shtein, Ilana; Shelef, Yaniv; Marom, Ziv; Zelinger, Einat; Schwartz, Amnon; Popper, Zoë A; Bar-On, Benny; Harpaz-Saad, Smadar

    2017-04-01

    Stomatal morphology and function have remained largely conserved throughout ∼400 million years of plant evolution. However, plant cell wall composition has evolved and changed. Here stomatal cell wall composition was investigated in different vascular plant groups in attempt to understand their possible effect on stomatal function. A renewed look at stomatal cell walls was attempted utilizing digitalized polar microscopy, confocal microscopy, histology and a numerical finite-elements simulation. The six species of vascular plants chosen for this study cover a broad structural, ecophysiological and evolutionary spectrum: ferns ( Asplenium nidus and Platycerium bifurcatum ) and angiosperms ( Arabidopsis thaliana and Commelina erecta ) with kidney-shaped stomata, and grasses (angiosperms, family Poaceae) with dumbbell-shaped stomata ( Sorghum bicolor and Triticum aestivum ). Three distinct patterns of cellulose crystallinity in stomatal cell walls were observed: Type I (kidney-shaped stomata, ferns), Type II (kidney-shaped stomata, angiosperms) and Type III (dumbbell-shaped stomata, grasses). The different stomatal cell wall attributes investigated (cellulose crystallinity, pectins, lignin, phenolics) exhibited taxon-specific patterns, with reciprocal substitution of structural elements in the end-walls of kidney-shaped stomata. According to a numerical bio-mechanical model, the end walls of kidney-shaped stomata develop the highest stresses during opening. The data presented demonstrate for the first time the existence of distinct spatial patterns of varying cellulose crystallinity in guard cell walls. It is also highly intriguing that in angiosperms crystalline cellulose appears to have replaced lignin that occurs in the stomatal end-walls of ferns serving a similar wall strengthening function. Such taxon-specific spatial patterns of cell wall components could imply different biomechanical functions, which in turn could be a consequence of differences in

  15. Asymmetric cell division of stem cells in the lung and other systems

    Directory of Open Access Journals (Sweden)

    Mohamed eBerika

    2014-07-01

    Full Text Available New insights have been added to identification, behavior and cellular properties of embryonic and tissue-specific stem cells over the last few years. The modes of stem cell division, asymmetric versus symmetric, are tightly regulated during development and regeneration. The proper choice of a stem cell to divide asymmetrically or symmetrically has great consequences for development and disease because inappropriate asymmetric division disrupts organ morphogenesis, whereas uncontrolled symmetric division induces tumorigenesis. Therefore, understanding the behavior of lung stem cells could identify innovative solutions for restoring normal morphogenesis and/or regeneration of different organs. In this concise review, we describe recent studies in our laboratory about the mode of division of lung epithelial stem cells. We also compare asymmetric cell division in the lung stem cells with other tissues in different organisms.

  16. Asymmetric Aminalization via Cation-Binding Catalysis

    DEFF Research Database (Denmark)

    Park, Sang Yeon; Liu, Yidong; Oh, Joong Suk

    2018-01-01

    Asymmetric cation-binding catalysis, in principle, can generate "chiral" anionic nucleophiles, where the counter cations are coordinated within chiral environments. Nitrogen-nucleophiles are intrinsically basic, therefore, its use as nucleophiles is often challenging and limiting the scope of the...

  17. Uniform versus asymmetric shading mediates crown recession in conifers.

    Directory of Open Access Journals (Sweden)

    Amanda L Schoonmaker

    Full Text Available In this study we explore the impact of asymmetrical vs. uniform crown shading on the mortality and growth of upper and lower branches within tree crowns, for two conifer species: shade intolerant lodgepole pine (Pinus contorta and shade tolerant white spruce (Picea glauca. We also explore xylem hydraulics, foliar nutrition, and carbohydrate status as drivers for growth and expansion of the lower and upper branches in various types of shading. This study was conducted over a two-year period across 10 regenerating forest sites dominated by lodgepole pine and white spruce, in the lower foothills of Alberta, Canada. Trees were assigned to one of four shading treatments: (1, complete uniform shading of the entire tree, (2 light asymmetric shading where the lower 1/4-1/3 of the tree crown was shaded, (3 heavy asymmetric shading as in (2 except with greater light reduction and (4 control in which no artificial shading occurred and most of the entire crown was exposed to full light. Asymmetrical shading of only the lower crown had a larger negative impact on the bud expansion and growth than did uniform shading, and the effect was stronger in pine relative to spruce. In addition, lower branches in pine also had lower carbon reserves, and reduced xylem-area specific conductivity compared to spruce. For both species, but particularly the pine, the needles of lower branches tended to store less C than upper branches in the asymmetric shade, which could suggest a movement of reserves away from the lower branches. The implications of these findings correspond with the inherent shade tolerance and self-pruning behavior of these conifers and supports a carbon based mechanism for branch mortality--mediated by an asymmetry in light exposure of the crown.

  18. Role of nitrogen distribution in asymmetric stone-wales defects on electronic transport of graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Hui; Zhao, Jun; Xu, Dahai [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Wei, Jianwei [College of Optoelectronic Information, Chongqing University of Technology, Chongqing 400054 (China)

    2012-01-15

    The authors performed first principles calculation to investigate the influences of nitrogen dopant distribution in the asymmetric Stone-Wales (SW) defect on the electronic transport of zigzag-edged graphene nanoribbon (ZGNR). The stability of doped configurations are evaluated in terms of total energies. It is found that the dopant placed near the edge of the ribbon is the most energetically favorable site. Our results reveal that the doped nanostructures can be substantially modulated as a result of modifications on electronic bands induced by substitutional dopant. Moreover, the individual dopant gives rise to one or two complete electron backscattering centers associated with impurity states in the doped configurations, and the location is determined by the dopant site. Schematics of the atomic structure after asymmetric Stone-Wales defects introduced and different nitrogen substitutional sites. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Stable and High OSNR Compound Linear-Cavity Single-Longitudinal-Mode Erbium-Doped Silica Fiber Laser Based on an Asymmetric Four-Cavity Structure

    International Nuclear Information System (INIS)

    Feng Ting; Yan Feng-Ping; Li Qi; Peng Wan-Jing; Feng Su-Chun; Wen Xiao-Dong; Tan Si-Yu; Liu Peng

    2012-01-01

    We propose a stable and high optical signal-to-noise ratio (OSNR) compound linear-cavity single-longitudinal-mode (SLM) erbium-doped silica fiber laser. It consists of three uniform fiber Bragg gratings (FBGs) and two fiber couplers to form a simple asymmetric four-cavity structure to select the longitudinal mode. The stable SLM operation at the wavelength of 1544.053 nm with a 3 dB bandwidth of 0.014 nm and an OSNR of ∼60 dB was verified experimentally. Under laboratory conditions, a power fluctuation performance of less than 0.05 dB for 5 h and wavelength variation of less than 0.01 nm for about 150 min is demonstrated. Finally, the characteristic of laser output power as a function of pump power is investigated. The proposed system provides a simple and cost-effective approach to realize a stable SLM fiber laser

  20. Diradical character dependences of the first and second hyperpolarizabilities of asymmetric open-shell singlet systems.

    Science.gov (United States)

    Nakano, Masayoshi; Champagne, Benoît

    2013-06-28

    The static first and second hyperpolarizabilities (referred to as β and γ, respectively) of asymmetric open-shell singlet systems have been investigated using the asymmetric two-site diradical model within the valence configuration interaction level of theory in order to reveal the effect of the asymmetric electron distribution on the diradical character and subsequently on β and γ. It is found that the increase of the asymmetric electron distribution causes remarkable changes in the amplitude and the sign of β and γ, and that their variations are intensified with the increase of the diradical character. These results demonstrate that the asymmetric open-shell singlet systems with intermediate diradical characters can exhibit further enhancements of β and γ as compared to conventional asymmetric closed-shell systems and also to symmetric open-shell singlet systems with intermediate diradical characters.

