WorldWideScience

Sample records for asymmetric ring-closing olefin

  1. Highly Active Chiral Ruthenium Catalysts for Asymmetric Ring-Closing Olefin Metathesis

    Science.gov (United States)

    Funk, Timothy W.; Berlin, Jacob M.

    2008-01-01

    The synthesis of olefin metathesis catalysts containing chiral, monodentate N-heterocyclic carbenes and their application to asymmetric ring-closing metathesis (ARCM) is reported. These catalysts retain the high levels of reactivity found in the related achiral variants (1a and 1b). Using the parent chiral catalysts 2a and 2b and derivatives that contain steric bulk in the meta positions of the N-bound aryl rings (catalysts 3-5), five- through seven-membered rings were formed in up to 92% ee. The addition of sodium iodide to catalysts 2a-4a (to form 2b-4bin situ) caused a dramatic increase in enantioselectivity for many substrates. Catalyst 5a, which gave high enantiomeric excesses for certain substrates without the addition of NaI, could be used in loadings of ≤1 mol %. Mechanistic explanations for the large sodium iodide effect as well as possible mechanistic pathways leading to the observed products are discussed. PMID:16464082

  2. Iron(III)-Catalyzed Ring-Closing Carbonyl-Olefin Metathesis.

    Science.gov (United States)

    Saá, Carlos

    2016-09-05

    Recent developments in catalytic carbonyl-olefin metathesis are summarized in this Highlight. Schindler and co-workers have reported that the environmentally benign FeCl3 catalyst promotes ring-closing carbonyl-olefin metathesis (RCCOM) in high yield under very mild conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. FeCl3 -Catalyzed Ring-Closing Carbonyl-Olefin Metathesis.

    Science.gov (United States)

    Ma, Lina; Li, Wenjuan; Xi, Hui; Bai, Xiaohui; Ma, Enlu; Yan, Xiaoyu; Li, Zhiping

    2016-08-22

    Exploiting catalytic carbonyl-olefin metathesis is an ongoing challenge in organic synthesis. Reported herein is an FeCl3 -catalyzed ring-closing carbonyl-olefin metathesis. The protocol allows access to a range of carbo-/heterocyclic alkenes with good efficiency and excellent trans diastereoselectivity. The methodology presents one of the rare examples of catalytic ring-closing carbonyl-olefin metathesis. This process is proposed to take place by FeCl3 -catalyzed oxetane formation followed by retro-ring-opening to deliver metathesis products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Asymmetric allylic alkylation in combination with ring-closing metathesis for the preparation of chiral N-heterocycles

    NARCIS (Netherlands)

    Teichert, Johannes F.; Zhang, Suyan; Zijl, Anthoni W. van; Slaa, Jan Willem; Minnaard, Adriaan J.; Feringa, Bernard

    2010-01-01

    Asymmetric copper-catalyzed allylic substitution with methylmagnesium bromide is employed in combination with ring-closing olefin metathesis or ene-yne metathesis to achieve the synthesis of chiral, unsaturated nitrogen heterocycles. The resulting six- to eight-membered chiral heterocycles are

  5. Multiple Olefin Metathesis Polymerization That Combines All Three Olefin Metathesis Transformations: Ring-Opening, Ring-Closing, and Cross Metathesis.

    Science.gov (United States)

    Lee, Ho-Keun; Bang, Ki-Taek; Hess, Andreas; Grubbs, Robert H; Choi, Tae-Lim

    2015-07-29

    We demonstrated tandem ring-opening/ring-closing metathesis (RO/RCM) polymerization of monomers containing two cyclopentene moieties and postmodification via insertion polymerization. In this system, well-defined polymers were efficiently formed by tandem cascade RO/RCM reaction pathway. Furthermore, these polymers could be transformed to new A,B-alternating copolymers via a sequential cross metathesis reaction with a diacrylate. Additionally, we demonstrated the concept of multiple olefin metathesis polymerization in which the dicyclopentene and diacrylate monomers underwent all three olefin metathesis transformations (ring-opening, ring-closing, and cross metathesis) in one shot to produce A,B-alternating copolymer.

  6. Olefin Ring Closing Metathesis and Hydrosilylation Reaction in Aqueous Medium by Grubbs Second Generation Ruthenium Catalyst

    Science.gov (United States)

    The Grubbs second generation ruthenium catalyst was shown to catalyze various olefin ring closing metathesis and hydrosilylation reactions in aqueous medium. Reactions proceeded in pure water without any additives or co-solvents, in a short period of time. We found that inhomogen...

  7. Allyl sulphides in olefin metathesis: catalyst considerations and traceless promotion of ring-closing metathesis.

    Science.gov (United States)

    Edwards, Grant A; Culp, Phillip A; Chalker, Justin M

    2015-01-11

    Allyl sulphides are reactive substrates in ruthenium-catalysed olefin metathesis reactions, provided each substrate is matched with a suitable catalyst. A profile of catalyst activity is described, along with the first demonstration of allyl sulphides as traceless promoters in relayed ring-closing metathesis reactions.

  8. Orthogonal ring-closing alkyne and olefin metathesis for the synthesis of small GTPase-targeting bicyclic peptides.

    Science.gov (United States)

    Cromm, Philipp M; Schaubach, Sebastian; Spiegel, Jochen; Fürstner, Alois; Grossmann, Tom N; Waldmann, Herbert

    2016-04-14

    Bicyclic peptides are promising scaffolds for the development of inhibitors of biological targets that proved intractable by typical small molecules. So far, access to bioactive bicyclic peptide architectures is limited due to a lack of appropriate orthogonal ring-closing reactions. Here, we report chemically orthogonal ring-closing olefin (RCM) and alkyne metathesis (RCAM), which enable an efficient chemo- and regioselective synthesis of complex bicyclic peptide scaffolds with variable macrocycle geometries. We also demonstrate that the formed alkyne macrocycle can be functionalized subsequently. The orthogonal RCM/RCAM system was successfully used to evolve a monocyclic peptide inhibitor of the small GTPase Rab8 into a bicyclic ligand. This modified peptide shows the highest affinity for an activated Rab GTPase that has been reported so far. The RCM/RCAM-based formation of bicyclic peptides provides novel opportunities for the design of bioactive scaffolds suitable for the modulation of challenging protein targets.

  9. Nobel Chemistry in the Laboratory: Synthesis of a Ruthenium Catalyst for Ring-Closing Olefin Metathesis--An Experiment for the Advanced Inorganic or Organic Laboratory

    Science.gov (United States)

    Greco, George E.

    2007-01-01

    An experiment for the upper-level undergraduate laboratory is described in which students synthesize a ruthenium olefin metathesis catalyst, then use the catalyst to carry out the ring-closing metathesis of diethyl diallylmalonate. The olefin metathesis reaction was the subject of the 2005 Nobel Prize in chemistry. The catalyst chosen for this…

  10. Control of olefin geometry in macrocyclic ring-closing metathesis using a removable silyl group.

    Science.gov (United States)

    Wang, Yikai; Jimenez, Miguel; Hansen, Anders S; Raiber, Eun-Ang; Schreiber, Stuart L; Young, Damian W

    2011-06-22

    Introducing a silyl group at one of the internal olefin positions in diolefinic substrates results in E-selective olefin formation in macrocyclic ring-forming metathesis. The application of this method to a range of macrocyclic (E)-alkenylsiloxanes is described. Protodesilylation of alkenylsiloxane products yields novel Z-configured macrocycles.

  11. Low Catalyst Loadings in Olefin Metathesis: Synthesis of Nitrogen Heterocycles by Ring Closing Metathesis

    Science.gov (United States)

    Kuhn, Kevin M.; Champagne, Timothy M.; Hong, Soon Hyeok; Wei, Wen-Hao; Nickel, Andrew; Lee, Choon Woo; Virgil, Scott C.; Grubbs, Robert H.; Pederson, Richard L.

    2010-01-01

    (eq 1) A series of ruthenium catalysts have been screened under ring closing metathesis (RCM) conditions to produce five-, six-, and seven-membered carbamate-protected cyclic amines. Many of these catalysts demonstrated excellent RCM activity and yields with as low as 500 ppm catalyst loadings. RCM of the five-membered carbamate-series could be run neat, the six-membered carbamate-series could be run at 1.0 M concentrations and the seven-membered carbamate-series worked best at 0.2 M to 0.05 M concentrations. PMID:20141172

  12. The application of catalytic ring-closing olefin metathesis to the synthesis of unsaturated oxygen heterocycles

    Energy Technology Data Exchange (ETDEWEB)

    Fu, G.C.; Grubbs, R.H. [California Institute of Technology, Pasadena, CA (United States)

    1992-06-17

    The development of general approaches to carbon-carbon bond formation represents an important ongoing challenge for synthetic organic chemists. One efficient method for constructing carbon-carbon double bonds, the transition metal alkylidene-catalyzed olefin metathesis reaction, has been the focus of intense interest in recent years from the standpoint of both mechanism and polymer synthesis, in contrast, use of this transformation in organic synthesis has been limited. As part of a broader program directed toward establishing transition metal alkylidenes as versatile reagents for organic chemistry, the authors report the successful application of catalytic olefin methathesis to the generation of a variety of unsaturated oxygen heterocycles. 13 refs., 1 fig., 1 tab.

  13. Modular synthesis of optically active lactones by Ru-catalyzed asymmetric allylic carboxylation and ring-closing metathesis reaction.

    Science.gov (United States)

    Takii, Koichiro; Kanbayashi, Naoya; Onitsuka, Kiyotaka

    2012-04-21

    A new synthetic route to optically active unsaturated γ- and δ-lactones has been demonstrated via asymmetric allylic carboxylation with a planar-chiral Cp'Ru catalyst and ring-closing metathesis reaction with a Grubbs II catalyst, and successfully applied to the enantioselective synthesis of (R)-(-)-massoialactone. This journal is © The Royal Society of Chemistry 2012

  14. New and concise syntheses of the bicyclic oxamazin core using an intramolecular nitroso Diels-Alder reaction and ring-closing olefin metathesis.

    Science.gov (United States)

    Watson, Kyle D; Carosso, Serena; Miller, Marvin J

    2013-01-18

    Herein two new and concise synthetic approaches for making an unsaturated bicyclic oxamazin core are reported. The first involves the use of an intramolecular Diels-Alder reaction to form both of the fused rings in one step. The second approach incorporates ring-closing olefin metathesis in the final step to form the second fused ring of the core. The scope of the second approach was also expanded further to afford larger ringed bicyclic systems.

  15. The right computational recipe for olefin metathesis with ru-based catalysts: The whole mechanism of ring-closing olefin metathesis

    KAUST Repository

    Poater, Albert

    2014-10-14

    The initiation mechanism of ruthenium methylidene complexes was studied detailing mechanistic insights of all involved reaction steps within a classical olefin metathesis pathway. Computational studies reached a good agreement with the rarely available experimental data and even enabled to complement them. As a result, a highly accurate computational and rather cheap recipe is presented; M06/TZVP//BP86/SVP (PCM, P = 1354 atm).

  16. The Right Computational Recipe for Olefin Metathesis with Ru-Based Catalysts: The Whole Mechanism of Ring-Closing Olefin Metathesis.

    Science.gov (United States)

    Poater, Albert; Pump, Eva; Vummaleti, Sai Vikrama Chaitanya; Cavallo, Luigi

    2014-10-14

    The initiation mechanism of ruthenium methylidene complexes was studied detailing mechanistic insights of all involved reaction steps within a classical olefin metathesis pathway. Computational studies reached a good agreement with the rarely available experimental data and even enabled to complement them. As a result, a highly accurate computational and rather cheap recipe is presented; M06/TZVP//BP86/SVP (PCM, P = 1354 atm).

  17. Asymmetrized tris(hydroxymethyl)methane as a precursor of N- and O-containing 6-membered heterocycles through ring-closing metathesis.

    Science.gov (United States)

    Banfi, Luca; Guanti, Giuseppe; Paravidino, Monica; Riva, Renata

    2005-05-07

    A novel synthetic application of asymmetrized tris(hydroxymethyl)methane (THYM), obtained in both enantiomeric forms in high e.e. via a chemoenzymatic procedure, is described. Starting from the common precursor , N- and O-containing 6-membered heterocycles have been prepared exploiting ring-closing metathesis as the key step. Possible elaborations of the double bond in and have been explored and, in the case of , conversion into the glycosidase inhibitor isofagomine has been achieved.

  18. Divergent Strategy for the Diastereoselective Synthesis of the Tricyclic 6,7-Diaryltetrahydro-6H-benzo[c]chromene Core via Pt(IV)-Catalyzed Cycloaddition of o-Quinone Methides and Olefin Ring-Closing Metathesis.

    Science.gov (United States)

    Tangdenpaisal, Kassrin; Chuayboonsong, Kanokpish; Ruchirawat, Somsak; Ploypradith, Poonsakdi

    2017-03-03

    A divergent strategy for the synthesis of the tricyclic 6,7-diaryltetrahydro-6H-benzo[c]chromene core was successfully developed. The 2,3-trans, 2,4-cis trisubstituted chroman moiety was formed via highly efficient and stereoselective Pt(IV)-catalyzed cycloaddition reactions of the corresponding quinone methides with chalcones. Subsequent steps provided the common diene alcohol, which underwent BF3·Et2O-mediated Et3SiH reduction and olefin ring-closing metathesis (RCM) using Ru(II) catalysts. The sequence of the final two steps provided a handle to diversify the stereochemical outcomes at C6 as well as C10a.

  19. Mo-catalyzed asymmetric olefin metathesis in target-oriented synthesis: Enantioselective synthesis of (+)-africanol

    Science.gov (United States)

    Weatherhead, Gabriel S.; Cortez, G. A.; Schrock, Richard R.; Hoveyda, Amir H.

    2004-01-01

    Catalytic asymmetric ring-opening metathesis (AROM) provides an efficient method for the synthesis of a variety of optically enriched small organic molecules that cannot be easily prepared by alternative methods. The development of Mo-catalyzed AROM transformations that occur in tandem with ring-closing metathesis are described. The utility of the Mo-catalyzed AROM/ring-closing metathesis is demonstrated through an enantioselective approach to the synthesis of (+)-africanol. PMID:15056762

  20. Asymmetric synthesis of densely functionalized medium-ring carbocycles and lactones through modular assembly and ring-closing metathesis of sulfoximine-substituted trienes and dienynes.

    Science.gov (United States)

    Lejkowski, Michal; Banerjee, Prabal; Schüller, Sabine; Münch, Alexander; Runsink, Jan; Vermeeren, Cornelia; Gais, Hans-Joachim

    2012-03-19

    An asymmetric synthesis of densely functionalized 7-11-membered carbocycles and 9-11-membered lactones has been developed. Its key steps are a modular assembly of sulfoximine-substituted C- and O-tethered trienes and C-tethered dienynes and their Ru-catalyzed ring-closing diene and enyne metathesis (RCDEM and RCEYM). The synthesis of the C-tethered trienes and dienynes includes the following steps: 1) hydroxyalkylation of enantiomerically pure titanated allylic sulfoximines with unsaturated aldehydes, 2) α-lithiation of alkenylsulfoximines, 3) alkylation, hydroxy-alkylation, formylation, and acylation of α-lithioalkenylsulfoximines, and 4) addition of Grignard reagents to α-formyl(acyl)alkenylsulfoximines. The sulfoximine group provided for high asymmetric induction in steps 1) and 4). RCDEM of the sulfoximine-substituted trienes with the second-generation Ru catalyst stereoselectively afforded the corresponding functionalized 7-11-membered carbocyles. RCDEM of diastereomeric silyloxy-substituted 1,6,12-trienes revealed an interesting difference in reactivity. While the (R)-diastereomer gave the 11-membered carbocyle, the (S)-diastereomer delivered in a cascade of cross metathesis and RCDEM 22-membered macrocycles. RCDEM of cyclic trienes furnished bicyclic carbocycles with a bicyclo[7.4.0]tridecane and bicyclo[9.4.0]pentadecane skeleton. Selective transformations of the sulfoximine- and bissilyloxy-substituted carbocycles were performed including deprotection, cross-coupling reaction and reduction of the sulfoximine moiety. Esterification of a sulfoximine-substituted homoallylic alcohol with unsaturated carboxylic acids gave the O-tethered trienes, RCDEM of which yielded the sulfoximine-substituted 9-11-membered lactones. RCEYM of a sulfoximine-substituted 1,7-dien-10-yne showed an unprecedented dichotomy in ring formation depending on the Ru catalyst. While the second-generation Ru catalyst gave the 9-membered exo 1,3-dienyl carbocycle, the first-generation Ru

  1. Amino acids as chiral anionic ligands for ruthenium based asymmetric olefin metathesis.

    Science.gov (United States)

    Ivry, Elisa; Ben-Asuly, Amos; Goldberg, Israel; Lemcoff, N Gabriel

    2015-03-04

    Several amino acid ligands were introduced into the Hoveyda-Grubbs 2nd generation complex by a facile anionic ligand exchange. The chiral pre-catalysts obtained displayed enantioselectivity in asymmetric ring-closing and ring-opening cross-metathesis reactions. Reduction of the lability of the carboxylate ligands was found to be cardinal for improving the observed enantiomeric product enrichment.

  2. The asymmetric Schrock olefin metathesis catalysts. A computational study

    NARCIS (Netherlands)

    Goumans, T.P.M.; Ehlers, A.W.; Lammertsma, K.

    2005-01-01

    The mechanism of the transition metal catalyzed olefin metathesis reaction with the Schrock catalyst is investigated with pure (BP86) and hybrid (B3LYP) density functional theory. On the free-energy surface there is no adduct between ethylene and model catalyst (MeO)

  3. Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations

    KAUST Repository

    Xu, Liren

    2012-12-01

    In this paper, the development of asymmetric carbon molecular sieve (CMS) hollow fiber membranes and advanced processes for olefin/paraffin separations based on the CMS membranes are reported. Membrane-based olefin/paraffin separations have been pursued extensively over the past decades. CMS membranes are promising to exceed the performance upper bound of polymer materials and have demonstrated excellent stability for gas separations. Previously, a substructure collapse phenomenon was found in Matrimid ® precursor derived CMS fiber. To overcome the permeance loss due to the increased separation layer thickness, 6FDA-DAM and 6FDA/BPDA-DAM precursors were selected as potential new precursors for carbon membrane formation. Defect-free asymmetric 6FDA-DAM and 6FDA/BPDA-DAM hollow fibers were successfully fabricated from a dry-jet/wet-quench spinning process. Polymer rigidity, glass-rubber transition and asymmetric morphology were correlated. CMS hollow fiber membranes produced from 6FDA-polymer precursors showed significant improvement in permeance for ethylene/ethane and propylene/propane separations. Further studies revealed that the CMS membranes are olefins-selective, which means the membranes are able to effectively separate olefins (ethylene and propylene) from paraffins (ethane and propane). This unique feature of CMS materials enables advanced hybrid membrane-distillation process designs. By using the olefins-selective membranes, these new processes may provide advantages over previously proposed retrofitting concepts. Further applications of the membranes are explored for hydrocarbons processes. Significant energy savings and even reduced footprint may be achieved in olefins production units. © 2012 Elsevier B.V.

  4. Efficient synthesis of enantiopure conduritols by ring-closing metathesis

    DEFF Research Database (Denmark)

    Jørgensen, Morten; Iversen, Erik Høgh; Paulsen, Andreas Lundtang

    2001-01-01

    Two short synthetic approaches to enantiopure conduritols are described starting from the chiral pool. In both cases, the cyclohexene ring is assembled via ring-closing olefin metathesis. The terminal diene precursers for the metathesis reaction are prepared either from octitols or from tartaric...... acids. The farmer route involves a new method for selective bromination of the primary positions in long-chain carbohydrate polyols. Subsequent reductive elimination with zinc then generates the diene. The latter route uses a highly diastereoselective addition of divinylzinc to tartaric dialdehydes...

  5. Efficient synthesis of enantiopure conduritols by ring-closing metathesis

    DEFF Research Database (Denmark)

    Jørgensen, Morten; Iversen, Erik Høgh; Paulsen, Andreas Lundtang

    2001-01-01

    acids. The farmer route involves a new method for selective bromination of the primary positions in long-chain carbohydrate polyols. Subsequent reductive elimination with zinc then generates the diene. The latter route uses a highly diastereoselective addition of divinylzinc to tartaric dialdehydes......Two short synthetic approaches to enantiopure conduritols are described starting from the chiral pool. In both cases, the cyclohexene ring is assembled via ring-closing olefin metathesis. The terminal diene precursers for the metathesis reaction are prepared either from octitols or from tartaric...

  6. Preparation of Mesoporous SBA-16 Silica-Supported Biscinchona Alkaloid Ligand for the Asymmetric Dihydroxylation of Olefins

    Directory of Open Access Journals (Sweden)

    Shaheen M. Sarkar

    2014-01-01

    Full Text Available Optically active cinchona alkaloid was anchored onto mesoporous SBA-16 silica and the as-prepared complex was used as a heterogeneous chiral ligand of osmium tetraoxide for the asymmetric dihydroxylation of olefins. The prepared catalytic system provided 90–93% yield of vicinal diol with 92–99% enantioselectivity. The ordered mesoporous SBA-16 silica was found to be a valuable support for the cinchona alkaloid liganded osmium catalyst system which is frequently used in chemical industries and research laboratories for olefin functionalization.

  7. Synthesis of Calystegine A(3) from Glucose by the Use of Ring-Closing Metathesis

    DEFF Research Database (Denmark)

    Monrad, Rune Nygaard; Pipper, Charlotte Bressen; Madsen, Robert

    2009-01-01

    and allylated in the same pot. The functionalized nona-1,8-diene, thus obtained, is converted into the seven-membered carbon skeleton in calystegine A(3) by ring-closing olefin metathesis. Subsequent deoxygenation by the Barton-McCombie protocol, hydroboration and oxidative workup followed by hydrogenolysis...

  8. Design and synthesis of novel bis-annulated caged polycycles via ring-closing metathesis: pushpakenediol

    Directory of Open Access Journals (Sweden)

    Sambasivarao Kotha

    2014-11-01

    Full Text Available Intricate caged molecular frameworks are assembled by an atom economical process via a Diels–Alder (DA reaction, a Claisen rearrangement, a ring-closing metathesis (RCM and an alkenyl Grignard addition. The introduction of olefinic moieties in the pentacycloundecane (PCUD framework at appropriate positions followed by RCM led to the formation of novel heptacyclic cage systems.

  9. Enantioselective olefin metathesis with cyclometalated ruthenium complexes.

    Science.gov (United States)

    Hartung, John; Dornan, Peter K; Grubbs, Robert H

    2014-09-17

    The success of enantioselective olefin metathesis relies on the design of enantioenriched alkylidene complexes capable of transferring stereochemical information from the catalyst structure to the reactants. Cyclometalation of the NHC ligand has proven to be a successful strategy to incorporate stereogenic atoms into the catalyst structure. Enantioenriched complexes incorporating this design element catalyze highly Z- and enantioselective asymmetric ring opening/cross metathesis (AROCM) of norbornenes and cyclobutenes, and the difference in ring strain between these two substrates leads to different propagating species in the catalytic cycle. Asymmetric ring closing metathesis (ARCM) of a challenging class of prochiral trienes has also been achieved. The extent of reversibility and effect of reaction setup was also explored. Finally, promising levels of enantioselectivity in an unprecedented Z-selective asymmetric cross metathesis (ACM) of a prochiral 1,4-diene was demonstrated.

  10. Mechanochemical ruthenium-catalyzed olefin metathesis.

    Science.gov (United States)

    Do, Jean-Louis; Mottillo, Cristina; Tan, Davin; Štrukil, Vjekoslav; Friščić, Tomislav

    2015-02-25

    We describe the development of a mechanochemical approach for Ru-catalyzed olefin metathesis, including cross-metathesis and ring-closing metathesis. The method uses commercially available catalysts to achieve high-yielding, rapid, room-temperature metathesis of solid or liquid olefins on a multigram scale using either no or only a catalytic amount of a liquid.

  11. Kinetically E-selective macrocyclic ring-closing metathesis

    Science.gov (United States)

    Shen, Xiao; Nguyen, Thach T.; Koh, Ming Joo; Xu, Dongmin; Speed, Alexander W. H.; Schrock, Richard R.; Hoveyda, Amir H.

    2017-01-01

    Macrocyclic compounds are central to the development of new drugs, but preparing them can be challenging because of the energy barrier that must be surmounted in order to bring together and fuse the two ends of an acyclic precursor such as an alkene (also known as an olefin). To this end, the catalytic process known as ring-closing metathesis (RCM) has allowed access to countless biologically active macrocyclic organic molecules, even for large-scale production. Stereoselectivity is often critical in such cases: the potency of a macrocyclic compound can depend on the stereochemistry of its alkene; alternatively, one isomer of the compound can be subjected to stereoselective modification (such as dihydroxylation). Kinetically controlled Z-selective RCM reactions have been reported, but the only available metathesis approach for accessing macrocyclic E-olefins entails selective removal of the Z-component of a stereoisomeric mixture by ethenolysis, sacrificing substantial quantities of material if E/Z ratios are near unity. Use of ethylene can also cause adventitious olefin isomerization—a particularly serious problem when the E-alkene is energetically less favoured. Here, we show that dienes containing an E-alkenyl-B(pinacolato) group, widely used in catalytic cross-coupling, possess the requisite electronic and steric attributes to allow them to be converted stereoselectively to E-macrocyclic alkenes. The reaction is promoted by a molybdenum monoaryloxide pyrrolide complex and affords products at a yield of up to 73 per cent and an E/Z ratio greater than 98/2. We highlight the utility of the approach by preparing recifeiolide (a 12-membered-ring antibiotic) and pacritinib (an 18-membered-ring enzyme inhibitor), the Z-isomer of which is less potent than the E-isomer. Notably, the 18-membered-ring moiety of pacritinib—a potent anti-cancer agent that is in advanced clinical trials for treating lymphoma and myelofibrosis—was prepared by RCM carried out at a

  12. Synthesis of Gabosine A and N from Ribose by the Use of Ring-Closing Metathesis

    DEFF Research Database (Denmark)

    Monrad, Rune Nygaard; Fanefjord, Mette; Hansen, Flemming Gundorph

    2009-01-01

    A concise synthetic route is described for the synthesis of gabosine A and N. The key step uses a zinc-mediated tandem reaction where methyl 5-deoxy-5-iodo-2,3-O-isopropylidene-beta-D-ribofuranoside is fragmented to give an unsaturated aldehyde which is allylated in the same pot with 3-benzoyloxy-2......-methylallyl bromide. The functionalized octa-1,7-diene, thus obtained, is converted into the six-membered gabosine skeleton by ring-closing olefin metathesis. Subsequent protective group manipulations and oxidation gives rise to gabosine N in a total of 8 steps from ribose while the synthesis of gabosine...

  13. A short stereoselective synthesis of (+-(6R,2′S-cryptocaryalactone via ring-closing metathesis

    Directory of Open Access Journals (Sweden)

    Palakodety Radha Krishna

    2009-04-01

    Full Text Available A short stereoselective synthesis of (+-(6R,2′S-cryptocaryalactone was successfully completed. Key steps included the application of Carreira’s asymmetric alkynylation reaction to form a propargylic alcohol and subsequently lactone formation using the powerful ring-closing metathesis reaction.

  14. Olefin metathesis in nano-sized systems

    OpenAIRE

    Denise Méry; Victor Martinez; Cátia Ornelas; Liyuan Liang; Sylvain Gatard; Abdou K. Diallo; Didier Astruc; Jaime Ruiz

    2011-01-01

    The interplay between olefin metathesis and dendrimers and other nano systems is addressed in this mini review mostly based on the authors’ own contributions over the last decade. Two subjects are presented and discussed: (i) The catalysis of olefin metathesis by dendritic nano-catalysts via either covalent attachment (ROMP) or, more usefully, dendrimer encapsulation – ring closing metathesis (RCM), cross metathesis (CM), enyne metathesis reactions (EYM) – for reactions in w...

  15. Light-induced olefin metathesis

    Directory of Open Access Journals (Sweden)

    Yuval Vidavsky

    2010-11-01

    Full Text Available Light activation is a most desirable property for catalysis control. Among the many catalytic processes that may be activated by light, olefin metathesis stands out as both academically motivating and practically useful. Starting from early tungsten heterogeneous photoinitiated metathesis, up to modern ruthenium methods based on complex photoisomerisation or indirect photoactivation, this survey of the relevant literature summarises past and present developments in the use of light to expedite olefin ring-closing, ring-opening polymerisation and cross-metathesis reactions.

  16. Olefin metathesis in nano-sized systems

    Directory of Open Access Journals (Sweden)

    Denise Méry

    2011-01-01

    Full Text Available The interplay between olefin metathesis and dendrimers and other nano systems is addressed in this mini review mostly based on the authors’ own contributions over the last decade. Two subjects are presented and discussed: (i The catalysis of olefin metathesis by dendritic nano-catalysts via either covalent attachment (ROMP or, more usefully, dendrimer encapsulation – ring closing metathesis (RCM, cross metathesis (CM, enyne metathesis reactions (EYM – for reactions in water without a co-solvent and (ii construction and functionalization of dendrimers by CM reactions.

  17. Highly Active Water-Soluble Olefin Metathesis Catalyst

    OpenAIRE

    Hong, Soon Hyeok; Grubbs, Robert H

    2006-01-01

    A novel water-soluble ruthenium olefin metathesis catalyst supported by a poly(ethylene glycol) conjugated saturated 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligand is reported. The catalyst displays improved activity in ring-opening metathesis polymerization, ring-closing metathesis, and cross-metathesis reactions in aqueous media.

  18. Halide exchanged Hoveyda-type complexes in olefin metathesis

    Directory of Open Access Journals (Sweden)

    Julia Wappel

    2010-11-01

    Full Text Available The aims of this contribution are to present a straightforward synthesis of 2nd generation Hoveyda-type olefin metathesis catalysts bearing bromo and iodo ligands, and to disclose the subtle influence of the different anionic co-ligands on the catalytic performance of the complexes in ring opening metathesis polymerisation, ring closing metathesis, enyne cycloisomerisation and cross metathesis reactions.

  19. Ruthenium-based four-coordinate olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, M.S.; Henling, L.M.; Day, M.W.; Grubbs, R.H. [California Inst. of Tech., Pasadena (United States). Div. of Chemistry and Chemical Engineering

    2000-10-02

    A series of four-coordinate Ru{sup II} alkylidenes has been prepared as analogues of the proposed olefin metathesis intermediate [(PCy{sub 3})Cl{sub 2}Ru=CHPh]. These complexes exhibit unusual trigonal-pyramidal solid-state geometries, and are rendered highly active for ring-closing metathesis by the addition of HCl. (orig.)

  20. Transition metal complexes of oxazolinylboranes and cyclopentadienyl-bis(oxazolinyl)borates: Catalysts for asymmetric olefin hydroamination and acceptorless alcohol decarbonylation

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Kuntal [Ames Lab., Ames, IA (United States)

    2012-12-17

    The research presented and discussed in this dissertation involves the synthesis of transition metal complexes of oxazolinylboranes and cyclopentadienyl-bis(oxazolinyl)borates, and their application in catalytic enantioselective olefin hydroamination and acceptorless alcohol decarbonylation. Neutral oxazolinylboranes are excellent synthetic intermediates for preparing new borate ligands and also developing organometallic complexes. Achiral and optically active bis(oxazolinyl)phenylboranes are synthesized by reaction of 2-lithio-2-oxazolide and 0.50 equiv of dichlorophenylborane. These bis(oxazolinyl)phenylboranes are oligomeric species in solid state resulting from the coordination of an oxazoline to the boron center of another borane monomer. The treatment of chiral bis(oxazolinyl)phenylboranes with sodium cyclopentadienide provide optically active cyclopentadienyl-bis(oxazolinyl)borates H[PhB(C5H5)(OxR)2] [OxR = Ox4S-iPr,Me2, Ox4R-iPr,Me2, Ox4S-tBu]. These optically active proligands react with an equivalent of M(NMe2)4 (M = Ti, Zr, Hf) to afford corresponding cyclopentadienyl-bis(oxazolinyl)borato group 4 complexes {PhB(C5H4)(OxR)2}M(NMe2)2 in high yields. These group 4 compounds catalyze cyclization of aminoalkenes at room temperature or below, providing pyrrolidine, piperidine, and azepane with enantiomeric excesses up to 99%. Our mechanistic investigations suggest a non-insertive mechanism involving concerted C-N/C-H bond formation in the turnover limiting step of the catalytic cycle. Among cyclopentadienyl-bis(oxazolinyl)borato group 4 catalysts, the zirconium complex {PhB(C5H4)(Ox4S-iPr,Me2)2}Zr(NMe2)2 ({S-2}Zr(NMe2)2) displays highest activity and enantioselectivity. Interestingly, S-2

  1. The Olefin Metathesis Reactions in Dendrimers

    Science.gov (United States)

    Astruc, Didier

    Dendrimers containing terminal olefins or ruthenium-benzylidene terminal groups undergo olefin metathesis reactions (RCM and ROMP types), and essentially results from our group are reviewed here. Dendrimers have been loaded at their periphery with ruthenium-chelating bis-phosphines, which leads to the formation of dendrimer-cored stars by ring-opening-metathesis polymerization (ROMP). CpFe+-induced perallylation of polymethylaromatics (Cp = η5-C5H5) followed by ring-closing metathesis (RCM) and/or cross metathesis (CM) leads to poly-ring, cage, oligomeric and polymeric architectures. In the presence of acrylic acid or metha-crylate, stereospecific CM inhibits oligomerization, and dendritic olefins yield polyacid dendrimers. Finally, cros-metahesis reactions with dendronic acrylate allow dendritic construction and growth.

  2. Phosphate Tether-Mediated Ring-Closing Metathesis for the Generation of P-Stereogenic, Z-Configured Bicyclo[7.3.1]- and Bicyclo[8.3.1]phosphates.

    Science.gov (United States)

    Markley, Jana L; Maitra, Soma; Hanson, Paul R

    2016-02-05

    A phosphate tether-mediated ring-closing metathesis (RCM) study to the synthesis of Z-configured, P-stereogenic bicyclo[7.3.1]- and bicyclo[8.3.1]phosphates is reported. Investigations suggest that C3-substitution, olefin substitution, and proximity of the forming olefin to the bridgehead carbon of the bicyclic affect the efficiency and stereochemical outcome of the RCM event. This study demonstrates the utility of phosphate tether-mediated desymmetrization of C2-symmetric, 1,3-anti-diol-containing dienes in the generation of macrocyclic phosphates with potential synthetic and biological utility.

  3. Mechanistic Investigations of the Iron(III)-Catalyzed Carbonyl-Olefin Metathesis Reaction.

    Science.gov (United States)

    Ludwig, Jacob R; Phan, Susan; McAtee, Christopher C; Zimmerman, Paul M; Devery, James J; Schindler, Corinna S

    2017-08-09

    Iron(III)-catalyzed carbonyl-olefin ring-closing metathesis represents a new approach toward the assembly of molecules traditionally generated by olefin-olefin metathesis or olefination. Herein, we report detailed synthetic, spectroscopic, kinetic, and computational studies to determine the mechanistic features imparted by iron(III), substrate, and temperature to the catalytic cycle. These data are consistent with an iron(III)-mediated asynchronous, concerted [2+2]-cycloaddition to form an intermediate oxetane as the turnover-limiting step. Fragmentation of the oxetane via Lewis acid-activation results in the formation of five- and six-membered unsaturated carbocycles.

  4. Target Specific Tactics in Olefin Metathesis: Synthetic Approach to cis-syn-cis-Triquinanes and -Propellanes.

    Science.gov (United States)

    Kotha, Sambasivarao; Aswar, Vikas R

    2016-04-15

    A concise and simple synthetic approach to cis-syn-cis-triquinanes and -propellanes has been demonstrated via olefin metathesis starting with exo-nadic anhydride. This approach involves a ring-opening and ring-closing metathesis sequence of norbornene derivatives using Grubb's catalyst. Early-stage diallylation of norbornene derivatives is demonstrated followed by ring-closing metathesis that delivers propellanes exclusively. Surprisingly, ring-opening metathesis, late-stage diallylation, followed by ring-closing metathesis delivers triquinane as well as propellane derivatives.

  5. Ruthenium olefin metathesis catalysts featuring unsymmetrical N-heterocyclic carbenes.

    Science.gov (United States)

    Paradiso, Veronica; Bertolasi, Valerio; Costabile, Chiara; Grisi, Fabia

    2016-01-14

    New ruthenium Grubbs' and Hoveyda-Grubbs' second generation catalysts bearing N-alkyl/N-isopropylphenyl N-heterocyclic carbene (NHC) ligands with syn or anti backbone configuration were obtained and compared in model olefin metathesis reactions. Different catalytic efficiencies were observed depending on the size of the N-alkyl group (methyl or cyclohexyl) and on the backbone configuration. The presence of an N-cyclohexyl substituent determined the most significant reactivity differences between catalysts with syn or anti phenyl groups on the backbone. In particular, anti catalysts proved highly efficient, especially in the ring-closing metathesis (RCM) of encumbered diolefins, while syn catalysts showed low efficiency in the RCM of less hindered diolefins. This peculiar behavior, rationalized through DFT studies, was found to be related to the high propensity of these catalysts to give nonproductive metathesis events. Enantiopure anti catalysts were also tested in asymmetric metathesis reactions, where moderate enantioselectivities were observed. The steric and electronic properties of unsymmetrical NHCs with the N-cyclohexyl group were then evaluated using the corresponding rhodium complexes. While steric factors proved unimportant for both syn and anti NHCs, a major electron-donating character was found for the unsymmetrical NHC with anti phenyl substituents on the backbone.

  6. Recent Advancements in Stereoselective Olefin Metathesis Using Ruthenium Catalysts

    Directory of Open Access Journals (Sweden)

    T. Patrick Montgomery

    2017-03-01

    Full Text Available Olefin metathesis is a prevailing method for the construction of organic molecules. Recent advancements in olefin metathesis have focused on stereoselective transformations. Ruthenium olefin metathesis catalysts have had a particularly pronounced impact in the area of stereoselective olefin metathesis. The development of three categories of Z-selective olefin metathesis catalysts has made Z-olefins easily accessible to both laboratory and industrial chemists. Further design enhancements to asymmetric olefin metathesis catalysts have streamlined the construction of complex molecules. The understanding gained in these areas has extended to the employment of ruthenium catalysts to stereoretentive olefin metathesis, the first example of a kinetically E-selective process. These advancements, as well as synthetic applications of the newly developed catalysts, are discussed.

  7. Catalytic aziridination of electron-deficient olefins with an N-chloro-N-sodio carbamate and application of this novel method to asymmetric synthesis.

    Science.gov (United States)

    Minakata, Satoshi; Murakami, Yuta; Tsuruoka, Ryoji; Kitanaka, Shinsuke; Komatsu, Mitsuo

    2008-12-21

    A new method for the aziridination of electron-deficient olefins using an N-chloro-N-sodio carbamate is described; the reaction was promoted by phase-transfer catalysis (solid-liquid) and afforded aziridines from alpha,beta-unsaturated ketones, esters, sulfones and amides.

  8. Olefin metathesis for chemical biology.

    Science.gov (United States)

    Binder, Joseph B; Raines, Ronald T

    2008-12-01

    Chemical biology relies on effective synthetic chemistry for building molecules to probe and modulate biological function. Olefin metathesis in organic solvents is a valuable addition to this armamentarium, and developments during the previous decade are enabling metathesis in aqueous solvents for the manipulation of biomolecules. Functional group-tolerant ruthenium metathesis catalysts modified with charged moieties or hydrophilic polymers are soluble and active in water, enabling ring-opening metathesis polymerization, cross metathesis, and ring-closing metathesis. Alternatively, conventional hydrophobic ruthenium complexes catalyze a similar array of metathesis reactions in mixtures of water and organic solvents. This strategy has enabled cross metathesis on the surface of a protein. Continuing developments in catalyst design and methodology will popularize the bioorthogonal reactivity of metathesis.

  9. Ruthenium-Aryloxide Catalysts for Olefin Metathesis

    Science.gov (United States)

    Monfette, Sebastien; Blacquiere, Johanna M.; Conrad, Jay C.; Beach, Nicholas J.; Fogg, Deryn E.

    : Advances in design of ruthenium aryloxide catalysts for olefin metathesis are described. The target complexes are accessible on reaction of RuCl2(NHC)(py)2 (CHPh) (NHC - N-heterocyclic carbene) with electron-deficient, monodentate aryl- oxides, or aryloxides that yield small, rigid chelate rings. The best of these catalysts offer activity comparable to or greater than that of the parent chloride (Grubbs) systems in ring-closing metathesis (RCM). Preliminary studies of the electronic nature of the Ru-X bond suggest that the metal center is more electropositive in the aryloxide complexes than in the Grubbs systems.

  10. Application of olefin metathesis in the synthesis of steroids.

    Science.gov (United States)

    Morzycki, Jacek W

    2011-01-01

    Over the past decade, ruthenium-mediated metathesis transformations, including cross-metathesis, ring-closing metathesis, enyne metathesis, ring-opening metathesis polymerization, and also tandem processes, belong to the most intensively studied reactions. Many applications of olefin metathesis in the synthesis of natural products have been recently described. Also in the field of steroid chemistry new methods of total synthesis and hemisynthesis based on metathesis reactions have been elaborated. Various biologically active compounds, e.g. vitamin D and hormone analogues, steroid dimers and macrocycles, etc. have been prepared using a variety of olefin-metathesis protocols. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Allenyl esters as quenching agents for ruthenium olefin metathesis catalysts.

    Science.gov (United States)

    Roy, Animesh; Silvestri, Maximilian A; Hall, Robert A; Lepore, Salvatore D

    2017-01-04

    In the attempt to synthesize substituted allenyl esters through a metathesis coupling of unsubstituted allenyl esters and alkenes using a variety of ruthenium catalysts, it was discovered that allenyl esters themselves cleanly arrested the activity of the catalysts. Further studies suggests possible utility of allene esters as general quenching agents for metathesis reactions. To explore this idea, several representative olefin metathesis reactions, including ring closing, were successfully terminated by the addition of simple allenyl esters for more convenient purification.

  12. Organic synthesis with olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grubbs, R.H. [California Institute of Technology, Pasadena, CA (United States)

    1995-12-31

    Over the past nine years, early transition metal catalysts for the ring opening metathesis polymerization of cyclic olefins have been developed. These catalysts are simple organometallic complexes containing metal carbon multiple bonds that in most cases polymerize olefins by a living process. These catalysts have been used to prepare a family of near monodispersed and structurally homogeneous polymers. A series of group VII ROMP catalysts that allow a wide range of functionality to be incorporated into the polymer side chains have been prepared. The most important member of this family of complexes are the bisphosphinedihalo-ruthenium carbene complexes. These polymerization catalysts can also be used in the synthesis of fine chemicals by ring closing (RCM) and vinyl coupling reactions. The availability of the group VII catalysts allow metathesis to be carried out on highly functionalized substrates such as polypeptides and in unusual environments such as in aqueous emulsions.

  13. Olefin hydroformylation

    Energy Technology Data Exchange (ETDEWEB)

    Hanes, R.M.

    1986-12-30

    This patent describes a process for the hydroformylation of olefins for the preparation of aldehydes, by reacting carbon monoxide and hydrogen with an olefin. This is done in the presence of an ionic metal complex catalyst where the ionic charge is on either the metal or on a ligand, at a temperature in the range of between about 80/sup 0/ and about 300/sup 0/C, and a pressure in the range of between about 400 and about 2000 psig. The improvement described here comprises performing the reaction in a polar solvent selected from the group consisting of N-substituted amide, glycols, polyglycols, mono lower alkyl ethers of glycols, dimethyl sulfoxide and sulfolane and recovering the aldehyde by extraction with a hydrocarbon solvent.

  14. Catálise assimétrica na ciclopropanação de olefinas Asymmetric catalysis in the cyclopropanation of olefins

    Directory of Open Access Journals (Sweden)

    Raquel A. C. Leão

    2007-01-01

    Full Text Available The main methodologies in the asymmetric cyclopropanation of alkenes with emphasis on asymmetric catalysis are covered. Exemples are the Simmons-Smith reaction, the use of diazoalkanes and reactions carried out by decomposition of alpha-diazoesters in the presence of transition metals.

  15. NHC Backbone Configuration in Ruthenium-Catalyzed Olefin Metathesis

    Directory of Open Access Journals (Sweden)

    Veronica Paradiso

    2016-01-01

    Full Text Available The catalytic properties of olefin metathesis ruthenium complexes bearing N-heterocyclic carbene ligands with stereogenic centers on the backbone are described. Differences in catalytic behavior depending on the backbone configurations of symmetrical and unsymmetrical NHCs are discussed. In addition, an overview on asymmetric olefin metathesis promoted by chiral catalysts bearing C2-symmetric and C1-symmetric NHCs is provided.

  16. NHC Backbone Configuration in Ruthenium-Catalyzed Olefin Metathesis.

    Science.gov (United States)

    Paradiso, Veronica; Costabile, Chiara; Grisi, Fabia

    2016-01-20

    The catalytic properties of olefin metathesis ruthenium complexes bearing N-heterocyclic carbene ligands with stereogenic centers on the backbone are described. Differences in catalytic behavior depending on the backbone configurations of symmetrical and unsymmetrical NHCs are discussed. In addition, an overview on asymmetric olefin metathesis promoted by chiral catalysts bearing C₂-symmetric and C₁-symmetric NHCs is provided.

  17. Asymmetric hydrogenation using monodentate phosphoramidite ligands

    NARCIS (Netherlands)

    Minnaard, Adriaan J.; Feringa, Ben L.; Lefort, Laurent; De Vries, Johannes G.

    2007-01-01

    Monodentate phosphoramidites are excellent ligands for Rh-catalyzed asymmetric hydrogenations of substituted olefins. Enantioselectivities between 95 and 99% were obtained in the asymmetric hydrogenation of protected alpha- and beta-dehydroamino acids and esters, itaconic acid and esters, aromatic

  18. Synthesis of anti-tumour phosphatidylinositol analogues from glucose by the use of ring-closing olefin metathesis

    DEFF Research Database (Denmark)

    Andresen, Thomas Lars; Skytte, Dorthe M.; Madsen, Robert

    2004-01-01

    -closing metathesis to afford the key conduritol B intermediate 7. This can trifurcate to form three different benzyl-protected myo-inositol headgroups 4-6, which after phosphorylation and attachment of the glycerolipid part give phosphatidylinositols 1-3. Preliminary biological testing against human colon...

  19. Iron(III)-catalysed carbonyl-olefin metathesis

    Science.gov (United States)

    Ludwig, Jacob R.; Zimmerman, Paul M.; Gianino, Joseph B.; Schindler, Corinna S.

    2016-05-01

    The olefin metathesis reaction of two unsaturated substrates is one of the most powerful carbon-carbon-bond-forming reactions in organic chemistry. Specifically, the catalytic olefin metathesis reaction has led to profound developments in the synthesis of molecules relevant to the petroleum, materials, agricultural and pharmaceutical industries. These reactions are characterized by their use of discrete metal alkylidene catalysts that operate via a well-established mechanism. While the corresponding carbonyl-olefin metathesis reaction can also be used to construct carbon-carbon bonds, currently available methods are scarce and severely hampered by either harsh reaction conditions or the required use of stoichiometric transition metals as reagents. To date, no general protocol for catalytic carbonyl-olefin metathesis has been reported. Here we demonstrate a catalytic carbonyl-olefin ring-closing metathesis reaction that uses iron, an Earth-abundant and environmentally benign transition metal, as a catalyst. This transformation accommodates a variety of substrates and is distinguished by its operational simplicity, mild reaction conditions, high functional-group tolerance, and amenability to gram-scale synthesis. We anticipate that these characteristics, coupled with the efficiency of this reaction, will allow for further advances in areas that have historically been enhanced by olefin metathesis.

  20. Ruthenium Olefin Metathesis Catalysts Bearing an N-Fluorophenyl-N-Mesityl-Substituted Unsymmetrical N-Heterocyclic Carbene

    OpenAIRE

    Vougioukalakis, Georgios C.; Grubbs, Robert H

    2007-01-01

    Two new ruthenium-based olefin metathesis catalysts, each bearing an unsymmetrical N-heterocyclic carbene ligand, have been synthesized and fully characterized. Their catalytic performance has been evaluated in ring-closing metathesis, cross metathesis, and ring-opening metathesis polymerization reactions.

  1. Toward an efficient synthesis of taxane analogs by dienyne ring-closing metathesis.

    Science.gov (United States)

    Aldegunde, María J; Castedo, Luis; Granja, Juan R

    2008-09-04

    An efficient tandem ring-closing dienyne metathesis of dienynes derived from cyclohex-2-enone affords the [5.3.1] carbon framework characteristic of taxanes in a single-step process. Further stereoselective functionalizations of the resulting [5.3.1] carbon framework lead to an advanced intermediate in a novel synthetic strategy for taxane analogs.

  2. Construction of Eight-Membered Carbocycles with Trisubstituted Double Bonds Using the Ring Closing Metathesis Reaction

    Directory of Open Access Journals (Sweden)

    Motoo Tori

    2010-06-01

    Full Text Available Medium sized carbocycles are particularly difficult to synthesize. Ring closing metathesis reactions (RCM have recently been applied to construct eight-membered carbocycles, but trisubstituted double bonds in the eight-membered rings are more difficult to produce using RCM reactions. In this review, model examples and our own results are cited and the importance of the preparation of suitably designed precursors is discussed. Examples of RCM reactions used in the total synthesis of natural products are also outlined.

  3. N-Heterocyclic Carbene Complexes in Olefin Metathesis

    Science.gov (United States)

    Luan, Xinjun; Dorta, Reto; Leitgeb, Anita; Slugovc, Christian; Tiede, Sascha; Blechert, Siegfried

    Olefin metathesis is now a synthetic tool found ubiquitously in various fields involving synthesis. Of its many variations, three are prominently used: (1) catalytic ring closing metathesis (RCM) is an extremely powerful method for the construction of carbon-carbon double bonds in organic chemistry; (2) ring opening metathesis polymerisation (ROMP) where polymers are formed by use of the energy released from cyclic strain; and (3) cross metathesis (CM) where non-cyclic partners are coupled through C-C double bond formation. These important transformations and variations on these themes mediated by second generation ruthenium complexes bearing a NHC ligand will be presented in the following sections.

  4. Polycyclic Aromatic Hydrocarbons via Iron(III)-Catalyzed Carbonyl-Olefin Metathesis.

    Science.gov (United States)

    McAtee, Christopher C; Riehl, Paul S; Schindler, Corinna S

    2017-03-01

    Polycyclic aromatic hydrocarbons are important structural motifs in organic chemistry, pharmaceutical chemistry, and materials science. The development of a new synthetic strategy toward these compounds is described based on the design principle of iron(III)-catalyzed carbonyl-olefin metathesis reactions. This approach is characterized by its operational simplicity, high functional group compatibility, and regioselectivity while relying on FeCl3 as an environmentally benign, earth-abundant metal catalyst. Experimental evidence for oxetanes as reactive intermediates in the catalytic carbonyl-olefin ring-closing metathesis has been obtained.

  5. A Ruthenium Catalyst for Olefin Metathesis Featuring an Anti-Bredt N-Heterocyclic Carbene Ligand.

    Science.gov (United States)

    Martin, David; Marx, Vanessa M; Grubbs, Robert H; Bertrand, Guy

    2016-03-17

    A ruthenium complex bearing an "anti-Bredt" N-heterocyclic carbene was synthesized, characterized and evaluated as a catalyst for olefin metathesis. Good conversions were observed at room temperature for the formation of di- and tri-substituted olefins by ring-closing metathesis. It also allowed for the ring-opening metathesis polymerization of cyclooctadiene, as well as for the cross-metathesis of cis-1,4-diacetoxy-2-butene with allyl-benzene, with enhanced Z/E kinetic selectivity over classical NHC-based catalysts.

  6. Olefin Metathesis Reaction in Water and in Air Improved by Supramolecular Additives.

    Science.gov (United States)

    Tomasek, Jasmine; Seßler, Miriam; Gröger, Harald; Schatz, Jürgen

    2015-10-21

    A range of water-immiscible commercially available Grubbs-type precatalysts can be used in ring-closing olefin metathesis reaction in high yields. The synthetic transformation is possible in pure water under ambient conditions. Sulfocalixarenes can help to boost the reactivity of the metathesis reaction by catalyst activation, improved mass transfer, and solubility of reactants in the aqueous reaction media. Additionally, the use of supramolecular additives allows lower catalyst loadings, but still high activity in pure water under aerobic conditions.

  7. Total Synthesis of Mycalolides A and B through Olefin Metathesis.

    Science.gov (United States)

    Kita, Masaki; Oka, Hirotaka; Usui, Akihiro; Ishitsuka, Tomoya; Mogi, Yuzo; Watanabe, Hidekazu; Tsunoda, Masaki; Kigoshi, Hideo

    2015-11-16

    An asymmetric total synthesis of the trisoxazole marine macrolides mycalolides A and B is described. This synthesis involves the convergent assembly of highly functionalized C1-C19 trisoxazole and C20-C35 side-chain segments through the use of olefin metathesis and esterification as well as Julia-Kocienski olefination and enamide formation as key steps. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Spiro annulation of cage polycycles via Grignard reaction and ring-closing metathesis as key steps

    Directory of Open Access Journals (Sweden)

    Sambasivarao Kotha

    2015-08-01

    Full Text Available A simple synthetic strategy to C2-symmetric bis-spiro-pyrano cage compound 7 involving ring-closing metathesis is reported. The hexacyclic dione 10 was prepared from simple and readily available starting materials such as 1,4-naphthoquinone and cyclopentadiene. The synthesis of an unprecedented octacyclic cage compound through intramolecular Diels–Alder (DA reaction as a key step is described. The structures of three new cage compounds 7, 12 and 18 were confirmed by single crystal X-ray diffraction studies.

  9. Olefin metathesis and catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kukes, S. G.; Banks, R. L.

    1985-05-14

    Olefins are converted into other olefins having different numbers of carbon atoms by contact with a catalyst comprising an inorganic refractory oxide support containing at least one of tungsten oxide and molybdenum oxide and a promoting amount of at least one methylating agent under conditions suitable for the methylating agent compounds to promote the activity of tungsten and molybdenum oxides for the disproportionation reaction.

  10. Z-Selective olefin metathesis on peptides: investigation of side-chain influence, preorganization, and guidelines in substrate selection.

    Science.gov (United States)

    Mangold, Shane L; O'Leary, Daniel J; Grubbs, Robert H

    2014-09-03

    Olefin metathesis has emerged as a promising strategy for modulating the stability and activity of biologically relevant compounds; however, the ability to control olefin geometry in the product remains a challenge. Recent advances in the design of cyclometalated ruthenium catalysts has led to new strategies for achieving such control with high fidelity and Z selectivity, but the scope and limitations of these catalysts on substrates bearing multiple functionalities, including peptides, remained unexplored. Herein, we report an assessment of various factors that contribute to both productive and nonproductive Z-selective metathesis on peptides. The influence of sterics, side-chain identity, and preorganization through peptide secondary structure are explored by homodimerization, cross metathesis, and ring-closing metathesis. Our results indicate that the amino acid side chain and identity of the olefin profoundly influence the activity of cyclometalated ruthenium catalysts in Z-selective metathesis. The criteria set forth for achieving high conversion and Z selectivity are highlighted by cross metathesis and ring-closing metathesis on diverse peptide substrates. The principles outlined in this report are important not only for expanding the scope of Z-selective olefin metathesis to peptides but also for applying stereoselective olefin metathesis in general synthetic endeavors.

  11. Iterative Reductive Aromatization/Ring-Closing Metathesis Strategy toward the Synthesis of Strained Aromatic Belts.

    Science.gov (United States)

    Golder, Matthew R; Colwell, Curtis E; Wong, Bryan M; Zakharov, Lev N; Zhen, Jingxin; Jasti, Ramesh

    2016-05-25

    The construction of all sp(2)-hybridized molecular belts has been an ongoing challenge in the chemistry community for decades. Despite numerous attempts, these double-stranded macrocycles remain outstanding synthetic challenges. Prior approaches have relied on late-state oxidations and/or acid-catalyzed processes that have been incapable of accessing the envisaged targets. Herein, we describe the development of an iterative reductive aromatization/ring-closing metathesis approach. Successful syntheses of nanohoop targets containing benzo[k]tetraphene and dibenzo[c,m]pentaphene moieties not only provide proof of principle that aromatic belts can be derived by this new strategy but also represent some of the largest aromatic belt fragments reported to date.

  12. Supported Catalysts Useful in Ring-Closing Metathesis, Cross Metathesis, and Ring-Opening Metathesis Polymerization

    Directory of Open Access Journals (Sweden)

    Jakkrit Suriboot

    2016-04-01

    Full Text Available Ruthenium and molybdenum catalysts are widely used in synthesis of both small molecules and macromolecules. While major developments have led to new increasingly active catalysts that have high functional group compatibility and stereoselectivity, catalyst/product separation, catalyst recycling, and/or catalyst residue/product separation remain an issue in some applications of these catalysts. This review highlights some of the history of efforts to address these problems, first discussing the problem in the context of reactions like ring-closing metathesis and cross metathesis catalysis used in the synthesis of low molecular weight compounds. It then discusses in more detail progress in dealing with these issues in ring opening metathesis polymerization chemistry. Such approaches depend on a biphasic solid/liquid or liquid separation and can use either always biphasic or sometimes biphasic systems and approaches to this problem using insoluble inorganic supports, insoluble crosslinked polymeric organic supports, soluble polymeric supports, ionic liquids and fluorous phases are discussed.

  13. Application of ring-closing metathesis macrocyclization to the development of Tsg101-binding antagonists

    Science.gov (United States)

    Liu, Fa; Stephen, Andrew G.; Waheed, Abdul A.; Freed, Eric O.; Fisher, Robert J.; Burke, Terrence R.

    2009-01-01

    HIV-1 viral budding involves binding of the viral Gagp6 protein to the ubiquitin E2 variant domain of the human tumor susceptibility gene 101 protein (Tsg101). Recognition of p6 by Tsg101 is mediated in part by a proline-rich motif that contains the sequence “Pro-Thr-Ala-Pro” (“PTAP”). Using the p6-derived 9-mer sequence “PEPTAPPEE”, we had previously improved peptide binding affinity by employing N-alkylglycine (“peptoid”) residues. The current study applies ring-closing metathesis macrocyclization strategies to Tsg101-binding peptide-peptoid hybrids as an approach to stabilize binding conformations and to observe the effects of such macrocyclization on Tsg101-binding affinity and bioavailability. PMID:19914066

  14. Stereoselective synthesis of macrocyclic peptides via a dual olefin metathesis and ethenolysis approach.

    Science.gov (United States)

    Mangold, Shane L; Grubbs, Robert H

    2015-08-01

    Macrocyclic compounds occupy an important chemical space between small molecules and biologics and are prevalent in many natural products and pharmaceuticals. The growing interest in macrocycles has been fueled, in part, by the design of novel synthetic methods to these compounds. One appealing strategy is ring-closing metathesis (RCM) that seeks to construct macrocycles from acyclic diene precursors using defined transition-metal alkylidene catalysts. Despite its broad utility, RCM generally gives rise to a mixture of E- and Z-olefin isomers that can hinder efforts for the large-scale production and isolation of such complex molecules. To address this issue, we aimed to develop methods that can selectively enrich macrocycles in E- or Z-olefin isomers using an RCM/ethenolysis strategy. The utility of this methodology was demonstrated in the stereoselective formation of macrocyclic peptides, a class of compounds that have gained prominence as therapeutics in drug discovery. Herein, we report an assessment of various factors that promote catalyst-directed RCM and ethenolysis on a variety of peptide substrates by varying the olefin type, peptide sequence, and placement of the olefin in macrocycle formation. These methods allow for control over olefin geometry in peptides, facilitating their isolation and characterization. The studies outlined in this report seek to expand the scope of stereoselective olefin metathesis in general RCM.

  15. Asymmetric Organocatalytic Cycloadditions

    DEFF Research Database (Denmark)

    Mose, Rasmus

    2016-01-01

    were pioneered by Otto Paul Hermann Diels and Kurt Alder who discovered what later became known as the Diels Alder reaction. The Diels Alder reaction is a [4+2] cycloaddition in which a π4 component reacts with a π2 component via a cyclic transition state to generate a 6 membered ring. This reaction...... undergo cascade reactions with different electron deficient dienophiles in Diels Alder – nucleophilic ring closing reactions. This methodology opens up for the direct asymmetric formation of hydroisochromenes and hydroisoquinolines which may possess interesting biological activities. It is also...

  16. Latent olefin metathesis catalysts

    OpenAIRE

    Monsaert, Stijn; Lozano Vila, Ana; Drozdzak, Renata; Van Der Voort, Pascal; Verpoort, Francis

    2009-01-01

    Olefin metathesis is a versatile synthetic tool for the redistribution of alkylidene fragments at carbon-carbon double bonds. This field, and more specifically the development of task-specific, latent catalysts, attracts emerging industrial and academic interest. This tutorial review aims to provide the reader with a concise overview of early breakthroughs and recent key developments in the endeavor to develop latent olefin metathesis catalysts, and to illustrate their use by prominent exampl...

  17. Olefin metathesis and catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kukes, S. G.; Banks, R. L.

    1985-03-12

    Olefins are converted into other olefins having different numbers of carbon atoms by contact with a catalyst comprising an inorganic refractory material containing at least one of tungsten oxide and molybdenum oxide and a promoting amount of at least one treating agent selected from chlorinated silicon compounds, thionyl chloride, and sulfuryl chloride under conditions suitable for the treating agent to promote the activity of tungsten and molybdenum oxides for the disporoportionation reaction.

  18. Synthesis of 4'α-C Phenyl-Branched Carbocyclic Nucleoside Using Ring-Closing Metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Joon Hee; Ko, Ok Hyun [Chosun University, Gwangju(Korea, Republic of)

    2003-09-15

    An efficient synthetic route for preparing novel 4'α-C phenyl branched carbocyclic nucleoside is described. The installation of phenyl group at the 4'-position of carbocyclic nucleoside was successfully accomplished via a sequential [3,3]-sigmatropic rearrangement and ring-closing metathesis (RCM) beginning from simple ketone such as 2-hydroxy acetophenone.

  19. A bis-calixarene from olefin metathesis

    Directory of Open Access Journals (Sweden)

    Shimelis T. Hailu

    2012-06-01

    Full Text Available A ring-closing olefin metathesis reaction of tetrakis(allyloxycalix[4]arene gave the bis calixarene, (15E,40E,60E-65,74-bis(prop-2-en-1-yloxy-13,18,38,43,58,63-hexaoxadodecacyclo[28.26.8.720,36.111,45.151,55.05,57.07,12.019,24.026,64.032,37.044,49.168,72]tetraheptaconta-1,3,5(57,7,9,11,15,19(24,20,22,26,28,30(64,32,34,36,40,44(49,45,47,51,53,55(65,60,68,70,72(74-heptacosaene, C74H68O8. It is a cage formed from two calix[4]arene units joined by butenyl groups at three of the O atoms on the narrow rim. The fourth O atom on each calixarene unit is joined with an allyl group. Each of the calix[4]arene units has a flattened cone conformation in which the allyloxy-substituted aryl group and the opposite aryl group are close together and almost parallel [dihedral angle between planes = 1.09 (11°], and the other two aryl groups are splayed outward [dihedral angle between planes = 79.53 (11°]. No guest molecule (e.g. solvent was observed within the cage. The alkene C atoms of one of the links between the calixarene moieties are disordered over two orientations with occupancies of 0.533 (9 and 0.467 (9.

  20. Synthesis of electronically modified Ru-based neutral 16 VE allenylidene olefin metathesis precatalysts.

    Science.gov (United States)

    Lichtenheldt, Martin; Kress, Steffen; Blechert, Siegfried

    2012-05-04

    Electronic modifications within Ru-based olefin metathesis precatalysts have provided a number of new complexes with significant differences in reactivity profiles. So far, this aspect has not been studied for neutral 16 VE allenylidenes. The first synthesis of electronically altered complexes of this type is reported. Following the classical dehydration approach (vide infra) modified propargyl alcohols were transformed to the targeted allenylidene systems in the presence of PCy₃. The catalytic performance was investigated in RCM reaction (ring closing metathesis) of benchmark substrates such as diallyltosylamide and diethyl diallylmalonate.

  1. Olefin Metathesis in Homogeneous Aqueous Media Catalyzed by Conventional Ruthenium Catalysts

    Science.gov (United States)

    Binder, Joseph B.; Blank, Jacqueline J.; Raines, Ronald T.

    2008-01-01

    Olefin metathesis in aqueous solvents is sought for applications in green chemistry and with the hydrophilic substrates of chemical biology, such as proteins and polysaccharides. Most demonstrations of metathesis in water, however, utilize exotic complexes. We have examined the performance of conventional catalysts in homogeneous water–organic mixtures, finding that the second-generation Hoveyda–Grubbs catalyst has extraordinary efficiency in aqueous dimethoxyethane and aqueous acetone. High (71–95%) conversions are achieved for ring-closing and cross metathesis of a variety of substrates in these solvent systems. PMID:17949009

  2. Chelating ruthenium phenolate complexes: synthesis, general catalytic activity, and applications in olefin metathesis polymerization.

    Science.gov (United States)

    Kozłowska, Anna; Dranka, Maciej; Zachara, Janusz; Pump, Eva; Slugovc, Christian; Skowerski, Krzysztof; Grela, Karol

    2014-10-20

    Cyclic Ru-phenolates were synthesized, and these compounds were used as olefin metathesis catalysts. Investigation of their catalytic activity pointed out that, after activation with chemical agents, these catalysts promote ring-closing metathesis (RCM), enyne and cross-metathesis (CM) reactions, including butenolysis, with good results. Importantly, these latent catalysts are soluble in neat dicyclopentadiene (DCPD) and show good applicability in ring-opening metathesis polymeriyation (ROMP) of this monomer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Synthesis of 7-Deoxypancratistatin from Carbohydrates by the Use of Olefin Metathesis

    DEFF Research Database (Denmark)

    Håkansson, Anders Eckart; Palmelund, Anders; Holm, H.

    2006-01-01

    -deoxy-5-iodo-D-ribofuranoside in the presence of zinc metal. The first strategy involves a total of only 13 steps from D-ribose and piperonal, but suffers from a low yield in the zinc-mediated reaction between ribofuranoside 9, benzylamine, and bromide 7. The second strategy involves a total of 18 steps...... from D-xylose and piperonal. The former is converted into ribofuranoside 28, which is coupled with bromide 7 in the presence of zinc, and this is followed by ring-closing olefin metathesis. Subsequent Overman rearrangement, dihydroxylation, and deprotection then affords the natural product....

  4. Synthesis of Electronically Modified Ru-Based Neutral 16 VE Allenylidene Olefin Metathesis Precatalysts

    Directory of Open Access Journals (Sweden)

    Siegfried Blechert

    2012-05-01

    Full Text Available Electronic modifications within Ru-based olefin metathesis precatalysts have provided a number of new complexes with significant differences in reactivity profiles. So far, this aspect has not been studied for neutral 16 VE allenylidenes. The first synthesis of electronically altered complexes of this type is reported. Following the classical dehydration approach (vide infra modified propargyl alcohols were transformed to the targeted allenylidene systems in the presence of PCy3. The catalytic performance was investigated in RCM reaction (ring closing metathesis of benchmark substrates such as diallyltosylamide (6 and diethyl diallylmalonate (7.

  5. Olefin Metathesis Reaction in Water and in Air Improved by Supramolecular Additives

    Directory of Open Access Journals (Sweden)

    Jasmine Tomasek

    2015-10-01

    Full Text Available A range of water-immiscible commercially available Grubbs-type precatalysts can be used in ring-closing olefin metathesis reaction in high yields. The synthetic transformation is possible in pure water under ambient conditions. Sulfocalixarenes can help to boost the reactivity of the metathesis reaction by catalyst activation, improved mass transfer, and solubility of reactants in the aqueous reaction media. Additionally, the use of supramolecular additives allows lower catalyst loadings, but still high activity in pure water under aerobic conditions.

  6. Bulky N-Phosphino-Functionalized N-Heterocyclic Carbene Ligands: Synthesis, Ruthenium Coordination Chemistry, and Ruthenium Alkylidene Complexes for Olefin Metathesis.

    Science.gov (United States)

    Brown, Christopher C; Rominger, Frank; Limbach, Michael; Hofmann, Peter

    2015-11-02

    Ruthenium chemistry and applications in catalytic olefin metathesis based on N-phosphino-functionalized N-heterocyclic carbene ligands (NHCPs) are presented. Alkyl NHCP Ru coordination chemistry is described, and access to several potential synthetic precursors for ruthenium alkylidene complexes is outlined, incorporating both trimethylsilyl and phenyl alkylidenes. The Ru alkylidene complexes are evaluated as potential olefin metathesis catalysts and were shown to behave in a latent fashion. They displayed catalytic activity at elevated temperatures for both ring closing metathesis and ring opening metathesis polymerization.

  7. Catalytic Asymmetric Synthesis of Dihydrofurans and Cyclopentenols with Tertiary Stereocenters

    NARCIS (Netherlands)

    Wu, Zhongtao; Madduri, Ashoka V.R.; Harutyunyan, Syuzanna R.; Minnaard, Adriaan J.

    A new asymmetric synthesis of dihydrofurans and cyclopentenols has been developed and is based on the copper-catalyzed 1,2-addition of Grignard reagents to enones in combination with Sonogashira coupling/cyclization or ring-closing metathesis. By this approach, dihydrofurans with an

  8. Homobimetallic Ruthenium-N-Heterocyclic Carbene Complexes For Olefin Metathesis

    Science.gov (United States)

    Sauvage, Xavier; Demonceau, Albert; Delaude, Lionel

    In this chapter, the synthesis and catalytic activity towards olefin metathesis of homobimetallic ruthenium (Ru)-alkylidene, -cyclodiene or -arene complexes bearing phosphine or N-heterocyclic carbene (NHC) ligands are reviewed. Emphasis is placed on the last category of bimetallic compounds. Three representatives of this new type of molecular scaffold were investigated. Thus, [(p-cymene)Ru(m-Cl)3RuCl (h2-C2H4)(L)] complexes with L = PCy3 (15a), IMes (16a), or IMesCl2 (16b) were prepared. They served as catalyst precursors for cross-metathesis (CM) of various styrene derivatives. These experiments revealed the outstanding aptitude of complex 16a (and to a lesser extent of 16b) to catalyze olefin metathesis reactions. Contrary to monometallic Ru-arene complexes of the [RuCl2(p-cymene)(L)] type, the new homobimetallic species did not require the addition of a diazo compound nor visible light illumination to initiate the ring-opening metathesis of norbornene or cyclooctene. When diethyl 2,2-diallylmalonate and N,N-diallyltosylamide were exposed to 16a,b, a mixture of cycloisomerization and ring-closing metathesis (RCM) products was obtained in a nonselective way. Addition of phenylacetylene enhanced the metathetical activity while completely repressing the cycloisomerization process.

  9. Olefin metathesis in air

    OpenAIRE

    Lorenzo Piola; Fady Nahra; Nolan, Steven P

    2015-01-01

    Summary Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments...

  10. Olefin metathesis in air.

    Science.gov (United States)

    Piola, Lorenzo; Nahra, Fady; Nolan, Steven P

    2015-01-01

    Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance.

  11. Photolithographic Olefin Metathesis Polymerization

    OpenAIRE

    Weitekamp, Raymond A.; Atwater, Harry A.; Grubbs, Robert H

    2013-01-01

    Patterning functional materials is a central challenge across many fields of science. The ability to lithographically fabricate micro- and nanostructures has been one of the most impactful technological breakthroughs of the last century. In part due to the complexity of the chemical processes in photoresists, there is a limited variety of materials that can currently be patterned by photolithography. We report a negative tone photoresist using a photoactivated olefin metathesis catalyst, whic...

  12. Microwave-Assisted Olefin Metathesis as Pivotal Step in the Synthesis of Bioactive Compounds.

    Science.gov (United States)

    Etsè, Koffi Sénam; Ngendera, Alice; Tshibalonza, Ntumba Nelly; Demonceau, Albert; Delaude, Lionel; Dragutan, Ileana; Dragutan, Valerian

    2017-03-14

    Over the last two decades, olefin metathesis has emerged as a new avenue in the design of new routes for the synthesis of natural products and active pharmaceutical ingredients. In many cases, syntheses based on olefin metathesis strategies provide elegant routes in terms of increasing the overall yields, improving the synthesis scope, and decreasing the number of steps. On the other hand, over the last decade, microwave-assisted chemistry has experienced an incredible development, which rapidly opened new vistas in organic synthesis and in homogeneous catalysis. In this review article, we highlight applications of microwave-heated olefin metathesis reactions as pivotal steps in the total synthesis of biologically active compounds. By drawing selected examples from the recent literature, we aim to illustrate the great synthetic power and variety of metathesis reactions, as well as the beneficial effects of microwave irradiation over conventional heating sources. The majority of the selected applications of microwave-assisted olefin metathesis cover the synthesis of medium-ring cycles, macrocycles, and peptidomimetics by means of ring-closing metathesis (RCM) and cross-metathesis (CM) routes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. New pseudohalide ligands in Ru-catalyzed olefin metathesis : a robust, air-activated iminopyrrolato catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Drouin, S.D.; Foucault, H.M.; Yap, G.P.A.; Fogg, D.E. [Ottawa Univ., ON (Canada). Dept. of Chemistry, Center for Catalysis Research and Innovation

    2005-07-01

    This study demonstrated the feasibility of using iminopyrrolatos as a new pseudohalide ligand in Ru-catalyzed olefin metathesis, particularly in terms of stereo control and anchoring. Ring-closing metathesis (RCM) and cross-metathesis reactions hold promise for pharmaceutical synthesis, as well as green chemistry initiatives to transform seed oils into olefin feedstocks. The advent of robust, functional-group tolerant ruthenium (Ru) catalysts has expanded the deployment of olefin metathesis methodologies by the organic community. Despite recent advances in metathesis activity, major issues remain to be addressed, particularly the problem of short catalyst lifetimes which increase catalyst loading requirements, as well as heavy metal contamination of the organic products. This study revealed that chelation does not prevent isomerization of aryloxide ligands that form larger, seven-membered chelate rings. Complex 5 proved to be a robust olefin metathesis catalyst, effecting RCM of the benchmark substrate diethyl diallylmalonate at 70 degrees C in air, in nondistilled and nondegassed solvent. The reaction revealed complete selectivity for RCM over intermolecular acyclic diene metathesis processes, even in the absence of a solvent. It was shown that RuCl(NN')(Pcy{sub 3})(CHPh) (5) is activated via loss of phosphine. As a result, the catalyst achieves maximum activity in the presence of air, providing a good experimental protocol for metathesis chemistry.

  14. Synthesis of interlocked molecules by olefin metathesis

    Science.gov (United States)

    Clark, Paul Gregory

    A large body of work in the Grubbs group has focused on the development of functional-group tolerant ruthenium alkylidene catalysts that perform a number of olefin metathesis reactions. These catalysts have seen application in a wide range of fields, including classic total synthesis as well as polymer and materials chemistry. One particular family of compounds, interlocked molecules, has benefitted greatly from these advances in catalyst stability and activity. This thesis describes several elusive and challenging interlocked architectures whose syntheses have been realized through the utilization of different types of ruthenium-catalyzed olefin metathesis reactions. Ring-closing olefin metathesis has enabled the synthesis of a [c2]daisy-chain dimer with the ammonium binding site near the cap of the dimer. A deprotonated DCD possessing such a structural attribute will more forcefully seek to restore coordinating interactions upon reprotonation, enhancing its utility as a synthetic molecular actuator. Dimer functionalization facilitated incorporation into linear polymers, with a 48% size increase of an unbound, extended analogue of the polymer demonstrating slippage of the dimer units. Ongoing work is directed at further materials studies, in particular, exploring the synthesis of macroscopic networks containing the DCD units and analyzing the correlation between molecular-scale extension-contraction manipulations and resulting macro-scale changes. A "clipping" approach to a polycatenated cyclic polymer, a structure that resembles a molecular "charm bracelet", has been described. The use of ring-opening metathesis polymerization of a carbamate monomer in the presence of a chain transfer agent allowed for the synthesis of a linear polymer that was subsequently functionalized and cyclized to the corresponding cyclic analogue. This cyclic polymer was characterized through a variety of techniques, and subjected to further functionalization reactions, affording a cyclic

  15. A tandem Mannich addition–palladium catalyzed ring-closing route toward 4-substituted-3(2H-furanones

    Directory of Open Access Journals (Sweden)

    Jubi John

    2014-06-01

    Full Text Available A facile route towards highly functionalized 3(2H-furanones via a sequential Mannich addition–palladium catalyzed ring closing has been elaborated. The reaction of 4-chloroacetoacetate esters with imines derived from aliphatic and aromatic aldehydes under palladium catalysis afforded 4-substituted furanones in good to excellent yields. 4-Hydrazino-3(2H-furanones could also be synthesized from diazo esters in excellent yields by utilising the developed strategy. We could also efficiently transform the substituted furanones to aza-prostaglandin analogues.

  16. A new synthetic route to nucleosides: dissymmetric construction of a cyclopentene system by double [3,3]-sigmatropic rearrangement and double ring-closing metathesis.

    Science.gov (United States)

    Fang, Zhe; Hong, Joon Hee

    2004-03-18

    [reaction: see text] The dissymmetric synthesis of a carbocyclic nucleoside was achieved by a novel double [3,3]-sigmatropic rearrangement/double ring-closing metathesis strategy with a high stereoselectivity.

  17. Design and synthesis of hybrid cyclophanes containing thiophene and indole units via Grignard reaction, Fischer indolization and ring-closing metathesis as key steps

    Directory of Open Access Journals (Sweden)

    Sambasivarao Kotha

    2015-08-01

    Full Text Available We demonstrate a new synthetic strategy to cyclophanes containing thiophene and indole moieties via Grignard addition, Fischer indolization and ring-closing metathesis as key steps.

  18. Synthesis and activity of ruthenium olefin metathesis catalysts coordinated with thiazol-2-ylidene ligands.

    Science.gov (United States)

    Vougioukalakis, Georgios C; Grubbs, Robert H

    2008-02-20

    A new family of ruthenium-based olefin metathesis catalysts bearing a series of thiazole-2-ylidene ligands has been prepared. These complexes are readily accessible in one step from commercially available (PCy3)2Cl2Ru=CHPh or (PCy3)Cl2Ru=CH(o-iPrO-Ph) and have been fully characterized. The X-ray crystal structures of four of these complexes are disclosed. In the solid state, the aryl substituents of the thiazole-2-ylidene ligands are located above the empty coordination site of the ruthenium center. Despite the decreased steric bulk of their ligands, all of the complexes reported herein efficiently promote benchmark olefin metathesis reactions such as the ring-closing of diethyldiallyl and diethylallylmethallyl malonate and the ring-opening metathesis polymerization of 1,5-cyclooctadiene and norbornene, as well as the cross metathesis of allyl benzene with cis-1,4-diacetoxy-2-butene and the macrocyclic ring-closing of a 14-membered lactone. The phosphine-free catalysts of this family are more stable than their phosphine-containing counterparts, exhibiting pseudo-first-order kinetics in the ring-closing of diethyldiallyl malonate. Upon removing the steric bulk from the ortho positions of the N-aryl group of the thiazole-2-ylidene ligands, the phosphine-free catalysts lose stability, but when the substituents become too bulky the resulting catalysts show prolonged induction periods. Among five thiazole-2-ylidene ligands examined, 3-(2,4,6-trimethylphenyl)- and 3-(2,6-diethylphenyl)-4,5-dimethylthiazol-2-ylidene afforded the most efficient and stable catalysts. In the cross metathesis reaction of allyl benzene with cis-1,4-diacetoxy-2-butene increasing the steric bulk at the ortho positions of the N-aryl substituents results in catalysts that are more Z-selective.

  19. Olefin metathesis catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kukes, S.G.; Banks, R.L.

    1986-05-20

    A process is described for preparing a disproportionation catalyst comprising admixing a catalytically effective amount of a calcined and activated catalyst consisting essentially of at least one metal oxide selected from molybdenum oxide and tungsten oxide and a support containing a major proportion of silica or alumina with a promoting amount of a methylating agent selected from the group consisting of dimethyl sulfate, dimethylsulfoxide, trimethyloxonium tetrafluorborate, methyl iodide, and methyl bromide, and subjecting same to inert atmospheric conditions for the methylating agent to promote the activity of the calcined molybdenum and tungsten oxides for the disproportionation of olefins.

  20. Olefin metathesis in air

    Directory of Open Access Journals (Sweden)

    Lorenzo Piola

    2015-10-01

    Full Text Available Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance.

  1. Industrial processes of olefin metathesis. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Warwel, S.

    1987-05-01

    Olefin metathesis opens new synthetic routes to typical petrochemicals (ethylene, propylene, n-butenes), special olefins (neohexene, higher molecular linear olefins, , -dienes) and unsaturated polymers (polynorbornene, -cyclooctene, -dicyclopentadiene) in an industrial scale. The 8 metathesis processes used in industry and further possible applications of olefin metathesis are reviewed.

  2. Fast tandem ring-opening/ring-closing metathesis polymerization from a monomer containing cyclohexene and terminal alkyne.

    Science.gov (United States)

    Park, Hyeon; Choi, Tae-Lim

    2012-05-02

    We report extremely fast tandem ring-opening/ring-closing metathesis polymerization of a monomer containing two rather unreactive functional groups: cyclohexene and a terminal alkyne. When a third-generation Grubbs catalyst was used at low temperature, this tandem polymerization produced polymers with controlled molecular weights and narrow polydispersity indices. To explain this extremely fast polymerization, its reaction mechanism was studied. This new type of controlled polymerization allowed for the preparation of block copolymers using other conventional living metathesis polymerizations. The diene on the backbone of the polymer was postfunctionalized by sequential Diels-Alder and aza-Diels-Alder reactions, which led to selective functionalization depending on the stereochemistry of the diene. © 2012 American Chemical Society

  3. Solid-phase synthesis of peptide thioureas and thiazole-containing macrocycles through ru-catalyzed ring-closing metathesis

    DEFF Research Database (Denmark)

    Cohrt, A. Emil; Nielsen, Thomas E.

    2014-01-01

    between two alkene moieties, said thiazole core was conveniently embedded in peptide macrocycles via Ru-catalyzed ring-closing metathesis reactions. Various 15-17 membered macrocycles were easily accessible in all diastereomeric forms using this methodology. The developed "build/couple/pair" strategy......N-Terminally modified α-thiourea peptides can selectively be synthesized on solid support under mild reaction conditions using N,N′-di-Boc-thiourea and Mukaiyama's reagent (2-chloro-1-methyl-pyridinium iodide). This N-terminal modification applies to the 20 proteinogenic amino acid residues...... on three commonly used resins for solid-phase synthesis. Complementary methods for the synthesis of α-guanidino peptides have also been developed. The thiourea products underwent quantitative reactions with α-halo ketones to form thiazoles in excellent purities and yields. When strategically installed...

  4. Light-induced olefin metathesis

    National Research Council Canada - National Science Library

    Vidavsky, Yuval; Lemcoff, N Gabriel

    2010-01-01

    Light activation is a most desirable property for catalysis control. Among the many catalytic processes that may be activated by light, olefin metathesis stands out as both academically motivating and practically useful...

  5. Mechanistic studies of olefin metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Grubbs, R.H.

    1979-03-01

    A review covers studies of the olefin metathesis mechanism which indicated that the reaction proceeds by a non-pairwise mechanism; detailed mechanistic studies on the homogeneously and heterogeneously catalyzed metathesis; and stereochemical investigations.

  6. Olefin metathesis in carotenoid synthesis.

    Science.gov (United States)

    Kajikawa, Takayuki; Iguchi, Naoko; Katsumura, Shigeo

    2009-11-21

    Olefin metathesis is a powerful and widely applicable synthetic method for carbon-carbon double bond formation. However, its application to the synthesis of conjugating polyene chains has been very limited because of possible undesired side reactions. We attempted to apply this method to the synthesis of symmetrical carotenoids. In this paper, the syntheses of violaxanthin and mimulaxanthin are described using the olefin metathesis protocol.

  7. Hyperbranched Macromolecules via Olefin Metathesis

    OpenAIRE

    Gorodetskaya, Irina A.; Choi, Tae-Lim; Grubbs, Robert H

    2007-01-01

    A facile route to hyperbranched polymers via acyclic diene metathesis is reported. Any molecule functionalized with two or more acrylate groups and one terminal olefin can serve as an AB_n monomer when exposed to an imidazolinylidene-based ruthenium olefin metathesis catalyst, due to the cross metathesis selectivity of this catalyst. For the polymers obtained by this method, both ^1H NMR spectroscopy and triple detector size exclusion chromatography conclusively indicate a branched architecture.

  8. Metylcyclohexane conversion to light olefins

    Directory of Open Access Journals (Sweden)

    C.F. SCOFIELD

    1998-06-01

    Full Text Available This study consists in the evaluation of the catalytic properties of zeolites with different structures in the conversion of methylcyclohexane to light olefins. Results obtained suggest that the steric constrictions of the catalysts used play an important role in hydrogen transfer reactions. Higher selectivities for light olefins (C3= and C4= were observed for zeolites having more closed structures, like MFI and ferrerite, when compared to those having more open ones, like beta, omega and faujasite.

  9. Hydride Olefin complexes of tantalum and niobium

    NARCIS (Netherlands)

    Klazinga, Aan Hendrik

    1979-01-01

    This thesis describes investigations on low-valent tantalum and niobium hydride and alkyl complexes, particularly the dicyclopentadienyl tantalum hydride olefin complexes Cp2Ta(H)L (L=olefin). ... Zie: Summary

  10. An asymmetric route to 2,3-epoxy-syn-1,4-cyclohexane diol ...

    Indian Academy of Sciences (India)

    Administrator

    An asymmetric route to 2,3-epoxy-syn-1,4-cyclohexane diol derivatives using ring closing metathesis (RCM). SOUMITRA MAITY and SUBRATA GHOSH*. Department of Organic Chemistry, Indian Association for the Cultivation of Science,. Jadavpur, Kolkata 700 032 e-mail: ocsg@iacs.res.in. MS received 16 August 2010; ...

  11. 21 CFR 177.1520 - Olefin polymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Olefin polymers. 177.1520 Section 177.1520 Food and... CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1520 Olefin polymers. The olefin polymers listed in paragraph (a...

  12. Controlled polymerization of a cyclic diene prepared from the ring-closing metathesis of a naturally occurring monoterpene.

    Science.gov (United States)

    Kobayashi, Shingo; Lu, Cheng; Hoye, Thomas R; Hillmyer, Marc A

    2009-06-17

    The diene 3-methylenecyclopentene (2) was synthesized from the naturally occurring monoterpene myrcene (1) by ring-closing metathesis using Grubbs second generation catalyst. Radical, anionic, and cationic polymerizations of 2 were investigated. The anionic polymerization of 2 with sec-butyllithium (s-BuLi) in cyclohexane gave poly-2 in quantitative yield, with a narrow molecular weight distribution and predictable molecular weight based on the molar ratio of 2 and s-BuLi. Radical polymerization of 2 was also successful using AIBN as the initiator. Samples of poly-2 obtained from the anionic and radical polymerization of 2 possessed mixed regiochemistry (i.e., 4,3 and 1,4 addition). The cationic polymerization of 2 proceeded smoothly to afford regiopure 1,4-poly-2. For example, the i-BuOCH(Cl)Me/ZnCl(2)/Et(2)O initiating system afforded 1,4-poly-2 with controlled molecular weight and narrow molecular weight distribution. Samples of 1,4-poly-2 were semicrystalline as determined by differential scanning calorimetry.

  13. Tandem catalysis of ring-closing metathesis/atom transfer radical reactions with homobimetallic ruthenium–arene complexes

    Directory of Open Access Journals (Sweden)

    Yannick Borguet

    2010-12-01

    Full Text Available The tandem catalysis of ring-closing metathesis/atom transfer radical reactions was investigated with the homobimetallic ruthenium–indenylidene complex [(p-cymeneRu(μ-Cl3RuCl(3-phenyl-1-indenylidene(PCy3] (1 to generate active species in situ. The two catalytic processes were first carried out independently in a case study before the whole sequence was optimized and applied to the synthesis of several polyhalogenated bicyclic γ-lactams and lactones from α,ω-diene substrates bearing trihaloacetamide or trichloroacetate functionalities. The individual steps were carefully monitored by 1H and 31P NMR spectroscopies in order to understand the intimate details of the catalytic cycles. Polyhalogenated substrates and the ethylene released upon metathesis induced the clean transformation of catalyst precursor 1 into the Ru(II–Ru(III mixed-valence compound [(p-cymeneRu(μ-Cl3RuCl2(PCy3], which was found to be an efficient promoter for atom transfer radical reactions under the adopted experimental conditions.

  14. Combining the [2,3] Sigmatropic Rearrangement and Ring-Closing Metathesis Strategies for the Synthesis of Spirocyclic Alkaloids. A Short and Efficient Route to (+/-)-Perhydrohistrionicotoxin

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Hagberg, Lars; Poulsen, Anders

    1999-01-01

    This paper describes the use of selenium-based [2,3] sigmatropic rearrangement in combination with ruthenium-catalyzed ring-closing metathesis (RCM) for the synthesis of azaspiro ring systems, as exemplified by the reactions of model substrates 5 and 6. The methodology has been applied to a short...

  15. Application of olefin metathesis in petrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Warwel, S.

    1979-01-01

    A survey covers the catalysts used in olefin metathesis; olefin types which undergo metathesis, e.g., ring-opening metathetic polymerization of cycloolefins; equilibria and side reactions; the Phillips Triolefin process for 2-butene production; the Shell Higher Olefin Process (SHOP) for the production of C/sub 11/-C/sub 14/ ..cap alpha..-olefins; the Phillips Petroleum 225 ton/yr process for the conversion of trimethylpentane to neohexene, which is used in gasoline and pharmaceutical manufacture; the production of isoprene precursors; and various other metathesis reactions used in synthesizing specific olefins.

  16. The Effects of NHC-Backbone Substitution on Efficiency in Ruthenium-based Olefin Metathesis

    Science.gov (United States)

    Kuhn, Kevin M.; Bourg, Jean-Baptiste; Chung, Cheol K.; Virgil, Scott C.; Grubbs, Robert H.

    2009-01-01

    A series of ruthenium olefin metathesis catalysts bearing N-heterocyclic carbene (NHC) ligands with varying degrees of backbone and N-aryl substitution have been prepared. These complexes show greater resistance to decomposition through C–H activation of the N-aryl group, resulting in increased catalyst lifetimes. This work has utilized robotic technology to examine the activity and stability of each catalyst in metathesis, providing insights into the relationship between ligand architecture and enhanced efficiency. The development of this robotic methodology has also shown that, under optimized conditions, catalyst loadings as low as 25 ppm can lead to 100% conversion in the ring-closing metathesis of diethyl diallylmalonate. PMID:19351207

  17. Ru complexes of Hoveyda-Grubbs type immobilized on lamellar zeolites: activity in olefin metathesis reactions.

    Science.gov (United States)

    Balcar, Hynek; Žilková, Naděžda; Kubů, Martin; Mazur, Michal; Bastl, Zdeněk; Čejka, Jiří

    2015-01-01

    Hoveyda-Grubbs type catalysts with cationic tags on NHC ligands were linker-free immobilized on the surface of lamellar zeolitic supports (MCM-22, MCM-56, MCM-36) and on mesoporous molecular sieves SBA-15. The activity of prepared hybrid catalysts was tested in olefin metathesis reactions: the activity in ring-closing metathesis of citronellene and N,N-diallyltrifluoroacetamide decreased in the order of support MCM-22 ≈ MCM-56 > SBA-15 > MCM-36; the hybrid catalyst based on SBA-15 was found the most active in self-metathesis of methyl oleate. All catalysts were reusable and exhibited low Ru leaching (<1% of Ru content). XPS analysis revealed that during immobilization ion exchange between Hoveyda-Grubbs type catalyst and zeolitic support occurred in the case of Cl(-) counter anion; in contrast, PF6 (-) counter anion underwent partial decomposition.

  18. A Thermo- and Photo-Switchable Ruthenium Initiator For Olefin Metathesis.

    Science.gov (United States)

    Sashuk, Volodymyr; Danylyuk, Oksana

    2016-05-04

    A ruthenium carbene complex bearing azobenzene functionality is reported. The complex exists in the form of two isomers differing by the size of the chelate ring. Both isomers were isolated by applying kinetic or thermodynamic control during the synthesis and characterized by X-ray diffraction analysis. The isomerization of the complex was studied by UV/Vis spectroscopy. The stable isomer was tested as a catalyst in olefin metathesis. The complex was activated at about 100 °C to promote ring-closing and ring-opening polymerization metathesis reactions. The activation took place also at room temperature under middle ultraviolet radiation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ru complexes of Hoveyda–Grubbs type immobilized on lamellar zeolites: activity in olefin metathesis reactions

    Directory of Open Access Journals (Sweden)

    Hynek Balcar

    2015-11-01

    Full Text Available Hoveyda–Grubbs type catalysts with cationic tags on NHC ligands were linker-free immobilized on the surface of lamellar zeolitic supports (MCM-22, MCM-56, MCM-36 and on mesoporous molecular sieves SBA-15. The activity of prepared hybrid catalysts was tested in olefin metathesis reactions: the activity in ring-closing metathesis of citronellene and N,N-diallyltrifluoroacetamide decreased in the order of support MCM-22 ≈ MCM-56 > SBA-15 > MCM-36; the hybrid catalyst based on SBA-15 was found the most active in self-metathesis of methyl oleate. All catalysts were reusable and exhibited low Ru leaching (− counter anion; in contrast, PF6− counter anion underwent partial decomposition.

  20. Asymmetric syntheses of (-)-3-epi-Fagomine, (2R,3S,4R)-dihydroxypipecolic acid, and several polyhydroxylated homopipecolic acids.

    Science.gov (United States)

    Csatayová, Kristína; Davies, Stephen G; Fletcher, Ai M; Ford, J Gair; Klauber, David J; Roberts, Paul M; Thomson, James E

    2014-11-21

    A range of enantiopure polyhydroxylated piperidines, including (2R,3S,4R)-dihydroxypipecolic acid, (-)-3-epi-fagomine, (2S,3S,4R)-dihydroxyhomopipecolic acid, (2S,3R,4R)-dihydroxyhomopipecolic acid, and two trihydroxy-substituted homopipecolic acids, have been prepared using diastereoselective olefinic oxidations of a range of enantiopure tetrahydropyridines as the key step. The requisite substrates were readily prepared from tert-butyl sorbate using our diastereoselective hydroamination or aminohydroxylation protocols followed by ring-closing metathesis. After diastereoselective olefinic oxidation of the resultant enantiopure tetrahydropyridines and deprotection, enantiopure polyhydroxylated piperidines were isolated as single diastereoisomers (>99:1 dr) in good overall yield.

  1. Versatile Tandem Ring-Opening/Ring-Closing Metathesis Polymerization: Strategies for Successful Polymerization of Challenging Monomers and Their Mechanistic Studies.

    Science.gov (United States)

    Park, Hyeon; Kang, Eun-Hye; Müller, Laura; Choi, Tae-Lim

    2016-02-24

    Tandem ring-opening/ring-closing metathesis (RO/RCM) results in extremely fast living polymerization; however, according to previous reports, only monomers containing certain combinations of cycloalkenes, terminal alkynes, and nitrogen linkers successfully underwent tandem polymerization. After examining the polymerization pathways, we proposed that the relatively slow intramolecular cyclization might lead to competing side reactions such as intermolecular cross metathesis reactions to form inactive propagating species. Thus, we developed two strategies to enhance tandem polymerization efficiency. First, we modified monomer structures to accelerate tandem RO/RCM cyclization by enhancing the Thorpe-Ingold effect. This strategy increased the polymerization rate and suppressed the chain transfer reaction to achieve controlled polymerization, even for challenging syntheses of dendronized polymers. Alternatively, reducing the reaction concentration facilitated tandem polymerization, suggesting that the slow tandem RO/RCM cyclization step was the main reason for the previous failure. To broaden the monomer scope, we used monomers containing internal alkynes and observed that two different polymer units with different ring sizes were produced as a result of nonselective α-addition and β-addition on the internal alkynes. Thorough experiments with various monomers with internal alkynes suggested that steric and electronic effects of the alkyne substituents influenced alkyne addition selectivity and the polymerization reactivity. Further polymerization kinetics studies revealed that the rate-determining step of monomers containing certain internal alkynes was the six-membered cyclization step via β-addition, whereas that for other monomers was the conventional intermolecular propagation step, as observed in other chain-growth polymerizations. This conclusion agrees well with all those polymerization results and thus validates our strategies.

  2. Stereoselective synthesis of macrocyclic peptides via a dual olefin metathesis and ethenolysis approach† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc01507c Click here for additional data file.

    Science.gov (United States)

    Mangold, Shane L.

    2015-01-01

    Macrocyclic compounds occupy an important chemical space between small molecules and biologics and are prevalent in many natural products and pharmaceuticals. The growing interest in macrocycles has been fueled, in part, by the design of novel synthetic methods to these compounds. One appealing strategy is ring-closing metathesis (RCM) that seeks to construct macrocycles from acyclic diene precursors using defined transition-metal alkylidene catalysts. Despite its broad utility, RCM generally gives rise to a mixture of E- and Z-olefin isomers that can hinder efforts for the large-scale production and isolation of such complex molecules. To address this issue, we aimed to develop methods that can selectively enrich macrocycles in E- or Z-olefin isomers using an RCM/ethenolysis strategy. The utility of this methodology was demonstrated in the stereoselective formation of macrocyclic peptides, a class of compounds that have gained prominence as therapeutics in drug discovery. Herein, we report an assessment of various factors that promote catalyst-directed RCM and ethenolysis on a variety of peptide substrates by varying the olefin type, peptide sequence, and placement of the olefin in macrocycle formation. These methods allow for control over olefin geometry in peptides, facilitating their isolation and characterization. The studies outlined in this report seek to expand the scope of stereoselective olefin metathesis in general RCM. PMID:26509000

  3. Well-defined silica supported bipodal molybdenum oxo alkyl complexes: a model of the active sites of industrial olefin metathesis catalysts

    KAUST Repository

    Merle, Nicolas

    2017-09-25

    A well-defined, silica-supported molybdenum oxo alkyl species, ([triple bond, length as m-dash]SiO-)2Mo([double bond, length as m-dash]O)(CH2tBu)2, was prepared by the selective grafting of Mo([double bond, length as m-dash]O)(CH2tBu)3Cl onto a silica partially dehydroxylated at 200 °C using a rigorous surface organometallic chemistry approach. The immobilized bipodal surface species, partly resembling the active species of industrial MoO3/SiO2 olefin metathesis catalysts, exhibited excellent functional group tolerance in conjunction with its high activity in homocoupling, self and ring closing olefin metathesis.

  4. Well-defined silica supported bipodal molybdenum oxo alkyl complexes: a model of the active sites of industrial olefin metathesis catalysts.

    Science.gov (United States)

    Merle, Nicolas; Le Quéméner, Frédéric; Barman, Samir; Samantaray, Manoja K; Szeto, Kai C; De Mallmann, Aimery; Taoufik, Mostafa; Basset, Jean-Marie

    2017-10-12

    A well-defined, silica-supported molybdenum oxo alkyl species, ([triple bond, length as m-dash]SiO-)2Mo([double bond, length as m-dash]O)(CH2(t)Bu)2, was prepared by the selective grafting of Mo([double bond, length as m-dash]O)(CH2(t)Bu)3Cl onto a silica partially dehydroxylated at 200 °C using a rigorous surface organometallic chemistry approach. The immobilized bipodal surface species, partly resembling the active species of industrial MoO3/SiO2 olefin metathesis catalysts, exhibited excellent functional group tolerance in conjunction with its high activity in homocoupling, self and ring closing olefin metathesis.

  5. In Situ Methylene Capping: A General Strategy for Efficient Stereoretentive Catalytic Olefin Metathesis. The Concept, Methodological Implications, and Applications to Synthesis of Biologically Active Compounds.

    Science.gov (United States)

    Xu, Chaofan; Shen, Xiao; Hoveyda, Amir H

    2017-08-09

    In situ methylene capping is introduced as a practical and broadly applicable strategy that can expand the scope of catalyst-controlled stereoselective olefin metathesis considerably. By incorporation of commercially available Z-butene together with robust and readily accessible Ru-based dithiolate catalysts developed in these laboratories, a large variety of transformations can be made to proceed with terminal alkenes, without the need for a priori synthesis of a stereochemically defined disubstituted olefin. Reactions thus proceed with significantly higher efficiency and Z selectivity as compared to when other Ru-, Mo-, or W-based complexes are utilized. Cross-metathesis with olefins that contain a carboxylic acid, an aldehyde, an allylic alcohol, an aryl olefin, an α substituent, or amino acid residues was carried out to generate the desired products in 47-88% yield and 90:10 to >98:2 Z:E selectivity. Transformations were equally efficient and stereoselective with a ∼70:30 Z-:E-butene mixture, which is a byproduct of crude oil cracking. The in situ methylene capping strategy was used with the same Ru catechothiolate complex (no catalyst modification necessary) to perform ring-closing metathesis reactions, generating 14- to 21-membered ring macrocyclic alkenes in 40-70% yield and 96:4-98:2 Z:E selectivity; here too, reactions were more efficient and Z-selective than when the other catalyst classes are employed. The utility of the approach is highlighted by applications to efficient and stereoselective syntheses of several biologically active molecules. This includes a platelet aggregate inhibitor and two members of the prostaglandin family of compounds by catalytic cross-metathesis reactions, and a strained 14-membered ring stapled peptide by means of macrocyclic ring-closing metathesis. The approach presented herein is likely to have a notable effect on broadening the scope of olefin metathesis, as the stability of methylidene complexes is a generally

  6. Synthesis of alpha,beta-unsaturated 4,5-disubstituted gamma-lactones via ring-closing metathesis catalyzed by the first-generation Grubbs' catalyst.

    Science.gov (United States)

    Bassetti, Mauro; D'Annibale, Andrea; Fanfoni, Alessia; Minissi, Franco

    2005-04-28

    [reaction: see text] 4-Methyl-5-alkyl-2(5H)-furanones have been prepared by ruthenium-catalyzed ring-closing metathesis of the suitable methallyl acrylates. Despite the electron deficiency of the conjugated double bond and of the gem-disubstitution of the allylic alkene moiety in the starting acrylates, the first-generation Grubbs' catalyst I proved to be an effective promoter for the ring closure, affording the expected butenolides in good to high yields.

  7. Phosphate Tether-Mediated Ring-Closing Metathesis for the Generation of Medium to Large, P-Stereogenic Bicyclo[n.3.1]phosphates.

    Science.gov (United States)

    Maitra, Soma; Markley, Jana L; Chegondi, Rambabu; Hanson, Paul R

    2015-09-02

    A phosphate tether-mediated ring-closing metathesis study towards the synthesis of P-stereogenic bicyclo[6.3.1]-, bicyclo[7.3.1]-, and bicyclo[8.3.1]phosphates is reported. This study demonstrates expanded utility of phosphate tether-mediated desymmetrization of C2-symmetric, 1,3-anti-diol dienes in generating complex medium to large, P-stereogenic bicyclo[n.3.1]phosphates..

  8. Olefins from Biomass Intermediates: A Review

    Directory of Open Access Journals (Sweden)

    Vasiliki Zacharopoulou

    2017-12-01

    Full Text Available Over the last decade, increasing demand for olefins and their valuable products has prompted research on novel processes and technologies for their selective production. As olefins are predominately dependent on fossil resources, their production is limited by the finite reserves and the associated economic and environmental concerns. The need for alternative routes for olefin production is imperative in order to meet the exceedingly high demand, worldwide. Biomass is considered a promising alternative feedstock that can be converted into the valuable olefins, among other chemicals and fuels. Through processes such as fermentation, gasification, cracking and deoxygenation, biomass derivatives can be effectively converted into C2–C4 olefins. This short review focuses on the conversion of biomass-derived oxygenates into the most valuable olefins, e.g., ethylene, propylene, and butadiene.

  9. Recent Advancements in Stereoselective Olefin Metathesis Using Ruthenium Catalysts

    OpenAIRE

    T. Patrick Montgomery; Johns, Adam M.; Grubbs, Robert H

    2017-01-01

    Olefin metathesis is a prevailing method for the construction of organic molecules. Recent advancements in olefin metathesis have focused on stereoselective transformations. Ruthenium olefin metathesis catalysts have had a particularly pronounced impact in the area of stereoselective olefin metathesis. The development of three categories of Z-selective olefin metathesis catalysts has made Z-olefins easily accessible to both laboratory and industrial chemists. Further design enhancements to as...

  10. Olefin-selective membranes in gas-liquid membrane contactors for olefin/paraffin separation

    NARCIS (Netherlands)

    Nijmeijer, Dorothea C.; Visser, Tymen; Assen, Rijanne; Wessling, Matthias

    2004-01-01

    The application of olefin-selective membrane materials in gas-liquid membrane contactors for the separation of paraffins and olefins using a silver nitrate solution as the absorption liquid turned out to be very successful, especially with respect to the olefin/paraffin selectivity obtainable.

  11. Olefin Metathesis for Chemical Biology

    OpenAIRE

    Binder, Joseph B.; Raines, Ronald T

    2008-01-01

    Chemical biology relies on effective synthetic chemistry for building molecules to probe and modulate biological function. Olefin metathesis in organic solvents is a valuable addition to this armamentarium, and developments during the previous decade are enabling metathesis in aqueous solvents for the manipulation of biomolecules. Functional group-tolerant ruthenium metathesis catalysts modified with charged moieties or hydrophilic polymers are soluble and active in water, enabling ring-openi...

  12. Light-induced olefin metathesis

    OpenAIRE

    Yuval Vidavsky; N. Gabriel Lemcoff

    2010-01-01

    Summary Light activation is a most desirable property for catalysis control. Among the many catalytic processes that may be activated by light, olefin metathesis stands out as both academically motivating and practically useful. Starting from early tungsten heterogeneous photoinitiated metathesis, up to modern ruthenium methods based on complex photoisomerisation or indirect photoactivation, this survey of the relevant literature summarises past and present developments in the use of light to...

  13. Microwave-Assisted Olefin Metathesis

    Science.gov (United States)

    Nicks, François; Borguet, Yannick; Sauvage, Xavier; Bicchielli, Dario; Delfosse, Sébastien; Delaude, Lionel; Demonceau, Albert

    Since the first reports on the use of microwave irradiation to accelerate organic chemical transformations, a plethora of papers have been published in this field. In most examples, microwave heating has been shown to dramatically reduce reaction times, increase product yields, and enhance product purity by reducing unwanted side reactions compared to conventional heating methods. The present contribution aims at illustrating the advantages of this technology in olefin metathesis and, when data are available, at comparing microwave-heated and conventionally heated experiments

  14. Design and stereoselective preparation of a new class of chiral olefin metathesis catalysts and application to enantioselective synthesis of quebrachamine: catalyst development inspired by natural product synthesis.