  1. Basal lamina structural alterations in human asymmetric aneurismatic aorta

    Directory of Open Access Journals (Sweden)

    M Cotrufo

    2009-06-01

    Full Text Available Basal lamina (BL is a crucial mechanical and functional component of blood vessels, constituting a sensor of extracellular microenvironment for endothelial cells and pericytes. Recently, an abnormality in the process of matrix microfibrillar component remodeling has been advocated as a mechanism involved in the development of aortic dilation.We focused our attention on BL composition and organization and studied some of the main components of the Extracellular Matrix such as Tenascin, Laminins, Fibronectin, type I, III and IV Collagens.We used surgical fragments from 27 patients, submitted to operation because of aortic root aneurysm and 5 normal aortic wall specimens from heart donors without any evidence for aneurysmal or atherosclerotic diseases of the aorta. Two samples of aortic wall were harvested from each patient, proximal to the sinotubular junction at the aortic convexity and concavity. Each specimen was processed both for immunohistochemical examination and molecular biology study.We compared the convexity of each aortic sample with the concavity of the same vessel, and both of them with the control samples. The synthesis of mRNA and the levels of each protein were assessed, respectively, by RTPCR and Western Blot analysis. Immunohistochemistry elucidated the organization of BL, whose composition was revealed by molecular biology. All pathological samples showed a wall thinner than normal ones. Basal lamina of the aortic wall evidentiated important changes in the tridimensional arrangement of its major components which lost their regular arrangement in pathological specimens. Collagen I, Laminin a2 chain and Fibronectin amounts decreased in pathological samples, while type IV Collagen and Tenascin synthesis increased. Consistently with the common macroscopic observation that ascending aorta dilations tend to expand asymmetrically, with prevalent involvement of the vessel convexity and relative sparing of the concavity, Collagen type

  2. An efficient catalyst for asymmetric Reformatsky reaction

    Indian Academy of Sciences (India)

    rate enantioselectivity using N,N-dialkylnorephedrines as chiral ligands. ..... temperatures also, there was no product conversion. ... Optimization of reaction conditions for asymmetric Reformatsky reaction between benzaldehyde and α-.

  3. LG tools for asymmetric wargaming

    Science.gov (United States)

    Stilman, Boris; Yakhnis, Alex; Yakhnis, Vladimir

    2002-07-01

    Asymmetric operations represent conflict where one of the sides would apply military power to influence the political and civil environment, to facilitate diplomacy, and to interrupt specified illegal activities. This is a special type of conflict where the participants do not initiate full-scale war. Instead, the sides may be engaged in a limited open conflict or one or several sides may covertly engage another side using unconventional or less conventional methods of engagement. They may include peace operations, combating terrorism, counterdrug operations, arms control, support of insurgencies or counterinsurgencies, show of force. An asymmetric conflict can be represented as several concurrent interlinked games of various kinds: military, transportation, economic, political, etc. Thus, various actions of peace violators, terrorists, drug traffickers, etc., can be expressed via moves in different interlinked games. LG tools allow us to fully capture the specificity of asymmetric conflicts employing the major LG concept of hypergame. Hypergame allows modeling concurrent interlinked processes taking place in geographically remote locations at different levels of resolution and time scale. For example, it allows us to model an antiterrorist operation taking place simultaneously in a number of countries around the globe and involving wide range of entities from individuals to combat units to governments. Additionally, LG allows us to model all sides of the conflict at their level of sophistication. Intelligent stakeholders are represented by means of LG generated intelligent strategies. TO generate those strategies, in addition to its own mathematical intelligence, the LG algorithm may incorporate the intelligence of the top-level experts in the respective problem domains. LG models the individual differences between intelligent stakeholders. The LG tools make it possible to incorporate most of the known traits of a stakeholder, i.e., real personalities involved in

  4. Incompressibility of asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Chen, Liewen; Cai, Baojun; Shen, Chun; Ko, Cheming; Xu, Jun; Li, Baoan

    2010-01-01

    Using an isospin- and momentum-dependent modified Gogny (MDI) interaction, the Skyrme-Hartree-Fock (SHF) approach, and a phenomenological modified Skyrme-like (MSL) model, we have studied the incompressibility K sat (δ) of isospin asymmetric nuclear matter at its saturation density. Our results show that in the expansion of K sat (δ) in powers of isospin asymmetry δ, i.e., K sat (δ) = K 0 + K sat,2 δ 2 + K sat,4 δ 4 + O(δ 6 ), the magnitude of the 4th-order K sat,4 parameter is generally small. The 2nd-order K sat,2 parameter thus essentially characterizes the isospin dependence of the incompressibility of asymmetric nuclear matter at saturation density. Furthermore, the K sat,2 can be expressed as K sat,2 = K sym – 6L – J 0 /K 0 L in terms of the slope parameter L and the curvature parameter K sym of the symmetry energy and the third-order derivative parameter J 0 of the energy of symmetric nuclear matter at saturation density, and we find the higher order J 0 contribution to K sat,2 generally cannot be neglected. Also, we have found a linear correlation between K sym and L as well as between J 0 /K 0 and K 0 . Using these correlations together with the empirical constraints on K 0 and L, the nuclear symmetry energy E sym (ρ0) at normal nuclear density, and the nucleon effective mass, we have obtained an estimated value of K sat,2 = -370 ± 120 MeV for the 2nd-order parameter in the isospin asymmetry expansion of the incompressibility of asymmetric nuclear matter at its saturation density. (author)

  5. One-pot synthesis of CoNiO{sub 2} single-crystalline nanoparticles as high-performance electrode materials of asymmetric supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Du, Weimin, E-mail: dwmchem@163.com; Gao, Yanping; Tian, Qingqing; Li, Dan; Zhang, Zhenhu; Guo, Jiaojiao [Anyang Normal University, College of Chemistry and Chemical Engineering (China); Qian, Xuefeng [Shanghai Jiao Tong University, School of Chemistry and Chemical Technology (China)

    2015-09-15

    A facile one-pot solvothermal method has been developed to synthesize CoNiO{sub 2} single-crystalline nanoparticles. Crystal phase, morphology, crystal lattice, and composition of the obtained products were characterized by X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, and energy-dispersive X-ray analysis, respectively. Results revealed that the as-synthesized CoNiO{sub 2} nanoparticles belong to cubic structure with narrow size-distribution (8–10 nm). Subsequently, new asymmetric supercapacitors were successfully assembled with CoNiO{sub 2} nanoparticles as positive electrode and activated carbon as negative electrode. The electrochemical results show that asymmetric supercapacitors based on CoNiO{sub 2} nanoparticles possess excellent supercapacitor properties, i.e., a stable electrochemical window of 0–1.7 V, higher energy density of 24.0 Wh/kg at a power density of 415.4 W/kg, and excellent cycling stability (96.8 % capacitance retention after 5000 charge–discharge cycles). Meanwhile, both a light-emitting diode and a mini fan can be powered by two series connection asymmetric supercapacitors. These results imply that the present asymmetric supercapacitors based on CoNiO{sub 2} nanoparticles possess the promising potential application in the field of high-performance energy storage.

  6. Left ventricular dimensions, systolic functions, and mass in term neonates with symmetric and asymmetric intrauterine growth restriction.

    Science.gov (United States)

    Cinar, Bahar; Sert, Ahmet; Gokmen, Zeynel; Aypar, Ebru; Aslan, Eyup; Odabas, Dursun

    2015-02-01

    Previous studies have demonstrated structural changes in the heart and cardiac dysfunction in foetuses with intrauterine growth restriction. There are no available data that evaluated left ventricular dimensions and mass in neonates with symmetric and asymmetric intrauterine growth restriction. Therefore, we aimed to evaluate left ventricular dimensions, systolic functions, and mass in neonates with symmetric and asymmetric intrauterine growth restriction. We also assessed associated maternal risk factors, and compared results with healthy appropriate for gestational age neonates. In all, 62 asymmetric intrauterine growth restriction neonates, 39 symmetric intrauterine growth restriction neonates, and 50 healthy appropriate for gestational age neonates were evaluated by transthoracic echocardiography. The asymmetric intrauterine growth restriction group had significantly lower left ventricular end-systolic and end-diastolic diameters and posterior wall diameter in systole and diastole than the control group. The symmetric intrauterine growth restriction group had significantly lower left ventricular end-diastolic diameter than the control group. All left ventricular dimensions were lower in the asymmetric intrauterine growth restriction neonates compared with symmetric intrauterine growth restriction neonates (p>0.05), but not statistically significant except left ventricular posterior wall diameter in diastole (3.08±0.83 mm versus 3.54 ±0.72 mm) (pintrauterine growth restriction groups had significantly lower relative posterior wall thickness (0.54±0.19 versus 0.48±0.13 versus 0.8±0.12), left ventricular mass (9.8±4.3 g versus 8.9±3.4 g versus 22.2±5.7 g), and left ventricular mass index (63.6±29.1 g/m2 versus 54.5±24.4 g/m2 versus 109±28.8 g/m2) when compared with the control group. Our study has demonstrated that although neonates with both symmetric and asymmetric intrauterine growth restriction had lower left ventricular dimensions, relative

  7. The Impacts of Dry Dynamic Cores on Asymmetric Hurricane Intensification

    Science.gov (United States)

    Guimond, Stephen R.; Reisner, Jon M.; Marras, Simone; Giraldo, Francis X.