    Science.gov (United States)

    Sattely, Elizabeth S; Meek, Simon J; Malcolmson, Steven J; Schrock, Richard R; Hoveyda, Amir H

    2009-01-28

    A total synthesis of the Aspidosperma alkaloid quebrachamine in racemic form is first described. A key catalytic ring-closing metathesis of an achiral triene is used to establish the all-carbon quaternary stereogenic center and the tetracyclic structure of the natural product; the catalytic transformation proceeds with reasonable efficiency through the use of existing achiral Ru or Mo catalysts. Ru- or Mo-based chiral olefin metathesis catalysts have proven to be inefficient and entirely nonselective in cases where the desired product is observed. In the present study, the synthesis route thus serves as a platform for the discovery of new olefin metathesis catalysts that allow for efficient completion of an enantioselective synthesis of quebrachamine. Accordingly, on the basis of mechanistic principles, stereogenic-at-Mo complexes bearing only monodentate ligands have been designed. The new catalysts provide significantly higher levels of activity than observed with the previously reported Ru- or Mo-based complexes. Enantiomerically enriched chiral alkylidenes are generated through diastereoselective reactions involving achiral Mo-based bispyrrolides and enantiomerically pure silyl-protected binaphthols. Such chiral catalysts initiate the key enantioselective ring-closing metathesis step in the total synthesis of quebrachamine efficiently (1 mol % loading, 22 degrees C, 1 h, >98% conversion, 84% yield) and with high selectivity (98:2 er, 96% ee).

  15. Producing alpha-olefins using polyketide synthases

    Energy Technology Data Exchange (ETDEWEB)

    Fortman, Jeffrey L.; Katz, Leonard; Steen, Eric J.; Keasling, Jay D.

    2018-01-02

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an .alpha.-olefin, such as 1-hexene or butadiene. The present invention also provides for a host cell comprising the PKS and when cultured produces the .alpha.-olefin.

  16. Catalyst-controlled stereoselective olefin metathesis as a principal strategy in multistep synthesis design: a concise route to (+)-neopeltolide.

    Science.gov (United States)

    Yu, Miao; Schrock, Richard R; Hoveyda, Amir H

    2015-01-02

    Molybdenum-, tungsten-, and ruthenium-based complexes that control the stereochemical outcome of olefin metathesis reactions have been recently introduced. However, the complementary nature of these systems through their combined use in multistep complex molecule synthesis has not been illustrated. A concise diastereo- and enantioselective route that furnishes the anti-proliferative natural product neopeltolide is now disclosed. Catalytic transformations are employed to address every stereochemical issue. Among the featured processes are an enantioselective ring-opening/cross-metathesis promoted by a Mo monoaryloxide pyrrolide (MAP) complex and a macrocyclic ring-closing metathesis that affords a trisubstituted alkene and is catalyzed by a Mo bis(aryloxide) species. Furthermore, Z-selective cross-metathesis reactions, facilitated by Mo and Ru complexes, have been employed in the stereoselective synthesis of the acyclic dienyl moiety of the target molecule. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. New Enantiomerically Pure Alkylimido Mo-Based Complexes. Synthesis, Characterization, and Activity as Chiral Olefin Metathesis Catalysts

    Science.gov (United States)

    Pilyugina, Tatiana S.; Schrock, Richard R.; Müller, Peter; Hoveyda, Amir H.

    2008-01-01

    Molybdenum olefin metathesis catalysts that contain aliphatic 1-phenylcyclohexylimido (NPhCy) and 2-phenyl-2-adamantylimido (NPhAd) groups and (S)-Biphen or (R)-Trip)(THF) ligands (Biphen = 3,3′-di-tert-butyl-5,5′,6,6′-tetramethyl-1,1′-biphenyl-2,2′-diolate; Trip = 3,3′-bis(2,4,6-triisopropylphenyl)-2,2′-binaphtholate) have been prepared. Their catalytic activity and enantioselectivity in desymmetrization reactions such as ring-closing metathesis of amines and lactams and ring-opening/cross-metathesis of substituted norborneols with styrene were compared to the results obtained with the only known alkylimido catalyst Mo(NAd)(CHCMe2Ph)[(S)-Biphen]. The activities and enantioselectivities provided by these new chiral complexes vary significantly, but in virtually all instances explored were not superior to the adamantylimido analogs. PMID:19079732

  18. Ruthenium Catalysts Supported by Amino-Substituted N-Heterocyclic Carbene Ligands for Olefin Metathesis of Challenging Substrates.

    Science.gov (United States)

    César, Vincent; Zhang, Yin; Kośnik, Wioletta; Zieliński, Adam; Rajkiewicz, Adam A; Ruamps, Mirko; Bastin, Stéphanie; Lugan, Noël; Lavigne, Guy; Grela, Karol

    2017-02-03

    N-Heterocyclic carbene (NHC) ligands IMesNMe2 and IMes(NMe2)2 derived from the well-known IMes ligand by substituting the carbenic heterocycle with one and two dimethylamino groups, respectively, were employed for the synthesis of second-generation Grubbs- and Grubbs-Hoveyda-type ruthenium metathesis precatalysts. Whereas the stability of the complexes was found to depend on the degree of dimethylamino-substitution and on the type of complex, the backbone-substitution was shown to have a positive impact on their catalytic activity in ring-closing metathesis, with a more pronounced effect in the second-generation Grubbs-type series. The new complexes were successfully implemented in a number of challenging olefin metathesis reactions leading to the formation of tetra-substituted C=C double bonds and/or functionalized compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ring-Closing and Cross-Metathesis with Artificial Metalloenzymes Created by Covalent Active Site-Directed Hybridization of a Lipase

    NARCIS (Netherlands)

    Basauri-Molina, Manuel|info:eu-repo/dai/nl/328200557; Verhoeven, Dide G A|info:eu-repo/dai/nl/369416368; Van Schaik, Arnoldus J.; Kleijn, H|info:eu-repo/dai/nl/304840440; Klein Gebbink, Robertus J M|info:eu-repo/dai/nl/166032646

    2015-01-01

    A series of Grubbs-type catalysts that contain lipase-inhibiting phosphoester functionalities have been synthesized and reacted with the lipase cutinase, which leads to artificial metalloenzymes for olefin metathesis. The resulting hybrids comprise the organometallic fragment that is covalently

  20. New Trends in Olefin Production

    Directory of Open Access Journals (Sweden)

    Ismaël Amghizar

    2017-04-01

    Full Text Available Most olefins (e.g., ethylene and propylene will continue to be produced through steam cracking (SC of hydrocarbons in the coming decade. In an uncertain commodity market, the chemical industry is investing very little in alternative technologies and feedstocks because of their current lack of economic viability, despite decreasing crude oil reserves and the recognition of global warming. In this perspective, some of the most promising alternatives are compared with the conventional SC process, and the major bottlenecks of each of the competing processes are highlighted. These technologies emerge especially from the abundance of cheap propane, ethane, and methane from shale gas and stranded gas. From an economic point of view, methane is an interesting starting material, if chemicals can be produced from it. The huge availability of crude oil and the expected substantial decline in the demand for fuels imply that the future for proven technologies such as Fischer-Tropsch synthesis (FTS or methanol to gasoline is not bright. The abundance of cheap ethane and the large availability of crude oil, on the other hand, have caused the SC industry to shift to these two extremes, making room for the on-purpose production of light olefins, such as by the catalytic dehydrogenation of propane.

  1. Hydroxamic acids in asymmetric synthesis.

    Science.gov (United States)

    Li, Zhi; Yamamoto, Hisashi

    2013-02-19

    Metal-catalyzed stereoselective reactions are a central theme in organic chemistry research. In these reactions, the stereoselection is achieved predominantly by introducing chiral ligands at the metal catalyst's center. For decades, researchers have sought better chiral ligands for asymmetric catalysis and have made great progress. Nevertheless, to achieve optimal stereoselectivity and to catalyze new reactions, new chiral ligands are needed. Because of their high metal affinity, hydroxamic acids play major roles across a broad spectrum of fields from biochemistry to metal extraction. Dr. K. Barry Sharpless first revealed their potential as chiral ligands for asymmetric synthesis in 1977: He published the chiral vanadium-hydroxamic-acid-catalyzed, enantioselective epoxidation of allylic alcohols before his discovery of Sharpless asymmetric epoxidation, which uses the titanium-tartrate complex as the chiral reagent. However, researchers have reported few highly enantioselective reactions using metal-hydroxamic acid as catalysts since then. This Account summarizes our research on metal-catalyzed asymmetric epoxidation using hydroxamic acids as chiral ligands. We designed and synthesized a series of new hydroxamic acids, most notably the C2-symmetric bis-hydroxamic acid (BHA) family. V-BHA-catalyzed epoxidation of allylic and homoallylic alcohols achieved higher activity and stereoselectivity than Sharpless asymmetric epoxidation in many cases. Changing the metal species led to a series of unprecedented asymmetric epoxidation reactions, such as (i) single olefins and sulfides with Mo-BHA, (ii) homoallylic and bishomoallylic alcohols with Zr- and Hf-BHA, and (iii) N-alkenyl sulfonamides and N-sulfonyl imines with Hf-BHA. These reactions produce uniquely functionalized chiral epoxides with good yields and enantioselectivities.

  2. Disentangling electron- and electric-field-induced ring-closing reactions in a diarylethene derivative on Ag(1 1 1)

    Science.gov (United States)

    Reecht, Gaël; Lotze, Christian; Sysoiev, Dmytro; Huhn, Thomas; Franke, Katharina J.

    2017-07-01

    Using scanning tunneling microscopy and spectroscopy we investigate the adsorption properties and ring-closing reaction of a diarylethene derivative (C5F-4Py) on a Ag(1 1 1) surface. We identify an electron-induced reaction mechanism, with a quantum yield varying from 10-14-10-9 per electron upon variation of the bias voltage from 1-2 V. We ascribe the drastic increase in switching efficiency to a resonant enhancement upon tunneling through molecular orbitals. Additionally, we resolve the ring-closing reaction even in the absence of a current passing through the molecule. In this case the electric-field can modify the reaction barrier, leading to a finite switching probability at 4.8 K. A detailed analysis of the switching events shows that a simple plate-capacitor model for the tip-surface junction is insufficient to explain the distance dependence of the switching voltage. Instead, describing the tip as a sphere is in agreement with the findings. We resolve small differences in the adsorption configuration of the closed isomer, when comparing the electron- and field-induced switching product.

  3. The allylic chalcogen effect in olefin metathesis

    Directory of Open Access Journals (Sweden)

    Yuya A. Lin

    2010-12-01

    Full Text Available Olefin metathesis has emerged as a powerful tool in organic synthesis. The activating effect of an allylic hydroxy group in metathesis has been known for more than 10 years, and many organic chemists have taken advantage of this positive influence for efficient synthesis of natural products. Recently, the discovery of the rate enhancement by allyl sulfides in aqueous cross-metathesis has allowed the first examples of such a reaction on proteins. This led to a new benchmark in substrate complexity for cross-metathesis and expanded the potential of olefin metathesis for other applications in chemical biology. The enhanced reactivity of allyl sulfide, along with earlier reports of a similar effect by allylic hydroxy groups, suggests that allyl chalcogens generally play an important role in modulating the rate of olefin metathesis. In this review, we discuss the effect of allylic chalcogens in olefin metathesis and highlight its most recent applications in synthetic chemistry and protein modifications.

  4. The allylic chalcogen effect in olefin metathesis.

    Science.gov (United States)

    Lin, Yuya A; Davis, Benjamin G

    2010-12-23

    Olefin metathesis has emerged as a powerful tool in organic synthesis. The activating effect of an allylic hydroxy group in metathesis has been known for more than 10 years, and many organic chemists have taken advantage of this positive influence for efficient synthesis of natural products. Recently, the discovery of the rate enhancement by allyl sulfides in aqueous cross-metathesis has allowed the first examples of such a reaction on proteins. This led to a new benchmark in substrate complexity for cross-metathesis and expanded the potential of olefin metathesis for other applications in chemical biology. The enhanced reactivity of allyl sulfide, along with earlier reports of a similar effect by allylic hydroxy groups, suggests that allyl chalcogens generally play an important role in modulating the rate of olefin metathesis. In this review, we discuss the effect of allylic chalcogens in olefin metathesis and highlight its most recent applications in synthetic chemistry and protein modifications.

  5. Metátese de olefinas aplicada ao fechamento de anéis: uma ferramenta poderosa para a síntese de macrociclos naturais Ring-closing olefin metathesis: a powerful tool for the synthesis of natural macrocycles

    Directory of Open Access Journals (Sweden)

    Anderson Rouge dos Santos

    2008-01-01

    Full Text Available For a quarter of a century, metathesis has become indispensable for the synthesis of natural and non-natural products, particularly of biologically active compounds. This review illustrates through a maximum of appropriate examples the power and the versatility of the metathesis ring-closure (RCM reaction as a key ring-closure methodology for the synthesis of natural macrocycles. Its high functional group compatibility as well as the possibility of further transformations makes this reaction a powerful tool in the cases where the structural framework and function requirements are difficult to meet.

  6. Template-Directed Olefin Cross Metathesis

    OpenAIRE

    Cantrill, Stuart J.; Grubbs, Robert H; Lanari, Daniela; Leung, Ken C.-F.; Nelson, Alshakim; Poulin-Kerstien, Katherine G.; Smidt, Sebastian P.; Stoddart, J. Fraser; Tirrell, David A.

    2005-01-01

    A template containing two secondary dialkylammonium ion recognition sites for encirclement by olefin-bearing dibenzo[24]crown-8 derivatives has been used to promote olefin cross metatheses with ruthenium-alkylidene catalysts. For monoolefin monomers, the rates of metatheses and yields of the dimers are both amplified in the presence of the template. Likewise, for a diolefin monomer, the yield of the dimer is enhanced in the presence of the template under conditions where higher oligomers are ...

  7. Light olefins - challenges from new production routes?

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, H. [Linde Engineering, Pullach (Germany)

    2007-07-01

    Light Olefins are the building blocks for many modern plastic products and are produced in large quantities. Driven by high crude oil prices, production is shifted to regions with low cost raw materials. Alternatives to the traditional production from Naphta, AGO and other crude products are becoming attractive. This paper evaluates several methods Ethylene and Pro-pylene production economically and also the regional advantageous routes. The analysis includes Steamcracking, dehydrogenation, dehydration of Ethanol, Methanol based routes and olefin conversion by Metathesis. (orig.)

  8. Build/Couple/Pair Strategy Combining the Petasis 3-Component Reaction with Ru-Catalyzed Ring-Closing Metathesis and Isomerization

    DEFF Research Database (Denmark)

    Ascic, Erhad; Le Quement, Sebastian Thordal; Ishøy, Mette

    2012-01-01

    A “build/couple/pair” pathway for the systematic synthesis of structurally diverse small molecules is presented. The Petasis 3-component reaction was used to synthesize anti-amino alcohols displaying pairwise reactive combinations of alkene moieties. Upon treatment with a ruthenium alkylidene-cat......-catalyst, these dienes selectively underwent ring-closing metathesis reactions to form 5- and 7-membered heterocycles and cyclic aminals via a tandem isomerization/N-alkyliminium cyclization sequence.......A “build/couple/pair” pathway for the systematic synthesis of structurally diverse small molecules is presented. The Petasis 3-component reaction was used to synthesize anti-amino alcohols displaying pairwise reactive combinations of alkene moieties. Upon treatment with a ruthenium alkylidene...

  9. Selective conversion of bio-oil to light olefins: controlling catalytic cracking for maximum olefins.

    Science.gov (United States)

    Gong, Feiyan; Yang, Zhi; Hong, Chenggui; Huang, Weiwei; Ning, Shen; Zhang, Zhaoxia; Xu, Yong; Li, Quanxin

    2011-10-01

    Light olefins are the basic building blocks for the petrochemical industry. In this work, selective production of light olefins from catalytic cracking of bio-oil was performed by using the La/HZSM-5 catalyst. With a nearly complete conversion of bio-oil, the maximum yield reached 0.28±0.02 kg olefins/(kg bio-oil), which was close to that from methanol. Addition of La into zeolite efficiently changed the total acid amount of HZSM-5, especially the acid distribution among the strong, medium and weak acid sites. A moderate increase of the number of the medium acid sites effectively enhanced the olefins selectivity and improved the catalyst stability. The comparison between the catalytic cracking and pyrolysis of bio-oil was studied. The mechanism of the conversion of bio-oil to light olefins was also discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Asymmetric fluorocyclizations of alkenes.

    Science.gov (United States)

    Wolstenhulme, Jamie R; Gouverneur, Véronique

    2014-12-16

    CONSPECTUS: The vicinal fluorofunctionalization of alkenes is an attractive transformation that converts feedstock olefins into valuable cyclic fluorinated molecules for application in the pharmaceutical, agrochemical, medical, and material sectors. The challenges associated with asymmetric fluorocyclizations induced by F(+) reagents are distinct from other types of halocyclizations. Processes initiated by the addition of an F(+) reagent onto an alkene do not involve the reversible formation of bridged fluoronium ions but generate acyclic β-fluorocationic intermediates. This mechanistic feature implies that fluorocyclizations are not stereospecific. A discontinuity exists between the importance of this class of fluorocyclization and the activation modes currently available to implement successful catalysis. Progress toward fluorocyclization has been achieved by investing in neutral and cationic [NF] reagent development. The body of work on asymmetric fluorination using chiral cationic [NF](+) reagents prepared by fluorine transfer from the dicationic [NF](2+) reagent Selectfluor to quinuclidines, inspired the development of asymmetric F(+)-induced fluorocyclizations catalyzed by cinchona alkaloids; for catalysis, the use of N-fluorobenzenesulfonimide, which is less reactive than Selectfluor, ensures that the achiral F(+) source remains unreactive toward the alkene. These organocatalyzed enantioselective fluorocyclizations can be applied to indoles to install the fluorine on a quaternary benzylic stereogenic carbon center and to afford fluorinated analogues of natural products featuring the hexahydropyrrolo[2,3-b]indole or the tetrahydro-2H-furo[2,3-b]indole skeleton. In an alternative approach, the poor solubility of dicationic Selectfluor bis(tetrafluoroborate) in nonpolar solvent was exploited with anionic phase transfer catalysis as the operating activation mode. Exchange of the tetrafluoroborate ions of Selectfluor with bulky lipophilic chiral anions (e

  11. Olefin metathesis : tapping into breakthrough chemical technology

    Energy Technology Data Exchange (ETDEWEB)

    Granson, E.

    2010-06-15

    Olefin metathesis is a catalyst technology where 2 double bond-containing molecules or olefins are split in order to exchange atoms and result in the formation of 2 new molecules or substances. Earlier researchers used a variety of materials to convert propylene into a mixture of butenes and ethylenes. A method developed by Shell researchers produces linear olefins used as detergent feedstocks. In 1971, scientists used a metal-carbene catalyst to react with the olefins to produce both a new olefin and a new metal carbene in order to perpetuate the process. In 2002, a new metathesis technology was developed using renewable natural oils as a feedstock. The catalyst is introduced as a solid into the oil, and then agitated by stirring. The modified oil is then reacted with hydrogen to remove the double bonds and filter off the catalyst. The method is offered on a contract basis by Elevance Renewable Sciences in a variety of application. The process was designed to take place at lower temperatures with the release of fewer greenhouse gases (GHGs). New metathesis technologies are also being developed to reduce the molecular weight of polymers in order to reduce viscosity and increase flow. 3 figs.

  12. Bidirectional cross metathesis and ring-closing metathesis/ring opening of a C2-symmetric building block: a strategy for the synthesis of decanolide natural products

    Directory of Open Access Journals (Sweden)

    Bernd Schmidt

    2013-11-01

    Full Text Available Starting from the conveniently available ex-chiral pool building block (R,R-hexa-1,5-diene-3,4-diol, the ten-membered ring lactones stagonolide E and curvulide A were synthesized using a bidirectional olefin-metathesis functionalization of the terminal double bonds. Key steps are (i a site-selective cross metathesis, (ii a highly diastereoselective extended tethered RCM to furnish a (Z,E-configured dienyl carboxylic acid and (iii a Ru–lipase-catalyzed dynamic kinetic resolution to establish the desired configuration at C9. Ring closure was accomplished by macrolactonization. Curvulide A was synthesized from stagonolide E through Sharpless epoxidation.

  13. Tandem Olefin Metathesis/Oxidative Cyclization: Synthesis of Tetrahydrofuran Diols from Simple Olefins.

    Science.gov (United States)

    Dornan, Peter K; Lee, Daniel; Grubbs, Robert H

    2016-05-25

    A tandem olefin metathesis/oxidative cyclization has been developed to synthesize 2,5-disubstituted tetrahydrofuran (THF) diols in a stereocontrolled fashion from simple olefin precursors. The ruthenium metathesis catalyst is converted into an oxidation catalyst in the second step and is thus responsible for both catalytic steps. The stereochemistry of the 1,5-diene intermediate can be controlled through the choice of catalyst and the type of metathesis conducted. This olefin stereochemistry then controls the THF diol stereochemistry through a highly stereospecific oxidative cyclization.

  14. Assisted Tandem Catalysis : Metathesis Followed by Asymmetric Hydrogenation from a Single Ruthenium Source

    NARCIS (Netherlands)

    Renom-Carrasco, Marc; Gajewski, Piotr; Pignataro, Luca; de Vries, Johannes G.; Piarulli, Umberto; Gennari, Cesare; Lefort, Laurent

    2015-01-01

    Here we report the first example of a tandem metathesis-asymmetric hydrogenation protocol where the prochiral olefin generated by metathesis is hydrogenated with high enantioselectivity by an in situ formed chiral ruthenium catalyst. We show that either the ruthenium metathesis catalysts or the

  15. Metatheases: artificial metalloproteins for olefin metathesis.

    Science.gov (United States)

    Sauer, D F; Gotzen, S; Okuda, J

    2016-10-21

    The incorporation of organometallic catalyst precursors in proteins results in so-called artificial metalloenzymes. The protein structure will control activity, selectivity and stability of the organometallic site in aqueous medium and allow non-natural reactions in biological settings. Grubbs-Hoveyda type ruthenium catalysts with an N-heterocyclic carbene (NHC) as ancillary ligand, known to be active in olefin metathesis, have recently been incorporated in various proteins. An overview of these artificial metalloproteins and their potential application in olefin metathesis is given.

  16. Catalyst-Controlled Stereoselective Olefin Metathesis as a Principal Strategy in Multi-Step Synthesis Design. A Concise Route to (+)-Neopeltolide**

    Science.gov (United States)

    Yu, Miao; Schrock, Richard R.

    2014-01-01

    Mo-, W- and Ru-based complexes that control the stereochemical outcome of olefin metathesis reactions have been recently introduced. However, the complementary nature of these systems through their combined use in multistep complex molecule synthesis has not been illustrated. Here, we disclose a concise diastereo- and enantioselective route that furnishes the anti-proliferative natural product neopeltolide. Catalytic transformations are employed to address every stereochemical issue. Among the featured processes are an enantioselective ring-opening/cross-metathesis promoted by a Mo monopyrrolide aryloxide (MAP) complex and a macrocyclic ring-closing metathesis affording a trisubstituted alkene catalyzed by a Mo bis-aryloxide species. Furthermore, Z-selective cross-metathesis reactions, facilitated by Mo and Ru complexes, have been employed in stereoselective synthesis of the acyclic dienyl moiety of the target molecule. PMID:25377347

  17. Diphenylamido Precursors to Bisalkoxide Molybdenum Olefin Metathesis Catalysts

    Science.gov (United States)

    Sinha, Amritanshu; Müller, Peter; Hoveyda, Amir H.

    2008-01-01

    We have found that Mo(NAr)(CHR′)(NPh2)2 (R′ = t-Bu or CMe2Ph) and Mo(NAr′)(CHCMe2Ph)(NPh2)2 (Ar = 2,6-i-Pr2C6H3; Ar′ = 2,6-Me2C6H3) can be prepared through addition of two equivalents of LiNPh2 to Mo(NR″)(CHR′)(OTf)2(dme) species (R″ = Ar or Ar′ dme = 1,2-dimethoxyethane), although yields are low. A high yield route consists of addition of LiNPh2 to bishexafluro-t-butoxide species. An X-ray structure of Mo(NAr)(CHCMe2Ph)(NPh2)2 reveals that the two diphenylamido groups are oriented in a manner that allows an 18 electron count to be achieved. The diphenylamido complexes react readily with t-BuOH and (CF3)2MeCOH, but not readily with the sterically demanding biphenol H2[Biphen] (Biphen2- = 3,3′-Di-t-butyl-5,5′,6,6′-tetramethyl-1,1′-Biphenyl-2,2′-diolate). The diphenylamido complexes do react with various 3,3′-disubstituted binaphthols to yield binaphtholate catalysts that can be prepared in situ and employed for a simple asymmetric ring-closing metathesis reaction. In several cases conversions and enantioselectivities were comparable to reactions in which isolated catalysts were employed. PMID:19030118

  18. Metathesis process for preparing an alpha, omega-functionalized olefin

    Energy Technology Data Exchange (ETDEWEB)

    Burdett, Kenneth A. (Midland, MI); Mokhtarzadeh, Morteza (Charleston, WV); Timmers, Francis J. (Midland, MI)

    2010-10-12

    A cross-metathesis process for preparing an .alpha.,.omega.-functionalized olefin, such as methyl 9-decenoate, and an .alpha.-olefin having three or more carbon atoms, such as 1-decene. The process involves contacting in a first reaction zone an .alpha.-functionalized internal olefin, such as methyl oleate, and an .alpha.-olefinic monomer having three or more carbon atoms, such as 1-decene, with a first metathesis catalyst to prepare an effluent stream containing the .alpha.,.omega.-functionalized olefin, such as methyl 9-decenoate, an unfunctionalized internal olefin, such as 9-octadecene, unconverted reactant olefins, and optionally, an .alpha.,.omega.-difunctionalized internal olefinic dimer, such as dimethyl 9-octadecen-1,18-dioate; separating said effluent streams; then contacting in a second reaction zone the unfunctionalized internal olefin with ethylene in the presence of a second metathesis catalyst to obtain a second product effluent containing the .alpha.-olefinic monomer having three or more carbon atoms; and cycling a portion of the .alpha.-olefinic monomer stream(s) to the first zone.

  19. Stereoretentive Olefin Metathesis: An Avenue to Kinetic Selectivity.

    Science.gov (United States)

    Montgomery, T Patrick; Ahmed, Tonia S; Grubbs, Robert H

    2017-09-04

    Olefin metathesis is an incredibly valuable transformation that has gained widespread use in both academic and industrial settings. Lately, stereoretentive olefin metathesis has garnered much attention as a method for the selective generation of both E- and Z-olefins. Early studies employing ill-defined catalysts showed evidence for retention of the stereochemistry of the starting olefins at low conversion. However, thermodynamic ratios E/Z were reached as the reaction proceeded to equilibrium. Recent studies in olefin metathesis have focused on the synthesis of catalysts that can overcome the inherent thermodynamic preference of an olefin, providing synthetically useful quantities of a kinetically favored olefin isomer. These reports have led to the development of stereoretentive catalysts that not only generate Z-olefins selectively, but also kinetically produce E-olefins, a previously unmet challenge in olefin metathesis. Advancements in stereoretentive olefin metathesis using tungsten, ruthenium, and molybdenum catalysts are presented. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Getting ring-closing metathesis off the bench: reaction-reactor matching transforms metathesis efficiency in the assembly of large rings.

    Science.gov (United States)

    Monfette, Sebastien; Eyholzer, Markus; Roberge, Dominique M; Fogg, Deryn E

    2010-10-11

    Reported is the first study of the influence of reactor configuration on the efficiency of a challenging ring-closing metathesis (RCM) reaction. With the intention of increasing the generality of RCM scaleup and reducing its dependence on substrate modification, macrocyclization of an unmodified, low effective-molarity diene was explored using different reactor types, in conjunction with a commercial, homogeneous Grubbs catalyst. Optimized performance is compared for a conventional batch reactor (BR), a continuous plug-flow reactor (PFR), and a continuous stirred-tank reactor (CSTR). In the PFR, maximum conversion is achieved most rapidly, but product yields and selectivity are adversely affected by co-entrapment of ethylene with the catalyst, substrate, and product in the traveling "plug". Use of the CSTR, in which ethylene is efficiently swept out, affords an order-of-magnitude increase in total turnover numbers, and reduces the required catalyst loadings by 25× relative to the BR (to 0.2 mol %), while improving RCM yields and selectivity to quantitative levels. Continuous-flow methodologies that support liberation of the ethylene co-product thus show great promise for industrial uptake of RCM. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Total Synthesis of (--(7S,10R-Calamenene and (--(7S,10R-2-Hydroxycalamenene by Use of a Ring-Closing Metathesis Reaction. A Comparison of the cis- and trans-Isomers

    Directory of Open Access Journals (Sweden)

    Yoshinori Asakawa

    2002-07-01

    Full Text Available The title compounds have been synthesized starting from l-menthone by application of a ring-closing metathesis reaction to confirm their reported absolute and relative stereochemistry. Comparisons of the NMR spectra and specific rotations are also discussed.

  2. Tandem Catalysis Utilizing Olefin Metathesis Reactions.

    Science.gov (United States)

    Zieliński, Grzegorz K; Grela, Karol

    2016-07-04

    Since olefin metathesis transformation has become a favored synthetic tool in organic synthesis, more and more distinct non-metathetical reactions of alkylidene ruthenium complexes have been developed. Depending on the conditions applied, the same olefin metathesis catalysts can efficiently promote isomerization reactions, hydrogenation of C=C double bonds, oxidation reactions, and many others. Importantly, these transformations can be carried out in tandem with olefin metathesis reactions. Through addition of one portion of a catalyst, a tandem process provides structurally advanced products from relatively simple substrates without the need for isolation of the intermediates. These aspects not only make tandem catalysis very attractive from a practical point of view, but also open new avenues in (retro)synthetic planning. However, in the literature, the term "tandem process" is sometimes used improperly to describe other types of multi-reaction sequences. In this Concept, a number of examples of tandem catalysis involving olefin metathesis are discussed with an emphasis on their synthetic value. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Bromination of olefins with HBr and DMSO.

    Science.gov (United States)

    Karki, Megha; Magolan, Jakob

    2015-04-03

    A simple and inexpensive methodology is reported for the conversion of alkenes to 1,2-dibromo alkanes via oxidative bromination using HBr paired with dimethyl sulfoxide, which serves as the oxidant as well as cosolvent. The substrate scope includes 21 olefins brominated in good to excellent yields. Three of six styrene derivatives yielded bromohydrins under the reaction conditions.

  4. A theoretically-guided optimization of a new family of modular P,S-ligands for iridium-catalyzed hydrogenation of minimally functionalized olefins.

    Science.gov (United States)

    Margalef, Jèssica; Caldentey, Xisco; Karlsson, Erik A; Coll, Mercè; Mazuela, Javier; Pàmies, Oscar; Diéguez, Montserrat; Pericàs, Miquel A

    2014-09-15

    A library of modular iridium complexes derived from thioether-phosphite/phosphinite ligands has been evaluated in the asymmetric iridium-catalyzed hydrogenation of minimally functionalized olefins. The modular ligand design has been shown to be crucial in finding highly selective catalysts for each substrate. A DFT study of the transition state responsible for the enantiocontrol in the Ir-catalyzed hydrogenation is also described and used for further optimization of the crucial stereodefining moieties. Excellent enantioselectivities (enantiomeric excess (ee) values up to 99 %) have been obtained for a range of substrates, including E- and Z-trisubstituted and disubstituted olefins, α,β-unsaturated enones, tri- and disubstituted alkenylboronic esters, and olefins with trifluoromethyl substituents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High Trans Kinetic Selectivity in Ruthenium-Based Olefin Cross-Metathesis through Stereoretention.

    Science.gov (United States)

    Johns, Adam M; Ahmed, Tonia S; Jackson, Bradford W; Grubbs, Robert H; Pederson, Richard L

    2016-02-19

    The first kinetically controlled, highly trans-selective (>98%) olefin cross-metathesis reaction is demonstrated using Ru-based catalysts. Reactions with either trans or cis olefins afford products with highly trans or cis stereochemistry, respectively. This E-selective olefin cross-metathesis is shown to occur between two trans olefins and between a trans olefin and a terminal olefin. Additionally, new stereoretentive catalysts have been synthesized for improved reactivity.

  6. Olefin hydroformylation catalysis with RuCl2(DMSO4.

    Directory of Open Access Journals (Sweden)

    Marisela Reyes*

    2008-05-01

    Full Text Available The RuCl2(DMSO4 complex was used as catalytic precursor in olefin hydroformylation reactions, giving good percent yield and better selectivity for linear aldehydes. The reactions were tested in homogeneous medium and biphasic organic solvent/ water systems. The substrates tried were 1-hexene, cyclohexene, 2-methyl-2-pentene, 2,3-dimethyl-2-butene; binary mixtures and synthetic naphtha and real naphtha. The activity is better for linear olefins compared with substituted olefins.

  7. Nanoheterogeneous catalysis in electrochemically induced olefin perfluoroalkylation.

    Science.gov (United States)

    Dudkina, Yulia B; Gryaznova, Tatyana V; Osin, Yuri N; Salnikov, Vadim V; Davydov, Nikolay A; Fedorenko, Svetlana V; Mustafina, Asia R; Vicic, David A; Sinyashin, Oleg G; Budnikova, Yulia H

    2015-05-21

    Ni-catalyzed electroreductive olefin perfluoroalkylation affords both monomeric and dimeric products depending on the reaction media. Recycling of the catalyst can be achieved by immobilization of a (bpy)NiBr2 complex on silica nanoparticles decorated with anchoring amino-groups. Switching the homogeneous and heterogeneous catalysts is found to be one more factor to control the product ratio. This catalytic technique is both green and atom economical and combines the advantages of nanoheterogeneous catalysis and electrocatalysis.

  8. Thermally Stable, Latent Olefin Metathesis Catalysts

    OpenAIRE

    Thomas, Renee M.; Fedorov, Alexey; Keitz, Benjamin K.; Grubbs, Robert H.

    2011-01-01

    Highly thermally stable N-aryl,N-alkyl N-heterocyclic carbene (NHC) ruthenium catalysts were designed and synthesized for latent olefin metathesis. These catalysts showed excellent latent behavior toward metathesis reactions, whereby the complexes were inactive at ambient temperature and initiated at elevated temperatures, a challenging property to achieve with second generation catalysts. A sterically hindered N-tert-butyl substituent on the NHC ligand of the ruthenium complex was found to i...

  9. Homogeneous catalysts for stereoregular olefin polymerization

    Science.gov (United States)

    Marks, T.J.; Eisen, M.S.; Giardello, M.A.

    1994-07-19

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C[sub 5]R[prime][sub 4[minus]x]R*[sub x])-A-(C[sub 5]R[double prime][sub 4[minus]y]R[prime][double prime][sub y])-M-Q[sub p], where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R[prime], R[double prime], R[prime][double prime], and R* represent substituted and unsubstituted alkyl groups having 1--30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3 [alkylation of the corresponding dichlorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form cation-like'' species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other [alpha]-olefin polymerization can be effected with very high efficiency and isospecificity. 1 fig.

  10. Desymmetrization by ring-closing metathesis leading to 6,8-dioxabicyclo[3.2.1]octanes: a new route for the synthesis of (+)-exo- and endo-brevicomin.

    Science.gov (United States)

    Burke, S D; Müller, N; Beaudry, C M

    1999-12-02

    [formula: see text] The 6,8-dioxabicyclo[3.2.1]octane skeleton is a common structural subunit in natural products. A conceptionally new strategy affording these structures is described for the syntheses of (+)-exo-brevicomin and rac-endo- and enantiomerically enriched (+)-endo-brevicomin, employing desymmetrization of trienes derived from diols with C2 and meso symmetry via ring-closing metathesis.

  11. Chelated ruthenium catalysts for Z-selective olefin metathesis.

    Science.gov (United States)

    Endo, Koji; Grubbs, Robert H

    2011-06-08

    We report the development of ruthenium-based metathesis catalysts with chelating N-heterocyclic carbene (NHC) ligands that catalyze highly Z-selective olefin metathesis. A very simple and convenient procedure for the synthesis of such catalysts has been developed. Intramolecular C-H bond activation of the NHC ligand, promoted by anion ligand substitution, forms the appropriate chelate for stereocontrolled olefin metathesis.

  12. Covalently stabilized self-assembled chlorophyll nanorods by olefin metathesis.

    Science.gov (United States)

    Sengupta, Sanchita; Würthner, Frank

    2012-06-11

    A new chlorophyll derivative with peripheral olefinic chains has been synthesised and its self-assembly properties have been studied, revealing formation of well-defined nanorods. These nanorods were stabilized and rigidified by olefin metathesis reaction as confirmed by spectroscopic and microscopic methods.

  13. Supported organometallic catalysts for hydrogenation and Olefin Polymerization

    Science.gov (United States)

    Marks, Tobin J.; Ahn, Hongsang

    2001-01-01

    Novel heterogeneous catalysts for the which hydrogenation of olefins and arenes with high conversion rates under ambient conditions and the polymerization of olefins have been developed. The catalysts are synthesized from Ziegler-type precatalysts by supporting them on sulfate-modified zirconia.

  14. Olefin metathesis over UV-irradiated silica

    Science.gov (United States)

    Tanaka, Tsunehiro; Matsuo, Shigehiro; Maeda, Takashi; Yoshida, Hisao; Funabiki, Takuzo; Yoshida, Satohiro

    1997-11-01

    Photoirradiated silica evacuated at temperatures higher than 800 K was found to be active for olefin metathesis reactions. The analysis of products shows that the metalacyclobutane intermediate is likely. The instantaneous response of the reaction to the irradiation and the activity change with various UV filter showed that the reaction is induced by UV-excitation of silica. The correlation between the evacuation temperature and the activity showed that the surface free from water molecules plays a role in the reaction and the removal of isolated OH groups strongly relates to the generation of active sites.

  15. Methyltrioxorhenium as catalyst for olefin metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, W.A. (Technische Univ. Muenchen, Garching (Germany). Anorganisch-Chemisches Inst.); Wagner, W. (Consortium fuer Elektrochemische Industrie GmbH, Muenchen (Germany)); Flessner, U.N.; Volkhardt, U.; Komber, H. (Institut fuer Technologie der Polymere, Dresden (Germany))

    1991-12-01

    No cocatalysts are needed as additives when methyltrioxorhenium (MTO) supported on acidic carriers is employed to catalyze the metathesis of functionalized olefins. A typical system is MTO/Al{sub 2}O{sub 3}-SiO{sub 2}, which is active, for instance, in the metathesis of allyl halides, allylsilanes, unsaturated carboxylates, and nitriles. MTO in combination with R{sub n}AlCl{sub 3-n} is a homogeneous catalyst in ring-opening polymerizations (R = CH{sub 3}, C{sub 2}H{sub 5}; n = 1,2). (orig.).

  16. Ruthenium-based olefin metathesis catalysts bearing pH-responsive ligands: External control of catalyst solubility and activity

    Science.gov (United States)

    Balof, Shawna Lynn

    2011-12-01

    Sixteen novel, Ru-based olefin metathesis catalysts bearing pH responsive ligands were synthesized. The pH-responsive groups employed with these catalysts included dimethylamino (NMe2) modified NHC ligands as well as N-donor dimethylaminopyridine (DMAP) and 3-(o-pyridyl)propylidene ligands. These pH-responsive ligands provided the means by which the solubility and/or activity profiles of the catalysts produced could be controlled via acid addition. The main goal of this dissertation was to design catalyst systems capable of performing ring opening metathesis (ROMP) and ring closing metathesis (RCM) reactions in both organic and aqueous media. In an effort to quickly gain access to new catalyst structures, a template synthesis for functionalized NHC ligand precursors was designed, in addition to other strategies, to obtain ligand precursors with ancillary NMe2 groups. Kinetic studies for the catalysts produced from these precursors showed external control of catalyst solubility was afforded via protonation of the NMe2 groups of their NHC ligands. Additionally, this protonation afforded external control of catalyst propagation rates for several catalysts. This is the first known independent external control for the propagation rates of ROMP catalysts. The incorporation of pH-responsive N-donor ligands into catalyst structures also provided the means for the external control of metathesis activity, as the protonation of these ligands resulted in an increased initiation rate based on their fast and irreversible dissociation from the metal center. The enhanced external control makes these catalysts applicable to a wide range of applications, some of which have been explored by us and/or through collaboration. Three of the catalysts designed showed remarkable metathesis activity in aqueous media. These catalysts displayed comparable RCM activity in aqueous media to a class of water-soluble catalysts reported by Grubbs et al., considered to be the most active catalyst for

  17. Profluorescent substrates for the screening of olefin metathesis catalysts

    Directory of Open Access Journals (Sweden)

    Raphael Reuter

    2015-10-01

    Full Text Available Herein we report on a 96-well plate assay based on the fluorescence resulting from the ring-closing metathesis of two profluorophoric substrates. To demonstrate the validity of the approach, four commercially available ruthenium-metathesis catalysts were evaluated in six different solvents. The results from the fluorescent assay agree well with HPLC conversions, validating the usefulness of the approach.

  18. Profluorescent substrates for the screening of olefin metathesis catalysts.

    Science.gov (United States)

    Reuter, Raphael; Ward, Thomas R

    2015-01-01

    Herein we report on a 96-well plate assay based on the fluorescence resulting from the ring-closing metathesis of two profluorophoric substrates. To demonstrate the validity of the approach, four commercially available ruthenium-metathesis catalysts were evaluated in six different solvents. The results from the fluorescent assay agree well with HPLC conversions, validating the usefulness of the approach.

  19. Production and use of light olefins. Preprints of the conference

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, S.; Buzzoni, R.; Leitner, W.; Lercher, J.A.; Lichtscheidl, J.; Nees, F.; Santacesaria, E. (eds.)

    2009-07-01

    Within the conference of the German Society for Petroleum and Coal Science and Technology e.V. (Hamburg, Federal Republic of Germany) in Berlin (Federal Republic of Germany) at 28th to 30th September, 2009, the following lectures were held: (1) Steamcracking - State of the Art (H. Zimmermann); (2) Diversify Feedstock Options to Olefin Production (Q. Ling et al.); (3) Syngas to lower olefins (E. Schwab et al.); (4) STAR process registered for the on-purpose production of propylene (K. Bueker); (5) The catalytic activity of zinc oxide supported on aerosil for C-H activation of light alkanes (S. Arndt et al.); (6) Novel catalytic approaches for the oxidative dehydrogenation of ethane (D. Hartmann); (7) A comparison of the active sites structures of homogeneous and heterogeneous olefin polymerisation catalysts (A. Zecchina); (8) Catalytic strategies in metathesis (C. Coperet); (9) Multi-technology integrated production and consumption of olefins (J. Popp et al.); (10) Olefin oligomerization for the production of fuels and petrochemicals (H. Olivier-Bourbigou et al.); (11) Dieselization of the world - How to increase diesel yield in a refinery (A. Dueker); (12) Isomerization of butenes: LyondellBasell's Isomplus technology development (T. Zak et al.); (13) Valuable products from butadiene, carbon dioxide and further base chemicals (A. Behr); (14) The partial oxidation of propene to propylene oxide using N{sub 2}O as an oxidant (T. Thoemmes); (15) Alternative feedstocks for olefin production: What role will ethanol play? (B.R. Maughon); (16) Production of light olefins from renewable resources - The effect of deoxygenation degree on yields of light olefins (D. Kubicka et al.); (17) Recovery of low olefins from refinery offgases (M. Bender).

  20. Asymmetric Ashes

    Science.gov (United States)

    2006-11-01

    that oscillate in certain directions. Reflection or scattering of light favours certain orientations of the electric and magnetic fields over others. This is why polarising sunglasses can filter out the glint of sunlight reflected off a pond. When light scatters through the expanding debris of a supernova, it retains information about the orientation of the scattering layers. If the supernova is spherically symmetric, all orientations will be present equally and will average out, so there will be no net polarisation. If, however, the gas shell is not round, a slight net polarisation will be imprinted on the light. This is what broad-band polarimetry can accomplish. If additional spectral information is available ('spectro-polarimetry'), one can determine whether the asymmetry is in the continuum light or in some spectral lines. In the case of the Type Ia supernovae, the astronomers found that the continuum polarisation is very small so that the overall shape of the explosion is crudely spherical. But the much larger polarization in strongly blue-shifted spectral lines evidences the presence, in the outer regions, of fast moving clumps with peculiar chemical composition. "Our study reveals that explosions of Type Ia supernovae are really three-dimensional phenomena," says Dietrich Baade. "The outer regions of the blast cloud is asymmetric, with different materials found in 'clumps', while the inner regions are smooth." "This study was possible because polarimetry could unfold its full strength thanks to the light-collecting power of the Very Large Telescope and the very precise calibration of the FORS instrument," he adds. The research team first spotted this asymmetry in 2003, as part of the same observational campaign (ESO PR 23/03 and ESO PR Photo 26/05). The new, more extensive results show that the degree of polarisation and, hence, the asphericity, correlates with the intrinsic brightness of the explosion. The brighter the supernova, the smoother, or less clumpy

  1. Rational design of cyclopropane-based chiral PHOX ligands for intermolecular asymmetric Heck reaction

    Directory of Open Access Journals (Sweden)

    Marina Rubina

    2014-07-01

    Full Text Available A novel class of chiral phosphanyl-oxazoline (PHOX ligands with a conformationally rigid cyclopropyl backbone was synthesized and tested in the intermolecular asymmetric Heck reaction. Mechanistic modelling and crystallographic studies were used to predict the optimal ligand structure and helped to design a very efficient and highly selective catalytic system. Employment of the optimized ligands in the asymmetric arylation of cyclic olefins allowed for achieving high enantioselectivities and significantly suppressing product isomerization. Factors affecting the selectivity and the rate of the isomerization were identified. It was shown that the nature of this isomerization is different from that demonstrated previously using chiral diphosphine ligands.

  2. Theoretical investigations of olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cundari, T.R.; Gordon, M.S. [North Dakota State Univ., Fargo, ND (United States)

    1992-01-01

    An ab initio analysis of the electronic structure of high-valent, transition-metal alkylidenes as models for olefin metathesis catalysts is presented. The catalyst models studied fall into three categories: {open_quotes}new{close_quotes} metathesis catalyst models-tetrahedral M(OH){sup 2}(XH)(CH{sub 2}) complexes; {open_quotes}old{close_quotes} metathesis catalyst models-tetrahedral MCl{sub 2}(Y)(CH{sub 2}) complexes and alkylidene-substituted Mo metathesis catalysts, Mo(OH){sub 2}(NH)(=C(H)Z). The effect on the bonding caused by modification of either the metal, ligands, or alkylidene substitutents is considered. 21 refs., 2 figs., 5 tabs.

  3. Selective Oxidation and Ammoxidation of Olefins by Heterogeneous Catalysis.

    Science.gov (United States)

    Grasselli, Robert K.

    1986-01-01

    Shows how the ammoxidation of olefins can be understood in terms of free radicals and surface bound organometallic intermediates. Also illustrates the close intellectual relationships between heterogeneous catalysis and organometallic chemistry. (JN)

  4. Functionalized Solvents for Olefin Isomer Purification by Reactive Extractive Distillation

    NARCIS (Netherlands)

    Kuipers, N.J.M.; Wentink, A.E.; de Haan, A.B.; Scholtz, J.; Mulder, H.

    2007-01-01

    Olefin isomer separations are difficult, energy intensive and thus expensive. An overview is presented to investigate the feasibility of metal–ligand complexes as functionalized solvents applied in a novel separation technology, reactive extractive distillation, for the separation and purification

  5. Cobalt catalyzed hydroesterification of a wide range of olefins

    Energy Technology Data Exchange (ETDEWEB)

    Van Rensburg, H.; Hanton, M.; Tooze, R.P.; Foster, D.F. [Sasol Technology UK, St Andrews (United Kingdom)

    2011-07-01

    Petrochemical raw materials are an essential raw material for the production of detergents with a substantial portion of synthetic fatty alcohols being produced via hydroformylation of oil or coal derived olefins. Carbonylation processes other than hydroformylation have to date not been commercially employed for the production of fatty esters or alcohols. In this document we highlight the opportunities of converting olefins to esters using cobalt catalyzed alkoxycarbonylation. This process is highly versatile and applicable to a wide range of olefins, linear or branched, alpha or internal in combination with virtually any chain length primary or secondary alcohol allowing the synthesis of a diverse array of compounds such as ester ethoxylated surfactants, methyl branched detergents, lubricants and alkyl propanoates. Furthermore, alkoxycarbonylation of a broad olefin/paraffin hydrocarbon range could be used to produce the corresponding broad cut detergent alcohols. (orig.)

  6. Kinetically controlled E-selective catalytic olefin metathesis

    National Research Council Canada - National Science Library

    Nguyen, Thach T; Koh, Ming Joo; Shen, Xiao; Romiti, Filippo; Schrock, Richard R; Hoveyda, Amir H

    2016-01-01

    A major shortcoming in olefin metathesis, a chemical process that is central to research in several branches of chemistry, is the lack of efficient methods that kinetically favor E isomers in the product distribution...

  7. Modeling Monomer Transport by Convection during Olefin Polymerization

    NARCIS (Netherlands)

    Parasu Veera, U.; Weickert, G.; Agarwal, U.S.

    2002-01-01

    During olefin polymerization on heterogeneous catalyst, a catalyst particle undergoes fragmentation, and the formed polymer gets deposited on the fragments. These polymer-coated fragments (microparticles) together form a porous polymer particle (macroparticle). The multigrain model (MGM) gives a

  8. Catalytic Production of Olefin Block Copolymers via Chain Shuttling Polymerization

    National Research Council Canada - National Science Library

    Daniel J. Arriola; Edmund M. Carnahan; Phillip D. Hustad; Roger L. Kuhlman; Timothy T. Wenzel

    2006-01-01

    ...-olefin to ethylene in the two types of blocks. The system uses a chain shuttling agent to transfer growing chains between two distinct catalysts with different monomer selectivities in a single polymerization reactor...

  9. Mechanistic insights in the olefin epoxidation with cyclohexyl hydroperoxide

    NARCIS (Netherlands)

    Hereijgers, B.P.C.; Parton, R.F.; Weckhuysen, B.M.

    2012-01-01

    Olefin epoxidation with cyclohexyl hydroperoxide offers great perspective in increasing the yield from industrial cyclohexane oxidation and the production of epoxides in an apolar medium. Two competing hydroperoxide conversion routes, namely direct epoxidation and thermal decomposition, were

  10. Switching from Controlled Ring-Opening Polymerization (cROP) to Controlled Ring-Closing Depolymerization (cRCDP) by Adjusting the Reaction Parameters That Determine the Ceiling Temperature.

    Science.gov (United States)

    Olsén, Peter; Undin, Jenny; Odelius, Karin; Keul, Helmut; Albertsson, Ann-Christine

    2016-12-12

    Full control over the ceiling temperature (Tc) enables a selective transition between the monomeric and polymeric state. This is exemplified by the conversion of the monomer 2-allyloxymethyl-2-ethyl-trimethylene carbonate (AOMEC) to poly(AOMEC) and back to AOMEC within 10 h by controlling the reaction from conditions that favor ring-opening polymerization (Tc > T0) (where T0 is the reaction temperature) to conditions that favor ring-closing depolymerization (Tc < T0). The ring-closing depolymerization (RCDP) mirrors the polymerization behavior with a clear relation between the monomer concentration and the molecular weight of the polymer, indicating that RCDP occurs at the chain end. The Tc of the polymerization system is highly dependent on the nature of the solvent, for example, in toluene, the Tc of AOMEC is 234 °C and in acetonitrile Tc = 142 °C at the same initial monomer concentration of 2 M. The control over the monomer to polymer equilibrium sets new standards for the selective degradation of polymers, the controlled release of active components, monomer synthesis and material recycling. In particular, the knowledge of the monomer to polymer equilibrium of polymers in solution under selected environmental conditions is of paramount importance for in vivo applications, where the polymer chain is subjected to both high dilution and a high polarity medium in the presence of catalysts, that is, very different conditions from which the polymer was formed.

  11. Chelated Ruthenium Catalysts for Z-Selective Olefin Metathesis

    OpenAIRE

    Endo, Koji; Grubbs, Robert H

    2011-01-01

    We report the development of ruthenium-based metathesis catalysts with chelating N-heterocyclic carbene (NHC) ligands which catalyze highly Z-selective olefin metathesis. A very simple and convenient synthetic procedure of such a catalyst has been developed. An intramolecular C-H bond activation of the NHC ligand, which is promoted by anion ligand substitution, forms the appropriate chelate for stereo- controlled olefin metathesis.

  12. Consideration of applications of olefin metathesis in synthetic fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Heveling, J.

    1984-07-01

    One of the characteristics of Fischer-Tropsch synthesis and many oligomerization processes, is insufficient selectivity. Efforts have to be made to bring the products obtained in line with the market requirements. The olefin metathesis reaction has the potential to convert less desirable olefins to more useful ones and provides new ways of producing petrochemicals. Based on existing and suggested process technologies, applications of this reaction for the production of synthetic liquid fuels are discussed.

  13. Methods for suppressing isomerization of olefin metathesis products

    Energy Technology Data Exchange (ETDEWEB)

    Firth, Bruce E.; Kirk, Sharon E.

    2015-10-27

    A method for suppressing isomerization of an olefin metathesis product produced in a metathesis reaction includes adding an isomerization suppression agent that includes nitric acid to a mixture that includes the olefin metathesis product and residual metathesis catalyst from the metathesis reaction under conditions that are sufficient to passivate at least a portion of the residual metathesis catalyst. Methods of refining a natural oil are described.

  14. Methods for suppressing isomerization of olefin metathesis products

    Energy Technology Data Exchange (ETDEWEB)

    Firth, Bruce E.; Kirk, Sharon E.; Gavaskar, Vasudeo S.

    2015-09-22

    A method for suppressing isomerization of an olefin metathesis product produced in a metathesis reaction includes adding an isomerization suppression agent to a mixture that includes the olefin metathesis product and residual metathesis catalyst from the metathesis reaction under conditions that are sufficient to passivate at least a portion of the residual metathesis catalyst. The isomerization suppression agent is phosphorous acid, a phosphorous acid ester, phosphinic acid, a phosphinic acid ester or combinations thereof. Methods of refining natural oils are described.

  15. Chiral fullerenes from asymmetric catalysis.

    Science.gov (United States)

    Maroto, Enrique E; Izquierdo, Marta; Reboredo, Silvia; Marco-Martínez, Juan; Filippone, Salvatore; Martín, Nazario

    2014-08-19

    olefins used in these reactions, pristine fullerene is a noncoordinating dipolarophile. The aforementioned features make the study of stereoselective 1,3-dipolar cycloadditions onto fullerenes a unique scenario to shed light onto important mechanistic aspects. On the other hand, the availability of achiral starting materials as well as the use of nonexpensive asymmetric catalysts should provide access to chiral fullerenes and their further application in a variety of different fields. In this regard, in addition to biomedical applications, chiral fullerenes are of interest in less-studied areas such as materials science, organic electronics, and nanoscience, where control of the order and morphology at the nanometer scale are critical issues for achieving better device efficiencies.

  16. Electron transfer-induced four-membered cyclic intermediate formation: Olefin cross-coupling vs. olefin cross-metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Yohei [Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509 (Japan); Chiba, Kazuhiro, E-mail: chiba@cc.tuat.ac.j [Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509 (Japan)

    2011-01-01

    An electron transfer-induced four-membered cyclic intermediate, formed between a radical cation of an enol ether and an unactivated olefin, played a key role in the pathway toward either cross-coupling or cross-metathesis. The presence of an alkoxy group on the phenyl ring of the olefin entirely determined the synthetic outcome of the reaction, which mirrored the efficiency of the intramolecular electron transfer.

  17. High-Yield Process for Selectively Converting CO2 to Aromatics and Olefins Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed Phase I addresses the selective conversion of CO2 to hydrocarbons via integrated CO2-to-methanol, methanol-to-olefins, and olefins-to-aromatics...

  18. Thermally Stable, Latent Olefin Metathesis Catalysts.

    Science.gov (United States)

    Thomas, Renee M; Fedorov, Alexey; Keitz, Benjamin K; Grubbs, Robert H

    2011-12-26

    Highly thermally stable N-aryl,N-alkyl N-heterocyclic carbene (NHC) ruthenium catalysts were designed and synthesized for latent olefin metathesis. These catalysts showed excellent latent behavior toward metathesis reactions, whereby the complexes were inactive at ambient temperature and initiated at elevated temperatures, a challenging property to achieve with second generation catalysts. A sterically hindered N-tert-butyl substituent on the NHC ligand of the ruthenium complex was found to induce latent behavior toward cross-metathesis reactions, and exchange of the chloride ligands for iodide ligands was necessary to attain latent behavior during ring-opening metathesis polymerization (ROMP). Iodide-based catalysts showed no reactivity toward ROMP of norbornene-derived monomers at 25 °C, and upon heating to 85 °C gave complete conversion of monomer to polymer in less than 2 hours. All of the complexes were very stable to air, moisture, and elevated temperatures up to at least 90 °C, and exhibited a long catalyst lifetime in solution at elevated temperatures.

  19. The intriguing modeling of cis–trans selectivity in ruthenium-catalyzed olefin metathesis

    Directory of Open Access Journals (Sweden)

    Luigi Cavallo

    2011-01-01

    Full Text Available In this study we have investigated computationally the origin of the cis–trans selectivity in the Ru-catalyzed cross metathesis (CM of a prototype monosubstituted olefin, i.e., propene. Our calculations suggest that the origin of the preferential formation of trans-olefins is in the product release step, which prevents the initially formed cis-olefin from escaping the metal, and returns it to the reaction pool until the trans-olefin is formed.

  20. A well-defined rhenium(VII) olefin metathesis catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Toreki, R.; Schrock, R.R. (Massachusetts Institute of Technology, Cambridge (USA))

    1990-03-14

    Molybdenum tungsten, and rhenium are the three most active metals in classical olefin metathesis systems. Molybdenum (VI){sup 2} and tungsten(VI){sup 3} alkylidene complexes of the type M-(CHR{prime})(NAr)(OR){sub 2} (Ar = 2,6-C{sub 6}H{sub 3}-i-Pr{sub 2}) have been shown to be well-behaved olefin metathesis catalysts with an activity that can be controlled through the choice of OR. Although several rhenium alkylidene complexes have been reported, none has shown any confirmable metathesis activity, even toward strained cyclic olefins such as norbornene. Since Re{triple bond}CR{double prime} and M{double bond}NR{double prime} (M = Mo or W) can be regarded as isoelectronic units, plausible candidates as olefin metathesis catalysts are complexes of the type Re(CHR{prime})(CR{double prime})(OR){sub 2}. The authors report here that such a complex in which OR = OCMe(CF{sub 3}){sub 2} is a well-behaved olefin metathesis catalyst.

  1. Low severity coal liquefaction promoted by cyclic olefins

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W.

    1992-01-01

    Low severity coal liquefaction promoted by cyclic olefins offers a means of liquefying coal at low severity conditions. Lower temperature, 350[degrees]C, and lower hydrogen pressure, 500 psi, have been used to perform liquefaction reactions. The presence of the cyclic olefin, hexahydroanthracene, made a substantial difference in the conversion of Illinois No. 6 coal at these low severity conditions. The Researchperformed this quarter was a parametric evaluation of the effect of different parameters on the coal conversion and product distribution from coal. The effect of the parameters on product distribution from hexahydroanthracene was also determined. The work planned for next quarter includes combining the most effective parametric conditions for the low severity reactions and determining their effect. The second part ofthe research performed this quarter involved performing Fourier transform infrared (FTIR) spectroscopy using cyclic olefins. The objective of this study was to determine the feasibility of using FTIR and a heated cell to determine the reaction pathway that occurs in the hydrogen donation reactions from cyclic olefins. The progress made to date includes evaluating the FTIR spectra of cyclic olefins and their expected reaction products. This work is included in this progress report.

  2. Asymmetric catalysis at the mesoscale: gold nanoclusters embedded in chiral self-assembled monolayer as heterogeneous catalyst for asymmetric reactions.

    Science.gov (United States)

    Gross, Elad; Liu, Jack H; Alayoglu, Selim; Marcus, Matthew A; Fakra, Sirine C; Toste, F Dean; Somorjai, Gabor A

    2013-03-13

    Research to develop highly versatile, chiral, heterogeneous catalysts for asymmetric organic transformations, without quenching the catalytic reactivity, has met with limited success. While chiral supramolecular structures, connected by weak bonds, are highly active for homogeneous asymmetric catalysis, their application in heterogeneous catalysis is rare. In this work, asymmetric catalyst was prepared by encapsulating metallic nanoclusters in chiral self-assembled monolayer (SAM), immobilized on mesoporous SiO2 support. Using olefin cyclopropanation as an example, it was demonstrated that by controlling the SAM properties, asymmetric reactions can be catalyzed by Au clusters embedded in chiral SAM. Up to 50% enantioselectivity with high diastereoselectivity were obtained while employing Au nanoclusters coated with SAM peptides as heterogeneous catalyst for the formation of cyclopropane-containing products. Spectroscopic measurements correlated the improved enantioselectivity with the formation of a hydrogen-bonding network in the chiral SAM. These results demonstrate the synergetic effect of the catalytically active metallic sites and the surrounding chiral SAM for the formation of a mesoscale enantioselective catalyst.

  3. Unprecedented CO2-promoted aminochlorination of olefins with Chloramine-T.

    Science.gov (United States)

    Minakata, Satoshi; Yoneda, Yoshimi; Oderaotoshi, Yoji; Komatsu, Mitsuo

    2006-03-02

    A new synthetic procedure for the aminochlorination of olefins for the synthesis of vicinal chloroamine derivatives using a combination of Chloramine-T and carbon dioxide is described. The method can be applied to a variety of olefins, including an electron-sufficient olefin and a conjugated diene.

  4. Asymmetric Cyclopropanation of Olefins Catalyzed by a Chiral Cobalt(II Porphyrin

    Directory of Open Access Journals (Sweden)

    Albrecht Berkessel

    2017-04-01

    Full Text Available The cobalt(II complex of the Halterman porphyrin, 5,10,15,20-tetrakis[(1S,4R,5R,8S-1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanoanthracene-9-yl]porphyrinato cobalt(II [Co(por*], was synthesized and its structure was identified by X-ray analysis. Up to 80:20 trans:cis diastereomeric ratio and 82% ee were achieved in the cyclopropanation of styrene with ethyl diazoacetate by using this cobalt(II porphyrin complex as catalyst.

  5. Olefin metathesis for site-selective protein modification.

    Science.gov (United States)

    Lin, Yuya A; Chalker, Justin M; Davis, Benjamin G

    2009-04-17

    For a reaction to be generally useful for protein modification, it must be site-selective and efficient under conditions compatible with proteins: aqueous media, low to ambient temperature, and at or near neutral pH. To engineer a reaction that satisfies these conditions is not a simple task. Olefin metathesis is one of most useful reactions for carbon-carbon bond formation, but does it fit these requirements? This minireview is an account of the development of olefin metathesis for protein modification. Highlighted below are examples of olefin metathesis in peptidic systems and in aqueous media that laid the groundwork for successful metathesis on protein substrates. Also discussed are the opportunities in protein engineering for the genetic introduction of amino acids suitable for metathesis and the related challenges in chemistry and biology.

  6. Low Severity Coal Liquefaction Promoted by Cyclic Olefins

    Energy Technology Data Exchange (ETDEWEB)

    Christine W. Curtis

    1998-04-09

    The development of the donor solvent technology for coal liquefaction has drawn a good deal of attention over the last three decades. The search for better hydrogen donors led investigators to a class of compounds known as cyclic olefins. Cyclic olefins are analogues of the conventional hydroaromatic donor species but do not contain aromatic rings. The cyclic olefins are highly reactive compounds which readily release their hydrogen at temperatures of 200 C or higher. Considerable effort has been o expended toward understanding the process of hydrogen donation. Most of this work was conducted in bomb reactors, with product analysis being carried out after the reaction was complete. Efforts directed towards fundamental studies of these reactions in situ are rare. The current work employs a high temperature and high pressure infrared cell to monitor in situ the concentrations of reactants and products during hydrogen release from hydrogen donor compounds.

  7. Olefin cross-metathesis for the synthesis of heteroaromatic compounds.

    Science.gov (United States)

    Donohoe, Timothy J; Bower, John F; Chan, Louis K M

    2012-02-21

    The olefin metathesis reaction has underpinned spectacular achievements in organic synthesis in recent years. Arguably, metathesis has now become the foremost choice for a carbon-carbon double bond disconnection. Despite this general utility, de novo routes to heteroaromatic compounds using the cross-metathesis (CM) reaction have only recently emerged as an efficient strategy. This approach allows a convergent union of simple, functionalised, three- to four-carbon olefinic core building blocks, to generate furans, pyrroles and pyridines with a high degree of control of substitution pattern in the product.

  8. Enhanced Olefin Cross Metathesis Reactions: The Copper Iodide Effect

    Science.gov (United States)

    Voigtritter, Karl; Ghorai, Subir

    2011-01-01

    Copper iodide has been shown to be an effective co-catalyst for the olefin cross metathesis reaction. In particular, it has both a catalyst stabilizing effect due to iodide ion, as well as copper(I)-based phosphine-scavenging properties that apply to use of the Grubbs-2 catalyst. A variety of Michael acceptors and olefinic partners can be cross-coupled under mild conditions in refluxing diethyl ether that avoid chlorinated solvents. This effect has also been applied to chemistry in water at room temperature using the new surfactant TPGS-750-M. PMID:21528868

  9. Comparing Ru and Fe-catalyzed olefin metathesis

    KAUST Repository

    Poater, Albert

    2014-01-01

    Density functional theory calculations have been used to explore the potential of Fe-based complexes with an N-heterocyclic carbene ligand, as olefin metathesis catalysts. Apart from a less endothermic reaction energy profile, a small reduction in the predicted upper energy barriers (≈ 2 kcal mol -1) is calculated in the Fe catalyzed profile with respect to the Ru catalysed profile. Overall, this study indicates that Fe-based catalysts have the potential to be very effective olefin metathesis catalysts. This journal is © the Partner Organisations 2014.

  10. The activation mechanism of Fe-based olefin metathesis catalysts

    Science.gov (United States)

    Poater, Albert; Pump, Eva; Vummaleti, Sai Vikrama Chaitanya; Cavallo, Luigi

    2014-08-01

    Density functional theory calculations have been used to describe the first turnover for olefin metathesis reaction of a homogenous Fe-based catalyst bearing a N-heterocyclic carbene ligand with methoxyethene as a substrate. Equal to conventional Ru-based catalysts, the activation of its Fe congener occurs through a dissociative mechanism, however with a more exothermic reaction energy profile. Predicted upper energy barriers were calculated to be on average ∼2 kcal/mol more beneficial for Fe catalyzed metathesis. Overall, this present computational study emphasises on advantages of Fe-based metathesis and gives a potential recipe for the design of an efficient Fe-based olefin metathesis catalysts.

  11. Cardanol-Based Materials as Natural Precursors for Olefin Metathesis

    Directory of Open Access Journals (Sweden)

    Giuseppe Vasapollo

    2011-08-01

    Full Text Available Cardanol is a renewable, low cost natural material, widely available as a by-product of the cashew industry. It is a mixture of 3-n-pentadecylphenol, 3-(pentadeca-8-enylphenol, 3-(pentadeca-8,11-dienylphenol and 3-(pentadeca-8,11,14-trienylphenol. Olefin metathesis (OM reaction on cardanol is an important class of reactions that allows for the synthesis of new olefins that are sometime impossible to prepare via other methods. The application of this natural and renewable material to both academic and industrial research will be discussed.

  12. Efficient Removal of Ruthenium Byproducts from Olefin Metathesis Products by Simple Aqueous Extraction

    Science.gov (United States)

    Hong, Soon Hyeok; Grubbs, Robert H.

    2008-01-01

    Simple aqueous extraction removed ruthenium byproducts efficiently from ring-closing metathesis (RCM) reactions catalyzed by a PEG-supported N-heterocyclic carbene-based ruthenium complex. PMID:17428062

  13. Electrochemistry for biofuel generation: transformation of fatty acids and triglycerides to diesel-like olefin/ether mixtures and olefins.

    Science.gov (United States)

    dos Santos, Tatiane R; Harnisch, Falk; Nilges, Peter; Schröder, Uwe

    2015-03-01

    Electroorganic synthesis can be exploited for the production of biofuels from fatty acids and triglycerides. With Coulomb efficiencies (CE) of up to 50 %, the electrochemical decarboxylation of fatty acids in methanolic and ethanolic solutions leads to the formation of diesel-like olefin/ether mixtures. Triglycerides can be directly converted in aqueous solutions by using sonoelectrochemistry, with olefins as the main products (with a CE of more than 20 %). The latter reaction, however, is terminated at around 50 % substrate conversion by the produced side-product glycerol. An energy analysis shows that the electrochemical olefin synthesis can be an energetically competitive, sustainable, and--in comparison with established processes--economically feasible alternative for the exploitation of fats and oils for biofuel production. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Asymmetric Divisions in Oogenesis.

    Science.gov (United States)

    Bilinski, Szczepan M; Kubiak, Jacek Z; Kloc, Malgorzata

    In the majority of animals, the oocyte/egg is structurally, molecularly, and functionally asymmetric. Such asymmetry is a prerequisite for a flawless fertilization and faithful segregation of maternal determinants during subsequent embryonic development. The oocyte asymmetry develops during oogenesis and must be maintained during consecutive and obligatorily asymmetric oogonial divisions, which depending on the species lead to the formation of either oocyte alone or oocyte and nurse cell complex. In the following chapter, we summarize current knowledge on the asymmetric oogonial divisions in invertebrate (insects) and vertebrate (Xenopus) species.

  15. Factors influencing ring closure through olefin metathesis-A ...

    Indian Academy of Sciences (India)

    Success of ring closure reactions of substrates having two terminal alkenes through olefin metathesis depends on a number of factors such as catalysts, nature and size of the rings to be formed and the substituents/functional groups present on the alkenes as well as at the allylic position. This article presents an overview of ...

  16. Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer

    DEFF Research Database (Denmark)

    Johnson, I.P.; Yuan, Scott Wu; Stefani, Alessio

    2011-01-01

    A report is presented on the inscription of a fibre Bragg grating into a microstructured polymer optical fibre fabricated from TOPAS cyclic olefin copolymer. This material offers two important advantages over poly (methyl methacrylate), which up to now has formed the basis for polymer fibre Bragg...

  17. Bio-olefins from unsaturated fatty acids via tandem catalysis

    Science.gov (United States)

    A new catalytic route to bio-olefins from unsaturated fatty acids will be described. At the heart of the process, the catalyst apparently functions in a tandem mode by both dynamically isomerizing the positions of double bonds in an aliphatic chain and, subsequently, decarboxylating specific isomers...

  18. Catalytic transfer-hydrogenations of olefins in glycerol

    Directory of Open Access Journals (Sweden)

    Adi Wolfson

    2010-11-01

    Full Text Available Glycerol has been successfully employed as a green solvent and hydrogen donor in the biphasic catalytic transfer-hydrogenation of olefins over Pd/C to yield the corresponding paraffins and dihydroxyacetone, respectively. The use of glycerol eased product separation and catalyst recycling and allowed for microwave-assisted reactions.

  19. ULTRASOUND-ASSISTED ORGANIC SYNTHESIS: ALCOHOL OXIDATION AND OLEFIN EPOXIDATION

    Science.gov (United States)

    Ultrasound-assisted Organic Synthesis: Alcohol Oxidation and Olefin EpoxidationUnnikrishnan R Pillai, Endalkachew Sahle-Demessie , Vasudevan Namboodiri, Quiming Zhao, Juluis EnriquezU.S. EPA , 26 W. Martin Luther King Dr. , Cincinnati, OH 45268 Phone: 513-569-773...

  20. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Jongedijk, E.J.; Cankar, K.; Ranzijn, J.; Krol, van der A.R.; Bouwmeester, H.J.; Beekwilder, M.J.

    2015-01-01

    Monoterpene olefins such as limonene are plant compounds with applications as flavouring and fragrance agents, as solvents and potentially also in polymer and fuel chemistry. We engineered baker's yeast Saccharomyces cerevisiae to express a (-)-limonene synthase from Perilla frutescens and a

  1. Enantiopure C1-symmetric N-Heterocyclic Carbene Ligands from Desymmetrized meso-1,2-Diphenylethylenediamine: Application in Ruthenium-Catalyzed Olefin Metathesis

    Directory of Open Access Journals (Sweden)

    Veronica Paradiso

    2016-11-01

    Full Text Available In order to design improved chiral ruthenium catalysts for asymmetric olefin metathesis, enantiomeric catalysts incorporating C1-symmetric N-Heterocyclic carbenes (NHC ligands with syn-related substituents on the backbone were synthesized starting from meso-1,2-diphenylethylenediamine. The absolute configuration of the enantiomers of the desymmetrized meso diamine was assigned by optical rotation analysis and in silico calculations, and was found to be maintained in their respective ruthenium catalysts by comparison of the relative electronic circular dichroism (ECD spectra. The catalytic behaviour of the enantiomeric ruthenium complexes was investigated in model asymmetric metathesis transformations and compared to that of analogous complexes bearing C1-symmetric NHC ligands with an anti backbone. Modest enantioselectivities were registered and different catalyst properties depending on the nature of stereochemical relationship of substituents on the backbone were observed.

  2. Synthetic Applications of Chiral Unsaturated Epoxy Alcohols Prepared by Sharpless Asymmetric Epoxidation

    Directory of Open Access Journals (Sweden)

    María Moreno

    2010-02-01

    Full Text Available An overview of the synthesis and applications of chiral 2,3-epoxy alcohols containing unsaturated chains is presented. One of the fundamental synthetic routes to these compounds is Sharpless asymmetric epoxidation, which is reliable, highly chemoselective and enables easy prediction of the product enantioselectivity. Thus, unsaturated epoxy alcohols are readily obtained by selective oxidation of the allylic double bond in the presence of other carbon-carbon double or triple bonds. The wide availability of epoxy alcohols with unsaturated chains, the versatility of the epoxy alcohol functionality (e.g. regio- and stereo-selective ring opening; oxidation; and reduction, and the arsenal of established alkene chemistries, make unsaturated epoxy alcohols powerful starting materials for the synthesis of complex targets such as biologically active molecules. The popularization of ring-closing metathesis has further increased their value, making them excellent precursors to cyclic compounds.

  3. Catalytic Asymmetric Inverse-Electron-Demand Hetero-Diels-Alder Reactions.

    Science.gov (United States)

    Xie, Mingsheng; Lin, Lili; Feng, Xiaoming

    2017-12-01

    In this review, the recent developments in catalytic asymmetric inverse-electron-demand hetero-Diels-Alder reaction, which is recognized as one of the most powerful routes to construct highly functionalized and enantioenriched six-membered heterocycles, are described. The article is organized on the basis of different kinds of electron-deficient heterodienes, including α,β-unsaturated ketones/aldehydes, o-benzoquinones, α,β-unsaturated imines, N-aryl imines, o-benzoqinone imides, and other aza-olefins. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    Science.gov (United States)

    Schrodi, Yann [Agoura Hills, CA

    2011-11-29

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  5. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Schrodi, Yann

    2016-02-09

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  6. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Schrodi, Yann

    2013-07-09

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  7. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Schrodi, Yann

    2015-09-22

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  8. Asymmetrical field emitter

    Science.gov (United States)

    Fleming, J.G.; Smith, B.K.

    1995-10-10

    A method is disclosed for providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure. 17 figs.

  9. A latent ruthenium based olefin metathesis catalyst with a sterically demanding NHC ligand

    KAUST Repository

    Leitgeb, Anita

    2012-01-01

    An olefin metathesis catalyst featuring a SIPr NHC and an ester chelating carbene ligand is introduced. In contrast to its previously published SIMes analogue, only the trans dichloro configurated isomer was obtained. The two counterparts are tested in various olefin metathesis reactions, revealing a striking superiority of the new complex in the cross metathesis of olefins with methyl vinyl ketone allowing for full conversion with only 500 ppm catalyst loading. © 2012 The Royal Society of Chemistry.

  10. Ruthenium-Catalyzed Olefin Metathesis after Tetra-n-butylammonium Fluoride-Mediated Desilylation

    Science.gov (United States)

    Osman, Sami

    2012-01-01

    One-pot procedures expedite organic synthesis but pose challenges in that many reagents must be compatible with each other. We discovered that the presence of nBu4NF hindered rutheniumcatalyzed olefin metathesis when nBu4NF-mediated desilylation and olefin metathesis were performed in one pot. This problem could be solved by the addition of (TMS)2O to remove fluoride anions in order to facilitate the ruthenium-catalyzed olefin metathesis. PMID:23269856

  11. Enantioselective synthesis of all-carbon quaternary stereogenic centers via copper-catalyzed asymmetric allylic alkylation of (Z)-allyl bromides with organolithium reagents.

    Science.gov (United States)

    Fañanás-Mastral, Martín; Vitale, Romina; Pérez, Manuel; Feringa, Ben L

    2015-03-09

    A copper/phosphoramidite catalyzed asymmetric allylic alkylation of Z trisubstituted allyl bromides with organolithium reagents is reported. The reaction affords all-carbon quaternary stereogenic centers in high yields and very good regio- and enantioselectivity. This systematic study illustrates the crucial role of the olefin geometry of the allyl substrate on the outcome of the reaction and provides a viable alternative to access these important structural motifs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The activation mechanism of Fe-based olefin metathesis catalysts

    KAUST Repository

    Poater, Albert

    2014-08-01

    Density functional theory calculations have been used to describe the first turnover for olefin metathesis reaction of a homogenous Fe-based catalyst bearing a N-heterocyclic carbene ligand with methoxyethene as a substrate. Equal to conventional Ru-based catalysts, the activation of its Fe congener occurs through a dissociative mechanism, however with a more exothermic reaction energy profile. Predicted upper energy barriers were calculated to be on average ∼2 kcal/mol more beneficial for Fe catalyzed metathesis. Overall, this present computational study emphasises on advantages of Fe-based metathesis and gives a potential recipe for the design of an efficient Fe-based olefin metathesis catalysts. © 2014 Elsevier B.V.

  13. Methanol conversion to lower olefins over RHO type zeolite

    KAUST Repository

    Masih, Dilshad

    2013-07-01

    Eight-membered ring small-pore zeolite of RHO-type topology has been synthesized, characterized and tested for methanol-to-olefin (MTO) reaction. The zeolite was hydrothermally crystallized from the gel with Si/Al ratio of 5.0. It showed a high BET specific surface area (812 m2 g-1), micropore volume (0.429 cm3 g-1), and acid amount (2.53 mmol g-1). Scanning electron microscopy observations showed small crystallites of about 1 μm. The zeolite was active for MTO reaction with 100% methanol conversions at 623-723 K, whereas selectivity to lower olefins changed with time. © 2013 Elsevier B.V.

  14. Request for Symposia Support: Advances in Olefin Polymerization Catalysis

    Science.gov (United States)

    2014-11-24

    included, but were not limited to, heterogeneous catalysis , homogeneous catalysis , advances in catalyst activation, methods for polymer topological...SECURITY CLASSIFICATION OF: This Advances in Olefin Polymerization Catalysis symposium was held at the 247th ACS National Meeting and Exposition...March 19, 2014 in Dallas, Texas and consisted of twelve (12) invited/contributed talks. The hosting ACS division was the Division of Catalysis Science

  15. Asymmetrical international attitudes

    NARCIS (Netherlands)

    Van Oudenhoven, JP; Askevis-Leherpeux, F; Hannover, B; Jaarsma, R; Dardenne, B

    2002-01-01

    In general, attitudes towards nations have a fair amount of reciprocity: nations either like each other are relatively indifferent to each other or dislike each other Sometimes, however international attitudes are asymmetrical. In this study, we use social identity theory in order to explain

  16. How Is Nature Asymmetric?

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 6. How Is Nature Asymmetric? - Discrete Symmetries in Particle Physics and their Violation ... Indian Institute of Technology, Chennai. Aligarh Muslim University. University of Rajasthan, Jaipur. Indian Institute of Science, Bangalore 560012, India.

  17. Highly asymmetric rice genomes

    Directory of Open Access Journals (Sweden)

    Chen Jian-Qun

    2007-06-01

    Full Text Available Abstract Background Individuals in the same species are assumed to share the same genomic set. However, it is not unusual to find an orthologous gene only in small subset of the species, and recent genomic studies suggest that structural rearrangements are very frequent between genomes in the same species. Two recently sequenced rice genomes Oryza sativa L. var. Nipponbare and O. sativa L. var. 93-11 provide an opportunity to systematically investigate the extent of the gene repertoire polymorphism, even though the genomic data of 93-11 derived from whole-short-gun sequencing is not yet as complete as that of Nipponbare. Results We compared gene contents and the genomic locations between two rice genomes. Our conservative estimates suggest that at least 10% of the genes in the genomes were either under presence/absence polymorphism (5.2% or asymmetrically located between genomes (4.7%. The proportion of these "asymmetric genes" varied largely among gene groups, in which disease resistance (R genes and the RLK kinase gene group had 11.6 and 7.8 times higher proportion of asymmetric genes than housekeeping genes (Myb and MADS. The significant difference in the proportion of asymmetric genes among gene groups suggests that natural selection is responsible for maintaining genomic asymmetry. On the other hand, the nucleotide diversity in 17 R genes under presence/absence polymorphism was generally low (average nucleotide diversity = 0.0051. Conclusion The genomic symmetry was disrupted by 10% of asymmetric genes, which could cause genetic variation through more unequal crossing over, because these genes had no allelic counterparts to pair and then they were free to pair with homologues at non-allelic loci, during meiosis in heterozygotes. It might be a consequence of diversifying selection that increased the structural divergence among genomes, and of purifying selection that decreased nucleotide divergence in each R gene locus.

  18. A diversity-oriented approach to spirocyclic and fused hydantoins via olefin metathesis.

    Science.gov (United States)

    Dhara, Kalyan; Midya, Ganesh Chandra; Dash, Jyotirmayee

    2012-09-21

    An efficient and general method is reported to prepare a diverse series of 5,5-spirocyclic and 1,5-, 4,5-, and 3,4-fused bicyclic imidazolidinone derivatives based on selective alkylation and ring closing metathesis (RCM) by exploiting the four possible points of diversity in the hydantoin ring. Hydantoins containing trienes and tetraenes undergo selective RCM and cross metathesis to afford functionalized spirohydantoins. A tandem metathesis sequence involving ring closing-ring opening-ring closing and cross metathesis (RC-RO-RC-CM) occurred with a hydantoin triene to give a bicyclic hydantoin dimer in high yield. The fused bicylic dimer could participate in cross metathesis to produce a functionalized fused hydantoin derivative. The methodology establishes novel routes to unnatural amino acids, proline homologues, and cyclic vicinal diamines.

  19. Industrial asymmetric synthesis by use of metal-BINAP catalysts; Kinzoku-BINAP sakutai shokubai wo mochiita fusai gosei gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kumobayashi, H.; Sayo, N.; Akutagawa, S.; Sakaguchi, T.; Tsuruta, H. [Takasago International Corporation, Kanagawa (Japan). Central Research Laboratory

    1997-12-10

    This article covers the history and present progress of the industrial asymmetric synthesis by use of BINAP (2,2`-bis(diphenylphosphino)-1,1`-binaphthyl)-metal catalysts. Especially, the historic discovery of the BINAP-rhodium(I)-catalyzed 1,3-hydrogen migration of N,N-diethylgeranylamine (GDEA) and the achievement of practical preparation of optically active BINAP, led to the establishment of the first industrial process for efficient production of l-menthol employing asymmetric catalysts. Continuing efforts have been devoted to the exploration of new catalytic reactions using new BINAP-metal complexes and their applications to industrial asymmetric synthesis. Among them, asymmetric hydrogenation of functionalyzed olefins and ketones by use of BINAP-ruthenium (II) complexes provides fruitful results. Today, a wide range of chiral compounds including the pharmaceutical intermediates 4-acetoxy-2-azetidinone (4-AA) and 1,2-propanediol (2-PPD) are produced in industrial scale in Takasago. 47 refs., 8 figs., 9 tabs.

  20. Synthetic Strategies for Converting Carbohydrates into Carbocycles by the Use of Olefin Metathesis

    DEFF Research Database (Denmark)

    Madsen, Robert

    2007-01-01

    This microreview covers recent advances in the use of ring-closing metathesis for the synthesis of carbocycles from carbohydrates. Various strategies for the synthesis of a,w-dienes from carbohydrates are presented, which give rise to a large variety of dienes with different stereochemistry......, protecting groups and substituents. Subsequent ring-closing metathesis with a ruthenium carbene complex affords highly functionalized carbocycles with ring-sizes ranging from five- to eight-membered rings. The application of these methods for the synthesis of carbocyclic natural products from carbohydrates...

  1. Effect of precursor on the catalytic performance of supported iron catalysts for the Fischer–Tropsch synthesis of lower olefins

    NARCIS (Netherlands)

    Torres Galvis, H.M.; Koeken, A.C.J.; Bitter, J.H.; Davidian, T.; Ruitenbeek, M.; Dugulan, A.I.; Jong, de K.P.

    2013-01-01

    Lower olefins are traditionally produced from cracking of naphtha and other crude oil fractions. The Fischer–Tropsch-to-Olefins process (FTO) enables the direct synthesis of lower olefins from synthesis gas (CO + H2) derived from alternative feedstocks such as natural gas, coal or biomass. A

  2. Z-Selective Homodimerization of Terminal Olefins with a Ruthenium Metathesis Catalyst

    Science.gov (United States)

    Keitz, Benjamin K.; Endo, Koji; Herbert, Myles B.

    2011-01-01

    The cross-metathesis of terminal olefins using a novel ruthenium catalyst results in excellent selectivity for the Z-olefin homodimer. The reaction was found to tolerate a large number of functional groups, solvents, and temperatures while maintaining excellent Z-selectivity, even at high reaction conversions. PMID:21649443

  3. Direct production of lower olefins from synthesis gas using supported iron catalysts

    NARCIS (Netherlands)

    Torres Galvis, H.M.

    2013-01-01

    Lower olefins (ethylene, propylene and butylenes) are important commodity chemicals used for the manufacture of, amongst others, plastics, solvents and lubricants to cosmetics and drugs. C2 to C4 olefins are conventionally produced by steam cracking of naphtha. In view of economic, strategic, and

  4. Design and Application of Latent Olefin Metathesis Catalysts Featuring S-Chelating Alkylidene Ligands

    Science.gov (United States)

    Szadkowska, Anna; Grela, Karol

    This review article is devoted to recent advances in the design and application of so-called “dormant” or “latent” ruthenium olefin metathesis catalysts bearing S-chelating alkylidene ligands. Selected ruthenium complexes containing S-donor ligands, which possess controllable initiation behaviour are presented. Applications of these complexes in olefin metathesis are described.

  5. Survival of aerosolized bacteriophage phiX174 in air containing ozone olefin mixtures

    NARCIS (Netherlands)

    Mik, G. de; Groot, I. de; Gerbrandy, J.L.F.

    1977-01-01

    The effects of ozone and ozonized olefins on aerosol survival of bacteriophage phiX174 were studied. The ozone concentrations used were between 0 and 110 parts/109, giving decay rates up to 0.03 min-1. The olefins used were trans 2 butene and cyclohexene in concentrations of 500 parts/109 and 2.4

  6. Oxidative cracking of n-hexane: a catalytic pathway to olefins

    NARCIS (Netherlands)

    Boyadjian, C.A.

    2010-01-01

    Steam cracking, the major, current existing route for light olefin production, is the most energy consuming process in the chemical industry. The need for an energy efficient processes, urged substantial research work for the development of new catalytic technologies for light olefin production.

  7. Oxidative conversion of light alkanes to olefins over alkali promoted oxide catalysts.

    NARCIS (Netherlands)

    Leveles, L.; Fuchs, S.; Fuchs, Stefan; Seshan, Kulathuiyer; Lercher, J.A.; Lefferts, Leonardus

    2002-01-01

    Alkali promoted mixed oxides were studied as catalysts for the oxidative dehydrogenation (ODH) and cracking of butane and propane. Olefin yields as high as 50% were obtained with Li/MgO-based catalysts. Magnesia-based catalysts showed higher activity for olefin production than catalysts based on

  8. Asymmetric extractions in orthodontics

    Directory of Open Access Journals (Sweden)

    Camilo Aquino Melgaço

    2012-04-01

    Full Text Available INTRODUCTION: Extraction decisions are extremely important in during treatment planning. In addition to the extraction decision orthodontists have to choose what tooth should be extracted for the best solution of the problem and the esthetic/functional benefit of the patient. OBJECTIVE: This article aims at reviewing the literature relating the advantages, disadvantages and clinical implications of asymmetric extractions to orthodontics. METHODS: Keywords were selected in English and Portuguese and the EndNote 9 program was used for data base search in PubMed, Web of Science (WSc and LILACS. The selected articles were case reports, original articles and prospective or retrospective case-control studies concerning asymmetrical extractions of permanent teeth for the treatment of malocclusions. CONCLUSION: According to the literature reviewed asymmetric extractions can make some specific treatment mechanics easier. Cases finished with first permanent molars in Class II or III relationship in one or both sides seem not to cause esthetic or functional problems. However, diagnosis knowledge and mechanics control are essential for treatment success.

  9. Asymmetric Evolutionary Games.

    Directory of Open Access Journals (Sweden)

    Alex McAvoy

    2015-08-01

    Full Text Available Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner's Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games.

  10. Asymmetric Evolutionary Games.

    Science.gov (United States)

    McAvoy, Alex; Hauert, Christoph

    2015-08-01

    Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner's Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games.

  11. Catalytic Transformation of Bio-oil to Olefins with Molecular Sieve Catalysts

    Science.gov (United States)

    Huang, Wei-wei; Gong, Fei-yan; Zhai, Qi; Li, Quan-xin

    2012-08-01

    Catalytic conversion of bio-oil into light olefins was performed by a series of molecular sieve catalysts, including HZSM-5, MCM-41, SAPO-34 and Y-zeolite. Based on the light olefins yield and its carbon selectivity, the production of light olefins decreased in the following order: HZSM-5>SAPO-34>MCM-41> Y-zeolite. The highest olefins yield from bio-oil using HZSM-5 catalyst reached 0.22 kg/kgbio-oil with carbon selectivity of 50.7% and a nearly complete bio-oil conversion. The reaction conditions and catalyst characterization were investigated in detail to reveal the relationship between the catalyst structure and the production of olefins. The comparison between the pyrolysis and catalytic pyrolysis of bio-oil was also performed.

  12. Reversible and irreversible processing of biogenic olefins on acidic aerosols

    Directory of Open Access Journals (Sweden)

    J. Liggio

    2008-04-01

    Full Text Available Recent evidence has suggested that heterogeneous chemistry of oxygenated hydrocarbons, primarily carbonyls, plays a role in the formation of secondary organic aerosol (SOA; however, evidence is emerging that direct uptake of alkenes on acidic aerosols does occur and can contribute to SOA formation. In the present study, significant uptake of monoterpenes, oxygenated monoterpenes and sesquiterpenes to acidic sulfate aerosols is found under various conditions in a reaction chamber. Proton transfer mass spectrometry is used to quantify the organic gases, while an aerosol mass spectrometer is used to quantify the organic mass uptake and obtain structural information for heterogeneous products. Aerosol mass spectra are consistent with several mechanisms including acid catalyzed olefin hydration, cationic polymerization and organic ether formation, while measurable decreases in the sulfate mass on a per particle basis suggest that the formation of organosulfate compounds is also likely. A portion of the heterogeneous reactions appears to be reversible, consistent with reversible olefin hydration reactions. A slow increase in the organic mass after a fast initial uptake is attributed to irreversible reactions, consistent with polymerization and organosulfate formation. Uptake coefficients (γ were estimated for a fast initial uptake governed by the mass accommodation coefficient (α and ranged from 1×10-6-2.5×10-2. Uptake coefficients for a subsequent slower reactive uptake ranged from 1×10-7-1×10-4. These processes may potentially lead to a considerable amount of SOA from the various biogenic hydrocarbons under acidic conditions, which can be highly significant for freshly nucleated aerosols, particularly given the large array of atmospheric olefins.

  13. Synthesis of thermoplastic poly(ester-olefin elastomers

    Directory of Open Access Journals (Sweden)

    Tanasijević Branka

    2004-01-01

    Full Text Available A series of thermoplastic poly(ester-olefin elastomers, based on poly(ethylene-stat-butylene, HO-PEB-OH, as the soft segment and poly (butylene terephthalate, PBT, as the hard segment, were synthesized by a catalyzed transesterification reaction in solution. The incorporation of soft hydrogenated poly(butadiene segments into the copolyester backbone was accomplished by the polycondensation of α, ω-dihydroxyl telechelic HO-PEB-OH, (PEB Mn = 3092 g/mol with 1,4-butanediol (BD and dimethyl terephthalate (DMT in the presence of a 50 wt-% high boiling solvent i.e., 1,2,4-trichlorobenzene. The molar ratio of the starting comonomers was selected to result in a constant hard to soft weight ratio of 60:40. The synthesis was optimized in terms of both the concentration of catalyst, tetra-n-butyl-titanate (Ti(OBu4, and stabilizer, N,N'-diphenyl-p-phenylenediamine (DPPD, as well as the reaction time. It was found that the optimal catalyst concentration (Ti(OBu4 for the synthesis of these thermoplastic elastomers was 1.0 mmol/mol ester and the optimal DPPD concentration was 1.0 wt-%. The extent of the reaction was followed by measuring the inherent viscosity of the reaction mixture. The effectiveness of the incorporation of the soft segments into the copolymer chains was proved by Soxhlet extraction with chloroform. The molecular structures, composition and the size of the synthesized poly(ester-butylenes were verified by 1H NMR spectroscopy, viscometry of dilute solutions and the complex dynamic melt viscosity. The thermal properties of poly(ester-olefins were investigated by differential scanning calorimetry (DSC. The degree of crystallinity was also determined by DSC. The thermal and thermo-oxidative stability were investigated by thermogravimetric analysis (TGA. The rheological properties of poly(ester-olefins were investigated by dynamic mechanical spectroscopy in the melt and solid state.

  14. Refining of plant oils to chemicals by olefin metathesis.

    Science.gov (United States)

    Chikkali, Samir; Mecking, Stefan

    2012-06-11

    Plant oils are attractive substrates for the chemical industry. Their scope for the production of chemicals can be expanded by sophisticated catalytic conversions. Olefin metathesis is an example, which also illustrates generic issues of "biorefining" to chemicals. Utilization on a large scale requires high catalyst activities, which influences the choice of the metathesis reaction. The mixture of different fatty acids composing a technical-grade plant oil substrate gives rise to a range of products. This decisively determines possible process schemes, and potentially provides novel chemicals and intermediates not employed to date. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Thermoplastic Adhesives based on polyolefin and olefinic copolymers

    Science.gov (United States)

    Paul, Rituparna

    2014-03-01

    H.B. Fuller has been a leading global industrial adhesive manufacturer for over 125 years. It is a company with a rich history of consistently delivering adhesive innovations for enhancing product performance in the market place. H.B. Fuller technologies/products find application in several markets including packaging, personal hygiene and nonwovens, durable assembly and electronics. In this presentation, H. B. Fuller's technology innovation journey will be shared with emphasis on groundbreaking technologies/products based on polyolefin and olefin copolymers.

  16. Enantioselective Iodolactonization of Disubstituted Olefinic Acids Using a Bifunctional Catalyst

    Science.gov (United States)

    Fang, Chao; Paull, Daniel H.; Hethcox, J. Caleb; Shugrue, Christopher R.; Martin, Stephen F.

    2012-01-01

    The enantioselective iodolactonizations of a series of diversely-substituted olefinic carboxylic acids are promoted by a BINOL-derived, bifunctional catalyst. Reactions involving 5-alkyl- and 5-aryl-4(Z)-pentenoic acids and 6-alkyl- and 6-aryl-5(Z)-hexenoic acids provide the corresponding γ- and δ-lactones having stereogenic C–I bonds in excellent yields and >97:3 er. Significantly, this represents the first organocatalyst that promotes both bromo- and iodolactonization with high enantioselectivities. The potential of this catalyst to induce kinetic resolutions of racemic unsaturated acids is also demonstrated. PMID:23199100

  17. Separation of Olefin/Paraffin Mixtures with Carrier Facilitated Membrane Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, T.C.; Blanc, R.; Zeid, J.; Suwarlim, A.; Firat, B.; Wijmans, H.; Asaro, M. (SRI); Greene, M.(Lummus)

    2007-03-12

    This document describes the results of a DOE funded joint effort of Membrane Technology and Research Inc. (MTR), SRI International (SRI), and ABB Lummus (ABB) to develop facilitated transport membranes for olefin/paraffin separations. Currently, olefin/paraffin separation is done by distillation—an extremely energy-intensive process because of the low relative volatilities of olefins and paraffins. If facilitated transport membranes could be successfully commercialized, the potential energy savings achievable with this membrane technology are estimated to be 48 trillion Btu per year by the year 2020. We discovered in this work that silver salt-based facilitated transport membranes are not stable even in the presence of ideal olefin/paraffin mixtures. This decline in membrane performance appears to be caused by a previously unrecognized phenomenon that we have named olefin conditioning. As the name implies, this mechanism of performance degradation becomes operative once a membrane starts permeating olefins. This project is the first study to identify olefin conditioning as a significant factor impacting the performance of facilitated olefin transport membranes. To date, we have not identified an effective strategy to mitigate the impact of olefin conditioning. other than running at low temperatures or with low olefin feed pressures. In our opinion, this issue must be addressed before further development of facilitated olefin transport membranes can proceed. In addition to olefin conditioning, traditional carrier poisoning challenges must also be overcome. Light, hydrogen, hydrogen sulfide, and acetylene exposure adversely affect membrane performance through unwanted reaction with silver ions. Harsh poisoning tests with these species showed useful membrane lifetimes of only one week. These tests demonstrate a need to improve the stability of the olefin complexing agent to develop membranes with lifetimes satisfactory for commercial application. A successful effort

  18. Catalytic asymmetric fluorinations.

    Science.gov (United States)

    Bobbio, Carla; Gouverneur, Véronique

    2006-06-07

    The appearance of structurally diverse fluorinating reagents displaying a large spectrum of reactivity has been critical to the development of the catalytic asymmetric fluorination processes known to date. In this article, we discuss how this area of research emerged and which strategies have allowed for the successful development of both nucleophilic and electrophilic catalytic enantioselective fluorinations. We also present the fundamental understanding of catalytic activity and enantioselectivity for the most efficient processes and highlight the first synthetic application with the preparation of a complex fluorinated target.

  19. Asymmetric synthesis v.4

    CERN Document Server

    Morrison, James

    1984-01-01

    Asymmetric Synthesis, Volume 4: The Chiral Carbon Pool and Chiral Sulfur, Nitrogen, Phosphorus, and Silicon Centers describes the practical methods of obtaining chiral fragments. Divided into five chapters, this book specifically examines initial chiral transmission and extension. The opening chapter describes the so-called chiral carbon pool, the readily available chiral carbon fragments used as building blocks in synthesis. This chapter also provides a list of 375 chiral building blocks, along with their commercial sources, approximate prices, and methods of synthesis. Schemes involving

  20. Chirality recognition of winding vine-shaped heterobiaryls with molecular asymmetry. Kinetic and dynamic kinetic resolution by Shi's asymmetric epoxidation.

    Science.gov (United States)

    Maruhashi, Kazuki; Okayama, Yoichi; Inoue, Ryo; Ashida, Shiomi; Toyomori, Yuka; Okano, Kentaro; Mori, Atsunori

    2018-01-26

    The chirality of winding vine-shaped heterobiaryls with molecular asymmetry is recognized by a sugar-based chiral oxidant. Kinetic resolution of (±)-bisbenzoimidazole bearing an olefin moiety takes place with Shi's asymmetric epoxidation to observe krel value up to ca. 35 affording the corresponding epoxide. The reaction of a (±)-bithiophene derivative also recognized the chirality to give the corresponding epoxide with er of 96:4 at 39% conversion. Dynamic kinetic resolution is found to take place when unsymmetrical biaryl composed of benzoimidazole/thiophene is subjected to Shi's epoxidation, whose conversion of the racemic substrate exceeds to 50%.

  1. Z-Selective Catalytic Olefin Cross-Metathesis

    Science.gov (United States)

    Meek, Simon J.; O’Brien, Robert V.; Llaveria, Josep; Schrock, Richard R.; Hoveyda, Amir H.

    2011-01-01

    Alkenes are found in a great number of biologically active molecules and are employed in numerous transformations in organic chemistry. Many olefins exist as E or higher energy Z isomers. Catalytic procedures for stereoselective formation of alkenes are therefore valuable; nonetheless, methods for synthesis of 1,2-disubstituted Z olefins are scarce. Here we report catalytic Z-selective cross-metathesis reactions of terminal enol ethers, which have not been reported previously, and allylic amides, employed thus far only in E-selective processes; the corresponding disubstituted alkenes are formed in up to >98% Z selectivity and 97% yield. Transformations, promoted by catalysts that contain the highly abundant and inexpensive molybdenum, are amenable to gram scale operations. Use of reduced pressure is introduced as a simple and effective strategy for achieving high stereoselectivity. Utility is demonstrated by syntheses of anti-oxidant C18 (plasm)-16:0 (PC), found in electrically active tissues and implicated in Alzheimer’s disease, and the potent immunostimulant KRN7000. PMID:21430774

  2. Hydroxycarbonylation of olefins and alcohols in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.L.; Eliseev, O.L.; Bondarenko, T.N.; Stepin, N.N. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry

    2006-07-01

    Palladium-catalysed hydroxycarbonylation of olefins and alcohols proceeds in ionic liquid media. Terminal and internal olefins, cyclohexene, styrene, methanol, ethanol, n-butanol, cyclohexanol, benzyl alcohol and 1-phenylethanol were tested as substrates for the reaction. A number of molten salts were applied as a reaction medium and tetrabutylammonium bromide (m.p. 103 C) seemed to be the best. Carbon monoxide pressure of 2 MPa and reaction temperature of 110 C are suitable conditions to furnish the reaction in 2 hours in the presence of palladium acetate as a precursor. Triphenylphosphine added as a ligand reduces reaction rate. The critical role of counter anion in molten salt was also recognised. Yield of acids decreased in the order: Br{sup -} > Cl{sup -} > BF{sub 4} {approx}PF{sub 6}{sup -}. A two-route reaction scheme is proposed to explain the regularities of styrene and 1-phenylethanol hydroxycarbonylation. The catalytic system can be used repeatedly by simple extraction of products with diethyl ether. Nine cycles were carried out without loss of activity. (orig.)

  3. Asymmetric inclusion process.

    Science.gov (United States)

    Reuveni, Shlomi; Eliazar, Iddo; Yechiali, Uri

    2011-10-01

    We introduce and explore the asymmetric inclusion process (ASIP), an exactly solvable bosonic counterpart of the fermionic asymmetric exclusion process (ASEP). In both processes, random events cause particles to propagate unidirectionally along a one-dimensional lattice of n sites. In the ASEP, particles are subject to exclusion interactions, whereas in the ASIP, particles are subject to inclusion interactions that coalesce them into inseparable clusters. We study the dynamics of the ASIP, derive evolution equations for the mean and probability generating function (PGF) of the sites' occupancy vector, obtain explicit results for the above mean at steady state, and describe an iterative scheme for the computation of the PGF at steady state. We further obtain explicit results for the load distribution in steady state, with the load being the total number of particles present in all lattice sites. Finally, we address the problem of load optimization, and solve it under various criteria. The ASIP model establishes bridges between statistical physics and queueing theory as it represents a tandem array of queueing systems with (unlimited) batch service, and a tandem array of growth-collapse processes.

  4. Methacrylate/olefin cooligomeres, a new group of synthetic fluids. Methacrylat/Olefin-Cooligomere, eine neue Gruppe von Synthesefluessigkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, J.; Beyer, C.; Jelitte, R.

    1994-01-01

    A new type of synthetic fluid combining the specific advantages of known base fluids like polyalpha-olefins (PAO) and synthetic esters is obtained by a special chemical reaction between alpha-olefins and alkyl (meth)acrylates (AMA). These cooligomers are available with different viscosity levels. The special combination of non-polar and polar units assures the exceptionally good miscibility with mineral-oil and synthetic base fluids and accounts for their suitability as solubilizers for polar and non-polar additives. Potential fields of application are gear, engine and hydraulic oils as well as special lubricants with a high performance profile. Particular emphasis is placed on 'extreme' multigrade (e.g. 75W-90, 75W-140) gear and engine oils with a high viscosity index and excellent low-temperature properties. The cooligomers show neutral behavior towards elastomers owing to their special manufacturing process, they do not contain any hetereoatoms (like sulfur, nitrogen or halogens) in addition to the elements carbon, hydrogen and oxygen. (orig.)

  5. Simple and highly Z-selective ruthenium-based olefin metathesis catalyst.

    Science.gov (United States)

    Occhipinti, Giovanni; Hansen, Fredrik R; Törnroos, Karl W; Jensen, Vidar R

    2013-03-06

    A one-step substitution of a single chloride anion of the Grubbs-Hoveyda second-generation catalyst with a 2,4,6-triphenylbenzenethiolate ligand resulted in an active olefin metathesis catalyst with remarkable Z selectivity, reaching 96% in metathesis homocoupling of terminal olefins. High turnover numbers (up to 2000 for homocoupling of 1-octene) were obtained along with sustained appreciable Z selectivity (>85%). Apart from the Z selectivity, many properties of the new catalyst, such as robustness toward oxygen and water as well as a tendency to isomerize substrates and react with internal olefin products, resemble those of the parent catalyst.

  6. In vivo and in vitro olefin cyclopropanation catalyzed by heme enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Pedro S.; Brustad, Eric M.; Arnold, Frances H.; Wang, Zhan; Lewis, Jared C.

    2016-11-15

    The present invention provides methods for catalyzing the conversion of an olefin to any compound containing one or more cyclopropane functional groups using heme enzymes. In certain aspects, the present invention provides a method for producing a cyclopropanation product comprising providing an olefinic substrate, a diazo reagent, and a heme enzyme; and admixing the components in a reaction for a time sufficient to produce a cyclopropanation product. In other aspects, the present invention provides heme enzymes including variants and fragments thereof that are capable of carrying out in vivo and in vitro olefin cyclopropanation reactions. Expression vectors and host cells expressing the heme enzymes are also provided by the present invention.

  7. In vivo and in vitro olefin cyclopropanation catalyzed by heme enzymes

    Science.gov (United States)

    Coelho, Pedro S; Brustad, Eric M; Arnold, Frances H; Wang, Zhan; Lewis, Jared C

    2015-03-31

    The present invention provides methods for catalyzing the conversion of an olefin to any compound containing one or more cyclopropane functional groups using heme enzymes. In certain aspects, the present invention provides a method for producing a cyclopropanation product comprising providing an olefinic substrate, a diazo reagent, and a heme enzyme; and admixing the components in a reaction for a time sufficient to produce a cyclopropanation product. In other aspects, the present invention provides heme enzymes including variants and fragments thereof that are capable of carrying out in vivo and in vitro olefin cyclopropanation reactions. Expression vectors and host cells expressing the heme enzymes are also provided by the present invention.

  8. Primary Alcohols from Terminal Olefins: Formal Anti-Markovnikov Hydration via Triple Relay Catalysis

    KAUST Repository

    Dong, G.