    2016-01-01

    The fundamental pathways for tropical cyclone (TC) intensification are explored by considering axisymmetric and asymmetric impulsive thermal perturbations to balanced, TC-like vortices using the dynamic cores of three different nonlinear numerical models. Attempts at reproducing the results of previous work, which used the community WRF Model, revealed a discrepancy with the impacts of purely asymmetric thermal forcing. The current study finds that thermal asymmetries can have an important, largely positive role on the vortex intensification, whereas other studies find that asymmetric impacts are negligible. Analysis of the spectral energetics of each numerical model indicates that the vortex response to asymmetric thermal perturbations is significantly damped in WRF relative to the other models. Spectral kinetic energy budgets show that this anomalous damping is primarily due to the increased removal of kinetic energy from the vertical divergence of the vertical pressure flux, which is related to the flux of inertia-gravity wave energy. The increased kinetic energy in the other two models is shown to originate around the scales of the heating and propagate upscale with time from nonlinear effects. For very large thermal amplitudes (50 K), the anomalous removal of kinetic energy due to inertia-gravity wave activity is much smaller, resulting in good agreement between models. The results of this paper indicate that the numerical treatment of small-scale processes that project strongly onto inertia-gravity wave energy can lead to significant differences in asymmetric TC intensification. Sensitivity tests with different time integration schemes suggest that diffusion entering into the implicit solution procedure is partly responsible for the anomalous damping of energy.

  8. Asymmetric statistical features of the Chinese domestic and international gold price fluctuation

    Science.gov (United States)

    Cao, Guangxi; Zhao, Yingchao; Han, Yan

    2015-05-01

    Analyzing the statistical features of fluctuation is remarkably significant for financial risk identification and measurement. In this study, the asymmetric detrended fluctuation analysis (A-DFA) method was applied to evaluate asymmetric multifractal scaling behaviors in the Shanghai and New York gold markets. Our findings showed that the multifractal features of the Chinese and international gold spot markets were asymmetric. The gold return series persisted longer in an increasing trend than in a decreasing trend. Moreover, the asymmetric degree of multifractals in the Chinese and international gold markets decreased with the increase in fluctuation range. In addition, the empirical analysis using sliding window technology indicated that multifractal asymmetry in the Chinese and international gold markets was characterized by its time-varying feature. However, the Shanghai and international gold markets basically shared a similar asymmetric degree evolution pattern. The American subprime mortgage crisis (2008) and the European debt crisis (2010) enhanced the asymmetric degree of the multifractal features of the Chinese and international gold markets. Furthermore, we also make statistical tests for the results of multifractatity and asymmetry, and discuss the origin of them. Finally, results of the empirical analysis using the threshold autoregressive conditional heteroskedasticity (TARCH) and exponential generalized autoregressive conditional heteroskedasticity (EGARCH) models exhibited that good news had a more significant effect on the cyclical fluctuation of the gold market than bad news. Moreover, good news exerted a more significant effect on the Chinese gold market than on the international gold market.

  9. Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission

    International Nuclear Information System (INIS)

    Li, Zhaofeng; Mutlu, Mehmet; Ozbay, Ekmel

    2013-01-01

    We summarize the progress in the development and application of chiral metamaterials. After a brief review of the salient features of chiral metamaterials, such as giant optical activity, circular dichroism, and negative refractive index, the common method for the retrieval of effective parameters for chiral metamaterials is surveyed. Then, we introduce some typical chiral structures, e.g., chiral metamaterial consisting of split ring resonators, complementary chiral metamaterial, and composite chiral metamaterial, on the basis of the studies of the authors’ group. The coupling effect during the construction of bulk chiral metamaterials is mentioned and discussed. We introduce the application of bianisotropic chiral structures in the field of asymmetric transmission. Finally, we mention a few directions for future research on chiral metamaterials. (review article)

  10. Analysis of Surface Plasmon Resonance Curves with a Novel Sigmoid-Asymmetric Fitting Algorithm

    Directory of Open Access Journals (Sweden)

    Daeho Jang

    2015-09-01

    Full Text Available The present study introduces a novel curve-fitting algorithm for surface plasmon resonance (SPR curves using a self-constructed, wedge-shaped beam type angular interrogation SPR spectroscopy technique. Previous fitting approaches such as asymmetric and polynomial equations are still unsatisfactory for analyzing full SPR curves and their use is limited to determining the resonance angle. In the present study, we developed a sigmoid-asymmetric equation that provides excellent curve-fitting for the whole SPR curve over a range of incident angles, including regions of the critical angle and resonance angle. Regardless of the bulk fluid type (i.e., water and air, the present sigmoid-asymmetric fitting exhibited nearly perfect matching with a full SPR curve, whereas the asymmetric and polynomial curve fitting methods did not. Because the present curve-fitting sigmoid-asymmetric equation can determine the critical angle as well as the resonance angle, the undesired effect caused by the bulk fluid refractive index was excluded by subtracting the critical angle from the resonance angle in real time. In conclusion, the proposed sigmoid-asymmetric curve-fitting algorithm for SPR curves is widely applicable to various SPR measurements, while excluding the effect of bulk fluids on the sensing layer.

  11. Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking.

    Science.gov (United States)

    Ducharme, Scott W; Liddy, Joshua J; Haddad, Jeffrey M; Busa, Michael A; Claxton, Laura J; van Emmerik, Richard E A

    2018-04-01

    Human locomotion is an inherently complex activity that requires the coordination and control of neurophysiological and biomechanical degrees of freedom across various spatiotemporal scales. Locomotor patterns must constantly be altered in the face of changing environmental or task demands, such as heterogeneous terrains or obstacles. Variability in stride times occurring at short time scales (e.g., 5-10 strides) is statistically correlated to larger fluctuations occurring over longer time scales (e.g., 50-100 strides). This relationship, known as fractal dynamics, is thought to represent the adaptive capacity of the locomotor system. However, this has not been tested empirically. Thus, the purpose of this study was to determine if stride time fractality during steady state walking associated with the ability of individuals to adapt their gait patterns when locomotor speed and symmetry are altered. Fifteen healthy adults walked on a split-belt treadmill at preferred speed, half of preferred speed, and with one leg at preferred speed and the other at half speed (2:1 ratio asymmetric walking). The asymmetric belt speed condition induced gait asymmetries that required adaptation of locomotor patterns. The slow speed manipulation was chosen in order to determine the impact of gait speed on stride time fractal dynamics. Detrended fluctuation analysis was used to quantify the correlation structure, i.e., fractality, of stride times. Cross-correlation analysis was used to measure the deviation from intended anti-phasing between legs as a measure of gait adaptation. Results revealed no association between unperturbed walking fractal dynamics and gait adaptability performance. However, there was a quadratic relationship between perturbed, asymmetric walking fractal dynamics and adaptive performance during split-belt walking, whereby individuals who exhibited fractal scaling exponents that deviated from 1/f performed the poorest. Compared to steady state preferred walking

  12. Orientation- and position-controlled alignment of asymmetric silicon microrod on a substrate with asymmetric electrodes

    Science.gov (United States)

    Shibata, Akihide; Watanabe, Keiji; Sato, Takuya; Kotaki, Hiroshi; Schuele, Paul J.; Crowder, Mark A.; Zhan, Changqing; Hartzell, John W.; Nakatani, Ryoichi

    2014-03-01

    In this paper, we demonstrate the orientation-controlled alignment of asymmetric Si microrods on a glass substrate with an asymmetric pair of electrodes. The Si microrods have the shape of a paddle with a blade and a shaft part, and the pair of electrodes consists of a narrow electrode and a wide electrode. By applying AC bias to the electrodes, the Si microrods suspended in a fluid align in such a way to settle across the electrode pair, and over 80% of the aligned Si microrods have an orientation with the blade and the shaft of the paddle on the wide and the narrow electrodes, respectively. When Si microrods have a shell of dielectric film and its thickness on the top face is thicker than that on the bottom face, 97.8% of the Si microrods are aligned with the top face facing upwards. This technique is useful for orientation-controlled alignment of nano- and microsized devices that have polarity or a distinction between the top and bottom faces.