    2011-09-15

    Alcohol synthesis is critical to the chemical and pharmaceutical industries. The addition of water across olefins to form primary alcohols (anti-Markovnikov olefin hydration) would be a broadly useful reaction but has largely proven elusive; an indirect hydroboration/oxidation sequence requiring stoichiometric borane and oxidant is currently the most practical methodology. Here, we report a more direct approach with the use of a triple relay catalysis system that couples palladium-catalyzed oxidation, acid-catalyzed hydrolysis, and ruthenium-catalyzed reduction cycles. Aryl-substituted terminal olefins are converted to primary alcohols by net reaction with water in good yield and excellent regioselectivity.

  9. Symmetric Decomposition of Asymmetric Games.

    Science.gov (United States)

    Tuyls, Karl; Pérolat, Julien; Lanctot, Marc; Ostrovski, Georg; Savani, Rahul; Leibo, Joel Z; Ord, Toby; Graepel, Thore; Legg, Shane

    2018-01-17

    We introduce new theoretical insights into two-population asymmetric games allowing for an elegant symmetric decomposition into two single population symmetric games. Specifically, we show how an asymmetric bimatrix game (A,B) can be decomposed into its symmetric counterparts by envisioning and investigating the payoff tables (A and B) that constitute the asymmetric game, as two independent, single population, symmetric games. We reveal several surprising formal relationships between an asymmetric two-population game and its symmetric single population counterparts, which facilitate a convenient analysis of the original asymmetric game due to the dimensionality reduction of the decomposition. The main finding reveals that if (x,y) is a Nash equilibrium of an asymmetric game (A,B), this implies that y is a Nash equilibrium of the symmetric counterpart game determined by payoff table A, and x is a Nash equilibrium of the symmetric counterpart game determined by payoff table B. Also the reverse holds and combinations of Nash equilibria of the counterpart games form Nash equilibria of the asymmetric game. We illustrate how these formal relationships aid in identifying and analysing the Nash structure of asymmetric games, by examining the evolutionary dynamics of the simpler counterpart games in several canonical examples.

  10. Active Multienzyme Assemblies for Long-Chain Olefinic Hydrocarbon Biosynthesis.

    Science.gov (United States)

    Christenson, James K; Jensen, Matthew R; Goblirsch, Brandon R; Mohamed, Fatuma; Zhang, Wei; Wilmot, Carrie M; Wackett, Lawrence P

    2017-05-01

    Bacteria from different phyla produce long-chain olefinic hydrocarbons derived from an OleA-catalyzed Claisen condensation of two fatty acyl coenzyme A (acyl-CoA) substrates, followed by reduction and oxygen elimination reactions catalyzed by the proteins OleB, OleC, and OleD. In this report, OleA, OleB, OleC, and OleD were individually purified as soluble proteins, and all were found to be essential for reconstituting hydrocarbon biosynthesis. Recombinant coexpression of tagged OleABCD proteins from Xanthomonas campestris in Escherichia coli and purification over His6 and FLAG columns resulted in OleA separating, while OleBCD purified together, irrespective of which of the four Ole proteins were tagged. Hydrocarbon biosynthetic activity of copurified OleBCD assemblies could be reconstituted by adding separately purified OleA. Immunoblots of nondenaturing gels using anti-OleC reacted with X. campestris crude protein lysate indicated the presence of a large protein assembly containing OleC in the native host. Negative-stain electron microscopy of recombinant OleBCD revealed distinct large structures with diameters primarily between 24 and 40 nm. Assembling OleB, OleC, and OleD into a complex may be important to maintain stereochemical integrity of intermediates, facilitate the movement of hydrophobic metabolites between enzyme active sites, and protect the cell against the highly reactive β-lactone intermediate produced by the OleC-catalyzed reaction.IMPORTANCE Bacteria biosynthesize hydrophobic molecules to maintain a membrane, store carbon, and for antibiotics that help them survive in their niche. The hydrophobic compounds are often synthesized by a multidomain protein or by large multienzyme assemblies. The present study reports on the discovery that long-chain olefinic hydrocarbons made by bacteria from different phyla are produced by multienzyme assemblies in X. campestris The OleBCD multienzyme assemblies are thought to compartmentalize and sequester olefin

  11. Minimal asymmetric dark matter

    Directory of Open Access Journals (Sweden)

    Sofiane M. Boucenna

    2015-09-01

    Full Text Available In the early Universe, any particle carrying a conserved quantum number and in chemical equilibrium with the thermal bath will unavoidably inherit a particle–antiparticle asymmetry. A new particle of this type, if stable, would represent a candidate for asymmetric dark matter (DM with an asymmetry directly related to the baryon asymmetry. We study this possibility for a minimal DM sector constituted by just one (generic SU(2L multiplet χ carrying hypercharge, assuming that at temperatures above the electroweak phase transition an effective operator enforces chemical equilibrium between χ and the Higgs boson. We argue that limits from DM direct detection searches severely constrain this scenario, leaving as the only possibilities scalar or fermion multiplets with hypercharge y=1, preferentially quintuplets or larger SU(2 representations, and with a mass in the few TeV range.

  12. Asymmetric black dyonic holes

    Directory of Open Access Journals (Sweden)

    I. Cabrera-Munguia

    2015-04-01

    Full Text Available A 6-parametric asymptotically flat exact solution, describing a two-body system of asymmetric black dyons, is studied. The system consists of two unequal counterrotating Kerr–Newman black holes, endowed with electric and magnetic charges which are equal but opposite in sign, separated by a massless strut. The Smarr formula is generalized in order to take into account their contribution to the mass. The expressions for the horizon half-length parameters σ1 and σ2, as functions of the Komar parameters and of the coordinate distance, are displayed, and the thermodynamic properties of the two-body system are studied. Furthermore, the seven physical parameters satisfy a simple algebraic relation which can be understood as a dynamical scenario, in which the physical properties of one body are affected by the ones of the other body.

  13. Asymmetric Realized Volatility Risk

    Directory of Open Access Journals (Sweden)

    David E. Allen

    2014-06-01

    Full Text Available In this paper, we document that realized variation measures constructed from high-frequency returns reveal a large degree of volatility risk in stock and index returns, where we characterize volatility risk by the extent to which forecasting errors in realized volatility are substantive. Even though returns standardized by ex post quadratic variation measures are nearly Gaussian, this unpredictability brings considerably more uncertainty to the empirically relevant ex ante distribution of returns. Explicitly modeling this volatility risk is fundamental. We propose a dually asymmetric realized volatility model, which incorporates the fact that realized volatility series are systematically more volatile in high volatility periods. Returns in this framework display time varying volatility, skewness and kurtosis. We provide a detailed account of the empirical advantages of the model using data on the S&P 500 index and eight other indexes and stocks.

  14. A reactive analytical approach for the estimation of olefinic content in gasoline-range hydrocarbons by gas chromatography.

    Science.gov (United States)

    Punetha, A K; Shanker, U; Narsimha, K; Rao, T S R Prasada

    2002-08-01

    The estimation of olefinic content in conversion processes such as the etherification of olefins in fluid catalytic cracking (FCC) gasoline is essentially required. Gas chromatography (GC) is the well-established method for the quantitative analysis of olefins in etherification processes. The current state-of-the-art GC methods employing highly specific long single capillary columns such as Petrocol-DH are being used for the analysis of gasoline-range hydrocarbons. However, the method needs many standard reference samples of respective components in a complex mixture of hydrocarbons, which limits the scope of the analytical method. The alternative approach followed by this investigation is based on the reactive method of the analysis of olefins in FCC light gasoline by subjecting them to hydrogenation and estimating the olefinic content by GC comparing the gas chromatograms of the original feed and hydrogenated product using a Petrocol-DH column. A decrease in the quantity and disappearances of the peaks are assumed as olefins, and their number and total composition is calculated. In this study the bromine number method is used to estimate the olefinic content for a comparison of results with the adopted proposed methodology. The adopted methodology quantitates olefinic content in FCC light gasoline, which is comparable with reported literature values and the bromine number method. With the availability of standard reference samples of some important major reactive olefins, the adopted methodology can also give component-wise analysis as well as total olefinic content in a single step in processes such as etherification. The methodology can be also useful in reactions in which the conversion of total olefinic content is needed such as hydration, esterification, and alkylation of olefins in a complex mixture of hydrocarbons apart from the etherification of olefins in FCC gasoline.

  15. Improved ruthenium catalysts for Z-selective olefin metathesis.

    Science.gov (United States)

    Keitz, Benjamin K; Endo, Koji; Patel, Paresma R; Herbert, Myles B; Grubbs, Robert H

    2012-01-11

    Several new C-H-activated ruthenium catalysts for Z-selective olefin metathesis have been synthesized. Both the carboxylate ligand and the aryl group of the N-heterocyclic carbene have been altered and the resulting catalysts evaluated using a range of metathesis reactions. Substitution of bidentate with monodentate X-type ligands led to a severe attenuation of metathesis activity and selectivity, while minor differences were observed between bidentate ligands within the same family (e.g., carboxylates). The use of nitrato-type ligands in place of carboxylates afforded a significant improvement in metathesis activity and selectivity. With these catalysts, turnover numbers approaching 1000 were possible for a variety of cross-metathesis reactions, including the synthesis of industrially relevant products. © 2011 American Chemical Society

  16. Nanoporous poly(lactide) by olefin metathesis degradation.

    Science.gov (United States)

    Bertrand, Arthur; Hillmyer, Marc A

    2013-07-31

    We describe an approach to ordered nanoporous poly(lactide) that relies on self-assembly of poly(butadiene)-poly(lactide) (PB-PLA) diblock copolymers followed by selective degradation of PB using olefin metathesis. The block copolymers were obtained by a combination of anionic and ring-opening transesterification polymerizations. The molar mass of each block was tailored to target materials with either a lamellar or cylindrical microphase-separated morphology. Orientation of these nanoscale domains was induced in thin films and monolithic samples through solvent annealing and mechanical deformation, respectively. Selective degradation of PB was achieved by immersing the samples in a solution of Grubbs first-generation catalyst in cyclohexane, a nonsolvent for PLA. Successful elimination of PB was confirmed by size-exclusion chromatography and (1)H NMR spectroscopy. Direct imaging of the resulting nanoporous PLA was obtained by scanning electron microscopy.

  17. Molybdenum chloride catalysts for Z-selective olefin metathesis reactions

    Science.gov (United States)

    Koh, Ming Joo; Nguyen, Thach T.; Lam, Jonathan K.; Torker, Sebastian; Hyvl, Jakub; Schrock, Richard R.; Hoveyda, Amir H.

    2017-01-01

    The development of catalyst-controlled stereoselective olefin metathesis processes has been a pivotal recent advance in chemistry. The incorporation of appropriate ligands within complexes based on molybdenum, tungsten and ruthenium has led to reactivity and selectivity levels that were previously inaccessible. Here we show that molybdenum monoaryloxide chloride complexes furnish higher-energy (Z) isomers of trifluoromethyl-substituted alkenes through cross-metathesis reactions with the commercially available, inexpensive and typically inert Z-1,1,1,4,4,4-hexafluoro-2-butene. Furthermore, otherwise inefficient and non-stereoselective transformations with Z-1,2-dichloroethene and 1,2-dibromoethene can be effected with substantially improved efficiency and Z selectivity. The use of such molybdenum monoaryloxide chloride complexes enables the synthesis of representative biologically active molecules and trifluoromethyl analogues of medicinally relevant compounds. The origins of the activity and selectivity levels observed, which contradict previously proposed principles, are elucidated with the aid of density functional theory calculations.

  18. Kinetically controlled E-selective catalytic olefin metathesis.

    Science.gov (United States)

    Nguyen, Thach T; Koh, Ming Joo; Shen, Xiao; Romiti, Filippo; Schrock, Richard R; Hoveyda, Amir H

    2016-04-29

    A major shortcoming in olefin metathesis, a chemical process that is central to research in several branches of chemistry, is the lack of efficient methods that kinetically favor E isomers in the product distribution. Here we show that kinetically E-selective cross-metathesis reactions may be designed to generate thermodynamically disfavored alkenyl chlorides and fluorides in high yield and with exceptional stereoselectivity. With 1.0 to 5.0 mole % of a molybdenum-based catalyst, which may be delivered in the form of air- and moisture-stable paraffin pellets, reactions typically proceed to completion within 4 hours at ambient temperature. Many isomerically pure E-alkenyl chlorides, applicable to catalytic cross-coupling transformations and found in biologically active entities, thus become easily and directly accessible. Similarly, E-alkenyl fluorides can be synthesized from simpler compounds or more complex molecules. Copyright © 2016, American Association for the Advancement of Science.

  19. Selective Metathesis of α-Olefins from Bio-Sourced Fischer–Tropsch Feeds

    KAUST Repository

    Rouen, Mathieu

    2016-10-14

    The search for a low-cost process for the valorization of linear alpha-olefins combining high productivity and high selectivity is a longstanding goal for chemists. Herein, we report a soluble ruthenium olefin metathesis catalyst that performs the conversion of linear alpha-olefins to longer internal linear olefins with high selectivity (>99%) under neat conditions at low loadings (50 ppm) and without the need of expensive additives. This robust catalytic process allowed us to efficiently and selectively re-equilibrate the naphtha fraction (C-5-C-8) of a Fischer-Tropsch feed derived from non petroleum resources to a higher-value product range (C-9-C-14), useful as detergent and plasticizer precursors.

  20. The preparation of trisubstituted alkenyl nucleoside phosphonates under ultrasound-assisted olefin cross-metathesis.

    Science.gov (United States)

    Sari, Ozkan; Hamada, Manabu; Roy, Vincent; Nolan, Steven P; Agrofoglio, Luigi A

    2013-09-06

    Intermolecular ultrasound-assisted olefin cross-metathesis is reported. This approach allows an easy access to challenging trisubstituted alkenyl nucleoside phosphonates. Regioselective chemoenzymatic deacetylation and Mitsunobu coupling are also described.

  1. A Wittig-olefination-Claisen-rearrangement approach to the 3-methylquinoline-4-carbaldehyde synthesis

    National Research Council Canada - National Science Library

    Kulkarni, Mukund G; Desai, Mayur P; Birhade, Deekshaputra R; Shaikh, Yunus B; Dhatrak, Ajit N; Gannimani, Ramesh

    2012-01-01

    Efficient syntheses are described for the synthetically important 3-methylquinoline-4-carbaldehydes 6a-h from o-nitrobenzaldehydes 1a-h employing a Wittig-olefination-Claisen-rearrangement protocol...

  2. Mild Functionalization of Tetraoxane Derivatives via Olefin Metathesis: Compatibility of Ruthenium Alkylidene Catalysts with Peroxides.

    Science.gov (United States)

    Jana, Anupam; Grela, Karol

    2017-02-03

    An easy and mild functionalization method of tetraoxane derivatives via olefin metathesis is reported. This reaction offers a new method to afford fully functionalized tetraoxanes in high yields. This method is also utilized in the functionalization of bioactive compounds.

  3. Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon bonds

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Zhibin; Lu, Yixuan

    2015-09-15

    A method of preparing a malleable and/or self-healing polymeric or composite material is provided. The method includes providing a polymeric or composite material comprising at least one alkene-containing polymer, combining the polymer with at least one homogeneous or heterogeneous transition metal olefin metathesis catalyst to form a polymeric or composite material, and performing an olefin metathesis reaction on the polymer so as to form reversible carbon-carbon double bonds in the polymer. Also provided is a method of healing a fractured surface of a polymeric material. The method includes bringing a fractured surface of a first polymeric material into contact with a second polymeric material, and performing an olefin metathesis reaction in the presence of a transition metal olefin metathesis catalyst such that the first polymeric material forms reversible carbon-carbon double bonds with the second polymeric material. Compositions comprising malleable and/or self-healing polymeric or composite material are also provided.

  4. A highly selective route to linear alpha olefins from biomass-derived lactones and unsaturated acids.

    Science.gov (United States)

    Wang, Dong; Hakim, Sikander H; Alonso, David Martin; Dumesic, James A

    2013-08-14

    This work demonstrates the use of Lewis-acid catalysts, such as gamma-alumina and tungstated alumina, for selective production of linear alpha olefins by decarboxylation of lactones and unsaturated carboxylic acids.

  5. Ruthenium-Catalyzed Olefin Cross-Metathesis with Tetrafluoroethylene and Analogous Fluoroolefins.

    Science.gov (United States)

    Takahira, Yusuke; Morizawa, Yoshitomi

    2015-06-10

    This Communication describes a successful olefin cross-metathesis with tetrafluoroethylene and its analogues. A key to the efficient catalytic cycle is interconversion between two thermodynamically stable, generally considered sluggish, Fischer carbenes. This newly demonstrated catalytic transformation enables easy and short-step synthesis of a new class of partially fluorinated olefins bearing plural fluorine atoms, which are particularly important and valuable compounds in organic synthesis and medicinal chemistry as well as the materials and polymer industries.

  6. Origins of the Stereoretentive Mechanism of Olefin Metathesis with Ru-Dithiolate Catalysts.

    Science.gov (United States)

    Grandner, Jessica M; Shao, Huiling; Grubbs, Robert H; Liu, Peng; Houk, K N

    2017-10-06

    A comprehensive computational study of stereoretentive olefin metathesis with Ru-dithiolate catalysts has been performed. We have determined how the dithiolate ligand enforces a side-bound mechanism and how the side-bound mechanism allows for stereochemical control over the forming olefin. We have used density functional theory (DFT) and ligand steric contour maps to elucidate the origins of stereoretentive metathesis with the goal of understanding how to design a new class of E-selective metathesis catalysts.

  7. Oxidative cracking of n-hexane: a catalytic pathway to olefins

    OpenAIRE

    Boyadjian, C.A.

    2010-01-01

    Steam cracking, the major, current existing route for light olefin production, is the most energy consuming process in the chemical industry. The need for an energy efficient processes, urged substantial research work for the development of new catalytic technologies for light olefin production. Steam cracking maximizes ethylene formation and propylene is produced only as a secondary product. The faster increase in demand of propylene than that of ethylene makes steam cracking a less attracti...

  8. Pd(II/HPMoV-Catalyzed Direct Oxidative Coupling Reaction of Benzenes with Olefins

    Directory of Open Access Journals (Sweden)

    Yasutaka Ishii

    2010-03-01

    Full Text Available The direct aerobic coupling reaction of arenes with olefins was successfully achieved by the use of Pd(OAc2/molybdovanadophosphoric acid (HPMoV as a key catalyst under 1 atm of dioxygen. This catalytic system could be extended to the coupling reaction of various substituted benzenes with olefins such as acrylates, aclrolein, and ethylene through the direct aromatic C-H bond activation.

  9. Palladium-catalyzed Asymmetric Hydrosilylation of Styrene and Its Derivatives with Chiral Phosphoramidite Ligands Containing Chiral Ferrocenyl Amine

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun-Sub; Kim, Min Young; Ahn, Hyo Jin; Han, Jin Wook [Hanyang University, Seoul (Korea, Republic of)

    2016-06-15

    Asymmetric hydrosilylation was one of the most effective methods, which provided optically active organosilanes as a synthetically useful intermediate in organic synthesis. One useful transformation is the Tamao-Fleming oxidation, which is an oxidation reaction of carbon[BOND]silicone bond to afford optically active alcohols with retention of configuration. It is demonstrated that a palladium catalyst coordinating with phosphoramidite ligand (S {sub a},R {sub c},R {sub c,})-L3a from (S)-BINOL and chiral bis((R)-1-ferrocenylethyl) amine shows a high catalytic activity and enantioselectivity up to 97% ee in asymmetric hydrosilylation of styrene and its derivatives. The hydrosilylation of various olefin substrates using these ligands is in progress.

  10. Sequential meta-C-H olefination of synthetically versatile benzyl silanes: effective synthesis of meta-olefinated toluene, benzaldehyde and benzyl alcohols.

    Science.gov (United States)

    Patra, Tuhin; Watile, Rahul; Agasti, Soumitra; Naveen, Togati; Maiti, Debabrata

    2016-02-04

    Tremendous progress has been made towards ortho-selective C-H functionalization in the last three decades. However, the activation of distal C-H bonds and their functionalization has remained fairly underdeveloped. Herein, we report sequential meta-C-H functionalization by performing selective mono-olefination and bis-olefination with late stage modification of the C-Si as well as Si-O bonds. Temporary silyl connection was found to be advantageous due to its easy installation, easy removal and wide synthetic diversification.

  11. Asymmetric bifurcated halogen bonds.

    Science.gov (United States)

    Novák, Martin; Foroutan-Nejad, Cina; Marek, Radek

    2015-03-07

    Halogen bonding (XB) is being extensively explored for its potential use in advanced materials and drug design. Despite significant progress in describing this interaction by theoretical and experimental methods, the chemical nature remains somewhat elusive, and it seems to vary with the selected system. In this work we present a detailed DFT analysis of three-center asymmetric halogen bond (XB) formed between dihalogen molecules and variously 4-substituted 1,2-dimethoxybenzene. The energy decomposition, orbital, and electron density analyses suggest that the contribution of electrostatic stabilization is comparable with that of non-electrostatic factors. Both terms increase parallel with increasing negative charge of the electron donor molecule in our model systems. Depending on the orientation of the dihalogen molecules, this bifurcated interaction may be classified as 'σ-hole - lone pair' or 'σ-hole - π' halogen bonds. Arrangement of the XB investigated here deviates significantly from a recent IUPAC definition of XB and, in analogy to the hydrogen bonding, the term bifurcated halogen bond (BXB) seems to be appropriate for this type of interaction.

  12. Switchable regioselectivity in amine-catalysed asymmetric cycloadditions

    Science.gov (United States)

    Zhou, Zhi; Wang, Zhou-Xiang; Zhou, Yuan-Chun; Xiao, Wei; Ouyang, Qin; Du, Wei; Chen, Ying-Chun

    2017-06-01

    Building small-molecule libraries with structural and stereogenic diversity plays an important role in drug discovery. The development of switchable intermolecular cycloaddition reactions from identical substrates in different regioselective fashions would provide an attractive protocol. However, this also represents a challenge in organic chemistry, because it is difficult to control regioselectivity to afford the products exclusively and at the same time achieve high levels of stereoselectivity. Here, we report the diversified cycloadditions of α‧-alkylidene-2-cyclopentenones catalysed by cinchona-derived primary amines. An asymmetric γ,β‧-regioselective intermolecular [6+2] cycloaddition reaction with 3-olefinic (7-aza)oxindoles is realized through the in situ generation of formal 4-aminofulvenes, while a different β,γ-regioselective [2+2] cycloaddition reaction with maleimides to access fused cyclobutanes is disclosed. In contrast, an intriguing α,γ-regioselective [4+2] cycloaddition reaction is uncovered with the same set of substrates, by employing an unprecedented dual small-molecule catalysis of amines and thiols. All of the cycloaddition reactions exhibit excellent regio- and stereoselectivity, producing a broad spectrum of chiral architectures with high structural diversity and molecular complexity.

  13. Magnetically Modified Asymmetric Supercapacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project is for the development of an asymmetric supercapacitor that will have improved energy density and cycle life....

  14. Multicatalyst system in asymmetric catalysis

    CERN Document Server

    Zhou, Jian

    2014-01-01

    This book introduces multi-catalyst systems by describing their mechanism and advantages in asymmetric catalysis.  Helps organic chemists perform more efficient catalysis with step-by-step methods  Overviews new concepts and progress for greener and economic catalytic reactions  Covers topics of interest in asymmetric catalysis including bifunctional catalysis, cooperative catalysis, multimetallic catalysis, and novel tandem reactions   Has applications for pharmaceuticals, agrochemicals, materials, and flavour and fragrance

  15. Asymmetric Ion-Pairing Catalysis

    Science.gov (United States)

    Brak, Katrien

    2014-01-01

    Charged intermediates and reagents are ubiquitous in organic transformations. The interaction of these ionic species with chiral neutral, anionic, or cationic small molecules has emerged as a powerful strategy for catalytic, enantioselective synthesis. This review describes developments in the burgeoning field of asymmetric ion-pairing catalysis with an emphasis on the insights that have been gleaned into the structural and mechanistic features that contribute to high asymmetric induction. PMID:23192886

  16. Determination of thermodynamic affinities of various polar olefins as hydride, hydrogen atom, and electron acceptors in acetonitrile.

    Science.gov (United States)

    Cao, Ying; Zhang, Song-Chen; Zhang, Min; Shen, Guang-Bin; Zhu, Xiao-Qing

    2013-07-19

    A series of 69 polar olefins with various typical structures (X) were synthesized and the thermodynamic affinities (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the polar olefins obtaining hydride anions, hydrogen atoms, and electrons, the thermodynamic affinities of the radical anions of the polar olefins (X(•-)) obtaining protons and hydrogen atoms, and the thermodynamic affinities of the hydrogen adducts of the polar olefins (XH(•)) obtaining electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The pure C═C π-bond heterolytic and homolytic dissociation energies of the polar olefins (X) in acetonitrile and the pure C═C π-bond homolytic dissociation energies of the radical anions of the polar olefins (X(•-)) in acetonitrile were estimated. The remote substituent effects on the six thermodynamic affinities of the polar olefins and their related reaction intermediates were examined using the Hammett linear free-energy relationships; the results show that the Hammett linear free-energy relationships all hold in the six chemical and electrochemical processes. The information disclosed in this work could not only supply a gap of the chemical thermodynamics of olefins as one class of very important organic unsaturated compounds but also strongly promote the fast development of the chemistry and applications of olefins.

  17. Rh-Catalyzed Asymmetric Hydrogenation of Prochiral Olefins with a Dynamic Library of Chiral TROPOS Phosphorus Ligands

    NARCIS (Netherlands)

    Monti, Chiara; Gennari, Cesare; Piarulli, Umberto; Vries, Johannes G. de; Vries, André H.M. de; Lefort, Laurent

    2005-01-01

    A library of 19 chiral tropos phosphorus ligands, based on a flexible (tropos) biphenol unit and a chiral P-bound alcohol (11 phosphites) or secondary amine (8 phosphoramidites), was synthesized. These ligands were screened, individually and as a combination of two, in the rhodium-catalyzed

  18. Ruthenium complexes with chiral tetradentate PNNP ligands: asymmetric catalysis from the viewpoint of inorganic chemistry.

    Science.gov (United States)

    Mezzetti, Antonio

    2010-09-14

    This is a personal account of the application of ruthenium complexes containing chiral tetradentate ligands with a P(2)N(2) ligand set (PNNP) as catalyst precursors for enantioselective "atom transfer" reactions. Therewith are meant reactions that involve bond formation between a metal-coordinated molecule and a free reagent. The reactive fragment (e.g. carbene) is transferred either from the metal to the non-coordinated substrate (e.g. olefin) or from the free reagent (e.g. F(+)) to the metal-bound substrate (e.g.beta-ketoester), depending on the class of catalyst (monocationic, Class A; or dicationic, Class B). The monocationic five-coordinate species [RuCl(PNNP)](+) and the six-coordinate complexes [RuCl(L)(PNNP)](+) (L = Et(2)O, H(2)O) of Class A catalyse asymmetric epoxidation, cyclopropanation (carbene transfer from the metal to the free olefin), and imine aziridination. Alternatively, the dicationic complexes [Ru(L-L)(PNNP)](2+) (Class B), which contain substrates that act as neutral bidentate ligands L-L (e.g., beta-ketoesters), catalyse Michael addition, electrophilic fluorination, and hydroxylation reactions. Additionally, unsaturated beta-ketoesters form dicationic complexes of Class B that catalyse Diels-Alder reactions with acyclic dienes to produce tetrahydro-1-indanones and estrone derivatives. Excellent enantioselectivity has been achieved in several of the catalytic reactions mentioned above. The study of key reaction intermediates (both in the solid state and in solution) has revealed significant mechanistic aspects of the catalytic reactions.

  19. Asymmetric Gepner models (revisited)

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands)] [Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N., E-mail: t58@nikhef.n [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands)] [Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain)] [IMAPP, Radboud Universiteit, Nijmegen (Netherlands)

    2010-12-11

    We reconsider a class of heterotic string theories studied in 1989, based on tensor products of N=2 minimal models with asymmetric simple current invariants. We extend this analysis from (2,2) and (1,2) spectra to (0,2) spectra with SO(10) broken to the Standard Model. In the latter case the spectrum must contain fractionally charged particles. We find that in nearly all cases at least some of them are massless. However, we identify a large subclass where the fractional charges are at worst half-integer, and often vector-like. The number of families is very often reduced in comparison to the 1989 results, but there are no new tensor combinations yielding three families. All tensor combinations turn out to fall into two classes: those where the number of families is always divisible by three, and those where it is never divisible by three. We find an empirical rule to determine the class, which appears to extend beyond minimal N=2 tensor products. We observe that distributions of physical quantities such as the number of families, singlets and mirrors have an interesting tendency towards smaller values as the gauge groups approaches the Standard Model. We compare our results with an analogous class of free fermionic models. This displays similar features, but with less resolution. Finally we present a complete scan of the three family models based on the triply-exceptional combination (1,16{sup *},16{sup *},16{sup *}) identified originally by Gepner. We find 1220 distinct three family spectra in this case, forming 610 mirror pairs. About half of them have the gauge group SU(3)xSU(2){sub L}xSU(2){sub R}xU(1){sup 5}, the theoretical minimum, and many others are trinification models.

  20. Isomerizing olefin metathesis as a strategy to access defined distributions of unsaturated compounds from fatty acids.

    Science.gov (United States)

    Ohlmann, Dominik M; Tschauder, Nicole; Stockis, Jean-Pierre; Goossen, Käthe; Dierker, Markus; Goossen, Lukas J

    2012-08-22

    The dimeric palladium(I) complex [Pd(μ-Br)(t)Bu(3)P](2) was found to possess unique activity for the catalytic double-bond migration within unsaturated compounds. This isomerization catalyst is fully compatible with state-of-the-art olefin metathesis catalysts. In the presence of bifunctional catalyst systems consisting of [Pd(μ-Br)(t)Bu(3)P](2) and NHC-indylidene ruthenium complexes, unsaturated compounds are continuously converted into equilibrium mixtures of double-bond isomers, which concurrently undergo catalytic olefin metathesis. Using such highly active catalyst systems, the isomerizing olefin metathesis becomes an efficient way to access defined distributions of unsaturated compounds from olefinic substrates. Computational models were designed to predict the outcome of such reactions. The synthetic utility of isomerizing metatheses is demonstrated by various new applications. Thus, the isomerizing self-metathesis of oleic and other fatty acids and esters provides olefins along with unsaturated mono- and dicarboxylates in distributions with adjustable widths. The cross-metathesis of two olefins with different chain lengths leads to regular distributions with a mean chain length that depends on the chain length of both starting materials and their ratio. The cross-metathesis of oleic acid with ethylene serves to access olefin blends with mean chain lengths below 18 carbons, while its analogous reaction with hex-3-enedioic acid gives unsaturated dicarboxylic acids with adjustable mean chain lengths as major products. Overall, the concept of isomerizing metatheses promises to open up new synthetic opportunities for the incorporation of oleochemicals as renewable feedstocks into the chemical value chain.

  1. Single-Particle Spectroscopy on Large SAPO-34 Crystals at Work: Methanol-To-Olefin versus Ethanol-To-Olefin Processes

    NARCIS (Netherlands)

    Qian, Q.; Ruiz-Martinez, J.; Mokhtar, M.; Asiri, A.M.; Al-Thabaiti, S.A.; Basahel, S.N.; van der Bij, H.E.; Kornatowski, J.; Weckhuysen, B.M.

    2013-01-01

    The formation of hydrocarbon pool (HCP) species during methanol- to-olefin (MTO) and ethanol-toolefin (ETO) processes have been studied on individual micron-sized SAPO- 34 crystals with a combination of in situ UV/Vis, confocal fluorescence, and synchrotron-based IR microspectroscopic techniques.

  2. Proceedings of the DGMK-Conference 'Creating value from light olefins - production and conversion'. Authors' manuscripts

    Energy Technology Data Exchange (ETDEWEB)

    Emig, G.; Kraemer, H.J.; Weitkamp, J. (eds.)

    2001-07-01

    Main topics of the conference were: production of light olefin by steamcracking and catalytic cracking processes, catalysts, methanol to olefin processes, oxidative dehydrogenation, partial oxidation, selective oxidation of alkanes with various catalysts. (uke)

  3. Theoretical evidence for bond stretch isomerism in Grubbs olefin metathesis.

    Science.gov (United States)

    Remya, Premaja R; Suresh, Cherumuttathu H

    2017-07-15

    A comprehensive density functional theory study on the dissociative and associative mechanisms of Grubbs first and second generation olefin metathesis catalysis reveals that ruthenacyclobutane intermediate (RuCB) observed in the Chauvin mechanism is not unique as it can change to a non-metathetic ruthenacyclobutane (RuCB') via the phenomenon of bond stretch isomerism (BSI). RuCB and RuCB' differ mainly in RuCα , RuCβ , and Cα Cβ bond lengths of the metallacycle. RuCB is metathesis active due to the agostic type bonding-assisted simultaneous activation of both Cα Cβ bonds, giving hypercoordinate character to Cβ whereas an absence of such bonding interactions in RuCB' leads to typical CC single bond distances and metathesis inactivity. RuCB and RuCB' are connected by a transition state showing moderate activation barrier. The new mechanistic insights invoking BSI explains the non-preference of associative mechanism and the requirement of bulky ligands in the Grubbs catalyst design. The present study lifts the status of BSI from a concept of largely theoretical interest to a phenomenon of intense importance to describe an eminent catalytic reaction. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, October--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W.

    1992-12-31

    Low severity coal liquefaction promoted by cyclic olefins offers a means of liquefying coal at low severity conditions. Lower temperature, 350{degrees}C, and lower hydrogen pressure, 500 psi, have been used to perform liquefaction reactions. The presence of the cyclic olefin, hexahydroanthracene, made a substantial difference in the conversion of Illinois No. 6 coal at these low severity conditions. The Researchperformed this quarter was a parametric evaluation of the effect of different parameters on the coal conversion and product distribution from coal. The effect of the parameters on product distribution from hexahydroanthracene was also determined. The work planned for next quarter includes combining the most effective parametric conditions for the low severity reactions and determining their effect. The second part ofthe research performed this quarter involved performing Fourier transform infrared (FTIR) spectroscopy using cyclic olefins. The objective of this study was to determine the feasibility of using FTIR and a heated cell to determine the reaction pathway that occurs in the hydrogen donation reactions from cyclic olefins. The progress made to date includes evaluating the FTIR spectra of cyclic olefins and their expected reaction products. This work is included in this progress report.

  5. Asymmetric distances for binary embeddings.

    Science.gov (United States)

    Gordo, Albert; Perronnin, Florent; Gong, Yunchao; Lazebnik, Svetlana

    2014-01-01

    In large-scale query-by-example retrieval, embedding image signatures in a binary space offers two benefits: data compression and search efficiency. While most embedding algorithms binarize both query and database signatures, it has been noted that this is not strictly a requirement. Indeed, asymmetric schemes that binarize the database signatures but not the query still enjoy the same two benefits but may provide superior accuracy. In this work, we propose two general asymmetric distances that are applicable to a wide variety of embedding techniques including locality sensitive hashing (LSH), locality sensitive binary codes (LSBC), spectral hashing (SH), PCA embedding (PCAE), PCAE with random rotations (PCAE-RR), and PCAE with iterative quantization (PCAE-ITQ). We experiment on four public benchmarks containing up to 1M images and show that the proposed asymmetric distances consistently lead to large improvements over the symmetric Hamming distance for all binary embedding techniques.

  6. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong

    2017-01-01

    The employment of metal salts is quite limited in asymmetric catalysis, although it would provide an additional arsenal of safe and inexpensive reagents to create molecular functions with high optical purity. Cation chelation by polyethers increases the salts' solubility in conventional organic...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...... and KCN, are selectively bound to the catalyst, providing exceptionally high enantioselectivities for kinetic resolutions, elimination reactions (fluoride base), and Strecker synthesis (cyanide nucleophile). Asymmetric cation-binding catalysis was recently expanded to silicon-based reagents, enabling...

  7. 40 CFR Appendix 8 to Subpart A of... - Reference C16-C18 Internal Olefin Drilling Fluid Formulation

    Science.gov (United States)

    2010-07-01

    ... Drilling Fluid Formulation 8 Appendix 8 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL... Internal Olefin Drilling Fluid Formulation The reference C16-C18 internal olefin drilling fluid used to determine the drilling fluid sediment toxicity ratio and compliance with the BAT sediment toxicity discharge...

  8. Single-catalyst particle spectroscopy of alcohol-to-olefins conversions : Comparison between SAPO-34 and SSZ-13

    NARCIS (Netherlands)

    Qian, Qingyun; Ruiz-Martinez, Javier; Mokhtar, Mohamed; Asiri, Abdullah M.; Al-Thabaiti, Shaeel A.; Basahel, Suliman N.; Weckhuysen, Bert M.

    2014-01-01

    The formation of distinct hydrocarbon pool (HCP) species on individual micron-sized SAPO-34 and SSZ-13 crystals have been compared during methanol-to-olefins (MTO) and ethanol-to-olefins (ETO) conversion processes. In situ UV-vis micro-spectroscopy reveals the formation of 400 nm and 580 nm

  9. Straightforward synthesis of alpha,beta-unsaturated thioesters via ruthenium-catalyzed olefin cross-metathesis with thioacrylate

    NARCIS (Netherlands)

    van Zijl, Anthoni W.; Minnaard, Adriaan J.; Feringa, Ben L.

    2008-01-01

    The cross-metathesis reaction of S-ethyl thioacrylate with a variety of olefins is effectively catalyzed by using a ruthenium benzylidene olefin metathesis catalyst. This reaction provides a convenient and versatile route to substituted alpha,beta-unsaturated thioesters, key building blocks in

  10. Methanol-to-olefins process over zeolite catalysts with DDR topology : Effect of composition and structural defects on catalytic performance

    NARCIS (Netherlands)

    Yarulina, I.; Goetze, J.; Gücüyener, C.; Van Thiel, L.; Dikhtiarenko, A.; Ruiz-Martinez, J.; Weckhuysen, B.M.; Gascon, J.; Kapteijn, F.

    2016-01-01

    A systematic study of the effect of physicochemical properties affecting catalyst deactivation, overall olefin selectivity and ethylene/propylene ratio during the methanol-to-olefins (MTO) reaction is presented for two zeolites with the DDR topology, namely Sigma-1 and ZSM-58. Both catalysts show

  11. Methanol-to-olefins process over zeolite catalysts with DDR topology: effect of composition and structural defects on catalytic performance

    NARCIS (Netherlands)

    Yarulina, Irina; Goetze, Joris; Gucuyener, Canan; van Thiel, Leonard; Dikhtiarenko, Alla; Ruiz-Martinez, Javier; Weckhuysen, Bert M.; Gascon, Jorge; Kapteijn, Freek

    2016-01-01

    A systematic study of the effect of physicochemical properties affecting catalyst deactivation, overall olefin selectivity and ethylene/propylene ratio during the methanol-to-olefins (MTO) reaction is presented for two zeolites with the DDR topology, namely Sigma-1 and ZSM-58. Both catalysts show

  12. Heteropoly acid as a novel nitrene transfer agent: a facile and practical aziridination of olefins with Chloramine-T.

    Science.gov (United States)

    Kumar, G D Kishore; Baskaran, Sundarababu

    2004-04-21

    Environmentally benign HPA is found to be an efficient catalyst for aziridination of olefins in the presence of inexpensive Chloramine-T as a nitrogen source: instantaneous at room temperature, requires only stoichiometric amount of olefin and no allyl amine side product.

  13. Does asymmetric correlation affect portfolio optimization?

    Science.gov (United States)

    Fryd, Lukas

    2017-07-01

    The classical portfolio optimization problem does not assume asymmetric behavior of relationship among asset returns. The existence of asymmetric response in correlation on the bad news could be important information in portfolio optimization. The paper applies Dynamic conditional correlation model (DCC) and his asymmetric version (ADCC) to propose asymmetric behavior of conditional correlation. We analyse asymmetric correlation among S&P index, bonds index and spot gold price before mortgage crisis in 2008. We evaluate forecast ability of the models during and after mortgage crisis and demonstrate the impact of asymmetric correlation on the reduction of portfolio variance.

  14. A comprehensive study of olefin metathesis catalyzed by Ru-based catalysts

    KAUST Repository

    Poater, Albert

    2015-09-29

    During a Ru-catalyzed reaction of an olefin with an alkylidene moiety that leads to a metallacycle intermediate, the cis insertion of the olefin can occur from two different directions, namely side and bottom with respect to the phosphine or N-heterocyclic ligand (NHC), depending on the first or second generation Grubbs catalyst. Here, DFT calculations unravel to which extent the bottom coordination of olefins with respect is favored over the side coordination through screening a wide range of catalysts, including first and second generation Grubbs catalysts as well as the subsequent Hoveyda derivatives. The equilibrium between bottom and side coordination is influenced by sterics, electronics, and polarity of the solvent. The side attack is favored for sterically less demanding NHC and/or alkylidene ligands. Moreover the generation of a 14-electron species is also discussed, with either pyridine or phosphine ligands to dissociate.

  15. Divergent dendrimer synthesis via the Passerini three-component reaction and olefin cross-metathesis.

    Science.gov (United States)

    Kreye, Oliver; Kugele, Dennis; Faust, Lorenz; Meier, Michael A R

    2014-02-01

    The combination of the Passerini reaction and olefin cross-metathesis is shown to be a very useful approach for the divergent synthesis of dendrimers. Castor oil-derived platform chemicals, such as 10-undecenoic acid and 10-undecenal, are reacted in a Passerini reaction with an unsaturated isocyanide to obtain a core unit having three terminal double bonds. Subsequent olefin cross-metathesis with tert-butyl acrylate, followed by hydrogenation of the double bonds and hydrolysis of the tert-butyl ester, leads to an active core unit bearing three carboxylic acid groups as reactive sites. Iterative steps of the Passerini reaction with 10-undecenal and 10-isocyanodec-1-ene for branching, and olefin cross-metathesis with tert-butyl acrylate, followed by hydrogenation and hydrolysis allow the synthesis of a third-generation dendrimer. All steps of the synthesis are carefully characterized by NMR, GPC, MS, and IR.

  16. A comprehensive study of olefin metathesis catalyzed by Ru-based catalysts

    Directory of Open Access Journals (Sweden)

    Albert Poater

    2015-09-01

    Full Text Available During a Ru-catalyzed reaction of an olefin with an alkylidene moiety that leads to a metallacycle intermediate, the cis insertion of the olefin can occur from two different directions, namely side and bottom with respect to the phosphine or N-heterocyclic ligand (NHC, depending on the first or second generation Grubbs catalyst. Here, DFT calculations unravel to which extent the bottom coordination of olefins with respect is favored over the side coordination through screening a wide range of catalysts, including first and second generation Grubbs catalysts as well as the subsequent Hoveyda derivatives. The equilibrium between bottom and side coordination is influenced by sterics, electronics, and polarity of the solvent. The side attack is favored for sterically less demanding NHC and/or alkylidene ligands. Moreover the generation of a 14-electron species is also discussed, with either pyridine or phosphine ligands to dissociate.

  17. Kinetic Selectivity of Olefin Metathesis Catalysts Bearing Cyclic (Alkyl)(Amino)Carbenes

    Science.gov (United States)

    Anderson, Donde R.; Ung, Thay; Mkrtumyan, Garik; Bertrand, Guy; Grubbs, Robert H.; Schrodi, Yann

    2008-01-01

    The evaluation of ruthenium olefin metathesis catalysts 4–6 bearing cyclic (alkyl)(amino)carbenes (CAACs) in the cross-metathesis of cis-1,4-diacetoxy-2-butene (7) with allylbenzene (8) and the ethenolysis of methyl oleate (11) is reported. Relative to most NHC-substituted complexes, CAAC-substituted catalysts exhibit lower E/Z ratios (3:1 at 70% conversion) in the cross-metathesis of 7 and 8. Additionally, complexes 4–6 demonstrate good selectivity for the formation of terminal olefins versus internal olefins in the ethenolysis of 11. Indeed, complex 6 achieved 35 000 TONs, the highest recorded to date. CAAC-substituted complexes exhibit markedly different kinetic selectivity than most NHC-substituted complexes. PMID:18584055

  18. A comprehensive study of olefin metathesis catalyzed by Ru-based catalysts.

    Science.gov (United States)

    Poater, Albert; Cavallo, Luigi

    2015-01-01

    During a Ru-catalyzed reaction of an olefin with an alkylidene moiety that leads to a metallacycle intermediate, the cis insertion of the olefin can occur from two different directions, namely side and bottom with respect to the phosphine or N-heterocyclic ligand (NHC), depending on the first or second generation Grubbs catalyst. Here, DFT calculations unravel to which extent the bottom coordination of olefins with respect is favored over the side coordination through screening a wide range of catalysts, including first and second generation Grubbs catalysts as well as the subsequent Hoveyda derivatives. The equilibrium between bottom and side coordination is influenced by sterics, electronics, and polarity of the solvent. The side attack is favored for sterically less demanding NHC and/or alkylidene ligands. Moreover the generation of a 14-electron species is also discussed, with either pyridine or phosphine ligands to dissociate.

  19. The progress of SINOPEC methanol-to-olefins (S-MTO) technology

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongxing; Xie, Zaiku; Zhao, Guoliang [SINOPEC Shanghai Research Institute of Petrochemical Technology (China)

    2013-11-01

    It is widely recognized that naphtha steam crackers and FCC units are the main current sources of ethylene and propylene. On the condition of high oil price, olefin producers are striving to develop new economical routes to produce ethylene and propylene with low-cost feedstocks. Methanol to olefins (MTO) has aroused great attention in recent years, and SINOPEC has developed a new kind of MTO process named S-MTO which features high olefins selectivity, high methanol conversion and low catalyst consumption. Puyang Zhongyuan 200 KTA S-MTO has been in steady operation for more than 17 months. The catalyst used in the process is based on a silicoaluminophosphate, SAPO-34, which has very high carbon selectivity to low carbon olefins. Results from the commercial plant show that S-MTO process converts methanol to ethylene and propylene at about 81% carbon selectivity. The carbon selectivity approaches 92% if butenes are also accounted for as part of the product. Typically, the ratio of propylene to ethylene can range from 0.6 to 1.3. When combined with OCC (Olefin Catalytic Cracking) process to convert the heavier olefins, the overall yield of ethylene and propylene can increase to 85% {proportional_to} 87% and propylene-ethylene ratios of more than 1.5 are achievable. Other co-products include very small amounts of C1-C4 paraffins, hydrogen, CO and CO{sub 2}, as well as heavier oxygenates only with ppm level. Because of the quick deactivation of MTO catalyst, a kind of high efficiency fast fluidized bed reactor is adopted. The activity of deactivated catalyst is recovered by burning the coke in the regenerator. This paper gives an updated introduction of S-MTO technology developed by SINOPEC SRIPT. (orig.)

  20. Nitrogen-Doped Carbon Encapsulated Nickel/Cobalt Nanoparticle Catalysts for Olefin Migration of Allylarenes

    DEFF Research Database (Denmark)

    Kramer, Søren; Mielby, Jerrik Jørgen; Buss, Kasper Spanggård

    2017-01-01

    Olefin migration of allylarenes is typically performed with precious metal-based homogeneous catalysts. In contrast, very limited progress has been made using cheap, earth-abundant base metals as heterogeneous catalysts for these transformations - in spite of the obvious economic and environmental...... advantages. Herein, we report on the use of an easily prepared heterogeneous catalyst material for the migration of olefins, in particular allylarenes. The catalyst material consists of nickel/cobalt alloy nanoparticles encapsulated in nitrogen-doped carbon shells. The encapsulated nanoparticles are stable...

  1. Process to produce oxygen-containing hydrocarbons and olefins from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Wunder, F.; Apre, H.J.; Leupold, E.I.; Schmidt, H.J.; Hachenberg, H.

    1981-01-29

    Carbon monoxide is converted with hydrogen to a mixture of oxygen-containing C/sub 2/ compounds and low molecular olefins in the gas phase in the presence of catalysts containing rhodium. The total selectivity of the oxygen-containing compounds and olefins amounts to 70 to 90% of the total converted carbon monoxide. The catalyst contains appropriate compounds of rhodium on a carrier. It contains further 0.1 to 5.0 wt-% of alkali and also promoters and activators, e.g. magnesium/halogen ions or manganese.

  2. Cis/trans Coordination in olefin metathesis by static and molecular dynamic DFT calculations

    KAUST Repository

    Poater, Albert

    2014-05-25

    In regard to [(N-heterocyclic carbene)Ru]-based catalysts, it is still a matter of debate if the substrate binding is preferentially cis or trans to the N-heterocyclic carbene ligand. By means of static and molecular dynamic DFT calculations, a simple olefin, like ethylene, is shown to be prone to the trans binding. Bearing in mind the higher reactivity of trans isomers in olefin metathesis, this insight helps to construct small alkene substrates with increased reactivity. © 2014 Springer Science+Business Media New York.

  3. Macrocyclic olefin metathesis at high concentrations by using a phase-separation strategy.

    Science.gov (United States)

    Raymond, Michaël; Holtz-Mulholland, Michael; Collins, Shawn K

    2014-09-26

    Macrocyclic olefin metathesis has seen advances in the areas of stereochemistry, chemoselectivity, and catalyst stability, but strategies aimed at controlling dilution effects in macrocyclizations are rare. Herein, a protocol to promote macrocyclic olefin metathesis, one of the most common synthetic tools used to prepare macrocycles, at relatively high concentrations (up to 60 mM) is described by exploitation of a phase-separation strategy. A variety of macrocyclic skeletons could be prepared having either different alkyl, aryl, or amino acids spacers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Bis(Cyclic Alkyl Amino Carbene) Ruthenium Complexes: A Versatile, Highly Efficient Tool for Olefin Metathesis.

    Science.gov (United States)

    Gawin, Rafał; Kozakiewicz, Anna; Guńka, Piotr A; Dąbrowski, Paweł; Skowerski, Krzysztof

    2017-01-19

    The state-of-the-art in olefin metathesis is application of N-heterocyclic carbene (NHC)-containing ruthenium alkylidenes for the formation of internal C=C bonds and of cyclic alkyl amino carbene (CAAC)-containing ruthenium benzylidenes in the production of terminal olefins. A straightforward synthesis of bis(CAAC)Ru indenylidene complexes, which are highly effective in the formation of both terminal and internal C=C bonds at loadings as low as 1 ppm, is now reported. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Desymmetrization of 7-azabicycloalkenes by tandem olefin metathesis for the preparation of natural product scaffolds

    Science.gov (United States)

    Maison, Wolfgang; Büchert, Marina; Deppermann, Nina

    2007-01-01

    Background Tandem olefin metathesis sequences are known to be versatile for the generation of natural product scaffolds and have also been used for ring opening of strained carbo- and heterocycles. In this paper we demonstrate the potential of these reactions for the desymmetrization of 7-azabicycloalkenes. Results We have established efficient protocols for the desymmetrization of different 7-azabicycloalkenes by intra- and intermolecular tandem metathesis sequences with ruthenium based catalysts. Conclusion Desymmetrization of 7-azabicycloalkenes by olefin metathesis is an efficient process for the preparation of common natural product scaffolds such as pyrrolidines, indolizidines and isoindoles. PMID:18088413

  6. Desymmetrization of 7-azabicycloalkenes by tandem olefin metathesis for the preparation of natural product scaffolds

    Directory of Open Access Journals (Sweden)

    Deppermann Nina

    2007-12-01

    Full Text Available Abstract Background Tandem olefin metathesis sequences are known to be versatile for the generation of natural product scaffolds and have also been used for ring opening of strained carbo- and heterocycles. In this paper we demonstrate the potential of these reactions for the desymmetrization of 7-azabicycloalkenes. Results We have established efficient protocols for the desymmetrization of different 7-azabicycloalkenes by intra- and intermolecular tandem metathesis sequences with ruthenium based catalysts. Conclusion Desymmetrization of 7-azabicycloalkenes by olefin metathesis is an efficient process for the preparation of common natural product scaffolds such as pyrrolidines, indolizidines and isoindoles.

  7. Template-directed synthesis of flexible porphyrin nanocage and nanorings via one-step olefin metathesis.

    Science.gov (United States)

    Zhu, Bin; Chen, Huanxin; Lin, Wei; Ye, Yang; Wu, Jing; Li, Shijun

    2014-10-29

    We describe the fabrication of a suite of flexible porphyrin cages and nanorings from a simple tetraalkene-derived zinc porphyrin monomer via a highly efficient template-directed strategy. The zinc porphyrin monomers were preorganized together by coordination with N atoms of multidentate ligands. Subsequent one-step olefin metathesis furnished a bisporphyrin cage, a triporphyrin nanoring, and a hexaporphyrin nanoring. In the case of the hexaporphyrin nanoring, 24 terminal olefins from six porphyrin monomers reacted with each other to form 12 new double bonds, delivering the final product. The triporphyrin and hexaporphyrin nanorings were further employed as hosts to encapsulate C60 and C70.

  8. Synthetic lubricants based on copolymers of n-butyl methacrylate and α-olefins

    Directory of Open Access Journals (Sweden)

    Đakov Tatjana A.

    2002-01-01

    Full Text Available Synthetic fluids obtained by the copolymerization of α -olefins with alkyl esters of unsaturated carboxylic acids have a unique combination of properties of non-polar poly-a-olefins (PAOs and polar esters in a single molecule. These compounds are characterized by superior thermal, oxidative and hydrolytic stability, miscibility with mineral and synthetic base oils solubility of additives and neutral elastomer behavior. Depending on the molar masses and comonomer ratios in the copolymer molecule, synthetic fluids with a wide range of properties are obtained. These compounds are valuable components in lubricating oil formulations for different applications.

  9. A ferroelectric olefin-copper(I) organometallic polymer with flexible organic ligand (R)-MbVBP

    Science.gov (United States)

    Wang, Guo-Xi; Xing, Zheng; Chen, Li-Zhuang; Han, Guang-Fan

    2015-07-01

    Hydrothermal treatment of (R)-2-methyl-1,4-bis(4-vinylbenzyl)piperazine [(R)-MbVBP] and CuCl afforded a novel olefin-copper(I) coordination compound. Introducing the flexible ligand (R)-MbVBP allowed the olefin-copper(I) organometallic compound to crystallize in a polar point group P21. The compound was ferroelectric, and its electric hysteresis loop showed a remnant polarization (Pr) of 0.13-0.32 μC cm-2 and a coercive field (Ec) of 3.5-11 kV cm-1.

  10. Asymmetric Synthesis via Chiral Aziridines

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Harden, Adrian; Wyatt, Paul

    1996-01-01

    A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines)]. In the b...

  11. Structure of asymmetrical peptide dendrimers

    NARCIS (Netherlands)

    Okrugin, B.M.; Neelov, I.M.; Leermakers, F.A.M.; Borisov, Oleg V.

    2017-01-01

    Structural properties of asymmetric peptide dendrimers up to the 11th generation are studied on the basis of the self-consistent field Scheutjens-Fleer numerical approach. It is demonstrated that large scale properties such as, e.g., the gyration radius, are relatively weakly affected by the

  12. Diversity-oriented approach to macrocyclic cyclophane derivatives by Suzuki-Miyaura cross-coupling and olefin metathesis as key steps.

    Science.gov (United States)

    Kotha, Sambasivarao; Chavan, Arjun S; Shaikh, Mobin

    2012-01-06

    Palladium-catalyzed Suzuki-Miyaura (SM) cross-coupling reaction with allylboronic acid pinacol ester and titanium assisted cross-metathesis (CM)/ring-closing metathesis (RCM) cascade has been used to synthesize macrocyclic cyclophane derivatives.

  13. New library of aminosulfonyl-tagged Hoveyda–Grubbs type complexes: Synthesis, kinetic studies and activity in olefin metathesis transformations

    Directory of Open Access Journals (Sweden)

    Etienne Borré

    2010-12-01

    Full Text Available Seven novel Hoveyda–Grubbs precatalysts bearing an aminosulfonyl function are reported. Kinetic studies indicate an activity enhancement compared to Hoveyda’s precatalyst. A selection of these catalysts was investigated with various substrates in ring-closing metathesis of dienes or enynes and cross metathesis. The results demonstrate that these catalysts show a good tolerance to various chemical functions.

  14. Cyclodextrins in Asymmetric and Stereospecific Synthesis

    Directory of Open Access Journals (Sweden)

    Fliur Macaev

    2015-09-01

    Full Text Available Since their discovery, cyclodextrins have widely been used as green and easily available alternatives to promoters or catalysts of different chemical reactions in water. This review covers the research and application of cyclodextrins and their derivatives in asymmetric and stereospecific syntheses, with their division into three main groups: (1 cyclodextrins promoting asymmetric and stereospecific catalysis in water; (2 cyclodextrins’ complexes with transition metals as asymmetric and stereospecific catalysts; and (3 cyclodextrins’ non-metallic derivatives as asymmetric and stereospecific catalysts. The scope of this review is to systematize existing information on the contribution of cyclodextrins to asymmetric and stereospecific synthesis and, thus, to facilitate further development in this direction.

  15. A Note on Asymmetric Thick Branes

    Directory of Open Access Journals (Sweden)

    D. Bazeia

    2014-01-01

    Full Text Available We study asymmetric thick braneworld scenarios, generated after adding a constant to the superpotential associated with the scalar field. We study in particular models with odd and even polynomial superpotentials, and we show that asymmetric brane can be generated irrespective of the potential being symmetric or asymmetric. We study in addition the nonpolynomial sine-Gordon like model, also constructed with the inclusion of a constant in the standard superpotential, and we investigate gravitational stability of the asymmetric brane. The results suggest robustness of the new braneworld scenarios and add further possibilities of the construction of asymmetric branes.

  16. Treatment of synthetic olefin plant wastewater at various salt concentrations in a membrane bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Fatemeh; Mehrnia, Mohammad Reza; Sarrafzadeh, Mohammad Hossein [School of Chemical Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Nabizadeh, Ramin [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2012-04-15

    The objective of this study was to investigate the effect of salt concentration on performance of a membrane bioreactor (MBR) for treating an olefin plant wastewater. For this purpose, a lab-scale submerged MBR with a flat-sheet ultrafiltration membrane was used for treatment of synthetic wastewater according to oxidation and neutralization unit of olefin plant. The synthetic wastewater was adjusted to have 500 mg/L chemical oxygen demand (COD). Trials on different concentrations of sodium sulfate (Na{sub 2}SO{sub 4}) (0-20 000 ppm) in the feed were conducted under aerobic conditions in the MBR. The results showed that increasing the salt concentrations causes an increase in the effluent COD, phenol, and oil concentrations. These results are due to reduction of the membrane filtration efficiency and also decline in the microbial activity that it is indicated by decreasing the sOUR in MBR. But in all the trials, the effluent COD and oil concentration was well within the local discharge limit of 100 and 10 mg/L, respectively. These results indicate that the MBR system is highly efficient for treating the olefin plant wastewater, and although high salt concentrations decreased organic contaminant removal rates in the MBR, the effluent still met the discharge limits for treating the olefin plant wastewater. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. RUTHENIUM-CATALYZED TANDEM OLEFIN MIGRATION-ALDOL AND MANNICH-TYPE REACTIONS IN IONIC LIQUID.

    Science.gov (United States)

    In the presence of a catalytic amount of RuCl2(PPh3)3, a cross-coupling of 3-buten-2-ol with aldehydes and imines was developed via a tandem olefin migration--aldol--Mannich reaction in bmim[PF6]. With In(OAc)3 as a co-catalyst, a-vinylbenzyl alcohol and aldehydes underwent sim...

  18. N, N′-Olefin functionalized Bis-Imidazolium Pd (II) chloride N ...

    Indian Academy of Sciences (India)

    N, N′-Olefin functionalized Bis-Imidazolium Pd(II) chloride N-Heterocyclic carbene complex builds a supramolecular framework and shows catalytic efficacy for `C–C' coupling reactions. Gourisankar Roymahapatra Tapastaru Samanta Saikat Kumar Seth Ambikesh Mahapatra Shyamal Kumar Chattopadhyay Joydev Dinda.

  19. The doping effect of fluorinated aromatic solvents on the rate of ruthenium-catalysed olefin metathesis.

    Science.gov (United States)

    Samojłowicz, Cezary; Bieniek, Michał; Pazio, Aleksandra; Makal, Anna; Woźniak, Krzysztof; Poater, Albert; Cavallo, Luigi; Wójcik, Jacek; Zdanowski, Konrad; Grela, Karol

    2011-11-11

    A study concerning the effect of using a fluorinated aromatic solvent as the medium for olefin metathesis reactions catalysed by ruthenium complexes bearing N-heterocyclic carbene ligands is presented. The use of fluorinated aromatic hydrocarbons (FAH) as solvents for olefin metathesis reactions catalysed by standard commercially available ruthenium pre-catalysts allows substantially higher yields of the desired products to be obtained, especially in the case of demanding polyfunctional molecules, including natural and biologically active compounds. Interactions between the FAH and the second-generation ruthenium catalysts, which apparently improve the efficiency of the olefin metathesis transformation, have been studied by X-ray structure analysis and computations, as well as by carrying out a number of metathesis experiments. The optimisation of reaction conditions by using an FAH can be regarded as a complementary approach for the design of new improved ruthenium catalysts. Fluorinated aromatic solvents are an attractive alternative medium for promoting challenging olefin metathesis reactions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hydrogen bond templated 1:1 macrocyclization through an olefin metathesis/hydrogenation sequence.

    Science.gov (United States)

    Trita, Andrada Stefania; Roisnel, Thierry; Mongin, Florence; Chevallier, Floris

    2013-07-19

    The construction of pyridine-containing macrocyclic architectures using a nonmetallic template is described. 4,6-Dichlororesorcinol was used as an exotemplate to self-organize two aza-heterocyclic units by OH···N hydrogen bonds. Subsequent sequential double olefin metathesis/hydrogenation reactions employing a single ruthenium-alkylidene precatalyst open access to macrocyclic molecules.

  1. Ultrafast dynamics in iron tetracarbonyl olefin complexes investigated with two-dimensional vibrational spectroscopy

    NARCIS (Netherlands)

    Panman, M.R.; Newton, A.C.; Vos, J.; van den Bosch, B.; Bocokić, V.; Reek, J.N.H.; Woutersen, S.

    2013-01-01

    The dynamics of iron tetracarbonyl olefin complexes has been investigated using two-dimensional infrared (2D-IR) spectroscopy. Cross peaks between all CO-stretching bands show that the CO-stretch modes are coupled, and from the cross-peak anisotropies we can confirm previous assignments of the

  2. Practical and General Palladium-Catalyzed Synthesis of Ketones from Internal Olefins

    KAUST Repository

    Morandi, Bill

    2013-01-16

    Make it simple! A convenient and general palladium-catalyzed oxidation of internal olefins to ketones is reported. The transformation occurs at room temperature and shows wide substrate scope. Applications to the oxidation of seed-oil derivatives and a bioactive natural product (see scheme) are described, as well as intriguing mechanistic features.

  3. Omega-functionalized fatty acids, alcohols, and ethers via olefin metathesis

    Science.gov (United States)

    Methyl 17-hydroxy stearate was converted to methyl octadec-16-enoate using copper sulfate adsorbed on silica gel. This compound, possessing unsaturation at the opposite end of the chain from the carboxylate, served as a useful substrate for the olefin metathesis reaction. As a result, several fatt...

  4. Attractive Noncovalent Interactions in the Mechanism of Grubbs Second-Generation Ru Catalysts for Olefin Metathesis.

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yan; Truhlar, Donald G.

    2007-05-10

    Second-generation ruthenium carbenoid catalysts for olefin metathesis are a hundred to a thousand times more active than first-generation catalysts, despite a slower initiation step. A new density functional capable of treating medium-range correlation energy shows that the relative rates of generation of the catalyst are determined by attractive noncovalent interactions.

  5. Cationic tungsten-oxo-alkylidene-N-heterocyclic carbene complexes: highly active olefin metathesis catalysts.

    Science.gov (United States)

    Schowner, Roman; Frey, Wolfgang; Buchmeiser, Michael R

    2015-05-20

    The synthesis, structure, and olefin metathesis activity of the first neutral and cationic W-oxo-alkylidene-N-heterocyclic carbene (NHC) catalysts are reported. Neutral W-oxo-alkylidene-NHC catalysts can be prepared in up to 90% isolated yield. Depending on the ligands used, they possess either an octahedral (Oh) or trigonal bipyramidal ligand sphere. They can be activated with excess AlCl3 to form cationic olefin metathesis-active W-complexes; however, these readily convert into neutral chloro-complexes. Well-defined, stable cationic species can be prepared by stoichiometric substitution of one chloro ligand in the parent, neutral W-oxo-alkylidene-NHC complexes with Ag(MeCN)2B(Ar(F))4 or NaB(Ar(F))4; B(Ar(F))4 = B(3,5-(CF3)2-C6H3)4. They are highly active olefin metathesis catalysts, allowing for turnover numbers up to 10,000 in various olefin metathesis reactions including alkenes bearing nitrile, sec-amine, and thioether groups.

  6. Olefin Metathesis Mediated By: - Schiff Base Ru-Alkylidenes -Ru-Alkylidenes Bearing Unsymmetrical NH Ligands

    Science.gov (United States)

    Monsaert, Stijn; Voort, Pascal Van Der; Ledoux, Nele; Allaert, Bart; Drozdzak, Renata; Verpoort, Francis

    The classic Grubbs second-generation complex 2 was modified through 1. The introduction of a bidentate Schiff base ligand 2. Changes in the amino side groups of the NHC ligand Representative olefin metathesis test reactions show the effects induced by the ligand modifications and demonstrate some interesting new properties of the described catalysts. catalysts.

  7. The mechanism of activation of amidobenzylidene ruthenium chelates - latent catalysts of olefin metathesis.

    Science.gov (United States)

    Rogalski, Szymon; Żak, Patrycja; Tadeuszyk, Natalia; Pyta, Krystian; Przybylski, Piotr; Pietraszuk, Cezary

    2017-01-24

    Amidobenzylidene ruthenium chelates - latent catalysts of olefin metathesis can be easily activated by the addition of Brønsted or Lewis acids. Their activation in the presence of hydrogen chloride involves the formation of catalytically active trans-dichloro carbamatobenzylidene ruthenium chelates.

  8. Steam cracking and methane to olefins: Energy use, CO2 emissions and production costs

    NARCIS (Netherlands)

    Ren, T.; Patel, M.K.|info:eu-repo/dai/nl/18988097X; Blok, K.|info:eu-repo/dai/nl/07170275X

    2008-01-01

    While most olefins (e.g., ethylene and propylene) are currently produced through steam cracking routes, they can also possibly be produced from natural gas (i.e., methane) via methanol and oxidative coupling routes. We reviewed recent data in the literature and then compared the energy use, CO2

  9. Oxidative Conversion of Hexane to Olefins-Influence of Plasma and Catalyst on Reaction Pathways

    NARCIS (Netherlands)

    Boyadjian, C.A.; Agiral, A.; Gardeniers, Johannes G.E.; Lefferts, Leonardus; Seshan, Kulathuiyer

    2011-01-01

    An integrated plasma-Li/MgO system is efficient for the oxidative conversion of hexane. In comparison to the Li/MgO catalytic system, it brings considerable improvements in the yields of light olefins (C 2 = –C 5 = ) at relatively low temperatures indicating synergy from combination of plasma and

  10. Catalytic Conversion of Alcohols into Olefins: Spectroscopy, Kinetics and Catalyst Deactivation

    NARCIS (Netherlands)

    Qian, Q.|info:eu-repo/dai/nl/34138609X

    2014-01-01

    The alcohols-to-olefins (ATO) catalytic process, a technology based on oil-alternative feedstocks, has gained increasing attention due to the current high price of crude oil as well as the growing environmental concerns. Intensive academic and industrial research, mainly performed under ex-situ

  11. 76 FR 5319 - Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline

    Science.gov (United States)

    2011-01-31

    ... publicly available, e.g., CBI or other information whose disclosure is restricted by statute. Certain other... Order 13175: Consultation and Coordination With Indian Tribal Governments G. Executive Order 13045... various fuel parameters including olefin content. American Society for Testing and Materials (ASTM) D1319...

  12. Mild and Efficient Nickel-Catalyzed Heck Reactions with Electron-Rich Olefins

    DEFF Research Database (Denmark)

    Gøgsig, Thomas; Kleimark, Jonatan; Lill, Sten O. Nilsson

    2012-01-01

    to the conventional regioselective arylation of vinyl ethers. A catalytic system comprised of Ni(COD)2 and 1,1′-bis(diphenylphosphino)ferrocene (DPPF) in combination with the tertiary amine Cy2NMe proved effective in the olefination of a wide range of aryl triflates. Both electron-deficient and electron-rich arenes...

  13. NATO Advanced Study Institute on Ring-opening Metathesis Polymerization of Olefins and Polymerization of Alkynes

    CERN Document Server

    1998-01-01

    The first NATO Advanced Study Institute on Olefin Metathesis and Polymerization Catalysts was held on September 10-22, 1989 in Akcay, Turkey. Based on the fundamental research of RRSchrock, RGrubbs and K.B.Wagener in the field of ring opening metathesis polymerization (ROMP), acyclic diene metathesis (ADMET) and alkyne polymerization, these areas gained growing interest within the last years. Therefore the second NATO-ASI held on metathesis reactions was on Ring Opening Metathesis Po­ lymerization of Olefins and Polymerization of Alkynes on September 3-16, 1995 in Akcay, Turkey. The course joined inorganic, organic and polymer chemists to exchange their knowledge in this field. This volume contains the main and short lectures held in Akcay. To include ADMET reactions better into the title of this volume we changed it into: Metathesis Polymerization of Olefins and Alkyne Polymerization. This volume is addressed to research scientists, but also to those who start to work in the area of olefin metathesis and al...

  14. Linear viscoelastic properties of olefinic thermoplastic elastomer blends: melt state properties

    NARCIS (Netherlands)

    Sengupta, P.; Sengers, W.G.F.; Noordermeer, Jacobus W.M.; Picken, S.J.; Gotsis, A.D.

    2004-01-01

    The linear viscoelastic properties of two types of olefinic thermoplastic elastomer blends were studied using dynamic rheology. The first type consists of a blend of PP, SEBS and oil and has a co-continuous morphology. The second type consists of vulcanised EPDM particles dispersed in a PP matrix.

  15. Suppression of Carbon Deposition in the Iron-Catalyzed Production of Lower Olefins from Synthesis Gas

    NARCIS (Netherlands)

    Koeken, A.C.J.; Torres Galvis, H.M.; Davidian, T.; Ruitenbeek, M.; de Jong, K.P.

    2012-01-01

    A tapered-element oscillating microbalance was used to evaluate carbon deposition on a highly selective and active supported iron catalyst for the production of lower olefins. With increasing pressure, the H2/CO ratio had a profound effect on the carbon deposition rate and accordingly, conditions

  16. Pyridinium hydrobromide perbromide: a versatile catalyst for aziridination of olefins using Chloramine-T.

    Science.gov (United States)

    Ali, S I; Nikalje, M D; Sudalai, A

    1999-09-09

    [reaction: see text] Pyridinium hydrobromide perbromide (Py x HBr3) catalyzes effectively the aziridination of electron-deficient as well as electron-rich olefins using Chloramine-T (N-chloro-N-sodio-p-toluenesulfonamide) as a nitrogen source to afford the corresponding aziridines in moderate to good yields.

  17. Improved olefinic fat suppression in skeletal muscle DTI using a magnitude-based dixon method.

    Science.gov (United States)

    Burakiewicz, Jedrzej; Hooijmans, Melissa T; Webb, Andrew G; Verschuuren, Jan J G M; Niks, Erik H; Kan, Hermien E

    2018-01-01

    To develop a method of suppressing the multi-resonance fat signal in diffusion-weighted imaging of skeletal muscle. This is particularly important when imaging patients with muscular dystrophies, a group of diseases which cause gradual replacement of muscle tissue by fat. The signal from the olefinic fat peak at 5.3 ppm can significantly confound diffusion-tensor imaging measurements. Dixon olefinic fat suppression (DOFS), a magnitude-based chemical-shift-based method of suppressing the olefinic peak, is proposed. It is verified in vivo by performing diffusion tensor imaging (DTI)-based quantification in the lower leg of seven healthy volunteers, and compared to two previously described fat-suppression techniques in regions with and without fat contamination. In the region without fat contamination, DOFS produces similar results to existing techniques, whereas in muscle contaminated by subcutaneous fat signal moved due to the chemical shift artefact, it consistently showed significantly higher (P = 0.018) mean diffusivity (MD). Because fat presence lowers MD, this suggests improved fat suppression. DOFS offers superior fat suppression and enhances quantitative measurements in the muscle in the presence of fat. DOFS is an alternative to spectral olefinic fat suppression. Magn Reson Med 79:152-159, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  18. Asymmetric catalysis in organic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, S.D.; Click, D.R.; Grumbine, S.K.; Scott, B.L.; Watkins, J.G.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of the project was to prepare new catalyst systems, which would perform chemical reactions in an enantioselective manner so as to produce only one of the possible optical isomers of the product molecule. The authors have investigated the use of lanthanide metals bearing both diolate and Schiff-base ligands as catalysts for the enantioselective reduction of prochiral ketones to secondary alcohols. The ligands were prepared from cheap, readily available starting materials, and their synthesis was performed in a ''modular'' manner such that tailoring of specific groups within the ligand could be carried out without repeating the entire synthetic procedure. In addition, they have developed a new ligand system for Group IV and lanthanide-based olefin polymerization catalysts. The ligand system is easily prepared from readily available starting materials and offers the opportunity to rapidly prepare a wide range of closely related ligands that differ only in their substitution patterns at an aromatic ring. When attached to a metal center, the ligand system has the potential to carry out polymerization reactions in a stereocontrolled manner.

  19. Chemistry of Furan Conversion into Aromatics and Olefins over HZSM-5: A Model Biomass Conversion Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yu-Ting; Huber, George W.

    2011-06-03

    The conversion of furan (a model of cellulosic biomass) over HZSM-5 was investigated in a thermogravimetric analysis–mass spectrometry system, in situ Fourier transform infrared analysis, and in a continuous-flow fixed-bed reactor. Furan adsorbed as oligomers at room temperature with a 1.73 of adsorbed furan/Al ratio. These oligomers were polycyclic aromatic compounds that were converted to CO, CO₂, aromatics, and olefins at temperatures from 400 to 600 °C. Aromatics (e.g., benzene, toluene, and naphthalene), oligomer isomers (e.g., benzofuran, 2,2-methylenebisfuran, and benzodioxane), and heavy oxygenates (C₁₂{sub +} oligomers) were identified as intermediates formed inside HZSM-5 at different reaction temperatures. During furan conversion, graphite-type coke formed on the catalyst surface, which caused the aromatics and olefins formation to deactivate within the first 30 min of time on-stream. We have measured the effects of space velocity and temperature for furan conversion to help us understand the chemistry of biomass conversion inside zeolite catalysts. The major products for furan conversion included CO, CO₂, allene, C₂–C₆ olefins, benzene, toluene, styrene, benzofuran, indene, and naphthalene. The aromatics (benzene and toluene) and olefins (ethylene and propylene) selectivity decreased with increasing space velocity. Unsaturated hydrocarbons such as allene, cyclopentadiene, and aromatics selectivity increased with increasing space velocity. The product distribution was selective to olefins and CO at high temperatures (650 °C) but was selective to aromatics (benzene and toluene) at intermediate temperatures (450–600 °C). At low temperatures (450 °C), benzofuran and coke contributed 60% of the carbon selectivity. Several different reactions were occurring for furan conversion over zeolites. Some important reactions that we have identified in this study include Diels–Alder condensation (e.g., two furans form benzofuran and water

  20. Geodesics in Asymmetric Metric Spaces

    Directory of Open Access Journals (Sweden)

    Mennucci Andrea C. G.

    2014-01-01

    Full Text Available In a recent paper [17] we studied asymmetric metric spaces; in this context we studied the length of paths, introduced the class of run-continuous paths; and noted that there are different definitions of “length spaces” (also known as “path-metric spaces” or “intrinsic spaces”. In this paper we continue the analysis of asymmetric metric spaces.We propose possible definitions of completeness and (local compactness.We define the geodesics using as admissible paths the class of run-continuous paths.We define midpoints, convexity, and quasi-midpoints, but without assuming the space be intrinsic.We distinguish all along those results that need a stronger separation hypothesis. Eventually we discuss how the newly developed theory impacts the most important results, such as the existence of geodesics, and the renowned Hopf-Rinow (or Cohn-Vossen theorem.

  1. Electron Jet of Asymmetric Reconnection

    Science.gov (United States)

    Khotyaintsev, Yu. V.; Graham, D. B.; Norgren, C.; Eriksson, E.; Li, W.; Johlander, A.; Vaivads, A.; Andre, M.; Pritchett, P. L.; Retino, A.; hide

    2016-01-01

    We present Magnetospheric Multiscale observations of an electron-scale current sheet and electron outflow jet for asymmetric reconnection with guide field at the subsolar magnetopause. The electron jet observed within the reconnection region has an electron Mach number of 0.35 and is associated with electron agyrotropy. The jet is unstable to an electrostatic instability which generates intense waves with E(sub parallel lines) amplitudes reaching up to 300 mV/m and potentials up to 20% of the electron thermal energy. We see evidence of interaction between the waves and the electron beam, leading to quick thermalization of the beam and stabilization of the instability. The wave phase speed is comparable to the ion thermal speed, suggesting that the instability is of Buneman type, and therefore introduces electron-ion drag and leads to braking of the electron flow. Our observations demonstrate that electrostatic turbulence plays an important role in the electron-scale physics of asymmetric reconnection.

  2. Asymmetric information and macroeconomic dynamics

    Science.gov (United States)

    Hawkins, Raymond J.; Aoki, Masanao; Roy Frieden, B.

    2010-09-01

    We show how macroeconomic dynamics can be derived from asymmetric information. As an illustration of the utility of this approach we derive the equilibrium density, non-equilibrium densities and the equation of motion for the response to a demand shock for productivity in a simple economy. Novel consequences of this approach include a natural incorporation of time dependence into macroeconomics and a common information-theoretic basis for economics and other fields seeking to link micro-dynamics and macro-observables.

  3. Comprehensive asymmetric dark matter model

    OpenAIRE

    Lonsdale, Stephen J.; Volkas, Raymond R.

    2018-01-01

    Asymmetric dark matter (ADM) is motivated by the similar cosmological mass densities measured for ordinary and dark matter. We present a comprehensive theory for ADM that addresses the mass density similarity, going beyond the usual ADM explanations of similar number densities. It features an explicit matter-antimatter asymmetry generation mechanism, has one fully worked out thermal history and suggestions for other possibilities, and meets all phenomenological, cosmological and astrophysical...

  4. Up-down asymmetric tokamaks

    CERN Document Server

    Ball, Justin

    2016-01-01

    Bulk toroidal rotation has proven capable of stabilising both dangerous MHD modes and turbulence. In this thesis, we explore a method to drive rotation in large tokamaks: up-down asymmetry in the magnetic equilibrium. We seek to maximise this rotation by finding optimal up-down asymmetric flux surface shapes. First, we use the ideal MHD model to show that low order external shaping (e.g. elongation) is best for creating up-down asymmetric flux surfaces throughout the device. Then, we calculate realistic up-down asymmetric equilibria for input into nonlinear gyrokinetic turbulence analysis. Analytic gyrokinetics shows that, in the limit of fast shaping effects, a poloidal tilt of the flux surface shaping has little effect on turbulent transport. Since up-down symmetric surfaces do not transport momentum, this invariance to tilt implies that devices with mirror symmetry about any line in the poloidal plane will drive minimal rotation. Accordingly, further analytic investigation suggests that non-mirror symmetri...

  5. Cobalt carbide nanoprisms for direct production of lower olefins from syngas

    Science.gov (United States)

    Zhong, Liangshu; Yu, Fei; An, Yunlei; Zhao, Yonghui; Sun, Yuhan; Li, Zhengjia; Lin, Tiejun; Lin, Yanjun; Qi, Xingzhen; Dai, Yuanyuan; Gu, Lin; Hu, Jinsong; Jin, Shifeng; Shen, Qun; Wang, Hui

    2016-10-01

    Lower olefins—generally referring to ethylene, propylene and butylene—are basic carbon-based building blocks that are widely used in the chemical industry, and are traditionally produced through thermal or catalytic cracking of a range of hydrocarbon feedstocks, such as naphtha, gas oil, condensates and light alkanes. With the rapid depletion of the limited petroleum reserves that serve as the source of these hydrocarbons, there is an urgent need for processes that can produce lower olefins from alternative feedstocks. The ‘Fischer-Tropsch to olefins’ (FTO) process has long offered a way of producing lower olefins directly from syngas—a mixture of hydrogen and carbon monoxide that is readily derived from coal, biomass and natural gas. But the hydrocarbons obtained with the FTO process typically follow the so-called Anderson-Schulz-Flory distribution, which is characterized by a maximum C2-C4 hydrocarbon fraction of about 56.7 per cent and an undesired methane fraction of about 29.2 per cent (refs 1, 10, 11, 12). Here we show that, under mild reaction conditions, cobalt carbide quadrangular nanoprisms catalyse the FTO conversion of syngas with high selectivity for the production of lower olefins (constituting around 60.8 per cent of the carbon products), while generating little methane (about 5.0 per cent), with the ratio of desired unsaturated hydrocarbons to less valuable saturated hydrocarbons amongst the C2-C4 products being as high as 30. Detailed catalyst characterization during the initial reaction stage and theoretical calculations indicate that preferentially exposed {101} and {020} facets play a pivotal role during syngas conversion, in that they favour olefin production and inhibit methane formation, and thereby render cobalt carbide nanoprisms a promising new catalyst system for directly converting syngas into lower olefins.

  6. Part I: Reverse-docking studies of a squaramide-catalyzed conjugate addition of a diketone to a nitro-olefin Part II: The development of ChemSort: an education game for organic chemistry

    Science.gov (United States)

    Granger, Jenna Christine

    Part 1: Reverse-docking studies of a squaramide-catalyzed conjugate addition of a diketone to a nitro-olefin. Asymmetric organocatalysis, the catalysis of asymmetric reactions by small organic molecules, is a rapidly growing field within organic synthesis. The ability to rationally design organocatalysts is therefore of increasing interest to organic chemists. Computational chemistry is quickly proving to be an extremely successful method for understanding and predicting the roles of organocatalysts, and therefore is certain to be of use in the rational design of such catalysts. A methodology for reverse-docking flexible organocatalysts to rigid transition state models of asymmetric reactions has been previously developed by the Deslongchamps group. The investigation of Rawal's squaramide-based organocatalyst for the addition of a diketone to a nitro-olefin is described, and the results of the reverse docking of Rawal's catalyst to the geometry optimized transition state models of the uncatalyzed reaction for both the R and S-product enantiomers are presented. The results of this study indicate a preference for binding of the organocatalyst to the R-enantiomer transition state model with a predicted enantiomeric excess of 99%, which is consistent with the experimental results. A plausible geometric model of the transition state for the catalyzed reaction is also presented. The success of this study demonstrates the credibility of using reverse docking methods for the rational design of asymmetric organocatalysts. Part 2: The development of ChemSort: an educational game for organic chemistry. With the advent of the millennial learner, we need to rethink traditional classroom approaches to science learning in terms of goals, approaches, and assessments. Digital simulations and games hold much promise in support of this educational shift. Although the idea of using games for education is not a new one, well-designed computer-based "serious games" are only beginning to

  7. Olefin cross-metathesis on proteins: investigation of allylic chalcogen effects and guiding principles in metathesis partner selection.

    Science.gov (United States)

    Lin, Yuya A; Chalker, Justin M; Davis, Benjamin G

    2010-12-01

    Olefin metathesis has recently emerged as a viable reaction for chemical protein modification. The scope and limitations of olefin metathesis in bioconjugation, however, remain unclear. Herein we report an assessment of various factors that contribute to productive cross-metathesis on protein substrates. Sterics, substrate scope, and linker selection are all considered. It was discovered during this investigation that allyl chalcogenides generally enhance the rate of alkene metathesis reactions. Allyl selenides were found to be exceptionally reactive olefin metathesis substrates, enabling a broad range of protein modifications not previously possible. The principles considered in this report are important not only for expanding the repertoire of bioconjugation but also for the application of olefin metathesis in general synthetic endeavors.

  8. A search for thermal isomerization of olefins to carbenes: Thermal generations of the silicon-nitrogen double bond

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xianping.

    1990-09-21

    The first part of this thesis will search for the thermal isomerization of olefins to carbenes which is predicted to be a high energy process by calculations and has only been observed in a few strained olefins. The possibility of thermal isomerization of simple olefins to carbenes will be explored. Substitution of a silyl group on the double bond of an olefin allows a potential intermediate which has a {beta}-radical to the silyl group during the cis-trans isomerization. The effects of a trimethylsilyl group on this isomerization are the subject of this study. The second part of this thesis will include the generation and chemistry of intermediates containing a silicon-nitrogen double bond. The isomerization of parent silanimine to the aminosilylene was calculated to be a high energy process. New approaches to the silicon-nitrogen double bond will also be presented. 92 refs., 12 figs., 11 tabs.

  9. Effects of Surface Modification of H-ZSM-5 Catalysts on Direct Transformation of Ethanol into Lower Olefins

    National Research Council Canada - National Science Library

    村田, 和久; 稲葉, 仁; 高原, 功

    2008-01-01

    .... Ethanol was converted to lower olefins over H-ZSM-5 catalyst without modification. The selectivities for ethylene and propylene were much lower than those for aromatics such as benzene, toluene, and xylene (BTX...

  10. A Comparison of the Performance of the Semiempirical PM6 Method Versus DFT Methods in Ru-Catalyzed Olefin Metathesis

    Science.gov (United States)

    Correa, Andrea; Poater, Albert; Ragone, Francesco; Cavallo, Luigi

    In this work we compare the performance of the semiempirical PM6 method with a more accurate DFT method when applied to Ru-catalyzed olefin metathesis. We demonstrate that the PM6 method reproduces with interesting accuracy the geometries located with a DFT approach. As for the energetics, the relative DFT stability of the metallacycle with respect to the coordination intermediate is reproduced with reasonable accuracy by the PM6 method, whereas the olefin coordination energy and the energy barrier of the metathesis step are overestimated. Further, for the same system we performed a PM6-based meta-dynamics study of the olefin metathesis reaction, which indicated a reasonable good behavior of the system also under dynamic conditions. In conclusion, the obtained results validate the use of the semiempirical PM6 method for preliminary and computationally fast screening on new ligands/substrates in Ru catalyzed olefin metathesis.

  11. On the impact of olefins and aromatics in the methanol-to-hydrocarbon conversion over H-ZSM-5 catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X.; Mueller, S.; Veen, A.C. van; Lercher, J.A. [Technische Univ. Muenchen, Garching (Germany). Dept. of Chemistry

    2012-07-01

    Methanol-to-hydrocarbons processes using HZSM-5 archetype acidic zeolites or zeotype SAPO-34 catalysts are regarded as a vital suite of conversion technologies to bypass petroleum-based routes for the production of specific fuels and petrochemical commodities. Special significance of the methanol chemistry originates from its versatility enabling selective transformations towards various products. Industry demonstrated successfully implementations of Methanol-To-Gasoline, Methanol-To-Olefin, and Methanol-To-Propylene processes, although the typical single-pass selectivity remained limited and recycling is necessary. Considerable fundamental research efforts both from experimental and computational sides contributed to unravel the underlying complex reaction mechanism. The indirect hydrocarbon pool mechanism, in which Broensted acid sites combined with adsorbed light olefins or lower methylbenzenes act as active centers, is generally accepted to explain the formation of light olefins. As olefin and aromatics populated catalytic sites show different reactivity in terms of activity and selectivity to ethylene or propylene, one could envision optimizing the product distribution by suitable co-feeding of specific hydrocarbons. The present work addresses three questions with an experimental study conducted under realistic MTP operation conditions: (1) How are ethylene and propylene formed at molecular level? (2) Which reaction pathway leads to the formation of undesired hydrogen transfer products? (3) Does olefin or aromatics co-feeding change the selectivity to ethylene or propylene? Xylenes and various olefins were co-fed with methanol to achieve a detailed understanding of the reaction mechanism over acidic HZSM-5 zeolites. Results suggest, that an olefin homologation/cracking route (olefin cycle) accounts for the autocatalytic (-like) nature and the majority of methanol consumption rather than the route involving aromatic intermediates (aromatics cycle). Co

  12. LG tools for asymmetric wargaming

    Science.gov (United States)

    Stilman, Boris; Yakhnis, Alex; Yakhnis, Vladimir

    2002-07-01

    Asymmetric operations represent conflict where one of the sides would apply military power to influence the political and civil environment, to facilitate diplomacy, and to interrupt specified illegal activities. This is a special type of conflict where the participants do not initiate full-scale war. Instead, the sides may be engaged in a limited open conflict or one or several sides may covertly engage another side using unconventional or less conventional methods of engagement. They may include peace operations, combating terrorism, counterdrug operations, arms control, support of insurgencies or counterinsurgencies, show of force. An asymmetric conflict can be represented as several concurrent interlinked games of various kinds: military, transportation, economic, political, etc. Thus, various actions of peace violators, terrorists, drug traffickers, etc., can be expressed via moves in different interlinked games. LG tools allow us to fully capture the specificity of asymmetric conflicts employing the major LG concept of hypergame. Hypergame allows modeling concurrent interlinked processes taking place in geographically remote locations at different levels of resolution and time scale. For example, it allows us to model an antiterrorist operation taking place simultaneously in a number of countries around the globe and involving wide range of entities from individuals to combat units to governments. Additionally, LG allows us to model all sides of the conflict at their level of sophistication. Intelligent stakeholders are represented by means of LG generated intelligent strategies. TO generate those strategies, in addition to its own mathematical intelligence, the LG algorithm may incorporate the intelligence of the top-level experts in the respective problem domains. LG models the individual differences between intelligent stakeholders. The LG tools make it possible to incorporate most of the known traits of a stakeholder, i.e., real personalities involved in

  13. Loan sales under asymmetric information

    OpenAIRE

    Vargas Martínez, Mónica

    2010-01-01

    Loans are illiquid assets that can be sold in a secondary market even that buyers have no certainty about their quality. I study a model in which a lender has access to new investment opportunities when all her assets are illiquid. To raise funds, the lender may either borrow using her assets as collateral, or she can sell them in a secondary market. Given asymmetric information about assets quality, the lender cannot recover the total value of her assets. There is then a role for the governm...

  14. Catalytic asymmetric 1,4-addition reactions using alpha,beta-unsaturated N-acylpyrroles as highly reactive monodentate alpha,beta-unsaturated ester surrogates.

    Science.gov (United States)

    Matsunaga, Shigeki; Kinoshita, Tomofumi; Okada, Shigemitsu; Harada, Shinji; Shibasaki, Masakatsu

    2004-06-23

    Synthesis and application of alpha,beta-unsaturated N-acylpyrroles as highly reactive, monodentate ester surrogates in the catalytic asymmetric epoxidation and Michael reactions are described. alpha,beta-Unsaturated N-acylpyrroles with various functional groups were synthesized by the Wittig reaction using ylide 2. A Sm(O-i-Pr)(3)/H(8)-BINOL complex was the most effective catalyst for the epoxidation to afford pyrrolyl epoxides in up to 100% yield and >99% ee. Catalyst loading was successfully reduced to as little as 0.02 mol % (substrate/catalyst = 5000). The high turnover frequency and high volumetric productivity of the present reaction are also noteworthy. In addition, a sequential Wittig olefination-catalytic asymmetric epoxidation reaction was developed, providing efficient one-pot access to optically active epoxides from various aldehydes in high yield and ee (96-->99%). In a direct catalytic asymmetric Michael reaction of hydroxyketone promoted by the Et(2)Zn/linked-BINOL complex, Michael adducts were obtained in good yield (74-97%), dr (69/31-95/5), and ee (73-95%). This represents the first direct catalytic asymmetric Michael reaction of unmodified ketone to an alpha,beta-unsaturated carboxylic acid derivative. The properties of alpha,beta-unsaturated N-acylpyrrole are also discussed. Finally, the utility of the N-acylpyrrole unit for further transformations is demonstrated.

  15. Cross olefin metathesis for the selective functionalization, ferrocenylation, and solubilization in water of olefin-terminated dendrimers, polymers, and gold nanoparticles and for a divergent dendrimer construction.

    Science.gov (United States)

    Ornelas, Cátia; Méry, Denise; Cloutet, Eric; Ruiz Aranzaes, Jaime; Astruc, Didier

    2008-01-30

    Olefin cross metathesis was used to efficiently functionalize polyolefin dendrimers, polymers, and gold nanoparticles using the second-generation Grubbs catalyst. In these structures, the tethers were lengthened to prevent the facile cross metathesis that otherwise predominates in polyolefin dendrimers having short tethers. This synthetic strategy allows the one-step access to polyacid, polyester, and polyferrocenyl structures from polyolefins. Cross metathesis is also used to efficiently achieve an iterative divergent dendritic construction. All the cross metathesis reactions were monitored by 1H NMR showing the chemo-, regio-, and stereoselectivity. MALDI-TOF mass spectrometry was a very useful technique to confirm the efficiency of this synthetic strategy.

  16. Asymmetric liberations in exterior resonances

    Science.gov (United States)

    Beauge, C.

    1994-10-01

    The purpose of this paper is to present a general analysis of the planar circular restricted problem of three bodies in the case of exterior mean-motion resonances. Particularly, our aim is to map the phase space of various commensurabilities and determine the singular solutions of the averaged system, comparing them to the well-known case of interior resonances. In some commensurabilities (e.g. 1/2, 1/3) we show the existence of asymmetric librations; that is, librations in which the stationary value of the critical angle theta = (p+q) lambda1-p lambda-q pi is not equal to either zero or pi. The origin, stability and morphogenesis of these solutions are discussed and compared to symmetric librations. However, in some other resonances (e.g. 2/3, 3/4), these fixed points of the mean system seem to be absent. Librations in such cases are restricted to theta = O mod(pi). Asymmetric singular solutions of the plane circular problem are unknown in the case of interior resonances and cannot be reproduced by the reduced Andoyer Hamiltonian known as the Second Fundamental Model for Resonance. However, we show that the extended version of this Hamiltonian function, in which harmonics up to order two are considered, can reproduce fairly well the principal topological characteristics of the phase space and thereby constitutes a simple and useful analytical approximation for these resonances.

  17. Asymmetric Laguerre-Gaussian beams

    Science.gov (United States)

    Kovalev, A. A.; Kotlyar, V. V.; Porfirev, A. P.

    2016-06-01

    We introduce a family of asymmetric Laguerre-Gaussian (aLG) laser beams. The beams have been derived via a complex-valued shift of conventional LG beams in the Cartesian plane. While propagating in a uniform medium, the first bright ring of the aLG beam becomes less asymmetric and the energy is redistributed toward peripheral diffraction rings. The projection of the orbital angular momentum (OAM) onto the optical axis is calculated. The OAM is shown to grow quadratically with increasing asymmetry parameter of the aLG beam, which equals the ratio of the shift to the waist radius. Conditions for the OAM becoming equal to the topological charge have been derived. For aLG beams with zero radial index, we have deduced an expression to define the intensity maximum coordinates and shown the crescent-shaped intensity pattern to rotate during propagation. Results of the experimental generation and rotation of aLG beams agree well with theoretical predictions.

  18. Thin lenses of asymmetric power

    Directory of Open Access Journals (Sweden)

    W. F. Harris

    2009-12-01

    Full Text Available It is generally supposed that thin systems, including refracting surfaces and thin lenses, have powers that are necessarily symmetric.  In other words they have powers which can be represented assymmetric dioptric power matrices and in the familar spherocylindrical form used in optometry and ophthalmology.  This paper shows that this is not correct and that it is indeed possible for a thin system to have a power that is not symmetric and which cannot be expressed in spherocylindrical form.  Thin systems of asymmetric power are illustratedby means of a thin lens that is modelled with small prisms and is chosen to have a dioptric power ma-trix that is antisymmetric.  Similar models can be devised for a thin system whose dioptric power matrix is any  2 2 ×  matrix.  Thus any power, symmetric, asymmetric or antisymmetric, is possible for a thin system.  In this sense our understanding of the power of thin systems is now complete.

  19. Synthesis of linear [5]catenanes via olefin metathesis dimerization of pseudorotaxanes composed of a [2]catenane and a secondary ammonium salt.

    Science.gov (United States)

    Iwamoto, Hajime; Tafuku, Shinji; Sato, Yoshihiko; Takizawa, Wataru; Katagiri, Wataru; Tayama, Eiji; Hasegawa, Eietsu; Fukazawa, Yoshimasa; Haino, Takeharu

    2016-01-07

    [5]Catenanes were synthesized by olefin metathesis dimerization. The reaction of pseudorotaxanes, which were derived from a [2]catenane and one equivalent of an ammonium salt bearing two terminal olefins in dichloromethane, with a catalytic amount of Grubbs catalyst afforded linear [5]catenanes in 12% yield. Intermolecular and intramolecular olefin metathesis reactions were controlled by the length of the alkyl chain of the ammonium salts.

  20. Sunflower-based Feedstocks in Nonfood Applications: Perspectives from Olefin Metathesis

    Directory of Open Access Journals (Sweden)

    Bassie B. Marvey

    2008-08-01

    Full Text Available Sunflower (Helianthus annuus L. oil remains under-utilised albeit one of the major seed oils produced world-wide. Moreover, the high oleic sunflower varieties make the oil attractive for applications requiring high temperature processes and those targeting the C=C double bond functionality. Herein an overview of the recent developments in olefin metathesis of sunflower-based feedstocks is presented. The improved performance of olefin metathesis catalysts leading to high turnover numbers, high selectivity and catalyst recyclability, opens new opportunities for tailoring sunflower-based feedstocks into products required for possible new niche market applications. Promising results in biofuel, biopolymers, fragrances and fine chemicals applications have been reported.

  1. Cp*Rh(III)/Bicyclic Olefin Cocatalyzed C-H Bond Amidation by Intramolecular Amide Transfer.

    Science.gov (United States)

    Wang, Xiaoming; Gensch, Tobias; Lerchen, Andreas; Daniliuc, Constantin G; Glorius, Frank

    2017-05-10

    A bicyclic olefin was discovered as a cocatalyst in a Cp*Rh(III)-catalyzed C-H bond amidation proceeding by an intramolecular amide transfer in N-phenoxyacetamide derivatives. Combining experimental and theoretical studies, we propose that the olefin promotes a Rh(III) intermediate to undergo oxidative addition into the O-N bond to form a Rh(V) nitrenoid species and subsequently direct the nitrenoid to add to the ortho position. The amide directing group plays a dual role as a cleavable coordinating moiety as well as an essential coupling partner for the C-H amidation. This methodology was successfully applied to the late-stage diversification of natural products and a marketed drug under mild conditions.

  2. High-Performance Isocyanide Scavengers for Use in Low-Waste Purification of Olefin Metathesis Products.

    Science.gov (United States)

    Szczepaniak, Grzegorz; Urbaniak, Katarzyna; Wierzbicka, Celina; Kosiński, Krzysztof; Skowerski, Krzysztof; Grela, Karol

    2015-12-21

    Three isocyanides containing a tertiary nitrogen atom were investigated for use as small-molecule ruthenium scavenging agents in the workup of olefin metathesis reactions. The proposed compounds are odorless, easy to obtain, and highly effective in removing metal residues, sometimes bringing the metal content below 0.0015 ppm. The most successful of the tested compounds, II, performs very well, even with challenging polar products. The performance of these scavengers is compared and contrasted with other known techniques, such as silica gel filtration and the use of self-scavenging catalysts. As a result, a new hybrid purification method is devised, which gives better results than using either a self-scavenging catalyst or a scavenger alone. Additionally, isocyanide II is shown to be a deactivating (reaction quenching) agent for olefin metathesis and superior to ethyl vinyl ether. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  3. Unravelling the olefin cross metathesis on solid support. Factors affecting the reaction outcome.

    Science.gov (United States)

    Poeylaut-Palena, Andrés A; Mata, Ernesto G

    2010-09-07

    Olefin cross metathesis on solid support under a variety of conditions is described. A comprehensive analysis considering diverse factors governing the reaction outcome gives a series of patterns for the application of this useful methodology in organic synthesis. If the intrasite reaction is not possible, homodimerization of the soluble olefin is crucial. When the homodimer is less reactive than its monomer, reaction outcome depends on the homodimerization rate, which, in turn, depends on the precatalyst used and the reaction conditions. If the site-site interaction is a feasible process, the cross metathesis product is obtained exclusively when the newly-formed double bond is resilient to further metathetic events. Taking into account these considerations, we have demonstrated that excellent results in terms of cross metathesis coupling can be obtained under the optimized conditions, and that microwave irradiation is also an interesting alternative for the development of a practical and energy-efficient cross metathesis on solid support.

  4. The activation mechanism of Ru-indenylidene complexes in olefin metathesis.

    Science.gov (United States)

    Urbina-Blanco, César A; Poater, Albert; Lebl, Tomas; Manzini, Simone; Slawin, Alexandra M Z; Cavallo, Luigi; Nolan, Steven P

    2013-05-08

    Olefin metathesis is a powerful tool for the formation of carbon-carbon double bonds. Several families of well-defined ruthenium (Ru) catalysts have been developed during the past 20 years; however, the reaction mechanism for all such complexes was assumed to be the same. In the present study, the initiation mechanism of Ru-indenylidene complexes was examined and compared with that of benzylidene counterparts. It was discovered that not all indenylidene complexes followed the same mechanism, highlighting the importance of steric and electronic properties of so-called spectator ligands, and that there is no single mechanism for the Ru-based olefin metathesis reaction. The experimental findings are supported quantitatively by DFT calculations.

  5. An expedient route to substituted furans via olefin cross-metathesis

    Science.gov (United States)

    Donohoe, Timothy J.; Bower, John F.

    2010-01-01

    The olefin cross-metathesis (CM) reaction is used extensively in organic chemistry and represents a powerful method for the selective synthesis of differentially substituted alkene products. Surprisingly, efforts to integrate this remarkable process into strategies for aromatic and heteroaromatic construction have not been reported. Such structures represent key elements of the majority of small molecule drug compounds; methods for the controlled preparation of highly substituted derivatives are essential to medicinal chemistry. Here we show that the olefin CM reaction, in combination with an acid cocatalyst or subsequent Heck arylation, provides a concise and flexible entry to 2,5-di- or 2,3,5-tri-substituted furans. These cascade processes portend further opportunities for the regiocontrolled preparation of other highly substituted aromatic and heteroaromatic classes. PMID:20142508

  6. The activation mechanism of Ru-indenylidene complexes in olefin metathesis

    KAUST Repository

    Urbina-Blanco, César A.

    2013-05-08

    Olefin metathesis is a powerful tool for the formation of carbon-carbon double bonds. Several families of well-defined ruthenium (Ru) catalysts have been developed during the past 20 years; however, the reaction mechanism for all such complexes was assumed to be the same. In the present study, the initiation mechanism of Ru-indenylidene complexes was examined and compared with that of benzylidene counterparts. It was discovered that not all indenylidene complexes followed the same mechanism, highlighting the importance of steric and electronic properties of so-called spectator ligands, and that there is no single mechanism for the Ru-based olefin metathesis reaction. The experimental findings are supported quantitatively by DFT calculations. © 2013 American Chemical Society.

  7. Olefin metathesis reaction on a MoS/sub 2/ catalyst

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-15

    Olefin metathesis reaction was found to take place on rather pure MoS/sub 2/ evacuated at 450/sup 0/C for several hours. Systematic studies of the isotopic scrambling in ethylene, propylene, 1-butene, and 2-butene on MoS/sub 2/ using microwave spectroscopy are reported. These studies were made using /sup 12/C- and /sup 13/C-labelled compounds and D-labelled compounds. Results indicated that the MoS/sub 2/ catalyst evacuated at 450/sup 0/C has two kinds of active sites, one is effective for the isomerization and the hydrogen isotopic mixing of olefins, and the other is effective for the hydrogenation reaction. This may be explained by assuming different degrees of coordinative unsaturation for the active sites. (BLM)

  8. A Light-Activated Olefin Metathesis Catalyst Equipped with a Chromatic Orthogonal Self-Destruct Function.

    Science.gov (United States)

    Sutar, Revannath L; Levin, Efrat; Butilkov, Danielle; Goldberg, Israel; Reany, Ofer; Lemcoff, N Gabriel

    2016-01-11

    A sulfur-chelated photolatent ruthenium olefin metathesis catalyst has been equipped with supersilyl protecting groups on the N-heterocyclic carbene ligand. The silyl groups function as an irreversible chromatic kill switch, thus decomposing the catalyst when it is irradiated with 254 nm UV light. Therefore, different types of olefin metathesis reactions may be started by irradiation with 350 nm UV light and prevented by irradiation with shorter wavelengths. The possibility to induce and impede catalysis just by using light of different frequencies opens the pathway for stereolithographic applications and novel light-guided chemical sequences. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Functionalized olefin cross-coupling to construct carbon-carbon bonds

    Science.gov (United States)

    Lo, Julian C.; Gui, Jinghan; Yabe, Yuki; Pan, Chung-Mao; Baran, Phil S.

    2014-12-01

    Carbon-carbon (C-C) bonds form the backbone of many important molecules, including polymers, dyes and pharmaceutical agents. The development of new methods to create these essential connections in a rapid and practical fashion has been the focus of numerous organic chemists. This endeavour relies heavily on the ability to form C-C bonds in the presence of sensitive functional groups and congested structural environments. Here we report a chemical transformation that allows the facile construction of highly substituted and uniquely functionalized C-C bonds. Using a simple iron catalyst, an inexpensive silane and a benign solvent under ambient atmosphere, heteroatom-substituted olefins are easily reacted with electron-deficient olefins to create molecular architectures that were previously difficult or impossible to access. More than 60 examples are presented with a wide array of substrates, demonstrating the chemoselectivity and mildness of this simple reaction.

  10. Substantially isotactic, linear, alternating copolymers of carbon monoxide and an olefin

    Science.gov (United States)

    Sen, A.; Jiang, Z.

    1996-05-28

    The compound, [Pd(Me-DUPHOS)(MeCN){sub 2}](BF{sub 4}){sub 2}, [Me-DUPHOS: 1,2-bis(2,5-dimethylphospholano)benzene] is an effective catalyst for the highly enantioselective, alternating copolymerization of olefins, such as aliphatic {alpha}-olefins, with carbon monoxide to form optically active, isotactic polymers which can serve as excellent starting materials for the synthesis of other classes of chiral polymers. For example, the complete reduction of a propylene-carbon monoxide copolymer resulted in the formation of a novel, optically active poly(1,4-alcohol). Also, the previously described catalyst is a catalyst for the novel alternating isomerization cooligomerization of 2-butene with carbon monoxide to form optically active, isotactic poly(1,5-ketone).