  13. Asymmetric adsorption of alanine by quartz powder from ethanol solution

    Energy Technology Data Exchange (ETDEWEB)

    Furuyama, Shozo; Sawada, Michio; Hachiya, Kinji; Morimoto, Tetsuo (Okayama Univ. (Japan). Faculty of Science)

    1982-11-01

    The asymmetric adsorption of the racemic alanine by the optically active quartz from ethanol solution at 8/sup 0/C was studied by the /sup 14/C-tracer method and the newly developed /sup 14/C-tracer ninhydrin-colorimetry combination method. The preferential adsorption of L-alanine by levorotatory quartz (l-quartz) and D-alanine by dextrorotatory quartz (d-quartz) was confirmed. The asymmetric adsorptivity (Asub(s)) falls in the range of 1.1 - 1.3, which is comparable with the value determined at - 80/sup 0/C in the previous paper. The effects of water content in the ethanol solution and of the adsorption temperature upon the adsorption affinity of alanine to quartz were also measured. The cause for the asymmetric adsorption is discussed from the crystallographic point of view.

  14. A Design of a Terahertz Microstrip Bandstop Filter with Defected Ground Structure

    Directory of Open Access Journals (Sweden)

    Arjun Kumar

    2013-01-01

    Full Text Available A planar microstrip terahertz (THz bandstop filter has been proposed with defected ground structure with high insertion loss (S21 in a stopband of −25.8 dB at 1.436 THz. The parameters of the circuit model have been extracted from the EM simulation results. A dielectric substrate of Benzocyclobutene (BCB is used to realize a compact bandstop filter using modified hexagonal dumbbell-shape defected ground structure (DB-DGS. In this paper, a defected ground structure topology is used in a λ/4, 50 Ω microstrip line at THz frequency range for compactness. No article has been reported on the microstrip line at terahertz frequency regime using DGS topology. The proposed filter can be used for sensing and detection in biomedical instruments in DNA testing. All the simulations/cosimulations are carried out using a full-wave EM simulator CST V.9 Microwave Studio, HFSS V.10, and Agilent Design Suite (ADS.

  15. Brownian Motion of Asymmetric Boomerang Colloidal Particles

    Science.gov (United States)

    Chakrabarty, Ayan; Konya, Andrew; Wang, Feng; Selinger, Jonathan; Sun, Kai; Wei, Qi-Huo

    2014-03-01

    We used video microscopy and single particle tracking to study the diffusion and local behaviors of asymmetric boomerang particles in a quasi-two dimensional geometry. The motion is biased towards the center of hydrodynamic stress (CoH) and the mean square displacements of the particles are linear at short and long times with different diffusion coefficients and in the crossover regime it is sub-diffusive. Our model based on Langevin theory shows that these behaviors arise from the non-coincidence of the CoH with the center of the body. Since asymmetric boomerangs represent a class of rigid bodies of more generals shape, therefore our findings are generic and true for any non-skewed particle in two dimensions. Both experimental and theoretical results will be discussed.

  16. Examining Theories of Distributive Justice with an Asymmetric Public Goods Game

    Science.gov (United States)

    Schmidt, Stephen J.

    2015-01-01

    In this article, the author presents an asymmetric version of the familiar public goods classroom experiment, in which some players are given more tokens to invest than others, and players collectively decide whether to divide the return to the group investment asymmetrically as well. The asymmetry between players raises normative issues about…

  17. Enhanced subcarrier-index modulation-based asymmetrically clipped optical OFDM using even subcarriers

    Science.gov (United States)

    Guan, Rui; Xu, Wei; Yang, Zhaohui; Huang, Nuo; Wang, Jin-Yuan; Chen, Ming

    2017-11-01

    In this paper, we propose a subcarrier-index modulation-based asymmetrically clipped optical orthogonal frequency division multiplexing (SACO-OFDM) scheme for optical wireless communication (OWC) systems, which benefits from the subcarrier-index modulation (SIM) and asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) techniques. SACO-OFDM conveys additional information via the subcarrier indexing, and the error rate of the bit transmitted by the subcarrier indexing is much lower than that of the conventional M-ary modulation scheme. On the other hand, as the signal constellation in M-ary modulation is relieved, SACO-OFDM has simple transceiver structure and low detection complexity. Moreover, considering the spectral, an enhanced SACO-OFDM (ESACO-OFDM) using even subcarriers is proposed. In this technique, the odd subcarriers are activated for SACO-OFDM, and the imaginary part of even subcarriers are activated for pulse-amplitude-modulated discrete multitone (PAM-DMT). Clearly, ESACO-OFDM achieves better spectral efficiency than the conventional optical OFDM, since all subcarriers are used for data transmission. Simulation results verify the significant bit error rate (BER) and peak-to-average power ratio (PAPR) improvement by the proposed ESACO-OFDM, especially for the medium-to-high signal-to-noise ratio (SNR) regime.

  18. Metal-catalyzed Asymmetric Hetero-Diels-Alder Reactions of Unactivated Dienes with Glyoxylates

    DEFF Research Database (Denmark)

    Johannsen, Mogens; Yao, Sulan; Graven, Anette

    1998-01-01

    The development of a catalytic asymmetric hetero-Diels-Alder methodology for the reaction of unactivated dienes with glyoxylates is presented. Several different asymmetric catalysts can be used, but copper-bisoxazolines and aluminium-BINOL give the highest yield, and the best chemo...

  19. Asymmetric monometallic nanorod nanoparticle dimer and related compositions and methods

    KAUST Repository

    Han, Yu

    2016-03-31

    The fabrication of asymmetric monometallic nanocrystals with novel properties for plasmonics, nanophotonics and nanoelectronics. Asymmetric monometallic plasmonic nanocrystals are of both fundamental synthetic challenge and practical significance. In an example, a thiol-ligand mediated growth strategy that enables the synthesis of unprecedented Au Nanorod-Au Nanoparticle (AuNR-AuNP) dimers from pre-synthesized AuNR seeds. Using high-resolution electron microscopy and tomography, crystal structure and three-dimensional morphology of the dimer, as well as the growth pathway of the AuNP on the AuNR seed, was investigated for this example. The dimer exhibits an extraordinary broadband optical extinction spectrum spanning the UV, visible, and near infrared regions (300 - 1300 nm). This unexpected property makes the AuNR-AuNP dimer example useful for many nanophotonic applications. In two experiments, the dimer example was tested as a surface- enhanced Raman scattering (SERS) substrate and a solar light harvester for photothermal conversion, in comparison with the mixture of AuNR and AuNP. In the SERS experiment, the dimer example showed an enhancement factor about 10 times higher than that of the mixture, when the excitation wavelength (660 nm) was off the two surface plasmon resonance (SPR) bands of the mixture. In the photothermal conversion experiment under simulated sunlight illumination, the dimer example exhibited an energy conversion efficiency about 1.4 times as high as that of the mixture.

  20. Hierarchically structured, nitrogen-doped carbon membranes

    KAUST Repository

    Wang, Hong; Wu, Tao

    2017-01-01

    The present invention is a structure, method of making and method of use for a novel macroscopic hierarchically structured, nitrogen-doped, nano-porous carbon membrane (HNDCMs) with asymmetric and hierarchical pore architecture that can be produced

  1. Modelling of parameters for asymmetric halo and symmetric DHDMG n-MOSFETs

    Science.gov (United States)

    De, Swapnadip; Sarkar, Angsuman; Sarkar, Chandan Kumar

    2011-10-01

    This article presents an analytical surface potential, threshold voltage and drain current model for asymmetric pocket-implanted, single-halo dual material gate and double-halo dual material gate (DHDMG) n-MOSFET (MOSFET, metal-oxide-semiconductor field-effect transistor) operating up to 40 nm regime. The model is derived by applying Gauss's law to a rectangular box, covering the entire depletion region. The asymmetric pocket-implanted model takes into account the effective doping concentration of the two linear pocket profiles at the source and the drain ends along with the inner fringing capacitances at both the source and the drain ends and the subthreshold drain and the substrate bias effect. Using the surface potential model, the threshold voltage and drain currents are estimated. The same model is used to find the characteristic parameters for dual-material gate (DMG) with halo implantations and double gate. The characteristic improvement is investigated. It is concluded that the DHDMG device structure exhibits better suppression of the short-channel effect (SCE) and the threshold voltage roll-off than DMG and double-gate MOSFET. The adequacy of the model is verified by comparing with two-dimensional device simulator DESSIS. A very good agreement of our model with DESSIS is obtained proving the validity of our model used in suppressing the SCEs.

  2. A method of the asymmetric Abel's inversion in plasma diagnosis

    International Nuclear Information System (INIS)

    Matoba, Tohru; Funahashi, Akimasa

    1975-09-01

    In the case of a noncylindrical plasma, axis symmetric components are drawn from observed projected intensities of physical quantities, assuming an asymmetric form. And the radial intensity distribution is determined by Abel's inversion method. The best fitting curve is obtained analytically from measured values by the least-square estimation of nonlinear parameters. The cylindrical symmetric Abel's inversion code ( ABELIC ) and the asymmetric Abel's inversion code ( ABELILSENP 2 ) are described. (auth.)

  3. Fluorescent nanohybrids based on asymmetrical cyanine dyes decorated carbon nanotubes

    OpenAIRE

    Çavuşlar, Özge; Cavuslar, Ozge

    2015-01-01

    In this thesis, we focused on imparting new optical properties to carbon nanotubes (CNTs) to allow their optical detection and visualization in biomedical applications. We investigated the interactions of CNTs and DNA wrapped CNTs with asymmetrical cyanine dye molecules to study the applicability of resulting hybrid materials to fluorescent based systems. When CNTs interacted with asymmetrical cyanine dyes, they constructed a light absorbing nanoarray. However, the fluorescence emission of th...

  4. Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive

    International Nuclear Information System (INIS)

    Gu, Jianfa; Dai, Zhensheng; Song, Peng; Zou, Shiyang; Ye, Wenhua; Zheng, Wudi; Gu, Peijun; Wang, Jianguo; Zhu, Shaoping

    2016-01-01

    The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and the final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.

  5. Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive

    Science.gov (United States)

    Gu, Jianfa; Dai, Zhensheng; Song, Peng; Zou, Shiyang; Ye, Wenhua; Zheng, Wudi; Gu, Peijun; Wang, Jianguo; Zhu, Shaoping

    2016-08-01

    The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and the final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.

  6. Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Jianfa, E-mail: gu-jianfa@iapcm.ac.cn; Dai, Zhensheng, E-mail: dai-zhensheng@iapcm.ac.cn; Song, Peng; Zou, Shiyang; Ye, Wenhua; Zheng, Wudi; Gu, Peijun; Wang, Jianguo; Zhu, Shaoping [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2016-08-15

    The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and the final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.

  7. Asymmetric dark matter annihilation as a test of non-standard cosmologies

    International Nuclear Information System (INIS)

    Gelmini, Graciela B.; Huh, Ji-Haeng; Rehagen, Thomas

    2013-01-01

    We show that the relic abundance of the minority component of asymmetric dark matter can be very sensitive to the expansion rate of the Universe and the temperature of transition between a non-standard pre-Big Bang Nucleosynthesis cosmological phase and the standard radiation dominated phase, if chemical decoupling happens before this transition. In particular, because the annihilation cross section of asymmetric dark matter is typically larger than that of symmetric dark matter in the standard cosmology, the decrease in relic density of the minority component in non-standard cosmologies with respect to the majority component may be compensated by the increase in annihilation cross section, so that the annihilation rate at present of asymmetric dark matter, contrary to general belief, could be larger than that of symmetric dark matter in the standard cosmology. Thus, if the annihilation cross section of the asymmetric dark matter candidate is known, the annihilation rate at present, if detectable, could be used to test the Universe before Big Bang Nucleosynthesis, an epoch from which we do not yet have any data

  8. Asymmetric information and economics

    Science.gov (United States)

    Frieden, B. Roy; Hawkins, Raymond J.

    2010-01-01

    We present an expression of the economic concept of asymmetric information with which it is possible to derive the dynamical laws of an economy. To illustrate the utility of this approach we show how the assumption of optimal information flow leads to a general class of investment strategies including the well-known Q theory of Tobin. Novel consequences of this formalism include a natural definition of market efficiency and an uncertainty principle relating capital stock and investment flow.

  9. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes

    Science.gov (United States)

    Cheng, Yingwen; Zhang, Hongbo; Lu, Songtao; Varanasi, Chakrapani V.; Liu, Jie

    2013-01-01

    Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s-1 to 500 mV s-1. Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg-1) under high power density (7.8 kW kg-1) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required.Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of

  10. Ni2+-binding RNA motifs with an asymmetric purine-rich internal loop and a G-A base pair.

    Science.gov (United States)

    Hofmann, H P; Limmer, S; Hornung, V; Sprinzl, M

    1997-01-01

    RNA molecules with high affinity for immobilized Ni2+ were isolated from an RNA pool with 50 randomized positions by in vitro selection-amplification. The selected RNAs preferentially bind Ni2+ and Co2+ over other cations from first series transition metals. Conserved structure motifs, comprising about 15 nt, were identified that are likely to represent the Ni2+ binding sites. Two conserved motifs contain an asymmetric purine-rich internal loop and probably a mismatch G-A base pair. The structure of one of these motifs was studied with proton NMR spectroscopy and formation of the G-A pair at the junction of helix and internal loop was demonstrated. Using Ni2+ as a paramagnetic probe, a divalent metal ion binding site near this G-A base pair was identified. Ni2+ ions bound to this motif exert a specific stabilization effect. We propose that small asymmetric purine-rich loops that contain a G-A interaction may represent a divalent metal ion binding site in RNA. PMID:9409620

  11. Thomson scattering measurements from asymmetric interpenetrating plasma flows

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J. S., E-mail: ross36@llnl.gov; Moody, J. D.; Fiuza, F.; Ryutov, D.; Divol, L.; Huntington, C. M.; Park, H.-S. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-11-15

    Imaging Thomson scattering measurements of collective ion-acoustic fluctuations have been utilized to determine ion temperature and density from laser produced counter-streaming asymmetric flows. Two foils are heated with 8 laser beams each, 500 J per beam, at the Omega Laser facility. Measurements are made 4 mm from the foil surface using a 60 J 2ω probe laser with a 200 ps pulse length. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the multi-ion species, asymmetric flows theoretical form factor for the ion feature such that the ion temperatures, ion densities, and flow velocities for each plasma flow are determined.

  12. Decoding Pure Rotational Molecular Spectra for Asymmetric Molecules

    Directory of Open Access Journals (Sweden)

    S. A. Cooke

    2013-01-01

    Full Text Available Rotational spectroscopy can provide insights of unparalleled precision with respect to the wavefunctions of molecular systems that have relevance in fields as diverse as astronomy and biology. In this paper, we demonstrate how asymmetric molecular pure rotational spectra may be analyzed “pictorially” and with simple formulae. It is shown that the interpretation of such spectra relies heavily upon pattern recognition. The presentation of some common spectral line positions in near-prolate asymmetric rotational spectra provides a means by which spectral assignment, and approximate rotational constant determination, may be usefully explored. To aid in this endeavor we have created a supporting, free, web page and mobile web page.

  13. Finite stage asymmetric repeated games: Both players' viewpoints

    KAUST Repository

    Li, Lichun

    2017-01-05

    In asymmetric zero-sum games, one player has superior information about the game over the other. It is known that the informed players (maximizer) face the tradeoff of exploiting its superior information at the cost of revealing its superior information, but the basic point of the uninformed player (minimizer)\\'s decision making remains unknown. This paper studies the finite stage asymmetric repeated games from both players\\' viewpoints, and derives that not only security strategies but also the opponents\\' corresponding best responses depends only on the informed player\\'s history action sequences. Moreover, efficient LP formulations to compute both player\\'s security strategies are provided.

  14. Recent Advances in Substrate-Controlled Asymmetric Cyclization for Natural Product Synthesis

    Directory of Open Access Journals (Sweden)

    Jeyun Jo

    2017-06-01

    Full Text Available Asymmetric synthesis of naturally occurring diverse ring systems is an ongoing and challenging research topic. A large variety of remarkable reactions utilizing chiral substrates, auxiliaries, reagents, and catalysts have been intensively investigated. This review specifically describes recent advances in successful asymmetric cyclization reactions to generate cyclic architectures of various natural products in a substrate-controlled manner.

  15. Simulation of seismic signals from asymmetric LANL hydrodynamic calculations

    International Nuclear Information System (INIS)

    Stevens, J.L.; Rimer, N.; Halda, E.J.; Barker, T.G.; Davis, C.G.; Johnson, W.E.