  11. Synthesis of amide-functionalized cellulose esters by olefin cross-metathesis.

    Science.gov (United States)

    Meng, Xiangtao; Edgar, Kevin J

    2015-11-05

    Cellulose esters with amide functionalities were synthesized by cross-metathesis (CM) reaction of terminally olefinic esters with different acrylamides, catalyzed by Hoveyda-Grubbs 2nd generation catalyst. Chelation by amides of the catalyst ruthenium center caused low conversions using conventional solvents. The effects of both solvent and structure of acrylamide on reaction conversion were investigated. While the inherent tendency of acrylamides to chelate Ru is governed by the acrylamide N-substituents, employing acetic acid as a solvent significantly improved the conversion of certain acrylamides, from 50% to up to 99%. Homogeneous hydrogenation using p-toluenesulfonyl hydrazide successfully eliminated the α,β-unsaturation of the CM products to give stable amide-functionalized cellulose esters. The amide-functionalized product showed higher Tg than its starting terminally olefinic counterpart, which may have resulted from strong hydrogen bonding interactions of the amide functional groups. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Ultrafast dynamics in iron tetracarbonyl olefin complexes investigated with two-dimensional vibrational spectroscopy.

    Science.gov (United States)

    Panman, Matthijs R; Newton, Arthur C; Vos, Jannie; van den Bosch, Bart; Bocokić, Vladica; Reek, Joost N H; Woutersen, Sander

    2013-01-28

    The dynamics of iron tetracarbonyl olefin complexes has been investigated using two-dimensional infrared (2D-IR) spectroscopy. Cross peaks between all CO-stretching bands show that the CO-stretch modes are coupled, and from the cross-peak anisotropies we can confirm previous assignments of the absorption bands. From the pump-probe delay dependence of the diagonal peaks in the 2D-IR spectrum we obtain a correlation time of ∼3 ps for the spectral fluctuations of the CO-stretch modes. We observe a multi-exponential pump-probe delay dependence of the cross-peak intensities, with rate constants ranging from 0.1 ps(-1) to 0.6 ps(-1). To determine whether this delay dependence originates from fluxionality of the complex or from intramolecular vibrational relaxation (IVR), we modulate the free-energy barrier of fluxional rearrangement by varying the pi-backbonding capacities of the olefin ligand in two iron tetracarbonyl olefin complexes: Fe(CO)(4)(cinnamic acid) and Fe(CO)(4)(dimethyl fumarate). Since the pi-backbonding strongly influences the rate of fluxionality, comparing the dynamics in the two complexes allows us to determine to what extent the observed dynamics is caused by fluxionality. We conclude that on the time scale of our experiments (up to 100 ps) the cross-peak dynamics in the iron complexes is determined by intramolecular vibrational energy relaxation. Hence, in contrast to previously investigated irontricarbonyl and ironpentacarbonyl complexes, iron tetracarbonyl olefin complexes exhibit no fluxionality on the picosecond time scale.

  13. Evolutionarily conserved Delta(25(27))-olefin ergosterol biosynthesis pathway in the alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Miller, Matthew B; Haubrich, Brad A; Wang, Qian; Snell, William J; Nes, W David

    2012-08-01

    Ergosterol is the predominant sterol of fungi and green algae. Although the biosynthetic pathway for sterol synthesis in fungi is well established and is known to use C24-methylation-C24 (28)-reduction (Δ(24(28))-olefin pathway) steps, little is known about the sterol pathway in green algae. Previous work has raised the possibility that these algae might use a novel pathway because the green alga Chlamydomonas reinhardtii was shown to possess a mevalonate-independent methylerythritol 4-phosphate not present in fungi. Here, we report that C. reinhardtii synthesizes the protosterol cycloartenol and converts it to ergosterol (C24β-methyl) and 7-dehydroporiferasterol (C24β-ethyl) through a highly conserved sterol C24- methylation-C25-reduction (Δ(25(27))-olefin) pathway that is distinct from the well-described acetate-mevalonate pathway to fungal lanosterol and its conversion to ergosterol by the Δ(24(28))-olefin pathway. We isolated and characterized 23 sterols by a combination of GC-MS and proton nuclear magnetic resonance spectroscopy analysis from a set of mutant, wild-type, and 25-thialanosterol-treated cells. The structure and stereochemistry of the final C24-alkyl sterol side chains possessed different combinations of 24β-methyl/ethyl groups and Δ(22(23))E and Δ(25(27))-double bond constructions. When incubated with [methyl-(2)H(3)]methionine, cells incorporated three (into ergosterol) or five (into 7-dehydroporiferasterol) deuterium atoms into the newly biosynthesized 24β-alkyl sterols, consistent only with a Δ(25(27))-olefin pathway. Thus, our findings demonstrate that two separate isoprenoid-24-alkyl sterol pathways evolved in fungi and green algae, both of which converge to yield a common membrane insert ergosterol.

  14. Evolutionarily conserved Δ25(27)-olefin ergosterol biosynthesis pathway in the alga Chlamydomonas reinhardtii

    OpenAIRE

    Miller, Matthew B.; Haubrich, Brad A; Wang, Qian; Snell, William J.; Nes, W. David

    2012-01-01

    Ergosterol is the predominant sterol of fungi and green algae. Although the biosynthetic pathway for sterol synthesis in fungi is well established and is known to use C24-methylation-C24 (28)-reduction (Δ24(28)-olefin pathway) steps, little is known about the sterol pathway in green algae. Previous work has raised the possibility that these algae might use a novel pathway because the green alga Chlamydomonas reinhardtii was shown to possess a mevalonate-independent methylerythritol 4-phosphat...

  15. Split feed injection: Another tool for increasing FCC light olefin yields and gasoline octanes

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, A.S. (Chevron U.S.A., El Segundo, CA (United States)); Skocpol, R.C. (Chevron Research and Technology Co., Richmond, CA (United States)); English, A.R. (Chevron U.S.A., Philadelphia, PA (United States)); Sadeghbeigi, R. (BP Oil Co., Houston, TX (United States))

    1994-01-01

    Split Feed Injection (SFI) is Chevron's patented technology for increasing the flexibility of fluid catalytic cracking units. The process improvement, which requires a relatively simple, low-cost hardware modification, results in conversion of a portion of the gasoline into lighter products (primarily olefins), and higher gasoline research and motor octanes. The technology has been extensively tested in Chevron Research Technology Company's pilot plants, and in two commercial FCC units; additional commercial tests are planned.

  16. An unprecedented alpha-olefin distribution arising from a homogeneous ethylene oligomerization catalyst.

    Science.gov (United States)

    Tomov, Atanas K; Chirinos, Juan J; Long, Richard J; Gibson, Vernon C; Elsegood, Mark R J

    2006-06-21

    Treatment of the bis(benzimidazolyl)amine chromium complex 2 with ethylene in the presence of MAO affords an exceptionally active oligomerization catalyst and an unprecedented distribution of 1-olefin products in which the C4n series is much more abundant than the C4n+2 series. Deuterium labeling studies are consistent with a metallacyclic chain growth mechanism in which the unusual product distribution arises from the interplay of two sites.

  17. Preparation of Poly (MA-alt--olefin-C 6, 8, 12, 18)/Silica ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 127; Issue 11. Preparation of Poly(MA-alt--olefin-C6,8,12,18)/Silica Nanohybrids via in situ generated nanofillers for use as a dual function organonanofiller. Deni̇z Demi̇rcan Günay Ki̇barer Zaki̇r M O Rzayev. Articles Volume 127 Issue 11 November 2015 pp ...

  18. Photoredox-Catalyzed Ketyl–Olefin Coupling for the Synthesis of Substituted Chromanols

    KAUST Repository

    Fava, Eleonora

    2016-07-21

    A visible light photoredox-catalyzed aldehyde olefin cyclization is reported. The method represents a formal hydroacylation of alkenes and alkynes and provides chromanol derivatives in good yields. The protocol takes advantage of the double role played by trialkylamines (NR3) which act as (i) electron donors for reducing the catalyst and (ii) proton donors to activate the substrate via a proton-coupled electron transfer. © 2016 American Chemical Society.

  19. Microchannel fabrication on cyclic olefin polymer substrates via 1064 nm Nd:YAG laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    McCann, Ronán [Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9 (Ireland); School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9 (Ireland); Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); National Centre for Plasma Science and Technology, Dublin City University, Dublin 9 (Ireland); Bagga, Komal; Groarke, Robert [Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9 (Ireland); School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9 (Ireland); Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); Stalcup, Apryll [Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland); Vázquez, Mercedes, E-mail: mercedes.vazquez@dcu.ie [Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9 (Ireland); Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland); Brabazon, Dermot [Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9 (Ireland); School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9 (Ireland); Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); National Centre for Plasma Science and Technology, Dublin City University, Dublin 9 (Ireland)

    2016-11-30

    Highlights: • Rapid single-step microchannel fabrication on optically transparent cyclic olefin polymer using IR Nd:YAG laser. • Ability to tailor channel depth between 12–47 μm demonstrated for single laser pass. • Use of multiple laser passes showed capability for finer depth control. • Potential applications in lab-on-chip and microfluidic devices. - Abstract: This paper presents a method for fabrication of microchannels on cyclic olefin polymer films that have application in the field of microfluidics and chemical sensing. Continuous microchannels were fabricated on 188-μm-thick cyclic olefin polymer substrates using a picosecond pulsed 1064 nm Nd:YAG laser. The effect of laser fluence on the microchannel morphology and dimensions was analysed via scanning electron microscopy and optical profilometry. Single laser passes were found to produce v-shaped microchannels with depths ranging from 12 μm to 47 μm and widths from 44 μm to 154 μm. The ablation rate during processing was lower than predicted theoretically. Multiple laser passes were applied to examine the ability for finer control over microchannel morphology with channel depths ranging from 22 μm to 77 μm and channel widths from 59 μm to 155 μm. For up to five repeat passes, acceptable reproducibility was found in the produced microchannel morphology. Infrared spectroscopy revealed oxidation and dehydrogenation of the polymer surface following laser ablation. These results were compared to other work conducted on cyclic olefin polymers.

  20. Amphiphilic Cellulose Ethers Designed for Amorphous Solid Dispersion via Olefin Cross-Metathesis.

    Science.gov (United States)

    Dong, Yifan; Mosquera-Giraldo, Laura I; Taylor, Lynne S; Edgar, Kevin J

    2016-02-08

    The design of cellulose ether-based amphiphiles has been difficult and limited because of the harsh conditions typically required for appending ether moieties to cellulose. Olefin cross-metathesis recently has been shown to be a valuable approach for appending a variety of functional groups to cellulose ethers and esters, provided that an olefin handle for metathesis can be attached. This synthetic pathway gives access to these functional derivatives under very mild conditions and at high efficiency. Modification of ethyl cellulose by metathesis to prepare useful derivatives, for example, for solubility and bioavailability enhancement of drugs by amorphous solid dispersion (ASD), has been limited by the low DS(OH) of commercial ethyl cellulose derivatives. This is problematic because ethyl cellulose is otherwise a very attractive substrate for synthesis of amphiphilic derivatives by olefin metathesis. Herein we explore two methods for opening up this design space for ether-based amphiphiles, for example, permitting synthesis of more hydrophilic derivatives. One approach is to start with the more hydrophilic commercial methyl cellulose, which contains much higher DS(OH) and therefore is better suited for introduction of high DS of olefin metathesis "handles". In another approach, we explored a homogeneous one-pot synthesis methodology from cellulose, where controlled DS of ethyl groups was introduced at the same time as the ω-unsaturated alkyl groups, thereby permitting complete control of DS(OH), DS(Et), and ultimately DS of the functional group added by metathesis. We describe the functionalized derivatives available by these successful approaches. In addition, we explore new methods for reduction of the unsaturation in initial metathesis products to provide robust methods for enhancing product stability against further radical-catalyzed reactions. We demonstrate initial evidence that the products show strong promise as amphiphilic matrix polymers for amorphous

  1. Olefin Cross-Metathesis in Polymer and Polysaccharide Chemistry: A Review.

    Science.gov (United States)

    Dong, Yifan; Matson, John B; Edgar, Kevin J

    2017-06-12

    Olefin cross-metathesis, a ruthenium-catalyzed carbon-carbon double bond transformation that features high selectivity, reactivity, and tolerance of various functional groups, has been extensively applied in organic synthesis and polymer chemistry. Herein, we review strategies for performing selective cross-metathesis and its applications in polymer and polysaccharide chemistry, including constructing complex polymer architectures, attaching pendant groups to polymer backbones and surfaces, and modifying polysaccharide derivatives.

  2. Ruthenium indenylidene "1(st) generation" olefin metathesis catalysts containing triisopropyl phosphite.

    Science.gov (United States)

    Guidone, Stefano; Nahra, Fady; Slawin, Alexandra M Z; Cazin, Catherine S J

    2015-01-01

    The reaction of triisopropyl phosphite with phosphine-based indenylidene pre-catalysts affords "1(st) generation" cis-complexes. These have been used in olefin metathesis reactions. The cis-Ru species exhibit noticeable differences with the trans-Ru parent complexes in terms of structure, thermal stability and reactivity. Experimental data underline the importance of synergistic effects between phosphites and L-type ligands.

  3. E- and Z-Selective Transfer Semihydrogenation of Alkynes Catalyzed by Standard Ruthenium Olefin Metathesis Catalysts.

    Science.gov (United States)

    Kusy, Rafał; Grela, Karol

    2016-12-02

    Selective transfer semihydrogenation of alkynes to yield alkenes was achieved with commercial first and second generation Hoveyda-Grubbs catalysts and formic acid as a hydrogen donor. This catalytic system is distinguished by its selectivity and compatibility with many functional groups (halogens, cyano, nitro, sulfide, alkenes). The metathetic activity of the ruthenium catalysts may be utilized in tandem sequences of olefin metathesis plus alkyne reduction.

  4. High-Performance Isocyanide Scavengers for Use in Low-Waste Purification of Olefin Metathesis Products.

    Science.gov (United States)

    Szczepaniak, Grzegorz; Urbaniak, Katarzyna; Wierzbicka, Celina; Kosiński, Krzysztof; Skowerski, Krzysztof; Grela, Karol

    2015-12-09

    Invited for this month's cover is the group of Karol Grela (University of Warsaw) in collaboration with Apeiron Synthesis (based in the Wrocław Technology Park). The researchers created a new, bidentate isocyanide scavenger that is very effective at removing ruthenium residues from the products of olefin metathesis. The Full Paper itself is available at 10.1002/cssc.201500784. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Improving olefin tolerance and production in E. coli using native and evolved AcrB.

    Science.gov (United States)

    Mingardon, Florence; Clement, Camille; Hirano, Kathleen; Nhan, Melissa; Luning, Eric G; Chanal, Angelique; Mukhopadhyay, Aindrila

    2015-05-01

    Microorganisms can be engineered for the production of chemicals utilized in the polymer industry. However many such target compounds inhibit microbial growth and might correspondingly limit production levels. Here, we focus on compounds that are precursors to bioplastics, specifically styrene and representative alpha-olefins; 1-hexene, 1-octene, and 1-nonene. We evaluated the role of the Escherichia coli efflux pump, AcrAB-TolC, in enhancing tolerance towards these olefin compounds. AcrAB-TolC is involved in the tolerance towards all four compounds in E. coli. Both styrene and 1-hexene are highly toxic to E. coli. Styrene is a model plastics precursor with an established route for production in E. coli (McKenna and Nielsen, 2011). Though our data indicates that AcrAB-TolC is important for its optimal production, we observed a strong negative selection against the production of styrene in E. coli. Thus we used 1-hexene as a model compound to implement a directed evolution strategy to further improve the tolerance phenotype towards this alpha-olefin. We focused on optimization of AcrB, the inner membrane domain known to be responsible for substrate binding, and found several mutations (A279T, Q584R, F617L, L822P, F927S, and F1033Y) that resulted in improved tolerance. Several of these mutations could also be combined in a synergistic manner. Our study shows efflux pumps to be an important mechanism in host engineering for olefins, and one that can be further improved using strategies such as directed evolution, to increase tolerance and potentially production. © 2015 Wiley Periodicals, Inc.

  6. Ruthenium indenylidene “1st generation” olefin metathesis catalysts containing triisopropyl phosphite

    Directory of Open Access Journals (Sweden)

    Stefano Guidone

    2015-09-01

    Full Text Available The reaction of triisopropyl phosphite with phosphine-based indenylidene pre-catalysts affords “1st generation” cis-complexes. These have been used in olefin metathesis reactions. The cis-Ru species exhibit noticeable differences with the trans-Ru parent complexes in terms of structure, thermal stability and reactivity. Experimental data underline the importance of synergistic effects between phosphites and L-type ligands.

  7. InCl3/NaClO: A reagent for allylic chlorination of terminal olefins

    Directory of Open Access Journals (Sweden)

    Pisoni Diego S.

    2006-01-01

    Full Text Available Indium trichloride promotes the chlorination of terminal olefins in the presence of sodium hypochlorite with good results. Carvone was chosen as a model compound to examine some of the general features of this reaction, such as stoichiometry, temperature, reaction time and product conversion. Treatment of beta-pinene with sodium hypochlorite in the presence of indium trichloride resulted in a facile rearrangement to selectively yield perillyl chloride, which is an important precursor for C-7 oxygenated limonenes.

  8. Bis(benzimidazole)amine vanadium catalysts for olefin polymerisation and co-polymerisation: thermally robust, single-site catalysts activated by simple alkylaluminium reagents.

    Science.gov (United States)

    Tomov, Atanas K; Gibson, Vernon C; Zaher, Damien; Elsegood, Mark R J; Dale, Sophie H

    2004-09-07

    Vanadium complexes containing bis(benzimidazole)amine ligands, upon activation by simple alkylaluminium reagents, give unusually robust, single-site, catalysts for olefin polymerisation/co-polymerisation.

  9. The olefin metathesis reaction: reorganization and cyclization of organic compounds; A reacao de metatese de olefinas: reorganizacao e ciclizacao de compostos organicos

    Energy Technology Data Exchange (ETDEWEB)

    Frederico, Daniel; Brocksom, Ursula; Brocksom, Timothy John [Sao Carlos Univ., SP (Brazil). Dept. de Quimica]. E-mail: brocksom@terra.com.br

    2005-07-15

    The olefin metathesis reaction allows the exchange of complex alkyl units between two olefins, with the formation of a new olefinic link and a sub-product olefin usually ethylene. This reaction has found extensive application in the last ten years with the development of the Grubbs and Schrock catalysts, in total synthesis of complex organic molecules, as opposed to the very important use in the petrochemical industry with relatively simple molecules. This review intends to trace a historical and mechanistic pathway from industry to academy, before illustrating the more recent advances. (author)

  10. Iron-Catalyzed Olefin Metathesis with Low-Valent Iron Alkylidenes.

    Science.gov (United States)

    Mauksch, Michael; Tsogoeva, Svetlana B

    2017-08-01

    Inspired by recent reports of low-valent iron-complex-catalyzed formal [2+2] cycloaddition of olefins, we demonstrate computationally that with such low-valent iron complexes and with "strong" ligands, the olefin metathesis is also preferred over the undesired cyclopropanation side-reaction, competition already studied by Hoffmann and co-workers almost 40 years ago (J. Am. Chem. Soc. 1981, 103, 5582). The [2+2] cycloaddition step in metathesis propagation, which gives a Chauvin-type metallacyclobutane intermediate, is proposed to proceed either via a planar four-electron Craig-Möbius aromatic [π2s +π2s ] transition-state structure with a low barrier of 4.7 kcal mol(-1) or, alternatively, via a twisted Zimmerman-Möbius aromatic [π2s +π2a ] transition state with a 5.5 kcal mol(-1) activation-energy barrier, with respect to an "encounter" π-complex minimum obtained from an Fe(II) alkylidene and the entering olefin, while the corresponding triplet pathways are all disfavored. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Olefin metathesis reaction on GaN (0 0 0 1) surfaces

    Science.gov (United States)

    Makowski, Matthew S.; Zemlyanov, Dmitry Y.; Ivanisevic, Albena

    2011-03-01

    Proof-of-concept reactions were performed on GaN (0 0 0 1) surfaces to demonstrate surface termination with desired chemical groups using an olefin cross-metathesis reaction. To prepare the GaN surfaces for olefin metathesis, the surfaces were hydrogen terminated with hydrogen plasma, chlorine terminated with phosphorous pentachloride, and then terminated with an alkene group via a Grignard reaction. The olefin metathesis reaction then bound 7-bromo-1-heptene. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy, and water contact angle measurements following each step in the reaction scheme. The XPS data was used to qualitatively identify surface chemical species and to quantitatively determine molecular surface coverage. The bromine atom in 7-bromo-1-heptene served as a heteroatom for identification with XPS. The reaction scheme resulted in GaN substrates with a surface coverage of 0.10 monolayers and excellent stability towards oxidation when exposed to oxygen plasma.

  12. Wood-derived olefins by steam cracking of hydrodeoxygenated tall oils.

    Science.gov (United States)

    Pyl, Steven P; Dijkmans, Thomas; Antonykutty, Jinto M; Reyniers, Marie-Françoise; Harlin, Ali; Van Geem, Kevin M; Marin, Guy B

    2012-12-01

    Tall oil fractions obtained from Norwegian spruce pulping were hydrodeoxygenated (HDO) at pilot scale using a commercial NiMo hydrotreating catalyst. Comprehensive two dimensional gas chromatography (GC×GC) showed that HDO of both tall oil fatty acids (TOFA) and distilled tall oil (DTO) produced highly paraffinic hydrocarbon liquids. The hydrotreated fractions also contained fatty acid methyl esters and norabietane and norabietatriene isomers. Steam cracking of HDO-TOFA in a pilot plant revealed that high light olefin yields can be obtained, with 35.4 wt.% of ethene and 18.2 wt.% of propene at a coil outlet pressure (COP) of 1.7 bara, a dilution of 0.45 kg(steam)/kg(HDO-TOFA) and a coil outlet temperature (COT) of 820 °C. A pilot plant coking experiment indicated that cracking of HDO-TOFA at a COT of 850 °C results in limited fouling in the reactor. Co-cracking of HDO tall oil fractions with a typical fossil-based naphtha showed improved selectivity to desired light olefins, further demonstrating the potential of large scale olefin production from hydrotreated tall oil fractions in conventional crackers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Surface functionalization of cyclic olefin copolymer (COC) with evaporated TiO{sub 2} thin film

    Energy Technology Data Exchange (ETDEWEB)

    El Fissi, Lamia, E-mail: lamia.elfissi@uclouvain.be [ICTEAM Institute, Université catholique du Louvain, place de Levant 3, 1348 Louvain-la-Neuve (Belgium); Vandormael, Denis [SIRRIS Liege Science Park, 4102 Seraing (Belgium); Houssiau, Laurent [Research Centre in Physics of Matter and Radiation (PMR), University of Namur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Francis, Laurent A. [ICTEAM Institute, Université catholique du Louvain, place de Levant 3, 1348 Louvain-la-Neuve (Belgium)

    2016-02-15

    Highlights: • TiO{sub 2}/COC (cyclic olefin copolymer) hybrid material for BioMEMS applications. • Thin layer of TiO{sub 2} was deposed on cyclic olefin copolymer using physical vapor deposition (PVD) technique. • The coating possess the highest level of adhesion with an excellent morphology of the hybrid material (TiO{sub 2}/COC). - Abstract: Cyclic olefin copolymer (COC) is a new class of thermoplastic polymers used for a variety of applications ranging from bio-sensing to optics. However, the hydrophobicity of native COC hampers the further development and application of this material [1]. In this work, we report the structural, morphological, and optical properties of the TiO{sub 2}/COC hybrid material, which provides a desirable substrate for optical devices and subsequent surface modifications. The TiO{sub 2} film on COC substrate was deposited by the evaporation method, and it was characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), profilometry and atomic force microscope (AFM). Using an UV-vis spectrophotometer, we found that the transmittance of the TiO{sub 2}/COC hybrid material in the visible domain reached 80%. The TiO{sub 2}/COC hybrid appeared to be stable in most of the assessed polar solvents and acid/basic solutions. The new TiO{sub 2}/COC hybrid material and the robust fabrication method are expected to enable a variety of BioMEMS applications.

  14. LDRD final report on new homogeneous catalysts for direct olefin epoxidation (LDRD 52591).

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Karen (University of Washington); Smythe, Nicole A. (University of Washington); Moore, Joshua T.; Stewart, Constantine A.; Kemp, Richard Alan; Miller, James Edward; Kornienko, Alexander (New Mexico Institute of Mining and Technology); Denney, Melanie C. (University of Washington); Cetto, Kara L. (University of Washington)

    2006-02-01

    This report summarizes our findings during the study of a novel homogeneous epoxidation catalyst system that uses molecular oxygen as the oxidant, a ''Holy Grail'' in catalysis. While olefins (alkenes) that do not contain allylic hydrogens can be epoxidized directly using heterogeneous catalysts, most olefins cannot, and so a general, atom-efficient route is desired. While most of the work performed on this LDRD has been on pincer complexes of late transition metals, we also scouted out metal/ligand combinations that were significantly different, and unfortunately, less successful. Most of the work reported here deals with phosphorus-ligated Pd hydrides [(PCP)Pd-H]. We have demonstrated that molecular oxygen gas can insert into the Pd-H bond, giving a structurally characterized Pd-OOH species. This species reacts with oxygen acceptors such as olefins to donate an oxygen atom, although in various levels of selectivity, and to generate a [(PCP)Pd-OH] molecule. We discovered that the active [(PCP)Pd-H] active catalyst can be regenerated by addition of either CO or hydrogen. The demonstration of each step of the catalytic cycle is quite significant. Extensions to the pincer-Pd chemistry by attaching a fluorinated tail to the pincer designed to be used in solvents with higher oxygen solubilities are also presented.

  15. Energy and materials flows in the production of olefins and their derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.L.; Shen, S.Y.

    1980-08-01

    Production of olefins and their derivatives uses almost 3.5% of the oil and gas consumed annually in the United States. It is estimated that their production requires an input energy of 2 Q, which is 50% of the energy used in the production of all petrochemicals. Substantial amounts of this energy could be recovered through recycling. For example, recycling of a single plastic product, polyester soft drink bottles, could have recovered about 0.014 Q in 1979. (About 1.4 Q is used to produce plastic derivatives of olefins). Petrochemical processes use fuels as feedstocks, as well as for process energy, and a portion of this energy is not foregone and can be recovered through combustion of the products. The energy foregone in the production of ethylene is estimated to be 7800 Btu/lb. The energy foregone in plastics production ranges from 12,100 Btu/lb for the new linear low-density polyethylene to 77,200 Btu/lb for nylon 66, which is about 60% of the total energy input for that product. Further investigation of the following areas could yield both material and energy savings in the olefins industry: (1) recycling of petrochemical products to recover energy in addition to that recoverable through combustion, (2) impact of feedstock substitution on utilization of available national resources, and (3) effective use of the heat embodied in process steam. This steam accounts for a major fraction of the industry's energy input.

  16. Nitro-Grela-type complexes containing iodides - robust and selective catalysts for olefin metathesis under challenging conditions.

    Science.gov (United States)

    Tracz, Andrzej; Matczak, Mateusz; Urbaniak, Katarzyna; Skowerski, Krzysztof

    2015-01-01

    Iodide-containing nitro-Grela-type catalysts have been synthesized and applied to ring closing metathesis (RCM) and cross metathesis (CM) reactions. These new catalysts have exhibited improved efficiency in the transformation of sterically, non-demanding alkenes. Additional steric hindrance in the vicinity of ruthenium related to the presence of iodides ensures enhanced catalyst stability. The benefits are most apparent under challenging conditions, such as very low reaction concentrations, protic solvents or with the occurrence of impurities.

  17. Nitro-Grela-type complexes containing iodides – robust and selective catalysts for olefin metathesis under challenging conditions

    Directory of Open Access Journals (Sweden)

    Andrzej Tracz

    2015-10-01

    Full Text Available Iodide-containing nitro-Grela-type catalysts have been synthesized and applied to ring closing metathesis (RCM and cross metathesis (CM reactions. These new catalysts have exhibited improved efficiency in the transformation of sterically, non-demanding alkenes. Additional steric hindrance in the vicinity of ruthenium related to the presence of iodides ensures enhanced catalyst stability. The benefits are most apparent under challenging conditions, such as very low reaction concentrations, protic solvents or with the occurrence of impurities.

  18. Asymmetric Warfare and the Will to Win

    National Research Council Canada - National Science Library

    Herrera, Cary

    2001-01-01

    This thesis explores the will to win in asymmetric war. Asymmetric war, in which one side has an overwhelming advantage over its opponent, will likely be the war of the future for the United States in the post-Cold War uni-polar world...

  19. Renewable resource management under asymmetric information

    DEFF Research Database (Denmark)

    Jensen, Frank; Andersen, Peder; Nielsen, Max

    2013-01-01

    Asymmetric information between fishermen and the regulator is important within fisheries. The regulator may have less information about stock sizes, prices, costs, effort, productivity and catches than fishermen. With asymmetric information, a strong analytical tool is principal-agent analysis. I...

  20. Asymmetric Quantum Codes on Toric Surfaces

    DEFF Research Database (Denmark)

    Hansen, Johan P.

    2017-01-01

    Asymmetric quantum error-correcting codes are quantum codes defined over biased quantum channels: qubit-flip and phase-shift errors may have equal or different probabilities. The code construction is the Calderbank-Shor-Steane construction based on two linear codes. We present families of toric...... surfaces, toric codes and associated asymmetric quantum error-correcting codes....

  1. Mechanochemistry assisted asymmetric organocatalysis: A sustainable approach

    OpenAIRE

    Chauhan, Pankaj; Chimni, Swapandeep Singh

    2012-01-01

    Summary Ball-milling and pestle and mortar grinding have emerged as powerful methods for the development of environmentally benign chemical transformations. Recently, the use of these mechanochemical techniques in asymmetric organocatalysis has increased. This review highlights the progress in asymmetric organocatalytic reactions assisted by mechanochemical techniques.

  2. Mechanochemistry assisted asymmetric organocatalysis: A sustainable approach

    Science.gov (United States)

    Chauhan, Pankaj

    2012-01-01

    Summary Ball-milling and pestle and mortar grinding have emerged as powerful methods for the development of environmentally benign chemical transformations. Recently, the use of these mechanochemical techniques in asymmetric organocatalysis has increased. This review highlights the progress in asymmetric organocatalytic reactions assisted by mechanochemical techniques. PMID:23243475

  3. Worst Asymmetrical Short-Circuit Current

    DEFF Research Database (Denmark)

    Arana Aristi, Iván; Holmstrøm, O; Grastrup, L

    2010-01-01

    In a typical power plant, the production scenario and the short-circuit time were found for the worst asymmetrical short-circuit current. Then, a sensitivity analysis on the missing generator values was realized in order to minimize the uncertainty of the results. Afterward the worst asymmetrical...

  4. Mechanochemistry assisted asymmetric organocatalysis: A sustainable approach

    Directory of Open Access Journals (Sweden)

    Pankaj Chauhan

    2012-12-01

    Full Text Available Ball-milling and pestle and mortar grinding have emerged as powerful methods for the development of environmentally benign chemical transformations. Recently, the use of these mechanochemical techniques in asymmetric organocatalysis has increased. This review highlights the progress in asymmetric organocatalytic reactions assisted by mechanochemical techniques.

  5. Diastereoselective one-pot Wittig olefination-Michael addition and olefin cross metathesis strategy for total synthesis of cytotoxic natural product (+)-varitriol and its higher analogues.

    Science.gov (United States)

    Ghosal, Partha; Sharma, Deepty; Kumar, Brijesh; Meena, Sanjeev; Sinha, Sudhir; Shaw, Arun K

    2011-11-07

    A stereoselective route for the total synthesis of anticancer marine natural product (+)-varitriol (1) is detailed herein. The impressive biological activity and interesting structural features of natural (+)-varitriol fuelled us to undertake the synthesis of some higher analogues (1a-j) of this molecule. The key features of the synthetic strategy include one-pot Wittig olefination followed by a highly diastereoselective oxa-Michael addition to assemble stereochemically pure tetrasubstituted THF moiety of the natural varitriol and olefin cross metathesis to couple the aromatic part with tetrasubstituted THF moiety. The total synthesis of title natural product is efficient with 21.8% overall yield for 9 linear steps from D-ribose and thus facilitates the more scaled-up practical route for the synthesis of 1 and its analogues as well. The synthetic (+)-varitriol (1) and its analogues were screened for their cytotoxicity. The present synthetic approach paves the way for preparation of numerous analogues of the title natural product for drug development.

  6. Olefin metathesis. 8. Active sites on Re/sub 2/O/sub 7//Al/sub 2/O/sub 3/ catalysts for the metathesis of olefins

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, R.; Ichikawa, K.; Echigoya, E.

    1978-01-01

    Disproportionation of propylene, 1-hexene, and 2-pentene was tested at 20/sup 0/-50/sup 0/C on rhenium oxide/alumina catalysts having 1:99 to 7:93 rhenium/aluminum atomic ratios. The catalysts were prepared and pretreated in various ways, including pretreatment with water. Comparisons of the activities with ESR and X-ray diffraction data showed that in catalysts containing < 1% rhenium (''K region''), the rhenium(VII) was strongly bonded in a distorted alumina lattice and inactive; that in catalysts containing 1-3% rhenium (''L region''), the rhenium formed Re-O-Al bonds in which the rhenium had some activity; and that in the very active catalysts with > 3% rhenium (''M region''), the rhenium formed Re-O-Re species which were weakly bonded and easily converted to an active species by reduction and complex formation with the olefin. The rhenium(VII) ions around the active center increased its positive charge and thus promoted the olefin adsorption. Catalysts containing 0.5% rhenium (K region) could be transformed into L or M region catalysts by addition of a metal ion of high electronegativity, such as tungsten or vanadium. Graphs, spectra, and 19 references.

  7. Asymmetric Digital Subscriber Line (ADSL

    Directory of Open Access Journals (Sweden)

    Slavko Šarić

    2012-10-01

    Full Text Available ADSL (Asymmetric Digital Subscriber Line is a technologythat allows transmission at 8.488 Mbps over the existingtelephone copper line (speed range depending on the distance.ADSL circuit connects the ADSL modems by twisted-pairtelephone lines creating three infonnation channels: high speedsimplex (maximum 9 Mbps, medium speed duplex channel(maximum 2 Mbps and plain old telephone service channel.ADSL technology supports up to seven synchronous channelsthat can be configured to meet the needs of the end user.One could simultaneously view four movies stored in MPEG 1fonnat on separate television sets (MPEG 1 transmitted at 1.5Mbps, hold a video-conference (transmitted at 348 kbps,download data files from a server at 128 kbps via ISDN andeven receive a telephone call.

  8. Research on asymmetric searchable encryption

    Science.gov (United States)

    Yu, Zonghua; Wu, Yudong

    2017-05-01

    Cloud server side to ease the user's local storage pressure at the same time, there are hidden data on the hidden dangers, the user often choose to upload the data in the form of cipher text to the cloud server. However, the classic data encryption and decryption algorithms are not provided search function, affecting the user's efficiency. To this end, an asymmetric searchable encryption scheme is proposed. The scheme can be used for any person can generate a trapdoor, cipher text can be free modified, the key pair generated by the user themselves, encrypt the identity, S-shaped virtual and other five loopholes to improve. The analysis results show that the scheme solves the above five vulnerabilities in the original scheme, so that the information semantics of both parties of communication can be guaranteed.

  9. Multinuclear group 4 catalysis: olefin polymerization pathways modified by strong metal-metal cooperative effects.

    Science.gov (United States)

    McInnis, Jennifer P; Delferro, Massimiliano; Marks, Tobin J

    2014-08-19

    Polyolefins are produced today catalytically on a vast scale, and the manufactured polymers find use in everything from artificial limbs and food/medical packaging to automotive and electrical components and lubricants. Although polyolefin monomers are typically cheap (e.g., ethylene, propylene, α-olefins), the resulting polymer properties can be dramatically tuned by the particular polymerization catalyst employed, and reflect a rich interplay of macromolecular chemistry, materials science, and physics. For example, linear low-density polyethylene (LLDPE), produced by copolymerization of ethylene with linear α-olefin comonomers such as 1-butene, 1-hexene, or 1-octene, has small but significant levels of short alkyl branches (C2, C4, C6) along the polyethylene backbone, and is an important technology material due to outstanding rheological and mechanical properties. In 2013, the total world polyolefin production was approximately 211 million metric tons, of which about 11% was LLDPE. Historically, polyolefins were produced using ill-defined but highly active heterogeneous catalysts composed of supported groups 4 or 6 species (usually halides) activated by aluminum alkyls. In 1963, Karl Ziegler and Giulio Natta received the Nobel Prize for these discoveries. Beginning in the late 1980s, a new generation of group 4 molecule-based homogeneous olefin polymerization catalysts emerged from discoveries by Walter Kaminsky, a team led by James Stevens at The Dow Chemical Company, this Laboratory at Northwestern University, and a host of talented groups in Germany, Italy, Japan, the United Kingdom, and the United States. These new "single-site" catalysts and their activating cocatalysts were far better defined and more rationally tunable in terms of structure, mechanism, thermodynamics, and catalyst activity and selectivity than ever before possible. An explosion of research advances led to new catalysts, cocatalysts, deeper mechanistic understanding of both the

  10. Striking difference between alkane and olefin metathesis using the well-defined precursor [≡Si-O-WMe5]: Indirect evidence in favour of a bifunctional catalyst W alkylidene-hydride

    KAUST Repository

    Riache, Nassima

    2015-01-01

    Metathesis of linear alkanes catalyzed by the well-defined precursor (≡Si-O-WMe5) affords a wide distribution of linear alkanes from methane up to triacontane. Olefin metathesis using the same catalyst and under the same reaction conditions gives a very striking different distribution of linear α-olefins and internal olefins. This shows that olefin and alkane metathesis processes occur via very different pathways.

  11. JCSC_128_12_1831_1840_SI.docx

    Indian Academy of Sciences (India)

    S Roy

    ... fused carbocyclic and oxacyclic medium-sized rings: Competition between Grubbs-II catalyzed ring closing olefin metathesis and ring closing carbonyl-olefin metathesis. P CHAKRABORTY and S C ROY*. Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India.

  12. Maximizing light olefins production in fluid catalytic cracking (FCC) units; Maximizacao de olefinas leves em unidades de craqueamento catalitico fluido

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Ricardo D.M.; Pinho, Andrea de Rezende [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The Fluid Catalytic Cracking (FCC) process is widely spread over the ten PETROBRAS refineries in its thirteen industrial units. The importance of the FCC process resides on its high gasoline output, being the main supplier of this important product to the system. Additionally, FCC process is the main source of light hydrocarbons in the LPG range, including light olefins. The increasing demand for ethylene, propylene and butylenes was encouraging to concentrate the research efforts on studies about alternatives for the traditional FCC process. In the present work, the proposals from main licensors (UOP, KBR, Stone and Webster) for a light-olefins-driven FCC process (Petrochemical FCC) will be compared. Furthermore, the catalytic route for light olefins production in FCC units is also described. An additive based on ZSM- 5 zeolite, which is produced following a PETROBRAS proprietary technology, is being largely applied into the catalyst inventories of all FCC units. An analysis of different scenarios was performed to estimate the maximum potential of light olefins production from the highest possible ZSM-5 additive usage. More specifically for the case of ethylene, which production is also boosted by the same type of additive, studies are being conducted with the objective of recovering it from a C2 stream using specific units to do the splitting (UPGR). The search for increasing light olefins production in the refining processes is in line with PETROBRAS strategic plan which targeted for the company a more intense activity in the Brazilian petrochemical market (author)

  13. Modelling asymmetric growth in crowded plant communities

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2010-01-01

    A class of models that may be used to quantify the effect of size-asymmetric competition in crowded plant communities by estimating a community specific degree of size-asymmetric growth for each species in the community is suggested. The model consists of two parts: an individual size......-asymmetric growth part, where growth is assumed to be proportional to a power function of the size of the individual, and a term that reduces the relative growth rate as a decreasing function of the individual plant size and the competitive interactions from other plants in the neighbourhood....

  14. Nondeterministic self-assembly with asymmetric interactions

    Science.gov (United States)

    Tesoro, S.; Göpfrich, K.; Kartanas, T.; Keyser, U. F.; Ahnert, S. E.

    2016-08-01

    We investigate general properties of nondeterministic self-assembly with asymmetric interactions, using a computational model and DNA tile assembly experiments. By contrasting symmetric and asymmetric interactions we show that the latter can lead to self-limiting cluster growth. Furthermore, by adjusting the relative abundance of self-assembly particles in a two-particle mixture, we are able to tune the final sizes of these clusters. We show that this is a fundamental property of asymmetric interactions, which has potential applications in bioengineering, and provides insights into the study of diseases caused by protein aggregation.

  15. Effects of calcination and activation conditions on ordered mesoporous carbon supported iron catalysts for production of lower olefins from synthesis gas

    NARCIS (Netherlands)

    Oschatz, Martin; Van Deelen, T. W.; Weber, J.L.; Lamme, Wouter S.; Wang, G.; Goderis, B.; Verkinderen, O.; Dugulan, A.I.; De Jong, K.P.

    2016-01-01

    Lower C2-C4 olefins are important commodity chemicals usually produced by steam cracking of naphtha or fluid catalytic cracking of vacuum gas oil. The Fischer-Tropsch synthesis of lower olefins (FTO) with iron-based catalysts uses synthesis gas as an alternative feedstock.

  16. Effects of calcination and activation conditions on ordered mesoporous carbon supported iron catalysts for production of lower olefins from synthesis gas

    NARCIS (Netherlands)

    Oschatz, M; van Deelen, T W; Weber, J L; Lamme, W S; Wang, G; Goderis, B; Verkinderen, O; Dugulan, A I; de Jong, K P

    2016-01-01

    Lower C2–C4 olefins are important commodity chemicals usually produced by steam cracking of naphtha or fluid catalytic cracking of vacuum gas oil. The Fischer–Tropsch synthesis of lower olefins (FTO) with iron-based catalysts uses synthesis gas as an alternative feedstock. Nanostructured carbon

  17. Systematic variation of the sodium/sulfur promoter content on carbon-supported iron catalysts for the Fischer-Tropsch to olefins reaction

    NARCIS (Netherlands)

    Oschatz, M.; Krans, N.A.; Xie, J.; de Jong, K.P.

    2016-01-01

    The Fischer–Tropsch to olefins (FTO) process is a method for the direct conversion of synthesis gas to lower C2–C4 olefins. Carbon-supported iron carbide nanoparticles are attractive catalysts for this reaction. The catalytic activity can be improved and undesired formation of alkanes can be

  18. Suppression of the Aromatic Cycle in Methanol-to-Olefins Reaction over ZSM-5 by Post-Synthetic Modification Using Calcium

    NARCIS (Netherlands)

    Yarulina, Irina; Bailleul, Simon; Pustovarenko, Alexey; Martinez, Javier Ruiz; Wispelaere, Kristof De; Hajek, Julianna; Weckhuysen, Bert M.; Houben, Klaartje; Baldus, Marc; Van Speybroeck, Veronique; Kapteijn, Freek; Gascon, Jorge

    2016-01-01

    Incorporation of Ca in ZSM-5 results in a twofold increase of propylene selectivity (53 %), a total light-olefin selectivity of 90 %, and a nine times longer catalyst lifetime (throughput 792 gMeOH gcatalyst −1) in the methanol-to-olefins (MTO) reaction. Analysis of the product distribution and

  19. Modeling of asymmetrical boost converters

    Directory of Open Access Journals (Sweden)

    Eliana Isabel Arango Zuluaga

    2014-01-01

    Full Text Available The asymmetrical interleaved dual boost (AIDB is a fifth-order DC/DC converter designed to interface photovoltaic (PV panels. The AIDB produces small current harmonics to the PV panels, reducing the power losses caused by the converter operation. Moreover, the AIDB provides a large voltage conversion ratio, which is required to step-up the PV voltage to the large dc-link voltage used in grid-connected inverters. To reject irradiance and load disturbances, the AIDB must be operated in a closed-loop and a dynamic model is required. Given that the AIDB converter operates in Discontinuous Conduction Mode (DCM, classical modeling approaches based on Continuous Conduction Mode (CCM are not valid. Moreover, classical DCM modeling techniques are not suitable for the AIDB converter. Therefore, this paper develops a novel mathematical model for the AIDB converter, which is suitable for control-pur-poses. The proposed model is based on the calculation of a diode current that is typically disregarded. Moreover, because the traditional correction to the second duty cycle reported in literature is not effective, a new equation is designed. The model accuracy is contrasted with circuital simulations in time and frequency domains, obtaining satisfactory results. Finally, the usefulness of the model in control applications is illustrated with an application example.

  20. Modeling of asymmetrical boost converters

    Directory of Open Access Journals (Sweden)

    Eliana Isabel Arango Zuluaga

    2014-03-01

    Full Text Available The asymmetrical interleaved dual boost (AIDB is a fifth-order DC/DC converter designed to interface photovoltaic (PV panels. The AIDB produces small current harmonics to the PV panels, reducing the power losses caused by the converter operation. Moreover, the AIDB provides a large voltage conversion ratio, which is required to step-up the PV voltage to the large dc-link voltage used in grid-connected inverters. To reject irradiance and load disturbances, the AIDB must be operated in a closed-loop and a dynamic model is required. Given that the AIDB converter operates in Discontinuous Conduction Mode (DCM, classical modeling approaches based on Continuous Conduction Mode (CCM are not valid. Moreover, classical DCM modeling techniques are not suitable for the AIDB converter. Therefore, this paper develops a novel mathematical model for the AIDB converter, which is suitable for control-pur-poses. The proposed model is based on the calculation of a diode current that is typically disregarded. Moreover, because the traditional correction to the second duty cycle reported in literature is not effective, a new equation is designed. The model accuracy is contrasted with circuital simulations in time and frequency domains, obtaining satisfactory results. Finally, the usefulness of the model in control applications is illustrated with an application example.

  1. Transition Metal-Catalyzed Regioselective Asymmetric Mono-hydrogenation of Dienes and Polyenes.

    Science.gov (United States)

    Margarita, Cristiana; Rabten, Wangchuk; Andersson, Pher G

    2018-02-28

    Organic compounds containing multiple C=C bonds are attractive substrates for catalytic asymmetric hydrogenation. The full saturation of prochiral double bonds, controlling the creation of two or more stereocenters in one step, is obviously a remarkable goal. However, another fascinating and useful option is to selectively introduce a new defined stereogenic center, while leaving other double bonds untouched. Thus, the retained functionalities can be further exploited in synthesis. Examples of regio- and enantioselective mono-hydrogenations of polyolefins are highlighted in this Concept article, and are divided according to the nature of the reduced double bond and the transition-metal catalyst used. Alkenes bearing coordinating functional groups are often preferentially hydrogenated by Rh- and Ru-complexes, while the more recently developed Ir-based catalysts promote the selective saturation on alkyl-substituted olefins. Relevant applications of this effective methodology in the synthesis of natural products are included to demonstrate its value in organic synthesis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Catalytic enantioselective olefin metathesis in natural product synthesis. Chiral metal-based complexes that deliver high enantioselectivity and more.

    Science.gov (United States)

    Hoveyda, Amir H; Malcolmson, Steven J; Meek, Simon J; Zhugralin, Adil R

    2010-01-01

    Chiral olefin metathesis catalysts enable chemists to access enantiomerically enriched small molecules with high efficiency; synthesis schemes involving such complexes can be substantially more concise than those that would involve enantiomerically pure substrates and achiral Mo alkylidenes or Ru-based carbenes. The scope of research towards design and development of chiral catalysts is not limited to discovery of complexes that are merely the chiral versions of the related achiral variants. A chiral olefin metathesis catalyst, in addition to furnishing products of high enantiomeric purity, can offer levels of efficiency, product selectivity and/or olefin stereoselectivity that are unavailable through the achiral variants. Such positive attributes of chiral catalysts (whether utilized in racemic or enantiomerically enriched form) should be considered as general, applicable to other classes of transformations.

  3. Palladium(II-catalyzed Heck reaction of aryl halides and arylboronic acids with olefins under mild conditions

    Directory of Open Access Journals (Sweden)

    Tanveer Mahamadali Shaikh

    2013-08-01

    Full Text Available A series of general and selective Pd(II-catalyzed Heck reactions were investigated under mild reaction conditions. The first protocol has been developed employing an imidazole-based secondary phosphine oxide (SPO ligated palladium complex (6 as a precatalyst. The catalytic coupling of aryl halides and olefins led to the formation of the corresponding coupled products in excellent yields. A variety of substrates, both electron-rich and electron-poor olefins, were converted smoothly to the targeted products in high yields. Compared with the existing approaches employing SPO–Pd complexes in a Heck reaction, the current strategy features mild reaction conditions and broad substrate scope. Furthermore, we described the coupling of arylboronic acids with olefins, which were catalyzed by Pd(OAc2 and employed N-bromosuccinimide as an additive under ambient conditions. The resulted biaryls have been obtained in moderate to good yields.

  4. Asymmetrical Warfare, Transformation, and Foreign Language Capability

    National Research Council Canada - National Science Library

    Porter, Clifford F

    2006-01-01

    .... There is no doubt that the current global war on terrorism is an asymmetrical war against an unpredictable enemy rather than the predictable or symmetrical threats against self-important dictators or the Soviet Union...

  5. Asymmetric cryptography based on wavefront sensing.

    Science.gov (United States)

    Peng, Xiang; Wei, Hengzheng; Zhang, Peng

    2006-12-15

    A system of asymmetric cryptography based on wavefront sensing (ACWS) is proposed for the first time to our knowledge. One of the most significant features of the asymmetric cryptography is that a trapdoor one-way function is required and constructed by analogy to wavefront sensing, in which the public key may be derived from optical parameters, such as the wavelength or the focal length, while the private key may be obtained from a kind of regular point array. The ciphertext is generated by the encoded wavefront and represented with an irregular array. In such an ACWS system, the encryption key is not identical to the decryption key, which is another important feature of an asymmetric cryptographic system. The processes of asymmetric encryption and decryption are formulized mathematically and demonstrated with a set of numerical experiments.

  6. Congenital asymmetric crying face: a case report

    Directory of Open Access Journals (Sweden)

    Semra Kara

    2011-12-01

    Full Text Available Congenital asymmetric crying face is an anomalia caused by unilateral absence or weakness of depressor anguli oris muscle The major finding of the disease is the absence or weakness in the outer and lower movement of the commissure during crying. The other expression muscles are normal and the face is symmetric at rest. The asymmetry in congenital asymmetric crying face is most evident during infancy but decreases by age. Congenital asymmetric crying face can be associated with cervicofacial, musclebone, respiratory, genitourinary and central nervous system anomalia. It is diagnosed by physical examination. This paper presents a six days old infant with Congenital asymmetric crying face and discusses the case in terms of diagnosis and disease features.

  7. Modeling Asymmetric Volatility In Oil Prices

    National Research Council Canada - National Science Library

    Syed Aun Hassan

    2011-01-01

    .... The paper uses daily crude oil price data for the past 10 years to test and model the oil price volatility by fitting different variations of GARCH including a univariate asymmetric GARCH model to the series...

  8. Asymmetric dense matter in holographic QCD

    Directory of Open Access Journals (Sweden)

    Shin Ik Jae

    2012-02-01

    Full Text Available We study asymmetric dense matter in holographic QCD.We construct asymmetric dense matter by considering two quark flavor branes with dierent quark masses in a D4/D6/D6 model. To calculate the symmetry energy in nuclear matter, we consider two quarks with equal masses and observe that the symmetry energy increases with the total charge showing the stiff dependence. This behavior is universal in the sense that the result is independent of parameters in the model. We also study strange (or hyperon matter with one light and one intermediate mass quarks. In addition to the vacuum properties of asymmetric matter, we calculate meson masses in asymmetric dense matter and discuss our results in the light of in-medium kaon masses.

  9. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry.

    Science.gov (United States)

    Haibach, Michael C; Kundu, Sabuj; Brookhart, Maurice; Goldman, Alan S

    2012-06-19

    Methods for the conversion of both renewable and non-petroleum fossil carbon sources to transportation fuels that are both efficient and economically viable could greatly enhance global security and prosperity. Currently, the major route to convert natural gas and coal to liquids is Fischer-Tropsch catalysis, which is potentially applicable to any source of synthesis gas including biomass and nonconventional fossil carbon sources. The major desired products of Fischer-Tropsch catalysis are n-alkanes that contain 9-19 carbons; they comprise a clean-burning and high combustion quality diesel, jet, and marine fuel. However, Fischer-Tropsch catalysis also results in significant yields of the much less valuable C(3) to C(8)n-alkanes; these are also present in large quantities in oil and gas reserves (natural gas liquids) and can be produced from the direct reduction of carbohydrates. Therefore, methods that could disproportionate medium-weight (C(3)-C(8)) n-alkanes into heavy and light n-alkanes offer great potential value as global demand for fuel increases and petroleum reserves decrease. This Account describes systems that we have developed for alkane metathesis based on the tandem operation of catalysts for alkane dehydrogenation and olefin metathesis. As dehydrogenation catalysts, we used pincer-ligated iridium complexes, and we initially investigated Schrock-type Mo or W alkylidene complexes as olefin metathesis catalysts. The interoperability of the catalysts typically represents a major challenge in tandem catalysis. In our systems, the rate of alkane dehydrogenation generally limits the overall reaction rate, whereas the lifetime of the alkylidene complexes at the relatively high temperatures required to obtain practical dehydrogenation rates (ca. 125 -200 °C) limits the total turnover numbers. Accordingly, we have focused on the development and use of more active dehydrogenation catalysts and more stable olefin-metathesis catalysts. We have used thermally

  10. Total Syntheses of Cyanthiwigins B, F, and G

    KAUST Repository

    Enquist, John A.

    2011-07-18

    A concise and versatile approach toward the preparation of the cyanthiwigin family of cyathane natural products is described. By leveraging a unique double asymmetric catalytic alkylation procedure it is possible to quickly establish two of the most critical stereocenters of the cyanthiwigin framework with high levels of selectivity and expediency. The synthetic route additionally employs both a tandem ring-closing cross-metathesis reaction, and an aldehyde-olefin radical cyclization process, in order to rapidly arrive at the tricyclic cyathane core of the cyanthiwigin molecules. From this unifying intermediate, the preparations of cyanthiwigins B, F, and G are attained swiftly and without the need for protecting groups.