    1993-01-01

    Hydrodynamic calculations of an asymmetric nuclear explosion source were propagated to teleseismic distances to investigate the effects of the asymmetric source on seismic signals. The source is an explosion in a 12 meter long canister with the device at one end of the canister and a metal plate adjacent to the explosion. This produces a strongly asymmetric two-lobed source in the hydrodynamic region. The hydrodynamic source is propagated to the far field using a three-step process. The Eulerian hydrodynamic code SOIL was used by LANL to calculate the material velocity, density, and internal energy up to a time of 8.9 milliseconds after the explosion. These quantities were then transferred to an initial grid for the Lagrangian elastic/plastic finite difference code CRAM, which was used by S-CUBED to propagate the signal through the region of nonlinear deformation into the external elastic region. The cavity size and shape at the time of the overlay were determined by searching for a rapid density change in the SOIL grid, and this interior region was then rezoned into a single zone. The CRAM calculation includes material strength and gravity, and includes the effect of the free surface above the explosion. Finally, far field body waves were calculated by integrating over a closed surface in the elastic region and using the representation theorem. A second calculation was performed using an initially spherical source for comparison with the asymmetric calculation

  16. Clinical characteristics in patients with asymmetric idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Callahan, Sean J; Xia, Meng; Murray, Susan; Flaherty, Kevin R

    2016-10-01

    A group of patients with idiopathic pulmonary fibrosis (IPF) presents with disease affecting one lung markedly more than the other. At this time, it is unclear how this population differs from those who present with more symmetric disease. We sought to explain the characteristics of the asymmetric group and how their disease progresses. In this retrospective case-control study we accessed an interstitial lung disease (ILD) database and identified 14 asymmetric IPF cases via high-resolution computed tomography (HRCT) scoring of each lung lobe's disease severity. We identified 28 symmetric IPF controls from the same database using the same methods, and compared the clinical features of each group. Patients with asymmetric disease exhibited similar demographics as those in the general IPF population; they were predominantly male (64%), elderly (69 years old), and used tobacco (57%). We found a trend toward significantly increased all-cause mortality in the case population two years following diagnosis (p = 0.089). Pulmonary function tests were significantly lower in the case group at the time of diagnosis, then both groups experienced gradual decline. We found no statistically significant differences in number of IPF exacerbations (cases 43%, controls 39%, p = 0.824) and gastro-esophageal reflux (both groups 50%). Patients with asymmetric IPF resemble patients in the general IPF population but may have a lower overall survival rate. Further systemic factors may be studied to identify reasons for disease asymmetry and clinical decline in this population. Published by Elsevier Ltd.

  17. Broadband chirality and asymmetric transmission in ultrathin 90°-twisted Babinet-inverted metasurfaces

    Science.gov (United States)

    Shi, J. H.; Ma, H. F.; Guan, C. Y.; Wang, Z. P.; Cui, T. J.

    2014-04-01

    A broadband asymmetric transmission of linearly polarized waves with totally suppressed copolarization transmission is experimentally demonstrated in ultrathin 90°-twisted Babinet-inverted metasurfaces constructed by an array of asymmetrically split ring apertures. The only accessible direction-dependent cross-polarization transmission is allowed in this anisotropic chiral metamaterial. Through full-wave simulation and experiment results, the bilayered Babinet-inverted metasurface reveals broadband artificial chirality and asymmetric transmission, with a transmission contrast that is better than 17.7 dB within a 50% relative bandwidth for two opposite directions. In particular, we can modify polarization conversion efficiency and the bandwidth of asymmetric transmission via parametric study.

  18. Plasmonic band-stop filter with asymmetric rectangular ring for WDM networks

    International Nuclear Information System (INIS)

    Nezhad, Vahid Foroughi; Abrishamian, Mohammad Sadegh; Abaslou, Siamak

    2013-01-01

    We proposed a simple asymmetric rectangular band-stop filter based on metal–insulator–metal plasmonic waveguides. It is shown that the performance of the structure as a filter strongly depends on the asymmetry of the rectangular structure. An analytical model based on the analogy between MDM waveguides and the microwave transmission line is used to calculate the resonance wavelengths and explain the behavior of the filter. The bandwidth of spectra can be easily manipulated by adjusting the topological parameters of the filter. It is also demonstrated that by adjusting the bandwidth, the filter can be used for CWDM standard channels. The filter behavior is verified using the numerical finite difference time domain (FDTD) method. The filter is compact and has a footprint of 1 μm × 0.5 μm, which is suitable for integrated optical circuits. (paper)

  19. Asymmetrically interacting spreading dynamics on complex layered networks.

    Science.gov (United States)

    Wang, Wei; Tang, Ming; Yang, Hui; Younghae Do; Lai, Ying-Cheng; Lee, GyuWon

    2014-05-29

    The spread of disease through a physical-contact network and the spread of information about the disease on a communication network are two intimately related dynamical processes. We investigate the asymmetrical interplay between the two types of spreading dynamics, each occurring on its own layer, by focusing on the two fundamental quantities underlying any spreading process: epidemic threshold and the final infection ratio. We find that an epidemic outbreak on the contact layer can induce an outbreak on the communication layer, and information spreading can effectively raise the epidemic threshold. When structural correlation exists between the two layers, the information threshold remains unchanged but the epidemic threshold can be enhanced, making the contact layer more resilient to epidemic outbreak. We develop a physical theory to understand the intricate interplay between the two types of spreading dynamics.

  20. Quantum computation in semiconductor quantum dots of electron-spin asymmetric anisotropic exchange

    International Nuclear Information System (INIS)

    Hao Xiang; Zhu Shiqun

    2007-01-01

    The universal quantum computation is obtained when there exists asymmetric anisotropic exchange between electron spins in coupled semiconductor quantum dots. The asymmetric Heisenberg model can be transformed into the isotropic model through the control of two local unitary rotations for the realization of essential quantum gates. The rotations on each qubit are symmetrical and depend on the strength and orientation of asymmetric exchange. The implementation of the axially symmetric local magnetic fields can assist the construction of quantum logic gates in anisotropic coupled quantum dots. This proposal can efficiently use each physical electron spin as a logical qubit in the universal quantum computation

  1. The effect of film thickness and molecular structure on order and disorder in thin films of compositionally asymmetric block copolymers

    Science.gov (United States)

    Mishra, Vindhya

    Directed self-assembly of thin film block copolymers offer a high throughput-low cost route to produce next generation lithographic devices, if one can bring the defect densities in the self assembled patterns below tolerance limits. However, the ability to control the nanoscale structure or morphology in thin film block copolymers presents challenges due to confinement effects on equilibrium behavior. Using structure characterization techniques such as grazing incidence small angle X-ray scattering (GISAXS), transmission electron and atomic force microscopy as well as self-consistent field theory, we have investigated how film thickness, annealing temperature and block copolymer structure affects the equilibrium behavior of asymmetric block copolymer films. Our studies have revealed the complicated dependence of order-disorder transitions, order-order transitions and symmetry transitions on film thickness. We found that the thickness dependent transition in the packing symmetry of spherical morphology diblock copolymers can be suppressed by blending with a small amount of majority block homopolymer, which allowed us to resolve the driving force behind this transition. Defect densities in, and the order-disorder transition temperature of, thin films of graphoepitaxially aligned diblock copolymer cylinders showed surprising sensitivity to the microdomain spacing. Methods to mitigate defect formation in thin films have been identified. The challenge of quantification of structural order in these systems was overcome using GISAXS, which allowed us to study the phenomena of disordering in two and three dimensions. Through studies on block copolymers which exhibit an order-order transition in bulk, we found that that subtle differences in the packing frustration of the spherical and cylindrical phases as well as the higher configurational entropy of free chain ends at the surface can drive the equilibrium configuration in thin films away from the stable bulk structure

  2. Evaluation of the Perceptual Characteristics of a Force Induced by Asymmetric Vibrations.

    Science.gov (United States)

    Tanabe, Takeshi; Yano, Hiroaki; Iwata, Hiroo

    2017-08-29

    This paper describes the properties of proprioceptive sensations induced by asymmetric vibration using a vibration speaker-type non-grounded haptic interface. We confirm that the vibration speaker generates a perceived force that pulls or pushes a user's hand in a particular direction when an asymmetric amplitude signal that is generated by inverting a part of a sine wave is input. In this paper, to verify the system with respect to various factors of force perception caused by asymmetric vibration, we conducted six experiments and the following results were obtained. (1) The force vector can be controlled by reversing the asymmetric waves. (2) By investigating the physical characteristics of the vibration, asymmetric vibration was confirmed. (3) The presentation of vibration in the shear direction on the finger pad is effective. (4) The point of subjective equality of the perceived force can be controlled by up to 0.43 N by changing the amplitude voltage of the input signals. (5) The minimum stimulation time required for force perception is 66.7 ms. (6) When the vibration is continuously presented for 40 to 50 s, the perceived force decreases because of adaptation. Hence, we confirmed that we can control both the direction and magnitude of the reaction force by changing the input signal of the vibration speaker.

  3. Shaking table tests of two different reinforcement techniques using polymeric grids on an asymmetric limestone full-scaled structure

    OpenAIRE

    Bairrão, R.

    2009-01-01

    This paper describes the shaking table tests, and their main results, of an asymmetric limestone masonry building, under different reinforcement conditions. The work was performed in the aim of the project “Enhancing Seismic Resistance and Durability of Natural Masonry Stone” for User Group 3 of the European Consortium of Laboratories for Earthquake and Dynamic Experimental Research (ECOLEADER). The experimental program was performed using the LNEC 3D shaking table. The design of the struc...

  4. Asymmetrical Representation of Gender in Amharic1

    African Journals Online (AJOL)

    Administrator

    in its grammar. Gender representation in this language is asymmetrical heavily ..... In dictionaries where. Amharic appears either as the target or the source language, verbs are entered ...... The Dialects of Amharic Revisited. Semitica et.

  5. Asymmetric multi-fractality in the U.S. stock indices using index-based model of A-MFDFA

    International Nuclear Information System (INIS)

    Lee, Minhyuk; Song, Jae Wook; Park, Ji Hwan; Chang, Woojin

    2017-01-01

    Highlights: • ‘Index-based A-MFDFA’ model is proposed to assess the asymmetric multi-fractality. • The asymmetric multi-fractality in the U.S. stock indices are investigated using ‘Index-based’ and ‘Return-based’ A-MFDFA. • The asymmetric feature is more significantly identified by ‘Index-based’ model than ‘return-based’ model. • Source of multi-fractality and time-varying features are analyzed. - Abstract: We detect the asymmetric multi-fractality in the U.S. stock indices based on the asymmetric multi-fractal detrended fluctuation analysis (A-MFDFA). Instead using the conventional return-based approach, we propose the index-based model of A-MFDFA where the trend based on the evolution of stock index rather than stock price return plays a role for evaluating the asymmetric scaling behaviors. The results show that the multi-fractal behaviors of the U.S. stock indices are asymmetric and the index-based model detects the asymmetric multi-fractality better than return-based model. We also discuss the source of multi-fractality and its asymmetry and observe that the multi-fractal asymmetry in the U.S. stock indices has a time-varying feature where the degree of multi-fractality and asymmetry increase during the financial crisis.

  6. Asymmetric quantum cloning machines

    International Nuclear Information System (INIS)

    Cerf, N.J.

    1998-01-01

    A family of asymmetric cloning machines for quantum bits and N-dimensional quantum states is introduced. These machines produce two approximate copies of a single quantum state that emerge from two distinct channels. In particular, an asymmetric Pauli cloning machine is defined that makes two imperfect copies of a quantum bit, while the overall input-to-output operation for each copy is a Pauli channel. A no-cloning inequality is derived, characterizing the impossibility of copying imposed by quantum mechanics. If p and p ' are the probabilities of the depolarizing channels associated with the two outputs, the domain in (√p,√p ' )-space located inside a particular ellipse representing close-to-perfect cloning is forbidden. This ellipse tends to a circle when copying an N-dimensional state with N→∞, which has a simple semi-classical interpretation. The symmetric Pauli cloning machines are then used to provide an upper bound on the quantum capacity of the Pauli channel of probabilities p x , p y and p z . The capacity is proven to be vanishing if (√p x , √p y , √p z ) lies outside an ellipsoid whose pole coincides with the depolarizing channel that underlies the universal cloning machine. Finally, the tradeoff between the quality of the two copies is shown to result from a complementarity akin to Heisenberg uncertainty principle. (author)

  7. Financial Knudsen number: Breakdown of continuous price dynamics and asymmetric buy-and-sell structures confirmed by high-precision order-book information.

    Science.gov (United States)

    Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako

    2015-10-01

    We generalize the description of the dynamics of the order book of financial markets in terms of a Brownian particle embedded in a fluid of incoming, exiting, and annihilating particles by presenting a model of the velocity on each side (buy and sell) independently. The improved model builds on the time-averaged number of particles in the inner layer and its change per unit time, where the inner layer is revealed by the correlations between price velocity and change in the number of particles (limit orders). This allows us to introduce the Knudsen number of the financial Brownian particle motion and its asymmetric version (on the buy and sell sides). Not being considered previously, the asymmetric Knudsen numbers are crucial in finance in order to detect asymmetric price changes. The Knudsen numbers allows us to characterize the conditions for the market dynamics to be correctly described by a continuous stochastic process. Not questioned until now for large liquid markets such as the USD-JPY and EUR-USD exchange rates, we show that there are regimes when the Knudsen numbers are so high that discrete particle effects dominate, such as during market stresses and crashes. We document the presence of imbalances of particles depletion rates on the buy and sell sides that are associated with high Knudsen numbers and violent directional price changes. This indicator can detect the direction of the price motion at the early stage while the usual volatility risk measure is blind to the price direction.

  8. Financial Knudsen number: Breakdown of continuous price dynamics and asymmetric buy-and-sell structures confirmed by high-precision order-book information

    Science.gov (United States)

    Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako

    2015-10-01

    We generalize the description of the dynamics of the order book of financial markets in terms of a Brownian particle embedded in a fluid of incoming, exiting, and annihilating particles by presenting a model of the velocity on each side (buy and sell) independently. The improved model builds on the time-averaged number of particles in the inner layer and its change per unit time, where the inner layer is revealed by the correlations between price velocity and change in the number of particles (limit orders). This allows us to introduce the Knudsen number of the financial Brownian particle motion and its asymmetric version (on the buy and sell sides). Not being considered previously, the asymmetric Knudsen numbers are crucial in finance in order to detect asymmetric price changes. The Knudsen numbers allows us to characterize the conditions for the market dynamics to be correctly described by a continuous stochastic process. Not questioned until now for large liquid markets such as the USD-JPY and EUR-USD exchange rates, we show that there are regimes when the Knudsen numbers are so high that discrete particle effects dominate, such as during market stresses and crashes. We document the presence of imbalances of particles depletion rates on the buy and sell sides that are associated with high Knudsen numbers and violent directional price changes. This indicator can detect the direction of the price motion at the early stage while the usual volatility risk measure is blind to the price direction.

  9. Monte Carlo simulation of asymmetrical growth of cube-shaped nanoparticles

    International Nuclear Information System (INIS)

    Wang Yuanyuan; Xie Huaqing; Wu Zihua; Xing Jiaojiao

    2016-01-01

    We simulated the asymmetrical growth of cube-shaped nanoparticles by applying the Monte Carlo method. The influence of the specific mechanisms on the crystal growth of nanoparticles has been phenomenologically described by efficient growth possibilities along different directions (or crystal faces). The roles of the thermodynamic and kinetic factors have been evaluated in three phenomenological models. The simulation results would benefit the understanding about the cause and manner of the asymmetrical growth of nanoparticles. (paper)

  10. Extracting and focusing of surface plasmon polaritons inside finite asymmetric metal/insulator/metal structure at apex of optical fiber by subwavelength holes

    Science.gov (United States)

    Oshikane, Yasushi; Murai, Kensuke; Nakano, Motohiro

    2013-09-01

    We have been studied a finite asymmetric metal-insulator-metal (MIM) structure on glass plate for near-future visible light communication (VLC) system with white LED illuminations in the living space (DOI: 10.1117/12.929201). The metal layers are vacuum-evaporated thin silver (Ag) films (around 50 nm and 200 nm, respectively), and the insulator layer (around 150 nm) is composed of magnesium fluoride (MgF2). A characteristic narrow band filtering of the MIM structure at visible region might cause a confinement of intense surface plasmon polaritons (SPPs) at specific monochromatic frequency inside a subwavelength insulator layer of the MIM structure. Central wavelength and depth of such absorption dip in flat spectral reflectance curve is controlled by changing thicknesses of both insulator and thinner metal layers. On the other hand, we have proposed a twin-hole pass-through wave guide for SPPs in thick Ag film (DOI: 10.1117/12.863587). At that time, the twin-hole converted a incoming plane light wave into a pair of channel plasmon polaritons (CPPs), and united them at rear surface of the Ag film. This research is having an eye to extract, guide, and focus the SPPs through a thicker metal layer of the MIM with FIBed subwavelength pass-through holes. The expected outcome is a creation of noble, monochromatic, and tunable fiber probe for scanning near-field optical microscopes (SNOMs) with intense white light sources. Basic experimental and FEM simulation results will be presented.