  11. Designing Asymmetric Multiferroics with Strong Magnetoelectric Coupling

    OpenAIRE

    Lu, X. Z.; Xiang, H. J.

    2014-01-01

    Multiferroics offer exciting opportunities for electric-field control of magnetism. Unfortunately, single-phase multiferroics suitable for such applications at room temperature has not been discovered. Here, we propose the concept of a new type of multiferroics, namely, "asymmetric multiferroic". In asymmetric multiferroics, two locally stable ferroelectric states are not symmetrically equivalent, leading to different magnetic properties between these two states. Furthermore, we predict from ...

  12. Stable Bound States of Asymmetric Dark Matter

    OpenAIRE

    Wise, Mark B.; Zhang, Yue

    2014-01-01

    The simplest renormalizable effective field theories with asymmetric dark matter bound states contain two additional gauge singlet fields one being the dark matter and the other a mediator particle that the dark matter annihilates into. We examine the physics of one such model with a Dirac fermion as the dark matter and a real scalar mediator. For a range of parameters the Yukawa coupling of the dark matter to the mediator gives rise to stable asymmetric dark matter bound states. We derive pr...

  13. ARTICLE Molecular Dynamic Simulation on the Absorbing Process of Isolating and Coating of α-olefin Drag Reducing Polymer

    Science.gov (United States)

    Li, Bing; Sheng, Xiang; Xing, Wen-guo; Dong, Gui-lin; Liu, Yong-jun; Zhang, Chang-qiao; Chen, Xiang-jun; Zhou, Ning-ning; Qin, Zhan-bo

    2010-12-01

    The absorbing process in isolating and coating process of α-olefin drag reducing polymer was studied by molecular dynamic simulation method, on basis of coating theory of α-olefin drag reducing polymer particles with polyurethane as coating material. The distributions of sodium laurate, sodium dodecyl sulfate, and sodium dodecyl benzene sulfonate on the surface of α-olefin drag reducing polymer particles were almost the same, but the bending degrees of them were obviously different. The bending degree of SLA molecules was greater than those of the other two surfactant molecules. Simulation results of absorbing and accumulating structure showed that, though hydrophobic properties of surfactant molecules were almost the same, water density around long chain sulfonate sodium was bigger than that around alkyl sulfate sodium. This property goes against useful absorbing and accumulating on the surface of α-olefin drag reducing polymer particles; simulation results of interactions of different surfactant and multiple hydroxyl compounds on surface of particles showed that, interactions of different surfactant and one kind of multiple hydroxyl compound were similar to those of one kind of surfactant and different multiple hydroxyl compounds. These two contrast types of interactions also exhibited the differences of absorbing distribution and closing degrees to surface of particles. The sequence of closing degrees was derived from simulation; control step of addition polymerization interaction in coating process was absorbing mass transfer process, so the more closed to surface of particle the multiple hydroxyl compounds were, the easier interactions with isocyanate were. Simulation results represented the compatibility relationship between surfactant and multiple hydroxyl compounds. The isolating and coating processes of α-olefin drag reducing polymer were further understood on molecule and atom level through above simulation research, and based on the simulation, a

  14. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, October 1995--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W.

    1995-12-31

    The goal of this research is to develop a methodology for analyzing the reactivity of cyclic olefins in situ in a high temperature and high pressure infrared cell. Cyclic olefins, such as 1,4,5,8-tetrahydronaphthalene (isotetralin) and 1,4,5,8,9,10-hexahydroanthracene (HHA), are highly reactive donor compounds that readily donate their hydrogen to coal and model acceptors when heated to temperatures of 200{degrees}C and above. These donors are active donors in the low severity liquefaction of coal at 350{degrees}C as shown in the research performed in this project. The infrared studies are being performed in a high temperature infrared cell that was obtained from AABSPEC. Modifications to that cell have been made and have been reported in previous progress reports. During this last quarter the useful temperature range of the high temperature infrared cell was extended to 230{degrees}C through the use of a high-boiling perfluorocarbon solvent. The solvent used was an Air Products and Chemicals Company proprietary product trade named Multifluor APF-240. Solubilities of aromatics and cyclic olefins were quite low in APF-240, usually less than 0.1 wt% at room temperature, but were found to be a strong function of temperature, increasing markedly when the mixtures were heated to 65{degrees}C. Spectra have been obtained of n-hexadecane and naphthalene at temperatures of 65, 100, 125, 150, 175, 200 and 230{degrees}C. This demonstration of the safe operation of the high temperature IR cell and the acquisition of spectra at elevated temperatures paves the way for kinetic studies of the hydrogen donor capability of isotetralin. A perfluoroether has been obtained from Dupont which should extend the useful temperature range of the high temperature IR cell to 350{degrees}C.

  15. Application of the entropy theory of glass formation to poly(alpha-olefins).

    Science.gov (United States)

    Stukalin, Evgeny B; Douglas, Jack F; Freed, Karl F

    2009-09-21

    The entropy theory of glass formation, which has previously been developed to describe general classes of polymeric glass-forming liquids, is extended here to model the thermodynamic and dynamic properties of poly(alpha-olefins). By combining this thermodynamic theory with the Adam-Gibbs model (which relates the configurational entropy to the rate of structural relaxation), we provide systematic computations for all four characteristic temperatures (T(A), T(c), T(g), T(0)), governing the position and breadth of the glass transition, and the fragility parameters (D,m) describing the strength of the temperature dependence of the structural relaxation time, where T(A) is the temperature below which the relaxation is non-Arrhenius, T(c) is the crossover or empirical mode-coupling temperature, T(g) is the glass transition temperature, and T(0) is the temperature at which the extrapolated relaxation time diverges. These temperatures and fragility parameters are evaluated as a function of molar mass, pressure, and the length n of the alpha-olefin side chains. The nearest neighbor interaction energy and local chain rigidities are found to strongly influence the four characteristic temperatures and the low temperature fragility. We also observe an "internal plasticization" of the poly(alpha-olefins) wherein the fragility decreases as the number n of "flexible" side group units increases. Our computations provide solid support for a pressure counterpart of the Vogel-Fulcher-Tammann relation. The entropy theory of glass formation predicts systematic changes in fragility with chain stiffness, cohesive energy, polymerization index, and side chain length, and qualitative trends in these parameters are discussed.

  16. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, January--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W.

    1993-07-01

    The combination of some of these methods could further improve low severity conversion. It seems logical that a combination of a proven pretreatment technique with a good dissolution catalyst or a good hydrogen donor would increase reactivity. The importance of surface chemistry with yield and nature of reactions shown in early research indicates the physical importance of pretreatment. Swelling of the coal with an organic solvent improves the contact. This good contact is also important to slowing retrogressive reactions. The best conversions come when the initial products of liquefaction are preserved. In addition to the physical importance of pretreatment, there is a chemical advantage. Shams saw not only the effect of minimization of organic oxygen coupling reactions, but with his process there also seemed to be a demineralization. The minerals removed the catalysts for retrogressive reactions. The chemistry of liquefaction is still not well understood. Stansberry`s attempt to determine whether catalysts liberate species or just further decomposition was largely inconclusive. There was improvement in conversion so the catalysts seemingly assisted in bond breakage. These good catalytic effects were also seen in the work involving coprocessing. The most compelling factor in each of these procedures, is the ability of the coal to receive the hydrogen that it needs to be liquefied. Bedell and Curtis (1991) found that cyclic olefins gave their hydrogen up much more readily than did hydroaromatics. The coal conversion was a significantly improved. The combination of retrogressive reaction suppression and good hydrogen donability should provide for good coal conversion. It was this reasoning that influenced the decision to investigate a combination of the HCl/methanol pretreatment and the usage of cyclic olefins as hydrogen donors. The increased reactivity of the pretreated coal should enhance the effect of the hydrogen donability of the cyclic olefins.

  17. Cyclic olefin homopolymer-based microfluidics for protein crystallization and in situ X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Emamzadah, Soheila [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Department of Biochemistry, University of Geneva, CH-1205 Geneva (Switzerland); Petty, Tom J. [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Biomedical Graduate Studies Genomics and Computational Biology Group, University of Pennsylvania, Philadelphia, PA 19104 (United States); De Almeida, Victor [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Department of Biochemistry, University of Geneva, CH-1205 Geneva (Switzerland); Nishimura, Taisuke [Department of Plant Biology, University of Geneva, CH-1205 Geneva (Switzerland); Joly, Jacques; Ferrer, Jean-Luc [Institut de Biologie Structurale J.-P. Ebel, CEA-CNRS-University J. Fourier, 38027 Grenoble CEDEX 1 (France); Halazonetis, Thanos D., E-mail: thanos.halazonetis@unige.ch [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Department of Biochemistry, University of Geneva, CH-1205 Geneva (Switzerland)

    2009-09-01

    A cyclic olefin homopolymer-based microfluidics system has been established for protein crystallization and in situ X-ray diffraction. Microfluidics is a promising technology for the rapid identification of protein crystallization conditions. However, most of the existing systems utilize silicone elastomers as the chip material which, despite its many benefits, is highly permeable to water vapour. This limits the time available for protein crystallization to less than a week. Here, the use of a cyclic olefin homopolymer-based microfluidics system for protein crystallization and in situ X-ray diffraction is described. Liquid handling in this system is performed in 2 mm thin transparent cards which contain 500 chambers, each with a volume of 320 nl. Microbatch, vapour-diffusion and free-interface diffusion protocols for protein crystallization were implemented and crystals were obtained of a number of proteins, including chicken lysozyme, bovine trypsin, a human p53 protein containing both the DNA-binding and oligomerization domains bound to DNA and a functionally important domain of Arabidopsis Morpheus’ molecule 1 (MOM1). The latter two polypeptides have not been crystallized previously. For X-ray diffraction analysis, either the cards were opened to allow mounting of the crystals on loops or the crystals were exposed to X-rays in situ. For lysozyme, an entire X-ray diffraction data set at 1.5 Å resolution was collected without removing the crystal from the card. Thus, cyclic olefin homopolymer-based microfluidics systems have the potential to further automate protein crystallization and structural genomics efforts.

  18. Characteristics of Braced Excavation under Asymmetrical Loads

    Directory of Open Access Journals (Sweden)

    Changjie Xu

    2013-01-01

    Full Text Available Numerous excavation practices have shown that large discrepancies exist between field monitoring data and calculated results when the conventional symmetry-plane method (with half-width is used to design the retaining structure under asymmetrical loads. To examine the characteristics of a retaining structure under asymmetrical loads, we use the finite element method (FEM to simulate the excavation process under four different groups of asymmetrical loads and create an integrated model to tackle this problem. The effects of strut stiffness and wall length are also investigated. The results of numerical analysis clearly imply that the deformation and bending moment of diaphragm walls are distinct on different sides, indicating the need for different rebar arrangements when the excavation is subjected to asymmetrical loads. This study provides a practical approach to designing excavations under asymmetrical loads. We analyze and compare the monitoring and calculation data at different excavation stages and find some general trends. Several guidelines on excavation design under asymmetrical loads are drawn.

  19. Steam cracking and methane to olefins: Energy use, CO2 emissions and production costs

    OpenAIRE

    Ren, T; Patel, M.K.; Blok, K.

    2008-01-01

    While most olefins (e.g., ethylene and propylene) are currently produced through steam cracking routes, they can also possibly be produced from natural gas (i.e., methane) via methanol and oxidative coupling routes. We reviewed recent data in the literature and then compared the energy use, CO2 emissions and production costs of methane-based routes with those of steam cracking routes. We found that methane-based routes use more than twice as much process energy than state-of-the-art steam cra...

  20. Transition-metal-catalyzed carbonylation reactions of olefins and alkynes: a personal account.

    Science.gov (United States)

    Wu, Xiao-Feng; Fang, Xianjie; Wu, Lipeng; Jackstell, Ralf; Neumann, Helfried; Beller, Matthias

    2014-04-15

    Carbon monoxide was discovered and identified in the 18th century. Since the first applications in industry 80 years ago, academic and industrial laboratories have broadly explored CO's use in chemical reactions. Today organic chemists routinely employ CO in organic chemistry to synthesize all kinds of carbonyl compounds. Despite all these achievements and a century of carbonylation catalysis, many important research questions and challenges remain. Notably, apart from academic developments, industry applies carbonylation reactions with CO on bulk scale. In fact, today the largest applications of homogeneous catalysis (regarding scale) are carbonylation reactions, especially hydroformylations. In addition, the vast majority of acetic acid is produced via carbonylation of methanol (Monsanto or Cativa process). The carbonylation of olefins/alkynes with nucleophiles, such as alcohols and amines, represent another important type of such reactions. In this Account, we discuss our work on various carbonylations of unsaturated compounds and related reactions. Rhodium-catalyzed isomerization and hydroformylation reactions of internal olefins provide straightforward access to higher value aldehydes. Catalytic hydroaminomethylations offer an ideal way to synthesize substituted amines and even heterocycles directly. More recently, our group has also developed so-called alternative metal catalysts based on iridium, ruthenium, and iron. What about the future of carbonylation reactions? CO is already one of the most versatile C1 building blocks for organic synthesis and is widely used in industry. However, because of CO's high toxicity and gaseous nature, organic chemists are often reluctant to apply carbonylations more frequently. In addition, new regulations have recently made the transportation of carbon monoxide more difficult. Hence, researchers will need to develop and more frequently use practical and benign CO-generating reagents. Apart from formates, alcohols, and metal

  1. Cyclic olefin polymers: emerging materials for lab-on-a-chip applications

    DEFF Research Database (Denmark)

    Nunes, Pedro; Ohlsson, Pelle; Sala, Olga Ordeig

    2010-01-01

    Cyclic olefin polymers (COPs) are increasingly popular as substrate material for microfluidics. This is due to their promising properties, such as high chemical resistance, low water absorption, good optical transparency in the near UV range and ease of fabrication. COPs are commercially available...... materials. This is especially true within optofluidics, where COPs are still rarely used, despite their excellent optical properties. This review presents a detailed description of the properties of COPs, the available fabrication methods and several selected applications described in the literature....

  2. An adaptive self-healing ionic liquid nanocomposite membrane for olefin-paraffin separations.

    Science.gov (United States)

    Pitsch, Fee; Krull, Florian F; Agel, Friederike; Schulz, Peter; Wasserscheid, Peter; Melin, Thomas; Wessling, Matthias

    2012-08-16

    An adaptive self-healing ionic liquid nanocomposite membrane comprising a multi-layer support structure hosting the ionic salt [Ag](+) [Tf(2) N](-) is used for the separation of the olefin propylene and the paraffin propane. The ionic salt renders liquid like upon complexation with propylene, resulting in facilitated transport of propylene over propane at benchmark-setting selectivity and permeance levels. The contacting with acetylene causes the ionic salt to liquefy without showing evidence of forming explosive silver acetylide. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A new approach to ferrocene derived alkenes via copper-catalyzed olefination

    Directory of Open Access Journals (Sweden)

    Vasily M. Muzalevskiy

    2015-11-01

    Full Text Available A new approach to ferrocenyl haloalkenes and bis-alkenes was elaborated. The key procedure involves copper catalyzed olefination of N-unsubstituted hydrazones, obtained from ferrocene-containing carbonyl compounds and hydrazine, with polyhaloalkanes. The procedure is simple, cheap and could be applied for the utilization of environmentally harmful polyhalocarbons. The cyclic voltammetry study of the representative examples of the synthesized ferrocenyl alkenes shows the strong dependence of the cathodic behavior on the amount of vinyl groups: while for the monoalkene containing molecules no reduction is seen, the divinyl products are reduced in several steps.

  4. Effects of Process Parameters on Replication Accuracy of Microinjection Molded Cyclic Olefins Copolymers Parts

    Science.gov (United States)

    Lin, Hsuan-Liang; Chen, Chun-Sheng; Lee, Ruey-Tsung; Chen, Shia-Chung; Chien, Rean-Der; Jeng, Ming-Chang; Hwang, Jiun-Ren

    2013-04-01

    In this study, the effects of various processing parameters of microinjection molding on the replication accuracy of the micro featured fluidic platform used for DNA/RNA tests are investigated. LIGA-like processes were utilized to prepare a silicon-based SU-8 photoresist, followed by electroforming to make a Ni-Co-based stamp. A cyclic olefin copolymer (COC) was used as the injection molding material. The molding parameters associated with the replication accuracy of micro channel parts were investigated. It was found that for microinjection molded devices, the replication accuracies of the imprint width and depth increase with increasing of mold temperature, melt temperature, injection velocity, and packing pressure.

  5. Energetics of the ruthenium-halide bond in olefin metathesis (pre)catalysts

    KAUST Repository

    Falivene, Laura

    2013-01-01

    A DFT analysis of the strength of the Ru-halide bond in a series of typical olefin metathesis (pre)catalysts is presented. The calculated Ru-halide bond energies span the rather broad window of 25-43 kcal mol-1. This indicates that in many systems dissociation of the Ru-halide bond is possible and is actually competitive with dissociation of the labile ligand generating the 14e active species. Consequently, formation of cationic Ru species in solution should be considered as a possible event. © 2013 The Royal Society of Chemistry.

  6. Olefin Hydroarylation Catalyzed by (Pyridyl-Indolate)Pt(II) Complexes: Catalytic Efficiencies and Mechanistic Aspects

    OpenAIRE

    Suslick, Benjamin A.; Liberman-Martin, Allegra L.; Wambach, Truman C.; Tilley, T. Don

    2017-01-01

    A series of Pt(II) complexes of the type (N–N)PtPh(SR_2) (N–N = 2,2′-pyridyl-indolate) were prepared, and their performance as catalysts for the hydroarylation of olefins was assessed. Evidence that the catalysis is homogeneous and is Pt-mediated is provided by control experiments with added hindered base (2,6-di-tert-butyl-4-methylpyridine) and Hg(0). Two potential catalytic intermediates, (^tBuPyInd)PtPh(C_2H_4) and (^tBuPyInd)Pt(CH_2CH_2Ph)(C_2H_4), were synthesized, and their catalytic ef...

  7. An Olefin Cross-Metathesis Approach to Depudecin and Stereoisomeric Analogues.

    Science.gov (United States)

    Cheng-Sánchez, Iván; García-Ruiz, Cristina; Guerrero-Vásquez, Guillermo A; Sarabia, Francisco

    2017-05-05

    A new total synthesis of the natural product (-)-depudecin, a unique and unexplored histone deacetylase (HDAC) inhibitor, is reported. A key feature of the synthesis is the utilization of an olefin cross-metathesis strategy, which provides for an efficient and improved access to natural depudecin, compared with our previous linear synthesis. Featured by its brevity and convergency, our developed synthetic strategy was applied to the preparation of the 10-epi derivative and the enantiomer of depudecin, which represent interesting stereoisomeric analogues for structure-activity relationship studies.

  8. Effect of catalyst pretreatment on the olefin metathesis catalyzed by alumina-supported (9%) rhenium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, J.C.

    1979-01-01

    A kinetic model was developed to express the time-on-stream profile of the activity during catalyst break-in and deactivation. The catalyst surface is in geometric and energetic heterogeneity. Partial catalyst reduction is a prerequisite step for olefin metathesis. The metathesis activity may be affected by the coordination number and the type of ligands associated with the sites on the catalyst. The deactivation is proposed due to deposition of residues on the active sites, and to sintering, etc. A dispersion pretreatment increased activity. Oxygen is an activator. The hydrogen reduction at 500/sup 0/C causes partial but permanent loss of activity.

  9. Nobel Prize in Chemistry. Development of the Olefin Metathesis Method in Organic Synthesis

    Science.gov (United States)

    Casey, Charles P.

    2006-02-01

    The 2005 Nobel Prize in Chemistry was awarded to Yves Chauvin of the Institut Français du Pétrole, Robert H. Grubbs of CalTech, and Richard R. Schrock of MIT "for development of the metathesis method in organic synthesis". The discoveries of the laureates provided a chemical reaction now used daily in the chemical industry for the efficient and more environmentally friendly production of important pharmaceuticals, fuels, synthetic fibers, and many other products. This article tells the story of how olefin metathesis became a truly useful synthetic transformation and a triumph for mechanistic chemistry, and illustrates the importance of fundamental research. See JCE Featured Molecules .

  10. Divergent Approach to a Family of Tyrosine-Derived Ru-Alkylidene Olefin Metathesis Catalysts.

    Science.gov (United States)

    Gleeson, Ellen C; Wang, Zhen J; Jackson, W Roy; Robinson, Andrea J

    2015-07-17

    A simple and generic approach to access a new family of Ru-alkylidene olefin metathesis catalysts with specialized properties is reported. This strategy utilizes a late stage, utilitarian Hoveyda-type ligand derived from tyrosine, which can be accessed via a multigram-scale synthesis. Further functionalization allows the catalyst properties to be tuned, giving access to modified second-generation Hoveyda-Grubbs-type catalysts. This divergent synthetic approach can be used to access solid-supported catalysts and catalysts that function under solvent-free and aqueous conditions.

  11. A succinct access to ω-hydroxylated jasmonates via olefin metathesis.

    Science.gov (United States)

    Jimenez-Aleman, Guillermo H; Seçinti, Selina; Boland, Wilhelm

    2017-07-14

    In higher plants, jasmonates are lipid-derived signaling molecules that control many physiological processes, including responses to abiotic stress, defenses against insects and pathogens, and development. Among jasmonates, ω-oxidized compounds form an important subfamily. The biological roles of these ω-modified derivatives are not fully understood, largely due to their limited availability. Herein, a brief (two-step), simple and efficient (>80% yield), versatile, gram-scalable, and environmentally friendly synthetic route to ω-oxidized jasmonates is described. The approach utilizes olefin cross-metathesis as the key step employing inexpensive, commercially available substrates and catalysts.

  12. Numerical simulation of scale-up effects of methanol-to-olefins fluidized bed reactors

    DEFF Research Database (Denmark)

    Lu, Bona; Zhang, Jingyuan; Luo, Hao

    2017-01-01

    factors and is expected to speed up the experiment-based scale-up process with lower cost. In this study, we aim to investigate the scale-up effects through simulations of a series of methanol-to-olefins (MTO) reactors of different sizes. The two-fluid model and energy-minimization multi-scale (EMMS......)-based drag models are combined in simulations. The fluidization characteristics in terms of flow structures, velocity distribution, mass fractions of gaseous product and coke distribution are presented against available experimental data for different-sized reactors. It is found that typical hydrodynamic...

  13. Pushing Chemical Boundaries with N-Heterocyclic Olefins (NHOs): From Catalysis to Main Group Element Chemistry.

    Science.gov (United States)

    Roy, Matthew M D; Rivard, Eric

    2017-08-15

    N-Heterocyclic olefins (NHOs) have gone from the topic of a few scattered (but important) reports in the early 1990s to very recently being a ligand/reagent of choice in the far-reaching research fields of organocatalysis, olefin and heterocycle polymerization, and low oxidation state main group element chemistry. NHOs are formally derived by appending an alkylidene (CR2) unit onto an N-heterocyclic carbene (NHC), and their pronounced ylidic character leads to high nucleophilicity and soft Lewis basic character at the ligating carbon atom. These olefinic donors can also be structurally derived from imidazole, triazole, and thiazole-based heterocyclic carbenes and, as a result, have highly tunable electronic and steric properties. In this Account, we will focus on various synthetic routes to imidazole-2-ylidene derived NHOs (sometimes referred to as deoxy-Breslow intermediates) followed by a discussion of the electron-donor ability of this structurally tunable ligand group. It should be mentioned that NHOs have a close structural analogy with Breslow-type intermediates, N-heterocyclic ketene aminals, and β-azolium ylides; while these latter species play important roles in advancing synthetic organic chemistry, discussion in this Account will be confined mostly to imidazole-2-ylidene derived NHOs. In addition, we will cover selected examples from the literature where NHOs and their anionic counterparts, N-heterocyclic vinylenes, are used to access reactive main group species not attainable using traditional ligands. Added motivation for these studies comes from the emerging number of low coordinate main group element based compounds that display reactivity once reserved for precious metal complexes (such as H-H and C-H bond activation). Moreover, NHOs are versatile precursors to new mixed element (P/C and N/C), and potentially bidentate, ligand constructs of great potential in catalysis, where various metal oxidation states and coordination environments need to be

  14. Prediction of properties of new halogenated olefins using two group contribution approaches

    DEFF Research Database (Denmark)

    Montagud, Maria E. Mondejar; Cignitti, Stefano; Abildskov, Jens

    2017-01-01

    temperature, critical pressure, normal boiling temperature, acentric factor, and ideal gas heat capacity of organic fluids containing chlorine and/or fluorine. The accuracy of the prediction capacity of the two models is analyzed, and compared with equivalent methods in the literature. The models showed......The increasingly restrictive regulations for substances with high ozone depletion and global warming potentials are driving the search for new sustainable fluids with low environmental impact. Recent research works have pointed out the great potential of fluorine- and chlorine-based olefins...

  15. Rapid prototyping tools and methods for all-Topas (R) cyclic olefin copolymer fluidic microsystems

    DEFF Research Database (Denmark)

    Bundgaard, Frederik; Perozziello, Gerardo; Geschke, Oliver

    2006-01-01

    Topas (R), the cyclic olefin copolymer, from Topas Advanced Polymers GmbH has a number of advantages over polymers such as poly(methylmethacrylate), polydimethylsiloxane, and polycarbonate traditionally used in fluid microsystem manufacturing, such as low water absorption, high chemical resistance......, good machinability, and good optical properties. A number of different processes for rapid and low-cost prototyping of all-Topas microfluidic systems, made with desktop machinery, are presented. Among the processes are micromilling of fluidic structures with a width down to 25 p,m and sealing...

  16. Synthesis of Chiral, Enantiopure Allylic Amines by the Julia Olefination of α-Amino Esters

    Directory of Open Access Journals (Sweden)

    Fabio Benedetti

    2016-06-01

    Full Text Available The four-step conversion of a series of N-Boc-protected l-amino acid methyl esters into enantiopure N-Boc allylamines by a modified Julia olefination is described. Key steps include the reaction of a lithiated phenylalkylsulfone with amino esters, giving chiral β-ketosulfones, and the reductive elimination of related α-acetoxysulfones. The overall transformation takes place under mild conditions, with good yields, and without loss of stereochemical integrity, being in this respect superior to the conventional Julia reaction of α-amino aldehydes.

  17. Rhodium fluorapatite catalyst for the synthesis of trisubstituted olefins via cross coupling of Baylis-Hillman adducts and arylboronic acids.

    Science.gov (United States)

    Kantam, M Lakshmi; Kumar, K B Shiva; Sreedhar, B

    2008-01-04

    Treatment of fluorapatite (prepared by incorporating basic species F(-) in apatite in situ by coprecipitation) with an aqueous solution of RhCl(3) resulted in rhodium-exchanged fluorapatite catalyst (RhFAP), which successfully promoted cross coupling of Baylis-Hillman adducts with arylboronic acids to yield trisubstituted olefins. A variety of arylboronic acids and Baylis-Hillman adducts were converted to the corresponding trisubstituted olefins, demonstrating the versatility of the reaction. The reaction is highly stereoselective. RhFAP was recovered quantitatively by simple filtration and reused with almost consistent activity.

  18. Exploring new generations of ruthenium olefin metathesis catalysts: The reactivity of a bis-ylidene ruthenium complex by DFT

    KAUST Repository

    Poater, Albert

    2013-01-01

    Density functional theory calculations were used to predict the behaviour of a potential novel architecture of olefin metathesis catalysts, in which one of the neutral ligands of classical Ru-based catalysts, e.g. a phosphine or an N-heterocyclic carbene, is replaced by an alkylidene group. Introduction of a second alkylidene ligand favors dissociation of the remaining phosphine and the overall energy profile for the metathesis using ethylene as the probe substrate reveals that the proposed bis-alkylidene complexes might match the requirements of a good performing olefin metathesis catalyst. © 2013 The Royal Society of Chemistry.

  19. Nanoimprint lithography in the cyclic olefin copolymer, Topas, a highly ultraviolet-transparent and chemically resistant thermoplast

    DEFF Research Database (Denmark)

    Nielsen, T.; Nilsson, D.; Bundgaard, F.

    2004-01-01

    Thermal nanoimprint lithography (NIL) of the cyclic olefin copolymeric thermoplast Topas® isdemonstrated. Topas® is highly UV-transparent, has low water absorption, and is chemically resistant to hydrolysis, acids and organic polar solvents which makes it suitable for lab-on-a-chipapplications. I......Thermal nanoimprint lithography (NIL) of the cyclic olefin copolymeric thermoplast Topas® isdemonstrated. Topas® is highly UV-transparent, has low water absorption, and is chemically resistant to hydrolysis, acids and organic polar solvents which makes it suitable for lab...

  20. Asymmetric Bessel-Gauss beams.

    Science.gov (United States)

    Kotlyar, V V; Kovalev, A A; Skidanov, R V; Soifer, V A

    2014-09-01

    We propose a three-parameter family of asymmetric Bessel-Gauss (aBG) beams with integer and fractional orbital angular momentum (OAM). The aBG beams are described by the product of a Gaussian function by the nth-order Bessel function of the first kind of complex argument, having finite energy. The aBG beam's asymmetry degree depends on a real parameter c≥0: at c=0, the aBG beam is coincident with a conventional radially symmetric Bessel-Gauss (BG) beam; with increasing c, the aBG beam acquires a semicrescent shape, then becoming elongated along the y axis and shifting along the x axis for c≫1. In the initial plane, the intensity distribution of the aBG beams has a countable number of isolated optical nulls on the x axis, which result in optical vortices with unit topological charge and opposite signs on the different sides of the origin. As the aBG beam propagates, the vortex centers undergo a nonuniform rotation with the entire beam about the optical axis (c≫1), making a π/4 turn at the Rayleigh range and another π/4 turn after traveling the remaining distance. At different values of the c parameter, the optical nulls of the transverse intensity distribution change their position, thus changing the OAM that the beam carries. An isolated optical null on the optical axis generates an optical vortex with topological charge n. A vortex laser beam shaped as a rotating semicrescent has been generated using a spatial light modulator.

  1. Separating effective high density polyethylene segments from olefin block copolymers using high temperature liquid chromatography with a preloaded discrete adsorption promoting solvent barrier.

    Science.gov (United States)

    Chatterjee, Tirtha; Rickard, Mark A; Pearce, Eric; Pangburn, Todd O; Li, Yongfu; Lyons, John W; Cong, Rongjuan; deGroot, A Willem; Meunier, David M

    2016-09-23

    Recent advances in catalyst technology have enabled the synthesis of olefin block copolymers (OBC). One type is a "hard-soft" OBC with a high density polyethylene (HDPE) block and a relatively low density polyethylene (VLDPE) block targeted as thermoplastic elastomers. Presently, one of the major challenges is to fractionate HDPE segments from the other components in an experimental OBC sample (block copolymers and VLDPE segments). Interactive high temperature liquid chromatography (HTLC) is ineffective for OBC separation as the HDPE segments and block copolymer chains experience nearly identical enthalpic interactions with the stationary phase and co-elute. In this work we have overcome this challenge by using liquid chromatography under the limiting conditions of desorption (LC LCD). A solvent plug (discrete barrier) is introduced in front of the sample which specifically promotes the adsorption of HDPE segments on the stationary phase (porous graphitic carbon). Under selected thermodynamic conditions, VLDPE segments and block copolymer chains crossed the barrier while HDPE segments followed the pore-included barrier solvent and thus enabled separation. The barrier solvent composition was optimized and the chemical composition of fractionated polymer chains was investigated as a function of barrier solvent strength using an online Fourier-transform infrared (FTIR) detector. Our study revealed that both the HDPE segments as well as asymmetric block copolymer chains (HDPE block length≫VLDPE block length) are retained in the separation and the barrier strength can be tailored to retain a particular composition. At the optimum barrier solvent composition, this method can be applied to separate effective HDPE segments from the other components, which has been demonstrated using an experimental OBC sample. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Olefin cross-metathesis as a source of polysaccharide derivatives: cellulose ω-carboxyalkanoates.

    Science.gov (United States)

    Meng, Xiangtao; Matson, John B; Edgar, Kevin J

    2014-01-13

    Cross-metathesis has been shown for the first time to be a useful method for the synthesis of polysaccharide derivatives, focusing herein on preparation of cellulose ω-carboxyalkanoates. Commercially available cellulose esters were first acylated with 10-undecenoyl chloride, providing esters with olefin-terminated side chains. Subsequent cross-metathesis of these terminal olefin moieties with acrylic acid was performed in solvents including acrylic acid, THF, and CH2Cl2. Complete conversion to discrete, soluble cross-metathesis products was achieved by using the Hoveyda-Grubbs second generation ruthenium catalyst and an excess of acrylic acid. Oligomerization during storage, caused by a free radical mechanism, was observed and successfully suppressed by the addition of a free radical scavenger (BHT). Furthermore, the cross-metathesis products exhibited glass transition temperatures (Tg) that were at least 50 °C higher than ambient temperature, supporting the potential for application of these polymers as amorphous solid dispersion matrices for enhancing drug aqueous solubility.

  3. Insight into Group 4 Metallocenium-Mediated Olefin Polymerization Reaction Coordinates Using a Metadynamics Approach.

    Science.gov (United States)

    Motta, Alessandro; Fragalà, Ignazio L; Marks, Tobin J

    2013-08-13

    We report here the first application of the computationally efficient metadynamics approach for analyzing single-site olefin polymerization mechanisms. The mechanism of group 4 metallocenium catalysis for ethylene homopolymerization is investigated by modeling the ethylene insertion step at the cationic (η(5)-C5H5)Zr(CH3)2(+) center using molecular dynamics simulations within the Density Functional Theory (DFT) framework. In particular, the metadynamics formalism is adopted to enable theoretical characterization of covalent bond forming/breaking processes using molecular dynamics ab initio tools. Analysis of the ethylene insertion step free energy surface indicates a slightly exoergic process (-3.2 kcal/mol) with a barrier of 8.6 kcal/mol, in good agreement with conventional ab initio static calculations. Analysis of the structural and dynamic aspects of the simulated reaction coordinate reveals a preferred olefin configuration which aligns parallel to the Zr-CH3 vector in concert with insertion and a slightly bent conformation of the product n-propyl chain to avoid nonbonded repulsion between methylene groups. It is found that the unsaturated/electrophilic CpZr(CH3)2(+) center drives the insertion step, thus promoting the formation of the Zr-alkyl bond. The metadynamics analysis uniquely encompasses all energetically possible reaction coordinates, thus providing a more detailed mechanistic picture. These results demonstrate the potential of metadynamics in the conformational and geometrical analysis of transition metal-centered homogeneous catalytic processes.

  4. SOMC-Designed Silica Supported Tungsten Oxo Imidazolin-2-iminato Methyl Precatalyst for Olefin Metathesis Reactions.

    Science.gov (United States)

    Qureshi, Ziyauddin S; Hamieh, Ali; Barman, Samir; Maity, Niladri; Samantaray, Manoja K; Ould-Chikh, Samy; Abou-Hamad, Edy; Falivene, Laura; D'Elia, Valerio; Rothenberger, Alexander; Llorens, Isabelle; Hazemann, Jean-Louis; Basset, Jean-Marie

    2017-01-17

    Synthesis, structure, and olefin metathesis activity of a surface complex [(≡Si-O-)W(═O)(CH3)2-Im(Dipp)N] (4) (Im(Dipp) = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-iminato) supported on silica by a surface organometallic chemistry (SOMC) approach are reported. The reaction of N-silylated 2-iminoimidazoline with tungsten(VI) oxytetrachloride generated the tungsten oxo imidazolin-2-iminato chloride complex [Im(Dipp)NW(═O)Cl3] (2). This was grafted on partially dehydroxylated silica pretreated at 700 °C (SiO2-700) to afford a well-defined monopodal surface complex [(≡Si-O-)W(═O)Cl2-Im(Dipp)N] (3). 3 underwent alkylation by ZnMe2 to produce [(≡Si-O-)W(═O)(CH3)2-Im(Dipp)N] (4). The alkylated surface complex was thoroughly characterized by solid-state NMR, elemental microanalysis, Raman, FT-IR spectroscopies, and XAS analysis. 4 proved to be an active precatalyst for self-metathesis of terminal olefins such as propylene and 1-hexene.

  5. Hypercoordinate β-carbon in Grubbs and Schrock olefin metathesis metallacycles.

    Science.gov (United States)

    Remya, Premaja R; Suresh, Cherumuttathu H

    2015-10-28

    Metallacyclobutane (MCB) intermediates of Grubbs and Schrock olefin metathesis catalysts are well-known for their unusually short single bond-like metal to Cβ distance and unusually long CαCβ distances. From the analysis of structural, bond order, electron density and (13)C NMR data of a large variety of MCB systems, we show that the Cβ of the metallacycle possesses pentacoordinate geometry due to the agostic type interaction of the metal with the CαCβ bonds. The pentacoordination of Cβ to the metal center is characterized by a catastrophe ring critical point (RCP) in the quantum theory of atoms-in-molecule (QTAIM) analysis. Fine tuning of the ligand environment changes the catastrophe point to a fifth bond critical point (BCP) which is clearly brought out in the case of two ruthenium olefin metathesis systems. Several Ru and W agostic MCB complexes exhibiting pentacoordinate Cβ as well as their non-agostic isomers have been reported at the BP86/def2-TZVPP level of DFT. The agostic systems showed a significant bond order between metal and Cβ (0.17-0.36), single bond-like electron density values at the catastrophe RCP/BCP and a significantly large difference in (13)C NMR chemical shift values between Cα and Cβ atoms.

  6. Solvent-free cyclization of linear dienes using olefin metathesis and the Thorpe-Ingold effect

    Energy Technology Data Exchange (ETDEWEB)

    Forbees, M.D.E.; Myers, T.L.; Maynard, H.D.; Schulz, G.R. (Univ. of North Carolina, Chapel Hill (United States)); Patton, J.T.; Smith, D.W. Jr.; Wagener, K.B. (Univ. of Florida, Gainesville (United States))

    1992-12-30

    The olefin metathesis reaction is of great synthetic utility in polymer chemistry. The recent development of ring-opening (ROMP) and acyclic diene (ADMET) metathesis polymerization reactions has opened new avenues for the synthesis of novel polymeric materials. Recently the authors used ADMET to synthesize several photochemically active poly(keto olefins) using the catalyst Mo(CHCMe[sub 2]Ph)(NAr)(OCMe(CF[sub 3])[sub 2])[sub 2] (Ar = 2,6-diisopropylphenyl) (1) developed by Schrock and co-workers in 1990. In the course of that work, they discovered that neat samples of highly substituted dienes will cyclize quantitatively via metathesis to give difunctional five- and seven-membered rings instead of the expected linear polymer. Examples of substituted diene cyclizations by metathesis even in the presence of a solvent are rare. Their systematic exploitation in organic synthesis has therefore been limited to two recent studies by Fu and Grubbs, who cyclized several substituted diene ethers, amines, and amides to unsaturated oxygen and nitrogen heterocycles. Cyclization of unsubstituted dienes in various solvents has been reported, but complete conversion occurred in only a few cases. Formation of cyclic alkene oligomers from back-biting during the ROMP reaction is also known. The reactions reported here are unusual in that they are intermolecular between catalyst and substrate, yet can give 100% yield of product solely from the monomer in the absence of solvent. 13 refs.

  7. SOMC-Designed Silica Supported Tungsten Oxo Imidazolin-2-iminato Methyl Precatalyst for Olefin Metathesis Reactions

    KAUST Repository

    Qureshi, Ziyauddin

    2017-01-05

    Synthesis, structure, and olefin metathesis activity of a surface complex [(≡Si-O-)W(═O)(CH3)2-ImDippN] (4) (ImDipp = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-iminato) supported on silica by a surface organometallic chemistry (SOMC) approach are reported. The reaction of N-silylated 2-iminoimidazoline with tungsten(VI) oxytetrachloride generated the tungsten oxo imidazolin-2-iminato chloride complex [ImDippNW(═O)Cl3] (2). This was grafted on partially dehydroxylated silica pretreated at 700 °C (SiO2-700) to afford a well-defined monopodal surface complex [(≡Si-O-)W(═O)Cl2-ImDippN] (3). 3 underwent alkylation by ZnMe2 to produce [(≡Si-O-)W(═O)(CH3)2-ImDippN] (4). The alkylated surface complex was thoroughly characterized by solid-state NMR, elemental microanalysis, Raman, FT-IR spectroscopies, and XAS analysis. 4 proved to be an active precatalyst for self-metathesis of terminal olefins such as propylene and 1-hexene.

  8. Surface functionalization of cyclic olefin copolymer with aryldiazonium salts: A covalent grafting method

    Energy Technology Data Exchange (ETDEWEB)

    Brisset, Florian, E-mail: florian.brisset@etu.univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Vieillard, Julien, E-mail: julien.vieillard@univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Berton, Benjamin, E-mail: benjamin.berton@univ-rouen.fr [EA 3233 SMS, Université de Rouen, 1 rue du 7ème Chasseurs, BP281, 27002 Evreux Cedex (France); Morin-Grognet, Sandrine, E-mail: sandrine.morin@univ-rouen.fr [EA 3829 MERCI, Université de Rouen, 1 rue du 7ème Chasseurs, BP281, 27002 Evreux Cedex (France); Duclairoir-Poc, Cécile, E-mail: cecile.duclairoir@univ-rouen.fr [EA 4312 LMSM, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Le Derf, Franck, E-mail: franck.lederf@univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France)

    2015-02-28

    Graphical abstract: - Highlights: • An effective method to modify cyclic olefin copolymer surface. • The surface of COC was modified by covalent grafting of aryl diazonium salts. • The wettability of COC surface was modulated by diazonium salts. • Photoinitiation and chemical reduction have to be combined to graft diazonium salt on COC surface. - Abstract: Covalent immobilization of biomolecules on the surface of cyclic olefin copolymer (COC) is still a tough challenge. We developed a robust method for COC surface grafting through reaction with aryldiazonium. Chemical diazonium reduction generated an aryl radical and the formation of a grafted film layer on the organic surface. We also demonstrated that the chemical reduction of diazonium salt was not sufficient to form a film on the COC surface. UV illumination had to be combined with chemical reduction to graft an aryl layer onto the COC surface. We optimized organic film deposition by using different chemical reducers, different reaction times and reagent proportions. We characterized surface modifications by fluorescence microscopy and contact angle measurements, infrared spectroscopy, X-ray photoemission spectroscopy and Raman spectroscopy, and assessed the topography of the aryl film by atomic force microscopy. This original strategy allowed us to evidence various organic functions to graft biomolecules onto COC surfaces with a fast and efficient technique.

  9. Cyclic olefin homopolymer-based microfluidics for protein crystallization and in situ X-ray diffraction

    Science.gov (United States)

    Emamzadah, Soheila; Petty, Tom J.; De Almeida, Victor; Nishimura, Taisuke; Joly, Jacques; Ferrer, Jean-Luc; Halazonetis, Thanos D.

    2009-01-01

    Microfluidics is a promising technology for the rapid iden­tification of protein crystallization conditions. However, most of the existing systems utilize silicone elastomers as the chip material which, despite its many benefits, is highly permeable to water vapour. This limits the time available for protein crystallization to less than a week. Here, the use of a cyclic olefin homopolymer-based microfluidics system for protein crystallization and in situ X-ray diffraction is described. Liquid handling in this system is performed in 2 mm thin transparent cards which contain 500 chambers, each with a volume of 320 nl. Microbatch, vapour-diffusion and free-interface diffusion protocols for protein crystallization were implemented and crystals were obtained of a number of proteins, including chicken lysozyme, bovine trypsin, a human p53 protein containing both the DNA-binding and oligomerization domains bound to DNA and a functionally important domain of Arabidopsis Morpheus’ molecule 1 (MOM1). The latter two polypeptides have not been crystallized previously. For X-ray diffraction analysis, either the cards were opened to allow mounting of the crystals on loops or the crystals were exposed to X-rays in situ. For lysozyme, an entire X-ray diffraction data set at 1.5 Å resolution was collected without removing the crystal from the card. Thus, cyclic olefin homopolymer-based microfluidics systems have the potential to further automate protein crystallization and structural genomics efforts. PMID:19690369

  10. Nonthermal plasma reactors for the production of light hydrocarbon olefins from heavy oil

    Directory of Open Access Journals (Sweden)

    G. Prieto

    2003-03-01

    Full Text Available During the last decade, nonthermal plasma technology was applied in many different fields, focusing attention on the destruction of harmful compounds in the air. This paper deals with nonthermal plasma reactors for the conversion of heavy oil into light hydrocarbon olefins, to be employed as gasoline components or to be added in small amounts for the catalytic reduction of nitrogen oxide compounds in the treatment of exhaust gas at power plants. For the process, the plate-plate nonthermal plasma reactor driven by AC high voltage was selected. The reactor was modeled as a function of parameter characteristics, using the methodology provided by the statistical experimental design. The parameters studied were gap distance between electrodes, carrier gas flow and applied power. Results indicate that the reactions occurring in the process of heavy oil conversion have an important selective behavior. The products obtained were C1-C4 hydrocarbons with ethylene as the main compound. Operating the parameters of the reactor within the established operative window of the system and close to the optimum conditions, efficiencies as high as 70 (mul/joule were obtained. These values validate the process as an in-situ method to produce light olefins for the treatment of nitrogen oxides in the exhaust gas from diesel engines.

  11. Cationic bis-N-heterocyclic carbene (NHC) ruthenium complex: Structure and application as latent catalyst in olefin metathesis

    KAUST Repository

    Rouen, Mathieu

    2014-09-11

    An unexpected cationic bis-N-heterocyclic carbene (NHC) benzylidene ether based ruthenium complex (2 a) was prepared through the double incorporation of an unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligand that bore an N-substituted cyclododecyl side chain. The isolation and full characterization (including X-ray diffraction studies) of key synthetic intermediates along with theoretical calculations allowed us to understand the mechanism of the overall cationization process. Finally, the newly developed complex 2 a displayed interesting latent behavior during ring-closing metathesis, which could be "switched on" under acidic conditions.

  12. Cationic bis-N-heterocyclic carbene (NHC) ruthenium complex: structure and application as latent catalyst in olefin metathesis.

    Science.gov (United States)

    Rouen, Mathieu; Queval, Pierre; Falivene, Laura; Allard, Jessica; Toupet, Loïc; Crévisy, Christophe; Caijo, Frédéric; Baslé, Olivier; Cavallo, Luigi; Mauduit, Marc

    2014-10-13

    An unexpected cationic bis-N-heterocyclic carbene (NHC) benzylidene ether based ruthenium complex (2 a) was prepared through the double incorporation of an unsymmetrical unsaturated N-heterocyclic carbene (U2 -NHC) ligand that bore an N-substituted cyclododecyl side chain. The isolation and full characterization (including X-ray diffraction studies) of key synthetic intermediates along with theoretical calculations allowed us to understand the mechanism of the overall cationization process. Finally, the newly developed complex 2 a displayed interesting latent behavior during ring-closing metathesis, which could be "switched on" under acidic conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A diversity-oriented approach to indolocarbazoles via Fischer indolization and olefin metathesis: total synthesis of tjipanazole D and I.

    Science.gov (United States)

    Kotha, Sambasivarao; Saifuddin, Mohammad; Aswar, Vikas R

    2016-10-18

    New synthetic strategies to indolocarbazoles have been reported via two-fold Fischer indolization under green conditions using l-(+)-tartaric acid and N,N-dimethyl urea. Starting with cyclohexanone, a bench-top starting material, this methodology has been extended to the total synthesis of natural products such as tjipanazoles D and I as well as the core structure of asteropusazole and racemosin B. Here, atom economical reactions like ring-closing metathesis, enyne-metathesis, and the Diels-Alder reaction have been used as key steps. Diverse strategies demonstrated here are useful in medicinal chemistry and materials science to design a library of decorated indoles.

  14. Asymmetrical soft palate cleft repair: preliminary results.

    Science.gov (United States)

    Bütow, K-W; Engelbrecht, H; Naidoo, S

    2014-06-01

    The reconstructions of the asymmetrical soft palate cleft is a surgical challenge when it comes to achieving symmetry and optimal soft palate muscular function. Three different versions of the intravelar veloplasty have been used: the intravelar veloplasty (1969) (type I), the modification according to anatomical defects (1991) (type II), and the modification using part of Sommerlad's technique and part of Ivanov's technique (2008) (type III). The perioperative outcomes of the type II and type III intravelar veloplasty were assessed and compared in asymmetrical cleft cases. Two hundred and seventy-seven soft palate clefts were reconstructed: 153 type II and 124 type III. Of these, 49 were asymmetrical (17.7%); 23 underwent the type II procedure and 26 the type III procedure. Of the type II procedure cases, 30.4% remained asymmetrical postoperatively compared to 3.8% of the type III cases. The uvula appeared subjectively atrophic in 47.8% of the type II cases and in 7.7% of type III cases. Oro-nasal fistula occurred in 13.0% of the type II cases and 3.8% of the type III cases. Speech results will only be assessed after 4 years of age. The type III modified intravelar veloplasty has had a major beneficial impact on patients who had an asymmetrical soft palate cleft. Copyright © 2014. Published by Elsevier Ltd.

  15. Control of apoptosis by asymmetric cell division.

    Science.gov (United States)

    Hatzold, Julia; Conradt, Barbara

    2008-04-08

    Asymmetric cell division and apoptosis (programmed cell death) are two fundamental processes that are important for the development and function of multicellular organisms. We have found that the processes of asymmetric cell division and apoptosis can be functionally linked. Specifically, we show that asymmetric cell division in the nematode Caenorhabditis elegans is mediated by a pathway involving three genes, dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail, that directly control the enzymatic machinery responsible for apoptosis. Interestingly, the MIDA1-like protein GlsA of the alga Volvox carteri, as well as the Snail-related proteins Snail, Escargot, and Worniu of Drosophila melanogaster, have previously been implicated in asymmetric cell division. Therefore, C. elegans dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail may be components of a pathway involved in asymmetric cell division that is conserved throughout the plant and animal kingdoms. Furthermore, based on our results, we propose that this pathway directly controls the apoptotic fate in C. elegans, and possibly other animals as well.

  16. Control of apoptosis by asymmetric cell division.

    Directory of Open Access Journals (Sweden)

    Julia Hatzold

    2008-04-01

    Full Text Available Asymmetric cell division and apoptosis (programmed cell death are two fundamental processes that are important for the development and function of multicellular organisms. We have found that the processes of asymmetric cell division and apoptosis can be functionally linked. Specifically, we show that asymmetric cell division in the nematode Caenorhabditis elegans is mediated by a pathway involving three genes, dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail, that directly control the enzymatic machinery responsible for apoptosis. Interestingly, the MIDA1-like protein GlsA of the alga Volvox carteri, as well as the Snail-related proteins Snail, Escargot, and Worniu of Drosophila melanogaster, have previously been implicated in asymmetric cell division. Therefore, C. elegans dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail may be components of a pathway involved in asymmetric cell division that is conserved throughout the plant and animal kingdoms. Furthermore, based on our results, we propose that this pathway directly controls the apoptotic fate in C. elegans, and possibly other animals as well.

  17. A sampling theory for asymmetric communities.

    Science.gov (United States)

    Noble, Andrew E; Temme, Nico M; Fagan, William F; Keitt, Timothy H

    2011-03-21

    We introduce the first analytical model of asymmetric community dynamics to yield Hubbell's neutral theory in the limit of functional equivalence among all species. Our focus centers on an asymmetric extension of Hubbell's local community dynamics, while an analogous extension of Hubbell's metacommunity dynamics is deferred to an appendix. We find that mass-effects may facilitate coexistence in asymmetric local communities and generate unimodal species abundance distributions indistinguishable from those of symmetric communities. Multiple modes, however, only arise from asymmetric processes and provide a strong indication of non-neutral dynamics. Although the exact stationary distributions of fully asymmetric communities must be calculated numerically, we derive approximate sampling distributions for the general case and for nearly neutral communities where symmetry is broken by a single species distinct from all others in ecological fitness and dispersal ability. In the latter case, our approximate distributions are fully normalized, and novel asymptotic expansions of the required hypergeometric functions are provided to make evaluations tractable for large communities. Employing these results in a bayesian analysis may provide a novel statistical test to assess the consistency of species abundance data with the neutral hypothesis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Enantioselective synthesis of benzofurans and benzoxazines via an olefin cross-metathesis-intramolecular oxo-Michael reaction.

    Science.gov (United States)

    Zhang, Jun-Wei; Cai, Quan; Gu, Qing; Shi, Xiao-Xin; You, Shu-Li

    2013-09-11

    Chiral phosphoric acid and Hoveyda-Grubbs II were found to catalyze an olefin cross-metathesis-intramolecular oxo-Michael cascade reaction of the ortho-allylphenols and enones to provide a variety of benzofuran and benzoxazine derivatives in moderate to good yields and enantioselectivity.

  19. Bio-inspired iron and manganese complexes derived from mixed N,O ligands for the oxidation of olefins

    NARCIS (Netherlands)

    Moelands, M.A.H.

    2014-01-01

    This Thesis describes the synthesis and structural analysis of bio-inspired iron and manganese complexes used for the catalytic oxidation of olefin substrates. The development of catalytic systems for oxidation chemistry that are based on first row transition metals and that apply a green oxidant

  20. Liquid-phase synthesis of bridged peptides using olefin metathesis of a protected peptide with a long aliphatic chain anchor.

    Science.gov (United States)

    Aihara, Keisuke; Komiya, Chiaki; Shigenaga, Akira; Inokuma, Tsubasa; Takahashi, Daisuke; Otaka, Akira

    2015-02-06

    Bridged peptides including stapled peptides are attractive tools for regulating protein-protein interactions (PPIs). An effective synthetic methodology in a heterogeneous system for the preparation of these peptides using olefin metathesis and hydrogenation of protected peptides with a long aliphatic chain anchor is reported.