  11. Source-rock maturation characteristics of symmetric and asymmetric grabens inferred from integrated analogue and numerical modeling: The southern Viking Graben (North Sea)

    NARCIS (Netherlands)

    Corver, M.P.; Doust, H.; van Wees, J.D.A.M.; Cloetingh, S.A.P.L.

    2011-01-01

    We present the results of an integrated analogue and numerical modeling study with a focus on structural, stratigraphic and thermal differences between symmetric and asymmetric grabens. These models enable fault interpretation and subsidence analyses in studies of active rifting and graben

  12. Multilayer core-shell structured composite paper electrode consisting of copper, cuprous oxide and graphite assembled on cellulose fibers for asymmetric supercapacitors

    Science.gov (United States)

    Wan, Caichao; Jiao, Yue; Li, Jian

    2017-09-01

    An easily-operated and inexpensive strategy (pencil-drawing-electrodeposition-electro-oxidation) is proposed to synthesize a novel class of multilayer core-shell structured composite paper electrode, which consists of copper, cuprous oxide and graphite assembled on cellulose fibers. This interesting electrode structure plays a pivotal role in providing more active sites for electrochemical reactions, facilitating ion and electron transport and shorting their diffusion pathways. This electrode demonstrates excellent electrochemical properties with a high specific capacitance of 601 F g-1 at 2 A g-1 and retains 83% of this capacitance when operated at an ultrahigh current density of 100 A g-1. In addition, a high energy density of 13.4 W h kg-1 at the power density of 0.40 kW kg-1 and a favorable cycling stability (95.3%, 8000 cycles) were achieved for this electrode. When this electrode was assembled into an asymmetric supercapacitor with carbon paper as negative electrode, the device displays remarkable electrochemical performances with a large areal capacitances (122 mF cm-2 at 1 mA cm-2), high areal energy density (10.8 μW h cm-2 at 402.5 μW cm-2) and outstanding cycling stability (91.5%, 5000 cycles). These results unveil the potential of this composite electrode as a high-performance electrode material for supercapacitors.

  13. Some Families of Asymmetric Quantum MDS Codes Constructed from Constacyclic Codes

    Science.gov (United States)

    Huang, Yuanyuan; Chen, Jianzhang; Feng, Chunhui; Chen, Riqing

    2018-02-01

    Quantum maximal-distance-separable (MDS) codes that satisfy quantum Singleton bound with different lengths have been constructed by some researchers. In this paper, seven families of asymmetric quantum MDS codes are constructed by using constacyclic codes. We weaken the case of Hermitian-dual containing codes that can be applied to construct asymmetric quantum MDS codes with parameters [[n,k,dz/dx

  14. On the solvability of asymmetric quasilinear finite element approximate problems in nonlinear incompressible elasticity

    International Nuclear Information System (INIS)

    Ruas, V.

    1982-09-01

    A class of simplicial finite elements for solving incompressible elasticity problems in n-dimensional space, n=2 or 3, is presented. An asymmetric structure of the shape functions with respect to the centroid of the simplex, renders them particularly stable in the large strain case, in which the incompressibility condition is nonlinear. It is proved that under certain assembling conditions of the elements, there exists a solution to the corresponding discrete problems. Numerical examples illustrate the efficiency of the method. (Author) [pt

  15. Capacitance and voltage matching between MnO2 nanoflake cathode and Fe2O3 nanoparticle anode for high-performance asymmetric micro-supercapacitors

    Institute of Scientific and Technical Information of China (English)

    Zehua Liu; Xiaocong Tian; Xu Xu; Liang He; Mengyu Yan; Chunhua Han; Yan Li; Wei Yang; Liqiang Mai

    2017-01-01

    Planar micro-supercapacitors show great potential as the energy storage unit in miniaturized electronic devices.Asymmetric structures have been widely investigated in micro-supercapacitors,and carbon-based materials are commonly applied in the electrodes.To integrate different metal oxides in both electrodes in micro-supercapacitors,the critical challenge is the pairing of different faradic metal oxides.Herein,we propose a strategy of matching the voltage and capacitance of two faradic materials that are fully integrated into one high-performance asymmetric micro-supercapadtor by a fadle and controllable fabrication process.The fabricated micro-supercapacitors employ MnO2 as the positive active material and Fe2O3 as the negative active material,respectively.The planar asymmetric micro-supercapacitors possess a high capacitance of 60 F·cm-3,a high energy density of 12 mW·h·cm-3,and a broad operation voltage range up to 1.2 V.

  16. PLZT light transmittance memory driven with an asymmetric voltage pulse

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Morita, Takeshi

    2010-01-01

    PLZT is a ferroelectric electro-optic material, which has been operated with a constant voltage supply to keep a certain optical property. In this study, we propose an optical transmittance memory effect by controlling the domain conditions. The keypoint is to use an asymmetric voltage pulse. In the positive direction, a sufficiently-large voltage is applied to align the polarization directions. After this operation, a relatively small light transmittance is memorized even after removing the electric field. On the other hand, in the negative direction, the amplitude of the voltage is adjusted to the coercive electric field. In this condition, the domain structure is almost the same as the depolarization state. With this voltage supply, the maximum light transmittance can be kept after removing the electric field. Using these voltage operations, the PLZT can obtain two light transmittance states depending on the domain structure. This memory effect should be useful for innovative optical scanners or shutters in the future.

  17. Asymmetric division and differential gene expression during a bacterial developmental program requires DivIVA.

    Directory of Open Access Journals (Sweden)

    Prahathees Eswaramoorthy

    2014-08-01

    Full Text Available Sporulation in the bacterium Bacillus subtilis is a developmental program in which a progenitor cell differentiates into two different cell types, the smaller of which eventually becomes a dormant cell called a spore. The process begins with an asymmetric cell division event, followed by the activation of a transcription factor, σF, specifically in the smaller cell. Here, we show that the structural protein DivIVA localizes to the polar septum during sporulation and is required for asymmetric division and the compartment-specific activation of σF. Both events are known to require a protein called SpoIIE, which also localizes to the polar septum. We show that DivIVA copurifies with SpoIIE and that DivIVA may anchor SpoIIE briefly to the assembling polar septum before SpoIIE is subsequently released into the forespore membrane and recaptured at the polar septum. Finally, using super-resolution microscopy, we demonstrate that DivIVA and SpoIIE ultimately display a biased localization on the side of the polar septum that faces the smaller compartment in which σF is activated.

  18. Asymmetric total synthesis of cladosporin and isocladosporin.

    Science.gov (United States)

    Zheng, Huaiji; Zhao, Changgui; Fang, Bowen; Jing, Peng; Yang, Juan; Xie, Xingang; She, Xuegong

    2012-07-06

    The first asymmetric total syntheses of cladosporin and isocladosporin were accomplished in 8 steps with 8% overall yield and 10 steps with 26% overall yield, respectively. The relative configuration of isocladosporin was determined via this total synthesis.

  19. Natural convection in asymmetric triangular enclosures heated from below

    Science.gov (United States)

    Kamiyo, O. M.; Angeli, D.; Barozzi, G. S.; Collins, M. W.

    2014-11-01

    Triangular enclosures are typical configurations of attic spaces found in residential as well as industrial pitched-roof buildings. Natural convection in triangular rooftops has received considerable attention over the years, mainly on right-angled and isosceles enclosures. In this paper, a finite volume CFD package is employed to study the laminar air flow and temperature distribution in asymmetric rooftop-shaped triangular enclosures when heated isothermally from the base wall, for aspect ratios (AR) 0.2 <= AR <= 1.0, and Rayleigh number (Ra) values 8 × 105 <= Ra <= 5 × 107. The effects of Rayleigh number and pitch angle on the flow structure and temperature distributions within the enclosure are analysed. Results indicate that, at low pitch angle, the heat transfer between the cold inclined and the hot base walls is very high, resulting in a multi-cellular flow structure. As the pitch angle increases, however, the number of cells reduces, and the total heat transfer rate progressively reduces, even if the Rayleigh number, being based on the enclosure height, rapidly increases. Physical reasons for the above effect are inspected.

  20. Volume inequalities for asymmetric Wulff shapes

    OpenAIRE

    Schuster, Franz E.; Weberndorfer, Manuel

    2012-01-01

    Sharp reverse affine isoperimetric inequalities for asymmetric Wulff shapes and their polars are established, along with the characterization of all extremals. These new inequalities have as special cases previously obtained simplex inequalities by Ball, Barthe and Lutwak, Yang, and Zhang. In particular, they provide the solution to a problem by Zhang.